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10.1 � Introduction

Since the new millennium, emerging next-generation sequencing (NGS) technology 
has assisted researchers in measuring intractable and complex traits in biological data 
acquisition (Furbank et al. 2019). Among these technologies, crop functional genom-
ics and whole-genome sequencing (Li et  al. 2018) allowing in the acquisition of 
genome-wide association studies (GWAS) and quantitative trait locus (QTL) mapping 
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(Xiao et al. 2017) on the large-scale phenotypic and genetic architecture of complex 
traits (Shi et al. 2019; Wang et al. 2019) have stepped into the high-throughput and 
big-data era. For instance, plant genome annotation revealed 26500 loci for Arabidopsis 
to 41000 genes in rice. Recently, the poplar genome was revealed to encode 45000 
genes, and more than 40000 genes regulate multidimensional physiological and bio-
logical processes in Medicago and Lotus (Sterck et al. 2007). However, a genome size 
of 950 MB encoding about 35,000 genes in the tomato revolution our understanding 
of tomato biology (Barone et al. 2008). In the last two decades, thousands of genes in 
tomato (Barone et  al. 2008), rice (Yao et  al. 2018), and Arabidopsis (Bouché and 
Bouchez 2001) were functionally characterized through various traditional pheno-
typic techniques. The challenge is to attach the functions of these enormous numbers 
of genes restricting functional genomics studies and crop breeding (Deery et al. 2016).

The term “phenome” was first characterized by Davis (1949): approach to sys-
tematically explore the comprehensive set of extragenic, non-autoreproductive por-
tions of the cell and represented the set of phenotypes, either cytoplasmic or nuclear. 
Later on, phenomics was described as a complex interaction of an organism’s geno-
type and phenotype (Houle et al. 2010). Conventional crop phenotyping is labori-
ous, tedious, intensive, and potentially injurious to plants (Chen et  al. 2014). 
Recently, plant phenomics has been growing and advancing rapidly in the last 
decades includes the set of approaches used to precisely assess individual cells, tis-
sue, leaf, or plant to the large scale, i.e., ecosystem (Fiorani and Schurr 2013). In 
addition, crop phenomics is the inter/intradisciplinary study of high-throughput 
phenotyping platforms for accurate acquisition and an organism-wide scale analysis 
of phenotypes in crop development (Fig. 10.1) (Zhao et al. 2019). In recent years, 
next-generation genotyping and phenotyping have been advantageous over tradi-
tional breeding approaches due to the accuracy of these methods and their robust 
capability to accelerate crop breeding (Pasala and Pandey 2020).

Advanced sophisticated sensors, vision-guided robotics, automation technology, 
and machine learning, with applications in harvesting, quality assessment, sorting, 
screening, and packaging, have been extensively implemented in the agri-production 
industry to promote efficiency (Ruiz-Garcia et al. 2009) and for breeders to have a 
breakthrough in making rapid genetic progress (Furbank et al. 2019). The integra-
tion of genomics and phenomics can accelerate genetics gain in breeding programs 
and identify new traits in diverse plant germplasms that help breed populations 
through the crossing and artificial genomics (Bortesi and Fischer 2015). However, 
these approaches should apply at the early stages of plant development. To search 
for how and why to measure the whole genome and whole-plant phenotypes has 
been extensively explored. Over the last few decades, the answer to the former has 
been examined in detail. Recent achievements in high-throughput technologies 
allow us to conclude how and why to measure organism-level phenotype in the 
coming decades (Houle et al. 2010). For instance, RICE 2020 has been initiated to 
systematically and functionally characterize all protein transcripts and gene tran-
scripts in rice by 2020 (Zhang et al. 2008). This chapter tries to cover the significant 
advances in applying integrated high-throughput and phenomics approaches in 
genetics studies. Finally, we discuss the challenges in agri-phenomics and specify 
our standpoint on phenomics-related studies.
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Fig. 10.1  Timeline of significant achievements in the deployment of phenomics approaches, 
including genomics, phenotyping, machine learning, and artificial intelligence

