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Abstract Federated learning (FL) has emerged as a powerful approach to decen-
tralize the training of machine learning algorithms, allowing the training of collab-
orative models while preserving the privacy of the datasets provided by different
parties. Despite the benefits, FL is also vulnerable to adversaries, similar to other
machine learning (ML) algorithms in centralized settings. For example, just a
single malicious or faulty participant in an FL task can entirely compromise the
performance of the model when using unsecure implementations. In this chapter,
we provide a comprehensive analysis of the vulnerabilities of FL algorithms to
different attacks that can compromise their performance. We describe a taxonomy
of attacks comparing the similarities and differences with respect to centralized ML
algorithms. Then, we describe and analyze different families of existing defenses
that can be applied to mitigate these threats. Finally, we review a set of comprehen-
sive attacks that aim to compromise the performance and convergence of FL.

16.1 Introduction

Artificial intelligence (AI) and especially machine learning (ML) are at the core
of the fourth industrial revolution. ML has become one of the main components
of many systems and applications with success stories across different sectors,
including healthcare [37], financial markets [10], or Internet of Things (IoT) [19].
The benefits of ML technologies are clear, as they allow the efficient automation of
many processes and tasks by leveraging their capability to analyze a huge amount
of data.
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Recently, federated learning (FL) has emerged as a promising approach for the
development of distributed ML systems, allowing us to resolve challenges in some
application domains. FL allows us to train a shared ML model from a federation
of participants who use their own datasets to locally train a machine learning model
while preserving the privacy of their datasets within the federation. In this approach,
there is a central aggregator (server) that combines the information that controls the
learning process and aggregates the information from the parties (clients) during the
training of the ML model. These parties train the models locally using their own
dataset and send the model updates back to the central aggregator in an iterative
manner. In this way, during training, the data always remains with the party, keeping
their datasets private.

Given current laws and privacy regulations such as the General Data Protection
Regulation (GDPR) in the European Union, or the Health Insurance Portability
and Accountability Act (HIPAA) in the US, FL offers an appealing alternative to
build collaborative models across different institutions or companies in sensitive
domains, such as healthcare or financial markets, by preserving the privacy of the
party data. On the other hand, with the increasing computational capabilities of edge
devices, including smartphones, sensors, and other IoT devices, FL also allows us
to decentralize the training of the ML models and push the computation to edge
devices. Thus, the data does not need to be collected and centralized, but edge
devices contribute toward the shared FL model performing local computations using
their own data.

Despite the benefits and the advantages of ML and FL technologies, there are
still challenges and risks that need to be analyzed, understood, and mitigated. ML
algorithms are known to be vulnerable to attackers. At training time, ML algorithms
can be subject to poisoning attacks, where attackers can influence the training of the
learning algorithm to manipulate and degrade its performance. This can be achieved,
for example, by manipulating the data that is used to train the ML model. Attackers
can also introduce backdoors during the training of the learning algorithm, so that
the performance of the model is not altered for regular inputs, but a specific and
unexpected behavior of the model is observed for inputs containing a trigger that
activates the backdoor [12]. During deployment, ML algorithms are particularly
vulnerable to adversarial examples, inputs specifically crafted by the attacker that
contain a very small perturbation with respect to the original sample, that are
designed to produce errors in the system [16].

These vulnerabilities of the learning algorithms are also present in FL. However,
the mechanisms that attackers can leverage to compromise the learning algorithms
are, in some cases, different to those where ML is applied to centralized data
sources, requiring special consideration. In this chapter, we provide a comprehen-
sive description of the different attacks that can be performed to compromise FL
algorithms, including an extended taxonomy to model the attack surface compared
to the taxonomies typically used for centralized learning algorithms. Using this
taxonomy, we categorize these different sets of attacks as well as defenses that can
be applied to mitigate them both at training and test time. This includes data and
model poisoning attacks aiming to compromise the performance or the convergence
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of the FL algorithms, backdoors, and evasion attacks as exemplified by adversarial
examples.

The rest of the chapter is organized as follows: In Sect. 16.2 we describe the
threat model and present a taxonomy of attacks that can be performed against FL
algorithms. Section 16.3, explains different defensive schemes capable of mitigating
these threats. Section 16.4 provides a comprehensive description of different attack
strategies that have been proposed to compromise FL algorithms, both at training
and test time. Finally, Sect. 16.5 concludes the chapter.

16.1.1 Notation

In the rest of the chapter, we take classification models as the guiding example, but
many principles transfer to other types of machine learning tasks. In a federated
learning process, C parties with their individual data source, {Di}Ci=1, composed
of (x, y) data–label pairs, seek to learn a common ML model fw. During each
training round, N parties participate by sending update vectors {vi}Ni=1 to the central
aggregator. They obtain this update vector by optimizing for a common objective
L with respect to their respective private data partition. The aggregator combines
these updates, often by averaging, and broadcasts the corresponding vector to all C

parties. For most of the discussions in the following section, we assume that all N

parties participate in each training round.

16.2 Threats in Federated Learning

In this section, we present a threat model to describe the different threats and
attacks possible against FL systems. This allows us to understand the vulnerabilities,
providing a systematic framework to analyze the security aspects of FL.

For this, we rely on the frameworks originally proposed in [2, 18] and extended
and revised in [25] for standard ML algorithms. Thus, we describe the threat model
characterizing attacks according to the attacker’s goal, capabilities to manipulate the
data and influence the learning system, knowledge of the target system and data, as
well as the attacker’s strategy. Although some of these aspects are similar to those
for standard learning algorithms, there are certain aspects of the threat model that
are unique to FL scenarios which we discuss in the following sections.

16.2.1 Types of Attackers

Before contextualizing the threat model in similar terms to those in non-distributed
ML algorithms, we need to define the specific types of attackers that are possible
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in FL scenarios. This differs from centralized ML algorithms, where the attacker
is typically considered external to the system and aims to compromise or degrade
the system’s performance, produce errors in the system, or leak information about
the target system or the data used to train the model. In other cases, the attackers
can also manipulate the software or code implementations used to train the machine
learning models. In addition to this, in FL, some of the parties (users) within the
system can also behave maliciously.

