
Chapter 14
Private Parameter Aggregation for
Federated Learning

K. R. Jayaram and Ashish Verma

Abstract Federated learning enables multiple distributed participants (potentially
on different datacenters or clouds) to collaborate and train machine/deep learning
models by sharing parameters or gradients. However, sharing gradients, instead of
centralizing data, may not be as private as one would expect. Reverse engineering
attacks on plain text gradients have been demonstrated to be practically feasible.
This problem has been made more insidious by the fact that participants or
aggregators may reverse engineer model parameters while participating honestly
in the protocol (the so-called honest, but curious trust model). Existing solutions
for differentially private federated learning, while promising, lead to less accurate
models and require nontrivial hyperparameter tuning. In this chapter, we (1)
describe various trust models in federated learning and their challenges, (2) explore
the use of secure multi-party computation techniques in federated learning, (3)
explore how additive homomorphic encryption can be used efficiently for federated
learning, (4) compare these techniques with others like the addition of differentially
private noise and the use of specialized hardware, and (5) illustrate these techniques
through real-world examples.

14.1 Introduction

Some of the early success of distributed machine and deep learning (ML/DL) in
several application domains [29, 31] has been in the context of massive centralized
data collection, either at a single datacenter or at a cloud service. However,
centralized data collection at a (third-party) cloud service can be incredibly privacy-
invasive and can expose organizations (customers of the cloud service) to large
legal liability when there is a data breach. This is especially true in the case
of healthcare data, voice transcripts, home cameras, financial transactions, etc.

K. R. Jayaram (�) · A. Verma
IBM Research, Yorktown Heights, NY, USA
e-mail: jayaramkr@us.ibm.com; Ashish.Verma1@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_14

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_14&domain=pdf
mailto:jayaramkr@us.ibm.com
mailto:Ashish.Verma1@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_14

314 K. R. Jayaram and A. Verma

Centralized data collection often results in “loss of control” over data once it is
uploaded. A frequently asked question to which users often do not get a satisfactory
answer is “Is the cloud service using my data as promised? Is it actually deleting
my data when it claims to do so?”. Organizations that have not been convinced by
privacy violations and loss of control have been forced by governmental regulations
(like HIPAA and GDPR [34]) to restrict data sharing with third-party services.

Federated learning (FL) aims to mitigate these aforementioned issues while
maintaining accuracy of ML/DL models. An entity in an FL job can be as small
as a smart phone/watch or as large as an organization with multiple data centers.
An FL algorithm aims to train an ML/DL model, e.g., a specific neural network
model or an XGBoost model, on multiple entities, each with its own “local” dataset,
without exchanging any data. This results in multiple “local models,” which are
then combined (aggregated) by exchanging only parameters (e.g., the weights of a
neural network model). An FL algorithm may use a central coordinator to collect
parameters of all local models for aggregation, or it may be a peer-to-peer algorithm
(broadcast, overlay multicast, etc.)

Initially, it was believed that the exchanged model updates in Federated Learn-
ing (FL) communications would contain far less, if any, information about the
raw training data. Thus, sharing model updates was considered to be “privacy-
preserving.” However, even if not discernible immediately, training data information
is still embedded in the model updates. Recent research [14, 15, 17, 33, 42, 48,
50, 51] has demonstrated the feasibility and ease of inferring private attributes
and reconstructing large fractions of training data by exploiting model updates,
thereby challenging the privacy promises of FL in the presence of honest-but-
curious aggregation servers.

14.2 Focus, Trust Model, and Assumptions

FL is typically deployed in two scenarios: cross-device and cross-silo [23]. The
cross-device scenario involves a large number of parties (>1000), but each party has
a small number of data items, constrained compute capability, and limited energy
reserve (e.g., mobile phones or IoT devices). They are highly unreliable and are
expected to drop and join frequently. Examples include a large organization learning
from data stored on employees’ devices and a device manufacturer training a model
from private data located on millions of its devices (e.g., Google Gboard [4]).
A trusted authority, which performs aggregation and orchestrates training, is
typically present in a cross-device scenario. Contrarily, in the cross-silo scenario, the
number of parties is small, but each party has extensive compute capabilities (with
stable access to electric power or equipped with hardware machine learning (ML)
accelerators) and large amounts of data. The parties have reliable participation
throughout the entire FL training lifecycle but are more susceptible to sensitive
data leakage. Examples include multiple hospitals collaborating to train a tumor
detection model on radiographs, multiple banks collaborating to train a credit card

14 Private Parameter Aggregation for Federated Learning 315

fraud detection model, etc. In cross-silo scenarios, there exists no presumed central
trusted authority. All parties involved in the training are equal collaborators. The
deployments often involve hosting aggregation in public clouds, or alternatively one
of the parties acting as, and providing infrastructure for aggregation. In this chapter,
we focus on private parameter aggregation in cross-silo scenarios.

We assume that each participant is convinced of the benefits (improvements
in accuracy, robustness, etc.) of federated learning. We note that convincing
participants to collaborate by projecting potential gains in accuracy due to federated
learning is an open research problem. We focus on the so-called honest, but curious
trust model. Here, each participant is convinced enough that it follows the steps
of the federation protocol and does not collude with the coordinator to break
the protocol. But the participant may be curious about the data of others, and
it may be in their interest to reverse engineer the model parameters to try and
discover other participants’ data. We also assume that the coordinator is honest
but curious with respect to individual participants’ data. The participants want to
reduce the required amount of trust in the coordinator as much as possible. We
also assume that each participant does not attempt to poison or skew the global
model by maliciously generating weights. This trust model also includes the simpler
case where participants are forbidden from sharing data or the model parameters
derived from the data due to regulatory reasons (e.g., FedRAMP, EU data protection
guidelines [34]).

Examples and Use Cases This trust model is predominantly found in enterprise
federated learning; for example, a multinational bank having branches in multiple
countries and so regulated locally (BankA, BankA US, BankA UK, BankA India,
etc.), where the bank wants to learn a fraud detection model across data of all
its subsidiaries, but the data cannot be transferred to a central location due to
governmental data sovereignty and jurisdiction laws [34]. Each participant here is
a subsidiary with its national data center(s) and the coordinator might be located
in a cloud platform or a global datacenter. Another example is a set of hospitals
that want to collaborate to train a tumor detection model; each hospital is unable
to trust the others and unwilling to trust and transfer data to a central service.
Another example is a cloud-hosted machine learning service (e.g., Azure ML) that
has multiple (competing) corporate clients which do not trust each other but have
some level of trust in the cloud service to facilitate and secure federated learning.

14.3 Differentially Private Federated Learning

Differential privacy [12, 30] is a framework which deals with publishing the results
of computations or queries made on a dataset in such a way that limits the
disclosure of private information. In simple words, a computation on a dataset is
called differentially private if an observer seeing its output cannot tell if a specific
individual’s information was used in the computation. ε-differential privacy, the

316 K. R. Jayaram and A. Verma

typically used notion of differential privacy, is a mathematical definition for the
privacy loss associated with any release of derivative information from a dataset.

