
Heiko Ludwig
Nathalie Baracaldo Editors

Federated
Learning
A Comprehensive Overview of Methods
and Applications

Federated Learning

Heiko Ludwig • Nathalie Baracaldo
Editors

Federated Learning
A Comprehensive Overview of Methods
and Applications

Editors
Heiko Ludwig
IBM Research – Almaden
San Jose, CA, USA

Nathalie Baracaldo
IBM Research – Almaden
San Jose, CA, USA

ISBN 978-3-030-96895-3 ISBN 978-3-030-96896-0 (eBook)
https://doi.org/10.1007/978-3-030-96896-0

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-96896-0

Preface

Machine learning has made great strides over the past two decades and has been
adopted in many application domains. Successful machine learning depends largely
on access to quality data, both labeled and unlabeled.

Concerns related to data privacy, security, and sovereignty have caused public
and technical discussion on how to use data for machine learning purposes
consistent with regulatory and stakeholder interests. These concerns and legislation
have led to the realization that collecting training data in large central repositories
may be at odds with maintaining privacy for data owners.

While distributed learning or model fusion has been discussed since at least
a decade, federated machine learning (FL) as a concept has been popularized by
MacMahan and others since 2017. In the subsequent years, much research has been
conducted – both, in academia and the industry – and, at the time of writing this
book, the first viable commercial frameworks for federated learning are coming to
the market.

This book aims to capture the research progress and state of the art that has been
made in the past years, from the initial conception of the field to first applications
and commercial use. To get this broad and deep overview, we invited leading
researchers to address the different perspectives of federated learning: the core
machine learning perspective, privacy and security, distributed systems, and specific
application domains.

The book’s title, Federated Learning: A Comprehensive Overview of Methods
and Applications, outlines its scope. It presents in depth the most important
issues and approaches to federated learning for researchers and practitioners. Some
chapters contain a variety of technical content that is relevant to understand the
intricacies of the algorithms and paradigms that make it possible to deploy federated
learning in multiple enterprise settings. Other chapters focus on providing clarity on
how to select privacy and security solutions in a way that can be tailored to specific
use cases, while others take into consideration the pragmatics of the systems where
the federated learning process will run.

Given the inherent cross-disciplinary nature of the topic, we encounter different
notational conventions in different chapters of the book. What might be parties in

v

vi Preface

federated machine learning may be called clients in the distributed systems perspec-
tives. In the introductory chapter of this book, we lay out the primary terminology
we use, and each chapter explains how the discipline-specific terminology maps to
the common one when it is introduced, if this is the case. With this approach, we
make this book understandable to readers from diverse backgrounds while staying
true to the conventions of the specific disciplines involved.

Taken as a whole, this book enables the reader to get a broad state-of-the-art
summary of the most recent research developments.

Editing this book, and writing some of the chapters, required the help of many,
who we want to acknowledge. IBM Research gave us the opportunity to work in
this exciting field, not just academically but also to put this technology into practice
and make it part of a product. We learned invaluable lessons on the journey, and we
have much to thank to our colleagues at IBM. In particular, we want to acknowledge
our director, Sandeep Gopisetty, for giving us the space to work on this book: Gegi
Thomas, who made sure our research contributions make their way into the product:
and our team members.

The chapter authors provide the substance of this book and were patient with us
with requests for changes to their chapters.

We owe greatest thanks to our families, who patiently put up with us devoting
time to the book rather than them over the year of writing and editing this book.
Heiko is deeply thankful to his wife, Beatriz Raggio, for making these sacrifices
and supporting him throughout. Nathalie is profoundly thankful to her husband and
sons, Santiago and Matthias Bock, for their love and support and for cheering for
all her projects, including this one. She also thanks her parents, Adriana and Jesus;
this and many more achievements would not be possible without their amazing and
continuous support.

San Jose, CA, USA Heiko Ludwig
September 2021 Nathalie Baracaldo

Contents

1 Introduction to Federated Learning . 1
Heiko Ludwig and Nathalie Baracaldo

Part I Federated Learning as a Machine Learning Problem

2 Tree-Based Models for Federated Learning Systems 27
Yuya Jeremy Ong, Nathalie Baracaldo, and Yi Zhou

3 Semantic Vectorization: Text- and Graph-Based Models 53
Shalisha Witherspoon, Dean Steuer, and Nirmit Desai

4 Personalization in Federated Learning. 71
Mayank Agarwal, Mikhail Yurochkin, and Yuekai Sun

5 Personalized, Robust Federated Learning with Fed+ 99
Pengqian Yu, Achintya Kundu, Laura Wynter, and Shiau Hong Lim

6 Communication-Efficient Distributed Optimization Algorithms 125
Gauri Joshi and Shiqiang Wang

7 Communication-Efficient Model Fusion . 145
Mikhail Yurochkin and Yuekai Sun

8 Federated Learning and Fairness . 177
Annie Abay, Yi Zhou, Nathalie Baracaldo, and Heiko Ludwig

Part II Systems and Frameworks

9 Introduction to Federated Learning Systems. 195
Syed Zawad, Feng Yan, and Ali Anwar

10 Local Training and Scalability of Federated Learning Systems 213
Syed Zawad, Feng Yan, and Ali Anwar

11 Straggler Management . 235
Syed Zawad, Feng Yan, and Ali Anwar

vii

viii Contents

12 Systems Bias in Federated Learning . 259
Syed Zawad, Feng Yan, and Ali Anwar

Part III Privacy and Security

13 Protecting Against Data Leakage in Federated Learning:
What Approach Should You Choose? . 281
Nathalie Baracaldo and Runhua Xu

14 Private Parameter Aggregation for Federated Learning. 313
K. R. Jayaram and Ashish Verma

15 Data Leakage in Federated Learning . 337
Xiao Jin, Pin-Yu Chen, and Tianyi Chen

16 Security and Robustness in Federated Learning . 363
Ambrish Rawat, Giulio Zizzo, Muhammad Zaid Hameed,
and Luis Muñoz-González

17 Dealing with Byzantine Threats to Neural Networks 391
Yi Zhou, Nathalie Baracaldo, Ali Anwar, and Kamala Varma

Part IV Beyond Horizontal Federated Learning: Partitioning
Models and Data in Diverse Ways

18 Privacy-Preserving Vertical Federated Learning . 417
Runhua Xu, Nathalie Baracaldo, Yi Zhou, Annie Abay,
and Ali Anwar

19 Split Learning: A Resource Efficient Model and Data
Parallel Approach for Distributed Deep Learning . 439
Praneeth Vepakomma and Ramesh Raskar

Part V Applications

20 Federated Learning for Collaborative Financial Crimes
Detection . 455
Toyotaro Suzumura, Yi Zhou, Ryo Kawahara, Nathalie Baracaldo,
and Heiko Ludwig

21 Federated Reinforcement Learning for Portfolio Management 467
Pengqian Yu, Laura Wynter, and Shiau Hong Lim

22 Application of Federated Learning in Medical Imaging 483
Ehsan Degan, Shafiq Abedin, David Beymer, Angshuman Deb,
Nathaniel Braman, Benedikt Graf, and Vandana Mukherjee

23 Advancing Healthcare Solutions with Federated Learning 499
Amogh Kamat Tarcar

Contents ix

24 A Privacy-preserving Product Recommender System 509
Tuan M. Hoang Trong, Mudhakar Srivatsa, and Dinesh Verma

25 Application of Federated Learning in Telecommunications
and Edge Computing . 523
Utpal Mangla

Chapter 1
Introduction to Federated Learning

Heiko Ludwig and Nathalie Baracaldo

Abstract Federated learning (FL) is an approach to machine learning in which
the training data is not managed centrally. Data is retained by data parties that
participate in the FL process and is not shared with any other entity. This makes
FL an increasingly popular solution for machine learning tasks for which bringing
data together in a centralized repository is problematic, either for privacy, regulatory,
or practical reasons. In this chapter, we introduce the basic concepts of FL, provide
an overview of its application use cases, and discuss it from a machine learning,
distributed computing, and privacy perspective. We also provide an introduction to
dive deep into the matter covered in the subsequent chapters.

1.1 Overview

Machine learning (ML) has become a crucial technique to develop cognitive and
analytic functionality difficult and ineffective to develop algorithmically. Applica-
tions in computer vision, speech recognition, and natural language understanding
progressed by leaps and bounds with the advent of Deep Neural Networks (DNNs)
and the computational hardware to train complex networks effectively. Also,
classical ML techniques such as decision trees, linear regression, and support vector
models (SVMs) found increased use, in particular related to structured data.

The application of ML critically depends on the availability of high-quality
training data. Sometimes, though, privacy considerations prevent training data to
be brought to a central data repository to be curated and managed for the ML
process. Federated learning (FL) is an approach first proposed by this name in [28]
to train ML models on training data in disparate locations, not requiring the central
collection of data.

H. Ludwig (�) · N. Baracaldo
IBM Research – Almaden, San Jose, CA, USA
e-mail: hludwig@us.ibm.com; baracald@us.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_1&domain=pdf
mailto:hludwig@us.ibm.com
mailto:baracald@us.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_1

2 H. Ludwig and N. Baracaldo

An important driver for this reluctance to use a central data repository has
been consumer privacy regulation in different jurisdictions. The European Union’s
General Data Protection Regulation (GDPR) [50], the Health Insurance Portability
and Accountability Act (HIPAA) [53], and the California Consumer Privacy Act
(CCPA) [48] are example regulatory frameworks for the collection and use of
consumer data. In addition, news coverage of data breaches have raised awareness of
the liability entailed by storing sensitive consumer data [9, 42, 43, 51]. FL facilitates
using data without actually having to store it in a central repository, mitigating
this risk. Regulation also restricts the movement of data between jurisdictions such
as different countries. This is motivated by considering data protection in other
countries potentially insufficient or related to national security, requiring critical
data to remain onshore [40]. National and regional regulations pose challenges for
international companies with subsidiaries in different markets but want to train a
model using all their data. Beyond regulatory requirements, learning from data in
disparate locations might also be just practical. Poor communication connections
and the sheer amount of data collected by sensors or in telecommunication devices
can make central data collection infeasible. FL also enables different companies
to work together creating models for mutual benefit without revealing their trade
secrets.

How does FL work then? In the FL approach, a set of distinct parties, who control
their respective training data, collaborate to train a machine learning model. They
do this without sharing their training data with other parties—or any other third-
party entity. Parties to the collaboration are also called clients or devices in the
literature. Parties can be a variety of things, including consumer devices such as
smart phones or cars, but also cloud services of different providers, data centers
processing enterprise data in different countries, application silos within a company,
or embedded systems such as manufacturing robots in an automotive plant.

While the FL collaboration can be conducted in different ways, its most common
form is outlined in Fig. 1.1. In this approach, an aggregator, sometimes called a
server or coordinator, facilitates the collaboration. Parties perform a local training
process based on their private training data. When their local training is completed,
they send their model parameters to the aggregator as model updates. The type of
model updates depends on the type of machine learning model to be trained; for a
neural network, for example, the model updates might be the weights of the network.
Once the aggregator has received the model updates from the parties, they can then
be merged into a common model, a process we call model fusion. In the neural
network example, this can be as simple as averaging the weights, as proposed in
the FedAvg algorithm [38]. The resulting merged model is then distributed again
to the parties as model update to form the basis of the next round of learning. This
process can be repeated over multiple rounds until the training process converges.
The role of the aggregator is to coordinate the learning process and information
exchange between the parties and to perform the fusion algorithm to merge the
model parameters from each party into a common model. The result of the FL
process is a model that is based on the training data of all parties, while the training
data is never shared.

1 Introduction to Federated Learning 3

Fig. 1.1 Federated learning overview

The FL approach appears to be related to distributed learning on clusters [15],
which is a common approach for large ML tasks. Distributed learning uses a cluster
of compute nodes to share the computational effort of ML and thereby accelerate the
learning process. Distributed learning typically uses a parameter server to aggregate
results from nodes, not unlike in the federated model. However, it is different in
some important ways. In FL, the distribution and quantity of data are not controlled
centrally and might be unknown if all training data is kept private. We cannot make
assumptions about the independence and identical distribution (IID) of data among
the parties. Likewise, some parties may have more data than others, leading to an
imbalance of the datasets among the parties. In distributed learning, data is managed
centrally and distributed to different nodes in shards, with a central entity being
aware of the stochastic properties of the data. Imbalance and non-IIDness of party
data must be accounted for when designing FL training algorithms.

In contrast, in FL, the number of parties may vary, depending on the use case.
Training a model on datasets in different data centers of a multi-national company
may have fewer than ten parties. This is often called an enterprise [35] or cross-silo
use case [26]. Training on data of a mobile phone application may have hundreds of
millions of parties contributing. This is typically referred to as the cross-device use
case [26]. In the enterprise use case, it is generally important to consider model
updates from all or most parties in every round. In the device use case, every
FL round will only include a—potentially large—sub-sample of the total set of
devices. In the enterprise use case, the FL process considers the identity of the
parties involved and can use this in the training and verification process. In the
cross-device use case, party identity is generally not important, and a single party
might be involved only in one round of training.

In the device use case, more than in the enterprise scenario, communication
failure of some devices can be assumed, given the large number of participants. Cell

4 H. Ludwig and N. Baracaldo

phones can be off or a device might be in an area of poor network coverage. This can
be managed by sampling parties and setting up time limits to perform aggregation,
or other mitigation techniques. In the enterprise use case, communication failure
has to be carefully managed as individual party contributions are relevant given the
small number of participants.

In the remainder of this chapter, we will provide an overview of FL. We provide
a formal introduction to the main concepts used in the next section. After that, we
discuss FL from three important perspectives, each in a separate section: First, we
discuss FL from the machine learning perspective; then, we cover the security and
privacy perspective by outlining threats and mitigation techniques; and finally, we
present an overview of the systems’ perspective of federated learning. This will
provide a starting point to the remainder of the book.

1.2 Concepts and Terminology

Like any machine learning task, FL trains a model M representing a predictive
function f on training data D. M can have the structure of a neural network or
any other, non-neural model. In contrast to centralized machine learning, D is
partitioned between n parties P = {P1, P2, . . . , Pn}, where each party Pk ∈ P

owns a private training dataset Dk . An FL process involves an aggregator A and a
set of parties P . It is important to note that Dk can only be accessed by party Pk . In
other words, no party has knowledge of any other dataset than its own, and A has
no knowledge of any dataset.

How the FL process is conducted at this abstract level is shown in Fig. 1.2. To
train a global machine learning model M, the aggregator and the parties perform a
Federated Learning algorithm that is executed in a distributed way at the aggregator

Fig. 1.2 Federated learning concepts

1 Introduction to Federated Learning 5

and the parties. The main algorithmic components are each party’s local training
function L, which performs the local training on dataset Dk , and the aggregator’s
fusion function F , which combines the results of each party’s L into a new joint
model. There can be a set of iterations of local training and fusion, which we call
rounds, using the index t . The execution of the algorithm is coordinated by sending
messages between parties and aggregator. The overall process runs as follows:

1. The process starts at the aggregator. To train the model, the aggregator uses a
function Q that takes as input the model of the previous round of the training
Mt−1 at round t , and generates a query qt for the current round. When the process
starts, M0 may be empty or just randomly seeded. Also, some FL algorithms
may include additional inputs for Q and may tailor queries to each party, but
for simplicity of discussion and without loss of generality, we use this simpler
approach.

2. The query qt is sent to the parties and requests information about their respective
local model or aggregated information about each party’s dataset. Example
queries include requests for gradients or model weights of a neural network, or
counts for decision trees.

3. When receiving qt , the local training process performs the local training function
L that takes as input query qt and the local dataset Dk and outputs a model update
rk,t . Usually, the query qt contains information that the party can use to initialize
the local training process. This includes, for example, model weights of the new,
common model Mt to initialize local training, or other information for different
model types.

4. When L is completed, rk,t is sent back from party pk to the aggregator A, which
collects all the rk,t from all parties.

5. When all expected parties’ model updates Rt = (r1,t , r2,t , . . . , rn,t) are received
by the aggregator, they are processed by applying fusion function F that takes as
input Rt and returns Mt .

This process can be executed over multiple rounds and continues until a
termination criterion is met, e.g., the maximum number of training rounds tmax has
elapsed, resulting in a final global model M = Mtmax . The number of rounds
required can vary highly, from a single model merge of a Naive Bayes approach to
many rounds of training for typical gradient-based machine learning algorithms.

The local training function L, the fusion function F , and the query generation
function Q are typically a complimentary set that is designed to work together.
L interacts with the actual dataset and performs the local training, generating the
model update rk,t . The content of Rt is the input to F and, thus, must be interpreted
by F , which creates the next model Mt of this input. If another round is required,
Q then creates another query.

In further sections, we will describe in detail how this process takes place in the
case of training neural networks, decision trees, and gradient-boosted trees.

We can introduce different variants to this basic approach to FL: In the case of
cross-device FL, the number of parties is often large, in the millions. Not all parties

6 H. Ludwig and N. Baracaldo

participate in every round. In this case, Q determines not only the query but also
which parties Ps ⊂ P to include in the next round of querying. The party selection
can be random, based on party characteristics, or on the merits of prior contributions.

Also, queries to each party might be different, with F needing to integrate the
results of different queries in the creation of a new model Mt .

While an approach with a single aggregator is most commonly used and practical
for most scenarios, other alternative FL architectures have been proposed. For
example, every party Pk might have its own, associated aggregator Ak , querying
the other parties; the set of parties might be partitioned between aggregators,
and a hierarchical aggregation process may take place. In the remainder of the
introduction, we focus on the common single aggregator configuration.

1.3 Machine Learning Perspective

In this section, we look at federated learning from its machine learning perspective.
The choices of the approach to a federated learning system—such as what informa-
tion to send in queries—influence the machine learning behavior. We discuss this in
the following subsections for different machine learning paradigms.

1.3.1 Deep Neural Networks

DNNs have become very popular and lend themselves to FL in a relatively
straightforward way in its basic approach by training locally at each party and fusing
local training results at the aggregator. Local training L often corresponds to the
regular—centralized—training of a neural network at party Pk and its parameters
wk in each round t . We optimize at each party Pk

w∗
k = arg minwk

1

|Dk|
∑

(xi ,yi)∈Dk

l(wk, xi, yi), (1.1)

minimizing the loss function l for parameters wk , the weight vector of the neural
network, on the party’s training dataset Dk . If a gradient descent algorithm is used,
in each epoch τ of a given round t , wk is updated as follows:

w
t,τ
k := w

t,τ−1
k − ηk�l(w

t,τ−1
k , Xk, Yk). (1.2)

The loss function l is computed based on the local data Dk , comprised of samples
Xk and labels Yk , and can be any suitable function such as the commonly used
Mean-Squared Error (MSE). The parameters for this round w

t,τ
k are updated using

1 Introduction to Federated Learning 7

the party-specific learning rate ηk . Each local round is seeded with a new model
update from the aggregator, w

t,0
k , which provides the new starting point for local

training for each round.
We can make choices regarding the party-local hyperparameters when setting up

a federated learning system or a specific FL project, for example:

• Which batch size should we choose for the party-local gradient descent algo-
rithm: one, i.e., the original Stochastic Gradient Descent (SGD); the whole set;
or a suitable mini-batch size?

• How many local epochs are run before sending model updates rk,t to the
aggregator? Should all parties use the same number of epochs in each round?
Training just a single epoch in each party prevents local models wk from
diverging much from each other but causes much more network traffic and
frequent aggregation activity. Running multiple epochs, or even a different
number of epochs in different parties, can cause larger differences but can be
used to adapt to differences in parties’ computational capabilities and sizes in
training datasets.

• Which learning rate ηk do we choose for each party? Differences in data
distributions between parties can make different learning rates beneficial.

• Other optimization algorithms might use different local hyperparameters such as
momentum or decay rates [27].

Let us consider the case of a simple Federated SGD, as described in [38], in
which—like in centralized SGD—each new sample leads to a model upgrade. The
aggregator would choose a party Pk and send a query qt,k<wt> to the chosen party.
Pk picks the next training sample (xi, yi) ∈ Dk and performs its local training L,
computing its loss gradient �l(wt , xi, yi) for this sample. We will refer to gradients
of a party Pk in a particular round t as

gk,t := 1

|Dk|
∑

(xi ,yi)∈Dk

�l(wk, xi, yi), (1.3)

the average gradient of the training data samples in Dk . Party Pk returns it as reply
rk,t<gt,k> to the aggregator. The aggregator then computes the new query content
with model weights based on the reply from Pk and the aggregator’s learning rate:

wt+1 := wt − ηagk,t . (1.4)

Then the next round begins with the aggregator choosing another party to
contribute. In this simplistic way, it is quite ineffective because it introduces
communication overhead and does not take advantage of concurrent training. To
make Federated SGD more effective, we can train with mini-batches at each party,
increasing computation at each party per round. We can also train concurrently at

8 H. Ludwig and N. Baracaldo

all or a subset of parties Ps ⊂ P , averaging the replied gradients of the parties when
computing new model weights:

wt+1 := wt − ηa

1

|K|
∑

K

gk,t . (1.5)

While this is more effective than the naive approach, it still involves much
communication with the aggregator and potential coordination delays at least once
in every epoch when the batch size is the full Dk or multiple times when we use
mini-batches.

FedAvg, as proposed in [28], is more effective by taking advantage of indepen-
dent processing at each party. Each party runs multiple epochs before replying.
Rather than replying with gradients, parties can compute a new set of weights
wt,k directly at each party Pk , using a common learning rate η, and reply with
rk,t<wk,t , nk>, their model, and the number of samples. The aggregator’s fusion
algorithm F averages the parameters of each party, weighted by the number of
samples at each party, for the next round:

wt+1 :=
∑

k∈K

nk

n
wk,t . (1.6)

Experiments show that this approach performs well for different model types [38].
FedAvg uses most of the variables laid out in equation (1.2), but we can imagine
introducing other parameters such as local or variable learning rates for gradient
descent algorithms.

Further approaches can expand on these basic FL fusion and local training
algorithms to adapt to different properties of data distributions, client selection, and
privacy requirements. The paper in [32] proposes a momentum-based FL approach
to accelerate convergence, inspired by centralized ML optimization such as [27].
Stateful optimization algorithms such as ADMM generally are only applicable if
all parties in a collaboration participate every time, retaining state at the party
[7]. Different approaches, including [18] and [17], adapt ADMM to a practical
FL setting. FedProx [31] introduces a proximal regularization term to address data
heterogeneity among parties for non-IID use cases. Other approaches such as [36]
go beyond gradient descent methods for optimization.

For each FL approach that addresses specific aspects of data heterogeneity, model
structure, and parties, we need to define an algorithm that comprises of L, F , and
the protocol for interaction between parties and the aggregator, i.e., the format of qk

and rk . In the remainder of the book, we find different state-of-the-art approaches to
deal with data and model heterogeneity aspects.

1 Introduction to Federated Learning 9

1.3.2 Classical Machine Learning Models

Classical machine learning techniques can also be applied to federated learning
scenarios. Some of these techniques can be approached very similarly to DNNs.
Others have to be entirely rethought for decentralized training.

Linear models, including regression and classification, can be trained in FL
by adapting the training process similarly to the way the neural networks training
process was adjusted. Training data with a feature vector xi = (x1

i , x2
i , . . . , xm

i) can
be used to train a predictor for a linear regression, for example, of the shape

yi = w1x
1
i + w2x

2
i + . . . + wmxm

i + b. (1.7)

It predicts yi for m linear variables x
j
i and bias b and entails minimizing a loss

function for weight vector w and b. w is typically much smaller than the weight
vector of a DNN. With data D partitioned among parties as Dk , we can follow
the approaches outlined in the previous section. We train at each party, minimizing
locally the loss function l(wk, bk, xi, yi) for the local training data. Like with DNNs,
we have a choice how to fuse local models into a global model. Using, for example,
FedAvg as the fusion function F , we can then compute locally the new local model
weights as

wk,t+1 := wt − ηk�l(wk,t+1, Xk, Yk), (1.8)

applying a party-specific learning rate ηk to the gradients of the weights. All parties
send their model weights to the aggregator where the weights are averaged, and
the new model M, defined by (wt , bt), is redistributed to the parties. We can apply
other fusion methods as well such as Federated SGD or any of the advanced methods
discussed in the previous subsection. This often converges faster than in the case of
DNNs due to the smaller w. Other classic linear models such as logistic regression
or linear Support Vector Machine (SVM) [20] can be transformed into a federated
learning approach in a similar way.

Decision trees and more advanced tree-based models require a different
approach to Federated Learning than model types with a static parameter structure
such as the ones we discussed to this point. Decision trees are an established
classification model type and is commonly used for classification problems [46].
It is particularly relevant in domains where the explainability of the decision is
societally important such as in healthcare, finance, and other areas where regulation
requires demonstrating on which criteria decisions are based on. While DNNs and
linear models can be trained locally and local parameters can be merged at the
aggregator, no good fusion algorithms have been proposed to merge independently
trained tree models into a single decision tree.

The white paper [35] describes a federated approach for the ID3 algorithm [46]
in which the tree formation takes place at the aggregator and the role of parties is to
respond with counts to the proposed class splits based on their local training data. It

10 H. Ludwig and N. Baracaldo

works for numeric and categorical data. In its centralized, original version, an ID3
decision tree computes the information gain for each feature splitting the training
dataset into the given classes. It chooses the feature with the most information gain
and computes the values for this feature that splits D best. One attribute typically
does not split D sufficiently. For each branch of the tree just created, we apply the
same approach recursively. We ask which next feature will split the data subset in
each sub-tree best by computing the information gain of each sub-tree dataset with
respect to the remaining features. The algorithm continues refining the classification
recursively until it stops when all members of a tree node have the same class label
or a maximum depth is met.

In a federated version, the fusion function F at the aggregator computes the
information gain and chooses the next feature to grow the tree. To obtain the input
to compute the information gain, the aggregator queries all parties with proposed
features and split values. The parties count the members of each proposed sub-tree
and their labels as their local training function F and return these counts as reply to
the aggregator. The aggregator adds up the counts for each proposed feature from
all parties and then proceeds to compute the information gain on these aggregated
counts. As in the centralized version, the next best feature is chosen and the sub-tree
is split again, and so forth.

In this approach, the aggregator takes a prominent role and performs much of the
computation, while the parties mainly provide counts related to features and split
values. Like in other federated learning approaches, training data never leaves any
party. Depending on the quantity of the training dataset and the number of class
members, this might require further privacy-preserving measures to ensure not too
much information is disclosed in this simple approach. Nevertheless, this is a good
example of how federated learning can be approached differently than in case of
DNNs and linear models.

Decision tree ensemble methods often provide better model performance
than individual decision trees. Random forests [8] and, in particular, gradient-
boosted trees such as the popular XGBoost [13] are used successfully in different
applications and also in Kaggle competitions, providing better predictive accuracy.
Federated random forest algorithms can pursue a similar approach than decision
trees, growing individual trees in the aggregator and then using data collection from
parties. A subset of features is selected randomly for each addition, creating the next
tree of the ensemble, which is then again queried from the parties. More complex
algorithms are proposed for scenarios in which not all parties have the same set
of features for each data record in question, e.g., [34] and [20]. This scenario is
referred to as vertical federated learning (for more, see the next subsection) and
requires cryptographic techniques to match the record of each party to the same
entity.

Gradient-boosted trees add to the ensemble in areas of the decision space where
predictions were made poorly, as opposed to randomly in the random forest. To
determine where to start with the next tree of the ensemble, the loss function
has to be computed for all training data samples in Dk , which are located at the
parties. Like in the other tree-based algorithms, tree growth and decision-making on

1 Introduction to Federated Learning 11

ensembles take place at the aggregator. However, additionally, the parties need to
include gradients and Hessians in their reply to the aggregator to make the choice of
the next tree of the ensemble. The aggregator’s fusion function also needs a quantile
approximation, e.g., a histogram of training data samples in potential classes.
Federated gradient-boosted trees, like their centrally trained counterparts, often have
good accuracy and may overfit less than other tree-based learning algorithms. The
approach proposed by Ong et al. [45] uses party-adaptive quantile sketches to reduce
information disclosure. Other approaches to federated XGBoost use cryptographic
methods and a secure multi-party computation approach for interaction and loss
computation [14, 33]. This entails a higher training time at comparable model
performance and is suitable for enterprise scenarios requiring very stringent privacy.
The overview presented in [63] provides an interesting discussion on privacy trade-
offs in federated gradient boosting that can also be applied to the simpler tree-based
models.

Chapter 2 covers in more detail multiple algorithms to train tree-based models,
including gradient-boosted trees.

With this brief tour, we provided an overview of the most popular classic and
neural network approaches. We see that federated versions of common machine
learning algorithms can be created by carefully considering which computation to
take place at the aggregator, which at the parties, and what interaction between
parties and aggregator is needed.

1.3.3 Horizontal, Vertical Federated Learning and Split
Learning

So far, when discussing the distribution of data among parties, we generally assumed
that all parties’ training data comprises the same features for each sample and parties
have data pertaining to different samples. For example, hospital A has health records
and images on some patients; a second hospital B on other patients, as illustrated in
Fig. 1.3.

In case of neural networks, we assumed that each party has samples of equivalent
size and content.

However, in some cases, parties may have different features referring to the same
entity. Using again the health care example, primary care physicians might have
electronic health records relating to patients’ visits over time, while a radiologist
has images relating to a patient’s disease. An orthopedic surgeon might have surgery
records on patients. When looking for predictors of health outcomes for orthopedic
surgery, it might be beneficial to base the prediction on data of all three parties,
primary care, radiologist, and orthopedic surgeon. In this case, only one party, the
orthopedic surgeon, might have the actual label: the outcome of the surgery. We call
this dataset vertically partitioned.

12 H. Ludwig and N. Baracaldo

Fig. 1.3 Horizontally partitioned data

Fig. 1.4 Vertically partitioned data

Figure 1.4 illustrates vertical partitioning, with features overlapping in an identity
key to match the records of both parties, e.g., a government identifier. Since not all
relevant features are present in any party, learning cannot take place independently
at each party. Furthermore, identity keys have to be matched to understand how the
features at each party complement each other. To preserve data privacy at each party,
we need a cryptographic approach to match data and perform the learning process.
Hardy et al. proposed a seminal early approach based on partial homomorphic
encryption [24] with others such as Xu et al. [62] proposing much more effective
variants, reducing communication, and computing requirements to an extent that
it becomes viable in actual enterprise practice. Vertical FL is covered in detail in
Chap. 18. Later in this chapter, we will discuss the security and privacy of federated
learning in more depth.

1 Introduction to Federated Learning 13

Somewhat related to vertical federated learning, Split Learning has been
proposed by Vepakomma et al. [55], among others [49]. In split learning, a DNN
is partitioned between a client and a server in a way that the client maintains the
“upper” part of the DNN down to a split layer and the server has the split layer and
those below. In its basic form, the client has the input data and the server the labels.
When using SGD as the training algorithm, the forward pass begins at the client
with the input and is propagated to the server at the split layer. Back propagation
takes place from the server to the client via the split layer. With this approach, one
party’s data can also be kept private, while another party has a part of the model
structure. Split learning can be varied to the client also having the label, with the last,
fully connected layer being on the client side via a second split layer, or multiple
clients having vertically partitioned data and communicating with the server using
partitions of the split layer. The latter case can be regarded as a generalization of
vertical federated learning. Chapter 19 discusses split learning in more depth.

1.3.4 Model Personalization

Model personalization refers to the adaption of a (federally trained) global model
to the data distribution of the specific parties participating in the FL process. While
the participation in an FL process enables all parties to benefit from a large pool of
training data, it is sometimes beneficial to personalize the final model to ensure it
reflects the data owned by a specific party. This is relevant in particular if parties
correspond to individual users or organizations. In a naive case, individual parties
can run additional local training epochs on local data to the end of an FL process.
Wang et al. propose an approach to evaluate the benefit of personalization for each
party [56].

Mansour et al. [37] analyze three different approaches to personalization: user
clustering, training on interpolated data (between global and local), and model
interpolation. The first approach requires a relaxation of privacy requirements
or advanced privacy techniques to cluster users based on training data. Data
interpolation is based on the creation of a global dataset. While all approaches
work, model interpolation has the widest applicability from a privacy perspective.
Grimberg et al. propose a method to optimize averaging a global model and a local
model for personalization purposes by determining optimized weights, expanding
on the approaches discussed before [22].

While the approaches to personalization are still evolving, this is an important
complement to the FL process. Chapters 4 and 5 discuss model personalization in
depth.

14 H. Ludwig and N. Baracaldo

1.4 Security and Privacy

By leaving data where it is, FL provides an inherent level of privacy at the outset.
However, there is still potential for infringing on privacy of data. It is important
to understand different threat models that may arise during the application of FL
to ensure that relevant risks are mitigated appropriately with the right defenses.
In this section, we provide an overview of vulnerabilities of FL and sketch the
corresponding mitigation techniques.

Figure 1.5 presents a characterization of potential threats of FL as well as the
potential adversaries.

Let us analyze the risk by first understanding the potential attack surfaces that
an adversary may exploit. A well-set-up FL system makes use of secure-and-
authenticated channels to ensure all messages exchanged between the parties and
aggregator cannot be intercepted by other entities while preventing impersonation.
Therefore, we can assume that the aggregator and parties are the only two
entities that can access the messages exchanged between them and the artifacts
produced during the training process. With this in mind, we can categorize potential
adversaries as insiders or outsiders. Insider adversaries are entities involved in the
training process who have access to the artifacts produced during training and
messages directed at them. All other potential adversaries are considered outsiders.
In this classification, entities that receive the final model produced by the FL training
process are considered outsiders.

We can categorize threats to FL into manipulation and inference threats, where
manipulation threats are those where an insider’s objective is to influence the model
to their advantage by manipulating any of the artifacts she can access during the
training process, while inference threats are those where an insider or outsider tries
to extract private information about the training data. In the following, we explain
some of these attacks in more detail.

1.4.1 Manipulation Attacks

There are multiple types of manipulation attacks where the main goal of an insider
adversary is to manipulate the model produced during the FL training to her advan-

Fig. 1.5 Potential adversaries and threats

1 Introduction to Federated Learning 15

tage. In some cases, an adversary may want to cause targeted misclassifications,
while in other cases, she may want to decrease the model performance to make it
unusable. Backdoor [2, 23] and Byzantine attacks [29] are two examples of targeted
and untargeted attacks, respectively. Backdoor attacks create targeted misclassifi-
cations, while byzantine attacks cause poor model performance. Byzantine attacks
may be carried out by a single party or by multiple colluding parties and may be
as simple as injecting random noise [57] or as elaborate as running optimizations
to circumvent existing defenses [4, 60]. Label flipping attacks, where one or more
malicious parties flip some of the labels, are another popular way to decrease the
model performance [19].

In the FL literature, an insider carrying out a manipulation attack is often
assumed to be a malicious party [57, 59]. However, a malicious aggregator may
also carry out this type of attack. This would require the aggregator to train for a
few epochs the aggregated model with poisoned samples and then sending the new
manipulated model to the parties. There are also attacks where multiple colluding
parties agree to manipulate the model updates so the final model causes targeted
classifications [65] or poor behavior.

Unfortunately, manipulation attacks in FL are not easy to detect. First, not all
data is available for a potential defender to run defenses that are frequently applied
in centralized settings.1 Second, data heterogeneity has been shown to affect the
robustness of FL [65] making it difficult to distinguish between malicious model
updates that should not be included and benign model updates that inclusion would
benefit the final model. Third, a successful attack does not require long rounds of
manipulation; it is possible to have high attack success rates by timing the attack
correctly [65]. Finally, as defenses evolve, so do the attacks; adaptive attacks have
been designed to circumvent some of the proposed defenses [4, 60], creating a
familiar competition between attackers and defenders.

Most defense approaches assume the aggregator is the defender and may filter out
malicious model updates. Model updates received by the aggregator are inspected
to determine updates that are too different. Defenses in this category use multiple
distance metrics and some assume a certain number of parties are always malicious
[5, 12, 64]. However, a substantially different model updates may not always be an
attack; it may be organically generated by a party whose data exhibits substantial
non-IIDness with respect to the other parties. The difficulty in knowing when
unusual updates are benign or malicious is clearly exacerbated by the fact that the
aggregator does not have access to the training data. To overcome this difficulty,
some approaches have been developed with the assumption that the aggregator can
obtain a dataset with similar distribution as the one held by the parties [58]. This,
however, may be difficult to obtain for certain use cases. Another approach [54] does
not discard unusual updates altogether while training neural networks, but rather

1 Backdoor attacks and Byzantine attacks exist both in centralized and distributed learning.
Existing defenses for traditional cases often make use of the entire training data and, to date, are
still unable to fully achieve a 100% detection rate.

16 H. Ludwig and N. Baracaldo

adapts some layers of the neural network to prevent overfitting. A substantially
different approach was presented in [3], where accountability is used to deter
attacks. This approach stores a non-repudiable record of the complete training
process. Transparency is provided by ensuring all parties are accountable for their
model updates as well as for their training process, while the aggregator is also
accountable for the way it fusions them.

An overview of manipulation attacks and defenses will be presented in Chap. 16,
and Chap. 17 focuses on understanding Byzantine attacks and defenses when
training neural networks.

1.4.2 Inference Attacks

Training without sharing data is one of the drivers and the most important
advantages of applying FL. Recall that model updates are the only data shared with
the aggregator, and private training data is never revealed. This design ensures that
simple exposure of private information is not an issue in FL systems. Hence, privacy
leakage can only take place through inference.

Inference attacks take advantage of artifacts produced during or after the FL
process to try to deduce private information. Inference threats are not new to
machine learning. In fact, a large body of work has documented ways in which
an adversary, who only has access to an ML model, can infer private information
about its training data. Attacks in this black-box setting include:

• Membership inference attacks, where an adversary can determine if a particular
sample was used to train a model. This is a privacy violation when, for example,
the model used data coming from certain social group, e.g., political or sexual
affiliation or disease.

• Model inversion attacks, where the adversary wants to find the representative of
each class. In a face recognition system, this, for example, may reveal the face of
a person.

• Extraction attacks, where the adversary’s goal is to obtain all the samples used
during the training process.

• Property inference attacks, where properties independent of the training tasks
may be revealed.

In the FL setting, outsiders get access to the final ML model, and insiders may
get access to intermediate models; hence, both insiders and outsiders may be able
to carry out the attacks listed above.

In addition and interestingly, the exchanged model updates that at first glance
may seem to be innocuous can also be used by insiders to infer private information.
Attacks that use model updates include [21, 25, 39, 41, 67, 68] and in some cases
exhibit faster and higher success rates than the ones carried out using the model.
Model-update-based attacks can be carried out by curious parties or a malicious

1 Introduction to Federated Learning 17

aggregator. These attacks can be passive, where the adversary uniquely inspects the
produced artifacts, or active when it acts to speed up the inference.

Given these risks of privacy exposure, several techniques to protect the FL
process have been proposed. They include using differential privacy (DP) [16],
secure multi-party computation techniques [6, 44, 61, 66], a combination of both
[52], and the use of trusted execution environments [11, 30], among others.

DP is a rigorous mathematical framework where an algorithm may be described
as differentially private if and only if the inclusion of a single instance in the
training dataset causes only statistically insignificant changes to the algorithm’s
output. The methodology adds noise through a DP mechanism that is tailored to
both the dataset and the query that will be answered with the data. DP provides
a provable mathematical guarantee; however, it may reduce the model accuracy
substantially. Another popular technique to prevent inference attacks is the use of
secure multi-party computation, where a curious aggregator cannot get to know the
individual model updates received from parties, but can still obtain the final fusion
result (in plaintext or ciphertext). These techniques include masking [6], Paillier
[44, 66], Threshold Paillier [52], and Functional encryption [61], to name a few. All
these techniques have slightly different threat models and, therefore, are suitable for
difference scenarios.

Existing defenses offer different protection and target diverse inference attacks.
It is important to ensure that the defense is selected according to the use case
at hand to ensure the right level of protection is achieved. In fully trusted cases,
no additional protection may be needed, for example, when a single company is
training a model with data coming from multiple data centers. In a consortium of
competitors, however, the risk of inference may be too high leading to the use of
one or more protection mechanisms.

Threats and defenses to inference attacks are addressed by multiple chapters in
this book. Chapter analyzes the inference risks to FL systems. It presents existing
attacks and defenses demonstrating that the level of protection offered by each
defense is suitable for slightly different cases. The chapter also presents an analysis
to help determine how to match different scenarios and trust assumptions into
suitable defenses. Chapter 14 provides a more in-depth review of a defense based
on trusted execution environments, and Chap. 15 presents in detail the mechanics of
gradient-based data extraction attacks.

1.5 Federated Learning Systems

An FL process is ultimately executed on a distributed system on which parties and
the aggregator run. The parts of this system must satisfy the computational, mem-
ory, and networking requirements of parties, aggregator, and the communication
between them. Since the local model training is performed where the data is located,
we must pay close attention to the resources available at the point of training the
parties. Aggregators are mostly run in a data center environment, at least in the

18 H. Ludwig and N. Baracaldo

commonly used single aggregator architecture. Still, they need to have the right
resources and ability to scale when dealing with a large number of parties. Finally,
network connectivity and bandwidth requirements might differ based on model size,
model-update content, frequency and use of cryptographic protocols, as discussed
in the previous section. Hence, the systems requirements for federated learning are
quite different than those for centralized learning approaches.

Party clients: The most obvious distinction to centralized ML systems lies in the
fact that a party might not be located on a system we would typically choose as
an ML platform. While this might not be as problematic when parties are data
centers in different jurisdictions, it is more problematic in embedded systems, edge
computing, and mobile phones. Three different types of functionalities potentially
draw resources:

• The local machine learning process may require significant compute and mem-
ory if the model is large. This is the case in particular for large DNNs, e.g.,
for large language models. It might require GPU support, which might not be
available in embedded systems or even in remote data centers or software-as-
a-service-related data stores. However, classic techniques might be viable even
on small devices such as Rasberry Pis®, and there are small footprint packages
such as Tensorflow Lite® that require less on-party storage and memory.

• The federated learning party client drives the local machine learning model and
communicates with the aggregator. In most cases, though, it has a small footprint
that can be accommodated even in small edge devices.

• However, if a cryptographic protocol is used, e.g., a secure multi-party computa-
tion (SMC) implementation based on a threshold Paillier cryptosystem, it might
increase computation cost of the party client by several orders of magnitude.
Most encryption and decryption techniques can be paralleled and, hence, be
supported by a GPU or specialized hardware.

Aggregator servers: An aggregator is typically located in a data center environ-
ment that has access to ample resources. However, scaling to a large number of
parties entails a number of challenges:

To communicate with a large number of parties, the aggregator has to be able to
maintain a large number of connections. Pooling connections is a well-established
approach for all kinds of systems that can be used here in a similar way.

Performing a fusion algorithm at the aggregator often incurs moderate compu-
tational costs. Simple fusion algorithms such as FedAvg, discussed in Sect. 1.3,
perform quite simple averaging operations. Other fusion algorithms might be more
complex but will often have lower computational requirements than the local
training at a party. However, in the case of large DNNs and a large number of parties,
the size of the set of, say, weight vectors received as replies from parties can be very
large. One party’s weight vector can be up to tens of megabytes. Dealing with many
thousands of parties can be too much to perform average computation in memory in
one compute node.

1 Introduction to Federated Learning 19

Different approaches have been proposed to address scaling the aggregator
computationally: The weights can be made persistent, and the fusion algorithm can
be performed in a parallel computation approach, e.g., using Hadoop or Spark. Other
approaches use the commutative properties of addition and partition parties into
groups. These groups are assigned to an aggregator, each computing averages over
this group. A primary aggregator then aggregates the results of local aggregation,
weighted by the number of parties at each aggregator. So et al. [47] propose one
such approach, and there are different variants, including multi-level aggregation.
For very large sets of parties, sub-sampling of parties is often used at each round
and can complement the other approaches.

Tree-based FL algorithms usually pose more computational demands on the
aggregator and less on the parties.

Communication: Quantity and quality of communication between aggregators
and parties must be considered in FL design. In data center and Cloud settings,
we can often assume bandwidth to be sufficient and connections to be reliable.
FL processes can take quite some time. Hence, communication protocols need
to be robust to occasional disconnection. An important practical consideration in
enterprise contexts is the connection direction. IT departments in organizations
have tightly controlled processes to open networking ports. Choosing a networking
protocol that does not require parties to open ports but have them initialize the
connection to the aggregator will accelerate implementations of FL systems.

Embedded systems, edge devices, and mobile systems pose a bigger challenge.
Some party systems might be intermittently connected, e.g., in vehicles, or have
poor bandwidth, being low-cost devices. This can be problematic for the FL process.
If parties do not respond in time for the next round, we need a strategy to manage
these drop-offs. We need to establish a quorum that may be specific for a given use
case. We also need an approach when parties re-join. While quora are simple means
of drop-off management, other approaches such as TIFL propose an active straggler
management, grouping parties by response time and querying them less frequently
[10]. Systemic differences in response time can even lead to bias in the model [1].

Intermittent or low-bandwidth communication can also be addressed algorith-
mically, for example, by reducing the number of rounds, compressing models, and
fusing more divergent models. Chapters 6 and 7 discuss this in more detail.

The use of secure computation methods such as SMC may increase both message
size and quantity and may pose an issue for devices with poor connections.
Furthermore, some SMC protocols for vertical federated learning may require
peer-to-peer communication between parties, which is problematic in two ways: It
requires parties to expose ports to their peers, which is an implementation obstacle
in enterprises. If mitigated by routing all traffic through the aggregator or another
intermediary, this again doubles network traffic. Hence, while SMC is often a very
good approach to preserve privacy, it comes with significant resource requirements.

Design choices and trade-offs: When implementing an FL system, we often need
to trade off available resources with a suitable algorithmic approach. If we can make
a choice about the hardware available to a party, we can choose one that suits the

20 H. Ludwig and N. Baracaldo

ML approach we choose. We can add an embedded system with a strong GPU to a
vehicle or manufacturing robot or add GPUs to the data centers we want to have
participate in the federation. That is not always possible. In situations in which
the compute platform at parties is given, we can use a ML approach that suits our
resources. While DNNs are resource intensive at the party side, tree-based model
such as federated XGBoost is not as demanding. Also, algorithms can be adapted to
system constraints.

1.6 Summary and Conclusion

This chapter provides an introduction to federated learning. We discussed the main
motivations to bring training to the data, rather than bringing all the data together,
as it is the case in centralized ML. The need for complying with privacy regulation,
secrecy of data, and pragmatic considerations such as network quality are the main
drivers. We introduced the main concepts of parties and aggregator and then went
through the main perspectives on FL we need to consider: the machine learning
perspective, the security and privacy perspective, and then the systems perspective.
All of those perspectives go hand in hand to design a FL system suitable for its task.

We took a particular perspective on the needs of enterprises implementing FL.
This includes the need to support both neural networks and classical approaches,
heterogeneity of data and systems at parties, and the need for vertical FL when
different categories of data are kept in different systems. This is somewhat different
from the application of FL in mobile devices, which are mostly more homogeneous
but pose different issues of scale.

The remainder of this book addresses all of those aspects in more depth:

• Part I looks at the machine learning perspective of FL and discusses tree-based
models, efficiency, personalization, and fairness.

• Part II addresses the systems perspective in more depth.
• Part III includes five chapters covering privacy and security. Inference and

manipulation attacks are described in detail and more information on the
defenses, when to apply them, is provided.

• Part IV contains chapters covering in detail vertical FL as well as split learning.
• Part V showcases work on applications of FL and requirements for important

application domains such as healthcare and finance.

This scope of the book provides an overview of the state-of-the-art of FL in the
enterprise for researchers and practitioners looking for an in-depth background.

1 Introduction to Federated Learning 21

References

1. Abay A, Zhou Y, Baracaldo N, Rajamoni S, Chuba E, Ludwig H (2020) Mitigating bias in
federated learning. arXiv preprint arXiv:201202447

2. Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V (2020) How to backdoor federated
learning. In: International conference on artificial intelligence and statistics. PMLR, pp 2938–
2948

3. Balta D, Sellami M, Kuhn P, Schöpp U, Buchinger M, Baracaldo N, Anwar A, Sinn M, Purcell
M, Altakrouri B (2021) Accountable federated machine learning in government: engineering
and management insights

4. Baruch M, Baruch G, Goldberg Y (2019) A little is enough: circumventing defenses for
distributed learning. arXiv preprint arXiv:190206156

5. Blanchard P, Mhamdi EME, Guerraoui R, Stainer J (2017) Byzantine-tolerant machine
learning. 1703.02757

6. Bonawitz KA, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal A,
Seth K (2016) Practical secure aggregation for federated learning on user-held data. In: NIPS
workshop on private multi-party machine learning. https://arxiv.org/abs/1611.04482

7. Boyd S, Parikh N, Chu E (2011) Distributed optimization and statistical learning via the
alternating direction method of multipliers. Now Publishers Inc., Hanover

8. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
9. Business Insider (2018) Macy’s is warning customers that their information might have

been stolen in a data breach. https://www.businessinsider.com/macys-bloomingdales-hack-
disclosed-2018-7

10. Chai Z, Ali A, Zawad S, Truex S, Anwar A, Baracaldo N, Zhou Y, Ludwig H, Yan F, Cheng Y
(2020) TIFL: a tier-based federated learning system. In: Proceedings of the 29th international
symposium on high-performance parallel and distributed computing, pp 125–136

11. Chamani JG, Papadopoulos D (2020) Mitigating leakage in federated learning with trusted
hardware. arXiv preprint arXiv:201104948

12. Charikar M, Steinhardt J, Valiant G (2016) Learning from untrusted data. 1611.02315
13. Chen T, He T, Benesty M, Khotilovich V, Tang Y, Cho H et al (2015) XGBoost: extreme

gradient boosting. R package version 04-2 1(4)
14. Cheng K, Fan T, Jin Y, Liu Y, Chen T, Yang Q (2019) SecureBoost: a lossless federated learning

framework. arXiv preprint arXiv:190108755
15. Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, Mao MZ, Ranzato M, Senior A,

Tucker P, Yang K, Ng AY (2012) Large scale distributed deep networks. In: NIPS
16. Dwork C (2008) Differential privacy: a survey of results. In: International conference on theory

and applications of models of computation. Springer, pp 1–19
17. Elgabli A, Park J, Ahmed S, Bennis M (2020) L-FGADMM: layer-wise federated group

ADMM for communication efficient decentralized deep learning. In: 2020 IEEE wireless
communications and networking conference (WCNC). IEEE, pp 1–6

18. Elgabli A, Park J, Bedi AS, Bennis M, Aggarwal V (2020) GADMM: fast and communication
efficient framework for distributed machine learning. J Mach Learn Res 21(76):1–39

19. Fang M, Cao X, Jia J, Gong N (2020) Local model poisoning attacks to byzantine-robust
federated learning. In: 29th {USENIX} security symposium ({USENIX} security 20), pp 1605–
1622

20. Ge N, Li G, Zhang L, Liu YLY (2021) Failure prediction in production line based on federated
learning: an empirical study. arXiv preprint arXiv:210111715

21. Geiping J, Bauermeister H, Dröge H, Moeller M (2020) Inverting gradients—how easy is it
to break privacy in federated learning? In: Part of advances in neural information processing
systems (NeurIPS 2020), vol 33

22. Grimberg F, Hartley MA, Karimireddy SP, Jaggi M (2021) Optimal model averaging: towards
personalized collaborative learning. In: Proceedings of the international workshop on federated
learning for user privacy and data confidentiality. https://fl-icml.github.io/2021/papers

https://arxiv.org/abs/1611.04482
https://www.businessinsider.com/macys-bloomingdales-hack-disclosed-2018-7
https://www.businessinsider.com/macys-bloomingdales-hack-disclosed-2018-7
https://fl-icml.github.io/2021/papers

22 H. Ludwig and N. Baracaldo

23. Gu T, Dolan-Gavitt B, Garg S (2017) BadNets: identifying vulnerabilities in the machine
learning model supply chain. arXiv preprint arXiv:170806733

24. Hardy S, Henecka W, Ivey-Law H, Nock R, Patrini G, Smith G, Thorne B (2017) Private fed-
erated learning on vertically partitioned data via entity resolution and additively homomorphic
encryption. arXiv preprint arXiv:171110677

25. Jin X, Du R, Chen PY, Chen T (2020) CAFE: catastrophic data leakage in federated learning
26. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles

Z, Cormode G, Cummings R et al (2019) Advances and open problems in federated learning.
arXiv preprint arXiv:191204977

27. Kingma DP, Ba J (2017) Adam: a method for stochastic optimization. 1412.6980
28. Konečnỳ J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D (2016) Federated learning:

strategies for improving communication efficiency. arXiv preprint arXiv:161005492
29. Lamport L, Shostak R, Pease M (1982) The byzantine generals problem. ACM Trans Program

Lang Syst 4(3):382–401
30. Law A, Leung C, Poddar R, Popa RA, Shi C, Sima O, Yu C, Zhang X, Zheng W (2020) Secure

collaborative training and inference for XGBoost. In: Proceedings of the 2020 workshop on
privacy-preserving machine learning in practice, pp 21–26

31. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2018) Federated optimization in
heterogeneous networks. arXiv preprint arXiv:181206127

32. Liu W, Chen L, Chen Y, Zhang W (2020) Accelerating federated learning via momentum
gradient descent. IEEE Trans Parallel Distrib Syst 31(8):1754–1766

33. Liu Y, Ma Z, Liu X, Ma S, Nepal S, Deng R (2019) Boosting privately: privacy-preserving
federated extreme boosting for mobile crowdsensing. arXiv preprint arXiv:190710218

34. Liu Y, Liu Y, Liu Z, Liang Y, Meng C, Zhang J, Zheng Y (2020) Federated forest. IEEE Trans
Big Data, p. 1

35. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y, Radhakrishnan J,
Verma A, Sinn M et al (2020) IBM federated learning: an enterprise framework white paper
v0. 1. arXiv preprint arXiv:200710987

36. Malinovskiy G, Kovalev D, Gasanov E, Condat L, Richtarik P (2020) From local SGD to local
fixed-point methods for federated learning. In: International conference on machine learning.
PMLR, pp 6692–6701

37. Mansour Y, Mohri M, Ro J, Suresh AT (2020) Three approaches for personalization with
applications to federated learning. arXiv preprint arXiv:200210619

38. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics.
PMLR, pp 1273–1282

39. Melis L, Song C, De Cristofaro E, Shmatikov V (2019) Exploiting unintended feature leakage
in collaborative learning. In: 2019 IEEE symposium on security and privacy (SP). IEEE,
pp 691–706

40. Meltzer J (2020) The Court of Justice of the European Union in Schrems II: the impact of
GDPR on data flows and national security. https://voxeu.org/article/impact-gdpr-data-flows-
and-national-security

41. Nasr M, Shokri R, Houmansadr A (2018) Comprehensive privacy analysis of deep learning:
stand-alone and federated learning under passive and active white-box inference attacks

42. NBC News (2018) Yahoo to pay $50 million, offer credit monitoring for mas-
sive security breach. https://www.nbcnews.com/tech/tech-news/yahoo-pay-50m-offer-credit-
monitoring-massive-security-breach-n923531

43. New York Times (2018) Facebook security breach exposes accounts of 50 million users. https://
www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html

44. Nikolaenko V, Weinsberg U, Ioannidis S, Joye M, Boneh D, Taft N (2013) Privacy-preserving
ridge regression on hundreds of millions of records. In: 2013 IEEE symposium on security and
privacy. IEEE, pp 334–348

45. Ong YJ, Zhou Y, Baracaldo N, Ludwig H (2020) Adaptive histogram-based gradient boosted
trees for federated learning. arXiv preprint arXiv:201206670

https://voxeu.org/article/impact-gdpr-data-flows-and-national-security
https://voxeu.org/article/impact-gdpr-data-flows-and-national-security
https://www.nbcnews.com/tech/tech-news/yahoo-pay-50m-offer-credit-monitoring-massive-security-breach-n923531
https://www.nbcnews.com/tech/tech-news/yahoo-pay-50m-offer-credit-monitoring-massive-security-breach-n923531
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html
https://www.nytimes.com/2018/09/28/technology/facebook-hack-data-breach.html

1 Introduction to Federated Learning 23

46. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106
47. So J, Güler B, Avestimehr AS (2021) Turbo-aggregate: breaking the quadratic aggregation

barrier in secure federated learning. IEEE J Sel Areas Inf Theory 2(1):479–489
48. State of California (2018) California Consumer Privacy Act of 2018
49. Thapa C, Chamikara MAP, Camtepe S (2020) SplitFed: when federated learning meets split

learning. arXiv preprint arXiv:200412088
50. The European Parliament and Council (2016) Regulation (EU) 2016/679 of the European

Parliament and of the Council of 27th of April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data, and repealing
directive 95/46

51. The Wall Street Journal (2018) Google exposed user data, feared repercussions of disclos-
ing to public. https://www.wsj.com/articles/google-exposed-user-data-feared-repercussions-
of-disclosing-to-public-1539017194

52. Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R, Zhou Y (2019) A hybrid
approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop
on artificial intelligence and security, pp 1–11

53. United States (1996) Health Insurance Portability and Accountability Act of 1996. U.S.
Government Printing Office, Washington, DC

54. Varma K, Zhou Y, Baracaldo N, Anwar A (2021) LEGATO: a LayerwisE Gradient Aggre-
gaTiOn algorithm for mitigating byzantine attacks in federated learning. In: 2021 IEEE 14th
international conference on cloud computing (CLOUD)

55. Vepakomma P, Gupta O, Swedish T, Raskar R (2018) Split learning for health: distributed deep
learning without sharing raw patient data. arXiv preprint arXiv:181200564

56. Wang K, Mathews R, Kiddon C, Eichner H, Beaufays F, Ramage D (2019) Federated
evaluation of on-device personalization. arXiv preprint arXiv:191010252

57. Xie C, Koyejo O, Gupta I (2018) Generalized byzantine-tolerant SGD. 1802.10116
58. Xie C, Koyejo O, Gupta I (2018) Zeno: distributed stochastic gradient descent with suspicion-

based fault-tolerance. 1805.10032
59. Xie C, Huang K, Chen PY, Li B (2019) DBA: distributed backdoor attacks against federated

learning. In: International conference on learning representations
60. Xie C, Koyejo S, Gupta I (2019) Fall of empires: breaking byzantine-tolerant SGD by inner

product manipulation. 1903.03936
61. Xu R, Baracaldo N, Zhou Y, Anwar A, Ludwig H (2019) HybridAlpha: an efficient approach

for privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on
artificial intelligence and security, pp 13–23

62. Xu R, Baracaldo N, Zhou Y, Anwar A, Joshi J, Ludwig H (2021) FedV: Privacy-preserving
federated learning over vertically partitioned data. arXiv preprint arXiv:210303918

63. Yang M, Song L, Xu J, Li C, Tan G (2019) The tradeoff between privacy and accuracy in
anomaly detection using federated XGBoost. arXiv preprint arXiv:190707157

64. Yin D, Chen Y, Ramchandran K, Bartlett P (2018) Byzantine-robust distributed learning:
towards optimal statistical rates. 1803.01498

65. Zawad S, Ali A, Chen PY, Anwar A, Zhou Y, Baracaldo N, Tian Y, Yan F (2021) Curse
or redemption? How data heterogeneity affects the robustness of federated learning. In:
Proceedings of the AAAI conference on artificial intelligence, vol 35, pp 10807–10814

66. Zhang C, Li S, Xia J, Wang W, Yan F, Liu Y (2020) BatchCrypt: efficient homomorphic
encryption for cross-silo federated learning. In: 2020 USENIX annual technical conference
(USENIX ATC 20), pp 493–506

67. Zhao B, Mopuri KR, Bilen H (2020) iDLG: improved deep leakage from gradients. arXiv
preprint arXiv:200102610

68. Zhu L, Han S (2020) Deep leakage from gradients. In: Federated learning. Springer, Cham,
pp 17–31

https://www.wsj.com/articles/google-exposed-user-data-feared-repercussions-of-disclosing-to-public-1539017194
https://www.wsj.com/articles/google-exposed-user-data-feared-repercussions-of-disclosing-to-public-1539017194

Part I
Federated Learning as a Machine Learning

Problem

Part I of this book addresses a number of specific issues of federated learning from a
machine learning perspective, going beyond the general overview that was presented
in the introduction. The chapters look at specific model types in the context of
federated learning, the issue of model personalization for a specific party, how to
adapt the federated learning process under conditions of limited communication
process, and at bias and fairness.

Chapters 2 and 3 cover two types of models particularly important for applica-
tions in the enterprise where tabular and text data are widely available. Chapter 2
takes a deep dive into methodologies to adapt tree-based model training to a
federated setting. The chapter covers multiple algorithm designs for both horizontal
and vertical federated learning. Chapter 3 focuses on text-based models that require
producing embeddings, which are also in common use for graphs.

Personalization has become an extremely important aspect for federated learning
systems where engaging in a federation helps improve model generalization, but
where at the same time, the final model for each party is different and tailored to
the specific party’s needs. Chapter 4 provides a thorough overview of the existing
penalization techniques and research challenges in this area. Chapter 5 focuses on a
methodology that produces personalized and robust models.

The next two chapters address techniques for dealing with situations where
communication between the party and the aggregator is limited or expensive.
Chapter 6 discusses multiple techniques to reduce the frequency with which
model updates are exchanged, while also reducing the amount of data exchanged
in each round, e.g., by model compression or pruning. Chapter 7 reviews and
analyzes model fusion approaches that can merge models that have been produced
independently or with little interaction, overcoming structural and model differences
both for classic and neural model types.

Finally, Chap. 8 focuses on the important aspect of social fairness in federated
learning. The chapter provides an overview of sources of undesired bias in federated
learning. This includes bias as we find it in centralized machine learning but also
novel sources of bias being brought about by a federated training process. When it
comes to mitigation techniques, in traditional, centralized machine learning, fairness

26 I Federated Learning as a Machine Learning Problem

mitigation usually requires analyzing all the training data. This is of course not
possible in federated learning settings. Chapter 8 also discusses how to adapt to
some of the existing techniques to mitigate unwanted bias.

Chapter 2
Tree-Based Models for Federated
Learning Systems

Yuya Jeremy Ong, Nathalie Baracaldo, and Yi Zhou

Abstract Many Federated Learning algorithms have been focused on linear mod-
els, kernel-based, and neural-network-based models. However, recent interest in
tree-based models such as Random Forest and Gradient Boosted Trees such as
XGBoost has started to be explored due to their simplicity, robust performance,
and interpretability in various applications. In this chapter, we introduce recent
innovations, techniques, and implementations specifically for tree-based algorithms.
We highlight how these tree-based methods differ from many of the existing FL
methods and some of the key advantages they have compared to other Federated
Learning algorithms.

2.1 Introduction

Federated Learning (FL) [29] has emerged as a new paradigm for training machine
learning models collaboratively across a federation of multiple distributed parties
without revealing the underlying raw data. Its applications have already been
demonstrated and implemented within the consumer setting to protect personal
data [17], as well as in the B2B enterprise settings [27] where constraints such
as government policies and regulations (e.g., GDPR, HIPPA, CCPA) and/or model
training through cross-enterprise collaborations are necessary for joint industrial
endeavors. In particular, the adoption of Federated Learning systems has become
widely popular due to concerns over potential risks and threats of data leakage and
privacy violations being posed to individual consumers, organizations, businesses,
and government entities.

As a result, this gave rise to various methods and techniques being proposed for
common machine learning methods such as linear models [19], kernel-based models
[7], and deep neural networks [2]. In particular, the growth of deep neural-network-

Y. J. Ong (�) · N. Baracaldo · Y. Zhou
IBM Research – Almaden, San Jose, CA, USA
e-mail: yuyajong@ibm.com; baracald@us.ibm.com; yi.zhou@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_2

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_2&domain=pdf
mailto:yuyajong@ibm.com
mailto:baracald@us.ibm.com
mailto:yi.zhou@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_2

28 Y. J. Ong et al.

based approach has grown to popularity due to the conflated increase in attention
within the machine learning community and demonstrated successes in centralized
learning scenarios. Hence, the literature within the Federated Learning space today
has focused on deep neural networks. However, very few work has addressed
alternative model architectures—in particular Decision tree-based algorithms such
as ID3 Decision Trees and Gradient Boosted Decision Trees (GBDT).

Tree-based models have been widely adopted within the machine learning
community due to its simple, robust, and highly interpretable structures that are
generated. In practice, they have been utilized in various domain areas such as
finance [30], medical [24], biological sciences [9], and business transactions [41]—
to name a few use cases. These algorithms have also been widely popular among
various data science competition such as Kaggle,1 where many winning solutions
have at least adopted some form of decision tree-based algorithm as part of their
solution, demonstrating robust performance in various real-world applications.

