
Chapter 3
Semantic Vectorization: Text-
and Graph-Based Models

Shalisha Witherspoon, Dean Steuer, and Nirmit Desai

Abstract Semantic vector embedding techniques have proven useful in developing
mathematical relationships of non-numeric data such as text. A key application
enabled by such techniques is the ability to measure semantic similarity between
given data samples and find similar data points via encoding comparison. State-of-
the-art embedding approaches assume all data are available at a centralized location.
However, in many scenarios, data are distributed across multiple edge locations and
cannot be aggregated due to a variety of constraints. Hence, the applicability of
state-of-the-art embedding approaches is limited to freely shared datasets, leaving
out applications with sensitive or mission-critical data.

In this chapter, we address this gap by reviewing novel unsupervised algorithms
for learning and applying semantic vector embeddings in a variety of distributed set-
tings. Specifically, for scenarios where multiple edge locations can engage in joint
learning, we adapt the proposed federated learning techniques for semantic vector
embedding. Where joint learning is not possible, we propose novel semantic vector
translation algorithms to enable semantic query across multiple edge locations, each
with its own semantic vector space. Experimental results on natural language as well
as graph datasets show that this may be a promising new direction.

3.1 Introduction

Exponential growth of IoT devices and the need to analyze the vast amounts of data
they generate closer to its origin have led to an emergence of the edge computing
paradigm [15]. The factors driving such a paradigm shift are fundamental: (a) costs
involved in transporting large amounts of data to Cloud, (b) regulatory constraints
in moving data across sites, and (c) latency in placing all data analytics in Cloud.

S. Witherspoon (�) · D. Steuer · N. Desai
IBM Research – Yorktown Heights, Yorktown Heights, NY, USA
e-mail: shalisha.witherspoon@ibm.com; dean.steuer@ibm.com; nirmit.desai@us.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_3

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_3&domain=pdf
mailto:shalisha.witherspoon@ibm.com
mailto:dean.steuer@ibm.com
mailto:nirmit.desai@us.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_3


54 S. Witherspoon et al.

Further, deployments of applications enabled by 5G network architecture rely on
edge computing for meeting the low-latency requirements [4].

A critical application of edge computing is the extraction of insights from the
edge data by running machine learning computations at the edge agent, without
needing to export the data to a central location such as the Cloud [18]. However,
most of the recent advances in machine learning have focused on performance
improvements while assuming all data are aggregated in a central location with
massive computational capacity. Recently proposed federated learning techniques
have charted a new direction by enabling model training from data residing locally
across many edge locations [8, 17].

However, previous work on federated learning has not been primarily focused
on machine learning tasks beyond classification and prediction. Specifically, repre-
sentation learning and semantic vector embedding techniques have proven effective
across a variety of machine learning tasks across multiple domains. For text data,
sentence and paragraph embedding techniques such as doc2vec [7], GloVe [11],
and BERT [1] have led to highly accurate language models for a variety of
Natural Language Processing tasks. Similar results have been achieved in graph
learning tasks [3, 16] and image recognition tasks [2, 10]. Key reasons behind the
effectiveness of semantic embedding techniques include their ability to numerically
represent rich features in low-dimensional vectors and their ability to preserve
semantic similarity among such rich features. Further, little or no labeled data is
needed in learning the semantic vector embedding models. Clearly, semantic vector
embedding will remain a fundamental tool in addressing many machine learning
problems in the future.

This chapter addresses the challenge of representation learning when data cannot
reside in a centralized location. Two new research problems are introduced that
generalize federated learning. First, we introduce the problem of learning semantic
vector embedding wherein each edge site with data participates in an iterative joint-
learning process. However, unlike the previous work on federated learning, the edge
sites must agree on the vector-space encoding. Second, we address a different setting
where the separate parties are unable to participate in an iterative joint-learning
process. Instead, each edge site maintains a semantic vector embedding model of its
own. Such scenarios are quite common where edge sites may not have continuous
connectivity and may join and leave dynamically.

It is important to note that while the edge scenario motivated the study and
development of the aforementioned research problems, they are not limited to edge
scenarios and can be applied in many settings where data cannot be aggregated
centrally, such as in mobile or enterprise computing use cases. In the edge
environment, an edge device, be it a mobile phone, computer, sensor, etc., can
be treated as a party in the traditional federated learning scenario and thus can be
utilized in any setting federated learning is carried out.