Differential privacy has been recently used by a number of researchers during
model training in a federated setting [1, 2, 32, 43]. A typical way to incorporate
differential privacy into a federated learning setup is to add random noise in each
of the model/data derivatives shared externally by a participant during the training
process. The amount of random noise to be added depends on the level of privacy
required by the participant. This noise addition adversely impacts the accuracy of
the trained model. While there have been some studies that demonstrate that impact
on accuracy can be minimized by adding a small amount of noise and carefully
choosing the hyperparameters of the training [1, 43], there is no systematic study
on how exactly the noise level impacts model convergence. This may require a
long empirical process to determine achievable level of privacy without sacrificing
too much accuracy. In this section, we describe this problem in more detail, with
empirical evidence.

14.3.1 Background: Differential Privacy (DP)

Differential privacy literature has gained significant attention in the computer
science field in the recent past. Here we briefly cover the differential privacy (DP)
framework in the interest of keeping this chapter self-contained. For a detailed
description of the differential privacy, we refer the reader to [12]. Differential
privacy literature states that a (randomized) function f (·) is ε-differentially private
if for all datasets X,X′ that differ by only a single data item and all values of t

∣
∣
∣
∣
ln

P(f (X) = t)

P (f (X′) = t

∣
∣
∣
∣
≤ ε (14.1)

The parameter ε quantifies the privacy risk; lower ε means higher privacy. We
work with a practical variant of the original differential privacy definition described
in [12], called (ε, δ) differential privacy defined for the function f (·):

P(f (X) = t) ≤ eεP (f (X′) = t) + δ (14.2)

This definition is interpreted as saying that f (·) is ε-differentially private with
probability 1−δ. In order to achieve differential privacy, a noise term is added to the
output of f (·) whose variance is dependent on the parameters ε and δ. Furthermore,
it has been demonstrated that using an additive Gaussian noise term with 0 mean
and variance

σ 2 = �f · 2 ln
1.25
δ

ε
(14.3)

14 Private Parameter Aggregation for Federated Learning 317

ensures (ε, δ)-differential privacy [12], where �f is the sensitivity of f (·). Sensi-
tivity is a measure of how much the computation can change when a single element
of the underlying dataset changes. More formally, the sensitivity �f is given by

�f = sup
(X,X′)

(‖f (X) − f (X′)‖l) (14.4)

The above definitions deal with differential privacy of a single query, and
however training a neural network requires many iterations, that is, many queries
of the data. This means we cannot restrict ourselves to merely choosing a single
value of ε but must consider the total privacy loss over the course of training.
According to the composition theorem 3.16 in [12], using multiple (ε, δ)-DP will
still be differentially private, but with a total privacy loss, referred to as the privacy
budget (β), equal to the sum over all used ε. This means if we train for T iterations,
using a constant value ε0 at each iteration will take a total privacy budget of
β = ∑T

i=1 ε0 = T ε0.
Of course, one’s privacy budget does not have to be spent in this naive manner.

Several authors have considered different strategies for spending privacy budgets
with various improvements in mind. Shokri and Shmatikov [41] propose a way to
limit the total number of queries, thus reducing overall privacy loss, and the work
[35] uses a generalization of differential privacy to achieve tighter bounds on privacy
loss per query.

14.3.2 Incorporating DP into SGD

Stochastic gradient descent (SGD) is one of the most popular optimization tech-
niques used to train deep learning and various other machine learning models [5].
In distributed SGD, a mini-batch of samples is distributed over multiple learners
who compute gradients of the model on their local share of the mini-batch and
then share the gradients with a centralized parameter server. The parameter server
computes the average gradient across the learners, updates the model parameters,
and distributes the updated model parameters back to the learners.

In a typical federated learning setting, gradients of the model parameters are
computed by the participants on their private dataset and shared with the centralized
aggregator. Furthermore, concepts from differential privacy literature are utilized to
modify SGD algorithm in order to prevent any leakage of information about the data
through the shared gradients. This modification results in the so-called differentially
private SGD [1], which is described below.

Let us now discuss how to use (ε, δ)-differential privacy in the context of
federated learning using SGD. Here, f (·) corresponds to computing the gradient
of the model parameters on the local dataset.

318 K. R. Jayaram and A. Verma

The update rule for mini-batch SGD with batch size S and learning rate η is

θk+1 = θk − η
1

S

S
∑

i=1

g(xi) (14.5)

where g(xi) is the gradient of the loss function evaluated on data point xi ∈ X. The
quantity that is shared during gradient exchange is f (x) = η 1

S

∑S
i=1 g(xi). Note,

for the above formulation, the sensitivity would depend upon the gradient of only
one data point which is different in the two datasets X and X′, i.e.,

�f = ‖f (X) − f (X′)‖l

= η

S

∥
∥
∥
∥
∥

S
∑

i=1

(g(xi) − g(x′
i))

∥
∥
∥
∥
∥

l

= η

S
‖g(xj) − g(x′

j)‖l

≤ η

S
· 2C

where the constant C is an upper bound on the gradient. Hence, following the result
from [12] above, the variance of the Gaussian noise term to be added to the gradients

to make them (ε, δ)-differentially private is 2C η
S

ln 1.25
δ

ε
. We describe the high-level

algorithm for differentially private SGD [1] below.

Algorithm 14.1 (ε, δ)-differentially private SGD
Inputs: learning rate: η, batch size: S, clipping length: C, privacy budget: Tε0, initial
weights: θ0
for t = 0, 1, 2, 3, . . . , T do
Sample S data points uniformly at random

compute f (X) = ∑S
i=1 g(xi)

clip gradient: f (X) ← f (X)/max(1, ‖f (X)‖
C

)

sample Zk from the distribution N(0, 2C η
S

ln 1.25
δ

ε
)

θt+1 ← θt − ηf (X) + Zk

end for

14 Private Parameter Aggregation for Federated Learning 319

14.3.3 Experiments and Discussion

Let us now discuss some experiments to understand the challenges in applying
DP to federated learning in detail. Consider training two models on two different
datasets—Resnet-18 model [19] on the CIFAR-10 [27] dataset and the Resnet-
50 [19] model on the SVHN [37] dataset. All models are trained for 200 epochs
using plain and DP versions of SGD. The learning rate schedule was to use 0.1 for
the first 80 epochs, 0.01 for the next 40, and 0.001 for the remaining 80 epochs.

14.3.3.1 Accuracy vs ε

Figures 14.1 and 14.2 illustrate the convergence plots of different training runs for
various values of batch size and ε. The very first observation is that the models
converge to a lower accuracy as we decrease the value of ε. From Fig. 14.1, for a
given batch size, say 1024, we observe that training schemes with lower noise added
(corresponding to higher values of ε like 10, 1, and 0.1) have accuracy closer to the
accuracy of non-private training. Once enough noise is added (corresponding to ε of
0.05 and lower), accuracy drops and does so precipitously for 0.01 and lower values

Fig. 14.1 Validation accuracy of Resnet18 on CIFAR10 per epoch for different batch sizes (64,
1K, 4K, and 8K) and ε (from 10 down to 0.001). Lower ε implies more noise added and hence
more privacy

320 K. R. Jayaram and A. Verma

Fig. 14.2 Validation accuracy of Resnet18 on CIFAR10 per epoch for different batch sizes (64,
1K, 4K, and 8K) and ε (from 10 down to 0.001). Lower ε implies more noise added and hence
more privacy

of ε. We see this phenomenon throughout Figs. 14.1 and 14.2 for all the models for
a given batch size.