10.2 � Phenomics

The plant being sessile organisms interact with multiple environmental 
stress across the life cycle and developed multiple avoidance strategies 
(Lymperopoulos et al. 2018). Conventional phenomics approaches focus on 
crop productivity and yield, while advanced sensing approaches enable 
plant scientists to record the environmental history of plants, together with 
their dynamic responses (Pratap et al. 2019). Robust phenomics is vital to 
plant breeding due to its fundamental basis for developing new varieties. 
However, advancement in phenomics including robotics, image processing, 
and deep learning enables non-destructive monitoring of plants develop-
ment and function to extract valuable information (Hickey et al. 2019). The 
ongoing challenges with new generation phenomics are data handling and 
continuous contribution by computational technologies critical to maintain-
ing rapid advancements in accelerated breeding programs (Tester and 
Langridge 2010).
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10.2.1 � Phenomics for Crop Microphenotypic Traits

Phenotyping at organ, tissue, and cellular levels requires complex procedures, and 
several automated high-throughput and large-scale phenotyping platforms have 
been developed for screening and assessing Arabidopsis, rice, and maize under con-
trolled environmental conditions or in the field (Table 10.1) (Kaul, Koo et al. 2000). 
Phonoscope, a large-scale high-throughput phenotyping platform, monitors the 
plant growth rates of more than 700+ plants (Tisné et al. 2013). Renovator, accurate 
quantification for genotypic variation in natural genetic population using growth 
and photosynthesis as a phenotypic indicator of plant performance (Flood et  al. 
2016), utilizes a monochrome camera on the moving rail system platform with 1440 
plants carrying capacity. The renovator can collect leaf area and light-use efficiency. 
Instead, PlantScreen with automatic weighing and watering moving conveyor belts 
transported plants from growing chamber to RGB imaging cabinets, chlorophyll 
fluorescence, and dark acclimation chamber (Awlia, Nigro et al. 2016). Plant root 
traits play a critical role in nutrient acquisition and the transport of water from the 
soil to the aerial parts of plants. Microimaging and sensing have improved our 
understanding of root anatomy and functions. Wu et al. (2011) developed a low-cost 
computer-aided 3-D visualization and quantitative analysis technique based on clas-
sical paraffin embedding serial sections and microtome techniques. In 2012, a high-
throughput, high-resolution phenotyping platform, RootSlice, aided with laser and 
3-D visualization was introduced to analyze (Burton, Williams et  al. 2012) and 
quantify root anatomy with semi-auto RootScan (Chimungu, Loades et al. 2015). 
RootAnalyzer, automatic versatile root tissues, and root cells image phenotypic 
analysis tools. RootAnalyzer has more than 90% accuracy and improves image seg-
mentation efficiency in quantifying the properties of tissues (Chopin, Laga et al. 
2015). Walter et  al. (2007) introduced an automated imaging pipeline 
GROWSCREEN to acquire the dynamics of seedling growth acclimation such as 
relative growth rate, total leaf area, and root area. Moreover, GROWSCREEN 
FLUORO allowed the simultaneous phenotyping of chlorophyll fluorescence in 
rosette plants (Jansen, Gilmer et al. 2009). The mapping power of GROWSCREEN 
for GWAS or QTL analyses reduced due to relatively limited carrying capacity in of 
platform in combination with micro-environmental heterogeneity.