However, to implement these tree-based models within a Federated Learning
setting required researchers to solve a number of different fundamental challenges,
which significantly differ from the other model types that are commonly used within
Federated Learning. These challenges include building models where the underlying
structures are not initially defined, as opposed to neural networks where the model
architectures are pre-determined. Another key challenge includes what type of
fusion processes is necessary for aggregators to grow the model structures that are
derived from various contributing parties within the federation. As a result of these
new emerging challenges, this has spawned a new direction interesting discoveries
and research directions within the Federated Learning research space. Along with its
fair share of challenges, the field has also uncovered a set of key advantages such as
direct interpretability of the model’s decision, robust support for training over non-
IID data distributions across different parties, and lower computational overhead.
Many of the inherent advantages of tree-based models have naturally carried over
to align with many of the inherent objectives and even complement the benefits of
Federated Learning.

In this chapter, we focus on introducing the paradigm of tree-based methods for
Federated Learning through showcasing its benefits, providing a survey of the state-
of-the-art, and its practical implementation and applications in greater detail.

2.1.1 Tree-Based Models

The tree-based models are a class of machine learning algorithms that utilizes a
decision tree structure, depicted in Fig. 2.1, as its model representation, which makes
its decisions by partitioning the inputs’ feature space based on a recursive series of
binary “if-then” decision thresholds. For example, these “if-then” statements can

1 https://www.kaggle.com/

https://www.kaggle.com/

2 Tree-Based Models for Federated Learning Systems 29

Fig. 2.1 Example of a
decision tree structure

take the form of either input features that are binary, such as “does this person
exercise” or “does this person eat pizza,” versus continuous input features such as
“is this person’s age greater than 30.” This model transforms the input data from the
root node into the target leaf nodes through recursively traversing a set of branch
points within a decision tree to derive the model’s prediction, which resides at the
leaf nodes, where the outcome here in Fig. 2.1 determines whether the person is
“healthy” or “unhealthy.”

Machine learning algorithms that can construct these types of decision tree-
like structures have been widely adopted in various tasks such as classification,
regression, and ranking tasks. The objective of these machine learning methods is
to grow the tree structure by searching for the optimal split point to generate decision
tree structures that generate accurate predictions from an input data sample. These
algorithms produce more than one decision tree structure through generating an
ensemble of decision tree structures, which are predominantly performed by either
bootstrap aggregation (i.e., bagging) or boosting. Bagging builds multiple trees
in parallel through repeated resampling with replacement and using an averaged
aggregation process to combine the prediction outcomes of multiple decision tree
structures [3], while boosting incrementally builds a new tree that is recursively
built based on the error’s of the previous tree’s errors [14, 18]. In later sections of
this chapter, we will introduce two of the most commonly utilized tree algorithms:
ID3 Decision Trees [33] and XGBoost [4], an optimized variant of the Gradient
Boosted Decision Tree algorithm [13].

2.1.2 Key Research Challenges of Tree-Based Models in FL

To adopt tree-based machine learning algorithms for Federated Learning, this
requires re-evaluating the process of how decision trees are constructed due to
fundamental differences in the underlying representation of the resulting model’s
structure. This paradigm of machine learning therefore introduces a whole set of
new challenges, as the implementation of fusion processes for decision tree-based
structures is non-trivial in a distributed learning setting, along with the additional

30 Y. J. Ong et al.

challenges of preventing information leakage that can be potentially inferred from
the generated tree structures.

First, as opposed to linear models, kernel-based models, and deep neural-
network-based approaches, where the inherent structure of the model’s parameters is
defined as a finite structure, decision trees’ model representations are not pre-defined
but constructed dynamically from a bottom-up approach. This raises the question as
to how fusion algorithms should be designed within a Federated Learning context,
since the decisions of an input feature closer to the root node of the tree are
optimized based on searching for the feature and split values with the greatest
separability as an objective. Since the aggregator does not have full and direct access
to the raw distribution of the entire dataset, this makes the process of searching
for the optimal split points non-trivial, especially for Gradient Boosted Decision
Trees where there is a dependence on the prior tree structures that were generated
previously. In cases where the party’s data are non-IID (i.e., independent and
identically distributed), locally constructing such trees and attempting to fuse them
within the aggregator are non-trivial tasks. This leads to different decision paths that
are specifically dependent on the prior split choices made from the previous decision
nodes, which ultimately can result in drastically different tree structures.

Another challenge in implementing decision tree-based algorithms for Federated
Learning involves what type of information that would be exchanged between each
of the parties and the aggregator. While Federated Learning approaches for neural
networks and linear models exchange model parameters such as model weights,
these parameters are somewhat latent in nature making it hard to identify properties
of the raw data distribution. However, tree-based parameters that are comprised
primarily of a collection of decision split nodes based on the feature’s value are
much more sensitive in nature to exchange over the network, as they explicitly reveal
the immediate representation of the raw data. Hence, an alternative representation
of the raw data must be used to prevent unnecessary exposure of the local party’s
information from being leaked to potential adversaries. Alternatively, potential data
sources that can be exchanged can include: surrogate values that approximate close
to the raw distribution, gradients, and Hessians, and noisy samples of the raw data
distribution, for example. Other measures to prevent data leakage such as encryption
methods can also be employed to provide near or complete lossless accurate
information exchange while retaining high fidelity of the data. However, regardless
of the representation of the data type that has been selected, this brings various costs
toward additional computation and network overhead concerns. Thus, selectively
considering the different trade-offs between privacy, utility, and application use
case requirements is the necessary factor to identify when implementing tree-based
models in practice.

2 Tree-Based Models for Federated Learning Systems 31

2.1.3 Advantages of Tree-Based Models in FL

Despite the major challenges that are required to enable tree-based algorithms to
work within a Federated Learning setting, we discuss some of the key advantages
of tree-based algorithms and how these methods compliment the major advantages
in Federated Learning systems.

First, decision tree algorithms provide the right balance between complexity
and interpretability, which allows for both highly robust model performance while
retaining clear visibility into the model’s decision process. Decision trees can model
non-linear mappings between the inputs and outputs, while using a clear rule-based-
like decision structure, which allows for decision-makers to clearly identify the
factors the models used to make its predictions. This is especially important in
highly regulated settings such as finance, medical, and other government use cases
for Federated Learning, where these aspects are also evaluated in addition to the
data privacy and security concerns which Federated Learning mitigates.

Another favorable aspect of decision trees that complements well with Federated
Learning settings is the ability to handle both categorical and numerical features
out of the box. For example, algorithms such as Federated Gradient Decision
Trees can natively handle missing data, which is a very common form of data
that requires preprocessing in various domains. Another additional feature of tree-
based algorithm is the in-built feature selection methods that are implicit part of the
modeling process. This allows for joint modeling on the dataset for the predictive
task while being able to preprocess the data across different parties to identify
key features that are relevant across all parties. In short, these features allow for
modeling without much data preprocessing, which is a non-trivial task to perform if
the data is especially decentralized in a Federated Learning system. To implement
such data preprocessing routines in Federated Learning, this would incur additional
compute and network communication costs if non-tree-based algorithms were
used. Hence, tree-based algorithms can significantly cut down on any additional
communication costs, while jointly being able to handle various data types.

Finally, another key advantage of tree-based algorithms is the overall robust
model performance demonstrated across various machine learning tasks—
especially in handling Non-IID (independent and identically distributed) data
[31]. This is especially important in cases of Federated Learning where the data
is distributed and where the entire view of the dataset cannot be seen globally.
This, in turn, can lead to working with datasets where the data distribution is not
well balanced between each individual parties, and thus can make it increasingly
difficult in cases when training models jointly across all devices in Federated
Learning. However, algorithms such as Gradient Boosted Decision Tree models are
known to handle non-IID data well and often provide robust performances, as we
will demonstrate in later sections of the chapter.

In the remaining sections of this chapter, we focus on evaluating the cur-
rent state-of-the-art of tree-based models in Federated Learning, the fundamental
methodologies, and core building blocks behind how to train these tree-based

32 Y. J. Ong et al.

models in a Federated Learning setting and preview some of the other possible
research directions that are in the horizon for tree-based models for Federated
Learning. The rest of the chapter is organized as follows:

• Section 2.1: Provides an introduction to tree-based models for Federated Learn-
ing and highlights some of the key challenges and advantages over alternative
Federated Learning algorithms.

• Section 2.2: Provides a high-level survey of different state-of-the-art approaches
of tree-based algorithms proposed within the Federated Learning space.

• Section 2.3: Introduces key notations as well as a brief overview of the
ID3 Decision Tree and XGBoost algorithm necessary for understanding the
implementation under a Federated Learning setting.

• Section 2.4: We introduce the core algorithm behind the ID3 Decision Tree
implementation in Federated Learning.

• Section 2.5: We introduce the core algorithm behind the Gradient Boosted Trees
(XGBoost) algorithm for Federated Learning.

• Section 2.6: We identify some key research directions and future extensions for
tree-based models for Federated Learning.

• Section 2.7: We conclude and summarize the key ideas in this chapter.

2.2 Survey of Tree-Based Methods for FL

In this section, we survey some of the proposed methods that have been published
recently in the literature around tree-based methods for Federated Learning. We
summarize some of the major trends found across different papers and identify
notable differences between the methods of implementations across different works.
We organize the list of proposed methods in the state-of-the-art, as of writing
this chapter, in Table 2.1, where we highlight some of the key differences in
each of the methods. In our evaluation, we find that the main differentiation
between the proposed methods is based on: (i) whether they are based on horizontal
or vertical Federated Learning approaches, (ii) what type of tree-based learning
algorithm is implemented, (iii) what information is exchanged between parties and
the aggregator, and (iv) what security measures and protocols are implemented to
protect user’s private data. Furthermore, we also look at which Federated Learning
frameworks and products provide an implementation for tree-based models for
Federated Learning.

Ta
bl
e
2.
1

Su
m

m
ar

y
of

tr
ee

-b
as

ed
m

od
el

s
fo

r
Fe

de
ra

te
d

L
ea

rn
in

g

Pa
pe

r
H

or
iz

on
ta

lo
r

ve
rt

ic
al

FL
T

re
e

al
go

ri
th

m
E

xc
ha

ng
ed

en
tit

ie
s

Se
cu

ri
ty

m
ea

su
re

G
ia

co
m

el
li

et
al

.(
20

19
)

[1
5]

H
or

iz
on

ta
l

R
F

T
re

e
m

od
el

H
E

Y
an

g
et

al
.(

20
19

)
[4

3]
H

or
iz

on
ta

l
X

G
B

oo
st

(G
B

D
T

)
G

&
H

K
-A

no
n

L
iu

et
al

.(
20

19
)

[2
6]

H
or

iz
on

ta
l

X
G

B
oo

st
(G

B
D

T
)

G
&

H
SS

L
ie

ta
l.

(2
02

0)
[2

3]
H

or
iz

on
ta

l
X

G
B

oo
st

(G
B

D
T

)
G

&
H

L
SH

T
ru

ex
et

al
.(

20
18

)
[3

8]
H

or
iz

on
ta

l
R

F
C

ou
nt

s
D

P
&

SM
C

Sj
öb

er
g

et
al

.(
20

19
)

[3
5]

H
or

iz
on

ta
l

D
ee

p
ne

ur
al

de
ci

si
on

fo
re

st
M

od
el

pa
ra

m
s

Fe
dA

vg

Pe
lta

ri
(2

02
0)

[3
2]

H
or

iz
on

ta
l

R
F

T
re

e
m

od
el

D
P

L
iu

et
al

.(
20

20
)

[2
5]

H
or

iz
on

ta
l

E
xt

ra
tr

ee
s

Sp
lit

s
L

oc
al

D
P

So
uz

a
et

al
.(

20
20

)
[8

]
H

or
iz

on
ta

l
R

F
T

re
e

m
od

el
B

lo
ck

ch
ai

n

Y
am

am
ot

o
et

al
.(

20
20

)
[4

2]
H

or
iz

on
ta

l
X

G
B

oo
st

(G
B

D
T

)
G

&
H

E
nc

ry
pt

io
n

W
an

g
et

al
.(

20
20

)
[3

9]
H

or
iz

on
ta

l
X

G
B

oo
st

(G
B

D
T

)
G

&
H

E
nc

ry
pt

io
n

O
ng

et
al

.(
20

20
)

[3
1]

H
or

iz
on

ta
l

X
G

B
oo

st
(G

B
D

T
)

G
&

H
an

d
Sp

lit
s

H
is

tA
pp

ro
x.

C
he

ng
et

al
.(

20
19

)
[6

]
V

er
tic

al
X

G
B

oo
st

(G
B

D
T

)
G

&
H

H
E

L
iu

et
al

.(
20

19
)

[2
5]

V
er

tic
al

R
F

T
re

e
no

de
s

H
E

Fe
ng

et
al

.(
20

19
)

[1
2]

V
er

tic
al

L
ig

ht
G

B
M

(G
B

D
T

)
E

nc
ry

pt
ed

da
ta

H
E

W
u

et
al

.(
20

20
)

[4
0]

V
er

tic
al

R
F

&
G

B
D

T
G

&
H

SM
C

+
H

E

Z
ha

ng
et

al
.(

20
20

)
[4

4]
V

er
tic

al
X

G
B

oo
st

(G
B

D
T

)
Sp

lit
s

E
nc

ry
pt

io
n

Fa
ng

et
al

.(
20

20
)

[1
1]

V
er

tic
al

X
G

B
oo

st
(G

B
D

T
)

G
&

H
an

d
Sp

lit
s

H
E

+
SS

L
eu

ng
et

al
.(

20
20

)
[2

2]
V

er
tic

al
X

G
B

oo
st

(G
B

D
T

)
E

nc
ry

pt
ed

da
ta

Se
c.

E
nc

la
ve

+
O

bl
iv

io
us

ne
ss

X
ie

et
al

.(
20

21
)

[4
6]

V
er

tic
al

X
G

B
oo

st
(G

B
D

T
)

G
&

H
an

d
Sp

lit
s

SS

C
he

n
et

al
.(

20
21

)
[5

0]
V

er
tic

al
R

F
&

G
B

D
T

T
re

e
m

od
el

H
E

T
ia

n
et

al
.(

20
20

)
[3

7]
H

or
iz

.&
V

er
t.

G
B

D
T

G
&

H
Se

c
A

gg
+

D
P

34 Y. J. Ong et al.

2.2.1 Horizontal vs. Vertical FL

One of the most important distinctions in Federated Learning solutions is based on
whether they can be used vertically or horizontally. Federated Learning algorithms
can be categorized into two different types, horizontal or vertical Federated
Learning, depending on what dimensions are common across the participants within
the training of the model. In horizontal Federated Learning, parties share the same
set of features, while in vertical Federated Learning, parties share the same set of
data sample identifiers. Depending on the data that is structured across the party, the
resulting communication topology of the Federated Learning system as well as the
method and type of information exchanged can differ greatly. In Chap. 1, a formal
definition of vertical and horizontal is introduced in detail.

In the literature for tree-based Federated Learning systems, the majority of
approaches are based on horizontal data partitions. Relatively, very few methods
such as SecureBoost [6], S-XGB and HESS-XGB [11], SecureGBM [12], and
others consider the vertical partition of the data. In most of the vertical-based
Federated Learning systems, feature alignment must be performed in some fashion
to perform the learning process. However, given the underlying structure of the tree
algorithm is based on finding the optimal feature to split on, the task of finding the
most optimal feature to split on for tree-based algorithms in a vertical setting is a
crucially important problem, as the representation of the model is dependent on the
availability of such feature existing in the local party’s dataset.

2.2.2 Tree-Based Algorithm Types in Federated Learning

As shown in Table 2.1, the majority of algorithms implemented in Federated
Learning are based on Gradient Boosted Decision Trees (GBDT), using either an
optimized variant of the original algorithm such as XGBoost [4] or LightGBM
[20]. XGBoost or eXtreeme Gradient Boosted Decision Trees is a variant of
GBDT where the algorithm implements various different optimizations including
histogram approximations using a weighted quantile sketch method and the use of
Taylor-based approximations to compute approximate the loss computations [4].
On the other hand, LightGBM is another implementation of GBDT where boosting
is performed at a leaf-wise tree growth and handles categorical features much more
efficiently than the implementation of XGBoost [20]. Other models such as Random
Forest (RF) are also another commonly implemented architecture, based on the
bagging techniques implemented within tree-based models for Federated Learning.
In the literature, there exist other alternative learning algorithms for tree-based
models such as Deep Neural Decision Forests [35] and Extra Trees [25], which
have also been proposed in the state-of-the-art methods for tree-based algorithms
for Federated Learning. With constraints placed over how information is distributed

2 Tree-Based Models for Federated Learning Systems 35

among different parties, the trend for alternative tree-based algorithms is being
explored as methods for learning a tree-based structure.

2.2.3 Handling Security Requirements for Tree-Based
Federated Learning

Applying Federated Learning under different scenarios may require substantially
different protection mechanisms. For example, consider a multi-cloud environment
where all the parties are owned by the same company and the data used for model
training is not sensitive. In this case, there is no need for stringent security measures.
We call these types of scenarios Trusted Federations. However, for federations
where parties are embodied by competitors or where the training data include highly
sensitive information, additional protections are needed. We refer to these types of
scenarios as Protected Federations.

Trusted Federations: Several approaches have been proposed to address the needs
of these types of federations. This paradigm involves the use of dimensionality
reduction-based approaches that reduces the overall fidelity of the data to prevent
other parties from having an actual view of the raw data—instead having some
surrogate representation or approximation of the raw data. Examples of approaches
that employ this method include: Li et al. [23] that implements a Locality Sensitivity
Hashing (LSH) method, Yang et al. [43] proposed a clustering-based k-anonymity
scheme, and Ong et al. [31] that utilizes a party-adaptive histogram approximation
mechanism, which will be further introduced in later sections of this chapter. This
form of data obfuscation is slightly different from the additive form of statistical
methods such as differential privacy where noise is added to the data; however, it
follows a very similar principle for hiding the raw data distribution from potential
adversaries.

Protected Federations: To protect data within a Federated Learning context to
address issues concerning data privacy and security, various methods have been
proposed to prevent adversaries from obtaining direct unauthorized access to the
raw data distribution of those participating in the joint training of a machine learning
model or inference of private data. The two predominant paradigms in Federated
Learning are based on statistical methods and/or encryption-based methods. An in-
depth evaluation of these different threat models and their mitigation methods is
presented in Chap. 14.

Statistical methods of privacy protection employ techniques such as k-anonymity
[36] and differential privacy (DP) [10] that are two commonly employed techniques
for tree-based Federated Learning methods. Examples of methods that employ these
schemes include Yang et al. [43], Truex et al. [38], Peltari [32], Liu et al. [25],
and Tian et al. [37]. These methods define some statistical measure on privacy
guarantees with an upper-bound error margin for some defined privacy budget.

36 Y. J. Ong et al.

Although these methods do not require as much computational overhead compared
to encryption-based methods, the major disadvantage of these schemes primarily
degrades the overall accuracy performance of the machine learning task at hand due
to additional additive errors introduced into the data.

On the other hand, cryptographic-based approaches utilize encryption as a
mechanism to perform data operations directly on encrypted data sources through
methods such as homomorphic encryption (HE), Secret Sharing (SS), and Secure
Multi-Party Computation (SMC).2 Examples of encryption-based security protocols
include: SecureBoost [6], FedXGB [26], and HESS-XGB [11], which employ
homomorphic encryption. Alternatively, methods such as S-XGB [11] and PrivColl
[22] use Secret Sharing. Here, the major trade-off to take into consideration is the
additional computational and network communication overhead incurred during the
process of encryption and decryption of data, which increases the overall runtime
necessary for training a model, in exchange for near lossless data being transmitted,
which translates to better model performance.

2.2.4 Implementations of Tree-Based Models in FL

Compared to the state-of-the-art methods in linear models, kernel-based methods,
and deep neural-network-based methods, we find that there are a relatively small
number of real-world implementations of tree-based methods for Federated Learn-
ing that are readily available as open source solutions and/or commercially available
in the market today. As of writing, the current Federated Learning frameworks that
provide implementations of Gradient Boosted Trees include FATE3 [6] by WeBank
and Secure XGBoost from UC Berkley’s MC24 framework. However, as far as
robust product offering in the marketplace, IBM Federated Learning [27] offers
an enterprise-grade solution for implementing and deploying a Federated Learning
version of XGBoost [31] in production.

2.3 Preliminaries on Decision Trees and Gradient Boosting

In this section, we provide the readers with the standard notation, especially on the
setup of the FL system used throughout this chapter and the sufficient background
necessary for the discussion on implementing ID3 Decision Trees and XGBoost
algorithms in Federated Learning. We refer the reader to additional references when
necessary for further information behind each algorithm.

2 For an in-depth look at the various cryptographic techniques, see Chap. 14
3 https://fate.fedai.org/
4 https://github.com/mc2-project/secure-xgboost

https://fate.fedai.org/
https://github.com/mc2-project/secure-xgboost

2 Tree-Based Models for Federated Learning Systems 37

Fig. 2.2 The Federated Learning system architecture

2.3.1 The Federated Learning System

We define our Federated Learning system based on the setup from the Introductory
chapter, where we consider a FL system with n parties, P = {P1, P2, . . . , Pn}, with
a disjoint dataset D1,D2, . . . ,Dn each sharing the same number of features (i.e.,
horizontal FL), m, and an aggregator A, which orchestrates the training procedure.
Figure 2.2 demonstrates the high-level architecture of our Federated Learning setup,
where for each training round, the aggregator issues a query Q to the available
parties in the system, and a party Pi replies to that query with ri based on a
computed value from its local dataset Di and replies back to the aggregator. The
aggregator then collects the responses from each party and fuses the responses to
update the global ML model, defined by M = F (r1, r2, . . . , rn), which resides on
the aggregator side. This process gets performed for multiple iterations until some
termination criteria, such as model convergence or a user-defined heuristic, have
been met.

2.3.2 Preliminaries on Centralized ID3 Models

In this section, we briefly introduce the ID3 (Iterative Dichotomiser) decision tree
algorithm, an algorithm that generates a classification decision tree structure as its
output. We refer readers who wish to understand the algorithm further to Quinlan’s
original paper [33].

The fundamental process behind training a decision tree-based algorithm entails
the following steps: (1) determining the best feature to which we partition the

38 Y. J. Ong et al.

training data into, (2) performing the split of the training data into subsets based
on the chosen feature, and (3) repeating procedures (1) and (2) repeatedly for each
subset of the data until the subsets have converged to a pre-determined level of
uniformity based on a target variable. To determine the “best” feature to perform
the split on, the ID3 [33] algorithm, as well as its later variants, C4.5 [34] and C5.0,
maximizes on information gain to determine the optimal feature to split on. For a
given feature candidate f , the information gain metric can measure the difference
between the entropy of the current data against the weighted sum of the entropy
values for each data subset if f were used as split feature criteria. Given our dataset,
D (or its subset), entropy for that set is defined as

E(D) =
|C|∑

i=1

pi log2 (pi),

where C is the set of target class values and pi is the probability that a given data
sample instance from D is of a given ith class. Thus, to determine the best feature
to select requires identifying class-wise probabilities, which can be determined
through count values.

Concretely, the computational steps for ID3, to a dataset, D, starts from the root
node of the tree. On each iteration of the algorithm, the method computes the given
entropy for the data for each feature. It then determines the “best” feature to split
the data on using the computed entropy metric and subsequently splits the data to
produce a subset of the dataset D. This split generates a node in the tree. This
procedure is then recursively performed for every new child leaf node of the tree.

This recursive procedure terminates when: (i) every element in the remaining
subset of D is of the same class attribute; (ii) there are no more attributes to select
from and the data samples do not belong in the same class attribute; (iii) there are
no samples in the subset of D. This occurs when there are no class attributes within
the parent set that match the current selected feature attribute, hence generating a
leaf node with the most common class attribute in that given data subset.

2.3.3 Preliminaries on Gradient Boosting

In this section, we now briefly introduce the eXtreme Gradient Boosted
(XGBoost) algorithm, which is based on a highly optimized and efficient variant of
the Gradient Boosted Decision Tree defined by Friedman et al. [13]. We refer the
readers to [4] for further details.

Given a dataset D with n samples and m features, D = {(xi, yi)}ni=1, where
xi ∈ R

m and yi ∈ R, the predictions output from the XGBoost model, ŷi , are
defined as an additive tree-based ensemble model, φ(xi), comprising of K additive

2 Tree-Based Models for Federated Learning Systems 39

functions, fk , defined as

ŷi = φ(xi) =
K∑

k=1

fk(xi), fk ∈ F ,

where F = {f (x) = wq(x)} is a collection of Classification and Regression Trees
(CART), such that the function q(x) maps each input feature x to one of T leaves
in the tree by a weight vector, w ∈ R

T .
Given the defined model prediction above, the XGBoost algorithm minimizes the

following regularized loss function:

L̃ =
∑

i

l(yi, ŷi) +
∑

k

�(fk),

where l(yi, ŷi) is the loss function of the ith sample between the prediction
ŷi and the target value yi , and �(fk) = γ T + 1

2λ‖w‖2 is the regularization
component. This component discourages each kth tree, fk , from over-fitting through
hyperparameters λ, the regularization parameter penalizing the weight vector w, and
γ , a term penalizing the tree from growing additional leaves.

To approximate the loss function, a second-order Taylor expansion function is
used, as defined by

L(t) �
n∑

i=1

[l(yi, ŷi
(t−1)

) + gift (xi) + 1

2
hif

2
t (xi)] + �(ft).

As the tree is trained in a recursively additive manner, each iteration index of the
training process is denoted as t ; hence, L(t) denotes the t th loss of the training
process. Here, we also define the gradient and the second-order gradient, or the
Hessian, respectively, as follows:

gi = ∂
ŷ

(t−1)
i

l(yi, ŷ
(t−1)
i)

hi = ∂2
ŷ

(t−1)
i

l(yi, ŷ
(t−1)
i).

Given the derived gradients and Hessians for a given q(x), we can compute the
optimal weights of leaf j using

w∗
j = − Gj

Hj + λ
,

where Gj = ∑
i∈Ij

gi and Hj = ∑
i∈Ij

hi are the total summation of the gradients
and Hessians for each of the specific data sample indices, Ij , respectively. To

40 Y. J. Ong et al.

efficiently compute the optimal weights w∗
j , we can greedily maximize the gain

score to search for best partition value for a leaf node at each iteration efficiently.
This gain score is defined as follows:

Gain = 1

2

[
G2

L

HL + λ
+ G2

R

HR + λ
− (GL + GR)2

(HL + HR) + λ

]
− γ.

Here, L and R correspondingly consider the sum of the gradients and Hessians
based on the specific index of the left and right children of the given leaf node, IL

and IR , respectively.
In the next two sections of this chapter, we introduce two of the tree-based

algorithms, ID3 and XGBoost, now implemented within a Federated Learning sys-
tem. In particular, we demonstrate how each of the different security techniques is
implemented for the two different Federated Learning scenarios that are introduced
in Sect. 2.2.3.

2.4 Decision Trees for Federated Learning

In this section, we introduce an ID3 Decision Tree implementation for a Federated
Learning system, as proposed by Truex et al. [38]. This implementation com-
bines differential privacy and secure Multi-Party Computation (SMC) as a hybrid
approach for privacy-preserving tree-based model, providing robust formal privacy
guarantees through two combined approaches. The pseudocode implementation is
outlined in Algorithm 2.1.

We also present some of the optional steps, which include additional security
measures and different techniques, as indicated in a gray box as such.

As described previously in the Preliminaries Section (Sect. 2.3.2), to obtain a
decision tree structure from the data for the ID3 algorithm entails determining the
best feature to perform the partition of the data. In the case of a centralized setting,
this would be trivial as one can easily obtain the necessary count statistics from
a single data distribution source. However, when the data source is fragmented
and distributed across different parties with further privacy limitations imposed, the
method for obtaining the statistics necessary for growing the decision tree becomes
non-trivial. This raises both challenges and opportunities for how we can effectively
obtain these counts to find the best partition while respecting privacy limitations of
the local parties’ data distribution.

To implement this within a Federated-Learning-based setting, we would need to
decompose the process of training a tree-based model and assign those respective

2 Tree-Based Models for Federated Learning Systems 41

processes to the aggregator and the local parties. These two processes are: (i)
obtaining the raw data distribution statistics and (ii) fusing together the statistics to
derive the optimal feature partition of the decision tree. This pattern of decomposing
a centralized implementation of the algorithm into different components and
assigning specific routines to the aggregator and the party is a recurring theme found
in both the ID3 Decision Tree algorithm and the Gradient Boosted Decision Tree
algorithm, as we will later demonstrate.

At a high level, this entails the aggregator querying each of the individual parties
for its statistical data, to which each of the respective party responds and collected
by the aggregator. The aggregator then takes this data and fuses the statistics into a
single statistic, where it uses this fused statistic to perform a branch partition of the
model. It then repeats these two processes until some termination criteria have been
met.

During the response process of these queries from each individual party, either
of the two (or both) privacy-preserving techniques may be applied to ensure
further guarantees of privacy.

We now describe the ID3 decision tree algorithm as defined in Algorithm 2.1.
In Sect. 2.3.2, we have outlined the three key steps in order to learn a decision
tree structure for the ID3 decision tree algorithm. First, we defined the number of
colluding parties (line 1), t̄ , our evenly allocated privacy budget for determining the
counts, assigned to ε1, (line 2), respectively, and finally our root node (line 3). To
privately train a decision tree model in our proposed Federated Learning system,
we determine the best possible feature to perform our split on, such that we can
maximize the total information gain. For this, we first query each of the parties for
their respective counts, which is assigned to f (line 10).

Differentially private noise and/or encryption techniques such as threshold
homomorphic encryption may be applied on the raw data distribution during
every query transaction that occurs between a party and the aggregator. If a
trusted federation scenario is in place, this step may be omitted.

We determine whether or not the aggregate values of the counts fall into any
of the criteria for generating a leaf node (line 11). Based on the class counts, we
perform another query process to determine which of the class the leaf should be
classified as (lines 12–14). Otherwise, we specify a new privacy budget based on
the initial privacy budget, ε1, divided by 2 times the size of the feature of the
dataset (line 16). We subsequently obtain the counts for each attribute set and
correspondingly compute the entropy value, VF for that given feature (lines 17–

42 Y. J. Ong et al.

Algorithm 2.1 Private ID3 Decision Tree—Federated Learning
Input: D, Input Dataset; A, Aggregator; t , Minimum Number of Honest, Non-
Colluding Parties; ε, Privacy Guarantee; F , Attribute Set; C, Class Attribute; d,
Max Tree Depth; pk, Public Key
Output: M, Trained Global ID3 Decision Tree Model

1: t̄ ← n − t + 1
2: ε1 ← ε

2(d+1)

3: Define current splits, S ← ∅, for root node
4: M ← BuildTree(S, D, t , ε1, F , C, d, pk)
5: return M
6:

7: Function BuildTree(S, D, t , ε1, F , C, d, pk):

8: f ← maxF∈F |F |
9: Asynchronously query P: counts(S, ε1, t)

10: N ← decrypted aggregate of noisy counts

11: if F ← ∅ or d ← 0 or N
f |C| <

√
2

ε1
then

12: Asynchronously query P: class_counts(S, ε1, t)
13: Nc ← vector of decrypted, noisy class counts
14: return node labeled with argmaxcNc

15: else
16: ε2 ← ε1

2|F |
17: for F ∈ F do
18: for fi ∈ F do
19: Update set of split values to send to child node: Si ← S + {F = fi}
20: Asynchronously query P: counts(Si ,ε2,t) & class_counts(Si ,ε2,t)
21: N ′F

i ← aggregate of counts
22: N ′F

i,c ← element-wise aggregate of class_counts

23: Recover NF
i from t̄ partial decryptions of N ′F

i

24: Recover NF
i,c from t̄ partial decryptions of N ′F

i,c

25: end for

26: VF ← ∑|F |
i=1

∑|C|
c=1 NF

i,c · log NF
i,c

NF
i

27: end for
28: F̄ ← argmaxF VF

29: Create root node M with label F̄

30: for fi ∈ F̄ do
31: Si ← S + {F = fi}
32: Mi ← BuildTree(Si , P, t , ε1, F \ F̄ , C, d, pk)
33: Set Mi as child of M with edge fi

34: end for
35: return M
36: end if
37: end

2 Tree-Based Models for Federated Learning Systems 43

(a) (b)

Fig. 2.3 Comparison of local models versus Federated-Learning-based implementation of deci-
sion trees. (a) Comparison over ranges of epsilon. (b) Comparison over the number of parties

27). Prior to computing the entropy values for each feature, we then determine the
best split point of the tree (line 26) and update our model M by creating a root node
with label F̄ (line 28).

We then split the data subset correspondingly (line 31) and perform the same
operation on that given data subset recursively (line 32). We perform this process
until the termination criteria, defined in Sect. 2.3.2, have been met. Alternatively,
within a Federated Learning setting, the algorithm can also terminate when the
counts are small relative to the degree of noise that prevents the process of obtaining
any useful information, which is evaluated during the step in line 11. This yields the
final model, M, which is used as the final global model trained within the Federated
Learning system.

We now briefly demonstrate some performance evaluations from Truex et al.’s
[38] paper. In this experimental setup, the Nursery Dataset from the UCI Machine
Learning repository [51] was used to conduct experiments on various different
comparisons of the ID3 Decision Tree algorithm. In particular, the comparison
was focused primarily between training a decision tree model locally versus within
a Federated Learning setting. As shown in Fig. 2.3, the results in both plots
demonstrate the efficacy of training a Federated-Learning-based ID3 Decision Tree
(outlined in blue) is better than that of the local DP approaches (i.e., training
model independently from a federated setting). In particular, for the comparison
of using different values of ε as shown in Fig. 2.3a, we see that despite decreasing
the overall privacy budget, the Federated Learning approach still outperforms the
local DP method consistently. In Fig. 2.3b, we see that as we increase the number
of parties, the Federated Learning model’s performance is consistent despite the
varying number of samples per party. However for the local DP setting, the F1 score
decreases as we increase the number of parties since the overall number of samples
per party decreases, therefore reducing the performance of the models themselves.
For further details on the individual experimental setup and evaluation, we refer
readers to the original paper.

44 Y. J. Ong et al.

2.5 XGBoost for Federated Learning

In this section, we introduce a XGBoost-based implementation within a Federated
Learning system, also known as the Party-Adaptive XGBoost (PAX), proposed by
Ong et al. [31]. As noted in Sect. 2.3.3, one of the major challenges in training a
gradient boosted decision tree is to find the optimal feature and value to split using
the computed gain score. Similar to the method of decomposing the routines of the
algorithm as described in the previous section, the same principles of the aggregator
querying each party for its distribution statistics, fusing those statistics, and finding
the optimal partition based on those fused statistics hold for the Gradient Boosted
Decision Tree. In this case, instead of simple data count statistics, we deal with
histograms of data distributions instead.

Optimized GBDT methods such as XGBoost [4] and LightGBM [20] utilize
a quantile-based approximation to efficiently reduce the overall search space of
the split finding process by approximating the raw data distribution as a surrogate
histogram representation. Empirically, it has been shown that quantile approxima-
tions work just as well as the exact greedy solutions [4, 20, 21]. This method for
data approximations can serve as a semi-secure approach for training Gradient
Boosted Decision Trees under a Trusted Federations security policy. By quantizing
or reducing the resolution of the raw distribution, we can effectively generate
a surrogate representation of the raw data containing relatively lower fidelity of
information than the original data distribution. Therefore, this does not directly
reveal the raw data distribution of the original data source directly.

This method can further be supplemented with additional layers of secu-
rity such as adding differential private noise and/or applying encryption
techniques to satisfy the Protected Federations scenario of Federated
Learning.

Many methods for building distributed quantile sketches exist, including
GKMethod [16] and its extended variants [45]. However, each comes with its own
trade-offs in performance, speed, and reconstruction accuracy. For the proposed
method of PAX, this algorithm implements the Distributed Distribution Sketch
or DDSketch [28], an efficient and robust method that constructs highly accurate
quantile sketch approximations of data distributions with the ability to merge
multiple quantile sketches together. Furthermore, another advantage of using
DDSketch enables training of XGBoost where parties are able to join during
intermediate steps of the boosting process when a new party joins the federation.
Due to its ability to merge quantile sketch histograms efficiently and accurately, this
method enables dynamic adaptations to new data distributions in the data as new
parties join the federation.

2 Tree-Based Models for Federated Learning Systems 45

Just as privacy policies for encryption and differential privacy methods exist,
approximation-based methods for fidelity reduction policies can be employed.
To determine the most optimal approximation error bounds or thresholds for the
quantile sketch process, or effectively the bin size of the histogram approximation
for the data, various heuristics can be applied to mitigate against potential data leaks.
As opposed to equally approximating the data distribution in the same manner, PAX
considers the relative sample size of each party’s data with respect to those of the
other parties’ sample sizes to determine the most optimal bin size for discretizing
the data. This is achieved by defining an approximation error parameter ε,5 used
by XGBoost for each individual party. Intuitively, the inverse of the ε parameter,
or 1/ε, is roughly equivalent to the bin size of the histogram. Hence, using an
approximated representation tailored within the context of the party and the other
participants in the network can help to limit any “raw” data leakage to a defined
bound.

To train a gradient boosted decision tree within a FL setting, the aggregator
first initializes a global null model, f

(A)
∅ (line 1). The aggregator also defines

the global hyperparameter ε(A), which denotes the error tolerance budget for the
training process for XGBoost. This parameter sets the upper-bound histogram
approximation error and equivalently the number of maximum bins used in training.

Given the defined global ε(A) parameter, we then determine the appropriate
policies for how we construct the local party’s surrogate histogram by computing
the party’s local εi parameter (line 2). The aggregator first queries each party for
their dataset size, |di |, and maintains a list of counts, which we denote here as S.
For each ith party, we compute the local party’s εi parameter (line 36):

εi = ε(A)

(|di |∑
d∈D |d|

)
.

Equivalently, rewriting the inverse term of εi can give us the corresponding
number of bins that each ith party will use to construct their surrogate histogram
representation of the local dataset:

1

εi
= 1

ε(A)
(|di |∑

d∈D |d|
) =

∑
d∈D |d|

ε(A)|di | .

The aggregator replies to each party with their respective εi parameter and
correspondingly assigns the local party epsilon (lines 5–6). For this purpose, the
party uses the given εi and their respective local data distribution, D(pi), to compute
a surrogate histogram representation of the local party’s data distribution, D̃(pi)

(line 7). Each party then subsequently constructs their own surrogate histogram

5 Note: While ε is used here as a notation for the histogram approximation error, this term does
not collude with the notation used in differential privacy (DP).

46 Y. J. Ong et al.

Algorithm 2.2 Party-Adaptive XGBoost (PAX)
Input: D, Input Dataset; A, Aggregator; P , Participating Parties in FL Training;
ε(A), Global Error Tolerance Budget; T , Maximum Number of Training Rounds; l,
Model Loss Function
Output: f (A), Trained Global XGBoost Model

1: A Initialize Global Null Model: f
(A)
∅ ← 0

2: {ε1, . . . , ε|P|} ← compute_local_epsilon(ε(A))

3:

4: for i = 1, . . . , |P| do
5: A Transmits εi to pi

6: Assign Local Epsilon εi to pi

7: D̃(pi) ← compute_histogram(D(pi), εi)

8: pi Transmits D̃(pi)
X to A

9: D̄(A) ← D̄(A) ∪ D̃(pi)
X

10: end for
11:

12: repeat
13: (D̄(A),G(A), H (A)) ← (∅,∅,∅)
14: for i = 1, . . . , |P| do
15: A Transmits f

(A)
t to Party: f

(pi)
t ← f

(A)
t

16: pi Generate Predictions: ŷ
(pi)
t = f

(pi)
t (D̃(pi)

X)

17: pi Computes g(pi) and h(pi)

18: pi Transmits g(pi) and h(pi) to A
19: G(A) ← G(A) ∪ g(pi)

20: H(A) ← H(A) ∪ h(pi)

21: end for
22: D̄(A)

m ,G
(A)
m ,H

(A)
m ← merge_hist (D̄(A),G(A), H (A), ε

(A)
m)

23: f
(A)
t ← grow_tree(D̄(A)

m ,G
(A)
m ,H

(A)
m)

24: until t ≤ T or other termination criteria.
25:

26: Function compute_local_epsilon(ε(A)):

27: S ← ∅
28: for pi ∈ P do
29: A Queries Data Count: S ← S ∪ |D(pi)|
30: E ← ∅
31: for i = 1, . . . , |P| do
32: Compute ith Party ε: εi ← ε(A)

(
si∑
q∈S q

)

33: E ← E ∪ εi

34: end for
35: end for
36: end

2 Tree-Based Models for Federated Learning Systems 47

representation, D(pi), of the i-th local party’s pi raw data distribution and transmits
the resulting sketch to the aggregator, where the merge process can fuse together
the entire federations’ distributions as a single view of the whole dataset for the
model to train. Note that this process can occur once before the training starts with
the initial set of parties or alternatively as new parties join the federation during
intermediate phases of the training process.

After computing the surrogate histogram representation of the data, we then
initiate the iterative Federated Learning process. First, the aggregator A transmits
their global model, f

(A)
t to each party, pi , which is assigned to each party’s

respective local model f
(pi)
t (line 13). We then evaluate f

(pi)
t on D̃(pi)

X to obtain the

model’s predictions, ŷ
(pi)
t (line 14). Afterward, given the predictions, we compute

the loss function that is used to compute the gradient, g(pi), and Hessians, h(pi),
for each of the corresponding surrogate input feature-value split candidates (line
15). Gradient and Hessian statistics that fall under a certain bin interval are grouped
together within their respective value buckets [4]. The gradient and Hessian for each
party are then sent back as replies to the aggregator and then collected until some
quorum criterion has been met (line 16). Given the collected results from each party,
we perform a fusion operation to merge the final histogram representation used
toward boosting the decision tree model, as formulated in the method of DDSketch
[28].

The final ε value based on this heuristic is denoted as ε
(A)
m , where m denotes

the variables pertaining to the merging process. Using the derived ε
(A)
m , we can

utilize the existing methods such as [5] and [1] for implementing merging histogram
routines with error guarantees based on some defined error parameter. This produces
the final outputs for the merged gradients, G

(A)
m , Hessians, H

(A)
m , and feature-value

split candidates, D̄(A)
m , which are used for the boosting process (lines 25–26). With

a new f
(A)
t generated, we repeat our training process for T rounds, or until some

other stopping criteria depending on whether early stopping or other heuristics are
considered (line 27).

We now briefly demonstrate some performance evaluations from Ong et al.’s
[31] paper. In this experimental setup, the airline delay causes dataset from the
U.S. Department of Transportation’s (DOT) Bureau of Transportation Statistics
(BTS) [52]. However, a slightly preprocessed version of the dataset from Kaggle6

was used to conduct experiments on various different comparisons of the different
Federated Learning algorithms. We evaluate our model against different variants
of Federated Learning algorithms including Logistic Regression and SecureBoost
[6], which utilizes a form of encryption to protect user’s data (Table 2.2). Based
on these results, we see that the proposed XGBoost method outperforms both the
Logistic Regression model and the SecureBoost model. Further descriptions on the
experimental setup and analysis can be found in the corresponding paper.

6 https://www.kaggle.com/giovamata/airlinedelaycauses

https://www.kaggle.com/giovamata/airlinedelaycauses

48 Y. J. Ong et al.

Table 2.2 Results for FL XGBoost on Testing Samples from the Airline Dataset

Airline (Random) Airline (Balanced)

Model ACC PRE REC AUC F1 ACC PRE REC AUC F1

PAX (Ours) 0.88 0.88 0.88 0.87 0.88 0.87 0.85 0.90 0.87 0.88

Homo
SecureBoost

0.74 0.71 0.82 0.81 0.72 0.81 0.84 0.79 0.86 0.81

Logistic
regression

0.58 0.72 0.49 0.58 0.45 0.58 0.72 0.49 0.58 0.45

2.6 Open Problems and Future Research Directions

In this section, we outline some of the potential research directions that stem from
the development of tree-based models for Federated Learning. Here, we specifically
look at various new problems and open research challenges that emerged as a result
of the development of these new class of models for Federated Learning. Key
challenges include data representation policies for reduction-based data obfuscation
techniques, mitigation of bias and fairness, and considering training methodologies
for alternative Federated Learning network topologies.

2.6.1 Data Fidelity Threshold Policies

In the previous section, we introduced one possible policy that can be employed to
derive party-specific approximation thresholds based on some underlying statistics
of the individual party’s dataset. However, there exist many other policies and
methods for finding the most optimal approximation thresholds based on different
design objectives or mitigation against specific types of attacks that an adversary
might deploy to target information about the party’s raw data distribution. We
consider the risks and trade-offs (in particular model performance) that must be
accounted for when training a model depending on the different security scenarios,
as described in Sect. 2.2.3.

Another dimension to evaluate these surrogate representation methods is to
juxtapose their respective risks, trade-offs, and error bounds against additive
obfuscation techniques such as differential privacy. For methods such as quantile
sketch and clustering-based approaches, these methods attempt to obfuscate the
raw data distribution using reductive techniques to reduce or limit the amount of
information present in the dataset. This presents researchers to consider alternative
methods for how to jointly optimize these additive and reductive techniques for data
obfuscation methods toward building a robust statistical approach for better data
privacy protection.

2 Tree-Based Models for Federated Learning Systems 49

2.6.2 Fairness and Bias Mitigation Methods for Tree-Based FL
Models

One of the key benefits of Federated Learning enables the amalgamation of disparate
data sources to come together and jointly train models. This, however, introduces
new challenges and problems as parties of different data sources often contribute
widely different data distribution characteristics and statistical properties that may
significantly differ from one party to another. In particular, the work of Abbay
et al. [47] explores these different challenges in the context of Federated Learning
through different bias mitigation techniques and fairness evaluation metrics to
evaluate the effects of different models and biased datasets. Hence for tree-based
methods, we can study the various effects of different bias mitigation techniques
such as local reweighing, global reweighing, and in-processing methods that impose
a regularization component [48] to discourage the model from deriving biased
decisions in its predictions. Future work in this space would aim to investigate
the full effects of bias of tree-based models in a Federated Learning setting and
correspondingly devising methods to resolve such issues from emerging during
training.

2.6.3 Training Tree-Based FL Models on Alternative Network
Topologies

In this chapter, we introduced a tree-based model training algorithm based on
a single-point aggregator topology orchestrating the overall training procedure.
However, there exist other topologies for Federated Learning, such as a tier-based
Federated Learning system [49], which divides the corresponding parties of a
Federation to be divided among different groups based on their training performance
to mitigate against stragglers during a model training process in Federated Learning.
Given these newly emerging Federated Learning network topologies, devising new
ways to also train models for these new architectures will be another possible
direction of research areas to explore. Specifically, since one of the main challenges
in tree-based models entails figuring out how to perform fusion across different
party sources, a tier-based topology presents us with a non-trivial challenge of
determining how to perform fusion in a hierarchical manner and determine what
information to propagate and at what frequency to pass information across the
different hierarchies of the network.

50 Y. J. Ong et al.

2.7 Conclusion

In this chapter, we introduced an emerging paradigm of tree-based models for Feder-
ated Learning systems. We outlined some of the major challenges of implementing
such models within a Federated Learning setting and also evaluated how these
models complement, and even strengthen the core objective of Federated Learning
systems through some of the key advantages tree-based models provide. Further-
more, we surveyed some of the various state-of-the-art methods and generalized
some key trends and observations for the different variations in implementations.
Finally, we introduced two different implementations of tree-based models for
Federated Learning: the ID3 Decision Tree and XGBoost implementation with
different security measures.

References

1. Blomer J, Ganis G (2015) Large-scale merging of histograms using distributed in-memory
computing. J Phys Conf Ser 664:092003. IOP Publishing

2. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal
A, Seth K (2017) Practical secure aggregation for privacy-preserving machine learning. In:
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security,
pp 1175–1191

3. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140
4. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of

the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
pp 785–794

5. Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system supplementary material
6. Cheng K, Fan T, Jin Y, Liu Y, Chen T, Yang Q (2019) SecureBoost: a lossless federated

learning framework. arXiv preprint arXiv:1901.08755
7. Dang Z, Gu B, Huang H (2020) Large-scale kernel method for vertical federated learning. In:

Federated learning. Springer, Cham, pp 66–80
8. de Souza LAC, Rebello GAF, Camilo GF, Guimarães LCB, Duarte OCMB (2020) DFedForest:

decentralized federated forest. In: 2020 IEEE international conference on blockchain
(Blockchain). IEEE, pp 90–97

9. Dimitrakopoulos GN, Vrahatis AG, Plagianakos V, Sgarbas K (2018) Pathway analysis using
XGBoost classification in biomedical data. In: Proceedings of the 10th Hellenic conference on
artificial intelligence, pp 1–6

10. Dwork C, McSherry F, Nissim K, Smith A (2006) Calibrating noise to sensitivity in private
data analysis. In: Theory of cryptography conference. Springer, pp 265–284

11. Fang W, Chen C, Tan J, Yu C, Lu Y, Wang L, Zhou J, Alex X (2020) A hybrid-domain
framework for secure gradient tree boosting. ArXiv, abs/2005.08479

12. Feng Z, Xiong H, Song C, Yang S, Zhao B, Wang L, Chen Z, Yang S, Liu L, Huan J (2019)
SecureGBM: secure multi-party gradient boosting. In: 2019 IEEE international conference on
Big Data (Big Data). IEEE, pp 1312–1321

13. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat
29:1189–1232

14. Friedman JH (2002) Stochastic gradient boosting. Comput Stat Data Anal 38(4):367–378
15. Giacomelli I, Jha S, Kleiman R, Page D, Yoon K (2019) Privacy-preserving collaborative

prediction using random forests. AMIA Summits Transl Sci Proc 2019:248

2 Tree-Based Models for Federated Learning Systems 51

16. Greenwald M, Khanna S (2001) Space-efficient online computation of quantile summaries.
ACM SIGMOD Rec 30(2):58–66

17. Hard A, Rao K, Mathews R, Ramaswamy S, Beaufays F, Augenstein S, Eichner H, Kiddon
C, Ramage D (2018) Federated learning for mobile keyboard prediction. arXiv preprint
arXiv:1811.03604

18. Hastie T, Tibshirani R, Friedman J (2009) The elements of statistical learning: data mining,
inference, and prediction. Springer Science & Business Media, New York

19. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles
Z, Cormode G, Cummings R et al (2019) Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977

20. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q, Liu T-Y (2017) LightGBM: a
highly efficient gradient boosting decision tree. In: Advances in neural information processing
systems, pp 3146–3154

21. Keck T (2017) FastBDT: a speed-optimized multivariate classification algorithm for the belle
II experiment. Comput Softw Big Sci 1(1):2

22. Leung C (2020) Towards privacy-preserving collaborative gradient boosted decision tree
learning

23. Li Q, Wen Z, He B (2020) Practical federated gradient boosting decision trees. In: Proceedings
of the AAAI conference on artificial intelligence, vol 34, pp 4642–4649

24. Li S, Zhang X (2019) Research on orthopedic auxiliary classification and prediction model
based on XGBoost algorithm. Neural Comput Appl 32(7):1971–1979

25. Liu Y, Liu Y, Liu Z, Liang Y, Meng C, Zhang J, Zheng Y (2020) Federated forest. IEEE Trans
Big Data

26. Liu Y, Ma Z, Liu X, Ma S, Nepal S, Deng R (2019) Boosting privately: privacy-preserving
federated extreme boosting for mobile crowdsensing. arXiv preprint arXiv:1907.10218

27. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y, Radhakrishnan J,
Verma A, Sinn M et al (2020) IBM federated learning: an enterprise framework white paper
v0. 1. arXiv preprint arXiv:2007.10987

28. Masson C, Rim JE, Lee HK (2019) DDSketch: a fast and fully-mergeable quantile sketch with
relative-error guarantees. arXiv preprint arXiv:1908.10693

29. McMahan HB, Moore E, Ramage D, Hampson S et al (2016) Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629

30. Nobre J, Neves RF (2019) Combining principal component analysis, discrete wavelet
transform and XGBoost to trade in the financial markets. Expert Syst Appl 125:181–194

31. Ong YJ, Zhou Y, Baracaldo N, Ludwig H (2020) Adaptive histogram-based gradient boosted
trees for federated learning. arXiv preprint arXiv:2012.06670

32. Pelttari H et al (2020) Federated learning for mortality prediction in intensive care units
33. Quinlan JR (1986) Induction of decision trees. Mach Learn 1(1):81–106
34. Salzberg SL (1993, 1994) C4.5: programs for machine learning by J. Ross Quinlan. Morgan

Kaufmann Publishers, Inc., San Mateo
35. Sjöberg A, Gustavsson E, Koppisetty AC, Jirstrand M (2019) Federated learning of deep

neural decision forests. In: International conference on machine learning, optimization, and
data science. Springer, pp 700–710

36. Sweeney L (2002) k-anonymity: a model for protecting privacy. Int J Uncertainty Fuzziness
Knowl-Based Syst 10(05):557–570

37. Tian Z, Zhang R, Hou X, Liu J, Ren K (2020) FederBoost: private federated learning for
GBDT. arXiv preprint arXiv:2011.02796

38. Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R (2018) A hybrid approach to
privacy-preserving federated learning

39. Wang Z, Yang Y, Liu Y, Liu X, Gupta BB, Ma J (2020) Cloud-based federated boosting for
mobile crowdsensing. arXiv preprint arXiv:2005.05304

40. Wu Y, Cai S, Xiao X, Chen G, Ooi BC (2020) Privacy preserving vertical federated learning
for tree-based models. arXiv preprint arXiv:2008.06170

52 Y. J. Ong et al.

41. XingFen W, Xiangbin Y, Yangchun M (2018) Research on user consumption behavior
prediction based on improved XGBoost algorithm. In: 2018 IEEE international conference
on Big Data (Big Data). IEEE, pp 4169–4175

42. Yamamoto F, Wang L, Ozawa S (2020) New approaches to federated XGBoost learning
for privacy-preserving data analysis. In: International conference on neural information
processing. Springer, pp 558–569

43. Yang M, Song L, Xu J, Li C, Tan G (2019) The tradeoff between privacy and accuracy in
anomaly detection using federated XGBoost. arXiv preprint arXiv:1907.07157

44. Zhang J, Zhao X, Yuan P (2020) Federated security tree algorithm for user privacy protection.
J Comput Appl 40(10):2980–2985

45. Zhang Q, Wang W (2007) A fast algorithm for approximate quantiles in high speed data
streams. In: 19th international conference on scientific and statistical database management
(SSDBM 2007). IEEE, p 29

46. Xie L, Liu J, Lu S, Chang T-H, Shi Q (2021) An efficient learning framework for federated
XGBoost using secret sharing and distributed optimization. arXiv preprint arXiv:2105.05717

47. Abay A, Zhou Y, Baracaldo N, Rajamoni S, Chuba E, Ludwig H (2020) Mitigating Bias in
Federated Learning. arXiv preprint arXiv:2012.02447

48. Ravichandran S, Khurana D, Venkatesh B, Edakunni NU (2020) FairXGBoost: fairness-aware
classification in XGBoost arXiv preprint arXiv:2009.01442

49. Chai Z, Ali A, Zawad S, Truex S, Anwar A, Baracaldo N, Zhou Y, Ludwig H, Yan F, Cheng Y
(2020) TiFL: a tier-based federated learning system. arXiv preprint arXiv:2001.09249

50. Chen X, Zhou S, Yang K, Fan H, Feng Z, Chen Z, Wang H, Wang Y (2021) Fed-EINI:
an efficient and interpretable inference framework for decision tree ensembles in federated
learning. arXiv preprint arXiv:2105.09540

51. Dua D, Graff C. UCI Machine Learning Repository. School of Information and Computer
Science, University of California, Irvine. http://archive.ics.uci.edu/ml

52. U.S. Department of Transportation (2009) Airline On-Time Statistics and Delay Causes.
https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp

http://archive.ics.uci.edu/ml
https://www.transtats.bts.gov/OT_Delay/OT_DelayCause1.asp

Chapter 3
Semantic Vectorization: Text-
and Graph-Based Models

Shalisha Witherspoon, Dean Steuer, and Nirmit Desai

Abstract Semantic vector embedding techniques have proven useful in developing
mathematical relationships of non-numeric data such as text. A key application
enabled by such techniques is the ability to measure semantic similarity between
given data samples and find similar data points via encoding comparison. State-of-
the-art embedding approaches assume all data are available at a centralized location.
However, in many scenarios, data are distributed across multiple edge locations and
cannot be aggregated due to a variety of constraints. Hence, the applicability of
state-of-the-art embedding approaches is limited to freely shared datasets, leaving
out applications with sensitive or mission-critical data.

In this chapter, we address this gap by reviewing novel unsupervised algorithms
for learning and applying semantic vector embeddings in a variety of distributed set-
tings. Specifically, for scenarios where multiple edge locations can engage in joint
learning, we adapt the proposed federated learning techniques for semantic vector
embedding. Where joint learning is not possible, we propose novel semantic vector
translation algorithms to enable semantic query across multiple edge locations, each
with its own semantic vector space. Experimental results on natural language as well
as graph datasets show that this may be a promising new direction.

3.1 Introduction

Exponential growth of IoT devices and the need to analyze the vast amounts of data
they generate closer to its origin have led to an emergence of the edge computing
paradigm [15]. The factors driving such a paradigm shift are fundamental: (a) costs
involved in transporting large amounts of data to Cloud, (b) regulatory constraints
in moving data across sites, and (c) latency in placing all data analytics in Cloud.

S. Witherspoon (�) · D. Steuer · N. Desai
IBM Research – Yorktown Heights, Yorktown Heights, NY, USA
e-mail: shalisha.witherspoon@ibm.com; dean.steuer@ibm.com; nirmit.desai@us.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_3

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_3&domain=pdf
mailto:shalisha.witherspoon@ibm.com
mailto:dean.steuer@ibm.com
mailto:nirmit.desai@us.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_3

54 S. Witherspoon et al.

Further, deployments of applications enabled by 5G network architecture rely on
edge computing for meeting the low-latency requirements [4].

A critical application of edge computing is the extraction of insights from the
edge data by running machine learning computations at the edge agent, without
needing to export the data to a central location such as the Cloud [18]. However,
most of the recent advances in machine learning have focused on performance
improvements while assuming all data are aggregated in a central location with
massive computational capacity. Recently proposed federated learning techniques
have charted a new direction by enabling model training from data residing locally
across many edge locations [8, 17].

However, previous work on federated learning has not been primarily focused
on machine learning tasks beyond classification and prediction. Specifically, repre-
sentation learning and semantic vector embedding techniques have proven effective
across a variety of machine learning tasks across multiple domains. For text data,
sentence and paragraph embedding techniques such as doc2vec [7], GloVe [11],
and BERT [1] have led to highly accurate language models for a variety of
Natural Language Processing tasks. Similar results have been achieved in graph
learning tasks [3, 16] and image recognition tasks [2, 10]. Key reasons behind the
effectiveness of semantic embedding techniques include their ability to numerically
represent rich features in low-dimensional vectors and their ability to preserve
semantic similarity among such rich features. Further, little or no labeled data is
needed in learning the semantic vector embedding models. Clearly, semantic vector
embedding will remain a fundamental tool in addressing many machine learning
problems in the future.

This chapter addresses the challenge of representation learning when data cannot
reside in a centralized location. Two new research problems are introduced that
generalize federated learning. First, we introduce the problem of learning semantic
vector embedding wherein each edge site with data participates in an iterative joint-
learning process. However, unlike the previous work on federated learning, the edge
sites must agree on the vector-space encoding. Second, we address a different setting
where the separate parties are unable to participate in an iterative joint-learning
process. Instead, each edge site maintains a semantic vector embedding model of its
own. Such scenarios are quite common where edge sites may not have continuous
connectivity and may join and leave dynamically.

It is important to note that while the edge scenario motivated the study and
development of the aforementioned research problems, they are not limited to edge
scenarios and can be applied in many settings where data cannot be aggregated
centrally, such as in mobile or enterprise computing use cases. In the edge
environment, an edge device, be it a mobile phone, computer, sensor, etc., can
be treated as a party in the traditional federated learning scenario and thus can be
utilized in any setting federated learning is carried out.

3 Semantic Vectorization: Text- and Graph-Based Models 55

3.2 Background

Before discussing the topic of semantic vector federation, it is necessary to define
several terms and techniques used in the approach. The first is a brief overview of
Natural Language Processing and natural language embedding. It is also necessary
to define the algorithms that utilize components of natural language embedding that
allow for the federated semantic search that follows.

3.2.1 Natural Language Processing

Natural Language Processing (NLP) is a broad field covering computer interpreta-
tion of human speech and text. NLP has a long history of study within computer
science, with the first explorations going back to the 1950s. During that time, work
focused on breaking speech and text into its formative components and interpreting
language as ontologies from which computers could more easily reason [13, 14].

In the 1990s, compute power and new algorithms in the field had advanced
sufficiently for research to move away from complex rules and toward utilizing
machine learning algorithms [5, 6, 12] to identify patterns. Researchers moved to
focus on unsupervised algorithms, as the abundance of information was difficult or
impossible to classify. The proliferation of more complex algorithms such as neural
networks in recent years has served as the backbone for continued research into
natural language understanding.

Natural language embedding is a technique by which human speech and text are
converted into numeric vectors on which a computer can make calculations. This
conversion of words into a numeric representation is referred to as vectorization
and enables tasks such as finding semantically similar words, clustering docu-
ments, classifying text, extracting text features, etc. Techniques such as stemming,
lemmatization, and stopword removal can also be used to reduce the size of the
corpus into a smaller, but more valuable set of data by removing text that has little
information. Once the text has been converted into vectors, similarity functions can
be applied. One such example is cosine similarity, which works by projecting two
vectors into a two-dimensional space. The cosine angle between these two vectors
is then determined where the smaller the angle, the higher the similarity between
two vectors. This process is done for the entire corpus of text to generate cosine
similarity vector scores for all words.

Representation learning and semantic vector embedding techniques have proven
effective across a variety of machine learning tasks across multiple domains. For
text data, sentence and paragraph embedding techniques such as Doc2Vec, GloVe,
and BERT have led to highly accurate language models for a variety of NLP tasks.
Key reasons behind the effectiveness of semantic embedding techniques include
their ability to numerically represent rich features in low-dimensional vectors and
their ability to preserve semantic similarity among such rich features. Furthermore,

56 S. Witherspoon et al.

little or no labeled data is needed in training semantic vector embedding models as
they rely on unsupervised learning.

3.2.2 Text Vectorizers

Text vectorizers are a series of algorithms used to embed text data. These algorithms
attempt to identify and categorize text into more machine interpretable forms. One
of the prominent algorithms to be developed in this area is Word2Vec. Word2Vec
was first developed by Tomas Mikolov and team in 2013 [9]. This algorithm
was able to solve the challenge of maintaining semantic meaning in text space
and allow for words in similar contexts to be correlated. Typically, the corpus is
many thousands, or millions of words. Underlying the Word2Vec model is a neural
network that takes as input the vectorized words and creates a mapping of the vast
input data. Two addition techniques are a part of the Word2Vec algorithm. These
are the continuous bag-of-words (CBOW) model and the Skip-Gram model. CBOW
works by creating a vector projection of the words that surround a word w in order
to predict the word. The number of words to include is defined by a “window.”
A window describes the number of words before and after the query word in a
sentence to include in the vector projection. In a sample sentence such as “the
dog jumped over the lazy fox,” suppose we wanted to find the vector space of the
word “over,” the algorithm would look at the context surrounding the word. If we
additionally provide a window size of two, our vector projection would include the
words “dog” (w-2), “jumped” (w-1), “the” (w+1), and “lazy” (w+2). Skip-Gram
works in a reverse fashion where we attempt to predict the words surrounding
some particular word. Using the sample sentence again, and using the same word,
“over,” the approach would attempt to learn that the word “jumped” and “the” are
contextually close to “over.” See Fig. 3.1 to compare the approaches.

(a) (b)

Fig. 3.1 Text vectorizers. (a) Word2vec. (b) Doc2vec, based on the CBOW algorithm (continuous
bag-of-words)

3 Semantic Vectorization: Text- and Graph-Based Models 57

In Word2Vec, vectors of fixed dimensions representing each word in the vocab-
ulary are initialized randomly. The learning task is defined as predicting a given
word based on the preceding N words and following N words. The loss function
is defined as the error in predicting the given word. By iterating through many
sentences during training, the word vectors are optimized using gradient descent
and updated to minimize the loss and accurately represent the semantic concept.
Interestingly, such semantic vectors also exhibit algebraic properties, e.g., vector
representing “Queen” is similar to the one corresponding to subtracting “Man” from
“King” and adding “Woman.” Doc2Vec is a simple yet clever tweak of Word2Vec
where a vector representing an entire document, e.g., a paragraph, is learned along
with the words in it.

3.2.3 Graph Vectorizers

Another area of valuable semantic meaning is that of graphs. Graphs are generally
structured as a series of nodes linked by edges. A neighborhood defines a portion
of the nodes in the overall graph that are connected together. These graphs can
be complex or small depending on the datasets. Examples of graph datasets include
social network graphs where individuals are nodes and friendships are edges; author
collaboration networks where authors are nodes and co-authorships are edges; and
road networks where cities are nodes and roads are edges. Given these scenarios,
it becomes valuable to find patterns in these potentially massive graphs. Node2Vec
is an algorithm for representation learning on graph data that was first proposed by
Grover and Leskovec in 2016 [3].