Thus, in FL systems, we can categorize attackers as:

• Outsiders: similar to the case of centralized learning algorithms, outsiders are
attackers that are not users (parties) of the platform. They can compromise the
FL system at training time by poisoning the training datasets of benign parties
to perform poisoning or backdoor attacks. At test time, they can exploit the
weaknesses and blind spots of the resulting models to produce errors, e.g., with
adversarial examples [16], or to extract some knowledge from the target model,
e.g., membership inference attacks [28]. This category can also include attackers
that are capable of intercepting and tampering with the communications between
the central node and some of the parties of the FL platform.

• Insiders: this includes cases where one or several users (parties) of the FL
platform are malicious. These attackers can also manipulate and degrade the
performance of the system to gain some advantage with respect to other parties
but have more freedom than outsiders to do so. For example, for poisoning the
federated learning model, insiders can directly manipulate the parameters of the
model sent to the aggregator. Insiders can also aim to leak information from the
datasets used by the other users, e.g., with property inference attacks [17, 23, 28].
In cases where there are several insiders in the FL platform, as shown in Fig. 16.1,
there are different possible scenarios depending on whether the attackers collude
toward the same malicious objective.

16.2.2 Attacker’s Capabilities

The capabilities of the attacker to compromise an FL system can be categorized
in terms of the attacker’s influence on the data, the model, and any additional
constraints which limit the attacker such as the presence of defensive algorithms.

16.2.2.1 Attack Influence

According to the capabilities of the attacker to influence or compromise the ML
model, attacks can be classified as:

• Causative: if the attacker can influence the learning algorithm by injecting or
manipulating data used to train the learning algorithms or providing malicious
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Fig. 16.1 Different scenarios of insider attackers in FL: (a) single attacker. (b) Several non-
colluding attackers, i.e., the attackers have different objectives. (c) Group of colluding attackers.
(d) Different groups of colluding attackers

information to manipulate the parameters of the system. These attacks are
commonly referred to as poisoning attacks. Byzantine attacks [8] which send
arbitrary updates to compromise model performance also qualify as causative
within this categorization.

• Exploratory: the attacker cannot influence the training process but can attempt
to exploit the weaknesses and blind spots of the system at test time or to extract
information from the target system. Scenarios where attackers aim to produce
errors in the target system are usually referred to as evasion attacks.

Poisoning attacks are an important threat in scenarios where the data collected
to train the learning algorithms is untrusted. This is common in applications that
collect data from humans who can act dishonestly or devices whose integrity can
be at risk. In FL systems, poisoning attacks can be performed by both insiders and
outsiders. In the case of outsiders, poisoning attacks can be achieved by injecting
malicious data in the training datasets used by the participants, by compromising
the integrity of software used by the participant or compromising communications
between the participants and the central node. In this latter case, the attackers can
perform stronger poisoning attacks via model poisoning [5].
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At run-time, in evasion attacks, even if the data used for training the FL model is
trusted and all the participants are honest, the attackers can probe the resulting model
to produce intentional errors, for example, by crafting adversarial examples. On the
other hand, there are other exploratory attacks that aim to compromise the privacy of
the model, extracting or leaking information about the model and its training data.
In this sense, similar to non-distributed ML settings, FL models can be vulnerable
to membership inference attacks, where the attacker tries to assert if a data point has
been used for training the learning algorithm, as described in Chap. . In this case,
the difference in FL is that the attacker may not know which participant provided
that data point. FL on the other hand leverages data from numerous participants,
and the model is often trained with more data points compared to the centralized
case, which increases the effort for the attacker to perform membership inference
attacks [28]. In some settings, insider attackers can also perform property inference
attacks, aiming to infer properties from the training data used by other participants
[17, 23]. This can be achieved by examining the model updates during training.
However, these attacks can only achieve a certain degree of success under very
particular conditions: a limited number of participants and highly differentiated
properties across the datasets of the participants.

16.2.2.2 Data Manipulation Constraints

The attacker’s capabilities may be limited by the presence of constraints for the
manipulation of the data or the parameters of the model in the case of model
poisoning attacks. The attacker can also self-impose some constraints to remain
undetected and perform stealthy attacks by, for example, crafting attack points that
do not differ too much from benign data points. The manipulation constraints are
also strongly related to the particular application domain. For example, in ML-based
malware detection, the attacker’s aim is to evade detection by manipulating the
malware code, but those manipulations need to preserve the malicious functionality
of the program [11, 32]. In contrast, in some computer vision applications, it is
reasonable to assume that the attackers can manipulate every pixel in an image or
every frame in a video.

In data poisoning attacks, the adversary can have different degrees of freedom
to manipulate the data. For certain cases, the attacker may be in control of part of
the labeling process (e.g., when using crowdsourcing). These are known as label
flipping attacks. In other scenarios, even if the attacker is not in control of the
labels assigned to the poisoning points, they can reliably estimate the label that
will be assigned to the injected malicious points. For example, in a spam detection
application, the attackers can assume that most of the malicious emails injected in
the system will be labeled as spam.

When assessing the robustness of ML and FL algorithms to attacks, it is
important to model realistic data constraints to better characterize worst-case
scenarios, for example, through optimal attack strategies, where the attacker aims to
maximize the damage on the target algorithm. However, it is important to consider
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appropriate detectability constraints; otherwise, the attacks can be trivial and can
be easily detected with orthogonal methods, such as data pre-filtering or outlier
detection [30, 31].

16.2.3 Attacker’s Goal

The goal of the adversary can be categorized based on the type of security violation
that the attacker seeks to achieve and the specificity of the attack, which can be
described in terms of the number of data points affected by the attack, or on the type
of errors to be produced in the system.

16.2.3.1 Security Violation

We can differentiate three different security violations against ML and FL sys-
tems:

• Integrity violation: when the attack evades detection without compromising the
system’s normal operation.

• Availability violation: when the attacker aims to compromise the functionality
of the system.

• Privacy violation: when the adversary obtains private information about the
target system, the data used for training, or the users of the system.