TraitMill by CropDesign (Belgium) yield-related morphometric traits measure 
exclusive bioinformatics tools and a high-throughput phenotyping platform 
(Reuzeau et  al. 2010). Computer-controlled Scanalyzer3D platform accelerating 
plant phenomics aided with automated watering and weighing, a conveyor with a 
capacity of 2400 plants, and RGB imaging stations to estimate plant biomass using 
RGB images (Virlet et al. 2016). In addition, the salinity tolerance of chickpea can 
be assessed by Scanalyzer3D (Hairmansis, Berger et  al. 2014). In addition, rice 
(Hairmansis, Berger et al. 2014), and nutrient starvation in crops, in field diseases 
monitoring, and more physiological features including growth date. In recent years, 
an array of algorithms and tools has been developed (Table 10.1). However, there is 
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Table 10.1   Phenomics tools deployed for microphenotyping

Plant 
organ Platform Parameters References

Canopy LabVIEW Growth parameters Bai et al. (2016) 
and Zhang et al 
(2017)

Leaf PHENOPSIS Granier et al. 
(2006)

WIWAM Clauw et al. (2015)
GROWSCREEN Leaf discs Nagel et al. (2012)
LemnaTec Growth and yield Neumann et al. 

(2015)
Phenodyn/Phenoarch Leaf elongation Sadok et al. (2007)
Integrated Analysis 
Platform

Leaf orientation Klukas et al. (2014)

LAMINA Leaf parameters Bylesjö et al. 
(2008)

Leaf Analyser Leaf architecture Weight et al. (2008)
Phenovator Photosynthesis Flood et al. (2016)
LeasyScan Canopy traits Vadez et al. (2015)

Root Shovelomics Root growth parameters Burridge et al. 
(2016)

Self-construction Bucksch et al. 
(2014)

LemnaGrid Guo et al. (2017)
Shoot PlantScreenTM Imaging/nonimaging chlorophyll 

fluorescence and plant growth 
parameters

Humplík et al. 
(2015)

Rosette Tracker Leaf area, perimeter diameter De Vylder et al. 
(2012)

PHENOSCOPE Vegetative growth and homogeneity Tisné et al. (2013)
Whole 
plant

TraitMill Growth and yield parameters Reuzeau et al. 
(2010)

PlantScan Sirault et al. (2013)
HRPF Yang et al. (2012)
GlyPh Growth and soil water content 

estimation
Pereyra-Irujo et al. 
(2012)

BreedVision Growth and genetic parameters Busemeyer et al. 
(2013)

OloPhen Leaf area, growth, and survival rate De Diego et al. 
(2017)

still a need to simplify complex phenotypic procedures at cellular and tissue levels. 
The introduction of advanced imaging techniques will accelerate microscopic phe-
notyping and assist in advanced phenotyping studies, particularly on specific cell 
phenotypes and crop organ characteristics.
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10.2.2 � High-Throughput Plant Phenotyping Platforms 
in a Controllable Environment

In crops, the breeding and selection of desirable traits is vital for sustainable agri-
culture, global food security, and the growing global demand for fiber, feed, and fuel 
(Dungey et  al. 2018). High-throughput plant phenotyping with non-destructively 
image approaches facilitate efficient screening of plants based on their morphologi-
cal and physiological traits, may assist in increasing productivity, shorten the crop 
cycle, improve plant efficiency in the environment, and help in linking phenomics 
to genomics (Li et  al. 2014). However, the application of high-throughput plant 
phenotyping in agriculture is still in its infancy. It needs to have the accuracy and 
efficiency to assess the growth and morphological traits of plants, such as growth 
patterns, development rate, plant aerial architecture, root architecture system, and 
plant biomass. These features are fundamental to understand function-structure of 
plant in assesing biotic and bitoic responses for sustainable management of crops.

Global warming has posed a risk to global food demand as it has impacted agri-
cultural productivity in the past few decades. Despite the negative influences of 
climate change, however, the selection and breeding of environmental resistance 
crops are needed today, but they should be done without compromising the quality 
and quantity of crops (Langstroff et al. 2021). Controlled environment phenotyping 
(CEP) is a nondestructive approach for exploring plant behaviors, which enable 
breeders to search for genotypes capable of coping with future environments (Xue 
et al. 2019). The primary problems in upcoming plant breeding programs are the 
lack of infrastructure and the diversity of users (Carpentier et al. 2019). Currently, a 
practical approach that is being used for searching scientific opportunities is biblio-
metric science mapping, which is done by analyzing scientific publications (Van 
Raan 2004). This method has been applied for analyzing phenomics. Under such a 
scenario, there is a need to develop dedicated tools, infrastructures, and resources 
for phenotyping genomics resources. The production of such high-throughput plant 
phenotyping resources could only be possible through a public-private partnership.