14.3.3.2 Accuracy vs Batch Size (Fixed ε)

An important observation from Figs. 14.1 and 14.2 is that even though the model
accuracy levels for the non-private versions are pretty much unchanged for various
values of batch sizes, the private version of training is highly sensitive to the batch
size S. We have been able to achieve similar accuracy levels for private version of
the models as those of the non-private versions even at very low values of ε by
simply increasing the batch size. This can be prominently observed in the case of
CIFAR10+Resnet18 in Fig. 14.1 for ε = 0.005 and 0.01 (green and orange plots in
Fig. 14.1, viewed left to right) but is true for all values of ε.

Quantitatively, for greater privacy corresponding to ε = 0.01 and 0.005, final
accuracy increases by approx. 37% and 78.5% by increasing batch size from 1024
to 8192, respectively, for CIFAR10+Resnet18. Similar trends can be observed from
Fig. 14.2. Overall, while differential privacy is a promising approach, it does seem

14 Private Parameter Aggregation for Federated Learning 321

to require careful hyperparameter tuning to minimize impact on accuracy. This may
involve spawning multiple FL jobs corresponding to different hyperparameters.

14.4 Additive Homomorphic Encryption

Research on secure and private federated learning and gradient descent is predom-
inantly based either on (1) clever use of cryptography—homomorphic encryption
and secure multi-party computation [3, 8, 10, 13, 16, 25, 26, 38] or on (2) modifying
model parameters or gradients through the addition of statistical noise to get
differential privacy [1, 2, 43]. Some techniques [45, 47] combine both.

Homomorphic encryption allows computation on ciphertexts, generating an
encrypted result which, when decrypted, matches the result of the operations as
if they had been performed on the plaintext [18]. Fully homomorphic encryption is
expensive, in terms of both encryption/decryption time and the size of the ciphertext.
However, averaging gradient vectors in federated gradient descent requires only
addition (division by the total number of participants can be done before or
after encrypted aggregation). Hence, we can easily employ additive homomorphic
encryption like the Paillier cryptosystem [22] to ensure privacy of gradients during
federated training. The Paillier cryptosystem is an asymmetric algorithm for public
key cryptography. Given only the public key and the encryption of m1 and m2, one
can compute the encryption of m1 + m2. The definition of homomorphic encryption
beautifully illustrates the challenge in applying it to private gradient aggregation. All
participants have to encrypt their gradients/parameters with the same public key.
This needs a trusted key generator/distributor. But, if all the participants send their
Paillier encrypted gradients to this key generator/distributor, it can decrypt them and
potentially reverse engineer the data. So, ideally, aggregation has to happen outside
the key generator/distributor. Furthermore, the key generator/distributor has to be
completely trusted to not leak the private key to any participant. Several designs
are possible to satisfy these constraints. In this section, we describe one system—
Mystiko [20] as an illustration—and compare it with differential privacy and secure
multi-party computation (SMC).

We emphasize that Mystiko is one of many systems that use Paillier cryptography
to secure aggregation. In [3, 38], the participants jointly generate a Paillier key
pair and send the encrypted gradient vectors to the coordinator who is completely
untrusted, except to add Paillier encrypted weights. The participants can then
decrypt the aggregated gradient vectors. This, however, requires each participant
to collaborate with the others to generate the Paillier keys and a high level of trust
that participants do not collude with the untrusted coordinator to decrypt individual
gradient vectors. One untrusted participant can leak the Paillier keys and potentially
lead to privacy loss.

Secure multi-party computation (SMC) is a subfield of cryptography with the
goal of creating methods for parties to jointly compute a function over their inputs
while keeping those inputs private. Unlike traditional cryptographic tasks, where

322 K. R. Jayaram and A. Verma

cryptography assures security and integrity of communication or storage and the
adversary is outside the system of participants (an eavesdropper on the sender and
receiver), the cryptography in this model protects participants’ privacy from each
other. SPDZ [10], and its variants (Overdrive [16, 25, 26]), optimizes classic SMC
protocols. The advantage of such protocols is that they work with any number of
honest+curious peers, do not change final accuracy of the trained model, and require
a large number of colluding peers to break. The drawback, however, is efficiency—
SMC protocols are computationally expensive (Sect. 14.6).

14.4.1 Participants, Learners, and Administrative Domains

Logically speaking, it is helpful to define federated learning algorithms in terms
of administrative domains. An administrative domain is a set of computing entities
(servers, VMs, desktops, laptops, etc.). Each entity inside an administrative domain
trusts the other, malice is not a concern, and there are no legal/regulatory hurdles
to sharing data and information derived from data. Note that an administrative
domain does not necessarily mean a company or a non-corporate organization. It
may be a project within a company handling confidential data; it may be not be
located within a corporate datacenter, and instead be associated with an account
on the public cloud. An organization can have multiple administrative domains.
Each participant in a federated learning algorithm corresponds to an administrative
domain. Computationally, the actual learning process (typically running on a GPU)
performing the neural network training is called a Learner. Each learner works on
(a batch of) data within the participant to compute the gradient vector.

14.4.2 Architecture

The main characteristics of any privacy preserving federated learning scheme
revolve around (a) what methodology is used to encrypt the data (or noise addition)
of the participants and (b) the communication protocol being used among the
participants and the coordinator (if any) for aggregation of the model parameters
or gradients. In MYSTIKO all participants encrypt individual data using a single
Paillier public encryption key, adding encrypted gradient vectors and decrypting
only the sum. Thus, only the participants are able to view their individual data,
ensuring privacy. The question now is (1) how to distribute a common Paillier public
key to all participants while keeping the corresponding private key secret? and (2)
how to prevent anyone from decrypting individual weights? These are explained in
the following sections.

For simplicity, we assume that there is exactly one learner per participant.
We will relax this assumption in Sect. 14.4.4. MYSTIKO is typically deployed
as a cloud service that mediates several participants. It involves a Job Manager,

14 Private Parameter Aggregation for Federated Learning 323

Membership Manager, a Key Generator, and a Decryptor. The Membership Man-
ager is responsible for establishing the relationship between each participant and
MYSTIKO and also keeping track of participants that belong to each federated
learning job. The Job Manager manages an FL job through its lifecycle—it
keeps track of participants, helps participants agree on hyperparameters, detects
failures, and updates to memberships. While the focus of this chapter is attacks on
the privacy of data from within a federation, traditional communication security
is nevertheless essential to prevent outside attacks on the federation. For this,
MYSTIKO and the participants (learners) agree to use a common public key
infrastructure (PKI) [44]. The PKI helps ensure confidentiality of communications
between the MYSTIKO components and the learners and also helps bootstrap the
Paillier infrastructure. The PKI provides certification authorities (CAs), along with
corresponding intermediate and Root CAs, creating a web of trust between the
learners and MYSTIKO. MYSTIKO creates a bidirectional TLS channel [39] using
the PKI for the security of control messages. The TLS channel is created using
strong but ordinary (non-homomorphic) cryptographic algorithms (e.g., RSA for
key exchange/agreement and authentication, AES for message confidentiality, and
SHA for message authentication [39, 44]). The TLS channel is not used for gradient
aggregation, but rather for all other communications, like registration of learners
with the MYSTIKO topology formation, rank assignment, transmitting the Paillier
public key to each learner, and transmitting the decrypted aggregated gradient vector
to each learner.

