
Chapter 13
Protecting Against Data Leakage in
Federated Learning: What Approach
Should You Choose?

Nathalie Baracaldo and Runhua Xu

Abstract Federated learning (FL) is an example of privacy by design where the
primary benefit and inherent constraint is to ensure data is never transmitted. In
this paradigm, data remains with its owner. Unfortunately, multiple attacks capable
of extracting private training data by inspecting the resulting machine learning
models or the information exchanged during the FL training process have been
demonstrated. As a result, a plethora of defenses have surfaced. In this chapter,
we overview existing inference attacks to assess their associated risks and take a
close look at the significant corpus of popular defenses designed to mitigate them.
Additionally, we analyze common scenarios to help provide clarity on what defenses
are most suitable for different use cases. We demonstrate that one size does not fit
all when selecting the right defense.

13.1 Introduction

Privacy by design has been one of the main drivers of federated learning (FL),
where each training party maintains their data locally while collaboratively training
a machine learning (ML) model. Compared to existing ML techniques that require
the collection of training data into a central place, this new paradigm represents a big
improvement that balances utility of data and privacy. Given this significant change
in data collection, FL is becoming a popular approach to protect data privacy.

In its basic form, Fig. 13.1, the FL training process requires an aggregator and
parties to exchange model updates. Although no training data is shared during this
process, this basic setup has been shown to be vulnerable to inference of private
training data. Risks of inference of private information are prevalent in multiple
stages of the FL process. Inference attacks can be classified based on the attack
surface used to obtain private data into (1) those carried out on the final model
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Fig. 13.1 FL system with n parties P1, . . .Pn without any privacy protection techniques. All
entities participating in the FL training process are considered insiders while entities getting access
to the final predictive model are consider outsiders. The table shows the attack surface for each of
the entities; this information is available for multiple rounds

produced by the federation and (2) those executed using information exchanged
during the FL training process.

Attacks executed exploiting the final model are applicable to allML models and
are not exclusive to FL. In other words, threats of inference based on a model
itself are inherent to ML regardless of how the model was trained. Attacks in
this category include data extraction, membership inference, model inversion, and
property inference attacks, e.g., [12, 57, 70]. All of them infer information about the
training data and in some cases the training data itself.

The second category of attacks are specific to FL and represent a new threat.
These attacks take advantage of the information transmitted during the FL training
process. For example, attack techniques such as [28, 39, 89, 91] use the newly
exchanged information, exercise the potential for manipulating the training process
or both. In some cases, this new information creates more successful attacks, while
in some other cases the threats are not as worrisome as attacks are only applicable
to some artificial settings. In this chapter, we present and contrast the differences
and similarities of carrying out attacks based on the model and the FL process in
Sect. 13.2.
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The existence of inference risks have led to the proposal of a plethora of defenses
that aim to provide different privacy guarantees. These include the introduction of
differential privacy at the party side [30, 80, 84] and at the aggregator side, the
integration of different cryptosystems to enable secure aggregation including Pailler
[60], Threshold Pailler [19], different flavors of functional encryption [2–4, 8, 11],
pairwise masking [10], homomorphic encryption (HE) [29], or the combination of
multiple of those. The number of options available is substantial, and some of them
have been shown to be vulnerable to inference attacks on themselves.

With this plethora of attacks and defenses, important questions remain to be
answered: How critical are inference attacks? How much should we worry about
them? If we need to mitigate the risk, what defense should we use?

In this chapter, we set out to help answer these questions. Selecting a defense
technique for privacy preservation is not an easy task, and in the current landscape,
it is challenging to compare the assumptions, disadvantages, and advantages of
different solutions.

We show that one size does not fit all and that it is imperative to consider what
initially may be seen as nuances of different defenses. In fact, as it is often the case in
the security and privacy disciplines, a thorough risk assessment is needed to identify
a suitable threat model for a particular application1. In some cases, more than one
defense needs to be applied to mitigate stringent privacy requirements.

Unfortunately, there is no free lunch when incorporating defenses into the FL
process. Incorporating them may result in higher training times, lower model
performance, or more expensive deployments. For this reason, it is imperative to
decide the right level of protection for a particular federation. This sweet spot
highly depends on the scenario where FL has been applied to. For example, consider
a use case where a single company has stored its data in multiple clouds and
wants to run FL to obtain a ML model. Here, potential inference attacks may not
be relevant. However, if multiple competitors decide to train a model together,
there may exist mistrust and there may be an incentive for them to try to infer
private information of some other participating parties. In other cases, regulation
and compliance requirements may require additional protections, as it is the case
for healthcare data and personal information [14, 63].

In this chapter, our aim is to provide clarity in the area of inference attacks
to FL and to help provide some understanding of which attacks are relevant and
which defenses are suitable. In Sect. 13.2, we begin by presenting in detail the
system entities, assumptions and attack surfaces of the FL system as well as the
potential adversaries. We then provide a thorough overview of relevant state-of-
the-art inference attacks. Then, in Sect. 13.3 we characterize existing defenses in
terms of functionality offer, disadvantages, and existing vulnerabilities. To this end,
we carefully define various privacy goals and then compare defenses based on the

1 A threat model defines the trust assumptions place in each of the entities in a system. For
example, it determines if parties fully trust the aggregator or whether they only trust it to a certain
degree.
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different privacy guarantees offered and the attacks they can prevent. In some cases,
we also discuss potential vulnerabilities of some defenses. In Sect. 13.4 we discuss
some guidelines that demonstrate how to map threat models to some of the defenses
and subsequently conclude our chapter.

13.2 System Entities, Attack Surfaces, and Inference Attacks

Figure 13.1 presents an overview of the entities involved during the training and
inference process. We categorize relevant entities as insiders and outsiders, where
insiders are entities involved during the training process while outsiders are entities
that uniquely have access to the final model produced by the federation.

There are two main insider entities involved in the FL training process: the
parties who own the data and the aggregator who orchestrates the learning process.
Figure 13.1 presents a plain FL system; we refer to it as plain because no privacy-
preserving provisions have been added to it. The federation consists of n parties P1,
P2, . . .Pn, where each party Pi owns its private dataset Di . The training process
starts with the aggregator sending queries Qt requesting aggregated information
needed to build a ML model to the parties, and the parties use their training
data to answer that query. We refer to the reply sent back to the aggregator as a
model update and denote the model update of party Pi as Ri . When the aggregator
receives all the replies R1, R2. . .Rn., it proceeds to fuse or aggregate them creating
a new intermediate global model. At the end of round t , the intermediate global
model is denoted as Mt . The global model is then used as input to create the next
query for the parties and the process repeats until the target model performance is
reached.

Most privacy attacks are designed for gradient descent and its variants, which can
be used to train neural networks, linear models, support vector machines (SVMs),
among other model types. Hence, we briefly revisit how this algorithm is applied in
FL. For a training round t , the aggregator sends the initial weights of the model
to each party. Then, each party Pi runs gradient descent or stochastic gradient
decent (SGD) using its own dataset Di for a pre-specified number of epochs and
hyperparameters. The party then sends back the resulting model weights, which
are referred to as model updates. Alternatively, the party may send gradients as
model updates.2 The aggregator in its simplest form takes all the model updates and
fuses them. The most popular way to aggregate model updates is to use FedAvg
[53] where the aggregator uses the number of samples of each party to compute a
weighted average of the model updates. The new model weights are sent back to the
parties, and the process repeats until the target accuracy is reached or the maximum

2 Experimentally, we have found that exchanging model weights leads to faster convergence than
exchanging gradients.
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rounds elapses. Notice that the fusion model updates obtained by the aggregator can
be used to acquire the ML model.