Luckily few initiatives arose to integrate fully controlled environment facilities 
climate-specific locations between laboratory-based work and “real-world” scenar-
ios (Carpentier et  al. 2019; Costa et  al. 2019). For instance, the projects EPPN 
(http://www.plant-phenotyping-network.eu/), the COST Action FA1306 (http://
www.cost.eu/COST_Actions/fa/FA1306), and EPPN2020 (https://eppn2020.plant-
phenotyping.eu/). Similarly, European Infrastructure for Pan-Phenomics and simu-
lation for global food security, the ESFRI-project EMPHASIS, jointly launched 
synergistic pan-European excellence in phylogenomics for developing relevant 
approaches and shared infrastructures. German Plant Phenotyping Network (DPPN) 
provides a robust phenotypic portfolio and shares productive and efficient infra-
structure. On a global scale, China, USA, and Canada national phenotyping efforts 
include Asia-Pacific Plant Phenotyping Conference (APPP, www.APPP-con.org), 
North American Plant Phenotyping Network (NAPPN, https://www.plantphenotyp-
ing.org/), and the International Plant Phenotyping Network (IPPN; https://www.
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plant-phenotyping.org/) develops integrated approaches beyond the national and 
regional perspectives.

High-throughput plant phenotyping can be integrated into greenhouses which 
allow crop phenotyping at the whole-population level and observe natural-variation 
in GWAS citrus (Minamikawa et  al. 2017), rice (Crowell et  al. 2016; Rebolledo 
et al. 2016; Yang et al. 2014), maize (Gage et al. 2018; Wang et al. 2019), wheat 
(Beyer et al. 2019; Rasheed et al. 2014), barley (Bergsträsser et al. 2015; Neumann 
et al. 2017), soybean (Bergsträsser et al. 2015). Besides acting as a shield from light, 
rain, and extreme temperatures, greenhouses provide a straightforward environment 
conducive for plant nutrient, salinity, and drought studies (Neumann et al. 2015). 
During drought, identification, and selection of precisely multitude drought herita-
ble traits beneficial to characterize a phenotype (Chen et al. 2014). Global warming 
impacts agriculture productivity at global scale proxies drought indices to account 
and predict drought severity (Mukherjee et  al. 2018) owing to few crop species 
spatiotemporal adaptations with varying productivity. Temperatures have drastic 
effects on crop yield and productivity (Zhao et al. 2017); for example, an elevated 
temperature decreases crop yields in maize up to 90% (Hatfield and Prueger 2015). 
Control environment integrated with high-throughput phenotyping enables identifi-
cation of QTL and GWAS necessary for repeated phenotyping to ultimate pheno-
type (Muraya et al. 2017). The ecosphere is highly sensitive to temperature changes 
and differentially affects plant growth at different altitudes (Rosenzweig et  al. 
2014), influencing plant adaptation and productivity. Flowering in plant is con-
trolled by daily temperature fluctuation, day length, light intensity, and seasonal 
cues to help understand the dynamic genetic components to plant adaptation (Li 
et  al. 2010). In general, intercepted light can increase total plant biomass (60%) 
(Poorter et al. 2016). Dynamic environmental components are integrated with high 
throughput approaches to explore genetic variations in field or controlled 
environments.