14.4.3 MYSTIKO Algorithms

In this section, we describe MYSTIKO algorithms, starting with the simple ring-
based algorithm, before adding parallelism and resiliency through broadcast and
All-Reduce based communication.

14.4.3.1 Basic Ring-Based Algorithm

The basic ring-based aggregation algorithm is illustrated in Figs. 14.3 and 14.4. This
algorithm operates across P participants, each in its own administrative domain and
represented by a learner (L). The algorithm starts with each participant registering
with MYSTIKO. MYSTIKO acts as the coordinator. The learners need not fully trust
MYSTIKO; they only need to trust it to generate good encryption key pairs, keep the
private key secret and follow the protocol.

MYSTIKO’s Membership Manager starts the federated learning protocol once all
expected learners are registered. The first step is to arrange the learners along a
ring topology (Fig. 14.3). This can be done in several straightforward ways: (1) by
location—minimizing geographic distance between participants, (2) by following a
hierarchy based on the name of the participants (ascending or descending order), or

324 K. R. Jayaram and A. Verma

MYSTIKO

Key Generator

MYSTIKO

Key Generator

LEARNER-1

LEARNER-2

LEARNER-3

LEARNER-4

Signed Paillier Public Key
(Additive Homomorphic)

Ring Topology
Establishment

With Rank

Ring Topology
Establishment

With Rank

Ring Topology
Establishment

With Rank

Ring Topology
Establishment

With Rank

Fig. 14.3 Topology establishment and key distribution

LEARNER-1

LEARNER-2
Encrypt local weights,
Add local and remote
encrypted weights

Aggregated Gradients
(delivered over TLS)

Decrypter
@ MYSTIKO

Pallier
Encrypted
 Gradients

(added)
Pallier
Encrypted
Gradients

LEARNER-3
Encrypt local weights
Add local and remote
encrypted weights

(added)
Pallier
Encrypted
Gradients

LEARNER-4
Encrypt local weights
Add local and remote
encrypted weights

Aggregated Gradients
(delivered over TLS)

Fig. 14.4 Basic aggregation protocol over a ring topology

(3) by using consistent hashing [24] on the name/identity of the participants. Once
the learners have been arranged in a ring, each learner gets a rank (from 1 to P)
based on its position in the ring.

MYSTIKO’s Paillier Key Generator, which generates a Paillier public and private
key pair for each federated learning job. Typically, a unique Paillier key pair is
generated for each federated learning job and the Paillier public key securely
distributed (over TLS) to all the learners. For long jobs, a separate key pair may
be generated either once every epoch or once every h minutes (this is config-
urable). MYSTIKO’s Decryptor is responsible for decrypting the Paillier encrypted

14 Private Parameter Aggregation for Federated Learning 325

aggregated gradient vector for distribution to the learners. Each learner receives a
Paillier encrypted gradient vector from the previous learners on the ring, encrypts
its own gradient vector with the Paillier public key, and adds (aggregates) the two
Paillier encrypted vectors. This aggregated, Paillier encrypted gradient vector is then
transmitted to the next learner on the ring. The last learner on the ring transmits the
fully aggregated, encrypted gradient vector toMYSTIKO for decryption. MYSTIKO’s
Decryptor decrypts the aggregated vector and transmits the same securely over TLS
to each of the learners.

Security Analysis Data never leaves a learner and by extension any administrative
domain. This ensures privacy of data, provided each server inside the administrative
domain has adequate defenses against intrusion. Unencrypted gradient vectors
do not leave the learner. If there are P participants, in P − 1 cases, only
aggregated Paillier encrypted gradient vectors leave the learner. Only MYSTIKO

has the private key to decrypt these. For the first learner in the ring, the non-
aggregated gradient vector is transmitted to the second learner, but it is Paillier
encrypted and cannot be decrypted by the same. In fact, none of the participants
are able to view even partially aggregated gradient vectors. After decryption, the
aggregated gradient vector is distributed securely to the participants over TLS.
Reverse engineering attacks, like the ones in [15] and [14], are intended to find
the existence of a specific data record in a participant or to find data items that
lead to specific changes in gradient vectors; both of which are extremely difficult
when several gradient vectors computed from large datasets are averaged [21].
Decryption after averaging ensures the privacy of gradients. MYSTIKO only sees
aggregated gradients and cannot get access to individual learner’s data or gradi-
ents.

Colluding Participants The basic ring-based algorithm is resistant to collusion
among P − 2 participants. That is, assuming an honest uncorrupted MYSTIKO

deployment, it can be broken only if P − 1 learners collude. For learner Li’s
gradients to be exposed, learners L1, L2, . . . , Li−1 and Li+1, . . . , LP should
collude, i.e., all of them should simply pass on incoming encrypted gradient vector
to the next learner, without adding any gradient of their own.

Fault Tolerance The disadvantage of a ring-based aggregation algorithm is that
rings can break; for good performance, it is essential that the connectivity between
each learner and MYSTIKO remains strong. Traditional failure detection techniques,
based on heartbeats and estimation of typical round-trip times, may be used.
Distributed synchronous gradient descent consists of a number of iterations, with
gradients being averaged at the end of each iteration. If the failure of a learner is
detected, the averaging of gradient vectors is paused until the learner is eliminated
from the ring by the MYSTIKO’s Membership Manager, or connection to the learner
is established again. Pausing gradient averaging can also be done when connection
to the MYSTIKO is temporarily lost.

326 K. R. Jayaram and A. Verma

14.4.3.2 Broadcast Algorithm

One of the main drawbacks of the ring-based algorithm is the establishment and
maintenance of the ring topology. To mitigate this, an alternative is to use group
membership and broadcast. Except for the establishment of the topology, the setting
remains the same. Learners register with the MYSTIKO’s Membership Manager,
agree on a common PKI, and know the identity and number of participants.
MYSTIKO generates a Paillier public–private key pair for each federated job and
distributes the public key securely to each learner.

Each learner Paillier encrypts its gradient vector and broadcasts the encrypted
vector to all other learners. Each learner, upon receipt of encrypted vectors from
P − 1 learners, adds them and sends the Paillier encrypted sum to the MYSTIKO for
decryption. After decryption, the aggregated gradient vector is transmitted securely
to all learners over TLS. The broadcast algorithm is redundant and wasteful, as
every learner computes the aggregate. But, with redundancy comes increased failure
resiliency. With the ring, the failure of one participant can lead to partial loss of
aggregated gradients, which is not the case for broadcast.

