
Chapter 4
Personalization in Federated Learning

Mayank Agarwal, Mikhail Yurochkin, and Yuekai Sun

Abstract Typical federated learning (FL) problem formulation requires learning
a single model suitable for all parties while prohibiting parties from sharing their
data with the aggregator. However, it may not be possible to learn a common single
model that is suitable for all parties. For example, consider a sentence completion
problem: “I live in the state of . . .” The answer clearly depends on the party, and
no single model is appropriate here. To handle such situations, various person-
alization strategies have been proposed in the recent literature. In particular, the
problem appears to have a close connection to meta-learning. We review recent FL
personalization techniques categorizing them into eight groups and summarize three
strategies and corresponding datasets for benchmarking personalization in federated
learning. We provide an overview of the statistical challenges of personalization
in federated learning. At a high level, personalization leads to an increase in the
model complexity, which in turn increases the hardness of the federated learning
task. We study when too much personalization can prevent standard approaches to
personalized federated learning from learning the common parts of the parties and
present alternative approaches that overcome such issues.

M. Agarwal (�)
IBM Research, Cambridge, MA, USA
e-mail: mayank.agarwal@ibm.com

M. Yurochkin
MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA, USA
e-mail: mikhail.yurochkin@ibm.com

Y. Sun
Department of Statistics, University of Michigan, Ann Arbor, MI, USA
e-mail: yuekai@umich.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_4&domain=pdf
mailto:mayank.agarwal@ibm.com
mailto:mikhail.yurochkin@ibm.com
mailto:yuekai@umich.edu
https://doi.org/10.1007/978-3-030-96896-0_4

72 M. Agarwal et al.

4.1 Introduction

Centralized federated learning aims to learn a global model from individual parties’
data while keeping their local data private and localized to their individual machines.
This global model has the advantage of utilizing data from all the parties and thus
generalizes better to test data across parties. In practical scenarios, however, datasets
on individual parties are often heterogeneous (non-IID), thus rendering one global
model performance sub-optimal for some parties. On the other hand, if each party
trains a local model on their local data, they train on a data distribution similar to
what is expected at test time but might fail to generalize due to the paucity of data
available on a local party. Personalized federated learning aims to learn a model that
has the generalization capabilities of the global model but can also perform well on
the specific data distribution of each party.

To illustrate the need for personalization, consider the case of a language model
learned in a federated learning setting [10]: if we use a global model to predict the
next word for the prompt: “I live in the state of . . .,” the global model will predict
the same token (name of the state) for every party irrespective of their local data
distribution. Thus, while a global model might be able to learn the general semantics
of language well, it fails to personalize to the individual party.

In addition to the aforementioned qualitative example, we can also quantitatively
demonstrate the need for personalization. We set up our experiment using the
MNIST dataset1 divided among 100 parties. We distribute the data among these
parties in a heterogeneous manner using a Dirichlet distribution with different
concentration parameters (α) [64]. We train a 2-layer fully connected network in
two settings to measure the benefits parties gain from participating in federated
learning. In the first setting, we train an individual network for each of the 100
parties for 10 epochs using solely the parties’ own data and measure the performance
of these individual networks on their respective parties’ test data (Acclocal

i). In
the second setting, all 100 parties participate in training a global model using
Federated Averaging (FedAvg) [39] for 100 communication rounds, and we measure
the performance of this global model on each of the party’s test data (Accglobal

i).
Figure 4.1 shows histograms of the differences in the performance of the global
model and the local model (Accglobal

i − Acclocal
i) for each of the parties, under

different levels of data heterogeneity. As is evident in the plots, the global model
does not benefit each party participating in its training, and this phenomenon is more
pronounced when the non-IID characteristics of the data are more severe (smaller
α values). This experiment emphasizes the need for personalization of the global
model on the parties’ local data distribution to ensure that every party benefits from
its participation in the learning setup.

In this chapter, we review different personalization techniques proposed in feder-
ated learning literature and discuss the connections between federated learning and

1 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

4 Personalization in Federated Learning 73

Fig. 4.1 Difference in the accuracies of a global model learned using Federated Averaging and
the local models trained solely on the parties’ local datasets. Without personalization, under more
severe cases of heterogeneity (smaller α), the global model underperforms on a significant number
of parties as compared to their local models. With a naive method of personalization by fine-tuning,
this effect is attenuated, with the performance improving even in the extreme cases of heterogeneity

first-order meta-learning [18]. We also study the statistical limits of personalization
in federated learning. In particular, we show that personalization improves party-
specific performance up to a point. After this point, adding more parties to the
problem does not lead to improvements in performance.

4.2 First Steps Toward Personalization

In this section, we look at a basic technique that combines federated learning
and personalization and explore why this technique is a strong baseline for the
personalization task.

4.2.1 Fine-Tuning Global Model for Personalization

A straightforward method to personalize a global model learned using federated
learning is to train it further on the local data. This method allows us to control

74 M. Agarwal et al.

the level of personalization through the number of local updates performed on the
global model—zero local updates retain the global model, while as the number of
local updates increases, the model becomes more personalized to the local data.

While this technique might look simple, it is a strong baseline for the person-
alization task. We study this fine-tuning approach in the experiment presented in
Sect. 4.1 and Fig. 4.1. We personalize the global model learned over 100 parties
with data distributed in a heterogeneous manner by fine-tuning it for 1 epoch on
the local data and then measure the performance of this fine-tuned model on the
parties’ local test data. As is evident through the results of this experiment, this
simple fine-tuning technique considerably improves the performance of the global
model as compared to the local models. For the extreme cases of heterogeneity, this
method improves the performance for a significant number of parties and also does
not negatively impact the performance in less severe cases of heterogeneity. We
now aim to understand the reason behind the strong performance of this fine-tuning
approach.

4.2.2 Federated Averaging as a First-Order Meta-learning
Method

In this section, we try to understand the reason behind the effectiveness of fine-
tuning the global model learned using federated averaging. We replicate the
derivations of Jiang et al. [29] to show that the updates in Federated Averaging are
a combination of federated SGD updates and the first-order MAML (FOMAML)
updates.

What is meta-learning and MAML?
While conventional machine learning approaches aim to learn parameters
that perform best on a given task, meta-learning or learning to learn [55–
57, 59] aims to learn parameters that can be quickly adapted to new tasks.
Model-Agnostic Meta-Learning (MAML) [18] is among the most popular
meta-learning approaches: its goal is to find model parameters that can be
adapted to a new task in few gradient updates. However, to achieve this,
the MAML objective requires computing the second-order derivatives, which
are computationally expensive. First-order MAML (FOMAML) [43] approx-
imates the MAML objective by considering only the first-order derivatives,
thereby reducing the computation demand of MAML. See Sect. 4.3.5 for
further discussion of meta-learning and related federated learning personal-
ization strategies.

4 Personalization in Federated Learning 75

We start the analysis by defining the update of FedSGD (equation (4.1)). FedSGD
operates by taking a single gradient step on each of the N parties, communicating
these gradients back to the aggregator, and then aggregating these gradients to
update the global model. We use ∇i

k to denote the kth-step gradient on party i.