The paper’s effort is two-fold; first, by using graphs and node neighborhoods, the
algorithm can generate nodes of similar semantic meaning; second, by using graphs
where some subsets of the links are missing in an attempt to predict where links
should exist. Our work focuses on the first technique of identifying semantically
similar nodes. Semantically similar nodes can be described in two ways: homophily
and structural equivalence. Homophily describes a scenario where nodes are highly
interconnected and, therefore, similar to each other. Structural equivalence describes
a scenario where nodes that are similarly connected or fulfill a similar role within
the graph are similar to each other. These nodes need not be highly connected or
even connected to each other.

As an example, consider a grade school population that consists of all students
and staff. Suppose a node represents a single individual and an edge represents
individuals attending the same class. A cohort of students of a particular grade are
likely to appear in several classes together and act as a neighborhood. A teacher
may teach this cohort but may also teach other classes of entirely different students
at different times. Students who appear in the same classes would be homophilic
and considered a highly interconnected group of nodes. The teacher is structurally
equivalent to other teachers who are a point of a single connection to other large

58 S. Witherspoon et al.

Fig. 3.2 Node2vec: random walks on graphs

groups of students. Structurally equivalent nodes need not be transition nodes into
larger neighborhoods.

Nodes that exist on the periphery of a graph with single connections or no
connections at all may also be treated as structurally equivalent. The preference
to identify nodes via homophily or structural equivalence is treated as a parameter
during Node2Vec model training. Given a graph, Node2Vec can learn vector
representations for the nodes, which can then be used for node comparison and
link prediction. Unlike text sentences where each word is preceded or followed
by at most one word, graphs have a complex structure. It is necessary to convert
this potentially complex and interconnected graph in a sequence of elements much
like a sentence. One of the key innovations behind Node2Vec is mapping a graph
to node sequences, a.k.a. graph sentences, by generating random walks and then
using Word2Vec to learn the vector representation of the nodes in these sequences.
Hyperparameters control the number of walks to generate, walk length, as well as
the preference of the walk to keep close to its starting node and potentially revisit
nodes it has already seen, or explore further out away from the starting node. Once
the walk sequences have been generated, the walks are provided as sentences to a
text vectorizer as described above (Fig. 3.2).

3.3 Problem Formulation

With the background on semantic embedding covered, we are ready to formally
define the problem of semantic vector federation for edge environments.

In the introduction, we presented two problem scenarios for semantic vector
federation in edge environments: the first being when iterative joint learning is
possible and the second when edge sites were unable to participate in joint learning.
Joint learning is the process by which multiple parties collaborate and share some
form of information. In cases where the data is not sensitive or all parties are
controlled by a single organization, the raw information could be shared. However,

3 Semantic Vectorization: Text- and Graph-Based Models 59

in many scenarios, it may be necessary to minimize what data is being shared with
others. The latter scenario was used to inform and design new algorithms for the
joint-learning process.

To address the conflicting challenges, we developed novel algorithms for each
scenario. In the case of joint learning, prior to beginning the iterative distributed
gradient descent, edge sites collaborate to compute an aggregate feature set so
that the semantic vector spaces across edge sites are aligned. In the case where
joint learning is not possible, edge sites learn their own semantic vector embedding
models from local data. As a result, the semantic vector spaces across edge sites are
not aligned, and semantic similarity across edge sites is not preserved. To address
this problem, we propose a novel approach for learning a mapping function between
the vector spaces such that vectors of one edge site can be mapped to semantically
similar vectors on another edge site.

3.3.1 Joint Learning

Joint learning can be described as scenarios where synchronous learning is able to
transpire, i.e., all parties are able to participate in federated learning at the same
time to train a global model. The global model could then be used in performing
semantic similarity searches across all edges sites for new data.

The joint-learning algorithm adapts the federated averaging algorithm, which
achieves model fusion by averaging the learned weights during iterative rounds of
training, to a semantic vector embedding setting. The main challenge in applying
federated learning in semantic embedding models is in ensuring that concepts across
edge sites are aligned. For example, in the case of text data, if the vocabulary of
words is different across edge sites, federated averaging cannot be readily applied
because the learned weights of the embedding model are what eventually ends up as
the word embeddings, and if they are not aligned, the correct embeddings would not
be updated properly during averaging. Hence, a key innovation in the joint-learning
adaption is to align the vocabulary of concepts as a prerequisite step in the iterative
synchronous training process to ensure consistent embedding across sites.

Figure 3.3 depicts an illustration wherein EDGE1 wants to perform a global
search for top-3 experts most similar to person X. Assuming that a Doc2Vec model
m1 has been distributed to all edge sites via joint learning, EDGE1 uses m1 to
vectorize person X’s document as vector v1 and sends v1 to other sites. Other
sites apply a similarity metric, e.g., cosine similarity, to find top-3 nearest-neighbor
vectors to v1 and return the corresponding person identities and cosine similarity
score back to EDGE1. After receiving the results from all edge sites, EDGE1 can
select the top-3 results having the highest cosine similarity.

60 S. Witherspoon et al.

Fig. 3.3 Semantic search for the motivating example: joint learning

3.3.2 Vector-Space Mapping

The problem of vector-space mapping of semantic vector embedding is defined
as having N edge sites, each edge site i with local dataset Di and a pre-trained
semantic vector embedding model mi trained on Di . Each of the edge sites wants
to collaborate in performing global similarity search for a new example d across all
edge sites but do not want to share their data with each other and are not able to
participate in jointly training a common model.

A key property of semantic embedding models is that each has what is known
as its own vector space. This means that the real-valued vectors produced for
semantic representations are initialized randomly. As an example, because of this
property, even if two word embedding models were trained on the exact same
corpus, their semantic vectors would be different, and the semantic meaning would
not be preserved across the other embedding models. This introduces a concept
known as vector-space mapping, which is the ability to translate the vector space of
one embedding model into another independently trained embedding model’s vector
space in order to retain the semantic meaning learned across both models and enable
queries of similarity among their vectors.

One of the main challenges is to identify a training set of semantically similar
words in the different vector spaces and use the corresponding vectors as reference
vectors that can be used to generate a function that is capable of transforming any
vector from one vector space to the other. Given this, our algorithm makes use of
the properties of multi-layer perceptron (MLP) neural networks to potentially learn
universal functions and, therefore, the possibility to train such a network to learn the
mapping. However, training a MLP model requires a training set that is commonly
available to all edge sites. Availability of such training data is highly constrained,
especially given that the sites do not wish to share their proprietary datasets with
each other.

3 Semantic Vectorization: Text- and Graph-Based Models 61

Hence, another key innovation of our vector-space mapping algorithm is the idea
of leveraging any publicly available corpus, regardless of its domain, as a training
dataset generator for the mapper MLP model. The formal algorithm definition can
be defined as outlined in Algorithm 3.1 and illustrated in Fig. 3.4.

Algorithm 3.1 Vector-Space Mapping Algorithm
Input: Local Dataset Di , Public dataset Dp, Loss Function Fi , Epochs T ,
learning rate η

Function Main(Di,Dp, Fi, η):

mi ← T rainDoc2V ec(Di,Dp, Fi, η)

store mi

Function Mapj (mj ,Dp, Fi) :
Wi→j ← RandomNN()

for all b ∈ Dp do
vi ← predict (mi, b)

vj ← predict (mj , b)

L ← Fi(vi, vj)

� ← Gradient (L, Fi,Wi→j)

Wi→j ← Wi→j − η�L

end for
mi→j ← Model(Wi→j)

store mi→j

Function GlobalSearch(d) :
for all Edgej ∈ Edges do

vi ← predict (mi, d)

vj ← mi→j (vi)

Send query vj to Edgej

Vsim ← Receive result vectors from Edgej

end for
return Vsim

As shown in Fig. 3.4, consider that a semantic vector embedding model m1 is
trained from local data on EDGE1 and another semantic vector embedding model m2
is trained from local data on EDGE2. The objective is to train a mapper MLP model
that can map vectors produced by vector space of m1 to the vector space of m2. An
auxiliary dataset Dp that is accessible to both edge sites can serve as the training
samples generator and facilitate the training of MLP mapper model. Input to the
MLP model are the vectors produced by m1 on samples of Dp, and the ground-truth
labels are the vectors produced by m2 on the same samples of Dp. Since the input
and the output of the MLP mapper model can have a different dimensionality, this
approach works even when EDGE1 and EDGE2 choose a different dimensionality
for their semantic vectors.

62 S. Witherspoon et al.

Fig. 3.4 Learning to map vector space of Edge1 to that of Edge2

3.4 Experimentation and Setup

We evaluate the two algorithms of joint learning and vector-space mapping via
extensive experiments on two data modalities: natural language and graph. The
experiments are anchored on the motivating example of performing a global
semantic search for individuals with expertise. The evaluation metric is dependent
on the algorithm. For joint learning, we perform an objective evaluation of how
well the federated semantic vector embedding model performs relative to the
baseline of a centralized model; comparing with a baseline is a standard practice
for unsupervised algorithms since there is no ground truth on semantic similarity
between samples. And for vector-space mapping, we perform an objective analysis
comparing cosine similarity of reference vectors with and without our mapping
algorithm being performed.

3.4.1 Datasets

For the natural language modality, we leverage three different datasets: (a) an
internal dataset consisting of Slack collaboration conversations, (b) the 2017
Wikipedia dataset with 10K samples, and (c) the 20-newsgroup public datasets with
18,846 samples. For joint-learning experiments, (a) is used for both the centralized
and federated experiments. For vector-space mapping experiments, (b) is used as
the private datasets, with (c) acting as the public dataset accessible by all edge sites.
For the graph modality, we leverage (a) above for the joint-learning experiments but
instead of looking at the text content of the posts, we construct a collaboration graph
between users.

3 Semantic Vectorization: Text- and Graph-Based Models 63

The Slack dataset (a) consists of natural language conversations across 7367
Slack channels among 14,208 unique users. Of these, only 1576 users having
sufficient activity (more than 100 posts) are used in the experiments. All Slack posts
of a user are treated as a single document in training the Doc2vec models. For the
centralized case, Slack posts of all users are used for training a single Doc2vec
model, whereas for the federated case (joint learning), the users are uniformly
distributed across two edge sites. No additional knowledge of the organization
hierarchy, projects, or teams is included, leaving the models to rely solely on the
content of the Slack posts as a basis of semantic vector embedding representing
each user.

In constructing a graph from the Slack dataset, each user is treated as a node in
the graph, and other users who participate in the same Slack channel as the user are
treated as the edges. For avoiding noisy edges due to having channels with a large
number of users, a pair of users participating together, i.e., co-occurring, in less than
10 channels do not have an edge between them. Another approach would have been
to assign weights to edges; however, Node2vec does not take advantage of edge
weight information. The entire graph is used for training the centralized Nodes2vec
model. For the federated case, users are randomly assigned to one of the edge sites.
When doing so, the cross-site edges are handled in two alternative ways: (1) the
cross-site edges are not retained, so each edge site has edges only among the users
assigned to the site, called no retention, and (2) the nodes involved on cross-site
edges are retained on both sites, called retention.

3.4.2 Implementation

For the natural language dataset, we use the Doc2vec model architecture with
the Skip-Gram PV-DM algorithm with 40 epochs and a learning rate of 0.025.
Doc2vec semantic vectors are 50-dimensional real-valued vectors. For the graph
dataset, we use the Node2vec architecture with 40 epochs and a learning rate of
0.025. Node2vec semantic vectors are 124-dimensional real-valued vectors. The
hyperparameters of the Node2vec favor homophily approach where the return
parameter p is favored over the in–out parameter q. We set p = 0.6 and q = 0.1.
The walk length parameter, the number of hops to other nodes from the start node,
is set to 20, and the number of walks, the number of iterations of node hopping to
perform, is also set to 20.

In the case of vector-space mapping, the mapper model is an MLP model with
a single hidden layer with 1200 neurons and a dropout ratio of 0.2. We use the
cosine embedding loss in training the MLP as the semantic similarity is based on
cosine similarity. ADAM optimizer with a learning rate of 0.00001 and 20 epochs of
training with the batch size of 64 was applied.

It is worth emphasizing that these details are provided for completeness and
these parameters are quite commonly used in the literature. The objective here is
not to produce the best-performing semantic vector embedding models. Instead,

64 S. Witherspoon et al.

we are primarily interested in evaluating the relative performance of the federated
algorithms compared to the traditional centralized ones. Hence, all of the above
parameters are kept the same for the centralized and federated cases.

3.5 Results: Joint Learning

3.5.1 Metrics

For objectively measuring how well the federated algorithms perform relative to the
centralized case, the degree of overlap is computed as follows. For a given document
d in the dataset, the centralized model is used to vectorize the document, and the
set of top-k most similar documents from the dataset is found based on cosine
similarity, called dk

c . Then, using the respective federated algorithm, the set of top-k
most similar documents is found for the same document d, called dk

f . The degree
of overlap simk then is the ratio of cardinality of the intersecting set and k, denoted

as simk = |dk
c ∩dk

f |
k

. For multiple documents in the dataset, a simple mean of simk

is computed over all documents. When simk = 1, the centralized and federated
models produce identical results on semantic search. The idea behind the measure
is simple: the higher the simk , the closer the federated case performance is to the
centralized case. In evaluating the federated algorithms relative to the centralized
case, we set k = 10.

3.5.1.1 Natural Language

Figure 3.5 shows the distribution of the number of overlaps between the centralized
case and the joint-learning case (sim10 × 10) when the joint-learning algorithm
is applied to the Slack dataset. As indicated by the simk of 0.609, for a majority
of the users, the joint-learning model found about 6 of the same users found by
the centralized model. It is important to note that an average degree of 6 out of

Fig. 3.5 Performance of
Doc2vec joint learning
relative to centralized
learning, simk = 0.609

3 Semantic Vectorization: Text- and Graph-Based Models 65

10 overlaps is an adequate result, because we found that when retrieving the top
10 results from cosine similarity, the bottom half results are usually inconsistent
between experiments, even in the centralized case, due to the fact that the latter
results are lower and closer in score, often only separated by trailing decimal digits.
Thus, the fact that the federated model was able to overlap with more than half of
the results produced from the centralized model demonstrates similar performance
from the models.

Based on the above, we can conclude that there is not a significant loss in
performance introduced by the joint-learning algorithm when compared to the
centralized model, making the joint-learning algorithm a viable alternative to the
centralized case.

3.5.1.2 Graph

Figure 3.6 shows the distribution of the number of overlaps between the centralized
case and the joint-learning case (sim10 × 10) when the joint-learning algorithm is
applied to the graph dataset with no retention of cross-site collaborators. As seen
in the distribution as well as indicated by the simk of 0.138, for a majority of the
users, the joint-learning model found almost no users returned by the centralized
model. This is not an encouraging result by itself. However, since the cross-
site edges are dropped from the graph corresponding to the joint-learning case,
valuable information about those users’ collaboration behavior is lost compared to
the centralized case having the entire graph. Although this explanation is intuitive
to validate it, we need to examine the result when the cross-site collaborators are
retained and discussed next.

Figure 3.7 shows the distribution of the number of overlaps between the
centralized case and the joint-learning case (sim10 × 10) when the joint-learning
algorithm is applied to the graph dataset with all cross-site collaborators retained
across both sites. As seen in the distribution as well as indicated by the simk of
0.253, for a majority of the users, the joint-learning model found more than 2 of
the same users returned by the centralized model. Compared to the no retention

Fig. 3.6 Performance of
Node2vec joint learning
relative to centralized
learning, no retention,
simk = 0.138

66 S. Witherspoon et al.

Fig. 3.7 Performance of
Node2vec joint learning with
collaborator retention relative
to centralized learning,
simk = 0.253

result, this is a significantly better result. Thus, the explanation above is validated as
retaining the cross-site collaborators clearly helps the joint-learning model achieve
more accurate user embedding.

Although the difference between the Node2vec joint-learning results above can
be explained by the difference in retention policy, the inferior results of Node2vec
when compared with Doc2vec require further investigation. One hypothesis is that
the random assignment of users to edge sites can have an adverse effect on the
joint-learning performance because such an assignment can have an uneven effect
on the collaborative user clusters in the graph. For example, one edge site may end
up having most of its collaborative clusters unaffected, whereas another may have
its collaborative clusters split into two sites. Although the immediate collaborators
may be preserved via cross-site retention, the higher-order collaborations are still
affected.

3.6 Results: Vector-Space Mapping

To construct the required vector spaces, we used 10,000 randomly shuffled subsam-
ples from the 2017 Wikipedia dataset as the private data on two edge sites to train
two Doc2vec models using different initial random weights. For our public dataset
used to generate input and ground-truth vectors for training the MLP mapper model,
we leveraged the 20-newsgroup data consisting of 18,886 samples. Our experiments
focused on mapping the vector space of EDGE1 to EDGE2.

3.6.1 Cosine Distance

To illustrate the impact of not having mapping across vector spaces, we measured
the cosine similarity between vectors for the same documents in both vector
spaces. Without mapping, the resulting cosine distance distribution was shown
to have a similar distribution to orthogonal vectors, which is essentially akin to

3 Semantic Vectorization: Text- and Graph-Based Models 67

Fig. 3.8 Distribution of cosine distance, no mapping

Fig. 3.9 Distribution of cosine distance, mapping performed

comparing random vectors, as shown in Fig. 3.8. For comparison, Fig. 3.9 shows
the distribution of cosine distance after mapping the vector spaces, which shows a
significant shift in the mean and variance of the distribution away from the random
distribution and toward a similarity around 1.0.

3.6.2 Rank Similarity

To further determine the quality of the vector-space mapping, we measured the rank
similarity of comparable vectors in both vector spaces. To do this, we vectorized
documents in EDGE1’s vector space and performed the mapping into EDGE2’s
vector space to find its 20 nearest matching vectors. If the nearest matching vector
was the same as the test document, we gave it a rank of 0; otherwise, we assigned
it the rank that it appeared in the similarity result. In cases where the test document
was not returned in the similarity result, we assigned it a rank of 20. As shown
in Fig. 3.10, we achieve a 0.95 percent accuracy of a perfect match between the

68 S. Witherspoon et al.

Fig. 3.10 Distribution of
rank similarity, mapping
performed

Fig. 3.11 Distribution of
rank similarity, no mapping

document vectors after mapping. We also performed the rank similarity experiment
without mapping, shown in Fig. 3.11, which resulted in a mere 0.03 percent accuracy
for matching the appropriate vector, and the majority of the results gives a rank
of 20. Thus both results illustrate the effectiveness of our vector-space mapping
algorithm for semantic search across independently trained local models.

3.7 Conclusions and Future Work

With the increasing regulation and the growth in data originating at the edge, edge
computing is poised to be a critical area of research with significant impact on
how IT systems are developed, deployed, and managed. This chapter introduced
the novel research direction of federated semantic vector embedding, building on
the unique combination of the well-known techniques of federated learning and
semantic vector embedding. Specifically, two research problems were formulated to
cater to two separate settings in which edge sites want to collaborate in performing
global semantic search across sites without sharing any raw data.

The first setting, called joint learning, is when the edge sites have a tightly cou-
pled collaboration to participate in a synchronous joint-learning process and have an
agreement on the model architecture, training algorithm, vector dimensionality, and
data format. A novel algorithm to address the joint-learning problem is presented

3 Semantic Vectorization: Text- and Graph-Based Models 69

with the novel idea of vocabulary aggregation before starting the iterative federated
learning process.

The second setting, called vector-space mapping, is when the edge sites do
not agree on the various parameters of joint learning or cannot participate in a
synchronous process as they may need to join and leave dynamically. This is clearly
a challenging setting and one of great significance in practice. Based on the novel
idea of training another model to learn the mapping between vector spaces based
on a public dataset from any domain, an algorithm for addressing the vector-space
mapping problem was presented.

Experimental evaluation using multiple natural languages as well as graph
datasets shows that these algorithms show promising results for both algorithms
compared to the baseline centralized case where all data can be aggregated on one
site. Several important research questions remain open. How do these algorithms
scale in the number of edge sites, differences in data distributions, and the amount
of data at edge site? How do we interpret such semantic vectors and explain the
similarity results they produce? The work covered here is one of the first in the area
of federated semantic vector embedding and has unlocked several key challenges
for future research.

References

1. Devlin J, Chang M, Lee K, Toutanova K (2018) BERT: pre-training of deep bidirectional
transformers for language understanding. CoRR abs/1810.04805, http://arxiv.org/abs/1810.
04805,1810.04805

2. Frome A, Corrado GS, Shlens J, Bengio S, Dean J, Ranzato M, Mikolov T (2013) Devise:
a deep visual-semantic embedding model. In: Advances in neural information processing
systems, pp 2121–2129

3. Grover A, Leskovec J (2016) Node2vec: scalable feature learning for networks. In: Proceedings
of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining,
KDD’16. Association for Computing Machinery, New York, pp 855–864

4. Hu YC, Patel M, Sabella D, Sprecher N, Young V (2015) Mobile edge computing—a key
technology towards 5G. ETSI White Pap 11(11):1–16

5. Kanerva P, Kristofersson J, Holst A (2000) Random indexing of text samples for latent
semantic analysis. In: Proceedings of the 22nd annual conference of the cognitive science
society, vol 1036. Erlbaum, New Jersey

6. Uesaka Y, Kanerva P, Asoh H, Karlgren J, Sahlgren M (2001) From words to understanding.
In: Foundations of real-world intelligence. CSLI Publications, p 294). chapter 26

7. Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In: Interna-
tional conference on machine learning, pp 1188–1196

8. McMahan HB, Moore E, Ramage D, y Arcas BA (2016) Federated learning of deep networks
using model averaging. CoRR abs/1602.05629. http://arxiv.org/abs/1602.05629,1602.05629

9. Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in
vector space. 1301.3781

10. Norouzi M, Mikolov T, Bengio S, Singer Y, Shlens J, Frome A, Corrado G, Dean J (2014)
Zero-shot learning by convex combination of semantic embeddings. In: Proceedings of 2nd
international conference on learning representations

http://arxiv.org/abs/1810.04805,1810.04805
http://arxiv.org/abs/1810.04805,1810.04805
http://arxiv.org/abs/1602.05629,1602.05629

70 S. Witherspoon et al.

11. Pennington J, Socher R, Manning CD (2014) GloVe: global vectors for word representation.
In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp 1532–1543

12. Sahlgren M, Kanerva P (2008) Permutations as a means to encode order in word space. In:
Cognitive science—COGSCI

13. Salton G (1962) Some experiments in the generation of word and document associations. In:
Proceedings of the fall joint computer conference, AFIPS’62 (Fall), 4–6 Dec 1962. Association
for Computing Machinery, New York, pp 234–250. https://doi.org/10.1145/1461518.1461544

14. Salton G, Wong A, Yang CS (1975) A vector space model for automatic indexing. Commun
ACM 18(11):613–620

15. Satyanarayanan M (2017) The emergence of edge computing. Computer 50(1):30–39
16. Wang Q, Mao Z, Wang B, Guo L (2017) Knowledge graph embedding: a survey of approaches

and applications. IEEE Trans Knowl Data Eng 29(12):2724–2743
17. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: concept and applications.

ACM Trans Intell Syst Technol (TIST) 10(2):1–19
18. Zhou Z, Chen X, Li E, Zeng L, Luo K, Zhang J (2019) Edge intelligence: paving the last mile

of artificial intelligence with edge computing. Proc IEEE 107(8):1738–1762

https://doi.org/10.1145/1461518.1461544

Chapter 4
Personalization in Federated Learning

Mayank Agarwal, Mikhail Yurochkin, and Yuekai Sun

Abstract Typical federated learning (FL) problem formulation requires learning
a single model suitable for all parties while prohibiting parties from sharing their
data with the aggregator. However, it may not be possible to learn a common single
model that is suitable for all parties. For example, consider a sentence completion
problem: “I live in the state of . . .” The answer clearly depends on the party, and
no single model is appropriate here. To handle such situations, various person-
alization strategies have been proposed in the recent literature. In particular, the
problem appears to have a close connection to meta-learning. We review recent FL
personalization techniques categorizing them into eight groups and summarize three
strategies and corresponding datasets for benchmarking personalization in federated
learning. We provide an overview of the statistical challenges of personalization
in federated learning. At a high level, personalization leads to an increase in the
model complexity, which in turn increases the hardness of the federated learning
task. We study when too much personalization can prevent standard approaches to
personalized federated learning from learning the common parts of the parties and
present alternative approaches that overcome such issues.

M. Agarwal (�)
IBM Research, Cambridge, MA, USA
e-mail: mayank.agarwal@ibm.com

M. Yurochkin
MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA, USA
e-mail: mikhail.yurochkin@ibm.com

Y. Sun
Department of Statistics, University of Michigan, Ann Arbor, MI, USA
e-mail: yuekai@umich.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_4

71

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_4&domain=pdf
mailto:mayank.agarwal@ibm.com
mailto:mikhail.yurochkin@ibm.com
mailto:yuekai@umich.edu
https://doi.org/10.1007/978-3-030-96896-0_4

72 M. Agarwal et al.

4.1 Introduction

Centralized federated learning aims to learn a global model from individual parties’
data while keeping their local data private and localized to their individual machines.
This global model has the advantage of utilizing data from all the parties and thus
generalizes better to test data across parties. In practical scenarios, however, datasets
on individual parties are often heterogeneous (non-IID), thus rendering one global
model performance sub-optimal for some parties. On the other hand, if each party
trains a local model on their local data, they train on a data distribution similar to
what is expected at test time but might fail to generalize due to the paucity of data
available on a local party. Personalized federated learning aims to learn a model that
has the generalization capabilities of the global model but can also perform well on
the specific data distribution of each party.

To illustrate the need for personalization, consider the case of a language model
learned in a federated learning setting [10]: if we use a global model to predict the
next word for the prompt: “I live in the state of . . .,” the global model will predict
the same token (name of the state) for every party irrespective of their local data
distribution. Thus, while a global model might be able to learn the general semantics
of language well, it fails to personalize to the individual party.

In addition to the aforementioned qualitative example, we can also quantitatively
demonstrate the need for personalization. We set up our experiment using the
MNIST dataset1 divided among 100 parties. We distribute the data among these
parties in a heterogeneous manner using a Dirichlet distribution with different
concentration parameters (α) [64]. We train a 2-layer fully connected network in
two settings to measure the benefits parties gain from participating in federated
learning. In the first setting, we train an individual network for each of the 100
parties for 10 epochs using solely the parties’ own data and measure the performance
of these individual networks on their respective parties’ test data (Acclocal

i). In
the second setting, all 100 parties participate in training a global model using
Federated Averaging (FedAvg) [39] for 100 communication rounds, and we measure
the performance of this global model on each of the party’s test data (Accglobal

i).
Figure 4.1 shows histograms of the differences in the performance of the global
model and the local model (Accglobal

i − Acclocal
i) for each of the parties, under

different levels of data heterogeneity. As is evident in the plots, the global model
does not benefit each party participating in its training, and this phenomenon is more
pronounced when the non-IID characteristics of the data are more severe (smaller
α values). This experiment emphasizes the need for personalization of the global
model on the parties’ local data distribution to ensure that every party benefits from
its participation in the learning setup.

In this chapter, we review different personalization techniques proposed in feder-
ated learning literature and discuss the connections between federated learning and

1 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

4 Personalization in Federated Learning 73

Fig. 4.1 Difference in the accuracies of a global model learned using Federated Averaging and
the local models trained solely on the parties’ local datasets. Without personalization, under more
severe cases of heterogeneity (smaller α), the global model underperforms on a significant number
of parties as compared to their local models. With a naive method of personalization by fine-tuning,
this effect is attenuated, with the performance improving even in the extreme cases of heterogeneity

first-order meta-learning [18]. We also study the statistical limits of personalization
in federated learning. In particular, we show that personalization improves party-
specific performance up to a point. After this point, adding more parties to the
problem does not lead to improvements in performance.

4.2 First Steps Toward Personalization

In this section, we look at a basic technique that combines federated learning
and personalization and explore why this technique is a strong baseline for the
personalization task.

4.2.1 Fine-Tuning Global Model for Personalization

A straightforward method to personalize a global model learned using federated
learning is to train it further on the local data. This method allows us to control

74 M. Agarwal et al.

the level of personalization through the number of local updates performed on the
global model—zero local updates retain the global model, while as the number of
local updates increases, the model becomes more personalized to the local data.

While this technique might look simple, it is a strong baseline for the person-
alization task. We study this fine-tuning approach in the experiment presented in
Sect. 4.1 and Fig. 4.1. We personalize the global model learned over 100 parties
with data distributed in a heterogeneous manner by fine-tuning it for 1 epoch on
the local data and then measure the performance of this fine-tuned model on the
parties’ local test data. As is evident through the results of this experiment, this
simple fine-tuning technique considerably improves the performance of the global
model as compared to the local models. For the extreme cases of heterogeneity, this
method improves the performance for a significant number of parties and also does
not negatively impact the performance in less severe cases of heterogeneity. We
now aim to understand the reason behind the strong performance of this fine-tuning
approach.

4.2.2 Federated Averaging as a First-Order Meta-learning
Method

In this section, we try to understand the reason behind the effectiveness of fine-
tuning the global model learned using federated averaging. We replicate the
derivations of Jiang et al. [29] to show that the updates in Federated Averaging are
a combination of federated SGD updates and the first-order MAML (FOMAML)
updates.

What is meta-learning and MAML?
While conventional machine learning approaches aim to learn parameters
that perform best on a given task, meta-learning or learning to learn [55–
57, 59] aims to learn parameters that can be quickly adapted to new tasks.
Model-Agnostic Meta-Learning (MAML) [18] is among the most popular
meta-learning approaches: its goal is to find model parameters that can be
adapted to a new task in few gradient updates. However, to achieve this,
the MAML objective requires computing the second-order derivatives, which
are computationally expensive. First-order MAML (FOMAML) [43] approx-
imates the MAML objective by considering only the first-order derivatives,
thereby reducing the computation demand of MAML. See Sect. 4.3.5 for
further discussion of meta-learning and related federated learning personal-
ization strategies.

4 Personalization in Federated Learning 75

We start the analysis by defining the update of FedSGD (equation (4.1)). FedSGD
operates by taking a single gradient step on each of the N parties, communicating
these gradients back to the aggregator, and then aggregating these gradients to
update the global model. We use ∇i

k to denote the kth-step gradient on party i.

∇FedSGD = 1

N

N∑

i=1

∂Li (θ)

∂θ
= 1

N

N∑

i=1

∇i
1, (4.1)

where θ are the model parameters (e.g., neural network weights) and Li (θ) is the
loss of party i. Next, we derive the update of MAML and first-order MAML [18] in
similar terms. Assume θi

K is the personalized model of party i obtained after taking
K steps of the gradient of loss with β as the learning rate:

θi
K = θ − β

K∑

j=1

∂Li (θ
i
j)

∂θ
. (4.2)

The MAML update is then defined as the gradient of the personalized model θi
K

with respect to the initial parameters θ , averaged across N parties. Unfortunately,
this computation requires higher-order derivatives and is expensive even for K =
1. FOMAML ignores the higher-order derivatives and only uses the first-order
gradients:

∇FOMAML(K) = 1

N

N∑

i=1

∂Li (θ
i
K)

∂θ
= 1

N

N∑

i=1

∇i
K+1. (4.3)

Having computed the updates for FedSGD and FOMAML, we now look at the
update of Federated Averaging (FedAvg). The update for FedAvg is the average of
party updates, which are the sums of local gradient updates ∇i

j :

∇FedAvg = 1

N

N∑

i=1

K∑

j=1

∇i
j = 1

N

N∑

i=1

(∇i
1 +

K−1∑

j=1

∇i
j+1) (4.4)

= 1

N

N∑

i=1

∇i
1 +

K−1∑

j=1

1

N

N∑

i=1

∇i
j+1. (4.5)

Rearranging these terms allows us to derive a relation between the updates of
FedAvg, FedSGD, and FOMAML:

∇FedAvg = ∇FedSGD +
K−1∑

j=1

∇FOMAML(j). (4.6)

76 M. Agarwal et al.

The FedAvg update for 1-gradient update (K = 1) in FedAvg before every com-
munication reduces to the FedSGD setting according to equation (4.6). Increasing
the number of gradient updates progressively increases the FOMAML part in the
update. According to Jiang et al. [29], models trained with K = 1 are hard to
personalize, while increasing K increases the personalization capabilities of the
models up to a certain point, beyond which the performance of the initial model
becomes unstable.

4.3 Personalization Strategies

Personalization in a federated learning setting has gained considerable interest in
the research community in recent years. In this section, we look at the various
techniques proposed for this problem and classify them into 8 main categories. The
classification criteria along with the methods that fall under the respective criteria
are summarized in Table 4.1. In the following subsections, we delve deeper into
each criterion defined in the table and look at its strengths and weaknesses.

4.3.1 Client (Party) Clustering

The central premise of personalization in federated learning is that one global model
might not work for all parties due to the non-IID heterogeneous distribution of data
on the parties. Client (party) clustering techniques for personalization operate under
a common assumption: among the N parties present in the system, there are K < N

distinct data distributions. This assumption enables the techniques to cluster parties
into K clusters to alleviate the non-IID data distribution conditions and learns a
common global model for each of the K clusters. Thus, under this formulation, the
personalization problem is then sub-divided into two sub-problems: (1) Defining a
clustering hypothesis to cluster parties together and (2) Aggregating and learning a
model for each defined cluster.

Clustered federated learning (CFL) [47] assumes that there exists a partitioning
C = {c1, . . . , cK },⋃K

k=1 ck = {1, . . . , N}, such that every subset of parties
ck ∈ C satisfies the conventional federated learning assumption of a global model
minimizing the risk on all the parties’ data distributions at the same time. However,
instead of identifying the complete clustering C of parties at once, CFL recursively
bi-partitions parties into clusters until all the clusters are identified. The algorithm
proceeds by training local models until convergence up to a certain limit. These
individual party models are then aggregated, and the global model is checked for
its congruence, i.e., how well does the global model minimize the risk for each
party. If the global model fits a certain stopping criterion for the parties, CFL is
terminated. Otherwise, parties are partitioned into two sub-clusters, and CFL is
recursively executed on each. Since the bi-partitioning approach works recursively,

4 Personalization in Federated Learning 77

Table 4.1 Classification of different methods of personalization in federated learning setting. For
each classification, we briefly describe the core idea of this classification along with the methods
that fall under this classification criterion

Personalization strategy Description and methods

Client clusteringa Cluster similar parties together to learn models for similar
data distributions

Methods: CFL [47], 3S-Clusteringb [19], IFCA [20],
HypCluster [36]

Client contextualizationa Learn contextual features private to the parties to add
contextual information to the models along with input
features

Methods: FURL [5], FCF [2]

Data augmentation
Augment local data with data from other parties or global
data to increase its diversity and size

Methods: DAPPER [36], XorMixup [51],
global-data-sharingb [66]

Distillation
Distill information between local and global models

Methods: FML [50], FedMD [34]

Meta-learning approach
Formulate the personalization problem as a meta-learning
[25, 57] problem

Methods: FedMeta [9], Per-FedAvg [17], ARUBA [31],
FedPer [3]

Mixture of models
Maintain a local model along with a global model and use
a combination of the two

Methods: APFL [15], LG-FedAvg [35], FL+DE [44],
MAPPER [36]

Model regularization
Optimize a regularized version of the loss function to
balance local model with global model

Methods: L2GD [23], FedAMP [26], pFedMe [16], Fed+
[61]

Multi-task learning
Use multi-task learning framework [46, 65] for federated
learning setting

Methods: MOCHA [53], VIRTUAL [14]
aWe use the terms “Client” and “Party” interchangeably here. While the term “Client” is used in
some research papers, its analogous term “Party” is the one used in this book
bThe authors of these methods have not assigned a specific name to their proposed algo-
rithm/technique. We choose to call them so for brevity purposes

the number of clusters K is not required to be known a priori. Additionally, since
the clustering mechanism is implemented on the aggregator, parties do not bear the
computational burden of the approach. Instead, the aggregator, with its generally
greater compute power than parties, can reduce the overhead of clustering.

3S-Clustering [19] also formulates the problem similar to CFL [47], but instead
of recursive bi-partitioning of parties, it aims to find the K clusters at once on the
aggregator. Once the local models are trained and communicated to the aggregator,

78 M. Agarwal et al.

Fig. 4.2 Client (party) clustering strategy for personalization. In this particular instance, the
aggregator maintains K separate model parameters and sends these to each individual party, where
the parties decide which of the K model parameters they should use

3S-Clustering executes a clustering method—typically, KMeans works, but other
clustering methods can also be employed as shown in the original paper where they
study this method primarily for byzantine-robust distributed optimization—on the
aggregator to find the K clusters. This method, however, is restricted to convex
objectives and, hence, does not apply to non-convex objectives such as in the case
of deep neural networks.

The aforementioned two methods use the aggregator for party clustering, while
the other two methods in this category, IFCA [20] and HypCluster [36], utilize the
parties to identify their own cluster memberships (Fig. 4.2). These two methods
are pretty similar to each other and operate by the aggregator maintaining K

cluster centers and the associated model parameters. At each round, the aggregator
broadcasts the cluster parameters to each of the parties, which in turn estimates its
cluster identity by choosing the parameters that achieve the lowest loss value. These
cluster centers are then used as initializers of the local model, fine-tuned on the local
data, and sent back to the aggregator along with the cluster identity for aggregation.
The aggregator then aggregates models according to their cluster membership, and
the entire process repeats.

4.3.2 Client Contextualization

Learning user-specific contextual features or embeddings has been widely used to
improve the personalization of models in problems unrelated to federated learning
[1, 22, 27, 38, 58]. Client contextualization utilizes the same approach of learning
user embeddings to the task of personalization in federated learning. The rationale
behind this approach is that the embeddings for each party capture characteristics
specific to the particular party and act as indicators to the global model to utilize this
context to adapt its predictions to the specific party.

4 Personalization in Federated Learning 79

Federated collaborative filtering (FCF) [2] proposes a collaborative filtering [48]-
based recommender system learned in a federated manner. Collaborative filtering
models the interaction between N users and M items through a user–item interaction
matrix R ∈ R

N×M as a linear combination of the user-factor matrix X ∈ R
K×N

and the item-factor matrix Y ∈ R
K×M as

R = XT Y . (4.7)

In each iteration of the FCF algorithm, the aggregator sends the item-factor
matrix Y to each of the parties, which in turn use their local data to update the user-
factor matrix X and the item-factor matrix Y . The updated item-factor matrices are
sent back to the aggregator for aggregation, while the user-factor matrices are kept
private on the individual parties. This allows each party to learn its own set of user-
factor matrices while utilizing the item-factor information from across parties. In
experiments comparing FCF with standard collaborative filtering, FCF is shown
to closely match the performance of standard collaborative filtering on multiple
recommendation performance metrics and for multiple recommendation datasets.

While FCF is specific to collaborative filtering, FURL [5] generalizes this
approach by (a) defining private and federated parameters and (b) specifying the
independent local training constraint and the independent aggregation constraint.
The independent local training constraint specifies that the loss function used by
local parties is independent of the private parameters of the other parties, while
the independent aggregation constraint specifies that the global aggregation step is
independent of the private parameters of the parties. When these conditions are met,
FURL guarantees no model quality loss from splitting the parameters into private
and federated.

An application of FURL to the task of document classification is shown in
Fig. 4.3a. Here, the user embeddings are private to each party, while the parameters
of the BiLSTM and the MLP are federated parameters that are shared across
all users. Each party trains the private and federated parameters jointly but only
shares the federated parameters with the aggregator for aggregation. In experiments,
personalization through FURL is shown to significantly improve the performance on
the document classification task.

Personalization through FURL, however, has several drawbacks. First, using
FURL requires incorporating private parameters into the modeling that might
require making changes to the network architecture. Subsequently, incorporating
the private parameters into the model increases the number of parameters to be
learned on the party, which, given the paucity of data on parties, might make the
task more difficult. Finally, the FURL technique suffers from a cold-start problem
for new parties. Since the private parameters are specific to each party, new parties
joining the framework need to first train their private parameters before they can
utilize the power of personalization and might suffer from a degraded performance
before that.

80 M. Agarwal et al.

(a)

Shared
Data

α× Shared
Data

α× Shared
Data

α× Shared
Data

Private
Data

α× Shared
Data

Private
Data

α× Shared
Data

Private
Data

α× Shared
Data

(b)

Fig. 4.3 Client contextualization and data augmentation strategies for personalization in federated
learning. (a) FURL document classification model. Federated parameters (character embeddings)
are used along with private parameters (user embeddings) on each party. (b) Illustration of data-
sharing strategy. Each party uses its private data along with a subset of the global shared data to
train its local model. (Image source: original paper [66])

4.3.3 Data Augmentation

Data augmentation techniques have been utilized in standard machine learning
problems either to alleviate the problems of class imbalance, non-IID datasets,
or to artificially inflate the otherwise lower-sized datasets. Techniques for these
range from oversampling under-represented class samples [8] to training GANs
to generate augmenting data samples [37]. Readers interested in this area should
refer to surveys on data augmentation techniques to gain an understanding of the
landscape of the field [40, 52].

Since federated learning also suffers from a paucity of data on the parties, while
a significantly large amount of data is available globally, it is natural to ask if the
global data (data across all parties) can be used to improve the performance of a
particular party. In the same spirit, methods have been proposed either to share a
small amount of data globally to help improve performance on parties [66] or to
train a Generative Adversarial Network (GAN) in addition to the local model to
augment data samples [28].

One straightforward way to augment data is to collect a subset of data from
all parties to create a global shared dataset that each party can use to augment
their local datasets. DAPPER [36] and global-data-sharing [66] methods fall under
this category. Both these methods utilize a global dataset DG that is indicative of
the global data distribution. The global-data-sharing method proposes to initialize
the federated learning process by sharing a warm-up model trained on the global
dataset, along with a random subset of the dataset (αDG) to each party. Each party
augments its local dataset with the dataset provided by the aggregator to train its
local model, which is then transmitted back to the aggregator for aggregation. An
illustration of this process is shown in Fig. 4.3b.

4 Personalization in Federated Learning 81

DAPPER [36], on other hand, instead of directly augmenting the local dataset
with the global dataset, optimizes the objective:

λDparty + (1 − λ)DG. (4.8)

Each party, at each optimization step, selects the local dataset Dparty with
probability λ and the global dataset DG with probability (1 − λ) for optimization.
The rest of the optimization and aggregation steps remain unchanged.

Both DAPPER and global-data-sharing methods show significant improvements
over models trained with no personalization, but they require the transfer of parties’
data to the global aggregator and to other parties as well. Moving party’s data outside
their machines violates the privacy guarantees of federated learning, and thus these
methods might not be directly implementable in practice.

XorMixup [51] aims to circumvent the privacy concerns associated with transfer-
ring party data while still utilizing the personalization power of data augmentation.
It proposes to use an XOR encoding scheme to obfuscate data samples to upload
to the aggregator. Each party implementing XorMixup first selects data samples
from two different class labels and then creates an encoded data sample using an
XOR of the two. Each party uploads such encoded samples to the aggregator, which
decodes them using a separate data sample from the specified class label, and uses
these decoded samples to train a model. These encoded samples are shown to have
a high dissimilarity with the original data samples and also show improvement in
the performance of models under non-IID conditions.

4.3.4 Distillation

Under the general formulations of federated learning, when the aggregator sends
a model to the party, it uses that model as the starting point to train on the local
data. Personalization through distillation takes a different approach to the problem.
Rather than using the central model parameters as a starting point, distillation-based
approaches use knowledge distillation [21, 24] to transfer knowledge between mod-
els without explicitly copying parameters. A key advantage of utilizing distillation
instead of copying model parameters is that the model architectures need not be the
same across parties and the aggregator for the framework to work. For example,
parties can choose model architectures more suited to their data and/or hardware
constraints. Federated Mutual Learning (FML) [50] and FedMD [34] are two main
methods that follow this approach.

82 M. Agarwal et al.

What is knowledge distillation?
Model compression [11] is the task of reducing the model size, thereby
reducing the memory required to store the model and increasing the speed
of inference, while preserving the information in the original neural network.
Knowledge distillation [21, 24] is a type of model compression technique that
aims to effectively transfer information or knowledge from a larger network to
a smaller network. There are 3 main components in knowledge distillation—
teacher network, student network, and knowledge. The teacher network is the
bigger model that encodes the knowledge, and this knowledge needs to be
transferred into the student network that is typically smaller in size. There are
several ways to define the knowledge to distill [21]—it can either be outputs
of certain layers of the network (such as response-based and feature-based
knowledge) or it can be relationships between the different layers or data
samples (such as relation-based knowledge).

FML adopts a two-way distillation between the local model and the global model.
Parties implementing FML maintain a local model that is continuously trained on
their data without sharing the data with the aggregator. At each communication
round, the aggregator sends the global model to each party that is updated by the
party through a two-way knowledge distillation between the global and the local
model. The corresponding objective functions are as follows:

Llocal = αLlocal + (1 − α)DKL(pglobal‖plocal). (4.9)

Lglobal = βLglobal + (1 − β)DKL(plocal‖pglobal). (4.10)

Since the connection between the local and global models in FML is through
the KL divergence of the output probabilities unlike through parameter copying in
other federated learning methods, the local and global model architectures can be
different. The original work for FML [50] conducts experiments to demonstrate this
effect. Using different network architectures on different parties, the authors show
improvement over independent training of a global model on the complete dataset
under this setting as well.

FedMD [34] also proposes a similar formulation of personalization using distilla-
tion as FML. The FedMD framework requires a public dataset that is shared across
parties and the aggregator, along with the private datasets that each party maintains.
The framework proceeds by parties first training models on the public dataset
followed by training on their respective private dataset and then communicating
the class scores for each sample in the public dataset to the central aggregator. An
aggregation of these class scores across all parties is used as the target distribution
that each party learns from using distillation. Similar to FML, FedMD has the
advantage of supporting different model architectures across parties. However,

4 Personalization in Federated Learning 83

FedMD requires a large public dataset that needs to be shared between parties,
thereby increasing the communication cost between parties and aggregator.

4.3.5 Meta-learning Approach

Contemporary machine learning models are trained to perform well on a single
task. Meta-learning or “learning to learn” [25, 57, 59], on the other hand, aims to
learn models that can be rapidly adapted to new tasks with only a handful of exam-
ples. There are multiple ways of achieving this—metric-based, model-based, and
optimization-based methods [59]. In this section, we focus on optimization-based
methods that are better suited for our purposes. Optimization-based techniques
for meta-learning aim to learn model parameters that can be quickly modified to
new tasks given a handful of examples and within a few gradient updates. Model-
Agnostic Meta-Learning (MAML) [18] is a fairly popular method that is applicable
to any model that can be learned with gradient-based methods. Instead of training
model parameters to minimize the loss on a given task, MAML trains model
parameters to minimize the loss on tasks after a few parameter adaptation steps.
If we consider each task to be a party in federated learning setting, we can draw
a parallel between personalized federated learning and meta-learning. We want
to train a global model to act as a good initializer for party models such that it
is able to adapt, i.e., personalize, quickly to party data distributions. In Sect. 4.2,
we reviewed the connections between the naive personalization baseline, i.e., fine-
tuning of FedAvg, and meta-learning. We now review other recent methods based
on meta-learning.

ARUBA [31] is a framework that combines meta-learning with multi-task
learning techniques to enable meta-learning methods to learn and take advantage
of task similarities to improve their performance. One of the motivations behind
ARUBA is that in meta-learning models, certain model weights act as feature
extractors and are transferable across tasks without much modification, while other
weights vary greatly. Having a per-coordinate learning rate allows parameters to be
adapted at different rates depending on their transferability across tasks. ARUBA,
when tested on the next-character prediction task in a federated learning setting,
matches the performance of a fine-tuned FedAvg baseline, but without additional
hyperparameter optimization over the fine-tuning learning rates.

FedMeta [9]—proposed concurrently with ARUBA—incorporates standard
meta-learning algorithms into federated learning setting. Under this setting, the
aggregator aims to maintain an initialization that a party can quickly adapt to its
local data distribution. The party trains by executing the inner loop (adaptation
steps on the support data) of the meta-learning algorithm locally and returns
the gradient of the outer loop (query data) back to the aggregator, which uses
this information to update its initialization. While FedMeta incorporates meta-
learning into personalization by running the meta-learning step on the parties while
aggregating the model initialization on the aggregator, Per-FedAvg [17] shows

84 M. Agarwal et al.

that this formulation may not perform well in some cases. Instead, Per-FedAvg
assumes that each party takes the global model as initialization and updates it
for one gradient step with respect to its own loss function, changing the problem
formulation as follows (4.11):

min
θ

F (θ) := 1

N

N∑

i=1

Li (θ − α∇Li (θ)). (4.11)

Finally, FedPer [3] proposes to separate the global model into a base network
that acts as a feature extractor, and a personalization layer. The parties jointly
train the base and the personalization layers but only share the base network with
the aggregator for aggregation. This allows the system to learn the representation
extraction network using information from multiple parties, while learning a
personalization layer specific to each party. The connection between this method
and meta-learning is not explicitly explored in the original paper, and there is related
work in the meta-learning literature, Almost No Inner Loop (ANIL) [45], which
proposes separating the network into a body and head network and only adapting
the head to a new task in the inner loop of meta-learning.

4.3.6 Mixture of Models

In the standard formulation of federated learning, the local model is trained on
local data, while the global model aggregates information from parties to build a
global model. The key incentive for a party to participate in federated learning
is to utilize the information on other parties to reduce its generalization error as
compared to training a model locally. However, there can be cases where the global
model performs worse for certain parties in the federated learning system than the
individual models that these parties could train locally [62], e.g., see experiment in
Fig. 4.1. This motivates the idea of mixing the global and local models by learning
a parameter to optimally combine the two models.

FL+DE [44] learns to combine the predicted class probabilities of the local
and global models using a mixture of experts technique [63]. Each party main-
tains a local domain expert (DE) model trained on the local data, while also
collaborating with other parties to build a global model. The gating function
(αi(x))—parameterized as a logistic regression model in the original work [44]—is
learned along with the federated learning setup to optimally combine the predicted
class probabilities of the global model (ŷG) and the local domain expert (ŷi).
The gating function thus learns regions of preferences between the two models
conditioned on the input. The final prediction for a given data sample x is then a
convex combination of the predicted class probabilities of the two models:

ŷi = αi(x)ŷG(x) + (1 − αi(x))ŷlocal(x). (4.12)

4 Personalization in Federated Learning 85

Fig. 4.4 LG-FedAvg—the local models i(· ; θ
i) learn to extract high-level representations Hi

given the local data (Xi, Yi), while the global model g(· ; θg) operates solely on the learned
representations Hi . Owing to this bifurcation, the local model can be trained using specialized
techniques, 4 of which are shown in this figure

αi(x) = σ(wT
i x + bi). (4.13)

Instead of using a mixture of experts technique to combine the output probabil-
ities, the MAPPER [36] and APFL [15] methods learn a mixing parameter (α) to
optimally combine the local and global models. In APFL, while the global model is
still trained to minimize the empirical risk on the aggregated domain as in traditional
federated learning, the local model (hlocal) is trained to also incorporate part of the
global model (hg) using α (equation (4.14)). The personalized model for the i-th
party is a convex combination of the global model (hg) and the local model (hlocal)
(equation (4.15)).

hlocal = arg min
h

L̂Di
(αih + (1 − αi)hg). (4.14)

hαi
= αihlocal + (1 − αi)hg. (4.15)

The three methods we have looked at so far maintain both the local and global
models. However, both these models are trained for the same task. LG-FedAvg
[35] instead proposes to bifurcate the learning task between the local and global
models—each party learns to extract high-level representations from raw data, and
the global model operates on these representations (rather than the raw data) from
all devices. We depict the LG-FedAvg process for an image classification task in
Fig. 4.4. Here, the local models are trained to extract high-level representations from
raw images, and while the global model is trained using supervised learning, the
local models are free to choose the technique to learn these representations. As
shown in Fig. 4.4, these can be learned using supervised prediction task (using an
auxiliary model to map representations to predictions) or unsupervised or semi-
supervised techniques (sub-figures (a) to (c)). The local models can also be trained
to learn fair representation through adversarial training against protected attributes

86 M. Agarwal et al.

(sub-figure d). This bifurcation has several benefits: (a) Operating the global model
on representations rather than raw data reduces the size of the global model, thus
reducing the number of parameters and updates that need to be communicated
between the aggregator and the parties, (b) it allows the local parties to choose
a specialized encoder to extract representations depending on the characteristics
of its local dataset rather than using a common global model, and (c) it allows
local models to learn fair representations that obfuscate protected attributes thus
enhancing the privacy of the local data.

4.3.7 Model Regularization

In conventional supervised federated learning, the system is optimized for the
following:

min
θ

{
L(θ) := 1

N

N∑

i=1

Li (θ)
}
. (4.16)

Here, N is the number of parties, θ are the model parameters, and Li (θ) denotes
the loss over the ith party data distribution.

Regularization-based personalization techniques, on the other hand, optimize for
a regularized version of the standard objective. Loopless Local Gradient Descent
(L2GD) [23], Federated Attentive Message Passing (FedAMP) [26], pFedME
[16], and Fed+ [61] are all instantiations of the regularization technique, differing
primarily in their definition of the regularization objective.

L2GD [23] defines the regularization objective to be the L2 norm of the differ-
ence between the local model parameters (θi) and the average parameters across
parties (θ̄), and the entire system optimizes the objective defined in equations (4.17)
and (4.18). To optimize for this objective, L2GD proposes a non-uniform SGD
method with convergence analysis over the required number of communication
rounds between the parties and the aggregator. The method views the objective
as a 2-sum problem, sampling either ∇L or ∇ψ to estimate ∇F , and defines an
unbiased estimator of the gradient as in equation (4.19). At each time step, either
the local models take a local gradient step with probability 1 − p or the aggregator
shifts the local models toward the average with probability p.

L2GD : min
θ1,...,θN

{
F(w) := L(θ) + λψ(θ)

}
. (4.17)

L(θ) := 1

N

N∑

i=1

Li (θi), ψ(θ) := 1

2N

N∑

i=1

‖θi − θ̄‖2. (4.18)

G(θ) :=
{∇L(θ)

1−p
with probability 1 − p,

λ∇ψ(θ)
p

with probability p.
(4.19)

4 Personalization in Federated Learning 87

L2GD is applicable to and provides guarantees for convex loss functions and
thus is not directly applicable to non-convex loss functions typically encountered in
neural network models.

pFedMe [16] models the personalization problem as a bi-level optimization
problem through the objective defined as follows:

pFedMe :min
θ

{
F(θ) = 1

N

N∑

i=1

Fi(θ)
}
. (4.20)

Fi(θ) = min
θi

{
Li (θi) + λ

2
‖θi − θ‖2}. (4.21)

Here, θi is the ith party’s personalized model, trained on its local data distribution
while maintaining a bounded distance from the global model parameters θ at the
inner level. The optimal personalized model for a party is then defined as

θ̂i (θ) := proxLi /λ
(θ) = arg min

θi

{
Li (θi) + λ

2
‖θi − θ‖2}. (4.22)

Similar to FedAvg, a system implementing pFedMe sends the global model
weights to the parties at each communication round and performs model aggregation
using weights returned by parties after a certain number of local rounds. Unlike
FedAvg, party locally minimizes equation (4.21), which is a bi-level optimization
problem. At each local round, the party first solves equation (4.22) to find the
optimal personalized party parameters θ̂i (θ

t
i,r). Here, θ t

i,r is the local model of party
i at global round t and local round r , where θ t

i,0 = θ t . Thereafter, at the outer
level, the party updates the local model θ t

i,r using gradients with respect to Fi in
equation (4.21).

FedAMP [26] proposes the following objective for personalization:

min
θ

{
F(θ) =

N∑

i=1

Li (θi) + λ

N∑

i<j

A(‖θi − θj‖2)
}
. (4.23)

The second part of the objective defines an attention-inducing function A(‖θi −
θj‖2), which measures the similarity between party parameters in a non-linear
manner, and aims to improve the collaboration between parties. The attention-
inducing function can take any form; however, in the proposed work, the authors use
the negative exponential function A(‖θi − θj‖2) = 1 − e−‖θi−θj ‖2/σ . To optimize
for the objective, FedAMP adopts an alternate-optimization strategy, first optimizing∑N

i<j A(‖θi − θj‖2) on the aggregator through weights collected from all parties,
and then optimizing Li (θi) on the corresponding parties using their local datasets.

Fed+ [61] argues that robust aggregation allows better handling of the hetero-
geneity of data across parties and accommodates it through a model regularization

88 M. Agarwal et al.

approach to personalization. Fed+ introduces a convex penalty function φ and
constants α,μ as follows:

min
θ,z,θ̄

1

N

{
Fμ,α(θ, z, θ̄) =

N∑

i=1

Li (θi) + α

2
‖θi − zi‖2

2 + μφ(zi − θ̄)
}

(4.24)

and proposes a robust combination of the current local and global models obtained
by minimizing (4.24) with respect to zi , keeping θi and θ̄ fixed. Setting φ(·) =
‖ · ‖2 gives a ρ-smoothed approximation of the Geometric Median, a form of robust
aggregation:

zi ← θ̄ + proxφ/ρ(θi − θ̄), where ρ := μ/α, hence

zi = (1 − λi) θi + λi θ̄ , where λi := min
{
1, ρ/‖θi − θ̄‖2

}
.

To compute the robust θ̄ from {θi}, the aggregator runs the following two-step
iterative procedure initialized with θ̄ = θmean := Mean{θi } until θ̄ converges:

vi ← max
{
0, 1 − (ρ/‖θi − θ̄‖2)

}
(θi − θ̄),

θ̄ ← θmean − Mean{vi}.

4.3.8 Multi-task Learning

Traditional machine learning approaches typically optimize a model for a single
task. Multi-task learning (MTL) [4, 7, 54] extends this traditional approach to learn
multiple tasks jointly, thus exploiting the commonalities and differences between
the tasks to potentially enhance the performance on individual tasks. Since these
methods can learn relationships between non-IID and unbalanced datasets, they are
well suited to apply to the federated learning setting [53]. Readers interested in
multi-task learning should refer to the following survey papers [46, 65] to gain an
overview of the field.

While MTL methods are appealing in the federated learning context, they do not
account for the communication challenges such as fault tolerance and stragglers in
the framework. MOCHA [53] was the first framework for federated learning using
multi-task learning that factored in fault tolerance and stragglers during training.
MTL approaches generally formulate the problem as follows:

min
w,�

{ N∑

i=1

Li (θi) + R(�)
}
. (4.25)

4 Personalization in Federated Learning 89

Here, N is the total number of tasks, and Li (θi) and θi are the loss function and
parameters for task i. The matrix � ∈ R

N×N models relationships among tasks and
is either known a priori or is estimated while simultaneously learning task models.
MTL approaches differ in their formulation of R that promotes suitable structure
among the tasks through the � matrix. MOCHA optimizes this objective in the
federated learning setting using the objective’s distributed primal–dual optimization
formulation. This allows it to separate computation across nodes by only requiring
data available on the party to update the local model parameters. MOCHA showed
the applicability of multi-task learning approaches to federated learning setting and
showed improved performance as compared to global and local models trained on
the experimental datasets. It, however, is designed for only convex models and is
therefore inapplicable to non-convex deep learning models.

VIRTUAL (variational federated multi-task learning) [14] extends the multi-task
learning framework to non-convex models through the usage of variational inference
methods. Given N parties, each with datasets Di , local model parameters θi , and the
central model parameters θ , VIRTUAL computes the posterior distribution

p(θ, θ1, . . . , θN |D1:N) ∝
∏N

i=1 p(θ, θi |Di)

p(θ)N−1 . (4.26)

This posterior distribution assumes: (1) that party data is conditionally
independent given aggregator and party parameters, p(D1:N |θ, θ1, . . . , θN) =∏N

i=1 p(Di |θ, θi), and (2) a factorization of the prior as p(θ, θ1, . . . , θN) =
p(θ)

∏N
i=1 p(θi). Since the posterior distribution defined in equation (4.26) is

intractable, the algorithm proposes an expectation propagation like algorithm [41]
to approximate the posterior.

4.4 Benchmarks for Personalization Techniques

In this section, we review datasets suitable for benchmarking methods for per-
sonalization in federated learning. We consider datasets with non-IID party data
distributions, i.e., each party’s data is sampled from a different distribution. We
review datasets used in the prior works, as well as other datasets that might fit the
personalization problem setting.

Broadly classified, prior works in this domain have used one of the following
types of datasets: (a) Synthetic datasets, where a generative process for the dataset
is defined to generate data samples for parties, (b) Simulating federated datasets
by partitioning commonly available datasets such as MNIST or CIFAR-10 [32]
according to some hypothesis, and (c) Utilizing datasets that have a natural
partitioning such as data collected from multiple parties. We now look at each of
these types in detail.

90 M. Agarwal et al.

4.4.1 Synthetic Federated Datasets

A fairly common way of generating synthetic federated dataset is to follow the
method proposed by Shamir et al. [49], with some added modifications to inject
heterogeneity among parties. While the exact way of generating the dataset varies
between proposed methods, the underlying process is as follows: for each device k,
samples (Xk, Yk) are generated according to the model y = arg max(softmax(Wx+
b)). The model parameters Wk and bk are controlled by a parameter α and are
sampled as: uk ∼ N(0, α), Wk ∼ N(uk, 1), and bk ∼ N(uk, 1). The generation of
Xk is controlled by the second parameter β and is sampled as: Bk ∼ N(0, β),
vk ∼ N(Bk, 1), � is a diagonal covariance matrix with �j,j = j−1.2, and
xk ∼ N(vk,�).

This synthetic dataset Synthetic(α, β) has two parameters: α and β. Here,
α controls how much local models differ from each other, and β controls how much
the local data on each device differs from data on other parties.

4.4.2 Simulating Federated Datasets

A common way of simulating federated datasets is to use commonly available
datasets and partitioning them across parties according to a hypothesis. Prior works
have generally utilized datasets such as MNIST,2 CIFAR-10, and CIFAR-100 [32]
for the task. Since these datasets have no specific natural feature that can be used to
partition them across parties, we need to partition them according to a hypothesis.
One way to partition is to sample data points for each party from a particular subset
of classes, to ensure that parties do not see data from all classes and thus do not have
features representative of all the classes in the dataset. Another way of partitioning
includes using a probabilistic allocation of data samples across parties—such as
sampling pk ∼ DirN(α), and allocating pk,i proportion of instances of class k to
party i [64].

Synthetically created federated datasets have the advantage of allowing control
over the amount of heterogeneity in the dataset; however, they are limited by the
number of parties they can support. Prior works have set up their experiments with
the number of parties in the order of tens. While this is suitable for federated learning
in an enterprise setting where typically the number of parties does not scale too
much, this setting does not consider the scale typically encountered in smartphones
or IoT type of applications.

2 http://yann.lecun.com/exdb/mnist/

http://yann.lecun.com/exdb/mnist/

4 Personalization in Federated Learning 91

Table 4.2 Federated learning datasets

Dataset Task No. of parties Total samples

Samples per device

Mean Std

FEMNIST Image classification 3,550 805,263 226.83 88.94

CelebA Image classification 9,343 200,288 21.44 7.63

Shakespeare Language modeling 1,129 4,226,158 3,743.28 6, 212.26

Reddit Language modeling 1,660,820 56,587,343 34.07 62.95

Sent140 Sentiment analysis 660,120 1,600,498 2.42 4.71

4.4.3 Public Federated Datasets

Besides synthetic and simulated federated datasets, there are datasets available,
which support natural partitioning of data among parties. LEAF [6] is a popular
benchmark for federated learning methods that provides multiple datasets for image
classification, language modeling, and sentiment analysis tasks. These datasets are
the preferred datasets for benchmarking personalization techniques due to their
proximity to real-life non-IID characteristics of data, and the scale of parties they
support. Some of the datasets included in LEAF are:

• FEMNIST: Extended MNIST (EMNIST) [13] is a dataset containing hand-
written samples of digits, uppercase, and lowercase characters for a total of 62
class labels. The EMNIST dataset is partitioned by the original writers of the
handwritten samples to create the FEMNIST dataset with over 3,500 parties.

• Shakespeare dataset: Intended for language modeling task, this dataset is
built from The Complete Works of William Shakespeare,3 by considering each
speaking character in each play as a separate party.

Details about the datasets available in LEAF along with their aggregate and
party-level statistics can be found in Table 4.2.

In addition to the datasets provided in LEAF, there are other datasets that have
the characteristics required for personalization in federated learning task. Some of
these datasets are:

• Google Landmarks Dataset v2 (GLDv2): The GLDv24 is a large-scale fine-
grained dataset intended for instance recognition and image retrieval tasks [60].
It is composed of approximately 5 million images of human-made and natural
landmarks across 246 countries, with approximately 200,000 distinct labels for
these images. This dataset can be utilized in the federated learning setting by
either partitioning according to the geographical location of the landmarks or the

3 http://www.gutenberg.org/ebooks/100
4 https://github.com/cvdfoundation/google-landmark

http://www.gutenberg.org/ebooks/100
https://github.com/cvdfoundation/google-landmark

92 M. Agarwal et al.

landmark categories, or the author. Given its scale and diversity, this dataset is a
strong test bed for the personalization task.