Integrity and availability violations depend upon the application to be deployed
and the attacker’s capabilities to influence the training of the learning algorithm. In
this sense, in FL, for insider threats, the attackers can not only poison the learning
algorithm but also prevent the algorithm to converge during its training. On the
privacy side, as mentioned previously, FL models can be vulnerable to membership
and property inference attacks.

16.2.3.2 Attack Specificity

This characteristic is defined by a continuum spectrum that describes the specificity
of the attacker’s intention ranging from targeted to indiscriminate attack scenar-
ios:

• Targeted Attacks: where the attacker aims to degrade the performance of the
system or to produce errors for a reduce set of target data points.

• Indiscriminate Attacks: where the attacker aims to degrade the system’s
performance or to produce errors in an indiscriminate fashion, i.e., affecting a
broad set of cases or data points.
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Different from the taxonomy originally proposed in [2, 18], in the research
literature on adversarial examples, i.e., evasion attacks for specific inputs, the term
targeted attack usually refers to the case where the attacker aims to evade the target
model producing a specific type of error, whereas untargeted attacks refer to those
attacks that just aim to produce errors regardless of the nature of the error. However,
the related work on poisoning attacks follows the original taxonomy [2, 18], so
that indiscriminate poisoning attacks are those that produce errors for a large set of
inputs, and targeted poisoning attacks are those that produce errors on a reduced
set of target inputs. However, the taxonomy in [2, 18] is limited to describe attacks
depending on the nature of the errors. This limitation was addressed by Muñoz-
González et al. [26], extending the taxonomy to categorize attacks according to the
type of errors that the attacker wants to produce.

16.2.3.3 Error Specificity

As described in [26], in some cases, such as multi-class classification, depending
on the nature of the errors that the attacker seeks to produce in the system, we can
categorize the attacks as:

• Error-generic: when the adversary wants to produce errors in the target system
regardless of the type of error to be produced.

• Error-specific: when the attacker aims to produce a specific type of errors
in the system. This can be application dependent. In fact, depending on their
capabilities, the attackers can be constrained on the type of errors that can be
produced in the system.

While the categorization of targeted and indiscriminate attacks is based on
specificity with respect to data samples, the error specificity characterizes the
orthogonal dimension of quality of error—like an error-specific attacker could
seek misclassification while an error-generic attacker might pursue more general
objectives for system compromise. For example, in the context of data poisoning, an
error-specific indiscriminate poisoning attack aims at maximizing the performance
of the model over a large set of test inputs producing specific type of errors (e.g.,
classifying all the samples from all classes as samples from class “0”), whereas in
the case of an error-generic indiscriminate attack, the adversary does not care about
the nature of the errors produced in the system and just aims at maximizing the
overall error of the model for a large set of inputs.

16.2.4 Attacker’s Knowledge

The attacker’s knowledge of the target FL system includes the following aspects:

• The datasets used by one or more participants
• The features used to train the learning algorithm and their range of valid values
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• The learning algorithm, the objective function to be optimized, and the aggrega-
tion method used by the central node

• The parameters of the FL algorithm and the resulting model

Depending on how much the attacker knows about the previous points, we can
differentiate two main scenarios: perfect and limited knowledge attacks.

16.2.4.1 Perfect Knowledge Attacks

These are scenarios where we assume that the attacker knows everything about the
target system. Although this assumption can be unrealistic in most cases, perfect
knowledge attacks are useful to assess the robustness and security of ML and
FL algorithms in worst-case scenarios, helping to provide lower bounds in the
performance of the algorithm for different attack’s strength. Furthermore, they can
be useful for model selection, by comparing the performance and robustness of
different algorithms and architectures tested against these type of attacks.

16.2.4.2 Limited Knowledge Attacks

There is a broad range of possibilities to model attacks with limited knowledge.
Typically, in the research literature, two main categories are considered:

• Limited knowledge attacks with surrogate data: this includes scenarios where
the attacker knows the model used for the learning algorithm, the feature
representation, the objective function, and the aggregation scheme used by the
aggregator. However, the attackers do not have access to the training data,
although they can have access to a surrogate dataset with similar characteristics
to the dataset used to train the target learning algorithm. Then, the attacker can
estimate the parameters of the targeted model by using this surrogate dataset,
which can enable successful attacks depending on the quality of the surrogate
dataset. In the case of FL, this is a reasonable assumption to model insider
attackers. Such an adversary has access to the model information and their own
dataset, but not to the datasets of the rest of the participants.

• Limited knowledge attacks with surrogate models: this category includes
scenarios where the attackers have access to the dataset and the feature rep-
resentation used by the target system, but they do not have access to the ML
model, the objective function to be optimized, or the aggregation method used
by the central node. In these cases, the attackers can train a surrogate model to
estimate the behavior of the system. By crafting attacks against this surrogate
model, the resulting malicious points are used to attack the real model. This
strategy can be effective to achieve successful attacks, especially if the surrogate
models are similar, as the vulnerabilities of different model architectures and
learning algorithms are similar in some cases. This is commonly referred to as
attack transferability and has been shown for both evasion [29] and poisoning
attacks [26].
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Although perfect knowledge attacks can be helpful to model worst-case scenarios
for testing the robustness of many FL systems, a balance between realistic and
worst-case scenarios should be considered in practical deployments. For example,
in most cases, both insider and outsider attackers will not have access to the
datasets from all the participants. Therefore, asserting robustness of FL algorithms
against weaker adversaries can be a useful and well motivated threat model to
investigate.

16.2.5 Attack Strategy

Attack strategies against both standard ML and FL systems can be formulated as
an optimization problem capturing different aspects from the threat model. The
attacker’s goal can be characterized by an objective function evaluated on a set
of predefined data points, which can be a specific set of target points or, for
indiscriminate attacks, a representative set of the underlying data distribution used
by the target system. This objective function typically helps the attacker to assess
the effectiveness of an attack strategy. The objective function can also include
specific constraints to prevent being detected by the defender. In Sect. 16.4, we will
show a comprehensive set of attack strategies that can be used to compromise FL
algorithms.

Finally, Table 16.1 summarizes the threat model presented in this section.