Colluding Participants The objective of breaking this algorithm is to determine
the plaintext gradient vector of a specific LA. This algorithm is resistant to collusion
and can be broken only if P −1 participants collude, which is highly unlikely. Also,
in the event that P −1 participants collude to Paillier encrypt zero vectors instead of
their actual gradient vectors, the broadcasted Paillier ciphertexts from all the P − 1
learners will be the same, which serves as a red flag enabling collusion detection. In
fact, given that data is likely to be different at each participant, getting exactly the
same Paillier encrypted gradient vector from even two learners is red flag.

14.4.3.3 All-Reduce

Ring-based All-Reduce [28] is essentially a parallel version of the ring-based
aggregation protocol described in Sect. 14.4.3.1. It is illustrated in Fig. 14.5. The
problem with the basic ring protocol in Sect. 14.4.3.1 is that each learner has to wait
for its predecessor. However, in All-Reduce, the Paillier encrypted gradient vector
is divided into P chunks where P is the number of participants. All learners then
aggregate Paillier encrypted chunks in parallel. For example, in Fig. 14.5, there are
three learners, and the gradient vectors are divided into three chunks each. Learner-2
does not wait for the entire vector of Learner-1 to be received. Instead, while it is
receiving the first chunk of Learner-1, it transmits its own second chunk to Learner-
3, which in parallel transmits its third chunk to Learner-3. In Step 2, Learner-2
transmits the partially aggregated chunk-1 to Learner-3, which transmits partially
aggregated chunk-2 to Learner-1, which transmits the partially aggregated chunk-3
to Learner-2. At the end of Step-2, each learner has Paillier encrypted, aggregated
chunks, which are transmitted to MYSTIKO’s Decryptor for concatenation and
decryption.

14 Private Parameter Aggregation for Federated Learning 327

a1 a2 a3

b1 b2 b3

c1 c2 c3
Learner-1

Learner-2

Learner-3
a2 a3+c3

a1+b1 b3

c1 b2+c2

Learner-1

Learner-2

Learner-3

a2+b2
+c2

a3+b3
+c3

a1+b1
+c1

Learner-1

Learner-2

Learner-3

Divided Paillier encrypted arrays Step 1: Parallel Addition of Chunks Step 2: Parallel Addition of Chunks

Fig. 14.5 MYSTIKO ring All-Reduce over Paillier encrypted arrays

Security Analysis We note that All-Reduce is the most efficient MYSTIKO proto-
col. With P learners, All-Reduce is essentially an instantiation of P − 1 rings (of
Sect. 14.4.3.1), all operating in parallel. In Fig. 14.5, the first ring starts at the first
chunk of Learner-1, the second ring starts at the second chunk of Learner-2, and the
third starts at the third chunk of Learner-3. This implies that the security guarantees
of All-Reduce are the same as that of the basic ring protocol.

14.4.4 Multiple Learners Per Administrative Domain

For presentation simplicity, we have assumed that there is exactly one learning pro-
cess (learner) per participant. More realistically, within an administrative domain,
data is partitioned among servers and multiple training processes (learners), which
periodically synchronize their gradient vectors using an aggregator process local
to the administrative domain. This is done for various reasons, including datasets
being large, compute resources being cheap and available, and the desire to reduce
training time. MYSTIKO’s protocols can be applied in a straightforward manner
to this case, with MYSTIKO’s protocols running between local aggregators (LAs)
instead of between learners. Local aggregation is not Paillier encrypted and non-
private because compute resources within an administrative domain are trusted
and can share even raw data. But aggregation between LAs follows MYSTIKO’s
protocols. This is illustrated in Fig. 14.6.

14.5 Trusted Execution Environments

A trusted execution environment (TEE) [40, 46] is a secure area of a main processor.
TEEs are isolated execution environment that provide key security features such
as isolated execution, integrity of applications executing with the TEE, along with
confidentiality of their data assets. TEEs establish an isolated execution environment
that runs in parallel with the standard operating system, such as Linux and
Microsoft Windows; its aim is to defend sensitive code and data against privileged
software attacks from a potentially compromised native OS. ARM TrustZone, IBM
Hyperprotect, and Intel SGX are examples of TEE technologies, which use a
combination of hardware and software mechanisms to protect sensitive assets. TEEs

328 K. R. Jayaram and A. Verma

Local Aggregator

Learner
Data

Learner
Data Data

DataLearner
Learner

Local Aggregator Local Aggregator

Local Aggregator

MYSTIKO

Key
Generator Decrypter

Pallier Encrypted Weights

(added)
Pallier Encrypted Weights

(added)
Pallier Encrypted Weights

Fig. 14.6 Federating gradient descent

are often designed so that only trusted applications, whose integrity is verified at
load time, can access the full power of the server’s processors, peripherals, and
memory. Hardware isolation provided by the TEE protects the applications inside
it from other installed applications (including malware and viruses) on the host
operating system. If multiple applications are contained within a TEE, software and
cryptographic isolation often protect them from each other.

To prevent the simulation of TEEs with attacker- or user-controlled software
on the server, TEEs involve a “hardware root of trust.” This involves embedding
a set of private keys directly into the TEE at the time of chip manufacturing,
using one-time programmable memory. These cannot be changed, even after device
resets or restarts. The public counterparts of these keys reside in a manufacturer
database, together with a non-secret hash of a public key belonging to the trusted
party (usually the chip vendor) which is used to sign trusted firmware alongside the
circuits doing cryptographic operations and controlling access. The TEE hardware
is designed in a way which prevents all software not signed by the trusted party’s
key from accessing the privileged features. The public key of the vendor is provided
at runtime and hashed; this hash is then compared to the one embedded in the chip.
If the hash matches, the public key is used to verify a digital signature of trusted
vendor-controlled firmware (such as a chain of bootloaders on Android devices or
’architectural enclaves’ in SGX). The trusted firmware is then used to implement
remote attestation.

In this chapter, we describe how one system—TRUDA [7]—leverages Trusted
Execution Environments (TEEs) to protect the model fusion process. Other exam-
ples include [6, 49] and [36]; each of which also has several optimizations. We

14 Private Parameter Aggregation for Federated Learning 329

restrict our treatment here to the basic aggregation process with TEEs using TRUDA
as an example. TRUDA runs every aggregator within an encrypted virtual machine
(EVM) via AMD Secure Encrypted Virtualization (SEV). All in-memory data are
kept encrypted at runtime during model aggregation. To bootstrap trust between
parties and aggregators, it uses a two-phase attestation protocol and develops a series
of tools for integrating/automating confidential computing in FL. Each party can
authenticate trustworthy aggregators before participating in FL training. End-to-end
secure channels, from the parties to the EVMs, are established after attestation to
protect model updates in transit.