3 Semantic Vectorization: Text- and Graph-Based Models 55

3.2 Background

Before discussing the topic of semantic vector federation, it is necessary to define
several terms and techniques used in the approach. The first is a brief overview of
Natural Language Processing and natural language embedding. It is also necessary
to define the algorithms that utilize components of natural language embedding that
allow for the federated semantic search that follows.

3.2.1 Natural Language Processing

Natural Language Processing (NLP) is a broad field covering computer interpreta-
tion of human speech and text. NLP has a long history of study within computer
science, with the first explorations going back to the 1950s. During that time, work
focused on breaking speech and text into its formative components and interpreting
language as ontologies from which computers could more easily reason [13, 14].

In the 1990s, compute power and new algorithms in the field had advanced
sufficiently for research to move away from complex rules and toward utilizing
machine learning algorithms [5, 6, 12] to identify patterns. Researchers moved to
focus on unsupervised algorithms, as the abundance of information was difficult or
impossible to classify. The proliferation of more complex algorithms such as neural
networks in recent years has served as the backbone for continued research into
natural language understanding.

Natural language embedding is a technique by which human speech and text are
converted into numeric vectors on which a computer can make calculations. This
conversion of words into a numeric representation is referred to as vectorization
and enables tasks such as finding semantically similar words, clustering docu-
ments, classifying text, extracting text features, etc. Techniques such as stemming,
lemmatization, and stopword removal can also be used to reduce the size of the
corpus into a smaller, but more valuable set of data by removing text that has little
information. Once the text has been converted into vectors, similarity functions can
be applied. One such example is cosine similarity, which works by projecting two
vectors into a two-dimensional space. The cosine angle between these two vectors
is then determined where the smaller the angle, the higher the similarity between
two vectors. This process is done for the entire corpus of text to generate cosine
similarity vector scores for all words.

Representation learning and semantic vector embedding techniques have proven
effective across a variety of machine learning tasks across multiple domains. For
text data, sentence and paragraph embedding techniques such as Doc2Vec, GloVe,
and BERT have led to highly accurate language models for a variety of NLP tasks.
Key reasons behind the effectiveness of semantic embedding techniques include
their ability to numerically represent rich features in low-dimensional vectors and
their ability to preserve semantic similarity among such rich features. Furthermore,



56 S. Witherspoon et al.

little or no labeled data is needed in training semantic vector embedding models as
they rely on unsupervised learning.

3.2.2 Text Vectorizers

Text vectorizers are a series of algorithms used to embed text data. These algorithms
attempt to identify and categorize text into more machine interpretable forms. One
of the prominent algorithms to be developed in this area is Word2Vec. Word2Vec
was first developed by Tomas Mikolov and team in 2013 [9]. This algorithm
was able to solve the challenge of maintaining semantic meaning in text space
and allow for words in similar contexts to be correlated. Typically, the corpus is
many thousands, or millions of words. Underlying the Word2Vec model is a neural
network that takes as input the vectorized words and creates a mapping of the vast
input data. Two addition techniques are a part of the Word2Vec algorithm. These
are the continuous bag-of-words (CBOW) model and the Skip-Gram model. CBOW
works by creating a vector projection of the words that surround a word w in order
to predict the word. The number of words to include is defined by a “window.”
A window describes the number of words before and after the query word in a
sentence to include in the vector projection. In a sample sentence such as “the
dog jumped over the lazy fox,” suppose we wanted to find the vector space of the
word “over,” the algorithm would look at the context surrounding the word. If we
additionally provide a window size of two, our vector projection would include the
words “dog” (w-2), “jumped” (w-1), “the” (w+1), and “lazy” (w+2). Skip-Gram
works in a reverse fashion where we attempt to predict the words surrounding
some particular word. Using the sample sentence again, and using the same word,
“over,” the approach would attempt to learn that the word “jumped” and “the” are
contextually close to “over.” See Fig. 3.1 to compare the approaches.