16.3 Defense Strategies

We now look at different defense strategies that have been devised to counter
the different types of attacks described in the previous section. Designing a
defense method incurs several challenges. To take one, it is essential that defense
mechanisms preserve the model performance in the absence of malicious parties.
The FL model assumptions may also affect the design strategy for defenses. The
aggregator, for instance, may not have the ability to inspect model updates [9].
In this section we distill some broad themes that have been used for designing
defenses for FL systems. First, we look at defenses developed for convergence
attacks. Broadly speaking, these methods inspect the set of updates across all parties
during each training round and use a filtering criterion with the aggregation. We then
describe an alternate line of defenses which incorporate the update history for this
process. A third category of defenses are based on redundancy between party data
partitions.

It is worth noting that a large class of defenses developed for centralized systems
naturally apply to federated settings. However, FL-specific scenarios do require
specialized approaches which we discuss in the following section.
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Table 16.1 Threat model in federated learning

Types of attack-
ers • Outsiders: attackers external to the platform

• Insiders: attackers that are participating in the FL task

Attacker’s
capabilities

Attack influence

• Causative attacks: the attacker can influence the learning algorithm
(e.g., poisoning or backdoor attacks)

• Exploratory attacks: the attacker can only manipulate data at test time
(e.g., adversarial examples)

Attacker’s goal Security violation

• Integrity attacks (e.g., backdoor attacks)
• Availability attacks (e.g., poisoning attacks)
• Privacy violation (e.g., property inference attacks)

Attack specificity

• Targeted attacks: focused on a specific set of cases or data points
• Indiscriminate Attacks: target a broader set of cases or data points

Error specificity:

• Error-generic attacks: the attacker just aims to produce errors in the
system, regardless of their nature

• Error-specific attacks: the attacker aims to produce specific types of
errors in the target system

Attacker’s
knowledge • Perfect knowledge: the attacker knows everything about the target

system
• Limited knowledge:

– Surrogate dataset: the attacker knows the target model but not the
training dataset (or has partial knowledge of it)

– Surrogate model: the attacker knows the training dataset but not the
model (e.g., transfer attacks)

Backdoor attacks often include a subtask for which the adversary seeks high
performance. The first lines of defenses against such attacks are implemented at
the aggregator and assume that the updates for backdoor tasks would be outside
the natural spread of benign updates. Two strategies that handle this perspective
include norm clipping and weak differential privacy. For norm clipping, the central
aggregator inspects the difference between the broadcasted global model and the
received updates from the selected parties and clips the updates that exceed a
pre-specified norm threshold [39]. On the other side, weak differential privacy
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approaches, as in [39, 43], add Gaussian noise with a small standard deviation to
the model updates prior to the aggregation. Weak backdoor attacks can be easily
countered with such defenses as the addition of Gaussian noise can neutralize the
backdoor update.

Defenses that function against evasion attacks can similarly be employed in a
federated setting. Adversarial training, [22] in which the defender trains against
adversarial examples, is one such popular defense, and however this is a challenging
training task and its difficulty increases in federated learning settings. For example,
Shah et al. [36] observed that the performance against adversarial examples was
strongly influenced by the amount of local computation conducted by the party, and
Zizzo et al. [50] noted that the proportion of adversarial examples to clean data
in a batch has a significant impact. The work in [41] also shows that robustness
against affine distribution shifts (which can occur between parties in federated
learning) can offer protection against adversarial examples. Effectively conducting
adversarial training in a federated context remains an open problem, not only due
to the underlying optimization difficulties but also attackers can interfere with the
training process and create brittle models with misleading performance metrics for
a defender [50].

16.3.1 Defending Against Convergence Attacks

For convergence attacks, we need to protect against adversaries who aim to
degrade model performance in an unrestricted manner. A common attacker model
to defend against in this scenario is a Byzantine attacker. This corresponds to
a strong adversary who can send arbitrary model updates. Typically, in these
attacks, the malicious model updates differ significantly from those sent by the
benign parties and aim to produce a completely useless machine learning model,
i.e., the performance of the resulting model is very poor. This can be achieved
by, for example, sending random model updates adding noise with a very large
variance to all the model’s parameters. Blanchard et al. [8] showed that a single
Byzantine adversary is enough to completely compromise a federated learn-
ing model when using standard aggregation methods, such as federated averag-
ing.

This can be easily shown: for a set of party updates {vk}Nk=1, if the attacker aims
for the global model to have a specific set of parameters w, and they control the
party k = N , then the update required can be exactly computed as

w = 1

N

N−1∑

k=1

vk + 1

N
vN (16.1)
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vN = Nw −
N−1∑

k=1

vk. (16.2)

Even without the knowledge of benign party updates, an attacker can trivially
compromise the system. An attacker controlled party can send arbitrarily large
updates which, when averaged with the benign parties, will break the model.

Thus, for practical FL deployments, it is essential to include mechanisms to filter
out malicious (or faulty) model updates that can compromise the overall system’s
performance. This vulnerability has fostered research on robust aggregation meth-
ods aiming to detect and mitigate different types of poisoning attacks, including
Byzantine adversaries.

16.3.1.1 Krum

Krum is one of the first algorithms proposed to defend against convergence attacks
in FL [8]. A naive defender could try and filter out attackers by computing a score
based on the squared distance between update i and all other received updates, to
then select the update with the lowest score. This mechanism will however only
tolerate a single Byzantine party. As soon as two Byzantine parties collude, then
one Byzantine party can propose an update which shifts the barycenter of the benign
party updates toward the other Byzantine update.

Krum solves this problem by being more selective in computing distance
measures. Given N party updates {vk}Nk=1, Krum selects the update u which has
the lowest squared Euclidean distance with respect to its N − F − 2 neighbors,
where F is the allowable number of malicious parties in the system. We can express
this as

s(i) =
∑

i→j

||vi − vj ||2, (16.3)

where we only sum over the N − F − 2 parties with the lowest squared distance.
Krum requires that the number of malicious workers satisfies 2F + 2 < N . We can
see an example of Krum acting on a 2D set of updates in Fig. 16.2 where we only
sum over the N − F − 2 parties with the lowest squared distance.