13.2.1 System Setup, Assumptions, and Attack Surfaces

To fully understand the attack surface in FL and the existing risks, we begin by
clearly defining the assumptions commonly made about the FL distributed system
setup and the information that is typically assumed to be known by insiders before
the training process begins.

From the machine learning perspective, there are multiple common assumptions.
Before FL starts, it is often assumed that data at each of the parties is already
annotated, that the set of labels are known, and that the model definition is available
[24, 50]. Thus, prior to the federation starting, the aggregator and the parties know
that there are, for example, five classes, and that each of the parties has pre-
processed its dataset in the same fashion. If structural data is used, all parties and
aggregator also know the number, order of the feature set, categorization, and the
pre-processing technique to be used. Accordingly, in this chapter, we assume this
information is known by all insiders participating in the FL process. Additionally,
the aggregator has access to the model updates sent by all the parties and the
intermediate models, while parties have access to their training data, aggregated
models, and model updates.

From the system perspective, it is important to set up the distributed system in a
secure way. In particular, throughout the FL process, messages exchanged between
parties and the aggregator need to be properly authenticated and secure channels
need to be established. In this way, external entities are prevented from snooping
messages exchanged between the aggregator and parties. Man-in-the middle attacks
where an adversary may try to impersonate a targeted party or the aggregator are
also prevented. Hence, in the following discussion we assume external entities
cannot snoop private information by inspecting exchanged messages or impersonate
insiders.

13.2.2 Potential Adversaries

In FL, the training data is not explicitly shared. Hence, we focus on inference threats.
The goal of an adversary is to infer private data based on the information they have
access to (we will elaborate on the attackers’ goals in more detail later as they differ
for each attack).

The table in Fig. 13.1 summarizes the information that is available for each
potential adversary and the information they can manipulate to their advantage.
As we can see, a malicious aggregator has the opportunity to manipulate the
aggregation process producing incorrect intermediate models and queries. It may
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also manipulate the final model. Similarly, a malicious party may manipulate
the model updates sent to the aggregator. Finally, outsiders have the power to
manipulate the inference queries to the final model to try to infer private information.

The adversaries can be further characterized according to their behavior as
follows:

• A Curious and passive aggregator may try to infer private information based
on all model updates exchanged during the training process. If the final or
intermediate models are known, this adversary may also try to use the model
to infer private data from participants.

• A curious and active aggregator may utilize the same information to perform
inferences but may try to manipulate the queries sent to each party, the interme-
diate and final model updates.

• A curious partymay try to infer private information based on the queries received
and its knowledge about the learning objective.

• A curious and active party may try to infer private information based on
the queries received and may also carefully craft the attacks to try to further
determine information about other parties’ private data.

• Colluding parties are conspiring parties who may try to infer information by
orchestrating attacks together. These parties may share information among them
and may actively or passively attack the system to infer private information about
other parties.

• Curious colluding aggregator and parties it is possible for a curious aggregator
and a few malicious parties to try to passively or actively launch privacy attacks
to infer information about the training data and properties of a targeted party(ies).

• Curious outsiders are impersonated by external adversaries who do not partici-
pate in the training process but have access to the final ML model. They may try
to use the final model and its predictions to infer private training data or related
information.

Any such adversaries may carry out attacks to try to infer private information. In
the following we overview multiple inference attacks.

13.2.3 Inference Attacks to Federated Learning

Multiple inference attacks have been demonstrated in FL systems. They can be
classified according to their inference objective in the following four categories:

1. Training data extraction: These attacks aim to recover the exact individual
training samples used during the training process. In other words, for an image
based task, the output of the attack is a pixel-by-pixel output of the training data,
while for a text-classification task, the output of the attack is the word-by-word
text of the training corpus.



13 Protecting Against Data Leakage in Federated Learning 287

2. Membership Inference: In this type of attacks, the objective of the adversary is
to determine if a particular sample was part of the training data used to create a
model. This clearly constitutes a privacy violation if being part of a training set
reveals, for example, a medical condition, social or political association.

3. Model Inversion: Here, the goal of the adversary is to construct a representative
of each of the classes. This type of attack leads to great privacy violations in cases
where each class contains samples that are similar among them. Consider the case
of a face recognition model where a class contains information about a single
individual. In this case, the results of the model inversion are visually similar to
images of the person that were used during the training process. However, if the
class members are not all similar, the results do not look like the training data
[70], and hence this attack may produce innocuous results.

4. Property Inference: This type of attack focuses on revealing properties of the
training data that are not relevant for the training task at hand. Attacks in this
settings can extract global properties of the training dataset such as the ratio of
the samples included or can focus on extracting properties of sub-populations of
the training data.

We summarize the goals and outputs of these four types of attacks in Fig. 13.2. A
variety of attacks have been demonstrated. In Table 13.1 we characterize represen-
tative attacks based on the adversaries that execute them and the information that
they use to infer private training data. Again, we emphasize that attacks which can
be carried out by outsiders are not specific to FL.

We now briefly describe in some detail how the attacks are carried out. This will
help understand the vulnerabilities of the system and determine what defenses are
more suitable to mitigate different attacks in Sect. 13.3.

Fig. 13.2 Inference attacks to machine learning. The figure contrasts the different objectives of
each attack and presents sample outputs for different attacks. We use the faces ORL dataset of the
AT&T Laboratories Cambridge for illustration purposes. The output for the model inversion attack
was generated using the attack presented in [26]
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Table 13.1 Inference attacks to undefended FL systems

Attack surface

Attacks Model Model update Adversary

Training data extraction attacks

Henderson et al. [33], Carlini et
al. [12], Zanella et al. [87],
Carlini et al. [13]

Black-box Outsider, insiders

DLG [91], iDLG [89], Geping
et al. [28], Cafe [39]

Gradients Curious aggregator

Wang et al. [81], Wei et al. [83] White-box Gradients Curious aggregator

Song et al. [75] Gradients Aggregator active and
passive modes

Membership attacks

Shokri et al. [70], Salem et al.
[68], Hayes et al. [32],
Choquette et al. [16]

Black-box Outsider, insiders

Nasr et al. [57] (multiple
attacks)

Black-box Curious aggregator or
curious parties

Gradients Active curious party

Gradients Active curious
aggregator

Gradients Active isolating
aggregator

Model inversion

Fredrikson et al. [25, 26] Black-box Outsider, insider

Hitaj et al. [34] Gradients Curious party

Property attacks

Ateniese et al. [7], Ganju et al.
[27]

White-box Outsider, insider

Melis et al. [54] Gradients Curious party

13.2.3.1 Training Data Extraction Attacks

Multiple attacks have been proposed to extract data samples used during the training
process by querying a published model [12, 13, 33, 73, 87]. Most of them are devoted
to extracting training data from neural networks [12], text-based models [13, 87],
and embeddings [73], but there are some approaches for other types of models such
as [33].