(a) (b)

Fig. 3.1 Text vectorizers. (a) Word2vec. (b) Doc2vec, based on the CBOW algorithm (continuous
bag-of-words)



3 Semantic Vectorization: Text- and Graph-Based Models 57

In Word2Vec, vectors of fixed dimensions representing each word in the vocab-
ulary are initialized randomly. The learning task is defined as predicting a given
word based on the preceding N words and following N words. The loss function
is defined as the error in predicting the given word. By iterating through many
sentences during training, the word vectors are optimized using gradient descent
and updated to minimize the loss and accurately represent the semantic concept.
Interestingly, such semantic vectors also exhibit algebraic properties, e.g., vector
representing “Queen” is similar to the one corresponding to subtracting “Man” from
“King” and adding “Woman.” Doc2Vec is a simple yet clever tweak of Word2Vec
where a vector representing an entire document, e.g., a paragraph, is learned along
with the words in it.

3.2.3 Graph Vectorizers

Another area of valuable semantic meaning is that of graphs. Graphs are generally
structured as a series of nodes linked by edges. A neighborhood defines a portion
of the nodes in the overall graph that are connected together. These graphs can
be complex or small depending on the datasets. Examples of graph datasets include
social network graphs where individuals are nodes and friendships are edges; author
collaboration networks where authors are nodes and co-authorships are edges; and
road networks where cities are nodes and roads are edges. Given these scenarios,
it becomes valuable to find patterns in these potentially massive graphs. Node2Vec
is an algorithm for representation learning on graph data that was first proposed by
Grover and Leskovec in 2016 [3].

The paper’s effort is two-fold; first, by using graphs and node neighborhoods, the
algorithm can generate nodes of similar semantic meaning; second, by using graphs
where some subsets of the links are missing in an attempt to predict where links
should exist. Our work focuses on the first technique of identifying semantically
similar nodes. Semantically similar nodes can be described in two ways: homophily
and structural equivalence. Homophily describes a scenario where nodes are highly
interconnected and, therefore, similar to each other. Structural equivalence describes
a scenario where nodes that are similarly connected or fulfill a similar role within
the graph are similar to each other. These nodes need not be highly connected or
even connected to each other.

As an example, consider a grade school population that consists of all students
and staff. Suppose a node represents a single individual and an edge represents
individuals attending the same class. A cohort of students of a particular grade are
likely to appear in several classes together and act as a neighborhood. A teacher
may teach this cohort but may also teach other classes of entirely different students
at different times. Students who appear in the same classes would be homophilic
and considered a highly interconnected group of nodes. The teacher is structurally
equivalent to other teachers who are a point of a single connection to other large



58 S. Witherspoon et al.

Fig. 3.2 Node2vec: random walks on graphs

groups of students. Structurally equivalent nodes need not be transition nodes into
larger neighborhoods.

Nodes that exist on the periphery of a graph with single connections or no
connections at all may also be treated as structurally equivalent. The preference
to identify nodes via homophily or structural equivalence is treated as a parameter
during Node2Vec model training. Given a graph, Node2Vec can learn vector
representations for the nodes, which can then be used for node comparison and
link prediction. Unlike text sentences where each word is preceded or followed
by at most one word, graphs have a complex structure. It is necessary to convert
this potentially complex and interconnected graph in a sequence of elements much
like a sentence. One of the key innovations behind Node2Vec is mapping a graph
to node sequences, a.k.a. graph sentences, by generating random walks and then
using Word2Vec to learn the vector representation of the nodes in these sequences.
Hyperparameters control the number of walks to generate, walk length, as well as
the preference of the walk to keep close to its starting node and potentially revisit
nodes it has already seen, or explore further out away from the starting node. Once
the walk sequences have been generated, the walks are provided as sentences to a
text vectorizer as described above (Fig. 3.2).

3.3 Problem Formulation

With the background on semantic embedding covered, we are ready to formally
define the problem of semantic vector federation for edge environments.

In the introduction, we presented two problem scenarios for semantic vector
federation in edge environments: the first being when iterative joint learning is
possible and the second when edge sites were unable to participate in joint learning.
Joint learning is the process by which multiple parties collaborate and share some
form of information. In cases where the data is not sensitive or all parties are
controlled by a single organization, the raw information could be shared. However,



3 Semantic Vectorization: Text- and Graph-Based Models 59

in many scenarios, it may be necessary to minimize what data is being shared with
others. The latter scenario was used to inform and design new algorithms for the
joint-learning process.

