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1Neural Basis of Spasticity

Preeti Raghavan

•	 Spasticity arises after a neurological injury; hence it clearly has a neural basis. 
However, it has many definitions and manifestations, and the underlying mecha-
nisms are still not clearly understood.

•	 This chapter reviews the definitions of spasticity, the time course of its develop-
ment, and the types of neural injury that may cause it by disinhibiting inhibitory 
brainstem pathways as well as by facilitating excitatory brainstem pathways, that 
result in an excitatory-inhibitory imbalance in the spinal cord interneuronal 
network.

•	 The descending pathways modulate persistent inward currents via serotonin and 
norepinephrine, which provide a low-level depolarizing synaptic drive to the 
resting motoneuron pool resulting in increased afferent sensitivity and can 
account for hyperreflexia.

•	 However, the abnormal brainstem descending inputs and persistent inward cur-
rents cannot fully account for other spasticity-related motor impairments, such 
as muscle stiffness.

…dissolution is not only a “taking off” of the higher but is at the very same time a  
“letting go” of the lower.

– John Hughlings Jackson, 
Croonian lectures, Royal College of Physicians, London, 1884.
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�Definition of Spasticity

It is well-known that damage to the descending motor pathways anywhere from the 
cerebral cortex to the lower end of the spinal cord can give rise to a set of symptoms 
called the upper motor neuron syndrome. John Hughlings Jackson observed in the 
late nineteenth century that neural injury often leads to dual symptomatology. For 
example in hemiplegia, in addition to loss of movement (negative symptoms), 
excess activity also develops (positive symptoms) such as increased tendon reflexes 
and excess muscle tone, which he attributed to the “release” of the lower centers 
from control by the damaged higher centers that are “taken-off” [1]. The idea of 
“release” phenomena characterizing the upper motor neuron syndrome continues to 
inform our understanding of spasticity.

In fact, Lance and colleagues defined spasticity at a consensus symposium in 
1980 [2] as:

a motor disorder characterized by a velocity-dependent increase in tonic stretch reflexes 
with exaggerated tendon jerks, resulting from hyperexcitability of the stretch reflex as one 
component of the upper motor neuron syndrome.

Subsequently, Pandyan et al. [3] attempted to validate Lance’s definition by review-
ing the literature since, and concluded that spasticity is not a pure motor disorder 
and that it does not result exclusively from hyperexcitability of the stretch reflex. 
The changes in resistance to imposed passive movement were also not found to be 
uniquely related to increased muscle activity, and the phenomenon of velocity 
dependence was not exclusive to stretch reflex hyperexcitability. Hence spasticity 
was redefined as:

disordered sensorimotor control, resulting from an upper motor neuron lesion, presenting 
as intermittent or sustained involuntary activation of muscles.

This definition suggests that spasticity is a disorder of sensorimotor control, rather 
than a motor disorder alone. Furthermore, it suggests that spasticity presents as 
muscle overactivity, rather than solely as stretch reflex hyperexcitability, which 
had major implications for treatment that was then directed to reducing muscle 
overactivity.

A more recent definition of spasticity proposed by Li et al. [4] is even broader, 
and specifies a neuroanatomical substrate for the hyperexcitability, rather than the 
release of control by the higher centers as alluded to by Hughlings Jackson. By this 
definition, spasticity is:

manifested as velocity- and muscle length–dependent increase in resistance to externally 
imposed muscle stretch. It results from hyperexcitable descending excitatory brainstem 
pathways and from the resultant exaggerated stretch reflex responses. Other related motor 
impairments, including abnormal synergies, inappropriate muscle activation, and anoma-
lous muscle coactivation, coexist with spasticity and share similar pathophysiological 
origins.
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Abnormal excitability of the stretch reflex is still the central mechanism as per this 
latest definition of spasticity. However, it also attributes spasticity-related motor 
impairments to the excitatory brainstem pathways.