Data memorization of generative text models has been studied for traditional
and FL settings in [12] and [78], respectively. Generative text models help users to
auto-complete their phrases to speed texting and email writing. The adversary’s goal
in this setting is to extract secret sequences of text to learn private information; for
example, inputting to the system the sentencemy social security number ismay lead
to the exposure of social security numbers used during the training process. In [12]
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Carlini et al. proposed metrics to measure memorization in these types of models
when the adversary has black-box3 access to a published model that can query
at will. Later, Thakkar et al. [78] compare differences between the memorization
exhibited by models trained in FL versus those trained in traditional fashion. Their
experiments suggest that training in FL may help reduce memorization and they
hypothesize the diverse distribution of data among users is responsible the situation.
However, both studies are based on black-box access. That is, they only consider the
role of an outsider. Further analysis is required to identify how much information
can be leaked when the adversary has more information, as it is the case for FL
insiders.

A substantial number of data extraction attacks in FL for general models have
been highlighted and the great majority make use of model updates that contain
gradients [5, 28, 39, 81, 89, 91]. To understand how these attacks are possible,
consider a simple text-based classifier that uses a bag-of-words as a way to encode
the training data. Recall that once a party has been queried with an initial model, it
uses its local training data to train for a few epochs and then returns the gradients
to the aggregator. A curious aggregator may observe the gradients received from
a party, which may be sparse, and can trivially know whether a word was part of
the training data because a non-zero gradient is only possible if an original word
was present in the party’s training data [53]. Gradient-based attacks have also been
demonstrated for images including number digits [5], faces [91], and other datasets
[28].

An efficient attack known as Deep leakage from gradients (DLG) was proposed
in [91], where a curious aggregator can obtain the training samples and the labels
of a victim party. DLG was demonstrated to have high attack success rates in a
few optimization interactions for some network topologies; however, it does not
work unless the batch size utilized is small, for example, eight. A subsequent attack
[81] increases the recovery accuracy for more general model initialization by using
a distance metric based on a Gaussian kernel based on gradients. However, the
approach also has limited attack success rates for larger batch sizes. This is clear a
limitation that has raised the speculation on whether using higher batch sizes could
deter the problem.

Unfortunately, increasing the batch size to prevent these attacks has been shown
to be a naive defense in [39], where a new gradient-based attack called CAFE was
presented. CAFE’s attack success was demonstrated even under larger batch sizes
of 40. The attack uses a surrogate or synthetic dataset created offline. By assuming
the model is known, which is clearly the case for the aggregator, the aggregator can
pass the surrogate data through the model and compute fake gradients. After that, the
aggregator compares the resulting surrogate gradients with the real gradients coming
from the victim party and tries to minimize the difference by updating its surrogate

3 Black-box access in ML refers to a scenario where the adversary cannot access model
parameters and can only query the model. White-box access, conversely, refers to settings where
the adversary has access to the inner-works of the model.
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dataset. This process can continue over the course of training to recreate the original
dataset. An improvement in label guessing was presented in [89]. Additionally,
studies and approaches such as the one presented by Geiping et al. [28] have shedded
light into the vulnerabilities of commonly used vision network architectures beyond
the topologies originally considered by DLG. Other attack optimizations inspired
by the original DLG continue to emerge in the literature.

While most attacks are based on gradient-based inferences, gradient-based
algorithms in FL are frequently trained exchanging model weights. As mentioned
before, we have experimentally observed that exchanging model weights leads to
faster convergence times. In some circumstances, a curious aggregator could still
carry out the same inference procedure by computing the gradient between two
iterations with the same party. This, however, would require for the victim party to
be queried in subsequent training rounds that are not too far apart. Hence, further
experimental analysis in this direction is needed to evaluate the attacks under those
system setups. Finally, as our overview of these attacks shows, there is a trend to
continuously improve limitations of existing data extraction attacks.

13.2.3.2 Membership Inference Attacks

Multiple membership inference attacks [57, 68, 70] have demonstrated that it is
possible to know if a sample, called a target sample, was part of a training dataset,
violating the privacy when the inclusion in a training set is itself sensitive. For
example, consider an ML model trained based on photographs of people who suffer
from a taboo disease or a political or group affiliation. In this case, getting to know
if a person is part of the training set will reveal its health condition or that it is part
of a particular group.

Attacks in this category take advantage of the notoriously higher prediction
confidence that models exhibit when they are queried on their training data. This
is mainly caused by overfitting of the model to training samples. Traditional attacks
in this category assume the adversary has black-box access to the model (does not
know the model parameters) and can only query the model for prediction. The
adversary queries the model multiple times to understand how it behaves with
respect to a set of engineered inputs to reconstruct the loss surface of the model.
After multiple such queries, the adversary can determine if a sample was part of the
training dataset. Most attacks in this classification make use of the confidence scores
associated with a prediction query to guide the creation of informative queries.

Because a variety of attacks make use of the confidence score to achieve their
objective, some attempts to hide confidence scores or reduce the number of queries
a classifier can answer have been proposed as potential mitigation techniques
[38, 68, 85]. However, those solutions do not effectively prevent membership
inference. It has been demonstrated that even when a model does not expose the
confidence scores associated with its classification, it is possible for adversaries to
successfully execute a membership attack [16]. In the label-only attack presented
in [16], for a target sample, the adversary generates multiple perturbed samples and
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queries the classifier to determine the robustness of the model to modifications. Data
augmentation and adversarial samples are used to generate the perturbed samples.
Based on the classifier’s replies, it is possible to determine if there is a strong or
weak membership signal.

Membership inference attacks can also be carried out in FL based on messages
exchanged. In particular, Nasr et al. [57] present a variety of attacks that take
advantage of the model updates exchanged during the training process. All the
attacks proposed in [57] inspect the gradients of each of the neural network layers
separately to take advantage of the fact that higher layers of the neural network are
fine-tuned to better extract high level features that may reveal private information at
higher rates than lower level layers of the network. To make decisions on whether
the network was trained using the target sample, the attack may use an unsupervised
inference model based on auto-encoders or a shallow model for scenarios where the
adversary has some background knowledge on the victim’s data.

Nasr et al. propose attacks that can be launched by a curious aggregator or a
curious party in active or passive mode. A curious aggregator can carry three types
of attacks (1) a passive attack where it observes each of the model updates of the
parties and tries to determine membership of a target sample for that party, (2) an
active attack where the aggregator manipulates the aggregated model according to
the previous discussion, and (3) an active and isolating attack where the curious
aggregator does not aggregate the model updates of other participants to increase
the attack success rate.

The attack proposed for malicious parties is limited with respect to the one launch
by an aggregator because parties can only see intermediate models. Hence, the
object of a curious party is limited to determine if any of the other parties has the
target sample. For malicious parties, the attack can be passive (no manipulation of
the model update) or active.

Activemembership attacks are exclusive to FL; an active attack refers to whether
the adversary manipulates the model updates or model to induce observable gradient
behaviors on member samples. In the case of an active curious party trying to infer
the membership of a target sample x, the adversary will run gradient ascent on
sample x by the model and update its local model in the direction of the increasing
loss on the sample. This modified model weights are shared with the aggregator,
who then sends the new model updates with the parties. Interestingly, when a party
has sample x, its local SGD will abruptly reduce the gradient of the loss on x.
This signal can be captured to infer the party has the target sample by a supervised
or unsupervised inference model. Because multiple rounds are required to train a
model, the adversary has several opportunities to manipulate the model updates,
which leads to higher attack success rates.