Although Krum can be effective to mitigate some attacks, especially Byzantine
adversaries, it has been shown that this defense is not effective to mitigate other type
of attacks, like label flipping attacks [27], or can be brittle against adaptive attacks
targeting Krum [39]. Apart from this, the use of Krum slows the convergence of the
FL algorithm, requiring more training rounds to achieve a good level of performance
[8]. On the other side, Krum requires to compute the Euclidean distance between the
model updates sent by all the parties participating at each training round, which can
be computationally very demanding for scenarios where the number of parties is
large.
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Fig. 16.2 Illustration of the Krum defense in a synthetic example with two parameters for the FL
model. If we score each update based on its square distance to all other updates, then, by selecting
the update which has the minimum score (white vector), we can successfully handle one Byzantine
party. However, two malicious parties can collude, and now one update shifts the barycenter of all
the supplied updates so that the original attacker update is selected. Note that this new Byzantine
update (red line in the middle plot) is extremely large as it needs to counter the effect of all the
benign parties. In fact, as we can see from the middle plot, it extends well beyond the w1 and w2
ranges we visualize. However, from the rightmost plot, if we apply Krum (which only considers
the closest N − F − 2 parties), then many benign parties never have their score influenced by the
malicious parties, and we can see that Krum reselects a benign party

The problems on the slow convergence of Krum can be partially mitigated with
Multi-Krum, a straightforward variant of the algorithm where, instead of selecting
a single update, we select the lowest scoring M updates so that the final update is
given by

1

M

∑

i

v∗
i , (16.4)

where v∗ is the set of the M lowest scoring party updates. This intuitively is
interpolating between Krum and federated averaging, with M acting as a tunable
parameter that a defender can set to prioritize convergence speed or robust-
ness.

16.3.1.2 Median-Based Defenses

Methods based on the median form a broad family of defenses. If the number
of malicious parties, F , is less than half of the total number of parties N ,
F ≤ �N

2 � − 1, then the median of a particular parameter must come from
a benign party. Therefore, with this group of defenses, we are computing the
median independently for every dimension of a parameter update. This is in
contrast to Krum, which by using the squared Euclidean distance between two
updates does not distinguish between the cases where updates differ significantly
on only a few components, compared to when updates differ slightly on many
components.



16 Security and Robustness in Federated Learning 377

In its simplest form, we independently compute the median along every dimen-
sion and apply it to the global model as an update. However, there are a group of
defenses that perform filtering around the median and then average the resulting
parties. These are broadly referred to as Trimmed Mean-based defenses [24, 45, 49].
Concretely, the median for j th dimension in the N party updates {vk}Nk=1 is
computed and a filtering operation is conducted. The remaining updates on each
dimension are then averaged resulting in the final update vector. This is expressed
as

w(j) = 1

|Uj |
∑

i∈Uj

v
(j)
i , (16.5)

where |Uj | is the cardinality of the selected updates on dimension j . It is in the
filtering step that the different Trimmed Mean algorithms differ. In particular,

• In [45], with F ≤ �N
2 � − 1, select the closest N − F values to the median to

average.
• In [24], with N − 2F ≥ 3, only pick the nearest N − 2F updates.
• Finally, for [49], with F ≤ �N

2 � − 1, remove the largest and smallest F updates
on each dimension.

16.3.1.3 Bulyan

The Bulyan [24] defense seeks to combine the strengths of the previously discussed
defenses. Krum has a shortcoming as it analyzes party updates based on the
Euclidean distances of the local models across parties. Thus, adversaries can
propose model updates which differ significantly on only a few parameters which
will have little effect on the overall distance with respect to model updates from
benign parties, but that can have a significant impact on the model performance.
Bulyan thus computes a two-step process, in which Krum first produces a set of
likely benign parties and then Trimmed Mean acts on this set derived from Krum.
To be more precise,

• On the set of received party updates V = {vi}Ni=1, apply Krum which will select
a single update.

• Add the update selected by Krum to a selection set S and remove the update from
V .

• Apply the above two steps N −2F times. Thus, we are shrinking V and growing
S by one update every iteration.

• Finally, apply Trimmed Mean on the resulting selection set S.

The Bulyan defense has robustness up to N ≥ 4F + 3.
A different route is to directly limit the influence of the absolute value of any

party’s updates on the overall aggregation. One method for achieving this is to con-
sider the sign of an update [4, 20]. In addition to limiting the influence of individual
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parties, it makes the communication between the parties and the aggregator much
more efficient as only one-bit update is needed for every dimension in the update
vector. Sign-based methods have been shown, under the assumption that updates
are unimodal and symmetric about the mean, to be able to converge. Sign methods
can also be viewed, as was done in [20], as a form of L1 regularization. However,
simple sign-based methods can be vulnerable to adaptive adversaries. Consider the
algorithm in [4] in the following attack:

Example: Consider a system of 9 parties. The benign updates are modelled
as coming from a Gaussian distribution N(0.2, 0.15). We model 5 benign
workers which generate updates vb = {0.037, 0.4, 0.24,−0.026, 0.11},
which when signed have vb = {1, 1, 1,−1, 1}. The attacker breaks the
unimodal requirement and submits updates from 4 malicious parties of vm =
{−1,−1,−1,−1} with a negative sign. Although the true update direction
should be positive, the sum over all signed updates is now −1.

16.3.1.4 Zeno

Should the aggregator have additional capabilities with access to the data itself,
then further analysis can be conducted by examining the effect of the update on
the model’s performance on the aggregator data. This was examined in [48] which
proposed the Zeno defense. Zeno produces a score s for every supplied gradient
update v which indicates its reliability. The key idea here is to use the validation
data to estimate the descent of the loss function value after a party update is applied.
The score, s, is defined as

s = L(w,X) − L(w − γ v,X) − ρ||v||2, (16.6)

where w is the current parameter vector, γ is the learning rate at the aggregator,
X represents samples of data drawn from the data distribution, and L is the loss
function of the underlying machine learning task. The updates with the highest
scoring s are averaged and used to update w. This can offer very strong defensive
performance, and however the existence of an aggregator side dataset introduces
additional requirements for the FL system.