To address the conflicting challenges, we developed novel algorithms for each
scenario. In the case of joint learning, prior to beginning the iterative distributed
gradient descent, edge sites collaborate to compute an aggregate feature set so
that the semantic vector spaces across edge sites are aligned. In the case where
joint learning is not possible, edge sites learn their own semantic vector embedding
models from local data. As a result, the semantic vector spaces across edge sites are
not aligned, and semantic similarity across edge sites is not preserved. To address
this problem, we propose a novel approach for learning a mapping function between
the vector spaces such that vectors of one edge site can be mapped to semantically
similar vectors on another edge site.

3.3.1 Joint Learning

Joint learning can be described as scenarios where synchronous learning is able to
transpire, i.e., all parties are able to participate in federated learning at the same
time to train a global model. The global model could then be used in performing
semantic similarity searches across all edges sites for new data.

The joint-learning algorithm adapts the federated averaging algorithm, which
achieves model fusion by averaging the learned weights during iterative rounds of
training, to a semantic vector embedding setting. The main challenge in applying
federated learning in semantic embedding models is in ensuring that concepts across
edge sites are aligned. For example, in the case of text data, if the vocabulary of
words is different across edge sites, federated averaging cannot be readily applied
because the learned weights of the embedding model are what eventually ends up as
the word embeddings, and if they are not aligned, the correct embeddings would not
be updated properly during averaging. Hence, a key innovation in the joint-learning
adaption is to align the vocabulary of concepts as a prerequisite step in the iterative
synchronous training process to ensure consistent embedding across sites.

Figure 3.3 depicts an illustration wherein EDGE1 wants to perform a global
search for top-3 experts most similar to person X. Assuming that a Doc2Vec model
m1 has been distributed to all edge sites via joint learning, EDGE1 uses m1 to
vectorize person X’s document as vector v1 and sends v1 to other sites. Other
sites apply a similarity metric, e.g., cosine similarity, to find top-3 nearest-neighbor
vectors to v1 and return the corresponding person identities and cosine similarity
score back to EDGE1. After receiving the results from all edge sites, EDGE1 can
select the top-3 results having the highest cosine similarity.



60 S. Witherspoon et al.

Fig. 3.3 Semantic search for the motivating example: joint learning

3.3.2 Vector-Space Mapping

The problem of vector-space mapping of semantic vector embedding is defined
as having N edge sites, each edge site i with local dataset Di and a pre-trained
semantic vector embedding model mi trained on Di . Each of the edge sites wants
to collaborate in performing global similarity search for a new example d across all
edge sites but do not want to share their data with each other and are not able to
participate in jointly training a common model.

A key property of semantic embedding models is that each has what is known
as its own vector space. This means that the real-valued vectors produced for
semantic representations are initialized randomly. As an example, because of this
property, even if two word embedding models were trained on the exact same
corpus, their semantic vectors would be different, and the semantic meaning would
not be preserved across the other embedding models. This introduces a concept
known as vector-space mapping, which is the ability to translate the vector space of
one embedding model into another independently trained embedding model’s vector
space in order to retain the semantic meaning learned across both models and enable
queries of similarity among their vectors.

One of the main challenges is to identify a training set of semantically similar
words in the different vector spaces and use the corresponding vectors as reference
vectors that can be used to generate a function that is capable of transforming any
vector from one vector space to the other. Given this, our algorithm makes use of
the properties of multi-layer perceptron (MLP) neural networks to potentially learn
universal functions and, therefore, the possibility to train such a network to learn the
mapping. However, training a MLP model requires a training set that is commonly
available to all edge sites. Availability of such training data is highly constrained,
especially given that the sites do not wish to share their proprietary datasets with
each other.



3 Semantic Vectorization: Text- and Graph-Based Models 61

Hence, another key innovation of our vector-space mapping algorithm is the idea
of leveraging any publicly available corpus, regardless of its domain, as a training
dataset generator for the mapper MLP model. The formal algorithm definition can
be defined as outlined in Algorithm 3.1 and illustrated in Fig. 3.4.