In conclusion, FL does offer new opportunities for adversaries to carry out
membership inferences attacks.
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13.2.3.3 Model Inversion Attacks

The goal of model inversion attacks is to construct representative of each of the
classes. Model inversion attacks to traditional training processes include [25, 26].
Typically these attacks use the confidence score output by the model to guide
the reconstruction of data samples of a known and targeted label. For example,
Fredrikson et al. showed that an adversary with access to the model and some
demographic information about a patient can predict the patient’s genetic markers
[25].

Model inversion attacks have been tailored to FL in [34], where Hitaj et al.
proposed a Generative Adversarial Network (GAN)-based procedure that operates
on model updates and forces victims to reveal more information by carefully
crafting gradients. The attack can be carried out by any participating party, where
such curious party aims to gain information about a target label. The adversary
trains a GAN based on observed model updates. The GAN subsequently generates
prototypical samples of the private training set. The curious party can create
inputs to the training process that force the victim to release more accurate private
information. Concretely, the adversary will generate errors for recovered samples,
ensuring the victim party tunes the model and reveals further information about the
target sample. Here, the adversary actively manipulates the training process.

Finally, model inversion attacks are particularly dangerous if there is a meaning-
ful average representation of a class. Otherwise, the output may not provide useful
information to the attacker.

13.2.3.4 Property Inference Attacks

An adversary can infer information about the properties of the inputs, such as the
environment where the data was produced, even when the model task is completely
independent of that extracted information. Some approaches have focus on extract-
ing global properties of the training set [7, 27] while more recent approaches have
focused on extracting sub-population properties [54]. Global properties include the
distribution of different classes in the training dataset, for example, a neural network
trained to classify smiling faces may leak relative attractiveness of the individuals
in the training set. Another less innocuous example of inference of global properties
was presented by Ganju et al. [27] who demonstrated models may help an adversary
determine whether a machine where the training logs were collected contained two
important vulnerabilities that could lead the adversary to illicitly gain bitcoin by
exploiting such vulnerabilities. Sub-population properties refer to properties of a
particular sample in the training data, for example, in a model classifying medical
reviews, an adversary may be capable of inferring the medical speciality from which
they came [54].

Global property inference was first proposed by Ateniese et al. in [7], who
demonstrated that SVMs and hidden Markov models (HMM) easily leak global
properties. Their approach uses multiple meta-classifiers trained in surrogate
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datasets that exhibit the tested properties and requires white-box access to the
model. After that, the approach was extended to work into fully connected neural
networks in [27].

With the introduction of FL, attacks that can further isolate sub-population
properties have been proposed. Melis et al. recently proposed a novel and more
fine-grained attack that combines membership and property inference in FL settings
in [54]. Here, a curious party can first identify the presence of a particular record
in the training dataset of a victim party by running a membership inference attack.
Similarly to global property attacks, this attack also trains meta-classifiers using
auxiliary labeled data and uses them to determine if a property exist or not in one
sub-populations. Experimental results show that the attack is successful for image
and text-classifiers, and that are possible with two to 30 parties. In this case, FL
opens attack surfaces for malicious insiders to leak more private information.

13.3 Mitigating Inference Threats in Federated Learning

While the amount of attacks to FL system keeps increasing, so do the number of
solutions that is proposed to address these threats. Defenses in this area are diverse
in nature and protect different aspects of the FL training process or deployment of
the model. Broadly speaking, defenses in this area include:

1. Modification of the training procedure and restrictive interfaces to query a
model: Examples in this category include pruning [37] or compressing the model
updates sent to the aggregator to deter gradient-based attacks, adding regularizers
to reduce overfitting [70] and prevent extraction attacks, minimize the number of
queries or avoid reporting confidence of models to prevent membership attacks
[85]. All these defenses have been demonstrated to fail under adaptive attacks
[16, 83, 83]. Because these solutions have been demonstrated to lead to a false
sense of privacy, we omit them in the following analysis.

2. Syntactic and perturbation techniques: Techniques in this category include
adaptations of k-anonymity [76] and differential privacy (DP) [22], which have
been incorporated to FL training process by multiple defenses including [80]
and [17], respectively. We will see these approaches may help deter some of the
attacks previously presented.

3. Secure aggregation and secure hardware techniques: This category includes
approaches that use different cryptosystems to ensure the aggregator cannot
access individual model updates, as well as approaches that require specialized
hardware execution environments to ensure the execution flow is followed and
the computation is maintained private.

How Do All These Techniques Compare? In the following, we characterize these
techniques based on the information that is maintained private according to the
following definitions which are illustrated in Fig. 13.3.
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Fig. 13.3 Illustration of the input privacy and output privacy concepts in the FL context. Function
f computed by the aggregator fusions model updates R1, R2, . . . , Rn sent by parties

1. Input Privacy: Solutions that fall in this category preserve the privacy of the
model updates shared by each of the parties. In other words, a solution provides
privacy of the input if the FL training process does not reveal anything other than
what can be inferred by the resulting final ML model.

Techniques in this category can be used to protect against threats coming
from malicious aggregators trying to isolate or infer private information from
parties. Multi-party computation techniques are often used to maintain this type
of privacy. However, we will see that these techniques come in many flavors and
provide different guarantees and some are vulnerable to inference attacks.

2. Output Privacy: Techniques in this category ensure that the final model or inter-
mediate models do not leak private information of the training data. Defenses
that fall in this category are designed to prevent attacks coming from outsiders
and insiders that make inferences base on the models. Differential privacy is a
defense in this category, but as we will see, it has its own limitations.

3. Privacy of the Input and Output: Approaches in this category preserve both the
privacy of the input and the output.

Based on these three definitions, we categorize some representative defenses
in Table 13.2. In the table, we also added a column to highlight that existing
techniques also differ on whether the intermediate or final models are exposed in
plaintext to the aggregator. This reflects a different trust model that is important to
select the right solution for different use cases. Note that even if the model is not
revealed in plaintext to the aggregator, a solution may not protect the privacy of the
output because the final model, when decrypted by the parties, is still vulnerable to
output inference. In the following, we briefly present existing defenses and provide
information about the attacks that they address and the ones they cannot thwart.
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Table 13.2 Privacy-preserving defenses for Federated Learning. The second column refers to the
intended privacy goal; we will show that some of the approaches may lead to privacy leakage if
not deployed correctly. In particular, plaintext results may suffer from disaggregation inferences
if not deployed in conjunction with additional provisions

Privacy of Aggregator’s access to

Existing proposals Input Output fusion model updates

Secure aggregation:

– Partial HE [58, 88] ✓ ✗ Encrypted

– Fully HE [67] ✓ ✗ Encrypted

– Threshold Paillier (TP) [80] ✓ ✗ Plaintext

– Garbled Circuit (GC) ✓ ✗ Plaintext

– Pairwise Mask (PM) [10, 40, 72] ✓ ✗ Plaintext

– TPA-based Functional encryption
(FE) [84]

✓ ✗ Plaintext

Differential privacy:

– Global DP (Aggregator) ✗ ✓ Plaintext

– Local DP (Party side)
[6, 30, 80, 84]