∇FedSGD = 1

N

N∑

i=1

∂Li (θ)

∂θ
= 1

N

N∑

i=1

∇i
1, (4.1)

where θ are the model parameters (e.g., neural network weights) and Li (θ) is the
loss of party i. Next, we derive the update of MAML and first-order MAML [18] in
similar terms. Assume θi

K is the personalized model of party i obtained after taking
K steps of the gradient of loss with β as the learning rate:

θi
K = θ − β

K∑

j=1

∂Li (θ
i
j)

∂θ
. (4.2)

The MAML update is then defined as the gradient of the personalized model θi
K

with respect to the initial parameters θ , averaged across N parties. Unfortunately,
this computation requires higher-order derivatives and is expensive even for K =
1. FOMAML ignores the higher-order derivatives and only uses the first-order
gradients:

∇FOMAML(K) = 1

N

N∑

i=1

∂Li (θ
i
K)

∂θ
= 1

N

N∑

i=1

∇i
K+1. (4.3)

Having computed the updates for FedSGD and FOMAML, we now look at the
update of Federated Averaging (FedAvg). The update for FedAvg is the average of
party updates, which are the sums of local gradient updates ∇i

j :

∇FedAvg = 1

N

N∑

i=1

K∑

j=1

∇i
j = 1

N

N∑

i=1

(∇i
1 +

K−1∑

j=1

∇i
j+1) (4.4)

= 1

N

N∑

i=1

∇i
1 +

K−1∑

j=1

1

N

N∑

i=1

∇i
j+1. (4.5)

Rearranging these terms allows us to derive a relation between the updates of
FedAvg, FedSGD, and FOMAML:

∇FedAvg = ∇FedSGD +
K−1∑

j=1

∇FOMAML(j). (4.6)

76 M. Agarwal et al.

The FedAvg update for 1-gradient update (K = 1) in FedAvg before every com-
munication reduces to the FedSGD setting according to equation (4.6). Increasing
the number of gradient updates progressively increases the FOMAML part in the
update. According to Jiang et al. [29], models trained with K = 1 are hard to
personalize, while increasing K increases the personalization capabilities of the
models up to a certain point, beyond which the performance of the initial model
becomes unstable.

4.3 Personalization Strategies

Personalization in a federated learning setting has gained considerable interest in
the research community in recent years. In this section, we look at the various
techniques proposed for this problem and classify them into 8 main categories. The
classification criteria along with the methods that fall under the respective criteria
are summarized in Table 4.1. In the following subsections, we delve deeper into
each criterion defined in the table and look at its strengths and weaknesses.

4.3.1 Client (Party) Clustering

The central premise of personalization in federated learning is that one global model
might not work for all parties due to the non-IID heterogeneous distribution of data
on the parties. Client (party) clustering techniques for personalization operate under
a common assumption: among the N parties present in the system, there are K < N

distinct data distributions. This assumption enables the techniques to cluster parties
into K clusters to alleviate the non-IID data distribution conditions and learns a
common global model for each of the K clusters. Thus, under this formulation, the
personalization problem is then sub-divided into two sub-problems: (1) Defining a
clustering hypothesis to cluster parties together and (2) Aggregating and learning a
model for each defined cluster.

Clustered federated learning (CFL) [47] assumes that there exists a partitioning
C = {c1, . . . , cK },⋃K

k=1 ck = {1, . . . , N}, such that every subset of parties
ck ∈ C satisfies the conventional federated learning assumption of a global model
minimizing the risk on all the parties’ data distributions at the same time. However,
instead of identifying the complete clustering C of parties at once, CFL recursively
bi-partitions parties into clusters until all the clusters are identified. The algorithm
proceeds by training local models until convergence up to a certain limit. These
individual party models are then aggregated, and the global model is checked for
its congruence, i.e., how well does the global model minimize the risk for each
party. If the global model fits a certain stopping criterion for the parties, CFL is
terminated. Otherwise, parties are partitioned into two sub-clusters, and CFL is
recursively executed on each. Since the bi-partitioning approach works recursively,

4 Personalization in Federated Learning 77

Table 4.1 Classification of different methods of personalization in federated learning setting. For
each classification, we briefly describe the core idea of this classification along with the methods
that fall under this classification criterion

Personalization strategy Description and methods

Client clusteringa Cluster similar parties together to learn models for similar
data distributions

Methods: CFL [47], 3S-Clusteringb [19], IFCA [20],
HypCluster [36]

Client contextualizationa Learn contextual features private to the parties to add
contextual information to the models along with input
features

Methods: FURL [5], FCF [2]

Data augmentation
Augment local data with data from other parties or global
data to increase its diversity and size

Methods: DAPPER [36], XorMixup [51],
global-data-sharingb [66]

Distillation
Distill information between local and global models

Methods: FML [50], FedMD [34]

Meta-learning approach
Formulate the personalization problem as a meta-learning
[25, 57] problem

Methods: FedMeta [9], Per-FedAvg [17], ARUBA [31],
FedPer [3]

Mixture of models
Maintain a local model along with a global model and use
a combination of the two

Methods: APFL [15], LG-FedAvg [35], FL+DE [44],
MAPPER [36]

Model regularization
Optimize a regularized version of the loss function to
balance local model with global model

Methods: L2GD [23], FedAMP [26], pFedMe [16], Fed+
[61]

Multi-task learning
Use multi-task learning framework [46, 65] for federated
learning setting

Methods: MOCHA [53], VIRTUAL [14]
aWe use the terms “Client” and “Party” interchangeably here. While the term “Client” is used in
some research papers, its analogous term “Party” is the one used in this book
bThe authors of these methods have not assigned a specific name to their proposed algo-
rithm/technique. We choose to call them so for brevity purposes

the number of clusters K is not required to be known a priori. Additionally, since
the clustering mechanism is implemented on the aggregator, parties do not bear the
computational burden of the approach. Instead, the aggregator, with its generally
greater compute power than parties, can reduce the overhead of clustering.

3S-Clustering [19] also formulates the problem similar to CFL [47], but instead
of recursive bi-partitioning of parties, it aims to find the K clusters at once on the
aggregator. Once the local models are trained and communicated to the aggregator,

78 M. Agarwal et al.

Fig. 4.2 Client (party) clustering strategy for personalization. In this particular instance, the
aggregator maintains K separate model parameters and sends these to each individual party, where
the parties decide which of the K model parameters they should use

3S-Clustering executes a clustering method—typically, KMeans works, but other
clustering methods can also be employed as shown in the original paper where they
study this method primarily for byzantine-robust distributed optimization—on the
aggregator to find the K clusters. This method, however, is restricted to convex
objectives and, hence, does not apply to non-convex objectives such as in the case
of deep neural networks.

The aforementioned two methods use the aggregator for party clustering, while
the other two methods in this category, IFCA [20] and HypCluster [36], utilize the
parties to identify their own cluster memberships (Fig. 4.2). These two methods
are pretty similar to each other and operate by the aggregator maintaining K

cluster centers and the associated model parameters. At each round, the aggregator
broadcasts the cluster parameters to each of the parties, which in turn estimates its
cluster identity by choosing the parameters that achieve the lowest loss value. These
cluster centers are then used as initializers of the local model, fine-tuned on the local
data, and sent back to the aggregator along with the cluster identity for aggregation.
The aggregator then aggregates models according to their cluster membership, and
the entire process repeats.

4.3.2 Client Contextualization

Learning user-specific contextual features or embeddings has been widely used to
improve the personalization of models in problems unrelated to federated learning
[1, 22, 27, 38, 58]. Client contextualization utilizes the same approach of learning
user embeddings to the task of personalization in federated learning. The rationale
behind this approach is that the embeddings for each party capture characteristics
specific to the particular party and act as indicators to the global model to utilize this
context to adapt its predictions to the specific party.

4 Personalization in Federated Learning 79

Federated collaborative filtering (FCF) [2] proposes a collaborative filtering [48]-
based recommender system learned in a federated manner. Collaborative filtering
models the interaction between N users and M items through a user–item interaction
matrix R ∈ R

N×M as a linear combination of the user-factor matrix X ∈ R
K×N

and the item-factor matrix Y ∈ R
K×M as

R = XT Y . (4.7)

In each iteration of the FCF algorithm, the aggregator sends the item-factor
matrix Y to each of the parties, which in turn use their local data to update the user-
factor matrix X and the item-factor matrix Y . The updated item-factor matrices are
sent back to the aggregator for aggregation, while the user-factor matrices are kept
private on the individual parties. This allows each party to learn its own set of user-
factor matrices while utilizing the item-factor information from across parties. In
experiments comparing FCF with standard collaborative filtering, FCF is shown
to closely match the performance of standard collaborative filtering on multiple
recommendation performance metrics and for multiple recommendation datasets.