10.3 � Application of Machine Learning in Phenomics

Integration of artificial intelligence in interdisciplinary fields has been grown expo-
nentially in the last decade. Artificial intelligence applications such as deep learn-
ing, sensors, and machine learning successfully enable high-throughput phenotyping 
of plant traits into non-invasive imaging approaches (Nabwire et  al. 2021). The 
accuracy and efficiency of data collection and analysis Improve through deep learn-
ing and machine learning for vigorous image analysis and influential study of phe-
notypes. Conventional breeding approaches of phenotyping are destructive with 
sufficient resolution and require crop harvesting at specific plant growth stages 
(Furbank and Tester 2011). The plant breeding programs are significantly lagging 
behind genomics, slow, time consuming, and require repeated experiments to vali-
date certain traits pivotal for crop improvement (Fahlgren et al. 2015). The non-
invasive high-throughput imaging approaches enable phenotype visualization at a 
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cellular scale. The imaging techniques such as chlorophyll fluorescence (Zarco-
Tejada et  al. 2009), thermography (Oerke et  al. 2006), spectroscopic imaging 
(Montes et al. 2006), and digital imaging (Jensen et al. 2007) carry a large amount 
of extractable data to support biological interpretations of plant growth (Walter 
et al. 2010). Hight-throughput artificial intelligence architecture applied in pheno-
typing are listed in Table 10.2.

Currently, high-throughput approaches like growth chambers (Bai et al. 2016), 
imaging sensors (Chaerle and Van Der Straeten 2000), data acquisition, and statisti-
cal software are employed for data collection, management, and interpretation at 
laboratory and field levels. Integration of these techniques into artificial intelligence 
in the form of machine learning (Kruse et al. 2014) and computer vision (Casanova 
et al. 2014) attribute to the non-invasion aspect of phenomics (Montes et al. 2007). 
Artificial intelligence applications are expanding with a public-private partnership 
in developing and disseminating these phenomic approaches that address the chal-
lenges of costly infrastructure and proprietary data formats. Thus far, computer 
vision, deep learning, and machine learning have been applied in phenomics. Since 
1970, various machine learning models, such as Bayesian networks, support vector 
machines, and perceptron, have been developed, but none have proved to be the best 

Table 10.2  Integration of artificial intelligence tools in plant phenomics

Model Sensor Crop Trait Reference

Machine 
learning

RGB/NIR Macrotyloma 
uniflorum

Plant height, shoot length, 
flower percentage and pods, 
pod length, seeds per pod

Amal et al. 
(2020)

Brassica napus, 
Camelina sativa, 
Fabaceae, Cicer 
arietinum

Flowering detection UAV Obidiegwu 
et al. (2015)

Zea mays Identifying growth rate Dutta et al. 
(2016)

Scanner Vicia faba Root system architecture Mula et al. 
(2016)

RGB, IR, HS Beta vulgaris Water, nutrient stress Mula et al. 
(2016)

Glycine max Canopy wilting Howarth 
et al. (2011)

3D laser 
scanning

Cicer arietinum Evapotranspiration Leport et al. 
(2011)

Deep 
learning

RGB/ 
multispectral

Glycine max Plant yield estimation Waring and 
Cleary (1967)

Zea mays Water stress De Bei et al. 
(2011)

Triticum Root system architecture Zakaluk and 
Ranjan 
(2008)

HS Zea mays Relative water content Patanè et al. 
(2016)
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as they all have certain limitations (Roscher et al. 2020). Later on, neural networks 
integrated with data collection and information processing infrastructure enable 
machine learning to determine best-fitting models (Roscher et al. 2020). One of the 
advantages of phytogenomic machine learning is their ability to simultaneously 
processing massive amounts of data in combination with other related features 
(Roscher et  al. 2020) assist in the identification and classification of plant traits, 
including disease or pest detection (Wetterich et  al.), floral transition (Wetterich 
et al.), and seeds classification (Sabanci et al. 2017).