14.5.1 Trustworthy Aggregation

TRUDA enforces cryptographic isolation for FL aggregation via SEV. The aggre-
gators execute within EVMs. Each EVM’s memory is protected with a dis-
tinct ephemeral VM Encryption Key (VEK). Therefore, TRUDA can protect
the confidentiality of model aggregation from unauthorized users, e.g., system
administrators, and privileged software running on the hosting servers. AMD
provides attestation primitives for verifying the authenticity of individual SEV
hardware/firmware. TRUDA employs a new attestation protocol upon the primitives
to bootstrap trust between parties and aggregators in the distributed FL setting. This
FL attestation protocol consists of two phases:

Phase 1: Launching Trustworthy Aggregators First, TRUDA securely launches
SEV EVMs with aggregators running within. To establish the trust of EVMs,
attestation must prove that (1) the platform is an authentic AMD SEV-enabled
hardware providing the required security properties and (2) the Open Virtual
Machine Firmware (OVMF) image to launch the EVM is not tampered. Once the
remote attestation is completed, TRUDA provisions a secret, as a unique identifier of
a trustworthy aggregator, to the EVM. The secret is injected into EVM’s encrypted
physical memory and used for aggregator authentication in Phase 2.

The EVM owner instructs the AMD Secure Processor (SP) to export the
certificate chain from the Platform Diffie-Hellman (PDH) Public Key down to the
AMD Root Key (ARK). This certificate chain can be verified by the AMD root
certificates. The digest of OVMF image is also included in the attestation report
along with the certificate chain.

The attestation report is sent to the attestation server, which is provisioned with
the AMD root certificates. The attestation server verifies the certificate chain to
authenticate the hardware platform and check the integrity of OVMF firmware.
Thereafter, the attestation server generates a launch blob and a Guest Owner Diffie–
Hellman Public Key (GODH) certificate. They are sent back to the SP on the
aggregator’s machine for negotiating a Transport Encryption Key (TEK) and a
Transport Integrity Key (TIK) through Diffie–Hellman Key Exchange (DHKE) and
launching the EVMs.

330 K. R. Jayaram and A. Verma

TRUDA retrieves the OVMF runtime measurement through the SP by pausing
the EVM at launch time. It sends this measurement (along with the SEVAPI version
and the EVM deployment policy) to the attestation server to prove the integrity
of UEFI booting process. Only after verifying the measurement, the attestation
server generates a packaged secret, which includes an ECDSA prime251v1 key. The
hypervisor injects this secret into the EVM’s physical memory space as a unique
identifier of a trusted aggregator and continues the launching process.

Phase 2: Aggregator Authentication Parties participating in FL must ensure that
they are interacting with trustworthy aggregators with runtime memory encryption
protection. To enable aggregator authentication, in Phase 1, the attestation server
provisions an ECDSA key as a secret during EVM deployment. This key is used for
signing challenge requests and thus serves to identify a legitimate aggregator. Before
participating in FL, a party first attests an aggregator by engaging in a challenge
response protocol. The party sends a randomly generated nonce to the aggregator.
The aggregator digitally signs the nonce using its corresponding ECDSA key and
then returns the signed nonce to the requesting party. The party verifies that the
nonce is signed with the corresponding ECDSA key. If the verification is successful,
the party then proceeds to register with the aggregator to participate in FL. This
process is repeated for all aggregators.

After registration, end-to-end secure channels can be established to protect
communications between aggregators and parties for exchanging model updates.
TRUDA enables TLS to support mutual authentication between a party and an
aggregator. Thus, all model updates are protected both within EVMs and in transit.

14.6 Comparing HE- and TEE-Based Aggregation with SMC

In this section, we compare all the three Mystiko algorithms with a state-of-the-
art protocol for secure multi-party computation (SPDZ [10, 11, 25]), and schemes
for differential privacy (DP) through the addition of statistical noise. We employ a
variety of image processing neural network models and datasets of various sizes:
(1) 5-Layer CNN (small, 1MB) trained on MNIST dataset (60K handwritten digit
images) (2) Resnet-18 (small–medium, 50MB) trained on the SVHN dataset (600K
street digit images), (3) Resnet-50 (medium-sized model, 110 MB) trained on
CIFAR-100 dataset (60K color images of 100 classes), and (4) VGG-16 (large
model, 600MB) trained on Imagenet-1K dataset (14.2 million images of 1000
classes).

Experiments were conducted on a 40-machine cluster to evaluate all the algo-
rithms on a varying number of participants from 2 to 40. No more than one
participant was ever run on any machine, each of which was equipped with 8
Intel Xeon E5-4110 (2.10 GHz) cores, 64GB RAM, 1 NVIDIA V100 GPU, and a
10GbE network link. The machines were spread over four datacenters, and in every
experiment, participants were uniformly distributed across datacenters. In every

14 Private Parameter Aggregation for Federated Learning 331

experiment, the dataset was uniformly and randomly partitioned across participants.
Mystiko was executed on a dedicated machine in one datacenter. All data points
henceforth are computed by averaging 10 experiment runs.

14.6.1 Comparing MYSTIKO and SPDZ

In federated learning, learners (or local aggregators) learn on local data for a
specific number of iterations before federated gradient aggregation and model
update. Privacy loss happens during gradient aggregation, which is where MYSTIKO

and other systems like SPDZ intervene. Hence, we use the following two metrics
to evaluate MYSTIKO and SPDZ: (1) total synchronization time, which measures
the total time needed for privacy preserving gradient transformations (Paillier
encryption in MYSTIKO, share generation in SPDZ, etc.) and the time required
to communicate the transformed gradients to participants for federation and (2)
communication time, which only measures communication time.

Figure 14.7 plots total synchronization time and communication time against the
number of parties involved in federation, for all of our model/dataset combinations.
From Fig. 14.7, we observe that All-Reduce is the most scalable of all the protocols,
as the number of participants increases. This is mainly because it is a parallel
protocol, where each learner/LA is constantly transmitting a small portion of the
gradient array. The basic ring protocol is the least scalable because it is sequential.

Fig. 14.7 MYSTIKO: total synchronization time (seconds) vs. number of parties (top plots) and
total communication time (seconds) vs. number of parties (bottom). Recall that total synchroniza-
tion time is the sum of the communication time and the gradient transformation time

332 K. R. Jayaram and A. Verma

Table 14.1 MYSTIKO: performance slowdown of Broadcast, Ring, and SPDZ relative to All-
Reduce. Full trend available at Fig. 14.7

Communication time

MYSTIKO

Parties All-reduce Broadcast Ring SPDZ

20 1 6.4–7.2× 38.2–39.9× 13.1–14.2×
40 1 7.9–8.6× 70.5–80.8× 13.8–14.7×
Total synchronization time

MYSTIKO

Parties All-reduce Broadcast Ring SPDZ

20 1 12–51% 27–100% 2.2–6.1×
40 1 6–25% 15–59% 1.3–2.6×

Broadcast performs and scales better than the basic ring protocol because each
participant is broadcasting without waiting for the others. SPDZ performs and scales
worse than broadcast because its communication pattern is close to (but not exactly)
a dual broadcast—each item of the gradient vector at each participant is split into
secret shares and broadcast to the other participants; after secure aggregation, the
results are broadcast back. MYSTIKO obviates the need for dual broadcast through
the use of Paillier encryption and centralized decryption of aggregated gradients.
Table 14.1 illustrates the performance impact of using other protocols for two cases
(20 and 40 parties from Fig. 14.7).