While FCF is specific to collaborative filtering, FURL [5] generalizes this
approach by (a) defining private and federated parameters and (b) specifying the
independent local training constraint and the independent aggregation constraint.
The independent local training constraint specifies that the loss function used by
local parties is independent of the private parameters of the other parties, while
the independent aggregation constraint specifies that the global aggregation step is
independent of the private parameters of the parties. When these conditions are met,
FURL guarantees no model quality loss from splitting the parameters into private
and federated.

An application of FURL to the task of document classification is shown in
Fig. 4.3a. Here, the user embeddings are private to each party, while the parameters
of the BiLSTM and the MLP are federated parameters that are shared across
all users. Each party trains the private and federated parameters jointly but only
shares the federated parameters with the aggregator for aggregation. In experiments,
personalization through FURL is shown to significantly improve the performance on
the document classification task.

Personalization through FURL, however, has several drawbacks. First, using
FURL requires incorporating private parameters into the modeling that might
require making changes to the network architecture. Subsequently, incorporating
the private parameters into the model increases the number of parameters to be
learned on the party, which, given the paucity of data on parties, might make the
task more difficult. Finally, the FURL technique suffers from a cold-start problem
for new parties. Since the private parameters are specific to each party, new parties
joining the framework need to first train their private parameters before they can
utilize the power of personalization and might suffer from a degraded performance
before that.

80 M. Agarwal et al.

(a)

Shared
Data

α× Shared
Data

α× Shared
Data

α× Shared
Data

Private
Data

α× Shared
Data

Private
Data

α× Shared
Data

Private
Data

α× Shared
Data

(b)

Fig. 4.3 Client contextualization and data augmentation strategies for personalization in federated
learning. (a) FURL document classification model. Federated parameters (character embeddings)
are used along with private parameters (user embeddings) on each party. (b) Illustration of data-
sharing strategy. Each party uses its private data along with a subset of the global shared data to
train its local model. (Image source: original paper [66])

4.3.3 Data Augmentation

Data augmentation techniques have been utilized in standard machine learning
problems either to alleviate the problems of class imbalance, non-IID datasets,
or to artificially inflate the otherwise lower-sized datasets. Techniques for these
range from oversampling under-represented class samples [8] to training GANs
to generate augmenting data samples [37]. Readers interested in this area should
refer to surveys on data augmentation techniques to gain an understanding of the
landscape of the field [40, 52].

Since federated learning also suffers from a paucity of data on the parties, while
a significantly large amount of data is available globally, it is natural to ask if the
global data (data across all parties) can be used to improve the performance of a
particular party. In the same spirit, methods have been proposed either to share a
small amount of data globally to help improve performance on parties [66] or to
train a Generative Adversarial Network (GAN) in addition to the local model to
augment data samples [28].

One straightforward way to augment data is to collect a subset of data from
all parties to create a global shared dataset that each party can use to augment
their local datasets. DAPPER [36] and global-data-sharing [66] methods fall under
this category. Both these methods utilize a global dataset DG that is indicative of
the global data distribution. The global-data-sharing method proposes to initialize
the federated learning process by sharing a warm-up model trained on the global
dataset, along with a random subset of the dataset (αDG) to each party. Each party
augments its local dataset with the dataset provided by the aggregator to train its
local model, which is then transmitted back to the aggregator for aggregation. An
illustration of this process is shown in Fig. 4.3b.

4 Personalization in Federated Learning 81

DAPPER [36], on other hand, instead of directly augmenting the local dataset
with the global dataset, optimizes the objective:

λDparty + (1 − λ)DG. (4.8)

Each party, at each optimization step, selects the local dataset Dparty with
probability λ and the global dataset DG with probability (1 − λ) for optimization.
The rest of the optimization and aggregation steps remain unchanged.

Both DAPPER and global-data-sharing methods show significant improvements
over models trained with no personalization, but they require the transfer of parties’
data to the global aggregator and to other parties as well. Moving party’s data outside
their machines violates the privacy guarantees of federated learning, and thus these
methods might not be directly implementable in practice.

XorMixup [51] aims to circumvent the privacy concerns associated with transfer-
ring party data while still utilizing the personalization power of data augmentation.
It proposes to use an XOR encoding scheme to obfuscate data samples to upload
to the aggregator. Each party implementing XorMixup first selects data samples
from two different class labels and then creates an encoded data sample using an
XOR of the two. Each party uploads such encoded samples to the aggregator, which
decodes them using a separate data sample from the specified class label, and uses
these decoded samples to train a model. These encoded samples are shown to have
a high dissimilarity with the original data samples and also show improvement in
the performance of models under non-IID conditions.

4.3.4 Distillation

Under the general formulations of federated learning, when the aggregator sends
a model to the party, it uses that model as the starting point to train on the local
data. Personalization through distillation takes a different approach to the problem.
Rather than using the central model parameters as a starting point, distillation-based
approaches use knowledge distillation [21, 24] to transfer knowledge between mod-
els without explicitly copying parameters. A key advantage of utilizing distillation
instead of copying model parameters is that the model architectures need not be the
same across parties and the aggregator for the framework to work. For example,
parties can choose model architectures more suited to their data and/or hardware
constraints. Federated Mutual Learning (FML) [50] and FedMD [34] are two main
methods that follow this approach.

82 M. Agarwal et al.

What is knowledge distillation?
Model compression [11] is the task of reducing the model size, thereby
reducing the memory required to store the model and increasing the speed
of inference, while preserving the information in the original neural network.
Knowledge distillation [21, 24] is a type of model compression technique that
aims to effectively transfer information or knowledge from a larger network to
a smaller network. There are 3 main components in knowledge distillation—
teacher network, student network, and knowledge. The teacher network is the
bigger model that encodes the knowledge, and this knowledge needs to be
transferred into the student network that is typically smaller in size. There are
several ways to define the knowledge to distill [21]—it can either be outputs
of certain layers of the network (such as response-based and feature-based
knowledge) or it can be relationships between the different layers or data
samples (such as relation-based knowledge).

FML adopts a two-way distillation between the local model and the global model.
Parties implementing FML maintain a local model that is continuously trained on
their data without sharing the data with the aggregator. At each communication
round, the aggregator sends the global model to each party that is updated by the
party through a two-way knowledge distillation between the global and the local
model. The corresponding objective functions are as follows:

Llocal = αLlocal + (1 − α)DKL(pglobal‖plocal). (4.9)

Lglobal = βLglobal + (1 − β)DKL(plocal‖pglobal). (4.10)

Since the connection between the local and global models in FML is through
the KL divergence of the output probabilities unlike through parameter copying in
other federated learning methods, the local and global model architectures can be
different. The original work for FML [50] conducts experiments to demonstrate this
effect. Using different network architectures on different parties, the authors show
improvement over independent training of a global model on the complete dataset
under this setting as well.

FedMD [34] also proposes a similar formulation of personalization using distilla-
tion as FML. The FedMD framework requires a public dataset that is shared across
parties and the aggregator, along with the private datasets that each party maintains.
The framework proceeds by parties first training models on the public dataset
followed by training on their respective private dataset and then communicating
the class scores for each sample in the public dataset to the central aggregator. An
aggregation of these class scores across all parties is used as the target distribution
that each party learns from using distillation. Similar to FML, FedMD has the
advantage of supporting different model architectures across parties. However,

4 Personalization in Federated Learning 83

FedMD requires a large public dataset that needs to be shared between parties,
thereby increasing the communication cost between parties and aggregator.