Algorithm 3.1 Vector-Space Mapping Algorithm
Input: Local Dataset Di , Public dataset Dp, Loss Function Fi , Epochs T ,
learning rate η

Function Main(Di,Dp, Fi, η):

mi ← T rainDoc2V ec(Di,Dp, Fi, η)

store mi

Function Mapj (mj ,Dp, Fi) :
Wi→j ← RandomNN()

for all b ∈ Dp do
vi ← predict (mi, b)

vj ← predict (mj , b)

L ← Fi(vi, vj )

� ← Gradient (L, Fi,Wi→j )

Wi→j ← Wi→j − η�L

end for
mi→j ← Model(Wi→j )

store mi→j

Function GlobalSearch(d) :
for all Edgej ∈ Edges do

vi ← predict (mi, d)

vj ← mi→j (vi)

Send query vj to Edgej

Vsim ← Receive result vectors from Edgej

end for
return Vsim

As shown in Fig. 3.4, consider that a semantic vector embedding model m1 is
trained from local data on EDGE1 and another semantic vector embedding modelm2
is trained from local data on EDGE2. The objective is to train a mapper MLP model
that can map vectors produced by vector space of m1 to the vector space of m2. An
auxiliary dataset Dp that is accessible to both edge sites can serve as the training
samples generator and facilitate the training of MLP mapper model. Input to the
MLP model are the vectors produced by m1 on samples of Dp, and the ground-truth
labels are the vectors produced by m2 on the same samples of Dp. Since the input
and the output of the MLP mapper model can have a different dimensionality, this
approach works even when EDGE1 and EDGE2 choose a different dimensionality
for their semantic vectors.



62 S. Witherspoon et al.

Fig. 3.4 Learning to map vector space of Edge1 to that of Edge2

3.4 Experimentation and Setup

We evaluate the two algorithms of joint learning and vector-space mapping via
extensive experiments on two data modalities: natural language and graph. The
experiments are anchored on the motivating example of performing a global
semantic search for individuals with expertise. The evaluation metric is dependent
on the algorithm. For joint learning, we perform an objective evaluation of how
well the federated semantic vector embedding model performs relative to the
baseline of a centralized model; comparing with a baseline is a standard practice
for unsupervised algorithms since there is no ground truth on semantic similarity
between samples. And for vector-space mapping, we perform an objective analysis
comparing cosine similarity of reference vectors with and without our mapping
algorithm being performed.

3.4.1 Datasets

For the natural language modality, we leverage three different datasets: (a) an
internal dataset consisting of Slack collaboration conversations, (b) the 2017
Wikipedia dataset with 10K samples, and (c) the 20-newsgroup public datasets with
18,846 samples. For joint-learning experiments, (a) is used for both the centralized
and federated experiments. For vector-space mapping experiments, (b) is used as
the private datasets, with (c) acting as the public dataset accessible by all edge sites.
For the graph modality, we leverage (a) above for the joint-learning experiments but
instead of looking at the text content of the posts, we construct a collaboration graph
between users.



3 Semantic Vectorization: Text- and Graph-Based Models 63

The Slack dataset (a) consists of natural language conversations across 7367
Slack channels among 14,208 unique users. Of these, only 1576 users having
sufficient activity (more than 100 posts) are used in the experiments. All Slack posts
of a user are treated as a single document in training the Doc2vec models. For the
centralized case, Slack posts of all users are used for training a single Doc2vec
model, whereas for the federated case (joint learning), the users are uniformly
distributed across two edge sites. No additional knowledge of the organization
hierarchy, projects, or teams is included, leaving the models to rely solely on the
content of the Slack posts as a basis of semantic vector embedding representing
each user.

In constructing a graph from the Slack dataset, each user is treated as a node in
the graph, and other users who participate in the same Slack channel as the user are
treated as the edges. For avoiding noisy edges due to having channels with a large
number of users, a pair of users participating together, i.e., co-occurring, in less than
10 channels do not have an edge between them. Another approach would have been
to assign weights to edges; however, Node2vec does not take advantage of edge
weight information. The entire graph is used for training the centralized Nodes2vec
model. For the federated case, users are randomly assigned to one of the edge sites.
When doing so, the cross-site edges are handled in two alternative ways: (1) the
cross-site edges are not retained, so each edge site has edges only among the users
assigned to the site, called no retention, and (2) the nodes involved on cross-site
edges are retained on both sites, called retention.