However, the “enormous” speedups of using All-Reduce do not materialize
when total synchronization time is considered. The scalability trends among the
four protocols remain the same; the speedups in total synchronization time remain
significant (as elucidated for two cases in Table 14.1). But the speedups are lower
than the speedups due to communication. This demonstrates that the predominant
overhead of private gradient descent in MYSTIKO and SPDZ vs. non-private
gradient descent is gradient transformation prior to communication. From Fig. 14.7
and Table 14.1, we also observe that for small models (5-Layer CNN and Resnet-
18), communication time plays a larger role. But for large models (Resnet-50 and
VGG-16), gradient transformation plays a larger role.

Lastly, we observe that when compared to training time (illustrated using epoch
time), synchronization time for private gradient descent is significantly larger than
non-private gradient descent. This is primarily because training happens on V100
GPUs (with thousands of cores), while gradient transformation happens on CPUs.
While there is a GPU accelerated version of fully homomorphic encryption ([9],
which has worse performance than Paillier on CPUs), we are not aware of any GPU
accelerated version of the Paillier algorithm.

14 Private Parameter Aggregation for Federated Learning 333

14.6.2 Overheads of Using TEEs: AMD SEV

Compared to MYSTIKO and SPDZ, the biggest advantage is that the overheads are
very low. The overhead of using TEEs comes from performing aggregation inside
the EVMs. Overhead, measured as an increase in end-to-end latency, was between
2% and 4% per federated synchronization round [7]. And there was no difference in
accuracy or convergence rate [7].

14.7 Concluding Remarks

In this chapter, we have examined various options for private parameter aggregation
for federated learning. It is clear that each method has a unique set of advantages
and disadvantages, and the search for a perfect solution is an active area of research.
Differential privacy is very promising from an information leakage standpoint, but it
(1) decreases the accuracy of the model and (2) involves nontrivial hyperparameter
tuning (batch size, learning rate schedule) to obtain optimal results (or even near-
optimal results). Hyperparameter tuning by trying different parameters may not be
possible in federated settings due to the fact that all participants are not guaranteed
to be available for extended time periods and also because running multiple
experiments increases overall latency. Homomorphic encryption and secure multi-
party computation do not alter accuracy or convergence rate and do not require
hyperparameter tuning. But they incur high runtime overhead—using additive
homomorphic encryption can minimize this to a great extent as illustrated by
MYSTIKO, if the aggregation protocol is carefully designed. Finally, using TEEs
has the potential to make aggregation overhead negligible without incurring any
accuracy or convergence penalty, but it does require the use of specialized hardware.

References

1. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L (2016) Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, association for computing machinery, New York, NY,
CCS ’16, pp 308–318

2. Agarwal N, Suresh AT, Yu FXX, Kumar S, McMahan B (2018) cpSGD: Communication-
efficient and differentially-private distributed SGD. In: NeurIPS 2018

3. Aono Y, Hayashi T, Trieu Phong L, Wang L (2016) Scalable and secure logistic regression
via homomorphic encryption. In: Proceedings of the Sixth ACM conference on data and
application security and privacy. Association for Computing Machinery, New York, NY,
CODASPY ’16, pp 142–144

4. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konečnỳ J,
Mazzocchi S, McMahan HB et al (2019) Towards federated learning at scale: System design.
Preprint. arXiv:190201046

334 K. R. Jayaram and A. Verma

5. Bottou L (1998) On-line learning and stochastic approximations. In: On-line learning in neural
networks. Cambridge University Press, New York

6. Chen Y, Luo F, Li T, Xiang T, Liu Z, Li J (2020) A training-integrity privacy-preserving
federated learning scheme with trusted execution environment. Inf Sci 522:69–79

7. Cheng P, Eykholt K, Gu Z, Jamjoom H, Jayaram KR, Valdez E, Verma A (2021) Separation of
powers in federated learning. CoRR abs/2105.09400. https://arxiv.org/abs/2105.09400, http://
2105.09400

8. Cramer R, Damgrd IB, Nielsen JB (2015) Secure multiparty computation and secret sharing,
1st edn. Cambridge University Press, Cambridge

9. DaiW, Sunar B (2016) cuHE: A homomorphic encryption accelerator library. In: Cryptography
and information security in the Balkans. Springer International Publishing

10. Damgård I, Pastro V, Smart N, Zakarias S (2012) Multiparty computation from somewhat
homomorphic encryption. In: Proceedings of the 32nd annual cryptology conference on
advances in cryptology—CRYPTO 2012 - Volume 7417. Springer-Verlag, Berlin, Heidelberg,
pp 643–662

11. Data61 C (2020) Multi-Protocol SPDZ. https://github.com/data61/MP-SPDZ
12. Dwork C, Roth A (2014) The algorithmic foundations of differential privacy. Found Trends

Theor Comput Sci 9(3–4):211–407
13. Evans D, Kolesnikov V, Rosulek M (2018) A pragmatic introduction to secure multi-party

computation. Found Trends Privacy Secur 2:70
14. Fredrikson M, Lantz E, Jha S, Lin S, Page D, Ristenpart T (2014) Privacy in pharmacogenetics:

An end-to-end case study of personalized warfarin dosing. In: 23rd USENIX security sympo-
sium (USENIX Security 14). USENIX Association, San Diego, CA, pp 17–32. https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew

15. Fredrikson M, Jha S, Ristenpart T (2015) Model inversion attacks that exploit confidence
information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security. Association for Computing Machinery, New York,
NY, CCS ’15, pp 1322–1333

16. Garg S, Sahai A (2012) Adaptively secure multi-party computation with dishonest majority.
In: Safavi-Naini R, Canetti R (eds) Advances in Cryptology – CRYPTO 2012. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 105–123

17. Geiping J, Bauermeister H, Dröge H, Moeller M (2020) Inverting gradients–how easy is it to
break privacy in federated learning? Preprint. arXiv:200314053

18. Gentry C (2010) Computing arbitrary functions of encrypted data. Commun ACM 53(3):97–
105

19. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016
IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

20. Jayaram KR, Verma A, Verma A, Thomas G, Sutcher-Shepard C (2020) Mystiko: Cloud-
mediated, private, federated gradient descent. In: 2020 IEEE 13th international conference on
cloud computing (CLOUD). IEEE Computer Society, Los Alamitos, CA, pp 201–210

21. Jayaraman B, Evans D (2019) Evaluating differentially private machine learning in practice.
In: 28th USENIX Security Symposium (USENIX Security 19), USENIX Association, Santa
Clara, CA, pp 1895–1912. https://www.usenix.org/conference/usenixsecurity19/presentation/
jayaraman

22. Jost C, Lam H, Maximov A, Smeets BJM (2015) Encryption performance improvements of
the paillier cryptosystem. IACR Cryptology ePrint Archive. https://eprint.iacr.org/2015/864

23. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles
Z, Cormode G, Cummings R et al (2019) Advances and open problems in federated learning.
Preprint. arXiv:191204977

24. Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent hashing
and random trees: Distributed caching protocols for relieving hot spots on the world wide
web. In: Proceedings of the twenty-ninth annual ACM symposium on theory of computing.
Association for Computing Machinery, New York, NY, STOC ’97, pp 654–663

https://arxiv.org/abs/2105.09400
http://2105.09400
http://2105.09400
https://github.com/data61/MP-SPDZ
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://eprint.iacr.org/2015/864

14 Private Parameter Aggregation for Federated Learning 335

25. Keller M, Yanai A (2018) Efficient maliciously secure multiparty computation for ram. In:
EUROCRYPT (3). Springer, pp 91–124. https://doi.org/10.1007/978-3-319-78372-7_4

26. Keller M, Pastro V, Rotaru D (2018) Overdrive: Making SPDZ great again. In: Nielsen
JB, Rijmen V (eds) Advances in cryptology – EUROCRYPT 2018. Springer International
Publishing, Cham, pp 158–189

27. Krizhevsky A (2009) Learning multiple layers of features from tiny images. https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf, https://www.cs.toronto.edu/~kriz/cifar.html

28. Kumar V, Grama A, Gupta A, Karypis G (1994) Introduction to parallel computing: design and
analysis of algorithms. Benjamin-Cummings Publishing, California

29. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nat Cell Biol 521(7553):436–444
30. Lee J, Clifton C (2011) How much is enough? choosing ε for differential privacy. In: Lai X,

Zhou J, Li H (eds) Information security. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
325–340

31. Marr B (2018) 27 Incredible examples of AI and machine learning in practice. Forbes
Magazine

32. McMahan HB, Andrew G (2018) A general approach to adding differential privacy to iterative
training procedures. CoRR abs/1812.06210. http://arxiv.org/abs/1812.06210

33. Melis L, Song C, De Cristofaro E, Shmatikov V (2019) Exploiting unintended feature leakage
in collaborative learning. In: 2019 IEEE symposium on security and privacy. IEEE, pp 691–706

34. Millard C (2013) Cloud computing law. Oxford University Press
35. Mironov I (2017) Rényi differential privacy. In: 2017 IEEE 30th computer security foundations

symposium (CSF), pp 263–275
36. Mo F, Haddadi H, Katevas K, Marin E, Perino D, Kourtellis N (2021) PPFL: Privacy-

preserving federated learning with trusted execution environments. In: Proceedings of the 19th
annual international conference on mobile systems, applications, and services. Association for
Computing Machinery, New York, NY, MobiSys ’21, pp 94–108

37. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, Andrew Y. Ng Reading
digits in natural images with unsupervised feature learning NIPS workshop on deep learning
and unsupervised feature learning 2011

38. Phong LT, Aono Y, Hayashi T, Wang L, Moriai S (2018) Privacy-preserving deep learning via
additively homomorphic encryption. Trans Inf Forens Secur 13(5):1333–1345

39. Rescorla E (2018) The transport layer security (TLS) protocol version 1.3. RFC 8446
40. Sabt M, Achemlal M, Bouabdallah A (2015) Trusted execution environment: What it is, and

what it is not. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol 1, pp 57–64. https://doi.org/10.
1109/Trustcom.2015.357

41. Shokri R, Shmatikov V (2015) Privacy-preserving deep learning. In: ACM CCS ’15
42. Shokri R, Stronati M, Song C, Shmatikov V (2017) Membership inference attacks against

machine learning models. In: 2017 IEEE symposium on security and privacy (SP), pp 3–18
43. Song S, Chaudhuri K, Sarwate A (2013) Stochastic gradient descent with differentially private

updates. In: 2013 IEEE global conference on signal and information processing, GlobalSIP
2013 - Proceedings, 2013 IEEE global conference on signal and information processing,
GlobalSIP 2013 - Proceedings, pp 245–248

44. Stallings W (2013) Cryptography and network security: principles and practice, 6th edn.
Prentice Hall Press, Upper Saddle River

45. Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R, Zhou Y (2019) A hybrid
approach to privacy-preserving federated learning. In: Proceedings of the 12th ACMworkshop
on artificial intelligence and security. Association for Computing Machinery, New York, NY,
AISec’19, pp 1–11

46. Volos S, Vaswani K, Bruno R (2018) Graviton: Trusted execution environments on GPUs.
In: 13th USENIX symposium on operating systems design and implementation (OSDI 18).
USENIX Association, Carlsbad, CA, pp 681–696. https://www.usenix.org/conference/osdi18/
presentation/volos

47. Xu R, Baracaldo N, Zhou Y, Anwar A, Ludwig H (2019) Hybridalpha: An efficient approach
for privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on

https://doi.org/10.1007/978-3-319-78372-7_4
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1812.06210
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos

336 K. R. Jayaram and A. Verma

artificial intelligence and security. Association for Computing Machinery, New York, NY,
AISec’19, pp 13–23. https://doi.org/10.1145/3338501.3357371

48. Yin H, Mallya A, Vahdat A, Alvarez JM, Kautz J, Molchanov P (2021) See through gradients:
Image batch recovery via GradInversion. Preprint. arXiv:210407586

49. Zhang X, Li F, Zhang Z, Li Q, Wang C, Wu J (2020) Enabling execution assurance of federated
learning at untrusted participants. In: IEEE INFOCOM 2020 - IEEE conference on computer
communications, pp 1877–1886

50. Zhao B, Mopuri KR, Bilen H (2020) iDLG: Improved deep leakage from gradients. Preprint.
arXiv:200102610

51. Zhu L, Liu Z, Han S (2019) Deep leakage from gradients. In: Advances in neural information
processing systems, pp 14774–14784

https://doi.org/10.1145/3338501.3357371

	14 Private Parameter Aggregation for Federated Learning
	14.1 Introduction
	14.2 Focus, Trust Model, and Assumptions
	14.3 Differentially Private Federated Learning
	14.3.1 Background: Differential Privacy (DP)
	14.3.2 Incorporating DP into SGD
	14.3.3 Experiments and Discussion
	14.3.3.1 Accuracy vs ε
	14.3.3.2 Accuracy vs Batch Size (Fixed ε)

	14.4 Additive Homomorphic Encryption
	14.4.1 Participants, Learners, and Administrative Domains
	14.4.2 Architecture
	14.4.3 Mystiko Algorithms
	14.4.3.1 Basic Ring-Based Algorithm
	14.4.3.2 Broadcast Algorithm
	14.4.3.3 All-Reduce

	14.4.4 Multiple Learners Per Administrative Domain

	14.5 Trusted Execution Environments
	14.5.1 Trustworthy Aggregation

	14.6 Comparing HE- and TEE-Based Aggregation with SMC
	14.6.1 Comparing Mystiko and SPDZ
	14.6.2 Overheads of Using TEEs: AMD SEV

	14.7 Concluding Remarks
	References