4.3.5 Meta-learning Approach

Contemporary machine learning models are trained to perform well on a single
task. Meta-learning or “learning to learn” [25, 57, 59], on the other hand, aims to
learn models that can be rapidly adapted to new tasks with only a handful of exam-
ples. There are multiple ways of achieving this—metric-based, model-based, and
optimization-based methods [59]. In this section, we focus on optimization-based
methods that are better suited for our purposes. Optimization-based techniques
for meta-learning aim to learn model parameters that can be quickly modified to
new tasks given a handful of examples and within a few gradient updates. Model-
Agnostic Meta-Learning (MAML) [18] is a fairly popular method that is applicable
to any model that can be learned with gradient-based methods. Instead of training
model parameters to minimize the loss on a given task, MAML trains model
parameters to minimize the loss on tasks after a few parameter adaptation steps.
If we consider each task to be a party in federated learning setting, we can draw
a parallel between personalized federated learning and meta-learning. We want
to train a global model to act as a good initializer for party models such that it
is able to adapt, i.e., personalize, quickly to party data distributions. In Sect. 4.2,
we reviewed the connections between the naive personalization baseline, i.e., fine-
tuning of FedAvg, and meta-learning. We now review other recent methods based
on meta-learning.

ARUBA [31] is a framework that combines meta-learning with multi-task
learning techniques to enable meta-learning methods to learn and take advantage
of task similarities to improve their performance. One of the motivations behind
ARUBA is that in meta-learning models, certain model weights act as feature
extractors and are transferable across tasks without much modification, while other
weights vary greatly. Having a per-coordinate learning rate allows parameters to be
adapted at different rates depending on their transferability across tasks. ARUBA,
when tested on the next-character prediction task in a federated learning setting,
matches the performance of a fine-tuned FedAvg baseline, but without additional
hyperparameter optimization over the fine-tuning learning rates.

FedMeta [9]—proposed concurrently with ARUBA—incorporates standard
meta-learning algorithms into federated learning setting. Under this setting, the
aggregator aims to maintain an initialization that a party can quickly adapt to its
local data distribution. The party trains by executing the inner loop (adaptation
steps on the support data) of the meta-learning algorithm locally and returns
the gradient of the outer loop (query data) back to the aggregator, which uses
this information to update its initialization. While FedMeta incorporates meta-
learning into personalization by running the meta-learning step on the parties while
aggregating the model initialization on the aggregator, Per-FedAvg [17] shows

84 M. Agarwal et al.

that this formulation may not perform well in some cases. Instead, Per-FedAvg
assumes that each party takes the global model as initialization and updates it
for one gradient step with respect to its own loss function, changing the problem
formulation as follows (4.11):

min
θ

F (θ) := 1

N

N∑

i=1

Li (θ − α∇Li (θ)). (4.11)

Finally, FedPer [3] proposes to separate the global model into a base network
that acts as a feature extractor, and a personalization layer. The parties jointly
train the base and the personalization layers but only share the base network with
the aggregator for aggregation. This allows the system to learn the representation
extraction network using information from multiple parties, while learning a
personalization layer specific to each party. The connection between this method
and meta-learning is not explicitly explored in the original paper, and there is related
work in the meta-learning literature, Almost No Inner Loop (ANIL) [45], which
proposes separating the network into a body and head network and only adapting
the head to a new task in the inner loop of meta-learning.

4.3.6 Mixture of Models

In the standard formulation of federated learning, the local model is trained on
local data, while the global model aggregates information from parties to build a
global model. The key incentive for a party to participate in federated learning
is to utilize the information on other parties to reduce its generalization error as
compared to training a model locally. However, there can be cases where the global
model performs worse for certain parties in the federated learning system than the
individual models that these parties could train locally [62], e.g., see experiment in
Fig. 4.1. This motivates the idea of mixing the global and local models by learning
a parameter to optimally combine the two models.

FL+DE [44] learns to combine the predicted class probabilities of the local
and global models using a mixture of experts technique [63]. Each party main-
tains a local domain expert (DE) model trained on the local data, while also
collaborating with other parties to build a global model. The gating function
(αi(x))—parameterized as a logistic regression model in the original work [44]—is
learned along with the federated learning setup to optimally combine the predicted
class probabilities of the global model (ŷG) and the local domain expert (ŷi).
The gating function thus learns regions of preferences between the two models
conditioned on the input. The final prediction for a given data sample x is then a
convex combination of the predicted class probabilities of the two models:

ŷi = αi(x)ŷG(x) + (1 − αi(x))ŷlocal(x). (4.12)

4 Personalization in Federated Learning 85

Fig. 4.4 LG-FedAvg—the local models �i(· ; θ�
i) learn to extract high-level representations Hi

given the local data (Xi, Yi), while the global model g(· ; θg) operates solely on the learned
representations Hi . Owing to this bifurcation, the local model can be trained using specialized
techniques, 4 of which are shown in this figure

αi(x) = σ(wT
i x + bi). (4.13)

Instead of using a mixture of experts technique to combine the output probabil-
ities, the MAPPER [36] and APFL [15] methods learn a mixing parameter (α) to
optimally combine the local and global models. In APFL, while the global model is
still trained to minimize the empirical risk on the aggregated domain as in traditional
federated learning, the local model (hlocal) is trained to also incorporate part of the
global model (hg) using α (equation (4.14)). The personalized model for the i-th
party is a convex combination of the global model (hg) and the local model (hlocal)
(equation (4.15)).

hlocal = arg min
h

L̂Di
(αih + (1 − αi)hg). (4.14)

hαi
= αihlocal + (1 − αi)hg. (4.15)

The three methods we have looked at so far maintain both the local and global
models. However, both these models are trained for the same task. LG-FedAvg
[35] instead proposes to bifurcate the learning task between the local and global
models—each party learns to extract high-level representations from raw data, and
the global model operates on these representations (rather than the raw data) from
all devices. We depict the LG-FedAvg process for an image classification task in
Fig. 4.4. Here, the local models are trained to extract high-level representations from
raw images, and while the global model is trained using supervised learning, the
local models are free to choose the technique to learn these representations. As
shown in Fig. 4.4, these can be learned using supervised prediction task (using an
auxiliary model to map representations to predictions) or unsupervised or semi-
supervised techniques (sub-figures (a) to (c)). The local models can also be trained
to learn fair representation through adversarial training against protected attributes

86 M. Agarwal et al.

(sub-figure d). This bifurcation has several benefits: (a) Operating the global model
on representations rather than raw data reduces the size of the global model, thus
reducing the number of parameters and updates that need to be communicated
between the aggregator and the parties, (b) it allows the local parties to choose
a specialized encoder to extract representations depending on the characteristics
of its local dataset rather than using a common global model, and (c) it allows
local models to learn fair representations that obfuscate protected attributes thus
enhancing the privacy of the local data.

4.3.7 Model Regularization

In conventional supervised federated learning, the system is optimized for the
following:

min
θ

{L(θ) := 1

N

N∑

i=1

Li (θ)
}
. (4.16)

Here, N is the number of parties, θ are the model parameters, and Li (θ) denotes
the loss over the ith party data distribution.

Regularization-based personalization techniques, on the other hand, optimize for
a regularized version of the standard objective. Loopless Local Gradient Descent
(L2GD) [23], Federated Attentive Message Passing (FedAMP) [26], pFedME
[16], and Fed+ [61] are all instantiations of the regularization technique, differing
primarily in their definition of the regularization objective.

L2GD [23] defines the regularization objective to be the L2 norm of the differ-
ence between the local model parameters (θi) and the average parameters across
parties (θ̄), and the entire system optimizes the objective defined in equations (4.17)
and (4.18). To optimize for this objective, L2GD proposes a non-uniform SGD
method with convergence analysis over the required number of communication
rounds between the parties and the aggregator. The method views the objective
as a 2-sum problem, sampling either ∇L or ∇ψ to estimate ∇F , and defines an
unbiased estimator of the gradient as in equation (4.19). At each time step, either
the local models take a local gradient step with probability 1 − p or the aggregator
shifts the local models toward the average with probability p.