�Time Course of the Development of Spasticity

Although hyperreflexia is central to defining spasticity, several studies have shown 
nonreflex-related resistance to movement in patients with “spasticity” [5–7]. 
Furthermore, although hyperreflexia is elicited relatively early after injury, the resis-
tance to passive movement measured using the Modified Ashworth Scale (MAS), 
which is commonly used to assess spasticity clinically, tends to increase in prevalence 
over the ensuing weeks and months [8–10]. Even mild hyperreflexia early on is an 
important predictor of severe spasticity and increased resistance to passive movement 
later [11, 12], suggesting that hyperreflexia may trigger a cascade of events that lead to 
a build up of the resistance to movement. In a retrospective study of chronic stroke 
survivors with moderate-to-severe upper limb motor impairment, 97% of subjects 
demonstrated increased resistance to passive movement which was associated with 
impaired motor control [13]. Thus, it is important to understand the characteristics of 
the neurologic injury that lead to the development of spasticity and the ensuing resis-
tance to movement to initiate measures for prevention and early treatment. Untreated, 
spasticity leads to fatigue, pain, sleep problems, and urinary dysfunction among others, 
affecting physical health [14], and restricting activities of daily living (ADL) and 
mobility that contribute to disability and increased health care costs [15, 16].

�What Types of Neural Injury Lead to the Development 
of Spasticity?

Several recent studies have shown a positive correlation between spasticity and the 
overall degree of injury to the sensorimotor system – the greater the lesion volume 
and severity of injury, the greater the likelihood of developing spasticity [17]. 
However, small lesions involving specific regions of the brain such as the putamen, 
internal (posterior limb) and external capsule, thalamus, and insula, which are 
involved in sensorimotor processing, have also shown to be correlated with the 
degree of spasticity [18]. Note that in these studies, the resistance to passive move-
ment on the MAS, which is not specific to the neural component, was used to mea-
sure spasticity (see Chaps. 3 and 4). More recently, the velocity-dependent neural 
component of hand spasticity was shown to be related to lesion load of the cortico-
spinal tract (CST), after controlling for motor impairment and lesion volume [11].

To fully comprehend the effect of neural injury, especially given the strong cor-
relation between motor impairment and spasticity reported recently [13], it is help-
ful to review the origin and termination of the CST, which modulates brain stem and 
spinal cord activity. The CST originates from a wide range of cortical areas having 
different functions, including the primary motor cortex (M1) which is involved in 
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the execution of movement, the dorsal (PMd) and ventral (PMv) premotor areas 
involved in the sensory guidance of movement, the supplementary motor area 
(SMA) involved in planning and coordination of internally generated movement 
sequences, the cingulate motor areas involved in emotional aspects of voluntary 
movement, including changes in autonomic function [19], and corticospinal projec-
tions from the parietal lobe including the primary somatosensory cortex, posterior 
parietal cortex, and parietal operculum (SII) [20, 21].

The termination of the corticospinal projections within the spinal gray matter is 
also varied (Fig. 1.1) [22–24]. Projections from the somatosensory cortex terminate 

a

b

Fig. 1.1  Schematic diagram of the general anatomical organization of the spinal cord adapted 
from Kuypers [23]. (a) The ventral horn consists of lamina IX (green), the intermediate zone lami-
nae V, VI, VII, VIII, and the reticulated marginal border (RMB) (yellow), and the dorsal horn lami-
nae I–III and IV (orange). (b) The Rexed laminae are further subdivided into 20 subdivisions in 
each half of the spinal cord. The blue shaded regions of laminae VII and IX represent spinal com-
ponents of Kuypers “lateral motor system” [24]. The red shaded region of lamina VII and lamina 
VIII constitute parts of his “medial motor system”. (From Morecraft et al. [22], with permission)
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mainly in the more dorsal parts of the spinal gray matter (Rexed laminae I–V) and 
are involved in the descending control of sensory afferent input. These projections 
are an important source of presynaptic inhibition of primary sensory afferent fibers 
[25, 26], and are responsible for sensory reafference or gating of inputs arising from 
one’s own movement [27, 28]. Projections from M1 target most areas of the inter-
mediate zone of the spinal cord gray matter (Rexed lamina VII). These are the indi-
rect oligosynaptic projections that mediate corticospinal input to motor neurons via 
a premotoneuronal network [22]. Inputs to the premotoneuronal network originate 
in a variety of descending motor pathways, in ascending and descending propriospi-
nal pathways, in local segmental interneurons, as well as in sensory afferent inputs 
from the periphery. Integration of information in this network is critical to achieve 
the precise timing and balance of activity in the motoneuron pool, contributing to 
highly flexible movement responses in the healthy state [29]. Recent evidence sug-
gests that corticospinal projections from the dorsal and ventral premotor areas ter-
minate in laminae VII and VIII, and govern proximal upper limb musculature 
involved in postural stabilization and control of the proximal limb during reaching 
and grasping through the indirect oligosynaptic neural networks [30]. These projec-
tions, as well as the corticospinal projections from the leg area of M1 to motoneu-
rons of more proximal leg muscles, are bilateral [30, 31]. Injury to these pathways 
can account for increased spasticity when standing [32, 33].