• MIMIC-III: The Medical Information Mart for Intensive Care III (MIMIC-III)
[30] is a large-scale de-identified health-related data of over 40,000 patients
who stayed at the critical care units of a hospital in Boston, Massachusetts
between 2001 and 2012. It includes information such as demographics, vital sign
measurements, laboratory test results, procedures, medications, caregiver notes,
imaging reports, and mortality (both in and out of hospital), for over 60,000
critical care unit stays. While the scale of this dataset is limited in comparison to
the GLDv2, it is one of the largest available medical datasets and thus provides
an important benchmark for evaluating personalization in federated learning.

4.5 Personalization as the Incidental Parameters Problem

There is a possible theoretical explanation for the limitations of personalization in
federated learning: the incidental parameters problem. We consider a general model
of personalization in federated learning: the aggregator and the parties aim to solve
an optimization problem of the form

min
θ,θ1,...,θN

1

N

N∑

i=1

Li (θ, θi), (4.27)

where θ are the shared model parameters, the θi’s are the party-specific parameters,
and Li is the empirical risk on the i-th party. In most federated learning settings,
the sample size per party is limited, so the party-specific parameters θi are only
estimated up to a certain accuracy that depends on the sample size per party. We
may hope that it is possible to estimate the shared parameters θ more accurately, but
this is only possible up to a point.

The population version of the problem is

min
θ,θ1,...,θN

1

N

N∑

i=1

Ri (θ, θi), (4.28)

where Ri is the (population) risk on the i-th party: Ri (·) � E
[
Li (·)

]
. Let

(θ̂ , θ̂1, . . . , θ̂N) and (θ∗, θ∗
1 , . . . , θ∗

N) be the argmin of (4.27) and (4.28), respec-
tively. The estimates of the shared parameters satisfy the score equations:

0 = 1

N

N∑

i=1

∂θLi (θ̂ , θ̂1, . . . , θ̂N). (4.29)

4 Personalization in Federated Learning 93

Expanding the score equations around (θ∗, θ∗
1 , . . . , θ∗

N) (and dropping the higher-
order terms), we have

0 = 1

N

N∑

i=1

∂θLi (θ
∗, θ∗

1 , . . . , θ∗
N) + ∂2

θLi (θ
∗, θ∗

1 , . . . , θ∗
N)(θ̂ − θ∗)

+ ∂θi
∂θLi (θ

∗, θ∗
1 , . . . , θ∗

N)(θ̂i − θ∗
i).

We rearrange to isolate the estimation error in the shared parameters

θ̂ − θ∗ = (
1

N

n∑

i=1

∂2
θLi (θ

∗, θ∗1 , . . . , θ∗N))−1

⎛

⎜⎜⎜⎝

1

N

N∑

i=1

∂θLi (θ
∗, θ∗1 , . . . , θ∗N)

+ ∂θi
∂θLi (θ

∗, θ∗1 , . . . , θ∗N)(θ̂i − θ∗i)

⎞

⎟⎟⎟⎠ .

We see that the estimation error in the party-specific parameters affects the
estimation error of the shared parameters through the average of the terms
∂θi

∂θLi (θ
∗, θ∗

1 , . . . , θ∗
N)(θ̂i − θ∗

i). This average is generally not mean zero, so
it does not converge to zero even as the number of parties grows. For this average
to converge to zero, one of two things must occur:

1. θ̂i − θ∗
i

p→ 0: the estimation errors of the personalized parameters converge to
zero. This is only possible if the sample size per party grows. Unfortunately,
computational and storage constraints on the parties preclude this scenario in
most federated learning problems.

2. ∂θi
∂θLi (θ

∗, θ∗
1 , . . . , θ∗

N) is the mean zero. This is equivalent to the score
equations (4.29) satisfying a certain orthogonality property [12, 42]. If the score
equations satisfy this property, then the estimation errors of the party-specific
parameters do not affect (to first-order) the estimates of the shared parameters.
Although this is highly desirable, orthogonality only occurs in certain special
cases.

In summary, the estimation error in the shared parameters is generally affected
by the estimation errors in the party-specific parameters, and it does not converge to
zero in realistic federated learning settings in which the number of parties grows
but the samples size per party remains bounded. Taking a step back, this is to
be expected from a degree-of-freedom point of view. As we grow the number of
parties, although the total sample size increases, the total number of parameters
we must learn also increases. In other words, personalization in federated learning
is a high-dimensional problem. Such problems are known to be challenging, and
estimation errors generally do not converge to zero unless the parameters exhibit
special structure (e.g., sparsity, low rank). Unfortunately, this is typically not the
case in federated learning.

Practically, this means that if we incorporate personalization in a federated
learning problem, it is profligate to increase the number of parties beyond a certain

94 M. Agarwal et al.

point without increasing the sample size per party. Whether we are beyond this
point can be ascertained by checking whether the quality of the shared parameters
estimates is improving as more parties are added. If we are beyond this point, the
estimation error in the party-specific parameters is dominating the estimation error
in the shared parameters, so there is no benefit to parameter sharing. This is known
as the incidental parameters problem, and it has a long history in statistics. We refer
to [33] for a review of the problem.

4.6 Conclusion

In this chapter, we motivate the need for personalization by demonstrating that
native federated learning does not necessarily help all parties train a better model as
compared to them training the models locally. To alleviate this problem, different
techniques for personalization have been proposed. We group these techniques
into eight major categories based on the type of personalization strategy they
employ. In addition to a review of personalization strategies, we also provide an
overview of the statistical challenges of personalization in federated learning. We
conclude this chapter by providing recommendations for practical considerations
while implementing or utilizing personalization strategies, and future research
directions, and open problems in theoretical understanding of personalization in
federated learning.

Practical considerations. Choosing a personalization strategy for your application
is closely tied to the properties of the parties and the aggregator participating in
the federated learning setup. Specifically, the questions that will help in making an
informed choice are: (1) Do all parties have the same model architecture? (2) Is
there a data-sharing mechanism available to augment local data? (3) What are the
compute capabilities available on the participating parties and the aggregator? and
(4) How much data do you expect to be present on each party?

If not all parties have the same model architecture, or if it is preferable to have
different architectures for different parties, then either distillation-based approaches
(Sect. 4.3.4) or the LG-FedAvg [35] method should be explored. These techniques
support and have been experimentally shown to work with different party and
global model architectures. Another important consideration is if there is global data
available to augment the local data. While sharing party data violates the core tenet
of federated learning, if it is possible to collect a shared dataset, data augmentation
techniques for personalization (Sect. 4.3.3) can be powerful candidates in these
scenarios.

The party and aggregator compute capabilities also play an important role in
selecting a personalization strategy. Specifically for parties, if the compute and
memory capabilities are sufficiently available, then a mixture of models approach
(Sect. 4.3.6) can be explored. Because the mixture of models approach maintains
a local and a global model on the parties and uses a combination of the two for

4 Personalization in Federated Learning 95

inference, it significantly increases the memory and compute requirements for the
participating parties. On similar lines, if the aggregator has enough memory capacity
to allow for maintaining multiple model parameters, then client (party) clustering
approaches (Sect. 4.3.1) might be helpful.

The final question that will help in making an informed decision is regarding
the amount of data available on each party. This is an important consideration to
apply contextualization approaches. Client (party) contextualization (Sect. 4.3.2)
increases the number of parameters to learn from the local data, and if sufficient data
is available on parties, then it might be possible to learn these contextual parameters
to help in personalization.

Lastly, meta-learning (Sect. 4.3.5) and model regularization (Sect. 4.3.7)
approaches are applicable irrespective of whether the aforementioned conditions
are met or not and should always be considered when choosing a personalization
strategy.

Advancing personalization in federated learning. With the growing number of
personalization algorithms proposed in the literature, an important next step in
our opinion is to establish benchmarks and performance metrics to effectively and
reliably measure the performance of the proposed techniques. This requires the
availability of datasets that mimic the conditions typically encountered in practical
deployments. While some datasets exist for this purpose, there is a need for more
datasets in a broader range of application domains. Benchmarking on standardized
datasets will allow for better interpretation of the capabilities and limitations of the
proposed techniques and will also enable easy comparison across the techniques.
In addition to datasets, there is a need for a standardized evaluation setup for
personalization. The typical way of evaluating federated learning techniques is
to measure the performance of the global model, and this technique has been
ported over to the personalization problem as well. However, as we saw in the
motivating example for personalization, measuring the global model accuracy does
not necessarily provide a complete picture of the performance of each party. Thus,
defining an evaluation setup that considers the performance of each party will serve
as an important contribution for effectively evaluating personalization techniques.

Theoretical understanding of personalization. As we saw, there is a scalability
issue with personalization due to the incidental parameters problem. This issue
is distinguished from most scalability issues in machine learning by its statistical
nature. Overcoming this issue is a requirement for scaling personalization to
large party clouds. Unfortunately, a general solution to the underlying incidental
parameters problems has eluded the statistics community for the better part of a
century, so it is unlikely that there is a general way to perform personalization at
scale. However, it may be possible to develop solutions tailored to the particular
model/application, and this is a rich area of future work.

96 M. Agarwal et al.

References

1. Amir S, Wallace BC, Lyu H, Silva PCMJ (2016) Modelling context with user embeddings for
sarcasm detection in social media. arXiv preprint arXiv:160700976

2. Ammad-Ud-Din M, Ivannikova E, Khan SA, Oyomno W, Fu Q, Tan KE, Flanagan A (2019)
Federated collaborative filtering for privacy-preserving personalized recommendation system.
arXiv preprint arXiv:190109888

3. Arivazhagan MG, Aggarwal V, Singh AK, Choudhary S (2019) Federated learning with
personalization layers. arXiv preprint arXiv:191200818

4. Baxter J (2000) A model of inductive bias learning. J Artif Intell Res 12:149–198
5. Bui D, Malik K, Goetz J, Liu H, Moon S, Kumar A, Shin KG (2019) Federated user

representation learning. arXiv preprint arXiv:190912535
6. Caldas S, Duddu SMK, Wu P, Li T, Konečnỳ J, McMahan HB, Smith V, Talwalkar A (2018)

Leaf: a benchmark for federated settings. arXiv preprint arXiv:181201097
7. Caruana R (1997) Multitask learning. Mach Learn 28(1):41–75
8. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP (2002) Smote: synthetic minority over-

sampling technique. J Artif Intell Res 16:321–357
9. Chen F, Luo M, Dong Z, Li Z, He X (2018) Federated meta-learning with fast convergence and

efficient communication. arXiv preprint arXiv:180207876
10. Chen M, Suresh AT, Mathews R, Wong A, Allauzen C, Beaufays F, Riley M (2019) Federated

learning of n-gram language models. In: Proceedings of the 23rd conference on computational
natural language learning (CoNLL), pp 121–130

11. Cheng Y, Wang D, Zhou P, Zhang T (2017) A survey of model compression and acceleration
for deep neural networks. arXiv preprint arXiv:171009282

12. Chernozhukov V, Chetverikov D, Demirer M, Duflo E, Hansen C, Newey W, Robins J (2017)
Double/debiased machine learning for treatment and causal parameters. arXiv:160800060
[econ, stat] 1608.00060

13. Cohen G, Afshar S, Tapson J, Van Schaik A (2017) EMNIST: extending MNIST to handwritten
letters. In: 2017 international joint conference on neural networks (IJCNN). IEEE, pp 2921–
2926

14. Corinzia L, Beuret, A, Buhmann JM (2019) Variational federated multi-task learning. arXiv
preprint arXiv:190606268

15. Deng Y, Kamani MM, Mahdavi M (2020) Adaptive personalized federated learning. arXiv
preprint arXiv:200313461

16. Dinh CT, Tran NH, Nguyen TD (2020) Personalized federated learning with Moreau
envelopes. arXiv preprint arXiv:200608848

17. Fallah A, Mokhtari A, Ozdaglar A (2020) Personalized federated learning: a meta-learning
approach. arXiv preprint arXiv:200207948

18. Finn C, Abbeel P, Levine S (2017) Model-agnostic meta-learning for fast adaptation of deep
networks. In: International conference on machine learning. PMLR, pp 1126–1135

19. Ghosh A, Hong J, Yin D, Ramchandran K (2019) Robust federated learning in a heterogeneous
environment. arXiv preprint arXiv:190606629

20. Ghosh A, Chung J, Yin D, Ramchandran K (2020) An efficient framework for clustered
federated learning. arXiv preprint arXiv:200604088

21. Gou J, Yu B, Maybank SJ, Tao D (2020) Knowledge distillation: a survey. arXiv preprint
arXiv:200605525

22. Grbovic M, Cheng H (2018) Real-time personalization using embeddings for search ranking
at Airbnb. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp 311–320

23. Hanzely F, Richtárik P (2020) Federated learning of a mixture of global and local models.
arXiv preprint arXiv:200205516

24. Hinton G, Vinyals O, Dean J (2015) Distilling the knowledge in a neural network. arXiv
preprint arXiv:150302531

4 Personalization in Federated Learning 97

25. Hospedales T, Antoniou A, Micaelli P, Storkey A (2020) Meta-learning in neural networks: a
survey. arXiv preprint arXiv:200405439

26. Huang Y, Chu L, Zhou Z, Wang L, Liu J, Pei J, Zhang Y (2021) Personalized cross-silo
federated learning on non-IID data. In: Proceedings of the AAAI conference on artificial
intelligence, vol 35, pp 7865–7873

27. Jaech A, Ostendorf M (2018) Personalized language model for query auto-completion. arXiv
preprint arXiv:180409661

28. Jeong E, Oh S, Kim H, Park J, Bennis M, Kim SL (2018) Communication-efficient on-device
machine learning: federated distillation and augmentation under non-IID private data. arXiv
preprint arXiv:181111479

29. Jiang Y, Konečnỳ J, Rush K, Kannan S (2019) Improving federated learning personalization
via model agnostic meta learning. arXiv preprint arXiv:190912488

30. Johnson AE, Pollard TJ, Shen L, Li-Wei HL, Feng M, Ghassemi M, Moody B, Szolovits P, Celi
LA, Mark RG (2016) MIMIC-III, a freely accessible critical care database. Sci Data 3(1):1–9

31. Khodak M, Balcan MF, Talwalkar A (2019) Adaptive gradient-based meta-learning methods.
arXiv preprint arXiv:190602717

32. Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images
33. Lancaster T (2000) The incidental parameter problem since 1948. J Econ 95(2):391–413.

https://doi.org/10.1016/S0304-4076(99)00044-5
34. Li D, Wang J (2019) FedMD: Heterogenous federated learning via model distillation. arXiv

preprint arXiv:191003581
35. Liang PP, Liu T, Ziyin L, Allen NB, Auerbach RP, Brent D, Salakhutdinov R, Morency LP

(2020) Think locally, act globally: federated learning with local and global representations.
arXiv preprint arXiv:200101523

36. Mansour Y, Mohri M, Ro J, Suresh AT (2020) Three approaches for personalization with
applications to federated learning. arXiv preprint arXiv:200210619

37. Mariani G, Scheidegger F, Istrate R, Bekas C, Malossi C (2018) BAGAN: data augmentation
with balancing GAN. arXiv preprint arXiv:180309655

38. McGraw I, Prabhavalkar R, Alvarez R, Arenas MG, Rao K, Rybach D, Alsharif O, Sak H,
Gruenstein A, Beaufays F et al (2016) Personalized speech recognition on mobile devices.
In: 2016 IEEE international conference on acoustics, speech and signal processing (ICASSP).
IEEE, pp 5955–5959

39. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics.
PMLR, pp 1273–1282

40. Mikołajczyk A, Grochowski M (2018) Data augmentation for improving deep learning
in image classification problem. In: 2018 international interdisciplinary PhD workshop
(IIPhDW). IEEE, pp 117–122

41. Minka TP (2013) Expectation propagation for approximate Bayesian inference. arXiv preprint
arXiv:13012294

42. Neyman J (1979) C(α) tests and their use. Sankhyā: Indian J Stat Ser A (1961–2002) 41(1/2):1–
21

43. Nichol A, Achiam J, Schulman J (2018) On first-order meta-learning algorithms.
arXiv:180302999 [cs] 1803.02999

44. Peterson D, Kanani P, Marathe VJ (2019) Private federated learning with domain adaptation.
arXiv preprint arXiv:191206733

45. Raghu A, Raghu M, Bengio S, Vinyals O (2019) Rapid learning or feature reuse? Towards
understanding the effectiveness of MAML. In: International conference on learning represen-
tations

46. Ruder S (2017) An overview of multi-task learning in deep neural networks. arXiv preprint
arXiv:170605098

47. Sattler F, Müller KR, Samek W (2020) Clustered federated learning: model-agnostic dis-
tributed multitask optimization under privacy constraints. IEEE Trans Neural Netw Learn Syst
1–13. https://doi.org/10.1109/TNNLS.2020.3015958

https://doi.org/10.1016/S0304-4076(99)00044-5
https://doi.org/10.1109/TNNLS.2020.3015958

98 M. Agarwal et al.

48. Schafer JB, Frankowski D, Herlocker J, Sen S (2007) Collaborative filtering recommender
systems. In: Brusilovsky P, Kobsa A, Nejdl W (eds) The adaptive web: methods and strategies
of web personalization. Springer, pp 291–324. https://doi.org/10.1007/978-3-540-72079-9_9

49. Shamir O, Srebro N, Zhang T (2014) Communication-efficient distributed optimization using
an approximate Newton-type method. In: International conference on machine learning.
PMLR, pp 1000–1008

50. Shen T, Zhang J, Jia X, Zhang F, Huang G, Zhou P, Wu F, Wu C (2020) Federated mutual
learning. arXiv preprint arXiv:200616765

51. Shin M, Hwang C, Kim J, Park J, Bennis M, Kim SL (2020) XOR mixup: privacy-preserving
data augmentation for one-shot federated learning. arXiv preprint arXiv:200605148

52. Shorten C, Khoshgoftaar TM (2019) A survey on image data augmentation for deep learning.
J Big Data 6(1):1–48

53. Smith V, Chiang CK, Sanjabi M, Talwalkar A (2017) Federated multi-task learning. arXiv
preprint arXiv:170510467

54. Thrun S (1996) Is learning the n-th thing any easier than learning the first? In: Advances in
neural information processing systems. Morgan Kaufmann Publishers, San Mateo, pp 640–
646

55. Thrun S (1998) Lifelong learning algorithms. In: Learning to learn. Springer, Boston pp 181–
209

56. Vanschoren J (2018) Meta-learning: a survey. arXiv preprint arXiv:181003548
57. Vilalta R, Drissi Y (2002) A perspective view and survey of meta-learning. Artif Intell Rev

18(2):77–95
58. Vu T, Nguyen DQ, Johnson M, Song D, Willis A (2017) Search personalization with

embeddings. In: European conference on information retrieval. Springer, pp 598–604
59. Weng L (2018) Meta-learning: learning to learn fast. lilianwenggithubio/lil-log. http://

lilianweng.github.io/lil-log/2018/11/29/meta-learning.html
60. Weyand T, Araujo A, Cao B, Sim J (2020) Google Landmarks Dataset v2-a large-scale

benchmark for instance-level recognition and retrieval. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp 2575–2584

61. Yu P, Kundu A, Wynter L, Lim SH (2021) Fed+: a unified approach to robust personalized
federated learning. 2009.06303

62. Yu T, Bagdasaryan E, Shmatikov V (2020) Salvaging federated learning by local adaptation.
arXiv preprint arXiv:200204758

63. Yuksel SE, Wilson JN, Gader PD (2012) Twenty years of mixture of experts. IEEE Trans
Neural Netw Learn Syst 23(8):1177–1193

64. Yurochkin M, Agarwal M, Ghosh S, Greenewald K, Hoang N, Khazaeni Y (2019) Bayesian
nonparametric federated learning of neural networks. In: International conference on machine
learning. PMLR, pp 7252–7261

65. Zhang Y, Yang Q (2017) A survey on multi-task learning. arXiv preprint arXiv:170708114
66. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-IID

data. arXiv preprint arXiv:180600582

https://doi.org/10.1007/978-3-540-72079-9_9
http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.html
http://lilianweng.github.io/lil-log/2018/11/29/meta-learning.html

Chapter 5
Personalized, Robust Federated Learning
with Fed+

Pengqian Yu, Achintya Kundu, Laura Wynter, and Shiau Hong Lim

Abstract Fed+ is a unified family of methods designed to better accommodate the
real-world characteristics found in federated learning training, such as the lack of
IID data across parties and the need for robustness to outliers. Fed+ does not require
all parties to reach a consensus, allowing each party to train local, personalized
models through a form of regularization while benefiting from the federation to
improve accuracy and performance. The methods included in the Fed+ family are
shown to be provably convergent. Experiments indicate that Fed+ outperform other
methods when data is not IID, and the robust versions of Fed+ outperform other
methods in the presence of outliers.

5.1 Introduction

Enabling parties to train large machine learning models without sharing data
through federated learning allows satisfying privacy concerns, and, when data
available at any one party would be insufficient, it allows increasing accuracy
and reducing training times. Parallel distributed stochastic gradient descent (SGD)
bears similarities to federated learning, but in federated learning communication
is minimized by parties performing a number of iterations locally before sending
their parameters to the aggregator. Contrary to the usual distributed SGD use cases,
federations tend to be diverse. This can result in non-Independently-and-Identically-
Distributed (i.e., non-IID) data across parties, which in turn has a significant impact
on the algorithms performance. In addition, FL settings often involve parties whose
data are outliers with respect to the other parties. Indeed, the most likely real-world
settings will involve heterogeneous, non-IID data, and outliers. Many federated
aggregation procedures, however, can result in failure of the training process itself,
in that the training does not converge or converges to a poor solution, when

P. Yu · A. Kundu · L. Wynter (�) · S. H. Lim
IBM Research, Singapore, Singapore
e-mail: achintya.k@ibm.com; lwynter@sg.ibm.com; shonglim@sg.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_5

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_5&domain=pdf
mailto:achintya.k@ibm.com
mailto:lwynter@sg.ibm.com
mailto:shonglim@sg.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_5

100 P. Yu et al.

datasets are too heterogeneous. The fact that this can occur then in precisely those
applications where federated learning would have the greatest benefit implies that
an approach designed for heterogeneous FL is required in practice.

Personalization of federated learning model training, when judiciously per-
formed, is one means of avoiding such training failure. In addition, personalization
of federated training allows for greater accuracy on the data that matters to each
party. As we shall see in this chapter, personalization means that each party solves
its own problem, but benefits from the federation as a whole through a distinct
component of the problem they each solve.

Real-world federated learning settings also often require the party models to
perform well on data specific to each party. A single common model across
all parties may not perform optimally for each party. As remarked by [15], an
application of sentence completion for a mobile user should be optimized for that
user’s context, and not be identical across all users. While it is possible with e.g.
neural network models to do fine tuning locally upon a pre-trained model, the
resulting solution is unlikely to be as good in performance as a fully personalized
federated model.

We discuss in this chapter personalized methods for federated learning. Person-
alized federated learning is designed to address precisely these issues of avoiding
training failure, increasing robustness to outliers and stragglers, and improving
performance on the applications of interest, when party-level evaluation data need
not be common across parties.

Another aspect important to the success of federated learning in practice is
the ability to produce robust solutions. Robustness in a federation means that
the aggregate solution will not be overly skewed by the outliers that may be a
party whose data is significantly different from the other parties, or a party that
experiences corruption when its update is sent to the aggregator. Most federated
learning algorithms aggregate all the active parties using the mean. However, other
measures, such as the median, are more robust to outliers than the mean.

In this chapter we shall discuss personalized federated learning models that allow
the central server to employ both mean and robust methods of aggregating local
models while keeping the structure of local computation intact. These personalized
methods also relax the requirement that the parties must reach a full consensus.

It is important in federated learning not to make explicit assumptions on the
distributions of the local data, which are assumed private to each party and so for
which assumptions can be neither verified nor enforced. Hence, we discuss forms of
personalized federated learning that assumes a global shared parameter space with
locally computed loss functions.

We call the approach described in this chapter Fed+. The Fed+ theory is equipped
to handle heterogeneous data and heterogeneous computing environments including
stragglers. The convergence results presented here do not make assumptions on the
homogeneity of the party-level data, and they cover the general setting where the
number of local update steps across parties can vary. Through Fed+, we define a
unified framework for personalized federated learning that handles both average
and robust aggregation methods and provide a comprehensive convergence theory

5 Personalized, Robust Federated Learning with Fed+ 101

for this class of methods, which includes non-smooth convex and non-convex loss
functions. We also illustrate the methods through a set of numerical experiments
comparing personalized versus non-personalized federated learning algorithms.

5.2 Literature Review

The original and most intuitive federated learning algorithm is FederatedAveraging
(FedAvg; [16]). However, its element-wise mean update is susceptible to corrupted
values by faulty parties [21]. Furthermore, it has been observed in practice that
FedAvg can lead to failure of the training process. The work by [13] showed that
FedAvg as initially defined can converge to a point, which is not a solution to the
original problem; the authors proposed to add a learning rate that decreases at each
federated round, and with that modification they provide a theoretical convergence
guarantee for the algorithm, even when the data is not IID. On the other hand, the
resulting algorithm is very slow to converge and hence not efficient in practice.

Robustness of federated learning to corrupted updates from the parties, or, more
generally, to outliers has been explored in some recent work. We focus on two
such works in particular. The authors of [19] propose Robust Federated Aggregation
(RFA) and argue that federated learning can be made robust to corrupted updates by
replacing the weighted arithmetic mean aggregation by an approximate geometric
median. The authors of [22] propose a Byzantine-robust distributed statistical
learning algorithm based on the coordinate-wise median of model weights, with
a focus on achieving optimal statistical performance. Both robust federated learning
algorithms, RFA [19] and coordinate-wise median [22], involve training a single
global model on distributed data with assumptions on the maximum percentage of
adversarial parties, usually that it is less than one half. As we will see, such methods
are not robust to non-IID data and can, as FedAvg, lead to failure of the learning
process.

In an effort to better handle non-IID data, in [11] a regularization term is
introduced in the form of a proximal distance from the FedAvg solution in their
FedProx algorithm. The work of [9, 13] seeks to explain the non-convergence of
FedAvg while proposing new algorithms: The works of [3, 14, 17] propose new
algorithms, called FedSplit and LocalUpdate, and Local Fixed Point, resp., and
obtain tight bounds on the number of communication rounds required to achieve an
ε accuracy. These algorithms all require the convergence of all parties to a common
model.

The works by [5, 7, 8, 12, 15, 20, 23] all advocate, as we do, for a fully
personalized approach whereby each client trains a local model while contributing
to a global model. In [15], the authors propose explicitly clustering parties and
solving the aggregate model only within each cluster. While this approach would
likely eliminate the training failure we observe in practice, it adds considerable
overhead and reduces the benefit of the federation by decreasing the likely size
of each federation. The authors of [5] propose a method that has similarity to our

102 P. Yu et al.

FedPlus+. In [20], it is proposed to use a more complex procedure where not only
the local parameters are optimized but each party also optimizes a (local version
of) the global parameters. The work of [8] provides a unification of a number of
personalized federated aggregation methods in the smooth and convex settings. The
authors of [12] propose a bilevel programming framework that alternates between
solving for an average aggregate solution and a local solution. Bilevel programs
however are non-convex and the problem could be more readily solved in two
phases, first obtaining the average aggregate solution and then using it for each local
party. In [23] it is suggested that the average aggregate solution can be personalized
for each as a set of weighted average aggregate solutions. The most important
difference between Fed+ and the above methods is that only Fed+ covers the case
of robust aggregation, both in the definition of the algorithm and in the convergence
theory, which allows for the non-smooth loss functions that result.

5.3 Illustration of Federated Learning Training Failure

Next, we illustrate the training failure that can occur in real-world federated learning
settings. The study involves a federated reinforcement learning-based financial
portfolio management problem, presented in detail in a separate chapter in this
volume. The key observation, shown here in Fig. 5.1, is that replacing at each
round the local party models with a common, central (e.g., average) model can
lead to dramatic spikes in model changes, which can trigger training failure for
the federation as a whole. Specifically, the figure shows the mean and standard
deviation of the change in neural network parameter values before and after a

Fig. 5.1 Illustration of federated learning training failure on a real-world application when parties
are forced to converge to a single, common aggregate solution

5 Personalized, Robust Federated Learning with Fed+ 103

federated learning aggregation step. The federated aggregation methods illustrated
are: FedAvg, RFA using the geometric median, coordinate-wise median, and
FedProx, as well as the no fusion case where each party trains independently on
its own data, and the FedAvg+ version of our personalized Fed+ approach. FedAvg,
RFA, coordinate-wise median, and FedProx all cause large spikes in the parameter
change that do not occur without federated learning or when using personalized
federated learning.

Such dramatic model change can lead to failure of the training process. In
particular, the large spikes coincide precisely with training failure, as shown in
Fig. 5.2 (bottom four figures). Note that this example does not involve adversarial
parties or party failure in any way, as evidenced from the fact that the single-party
training on the same dataset (top curve) does not suffer any failure. Rather, this is
an example of federated learning on a real-world application where parties’ data
are not drawn IID from a single dataset. As such, it is conceivable that federated
model failure would be a relatively common occurrence in real-world applications
using the vast majority of algorithms. A deeper understanding of this collapse can
be gleaned from Fig. 5.3, which shows what occurs before and after an aggregation
step.

Figure 5.3 motivates the Fed+ approach to personalized federated learning by
illustrating the behavior of the algorithms as a function of how close the local
party moves from a purely local model toward a common, central model. A local
party update occurs in each subplot on the left side, at λ = 0. Observe that the
local updates improve the performance from the previous aggregation indicated by
the dashed lines. However, performance degrades after the subsequent aggregation,
corresponding to the right-hand side of each subplot, where λ = 1. In fact, for
FedAvg, RFA, and FedProx, performance of the subsequent aggregation is worse

Fig. 5.2 Illustration of federated training collapse on the financial portfolio management problem.
There is no training collapse without federated learning (top sub-figure), but all of the non-
personalized federated learning algorithms exhibit the collapse

104 P. Yu et al.

Fig. 5.3 Before and after aggregation, along the line given by varying λ ∈ [0, 1] using a convex
combination of local update and the common model on the financial portfolio management
problem. Dashed lines represent the aggregate model at the previous round. A right-hand side
lower than the left-hand side means that a full step toward averaging (or median) all parties, i.e.,
λ = 1, degrades local performance. This is the case with the standard FedAvg as well as with the
non-personalized robust methods

than the previous value (dashed line). Intermediate values of λ correspond to moving
toward, but not reaching, the common, central model.

5.4 Personalized Federated Learning

Personalization is aimed at better handling federated learning in real-world settings
including non-IID data across parties, parties having outlier data with respect
to other parties, stragglers, in that updates are transmitted late, and an implicit
requirement for the final trained model(s) to perform well on each party’s own
datasets. Fed+ in particular accomplishes these goals using a robust approach, and,
importantly, does not require all parties to converge to a single central point. This
requires generalizing the objective of the federated learning training process, as
follows.

5.4.1 Problem Formulation

Consider a federation of K parties with local loss functions fk : Rd → R, k =
1, 2, . . . , K . The original FedAvg formulation [16] involves training a central model

5 Personalized, Robust Federated Learning with Fed+ 105

w̃ ∈ R
d by minimizing the average local loss over the K parties:

min
w̃∈Rd , W∈Rd×K

[
F(W) := 1

K

K∑

k=1

fk(wk)
]

subject to wk =w̃, k = 1, . . . , K,

(5.1)

where we use the notation W := (w1,w2, . . . ,wK) ∈ R
d×K with wk ∈ R

d

denoting the local model of party k. In place of the hard equality constraints in (5.1),
we advocate for a penalization-based approach and propose the following objective
for the overall federated training process:

min
W∈Rd×K

Fμ(W) := 1

K

K∑

k=1

[
fk(wk) + μB

(
wk,A(W)

)]
, (5.2)

where μ > 0 is a user-chosen penalty constant, A is an aggregation function that
outputs a central aggregate w̃ ∈ R

d of w1, . . . ,wK , and B(·, ·) is a distance function
that penalizes the deviation of a local model wk from the central aggregate w̃ =
A(W). Note that w̃ may be the mean, median, etc. When μ = 0, problem (5.2)
reduces to the non-federated setting where every party independently minimizes its
local objective function. On the other hand, for μ > 0 and A(W) = 1

K

∑
k wk , if

one sets B such that B(w, w̃) = ∞ if w �= w̃ and B(w, w̃) = 0 otherwise, then (5.2)
is equivalent to problem (5.1). More generally, the distance function B may be the
usual squared Euclidean distance, the metric induced by the p norm (denoted as
‖ · ‖p) with p ∈ [1,∞], or other Bregman divergence measures such as

B(wk, w̃) = 1

2
‖wk − w̃‖2

Q, (5.3)

where Q ∈ R
d×d is a symmetric positive semi-definite matrix and ‖w‖Q :=√

w�Qw. By setting Q to be a diagonal matrix with non-negative entries, (5.3)
can serve to weight each component’s contribution differently depending on the
application and information available during model training.

5.4.2 Handling Robust Aggregation

We exploit the machinery of the function B to define a family of aggregation
functions that includes the mean, geometric median, coordinate-wise median, etc.
That is, the global model w̃ is computed by aggregating the current local models

106 P. Yu et al.

{w1, . . . ,wK } via

w̃ ← A(W) := arg min
w∈Rd

1

K

K∑

k=1

B(wk,w). (5.4)

The mean aggregation function A is recovered by choosing B(w,w′) = ‖w −
w′‖2

2 in (5.4). The geometric median and coordinate-wise median aggregation are
obtained by setting B(w,w′) = ‖w−w′‖2 and B(w,w′) = ‖w−w′‖1, resp. To unify
the aggregation methods that include non-smooth functions B in (5.2), we introduce
the following general class of parameterized functions B where we choose a convex
function φ : Rd → [0,∞] and a smoothness-robustness parameter ρ > 0:

B(wk, w̃) = �ρ(wk − w̃), �ρ(w) := min
w′∈Rd

[
φ(w′) + 1

2ρ
‖w− w′‖2

2

]
.

(5.5)

We call the minimizer in the above problem the proximal operator of φ and denote
it as proxρ

φ(w). Note that �ρ is a smooth function known as the Moreau envelope of
φ. By choosing φ to be the 2 norm, we obtain a (1/ρ)-smooth approximation of the
geometric median aggregation as in [19]. Setting φ to the 1 norm gives a smooth
approximation of coordinate-wise median aggregation. The usual mean aggregation
is naturally recovered in both of these cases: (i) φ(w) = 1

2‖w‖2
2, and (ii) φ(w) = 0

if w = 0 and +∞ otherwise.

5.4.3 Personalization

While problem (5.2) can be solved centrally, we are interested in the federated
setting where at every round each active party k solves its own version of the
problem, running Ek iterations of the following update, with learning rate η > 0:

wk ← θ [wk − η∇fk(wk)] + (1 − θ)zk, for i = 1, . . . , Ek. (5.6)

Note that personalization occurs via the party-specific regularization term zk and
the constant θ ∈ (0, 1] controls the degree of regularization while training the local
model using (5.6). In practice, the exact gradient ∇fk(wk) in (5.6) is replaced by
an unbiased random estimate. In standard methods, zk is set to the current global
model w̃. Fed+ proposes however robust personalization as we shall see below.

5 Personalized, Robust Federated Learning with Fed+ 107

5.4.4 Reformulation and Unification of Mean and Robust
Aggregation

To obtain a unified framework that covers personalization along with robustness,
consider again the original FedAvg (5.1), expressed equivalently as

min
W,Z∈Rd×K, w̃∈Rd

1

K

K∑

k=1

fk(wk) subject to wk = zk, zk = w̃, k = 1, . . . , K,

(5.7)

where Z := (z1, . . . , zK) with zk ∈ R
d . While ADMM can be used to solve

equality-constrained problems of the above form, we take a penalty-based approach,
as in [24], suitable for both convex and non-convex settings. Then, to handle
heterogeneous data and computing environments across parties, we replace the
equality constraints in (5.7) with penalty functions:

min
W,Z∈Rd×K, w̃∈Rd

Hμ,α(W,Z, w̃) :=

1

K

K∑

k=1

[
fk(wk) + α

2
‖wk − zk‖2

2 + μφ(zk − w̃)
]
,

(5.8)

where α > 0 is a user-chosen penalty constant and φ : Rd → [0,∞] is a convex
penalty function. The following proposition connects this new formulation (5.8) to
our original objective (5.2).

Proposition 5.1 Problem (5.8) is a special case of (5.2), where the A & B
functions are as defined in (5.4) & (5.5) respectively (with ρ = μ/α), and the
following relation between the two optimization objectives holds

Fμ(W) = min
Z∈Rd×K, w̃∈Rd

Hμ,α(W,Z, w̃). (5.9)

Proof Using ρ = μ/α, we have from (5.8)

min
Z∈Rd×K

Hμ,α(W,Z, w̃) = 1

K

K∑

k=1

[
fk(wk) + μ min

zk∈Rd

{
1

2ρ
‖wk − zk‖2

2 + φ(zk − w̃)

}]

= 1

K

K∑

k=1

[
fk(wk) + μ min

vk∈Rd

{
1

2ρ
‖(wk − w̃) − vk‖2

2 + φ(vk)

}]

108 P. Yu et al.

= 1

K

K∑

k=1

[
fk(wk) + μ �ρ(wk − w̃)

]
,

= 1

K

K∑

k=1

[
fk(wk) + μB(wk, w̃)

]
, (5.10)

where the second equality is obtained by the change of variable zk → w̃ + vk and
the last two equalities are due to (5.5). Now, further minimizing (5.10) w.r.t. w̃ and
using the definition (5.4), we arrive at (5.9). ��

The Fed+ formulation (5.8) suggests a natural choice for the personalization
function R : R

d × R
d → R

d , which computes zk := R(w̃,wk) as a (robust)
combination of the current local and central model. To be precise, Fed+ proposes
setting R(w̃,wk) by minimizing (5.8) w.r.t. zk while keeping wk and w̃ fixed. Thus,
we have the following closed form update:

zk ← R(w̃,wk) = w̃+ proxρ
φ(wk − w̃), ρ = μ/α. (5.11)

Next, we connect the local party’s update (5.6) to our new formulation (5.8).

Proposition 5.2 Let θ := 1
1+αη

. Then, the local update (5.6) (line 14 in Fed+

algorithm) is a gradient descent iteration with learning rate η′ := η
1+αη

applied
to the following sub-problem:

min
wk∈Rd

Fk(wk; zk, w̃) := fk(wk) + α

2
‖wk − zk‖2

2 + μφ(zk − w̃), (5.12)

where zk & w̃ are kept fixed by setting them to zt−1
k and w̃t−1, respectively.

Proof The gradient descent iteration for the function Fk(· ; zt−1
k , w̃t−1) with step-

size η′ := η
1+αη

is given by

wt
k ← wt

k − η′[∇fk(wt
k) + α(wt

k − zt−1
k)]

= (1 − αη′)
[
wt

k − η′

1 − αη′ ∇fk(wt
k)

]
+ (αη′)zt−1

k

=
(

1

1 + αη

) [
wt

k − η∇fk(wt
k)
] +

(
αη

1 + αη

)
zt−1
k .

Thus, we have the local update of the form (5.6) (line 14 in Fed+ algorithm) where
θ := 1

1+αη
. ��

5 Personalized, Robust Federated Learning with Fed+ 109

5.4.5 The Fed+ Algorithm

Fed+ is defined in Algorithm 5.1 as a family of federated learning methods for
solving problem (5.2) with B as in (5.5) and A as defined in (5.4). Fed+ is designed
to allow for robust aggregation functions A, where local copies of shared parameters
are aggregated. Importantly, Fed+ does not require all parties to agree on a single
common model. We argue that this offers the benefits of federation without the
pitfall of training failure that can occur in real-world implementations of federated
learning.

So as to encompass important special cases, Algorithm 5.1 introduces a number
of parameters. Specifically, we define λ ∈ [0, 1], θ ∈ (0, 1], and R : Rd×R

d → R
d .

A main difference between our approach and other federated algorithms is that
the parties do not set the aggregated central model as their starting point when
performing the local update step (5.6); i.e., parties need not set λ = 1 in line 12
of Algorithm 5.1. Instead, Fed+ advocates initializing local models at each round
with the value from the previous round (i.e., λ = 0). This mitigates the dramatic
changes in local models seen in Fig. 5.1.

Algorithm 5.1 Fed+: Parties k = 1, . . . , K; aggregation fcn. A; local iterations
per round at party k, Ek; learning rate η; and θ ∈ (0, 1]; λ ∈ [0, 1]; and robust
personalization fcn. R : Rd × R

d → R
d

Initialization:
1: Each party k sends its initial local model w0

k to the Aggregator, which computes
the central value w̃0 ← A(W0).
Aggregator:

2: for round t = 1, . . . , T do
3: Sample parties to obtain St ⊆ {1, . . . , K}.
4: Send the current global model w̃t−1 to each party k ∈ St .
5: for each party k ∈ St in parallel do
6: wt

k ← Local-Solve(k, t, w̃t−1, wt−1
k). // Each party k /∈ St sets wt

k ←
wt−1

k .
7: Party sends wt

k to Aggregator.
8: end for
9: Compute the aggregated central model: w̃t ← A(Wt).

10: end for
Local-Solve (k, t, w̃t−1, wt−1

k): // Run on each active party k ∈ St

11: Compute a robust local model: zt−1
k := R(w̃t−1,wt−1

k).
12: Initialize the current local model: wt

k ← (1 − λ)wt−1
k + λw̃t−1.

13: for i = 1, . . . , Ek do
14: wt

k ← θ [wt
k − η∇fk(wt

k)] + (1 − θ)zt−1
k .

15: end for

110 P. Yu et al.

5.4.6 Mean and Robust Variants of Fed+

We introduce three variants of interest of Fed+, unified through their choice of
function φ, and discuss how they can be combined. We propose setting λ = 1 in
the initialization of the Local-Solve for each party, and θ := 1

1+αη
with α > 0 tuned

as a hyper-parameter. We recommend tuning the hyper-parameter ρ to control the
amount of robust personalization.

5.4.6.1 FedAvg+

A mean aggregation-based method with better training performance than FedAvg
via personalization. Choose φ(w) = 1

2‖w‖2
2. A is the mean, i.e., w̃t := Mean{wt

k :
k ∈ St } and (11) takes the form: R(w̃t ,wt

k) = (1 − λt
k)w

t
k + λt

k w̃
t , where

λt
k := ρ/(1 + ρ).

5.4.6.2 FedGeoMed+

A robust aggregation-based method that offers stability in training in the presence
of outliers/adversaries. Set φ(w) = ‖w‖2. A is a ρ-smoothed approximation of the
Geometric Median, and (11) becomes

R(w̃t ,wt
k) = (1 − λt

k)w
t
k + λt

k w̃
t , where λt

k := min
{
1, ρ/‖wt

k − w̃t‖2
}
.

To compute w̃t from {wt
k : k ∈ St } the aggregator runs the following two step

iterative procedure initialized with w̃ = wmean := Mean{wt
k : k ∈ St } until w̃

converges

vk ← max
{
0, 1 − (ρ/‖wt

k − w̃‖2)
}
(wt

k − w̃), ∀ k ∈ St ,

w̃ ← wmean − Mean{vk : k ∈ St }.

5.4.6.3 FedCoMed+

FedCoMed+ offers the benefits of robust aggregation via the median with added
flexibility in allowing different parameters for each coordinate. Choose φ(w) =
‖w‖1. A is a ρ-smoothed approximation of the Coordinate-wise Median and (11)
takes the following form:

R(w̃t ,wt
k) = (I − �t

k)w
t
k + �t

k w̃
t , where �t

k is a diagonal matrix with
�t

k(i, i) := min
{
1, ρ/|wt

k(i) − w̃t (i)|} , i = 1, . . . , d.

5 Personalized, Robust Federated Learning with Fed+ 111

To compute w̃t from {wt
k : k ∈ St } the aggregator starts with w̃ = wmean :=

Mean{wt
k : k ∈ St } and runs the following two step iterative procedure until w̃

converges

vk ← max
{
0, wt

k − w̃t − ρ sign(wt
k − w̃t)

}
, ∀ k ∈ St ,

w̃ ← wmean − Mean{vk : k ∈ St }.

5.4.6.4 Hybridization via the Unified Fed+ Framework with
Layer-Specific φ

The unification of aggregation methods through a single formulation allows for
seamlessly combining different methods of aggregation and personalization applied
to different layers in training deep neural networks. For example, initial layers
may use FedAvg+, while final layers may benefit from FedCoMed+ and greater
personalization via ρ.

Specifically, Fed+ provides a framework where one can employ robust personal-
ization functions specific to different layers in a neural network as follows.

Let w = (w[1], · · · ,w[L]), where w[l] denotes the weights of the l-th layer. In
this case, we define

φ(w) :=
L∑

l=1

φl(w[l]),

where φl, l = 1, . . . , L, can be chosen independently giving rise to different
methods of robust personalization for each layer.

5.4.7 Deriving Existing Algorithms from Fed+

Many non-personalized federated learning methods fit into the Fed+ framework and
can be obtained by setting the parameters in Algorithm 5.1 appropriately.

This is useful when a single code is to be used in a federated learning system,
and for different applications, a personalized or non-personalized method would be
preferred, and a mean aggregation-based or a robust aggregation-based method may
be preferred. To handle all of these applications from a common code, it is helpful
when they can be obtained by simply setting parameters of the foundational method
appropriately.

This is the case with the Fed+ formulation above. To obtain pure Local
(Stochastic) Gradient Descent without Federation, one need only set λ = 0, θ = 1.
The seminal federated learning method, based on the mean and common solution
for all parties, FedAvg, can be obtained by setting the parameters as λ = 1,

112 P. Yu et al.

θ = 1, Ek = E for all k, w̃t = Mean{wt
k : k ∈ St }. A regularized

version of FedAvg, which bears some similarity to personalized federated learning
in that the local problem is augmented by a proximal term containing the aggregator
solution is FedProx. FedProx does not, however, start the local training of each
federated round from the last local solution, and so to obtain FedProx from the above
algorithm for Fed+, one must set the parameters as follows: λ = 1, θ = 1

1+μη
,

R(w̃t ,wt
k) = w̃t = Mean{wt

k : k ∈ St }.
Non-personalized robust federated learning can also be obtained by appropriately

setting the parameters of Fed+. For RFA, it involves setting λ = 1, θ = 1,
w̃t = Geometric Median{wt

k : k ∈ St }. For Coordinate-wise median, one
would set λ = 1, θ = 1, and w̃t = Coordinatewise Median{wt

k : k ∈ St }.

5.5 Fixed Points of Fed+

Here, we characterize the fixed points of the Fed+ algorithm to gain insights on
the kind of personalized solution it offers. Before proceeding further we make the
following assumption:

Assumption 5.3 For each k = 1, . . . , K , fk is convex, all the parties actively
participate in every round of the federating learning process, and the Local-Solve
subroutine in Fed+ returns wt

k as the exact minimizer of Fk(· ; zt−1
k , w̃t−1), i.e.,

wt
k = prox

1
α

fk
(zt−1

k) := arg min
wk

fk(wk) + α

2
‖wk − zt−1

k ‖2
2, ∀ t ≥ 1, k = 1, . . . , K.

(5.13)

We define f̃k : Rd → R to be the Moreau envelope of fk with smoothing parameter
(1/α), i.e.,

f̃k(z) := min
wk∈Rd

fk(wk) + α

2
‖wk − z‖2

2, ∀z ∈ R
d .

Now, we present the fixed-point characterization of Fed+ under Assumption 5.3:

Theorem 5.4 Consider the Fed+ algorithm for solving problem (5.9) under
Assumption 5.3. Let R be as in (5.11) and (W∗,Z∗, w̃∗) be a fixed point of Fed+.
Then, the following conditions are satisfied:

1

K

K∑

k=1

f̃k(z∗k) = 0, w∗
k = z∗k − 1

α
∇f̃k(z∗k), z∗k = w̃∗ + proxρ

φ(w∗
k − w̃∗),

k = 1, . . . , K.

(5.14)

5 Personalized, Robust Federated Learning with Fed+ 113

Proof We start with the following observations about Fed+: ∀ t ≥ 1,:

wt
k = zt−1

k − 1

α
∇f̃k(z

t−1
k), k = 1, . . . , K,

w̃t = 1

K

K∑

k=1

wt
k − 1

K

K∑

k=1

proxρ
φ(wt

k − w̃t), (5.15)

zt
k = w̃t + proxρ

φ(wt
k − w̃t), k = 1, . . . , K,

where the first equation is a direct consequence of (5.13), the second one comes
from (5.28), and the last one is by choice of R. Therefore, for a fixed point, the
second & third equations in (5.14) obviously hold. Now, for a fixed point, we also
have the following from (5.15):

w̃∗ = 1

K

K∑

k=1

w∗
k − 1

K

K∑

k=1

proxρ
φ(w∗

k − w̃∗). (5.16)

Replacing the first w∗
k in (5.16) with z∗k − 1

α
∇f̃k(z∗k) and subsequently z∗k by w̃∗ +

proxρ
φ(w∗

k − w̃∗), we get

w̃∗ = 1

K

K∑

k=1

[
z∗k − 1

α
∇f̃k(z∗k)

]
− 1

K

K∑

k=1

proxρ
φ(w∗

k − w̃∗)

= 1

K

K∑

k=1

[
w̃∗ + proxρ

φ(w∗
k − w̃∗)

]
− 1

αK

K∑

k=1

∇f̃k(z∗k) − 1

K

K∑

k=1

proxρ
φ(w∗

k − w̃∗)

= w̃∗ − 1

αK

K∑

k=1

∇f̃k(z∗k).

Thus, we have the first equation in (5.14). ��
With the help of above Theorem, we now analyze two extreme choices of R in

part (a) & (b) of the following Corollary:

Corollary 5.5 Consider the Fed+ algorithm under Assumption 5.3. Let
(W∗,Z∗, w̃∗) be a fixed point of Fed+. Then, the following are true:

(a) If Fed+ sets R(w̃,wk) = wk , then

w∗
k ∈ arg min

w
fk(w), k = 1, . . . , K. (5.17)

114 P. Yu et al.

(b) If Fed+ uses R(w̃,wk) = w̃ along withA(W) = 1
K

∑
k wk , then

1

K

K∑

k=1

f̃k(w̃∗) = 0, w∗
k = w̃∗ − 1

α
∇f̃k(w̃∗), k = 1, . . . , K. (5.18)

(c) If Fed+ employs R(w̃,wk) = (1 − γ)wk + γ w̃, γ ∈ (0, 1) with A(W) =
1
K

∑
k wk , then

w∗
k = w̃∗ − 1

αγ
∇f̃k

(
(1 − γ)w∗

k + γ w̃∗), k = 1, . . . , K, where w̃∗ = 1

K

K∑

k=1

w∗
k .

(5.19)

Proof To prove (a), we apply Theorem 5.4 with φ = 0. This choice of φ leads to
zk = R(w̃,wk) = wk from (5.11). Therefore, Fed+ boils to applying the proximal

point algorithm wt
k = prox

1
α

fk
(wt−1

k), t ≥ 1, at each local party k = 1, . . . , K .

Therefore, we obtain the result (5.17) as w∗
k = prox

1
α

fk
(w∗

k). Alternatively, setting
z∗k = w∗

k in (5.14), we get

w∗
k = w∗

k − 1

α
∇f̃k(w∗

k) �⇒ w∗
k ∈ arg min

w
fk(w). (5.20)

Next, we prove part (b) by applying Theorem 5.4 with the following choice of
φ: φ(w) = 0 iff w = 0 and +∞ otherwise. This particular φ corresponds to the
choice zk = R(w̃,wk) = w̃ from (5.11). Also, the aggregation function A becomes
the mean as from (5.4) and (5.5) we get

A(W) = arg min
w̃

1

K

K∑

k=1

�ρ(wk − w̃), where �ρ(w) = 1

2ρ
‖w‖2

2.

Now, putting z∗k = w̃∗ in (5.14), we arrive at (5.18). Finally, we show part (c) by
setting φ(w) = 1

2‖w‖2
2, w ∈ R

d in Theorem 5.4. Let the constant μ (or ρ) be set in
such a way that (μ/α) = ρ = γ /(1−γ). Then, (5.11) becomes zk = R(w̃,wk) =
(1−γ)wk+γ w̃. Also, like in part (b), the aggregation function A becomes the mean
here as well. Now, we complete the proof by using z∗k = (1−γ)w∗

k +γ w̃∗ in (5.14):

w∗
k = (1 − γ)w∗

k + γ w̃∗ − 1

α
∇f̃k

(
z∗k
) �⇒ w∗

k = w̃∗ − 1

αγ
∇f̃k

(
z∗k
)
.

Note that part (b) of the Corollary recovers the fixed-point result of FedProx given
in [17]. In the next Proposition, we characterize the fixed points of Fed+ for the
general case where R and A need not be defined through a common φ function.

5 Personalized, Robust Federated Learning with Fed+ 115

Proposition 5.6 Consider the Fed+ algorithm with an arbitrary aggregation func-
tionA and the following personalization function: zk = R(w̃,wk) = (1 − γk)wk +
γkw̃, γk ∈ (0, 1], k = 1, . . . , K . Then, under Assumption 5.3, the following holds
for any fixed point (W∗,Z∗, w̃∗) of Fed+:

w∗
k = w̃∗ − 1

αγk

∇f̃k

(
(1 − γk)w∗

k + γkw̃∗), k = 1, . . . , K,

where w̃∗ = A(w∗
1, . . . , w∗

K).

(5.21)

Moreover, if the aggregation function A (such as Mean, Geometric Median,
Coordinate-wise Median) in Fed+ satisfy the following translation & sign invari-
ance property

∀ w,w1, . . . ,wK ∈ R
d , A(w− w1, . . . , w− wK) = w − A(w1, . . . ,wK),

(5.22)

then the following holds

A
(

1

αγ1
∇f̃1(z∗1), . . . ,

1

αγK

∇f̃K(z∗K)

)
= 0,

where z∗k = (1 − γk)w∗
k + γkw̃∗, k = 1, . . . , K.

(5.23)

Proof Similar to the proof of Theorem 5.4, we have the following from Fed+
algorithm: ∀ t ≥ 1,

wt
k = zt−1

k − 1

α
∇f̃k(z

t−1
k), k = 1, . . . , K,

w̃t = A(wt
1, . . . , wt

K),

zt
k = (1 − γk)wt

k + γkw̃t , k = 1, . . . , K.

For a fixed point, we thus have

w∗
k = z∗k − 1

α
∇f̃k(z∗k), k = 1, . . . , K, (5.24)

w̃∗ = A(w∗
1, . . . , w∗

K), (5.25)

z∗k = (1 − γk)w∗
k + γkw̃∗, k = 1, . . . , K. (5.26)

Now, replacing the first z∗k in (5.24) by (5.26), we arrive at

w∗
k = w̃∗ − 1

αγk

∇f̃k(z∗k), k = 1, . . . , K. (5.27)

116 P. Yu et al.

Thus, we have (5.21). Further, using (5.27) in (5.25) and utilizing the property (5.22)
gives us (5.23). ��

5.6 Convergence Analysis

Consider Algorithm 5.1 and the following assumption concerning the values of the
parameters used in the algorithm.

Assumption 5.7 Let the parameters be set as follows. (i) φ : Rd → [0,∞] is any
convex function with easy to compute proximal operator, (ii) the function R is set as
in the reference (5.11), (iii) the initialization parameter λ in line 12 is set to 0, (iv)
set θ := 1

1+αη
in line 14, and (v) compute the aggregation step in line 9 via (5.4),

where B is given by (5.5). The parameters α > 0, ρ > 0, and η > 0 are considered
to be tunable unless specified otherwise.

To implement the aggregation step w̃ ← A(w1, . . . ,wK) for a general choice
of φ, we propose the following iterative procedure, which is initialized with w̃ =
wmean := Mean{w1, . . . ,wK }:

w̃ ← wmean − Mean
{

proxρ
φ(w1 − w̃), · · · , proxρ

φ(wK − w̃)
}
. (5.28)

The above setting then gives rise to the following property:

(zt
1, . . . , z

t
K , w̃t) = arg min

Z∈Rd×K, w̃∈Rd

Hμ,α(Wt ,Z, w̃), t = 1, 2, . . . (5.29)

To analyze Fed+, we make the following smoothness assumption:

Assumption 5.8 For each k = 1, 2, . . . , K , fk : R
d → R is differentiable

and the gradient ∇fk is Lipschitz continuous with constant Lf , i.e., ‖∇fk(w) −
∇fk(w′)‖2 ≤ Lf ‖w− w′‖2, ∀w,w′ ∈ R

d .

Proposition 5.9 Under Assumption 5.8 and the stepsize choice η = 1/Lf , the
following holds for Fed+: ∀k ∈ St ,:

Fk(wt
k; zt−1

k , w̃t−1) ≤ Fk(w
t−1
k ; zt−1

k , w̃t−1) − 1

2(Lf + α)
‖∇Fk(w

t−1
k ; zt−1

k , w̃t−1)‖2
2,

(5.30)

where Fk is defined in (5.12) and the gradient is w.r.t. wk .

Proof Let us first recall the following well-known descent lemma [1] for functions
with Lipschitz continuous gradient.

5 Personalized, Robust Federated Learning with Fed+ 117

Lemma 5.10 Let f : Rd → R be continuously differentiable and ∇f be Lipschitz
continuous with constant L > 0. Then, the following holds

f

(
w− 1

L
∇f (w)

)
≤ f (w) − 1

2L
‖∇f (w)‖2

2, ∀w ∈ R
d .

From Proposition 5.2, we know that the local update (5.6) (line 14 in Fed+
algorithm) is a gradient descent iteration with learning rate η′ = η

1+αη
= 1

Lf +α

applied to the function Fk(· ; zt−1
k , w̃t−1). Clearly, ∇Fk(· ; zt−1

k , w̃t−1) is Lipschitz
continuous with constant L = (Lf + α). Therefore, applying the above Lemma,
we have the following after one gradient descent iteration (starting with wt−1

k) at the
Local-Solve subroutine: ∀k ∈ St ,

Fk(wt
k; zt−1

k , w̃t−1) ≤ Fk(w
t−1
k ; zt−1

k , w̃t−1) − 1

2L
‖∇Fk(w

t−1
k ; zt−1

k , w̃t−1)‖2
2.

(5.31)

Now, note the fact that Fk(wt
k; zt−1

k , w̃t−1) remains non-increasing after each
gradient descent step. This completes the proof. ��

Combining the relation (5.29) with (5.30) we derive the following convergence
result for Fed+.

Theorem 5.11 Assume that Hμ,α in (5.8) is bounded from below, and parties are
sampled with equal probability. Then, under Assumption 5.8 and the stepsize choice
η = 1/Lf , the following holds for Fed+:

lim
t→∞E

[
K∑

k=1

‖∇Fk(w
t−1
k ; zt−1

k , w̃t−1)‖2
2

]
= 0, (5.32)

where the expectation is with respect to the random subsets St , t ≥ 1.
Moreover, the federated objective Fμ(Wt) monotonically decreases with round t

and converges to a value F̂μ ≥ minW Fμ(W). Additionally, if the fks are convex, all
parties are active in every round, and the level set {(W,Z, w̃) : Hμ,α(W,Z, w̃) ≤
Hμ,α(W0,Z0, w̃0)} is compact, then limt→∞ Fμ(Wt) = minW Fμ(W) and the rate
of convergence is O(1/t).

Proof We start the proof with following observations from the Proposition 5.1 and
the definition (5.11):

w̃t = arg min
w̃∈Rd

[
min

Z∈Rd×K
Hμ,α(Wt ,Z, w̃)

]
,

(zt
1, . . . , z

t
K) = arg min

Z∈Rd×K

Hμ,α(Wt ,Z, w̃t), t = 1, 2, . . .

118 P. Yu et al.

Combining the above, we have the following:

(zt
1, . . . , z

t
K , w̃t) = arg min

Z∈Rd×K, w̃∈Rd

Hμ,α(Wt ,Z, w̃), t = 1, 2, . . . (5.33)

This implies

Hμ,α(Wt ,Zt , w̃t) ≤ Hμ,α(Wt ,Zt−1, w̃t−1), t = 1, 2, . . . (5.34)

Before moving further, we introduce the following notation F t
k (w) :=

Fk(w; zt−1
k , w̃t−1). Now, we have the following from Proposition 5.9:

F t
k (w

t
k) ≤ F t

k (w
t−1
k) − 1

2L
‖∇F t

k (w
t−1
k)‖2

2, ∀k ∈ St , (5.35)

where L := (Lf + α). Moreover, wt
k = wt−1

k for all k /∈ St implies that

F t
k (w

t
k) ≤ F t

k (w
t−1
k), ∀k /∈ St . (5.36)

Summing (5.35) and (5.36), we get ∀t = 1, 2, . . . ,

Hμ,α(Wt ,Zt−1, w̃t−1) ≤ Hμ,α(Wt−1,Zt−1, w̃t−1) − 1

2KL

∑

k∈St

‖∇F t
k (w

t−1
k)‖2

2.

(5.37)

We can also express (5.37) in expectation form:

E[Hμ,α(Wt ,Zt−1, w̃t−1)] ≤ Hμ,α(Wt−1,Zt−1, w̃t−1) − p

2KL

K∑

k=1

‖∇F t
k (w

t−1
k)‖2

2,

(5.38)

where the expectation is w.r.t the random subset St and p ∈ (0, 1] is the probability
of k ∈ St . Taking, expectations w.r.t S1, S2, . . . , St (i.e., all the randomness), we get
∀t = 1, 2, . . . ,

E[Hμ,α(Wt ,Zt−1, w̃t−1)] ≤ E[Hμ,α(Wt−1,Zt−1, w̃t−1)]−
p

2KL

K∑

k=1

E[‖∇F t
k (w

t−1
k)‖2

2].
(5.39)

Combining (5.39) and (5.34), we have ∀t = 1, 2, . . . ,

E[Hμ,α(Wt ,Zt , w̃t)] ≤ E[Hμ,α(Wt−1,Zt−1, w̃t−1)] − p

2KL

K∑

k=1

E[‖∇F t
k (w

t−1
k)‖2

2].

5 Personalized, Robust Federated Learning with Fed+ 119

Summing over all t and using the fact Hμ,α is bounded below, we arrive at (5.32).
On the other hand, combining (5.37) and (5.34), we get ∀t = 1, 2, . . . ,

Hμ,α(Wt ,Zt , w̃t) ≤ Hμ,α(Wt−1,Zt−1, w̃t−1) − 1

2KL

∑

k∈St

‖∇F t
k (w

t−1
k)‖2

2.

(5.40)

Now, from (5.33) and (5.9) we see that Fμ(Wt) = Hμ,α(Wt ,Zt , w̃t). Thus, from
(5.40) we have that {Fμ(Wt)}∞t=0 is monotonically non-decreasing; therefore, also

converges to some real value say F̂μ because Hμ,α is bounded below. The rest of the
proof, when fks are convex, follows from Theorem 3.7 in [1] as (5.40) and (5.33)
together suggest that Fed+ is basically an (approximate) alternating minimization
approach for solving (5.9). ��

5.7 Experiments

5.7.1 Datasets

We first provide an overview of the standard federated datasets and the way in
which heterogeneity was imposed as well as the models used in our experiments. We
curated a diverse set of synthetic and non-synthetic datasets, including those used
in prior work on federated learning [11], and some proposed in LEAF, a benchmark
for federated settings [2]. We then report and discuss the numerical results for the
baseline algorithms together with our proposed Fed+ algorithms.

We evaluate Fed+ on standard federated learning benchmarks including the non-
identical synthetic dataset of [11], a convex classification problem with MNIST [10]
and FEMNIST [2, 4, 11], and a non-convex text sentiment analysis task called
Sentiment140 (Sent140; [6]). Hyperparameters are the same as those of [11] and
use the best μ reported in FedProx. Data is randomly split for each local party into
an 80% training set and a 20% testing set. For all experiments, the number of local
iterations per round E = 20, the number of selected parties per round K = 10, and
the batch size is 10. In addition, the neural network models for all datasets are the
same as those of [11]. Learning rates are 0.01, 0.03, 0.003, and 0.3 for synthetic,
MNIST and FEMNIST and Sent140 datasets, respectively. The experiments used
a fixed regularization parameter α = 0.01 for each party’s Local-Solve and the
penalty parameters ρ for the mixture model are 1000, 10, and 10 for FedAvg+,
FedGeoMed+, and FedCoMed+ methods, respectively. On the Sent140 dataset, we
found that initializing the local model to a mixture model (i.e., setting λ = 0.001
instead of the default λ = 0) at the beginning of every Local-Solve subroutine for
each party gives the best performance. We simulate the federated learning setup
(1 aggregator N parties) on a commodity-hardware machine with 16 Intel® Xeon®

E5-2690 v4 CPU and 2 NVIDIA® Tesla P100 PCIe GPU.