L2GD : min
θ1,...,θN

{
F(w) := L(θ) + λψ(θ)

}
. (4.17)

L(θ) := 1

N

N∑

i=1

Li (θi), ψ(θ) := 1

2N

N∑

i=1

‖θi − θ̄‖2. (4.18)

G(θ) :=
{∇L(θ)

1−p
with probability 1 − p,

λ∇ψ(θ)
p

with probability p.
(4.19)

4 Personalization in Federated Learning 87

L2GD is applicable to and provides guarantees for convex loss functions and
thus is not directly applicable to non-convex loss functions typically encountered in
neural network models.

pFedMe [16] models the personalization problem as a bi-level optimization
problem through the objective defined as follows:

pFedMe : min
θ

{
F(θ) = 1

N

N∑

i=1

Fi(θ)
}
. (4.20)

Fi(θ) = min
θi

{Li (θi) + λ

2
‖θi − θ‖2}. (4.21)

Here, θi is the ith party’s personalized model, trained on its local data distribution
while maintaining a bounded distance from the global model parameters θ at the
inner level. The optimal personalized model for a party is then defined as

θ̂i (θ) := proxLi /λ
(θ) = arg min

θi

{Li (θi) + λ

2
‖θi − θ‖2}. (4.22)

Similar to FedAvg, a system implementing pFedMe sends the global model
weights to the parties at each communication round and performs model aggregation
using weights returned by parties after a certain number of local rounds. Unlike
FedAvg, party locally minimizes equation (4.21), which is a bi-level optimization
problem. At each local round, the party first solves equation (4.22) to find the
optimal personalized party parameters θ̂i (θ

t
i,r). Here, θ t

i,r is the local model of party
i at global round t and local round r , where θ t

i,0 = θ t . Thereafter, at the outer
level, the party updates the local model θ t

i,r using gradients with respect to Fi in
equation (4.21).

FedAMP [26] proposes the following objective for personalization:

min
θ

{
F(θ) =

N∑

i=1

Li (θi) + λ

N∑

i<j

A(‖θi − θj‖2)
}
. (4.23)

The second part of the objective defines an attention-inducing function A(‖θi −
θj‖2), which measures the similarity between party parameters in a non-linear
manner, and aims to improve the collaboration between parties. The attention-
inducing function can take any form; however, in the proposed work, the authors use
the negative exponential function A(‖θi − θj‖2) = 1 − e−‖θi−θj ‖2/σ . To optimize
for the objective, FedAMP adopts an alternate-optimization strategy, first optimizing∑N

i<j A(‖θi − θj‖2) on the aggregator through weights collected from all parties,
and then optimizing Li (θi) on the corresponding parties using their local datasets.

Fed+ [61] argues that robust aggregation allows better handling of the hetero-
geneity of data across parties and accommodates it through a model regularization

88 M. Agarwal et al.

approach to personalization. Fed+ introduces a convex penalty function φ and
constants α,μ as follows:

min
θ,z,θ̄

1

N

{
Fμ,α(θ, z, θ̄) =

N∑

i=1

Li (θi) + α

2
‖θi − zi‖2

2 + μφ(zi − θ̄)
}

(4.24)

and proposes a robust combination of the current local and global models obtained
by minimizing (4.24) with respect to zi , keeping θi and θ̄ fixed. Setting φ(·) =
‖ · ‖2 gives a ρ-smoothed approximation of the Geometric Median, a form of robust
aggregation:

zi ← θ̄ + proxφ/ρ(θi − θ̄), where ρ := μ/α, hence

zi = (1 − λi) θi + λi θ̄ , where λi := min
{
1, ρ/‖θi − θ̄‖2

}
.

To compute the robust θ̄ from {θi}, the aggregator runs the following two-step
iterative procedure initialized with θ̄ = θmean := Mean{θi } until θ̄ converges:

vi ← max
{
0, 1 − (ρ/‖θi − θ̄‖2)

}
(θi − θ̄),

θ̄ ← θmean − Mean{vi}.

4.3.8 Multi-task Learning

Traditional machine learning approaches typically optimize a model for a single
task. Multi-task learning (MTL) [4, 7, 54] extends this traditional approach to learn
multiple tasks jointly, thus exploiting the commonalities and differences between
the tasks to potentially enhance the performance on individual tasks. Since these
methods can learn relationships between non-IID and unbalanced datasets, they are
well suited to apply to the federated learning setting [53]. Readers interested in
multi-task learning should refer to the following survey papers [46, 65] to gain an
overview of the field.

While MTL methods are appealing in the federated learning context, they do not
account for the communication challenges such as fault tolerance and stragglers in
the framework. MOCHA [53] was the first framework for federated learning using
multi-task learning that factored in fault tolerance and stragglers during training.
MTL approaches generally formulate the problem as follows:

min
w,�

{ N∑

i=1

Li (θi) + R(�)
}
. (4.25)

4 Personalization in Federated Learning 89

Here, N is the total number of tasks, and Li (θi) and θi are the loss function and
parameters for task i. The matrix � ∈ R

N×N models relationships among tasks and
is either known a priori or is estimated while simultaneously learning task models.
MTL approaches differ in their formulation of R that promotes suitable structure
among the tasks through the � matrix. MOCHA optimizes this objective in the
federated learning setting using the objective’s distributed primal–dual optimization
formulation. This allows it to separate computation across nodes by only requiring
data available on the party to update the local model parameters. MOCHA showed
the applicability of multi-task learning approaches to federated learning setting and
showed improved performance as compared to global and local models trained on
the experimental datasets. It, however, is designed for only convex models and is
therefore inapplicable to non-convex deep learning models.

VIRTUAL (variational federated multi-task learning) [14] extends the multi-task
learning framework to non-convex models through the usage of variational inference
methods. Given N parties, each with datasets Di , local model parameters θi , and the
central model parameters θ , VIRTUAL computes the posterior distribution

p(θ, θ1, . . . , θN |D1:N) ∝
∏N

i=1 p(θ, θi |Di)

p(θ)N−1 . (4.26)

This posterior distribution assumes: (1) that party data is conditionally
independent given aggregator and party parameters, p(D1:N |θ, θ1, . . . , θN) =∏N

i=1 p(Di |θ, θi), and (2) a factorization of the prior as p(θ, θ1, . . . , θN) =
p(θ)

∏N
i=1 p(θi). Since the posterior distribution defined in equation (4.26) is

intractable, the algorithm proposes an expectation propagation like algorithm [41]
to approximate the posterior.

4.4 Benchmarks for Personalization Techniques

In this section, we review datasets suitable for benchmarking methods for per-
sonalization in federated learning. We consider datasets with non-IID party data
distributions, i.e., each party’s data is sampled from a different distribution. We
review datasets used in the prior works, as well as other datasets that might fit the
personalization problem setting.

Broadly classified, prior works in this domain have used one of the following
types of datasets: (a) Synthetic datasets, where a generative process for the dataset
is defined to generate data samples for parties, (b) Simulating federated datasets
by partitioning commonly available datasets such as MNIST or CIFAR-10 [32]
according to some hypothesis, and (c) Utilizing datasets that have a natural
partitioning such as data collected from multiple parties. We now look at each of
these types in detail.

90 M. Agarwal et al.

4.4.1 Synthetic Federated Datasets

A fairly common way of generating synthetic federated dataset is to follow the
method proposed by Shamir et al. [49], with some added modifications to inject
heterogeneity among parties. While the exact way of generating the dataset varies
between proposed methods, the underlying process is as follows: for each device k,
samples (Xk, Yk) are generated according to the model y = arg max(softmax(Wx+
b)). The model parameters Wk and bk are controlled by a parameter α and are
sampled as: uk ∼ N(0, α), Wk ∼ N(uk, 1), and bk ∼ N(uk, 1). The generation of
Xk is controlled by the second parameter β and is sampled as: Bk ∼ N(0, β),
vk ∼ N(Bk, 1),
 is a diagonal covariance matrix with
j,j = j−1.2, and
xk ∼ N(vk,
).

This synthetic dataset Synthetic(α, β) has two parameters: α and β. Here,
α controls how much local models differ from each other, and β controls how much
the local data on each device differs from data on other parties.