3.4.2 Implementation

For the natural language dataset, we use the Doc2vec model architecture with
the Skip-Gram PV-DM algorithm with 40 epochs and a learning rate of 0.025.
Doc2vec semantic vectors are 50-dimensional real-valued vectors. For the graph
dataset, we use the Node2vec architecture with 40 epochs and a learning rate of
0.025. Node2vec semantic vectors are 124-dimensional real-valued vectors. The
hyperparameters of the Node2vec favor homophily approach where the return
parameter p is favored over the in–out parameter q. We set p = 0.6 and q = 0.1.
The walk length parameter, the number of hops to other nodes from the start node,
is set to 20, and the number of walks, the number of iterations of node hopping to
perform, is also set to 20.

In the case of vector-space mapping, the mapper model is an MLP model with
a single hidden layer with 1200 neurons and a dropout ratio of 0.2. We use the
cosine embedding loss in training the MLP as the semantic similarity is based on
cosine similarity. ADAM optimizer with a learning rate of 0.00001 and 20 epochs of
training with the batch size of 64 was applied.

It is worth emphasizing that these details are provided for completeness and
these parameters are quite commonly used in the literature. The objective here is
not to produce the best-performing semantic vector embedding models. Instead,



64 S. Witherspoon et al.

we are primarily interested in evaluating the relative performance of the federated
algorithms compared to the traditional centralized ones. Hence, all of the above
parameters are kept the same for the centralized and federated cases.

3.5 Results: Joint Learning

3.5.1 Metrics

For objectively measuring how well the federated algorithms perform relative to the
centralized case, the degree of overlap is computed as follows. For a given document
d in the dataset, the centralized model is used to vectorize the document, and the
set of top-k most similar documents from the dataset is found based on cosine
similarity, called dk

c . Then, using the respective federated algorithm, the set of top-k
most similar documents is found for the same document d, called dk

f . The degree
of overlap simk then is the ratio of cardinality of the intersecting set and k, denoted

as simk = |dk
c ∩dk

f |
k

. For multiple documents in the dataset, a simple mean of simk

is computed over all documents. When simk = 1, the centralized and federated
models produce identical results on semantic search. The idea behind the measure
is simple: the higher the simk , the closer the federated case performance is to the
centralized case. In evaluating the federated algorithms relative to the centralized
case, we set k = 10.

3.5.1.1 Natural Language

Figure 3.5 shows the distribution of the number of overlaps between the centralized
case and the joint-learning case (sim10 × 10) when the joint-learning algorithm
is applied to the Slack dataset. As indicated by the simk of 0.609, for a majority
of the users, the joint-learning model found about 6 of the same users found by
the centralized model. It is important to note that an average degree of 6 out of

Fig. 3.5 Performance of
Doc2vec joint learning
relative to centralized
learning, simk = 0.609



3 Semantic Vectorization: Text- and Graph-Based Models 65

10 overlaps is an adequate result, because we found that when retrieving the top
10 results from cosine similarity, the bottom half results are usually inconsistent
between experiments, even in the centralized case, due to the fact that the latter
results are lower and closer in score, often only separated by trailing decimal digits.
Thus, the fact that the federated model was able to overlap with more than half of
the results produced from the centralized model demonstrates similar performance
from the models.

Based on the above, we can conclude that there is not a significant loss in
performance introduced by the joint-learning algorithm when compared to the
centralized model, making the joint-learning algorithm a viable alternative to the
centralized case.

3.5.1.2 Graph

Figure 3.6 shows the distribution of the number of overlaps between the centralized
case and the joint-learning case (sim10 × 10) when the joint-learning algorithm is
applied to the graph dataset with no retention of cross-site collaborators. As seen
in the distribution as well as indicated by the simk of 0.138, for a majority of the
users, the joint-learning model found almost no users returned by the centralized
model. This is not an encouraging result by itself. However, since the cross-
site edges are dropped from the graph corresponding to the joint-learning case,
valuable information about those users’ collaboration behavior is lost compared to
the centralized case having the entire graph. Although this explanation is intuitive
to validate it, we need to examine the result when the cross-site collaborators are
retained and discussed next.

Figure 3.7 shows the distribution of the number of overlaps between the
centralized case and the joint-learning case (sim10 × 10) when the joint-learning
algorithm is applied to the graph dataset with all cross-site collaborators retained
across both sites. As seen in the distribution as well as indicated by the simk of
0.253, for a majority of the users, the joint-learning model found more than 2 of
the same users returned by the centralized model. Compared to the no retention

Fig. 3.6 Performance of
Node2vec joint learning
relative to centralized
learning, no retention,
simk = 0.138



66 S. Witherspoon et al.

Fig. 3.7 Performance of
Node2vec joint learning with
collaborator retention relative
to centralized learning,
simk = 0.253

result, this is a significantly better result. Thus, the explanation above is validated as
retaining the cross-site collaborators clearly helps the joint-learning model achieve
more accurate user embedding.