120 P. Yu et al.

To generate non-identical synthetic data, we follow a similar setup to that of [11],
additionally imposing heterogeneity among parties. In particular, for each party k,
we generate samples (Xk, Yk) according to the model y = arg max(softmax(Wx +
b)), x ∈ R

60,W ∈ R
10×60, b ∈ R

10. We model Wk ∼ N(uk, 1), bk ∼ N(uk, 1),
uk ∼ N(0, ζ); xk ∼ N(vk,�), where the covariance matrix � is diagonal with
�j,j = j−1.2. Each element in the mean vector vk is drawn from N(Bk, 1), Bk ∼
N(0, β). Therefore, ζ controls how much the local models differ from each other
and β controls how much the local data at each party differs from that of other
parties. In order to better characterize statistical heterogeneity and study its effect
on convergence, we choose ζ = 1000 and β = 10. There are K = 30 parties in
total, and the number of samples on each party follows a power law.

Three datasets curated from prior work in federated learning are tested [2, 16].
First, we consider a convex classification problem using MNIST [10] with multino-
mial logistic regression. To impose statistical heterogeneity, we distribute the data
among K = 1000 parties such that each party has samples of only one digit and
the number of samples per party follows a power law. The input of the model is a
flattened 784-dimensional (28 × 28) image, and the output is a class label between
0 and 9.

We then study a more complex 62-class Federated Extended MNIST [2, 4]
(FEMNIST) dataset proposed in [11] using the same model. The heterogeneous data
partitions in FEMNIST are generated by subsampling 10 lower case characters (“a”-
“j”) from EMNIST dataset [4] and distributing only 5 classes to each party. There
are K = 200 parties in total. The input of the model is a flattened 784-dimensional
(28 × 28) image, and the output is a class label between 0 and 9.

To address non-convex settings, we consider a text sentiment analysis task on
tweets from Sentiment140 [6] (Sent140) with a two layer LSTM binary classifier
containing 256 hidden units with pre-trained 300D GloVe embedding [18]. There
are K = 772 parties in total. Each twitter account corresponds to a party. The
model takes as input a sequence of 25 characters, embeds each of the characters
into a 300-dimensional space by looking up Glove and outputs one character per
training sample after 2 LSTM layers and a densely connected layer. We consider
the highly heterogeneous setting where there are 90% stragglers (see [11] for more
details).

5.7.2 Results

In Fig. 5.4, we report the testing performance for the baseline algorithms FedAvg,
FedProx, RFA, and coordinate-wise median together with our proposed Fed+ family
of algorithms. Overall, on the benchmark problems, the robust federated learning
algorithms perform the worst on these non-IID datasets. FedProx uses a proximal
term that, as we know from [11], is beneficial in heterogeneous settings as compared
with FedAvg. However, all of the baselines produce a single global model not
specific to the parties. Not only does Fed+ improve performance, it often also

5 Personalized, Robust Federated Learning with Fed+ 121

Fig. 5.4 Performance of Fed+, i.e., FedAvg+, FedGeoMed+, and FedCoMed+, is superior to that
of the baselines

speeds up the learning convergence, as shown in Fig. 5.4. The Fed+ methods can
improve the baseline algorithms’ performance on these four datasets by 28.72%,
6.24%, 11.32%, and 13.89%, respectively. In particular, the best Fed+ algorithm can
improve the most competitive implementation of the baseline algorithm FedProx’s
performance on these four datasets by 9.90% on average. In addition, the FedAvg+
method can achieve similar performances as FedGeoMed+ on the MNIST and
FEMNIST datasets, but it fails to outperform the robust variants of Fed+, namely
FedGeoMed+ and FedCoMed+, on the synthetic and Sent140 datasets. This shows
the benefits of incorporating robust statistics such as the geometric median and
coordinate-wise median rather than using the average as an aggregation statistic.

We also evaluate the impact of increasing the number of parties in training on
the test accuracy. On the synthetic dataset, average test accuracy improves from
70.22% to 90.73% to 98.03% when the number of parties participating in training
goes from K = 3 to K = 15 to K = 30. The average is taken over FedAvg+,
FedGeoMed+, and FedCoMed+. On the MNIST dataset, average accuracies over
the Fed+ algorithms are 69.80%, 81.34%, and 83.36% when the number of parties
in training goes from K = 100 to K = 500 to K = 1000, respectively. On
the FEMNIST dataset, average accuracies over the Fed+ algorithms are 25.16%,
68.71%, and 78.66% when the number of parties in training goes from K = 20 to
K = 100 to K = 200, respectively. On the Sent140 dataset, average accuracies over
the Fed+ algorithms are 57.13%, 60.77%, and 65.43% when the number of parties
goes from K = 77 to K = 386 to K = 772, respectively. This shows the benefit of
using Fed+ increases as the number of parties increases.

5.8 Conclusion

Personalized federated learning is designed to better handle the statistical het-
erogeneity inherent in federated settings, specifically, the lack of IID data across
parties. Personalized federated learning results in more stable learning and achieves
significantly better performance.

122 P. Yu et al.

Heterogeneous data across parties is often accompanied by outliers, in that some
parties’ data is significantly different from the others. Robust aggregation via the
median in place of the mean is one way to mitigate the impact of such outliers.
The Fed+ family of personalized federated learning methods allows for seamless
integration of both robust aggregation and mean aggregation. Fed+ unifies numerous
algorithms, personalized and non-personalized, robust and average-based, while
keeping the structure of the local computation intact.

This chapter provided an illustration of the pitfalls of non-personalized federated
learning in very heterogeneous settings, introduced the Fed+ framework, provided
convergence guarantees for this class of methods for non-smooth convex and non-
convex loss functions and for the case of stragglers, and included a number of
experiments comparing personalized and non-personalized, robust and average-
based aggregation.

Additional experiments using personalized federated learning with Fed+ on a
financial portfolio management problem are provided in Chap. 21 of this volume.

References

1. Beck A (2015) On the convergence of alternating minimization for convex programming with
applications to iteratively reweighted least squares and decomposition schemes. SIAM J Optim
25(1):185–209. https://doi.org/10.1137/13094829X

2. Caldas S, Wu P, Li T, Konečnỳ J, McMahan HB, Smith V, Talwalkar A (2018) LEAF: a
benchmark for federated settings. arXiv preprint arXiv:181201097

3. Charles Z, Konecný J (2020) On the outsized importance of learning rates in local update
methods. ArXiv abs/2007.00878

4. Cohen G, Afshar S, Tapson J, Van Schaik A (2017) EMNIST: extending MNIST to handwritten
letters. In: 2017 international joint conference on neural networks (IJCNN). IEEE, pp 2921–
2926

5. Deng Y, Kamani MM, Mahdavi M (2020) Adaptive personalized federated learning. arXiv
preprint arXiv:200313461

6. Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision.
CS224N project report, Stanford 1(12):2009

7. Hanzely F, Richtárik P (2020) Federated learning of a mixture of global and local models.
ArXiv abs/2002.05516

8. Hanzely F, Zhao B, Kolar M (2021) Personalized federated learning: a unified framework and
universal optimization techniques. 2102.09743

9. Karimireddy SP, Kale S, Mohri M, Reddi S, Stich S, Suresh AT (2019) SCAFFOLD: stochastic
controlled averaging for on-device federated learning. ArXiv abs/1910.06378

10. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278–2324

11. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) Federated optimization in
heterogeneous networks. Proc Mach Learn Syst 2:429–450

12. Li T, Hu S, Beirami A, Smith V (2021) Ditto: fair and robust federated learning through
personalization. 2012.04221

13. Li X, Huang K, Yang W, Wang S, Zhang Z (2020) On the convergence of FedAvg on non-IID
data. ICLR, Arxiv, abs/1907.02189

14. Malinovsky G, Kovalev D, Gasanov E, Condat L, Richtárik P (2020) From local SGD to local
fixed point methods for federated learning. ICML Arxiv, abs/2004.01442

https://doi.org/10.1137/13094829X

5 Personalized, Robust Federated Learning with Fed+ 123

15. Mansour Y, Mohri M, Ro J, Theertha Suresh A (2020) Three approaches for personalization
with applications to federated learning. arXiv e-prints arXiv:2002.10619, 2002.10619

16. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics.
PMLR, pp 1273–1282

17. Pathak R, Wainwright M (2020) FedSplit: an algorithmic framework for fast federated
optimization. ArXiv abs/2005.05238

18. Pennington J, Socher R, Manning CD (2014) Glove: global vectors for word representation.
In: Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp 1532–1543

19. Pillutla K, Kakade SM, Harchaoui Z (2019) Robust aggregation for federated learning. arXiv
preprint arXiv:191213445

20. Dinh CT, Tran N, Nguyen J (2020) Personalized federated learning with Moreau envelopes. In:
Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H (eds) Advances in neural information
processing systems, vol 33. Curran Associates, Inc., pp 21394–21405. https://proceedings.
neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf

21. Tyler DE (2008) Robust statistics: theory and methods. J Am Stat Assoc 103(482):888–889.
https://doi.org/10.1198/jasa.2008.s239

22. Yin D, Chen Y, Kannan R, Bartlett P (2018) Byzantine-robust distributed learning: towards
optimal statistical rates. PMLR, Stockholmsmässan, Stockholm, vol 80. Proceedings of
Machine Learning Research, pp 5650–5659. http://proceedings.mlr.press/v80/yin18a.html

23. Zhang M, Sapra K, Fidler S, Yeung S, Alvarez JM (2021) Personalized federated learning with
first order model optimization. In: International conference on learning representations. https://
openreview.net/forum?id=ehJqJQk9cw

24. Zhang S, Choromanska AE, LeCun Y (2015) Deep learning with elastic averaging SGD. In:
Cortes C, Lawrence N, Lee D, Sugiyama M, Garnett R (eds) Advances in neural information
processing systems, vol 28. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2015/
file/d18f655c3fce66ca401d5f38b48c89af-Paper.pdf

https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/f4f1f13c8289ac1b1ee0ff176b56fc60-Paper.pdf
https://doi.org/10.1198/jasa.2008.s239
http://proceedings.mlr.press/v80/yin18a.html
https://openreview.net/forum?id=ehJqJQk9cw
https://openreview.net/forum?id=ehJqJQk9cw
https://proceedings.neurips.cc/paper/2015/file/d18f655c3fce66ca401d5f38b48c89af-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/d18f655c3fce66ca401d5f38b48c89af-Paper.pdf

Chapter 6
Communication-Efficient Distributed
Optimization Algorithms

Gauri Joshi and Shiqiang Wang

Abstract In federated learning, the communication link connecting the edge
parties with the central aggregator is sometimes bandwidth-limited and can have
high network latency. Therefore, there is a critical need to design and deploy
communication-efficient distributed training algorithms. In this chapter, we will
review two orthogonal communication-efficient distributed stochastic gradient
descent (SGD) methods: (1) local-update stochastic gradient descent (SGD), where
clients make multiple local model updates that are periodically aggregated, and
(2) gradient compression and sparsification methods to reduce the number of bits
transmitted per update. In both these methods, there is a trade-off between the
error convergence with respect to the number of iterations and the communication
efficiency.

6.1 Introduction

Stochastic Gradient Descent in ML training. A majority of supervised learning
problems are solved using the empirical risk minimization framework [5, 41],
where the goal is to minimize the empirical risk objective function F(x) =∑n

j=1 f (x, ξj)/n. Here, n is the size of the training dataset, ξj is the j−th
labeled training sample, and f (x; ξj) is the (generally non-convex) loss function. A
ubiquitous algorithm to optimize F(x) is stochastic gradient descent (SGD), where
we compute the gradient of f (x; ξn) over small, randomly chosen subsets B (called
mini-batches) of b samples each [4, 12, 25, 35, 37, 53] and update x according to
xk+1 = xk − η

∑
i∈B ∇f (xk, ξi)/b, where η is referred to as the learning rate

or step size. Although designed for convex objectives, mini-batch SGD has been

G. Joshi
Carnegie Mellon University, Pittsburgh, PA, USA
e-mail: gaurij@andrew.cmu.edu

S. Wang (�)
IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: wangshiq@us.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_6

125

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_6&domain=pdf
mailto:gaurij@andrew.cmu.edu
mailto:wangshiq@us.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_6

126 G. Joshi and S. Wang

shown to perform well even on non-convex loss surfaces due to its ability to escape
saddle points and local minima [7, 31, 42, 55]. Therefore, it is the dominant training
algorithm in state-of-the-art machine learning.

For massive datasets such as Imagenet [38], running mini-batch SGD on a single
node can be prohibitively slow. A standard way to parallelize gradient computation
is the parameter server (PS) framework [11], consisting of a central server and
multiple worker nodes. Straggling workers and communication delays can become
a bottleneck in scaling this framework to a large number of worker nodes. Several
methods such as asynchronous [10, 13, 15, 56] and periodic gradient aggregation
[43, 46, 54] have been proposed to improve the scalability of data-center based ML
training.

Motivation for Federated Learning. In spite of the algorithmic and systems
advances that improve the efficiency and scalability, there is one main limitation
of data-center based training. It requires the training dataset to be centrally available
at the parameter server, which shuffles and splits it across the worker nodes. The
rapid proliferation of edge parties such as phones, IoT sensors, and cameras with
on-device computation capabilities has led to a major shift in this data partitioning
paradigm. Edge parties collect rich information from their environment, which can
be used for data-driven decision-making. Due to limited communication capabilities
as well as privacy concerns, the data cannot be directly sent over to the cloud
for centralized processing or shared with other nodes. The federated learning
framework proposes to keep the data at the edge party, and instead bring model
training to the edge. In federated learning, data is kept at the edge parties and the
model is trained in a distributed manner. Only gradients or model updates are being
exchanged between the edge parties and the aggregator.

System Model and Notation. A typical federated learning setting consists of a
central aggregator connected to K edge parties as shown in Fig. 6.1, where K can
be of the order of thousands or even millions. Each party i has a local dataset Di

consisting of ni samples, which cannot be transferred over to the central aggregator

Fig. 6.1 In federated
optimization, the goal of the
aggregator is to minimize a
weighted average of the local
objective functions Fi(x) at
the edge parties

6 Communication-Efficient Distributed Optimization Algorithms 127

or shared with other edge parties. We use pi = ni/n to denote the fraction of data at
the i-th party, where n = ∑K

i=1 ni . The aggregator seeks to train a machine learning
model x ∈ R

d using the union of local datasets D = ∪K
i=1Di . The model vector

x contains the parameters of the model, for example, the weights and biases of a
neural network. In order to train the model x, the aggregator seeks to minimize the
following empirical risk objective function:

F(x) :=
K∑

i=1

piFi(x) (6.1)

where Fi(x) = 1
ni

∑
ξ∈Di

f (x; ξ) is the local objective function at the i-th party.
Here, f is the loss function (possibly non-convex) defined by the model x and ξ

represents a data sample from local dataset Di . Observe that we assign the weight
pi proportional to the data fraction for the i-th party. This is because, we would like
to emulate a centralized training scenario with all the training data transferred to a
central parameter server. Thus, parties with more data will get a higher weight in
the global objective function.

Due to the resource-limitations at the edge parties and the large number of
parties, the federated training algorithms have to operate under strict communication
constraints and cope with data and computational heterogeneity. For example,
the wireless communication link connecting each edge party with the central
aggregator can be bandwidth-limited and have high network latency. Also, due to
limited network connectivity and battery constraints, the edge parties may only
be intermittently available. Thus, only a subset of m out of the K edge parties
are available participating in training the model x at a given time. To operate
within these communication constraints, the federated learning framework requires
new distributed training algorithms, going beyond the algorithms used in the data-
center setting. In Sect. 6.2 we review the local-update SGD algorithm and its
variants, which reduce the frequency of communication of the edge parties with the
aggregator. In Sect. 6.3, we review compressed and quantized distributed training
algorithms that reduce the number of bits communicated for every update sent by
the edge parties to the aggregator.

6.2 Local-Update SGD and FedAvg

In this section we first discuss local-update SGD and its variants. The FedAvg
algorithm, which is at the core of federated learning, is an extension of local-update
SGD. We discuss how FedAvg builds on local-update SGD, and various strategies
that are used to handle data and computational heterogeneity in federated learning.

128 G. Joshi and S. Wang

6.2.1 Local-Update SGD and Its Variants

Synchronous Distributed SGD. In the data-center setting, the training dataset D
is shuffled and equally distributed across m worker nodes. The standard method
to train machine learning models is to use synchronous distributed SGD [11],
where the gradients are computed by the workers and then aggregated by a central
parameter server. In every iteration t of synchronous SGD, the workers pull the
current version of the model xt from the parameter server. Each worker i computes
a mini-batch stochastic gradient gi(x) = ∑

ξ∈B f (x; ξ) using a mini-batch B of B

samples drawn from this local dataset Di . The parameter server then collects the
gradients from all the workers and updates the model parameters as per

xt+1 = xt − η

m

m∑

i=1

gi(x). (6.2)

As the number of workers m increases, the error versus iterations convergence of
synchronous SGD improves. However, due to variabilities in the local gradient
computation times at the workers, the time taken to wait for all workers to finish
their gradient computations increases. To improve the scalability with the number of
workers, straggler-resilient variants of synchronous SGD that perform asynchronous
gradient aggregation have been proposed in [13, 15, 28, 29, 56, 58].

Local-Update SGD. In spite of the effectiveness of asynchronous aggregation
methods to improve the scalability of distributed SGD, in many distributed systems,
the communication time to exchange gradients and model updates between the
workers and the parameter server can dominate the variabilities in the local gradient
computation times. Thus, constant inter-node communication after every iteration
can be prohibitively expensive and slow. Local-update SGD is a communication-
efficient distributed SGD algorithm that overcomes this issue by having the workers
nodes perform multiple local SGD updates instead of just computing a mini-batch
gradient.

Local-update SGD divides the training into communication rounds, as illustrated
in Fig. 6.2. In a communication round, each worker locally optimizes its objective
function Fi(x) using SGD. Each worker i starts from the current global model,
denoted by xt and performs τ SGD iterations to obtain the model x

(i)
t+τ . The

resulting models are then sent by the m workers to the parameter server, which
averages them to update the global model as follows:

xt+τ = 1

m

m∑

i=1

x
(i)
t+τ . (6.3)

Runtime Per Iteration of Local-update SGD. By performing τ local updates at
each worker before communicating with the parameter server, local-update SGD

6 Communication-Efficient Distributed Optimization Algorithms 129

Fig. 6.2 In local-update
SGD, each worker makes τ

local SGD updates, after
which the resulting models
are aggregated by the
parameter server

Fig. 6.3 In local-update SGD, by reducing the frequency of communication, it helps amortize the
communication delay (shown in yellow) across τ iterations

reduces the expected runtime per iteration. Let us quantify this runtime saving by
considering the following delay model. The time taken by the ith worker to compute
a mini-batch gradient at the kth local-step is modeled a random variable Yi,k ∼
FY , assumed to be independent and identically distributed (i.i.d.) across workers
and mini-batches. The communication delay is represented by a constant D, and it
includes the time taken to send the local model to the parameter server and receive
the averaged global model from the parameter server. Since each worker i makes
τ local updates, its average local computation time (time taken to complete one
sequence of 3 blue arrows in Fig. 6.3) is given by

Y i = Yi,1 + Yi,2 + . . . Yi,τ

τ
. (6.4)

If τ = 1, in which case local-update SGD reduces to synchronous SGD, the random
variable Y is identical to Y . Since the communication delay D is amortized over τ

iterations, the runtime time per iteration (also illustrated in Fig. 6.3) is given by

130 G. Joshi and S. Wang

E[TLocal-update] = E[max(Y 1, Y 2, . . . , Ym)] + D

τ
(6.5)

= E[Ym:m] + D

τ
. (6.6)

The term Ym:m denotes the maximum order statistic of m i.i.d. random variables with
probability distribution Y ∼ FY . From (6.6) we observe that performing more local
updates reduces the runtime per iteration in two ways. Firstly, the communication
delay gets amortized across τ iterations and reduces by a factor of τ . Secondly,
performing local updates also provides a straggler mitigation benefit because the
tail of Ȳm:m is lighter than Ym:m and thus the first term in (6.6) reduces with τ .

Error Convergence of Local-update SGD. As we see above, reducing the
frequency of communication between the workers and the parameter server to only
once in τ iterations can give a significant reduction in the runtime per iteration.
However, setting a large value of τ , the number of local updates results in inferior
error convergence. This is because, the worker nodes’ models x

(i)
t+τ diverge from

each other as τ increases. The papers [43, 46, 47] give an error convergence
analysis of local-update SGD in terms of number of local updates τ . Suppose the
objective function F(x) is L-Lipschitz-smooth, and the learning rate η satisfies
ηL+ η2L2τ(τ − 1) ≤ 1. The stochastic gradient g(x; ξ) is an unbiased estimate of
∇F(x), that is, Eξ [g(x; ξ)] = ∇F(x). The stochastic gradient g(x; ξ) is assumed
to have bounded variance, that is, Var(g(x; ξ)) ≤ σ 2. If the starting point is x1, then
F(xT) after T iterations of local-update SGD is bounded as

E

[
1

T

T∑

t=1

‖∇F(xt)‖2

]
≤2 [F(x1) − Finf]

ηt
+ ηLσ 2

m
+ η2L2σ 2(τ − 1) (6.7)

where xt denotes the averaged model at the t th iteration. Setting τ = 1 makes
local-update SGD and its error convergence bound identical to that of synchronous
distributed SGD. As τ increases, the last term of the bound increases, thus increasing
the error floor at convergence.

Adaptive Communication Strategies. From the runtime and error analyses above
we can see that there is a trade-off between error and communication delay per
iteration as we vary τ . A larger τ reduces the expected communication delay, but
yields worse error convergence. In order to get fast convergence as well as a low
error floor, [47, 52] propose a strategy to adapt τ during the training process. For a
fixed learning rate η, the following strategy in [47] gradually reduces τ :

τl =
⌈√

F(xt=lT0)

F (xt=0)
τ0

⌉
(6.8)

6 Communication-Efficient Distributed Optimization Algorithms 131

Fig. 6.4 Motivation for adapting the number of local update τ during the course of training

where τl is the number of local updates in the l-th interval of T0 seconds in the
training. This update rule can also be modified to account for an underlying variable
learning rate schedule (Fig. 6.4).

Elastic Averaging and Overlap SGD. In local-update SGD, the updated global
model needs to be communicated to the nodes before the next set of τ updates
can commence. Moreover, the global model cannot be updated until the slowest
of the m nodes finishes its τ local updates. This communication barrier can
become a bottleneck in the global model being updated and increase the expected
runtime per training round. Since this communication barrier is imposed by the
algorithm rather than the systems implementation, we need an algorithmic approach
to remove it and allow communication to overlap with local computation. Works
such as [9, 11, 13, 15, 19, 33, 56] use asynchronous gradient aggregation to remove
the synchronization barrier. However, asynchronous aggregation causes model
staleness, that is, slow nodes can have arbitrarily outdated versions of the global
model. Some recent works [48, 57] propose variants of local-update SGD that allow
an overlap of communication and computation. In these algorithms, the worker
nodes start their local updates from an anchor model, which is available even before
the slowest nodes finish the previous round of local updates. This approach is
inspired by the elastic-averaging SGD (EASGD) algorithm proposed in [57], which
adds a proximal term to the objective function. Proximal methods such as [6, 32, 57],
although not designed for this purpose, naturally allow overlapping communication
and computation.

6.2.2 Federated Averaging (FedAvg) Algorithm and Its Variants

The FedAvg Algorithm. Due to limited communication capabilities of edge par-
ties in federated learning, local-update SGD is especially suitable for the federated

132 G. Joshi and S. Wang

learning framework, where it is referred to as the FedAvg algorithm. The main
differences are as follows. Firstly, the worker nodes that are servers in the cloud
are replaced by edge parties such as mobile and IoT devices. Due to the intermittent
availability of the edge parties, unlike the data-center setting, only a subset of m

out of K parties participate in each training round. Secondly, the datasets Di can
be highly heterogeneous across the edge parties both in their size and composition,
unlike the data-center setting where the dataset D is shuffled and evenly partitioned
across the worker nodes.

The federated averaging algorithm (FedAvg) [30] also divides the training into
communication rounds. In a communication round, the aggregator selects m edge
parties uniformly at random from among the available parties. Each edge party
locally optimizes its objective function Fi(x) using SGD similar to local-update
SGD. Unlike basic local-update SGD where each worker performs the same number
of local updates τ , in FedAvg the number of local updates τi may vary across
edge parties and communication rounds. A common implementation practice is that
the parties run for the same local epochs E. Thus, τi = �Eni/B�, where B is
the mini-batch size. Alternately, if each communication round has a fixed length
in terms of wall-clock time, then τi represents the local iterations completed by
party i within the time window and may change across clients (depending on their
computation speeds and availability) and across communication rounds. In the r-th
communication round, edge parties start from the global model xr,0 and perform τi

local updates each. Suppose their resulting models are denoted by x
(i)
r,τi

. The shared
global model xr is updated as follows:

xr+1,0 =
m∑

i=1

pix
(i)
r,τi

(6.9)

where pi = |Di |/|D|, the fraction of data at the i-th edge party.

Strategies to Handle Data Heterogeneity. Since the datasets Di are highly
heterogeneous across the nodes, the locally trained models at the edge parties can
be different significantly from each other. And as the number of local updates
increase, the models may become overfitted to the local datasets. As a result,
the FedAvg algorithm may converge to an incorrect point that is not a stationary
point of the global objective function F(x). For example, suppose each edge
party performs a large number of local updates and the i-th party’s local model
converges to x

(i)∗ = min Fi(x). Then the weighted average of these local models
will converge to x = ∑K

i=1 pix
(i)∗ , which can be arbitrarily different from the true

global minimum x∗ = min F(x). One solution to reduce this solution bias caused
by data heterogeneity is to choose a small or decaying learning rate η and/or keep
the number of local updates τ small. Other techniques used to overcome the solution
bias include proximal local-update methods such as [39, 40] that add a regularization
term to the global objective and methods that aim to minimize cross-party model

6 Communication-Efficient Distributed Optimization Algorithms 133

Fig. 6.5 Model updates in the parameter space. Green squares and blue triangles denote the
minima of global and local objectives, respectively. In the heterogeneous update setting, the
solution will be biased toward the parties with more local updates

drift [23] by exchanging control variates. At a high level, these techniques deter the
edge parties’ models from drifting away from the global model.

Strategies to Handle Computational Heterogeneity The effect of data hetero-
geneity can be exacerbated by computational heterogeneity across the edge parties.
Even if the edge parties make different number of local updates τi , the standard
FedAvg algorithm proposes that the resulting models are simply aggregated in
proportion of the data fractions pi . However, this can result in an inconsistent
solution that is mismatching with the intended global objective, as shown in [49]
and illustrated in Fig. 6.5. The final solution becomes biased toward the local
optimum x

(i)∗ = min Fi(x), and it can be arbitrarily far away from the global
minimum x

(i)∗ = min F(x). The paper [49] fixes this inconsistency by normalizing
the accumulated local update (x

(i)
r,τi

− x
(i)
r,0) by the number local updates τi , before

sending it to the central aggregator. This normalized federated averaging algorithm
called FedNova results in a consistent solution while preserving the fast convergence
rate.

Besides variability in the number of local updates τi , computational heterogene-
ity and solution inconsistency may also occur due to the edge parties using local
momentum, adaptive local optimizers such as AdaGrad, or different learning rate
schedules. A generalized version of FedNova [51] is required to fix the inconsistency
in these cases.

Strategies to Handle Intermittent Availability of Edge Parties. The total number
of edge parties in a federated learning setup can be of the order of thousands
or even millions of devices. Due to their local computing resource constraints
and bandwidth limitations, the edge parties are only intermittently available to
participate in training. For example, cell phones are currently used for federated
training only when they are plugged in for charging in order to conserve the battery.
Therefore, in each communication round, only a small subset of the edge parties
participate in the FedAvg algorithm.

Most work on designing and analyzing federated learning algorithms assume
that the subset of edge parties is selected uniformly at random from the entire set of
edge parties [27]. Such partial and intermittent participation amplifies the adverse
effects of data heterogeneity by adding a variance term to the error. Some recent

134 G. Joshi and S. Wang

works [8, 21, 36] propose client selection methods that cope with such heterogeneity
and improve the convergence speed. These strategies assign a higher selection
probability to edge parties with higher local losses and show that it can speed-
up progress of the global model. However, this speed-up comes at the cost of a
higher non-vanishing bias, which increases with the degree of data heterogeneity.
The paper [8] proposes an adaptive strategy that gradually reduces the selection
skew in order to achieve the best trade-off between convergence speed and error
floor.

6.3 Model Compression

In addition to performing multiple local updates, the models can be also compressed
during communication and computation. One approach is to use standard loss-
less compression techniques, which, however, can only reduce the model size by
a limited degree and requires decompression at the receiver side. In this section,
we discuss a specific class of lossy compression techniques that is designed for
improving the communication efficiency in federated learning and distributed SGD
in general. These techniques do not require decompression at the receiver and can
guarantee training convergence. We focus on approaches to improve the communi-
cation efficiency in Sects. 6.3.1 and 6.3.2 and to improve both communication and
computation efficiency in Sect. 6.3.3.

6.3.1 SGD with Compressed Updates

A widely used approach is to compress the model updates transmitted between
parties and the aggregator [2, 24]. In particular, we define a compressor C(z)

that produces a compressed version of an arbitrary vector z. Popular compressors
include those that implement quantization [2] and sparsification [44]. Based on
their characteristics, compressors can be categorized into unbiased and general (i.e.,
possibly biased). We discuss these two variants of compressors as follows, where we
consider a technique called error feedback for general compressors, which is useful
for avoiding variance blow-up and guaranteeing convergence. Note that our notion
of bias in this section is in the context of probabilistic modeling, where an unbiased
compressor means that the expected value of a compressed vector (obtained from
this compressor) is equal to the original vector.

6.3.1.1 Unbiased Compressor Without Error Feedback

An unbiased compressor C(z) satisfies both of the following characteristics:

6 Communication-Efficient Distributed Optimization Algorithms 135

E
[
C(z)

∣∣z
] = z (6.10)

E

[
‖C(z) − z‖2

∣∣z
]
≤ q‖z‖2 (6.11)

where q ≥ 0 is a constant capturing the relative approximation gap achieved by
the compressor. Intuitively, the relative approximation gap means the relative error
of the compressed vector compared to that of the original vector. We can easily
see that q = 0 is a necessary condition of C(z) = z (i.e., no compression) and
q = 1 is a necessary condition of C(z) = 0 (i.e., no transmission). In general, a
larger q corresponds to a more compressed vector produced by C(z). As we will
see in the “random-k” example presented next, in some cases we may amplify the
compression result to guarantee unbiasedness, which can produce a value of q that
is greater than one.

Examples An example of an unbiased compressor is a randomized quantizer that
gives

[C(z)]i =
{ �zi�, with probability zi! − zi

 zi!, with probability zi − �zi� (6.12)

for the i-th component of the vector, where �·� and ·! denote the floor (rounding
down to integer) and ceiling (rounding up to integer) operators, respectively. We
note that the integer here can be the base in the case of floating point representation.
It can be easily seen that this quantization operation satisfies the unbiasedness
property (6.10). Noting that the quantization operation gives q = maxy∈[0,1](1 −
y)2y + y2(1 − y), we have q = 1/4.

Another example is to randomly select k components from the original vector z

with equal probability of k/d and amplifying the result by d/k, i.e.,

[C(z)]i =
{

d
k
zi, with probability k

d

0, with probability 1 − k
d

(6.13)

for the i-th component of the vector. This is often known as the random-k
sparsification technique. It is apparent that this operation is also unbiased. The
left-hand side of (6.11) is the sum of

[
(d/k − 1)2 · k/d + 1 · (1 − k/d)

]
z2
i over all

components i. Hence, we have q = d/k − 1.

Local-Update SGD with Compressed Updates. When using compression with
local-update SGD, each party computes its local updates as usual. The updates are
compressed before they are sent to the aggregator, and the aggregator then averages
the compressed updates to obtain the next global model parameter. Assuming that
a round with τ iterations starts at iteration t , this gives the following recurrence
relation:

136 G. Joshi and S. Wang

xt+τ = xt + 1

m

m∑

i=1

C
(
x

(i)
t+τ − xt

)
. (6.14)

In a different implementation, another compression operation can be applied at
the server to maintain the same compression level (e.g., quantization precision or
number of components to transmit). This gives

xt+τ = xt + C
(

1

m

m∑

i=1

C
(
x

(i)
t+τ − xt

))
. (6.15)

The operations in (6.14) and (6.15) are similar, possibly with a different overall
approximation gap q.

Convergence Bound. With an appropriately chosen learning rate, the optimality
(expressed as the squared norm of gradient) after T iterations using (6.14) can be
bounded as [34]:

E

[
1

T

T∑

t=1

‖∇F(xt)‖2

]
= O

(
1 + q√

T
+ τ

T

)
(6.16)

where xt := 1
m

∑m
i=1 x

(i)
t for all t , even if no compression/aggregation occurs in

iteration t , and constants other than q, τ , and T are absorbed in O(·), where O(·) is
the big-O notation that stands for an upper bound while ignoring constants.

Variance Blow-Up. From (6.16), we can see that when T is sufficiently large, the

error is dominated by the first term O
(

1+q√
T

)
. This error is related to the value of

q. When q is large, we need to increase the number of iterations T by q2 times to
eliminate the effect of q and reach the same error, which is problematic because
the advantage of compression would be canceled out by the increased amount of
computation, particularly for compressors such as random-k where 1+q is inversely
proportional to k, as we discussed earlier. Since the first term of (6.16) is also
proportional to the variance of the stochastic gradient, which we absorbed into the
O(·) notation for simplicity, this phenomenon is also known as variance blow-up in
the literature [44].

Next, we will see that error feedback can fix the variance blow-up problem by
accumulating the difference between the compressed and actual parameter vectors
locally so that it can be transmitted in a future communication round.

6.3.1.2 General Compressor with Error Feedback

We first proceed with the introduction of a general (possibly biased) compressor. A
general compressor C(z) satisfies the following property:

6 Communication-Efficient Distributed Optimization Algorithms 137

E

[
‖C(z) − z‖2

∣∣z
]
≤ α‖z‖2 (6.17)

where α is a constant with 0 ≤ α < 1 capturing the relative approximation gap
achieved by the compressor. Compared to the properties of the unbiased compressor
in (6.10) and (6.11), the key difference is that the general compressor does not
guarantee unbiasedness. Equations (6.11) and (6.17) are essentially the same when
we let α = q, except that we require α < 1 for the purpose of convergence
analysis. Another reason for keeping α different from q is to distinguish between
the two types of compressors. Compressors satisfying (6.17) are also known as α-
contractive compressors [1]. There is also a stricter version of (6.17) where the
inequality holds without expectation.

Example A typical example of a general compressor is the top-k sparsification
technique that selects k components with the largest magnitude. This can be
expressed as follows:

[C(z)]i =
{

zi, if |zi | is among the k largest elements of {|zj | : ∀j ∈ {1, 2, . . . , d}}
0, otherwise

(6.18)

for the i-th component of the vector. As this operation is deterministic for given z, it
is biased. We can obtain α = 1− k

d
because the square of the remaining components

in z cannot be larger than the k components with the largest magnitudes.

Local-Update SGD with Compressed Updates and Error Feedback. When
using error feedback, in addition to exchanging compressed updates between clients
and the server, the portion that has not been communicated (referred to as the “error”
here) will be accumulated locally. In the next round, the accumulated error will
be added to the latest updates in that round, and this sum vector will be used by
the compressor to compute the compressed vector. Each party i keeps an error
vector e(i) that is initialized as e

(i)
0 = 0. In every round r , the following steps are

executed.

1. For each party i ∈ {1, 2, . . . , m} in parallel:

a. Compute τ steps of local gradient descent to obtain x
(i)
r,τ , starting from the

global parameter xr .
b. Sum up the accumulated error with the current update: z

(i)
r := e

(i)
r +x

(i)
r,τ −xr .

c. Compute the compression result �
(i)
r := C

(
z
(i)
r

)
(this is what will be sent to

the aggregator).
d. Subtract the compression result to obtain the remaining error for the next

round e
(i)
r+1 = z

(i)
r − �

(i)
r .

2. The aggregator updates the global parameter for the next round based on the
compressed updates received from parties, i.e.,

138 G. Joshi and S. Wang

xr+1 = xr + 1

m

m∑

i=1

�(i)
r = xr + 1

m

m∑

i=1

C
(
z(i)
r

)
. (6.19)

We can see that the only difference between (6.14) and (6.19) is that we now
compress on z

(i)
r , which includes the accumulated error from previous rounds. Note

that we use the round r index here for convenience, instead of the iteration index t

in (6.14). Similar to (6.15), the above procedure can also be extended to compressing
and accumulating errors at both the parties and the aggregator [45].

Convergence Bound. Similar to (6.16), we present the optimality bound for the
error-feedback mechanism. With an appropriately chosen learning rate, we have [3]

E

[
1

T m

T∑

t=1

m∑

i=1

‖∇F(x
(i)
t)‖2

]
= O

(
1√
T

+ τ 2

(1 − α)2T

)
. (6.20)

We note that although the left-hand sides of (6.16) and (6.20) are slightly different,
their physical meanings are the same. The slight difference is due to the different
techniques used in deriving these bounds. Compared to (6.16), we see that the
approximation gap due to compression, captured by α, is now in the second term

in (6.20). When T is sufficiently large, we now have a convergence rate of O
(

1√
T

)
,

which avoids the variance blow-up problem.
Note that as we require 0 ≤ α < 1, our analysis here does not hold for

the random-k compressor in (6.13), but we can modify (6.13) by removing the
amplification coefficient d/k since we do not require unbiasedness anymore. The
resulting compressor satisfies α = 1 − k/d, which is the same as for top-k.
However, in practice, top-k usually works better than random-k because its actual
approximation gap is usually much less than the upper bound of 1 − k/d.

These results suggest that error-feedback mechanisms generally perform better
than non-error-feedback mechanisms. However, there is recent work [20] suggesting
that, by transforming biased compressors into unbiased ones in a systematic manner,
we may actually obtain better performance. This is an active area of research, and
practitioners may need to experiment with different compression techniques to see
which one works the best for the problem at hand.

6.3.2 Adaptive Compression Rate

A question in SGD with compressed updates is how to determine the compression
rate (i.e., the quantities q and α in (6.11) and (6.17)) to minimize the training time
for reaching some target value of the objective function. The optimal compression
rate in this case depends on the physical time incurred by computation in every
iteration and communication in every round. This problem is similar to determining

6 Communication-Efficient Distributed Optimization Algorithms 139

the optimal number of local updates τ as discussed in Sect. 6.2.1, but here the
control variable is the compression rate instead. A similar approach where the
method of compression rate adaptation is derived from the convergence bound, as
in Sect. 6.2.1, can be applied to solve this problem. To overcome the difficulty of
estimating or eliminating unknown parameters in the convergence bound, model-
free approaches such as those based on online learning [16] can also be used. In
essence, the online learning based approach uses exploration–exploitation, which
explores different choices of compression rates in initial rounds and gradually
switches to exploiting those rates that have been beneficial before. A challenge
is that the exploration needs to have minimal overhead, because otherwise it will
prolong the training time even compared to the case without optimization.

To facilitate efficient exploration, a problem can be formulated to find the best
compression rate that minimizes the training time for reducing the empirical risk
by a unit amount [16]. The exact objective of this problem is unknown, because it
is difficult to predict how training will progress when using different compression
rates. However, empirical evidence shows that for a given (current) empirical risk,
we can assume that the compression used before is independent of the progression
of future empirical risk. Together with some other assumptions, we can cast this
problem in an online convex optimization (OCO) framework [18], which can be
solved using online gradient descent with the gradient being the derivative of the
training time for unit risk reduction with respect to the compression rate. Note that
this gradient here is different from the gradient of the learning problem. The online
gradient decent procedure is then to update the compression rate using gradient
descent on the training time objective in each round, where different rounds can
have different objectives that are unknown beforehand. It can be theoretically proven
that, although we perform gradient descent only on each round’s objective, the
accumulated optimality gap (known as the regret) grows sublinearly in time, so
that the time-averaged regret goes to zero as time goes to infinity. However, this
approach requires a gradient oracle that gives the exact derivative at the compression
rate chosen in each round, which is difficult to obtain in practice.

To overcome this issue, a sign-based online gradient descent method is used
in [16], which updates the compression rate only based on the sign, instead of
the actual value, of the derivative. It is relatively easy to estimate the sign of the
derivative, and as long as the probability of estimating the correct sign is higher than
that of estimating the wrong sign, a similar sublinear regret is guaranteed. Empirical
results have shown that this algorithm converges to a near-optimal compression
rate quickly and improves the performance over choosing an arbitrarily fixed
compression rate.

6.3.3 Model Pruning

In addition to compressing the parameter updates, the models themselves can be
compressed by pruning (removing) some insignificant weights in neural networks,

140 G. Joshi and S. Wang

Fig. 6.6 Illustration of model pruning

which speeds up both computation and communication while maintaining a similar
accuracy of the final model [14, 17]. An illustration of pruning is shown in Fig. 6.6.
A well-known pruning method is to iteratively train and prune the model, by
removing a certain percentage of weights that have small magnitudes at an interval
that includes multiple SGD iterations.

When combining pruning with federated learning, a two-stage procedure can be
used, where the model is trained and pruned on a single party in the first stage,
and then pruned further during the regular federated learning process that involves
multiple parties [22]. The initial pruning stage allows federated learning to start
with a small model to save both computation and communication compared to
starting with the full model, while still converging to the global optimum as the
model and its weights are adjusted in the further pruning stage. To determine which
weights should be pruned (or added back in the second stage), an objective can
be formulated so that the pruned model approximates the original model and also
maintains the “trainability” in future rounds. To approximate the original model,
standard magnitude-based pruning with a properly chosen pruning rate can be
applied, so that only those weights with a small enough magnitude can be pruned.
The trainability can be captured using a first-order approximation of the empirical
risk reduction when performing one step of SGD from the pruned model. Based on
this approximation, we can solve for the set of weights that should be pruned (or
added back if they are already pruned before) to maintain trainability [22]. Overall,
this approach adapts the model size over time to (approximately) maximize the
training efficiency.

6.4 Discussion

In this chapter we reviewed communication-efficient distributed optimization algo-
rithms that are used in federated learning, in particular, local-update SGD algorithms
that reduce the communication frequency and compression methods that reduce
the number of bits communicated. These methods could be combined with other
algorithms that improve the convergence speed and efficiency of federated learning.
For example, instead of using classic SGD as the local solver, the edge parties may
use acceleration [50], variance reduction [23, 26], or adaptive optimization methods.

6 Communication-Efficient Distributed Optimization Algorithms 141

References

1. Albasyoni A, Safaryan M, Condat L, Richtárik P (2020) Optimal gradient compression for
distributed and federated learning. arXiv preprint arXiv:2010.03246

2. Alistarh D, Grubic D, Li J, Tomioka R, Vojnovic M (2017) QSGD: communication-efficient
SGD via gradient quantization and encoding. In: Advances in neural information processing
systems, pp 1709–1720

3. Basu D, Data D, Karakus C, Diggavi SN (2020) Qsparse-local-SGD: distributed SGD with
quantization, sparsification, and local computations. IEEE J Sel Areas Inf Theory 1(1):217–
226

4. Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning.
arXiv preprint arXiv:1606.04838

5. Boyd S, Vandenberghe L (2004) Convex optimization. Cambridge University Press,
Cambridge

6. Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):
1–122

7. Chaudhari P, Soatto S (2017) Stochastic gradient descent performs variational inference,
converges to limit cycles for deep networks. CoRR, abs/1710.11029. http://arxiv.org/abs/
1710.11029

8. Cho YJ, Wang J, Joshi G (2020) Client selection in federated learning: convergence analysis
and power-of-choice selection strategies

9. Cipar J, Ho Q, Kim JK, Lee S, Ganger GR, Gibson G, Keeton K, Xing E (2013) Solving the
straggler problem with bounded staleness. In: Proceedings of the workshop on hot topics in
operating systems

10. Cui H, Cipar J, Ho Q, Kim JK, Lee S, Kumar A, Wei J, Dai W, Ganger GR, Gibbons PB,
Gibson GA, Xing EP (2014) Exploiting bounded staleness to speed up big data analytics. In:
Proceedings of the USENIX annual technical conference, pp 37–48

11. Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, Mao MZ, Ranzato M, Senior A,
Tucker P, Yang K, Ng AY (2012) Large scale distributed deep networks. In: Proceedings of
the international conference on neural information processing systems, pp 1223–1231

12. Dekel O, Gilad-Bachrach R, Shamir O, Xiao L (2012) Optimal distributed online prediction
using mini-batches. J Mach Learn Res 13(1):165–202

13. Dutta S, Joshi G, Ghosh S, Dube P, Nagpurkar P (2018) Slow and stale gradients can win
the race: error-runtime trade-offs in distributed SGD. In: International conference on artificial
intelligence and statistics (AISTATS). https://arxiv.org/abs/1803.01113

14. Frankle J, Carbin M (2019) The lottery ticket hypothesis: finding sparse, trainable neural
networks. In: International conference on learning representations

15. Gupta S, Zhang W, Wang F (2016) Model accuracy and runtime tradeoff in distributed deep
learning: a systematic study. In: IEEE international conference on data mining (ICDM). IEEE,
pp 171–180

16. Han P, Wang S, Leung KK (2020) Adaptive gradient sparsification for efficient federated
learning: an online learning approach. In: 2020 IEEE 40th international conference on
distributed computing systems (ICDCS), pp 300–310

17. Han S, Mao H, Dally WJ (2015) Deep compression: compressing deep neural networks with
pruning, trained quantization and Huffman coding. arXiv preprint arXiv:1510.00149

18. Hazan E (2016) Introduction to online convex optimization. Found Trends Optim 2(3–4):
157–325. ISSN 2167-3888

19. Ho Q, Cipar J, Cui H, Kim JK, Lee S, Gibbons PB, Gibson GA, Ganger GR, Xing EP (2013)
More effective distributed ml via a stale synchronous parallel parameter server. In: Proceedings
of the international conference on neural information processing systems, pp 1223–1231

20. Horváth S, Richtarik P (2021) A better alternative to error feedback for communication-
efficient distributed learning. In: International conference on learning representations

http://arxiv.org/abs/1710.11029
http://arxiv.org/abs/1710.11029
https://arxiv.org/abs/1803.01113

142 G. Joshi and S. Wang

21. Jee Cho Y, Gupta S, Joshi G, Yagan O (2020) Bandit-based communication-efficient client
selection strategies for federated learning. In: Proceedings of the asilomar conference on
signals, systems, and computers, pp 1066–1069. https://doi.org/10.1109/IEEECONF51394.
2020.9443523

22. Jiang Y, Wang S, Valls V, Ko BJ, Lee W-H, Leung KK, Tassiulas L (2019) Model pruning
enables efficient federated learning on edge devices. arXiv preprint arXiv:1909.12326

23. Karimireddy SP, Kale S, Mohri M, Reddi SJ, Stich SU, Suresh AT (2019) SCAF-
FOLD: stochastic controlled averaging for on-device federated learning. arXiv preprint
arXiv:1910.06378

24. Karimireddy SP, Rebjock Q, Stich S, Jaggi M (2019) Error feedback fixes SignSGD and
other gradient compression schemes. In: International conference on machine learning. PMLR,
pp 3252–3261

25. Li M, Zhang T, Chen Y, Smola AJ (2014) Efficient mini-batch training for stochastic
optimization. In: Proceedings of the ACM SIGKDD international conference on knowledge
discovery and data mining, pp 661–670

26. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) FedDANE: a federated
newton-type method

27. Li X, Huang K, Yang W, Wang S, Zhang Z (2020) On the convergence of FedAvg on non-IID
data. In: International conference on learning representations (ICLR). https://arxiv.org/abs/
1907.02189

28. Lian X, Huang Y, Li Y, Liu J (2015) Asynchronous parallel stochastic gradient for nonconvex
optimization. In: Proceedings of the international conference on neural information processing
systems, pp 2737–2745

29. Lian X, Zhang W, Zhang C, Liu J (2018) Asynchronous decentralized parallel stochastic
gradient descent. In: Proceedings of the 35th international conference on machine learning.
Proceedings of machine learning research, vol 80. PMLR, pp 3043–3052. http://proceedings.
mlr.press/v80/lian18a.html

30. McMahan HB, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient
learning of deep networks from decentralized data. In: International conference on artificial
intelligence and statistics (AISTATS). https://arxiv.org/abs/1602.05629

31. Neyshabur B, Tomioka R, Salakhutdinov R, Srebro N (2017) Geometry of optimization and
implicit regularization in deep learning. CoRR, abs/1705.03071. http://arxiv.org/abs/1705.
03071

32. Parikh N, Boyd S (2014) Proximal algorithms. Found Trends Optim 1(3):127–239
33. Recht B, Re C, Wright S, Niu F (2011) Hogwild: a lock-free approach to parallelizing

stochastic gradient descent. In: Proceedings of the international conference on neural
information processing systems, pp 693–701

34. Reisizadeh A, Mokhtari A, Hassani H, Jadbabaie A, Pedarsani R (2020) FedPAQ: a
communication-efficient federated learning method with periodic averaging and quantization.
In: International conference on artificial intelligence and statistics. PMLR, pp 2021–2031

35. Robbins H, Monro S (1951) A stochastic approximation method. In: The annals of
mathematical statistics, pp 400–407

36. Ruan Y, Zhang X, Liang S-C, Joe-Wong C (2021) Towards flexible device participation in
federated learning. In: Banerjee A, Fukumizu K (eds) Proceedings of the 24th international
conference on artificial intelligence and statistics. Proceedings of machine learning research,
vol 130. PMLR, pp 3403–3411. http://proceedings.mlr.press/v130/ruan21a.html

37. Ruder S (2016) An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747

38. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A,
Bernstein M, Berg AC, Fei-Fei L (2015) ImageNet large scale visual recognition challenge.
Int J Comput Vis 115(3):211–252

39. Sahu AK, Li T, Sanjabi M, Zaheer M, Talwalkar A, Smith V (2019) Federated optimization
in heterogeneous networks. In: Proceedings of the machine learning and systems (MLSys)
conference

https://doi.org/10.1109/IEEECONF51394.2020.9443523
https://doi.org/10.1109/IEEECONF51394.2020.9443523
https://arxiv.org/abs/1907.02189
https://arxiv.org/abs/1907.02189
http://proceedings.mlr.press/v80/lian18a.html
http://proceedings.mlr.press/v80/lian18a.html
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1705.03071
http://arxiv.org/abs/1705.03071
http://proceedings.mlr.press/v130/ruan21a.html

6 Communication-Efficient Distributed Optimization Algorithms 143

40. Sahu AK, Li T, Sanjabi M, Zaheer M, Talwalkar A, Smith V (2019) Federated optimization
for heterogeneous networks. https://arxiv.org/abs/1812.06127

41. Shalev-Shwartz S, Ben-David S (2014) Understanding machine learning: from theory to
algorithms. Cambridge University Press, New York

42. Shwartz-Ziv R, Tishby N (2017) Opening the black box of deep neural networks via
information. CoRR, abs/1703.00810. http://arxiv.org/abs/1703.00810

43. Stich SU (2018) Local SGD converges fast and communicates little. arXiv preprint
arXiv:1805.09767

44. Stich SU, Cordonnier J-B, Jaggi M (2018) Sparsified SGD with memory. In: Advances in
neural information processing systems, pp 4447–4458

45. Tang H, Yu C, Lian X, Zhang T, Liu J (2019) DoubleSqueeze: parallel stochastic gradient
descent with double-pass error-compensated compression. In: International conference on
machine learning. PMLR, pp 6155–6165

46. Wang J, Joshi G (2018) Cooperative SGD: unifying temporal and spatial strategies for
communication-efficient distributed SGD, preprint. https://arxiv.org/abs/1808.07576

47. Wang J, Joshi G (2019) Adaptive communication strategies for best error-runtime trade-offs in
communication-efficient distributed SGD. In: Proceedings of the SysML conference. https://
arxiv.org/abs/1810.08313

48. Wang J, Liang H, Joshi G (2020) Overlap local-SGD: an algorithmic approach to hide
communication delays in distributed SGD. In: Proceedings of international conference on
acoustics, speech, and signal processing (ICASSP)

49. Wang J, Liu Q, Liang H, Joshi G, Poor HV (2020) Tackling the objective inconsistency problem
in heterogeneous federated optimization. In: Proceedings on neural information processing
systems (NeurIPS). https://arxiv.org/abs/2007.07481

50. Wang J, Tantia V, Ballas N, Rabbat M (2020) SlowMo: improving communication-efficient
distributed SGD with slow momentum. In: International conference on learning representa-
tions. https://openreview.net/forum?id=SkxJ8REYPH

51. Wang J, Xu Z, Garrett Z, Charles Z, Liu L, Joshi G (2021) Local adaptivity in federated
learning: convergence and consistency

52. Wang S, Tuor T, Salonidis T, Leung KK, Makaya C, He T, Chan K (2019) Adaptive federated
learning in resource constrained edge computing systems. IEEE J Sel Areas Commun 37(6):
1205–1221

53. Yin D, Pananjady A, Lam M, Papailiopoulos D, Ramchandran K, Bartlett P (2018) Gradient
diversity: a key ingredient for scalable distributed learning. In: Proceedings of the twenty-
first international conference on artificial intelligence and statistics. Proceedings of machine
learning research, vol 84. pp 1998–2007. http://proceedings.mlr.press/v84/yin18a.html

54. Yu H, Yang S, Zhu S (2018) Parallel restarted SGD for non-convex optimization with faster
convergence and less communication. arXiv preprint arXiv:1807.06629

55. Zhang C, Bengio S, Hardt M, Recht B, Vinyals O (2017) Understanding deep learning requires
rethinking generalization. In: International conference on learning representations

56. Zhang J, Mitliagkas I, Re C (2017) Yellowfin and the art of momentum tuning. CoRR,
arXiv:1706.03471. http://arxiv.org/abs/1706.03471

57. Zhang S, Choromanska AE, LeCun Y (2015) Deep learning with elastic averaging SGD. In:
NIPS’15 proceedings of the 28th international conference on neural information processing
systems, pp 685–693

58. Zhang W, Gupta S, Lian X, Liu J (2015) Staleness-aware Async-SGD for distributed deep
learning. arXiv preprint arXiv:1511.05950

https://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1703.00810
https://arxiv.org/abs/1808.07576
https://arxiv.org/abs/1810.08313
https://arxiv.org/abs/1810.08313
https://arxiv.org/abs/2007.07481
https://openreview.net/forum?id=SkxJ8REYPH
http://proceedings.mlr.press/v84/yin18a.html
http://arxiv.org/abs/1706.03471

Chapter 7
Communication-Efficient Model Fusion

Mikhail Yurochkin and Yuekai Sun

Abstract We consider the problem of learning a federated model where the number
of communication rounds is severely limited. We discuss recent works on model
fusion, a special case of Federated Learning where only a single communication
round is allowed. This setting has a unique feature where it is sufficient for clients
to have a pre-trained model, but not the data. Data storage regulations such as
GDPR make this setting appealing as the data can be immediately deleted after
updating the local model before FL starts. However, model fusion methods are
limited to relatively shallow neural network architectures. We discuss extensions
of model fusion applicable to deep learning models that require more than one
communication round, but remain very efficient in terms of communication budget,
i.e., number of communication rounds and size of the messages exchanged between
the clients and the server. We consider both homogeneous and heterogeneous
client data scenarios, including scenarios where training on the aggregated data is
suboptimal due to biases in the data. In addition to deep learning methods, we cover
unsupervised settings such as mixture models, topic models, and hidden Markov
models.

We compare the statistical efficiency of model fusion to that of a hypothetical
centralized approach in which a learner with unlimited compute and storage
capacity simply aggregates data from all clients and trains a model in a non-
federated way. As we shall see, although the model fusion approach generally
matches the convergence rate of the (hypothetical) centralized approach, it may
not have the same efficiency. Further, this discrepancy between the centralized and
federated approaches is amplified when client data is heterogeneous.

M. Yurochkin (�)
MIT-IBM Watson AI Lab, IBM Research, Cambridge, MA, USA
e-mail: mikhail.yurochkin@ibm.com

Y. Sun
Department of Statistics, University of Michigan, Ann Arbor, MI, USA
e-mail: yuekai@umich.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_7

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_7&domain=pdf
mailto:mikhail.yurochkin@ibm.com
mailto:yuekai@umich.edu
https://doi.org/10.1007/978-3-030-96896-0_7

146 M. Yurochkin and Y. Sun

7.1 Introduction

Standard federated learning algorithms, e.g., Federated Averaging [34], rely on
simple parameter averaging when aggregating model parameters from the clients.
Due to its simplicity, this approach is compatible with most models and deep
learning architectures. However, it also has some drawbacks. In particular, the
number of communication rounds required to train a high-performance model is
often on the order of hundreds in many application areas. This communication cost
may be prohibitive, especially in settings in which the overhead of a communication
round is high. For example, in applications in which the clients are mobile devices,
a communication round may correspond to a daily synchronization task with a
server. In other applications, initiating a round of communication may require
human approval (e.g., hospitals forming a data/model sharing coalition). In such
applications, it is challenging to set up the infrastructure to support frequent
communications.

The aforementioned challenges motivate us to consider federated learning
algorithms that only require a few rounds of communication. We review the recent
model fusion [48, 49] techniques that only require a single round of communication.
The model fusion approach has the additional benefit of model fusion that clients do
not need to store data, i.e., they are only required to provide their local models for
the federated learning of a more powerful global model. Data storage is regulated
by GDPR [19], making this feature of model fusion practically appealing. As we
shall see, model fusion techniques rely on bipartite matching [49] via variants of
the Hungarian algorithm [28] or Wasserstein barycenters [1, 42]. These approaches
take into account similarity between model components (e.g., neuron weights) when
averaging parameters, which allow them to produce good global models in as
little as a single communication round. The drawback is that the corresponding
optimization problem aligning model components becomes intractable for deep
neural networks such as VGG architectures [41].

In order to handle deep neural networks, we also consider the layer-wise
matching strategy of [47], which can train a powerful federated model in a fixed
number of communication rounds (depending on the depth of the neural network).
However, this approach requires clients to store data in order to perform model
updates locally as in the other federated learning algorithms.

Finally, we also explore the statistical properties of model fusion. In particular,
we compare the model fusion approach to a hypothetical centralized approach in
which a server aggregates all the data from the clients and trains an ML model
without any communication constraints. This is impractical in many applications of
federated learning, but it is a gold-standard to which we can compare the statistical
performance of model fusion. Ideally, we hope that model fusion matches the
statistical efficiency of this (hypothetical) centralized approach. As we shall see,
this is almost the case.

In this chapter we review model fusion techniques and demonstrate their
applicability to federated learning in a single communication round with simpler

7 Communication-Efficient Model Fusion 147

neural network architectures [49]; unsupervised learning with mixture models,
hidden Markov models, and topic models [48, 50]. We present extensions for
posterior fusion [14] to support federated learning of Bayesian neural networks
[36]. We review the method of [47] suitable for federated learning of deep neural
networks under the limited communication budget. Finally, we study the statistical
properties of model fusion, and we conclude with a discussion of open challenges
and promising future work directions.

7.2 Permutation-Invariant Structure of Models

Many machine learning models can be described by sets of parameter vectors rather
than single vector of parameters. For example, a mixture model for clustering is
characterized by a set of cluster centroids. Any permutation of the order of the
centroids in the set yields equivalent clustering quality, i.e., same data likelihood.
In the federated learning context, it is now evident why simply averaging two sets
of cluster centroids obtained from different clients may be detrimental: even in the
simplest case of two clients fitting a clustering model on homogeneous datasets and
recovering identical centroids, the ordering of centroids in their solution is arbitrary
and elementwise averaging is likely to result in poor federated global model. Other
prominent examples of permutation-invariant unsupervised models that we will
cover in this chapter are topic models and hidden Markov models.

Permutation invariance of model parameters is also present in supervised
learning, specifically in neural networks. Consider a simple one-hidden layer fully
connected neural network with L hidden units

f (x) = σ(xW1)W2, (7.1)

where σ(·) is a non-linearity applied entry-wise, x ∈ R
D , W1 ∈ R

D×L, W2 ∈
R

L×K . D and K are the input and output dimensions, and we omit bias terms
without loss of generality. Let W1,·l denote lth column of W1 and W2,l· denote lth
row of W2, then we can write (7.1) as

f (x) =
L∑

l=1

W2,l·σ(〈x,W1,·l〉). (7.2)

Sum is a permutation-invariant operation, therefore any reordering of the neurons,
i.e., columns of W1 and correspondingly rows of W2, result in a neural network with
the same prediction rule. To account for the permutation invariance, we re-write
(7.1) as

f (x) = σ(xW1�)�T W2, (7.3)

148 M. Yurochkin and Y. Sun

where � is one of the L! possible permutation matrices. Recall that a permutation
matrix is an orthogonal matrix that acts on rows when applied on the left and on
columns when applied on the right. Suppose {W1,W2} are optimal weights, then,
according to equation (7.3), training on two homogeneous datasets Xj and X′

j will

result in two sets of weights {W1�j,�
T
j W2} and {W1�j ′,�T

j ′W2}. Naive averaging
of these two sets of parameters is suboptimal, i.e., �j �= �j ′ with high probability,
therefore 1

2 (W1�j + W1�j ′) �= W1� for any �. To optimally average neural
network weights we should first undo the permutation (W1�j�

T
j +W1�j ′�T

j ′)/2 =
W1.

Neural network invariances beyond permutations
The model fusion techniques that we are about to present in this chapter are
designed to take into account permutation invariance of client models when
performing the fusion. However, in the case of neural networks, other invari-
ances might exist. Neural networks are typically vastly overparametrized and
learning the corresponding weights is a non-convex optimization problem
with possibly many equivalent (in a sense of training loss) local optima. For
a single hidden layer neural network with L neurons, as in equation (7.1),
for any solution there are at least L! equivalent ones due to permutation
invariance. It is possible that there are other invariant (or otherwise equivalent)
solutions. This is an unresolved question in the literature. A potentially fruitful
perspective is to study the loss landscape of neural networks—there is no
complete theoretical understanding of this problem; however, some progress
has been made [15, 18, 21, 30]. Considering the loss landscape perspective
for developing new federated learning and model fusion algorithms is an
interesting future work direction.

7.2.1 General Formulation of Matched Averaging

We now formalize the idea of averaging parameters of models with inherent
permutation invariance following the perspective of [47]. We continue the example
of a one-hidden layer neural network; however, the idea easily generalizes to other
models as we will show in the subsequent sections.

Let wjl be the lth neuron weights learned on j th client data. We consider wjl to
be the concatenation of the lth column of W1 and lth row of W2 from the preceding
discussion. Let θi denote the (unknown) ith neuron weights in the global model and
c(·, ·) be an appropriate similarity function, e.g., squared Euclidean distance. The

7 Communication-Efficient Model Fusion 149

matched averaging optimization problem is as follows:

min
{πj

il∈{0,1}}

L∑

i=1

∑

j,l

min
θi

π
j
ilc(wjl, θi) s.t.

∑

i

π
j
il = 1 ∀ j, l;

∑

l

π
j
il = 1 ∀ i, j.

(7.4)

The inner optimization of θi is trivial when similarity c(·, ·) is a squared Euclidean

distance, i.e., it is the average of the matched client neuron weights θi =
∑

j,l π
j
ilwjl

∑
j,l π

j
il

.

The name matched averaging is due to the relation of equation (7.4) to the
maximum bipartite matching problem. This optimization problem is also related
to the Wasserstein barycenter [1] that was utilized by [42] in their model fusion
approach based on optimal transport.

7.2.2 Solving Matched Averaging

We discuss a general perspective of solving equation (7.4) and present a concrete
algorithm in the subsequent section.

Optimization problem (7.4) can be solved using the following iterative algorithm:
fix all but one πj ′

, then find πj ′
using Hungarian matching algorithm [28] and

iterate over j ′ until convergence. The limitation of equation (7.4) is the implicit
assumption of homogeneity of client datasets. Specifically, it assumes that each
client has the same model architecture, that is also equivalent to the global model
architecture. Although this is typical in federated learning, e.g., same assumption
is made by the Federated Averaging [34] algorithm, it is not always practical. In
the matched averaging perspective, it is equivalent to saying that every neuron of
a given client has a matching neuron in the neural networks of all other clients.
When thinking of neurons as feature extractors and taking into account potential
heterogeneity of the client datasets, this seems unrealistic. Different datasets require
different feature extractors that may overlap only partially. To better account for data
heterogeneity and allow partial matching (overlap) of the client neurons, we treat
global model size L as an unknown, possibly larger than individual model sizes,
i.e., maxj Lj ≤ L ≤ ∑

j Lj , where Lj is the number of neurons in j th client’s
model.