Deep learning is a subset of machine learning instead of several complex high 
throughput sensors with a wide range of phenotype applications (LeCun et  al. 
2015). However, the data collected through this versatile tool contained high vari-
ability making its application more complicated but providing more reliable predic-
tion (Singh et al. 2018). Deep learning in computer vision-based phenomics ensures 
the more reliable processing of phenotypic images involving multilayered 
approaches network, each performing its operation in succession, improving predic-
tion and discrimination ability (Pound et al. 2017) by a process called transfer learn-
ing. Table 10.2 lists some deep learning phenomics approaches that have been used 
for plant morphology and stress identification. However, applying machine learning 
and deep learning subsets of artificial intelligence enables plant scientists robust 
identification, classification, and detection of environmental variability influences 
on plant growth, development, and other related physiological parameters.

10.4 � High-Throughput Phenomics Enhances Phytogenetics

High-throughput phenomics has been widely used in remote sensing, root phenom-
ics, deep learning for plant stress, and vision sensing technologies in disease and 
pest detection (Atkinson et al. 2019; Mahlein et al. 2018). However, applying phe-
notyping technologies and genome sequencing is still limited in genetics and crop 
breeding studies both in the field and within the lab. A plethora of studies have 
identified QTL in many plant species, but still sveral issues need to be resolved. 
Among them is how to charctarizes dymanic QTLs for complex traits at mutiple 
grwoth stage or at different species level or districtive tarit measurements including 
root architechture, biomass allocation, and nutrient assessment. Identification and 
efficient functional characterization of potential QTLs. Integrating various genom-
ics approaches with systemic and synthetic molecular biology approaches will sig-
nificantly facilitate future breeding programs.

The regulation of the size of maize shoot apical meristems (SAMs) is correlated 
with flowering. High throughput analysis enables integration of SAM morphologi-
cal traits with GWAS and QTL, demonstrated their contribution to SAM develop-
ment (Leiboff et  al. 2015). High-throughput non-destructively micro-CT-RGB 
phenotyping and genomics enable large-scale assessment of rice tiller traits, tiller 
growth, and plant traits nine growth stages. Among these traits, 402 significantly 
influence grain yield, vigor-related traits and yield (Wu et al. 2019). However, such 

10  Advances in Integrated High-Throughput and Phenomics Application in Plants…



248

integration of genomics and phenomics is beneficial in crop breeding programs 
required for high yields and compact planting. Genome selection is another robust 
genotype-phenotype approach that involves statistical modeling and genome-wide 
markers. It allows efficient and accurate markers to be identified, but associated 
phenotype prediction is still a bottleneck in crop breeding (Taylor 2014). The pro-
cess of photosynthesis and transpiration in leaves (Wang et al. 2015) depends on the 
number of leaves inm plants as well as the leaf size, shape, and greenness (Wang 
et al. 2011). The genetics study of rice and maize leaves by high-throughput leaf 
scoring revealed nine loci associated with leaf traits in 533 rice accessions at thee 
growth stages. In maize, QTL mapping of 22 leaf traits of a RIL population at 16 
growth stages predited leaf tarits (leaf angle and length) being an indicator of yield 
(Yang et al. 2015).

Integration of high throughput phenomics with large-scale GWAS or QTLs 
expanded our understanding of crop developmental dynamics and emerged as a tool 
for plant genomics, gene expression, and characterization. The root system architec-
ture is a promising trait for nutrients and water acquisition from the soil. Dissecting 
the root genetic will be helpful in increased nutrient and water acquisition from the 
soil. Two genetic studies on root traits were performed on rice and Brassica 
(Courtois et al. 2013; Shi et al. 2013). They conducted a GWAS of 15 root traits 
using vision sensors and detected associations between deep root number and mass. 
In Brassica napus, 38 QTLs were predictive indicators under phosphorus variabil-
ity. Shi et al. (2013) used an agar-based high-throughput root phenotyping system 
to identify QTLs associated with phosphate variability correlated with Brassica 
napus root architectural traits.