4.4.2 Simulating Federated Datasets

A common way of simulating federated datasets is to use commonly available
datasets and partitioning them across parties according to a hypothesis. Prior works
have generally utilized datasets such as MNIST,2 CIFAR-10, and CIFAR-100 [32]
for the task. Since these datasets have no specific natural feature that can be used to
partition them across parties, we need to partition them according to a hypothesis.
One way to partition is to sample data points for each party from a particular subset
of classes, to ensure that parties do not see data from all classes and thus do not have
features representative of all the classes in the dataset. Another way of partitioning
includes using a probabilistic allocation of data samples across parties—such as
sampling pk ∼ DirN(α), and allocating pk,i proportion of instances of class k to
party i [64].

Synthetically created federated datasets have the advantage of allowing control
over the amount of heterogeneity in the dataset; however, they are limited by the
number of parties they can support. Prior works have set up their experiments with
the number of parties in the order of tens. While this is suitable for federated learning
in an enterprise setting where typically the number of parties does not scale too
much, this setting does not consider the scale typically encountered in smartphones
or IoT type of applications.

2 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

4 Personalization in Federated Learning 91

Table 4.2 Federated learning datasets

Dataset Task No. of parties Total samples

Samples per device

Mean Std

FEMNIST Image classification 3,550 805,263 226.83 88.94

CelebA Image classification 9,343 200,288 21.44 7.63

Shakespeare Language modeling 1,129 4,226,158 3,743.28 6, 212.26

Reddit Language modeling 1,660,820 56,587,343 34.07 62.95

Sent140 Sentiment analysis 660,120 1,600,498 2.42 4.71

4.4.3 Public Federated Datasets

Besides synthetic and simulated federated datasets, there are datasets available,
which support natural partitioning of data among parties. LEAF [6] is a popular
benchmark for federated learning methods that provides multiple datasets for image
classification, language modeling, and sentiment analysis tasks. These datasets are
the preferred datasets for benchmarking personalization techniques due to their
proximity to real-life non-IID characteristics of data, and the scale of parties they
support. Some of the datasets included in LEAF are:

• FEMNIST: Extended MNIST (EMNIST) [13] is a dataset containing hand-
written samples of digits, uppercase, and lowercase characters for a total of 62
class labels. The EMNIST dataset is partitioned by the original writers of the
handwritten samples to create the FEMNIST dataset with over 3,500 parties.

• Shakespeare dataset: Intended for language modeling task, this dataset is
built from The Complete Works of William Shakespeare,3 by considering each
speaking character in each play as a separate party.

Details about the datasets available in LEAF along with their aggregate and
party-level statistics can be found in Table 4.2.

In addition to the datasets provided in LEAF, there are other datasets that have
the characteristics required for personalization in federated learning task. Some of
these datasets are:

• Google Landmarks Dataset v2 (GLDv2): The GLDv24 is a large-scale fine-
grained dataset intended for instance recognition and image retrieval tasks [60].
It is composed of approximately 5 million images of human-made and natural
landmarks across 246 countries, with approximately 200,000 distinct labels for
these images. This dataset can be utilized in the federated learning setting by
either partitioning according to the geographical location of the landmarks or the

3 http://www.gutenberg.org/ebooks/100
4 https://github.com/cvdfoundation/google-landmark

http://www.gutenberg.org/ebooks/100
https://github.com/cvdfoundation/google-landmark

92 M. Agarwal et al.

landmark categories, or the author. Given its scale and diversity, this dataset is a
strong test bed for the personalization task.

• MIMIC-III: The Medical Information Mart for Intensive Care III (MIMIC-III)
[30] is a large-scale de-identified health-related data of over 40,000 patients
who stayed at the critical care units of a hospital in Boston, Massachusetts
between 2001 and 2012. It includes information such as demographics, vital sign
measurements, laboratory test results, procedures, medications, caregiver notes,
imaging reports, and mortality (both in and out of hospital), for over 60,000
critical care unit stays. While the scale of this dataset is limited in comparison to
the GLDv2, it is one of the largest available medical datasets and thus provides
an important benchmark for evaluating personalization in federated learning.

4.5 Personalization as the Incidental Parameters Problem

There is a possible theoretical explanation for the limitations of personalization in
federated learning: the incidental parameters problem. We consider a general model
of personalization in federated learning: the aggregator and the parties aim to solve
an optimization problem of the form

min
θ,θ1,...,θN

1

N

N∑

i=1

Li (θ, θi), (4.27)

where θ are the shared model parameters, the θi’s are the party-specific parameters,
and Li is the empirical risk on the i-th party. In most federated learning settings,
the sample size per party is limited, so the party-specific parameters θi are only
estimated up to a certain accuracy that depends on the sample size per party. We
may hope that it is possible to estimate the shared parameters θ more accurately, but
this is only possible up to a point.

The population version of the problem is

min
θ,θ1,...,θN

1

N

N∑

i=1

Ri (θ, θi), (4.28)

where Ri is the (population) risk on the i-th party: Ri (·) � E
[Li (·)

]
. Let

(θ̂ , θ̂1, . . . , θ̂N) and (θ∗, θ∗
1 , . . . , θ∗

N) be the argmin of (4.27) and (4.28), respec-
tively. The estimates of the shared parameters satisfy the score equations:

0 = 1

N

N∑

i=1

∂θLi (θ̂ , θ̂1, . . . , θ̂N). (4.29)

4 Personalization in Federated Learning 93

Expanding the score equations around (θ∗, θ∗
1 , . . . , θ∗

N) (and dropping the higher-
order terms), we have

0 = 1

N

N∑

i=1

∂θLi (θ
∗, θ∗

1 , . . . , θ∗
N) + ∂2

θLi (θ
∗, θ∗

1 , . . . , θ∗
N)(θ̂ − θ∗)

+ ∂θi
∂θLi (θ

∗, θ∗
1 , . . . , θ∗

N)(θ̂i − θ∗
i).

We rearrange to isolate the estimation error in the shared parameters

θ̂ − θ∗ = (
1

N

n∑

i=1

∂2
θLi (θ

∗, θ∗
1 , . . . , θ∗

N))−1

⎛

⎜⎜⎜⎝

1

N

N∑

i=1

∂θLi (θ
∗, θ∗

1 , . . . , θ∗
N)

+ ∂θi
∂θLi (θ

∗, θ∗
1 , . . . , θ∗

N)(θ̂i − θ∗
i)

⎞

⎟⎟⎟⎠ .

We see that the estimation error in the party-specific parameters affects the
estimation error of the shared parameters through the average of the terms
∂θi

∂θLi (θ
∗, θ∗

1 , . . . , θ∗
N)(θ̂i − θ∗

i). This average is generally not mean zero, so
it does not converge to zero even as the number of parties grows. For this average
to converge to zero, one of two things must occur:

1. θ̂i − θ∗
i

p→ 0: the estimation errors of the personalized parameters converge to
zero. This is only possible if the sample size per party grows. Unfortunately,
computational and storage constraints on the parties preclude this scenario in
most federated learning problems.

2. ∂θi
∂θLi (θ

∗, θ∗
1 , . . . , θ∗

N) is the mean zero. This is equivalent to the score
equations (4.29) satisfying a certain orthogonality property [12, 42]. If the score
equations satisfy this property, then the estimation errors of the party-specific
parameters do not affect (to first-order) the estimates of the shared parameters.
Although this is highly desirable, orthogonality only occurs in certain special
cases.

In summary, the estimation error in the shared parameters is generally affected
by the estimation errors in the party-specific parameters, and it does not converge to
zero in realistic federated learning settings in which the number of parties grows
but the samples size per party remains bounded. Taking a step back, this is to
be expected from a degree-of-freedom point of view. As we grow the number of
parties, although the total sample size increases, the total number of parameters
we must learn also increases. In other words, personalization in federated learning
is a high-dimensional problem. Such problems are known to be challenging, and
estimation errors generally do not converge to zero unless the parameters exhibit
special structure (e.g., sparsity, low rank). Unfortunately, this is typically not the
case in federated learning.