✓ ✓ Plaintext with DP Noise

Hybrid approaches

– DP with Threshold Paillier [80] ✓ ✓ Plaintext with DP Noise

– DP with Functional Encryption
[84]

✓ ✓ Plaintext with DP Noise

– DP with pairwise masking [42] ✓ ✓ Plaintext with DP Noise

Special hardware support

– Truda (three aggregators)[15] ✓ ✗ Partial model in plaintext

Approaches specific for XGBoost

– Pairwise mask [48] ✓ ✗ Plaintext

– Oblivious TEE-based XGBoost
[46]

✓ ✗ Plaintext

13.3.1 Secure Aggregation Approaches

To achieve privacy of the input, secure multi-party computation has been proposed
to achieve secure aggregation (SA). SA allows an entity to compute a function f that
takes as input R1, R2, . . . , Rn without getting to know any of the inputs. There are
multiple ways to preform SA including pairwise masking and modern cryptographic
schemes such as fully homomorphic encryption, functional encryption, partial
homomorphic encryption, threshold Pailler, among others. These techniques differ
in multiple aspects as shown in Tables 13.2 and 13.3. The key differences are:

• Supported threat model: The threat model they cover differs on the trust each
of the SA techniques puts on the aggregator. Some approaches expose the
intermediate models to the aggregator while others only expose encrypted data
(see Table 13.2). Additionally, some techniques have verification provisions to
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Table 13.3 Behavior of the solutions under dynamic party participation

Verified Special

Approach aggregation New parties Dropout hardware

Secure aggregation

– Partial HE [58, 88] ✓ No rekeying ✗ ✗

– Fully HE [67] ✓ No rekeying ✓ ✗

– Threshold Paillier [80] ✗ Rekeying ✓ ✗

– Pairwise Mask [10, 40, 72] ✗ Rekeying ✓ ✗

– HybridAlpha (TPA-based FE) [84] ✓ No rekeying ✓ ✗

Special hardware support

– Truda (three aggregators)[15] ✓ No rekeying ✓ ✓

Federated boosted model

– Secure Federated GBM [48] ✗ Rekeying ✓ ✗

– Oblivious TEE-based XGBoost [46] ✓ No rekeying ✓ ✓

ensure that the aggregator can only fusion a minimum number of model updates
(see first column of Table 13.3).

• Dynamic participation: Another aspect where SA techniques differ is their
adaptability to parties joining the federation in the middle of the training
process and their tolerance to some parties leaving the federation intentionally
or accidentally. Some techniques require fully halting the training process to
re-key the system when a party drops or joins, while others are more resilient
against these changes and can continue training without modifications (see third
column Table 13.3). Clearly, techniques that do not require the entire system to
be rekeyed are preferred.

• Infrastructure: Each approach may require a different infrastructure setup. Some
of them require the use of additional fully trusted authorities or special hardware,
while others need multiple non-colluding servers that may increase the cost of
deployment a solution or special hardware.

In the following, we present in more detail each of SA techniques and discuss
their advantages and shortcomings.

13.3.1.1 Homomorphic Encryption-Based Secure Aggregation

Homomorphic encryption (HE) can be classified into partial HE and fully HE
depending on the types of operations that can be computed over encrypted data.

Partially Homomorphic Encryption schemes enable the computation of additive
operations over encrypted data by an untrusted entity. Paillier cryptosystem [60] and
its variants [56, 59] are some of the most used cryptosystems in this category. Partial
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HE cryptosystems satisfy the following property:

Enc(m1) ◦ Enc(m2) = Enc(m1 + m2).

Where Enc(m1) and Enc(m2) are encrypted and ◦ represents a predefined function.
In other words, an untrusted entity receiving Enc(m1) and Enc(m2) can compute
their addition without decrypting the m1 and m2. Notice that the untrusted entity
only obtains the result Enc(m1 + m2) in encrypted form.

Because most aggregation functions in FL require uniquely additive operations,
these cryptosystems are a popular option for FL [58, 88]. We now examine how this
cryptosystem is applied to FL in more detail. During setup all parties agree upon a
public/private key pair(pk, sk), and the aggregator receives a public encryption key
pk. The parties encrypt their model updates using pk before sending them to the
aggregator. Once the aggregator receives all encrypted model updates, it computes
the addition of model updates using its public key pk obtaining the encrypted result.
The encrypted result is then forwarded to the parties, who in turn decrypt them using
sk and continue the training in plaintext.

Compared to other SA approaches, the final result of the aggregation is never
revealed to the aggregator, who always obtains the fusion result encrypted. Addi-
tionally, no rekeying is needed in case of new parties join or drop the federation.
However, according to [84], partial HE may result in high computation and
communication costs compared to competing options. To overcome this downside,
BatchCrypt, an approach where each party quantizes its gradient values into low-
bit integer representations and then encodes a batch of quantized values to a
long integer for encryption, was recently proposed in [88]. These pre-processing
operations allow faster encryption/decryption times.

Approaches in this category are limited to additive operations. For this reason,
fusion algorithms that require more than a simple average of the model updates
cannot be implemented with partially HE schemes.

Fully Homomorphic Encryption schemes support all operations over encrypted
data. Thus, they can be used to implement many more fusion algorithms. How-
ever, they are more expensive computationally speaking. One such approach was
presented in [67].

All HE approaches by themselves are capable of preventing a curious aggregator
from inferring data from the intermediate and final models. This is the case because
the aggregator can only see this information encrypted. However, parties can decrypt
the models and, hence, are still able to infer information from the model itself.
Therefore, in Table 13.2, we have marked HE approaches as not providing privacy
of the output.

13.3.1.2 Threshold Paillier-Based Secure Aggregation

The Threshold Paillier cryptosystem [19] is a variant of the Paillier encryption
system [60] and, thus, supports the additive HE property. The main difference
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is that in this variant, a predefined number of trusted parties t are required to
collaboratively decrypt the ciphertext.

The use of this cryptosystem in FL settings was proposed in [80] to prevent
collusion attacks by making sure the final fusion result cannot be obtained unless
t trusted parties collaboratively decrypt it. During setup, each participant obtains a
public key pk for encryption and a private share secret key ski for partial decryption,
and the aggregator receives a combing decryption key dk. Each participant uses pk

to encrypt its model update and sends it to the aggregator. The aggregator fuses the
received encrypted model updates and sends the result back to t parties. Each party
then uses its ski to perform its partial decryption and sends it back to the aggregator.
Finally, after the aggregator receives at least t partially decrypted results, it makes
use of dk to acquire the aggregated model updates in plaintext.

Threshold Pailler approaches for secure aggregation are suitable for federations
where the aggregator is trusted to obtain the aggregated model updates in plaintext.
Additionally, they provide an interesting property that ensures that at least t trusted
parties need to agree to decrypt the model update. However, this functionality comes
at the cost of more communication rounds between parties and aggregator resulting
in longer training times.