In contrast, direct cortico-motoneuronal connections in the ventral horn (Rexed 
lamina IX) originate from both M1 and SMA, but the corticospinal projections from 
M1 to the hand muscle motor nuclei are denser than those from the SMA [34]. In 
humans, fast-conducting direct mono-synaptic cortico-motoneuronal connections 
have been found to be responsible for precision grasp, but not power grasp [35, 36]. 
Selective lesions of the CST may therefore only impede individuated finger move-
ments as has been shown in monkeys [37].

Thus, injury to the CST at its origin, especially when it involves both sensory and 
motor areas [38, 39], along its path, or at the level of the spinal cord, regardless of 
etiology leads to widespread consequences depending on the corticospinal projec-
tions affected and their particular function. The function of the CST reflects its ori-
gins and terminations and includes: (1) descending control of afferent inputs, 
including nociception [25, 26]; (2) selection, gating, and gain control of spinal 
reflexes [40]; (3) direct and indirect excitation of motoneurons [41, 42]; (4) inhibi-
tion of motoneurons [43, 44]; (5) autonomic control [45]; (6) long-term plasticity of 
spinal cord circuits [46]; and (7) trophic functions during development [47, 48]. 
Individuals who present with spasticity invariably present with symptoms reflecting 
additional corticospinal dysfunction depending on the pathways affected.

�How Does Injury to the Corticospinal Tract Lead to Spasticity?

In 1946, Magoun and Rhines found an area in the brainstem, the ventromedial 
medullary reticular formation, which when stimulated could inhibit any type of 
muscle activity, including stretch reflex activity. This region receives facilitatory 
influences from the premotor cortex [49]. Extensive lesions involving premotor 
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and supplementary motor areas, and/or their projections were found to inhibit the 
medullary reticular formation, leading to release or disinhibition of stretch reflex 
activity, causing hyperreflexia [50]. The inhibitory influences from the medullary 
reticular formation are transmitted to the spinal cord by the dorsal reticulospinal 
tract (RST), which runs very close to the lateral corticospinal tract. Stimulation 
of the dorsal RST in decerebrate cats was also shown to inhibit excitability in the 
spinal interneurons [51, 52]. Section of the dorsal half of the lateral funiculus, 
which contains the dorsal RST in humans, to treat parkinsonism was also fol-
lowed by spasticity [53]. This lent further support to the idea that the disruption 
of cortical inputs to the brainstem, specifically injury to cortico-reticulospinal 
fibers, and/or damage to the dorsal RST, releases the spinal neural network from 
inhibitory control causing an imbalance between excitatory and inhibitory inputs 
[54, 55].

While disinhibition can explain hyperreflexia that is seen soon after injury, the 
question of what leads to the development of increased resistance to passive move-
ment, abnormal synergies, inappropriate muscle activation, and anomalous muscle 
coactivation remains. One possibility is that the imbalanced neural excitability 
becomes amplified through increased facilitatory influences involving alternative 
brainstem control pathways. Magoun and Rhines also found that stimulation of the 
reticular formation of the dorsal brain stem (pontine reticular formation) can facili-
tate or exaggerate any type of muscle activity, including the stretch reflexes [49]. 
The facilitatory influences from the pontine reticular formation are transmitted to 
the spinal cord by the medial RST, which along with the vestibulospinal tract (VST) 
provides excitatory input to the spinal neural network. The VST is thought to play a 
minor role, as section of the anterior funiculus of the cord to relieve hypertonia 
resulted in only transient reduction in spasticity [56]. In contrast, extensive unilat-
eral or bilateral anterior cordotomy, which is likely to have destroyed both the VST 
and the medial RST, was followed by a dramatic reduction in spasticity [57].