Although the difference between the Node2vec joint-learning results above can
be explained by the difference in retention policy, the inferior results of Node2vec
when compared with Doc2vec require further investigation. One hypothesis is that
the random assignment of users to edge sites can have an adverse effect on the
joint-learning performance because such an assignment can have an uneven effect
on the collaborative user clusters in the graph. For example, one edge site may end
up having most of its collaborative clusters unaffected, whereas another may have
its collaborative clusters split into two sites. Although the immediate collaborators
may be preserved via cross-site retention, the higher-order collaborations are still
affected.

3.6 Results: Vector-Space Mapping

To construct the required vector spaces, we used 10,000 randomly shuffled subsam-
ples from the 2017 Wikipedia dataset as the private data on two edge sites to train
two Doc2vec models using different initial random weights. For our public dataset
used to generate input and ground-truth vectors for training the MLP mapper model,
we leveraged the 20-newsgroup data consisting of 18,886 samples. Our experiments
focused on mapping the vector space of EDGE1 to EDGE2.

3.6.1 Cosine Distance

To illustrate the impact of not having mapping across vector spaces, we measured
the cosine similarity between vectors for the same documents in both vector
spaces. Without mapping, the resulting cosine distance distribution was shown
to have a similar distribution to orthogonal vectors, which is essentially akin to



3 Semantic Vectorization: Text- and Graph-Based Models 67

Fig. 3.8 Distribution of cosine distance, no mapping

Fig. 3.9 Distribution of cosine distance, mapping performed

comparing random vectors, as shown in Fig. 3.8. For comparison, Fig. 3.9 shows
the distribution of cosine distance after mapping the vector spaces, which shows a
significant shift in the mean and variance of the distribution away from the random
distribution and toward a similarity around 1.0.

3.6.2 Rank Similarity

To further determine the quality of the vector-space mapping, we measured the rank
similarity of comparable vectors in both vector spaces. To do this, we vectorized
documents in EDGE1’s vector space and performed the mapping into EDGE2’s
vector space to find its 20 nearest matching vectors. If the nearest matching vector
was the same as the test document, we gave it a rank of 0; otherwise, we assigned
it the rank that it appeared in the similarity result. In cases where the test document
was not returned in the similarity result, we assigned it a rank of 20. As shown
in Fig. 3.10, we achieve a 0.95 percent accuracy of a perfect match between the



68 S. Witherspoon et al.

Fig. 3.10 Distribution of
rank similarity, mapping
performed

Fig. 3.11 Distribution of
rank similarity, no mapping

document vectors after mapping. We also performed the rank similarity experiment
without mapping, shown in Fig. 3.11, which resulted in a mere 0.03 percent accuracy
for matching the appropriate vector, and the majority of the results gives a rank
of 20. Thus both results illustrate the effectiveness of our vector-space mapping
algorithm for semantic search across independently trained local models.

3.7 Conclusions and Future Work

With the increasing regulation and the growth in data originating at the edge, edge
computing is poised to be a critical area of research with significant impact on
how IT systems are developed, deployed, and managed. This chapter introduced
the novel research direction of federated semantic vector embedding, building on
the unique combination of the well-known techniques of federated learning and
semantic vector embedding. Specifically, two research problems were formulated to
cater to two separate settings in which edge sites want to collaborate in performing
global semantic search across sites without sharing any raw data.

The first setting, called joint learning, is when the edge sites have a tightly cou-
pled collaboration to participate in a synchronous joint-learning process and have an
agreement on the model architecture, training algorithm, vector dimensionality, and
data format. A novel algorithm to address the joint-learning problem is presented



3 Semantic Vectorization: Text- and Graph-Based Models 69

with the novel idea of vocabulary aggregation before starting the iterative federated
learning process.