13.3.1.3 Pairwise Mask-Based Secure Aggregation

Each party conceals their model update using pairwise random masks between
users to hide the individual input. Following that, the aggregator simply adds up
those masked model updates to obtain the global model. The protocol is built
in such a way that the pairwise random masks are cancelled out after all model
updates are aggregated. The initial pairwise mask design [10] relies on t-of-n secret
sharing [69] and requires four rounds of communication among parties and the
aggregator. The overhead of [10] grows quadratically with the number of parties. To
further improve the efficiency and scalability of [10], Turbo-Aggregate [72] employs
additive secret sharing and a multi-group circular strategy for model aggregation,
while FastSecAgg [40] proposes a novel multi-secret sharing scheme based on a
finite-field version of the Fast Fourier Transform.

Although pairwise mask-based approaches support parties dropping out, apply-
ing these techniques increases the number of messages exchanged between parties
and the aggregator increasing the training time. Additionally, the approach requires
rekeying when new parties arrive to the federation.

13.3.1.4 Functional Encryption-Based Secure Aggregation

Functional encryption (FE) [11] is an emerging family of cryptosystems that allow
the computation of a function f over a set of encrypted inputs, where the decrypter
obtains the final result of f in plaintext. To compute the function, the decrypter
entity needs to use a functional key that depends on the function evaluated f and
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the encrypted data. This functional key is provided by a trusted third party (TPA).
However, recently, new cryptosystems are removing the need for this entity.

The use of functional encryption for FL was first proposed by Xu et al. in [84],
where the concrete cryptosystem of choice is the multi-input inner-point functional
encryption [31]. This cryptosystem enables the aggregator to obtain in plaintext
the result of the function f (x, y) = ∑

i xiyi, where xi corresponds to the private
encrypted model update coming from party i and yi corresponds to the weight used
to fuse model update xi . That is, when y is a vector with ones, all model updates
have the same weight. When yi = 0, it means that xi will be ignored during the
aggregation.

During setup, given a maximum number of supported parties, the TPA initializes
the functional cryptosystem. Each party then receives its party-specific secret key
ski from the TPA. During training, each party encrypts its model update using
ski and sends the resulting ciphertext to the aggregator. After a predefined amount
of time elapses, the aggregator fusions all encrypted model updates received and
prepares vector y. Vector y is used to request a functional decryption key dky from
the TPA to fusion the received model updates and obtain the result in plaintext. If
some parties did not reply, the aggregator does not include a position for them in
vector y. This enables for a clean manage of dropouts without rekeying or further
communication rounds. Vector y is then sent to the TPA, who inspects y to ensure
providing the functional key for the received vector would not allow for inference
attacks where a malicious aggregator may try to isolate the model updates of one or
very few parties. If y complies with a pre-specified number of replies, the functional
encryption key is sent to the aggregator. Otherwise, the aggregator cannot compute
the aggregated result.

A distinctive advantage of the approach proposed in [84] is that it provides
support for verification of the number of aggregated model updates preventing
attacks from a curious aggregator trying to isolate a few model replies. It also
supports dynamic party dropout and new parties joining, without requiring more
than one message exchanged between the parties and the aggregator compared
to other SA approaches such as Pairwise Masking or threshold Pailler. On the
downside, the approach proposed in [84] requires the use of a TPA. This limitation
could be solved with new advances in the functional encryption field.

13.3.1.5 Summary Secure Aggregation

We overviewed representative SA approaches and highlighted their differences and
shortcomings. Some of the approaches are limited to additive fusion algorithms and
do not react fast to dynamic settings when parties join and drop requiring expensive
rekeying operations. Another salient difference is the number of messages that need
to be exchanged between the aggregator and parties to obtain the SA results, with
functional encryption solutions requiring a single message, while pairwise mask
solutions require four messages, and the threshold Pailler requiring three messages.
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Another main difference between SA solutions is their trust assumption in the
aggregator. Most approaches trust the aggregator with the SA results in plaintext
(Table 13.2), with the exception of Partial HE schemes where resulting SA model
updates are encrypted and remains unknown to the aggregator. In scenarios where
the aggregator deploys the final model and has test data to score the model
performance, having the model in plaintext is useful. For use cases in which the
aggregator is fully untrusted, Partial HE-based techniques may be more suitable.

SA techniques where the resulting SA fusion results are in plaintext have been
recently shown to be vulnerable to disaggregation attacks [45, 71]. In disaggregation
attacks, a curious aggregator may use SA results from multiple rounds to infer the
model of a single party. When the party’s model is isolated, the curious aggregator
can carry any attack presented in Table 13.1 that takes as input the model itself
making SA pointless. To prevent this type of attack, careful sub-sampling of parties
has been proposed in [71]. This approach adds an additional layer of protection
and requires the integration of TEE to bootstrap trust (Sect. 13.3.3). We note,
however, that the solution only works for federations with large number of parties.
Therefore, given the current state of the art, to prevent disaggregation attacks in
small federations, it is best to use SA techniques where the result is encrypted.

Finally, adequately employing SA defenses4 can only prevent inference based
on individual model updates. SA on itself does not prevent any of the attacks based
on the final or intermediate models. For that purpose, syntactic and perturbation
approaches have been proposed and we overview them in the following.

13.3.2 Syntactic and Perturbation Approaches

Defenses in this category include solutions that aim to prevent inference attacks
that use the final or model updates. K-anonymity and differential privacy are among
those inference prevention techniques.

13.3.2.1 K-Anonymity-Based Approaches

K-anonymity is a technique to anonymize data that relies in hiding records in
groups of k [76], these groups are defined by quasi-identifiers which are information
that may serve to identify a potential individual records. For example, zip code,
age, gender and race are quasi-identifiers that may serve to identify an individual.
Defining the quasi-identifiers requires identifying in advance what background
information an adversary may use to identify records in the training data.

4 By adequate we mean applying additional sub-sampling techniques required for SA approaches
vulnerable to disaggregation attacks as previously explained.
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An adaptation of k-anonymity for FL training was presented in [17], where
Choudhury et al. claim the approach is legally compliant with privacy legislations
in the US, Canada and Spain (2020). The approach works for tabular data and
applies k-anonymity in each of the parties independently prior to training resulting
in multiple anonymization schemas. When the model is going to be used at inference
time, the input is pre-processed according to the closest k-anonymity schema of each
party.

One positive aspect of this approach is the interpretability of the parameters
used: hiding a sample in a group of k is a very intuitive concept. One of the mayor
drawbacks of k-anonymity-based approaches is the fact that the construct depends
on the defender’s ability to effectively anticipate the background information an
adversary will have. Hence, if the adversary has more background information
than anticipated, privacy can be compromised as demonstrated in [51]; albeit these
attacks have not been demonstrated in the FL setting. Differential privacy is an
alternative approach that addresses this shortcoming.

13.3.2.2 Differential Privacy-Based Approaches

Differential privacy (DP) [21] is a mathematical framework design to provide a
rigorous measure of information disclosure about individual records used in the
computation of a function. A training algorithm is described as deferentially private
if and only if the inclusion of a single sample in the training data causes only
statistically insignificant changes to the algorithm’s output.

The formal definition of DP is the following [21]: A randomized mechanism5 M
provides (ε, δ)-differential privacy if for any two neighboring database D1, D2 that
differ only in a single entry, ∀S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ eε · Pr[M(D2) ∈ S] + δ.