Practically, this means that if we incorporate personalization in a federated
learning problem, it is profligate to increase the number of parties beyond a certain

94 M. Agarwal et al.

point without increasing the sample size per party. Whether we are beyond this
point can be ascertained by checking whether the quality of the shared parameters
estimates is improving as more parties are added. If we are beyond this point, the
estimation error in the party-specific parameters is dominating the estimation error
in the shared parameters, so there is no benefit to parameter sharing. This is known
as the incidental parameters problem, and it has a long history in statistics. We refer
to [33] for a review of the problem.

4.6 Conclusion

In this chapter, we motivate the need for personalization by demonstrating that
native federated learning does not necessarily help all parties train a better model as
compared to them training the models locally. To alleviate this problem, different
techniques for personalization have been proposed. We group these techniques
into eight major categories based on the type of personalization strategy they
employ. In addition to a review of personalization strategies, we also provide an
overview of the statistical challenges of personalization in federated learning. We
conclude this chapter by providing recommendations for practical considerations
while implementing or utilizing personalization strategies, and future research
directions, and open problems in theoretical understanding of personalization in
federated learning.

Practical considerations. Choosing a personalization strategy for your application
is closely tied to the properties of the parties and the aggregator participating in
the federated learning setup. Specifically, the questions that will help in making an
informed choice are: (1) Do all parties have the same model architecture? (2) Is
there a data-sharing mechanism available to augment local data? (3) What are the
compute capabilities available on the participating parties and the aggregator? and
(4) How much data do you expect to be present on each party?

If not all parties have the same model architecture, or if it is preferable to have
different architectures for different parties, then either distillation-based approaches
(Sect. 4.3.4) or the LG-FedAvg [35] method should be explored. These techniques
support and have been experimentally shown to work with different party and
global model architectures. Another important consideration is if there is global data
available to augment the local data. While sharing party data violates the core tenet
of federated learning, if it is possible to collect a shared dataset, data augmentation
techniques for personalization (Sect. 4.3.3) can be powerful candidates in these
scenarios.

The party and aggregator compute capabilities also play an important role in
selecting a personalization strategy. Specifically for parties, if the compute and
memory capabilities are sufficiently available, then a mixture of models approach
(Sect. 4.3.6) can be explored. Because the mixture of models approach maintains
a local and a global model on the parties and uses a combination of the two for

4 Personalization in Federated Learning 95

inference, it significantly increases the memory and compute requirements for the
participating parties. On similar lines, if the aggregator has enough memory capacity
to allow for maintaining multiple model parameters, then client (party) clustering
approaches (Sect. 4.3.1) might be helpful.

The final question that will help in making an informed decision is regarding
the amount of data available on each party. This is an important consideration to
apply contextualization approaches. Client (party) contextualization (Sect. 4.3.2)
increases the number of parameters to learn from the local data, and if sufficient data
is available on parties, then it might be possible to learn these contextual parameters
to help in personalization.

Lastly, meta-learning (Sect. 4.3.5) and model regularization (Sect. 4.3.7)
approaches are applicable irrespective of whether the aforementioned conditions
are met or not and should always be considered when choosing a personalization
strategy.

Advancing personalization in federated learning. With the growing number of
personalization algorithms proposed in the literature, an important next step in
our opinion is to establish benchmarks and performance metrics to effectively and
reliably measure the performance of the proposed techniques. This requires the
availability of datasets that mimic the conditions typically encountered in practical
deployments. While some datasets exist for this purpose, there is a need for more
datasets in a broader range of application domains. Benchmarking on standardized
datasets will allow for better interpretation of the capabilities and limitations of the
proposed techniques and will also enable easy comparison across the techniques.
In addition to datasets, there is a need for a standardized evaluation setup for
personalization. The typical way of evaluating federated learning techniques is
to measure the performance of the global model, and this technique has been
ported over to the personalization problem as well. However, as we saw in the
motivating example for personalization, measuring the global model accuracy does
not necessarily provide a complete picture of the performance of each party. Thus,
defining an evaluation setup that considers the performance of each party will serve
as an important contribution for effectively evaluating personalization techniques.

Theoretical understanding of personalization. As we saw, there is a scalability
issue with personalization due to the incidental parameters problem. This issue
is distinguished from most scalability issues in machine learning by its statistical
nature. Overcoming this issue is a requirement for scaling personalization to
large party clouds. Unfortunately, a general solution to the underlying incidental
parameters problems has eluded the statistics community for the better part of a
century, so it is unlikely that there is a general way to perform personalization at
scale. However, it may be possible to develop solutions tailored to the particular
model/application, and this is a rich area of future work.

96 M. Agarwal et al.

References

1. Amir S, Wallace BC, Lyu H, Silva PCMJ (2016) Modelling context with user embeddings for
sarcasm detection in social media. arXiv preprint arXiv:160700976

2. Ammad-Ud-Din M, Ivannikova E, Khan SA, Oyomno W, Fu Q, Tan KE, Flanagan A (2019)
Federated collaborative filtering for privacy-preserving personalized recommendation system.
arXiv preprint arXiv:190109888

3. Arivazhagan MG, Aggarwal V, Singh AK, Choudhary S (2019) Federated learning with
personalization layers. arXiv preprint arXiv:191200818

4. Baxter J (2000) A model of inductive bias learning. J Artif Intell Res 12:149–198
5. Bui D, Malik K, Goetz J, Liu H, Moon S, Kumar A, Shin KG (2019) Federated user

representation learning. arXiv preprint arXiv:190912535
6. Caldas S, Duddu SMK, Wu P, Li T, Konečnỳ J, McMahan HB, Smith V, Talwalkar A (2018)

Leaf: a benchmark for federated settings. arXiv preprint arXiv:181201097
7. Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75
8. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-

sampling technique. J Artif Intell Res 16:321–357
9. Chen F, Luo M, Dong Z, Li Z, He X (2018) Federated meta-learning with fast convergence and

efficient communication. arXiv preprint arXiv:180207876
10. Chen M, Suresh AT, Mathews R, Wong A, Allauzen C, Beaufays F, Riley M (2019) Federated

learning of n-gram language models. In: Proceedings of the 23rd conference on computational
natural language learning (CoNLL), pp 121–130

11. Cheng Y, Wang D, Zhou P, Zhang T (2017) A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:171009282

12. Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J (2017)
Double/debiased machine learning for treatment and causal parameters. arXiv:160800060
[econ, stat] 1608.00060

13. Cohen G, Afshar S, Tapson J, Van Schaik A (2017) EMNIST: extending MNIST to handwritten
letters. In: 2017 international joint conference on neural networks (IJCNN). IEEE, pp 2921–
2926

14. Corinzia L, Beuret, A, Buhmann JM (2019) Variational federated multi-task learning. arXiv
preprint arXiv:190606268

15. Deng Y, Kamani MM, Mahdavi M (2020) Adaptive personalized federated learning. arXiv
preprint arXiv:200313461

16. Dinh CT, Tran NH, Nguyen TD (2020) Personalized federated learning with Moreau
envelopes. arXiv preprint arXiv:200608848

17. Fallah A, Mokhtari A, Ozdaglar A (2020) Personalized federated learning: a meta-learning
approach. arXiv preprint arXiv:200207948

18. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep
networks. In: International conference on machine learning. PMLR, pp 1126–1135

19. Ghosh A, Hong J, Yin D, Ramchandran K (2019) Robust federated learning in a heterogeneous
environment. arXiv preprint arXiv:190606629

20. Ghosh A, Chung J, Yin D, Ramchandran K (2020) An efficient framework for clustered
federated learning. arXiv preprint arXiv:200604088

21. Gou J, Yu B, Maybank SJ, Tao D (2020) Knowledge distillation: a survey. arXiv preprint
arXiv:200605525

22. Grbovic M, Cheng H (2018) Real-time personalization using embeddings for search ranking
at Airbnb. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp 311–320