The resulting objective remains amendable to the iterative optimization with
Hungarian algorithm. At each iteration, fixing all but one πj ′

, we compute current
global model parameter estimates {θi = arg minθi

∑
j �=j ′,l π

j
ilc(wjl, θi)}Li=1 (e.g.,

via taking a mean for the squared Euclidean similarity) and solve the following

150 M. Yurochkin and Y. Sun

problem to update πj ′
:

min
{πj ′

il ∈{0,1}}

L+Lj ′∑

i=1

Lj ′∑

j=1

π
j ′
il C

j ′
il s.t.

∑

i

π
j ′
il = 1 ∀ l;

∑

l

π
j
il ∈ {0, 1} ∀ i, where

C
j ′
il =

{
c(wj ′l , θi), i ≤ L

ε + λ(i), L < i ≤ L + Lj ′ .
(7.5)

Parameter ε is interpreted as a maximum dissimilarity between a pair of neurons
before we declare them to have different functionality, i.e., keeping them as separate
neurons in the global model. To control the global model growth we introduce an
additional penalty function λ(i) increasing in i. After updating πj ′

, the new global

model size is L = max{i : π
j ′
il = 1, l = 1, . . . , Lj ′ }. This formulation can be

directly utilized given a user-specified similarity c(·, ·), threshold ε, and penalty
function λ(·). In the following section we describe a Bayesian nonparametric
approach where these choices arise naturally from the model.

7.3 Probabilistic Federated Neural Matching

In federated learning via model fusion the goal is to aggregate model parameters
learned from different datasets into a more powerful global model. The input to a
model fusion algorithm is a collection of local model parameters, and the output is
the global model parameters. Bayesian hierarchical modeling is a natural choice
for modeling such inputs and unknowns. Bayesian hierarchical model typically
describes a generating process starting from the parameters of the global model,
which in turn generate local model parameters, from which the data arises. The
inference process reverses the generating process, i.e., infers the unknown global
model parameters from the data, or, in the model fusion case, from the local param-
eters estimated from the corresponding datasets. Probabilistic Federated Neural
Matching (PFNM) [49] is one such Bayesian hierarchical approach specialized to
fusion of neural networks that we review in this section.

7.3.1 PFNM Generative Process

Following the notations of Sect. 7.2.1, we observe neural network weights of J

clients {{wjl ∈ R
D+K+1}Lj

l=1}Jj=1. The dimension of each wjl can be understood
as follows: D is the data dimension and correspondingly the number of weights
in-going into the neuron (column of W1), 1 is for the bias term of the neuron, and

7 Communication-Efficient Model Fusion 151

K is the output dimension and correspondingly the number of weights out-going
from the neuron (row of W2). In accordance with the data heterogeneity discussion
that motivated equation (7.5), we want a nonparametric prior for the global model
parameters, i.e., one that allows for unknown global model size. Yurochkin et al.
[49] utilize Beta-Bernoulli process [45] to achieve this. First generate the collection
of the global model parameters from the Beta process:

Q :=
∑

i

qiδθi
∼ BetaProc(α, γ0H), where

H = N(μ0, �0) is the base measure, i.e. θi ∼ H, i = 1, . . .

(7.6)

Parameters μ0 ∈ R
D+1+K , covariance �0, and γ0, α ∈ R+ are the prior

hyperparameters. For simplicity we set μ0 = 0, suggesting that neural network
weights are small in magnitude, and isotropic diagonal covariance �0 = σ 2

0 I . The
Beta process concentration parameter α controls the degree of sharing across local
models (we will set α = 1 for simplicity), and the mass parameter γ0 controls
our prior beliefs of the global model size, i.e., how heterogeneous we expect client
datasets to be (larger γ0 suggests larger global model sizes a priori).

Next step considers the heterogeneity of the client datasets: clients need only
parts of the global model feature extraction capabilities to model their data. We
select a subset of the global model neurons for each client j = 1, . . . , J via the
Bernoulli process:

Tj :=
∑

i

bjiδθi
, where bji |qi ∼ Bern(qi)∀i. (7.7)

Tj is then a set of global model weights selected for client j , i.e., Tj = {θi : bji =
1 i = 1, . . . }. Finally we model the local model weights that we observe accounting
for local data noise:

wjl |Tj ∼ N(Tj l, �j) for l = 1, . . . , Lj ; Lj := card(Tj). (7.8)

For simplicity we assume diagonal isotropic covariances �j = σ 2
j I .

Indian Buffet Process and the Beta-Bernoulli Process
The Indian buffet process (IBP) is a Bayesian nonparametric prior over sparse
binary matrices with infinitely many columns [22]. The name is due to the
following culinary metaphor: suppose J customers are arriving sequentially to
a buffet and choose dishes to sample. The first customer samples Poisson(γ0)

dishes. The j -th customer then tries each of the dishes selected by previous
customers with probability proportional to the dish’s popularity, and addi-

(continued)

152 M. Yurochkin and Y. Sun

tionally samples Poisson(γ0/j) new dishes. Thibaux and Jordan [45] showed
that the de Finetti mixing distribution corresponding to the IBP is a Beta-
Bernoulli Process. Let Q be a random measure drawn from a Beta process,
Q | α, γ0,H ∼ BP(α, γ0H), with concentration parameter α, mass parameter
γ0, and base measure H over � with H(�) = 1. Then Q is a discrete measure
Q = ∑

i qiδθi
formed by an infinitely countable set of (weight, atom) pairs

(qi, θi) ∈ [0, 1] × �. The weights {qi}∞i=1 can be shown to have a “stick-

breaking” distribution [44]: ν1 ∼ Beta(γ0, 1), qi = ∏i
k=1 νk , and the atoms

θi are drawn i.i.d. from H . Then a subset of atoms in Q is selected via a
Bernoulli process, i.e., each subset Tj for j = 1, . . . , J is characterized
by a Bernoulli process with base measure Q: Tj | Q ∼ BeP(Q). Each
subset Tj is also a discrete measure formed by pairs (bji, θi) ∈ {0, 1} × �,
i.e., Tj := ∑

i bjiδθi
, where bji | qi ∼ Bern(qi)∀i is a binary random

variable indicating whether atom θi belongs to subset Tj . The collection
of such subsets is then said to be distributed by a Beta-Bernoulli process.
Marginalizing over the Beta Process Q yields the predictive distribution TJ |
T1, . . . ,TJ−1 ∼ BeP

(
αγ0

J+α−1H +∑
i

mi

J+α−1δθi

)
, where mi = ∑J−1

j=1 bji ,

which is equivalent to the IBP.

7.3.2 PFNM Inference

To estimate the unknown latent variables {bji} and {θi} we appeal to maximum
a posteriori (MAP) estimation, i.e., maximizing posterior probability. First we note
that there is a one-to-one correspondence between {bji} and matching variables {πj

il}
from equation (7.5), i.e., π

j
il = 1 if Tj l = θi and 0 otherwise.

To derive MAP estimates we write the posterior probability of the latent
variables:

arg max
{θi },{πj }

P({θi}, {πj }|{wjl}) ∝ P({wjl}|{θi}, {πj })P ({πj })P ({θi}). (7.9)

Optimal values of {θi} can be expressed as functions of {πj } due to Gaussian–
Gaussian conjugacy as formalized in the following proposition of [49]:

Proposition 7.1 Given {πj }, the MAP estimate of {θi} is given by

θi =
μ0/σ

2
0 +∑

j,l π
j
ilwjl/σ

2
j

1/σ 2
0 +∑

j,l π
j
il/σ

2
j

for i = 1, . . . , L. (7.10)

7 Communication-Efficient Model Fusion 153

Using the above proposition and taking the natural logarithm we reformulate
(7.9) as a simpler optimization problem in {πj } only:

arg max
{πj }

1

2

∑

i

∥∥∥∥
μ0

σ 2
0
+∑

j,l π
j
il

wjl

σj

2
∥∥∥∥

2

1/σ 2
0 +∑

j,l π
j
il/σ

2
j

+ log P({πj })

s.t. π
j
il ∈ {0, 1} ∀ j, i, l;

∑

i

π
j
il = 1 ∀ j, l;

∑

l

π
j
il ∈ {0, 1} ∀ j, i.

(7.11)

This optimization problem can be solved with the strategy outlined in Sect. 7.2.2:
fix all but one πj , re-write the objective in a form of a matching problem to solve
for πj , and iterate over j . We will write −j to denote “all but j ,” and let L−j =
max{i : π

−j
il = 1} denote global model size omitting client j . To arrive at an

objective function analogous to (7.5), we first expand the first term of (7.11) into
cases when i = 1, . . . , L−j and when i = L−j + 1, . . . , L−j + Lj . We use the
following substraction trick of [48]:

Proposition 7.2 (Substraction trick) When
∑

l πil ∈ {0, 1} and πil ∈ {0, 1}
for ∀ i, l, optimizing

∑
i f (

∑
l πilxl + C) for π is equivalent to optimizing∑

i,l πil(f (xl + C) − f (C)) for any function f , {xl} and C independent of π .

Algorithm 7.1 Single Layer Neural Matching
1: Collect weights and biases from the J clients and form wjl .
2: Form assignment cost matrix per (7.15).
3: Compute matching assignments πj using the Hungarian algorithm.
4: Enumerate all resulting unique global neurons and use (7.10) to infer the

associated global weight vectors from all instances of the global model neurons
across the J clients.

5: Concatenate the global neurons and the inferred weights and biases to form the
new global hidden layer.

With the help of the above proposition we re-write the first term of (7.11):

1

2

∑

i

‖μ0/σ
2
0 +∑

j,l π
j
ilwjl/σ

2
j ‖2

1/σ 2
0 +∑

j,l π
j
il/σ

2
j

=

L−j+Lj∑

i=1

Lj∑

l=1

π
j
il

⎛

⎝‖μ0/σ
2
0 + wjl/σ

2
j +∑

−j,l π
j
ilwjl/σ

2
j ‖2

1/σ 2
0 + 1/σ 2

j +∑
−j,l π

j
il/σ

2
j

− ‖μ0/σ
2
0 +∑

−j,l π
j
ilwjl/σ

2
j ‖2

1/σ 2
0 +∑

−j,l π
j
il/σ

2
j

⎞

⎠ .

(7.12)

154 M. Yurochkin and Y. Sun

Next we consider the second term of (7.11):

log P({πj }) = log P(πj |π−j) + log P(π−j). (7.13)

To expand this term we appeal to the exchangeability property of the Indian
Buffet Process (IBP) [22, 45]: we can always consider j to be the last “customer”
in the IBP. Denote m

−j
i = ∑

−j,l π
j
il to be the number of times client weights were

matched with the global model weight i outside of client j , i.e., the “dish” popularity
in the IBP. Now we expand (7.13):

log P({πj }) =
L−j∑

i=1

Lj∑

l=1

π
j
il log

m
−j
i

J − m
−j
i

+
L−j+Lj∑

i=L−j+1

Lj∑

l=1

π
j
il

(
log

γ0

J
− log(i − L−j)

)
.

(7.14)

Combining (7.12) and (7.14) we obtain a cost expression analogous to equa-
tion (7.5):

C
j
il = −

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥∥∥∥
μ0
σ2

0
+wjl

σ2
j

+∑
−j,l

π
j
il

wjl

σ2
j

∥∥∥∥∥

2

1
σ2

0
+ 1

σ2
j

+∑−j,l π
j
il/σ

2
j

−

∥∥∥∥∥
μ0
σ2

0
+∑

−j,l

π
j
il

wjl

σ2
j

∥∥∥∥∥

2

1
σ2

0
+∑−j,l π

j
il/σ

2
j

+ 2 log
m

−j
i

J−m
−j
i

, i ≤ L−j

∥∥∥∥∥
μ0
σ2

0
+wjl

σ2
j

∥∥∥∥∥

2

1
σ2

0
+ 1

σ2
j

−
∥∥∥∥

μ0
σ2

0

∥∥∥∥
2

1
σ2

0

−2 log
i−L−j

γ0/J
, L−j < i ≤ L−j + Lj .

(7.15)

Now we can simply use Hungarian algorithm to minimize
∑

i

∑
l π

j
ilC

j
il to update

πj and iterate over j until convergence. We illustrate and summarize the resulting
PFNM algorithm in Fig. 7.1.

Fusion of multilayer neural networks with PFNM
PFNM can be extended to fuse deep neural networks in a single commu-
nication round; however, its efficacy reduces for deeper networks. We refer
interested reader to Section 3.2 of [49] for the precise extension of the
PFNM model to multiple layers. In Sect. 7.6.1 we discuss the high level idea,
as well as details regarding applying PFNM to convolutional and recurrent
architectures. Figure 7.6 shows experiments where PFNM can successfully
fuse 4-layer LeNets [29], but underperforms on a deeper 9-layer VGG-9 [41]
architecture.

7 Communication-Efficient Model Fusion 155

Server 1 Server 2 Server 3

Hidden layers

Outputs

Match and merge neurons to form aggregate layer

Global hidden layer

Input

Input

Outputs

Fig. 7.1 Single layer Probabilistic Federated Neural Matching algorithm showing matching of
three MLPs. Nodes in the graphs indicate neurons, neurons of the same color have been matched.
PFNM approach consists of using the corresponding neurons in the output layer to convert the
neurons in each of the J clients to weight vectors referencing the output layer. These weight vectors
are then used to form a cost matrix, which the Hungarian algorithm then uses to do the matching.
The matched neurons are then aggregated via Proposition 7.2 to form the global model

7.3.3 PFNM in Practice

To illustrate practical advantages of PFNM we discuss a sample of the results
presented in [49]. They simulate federated learning scenario on MNIST dataset
as follows: (1) to obtain homogeneous data partitioning, each client is assigned a
random sample of equal size from each of the K = 10 classes; (2) for heterogeneous
client data, they draw pk ∼ DirJ (0.5) and allocate pkj proportion of instances of
class k to client j . Due to small Dirichlet concentration parameter (0.5), it is likely
that some clients receive very little amount of examples of certain classes (or none
at all). This heterogeneous partitioning strategy was further explored in the work of
[26].

After partitioning the data, [49] train a neural network with Lj = 100 hidden
units independently for each client and perform fusion of the resulting models in
a single communication round. In this setting clients do not need to have the data
available, i.e., they can safely delete it after training their models and still benefit
from federated learning with PFNM. This is the most communication restrictive
scenario that is the easiest to implement in practice, i.e., clients simply need to send
their model weights to the server once and then download the fused global model.
This can be performed with standard data sharing tools and does not require setting
up a specific compute infrastructure between the clients and the server.

Yurochkin et al. [49] studied the following baselines: to consider model fusion
beneficial, the resulting global model should outperform client local models.
Ensemble [8, 17], i.e., averaging model predictions, is a standard way to benefit from
multiple models; however, in the context of neural networks it makes prediction
computationally expensive (all models need to be stored and propagated through)
and is often impractical. Besides, clients may not want to explicitly share their
model parameters with each other. They also consider other model fusion strategies:

156 M. Yurochkin and Y. Sun

Fig. 7.2 Single communication federated learning. Test accuracy and normalized model size
(log L∑

j Lj
) as a function of varying number of batches (J). PFNM consistently outperforms local

models and federated averaging while performing comparably to ensembles at a fraction of the
storage and computational costs. (a) MNIST homogeneous. (b) MNIST heterogeneous

Federated Averaging [34] corresponds to a naive elementwise parameter averaging
of the client models. As [34] recommended, the client models were trained from the
same random initialization, although this requirement may be impractical if clients
trained their models before deciding to participate in federated learning. They also
proposed a k-means [31] based fusion strategy as a baseline. The key difference with
PFNM is that clustering, unlike matching, allows neurons of the same model to be
averaged together. Considering that each neuron of a given model has dedicated
feature extraction functionality, this is an undesirable property.

We present the results in Fig. 7.2. The top of each plot shows test accuracy as a
function of the number of clients J and the bottom emphasizes model compression
in comparison to ensemble by plotting log L∑

j Lj
, i.e., the log ratio of the PFNM

global model size to the total number of neurons across client models (equivalent
to the ensemble model size). PFNM performs comparable to ensemble, while
producing a much smaller model, outperforms local client models and other model
fusion baselines, demonstrating its utility in the context of single-round federated
learning.

Single-round fusion of deep neural networks
As the disadvantage of PFNM, we notice a relatively low performance on
the CIFAR10 dataset. The neural networks considered in this experiment are
too shallow to be efficient on this dataset. Although PFNM can be applied

(continued)

7 Communication-Efficient Model Fusion 157

to deeper neural networks, its performance is not as good when fusing deep
architectures such as VGG [41]. The fusion problem becomes significantly
more complicated for deeper architectures and remains an open problem. In
Sect. 7.6 we present techniques based on PFNM that can efficiently fuse deep
neural networks when more than one communication round is allowed.

7.4 Unsupervised FL with SPAHM

In this section we review Statistical Parameter Aggregation via Heterogeneous
Matching (SPAHM) of [48] that extends the modeling framework of PFNM to a
single-round federated learning of a variety of popular unsupervised models that
exhibit permutation invariance of their parameters, such as Gaussian mixture models
(GMM), hidden Markov models (HMM), and topic models. Recall that the base
measure H in the PFNM construction in equation (7.6) was set to be Gaussian.
This is a reasonable base measure for modeling neural network weights, but is
not appropriate to models with latent quantities of different nature (e.g., known to
be positive). Additionally, recall that PFNM had hyperparameters μ0, γ0, σ0, and
σj that needed to be set by the user. SPAHM extends PFNM framework with the
functionality to estimate its own hyperparameters via empirical Bayes (except γ0).

7.4.1 SPAHM Model

Similar to PFNM, SPAHM uses Beta-Bernoulli process construction, but with a
more general base measure. As before we will denote ith global model parameters
as θi and lth local model parameters of the j th client as wjl . However note that these
parameters can now be cluster centers in a GMM, hidden states of an HMM, etc.

As in PFNM, start with the Beta Process prior on the global model parameters:

Q :=
∑

i

qiδθi
∼ BetaProc(α, γ0H), θi ∼ H, i = 1, . . . (7.16)

Base measure H is allowed to be any exponentially family distribution that is
application appropriate. Exponential family density can be written in a general form
as follows:

pθ(θ | τ, n0) = H(τ, n0)exp(τT θ − n0A(θ)), (7.17)

where τ, n0 are the hyperparameters and H(·, ·) and A(·) are functions that define
a specific distribution within the exponential family.

158 M. Yurochkin and Y. Sun

Then select a subset of global model parameters for each client with the Bernoulli
process as in (7.7):

Tj :=
∑

i

bjiδθi
, where bji |qi ∼ Bern(qi)∀i. (7.18)

This step is the same as in PFNM, and we define Tj as the set of global model
parameters selected for client j , i.e., Tj = {θi : bji = 1 i = 1, . . . }. To model
the observed local model parameters we again generalize PFNM construction to
exponential family distributions:

wjl |Tj ∼ F(·|Tj l) for l = 1, . . . , Lj ; Lj := card(Tj), (7.19)

where the probability density of F is

pw(w | θ) = h(w)exp(θT T (w) −A(θ)), (7.20)

with T (·) being the sufficient statistics function.

7.4.2 SPAHM Inference

To estimate the unknown matching variables π = {πj }, similar to PFNM, we will
maximize the posterior probability, which we should now derive in a general (for
any exponential family distribution) form. Let Zi = {(j, l) | π

j
il = 1} be the index

set of the local parameters assigned to the ith global parameter, then we have

P(π | w) ∝ P(π)

∫
pw(w | π, θ)pθ (θ) dθ = P(π)

∏

i

∫ ∏

z∈Zi

pw(wz | θi)pθ (θi) dθi

=P(π)
∏

i

H(τ, n0)

∫ ⎛

⎝
∏

z∈Zi

h(wz)

⎞

⎠exp

⎛

⎝(τ +
∑

z∈Zi

T (wz))
T θi − (card(Zi) + n0)A(θ)

⎞

⎠ dθi

= P(π)
∏

i

H(τ, n0)
∏

z∈Zi
h(wz)

H(τ +∑
z∈Zi

T (wz), card(Zi) + n0)
.

(7.21)

Taking the logarithm and noticing that
∑

i

∑
j,l π

j
il log h(wjl) is constant in π , we

arrive at the objective function for π generalizing (7.10)

arg max
π

log P(π) −
∑

i

logH

⎛

⎝τ +
∑

j,l

π
j
ilT (wjl),

∑

j,l

π
j
il + n0

⎞

⎠

s.t. π
j
il ∈ {0, 1} ∀ j, i, l;

∑

i

π
j
il = 1 ∀ j, l;

∑

l

π
j
il ∈ {0, 1} ∀ j, i.

(7.22)

7 Communication-Efficient Model Fusion 159

Now we follow the strategy similar to the PFNM derivations, i.e., fix all but one
πj and utilize substraction trick from Proposition 7.2 to formulate the problem in a
form amendable to the Hungarian algorithm to update πj . The resulting generalized
expression for the cost is as follows:

C
j
il = −

⎧
⎪⎪⎨

⎪⎪⎩

log
m

−j
i

α+J−1−m
−j
i

− log
H
(
τ+T (wjl)+∑−j,l π

j
ilT (wjl),1+m

−j
i +n0

)

H
(
τ+∑−j,l π

j
ilT (wjl),m

−j
i +n0

) , i ≤ L−j

log αγ0
(α+J−1)(i−L−j)

− log
H(τ+T (wjl),1+n0)

H(τ,n0)
, L−j < i ≤ L−j + Lj .

(7.23)

Besides generalization, we mentioned that SPAHM also provides hyperparameter
estimation procedure. Hyperparameters can be updated at each iteration as follows:

arg max
τ,n0

L∑

i=1

⎛

⎝logH(τ, n0) − logH

⎛

⎝τ +
∑

j,l

π
j
ilT (wjl),

∑

j,l

π
j
il + n0

⎞

⎠

⎞

⎠ . (7.24)

This optimization problem can be solved with gradient based methods in general;
however, it also admits a closed form update for certain exponential family
distributions. Notably, for Gaussian distribution, assuming σ 2 = σ 2

j ∀ j , updates
are as follows:

μ0 = 1

L

L∑

i=1

1

mi

∑

j,l

π
j
ilwjl, σ 2 = 1

N − L

L∑

i=1

⎛

⎝
∑

j,l

π
j
ilw

2
j l −

(
∑

j,l π
j
ilwjl)

2

mi

⎞

⎠ ,

σ 2
0 = 1

L

L∑

i=1

(∑
j,l π

j
ilwjl

mi

− μ0

)2

−
L∑

i=1

σ 2

mi

,

(7.25)

where N = ∑
j Lj and mi = ∑

j,l π
j
il . This result can be obtained by setting

corresponding derivatives of Eq. (7.24) +
∑

j,l log hσ (wjl) to 0 and solving the
system of equations.

7.4.3 SPAHM in Practice

To illustrate SPAHM applications we highlight two experiments from [48]: sim-
ulations with Gaussian mixture models and Gaussian topic models [16] on the
Gutenberg dataset of 40 books considered as clients for federated learning.

Gaussian mixture models. In the GMM experiment the data is generated using
L = 50 true global model centroids θi ∈ R

50 from a Gaussian distribution
θi ∼ N(μ0, σ

2
0 I). To generate heterogeneous client datasets, for j = 1, . . . , J

160 M. Yurochkin and Y. Sun

they picked a random subset of global centroids for each client and added noise

with variance σ 2 to obtain the “true” local centroids, {wjl}Lj

l=1. This data simulation
process is based on the model description in Sect. 7.4.1 with Gaussian densities.
Then each dataset is sampled from a GMM with the corresponding set of local
centroids.

Each client fits a k-means model locally and provides the cluster centroids
as inputs to SPAHM. This can be viewed as a single communication round
federated learning of a clustering model. To quantify the effect of estimation error
endured by clients, they compared to SPAHM that uses true data generating local
parameters. Additionally they considered two clustering-based fusion methods—as
in the PFNM case, clustering is inferior to matching in the model fusion context.
Different methods are compared based on the Hausdorff distance between the
estimates and true data generating global centroids. Results of their experiments are
presented in Fig. 7.3. Increasing the noise variance σ increases heterogeneity among
client datasets making the problem harder; however, SPAHM degrades gracefully in
Fig. 7.3a. Increasing the number of clients J does not degrade the performance of
SPAHM in Fig. 7.3b.

Federated topic modeling. In this experiment [48] considered federated Gaussian
LDA topic modeling [16] on 40 books from the Gutenberg dataset. Each client
is viewed as a single book and they estimate their own topics, providing inputs
to SPAHM that fuses them into a single topic model encompassing all 40 books.
Illustration of the fusion procedure is given in Fig. 7.4.

We refer the reader to the SPAHM paper [48] for additional examples of
federated unsupervised learning.

Fig. 7.3 Federated learning of a clusteringmodel. Simulated experiment with Gaussian mixture
models. SPAHM has the lowest estimation error measured with the Hausdorff distance. (a)
Increasing heterogeneity via noise σ . (b) Increasing number of clients J

7 Communication-Efficient Model Fusion 161

enemy war forces
fighting allied armed

military invasion enemies

10409: The Crisis of the Naval War

command corps force
army military commanded

allied personnel naval

30047: Aircraft and Submarines

military force forces
army command personnel

operations armed allied

793: Aeroplanes & Dirigibles of War

armed soldiers attacked
forces army fighting
fire captured troops

22523: History of the American...

enemy allied forces
captured attacking armed
force commanders army

26879: Night Bombing with the ...

army taken force entered brought

took armed carried military captured

allied attacked forces came bringing

Gaussian LDA Topic 16

army military forces armed allied

command commanders civilian captured fighting

attacked taken enemy carried troops

Matched Topic 34

Fig. 7.4 Topic related to war found by SPAHM and Gaussian LDA. The five boxes pointing to the
Matched topic represent local topics that SPAHM fused into the global one. The headers of these
five boxes state the book names along with their Gutenberg IDs

Extensions to clients with time stamps
The idea of approaching model fusion using the Beta-Bernoulli process as
in PFNM and SPAHM was first proposed in the context of topic model-
ing in [50]. Their goal was to fuse topic models learned from (possibly
heterogeneous) text corpora partitioned by time and source, e.g., articles
published in different conferences over multiple years. Partitioning by source
is analogous to the client partitioning in federated learning and inspired
PFNM and SPAHM. However, their modeling tools are also applicable to data
with time-stamps, i.e., they proposed a method to fuse topics estimated from
articles published in different years to study evolution of topics in time. This
functionality has not been applied in the federated learning context so far.

7.5 Model Fusion of Posterior Distributions

We have discussed various model fusion strategies; however, so far they have all
been targeting fusion of “frequentist” models, i.e., clients learn estimates of their
parameters that are being fused. In situations where uncertainty quantification is
important, clients may wish to train Bayesian models instead, e.g., Bayesian neural
networks [36] or Gaussian mixture models where the full posterior is of interests
rather than only the cluster centroids. In such scenario we need model fusion
techniques that are able to ingest posterior distributions from the clients and produce
a global fused posterior as the output. In this section we present one such technique
that enables single-round federated learning of Bayesian models.

Distributed posterior estimation has been actively studied in the literature
[3, 9, 10, 24, 43]; however, as in the case of Federated Averaging [34], they typically

162 M. Yurochkin and Y. Sun

require many communication rounds to converge, are limited to homogeneous
client datasets, or do not handle permutation invariance nature of the many popular
models. The only earlier method that accounts for permutation invariance is by [11];
however, it assumes data homogeneity and is computationally too expensive.

7.5.1 Model Fusion with KL Divergence

We review the KL-fusion method of [14] for fusing posterior distributions learned
from heterogeneous datasets. Their method assumes that each client performed
mean-field variational inference (VI) [27] locally, i.e., client j obtains posterior of
the form:

pj (z1, . . . , zLj
) =

L∏

l=1

q(zl |wjl), (7.26)

where q(zl |wjl) is the approximate posterior of component zl parameterized by
wjl . We note that KL-fusion could be also applied to other approximate parametric
posterior inference techniques, e.g., Laplace approximations [5], assumed density
filtering [38], and expectation propagation [35]; however, here we focus on one of
the most popular methods, i.e., mean-field VI.

Variational inference
Variational inference [7, 27, 46] is a technique for approximating the true
posterior distribution by a parametric approximate distribution minimizing the
KL divergence between the variational approximation and the true posterior.
Comparing to Markov chain Monte Carlo methods, VI is an optimization
problem and can benefit from the modern stochastic gradient methods
allowing VI based algorithms to scale to large data and models with a large
number of parameters, such as Bayesian Neural Networks (BNNs) [36].

The goal of KL-fusion is to infer global posterior of a similar mean-field form:

p̄(z1, . . . , zL) =
L∏

i=1

q(zi |θi), (7.27)

where {θi} are the parameters of the global posterior. The global posterior should
approximate the client local posteriors. Claici et al. [14] propose the following

7 Communication-Efficient Model Fusion 163

optimization problem to achieve this:

min
{θi },{πj }

J∑

j=1

D

⎛

⎝
Lj∏

l=1

q

(
zi

∣∣∣∣∣

L∑

i=1

π
j
ilθi

)∥∥∥∥∥

Lj∏

l=1

q(zl |wjl)

⎞

⎠

subject to

Lj∑

l=1

π
j
il ≤ 1,

L∑

i=1

π
j
il = 1, P

j
il ∈ {0, 1}.

(7.28)

Here we use {πj } to denote matching variables as before. Tractability of this
problem depends on the divergence D(· ∥∥ ·). A convenient choice is the Kullback–
Leibler (KL) divergence due to its property of factorizing over the product distribu-
tions. With KL (7.28) can be simplified as follows:

min
{θi },{πj }

J∑

j=1

Lj∑

l=1

L∑

i=1

π
j
ilKL

(
q(zi |θi)

∥∥ q(zl |wjl)
)

subject to

Lj∑

l=1

π
j
il ≤ 1,

L∑

i=1

π
j
il = 1, π

j
il ∈ {0, 1}.

(7.29)

It remains to address the problem of estimating the number of global posterior
components L. Comparing (7.28) to (7.5), (7.11) and (7.22) we notice similarities;
however there is no term regularizing L, which previously stemmed from the IBP
prior. Claici et al. [14] propose the following L2,2,1 regularization term inspired by
the L2,1 matrix norm utilized by the approach of [12] for clustering using optimal
transport:

L∑

i=1

⎛

⎝
J∑

j=1

⎛

⎝
Lj∑

l=1

(π
j
il)

2

⎞

⎠

⎞

⎠
1/2

. (7.30)

This quantity is the L2,1 norm of the L × J matrix whose element at position (i, j)

is the norm of row i in πj .
We state the finalized KL-fusion objective function for completeness:

min
{θi },{πj }

J∑

j=1

Lj∑

l=1

L∑

i=1

π
j
ilKL

(
q(zi |θi)

∥∥ q(zl |wjl)
)+λ

L∑

i=1

⎛

⎝
J∑

j=1

⎛

⎝
Lj∑

l=1

(π
j
il)

2

⎞

⎠

⎞

⎠
1/2

subject to

Lj∑

l=1

π
j
il ≤ 1,

L∑

i=1

π
j
il = 1, π

j
il ∈ {0, 1}.

(7.31)

164 M. Yurochkin and Y. Sun

KL-fusion algorithm alternates between updating {πj } and θi at every iteration.
Due to the regularizer tying all {πj }, it is no longer amendable to the Hungarian
algorithm; however, relaxing the binary constraint π

j
il ∈ {0, 1} turns (7.31) into a

convex problem in {πj } amendable to convex problem solvers.
Updating θi requires solving a KL barycenter problem. Banerjee et al. [2] studied

this problem and showed that if the distributions are in the same exponential family,
then the natural parameter of the barycenter is equal to the average of the input
distributions natural parameters. Specifically, let {qi} be the input distributions in
the same exponential family Q with natural parameters {ηi}, and let λi ≥ 0 be a
set of weights with

∑
i λi = 1, then the solution to minq∈Q

∑n
i=1 λiKL(q

∥∥ qi) is
a distribution q∗ ∈ Q with natural parameter η∗ = ∑n

i=1 λiηi . In the context of
KL-fusion, given matching variables {πj }, this result allows us to update {θi} for
each i by solving analogous KL barycenter problem:

min
qi∈Q

J∑

j=1

L∑

l=1

π
j
ilKL

(
qi

∥∥ q(zl |wjl)
)
. (7.32)

7.5.2 KL-Fusion in Practice

We present a Gaussian mixture model simulated experiment analogous to the one
presented in Sect. 7.4.3. The key difference is that local datasets are now generated
with an arbitrary covariance matrix instead of an isotropic one. Instead of k-means,
clients now learn their local mixture model parameters with variational inference,
estimating both means and covariances. SPAHM can only utilize the means when
fusing the local models, while KL-Fusion can benefit from the covariance informa-
tion in the local posteriors. DP-clustering [6, 20] is a nonparametric clustering-based
baseline; VI-oracle is an idealized non-federated scenario where VI is performed on
the combined data of all clients. We present results in Fig. 7.5.

We emphasize Fig. 7.5b: when means of the client data generating mixture
components are similar, i.e., lower x-axis values, covariance information is crucial
for effective fusion. KL-fusion, as opposed to SPAHM, can utilize covariance
information and achieves lower estimation error as a result.

Another important application of KL-Fusion is federated learning of Bayesian
neural networks (BNN). Such neural networks excel at quantifying prediction
uncertainty and can be used to identify out-of-distribution examples at test time
instead of making wrongful predictions. We refer the reader to the experiments in
Section 5.4 of [14] for examples of federated learning of BNNs with KL-Fusion.

7 Communication-Efficient Model Fusion 165

Fig. 7.5 Federated learning of a Bayesian clustering model. Simulated experiment with Gaus-
sian mixture models. KL-fusion benefits from the posterior information improving upon SPAHM
estimation error, especially when means of all mixture components are hardly distinguishable (b).
(a) Heterogeneity in local datasets. (b) Separation between data generating means

Going beyond mean-field VI and KL
KL-fusion is specialized to posterior approximations that factorize the poste-
rior into a product of distributions of the quantities of interest, e.g., mean-field
VI. Such factorization is popular due to its scalability and computational
tractability, which is crucial especially in the context of BNNs. However it
enforces independence of the quantities of interest in the posterior, potentially
introducing large errors when approximating the true posterior. Another major
line of posterior learning techniques in Bayesian literature are the sampling
based methods, such as Markov Chain Monte Carlo (MCMC) or Hamiltonian
Monte Carlo (HMC) [4, 37]. These techniques are known to be less scalable,
but provide more accurate posteriors. Although there are dedicated packages,
e.g., Stan [13], providing efficient HMC implementations, they remain limited
to smaller models, i.e., inapplicable to BNNs.

The key challenge in extending KL-fusion to sampling based methods is
that posterior is now represented as a collection of samples, rather than a
product of distributions. Such extension would be non-trivial as it requires
new objective function formulation to perform posterior fusion. We also
note that KL-fusion considers KL divergence as a measure of closeness
between the fused global posterior and the client posteriors (recall the general
form in equation (7.28))—this choice was made out of convenience, i.e.,
KL divergence of product distributions is equal to the sum of KLs between
the corresponding terms yielding (7.29). To accommodate sampling based
posteriors it is likely more appropriate to consider Wasserstein distance to
take into account the geometry of the posterior samples. We note the related
work of [43] that studied posterior aggregation using Wasserstein barycenters;
however, it is limited to homogeneous data and models without permutation
invariances.

166 M. Yurochkin and Y. Sun

7.6 Fusion of Deep Neural Networks with
Low-Communication Budget

We have presented a series of model fusion algorithms capable of a single round
federated learning in various contexts. Despite the ideal communication efficiency,
these approaches have limitations when it comes to federated learning of deep neural
networks (DNN) as discussed toward the end of Sect. 7.3.3. In this section we review
the Federated Matched Averaging (FedMA) [47] algorithm that was designed to
address this limitation, however at the cost of additional communication rounds. On
a high level, FedMA capitalizes on the strength of PFNM in fusing shallow neural
networks: it fuses one layer at a time and asks the clients to fine-tune the remaining
layers at every communication round. FedMA is able to perform federated learning
of DNNs, requiring number of communication rounds equal to the number of layers.
In some federated learning applications communication constraints are guided by
the size of the model parameters exchanged between clients and the server, as
opposed to the number of times any amount of information is exchanged. FedMA is
particularly appealing in such scenarios as it only exchanges parameters of a single
layer at a time, resulting in the total communication cost of a single model size.
From this perspective, it could also be considered a single-round federated learning
algorithm.

7.6.1 Extending PFNM to Deep Neural Networks

Recall our discussion in Sect. 7.2 illustrating the permutation invariance nature of a
single hidden layer fully connected (FC) neural network. The idea behind equation
(7.3) can be extended to deep networks:

xn = σ(xn−1�
T
n−1Wn�n), (7.33)

where n = 1, . . . , N is the layer index and �0 is identity indicating non-ambiguity
in the ordering of the input features x = x0. �N is also an identity assuming clients
assign same output indices to the same classes. As before, σ(·) is a non-linearity
function, except for f (x) = xN where it could be an identity function or a softmax
if we want probabilities instead of logits. Notice that for N = 2 we recover (7.3).

Note that permutations of any consecutive pair of intermediate layers are
dependent, leading to a NP-hard combinatorial optimization problem. However we
can utilize PFNM by solving the problem recursively: suppose we have {�j,n−1} for
all J clients, then taking {�T

j,n−1Wj,n} to be PFNM inputs, we estimate {�j,n} and
proceed to the next layer. The base of recursion is {�j,0}, which is known to be an
identity permutation for any j . While this is a feasible solution, the problem remains
NP-hard and the quality of the approximation obtained with the aforementioned
procedure is likely to deteriorate for larger number of layers. The main idea of

7 Communication-Efficient Model Fusion 167

FedMA is to have clients to locally fine-tune layers n + 1 and above after fusing
layer n with PFNM. We summarize FedMA in Algorithm 7.2 [47] and proceed to
discuss treatment of convolutional and long short-term memory (LSTM) [25] layers.

Algorithm 7.2 Federated Matched Averaging (FedMA)

Input: local weights of N -layer architectures {Wj,1, . . . ,Wj,N }Jj=1 from J clients.
Output: global model weights {W1, . . . ,WN }

1: n = 1
2: while n ≤ N do
3: if n < N then
4: {�j }Jj=1 = PFNM

({Wj,n}Jj=1

)
(find permutation matrices matching neu-

rons)
5: Wn = 1

J

∑
j Wj,n�

T
j (compute global model layer n weights)

6: else
7: Wn = ∑K

k=1
∑

j pjkWjl,n where pk is fraction of data points with label k

on client j (perform basic weighted averaging for last layer)
8: end if
9: for j ∈ {1, . . . , J } do

10: Wj,n+1 ← �jWj,n+1 (permute the next-layer weights)
11: Train {Wj,n+1, . . . ,Wj,L} with {Wj,1, . . . ,Wj,n} frozen
12: end for
13: n = n + 1
14: end while

Convolutional layers. In convolutional neural networks (CNN), the permutation
invariance is with respect to the channels instead of neurons. Let Conv(x,W) denote
the convolutional operation on input x with weights W ∈ R

Cin×w×h×Cout
, where

Cin, Cout are the numbers of input/output channels and w, h are the width and height
of the filters. Applying any permutation to the output channel dimension of a layer
and the same permutation to the input channel dimension of the subsequent layer
does not change the CNN. Analogous to (7.33) we obtain

xn = σ(Conv(xn−1,�
T
n−1Wn�n)). (7.34)

We note that pooling operations do not affect the formulation as they act within
channels. To use PFNM or FedMA with CNNs, client j forms inputs to PFNM

matching procedure as {wjl ∈ R
D}Cout

n

l=1 , j = 1, . . . , J , where D is the flattened
Cin

n × w × h dimension of �T
j,n−1Wj,n.

168 M. Yurochkin and Y. Sun

LSTM layers
Permutation invariance of recurrent neural networks (RNN) such as LSTMs is
due to the invariant ordering of the hidden states. At a first glance, it appears
similar to the already familiar FCs and CNNs; however, the problem is more
nuanced in the RNN case. The subtlety is due to the hidden-to-hidden weights:
let L be the hidden state dimension and H ∈ R

L×L hidden-to-hidden weights,
then we can notice that any permutation of the hidden states affects both rows
and columns of H . To illustrate, suppose we want to match Hj and Hj ′ of two
clients, then to find optimal matching we need to minimize ‖�T Hj�−Hj ′ ‖2

2
over permutations �. This is known as a quadratic assignment problem that
is NP-hard [32] even in this simple case.

To complete the specification of PFNM to RNNs, we recall a basic RNN
cell

ht = σ(ht−1�
T H� + xtW�), (7.35)

where t is indexing the input at position t . PFNM can be applied to the
input-to-hidden weights {Wj } as in the case of fully connected networks,
then we can compute global hidden-to-hidden weights utilizing the estimated
matchings H = 1

J

∑
j �jHj�

T
j . Extending this to (multilayer) LSTM cells

is straightforward, see [47].
We note that this PFNM-based approach ignores the information in the

hidden-to-hidden weights when estimating the matchings. It may be possible
to improve this procedure by considering approximate optimization tools
from the optimal transport literature developed for the Gromov–Wasserstein
metric [23], which is a similar quadratic assignment problem; for exam-
ple, approximate algorithms for computing Gromov–Wasserstein barycenters
[39].

7.6.2 FedMA in Practice

We summarize the key experimental findings of [47]. In Fig. 7.6 we present
performance of PFNM and FedMA with convolutional neural networks: on MNIST
with LeNet [29] (4 layers) and on CIFAR10 with a more sophisticated VGG-9 [41]
(9 layers). PFNM attempts to perform federated learning in a single communication
round, while FedMA utilizes number of rounds equal to the number of layers in
the respective architectures. We see that while PFNM performs well on MNIST
with LeNet, i.e., it can handle moderate number of layers, its performance drops
significantly for a deeper network VGG-9. FedMA, on the other hand, successfully
executes federated learning with VGG-9 client models and achieves strong test

7 Communication-Efficient Model Fusion 169

LeNet on
MNIST

VGG9 on
CIFAR-10

0

20

40

60

80

100
Te

st
se

t A
cc

13 10

98

68

97

20

99

76

99

83

99

84

99

85

99

87

(a) Homogeneous client data

LeNet
MNIST

VGG9
CIFAR-10

LSTM
Shakespeare

0

20

40

60

80

100

11 10 8

78

41
35

89

13

24

99

75

46

99

74

40

93

64

39

94

67

36

99
91

51

1-Round FedAvg
Avg Local Acc
PFNM
Ensemble
FedMA
of Layer-Round
FedAvg
of Layer-Round
FedProx
Entire Data
Training

(b) Heterogeneous client data

Fig. 7.6 Comparison of federated learning methods with limited number of communications on
LeNet trained on MNIST; VGG-9 trained on CIFAR10; LSTM trained on Shakespeare dataset
over: (a) homogeneous and (b) heterogeneous data partitions

1 2 3 4 5 6 7 8
Amount of Comm. (GB)

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Te
st

 A
cc

FedAvg
FedProx
FedMA
Ensemble
Entire Data
Training

(a) VGG-9, CIFAR-10; message size

0 20 40 60 80 100
Round of Comm.

0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90

Te
st

 A
cc FedAvg

FedProx
FedMA
Ensemble
Entire Data
Training

(b) VGG-9, CIFAR-10; rounds

Fig. 7.7 Convergence rates of federated learning methods as a function of communication cost:
training VGG-9 on CIFAR10 with J = 16 clients

performance on CIFAR10 outperforming other federated learning baselines, i.e.,
FedAvg [34] and FedProx [40] restricted to the same number of communication
rounds.

FedMA can also be easily extended to benefit from additional communication
rounds by simply iterating over layers of client neural networks. In Fig. 7.7 we
present the comparison of performance of various federated learning techniques
as a function of the communication cost measured by the number of parameter
exchanges between the clients and the server, and by the size (measured in giga-
bytes) of the model parameters transmitted. FedMA is significantly more efficient
when the communication budget constraints stem from the compute infrastructure
bandwidth, i.e., communication is measured by the size of the messages being
exchanged.

170 M. Yurochkin and Y. Sun

7.7 Theoretical Understanding of Model Fusion

We follow up the preceding exposition of algorithms for model fusion with the
statistical properties of model fusion. From an algorithmic perspective, the main
challenge of model fusion is establishing a correspondence between separately
learned parameters on different clients. This is due to the presence of certain
invariances in the model parameterizations. To focus on the statistical issues, we
assume the correct correspondence has been established in this section. Equiva-
lently, we assume there are no invariances in the parameterization of the models
under consideration.

7.7.1 Preliminaries: Parametric Models

A statistical model is a (parameterized) family of probability distributions {Pθ |
θ ∈ �} on a sample space Z. A parametric model is a statistical model in which
the parameter θ is a vector in R

d .1 We note that this use of the term “model”
differs from its typical use in machine learning (ML). In ML, model usually refers
to a (parameterized) collection of prediction rules (e.g., all neural networks with
a certain architecture). To bridge this difference, associate with each probability
distribution in the statistical model a prediction rule, so there is a correspondence
between parameters and prediction rules.

In this setup, the main task is estimating θ∗ from independent identically
distributed (IID) observations Z1, . . . , ZN ∼ Pθ∗ . An estimator of θ∗ from Z1:N �
(Z1, . . . , ZN) is a random variable θ̂N � TN(Z1:N). We note that TN may be
complicated and/or implicitly defined: e.g., the maximum likelihood estimator
(MLE) is θ̂ = TN(Z1:N), where

TN(Z1:N) � arg maxθ∈�
1
N

∑N
i=1 log p(Z; θ), (7.36)

where p(·, θ) is the density of Pθ . In this chapter, we focus on asymptotically linear
estimators.

Definition 7.1 An estimator θ̂N � TN(Z1:N) is asymptotically linear iff there is
ϕ : Z → � (which may depend on θ∗) such that Eθ∗ [ϕ(Z)] = 0 and

√
N(̂θN − θ∗) = 1√

N

∑N
i=1 ϕ(Zi) + oP (1),

where oP (1) denotes a term that vanishes in probability as n grows. The random
vector ϕ(Zi) is called the influence function of Zi .

1 To keep things simple, we assume the set of all possible parameters �, called the parameter
space, is an open subset of Rd .

7 Communication-Efficient Model Fusion 171

Although the definition of asymptotically linear estimators seems restrictive,
most estimators we encounter in practice are asymptotically linear. For example,
the maximum likelihood estimator is asymptotically linear under certain technical
conditions on the underlying statistical model. To see this, we note that the
optimality of the MLE θ̂N implies it satisfies the zero-gradient optimality condition

0 = 1
N

∑N
i=1 ∂θ(Zi; θ̂N),

where (z; θ) � log p(z; θ) is the log-likelihood and its gradient with respect to θ

is the score. We expand the score at θ∗ to obtain

0 = 1
N

∑N
i=1 ∂θ(Zi; θ∗) + ∂2

θ (Zi; θ∗)(̂θN − θ∗) + O(‖̂θN − θ∗‖2
2).

Rearranging, we have

√
N(̂θN − θ∗) = (1

N

∑N
i=1 ∂2

θ (Zi; θ∗))−1(1√
N

∑N
i=1 ∂θ (Zi; θ∗) + O(

√
N ‖̂θN − θ∗‖2

2).

(7.37)

This is almost the definition of an asymptotically linear estimator. We recognize
1
N

∑N
i=1 ∂θ(Zi; θ∗) as an average of IID random matrices, so it converges to its

expected value (under certain tail conditions):

1
N

∑N
i=1 ∂θ(Zi; θ∗) = Eθ∗ [∂2

θ (Z, θ∗)] + OP (1√
N

).

We recognize Eθ∗ [∂2
θ (Z, θ∗)] as the Fisher information, and we denote it hereafter

as I (θ∗). As long as I (θ∗) is non-singular, we have

(1
N

∑N
i=1 ∂θ(Zi; θ∗))−1 = I (θ∗)−1 + OP (1√

N
).

It is known that the MLE converges at a 1√
N

-rate (under certain technical condi-

tions), so the O(
√

N ‖̂θN − θ∗‖2
2) term is OP (1√

N
). We combine these facts with

(7.37) to obtain

√
N(̂θN − θ∗) = 1√

N

∑N
i=1 I (θ∗)−1∂θ(Zi; θ∗)

+ OP (1√
N

) 1√
N

∑N
i=1 ∂θ(Zi; θ∗) + OP (1√

N
).

Finally, we recognize 1√
N

∑N
i=1 ∂θ(Zi; θ∗) is OP (1)2 to conclude

√
N(̂θN − θ∗) = 1√

N

∑N
i=1 I (θ∗)−1∂θ(Zi; θ∗) + OP (1√

N
).

2 Its variance is O(1).

172 M. Yurochkin and Y. Sun

Thus the MLE is asymptotically linear with influence function I (θ∗)−1∂θ(·; θ∗).
We wrap up with another example from ML. In supervised learning, the

observations Z are pairs (X, Y), where X is the feature vector and Y is the target,
and the unknown parameter is identified by a system of moment equations; i.e.,

θ = θ∗ ⇐⇒ Eθ∗
[
m(Z; θ) | X

] = 0, (7.38)

where m is a R
d -valued map. In this case, a natural estimator is a root of the

empirical version of the moment equations: θ̂N solves

0 = 1
N

∑K
i=1 m(Z; θ̂N). (7.39)

For example, consider linear regression:

θ̂N � arg minθ∈Rd
1
N

∑n
i=1

1
2 (Yi − θT Xi)

2.

The optimality conditions of the least-squares cost function are the normal equa-
tions:

0 = 1
N

∑n
i=1 Xi(Yi − θT Xi). (7.40)

We note that the normal equations have the form of (7.39). It is not hard to check
that the population counterpart of the normal equations

0 = Eθ∗
[
X(Y − θT X) | X

]

uniquely identify θ∗. A similar Taylor expansion argument shows that

√
N(̂θN − θ∗) = 1√

N

∑N
i=1 V (θ∗)−1m(Zi; θ∗) + OP (1√

N
),

where V (θ) � Eθ∗ [∂θm(Z, θ)]. Thus this estimator is asymptotically linear with
influence function V (θ∗)−1m(·; θ∗).

7.7.2 The Benefits and Drawbacks of Model Fusion in
Federated Settings

In federated learning, the dataset Z1:N is distributed across J clients. To keep things
simple, we assume the samples are distributed evenly across the clients; i.e., each
client has n = N

J
samples. Recall in model fusion, each client independently

estimates θ∗ from its data to obtain an estimator. The clients send their estimators to

7 Communication-Efficient Model Fusion 173

a server, and the server averages the client estimators to obtain a global estimator:

θ̃N � 1
J

∑J
j=1 θ̂n,j ,

where θ̂n,j is the j -th client’s estimate of θ∗ from its n samples. If the θ̂n,j ’s is
asymptotically linear, then

θ̃N − θ∗ = 1
J

∑J
j=1 θ̂n,j − θ∗ = 1

N

∑J
j=1

∑n
i=1 ϕ(Zj,i) + oP (1√

n
), (7.41)

where ϕ is the influence function of the θ̂n,j ’s, and Zj,i is the i-th sample on the j -th
client. Ignoring the oP (1√

n
) term, we see that θ̃N is the average of N IID random

variables, so the fluctuation of θ̃N around θ∗ is OP (1√
N

). This is the same order as
the hypothetical centralized estimator. Further, even the asymptotic distribution of
θ̃N matches that of θ̂N :

√
n(θ̃N − θ∗) −

√
n(θ̂N − θ∗) = oP (1).

In other words, the performance of θ̃N and θ̂N in estimating θ∗ is indistinguishable.
Unfortunately, there are a few caveats to the rosy picture of model fusion from

the preceding section. The first is ignoring the oP (1√
n
) term in (7.41). This is only a

good heuristic when the oP (1√
n
) is asymptotically negligible compared to the linear

term. Recalling the MLE example in Sect. 7.7.1, we see that the oP (1√
n
) term hides

terms that are actually OP (1
n
). In order for the terms that we neglected to be actually

(asymptotically negligible), we must have J �
√

N . In other words, the number of
clients cannot increase arbitrarily without also increasing the number of samples per
client. This is less than ideal because it precludes model fusion from scaling to large
numbers of clients without upgrading the computational and storage capabilities of
the clients.

7.8 Conclusion

We conclude the chapter with recommendations along three directions: (1) summary
for practitioners considering model fusion in federated learning applications; (2)
promising directions for developing new model fusion and federated learning
algorithms; and (3) open problems in theoretical understanding of model fusion.

Practical considerations. The key strength of model fusion is the ability to
perform federated learning in a single communication round. This is the only
solution in problems where clients have models that have been trained on data that
is no longer available. There are several reasons why data may not be available. For
example, the data may have been deleted to comply with regulations prohibiting

174 M. Yurochkin and Y. Sun

prolonged data storage such as GDPR. The data may also have been lost due to
system failures or other unexpected events. Even in applications in which the data is
available, setting up the compute and network infrastructures that support frequent
communications between the clients and the server, required by optimization based
methods such as Federated Averaging, could be expensive or impractical.

We have seen that model fusion is especially effective on simpler models, such
as unsupervised models and neural networks with few layers. Unfortunately, the
performance of model fusion deteriorates on deep neural networks. For such deep
neural networks we recommend FedMA. It does require several communication
rounds, precluding the legacy model use case, but it can greatly simplify network
load due to its memory efficiency.

As we saw, two key limitations of model fusion and FedMA are

1. They are more challenging to implement than Federated Averaging in practice
due to the complexity of the matching algorithms.

2. They do not scale to larger number of clients.

In comparison, Federated Averaging has lower communication efficiency, but is
easier to implement and scales readily to thousands of clients due to its simplicity.
We note that IBM Federated Learning [33] provides some of the model fusion
functionality that alleviates the implementation barriers.

Promising directions for advancing model fusion methodology. Throughout
the chapter we have outlined a series of directions for extending and improving
model fusion: identifying invariance classes beyond permutations by consider-
ing loss landscape of neural networks discussed in Sect. 7.2; developing more
sophisticated methods for estimating matching variables for fusion of deep neural
networks in Sect. 7.3.3; extending model fusion to clients with time stamps in
Sect. 7.4.3; developing posterior fusion techniques supporting sampling methods
(e.g., MCMC) and other distribution divergences (e.g., Wasserstein) to broaden KL-
fusion applications in Sect. 7.5.2; considering approximate optimization techniques
for quadratic assignment to improve the fusion of LSTMs in Sect. 7.6.1. In addition,
we note one limitation of FedMA that is worth exploring: current version of
FedMA assumes that all clients communicate their corresponding layer weights at
every iteration; however, in federated learning applications with large number of
clients, it is more practical to consider a stochastic setting, i.e., a random subset
of clients communicating at every round. An interesting direction for future work
is to study how this stochasticity can be accounted for in the layer-wise FedMA
learning algorithm. Finally, we recommend exploring model fusion applications
outside of federated learning. For example, experiment presented in Figure 4 in
[47] demonstrates that model fusion has potential to correct biases in the data, i.e.,
reduce the effect of spurious correlations in the client models on the global model.

Open problems in theoretical understanding of model fusion. As we saw, a key
statistical limitation of model fusion is the

√
N -barrier. This barrier arises due to

the bias in the clients’ estimates of the model parameters. Although it is hard to
overcome this barrier in general, it may be possible to develop estimators with

7 Communication-Efficient Model Fusion 175

smaller biases in special cases that permit model fusion to scale to larger number of
clients.

References

1. Agueh M, Carlier G (2011) Barycenters in the Wasserstein space. SIAM J Math Anal 43:904–
924

2. Banerjee A, Dhillon IS, Ghosh J, Sra S (2005) Clustering on the unit hypersphere using von
Mises-Fisher distributions. J Mach Learn Res 6:1345–1382

3. Bardenet R, Doucet A, Holmes C (2017) On Markov chain Monte Carlo methods for tall data.
J Mach Learn Res 18(1):1515–1557

4. Betancourt M (2017) A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint
arXiv:170102434

5. Bishop CM (2006) Pattern recognition and machine learning. Springer, New York
6. Blei DM, Jordan MI (2006) Variational inference for Dirichlet process mixtures. Bayesian Anal

1:121–143
7. Blei DM, Kucukelbir A, McAuliffe JD (2017) Variational inference: a review for statisticians.

J Am Stat Assoc 112(518):859–877
8. Breiman L (2001) Random forests. Mach Learn 45:5–32
9. Broderick T, Boyd N, Wibisono A, Wilson AC, Jordan MI (2013) Streaming variational Bayes.

In: Advances in neural information processing systems
10. Bui TD, Nguyen CV, Swaroop S, Turner RE (2018) Partitioned variational inference: a unified

framework encompassing federated and continual learning. arXiv preprint arXiv:181111206
11. Campbell T, How JP (2014) Approximate decentralized Bayesian inference. arXiv:14037471
12. Carli FP, Ning L, Georgiou TT (2013) Convex clustering via optimal mass transport.

arXiv:13075459
13. Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, Brubaker MA, Guo J,

Li P, Riddell A et al (2017) Stan: a probabilistic programming language. J Stat Softw 76:1–32
14. Claici S, Yurochkin M, Ghosh S, Solomon J (2020) Model fusion with Kullback-Leibler

divergence. In: International conference on machine learning
15. Cooper Y (2018) The loss landscape of overparameterized neural networks. arXiv preprint

arXiv:180410200
16. Das R, Zaheer M, Dyer C (2015) Gaussian LDA for topic models with word embeddings. In:

Proceedings of the 53rd annual meeting of the association for computational linguistics and
the 7th international joint conference on natural language processing (Volume 1: Long Papers)

17. Dietterich TG (2000) Ensemble methods in machine learning. In: International workshop on
multiple classifier systems

18. Draxler F, Veschgini K, Salmhofer M, Hamprecht F (2018) Essentially no barriers in neural
network energy landscape. In: International conference on machine learning

19. EU (2016) Regulation (EU) 2016/679 of the European Parliament and of the Council of 27
April 2016 on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation). Official Journal of the European Union

20. Ferguson TS (1973) A Bayesian analysis of some nonparametric problems. Ann Stat 1:209–
230

21. Garipov T, Izmailov P, Podoprikhin D, Vetrov D, Wilson AG (2018) Loss surfaces, mode
connectivity, and fast ensembling of DNNs. arXiv preprint arXiv:180210026

22. Ghahramani Z, Griffiths TL (2005) Infinite latent feature models and the Indian buffet process.
In: Advances in neural information processing systems

23. Gromov M, Katz M, Pansu P, Semmes S (1999) Metric structures for Riemannian and non-
Riemannian spaces, vol 152. Birkhäuser, Boston

176 M. Yurochkin and Y. Sun

24. Hasenclever L, Webb S, Lienart T, Vollmer S, Lakshminarayanan B, Blundell C, Teh YW
(2017) Distributed Bayesian learning with stochastic natural gradient expectation propagation
and the posterior server. J Mach Learn Res 18:1–37

25. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735–1780
26. Hsu TMH, Qi H, Brown M (2019) Measuring the effects of non-identical data distribution for

federated visual classification. arXiv preprint arXiv:190906335
27. Jordan MI, Ghahramani Z, Jaakkola TS, Saul LK (1999) An introduction to variational

methods for graphical models. Mach Learn 37:183–233
28. Kuhn HW (1955) The Hungarian method for the assignment problem. Nav Res Logist (NRL)

2:83–97
29. LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998) Gradient-based learning applied to

document recognition. In: Proceedings of the IEEE
30. Li H, Xu Z, Taylor G, Studer C, Goldstein T (2017) Visualizing the loss landscape of neural

nets. arXiv preprint arXiv:171209913
31. Lloyd S (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28:129–137
32. Loiola EM, de Abreu NMM, Boaventura-Netto PO, Hahn P, Querido T (2007) A survey for

the quadratic assignment problem. Eur J Oper Res 176:657–690
33. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y, Radhakrishnan J,

Verma A, Sinn M et al (2020) IBM federated learning: an enterprise framework white paper
v0. 1. arXiv preprint arXiv:200710987

34. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics

35. Minka TP (2001) Expectation propagation for approximate Bayesian inference. In: Conference
on uncertainty in artificial intelligence

36. Neal RM (2012) Bayesian learning for neural networks. Springer Science & Business Media,
Berlin/Heidelberg

37. Neal RM et al (2011) MCMC using Hamiltonian dynamics. Handb Markov Chain Monte Carlo
2(11):2

38. Opper M (1998) A Bayesian approach to on-line learning. On-line Learning in Neural
Networks

39. Peyré G, Cuturi M, Solomon J (2016) Gromov-Wasserstein averaging of kernel and distance
matrices. In: International conference on machine learning

40. Sahu AK, Li T, Sanjabi M, Zaheer M, Talwalkar A, Smith V (2018) On the convergence of
federated optimization in heterogeneous networks. arXiv preprint arXiv:181206127

41. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:14091556

42. Singh SP, Jaggi M (2019) Model fusion via optimal transport. arXiv preprint arXiv:191005653
43. Srivastava S, Cevher V, Dinh Q, Dunson D (2015) Wasp: scalable Bayes via barycenters of

subset posteriors. In: Artificial intelligence and statistics
44. Teh YW, Grür D, Ghahramani Z (2007) Stick-breaking construction for the Indian buffet

process. In: Artificial intelligence and statistics
45. Thibaux R, Jordan MI (2007) Hierarchical Beta processes and the Indian buffet process. In:

Artificial intelligence and statistics
46. Wainwright MJ, Jordan MI et al (2008) Graphical models, exponential families, and variational

inference. Found Trends® Mach Learn 1:1–305
47. Wang H, Yurochkin M, Sun Y, Papailiopoulos D, Khazaeni Y (2020) Federated learning with

matched averaging. In: International conference on learning representations
48. Yurochkin M, Agarwal M, Ghosh S, Greenewald K, Hoang N (2019) Statistical model

aggregation via parameter matching. In: Advances in neural information processing systems
49. Yurochkin M, Agarwal M, Ghosh S, Greenewald K, Hoang N, Khazaeni Y (2019) Bayesian

nonparametric federated learning of neural networks. In: International conference on machine
learning

50. Yurochkin M, Fan Z, Guha A, Koutris P, Nguyen X (2019) Scalable inference of topic evolution
via models for latent geometric structures. In: Advances in neural information processing
systems

Chapter 8
Federated Learning and Fairness

Annie Abay, Yi Zhou, Nathalie Baracaldo, and Heiko Ludwig

Abstract As federated learning utilization quickly expands to a variety of indus-
tries, examining its interactions with, and impact on, machine learning bias becomes
increasingly relevant. This chapter is dedicated to the discussion of social fairness
in federated learning, as opposed to fairness in equal party-to-party contributions
to a global model. Social fairness in machine learning, while multi-faceted, is
primarily concerned with techniques to verify that machine learning predictions
are fair in spite of dataset features traditionally and historically documented as
inducing discriminatory bias, i.e., race, sex, etc. This chapter reviews causes of bias
in machine learning that are related to federated learning, the unique challenges that
federated learning presents in fairness, and notable work in the field that covers a
variety of approaches toward creating and measuring fairer federated models.

8.1 Introduction

As machine learning (ML) becomes increasingly ingrained into the daily lives of
the human population, research in the creation of machine learning models that are
discrimination-aware has sky-rocketed [11], as well as documentation of the adverse
effects of their absence.

In [4, 11], a ML algorithm used by judges in more than 12 states was found
twice as likely to incorrectly classify black defendants as high-risk for re-offending,
and white defendants as low-risk. Its predictions impacted if defendants “should
be let out on bail before trial, [the] type of supervision on inmates. . . [and] had
an impact on the length of [their] sentences.” In August 2020, over 300,000
students across the United Kingdom received ML-generated results for their A-
level exams, a critical component for college applications. The algorithm took
into account multiple features, but included information such as students’ school’s

A. Abay (�) · Y. Zhou · N. Baracaldo · H. Ludwig
IBM Research – Almaden, San Jose, CA, USA
e-mail: anniek@ibm.com; yi.zhou@ibm.com; baracald@us.ibm.com; hludwig@us.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_8

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_8&domain=pdf
mailto:anniek@ibm.com
mailto:yi.zhou@ibm.com
mailto:baracald@us.ibm.com
mailto:hludwig@us.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_8

178 A. Abay et al.

historical performance. Socioeconomic status affects student success (i.e., being
able to afford a tutor, access to paid resources, more time for schoolwork v.
working a job), and this feature consideration (among others) disadvantaged
students from state-funded schools and aided students from private schools. Stu-
dents from state-funded schools received an average of a full-letter grade below
their teacher-predicted scores. Days of protests led to the government’s deci-
sion to disregard the model’s results and award students their teacher-predicted
scores.

As mentioned in previous chapters, federated learning (FL) has emerged as
a methodology to train machine learning models collaboratively, models that
maintain the data privacy of all parties involved. FL’s prioritization of data privacy
has increased the breadth of its utilization to include various industries with a
range of applications. This chapter reviews the discussion of bias and fairness
in federated learning, including the similarities and differences in bias mitigation
methods, challenges in the federated learning setting, as well as approaches
and important gaps affecting the creation and measurement of fairer federated
models.

What is Fairness?
Fairness does not have one unified definition and changes based on the context it is
provided in. Merriam Webster defines “fairness” as “the quality or state of being fair,
especially :fair or impartial treatment: lack of favoritism toward one side or another”
[24]. What makes something impartial? How is favoritism enCOMPASsed? How
does the perception of these impact the way solutions are designed? We explore
these questions in later sections.