When δ = 0, M is said to satisfy ε-differential privacy.
The smaller the ε, the higher the protection. The additive term δ allows for a

relaxation of the definition and enables mechanisms to provide higher utility, in the
case of FL, this means increasing the model performance. To create a differential
private mechanism, noise proportional to the sensitivity of the output is added
to the algorithm’s output. The sensitivity measures the maximum change of the
output caused by the inclusion of a single data sample. Laplacian and Gaussian
mechanisms are popular functions to achieve DP and to reduce the sensitivity,
clipping values is a common practice.

An extensive set of mechanisms to optimally add DP noise while training ML
models when all data is in a central place are available in the literature, e.g., [1, 36,
74, 79]. In most cases, these mechanisms can be adapted to FL.

5 A mechanism can be understood as an algorithm designed to inject DP noise.
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There are three ways in which DP can be applied in FL settings: local, centralized
and using a Hybrid approach that encompasses DP with SA. Applying one or the
other addresses a different threat models.

• Local DP [41, 65] is applicable in settings where parties do not trust the
aggregator. For this reason, each party independently adds noise to the model
updates before sending them to the untrusted aggregator. The downside of this
approach is that the amount of noise typically causes the model to perform poorly.

• Global DP is applicable when the aggregator can be trusted to add DP noise to
the model. Global DP ensures that less noise is added resulting in higher model
performance compared to local DP.

• SA-and-Local DP Hybrid [80] This approach was created to overcome the
limitations of local DP to ensure faster convergence times and better model
performance. It is applicable to settings where parties do not trust the aggregator.
The approach consists of using a SA technique in combination to local DP.
This combination ensures that the model updates are not visible in isolation to
the aggregator. Hence, each party can add less noise to its model update while
maintaining the same privacy guarantee that would result by simply applying
local differential privacy. In other words, this hybrid approach ensures the same
DP guarantee can be obtained while the amount of total noise injected is reduced
by a factor of n, where n is the number of parties. A mathematical formulation
of why this is the case can be found in [80]. The SA approach proposed in [80]
was Threshold Pailler, but the technique also works for other types of SA as
demonstrated in [84].

A very appealing feature of DP is the mathematical guarantee it provides without
making assumptions on the background information an adversary may have. At the
same time, challenges of applying DP include defining the right ε value required for
a use case, and the fact that adding noise may result in lower performing models.
While ideally ε values should not be higher than 0.1 and the recommendation is
not higher than one [23], in reality simple queries require epsilon up to one and
for classical ML models epsilons up to 10. For neural networks, ε values greater
than 100 are common [16], raising concerns of the actual protection provided by
adding DP. The difficulty in interpretability of ε and the large values have motivated
the approach based on k-anonymity previously described in this section. However,
to ease this difficulty, Holohan et al. [35] proposed a methodology to map the
Randomize response survey technique [82] to epsilon values, which provides some
interpretability to ε.

Contrary to popular believe, DP is not a silver bullet against all privacy attacks
presented in Sect. 13.2. Membership inference, inversion attacks and extraction
attacks can be prevented by DP [12]. Let us revisit the DP definition to understand
why other attacks may not be prevented by adding noise. According to its privacy
definition, DP provides a quantitative privacy guarantee for indistinguishably of
individual samples. However, the general information on the population is still
available. In fact, one may argue that this is the main reason one would apply DP
in the first place: obtaining a good generalizable model without compromising the
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privacy of individual records. Another assumption of DP is that records in the same
dataset are independent [18, 44], which may not be the case in FL or general ML
settings. Based on its definition and assumptions, it has been shown that using DP
does not deter property based attacks [7, 27, 54]. The reason for which DP does not
work against property attacks is the fact that they rely on aggregated properties of
the population, while DP focuses on protecting individual samples. It is important
to understand this difference to avoid falling into a false sense of privacy.

Currently, DP is one of the best ways to protect the privacy of individual samples
and is still an area of ongoing research. An interesting discussion of open challenges
and pitfalls of applying DP in real situations has been presented by Domingo et
al. in [20]. Additional research focuses on reducing the amount of noise under
the interactive nature of FL, where multiple rounds of communication between the
aggregator and parties are often required.

13.3.3 Trusted Execution Environments (TEE)

Another set of defenses rely on trusted execution environments (TEE) [46]. A
TEE is a secure area of computer’s main processor that is designed to protect
the confidentiality and integrity of the code and data loaded inside. Examples
TEEs include IBM Hyper Protect™ [62], Intel SGX™ [52], and AME Memory
Encryption™ [43]. One of the core features of TEEs is their ability to perform
remote attestation. Remote attestation allows a remote client to verify that a specific
software version has been securely loaded into the enclave. Hence, TEEs are suitable
to run code in untrusted environments while ensuring the code run is the expected.

Thanks to the secure attestation feature, it is possible to ensure an aggregator
running on a TEE uses the expected code preventing active attacks where a
malicious aggregator may deviate from the expected behavior. Hence, we can ensure
that the aggregator combines a minimum number of model updates preventing active
attacks that isolate one or a few model updates. It is also possible to ensure it
performs Global DP adequately and that, in general, it follows the right protocol.
If deploying special hardware is possible, using TEE at the parties side can also
improve the security of the system ensuring all participants run the pre-specified
source code. This, however, may not be easy to achieve in settings where parties are
consumer devices, run in legacy hardware or there is limited budget.

Potential vulnerabilities of the TEE include side-channel attacks and cukoo
attacks [64] that enable an adversary to compromise the privacy of the data loaded
by the TEE. To prevent potential side-channel attacks Law et al. [46] redesigned an
adaptation of XGBoost for FL to be data-oblivious. Finally, using a TEE requires
special hardware and setting up correctly the keys in the system to prevent cukoo
attacks that compromise the cryptographic keys of the system [64].

In [15], data extraction attacks where a curious aggregator takes advantage of
the gradients exchanged are deterred by decentralizing the aggregation process.
The solution, called Truda, changes the FL architecture by introducing three TEE-
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aggregators that receive a partial view of the model. Parties agree on what pieces
of the model sent to each aggregator, and no aggregator obtains all the model.
Truda works for fusion algorithms that only require average of model updates. More
advanced algorithms such as the ones required to train tree-boosting models based
or PFMN [86] cannot be adapted to this architecture.

13.3.4 Other Techniques for Distributed Machine Learning
and Vertical FL

In addition to the privacy-preserving approaches discussed above, there exist other
techniques designed for distributed ML that have slightly different architectures to
FL. These include Helen [90], Private Aggregation of Teacher Ensembles (PATE)
[61] and its variant [49], as well as SecureML [55], where data is distributed among
two non-colluding servers who jointly train a model using two-party computation.
Because their architectures are different to FL, we do not expand on them in this
chapter.

In this chapter, we focus our attention to the horizontal FL case, where all parties
have the same input data and, thus, can train locally their own models. Vertical FL
(Chap. 18) and split learning (Chap. 19) work for different setups. In vertical FL,
each party holds only a partial set of the features and only one party typically holds
the label while in split learning a different piece of the model may be trained in
different parties. Thus, a single party cannot train a model on their own. Inference
attacks and defenses have also been presented for these different setups [39, 47].
The threats in these settings may differ, for example, label inference is a potential
attack [47]. Determining their vulnerabilities and designing defenses is still an open
question.