The second setting, called vector-space mapping, is when the edge sites do
not agree on the various parameters of joint learning or cannot participate in a
synchronous process as they may need to join and leave dynamically. This is clearly
a challenging setting and one of great significance in practice. Based on the novel
idea of training another model to learn the mapping between vector spaces based
on a public dataset from any domain, an algorithm for addressing the vector-space
mapping problem was presented.

Experimental evaluation using multiple natural languages as well as graph
datasets shows that these algorithms show promising results for both algorithms
compared to the baseline centralized case where all data can be aggregated on one
site. Several important research questions remain open. How do these algorithms
scale in the number of edge sites, differences in data distributions, and the amount
of data at edge site? How do we interpret such semantic vectors and explain the
similarity results they produce? The work covered here is one of the first in the area
of federated semantic vector embedding and has unlocked several key challenges
for future research.

References

1. Devlin J, Chang M, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR abs/1810.04805, http://arxiv.org/abs/1810.
04805,1810.04805

2. Frome A, Corrado GS, Shlens J, Bengio S, Dean J, Ranzato M, Mikolov T (2013) Devise:
a deep visual-semantic embedding model. In: Advances in neural information processing
systems, pp 2121–2129

3. Grover A, Leskovec J (2016) Node2vec: scalable feature learning for networks. In: Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
KDD’16. Association for Computing Machinery, New York, pp 855–864

4. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—a key
technology towards 5G. ETSI White Pap 11(11):1–16

5. Kanerva P, Kristofersson J, Holst A (2000) Random indexing of text samples for latent
semantic analysis. In: Proceedings of the 22nd annual conference of the cognitive science
society, vol 1036. Erlbaum, New Jersey

6. Uesaka Y, Kanerva P, Asoh H, Karlgren J, Sahlgren M (2001) From words to understanding.
In: Foundations of real-world intelligence. CSLI Publications, p 294). chapter 26

7. Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Interna-
tional conference on machine learning, pp 1188–1196

8. McMahan HB, Moore E, Ramage D, y Arcas BA (2016) Federated learning of deep networks
using model averaging. CoRR abs/1602.05629. http://arxiv.org/abs/1602.05629,1602.05629

9. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in
vector space. 1301.3781

10. Norouzi M, Mikolov T, Bengio S, Singer Y, Shlens J, Frome A, Corrado G, Dean J (2014)
Zero-shot learning by convex combination of semantic embeddings. In: Proceedings of 2nd
international conference on learning representations

http://arxiv.org/abs/1810.04805,1810.04805
http://arxiv.org/abs/1810.04805,1810.04805
http://arxiv.org/abs/1602.05629,1602.05629


70 S. Witherspoon et al.

11. Pennington J, Socher R, Manning CD (2014) GloVe: global vectors for word representation.
In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp 1532–1543

12. Sahlgren M, Kanerva P (2008) Permutations as a means to encode order in word space. In:
Cognitive science—COGSCI

13. Salton G (1962) Some experiments in the generation of word and document associations. In:
Proceedings of the fall joint computer conference, AFIPS’62 (Fall), 4–6 Dec 1962. Association
for Computing Machinery, New York, pp 234–250. https://doi.org/10.1145/1461518.1461544

14. Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun
ACM 18(11):613–620

15. Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39
16. Wang Q, Mao Z, Wang B, Guo L (2017) Knowledge graph embedding: a survey of approaches

and applications. IEEE Trans Knowl Data Eng 29(12):2724–2743
17. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: concept and applications.

ACM Trans Intell Syst Technol (TIST) 10(2):1–19
18. Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intelligence: paving the last mile

of artificial intelligence with edge computing. Proc IEEE 107(8):1738–1762

https://doi.org/10.1145/1461518.1461544

	3 Semantic Vectorization: Text- and Graph-Based Models
	3.1 Introduction
	3.2 Background
	3.2.1 Natural Language Processing
	3.2.2 Text Vectorizers
	3.2.3 Graph Vectorizers

	3.3 Problem Formulation
	3.3.1 Joint Learning
	3.3.2 Vector-Space Mapping

	3.4 Experimentation and Setup
	3.4.1 Datasets
	3.4.2 Implementation

	3.5 Results: Joint Learning
	3.5.1 Metrics
	3.5.1.1 Natural Language
	3.5.1.2 Graph


	3.6 Results: Vector-Space Mapping
	3.6.1 Cosine Distance
	3.6.2 Rank Similarity

	3.7 Conclusions and Future Work
	References