Contribution Fairness and Social Fairness: The conversation around analyzing
fairness in the context of federated learning is separated into two main tracks:
contribution fairness and social fairness.

• Contribution fairness focuses on how different federated learning parties impact
the global model (i.e., are parties with a smaller amount of training data being
underrepresented in favor of parties with larger amounts of data?). Any type of
dataset (i.e., MNIST [29]) can be utilized when assessing contribution fairness,
as we are examining the party’s performance via accuracy and F1 score, and
overall impact on the global model.

• Social fairness focuses on how data attributes that are historically documented as
inducing discriminatory bias (i.e., sex, race etc.) impact a data sample’s predicted
label. Consequently, datasets utilized in ML fairness are about people, such as the
Adult dataset [22], which classifies whether individuals have an annual income
above or below $50,000.

8 Federated Learning and Fairness 179

8.2 Preliminaries and Existing Mitigation Methods

8.2.1 Notation and Terminology

This chapter focuses on social fairness. Two popular perspectives of social fairness
within machine learning are individual fairness and group fairness. Individual
fairness is based on the idea that similar individuals should receive similar treatment,
regardless of their sensitive attribute value. Group fairness is based on the idea
that underprivileged groups as a whole should receive treatment similar to that of
privileged groups.

Sensitive attributes are dataset features that historically have been used to
discriminate against a group of people. These include sex, race, age, religion, etc.
Bias mitigation methods are usually designed around sensitive attributes, which we
elaborate on in Sect. 8.2.2. These sensitive attributes will separate a dataset into a
privileged group and underprivileged group based on both the value of the sensitive
attribute and what we are analyzing in the dataset.

For example, the Adult and COMPAS datasets are two popular datasets for social
fairness analysis. The Adult dataset is composed of data from the 1994 Census
database, and as mentioned, classifies whether the individuals in the dataset have
an annual income above or below $50,000. If sex is the sensitive attribute we
are examining, data sample with a sensitive attribute value of male would be in
the privileged group, and those with a sensitive attribute value of female would
be in the underprivileged group. This is based on the documented discrepancy in
income between males and females [27]. The COMPAS (Correctional Offender
Management Profiling for Alternative Sanctions) dataset is composed of data
collected from defendants of Broward County, Florida from 2013 and 2014; it
contains predictions as to whether a person who has committed a crime will do so
again. If sex is again the sensitive attribute we are examining, data samples with a
sensitive attribute value of female would be in the privileged group, and those with
a sensitive attribute value of male would be in the underprivileged group. This is
based on the documented discrepancy in jail sentencing between males and females
[28].

Favorable labels are labels that are considered advantageous, based on
the dataset and what we are examining. For example, in the Adult dataset,
“above 50,000” is the favorable label, and “below 50,000” is the unfavorable
label. Similarly, in the COMPAS dataset, the favorable label is “will not
commit a crime again” and “will commit a crime again” is the unfavorable
label.

D := (X, Y) is the training dataset, where X will refer to the feature set and
Y will refer to the label set. The set of sensitive attributes is S ⊆ X, and s/si is
a specific sensitive attribute value. In the same vein, x/xi and y denote a feature
vector and label, respectively.

180 A. Abay et al.

Fig. 8.1 Types of Bias Mitigation Methods

8.2.2 Types of Bias Mitigation Methods

Machine learning algorithms are categorized into three categories of methods to
attack bias, organized by which phase of training these methods are applied; these
are pre-processing, in-processing, and post-processing algorithms, as illustrated in
Fig. 8.1.

Pre-processing methods [9, 10, 17, 32] are designed to be utilized prior to when
training begins, and focus on reducing the bias in the dataset. These methods often
work in one of two ways. One method is to assign sample weights to different data
points; these sample weights can be calculated based on the sensitive attribute value,
label, or other attributes in the feature set etc. The protocols to do this vary by
method. Pre-processing methods work well for federated learning for two reasons.
Firstly, they by nature can be paired with any type of machine learning model, which
increases the pool of users. Secondly, each party can perform data pre-processing
on their own without affecting the learning process, which helps maintain our
protection of data privacy.

In-processing methods [8, 12, 20, 31] are utilized during training, and focus on
reducing bias as the model learns. These usually will reduce bias by adjusting
the optimization problem, and this can be done in more than one way; for
example, by adding a regularizer term to the objective function that reduces a
“prejudice index” [21]. Unlike pre-processing methods, in-processing methods have
application constrictions, and most methods are linked to specific types of models
they can be used with.

Post-processing methods [13, 18, 26] are utilized after training is complete,
and focus on reducing bias in the test set’s label predictions. These methods
treat the model as a black box and use a protocol to change predicted labels
to be more fair. One such example is [13], which uses a linear program to
find probabilities with which to change data point labels, based on a fairness
metric.

8 Federated Learning and Fairness 181

8.2.3 Data Privacy and Bias

The primary concern in creating bias mitigation methods that are suitable for
federated learning is to design the methods to maintain the privacy of all parties
involved. The majority of bias mitigation methods are created with centralized
machine learning in mind and require full access to the data to complete the
protocol, access like sensitive attribute values, for example. While some FL-friendly
methods work around this [14, 15], this is still a barrier to broad usage of bias
mitigation techniques in federated learning.

In the next section, we will examine sources of bias in machine learning, and
how addition sources come into play when we look at bias mitigation in federated
learning.

8.3 Sources of Bias

The vast majority of bias mitigation approaches are designed with centralized
machine learning in mind. This design approach, more often than not, means the
method will require a level of data access that is not compatible with the privacy
protocol of federated learning. As mentioned beforehand, evaluating machine
learning models for bias oftentimes requires information, such as data points’
sensitive attribute value. We will examine how machine learning models learn bias,
and specifically analyze bias factors unique to federated learning models. Figure 8.2
provides an overview.

8.3.1 Centralized and Federated Causes

Both centralized and federated learning are impacted by what are called “tradi-
tional” sources of bias, which include but are not limited to: prejudice, exclusion
bias, negative legacy, and underestimation.

Prejudice: Kamishima et al. [21] defines prejudice as a “statistical dependence
between a sensitive variable. . . and the target variable. . . or a non-sensitive variable.”
This is further broken down into three types of prejudice: direct, indirect, and
latent. Direct prejudice is found when a sensitive attribute is utilized in training
the machine learning model. The model predictions are then defined by [25] as
containing direct discrimination. This form of prejudice can be sidestepped by
removing the sensitive attribute from the training set. This however leads us to
indirect prejudice, where in the absence of direct prejudice there is a “statistical
dependence between a sensitive variable and a target variable” [21]. In the case
where our feature set, outside of the sensitive attribute, has little variance, the
sensitive attribute is still highly correlated with the label. In another vein, latent

182 A. Abay et al.

Fig. 8.2 Causes of Bias that Affect Federated Learning Models

prejudice is found when there is high correlation between the sensitive attribute and
another feature, or multiple features. While in this case the sensitive attribute does
not directly impact the label set Y, its impact still influences the predicted labels,
and prejudice is felt.

Exclusion Bias: Exclusion bias [11] is the removing of data features, during
data pre-processing or “cleaning,” which results in information relevant to the
model predictions being excluded from training. Ghoneim [11] uses an example
of training a model with data of passengers on the Titanic, predicting whether a
passenger would have survived the accident. In this example, randomized passenger
ID number is removed during pre-processing as it is deemed inconsequential
data. Unknown to the user training the model, passenger ID was correlated with
passenger room number, in that passengers with larger ID numbers were passengers
with rooms farther away from lifeboats, meaning it was more difficult to escape.

Negative legacy: Also known as sampling bias [16], negative legacy [21] is defined
as data sampling or data labeling that is discriminatory. This is a cause of bias in
machine learning models that is both quite broad, but potentially difficult to detect
in application.

Underestimation: Underestimation occurs when a trained machine learning model
is not fully converged, which is the effect of a training dataset that is limited in size.
In [21], underestimation is measured by calculating the Hellinger distance between
the training set distribution and model-predicted distribution of the training set.

8.3.2 Federated Learning-Specific Causes

In addition to traditional bias sources, federated learning has additional, unique,
factors that contribute to a federated model’s bias sources. These are defined in [1]
as data heterogeneity, fusion algorithms, and party selection and subsampling.

8 Federated Learning and Fairness 183

8.3.2.1 Data Heterogeneity

Each party engaged in a federated learning protocol has its own training and testing
set, used to train its local model. As federated learning requires data privacy, each
party’s data composition is unknown to other parties and unknown to the aggregator.
Between them, parties may have very different data distributions, which differ
largely from the overall composition. Certain federated learning processes allow
for dynamic participation of parties, where over the course of the federated learning
process, parties may leave and return for later rounds of training. Parties leaving
and returning in the FL process may highly impact the overall data composition,
both locally and holistically. It is not clear how much this affects the global
model.

For example, say a chain of hospitals wants to use federated learning to train an
image classifier for detecting heart disease. Each hospital, in a different location,
trains their local model with their patients’ data. A hospital in a predominantly
minority neighborhood of a larger, predominantly non-minority city is likely to have
a very different set of patients in its local dataset, relative to the overall composition
of the hospital chain’s set of patients [1].

8.3.2.2 Fusion Algorithms

The fusion algorithm dictates how party updates are combined, and subsequently
incorporated into the global model. As such, they can influence the way that bias is
measured in the final model. Some fusion algorithms perform a simple average of
parties’ model weights, while others perform different weighted averages, one for
example is based on party size (i.e., parties with larger datasets influence the global
model more than parties with smaller datasets) [23]. Depending on the application
of the federated learning task, this could have negative effects on sensitive groups.

Researchers have proposed examining parties’ updates against the global model’s
performance to calculate to what extent model updates will affect the global model’s
behavior. Many solely examine how model accuracy is affected, which does not
inform about the effect on model bias. Some robust aggregation methods will
exclude party replies altogether if dissimilar to those of other parties [7, 30], and
in a real-world FL task would easily exclude a minority group, for example.

In the same hospital example as above, some hospitals training together have very
different dataset sizes. This could be based on some hospitals being located in areas
where the population is socioeconomically disadvantaged, thereby those hospitals
have less patients that can afford an expensive medical procedure; these hospitals’
datasets would be smaller. Involvement in a federated learning process that rewards
larger party size with more global model influence would diminish these hospitals’
contributions to the global model, and incorrectly give the impression that the model
is comprehensively learning from the hospital chain’s set of patients. This example
can be easily reproduced for situations where other sensitive attributes like age, sex,

184 A. Abay et al.

or race can affect whether or not a user’s data is systemically kept out of a federated
learning task [1].

8.3.2.3 Party Selection and Subsampling

FL scenarios can usually be categorized into two main groups: (A) parties are small
in data and the number of parties is very large, i.e., where parties are cell phones,
or (B) parties are large in data and the number of parties is small, i.e., where parties
are companies. At each round of training, the aggregator will query parties for their
model updates, which are then incorporated into the global model. However, not all
parties may be involved in every round of training [5, 30], which can introduce
bias. Especially in FL tasks with a large number of parties, the aim may be to
satisfy a quota of parties’ updates to begin the next round of training. Depending
on the federated learning task, different attributes, some bias-correlated, may affect
whether a party is included in a training round.

Consider a scenario where a company wants to train a model to improve the
user experience in its cell phone app, and engages users in a FL process. In this
example, each phone is a party, and the question of which model updates are
included is dependent on network speed. Faster devices (i.e., newer and more
expensive) are likely to be represented at disproportionately higher rates than slower
devices. Likewise, devices in regions with slower networks may be represented
at disproportionately lower rates. Inclusion here is correlated with socioeconomic
status, and is a systemic source of bias [1].

8.4 Exploring the Literature

8.4.1 Centralized Methods

As mentioned in Sect. 8.2.2, many bias mitigation methods are categorized into
3 categories: pre-processing, in-processing, and post-processing. Examples are
included below:

Pre-processing: Reweighing [17] is a bias mitigation method that assigns weights
to data points, based on the pairing of their sensitive attribute value and class label.
These weights are calculated as the ratio of expected probability of the pairing, over
the observed probability of the pairing.

W(s, y) := Pexp(s,y)

Pobs(s,y)
= |(X∈D|S=s)||(X∈D|Y=y)|

|(X∈D|S=s)∧Y=y||D| , ∀s ∈ S, y ∈ Y. (8.1)

Below is a sample calculation table for the Adult dataset [22]. In this dataset, the
sensitive attributes are sex and race. The label is classification of income (above or
below 50,000 dollars/year), and as women and people of color are both historically

8 Federated Learning and Fairness 185

Table 8.1 Sample reweighing weights calculation for Adult dataset

AGE EDUCATION SEX RACE CLASS WEIGHTsex WEIGHTrace

21 MASTERS FEMALE WHITE >50K 1.25 0.83

43 HS-GRAD FEMALE BLACK ≤50K 0.75 0.75

38 BACHELORS MALE WHITE >50K 0.83 0.83

45 12TH FEMALE WHITE ≤50K 0.75 1.5

43 12TH MALE BLACK ≤50K 1.5 0.75

19 MASTERS FEMALE BLACK >50K 1.25 1.25

61 BACHELORS MALE WHITE >50K 0.83 0.83

29 ASSOC-VOC MALE BLACK >50K 0.83 1.25

disadvantaged in relation to pay, the privileged groups are {Male, White} and
underprivileged groups are {Female, Black}.

As seen in Table 8.1, reweighing weights change based on the targeted sensitive
attribute, as this affects the calculated probabilities, which in turn changes the
weights.

In-processing: Prejudice Remover [20] is an in-processing bias mitigation method
proposed for centralized ML. This method incorporates a fairness-aware regularizer,
R(D,�), to the logistic loss function as follows:

L(D;�) + λ
2 ||�||22 + ηR(D,�). (8.2)

L is the regular loss function, ‖�‖2
2 is a 2 regularizer that protects against over-

fitting, R is the fairness regularizer, � is the set of model parameters, and λ and η

are regularization parameters. R minimizes the amount of bias the model learns by
reducing the prejudice index [20], which measures the learned prejudice from the
training dataset.

R = ∑
(xi ,si)∈D

∑
y∈0,1M[y|xi, si;�] ln P̂ r[y|si]

P̂ r[y] , (8.3)

M[y|xi, si;�] is the conditional probability of prediction, and P̂ r is the sample
distribution induced by the training dataset. Evaluating R requires knowledge of
local data distribution and may result in data leakage if the evaluation is performed
globally.

Post-processing: Reject Option-Based Classification (ROC) [19] is a bias mitiga-
tion method that changes classification labels based on a calculated “critical region.”

Within this critical region, the method changes labels by assigning positive labels
to underprivileged group members and negative labels to privileged group members.

186 A. Abay et al.

Algorithm 8.1 Reject Option-Based Classification

Input: {Fk}Kk=1 (K ≥ 1 probabilistic classifiers trained on D), X (test set), Xd

(deprived group), θ

Output: {Ci}Mi=1 (labels for instances in X)
Critical Region:
∀Xi ∈ {Z|Z ∈ X, max[p(C+|Z), 1 − p(C+|Z)] < θ}:
if X ∈ Xd then

Ci = C+
end if
if X /∈ Xd then

Ci = C−
end if
Standard Decision Rule:
∀Xi ∈ {Z|Z ∈ X, max[p(C+|Z), 1 − p(C+|Z)] ≥ θ}:
Ci = argmax{C+,C−}[p(C+|Xi), p(C−|Xi)]

8.4.2 Adapting Centralized Methods for FL

In creating bias mitigation methods for federated learning, the primary concern is
how to design methods that maintain privacy requirements, when many methods
require access to the entire training set. This is not possible in FL. Figure 8.3
illustrates the different types of bias mitigation in a federated learning process.

In the previous section we discussed Reweighing, a pre-processing method used
in centralized learning. It is adapted into two FL-friendly methods in [2], called
local reweighing and global reweighing with differential privacy.

In local reweighing, each party computes reweighing weights, W(s, y),∀s, y,
locally based on its own training dataset. Each party then has a unique set of
reweighing weights, which are utilized for local training. Parties do not need to
communicate with the aggregator and reveal neither their sensitive attributes nor
data sample information; data privacy is maintained. Experiments in [2] demonstrate
both high accuracy and effective bias mitigation with local reweighing and partial
local reweighing, where only a subset of the parties employ the bias mitigation
method. This makes the method particularly suited for federated learning, where
parties may experience dropouts, or only a subset of parties may care to participate
in bias mitigation practices.

In global reweighing with differential privacy (DP), global reweighing weights
W(s, y) are not unique to each party. If parties agree to share sensitive attribute
information and noisy data statistics (noisy by adding DP), they can use this method
to create a global set of weights that all parties use. Parties can control the amount
of noise added to their data statistics via the value of the ε parameter, in the range
[0,1]. In [2], experiments on the Adult dataset [22] demonstrate this method is both
effective in mitigating bias and maintains high accuracy with ε values as low as 0.4.

8 Federated Learning and Fairness 187

Fig. 8.3 Bias Mitigation in FL | (A) Pre-processing, (B) In-processing, (C) Post-processing

Unlike local reweighing, this method is not compatible with dynamic participation,
as this would change the overall data composition and therefore the global weight
calculations.

Federated prejudice removal, also proposed in [2], is a FL-friendly adaptation of
Prejudice Remover [20]. Each party locally uses the Prejudice Remover algorithm
to create a less biased local model and shares only the model parameters with the
aggregator. The aggregator can then employ existing FL algorithms to update the
global model, and bias is iteratively mitigated as training continues.

8.4.3 Bias Mitigation Without Sensitive Attributes

As mentioned in Sect. 8.3, prejudice has to do with a dependence of labels Y or
feature set vectors xi on a sensitive attribute S. Papers working around this have
started to explore the creation of bias mitigation techniques without the presence of
sensitive attributes in the training set.

Hashimoto et al. [14] works to create fairer models via distributionally robust
optimization (DRO). This work utilizes DRO to minimize worst-case risk across
all groups in the training set, over using empirical risk minimization (ERM),

188 A. Abay et al.

which only minimizes average loss. By doing so, ERM results in representation
disparity, where a model has high overall accuracy, but much lower accuracy for
an underprivileged group. The underprivileged group then contributes less to the
global federated model; negative effects of this are elaborated on in Sect. 8.3.
Representation disparity forms the definition of bias in [14], and by minimizing
representation disparity, this method also addresses disparity amplification. This is
where bias is magnified by a change in data distribution, in that the representation of
the underprivileged group decreases over time because of poor model performance
for underprivileged group members.

This work’s usecase of a speech recognizer that does not perform well on
minority accents is an apt example. Users do not want to use services that do not
work well for them, and will stop doing so. With the speech recognizer, this would
lead to less data from non-native speakers [3, 14] over time, affecting the user
data distribution. Limited data of minority speakers suggests there will likely be
worse performance for minority users going forward, which will increase disparity
amplification, and is an effect of underestimation.

Hebert-Johnson et al. [15] works to create fairer models via multicalibration,
where a trained model is calibrated for fairness based on defined subsets of the
training data. This work frames the question around bias as where “qualified”
members of an unprivileged group receive negative labels. To address this, a system
of subpopulations of the training dataset is defined, C, and the model calibrates
against each subpopulation. The calibration is used to guarantee predictions have
high accuracy, by determining if a data sample has membership in a subpopulation
defined in C. As C increases, the overall fairness guarantee increases. This method
makes two assumptions that should be kept in mind. The first, that membership in
a subpopulation is found “efficiently.” The model checks for correlation between
a data point and subpopulations in C when making predictions, and increasing
the size of C complicates model efficiency. The second, that the data distribution
demonstrates the underprivileged group is “sufficiently represented” to appear in
random sample. This assumption serves as an issue with a common factor of biased
machine learning algorithms: not enough data for underprivileged groups. This is
what allows things such as underestimation to occur, and such an assumption places
limits on method application.

These works have not been used in a federated learning setting. Applications with
federated learning will require large scaling that may be difficult to incorporate into
these methods [16].

8.5 Measuring Bias

It is difficult to answer the question of how something should be quantified when
there is more than one way it is defined. In spite of this, multiple ways to
quantify fairness and bias have been proposed. Many are based on manipulations
of the confusion matrix, a table that classifies different aspects of performance

8 Federated Learning and Fairness 189

between true and predicted labels. Below we have included calculations of eight
popular bias metrics, as collected by [6], including statistical parity difference,
equal opportunity difference, average odds difference, disparate impact, Thiel index,
Euclidean distance, Mahalanobis distance, and Manhattan distance.

Statistical parity difference is calculated as the difference between the success
rates between the underprivileged group and the privileged group. Equal opportunity
difference is calculated as the difference between the true positive rates between
the underprivileged group and the privileged group. The average odds difference is
the average of the difference between the true positive rates and false positive rates
between the underprivileged group and the privileged group. For these three metrics,
the ideal value is 0. Negative values indicate bias against the underprivileged group,
and positive values indicate bias against the privileged group. Bellamy et al. [6]
defines a fairness region between −0.1 and 0.1, meaning metric values between
these bounds are considered “fair.” Disparate impact is calculated as the ratio of
the success rates of the underprivileged group and the privileged group. These four
metrics are some of the most in ML fairness literature. For disparate impact, the
ideal value is 1, and [6] defines the fairness region with the bounds of 0.8 and 1.2.

Additionally, four other metrics are documented in this work. The Thiel index
is calculated as the measure of entropy between the true and classifier-predicted
labels. The Euclidean distance is calculated as the average of the Euclidean distance
between the underprivileged group and the privileged group. Mahalanobis distance
is calculated as the average of the Mahalanobis distance between the underprivileged
group and the privileged group. And the Manhattan distance is calculated as the
average of the Manhattan distance between the underprivileged group and the
privileged group.

8.6 Open Issues

There are several open issues in the field of fairness and machine learning. One
such issue is finding methods that can measure and reduce bias, without directly
checking sensitive attributes [16]. While some approaches begin to address this [14,
15], scaling these are difficult, and options are few.

Another, more broadly, is how to design approaches that mitigate bias around
multiple sensitive attributes simultaneously. This addresses the point of intersec-
tionality. While a mitigation method reduces bias around one sensitive attribute, and
evaluates the effectiveness against that single sensitive attribute, identities are multi-
faceted and are impacted by multiple factors. It would be naive to assume otherwise,
and current bias mitigation methods have yet to address this.

A third open issue is the design of more bias approaches that can account for
sensitive attribute value ranges that are not binary. Most methods are designed with
one clear privileged group and one clear unprivileged group, which is a framing of
bias often inconsistent with the real world. For the COMPAS dataset, for example,
one of the first papers utilizing the dataset pre-processes the data so that for the race
attribute, all non-white races are grouped together to make two categories, “White”

190 A. Abay et al.

and “Non-white.” Not all people of color (POC) experience bias the same way,
or to the same degree, and this approach incorrectly amasses and oversimplifies
POC experiences, which consequently means bias will not be correctly measured
or mitigated. In a parallel vein, the field lacks methods designed for individuals to
have more than one sensitive attribute value, i.e., for someone of two or more races.
Again, this means bias will not be correctly measured or mitigated.

8.7 Conclusion

In this chapter, we discussed the effects of social bias on machine learning. We
explored multiple definitions of fairness, and terminology commonly used in the
literature. We conducted a survey of the types of bias mitigation methods, as well
as examples of each. Following this, we looked at different fairness metrics how
they are calculated. Additionally, we examined sources of bias in machine learning
algorithms, both sources that affect centralized and federated learning, and federated
learning-specific causes. We discuss approaches that avoid training with sensitive
attribute values. Lastly, we discussed open issues in the field, and topics for further
research.

References

1. Abay A, Chuba E, Zhou Y, Baracaldo N, Ludwig H (2021) Addressing unique fairness
obstacles within federated learning. AAAI RDAI-2021

2. Abay A, Zhou Y, Baracaldo N, Rajamoni S, Chuba E, Ludwig H (2020) Mitigating bias in
federated learning. arXiv preprint arXiv:2012.02447

3. Amodei DEA (2012) Deep speech 2 end to end speech recognition in English and Mandarin.
In: International conference on machine learning

4. Angwin J, Larson J, Mattu S, Mirchner L. There’s software used across the country to predict
future criminals. And its biased against blacks. https://github.com/propublica/compas-analysis.
Accessed: 20219-10-08

5. Bellamy RK, Dey K, Hind M, Hoffman SC, Houde S, Kannan K, Lohia P, Martino J, Mehta S,
Mojsilovic A et al (2018) AI fairness 360: an extensible toolkit for detecting, understanding,
and mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943

6. Bellamy RK, Dey K, Hind M, Hoffman SC, Houde S, Kannan K, Lohia P, Martino J, Mehta S,
Mojsilovic A et al (2018) AI fairness 360: an extensible toolkit for detecting, understanding,
and mitigating unwanted algorithmic bias. arXiv preprint arXiv:1810.01943

7. Blanchard P, Guerraoui R, Stainer J et al (2017) Machine learning with adversaries: byzantine
tolerant gradient descent. In: Advances in neural information processing systems, pp 119–129

8. Calders T, Verwer S (2010) Three Naive Bayes approaches for discrimination-free classifica-
tion. Data Mining Knowl Disc 21(2):277–292

9. Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In:
Proceedings of the 3rd innovations in theoretical computer science conference, pp 214–226

10. Feldman M, Friedler SA, Moeller J, Scheidegger C, Venkatasubramanian S (2015) Certifying
and removing disparate impact. In: Proceedings of the 21th ACM SIGKDD international
conference on knowledge discovery and data mining, pp 259–268

https://github.com/propublica/compas-analysis

8 Federated Learning and Fairness 191

11. Ghoneim S (2019) 5 types of bias & how to eliminate them in your machine learning project.
Towards Data Science

12. Goh G, Cotter A, Gupta M, Friedlander MP (2016) Satisfying real-world goals with dataset
constraints. In: Advances in neural information processing systems, pp 2415–2423

13. Hardt M, Price E, Srebro N (2016) Equality of opportunity in supervised learning. In: Advances
in neural information processing systems, pp 3315–3323

14. Hashimoto T, Srivastava M, Namkoong H, Liang P (2018) Fairness without demographics in
repeated loss minimization. In: International conference on machine learning

15. Hebert-Johnson U, Kim MP, Reingold O, Rothblum GN (2018) Multicalibration: calibration
for the (computationally-identifiable) masses. In: International conference on machine learning

16. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles
Z, Cormode G, Cummings R et al (2019) Advances and open problems in federated learning.
arXiv preprint arXiv:1912.04977

17. Kamiran F, Calders T (2011) Data preprocessing techniques for classification without discrim-
ination. Knowl Inf Syst 33:1–33

18. Kamiran F, Karim A, Zhang X (2012) Decision theory for discrimination-aware classification.
In: 2012 IEEE 12th international conference on data mining. IEEE, pp 924–929

19. Kamiran F, Karim A, Zhang X (2012) Decision theory for discrimination-aware classification.
In: IEEE international conference of data mining

20. Kamishima T, Akaho S, Asoh H, Sakuma J (2012) Fairness-aware classifier with prejudice
remover regularizer. In: Proceedings of the European conference on machine learning and
principles and practice of knowledge discovery in databases

21. Kamishima T, Akaho S, Asoh H, Sakuma J (2012) Fairness-aware classifier with prejudice
remover regularizer. In: Proceedings of the European conference on machine learning and
principles and practice of knowledge discovery in databases

22. Kohavi R. Scaling up the accuracy of naive-bayes classifiers: a decision-tree hybrid. http://
archive.ics.uci.edu/ml/datasets/Adult. Accessed: 30 Sept 2019

23. McMahan HB, Moore E, Ramage D, Hampson S et al (2016) Communication-efficient learning
of deep networks from decentralized data. arXiv preprint arXiv:1602.05629

24. Merriam-Webster (2021) Fairness. https://www.merriam-webster.com/dictionary/fairness.
Accessed: 10 Mar 2021

25. Pedreschi D, Ruggieri S, Turini F (2008) Discrimination-aware data mining. In: 14th
international conference on knowledge discovery and data mining

26. Pleiss G, Raghavan M, Wu F, Kleinberg J, Weinberger KQ (2017) On fairness and calibration.
In: Advances in neural information processing systems, pp 5680–5689

27. Sheth S, Gal S, Hoff M, Ward M (2021) 7 charts that show the glaring gap between men’s and
women’s salaries in the US. Business Insider

28. Starr SB (2012) Estimating gender disparities in federal criminal cases. The social science
research network electronic paper collection

29. LeCun Y, Cortes C, Burges CJ (2021) The MNIST database of handwritten digits. http://yann.
lecun.com/exdb/mnist/. Accessed: 24 Feb 2021

30. Yin D, Chen Y, Ramchandran K, Bartlett P (2018) Byzantine-robust distributed learning:
towards optimal statistical rates. arXiv preprint arXiv:1803.01498

31. Zafar MB, Valera I, Rodriguez MG, Gummadi KP (2015) Fairness constraints: mechanisms
for fair classification. arXiv preprint arXiv:1507.05259

32. Zemel R, Wu Y, Swersky K, Pitassi T, Dwork C (2013) Learning fair representations. In:
International conference on machine learning, pp 325–333

http://archive.ics.uci.edu/ml/datasets/Adult
http://archive.ics.uci.edu/ml/datasets/Adult
https://www.merriam-webster.com/dictionary/fairness
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Part II
Systems and Frameworks

Part II of this book addresses the perspective of federated learning as a distributed
system and how the system choices we make have impact on the outcome of the
federated learning process.

Chapter gives an overview of federated learning system and specifically
addresses issues of enterprise-oriented, cross-silo scenarios, comparing with those
of embedded and mobile systems, cross-device scenarios.

Chapter 10 looks at system considerations for local training and aggregator
scalability. Parties can run their local training clients on compute platforms that
might not typically be used for model training, in particular on devices, phones, or
small and local servers where data is present. With large numbers of participants,
the aggregator system must also become scalable. The chapter discusses multiple
strategies to address this.

Chapter then addresses straggler management, of particular importance in
enterprise use cases when active management of delayed responses is important.
Finally, Chap. 12 focuses on participation fairness. Different device performance
and connectivity can introduce bias beyond what we find in centralized learning.
This chapter presents techniques to ensure all parties are equally included during
the model building process.

Chapter 9
Introduction to Federated Learning
Systems

Syed Zawad, Feng Yan, and Ali Anwar

Abstract In this chapter, we introduce federated learning from a systems perspec-
tive. We go into the details of the different federated learning scenarios that have
different system design considerations. We first introduce two most common but
quite different federated learning scenarios, namely cross-device federated learning
and cross-silo federated learning. Cross-device federated learning typically involves
a significant number of parties (e.g., thousands to millions), who are usually less
reliable and equipped with mobile or IoT devices that have various computing
and communication capabilities. In cross-silo federated learning, the parties are
usually a small number of organizations with ample computing power and reliable
communications. We first describe the two very different problems that each of them
address. We then describe the architectural differences between the two and their
corresponding training steps. We also discuss the unique systems challenges that
arise due to these properties and give a brief description of current works that have
talked about these problems in detail.

9.1 Introduction

Federated Learning system aims at providing system support for training machine
learning models collaboratively using distributed data silos such that privacy is
maintained, and the model performance is not compromised [20, 23]. The key
system design to support training models “in-place,” which is quite different from
conventional learning systems where the data is collected and managed centrally
over a fully controlled distributed cluster. The biggest advantage of such an “in-
place” training system is to facilitate privacy and security protections as the

S. Zawad (�) · F. Yan
University of Nevada, Reno, Reno, NV, USA
e-mail: szawad@nevada.unr.edu; fyan@unr.edu

A. Anwar
IBM Research – Almaden, San Jose, CA, USA
e-mail: ali.anwar2@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_9

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_9&domain=pdf
mailto:szawad@nevada.unr.edu
mailto:fyan@unr.edu
mailto:ali.anwar2@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_9

196 S. Zawad et al.

concerns of which have lead to new legislation such as the General Data Protection
Regulation (GDPR) [39] and the Health Insurance Portability and Accountability
Act (HIPAA) [32] that prohibits transferring user private data to a centralized
location. Such design, however, brings significant new system challenges due to its
unique training procedure and privacy and security properties. Data owners typically
have intrinsic heterogeneity in both data and computing resources, which makes
convectional wisdom of centralized learning system difficult to be adopted here.
The “in-place” training method requires more complex coordination of computing
and communication resources among data owners.

In general, these system architectures usually consist of either commercial
clusters (such as those used by corporations to house their data) or on edge
devices (such as sensor arrays and smart devices that store data upon usage). Due
to the increasing prevalence of edge devices, the IoT networks are generating
a wealth of data each day. Additionally, the growing computational power of
these devices coupled with concerns over transmitting private information makes
it increasingly attractive to store data locally and push network computation to
the edge, which is fundamental to the design of federated systems. This concept
of edge computing is not a new one. Indeed, computing simple queries across
distributed, low-powered devices is a decades-long area of research that has been
explored under the label of query processing in sensor networks, computing at the
edge, and fog computing [28]. Recent works have also considered training machine
learning models centrally but serving and storing them locally. For example, this is a
common approach in mobile user modeling and personalization [7]. One significant
challenge of such systems has been the lack of computational capabilities, which
have restricted the kind of tasks they are able to perform [35, 36].

However, as pointed out it [2, 4, 31], the growth in the hardware capabilities
of IoT devices has made it possible to train models locally. This has led to a
growing interest in the feasibility of federated learning as a mainstream method
for performing large-scale distributed training [46]. As we discuss in this chapter,
learning in such a setting differs significantly from traditional distributed environ-
ments requiring fundamental advances in areas such as privacy, large-scale machine
learning, and distributed optimization, and raising new questions at the intersection
of diverse fields, such as machine learning and systems [4, 24, 46]. The majority
of the challenges that were traditionally associated with large-scale distributed
training applications are common to federated systems as well. For example, a
common challenge for training clusters with a large number of nodes is that some
might be slower than others, leading to an overall increase in training times or
issues with convergence [22, 38, 47]. This can also occur with federated learning
systems [6, 41, 43]. Similar challenges in synchronization schemes [27, 42], device
scheduling [5, 6, 12], security [10, 17, 25], and resource efficiency [2, 6]. In addition
to these challenges, there are also a full set of unique ones faced by federated
systems, which stem from the fundamental difference between it and distributed
machine learning—the lack of control of the training end [19].

9 Introduction to Federated Learning Systems 197

In traditional distributed learning, the system is fully observable and the engi-
neers have a certain level of control over the system such as how many nodes are
available and the kind of hardware they have. However, since federated systems
contain only the devices from users, the set of hardware available is diverse and
dynamic, which adds an extra layer of complexity in terms of systems design. As
such, much work has been done to address this problem [2, 6, 21, 37] and yet a lot
of issues still need addressing [18].

9.1.1 Chapter Overview

For this chapter, we focus on providing a discussion of all such systems challenges
of federated learning and what the state-of-the-art papers do to address them, along
with their future works. We start by providing some background on general FL
and then by describing the two major categories of federated learning systems—
Horizontal or Cross-device FL and Vertical or Cross-silo FL. We then break the
chapter into two major sections, one for each of the system types. We go into an in-
depth discussion of their systems components and how they come together to create
the overall architecture. We go into a step-by-step description of the full training
process for each of the two types of systems. We then talk about their systems
hurdles and the design factors that contribute to them. We then briefly take a look
at the challenges faced by the parties during local training such as party selection
policies, low computational throughput, etc. and mention the state-of-the-art papers
that address them.

9.2 Cross-Device vs. Cross-Silo Federated Learning

We start the chapter by providing a general background on Federated Learning,
and explain the two major categories of systems available for it. We discuss
their architectures in detail and the step-by-step process for the training. We
provide a detailed comparison between the two and discuss their advantages and
disadvantages.

The seminal work in federated learning was proposed in [29]. In this paper, the
authors give the reasoning for calling their proposed system “Federated Learning”—
“...we term our approach Federated Learning, since the learning task is solved by
a loose federation of participating devices (which we refer to as parties) which are
coordinated by a central aggregator.” The motivation for proposing such a system
was the need for the capacity to train on data partitioned across a massive number
of unreliable devices with limited communication bandwidth. The data cannot be
shifted due to privacy constraints resulting in the need to train on them locally.
However, the traditional way of using mini-batch SGD is a communication heavy
method, which is a huge drawback for training on edge devices due to their limited

198 S. Zawad et al.

resources. The authors suggest that instead of transferring the gradients per step,
send the fully trained model weights, and perform aggregation on that. While this
has the potential to adversely affect the convergence process itself, the significant
reduction in communication rounds, bandwidth, and training time is considered
a worthwhile trade-off. Additionally, this also enables the addition of differential
noise and encryption mechanisms, which allows for a more secure training process.
As such, this system has been widely adopted by the community and is considered
the mainstream definition of federated learning systems.

The scope of such kind of systems is limited to training on IoT devices containing
user-generated data. The other method for secured machine learning involves the
shared training of a single model from different data banks in separate data silos. The
separate data banks usually contain sensitive information collected by institutions
such as financial data, medical records, transaction histories, etc., which have
strict privacy restrictions. However, to develop advanced AI models we need vast
quantities of data available in such data banks. Additionally, such data banks usually
contain largely different data features for the same datapoint. For example, one
hospital may contain the medical history of a certain person while another contains
recent test results. If we wish to train a model that attempts to predict diseases based
on history and test results, we will need to train on both kinds of data with the
different features on different hardware. This is also a federated learning challenge
but unlike training a model on IoT devices and aggregating on the central aggregator,
we have to train different parts of the model in separate silos.

This requires a completely different type of system, and as such even though
they are both federated learning, we can broadly categorize them into two separate
types. The first type of FL performed on edge devices is called “Cross-device” or
“Horizontal” Federated Learning, while the training of data with separate features
is called “Cross-silo” or “Vertical” Federated Learning (we will use these terms
interchangeably). We next describe each of these system architectures and training
steps in details.

9.3 Cross-Device Federated Learning

9.3.1 Problem Formulation

The mainstream federated learning problem means training a single, global machine
learning model on data, which is stored separately from each other. The number
can range anywhere between single digits to thousands of devices. The model is
trained with the limitation that the data must be stored locally and cannot be moved
to other parties or even observed. This results in requiring the training of the global
model locally on each device individually and then being aggregated in a centralized
aggregation server. The paper [24] formalizes the objective function of cross-device

9 Introduction to Federated Learning Systems 199

federated learning as

minimize F (w), where F(w) =
n∑

k=1

pkFk(w) (9.1)

Here, the Fk(w) is the local objective function for device k with model
weights w. The pk is the importance given to the contribution of device k to the
global model’s objective function F(w). The most common aggregation algorithm
for cross-device FL called FedAvg [20] directly uses a version of the problem
formulation. Specifically, they define the local objective function Fk(w) as the
loss minimization function traditionally associated with stochastic gradient descent
training for a model with weights w. The term pk of a device is simply set as

pk = jk∑n
l=1 jl

(9.2)

where jk is the total number of datapoints the local model wk was trained on in
device k. Therefore, the pk can be considered as the weighted average of the number
of datapoints per-device. For the rest of the chapter, we will use the term aggregation
to refer to this FedAvg algorithm unless otherwise specified since it is the most
commonly used in state of the art.

Using this definition, we can logically describe the objective of a federated learn-
ing system as given a set of data owners k1, k2, ...kn containing data d1, d2, ...dn,
we train the global model Wg using a weight-averaged aggregation of models
w1, w2, ..wk trained on d1, d2, ...dk . In contrast, the conventional method pulls all
the available data together such that D = d1 ∪ d2... ∪ dn to train the model Wg

without giving more weight to any k’s model.
There are two additional soft requirements that all federated systems must fulfill.

Firstly, it must ensure that no third-parties can access user-end data, and even if data
is observed, it must not be able to be associated with a certain device. Secondly,
the performance of a model derived using federated learning must be “close” to the
performance of the model had it been trained using traditional methods. Fulfillment
of these two criteria are additional challenges that complicate the system design
aspects, and will be discussed in the following subsections as well.

9.3.2 System Overview

The typical federated learning system has not changed much from the original
design proposed in [20]. While many newer works propose novel and technically
complex architectures, they are usually variants of the standard party-aggregator
system. Figure 9.1 shows the system diagram of a federated learning system.

The architecture usually contains two major components:

200 S. Zawad et al.

Fig. 9.1 System overview of a cross-device federated learning system

• Aggregation Server—This is typically owned by the third-parties who wish
to train their models on the user-owned data. The hardware employed may
reside in cloud systems or proprietary aggregation servers and does not usually
require high-performance hardware to be deployed on. This server is also called
the aggregation server or the aggregator due to its major function being the
accumulation of the model weights. An aggregation server contains the global
model Gn, which it updates periodically using the weights from the devices. As
such, it must contain enough memory to store the weights for multiple models.
It may also contain a load-balancer in order to manage the large amounts of
device connections that may be required for certain systems. The hardware’s
computational capabilities also must be significant since the security measures
can include computationally expensive operations. The aggregation algorithms
also vary in complexity depending on the type being used. Certain variations
of this system may include different topographies, profiling, and scheduling
modules, which we will discuss in the later sections.

• Parties—This is the group of user-owned hardware and generally consists of
Internet-of-Things devices such as cell phones, tablets, sensor arrays, and other
such smart devices. As pointed out in [6], the hardware for each of these devices
can vary widely due to the diversity of the hardware used by the data owners.
Such devices usually contain very limited computational resources and high
frequencies of downtime [4], resulting in the need for high-efficiency training
techniques and frameworks to be employed. The party-side devices contain the
user-generated data, the model training, and security systems. Since this device-
side hardware cannot be controlled, most research work focus on optimizing the
local training process.

9 Introduction to Federated Learning Systems 201

9.3.3 Training Procedure

The training for a global model in cross-device federated learning occurs in rounds,
where one round means one full training step. The steps within each round is
explained below.

Step 1 As shown in Fig. 9.1, the first step is taken on the aggregator side. Initially
at round 0, we start with an untrained global model G0 with randomly initialized
weights. At the start of each round, we select a subset of all available devices to
train on. Which devices and how many significantly impact the training time, model
performance, convergence time, and computational cost of the system. As such
there have been many works that each provide different policies, which impact the
training process of the system in different ways, and we provide a brief discussion
on the state of the art on these aspects. The basic federated learning system
implementations, however, generally select 10% of all available devices uniform
randomly.

Step 2 Once k devices have been selected, the weights of the global model Gn

are sent to each of these devices for training. This is a communication-expensive
phase of the training process since deep models can be large and transferring them
consumes significant portions of the bandwidth. This is especially a concern for IoT
devices on metered or fragile connections as pointed out in [4].

Step 3 Once the global model Gn reaches each of the k devices training on their
individual datasets Dk is done separately on each device, resulting in gk

n model being
generated on device k. This phase is computationally expensive on the party-side.

Step 4 After the local models have been generated, privacy mechanisms such
as differential privacy [40] and secure aggregation [3] are applied in order to
anonymize the models such that observation of the models will not reveal any
information about the device or the dataset on which the model was trained one.
Such mechanisms may be computationally expensive, and so adds another layer of
overhead to the training procedure. The encrypted/noisy model weights from each of
the devices are then sent back to the aggregator, which incurs more communication
cost.

Step 5 The aggregator receives the models gk
n from each of the devices and uses an

aggregation algorithm (the standard being Eq. 9.2) to generate the new global model
for the next round Gn+1. The process then goes back to Step 1 and the process
repeats from round n + 1.

The above steps are repeated until the stop conditions (usually a certain number
of rounds or convergence criteria) are met.

202 S. Zawad et al.

9.3.4 Challenges

While the per-round process for cross-device federated learning is relatively simple,
the scale and diversity of the underlying infrastructure add layers of complexity to
the framework design decisions, which in turn introduces new and interesting sys-
tems challenges unique to federated learning. We can break down these challenges
into various parts and discuss each of them briefly:

Aggregation Server In the cross-device setting, the aggregation server is usually a
powerful central server. It has a lot of responsibilities since it is the main source
of management in the system such as communication, aggregation, security, etc.
Thus it is required to have a stable and reliable server. The system described above
consists of a single server, and so has a single point of failure. As such, one of
the challenges of a FL system is to provide a reliable server cluster and design the
topography such that the dependence on a single server is removed.

Party Selection As mentioned in the previous section, one of the most impact-ful
decisions for a cross-device system is how to select the devices. This is a challenge
in the design of the system since it can influence many aspects of the process. One
such challenge is that of resource heterogeneity. As pointed out in [4, 6, 23, 31],
the hardware types can vary widely among parties due to their sheer diversity. This
means that the number of devices can be significantly different from each other in
terms of training time for the same model. Thus the overall training time of the full
system is highly dependent on the latency of the stragglers in a system. Selecting
devices consciously such that the training time is controllable (such as selecting
faster devices only) is a design decision that needs to be made during party selection.

Each of the devices also have distinct computational limitations such as memory,
bandwidth allocation, battery capacity, etc. Since one of the criteria of a FL system
could be to make training as non-intrusive [4] for the end-user as possible, a party
selection policy that keeps interference to a minimum becomes important. For
example, if battery is low training a model may mean the device becoming unusable
after a while for the user. As such, criteria must also be fulfilled in order to select
a certain party. This also extends to the challenge of availability of devices. Not
all devices are available at all times for training. As an example, we can think of
solar-powered sensor arrays as devices that can only perform computation-heavy
calculations only when enough power is being generated. As such, it is important
for the aggregator to be aware of the availability patterns of participating devices and
schedule them accordingly. Lastly, the data heterogeneity is a defining property of
federated learning where device has different quantities and qualities of data, which
results in a skewed training process. Some devices tend to have good data, while
other devices do not. Deciding on how to choose devices such that biased training
is mitigated while getting the most out of all the available data is one of the major
challenges in Federated Learning.

Communication Communication can be a critical bottleneck in federated system
networks since the actual training nodes (i.e., devices) have diverse communication

9 Introduction to Federated Learning Systems 203

capabilities. Previously, training on user data would mean transferring the data
from the device to the central aggregator once and perform the training on it.
However, now the need for privacy requires that the data cannot be transferred. This
requires the frequency communication between the data-owning devices and the
aggregator. Federated networks can potentially be comprised of a massive number
of devices, e.g., millions of smart phones [4], and the network connections among
the devices can be significantly (in some cases, orders of magnitudes [26]) slower
than that of the local computation. This is mainly due to IoT devices having limited
communication capacities. As such, it is often the case that the bottleneck is not
due to the computation but the communication, so much so that it can constitute the
majority of the training time. Therefore, the communication efficiency of federated
systems is an important systems factor in engineering efficient federated systems.

Local Computation While there has been much work done for efficient data center
training, papers talking about training models on resource-constrained devices is
rare. In addition to the training computation, there are overheads for other parts of
the system for encryption/decryption, calculating differential noise, compressing,
serializing and sending the model, testing, and so on. Generally speaking, the IoT
devices are not meant for such computation heavy workloads and so the local
operations are usually un-optimized on both the software and hardware levels.
Additional constraints such as limited bandwidth and power capacities, limiting
computation and memory usage so as to not interfere with the user experience,
managing hardware and OS security, etc. means special considerations must be
taken when designing local training frameworks. Such considerations also vary
widely depending on the infrastructure. For example, when training on a sensor
array, the user experience is not a factor but very limited resources is. Training on
a set of cell phones on the other hand would mean being conscious of consuming
too much resources at a time, but the total computational capacity may not be a
limitation. As such, the design of local frameworks is a very important aspect of
federated learning systems.

Aggregation Scheme Lastly, we must consider the impact of the method for
aggregation of the model parameters from the diverse set of end-devices. The first
challenge for every federated aggregator is to ensure the privacy of the participants.
The two most common low cost privacy-preserving techniques—differential privacy
and secure aggregation—require a synchronized aggregation. The main idea for
differential privacy is that a certain amount of noise is applied to the model weights
such that it is indistinguishable from the other device weights. This requires a
synchronized aggregation since multiple models must be trained and received at the
same time in order to get an estimate of the model weights for each of the devices
and their corresponding amount of noise applied. In the case of secure aggregation,
it is an encryption method with the key being shared between multiple devices. It
is only possible to decrypt the model weights once all the devices have reported
back their keys making it a synchronized process as well. However, a synchronized
aggregation scheme is much slower than asynchronous ones and so careful design
decisions must be made in proposing novel aggregation schemes focusing on

204 S. Zawad et al.

training latencies. Another challenge occurs when scaling up training to thousands
of devices. Using a single aggregator becomes a bottleneck in such cases, and other
novel aggregation schemes such as hierarchical aggregation must be employed to
handle scalability. Aggregation schemes also impact the convergence rate and model
performance [1, 24] and so must be balanced with mechanisms to reduce training
time and computation costs. They can also determine the communication frequency
of a system since their policies dictate how devices are trained. As such, developing
an aggregation scheme is a delicate balancing act between the various properties of
a federated systems and makes it an important yet challenging task.

Based on these factors, we can see that the design decisions that contribute to the
development to a fully functioning, efficient cross-device federated learning system
is a complex task given the sheer number of challenges, most of which also intersect
to some degree. As such, research into better frameworks that mitigate these effects
is an important direction. We discuss many such papers in the later sections and
show that while there are state-of-the-art approaches to address one of the issues or
another, there are yet to be any comprehensive solutions to all of the challenges and
much is yet left as future work.

9.4 Cross-Silo Federated Learning

9.4.1 Problem Formulation

The main objective for a cross-silo federated learning system is the same as that
of a cross-device system—a global model that must be trained on disparate data.
The major difference is how the data is structured. Cross-silo (also called vertical
federated learning or feature-based federated learning) is applicable when there are
two or more datasets that share the ID space but possess different features. For
example, we can consider the scenario with two banks who wish to train a model
for predicting their user’s credit purchase behaviors. One bank has the data for the
users’ assets and income, while the other bank contains their spending history. Thus
the features available for each data silo is different, but the user IDs intersect. In
contrast, a cross-device federated learning system would be the scenario where both
the banks have user purchase history but different sets of users. We can formally
define the objective of vertical federated learning as

minimize L(W) =
m∑

j=1

n∑

i=1

L(wj , x
i
j) (9.3)

where L(W) is the global loss function for the global model W , i is the user ID, j is
the data provider (i.e., silo) with the local data provider model wj trained from data
feature xi

j . The equation can be considered as the process of aggregating the training
of the different features from different silos with privacy-preserving constraints, and

9 Introduction to Federated Learning Systems 205

these additional criteria can also be formalized as explained in [46]

Xa �= Xb, Ya �= Yb, Ia = Ib, ∀Da,Db where a �= b (9.4)

where X are the feature labels for the data silos a and b, Y are the corresponding
labels, I is the user id, and D is the data. Thus, we say that the cross-silo federated
learning process is the shared training of a global model between two or more
separate silos such that they have different features and labels for the same datapoint
across all available data.

There are two additional soft-constraints on the cross-silo federated learning
system as well. The first deals with privacy-preservation, stating that none of the
parties involved in the training process can associate another party’s datapoint ID
with its own. As an example using our previous scenario, the first bank trains on its
own data and sends the partially trained gradients to the second bank. The second
bank would associate its own datapoint IDs with the output gradients (explained in
detail in the next sections) but should not be able to interpret the partial gradients to
backward-engineer the actual data present in the first bank for that datapoint. This
is done in practice using homomorphic encryption—a method of transforming the
data such that a mathematical operation on it would result in the same output had it
not been transformed but such that the original data is not observable. The second
soft-constraint is that the performance of the model trained in this way must be as
close to the performance of a model that would have been generated had all the data
been present in a single silo as in traditional distributed learning.

9.4.2 System Overview

The cross-device federated learning system is slightly more complicated than the
cross-device federated learning system. Unlike the cross-device system, there was
no one paper that proposed the definitive architecture for the cross-silo federated
learning system. However, over time the industry has developed a standard that
is used in a significant majority of the current frameworks. Figure 9.2 shows the
system diagram of this federated learning system.

This system also contains two major parts:

Third-Party Aggregator Server This server is separate from the data-owning
parties and is owned by a third-party to coordinate the training process and manage
the security aspects. They are typically commercial-grade hardware clusters due to
the amount of management and computation it has to perform. While this server
does not usually perform any operations on the models to be trained themselves
in the vast majority of the cases, a significant amount of its workload consists of
encryption/decryption of homomorphic encryption, which is extremely expensive.
With larger number of participants, this computational cost increases exponentially.
This server does not contain any models, data, or training code. However, it may

206 S. Zawad et al.

Fig. 9.2 System overview of a cross-silo federated learning system

also require load-balancers depending on the communication load from each of the
silos. Some variations of this server also perform other tasks such as evaluation and
sanity checks, which further increases the computation cost.

Data Silos Data Silos are the group of user-owned hardware, which contains the
proprietary data on which the global model must be sharedly trained. As pointed
out in [30], the hardware for each of the silos is usually commercial-grade, less
heterogeneous, and have similar training latencies. They also do not have significant
computational limitations or long periods of downtime, making them much more
suitable for long-term training. The silo-owners also have more control over their
architecture. As such, many of the challenges faced by cross-device federated
learning such as stragglers, dropouts, and disparate datasets are not relevant to
this scenario. However, as will be explained in the later sections, the training
process between silos is performed in mini-batches, and the gradients must be first
calculated on one silo and then sent to the others in a sequence. This is done until
all the data from all the silos have been used to calculate the final loss, after which
backpropagation is performed on each silo’s models. As such, an increased number
of silos can result in significant increase in training latency and so that provides
unique system challenges as well. Additionally, the frequent transfer of gradients
makes communication overhead a concern, and homomorphic encryption used for
every transfer means a computation cost is added on top of the communication cost.
As such, a significant portion of the systems research in cross-silo federated learning
is focused on reducing these costs.

9.4.3 Training Procedure

The training for cross-silo federated learning also takes place in rounds, but with
one key difference being that all data silos participate in every round of training.
The process is also more sequential in that partial gradients and losses are exchanged

9 Introduction to Federated Learning Systems 207

between each of the participants. In the following example, we use two silos to make
it simple to understand, but this can be expanded to multiple parties. The training
steps (as simplified in [24, 30, 46]) are as follows.

Step 0 Before starting the training loop, the participants must align their datasets
using an anonymous data alignment technique. Methods using privacy-preserving
protocols [25], secure multi-party communication [34], key-sharing [10], and
randomized responses [11] are used for such cases. These methods are usually
computationally expensive but generally this step is only run once at the beginning
of the training process and so is not too costly in the long run. The output of this
step is that the data between the parties are matched such that the datapoint indices
are the same for the same ID. Those that could not be matched are usually discarded
for training and the privacy for each of the datapoints preserved [44].

Step 1 The third-party aggregator generates and sends encryption key-pairs to each
of the participants for secure communication, and the “partial models” that need
to be trained on each party is initialized. We use the term “partial model” since,
generally speaking, in cross-silo federated learning it is assumed that only the last
party in the training chain contains the labels. The other parties contain only the
training features and the part of the model that can perform a forward pass using
those data features.

Step 2 The first party (Silo 1 in Fig. 9.2) trains on one mini-batch of its local
data and generates the output from the forward pass, which is then encrypted via
homomorphic encryption and sent to the next party (Silo 2).

Step 3 Silo 2 then uses its own data to do a forward pass. For simplicity, let
us assume that this party contains the labels, and so the calculation of the loss
function happens here. The intermediate outputs are sent to Silo 1 (after applying
homomorphic encryption), which will be later required to update the Silo 1 model
weights. The loss is sent to the third-party aggregator.

Step 4 Both silos then calculate their partial gradients or intermediate outputs,
add another layer of encryption masks on them, and send them to the third-party
aggregator. These partial gradients or intermediate results can be a variety of values
depending on the implementation details of the training process. They can include
the output vector of the last operations for the partial model [8], the intermediate
predictions per silo [26], or even the gradients from estimated loss [45]. The extra
masks are added such that one silo cannot gain information about the other party’s
data from these intermediate outputs.

Step 5 The third-party aggregator decrypts the mask from each of the received
intermediate data and uses this with the loss values to determine the exact gradient
for each of the partial models in all the participants and sends them to their
corresponding silos. The silos then use these received gradients to update their local
models individually, generating new models. Then it loops back to Step 1 and begins
the process all over again.

208 S. Zawad et al.

The above steps iterate until their convergence criteria are met. Note that many
newer systems can have distinctly different frameworks. For example, Chen et al. [8]
makes this process asynchronous and does not wait for all the parties to send
their intermediate outputs to get the gradients from the third-party aggregators,
while [48] does away with the third-party coordinator entirely. However, the overall
structure of the systems is still the same—each of the parties perform partial training
of the full model and must then be consolidated into calculating the full model’s
gradients. The gradients are sent to their corresponding parties to update their local
partial models, and all of these must be done in a privacy-preserving manner.

9.4.4 Challenges

The standard cross-silo federated learning system shares many of the systems
challenges faced in traditional distributed learning systems. For example, the
frequent communication overheads due to the transfer of mini-batch gradients,
coordination between each of the training nodes, stragglers, etc. are applicable
to cross-silo training systems too. In addition to these, there are a few unique
challenges to such systems as well.

Resource Heterogeneity Generally speaking, organizations that wish to participate
in vertical federated learning tend to have more powerful hardware compared to
those in cross-device [8, 24, 46]. As such, the actual training steps are more efficient.
However, as described above, the full process is still an inherently synchronous and
sequential process, which needs to have each and every silo participate in every
step. This means that even one straggler can significantly reduce the overall training
latency throughout the whole training period. The training resources for each of the
silos must be carefully managed such that performance bottlenecks can be avoided.
It must be mentioned, however, that this is a much more manageable problem than
for cross-device federated learning. Cross-silo federated learning systems tend to
have much more control over their underlying systems, making it easier to handle
stragglers.

Single Point of Failure Each of the silos perform a part of the full training, and
they are all required to train their portions completely in order to achieve the fully
trained model. As pointed out in [8, 13, 49], this inter-dependency and the sequential
nature of the per-step training process sets up the system in such a way that failure
of any one node will result in the complete failure of the full system. In cross-device
federated learning (or even traditional distributed learning to some extent), a device
or node failure will not cause the full system to halt since other resources exist for
training, but every node or silo is important here in cross-silo federated learning.
As such, special systems design considerations such as backup nodes need to be
considered for cross-silo frameworks.

9 Introduction to Federated Learning Systems 209

Security Overheads There are three mainstream methods for ensuring the privacy
of federated learning systems. The most common one being Differential Privacy [1,
33]. While it performs sufficiently well for cross-device federated learning with
acceptable runtimes [40], recent works have demonstrated it is not effective for
cross-silo federated learning due to it having stronger privacy constraints [49].
The other commonly used technique is Secure Aggregation [3, 4], but it has
two major drawbacks. Firstly, it can allow the third-party aggregators to directly
observe the gradients incoming from each of the silos, which in turn can reveal
confidential information of their datasets. Secondly, the encryption process involves
key-sharing, meaning that each of the silos need to report with their corresponding
parts of the keys, which puts a strong limitation on the federated learning systems
to become synchronous [49]. The only other option available is Homomorphic
Encryption [15, 17]. However, it is extremely computationally expensive. In some
cases, it can take up as much as 80% of the per-mini-batch computation time [49]
and is therefore considered the single largest expensive operation for each silo,
making it the most important factor that determines the total training time. While
many works have been proposed to reduce this overhead without compromising
privacy [9, 16, 49], this overhead still takes up a large majority of the computation
time. As such, reducing the security overhead for cross-silo systems is considered
the biggest challenge to designing more efficient federated learning systems.

The above challenges make for interesting directions for systems research.
However, currently the overwhelming amount of research in cross-silo federated
learning focuses on the privacy enhancement and overhead reduction due to it being
the largest factor detrimental to the system’s efficiency. The other challenges share
some similarities to other types of systems such as cloud storage (for mitigating
single point of failure issues) and traditional distributed systems (for addressing
stragglers). As such, we find that cross-device federated learning provides a wider
variety of unique and interesting challenges compared to cross-silo federated
learning, and so we focus on the cross-device scenario for the rest of the sections.
Next, we break down the complete cross-device FL system into parts and discuss
their systems aspects in detail.

9.5 Conclusion

While many more types of Federated Learning systems are being proposed as we
speak, they are usually a variation of these two major categories. Completely new
Fl techniques such as Federated Neural Architecture Search have recently been
proposed, but there are relatively new fields and not enough work has been done
for them to become major categories like Vertical and Horizontal FL. Additionally,
many of these newer types of systems are usually a variation or an incremental
improvement on these two traditional architectures. For example, the recently
proposed Federated Transfer Learning [14] can be categorized as a more complex
type of Vertical Federated Learning since it uses transfer learning to teach a single

210 S. Zawad et al.

model from disparate feature sets. As such, the overview given in this chapter for the
two major types of Federated Learning from a systems perspective is a great starting
point in understanding the various available Federated Learning frameworks.