16.3.2 Defenses Based on Parties’ Temporal Consistency

In the previous section, we discussed defense aggregation methods that analyze
a party’s updates in each training round independently of their behavior during
earlier rounds. This means a party’s update in one training round does not affect
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its participation in the overall aggregation at later stages. Parties under the influence
of attacks are likely to exhibit consistent malicious behavior across different training
rounds and defense schemes can benefit from this knowledge by monitoring a
party’s temporal behavior during the training process. This insight can be employed
for efficient and more accurate detection of malicious parties. Robust aggregation
schemes based on these observations have been proposed in [27, 41], which
either directly model the party’s behavior during the training process or use a
detection scheme to identify the parties sending malicious updates during the course
of training. Furthermore, once the malicious parties are identified, they can be
prevented from further participating in the training process which can result in
reduced communication cost at the aggregator side.

16.3.2.1 Adaptive Model Averaging (AFA)

Muñoz-González et al. [27] propose an algorithm that relies on two components: (1)
a robust aggregation rule to detect malicious model updates and (2) a probabilistic
model using a hidden Markov model (HMM) that learns the quality of the model
updates provided by each party during training and models their behavior.

The parameters of HMM are updated during each training round and implicitly
incorporate the quality of update history for each party. They further use the HMM
to detect a malicious party and then subsequently bar the malicious party from
further participating in the training process. The proposed robust scheme aggregates
the update at iteration t + 1 as

∑

k∈Kg
t

pkt nk

P
vk, (16.7)

where pkt is the probability of party k providing a useful model update at iteration
t and P = ∑

k∈Kg
t

pkt nk , where nk is the size of the dataset owned by party k. The

set Kg
t ⊂ Kt contains the parties that provide a good update according to the robust

aggregation algorithm proposed in this chapter. For this, at each training round,
AFA aims to detect malicious model updates iteratively using a distance-based
algorithm (using cosine similarity or Euclidean distance). This detection algorithm
is independent from the past contributions of the parties, to avoid situations where
attackers are silent for some training rounds. At the start of the training process,
updates from all parties are in the set of good updates. The aggregated model is
estimated from Eq. 16.7 for given probabilities of the parties and the number of
training data points provided. Then, the similarity of each party with respect to
the aggregated model is calculated, and finally the mean, μ̂, and the median, μ̄,
of all these similarity measures are calculated as shown in Fig. 16.3. Thereafter,
each party’s similarity score is compared to a threshold based on median score μ̄

and the standard deviation of the similarities. All model updates that are beyond
that threshold (below or above depending on the position of the mean with respect
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Fig. 16.3 (a) Considering that the benign parties are in majority during the training, they tend to
send “similar” updates. (b) AFA calculates the median and mean of estimated similarity values of
parties updates with the aggregated update. Parties whose similarity values are at a distance greater
than a threshold based on these mean and median values of similarity can be identified easily in
case of a single attacker. (c–d) AFA allows to detect different groups of attackers with different
objectives by iteratively removing bad model updates at each training round

to the median) are considered as malicious. Then, the global model is recomputed
and the procedure repeated until no model updates are considered as malicious.
This iterative process allows to identify different types of attacks that can occur
simultaneously, as described in Fig. 16.3. Finally, the probability pkt of each party
is updated using the HMM accordingly for each party, depending on whether the
model update at current training iteration was considered as malicious or not. If a
party consistently sends malicious model updates, AFA includes a mechanism to
block the user based on the beta posterior probability distribution used to model the
parties’ behavior.

Compared to Krum, AFA is more scalable, as it only needs to compute the
similarity for each party model update with respect to the aggregated model,
whereas Krum requires to compute the similarities among the model updates
from all the parties. On the other side, compared to Krum and median-based
aggregation rules, AFA enables the detection of the malicious parties and improves
the communication efficiency by blocking parties that consistently send malicious
model updates.

16.3.2.2 PCA

An alternative use of history was proposed in [41] to specifically combat against
label flipping attacks. Given an update, for each output class, change (or delta) in
the corresponding row in the final neural network layer is extracted and a history
over many communication rounds is stored for each output class. From this history,
the deltas are projected down to 2D via PCA, and the authors show that malicious
and benign parties form well separated clusters.
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16.3.2.3 FoolsGold

Along the same line, Fung et al. [15] devise a defense strategy based on comparison
of historical updates between multiple parties. The algorithm works under the
assumption that update from malicious parties tend to have similar and less diverse
updates than those of honest parties. Cosine similarity is used to compare the
histories of different participants and the party updates are rescaled to reflect the
confidence before the subsequent aggregation.

16.3.2.4 LEGATO

Varma et al. [42] propose a fusion algorithm that can mitigate the effect of malicious
gradients in various Byzantine attacks setting to train neural networks in FL. In
particular, it analyzes the change of the norm of the gradient per layer and employs
a dynamic gradient reweighing scheme based on layer-specific robustness computed
based on the gradient analysis. Details about LEGATO can be found in Chap. 17.

16.3.3 Redundancy-Based Defenses

Thus far, the defenses we have discussed rely on improving the aggregation
mechanism. However, an alternative line of proposed defensive methods function
based on redundancy [13, 34, 38]. These defenses function by replicating data
across several devices, so that each data partition is seen by at least R parties.
If R ≥ 2S + 1, where S is the number of malicious parties, then, by simple
majority vote, the true update can be recovered. An example of this is illustrated in
Fig. 16.4. The difficulty is that naively replicating data across R parties and having
each party send R gradient updates corresponding to each replicated portion of
data are computationally expensive. Thus, approaches have considered encoding
all the gradients computed at each party. Then, the encoded representation is sent,
and the individual gradients at the aggregator are then decoded [13]. Or, in [34], a
hierarchical scheme was considered when combined with robust aggregation. More
precisely, parties are assigned into groups and parties within the same group all
perform the same redundant computation. The results from different groups are then
hierarchically combined into a final model.