Environmental factors, including both abiotic and biotic factors, can pro-
duce a variety of phenotypic effects. The rapid development of non-destruc-
tive high-throughput plant phenotyping approaches has been popularized in 
a plethora of crop populations to reveal the genetics of complex quantitative 
traits to various environmental factors (Yang et al. 2020), such as phosphate 
deficiency tolerance of Brassica napus (Shi et al. 2013), drought response of 
wheat (Parent et al. 2015), salinity tolerance of rice (Al-Tamimi et al. 2016), 
and drought resistance of rice (Guo et al. 2018). Most of these studies have 
focused on external responses, such as the morphology, biomass, and green-
ness-related traits. The internal response of plants to drought is mainly 
unknown. Wu et  al. (2021) develop a non-destructively image-based traits 
(i-traits) approach to plant responses to drought. The i-traits are high-
throughput image analysis pipelines aided by RGB optical sensors, X-ray 
computed tomography and hyperspectral imaging. In maize, i-traits identi-
fied 4322 drought-responsive loci encoding 1529 QTLs, including 15 QTLs 
containing potential markers for drought tolerance breeding in maize. 
Combining crop genetics information with genotype-phenotype approaches 
revolutionizes researchers’ understanding of complex traits and reinforces 
the new era of crop breeding.
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10.5 � Conclusion and Future Perspective

Crop breeding evolved from conventional approaches to phenotypes-genotype 
aided breeding through advancement in next-generation sequencing of crops. Plant 
breeding enters the next era of phenomics which enables breeders accurate sam-
pling to phenotype various traits. In the last few decades, phenomics has entered a 
new period of advancements as it integrated machine learning, deep learning, and 
artificial intelligence to predict the phenotypic characteristics of different crop pop-
ulations. These approaches inherent data from various sources tend to accelerate 
crop breeding programs.

Considerable efforts have been placed in agriculture and global food security to 
maintain sustainable crop growth and productivity. Sustainable agriculture and crop 
production by integrating genetic tools lead to the advancement in phenomics, but 
demand for financial investments diminishes the development of agriculture. 
Phenotypic studies focus on aerial plant parts and underground plant parts; however, 
the integrated role of aerial-phenomics to underground phenomics influenced, but 
various biotic and abiotic stresses need to consider. For instance, the primary root of 
plant roots determines the plant’s capacity to store water or other essential plant 
nutrients in the stem. Integrated phenotype, the ratio of root length to stem height, 
could be related to crop yield. For such integrated phenotypes, algorithms to com-
pute plant imagery are required to be developed.

Furthermore, for early detection of environmental stresses, including water, 
drought, salinity, temperature, etc, effort should be placed to investigate the pheno-
types for characterizing the propagating stress and classified them into different 
stages such as moderate, extreme, or exceptional. Similarly, controlling the root 
growth angel may contribute to the speed of recovery.

The advancement of phenomics in “big data” enables the plant science commu-
nity to establish new theories in plant phenotypic approaches to integrate artificial 
and collaborative research at global levels. Crop phenotypic information should 
focus on developing tools that comprehensively integrate multi-tudinal scale empha-
size on pheno-envir-genotype and physiological parameters to systematically and 
complete phenomic information. The critical problem of functional phenomics is its 
development and application in phenotyping. The introduction of new methodolo-
gies integrated with artificial intelligence and machine learning help minimize envi-
ronmental challenges. These throughput approaches collect digital features 
efficiently. These features’ precise and robust interpretation dig out critical quantita-
tive and qualitative phenotypic traits for functional genomics. High throughput 
approaches also facilitate the integration of multi-tudinal phenotypic information 
for big-data development, management, shareability, and globality in crop geno-
pheno-envirotype analysis and utilization. In short, for the future of phenomics, we 
urgently need synergism at the global level. Search for novel tools and methodolo-
gies offer powerful tools to dissect the processes in plant growth, development, and 
producing high-yielding and climate-resilient crops.
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