13.4 Selecting the Right Defense

We have reviewed existing attacks and defenses and are now ready to define what
defenses are applicable in different cases. Unfortunately, there is no free lunch
when applying a defense as it was highlighted during their detail presentation in the
previous section. Incorporating different defenses may lead to longer training times,
lower performing models or more expensive deployment. Thus, it is necessary to
find a sweet spot to prevent relevant attacks for each federation. We now analyze
different scenarios.
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13.4.1 Fully Trusted Federations

Consider a scenario where all the parties engage in the federation are owned by the
same company. This case is embodied, for example, by a company who has stored
data in different clouds, data warehouses, countries or has acquired other companies
resulting in fragmented datasets. Another example of this type of scenario is a
federation where the training task does not involve the use of sensitive data; yet,
participants do not want to transfer the data to a single place due to its large volume.

These are low risk scenarios where there is no reason to mistrust each of the
parties or the aggregator. Therefore, it is possible to employ plain FL without
other protections, other than our assumed secure-and-authenticated channels. With
respect to potential outsiders, it is possible to use Global DP to minimize attacks
based on the final model. Otherwise, no DP needs to be added.

13.4.2 Ensuring that the Aggregator Can Be Trusted

There are multiple ways to ensure a federation can trust an aggregator. A common
way to ensure this is the case is to run the aggregator by a trusted party. Alternatively,
the aggregator may be run as a service where through contractual clauses trust may
be achieved. The aggregator can also be required to be run using TEE so that parties
can verify the aggregator is running the correct code through attestation. Such an
aggregator as a service is a practical way to ensure fast deployment in consortium
cases where all participants can find trusted company to host the aggregator.

In some cases, adding proper accountability to the process may also help boost
trust in the aggregator and parties. Recently, an accountability framework for FL
was proposed in [9], where all entities engage can subsequently audited if needed. It
is in the best interest of a company running aggregators as a service to comply with
its contracts, and it is even more critical to do so if it can be audit. Accountability
services help ensure there is a way to verify different entities behaved as expected
while offering a way for potentially mistrusting parties to verifying during the
training process the system is behaving properly. Although accountability cannot
prevent inference of information by inspecting the results of the well-executed
process, it can help ensure the aggregator is a honest-but-curious adversary, meaning
that it adheres to the protocol but may try to infer information based on the
information it obtains in the process.

Whenever possible it is beneficial to trust the aggregator. One big advantage
of this type of deployment is that the aggregator can offer additional features that
require the inspection of individual replies. Among them are running robust learning
algorithms that are resilient against noisy model updates or failures in the setup,
as well as algorithms to detect and mitigate potential active attacks performed
by misbehaving parties. In other words, a risk assessment to see what is more
important for the federation is needed. In some cases, mitigating the aggregator’s
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capabilities to perform inference by using the above listed techniques is deemed as
enough mitigation to have it as an ally to prevent attacks from parties. In some other
scenarios, the risk exposure may be unbearable.

13.4.3 Federations with an Untrusted Aggregator

In some cases, the aforementioned provisions may not be enough to trust the
aggregator to obtain individual parties’ model updates. For instance, the consumer
space, where users may fear their private information is obtained by big companies.
In these cases, SA techniques and DP can be applied. In fact, Google, Apple, and
other consumer companies are already using local DP to provide privacy of the input
and create trust among their users while enabling service improvement [66, 77].

Not all SA techniques offer the same protection. Different SA mechanisms are
more suitable than others depending on whether the aggregator and other parties are
mistrusted simultaneously. Let us analyze these cases.

The Aggregator Is Trusted to Offer Additional Functionality that Requires Access to
the Model Consider the case where the federation wants to make use of an extended
set of services offered by the aggregator that require this entity to access the model
in plaintext. For example, the federation may want the aggregator to evaluate the
performance of a model based on public data or to deploy the resulting model as a
service. Solutions where the SA enables the aggregator to see the model in plaintext
are adequate for these use cases.

We also highlight that SA mechanisms that enable the aggregator to obtain the
model in plaintext need to be complemented with additional provisions to prevent
disaggregation attacks. To mitigate disaggregation inference risks, it is necessary
to ensure that all parties are selected and their model updates aggregated, or that
sub-sample parties selections of multiple rounds do not lead to inference. Clearly,
the first solution only works for small federations, while the second one can only
be applied to large federations. For small federations, the modification is not
particularly taxing, as it is typical to include all parties in all rounds to fully leverage
their data.

To mitigate the risk of a malicious aggregator isolating replies of a few parties,
HybridAlpha [84], the functional encryption-based SA presented in the previous
section provides an inference module that verifies a minimum number of replies
that have been aggregated before providing a functional key to obtain the model.
This module prevents this type of attack. Another potential solution is to run in a
TEE to verify the specified number of parties is indeed aggregated.

Now let us consider a federation where parties do not fully trust each other and
are concerned other parties may try to obtain private information. Example scenarios
in this category include multiple competitors collaborating to detect fraud, where
each competing party may benefit from learning data about other parties. In the case
the federation fears inference from different parties, for example, fearing attacks
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where a few curious parties may collude. In those cases, the solution presented in
[80] which encompasses SA and DP is particularly useful. The cryptosystem of
choice, threshold Paillier, allows for verification that ensures a subset of t trusted out
of n total parties need to contribute to obtain the model in plaintext. As a bonus, the
solution prevents inference by reducing the noise compared to local DP as outlined
in the previous section.

The Aggregator Is Not Trusted with the Model In certain cases, a federation may
find too risky to provide the model to the aggregator. In these cases, HE techniques
are recommended. Notice that the final model is going to be accessible by parties
owning the cryptographic keys. If inferences over the model are relevant, then DP
may be added.

In the above analysis, we have avoided discussing particular regulations, as
regulations keep evolving and, to date, there is no clear mapping between regulation
requirements and technical solutions. This is a relevant open question that we expect
will be solved as FL is increasingly applied in regulated settings.

13.5 Conclusions

FL is a privacy by design system that has substantially improved the state-of-the-art
techniques that require transmitting private data to a central place. From the privacy
perspective, there is a clear benefit over other approaches that move data, as the
data can always remain with its rightful owner. Although, some inference attacks
have been demonstrated, current defenses and research efforts can be incorporated
to mitigate them. Inference of private data in FL systems is a relevant risk for
some federations where exposing private data is an important consideration. In this
chapter, we have overviewed the attack surfaces, the threats, and the defenses to help
provide a holistic view of the risk inherent to participating in FL. We also presented
multiple attacks characterizing them based on the attack surface, the objective the
adversary had and also providing some details on how they may be carried out. As
highlighted by our literature review, some attacks may not be realistic as simply
changing hyperparameters of the training process can easily deter them, while in
some other cases FL creates new relevant threats.

We also presented multiple defenses and highlighted their benefits and drawbacks
showing that one size does not fit all. The details of the design of each defense imply
various trust assumptions and made them suitable to different applications as they
have inherently diverse computational and transmission costs. Matching the right
level of protection to the use case is imperative to ensure only necessary overheads
are incurred by adding defenses, while deterring relevant risks. Without a doubt, new
attacks will emerge creating an arm’s race between defenders and adversaries. As
future work, enhancing different techniques to reduce overheads and understanding
how different legislation and regulation can be mapped to concrete technologies is
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required. We hope this chapter has helped clarify the state of the art of attacks and
available defenses to improve and facilitate the decision making process.
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