In general, redundancy-based defenses can be extremely strong and come with
rigorous guarantees of the robustness offered. However, they have several significant
drawbacks for application in federated (as opposed to distributed) learning. First,
there is an inescapable communication overhead as the data will need to be
replicated across devices. Second, there are privacy concerns with sharing data in
such a manner. Data could potentially be anonymized prior to transmission (either
by employing differential privacy or by other privacy mechanisms), and however,
the risk might still be higher than not sharing data altogether.
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Fig. 16.4 Example of a simple redundancy-based defense. The two benign parties 1 and 2 each
compute gradients g1−3 on data points x1−3. Party 3 supplies arbitrary updates z1−3. By a majority
vote, the correct gradients g1−3 are used

16.4 Attacks

With a broad understanding of different threat models and defense strategies, we are
now in a position for closer examination of specific attacks. The ability to supply
arbitrary updates during model training allows an attacker to pursue a wide range
of goals for data and model poisoning. Here, we categorize the types of attacks into
three broad categories. First, convergence attacks which seek to indiscriminately
degrade the global model performance on the underlying task. Second, in targeted
attacks an adversary aims to produce errors for specific target data points or to
introduce backdoors. For instance, a backdoor attacker can introduce a key (or
trigger) into the data which will cause a machine learning model to always output
an attacker chosen class when presented with the key, or alternatively backdoor task
might consist in targeted misclassification for a subset of samples. Compared to
targeted poisoning attacks, backdoors do not compromise the normal operation of
the system, i.e., the performance of the resulting model is not affected for regular
examples, and it only produces “unexpected” outputs for inputs that contain the key.
Finally, we briefly discuss other attack strategies from centralized settings which
naturally extend to federated setups.

Many of these attacks are specifically designed to counter certain defensive
strategies. For scenarios where a defender is not employing any defense, it can
be trivial to subvert a model undergoing federated learning [8]. An important
dimension to consider for attack strategies is the amount of system compromise
required in order to achieve the attack objective. Backdoor attacks, for instance,
often require significantly lower compromise, with successful attacks needing as
little as one malicious party. For cross-device setups, the frequency of attacks also
affects their success rates. An attacker might control a fixed level of compromise for
every selected quorum or might control a number of devices, a portion of which is
selected every round of federated learning.
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An alternative attack is for an adversary who crafts samples which expose the
vulnerabilities of a deployed model at run-time. Machine learning models are known
to be vulnerable to such adversarial examples. They represent indistinguishably
perturbed inputs from a human standpoint that are misclassified with high confi-
dence by a trained machine learning model [7, 16, 40]. Such attack vectors can
be computed for both white-box and black-box scenarios and are even known to
transfer across different models. Communication channels for model update sharing
and broadcasting in federated learning could potentially expose additional surfaces
for some of these white-box attacks, especially for insiders.

16.4.1 Convergence Attacks

For convergence attacks, an adversary seeks maximum damage to the model perfor-
mance within the limits imposed by defensive aggregation schemes. According to
the taxonomy in Sect. 16.2, these correspond to indiscriminate causative attacks,
where the attackers can manipulate the parameters of the aggregated model by
providing malicious local model updates, aiming to compromise the overall model’s
performance.

In this line, the simplest attacks that could be performed are Byzantine attacks,
as the one proposed in [8], where malicious parties send model updates with very
large values, which is enough to compromise vanilla aggregation methods, such as
federated averaging. Another effective way to accomplish a convergence attack is
to aim for the aggregation schemes to select an update with the sign that is opposite
to the true update direction. This line of research has been examined in [14, 47]. If
the secure aggregation scheme being targeted is using a median-based defense, the
developed attacks in [14, 47] are similar. The strategy exploits benign parties that
may supply updates with the opposite sign to the mean update of the benign parties.
The attacker can force their selection either by supplying updates that are larger than
any benign client, thereby trying to force the selection of a positive update, or by
supplying malicious updates that are less than any of the benign parties, thus trying
to select a negative direction.

Example: If the benign updates V = {−0.2, 0.2, 0.5}, then the true update
mean μ = 0.167. A simple median-based aggregation on this set would
yield 0.2. However, if the attacker supplies updates smaller than min(V),
the selection of a negative gradient can be obtained. The attacker submits
Vattacker = {−1,−1}; now with the combined update set being V =
{−1,−1,−0.2, 0.2, 0.5}, the median selects −0.2.
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For Krum, the two methodologies [14, 47] differ more substantially. Both
methods try to deviate the chosen update vector toward the opposite sign of the
true update mean μ. In [47], the formulation is similar to an attack on median-based
defenses with the malicious update being

vattacker = −εμ (16.8)

while in [14] the malicious update was formed via

vattacker = w − λs (16.9)

where w is the global model, s is the sign of the direction the parameters should
change by with only benign parties, and λ is our perturbation parameter.

In both cases, we would like to maximize the deviation ε or λ while still being
selected by Krum. With [47], the deviation was manually set to a reasonably small
number as to have a high selection chance. Conversely, in [14], the maximum value
of λ was determined by running a binary search.

Example: With the benign updates of V = {0.0, 0.1, 0.25, 0.35, 0.5, 0.65},
we want a negative update that is selected by Krum. If the attacker con-
trols 3 malicious parties, we search over −λ in a simple grid search
and see that λ = 0.21 is selected. Therefore, the attacker supplies
Vattacker = {−0.21,−0.21,−0.21}. The updates as seen by the aggregator
are {−0.21,−0.21,−0.21, 0.0, 0.1, 0.25, 0.35, 0.5, 0.65} with the minimum
Krum score belonging to a party that supplied −0.21.

Neither of those attacks considered Bulyan as a defensive method, which was
instead tackled in [3]. The key observation that the authors exploited in their attack
is that malicious updates can still cause significant harm by hiding in the natural
spread of benign updates. The benign updates are modelled following a normal
distribution with mean μ and variance σ . Then, the attacker submits updates of
the form μ + kσ . By setting k to the appropriate value, we can ensure that there
are benign party updates that lie further away from the mean then the malicious
updates. These parties support the selection of the malicious updates, which are
selected with a high degree of probability by a robust aggregation algorithm. We
can see an example for this attack in a 2D case in Fig. 16.5.