Recent studies in monkeys demonstrate that the projections from nonprimary 
motor cortices (PM and SMA) are denser and end mainly ipsilaterally in the pontine 
reticular formation, whereas the projections from the primary motor cortex (M1) are 
less dense and end contralaterally [58]. The importance of the denser ipsilateral 
projections from the uninjured PM and SMA is that these projections are thought to 
compensate for injury to the contralateral CST and enable at least partial recovery 
of motor function in monkeys [59–62], and in humans with mild impairment [63–
68]. However, severely impaired individuals also show increased activation of the 
ipsilesional premotor regions [69–71] associated with compensatory movement 
strategies [72–74]. Hence it is hypothesized that the motor overflow from the ipsile-
sional to the impaired side contributes to increased spasticity and disordered motor 
control [75]. Indirect support for this hypothesis was noted in an imaging study 
which showed strong correlation of synergistic arm movements with the functional 
reorganization in the reticulospinal pathways suggesting a contributory role in the 
development of compensatory motor strategies [76]. Hence it is suggested that spas-
ticity and the related motor impairments are exacerbated by the ipsilateral excitatory 
contribution from the medial RST to the spinal neural network as shown by the 
dashed line in Fig. 1.2 [77].
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Lateral corticospinal tract (CST)
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Fig. 1.2  Schematic diagram illustrating the descending pathways contributing to the medial retic-
ulospinal tract in the pathophysiology of spasticity. The pontine reticular formation receives corti-
cal input primarily from the ipsilateral premotor (PM) cortex and supplementary motor area 
(SMA), and via the medial reticulospinal tract (RST) provides excitatory descending input to the 
spinal circuitry. The medullary reticular formation receives cortical input primarily from the con-
tralateral primary motor cortex (M1), and via the dorsal RST provides inhibitory descending inputs 
to the spinal circuitry. Injury to the corticospinal tract (indicated in red) leads to reduced inhibition 
of the spinal circuitry via the dorsal RST causing an excitatory-inhibitory imbalance. In addition, 
it is proposed that the contribution of the contralesional hemisphere to the excitatory medial RST 
becomes gradually upregulated and unopposed further increasing spinal hyperexcitability. (+) 
excitatory; (–) inhibitory. (From Li et al. [77], with permission (open access))

�Consequences of Excitatory-Inhibitory Imbalance 
in Spinal Circuitry

The descending RST inputs are primarily mediated by the monoamines serotonin 
(5-HT) and norepinephrine (NE), which have neuromodulatory effects that corre-
late with the level of behavioral arousal and/or the behavioral state, for example 
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when awake and in fight or flight situations [78]. These neuromodulatory effects, in 
turn, have been shown to be mediated via persistent inward currents (PIC). A PIC is 
a depolarizing current generated by voltage-sensitive channels that stay open as 
long as the membrane potential remains above the threshold of activation. This per-
sistence stands in marked contrast to the inward currents that generate the action 
potential, which inactivate within 1–2 ms, even during prolonged membrane depo-
larization [79]. PICs increase the sensitivity of neurons to both excitation and inhi-
bition – they have strong excitatory actions on motoneurons involved in tonic motor 
activity, for example in antigravity muscles and other muscle groups associated with 
gross motor activity. These neuromodulatory inputs have been shown to be critical 
for the production of high forces and have a major influence on input-output behav-
ior of the whole system [80, 81]. Turning off these sustained outputs also requires 
considerably large inhibitory inputs [82]. In contrast to their strong excitatory 
actions on motoneurons, monoamines inhibit many of the synaptic inputs to inter-
neurons [78]. This inhibition is largely presynaptic and focused on sensory afferents 
that mediate both high- and low-threshold cutaneous inputs [83], and high-thresh-
old muscle afferents [84]. The differential role of monoaminergic actions on moto-
neurons and interneurons occurs via their action on different receptor 
subtypes – facilitation of PICs in motoneurons appears to occur via 5HT2 and NE 
alpha 1 receptors, whereas inhibition occurs via 5HT1b/d and NE alpha 2 receptors 
[85]. In effect, monoamines increase the sensitivity of motoneurons to both excita-
tion and inhibition in a movement-dependent manner [86]. Accumulating evidence 
indicates that the movement-related motor excitability is related to coactivation of 
the sympathetic nervous system and to modulation of afferent inputs [79].