23. Hanzely F, Richtárik P (2020) Federated learning of a mixture of global and local models.
arXiv preprint arXiv:200205516

24. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv
preprint arXiv:150302531

4 Personalization in Federated Learning 97

25. Hospedales T, Antoniou A, Micaelli P, Storkey A (2020) Meta-learning in neural networks: a
survey. arXiv preprint arXiv:200405439

26. Huang Y, Chu L, Zhou Z, Wang L, Liu J, Pei J, Zhang Y (2021) Personalized cross-silo
federated learning on non-IID data. In: Proceedings of the AAAI conference on artificial
intelligence, vol 35, pp 7865–7873

27. Jaech A, Ostendorf M (2018) Personalized language model for query auto-completion. arXiv
preprint arXiv:180409661

28. Jeong E, Oh S, Kim H, Park J, Bennis M, Kim SL (2018) Communication-efficient on-device
machine learning: federated distillation and augmentation under non-IID private data. arXiv
preprint arXiv:181111479

29. Jiang Y, Konečnỳ J, Rush K, Kannan S (2019) Improving federated learning personalization
via model agnostic meta learning. arXiv preprint arXiv:190912488

30. Johnson AE, Pollard TJ, Shen L, Li-Wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi
LA, Mark RG (2016) MIMIC-III, a freely accessible critical care database. Sci Data 3(1):1–9

31. Khodak M, Balcan MF, Talwalkar A (2019) Adaptive gradient-based meta-learning methods.
arXiv preprint arXiv:190602717

32. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images
33. Lancaster T (2000) The incidental parameter problem since 1948. J Econ 95(2):391–413.

https://doi.org/10.1016/S0304-4076(99)00044-5
34. Li D, Wang J (2019) FedMD: Heterogenous federated learning via model distillation. arXiv

preprint arXiv:191003581
35. Liang PP, Liu T, Ziyin L, Allen NB, Auerbach RP, Brent D, Salakhutdinov R, Morency LP

(2020) Think locally, act globally: federated learning with local and global representations.
arXiv preprint arXiv:200101523

36. Mansour Y, Mohri M, Ro J, Suresh AT (2020) Three approaches for personalization with
applications to federated learning. arXiv preprint arXiv:200210619

37. Mariani G, Scheidegger F, Istrate R, Bekas C, Malossi C (2018) BAGAN: data augmentation
with balancing GAN. arXiv preprint arXiv:180309655

38. McGraw I, Prabhavalkar R, Alvarez R, Arenas MG, Rao K, Rybach D, Alsharif O, Sak H,
Gruenstein A, Beaufays F et al (2016) Personalized speech recognition on mobile devices.
In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP).
IEEE, pp 5955–5959

39. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics.
PMLR, pp 1273–1282

40. Mikołajczyk A, Grochowski M (2018) Data augmentation for improving deep learning
in image classification problem. In: 2018 international interdisciplinary PhD workshop
(IIPhDW). IEEE, pp 117–122

41. Minka TP (2013) Expectation propagation for approximate Bayesian inference. arXiv preprint
arXiv:13012294

42. Neyman J (1979) C(α) tests and their use. Sankhyā: Indian J Stat Ser A (1961–2002) 41(1/2):1–
21

43. Nichol A, Achiam J, Schulman J (2018) On first-order meta-learning algorithms.
arXiv:180302999 [cs] 1803.02999

44. Peterson D, Kanani P, Marathe VJ (2019) Private federated learning with domain adaptation.
arXiv preprint arXiv:191206733

45. Raghu A, Raghu M, Bengio S, Vinyals O (2019) Rapid learning or feature reuse? Towards
understanding the effectiveness of MAML. In: International conference on learning represen-
tations

46. Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:170605098

47. Sattler F, Müller KR, Samek W (2020) Clustered federated learning: model-agnostic dis-
tributed multitask optimization under privacy constraints. IEEE Trans Neural Netw Learn Syst
1–13. https://doi.org/10.1109/TNNLS.2020.3015958

https://doi.org/10.1016/S0304-4076(99)00044-5
https://doi.org/10.1109/TNNLS.2020.3015958

98 M. Agarwal et al.

48. Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender
systems. In: Brusilovsky P, Kobsa A, Nejdl W (eds) The adaptive web: methods and strategies
of web personalization. Springer, pp 291–324. https://doi.org/10.1007/978-3-540-72079-9_9

49. Shamir O, Srebro N, Zhang T (2014) Communication-efficient distributed optimization using
an approximate Newton-type method. In: International conference on machine learning.
PMLR, pp 1000–1008

50. Shen T, Zhang J, Jia X, Zhang F, Huang G, Zhou P, Wu F, Wu C (2020) Federated mutual
learning. arXiv preprint arXiv:200616765

51. Shin M, Hwang C, Kim J, Park J, Bennis M, Kim SL (2020) XOR mixup: privacy-preserving
data augmentation for one-shot federated learning. arXiv preprint arXiv:200605148

52. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning.
J Big Data 6(1):1–48

53. Smith V, Chiang CK, Sanjabi M, Talwalkar A (2017) Federated multi-task learning. arXiv
preprint arXiv:170510467

54. Thrun S (1996) Is learning the n-th thing any easier than learning the first? In: Advances in
neural information processing systems. Morgan Kaufmann Publishers, San Mateo, pp 640–
646

55. Thrun S (1998) Lifelong learning algorithms. In: Learning to learn. Springer, Boston pp 181–
209

56. Vanschoren J (2018) Meta-learning: a survey. arXiv preprint arXiv:181003548
57. Vilalta R, Drissi Y (2002) A perspective view and survey of meta-learning. Artif Intell Rev

18(2):77–95
58. Vu T, Nguyen DQ, Johnson M, Song D, Willis A (2017) Search personalization with

embeddings. In: European conference on information retrieval. Springer, pp 598–604
59. Weng L (2018) Meta-learning: learning to learn fast. lilianwenggithubio/lil-log. http://

lilianweng.github.io/lil-log/2018/11/29/meta-learning.html
60. Weyand T, Araujo A, Cao B, Sim J (2020) Google Landmarks Dataset v2-a large-scale

benchmark for instance-level recognition and retrieval. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 2575–2584

61. Yu P, Kundu A, Wynter L, Lim SH (2021) Fed+: a unified approach to robust personalized
federated learning. 2009.06303

62. Yu T, Bagdasaryan E, Shmatikov V (2020) Salvaging federated learning by local adaptation.
arXiv preprint arXiv:200204758

63. Yuksel SE, Wilson JN, Gader PD (2012) Twenty years of mixture of experts. IEEE Trans
Neural Netw Learn Syst 23(8):1177–1193

64. Yurochkin M, Agarwal M, Ghosh S, Greenewald K, Hoang N, Khazaeni Y (2019) Bayesian
nonparametric federated learning of neural networks. In: International conference on machine
learning. PMLR, pp 7252–7261

65. Zhang Y, Yang Q (2017) A survey on multi-task learning. arXiv preprint arXiv:170708114
66. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-IID

data. arXiv preprint arXiv:180600582

https://doi.org/10.1007/978-3-540-72079-9_9
http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.html
http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.html

	4 Personalization in Federated Learning
	4.1 Introduction
	4.2 First Steps Toward Personalization
	4.2.1 Fine-Tuning Global Model for Personalization
	4.2.2 Federated Averaging as a First-Order Meta-learning Method

	4.3 Personalization Strategies
	4.3.1 Client (Party) Clustering
	4.3.2 Client Contextualization
	4.3.3 Data Augmentation
	4.3.4 Distillation
	4.3.5 Meta-learning Approach
	4.3.6 Mixture of Models
	4.3.7 Model Regularization
	4.3.8 Multi-task Learning

	4.4 Benchmarks for Personalization Techniques
	4.4.1 Synthetic Federated Datasets
	4.4.2 Simulating Federated Datasets
	4.4.3 Public Federated Datasets

	4.5 Personalization as the Incidental Parameters Problem
	4.6 Conclusion
	References