16.4.2 Targeted Model Poisoning

Having examined convergence-based attacks, we now turn our attention to model
poisoning attacks which aim to be more specific in their objective. In particular, this
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Fig. 16.5 Example illustration for the attack in [3] targeting Bulyan. Going from the plots left
to right: we initially start with the distribution of two model parameters, w1 and w2, submitted
by the benign parties (blue dots). The attackers submit model updates (orange dots) offset to
the true mean, but still within the update variance. Then, in the middle plot, we apply the initial
Krum filtering and we can see many malicious updates are still present. In the final plot, we apply
Trimmed Mean on w1 and a large amount of adversarial updates are included in the final averaging
for w1. An equivalent operation is also then done for w2

involves attacks-based training a model on data that has had its feature manipulated
through the insertion of backdoors or targeted label flipping attacks where particular
data points are mislabelled. By performing one of these attacks, an adversary can
force a model to learn attacker chosen correlations and therefore misclassify certain
points at test time. We should note that this type of misclassification differs from the
case of adversarial examples, as this results from explicit manipulations during the
training process.

Both backdoor or label flipping attacks involve training models on manipulated
data. One manner in which this can be achieved is if the adversary is able to
tamper with the data collection process of the benign parties in a federated learning
system. Thus, if manipulated data can be given to the benign parties, then the model
learned through the federated learning process can be vulnerable. However, the more
commonly modelled attack vector is that the adversary joins a federated learning
system controlling one or more parties. The adversary then sends corrupted updates
to the aggregator. This can be considered a stronger adversarial model compared
to just poisoning the data that benign parties have access to, as the adversary has
control over the update vector and its participation rate, and can even collude with
other malicious parties to improve the attack success rate [5].

Should the adversary pursue their attack via label flipping, then the features of
particular training data samples are left unchanged, but their associated labels are
altered. An example of this in practice is changing the labels of all the green cars
in a dataset to an attacker chosen class [1]. The model will then learn to associate
green cars with the attacker class, rather than their original label. Label flipping
attacks have been explored in a wide range of works [6, 15, 21, 30, 41, 44]. For
label flipping attacks, it has been shown that attacking the model in the later part
of training near convergence is more successfully compared to attacking the model
during initial stage of training [41].
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On the other hand, an adversary can mount backdoors by manipulating features,
like certain pixels in the case of images, and also changing the label of the data
point. Thus, a model will learn to associate the backdoor with a particular label and
ignore the rest of the features in a data point if a backdoor is present. Although this
is the most common attack method by which backdoors are inserted, clean label
backdoor attacks in which the label is not altered are also possible [35].

Other nuances that can affect a backdoor attack depend also on the total
proportion of samples in the training set that the attacker controls and wishes to
affect. To continue our running example with misclassification of green cars to an
attacker class, the attack will be easier if the attacker is able to control all the green
cars in the dataset, rather than just a portion of them [39].

When attempting backdoor attacks, the challenge for an adversary depends on
both:

1. The complexity of the target subtask, as an adversary might require varying
numbers of malicious parties and potentially high participation frequency if the
subtask has a high degree of complexity.

2. And the robust aggregation methods and anomaly detectors at the aggregator end,
which need to be accounted for wen fabricating the malicious updates so as to
circumvent such defenses.

In the simplest case where the aggregator uses federated averaging as the update
rule, if the attacker sends their updates after training their local model on the
backdoor task then as the number of parties that the attacker controls can be small
in comparison to the total number of parties participating in an FL round then the
backdoor updates can be cancelled out. To make these attacks effective, the work
of [1] builds a strategy based on the observation that near convergence the updates
sent by honest parties tend to be similar. An adversary can take advantage of this and
rescale their update to ensure that the backdoor survives the eventual aggregation,
thereby successfully replacing the global model with the malicious one. Specifically,
with a global model wt on round t , the attacker replaces it with their corrupted model
wcorrupt by submitting v computed via

vattacker ← γ
(
wcorrupt − wt

) + wt (16.10)

where γ is a scaling parameter. Independently, the work of [5] also arrives a similar
rescaling strategy (explicit boosting) that accounts for the scaling at aggregation.

Example: Near convergence, a global model with parameter value of {4.03},
might receive update from honest parties as 0.08, 0.083, 0.09. The malicious
model might seek to replace the parameter value with {3.98}. Assuming that
the aggregator will combine the updates with a learning rate of 0.015, the
adversary in this case supplies update as 1

0.015 (3.98 − 4.03) + 4.03 = 0.696
as opposed to −0.05.
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In order to supply updates that fall within the natural spread of updates received
from non-malicious parties, an adversary can include additional constraints. For
instance, Bhagoji et al. [5] proposes to include additional loss terms corresponding
to benign training samples and regularizes the current update to be as close to
the combined update from benign parties in the previous communication round.
Similarly, Wang et al. [43] considers adversaries that employ projected gradient
descent where the intermediate parameter states are periodically projected to an ε-
ball around the previously received global update. Alternatively, rather than having
the same backdoor key on all the data, in [46], the key is split between each
malicious party according to a decomposition rule. Thus, each malicious party only
inserts a part of the backdoor key into their data. The sum of all the key fragments
is equal to the full backdoor key. Testing on LOAN and three image datasets shows
that this approach yields better attack success rates as well as being more stealthy
against FoolsGold [15] and RFA [33].

16.5 Conclusion

In this chapter, we have discussed the security of FL systems. In a similar fashion to
standard, non-distributed ML systems, FL is vulnerable to attacks both at training
and test time. For example, FL algorithms can be completely compromised during
training just by the presence of one single malicious participant when using standard
aggregation methods. Thus, the analysis of robust methods for FL is critical for the
use of this technology in most practical settings.

In this chapter, we provide a comprehensive overview of different attack
strategies and approaches to defend and mitigate them. However, some of the
vulnerabilities of FL still need to be better understood and defending against some
type of attacks remains an open research challenge. In this sense, it is also necessary
to characterize and analyze further different trade-offs present in the design of
FL systems, for example, a trade-off among performance, robustness and data
heterogeneity or among performance, robustness, and privacy, just to cite some.
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