When descending pathways are interrupted following CNS injury, the overall 
excitability of the spinal motoneuronal pool is initially reduced, producing weak-
ness and flaccidity. However, the acute loss of descending brainstem inhibition of 
presynaptic afferent inputs, especially cutaneous inputs, is thought to increase 
intrinsic motoneuron excitability via the development of PICs [87, 88]. At first, 
these low-threshold polysynaptic inputs do not produce long-lasting reflexes 
because of lack of motoneuron excitability in a monoamine-deficient state. Over 
time, the PICs become supersensitive to the residual monoamines below the level 
of the injury [89], which more than compensate for the monoamine deficiency, 
leading to the development of large PICs and hyperexcitable motoneurons which 
trigger sustained motoneuron discharges associated with long-lasting reflexes and 
muscle spasms to innocuous stimulation, such as gently rubbing the skin or passive 
movement [88]. In fact, indirect measurements of PIC amplitude from paired 
motor unit recordings in human subjects suggest that PICs in motor neurons con-
tribute to muscle spasms after spinal cord injury [90]. Pharmacologically blocking 
the PICs on the motoneurons, without inhibiting the synaptic inputs, can eliminate 
the long-lasting reflexes [91].

However, in individuals with stroke, PIC estimates have not been found to be 
larger in spastic-paretic motoneurons, compared with contralateral, and 

P. Raghavan



11

age-matched healthy control motoneurons. Instead, following voluntary isometric 
contractions, the majority of the low-threshold motor units in spastic-paretic mus-
cles exhibit spontaneous discharges, suggesting that firing changes are likely due to 
low-level depolarizing synaptic drive to the resting motoneuron pool [92, 93], which 
can account for hyperreflexia. However, voluntary activation of the spastic-paretic 
motoneuron pool results in saturation in firing profiles of the individual motor units, 
and an inability to modulate firing rates [94], suggesting lack of synaptic drive for 
voluntary muscle activation or paresis. The contradiction in the PIC estimates of the 
spastic-paretic motorneurons can be reconciled by considering that the net excit-
ability of the alpha motor neuron is achieved via a complex and poorly quantified 
afferent pool that influences the central state of the cells, which is influenced by the 
function of both lesioned and nonlesioned areas contributing to the tracts. This is in 
contrast to the more simplistic view of hyperreflexia described historically (Fig. 1.3) 
[95, 96].

 Motor
neurona

b

Inter-
neuron

Spinal cord

Medical vestibulospinal

Lateral vestibulospinal
Medullary reticulospinal

Pontine reticulospinal
Rubrospinal

Corticospinal
tract

Primary motor
Premotor

SMA
Primary sensory

 Motor neuron

a afferent

Corticospinal tract

Primary motor cortex

Spinal cord

a b

Fig. 1.3  Schematic illustration of the spinal stretch reflex. (a) The classically described spinal 
reflex arc demonstrating hyperreflexia (indicated by the arrows) after corticospinal tract injury. (b) 
Contemporary summary of the afferent pool of the alpha motor neuron showing significant contri-
butions from the spinal interneuron pool whose inputs include projections received from the corti-
cospinal tract. (From Florman et al. [95], with permission (open access))
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�Conclusion

Injury to the central nervous system results in both negative symptoms such as pare-
sis and positive symptoms such as spasticity. While findings from both animal stud-
ies and studies with human subjects support the role of the dorsal reticulospinal tract 
in producing hyperexcitability of the spinal stretch reflexes, a more contemporary 
view is that the overall state of excitability of the spinal afferent pool is influenced 
by cortical input from both lesioned and nonlesioned areas and their descending 
pathways.
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