References

1. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L (2016) Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. ACM, pp 308–318

2. Balakrishnan R, Akdeniz M, Dhakal S, Himayat N (2020) Resource management and fairness
for federated learning over wireless edge networks. In: 2020 IEEE 21st international workshop
on signal processing advances in wireless communications (SPAWC). IEEE, pp 1–5

3. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal
A, Seth K (2017) Practical secure aggregation for privacy-preserving machine learning. In:
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security.
ACM, pp 1175–1191

4. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konecný
J, Mazzocchi S, McMahan B, Overveldt TV, Petrou D, Ramage D, Roselander J (2019)
Towards federated learning at scale: System design. In: Talwalkar A, Smith V, Zaharia M (eds)
Proceedings of machine learning and systems 2019, MLSys 2019, Stanford, CA, USA, March
31–April 2, 2019, mlsys.org. https://proceedings.mlsys.org/book/271.pdf

5. Caldas S, Konečny J, McMahan HB, Talwalkar A (2018) Expanding the reach of federated
learning by reducing client resource requirements. Preprint. arXiv:181207210

6. Chai Z, Ali A, Zawad S, Truex S, Anwar A, Baracaldo N, Zhou Y, Ludwig H, Yan F, Cheng Y
(2020) Tifl: A tier-based federated learning system. In: Proceedings of the 29th international
symposium on high-performance parallel and distributed computing, pp 125–136

7. Chan Z, Li J, Yang X, Chen X, Hu W, Zhao D, Yan R (2019) Modeling personalization
in continuous space for response generation via augmented wasserstein autoencoders. In:
Proceedings of the 2019 conference on empirical methods in natural language processing and
the 9th international joint conference on natural language processing (emnlp-ijcnlp), pp 1931–
1940

8. Chen T, Jin X, Sun Y, Yin W (2020) Vafl: a method of vertical asynchronous federated learning.
e-prints. arXiv–2007

9. Cheng K, Fan T, Jin Y, Liu Y, Chen T, Papadopoulos D, Yang Q (2019) Secureboost: A lossless
federated learning framework. Preprint. arXiv:190108755

10. Du W, Atallah MJ (2001) Secure multi-party computation problems and their applications: a
review and open problems. In: Proceedings of the 2001 workshop on new security paradigms,
pp 13–22

11. Du W, Zhan Z (2003) Using randomized response techniques for privacy-preserving data
mining. In: Proceedings of the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp 505–510

12. Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In:
Proceedings of the 3rd innovations in theoretical computer science conference, pp 214–226

13. Feng S, Yu H (2020) Multi-participant multi-class vertical federated learning. Preprint.
arXiv:200111154

14. Gao D, Liu Y, Huang A, Ju C, Yu H, Yang Q (2019) Privacy-preserving heterogeneous
federated transfer learning. In: 2019 IEEE international conference on big data (Big Data).
IEEE, pp 2552–2559

15. Gentry C et al (2009) A fully homomorphic encryption scheme, vol 20. Stanford University,
Stanford

https://proceedings.mlsys.org/book/271.pdf

9 Introduction to Federated Learning Systems 211

16. Hao M, Li H, Xu G, Liu S, Yang H (2019) Towards efficient and privacy-preserving federated
deep learning. In: ICC 2019-2019 IEEE international conference on communications (ICC).
IEEE, pp 1–6

17. Hardy S, Henecka W, Ivey-Law H, Nock R, Patrini G, Smith G, Thorne B (2017) Private fed-
erated learning on vertically partitioned data via entity resolution and additively homomorphic
encryption. Preprint. arXiv:171110677

18. Hosseinalipour S, Brinton CG, Aggarwal V, Dai H, Chiang M (2020) From federated to fog
learning: Distributed machine learning over heterogeneous wireless networks. IEEE Commun
Mag 58(12):41–47. https://doi.org/10.1109/MCOM.001.2000410

19. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles
Z, Cormode G, Cummings R et al (2019) Advances and open problems in federated learning.
Preprint. arXiv:191204977

20. Konecnỳ J, McMahan HB, Felix XY, Richtárik P, Suresh AT, Bacon D (2016) Federated
learning: Strategies for improving communication efficiency. CoRR

21. Lalitha A, Shekhar S, Javidi T, Koushanfar F (2018) Fully decentralized federated learning. In:
Third workshop on bayesian deep learning (NeurIPS)

22. Li C, Shen H, Huang T (2016) Learning to diagnose stragglers in distributed computing. In:
2016 9th workshop on many-task computing on clouds, grids, and supercomputers (MTAGS).
IEEE, pp 1–6

23. Li X, Huang K, Yang W, Wang S, Zhang Z (2019) On the convergence of fedavg on non-iid
data. In: International conference on learning representations

24. Li T, Sahu AK, Talwalkar A, Smith V (2020) Federated learning: Challenges, methods, and
future directions. IEEE Signal Process Mag 37(3):50–60

25. Liang G, Chawathe SS (2004) Privacy-preserving inter-database operations. In: International
conference on intelligence and security informatics. Springer, pp 66–82

26. Liu, Y., Kang, Y., Zhang, X., Li, L., Cheng, Y., Chen, T., . . . & Yang, Q. A Communication
efficient vertical federated learning framework. 2019. arXiv preprint arXiv:1912.11187

27. Lo SK, Lu Q, Zhu L, Paik Hy, Xu X, Wang C (2021) Architectural patterns for the design of
federated learning systems. Preprint. arXiv:210102373

28. Mao Y, You C, Zhang J, Huang K, Letaief KB (2017) A survey on mobile edge computing:
The communication perspective. IEEE Commun Surv Tutorials 19(4):2322–2358

29. McMahan HB, Moore E, Ramage D, Hampson S et al (2016) Communication-efficient learning
of deep networks from decentralized data. Preprint. arXiv:160205629

30. McMahan HB, et al (2021) Advances and open problems in federated learning. Found Trends®
Mach Learn 14(1):1

31. Nishio T, Yonetani R (2019) Client selection for federated learning with heterogeneous
resources in mobile edge. In: ICC 2019-2019 IEEE international conference on communi-
cations (ICC). IEEE, pp 1–7

32. O’herrin JK, Fost N, Kudsk KA (2004) Health insurance portability accountability act (hipaa)
regulations: effect on medical record research. Ann Surg 239(6):772

33. Pathak MA, Rane S, Raj B (2010) Multiparty differential privacy via aggregation of locally
trained classifiers. In: NIPS, Citeseer, pp 1876–1884

34. Scannapieco M, Figotin I, Bertino E, Elmagarmid AK (2007) Privacy preserving schema
and data matching. In: Proceedings of the 2007 ACM SIGMOD international conference on
Management of data, pp 653–664

35. Shi W, Dustdar S (2016) The promise of edge computing. Computer 49(5):78–81
36. Shi W, Cao J, Zhang Q, Li Y, Xu L (2016) Edge computing: Vision and challenges. IEEE

Internet Things J 3(5):637–646
37. Sprague MR, Jalalirad A, Scavuzzo M, Capota C, Neun M, Do L, Kopp M (2018) Asyn-

chronous federated learning for geospatial applications. In: Joint European conference on
machine learning and knowledge discovery in databases. Springer, pp 21–28

38. Tandon R, Lei Q, Dimakis AG, Karampatziakis N (2017) Gradient coding: Avoiding stragglers
in distributed learning. In: International conference on machine learning, PMLR, pp 3368–
3376

https://doi.org/10.1109/MCOM.001.2000410

212 S. Zawad et al.

39. Tankard C (2016) What the GDPR means for businesses. Netw Secur 2016(6):5–8
40. Wei K, Li J, Ding M, Ma C, Yang HH, Farokhi F, Jin S, Quek TQ, Poor HV (2020) Federated

learning with differential privacy: Algorithms and performance analysis. IEEE Trans Inf
Forensics Secur 15:3454–3469

41. Wu W, He L, Lin W, Mao R, Maple C, Jarvis SA (2020) Safa: a semi-asynchronous protocol
for fast federated learning with low overhead. IEEE Trans Comput 70:655

42. Xie C, Koyejo S, Gupta I (2019) Asynchronous federated optimization. Preprint.
arXiv:190303934

43. Xu Z, Yang Z, Xiong J, Yang J, Chen X (2019) Elfish: Resource-aware federated learning on
heterogeneous edge devices. Preprint. arXiv:191201684

44. Xu R, Baracaldo N, Zhou Y, Anwar A, Joshi J, Ludwig H (2021) Fedv: Privacy-preserving
federated learning over vertically partitioned data. e-prints, pp arXiv–2103

45. Yang K, Fan T, Chen T, Shi Y, Yang Q (2019) A quasi-newton method based vertical federated
learning framework for logistic regression. Preprint. arXiv:191200513

46. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: Concept and applications.
ACM Trans Intell Syst Technol (TIST) 10(2):12

47. Yang R, Ouyang X, Chen Y, Townend P, Xu J (2018) Intelligent resource scheduling at
scale: a machine learning perspective. In: 2018 IEEE symposium on service-oriented system
engineering (SOSE). IEEE, pp 132–141

48. Yang S, Ren B, Zhou X, Liu L (2019) Parallel distributed logistic regression for vertical
federated learning without third-party coordinator. Preprint. arXiv:191109824

49. Zhang C, Li S, Xia J, Wang W, Yan F, Liu Y (2020) Batchcrypt: Efficient homomorphic
encryption for cross-silo federated learning. In: 2020 USENIX annual technical conference
(USENIX ATC 20), pp 493–506

Chapter 10
Local Training and Scalability
of Federated Learning Systems

Syed Zawad, Feng Yan, and Ali Anwar

Abstract In this chapter, we delve deeper into the systems aspects of Federated
Learning. We focus on the two main parts of FL—the participating devices (parties)
and the aggregator’s scalability. First, we discuss the party-side, where we look
into details about various factors that impact local training such as computational
resources, memory, network, and so on. We also briefly talk about how there are
challenges present in each of these aspects and introduce the state-of-the-art papers
that address them. Then we discuss how to develop large-scale Federated Learning
aggregation systems. We talk about various aggregation schemes in current literature
that aim at reducing the scalability challenges. We discuss each of their advantages
and disadvantages and suggest scenarios for which they are most applicable. We
also provide a list of state-of-the-art works that use these schemes.

10.1 Party-Side Local Training

In this section, we will discuss the systems complications on the local training side.
Here, we break down the resources required for local training into three parts—
computation, memory, and network—and then discuss their complications along
with the consequent state-of-the-art techniques developed to address them.

We focus specifically on local training, which is the most computationally
expensive part of the FL system. It determines the overall time it takes for the full
training to complete as well as the amount of resources consumed and therefore is
the most important factor to consider when making FL system design decisions.

However, as mentioned earlier, we have very little to no control over the hardware
and availability of the parties. In the general case, the cross-device systems are

S. Zawad (�) · F. Yan
University of Nevada, Reno, Reno, NV, USA
e-mail: szawad@nevada.unr.edu; fyan@unr.edu

A. Anwar
IBM Research – Almaden, San Jose, CA, USA
e-mail: ali.anwar2@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_10

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_10&domain=pdf
mailto:szawad@nevada.unr.edu
mailto:fyan@unr.edu
mailto:ali.anwar2@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_10

214 S. Zawad et al.

designed under the expectation that the resources are significantly less than those
available in standard clusters. Additionally, the party-side down times and training
interruptions are assumed to be significantly more frequent [1, 2, 20, 29]. Many
recent works have been proposed to address these issues, and we discuss a few of
the state of the art next. While most of these works were directly introduced in the
scope of federated learning, some are taken from other intersecting fields such as
edge-computing and can be directly applicable.

10.1.1 Computation

The first most important determinant of training time is computation speed. As
such, we look at the state of the art in Federated Learning and Edge-computing
that efficiently utilizes them.

The first paper we talk about is Model Pruning Enables Efficient Federated
Learning on Edge Devices [11]. In this paper, the authors propose a new FL
paradigm called PruneFL which aims to reduce the model sizes themselves to reduce
overall local training cost. While model pruning is a commonly used strategy in
ML, this framework stands out in that it uses the party data to perform the pruning.
They do so in two ways—Distributed and Adaptive pruning. Distributed pruning
works by including initial pruning on a selected party’s model by taking advantage
of sparse matrices. Simply put, they throw out the operations whose weights end
up training to 0 locally. However, local pruning can be damaging due to data
heterogeneity since these weights may vary significantly between parties. In order
to mitigate that issue, the authors propose the next step as Adaptive pruning. In this
stage, the framework continuously ensure that a model’s weights are not pruned too
much such that the overall performance drops by keeping track of accuracy over
time. In doing so, it maintains a fine balance between reducing computation and
maintaining performance.

We next talk about SLIDE: In Defense of Smart Algorithms over Hardware
Acceleration for Large-Scale Deep Learning Systems [3], where the authors here
present the framework called SLIDE (Sub-LInear Deep learning Engine). It focuses
on efficient deployment of models on the kernel level instead of making models
efficiently scale with hardware. This is a highly relevant work in Federated Learning
since increasing hardware resources is not an option and it is important to be
able to squeeze out every bit of performance algorithmically. The authors use a
unique blend of smart randomized algorithms, multi-core parallelism, and workload
optimizations. They propose a significant amount of updates to the current machine
learning frameworks such as making OpenMP more efficient, applying several novel
algorithmic and data-structural choices in designing the LSH based sparsification,
utilizing sparse gradient updates to achieve negligible update conflicts, etc. They
show that using just a CPU, the number of computations can be drastically reduced
to get significant increases in efficiency.

10 Local Training and Scalability of Federated Learning Systems 215

Lastly, we discuss Accelerating Slide Deep Learning on Modern CPUs: Vec-
torization, Quantizations, Memory Optimizations, and More [5]. This work is an
improvement on SLIDE. The authors here show how SLIDE’s computations allow
for a unique possibility of vectorization via AVX (Advanced Vector Extensions)-
512, which was not previously utilized. They highlight opportunities for different
kinds of memory optimizations such as sparse updates, quantizations, detecting
highly active vs. inactive parameters, etc. They too demonstrate that there is much
room for improvement on the software side of machine learning and is therefore a
very relevant work in making CPUs more efficient.

10.1.2 Memory

Our next challenge in local training is the limited memory size available on parties.
The problem here is similar to that of computation in that we have little to no control
over it, and that they are usually magnitudes of less powerful than in conventional
clusters. As such, here we present a few of the state of the art in addressing this
issue.

An important paper here is called DeepX: A software accelerator for low-power
deep learning inference on mobile devices [14]. It is one of the seminal papers on
taking a software-first approach to efficiency; DeepX focuses on the development of
deep learning models on mobile devices. While they provide a few improvements
from the computation side, their major contribution is in the utilization of memory.
They provide two solutions. First, they apply Runtime Layer Compression (RLC),
which provides runtime control of the memory and computation (along with energy
as a side-effect). They simply reduce the operations layer-wise such that only the
most important operations use larger bytes. Second, they use Deep Architecture
Decomposition (DAD), which efficiently identifies unit-blocks of an architecture
and allocates them to local or remote memory depending on access frequency. This
further utilized memory for efficient model storage. It is unusual to have distributed
memory in FL parties, and so DeepX providing algorithms to efficiently use limited
memory for deep models is an important work.

Another such paper is FloatPIM: In-memory acceleration of deep neural network
training with high precision [9]. This work provides a solution at the interface
level between software and hardware. Processing in-memory (PIM) is a technique
which exploits analog characteristics of non-volatile memory to support matrix
multiplication in memory by transferring the digital input data into an analog
domain and pass the analog signal through a crossbar ReRAM to compute matrix
multiplication. The authors demonstrate that it is possible to reduce the floating-
point memory using this technique and propose a framework that can reduce deep
model’s memory within computational error-bounds. This can be easily integrated
in FL parties and provide a trade-off between memory and accuracy depending on
the situation.

216 S. Zawad et al.

The last paper we talk about here is Exploring Processing In-Memory for Differ-
ent Technologies [7]; another work that attempts to utilize PiMs but focuses more on
making this system applicable to different types of memory. They propose designs
which enable PIM in the three major memory technologies—SRAM, DRAM, and
non-volatile memories (e.g., NVMs). They exploit the analog properties of different
memories to implement logic functions like OR, AND, and majority inside memory.
It is then extended to further implement in-memory addition and multiplication. As
pointed out in this paper, it is important for machine learning libraries to support
such systems since IoT devices can have a variety of memory types.

10.1.3 Energy

Energy efficiency is also one of the major concerns when designing efficient ML
training algorithms due to FL parties generally being battery-powered devices.
Deep learning is inherently very power-consuming due to the large amounts of
computation that needs to be performed. As such, there has been a relatively large
amount of work in energy efficiency for IoT devices in the FL scope compared to
works for CPU and memory. We present the state of the art in such system here.

In the paper Energy efficient federated learning over wireless communication
networks [30] the authors argue that the learning process and the communication
frequency are the key ingredients that determine the energy efficiency of federated
learning systems. This is because they both indirectly impact the number of local
training steps, which affects the total energy consumption. They then pose the
problem as a joint learning and communication optimization problem with the goal
of minimizing energy consumption under latency constraints. Based on this problem
definition, they develop an iterative algorithm which derives a closed-form solution
for time allocation, bandwidth allocation, power control, computation frequency,
and learning accuracy for every local step. However, the iterative algorithm
requires an initial feasible solution, and the authors construct the completion time
minimization problem and apply a bisection-based algorithm to obtain the optimal
solution. The majority of this work is theoretical and the system implementation
here is very minimal with good results. This is a key paper in this area since it derives
the mathematical relationship between the model’s performance, communication
overhead, and energy consumption.

Another important paper is To Talk or to Work: Flexible Communication
Compression for Energy Efficient Federated Learning over Heterogeneous Mobile
Edge Devices [15]. This is also an interesting paper since they describe the
relationship between resource heterogeneity and power consumption. The paper
targets at improving the energy efficiency of FL over mobile edge networks to
accommodate the resource heterogeneity among the parties. Based on this, they
develop a convergence-guaranteed FL algorithm that enables flexible communica-
tion compression. They derive a convergence bound and develop a compression
control scheme to balance the energy consumption of local computing against the

10 Local Training and Scalability of Federated Learning Systems 217

wireless communication. They target the long-term goal of the system. They apply
compression parameters which are specifically chosen for the party participants
adapting to their computing and communication environments. This allows for
accommodating compression mechanisms dynamically based on device heterogene-
ity and allows for better control of energy consumption mechanisms.

Meanwhile, the paper Energy-aware analog aggregation for federated learning
with redundant data [26] takes a different approach to energy efficiency. While the
other papers focus on reducing local computations such that they decrease energy
consumption, this paper takes a different approach by using scheduling policy to
control it. In other words, they design an aggregator selection policy such that
energy-aware decisions are made. They define the problem as a budget allocation
problem and define an energy consumption budget for the full training process.
They also add a redundancy metric which determines if the local data of a party
is already present in other more efficient devices. They then propose an energy-
aware dynamic party scheduling policy on the aggregator side, which maximizes
the average weighted fraction of scheduled parties. This policy requires no future
knowledge of energy consumption and is therefore useful for FL systems where the
resource usage varies not only across hardware but in temporally as well.

The paper Federated Learning over Wireless Networks: Optimization Model
Design and Analysis [27] also demonstrates theoretically the relationship between
convergence rate and energy consumption. However, instead of showing the rela-
tionship, they show that the Federated Learning over wireless networks problem
(FEDL) has two main two trade-offs—the learning time versus mobile device
energy consumption that falls under the Pareto-optimality curve, and the compu-
tation versus communication frequency by finding the optimal number of local
optimization steps (i.e., mini-batch size). They prove theoretically that such a
problem is non-convex. However, they contain special patterns in CPU cycles and
data heterogeneity that allows for breaking them down into smaller sub-problems
which can be convex. The first two sub-problems can be solved separately, and
their solutions can be used to solve the larger problem scope. The analysis of the
closed-form solution provides a Pareto-efficient controlling knob which allows for
the tuning between computation (i.e., energy consumed) and communication. This
is a notable paper in terms of energy efficiency due to demonstrating that there is a
Pareto-optimality involved in the trade-off, which can be utilized by future systems
to develop more efficient or tunable FL frameworks.

10.1.4 Network

Lastly, we talk about what some argue to be the largest systems bottleneck in FL,
which is networks. A majority of the state-of-the-art machine learning models utilize
neural networks which usually contain millions of parameters. In FL systems, the
parties have to send these parameters (obfuscated with encryption/differential noise)
over the network, which generally translates to up to gigabytes of data depending on

218 S. Zawad et al.

the size of the model. However, as mentioned before, many FL scenarios will have
low-bandwidth connection devices with high rates of downtime. We now discuss a
few papers that attempt to address these challenges.

An interesting approach to network efficiency is provided in Robust and
Communication-Efficient Federated Learning from Non-IID Data [23]. Methods
of reducing communication bandwidth involving compression mechanisms have
been used extensively in traditional machine learning and have been applied to
Federated learning systems as well. The authors of this paper, however, argue that
they are of limited utility since they only compress one direction of communication
or are only applicable under certain circumstances which are unrealistic in the
general FL scenarios. Based on their observations of the their current works, the
authors propose Sparse Ternary Compression, or STC. This is a new compression
framework that is specifically designed to meet the requirements of the Federated
Learning environment since it extends the existing compression techniques
of top-k gradient sparsification which enables downstream compression along
with ternarization and optimal Golomb encoding of the weights. They perform
experiments on four different learning models and demonstrate that STC can
significantly outperform Federated Averaging. They evaluate their method under
common Federated Learning scenarios such as with parties that have a high amount
of data heterogeneity, parties with small datasets, or a high number of parties, etc.
They demonstrate that they can significantly reduce communication bandwidth due
to smaller model sizes while reducing the impact of data heterogeneity as well.
Since data heterogeneity is such a common problem in FL, the fact that ternarizing
gradients can benefit model performance as well is a significant benefit.

FedPAQ: A Communication-Efficient Federated Learning Method with Periodic
Averaging and Quantization [21] points out that FL frameworks face multiple
systems-oriented challenges. They specifically point out that communication bot-
tlenecks are significant challenges due to many devices trying to interact at the
same time. They also say that scalability is a very important aspect of FL too since
such systems can contain millions of parties. Due to these systems’ challenges
as well as data heterogeneity and privacy concerns, Federated Learning can be
a very challenging problem to tackle. The authors present FedPAQ as a way of
addressing these challenges. FedPAQ is a communication-efficient method that
performs periodic aggregation and quantization. In other words, they control the
frequency of communication between the parties to reduce the total amount of
bandwidth on the party-side. They also devise a mechanism to be robust to partial
party participation since not all parties are always available. These features address
the communications and scalability challenges in federated learning.

Another unique perspective is given in CMFL: Mitigating communication over-
head for federated learning [19]. While existing works mainly focus on reducing the
total bits transferred in each update via data compression, this paper takes a different
view that parties can have updates that are irrelevant to training the global model.
The idea is that such updates can be identified before they are transferred to the
aggregator and can be precluded before being sent to the aggregator thereby reduc-
ing bandwidth consumption. Based on this idea, the authors propose the framework

10 Local Training and Scalability of Federated Learning Systems 219

called Communication-Mitigated Federated Learning (CMFL) in this paper. The
framework provides parties with the feedback information on the direction of the
global model updates. A party’s update is considered “irrelevant“ if they are too
similar to the global model’s, which would indicate that the party does not have
unique features to aid the training. By avoiding those uploads irrelevant updates to
the aggregator, CMFL can substantially reduce the communication overhead while
still guaranteeing convergence. This approach indicates an important property of
FL systems where certain parties are more important to convergence than others,
and we will later talk about systems that can utilize this to make more efficient FL
frameworks.

Another work with a unique approach to addressing network overhead manage-
ment is FedBoost: Communication-Efficient Algorithms for Federated Learning [8].
The authors here present a unique method of FL, namely ensemble training, to
boost model training efficiency. They first prove mathematically that it is possible
to train a large model as an ensemble of smaller and more efficient models using
Federated Learning. They also show that by offloading only the smaller parts of the
ensemble to the parties with predefined intervals can lead to a significant reduction
in communication cost compared to training the full models locally (as is done
traditionally). They also perform what they call “base predictor training“ which is
essentially pre-training the ensemble on the aggregator side with controllable and
balanced data up to a certain point. The partly trained model is then used as the base
global model and then the FL training on the parties actually starts. This results in
lower number of FL training rounds, meaning that it leads to an overall reduction in
the number of communication rounds too.

10.2 Large-Scale FL Systems

Cross-device FL is considered a large-scale system due to having large number
of party participants (can be up to millions [1]). However, the challenges faced
are quite distinct as discussed before. The state of the art in large-scale FLs have
two large challenges—managing a huge number of connections/aggregations and
reducing the impact of stragglers.

Up to this point, we have only discussed a specific type of FL architecture called
the Central Aggregator architecture since the seminal paper in FL [12] uses this
and is the base architecture for all advanced FL systems. However, as discussed
before, such a simple architecture poses quite a few challenges (e.g., communication
bottlenecks and stragglers), and many newer systems have considerably changed
this base architecture into more novel ones that can mitigate some of these
challenges. In this section, we broadly group these architectures into 4 groups as
pointed out in [17]—Clustered, Hierarchical, Decentralized, and Asynchronous—
and discuss them in detail.

220 S. Zawad et al.

10.2.1 Clustered FL

Figure 10.1 shows the base cross-device architecture that we have based our discus-
sions on. As pointed out before in Sect. 10.1.2, such systems face the stragglers’
issue where the total training latency per round is bound by the slowest party
selected in that round. It also makes no concession to address data heterogeneity
challenges.

In order to address these shortcomings, one of the first types of FL is called
the Clustered FL systems. The key idea here is to group the parties into clusters
such that the party devices within each set have certain similar properties (e.g., data
distributions, training latencies, hardware, location, etc.). The system diagram is
given in Fig. 10.2. As we can see, the major difference between this system and the
basic FL one is not much in terms of infrastructure. Instead, the major difference
is in terms of how the parties are organized. The properties which determine the
organization of the clusters usually differ in literature depending on what problem is
being attempted to be addressed. For example, if we wish to develop an architecture
where we want all parties to participate equally but some of them are more prone
to dropouts than others, we can group them based on their dropout probabilities.
Then we can simply choose to select parties from the higher dropout rates more
frequently than those with lower rates, evening out the participation. Similarly, for
data heterogeneity challenges, we can group parties based on how balanced their
local data are. Creating a balance between the sampling frequencies of unbalanced
and balanced datasets can mitigate the data heterogeneity issues.

Fig. 10.1 Central Aggregator architecture

10 Local Training and Scalability of Federated Learning Systems 221

Fig. 10.2 Clustered FL
architecture

10.2.1.1 Design Challenges

There are a few challenges involved in developing such FL systems. They are—

Clustering Criteria The properties used to group parties are one of the most
important design decision that needs to be made in such systems since it will
completely define the priorities of the framework. For example, if parties are
grouped based on resources and not data, we may develop a system that can control
the speed of training but be completely blind to model performance.

Selection Criteria After clustering, the next most important step is how to control
the system such that the clustered properties can be taken advantage of. For example,
too frequent selection of parties with biased datasets will lead to a biased model, but
too few may mean that important features may end up being excluded from training.

Profiling Depending on the clustering properties, the parties need to be profiled for
their characteristics. For example, when clustering based on data an accurate method
of quantifying and ranking them would be required. Depending on the accuracy
of this profiling, devices may end up in the wrong cluster and cause even more
problems in defining a good selection policy.

Dynamic Properties Certain properties of parties such as the number of data-
points, network connectivity, available training resources, etc. can change over time
due to user behavior. As such, the profiling must be done more than once throughout
the training process.

Privacy Profiling data is completely against the privacy-centric design principle of
FL systems. As such special precautions need to be taken such that even profiling
and clustering properties could not be used to identify the specific parties (e.g.,
Secure Aggregation, Blockchains, Differential Privacy).

222 S. Zawad et al.

10.2.1.2 Pros and Cons

The advantages of such systems are—

• Ease of implementation—Since the infrastructure is not much different com-
pared to the basic FL, it is quite easy to implement. The major hurdles of
implementation are usually on the policy side when the clustering and selection
criteria need to be defined.

• Complementary to other architectures—The clustering and selection policies
can be easily applied on top of other types of FL architectures with drastically
different structures since it is only an algorithmic add-on.

• Tunable—Usually, works which employ a form of clustering FL provide control
knobs that allow the properties of the system to be tuned. For example, [2] gives
parameters which can be changed to compromise between convergence speed
and final model performance.

The disadvantages of such a system are—

• Hard to tune—As mentioned in the challenges section, the biggest challenge is
to define a good clustering and selection policy which usually requires a lengthy
tuning process through trial-and-error.

• Scalability—The clustering in and of itself does not allow for scalable infrastruc-
tures. Clustered FL must be paired with other types of FL architectures such as
hierarchical FL to enable the handling of a large number of devices. Additionally,
it becomes harder to profile and balance policies with larger number of parties.

• Overheads—Profiling, especially on dynamic systems, is an overhead that must
be carried by Clustered FL systems. For FL where the party hardware may have
limited resources in the first place, this becomes an extra cost over time regardless
of how lightweight the profiling process is.

10.2.1.3 Notable Examples in Literature

An important example of a Federated Learning system using such an aggregation
scheme is An Efficient Framework for Clustered Federated Learning [6]. This paper
introduces a clustering system based on the loss values of the party’s gradients.
The authors provide theoretical analysis on how losses can be used to mitigate the
performance loss of a model due to data heterogeneity. The authors analyze the
convergence rate of this algorithm with squared loss, generic strongly convex, and
smooth loss functions. IFCA is shown as guaranteed to converge, and the authors
also discuss the optimality of the statistical error rate. They also propose using IFCA
with the weight sharing technique in multi-task learning if clustering is ambiguous.
Another such paper is Clustered Federated Learning [24], which presents CFL.
It is a novel Federated Multi-Task Learning framework, which exploits geometric
properties of the loss surface of the FL training systems. CFL groups the parties
into clusters based on the cosine similarities of their weights. The idea here is that

10 Local Training and Scalability of Federated Learning Systems 223

parties with jointly trainable data distributions help train the system better if selected
together. Unlike other existing FMTL approaches, CFL is applicable to general non-
convex objectives, requires no modifications to the FL communication protocol,
and comes with mathematical guarantees on the clustering quality. However, they
focus more on the privacy aspects, proving that it is possible to profile user data
and yet keep them anonymous by adding differential noise. TiFL: A Tier-based
Federated Learning System [2] is another paper which uses this scheme. They
propose clustering based on resource as well as data heterogeneity. They first
perform extensive experiments in a real distributed system to demonstrate how
data heterogeneity impacts model performance and how resource heterogeneity
causes straggler issues. They show that the challenges faced due to both these
properties can be managed by clustering similarly behaving parties together and
making smart scheduling decisions. They propose an automatic and dynamic party
selection process using selection probabilities and clustering which significantly
reduce the impact of stragglers and data bias.

10.2.2 Hierarchical FL

While Clustered FL is easier to implement and flexible, it lacks scalability. In order
to address the challenge of having to communicate with possibly thousands of
devices simultaneously, we need a considerable shift in the overall structure. The
single most disadvantage of the Central Aggregator system is that it only has one
aggregator that handles all the parties. The most obvious way to solve this issue is to
add extra aggregation servers, each of which contributes to the development of the
global model. Thus, hierarchical FL systems were proposed. As the name implies, it
contains levels of aggregators, each in charge of its own set of parties and passes on
its aggregated model higher up until they reach a central aggregator which manages
the single global model. Figure 10.3 shows the architecture of such systems.

Fig. 10.3 Hierarchical FL
architecture

224 S. Zawad et al.

The most notable difference here is the edge aggregators between the parties
and the central aggregator. The parties usually communicate with their own
edge aggregator, which performs the tasks performed traditionally by the cen-
tral aggregator such as selecting devices, sending and receiving model weights,
encryption/decryption of privacy mechanisms, aggregation, etc. However, these
edge aggregators do not contain the final global model. Rather, they have what is
called an “intermediate“ model which it passes up the hierarchy until it reaches
the final central aggregator. There can be any number of hierarchies between the
central aggregator and the parties depending on the scale of the infrastructure. The
edge aggregators in between other edge aggregators and the central aggregator also
usually contain their own aggregation mechanisms. Such hierarchical structures
break down the full system into smaller more manageable parts and make it scalable.

10.2.2.1 Design Challenges

Implementation Such systems are usually quite large in scale and require signifi-
cant modification to the underlying architecture. As such, it requires effort to set up
in a distributed system. There are also implementation decisions which will impact
the scalability, robustness, ease of management, and efficiency. For example, how
many parties to allocate per edge aggregator will decide how many edge aggregators
would be required to manage the full system. Too little would mean under-utilization
of resources while too much can cause resource contention.

Management The large number of parties is usually magnitudes more than the
number of workers in traditional distributed ML systems. The addition of edge
aggregators adds even more management problems due to having more nodes to
the full system. In the Central Aggregator scenario, we only need to manage one
aggregator. With edge aggregators, we need to add extra mechanisms such as fault-
tolerance, monitoring, etc. which adds to the complexity of the system.

Synchronization Due to each of the aggregators managing their own set of parties,
the synchronization of updates between the edge aggregators becomes a challenge.
In FL systems, parties vary greatly between the speeds at which they report back
their model weights. With a central aggregator, we only need to wait for all the
parties in a single round. However, with multiple edge aggregators at different levels,
aggregation needs to be synchronized within each edge aggregator, between edge
aggregators in one level, and then between the edge aggregators in each level of the
hierarchy. This can amplify straggler problems if not addressed correctly.

Balancing Heterogeneity The imbalanced data distributions between parties also
mean that not all edge aggregators will end up having the same quality of “inter-
mediate” models. It will completely depend on the parties allocated under that edge
aggregator. This imbalance of model quality between the edge aggregators even
within the same levels necessitates the need for advanced aggregation algorithms.
Similar to synchronization challenges, the model imbalance can be amplified due to
multiple levels of aggregations if we are not careful.

10 Local Training and Scalability of Federated Learning Systems 225

10.2.2.2 Pros and Cons

The advantages of such systems are—

• Scalability—By virtue of its architecture, it is a highly scalable system. This can
also be a dynamic property of the system since we can easily add and remove
edge aggregators depending on the needs of the underlying infrastructure.

• System efficiency—Systems can be made more efficient due to the ability to
add/remove nodes easily. In Central Aggregator architectures, the node can
become overwhelmed with connections and model updates, resulting in resource
contention and reduction in system efficiency. Load balancing becomes easier
when there is the option to add/remove aggregation nodes.

• Robustness—Central Aggregation schemes have a single point of failure.
Hierarchical systems have multiple nodes at a time, each containing a relatively
newer copy of the “intermediate“ models. This means that nodes going offline
can easily be handled.

The disadvantages of such a system are—

• Communication redundancy—Model weights must be calculated and commu-
nicated multiple times as they are moved to the top of the hierarchy. With a central
aggregator, the weights are just transferred once per round.

• Privacy Overheads—Privacy mechanisms such as encryption are usually
resource intensive tasks and are required every time the weights are moved
between aggregators. As such, multiple levels of aggregation means the same
privacy protocols must be applied repeatedly during every transfer, incurring
significant computation cost over time.

• Security—Due to the larger number of nodes in a hierarchical system, there
are more options for malicious parties to attack. Additionally, it is harder to
detect compromised nodes due to the sheer number of edge aggregators. Central
aggregation servers, in comparison, are easier to monitor and detect anomalies
on.

10.2.2.3 Notable Examples in Literature

One of the seminal papers here is Towards Federated Learning at Scale: System
Design [1]. This is the first paper to point out the systems challenges in large-
scale FL, the authors here propose a template of the hierarchical structure as a
means of managing vast number of parties. They focus on ensuring that every party
gets to participate without having to worry about resources for the Aggregators
and show that hierarchical structures are ideal for such scenarios due to the
dynamically changing infrastructure. Another important paper is Client-Edge-Cloud
Hierarchical Federated Learning [16]. While the previous work focused more
on scalability, they did not consider the limitations of using simple aggregation
algorithms on their impact on model performance. This paper demonstrated that we

226 S. Zawad et al.

may need different aggregation algorithms at different levels, and good aggregators
can be designed to mitigate the impact of data heterogeneity, party availability,
communication redundancy, and stale weights. HFEL: Joint Edge Association and
Resource Allocation for Cost-Efficient Hierarchical Federated Edge Learning [18]
introduces a novel hierarchical federated learning system called HFEL. They for-
mulate the hierarchical design challenge as a joint computation and communication
resource allocation problem. They solve the optimization problem to come up with
an effective communication vs. node resources trade-off and propose a scheduler
for aggregators which further reduces the resource costs.

10.2.3 Decentralized FL

Another idea with parallels to the Hierarchical FL system is that of Decentralized
FL. The main difference between the Hierarchical FL and Decentralized FL is
that the aggregation servers in a Decentralized system operate independently from
each other as shown in Fig. 10.4. Unlike the former, there is no waiting between
aggregators for each other’s “intermediate” model weights and passing it up
the levels. Instead, the Aggregators rely on blockchains or message passing to
coordinate between themselves to train a global model.

The training process is also quite different due to not having a central aggregator.
For example, the system BrainTorrent [22] starts by starting each of the parties to
perform their local training in parallel. Each of these models is given a version
number of 0 initially. A random party among all the devices sends out a ping to
the other parties to get each of their local model versions. All parties with a higher
version number than the current party’s local model are asked to send their model
weights, and the asking party takes those weights and aggregates them with its
own local model, creating a new version of the global model. Then the training
process begins again by randomly selecting another party and continues until all
party models converge to the same global model. In such a system, only one party
is updated per round instead of many.

The advantages to scalability are obvious in this case as well compared to
the Central Aggregation system. Due to using the parties as aggregation and
communication nodes, the communication bottleneck issue is completely removed.
It also allows for indefinite expansion on the number of parties used for training.

Fig. 10.4 Decentralized FL
architecture

10 Local Training and Scalability of Federated Learning Systems 227

10.2.3.1 Design Challenges

Lightweight Aggregation and Communication Mechanisms One large draw-
back of such a peer-to-peer based aggregation system is in the reduction of local
computational and communication overheads. Since the party hardware are the
ones doing the heavy-lifting and usually such hardware have limited resources, it
becomes very important to design very lightweight mechanisms. Such systems also
become infeasible under certain scenarios such as in low-bandwidth areas.

Unpredictability Since there are usually no aggregators to manage the training
process, it becomes impossible to control it. A certain amount of randomness
is involved, and properties of the system such as data heterogeneity, stragglers,
dropouts, etc. can impact the model performance, convergence speed, and resource
usage in unpredictable ways. Without adding control mechanisms such as coordi-
nator servers, it becomes almost impossible to design an efficient Decentralized
system.

Storage and Energy Overheads Since parties take turns to aggregate and update
the global models, they must incur significant storage costs since they must handle
multiple large models at the same time. Given that the devices are already limited in
capacity, this becomes another pressing matter; compression techniques or memory
utilization methods must be implemented to handle such issues. It may also mean
that more energy is expended every time a party is selected.

10.2.3.2 Pros and Cons

The advantages of such systems are—

• Scalability—Similar to Hierarchical FL, its architecture is by default a scalable
system. Few changes to the structure are needed when adding or removing parties
from the system. Dynamic shifts in the party availability and data shifts do not
need to be explicitly addressed.

• Lack of Aggregator Nodes—A minimal number of nodes are required for train-
ing since it is the parties that tend to manage the training process. Aggregators
can be added for monitoring, scheduling, etc. but the actual aggregation is not
required and so the nodes can have low hardware resources, reducing the cost of
implementation.

• Robustness—There are as many aggregators as there are parties in the system,
meaning that a few node failures will not affect the training process significantly.
Since all the parties also tend to keep their own versions of the models, it is easy
to retain a certain amount of progress even in case of a large number of party
failures.

228 S. Zawad et al.

The disadvantages of such a system are—

• Local resource usage—As mentioned before, the fact that parties are the one
performing aggregation means that the cost increases per device. This can
be a disqualifying reason in many light-on-resources systems such as sensor
networks. Additionally, communication bottleneck can become a large concern
if too many parties fall behind on training and end up trying to aggregate at the
same time.

• Security—A managed aggregator is more secure than a decentralized system
due to the latter randomly passing around weights across all devices. A single
malicious party can completely infiltrate the system if it gets selected for training
and is therefore a huge security flaw. Parties must all be trusted completely for
such a system to be implemented securely.

• Lack of control—The system largely depends on the party devices that get
selected to be the aggregator. If the parties are fast and have consistently high
bandwidths, the system will converge faster. However, if there are too many
dropouts, stragglers, biased datasets, etc. it becomes a much less efficient system.
Since there is no central aggregator, there are very few policies that can be
implemented to control such systems.

10.2.3.3 Notable Examples in Literature

The first important paper is called BrainTorrent: A Peer-to-Peer Environment for
Decentralized Federated Learning [22]. This paper introduces BrainTorrent, a FL
framework without a centralized aggregation server. They perform peer-to-peer
aggregation such that all the participants can train a single global model without
needing to have a coordinator. BrainTorrent was designed with medical ML models
in mind but can be extended to other types of applications too. Decentralized
Federated Learning with Adaptive Partial Gradient Aggregation [10] is another
paper where the authors present a decentralized aggregation algorithm developed
as an extension of FedAvg [12] called FedPGA. They propose that the parties in
FedPGA exchange partial gradients instead of the full model weights. Doing so
significantly reduces the network load. The partial gradients work as a direction
for moving the global weights (similar to gradients in traditional learning). The
aggregation algorithm is very similar to FedAvg, but with averaging over partial
gradients than weights. The paper Fully Decentralized Federated Learning [13] also
propose a decentralized federated learning training framework. However, to reduce
communication overhead they limit the peer-to-peer connections to only those
within one hop away. They theoretically prove that it is possible for decentralized
FL mechanisms such as theirs can converge.

10 Local Training and Scalability of Federated Learning Systems 229

Fig. 10.5 Asynchronous FL
architecture

10.2.4 Asynchronous FL

The last unique type of architecture is the Asynchronous FL. So far, we have
only talked about synchronized FL algorithms which wait for the weights for all
parties to be available before aggregation. However, this is what makes FL systems
susceptible to stragglers and bottlenecks in communication, which limits scalability.
In asynchronous aggregation mechanisms, the global model does not wait for every
party weight but updates the global model as soon as a single party reports back.

Figure 10.5 shows the architecture of a typical asynchronous FL system. The
major difference here is the timeline for aggregation. When a party comes in with its
latest update, the aggregator performs an aggregation immediately on the received
weights and generates a new version of the global model. If another set of weights
come in at the same time or immediately after, it is aggregated to the newer iteration
of the global model. In other words, the weights are aggregated in a sequence. In this
method, no waiting is necessary for all the weights to report back and thus stragglers
can come in at any time without holding up the training progress.

10.2.4.1 Design Challenges

Aggregation Techniques Since the process is not synchronized, developers need
to come up with novel algorithms that can perform weight aggregation to generate
a new global model. This can be a challenging task since asynchronous methods in
general tend to perform worse than synchronous averaging, resulting in a worse final
model. This can be especially true for FL where the impact of data heterogeneity can
be amplified without a good aggregation algorithm to mitigate it. Currently, there are
no works that have proposed a theoretically complete asynchronous algorithm that
can also be used to mitigate biased training.

Staleness This is a challenge which traditional distributed asynchronous algo-
rithms face as well. If the party weights come in too late, i.e., the global models are

230 S. Zawad et al.

already a significant number of steps past when the reporting party had received and
updated its local model, the new weights may actually be detrimental to the model
training process. As such, it is better to discard the weights that are too “stale.” Given
the wide variety of training latencies are between the parties, it is natural that the
slowest parties will always be stale compared to the faster party weights. This would
result in training bias as well as under-utilization of the full dataset. As such, how
to design a policy so that slower parties can also contribute without compromising
mode accuracy is an open challenge.

Privacy-PreservingMechanisms Another challenge for Asynchronous FL is from
the privacy aspect. Currently, the two major privacy-preserving techniques (secure
aggregation and differential privacy) require the participation of multiple parties per
round. In differential privacy, a certain amount of noise is added to each of the party
model weights at such a level that they cannot be distinguished from each other.
It can only be done if there are multiple party models, otherwise it is not possible
to know how much noise to apply to a single party’s model weights. Similarly, for
secure aggregation, the keys are shared among multiple parties such that the model
weights can only be decrypted when all the models report back. In asynchronous
aggregation, parties come in one at a time, making it hard to apply any of these
techniques.

10.2.4.2 Pros and Cons

The advantages of such systems are—

• Nullifies the straggler effect—Due to not being synchronous, the FL system can
tolerate a significant amount of training latency in the parties. Without having to
wait for all the parties to come in, the per-round time is not bound by the slowest
arriving party anymore. The training process becomes free running.

• Used with other architectures—Like clustered FL, this too can be used with
other FL architecture types since it requires changes on the policy level instead
of the infrastructure. For example, it can be applied in hierarchical FL where
every edge aggregator asynchronously trains each of the devices it is in charge
of. As such, it can gain the benefits of scalability as well as completely side-step
the impact of stragglers.

• Robust to dropouts—Usually, asynchronous FL will have multiple parties
running at the same time and does not usually care about when these parties
report back their models. As such, if a model times out or gets interrupted and
does not end up sending its weights, the training still proceeds as normal since
the other parties can keep on contributing and updating the global model.

The disadvantages of such a system are—

• Prone to staleness—The reason why it can avoid stragglers is also the same
reason it is more prone to stale weights. As mentioned before, the variety of

10 Local Training and Scalability of Federated Learning Systems 231

training latencies mean that some slower parties are always bound to contribute
with older weight updates which can be detrimental to the training process.

• Privacy—Also discussed above, current privacy systems tend to be reliant on
multiple parties synchronized in reporting back their weights. Asynchronous
design is directly opposite of these mechanisms, meaning that new types of
privacy-preserving methods need to be developed, or a hybrid asynchronous
approach (such as controlling the number of asynchronous parties per round)
needs to be made.

10.2.4.3 Notable Examples in Literature

One of the first papers that introduced the asynchronous FL as a viable solution
is Asynchronous Online Federated Learning for Edge Devices [25]. They propose
the ASO-fed framework, where the edge devices perform online learning. They
propose a system under the premise that the party data is constantly changing, and
the parties are constantly training locally on the ever-changing data while providing
periodic updates to the aggregator. They use a simple running average as their
asynchronous system and do not discuss the privacy implications. However, being
a seminal work in this field, they do show that stragglers’ problems are completely
mitigated by asynchronous aggregation. Asynchronous Federated Optimization [28]
is another paper where the authors propose a system with an aggregator which is
also a coordinator. It manages a queue with all the parties which are set to run in
parallel. Every few updates, the coordinator puts a party in the waiting queue and
swaps it with another idle party from the queue. In this way, they manage the system
by providing control over the training procedure and can mitigate the errors accrued
due to stale weights. They also prove the convergence of the proposed approach by
posing it as a non-convex problem. In the paper Communication-Efficient Feder-
ated Deep Learning with Asynchronous Model Update and Temporally Weighted
Aggregation [4]. The authors propose an asynchronous learning strategy where
different layers of the deep neural networks are categorized into shallow and deeps
layers. The parameters of the deep layers are updated less frequently than those
of the shallow layers. A temporally weighted aggregation strategy is introduced
on the aggregator to make use of the previously trained local models, thereby
enhancing the accuracy and convergence of the central model, while keeping a
reduced communication overhead.

10.3 Conclusion

For this chapter, we talked about various types of aggregation schemes that exist
to address specific problems for Federated Learning systems. Most of the current
state-of-the-art frameworks use a version of one or more of these architectures.
We provide a general overview of their pros and cons and provide some example

232 S. Zawad et al.

work to demonstrate how they are used in real frameworks. We also pointed out
the seminal and most unique approaches that are available in current literature.
While other works exist, these papers provide the distinct techniques which lay
the groundwork for most of the other state-of-the-art works. As such, this chapter
provides a good coverage of the different solutions available to address the certain
Federated Learning systems challenges.

References

1. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konecný
J, Mazzocchi S, McMahan B, Van Overveldt T, Petrou D, Ramage D, Roselander J (2019)
Towards federated learning at scale: System design. In Talwalkar A, Smith V, and Zaharia M
(eds) Proceedings of machine learning and systems 2019, MLSys 2019, Stanford, CA, USA,
March 31–April 2, 2019. mlsys.org

2. Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie Baracaldo, Yi Zhou,
Heiko Ludwig, Feng Yan, and Yue Cheng (2020) Tifl: A tier-based federated learning
system. In: Proceedings of the 29th international symposium on high-performance parallel
and distributed computing, pp 125–136

3. Chen B, Medini T, Farwell J, Tai C, Shrivastava A (2020) Slide: in defense of smart algorithms
over hardware acceleration for large-scale deep learning systems. Proceedings of Machine
Learning and Systems 2:291–306

4. Chen Y, Xiaoyan Sun X, Yaochu Jin Y (2019) Communication-efficient federated deep
learning with asynchronous model update and temporally weighted aggregation. Preprint.
arXiv:1903.07424

5. Daghaghi S, Meisburger N, Zhao M, Shrivastava A (2021) Accelerating slide deep learning
on modern cpus: Vectorization, quantizations, memory optimizations, and more. Proc Mach
Learn Syst 3:156

6. Ghosh A, Chung J, Yin D, Ramchandran K (2020) An efficient framework for clustered
federated learning. Preprint. arXiv:2006.04088

7. Gupta S, Imani M, Rosing T (2019) Exploring processing in-memory for different technolo-
gies. In: Proceedings of the 2019 on great lakes symposium on VLSI, pp 201–206

8. Hamer J, Mohri M, Suresh AT (2020) Fedboost: A communication-efficient algorithm for
federated learning. In: International conference on machine learning. PMLR, pp 3973–3983

9. Imani M, Gupta S, Kim Y, Rosing T (2019) Floatpim: In-memory acceleration of deep neural
network training with high precision. In 2019 ACM/IEEE 46th annual international symposium
on computer architecture (ISCA). IEEE, pp 802–815

10. Jiang J, Hu L (2020) Decentralised federated learning with adaptive partial gradient
aggregation. CAAI Trans Intell Technol 5(3):230–236

11. Jiang Y, Wang S, Valls V, Ko BJ, Lee WH, Leung KK, Tassiulas L (2019) Model pruning
enables efficient federated learning on edge devices. Preprint. arXiv:1909.12326

12. Konecnỳ J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D (2016) Federated learning:
Strategies for improving communication efficiency. CoRR

13. Lalitha A, Shekhar S, Javidi T, Koushanfar F (2018) Fully decentralized federated learning.
In: Third workshop on bayesian deep learning (NeurIPS)

14. Lane ND, Bhattacharya S, Georgiev P, Forlivesi C, Jiao L, Qendro L, Kawsar F (2016) Deepx:
A software accelerator for low-power deep learning inference on mobile devices. In: 2016 15th
ACM/IEEE international conference on information processing in sensor networks (IPSN).
IEEE, pp 1–12

15. Li L, Shi D, Hou R, Li H, Pan M, Han Z (2020) To talk or to work: Flexible communication
compression for energy efficient federated learning over heterogeneous mobile edge devices.
Preprint. arXiv:2012.11804

10 Local Training and Scalability of Federated Learning Systems 233

16. Liu L, Zhang J, Song SH, Letaief KB (2020) Client-edge-cloud hierarchical federated learning.
In: ICC 2020-2020 IEEE international conference on communications (ICC), pp 1–6. IEEE

17. Lo SK, Lu Q, Zhu L, Paik HY, Xu X, Wang C Architectural patterns for the design of federated
learning systems. Preprint. arXiv:2101.02373, 2021.

18. Luo S, Chen X, Wu Q, Zhou Z, Yu S (2020) Hfel: Joint edge association and resource
allocation for cost-efficient hierarchical federated edge learning. IEEE Trans Wirel Commun
19(10):6535–6548

19. Luping W, Wei W, Bo L (2019) Cmfl: Mitigating communication overhead for federated
learning. In: 2019 IEEE 39th international conference on distributed computing systems
(ICDCS). IEEE, pp 954–964

20. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN et al (2021) Advances
and open problems in federated learning. Foundations and Trends�in Machine Learning
14(1-2):1–210

21. Reisizadeh A, Mokhtari A, Hassani H, Jadbabaie A, Pedarsani R (2020) Fedpaq: A
communication-efficient federated learning method with periodic averaging and quantization.
In: International conference on artificial intelligence and statistics. PMLR, pp 2021–2031

22. Roy AG, Siddiqui S, Pölsterl S, Navab N, Wachinger C (2019) Braintorrent: A peer-to-peer
environment for decentralized federated learning. Preprint. arXiv:1905.06731

23. Sattler F, Wiedemann S, Müller KR, Samek W (2019) Robust and communication-efficient
federated learning from non-iid data. IEEE Trans Neural Netw Learn Syst 31(9):3400–3413

24. Sattler F, Müller KR, Samek W (2020) Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy constraints. IEEE Trans Neural Netw Learn
Syst 32:3710

25. Sprague MR, Jalalirad A, Scavuzzo M, Capota C, Neun M, Do L, Kopp M (2018) Asyn-
chronous federated learning for geospatial applications. In: Joint European conference on
machine learning and knowledge discovery in databases. Springer, pp 21–28

26. Sun Y, Zhou S, Gündüz D (2020) Energy-aware analog aggregation for federated learning with
redundant data. In: ICC 2020-2020 ieee international conference on communications (ICC).
IEEE, pp 1–7

27. Tran NH, Bao W, Zomaya A, Nguyen MN, Hong CS (2019) Federated learning over
wireless networks: Optimization model design and analysis. In: IEEE INFOCOM 2019-IEEE
conference on computer communications. IEEE, pp 1387–1395

28. Xie C, Koyejo S, Gupta I (2019) Asynchronous federated optimization. Preprint.
arXiv:1903.03934

29. Xu Z, Yang Z, Xiong J, Yang J, Chen X (2019) Elfish: Resource-aware federated learning on
heterogeneous edge devices. Preprint. arXiv:1912.01684

30. Yang Z, Chen M, Saad W, Hong CS, Shikh-Bahaei M (2020) Energy efficient federated
learning over wireless communication networks. IEEE Trans Wirel Commun 20:1935

Chapter 11
Straggler Management

Syed Zawad, Feng Yan, and Ali Anwar

Abstract For this chapter, we elaborate on one of the most common challenge in
Federated Learning—stragglers. The chapters “Local Training and Scalability of
Federated Learning Systems“ and “Introduction to Federated Learning Systems“
have talked briefly about it, and we delve even deeper here. We first provide an
introduction on what the problem is and why it is important. We talk about a study
to show the effect of stragglers in a practical setting. As an example, we then talk
about TiFL, a framework that proposes to solve such a problem using grouping.
Empirical results are presented to show how such systems may help mitigate the
effect of stragglers.

11.1 Introduction

As discussed before, Federated Learning shines light on a new emerging high
performance computing paradigm by addressing the security and privacy challenges
through utilizing decentralized data that is training local models on the local data of
each party (or data party) and using a central aggregator to accumulate the learned
gradients of local models to train a global model. Though the computing resource of
individual party may be far less powerful than the computing nodes in conventional
supercomputers, the computing power from the massive number of parties can accu-
mulate to form a very powerful “decentralized virtual supercomputer.” Depending
on the usage scenarios, FL is usually categorized into cross-silo FL and cross-device
FL [9]. In cross-device FL, the parties are usually a massive number of mobile
or IoT devices with various computing and communication capacities [9, 10, 14]
while in cross-silo FL, the parties are a small number of organizations with ample

S. Zawad (�) · F. Yan
University of Nevada, Reno, Reno, NV, USA
e-mail: szawad@nevada.unr.edu; fyan@unr.edu

A. Anwar
IBM Research – Almaden, San Jose, CA, USA
e-mail: ali.anwar2@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_11

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_11&domain=pdf
mailto:szawad@nevada.unr.edu
mailto:fyan@unr.edu
mailto:ali.anwar2@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_11

236 S. Zawad et al.

computing power and reliable communications [9, 16]. In this section, we focus
on the cross-device FL which intrinsically pushes the heterogeneity of computing
and communication resources to a level that is rarely found in datacenter distributed
learning and cross-silo FL. More importantly, the data in FL is also owned by parties
where the quantity and content can be quite different from each other, causing severe
heterogeneity in data that usually does not appear in datacenter distributed learning,
where data distribution is well controlled.

We first demonstrate a case study from TiFL [8] to quantify how data and
resource heterogeneity in parties impacts the performance of FL with FedAvg in
terms of training performance, and model accuracy and summarize the key findings:
(1) training throughput is usually bounded by slow parties (a.k.a. stragglers) with
less computational capacity and/or slower communication, which is named as
the resource heterogeneity. (2) Different parties may train on different quantity
of samples per training round and results in different round time that is similar
to the straggler effect, which impacts the training time and potentially also the
accuracy. This observation is called the data quantity heterogeneity. (3) In FL, the
distribution of data classes and features depends on the data owners, thus resulting
in a non-uniform data distribution, known as non-Identical Independent Distribution
(non-IID data heterogeneity). The experiments show that such heterogeneity can
significantly impact the training time and accuracy.

While resource heterogeneity and data quantity heterogeneity information can be
reflected in the measured training time, the non-IID data heterogeneity information
is difficult to capture. This is because any attempt to measure the class and feature
distribution violates the privacy-preserving requirements. To solve this challenge,
TiFL offers an adaptive party selection algorithm that uses the accuracy as indirect
measure to infer the non-IID data heterogeneity information and adjust the tiering
algorithm on-the-fly to minimize the training time and accuracy impact. Such
approach also serves as an online version to be used in an environment where the
characteristics of heterogeneity change over time.

11.2 Heterogeneity Impact Study

Compared with datacenter distributed learning and cross-silo FL, one of the key
features of cross-device FL is the significant resource and data heterogeneity among
parties, which can potentially impact both the training throughput and the model
accuracy. Resource heterogeneity arises as a result of vast number of computational
devices with varying computational and communication capabilities involved in the
training process. The data heterogeneity arises as a result of two main reasons—
(1) the varying number of training data samples available at each party and (2) the
non-uniform distribution of classes and features among the parties.

11 Straggler Management 237

11.2.1 Formulating Standard Federated Learning

Cross-device FL is performed as an iterative process whereby the model is trained
over a series of global training rounds, and the trained model is shared by all the
involved parties. We define K as the total pool of parties available to select from for
each global training round, and C as the set of parties selected per round. In every
global training round, the aggregator selects a random fraction of parties Cr from K .
The aggregator first randomly initializes weights of the global model denoted by ω0.
At the beginning of each round, the aggregator sends the current model weights to a
subset of randomly selected parties. Each selected party then trains its local model
with its local data and sends back the updated weights to the aggregator after local
training. At each round, the aggregator waits until all selected parties respond with
their corresponding trained weights. This iterative process keeps on updating the
global model until a certain number of rounds are completed or a desired accuracy
is reached.

The state-of-the-art cross-device FL system proposed in [3] adopts a party
selection policy where parties are selected randomly. A coordinator is responsible
for creating and deploying a master aggregator and multiple child aggregators for
achieving scalability as the real-world cross-device FL system can involve up to tens
of thousands of parties [3, 9, 12]. At each round, the master aggregator collects the
weights from all the child aggregators to update the global model.

11.2.2 Heterogeneity Impact Analysis

The resource and data heterogeneity among involved parties may lead to varying
response latencies (i.e., the time between a party receives the training task and
returns the results) in the cross-device FL process, which is usually referred as the
straggler problem. We denote the response latency of a party ci as Li , and the latency
of a global training round is defined as

Lr = Max
(
L1, L2, L3, L4 . . . L|C|

)
, (11.1)

where Lr is the latency of round r . From Eq. (11.1), we can see the latency of a
global training round is bounded by the maximum training latency of parties in C,
i.e., the slowest party.

Let us define τ levels of parties, where within the same level, the parties have
almost similar response latencies. Assume that the total number of levels is m

and τm is the slowest level with |τm| parties inside. In the baseline case, the
aggregator selects the parties randomly, resulting in a group of selected parties with
composition spanning multiple party levels.

238 S. Zawad et al.

We formulate the probability of selecting |C| parties from all party levels except
the slowest level τm as follows:

Pr =
(|K|−|τm|

|C|
)

(|K|
|C|
) . (11.2)

Accordingly, the probability of at least one party in C comes from τm can be
formulated as:

Prs = 1 − Pr. (11.3)

Theorem 11.1 a−1
b−1 < a

b
, while 1 < a < b.

Proof Since 1 < a < b, we could get ab − b < ab − a, that is (a − 1)b <

(b − 1)a and a−1
b−1 < a

b
. ��

Prs = 1 −
(|K|−|τm|

|C|
)

(|K|
|C|
)

= 1 − (|K| − |τm|) . . . (|K| − |τm| − |C| + 1)

|K| . . . (|K| − |C| + 1)

= 1 − |K| − |τm|
|K| . . .

|K| − |τm| − |C| + 1

|K| − |C| + 1
.

(11.4)

By applying Theorem 11.1, we get:

Prs > 1 − |K| − |τm|
|K| . . .

|K| − |τm|
|K|

= 1 − (
|K| − |τm|

|K|)
|C|

.

(11.5)

In real-world scenarios, large number of parties can be selected at each round,
which makes |K| extremely large. As a subset of K , the size of C can also be
sufficiently large. Since |K|−|τm|

|K| < 1, we get (
|K|−|τm|

|K|)|C| ≈ 0, which makes
Prs ≈ 1, meaning in a standard cross-device FL training process, the probability of
selecting at least one party from the slowest level is reasonably high for each round.
According to Eq. (11.1), the random selection strategy adopted by state-of-the-art
cross-device FL system may suffer from a slow training performance.

11 Straggler Management 239

Algorithm 11.1 Federated averaging training algorithm
1: Aggregator: initialize weight w0
2: for each round r = 0 to N − 1 do
3: Cr = (random set of |C| parties)
4: for each party c ∈ Cr in parallel do
5: wc

r+1 = T rainParty(c)

6: sc = (training size of c)
7: end for
8: wr+1 = ∑|C|

c=1 wc
r+1 ∗ sc∑|C|

c=1 sc

9: end for

11.2.3 Experimental Study

To experimentally verify the above analysis and demonstrate the impact of resource
heterogeneity and data quantity heterogeneity, we show a study with a setup similar
to the paper [7]. The testbed is briefly summarized as follows—

• A total of 20 parties are used and each party is further divided into 5 groups with
4 party per group.

• 4 CPUs, 2 CPUs, 1 CPU, 1/3 CPU, 1/5 CPU are allocated for every party from
group 1 through 5, respectively, to emulate the resource heterogeneity.

• The model is trained on the image classification dataset CIFAR10 [11] using the
standard cross-device FL process in Sect. 11.2.1 (model and learning parameters
are detailed in Sect. 11.4).

• Experiments with different data size for every party are conducted to produce
data heterogeneity results.

As shown in Fig. 11.1a, with the same amount of CPU resource, increasing the
data size from 500 to 5000 results in a near-linear increase in training time per round.
As the amount of CPU resources allocated to each party increases, the training
time gets shorter. Additionally, the training time increases as the number of data
points increase with the same number of CPUs. These preliminary results imply
that the straggler issues can be severe under a complicated and heterogeneous FL
environment.

To evaluate the impact of data distribution heterogeneity, the same CPU resources
for every party (i.e., 2 CPUs) are kept and generate a biased class and feature
distribution following [17]. Specifically, the dataset is distributed in such a way that
every party has equal number of images from 2 (non-IID(2)), 5 (non-IID(5)) and
10 (non-IID(10)) classes, respectively. We train the model on Cifar10 dataset using
the standard FL system as described in Sect. 11.2.1 with the model and training
parameters detailed in Sect. 11.4. As seen in Fig. 11.1b, there is a clear difference
in the accuracy with different non-IID distributions. The best accuracy is given by

240 S. Zawad et al.

21

22

23

24

25

26

27

28

4
CPUs

2
CPUs

1
CPU

1/3
CPU

1/5
CPU

Tr
ai
ni
ng

tim
e
[s
]

CPU resource

500 points
1000 points
2000 points
5000 points

(a)

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(b)

Fig. 11.1 (a) Training time per round (logscale) for one party with varying amount of resource and
training data quantity (number of training points); (b) accuracy under varying number of classes
per party (non-IID) with fixed amount of computational resources

the IID since it represents a uniform class and feature distribution. As the number
of classes per party is reduced, we observe a corresponding decrease in accuracy.
Using 10 classes per party reduces the final accuracy by around 6% compared to IID
(it is worth noting that non-IID(10) is not the same as IID as the feature distribution
in non-IID(10) is skewed compared to IID). In the case of 5 classes per party, the
accuracy is further reduced by 8%. The lowest accuracy is observed in the 2 classes
per party case, which has a significant 18% drop in accuracy.

These studies demonstrate that the data and resource heterogeneity can cause
significant impact on training time and training accuracy in cross-device FL. One
framework proposed to tackle this problem is called TiFL—A Tier-based Federated
Learning Framework [8]. It is a heterogeneity-aware party selection methodology
that selects the most profitable parties during each round of the training to
minimize the heterogeneity impact while preserving the FL privacy proprieties, thus
improving the overall training performance of cross-device FL.

11.3 Design of TiFL

In this section, we describe the design of TiFL. The key idea of a tier-based system
is that given the global training time of a round is bounded by the slowest party
selected in that round (see Eq. 11.1), selecting parties with similar response latency
in each round can significantly reduce the training time. We first give an overview of
the architecture and the main flow of TiFL system. Then we introduce the profiling
and tiering approach. We explain how a tier selection algorithm can potentially
mitigate the heterogeneity impact through a straw-man proposal as well as the
limitations of such static selection approach. We then discuss the proposed adaptive
tier selection algorithm to address the limitations of this straw-man system.

11 Straggler Management 241

Fig. 11.2 Overview of TiFL

11.3.1 System Overview

The overall system architecture of TiFL is presented in Fig. 11.2. TiFL follows the
system design to the state-of-the-art FL system [3] and adds two new components:
a tiering module (a profiler and tiering algorithms) and a tier scheduler. These
newly added components can be incorporated into the coordinator of the existing
FL system [4]. TiFL supports master-child aggregator design for scalability and
fault tolerance.

In TiFL, the first step is to collect the latency metrics of all the available parties
through a lightweight profiling as detailed in Sect. 11.3.2. The profiled data is further
utilized by the tiering algorithm. This groups the parties into separate logical pools
called tiers. Once the scheduler has the tiering information (i.e., tiers that the parties
belong to and the tiers’ average response latencies), the training process begins.
Different from standard FL that employs a random party selection policy, in TiFL
the scheduler selects a tier and then randomly selects targeted number of parties
from that tier. After the selection of parties, the training proceeds as state-of-the-art
FL system does. By design, TiFL is non-intrusive and can be easily plugged into any
existing FL system in that the tiering and scheduler module simply regulate party
selection without intervening the underlying training process.

11.3.2 Profiling and Tiering

Given the global training time of a round is bounded by the slowest party selected
in that round (see Eq. 11.1), if the system can select parties with similar response

242 S. Zawad et al.

latency in each round, the training time can be improved. However, in FL, the
response latency is unknown a priori, which makes it challenging to carry out the
above idea. To solve this challenge, a process through which the parties are tiered
(grouped) by the Profiling and Tiering module is proposed as shown in Fig. 11.2.
As the first step, all available parties are initialized with a response latency Li of 0.
The profiling and tiering module then assigns all the available parties the profiling
tasks. The profiling tasks execute for sync_rounds rounds and in each profiling
round, the aggregator asks every party to train on the local data and waits for their
acknowledgement for Tmax seconds. All parties that respond within Tmax have their
response latency value RTi incremented with the actual training time, while the
ones that have timed out are incremented by Tmax . After sync_rounds rounds are
completed, the parties with Li >= sync_rounds ∗ Tmax are considered dropouts
and excluded from the rest of the calculation. The total overhead incurred by the
offline profiling would be sync_rounds ∗Tmax . As TiFL would run the profiling for
sync_rounds rounds and each round would take time Tmax to complete the training.
The collected training latencies through profiling of parties create a histogram,
which is split into m groups and the parties that fall into the same group form a
tier. The response latency of each party is then stored by the scheduler and recorded
persistently which is used later for scheduling and selecting tiers. The profiling and
tiering can be conducted periodically for parties with changing computation and
communication performance over the time so that parties can be adaptively grouped
into the right tiers.

11.3.3 Straw-Man Proposal: Static Tier Selection Algorithm

In this section, we discuss a naive static tier-based party selection policy and
discuss its limitations, which motivates the development of an advanced adaptive
tier selection algorithm in the next section. While the profiling and tiering module
introduced in Sect. 11.3.2 groups parties into m tiers based on response latencies,
the tier selection algorithm focuses on how to select parties from the proper
tiers in the FL process to improve the training performance. The natural way to
improve training time is to prioritize toward faster tiers, rather than selecting parties
randomly from all tiers (i.e., the full K pool). However, such selection approach
reduces the training time without taking into consideration of the model accuracy
and privacy properties. To make the selection more general, one can specify each
tier nj is selected based on a predefined probability, which sums to 1 across all tiers.
Within each tier, | C | parties are uniform randomly selected.

In a real-world FL scenarios, there can be a large number of parties involved in
the FL process (e.g., up to 1010) [3, 9, 12]. Thus in the tiering-based approach, the
number of tiers is set such that m << |K| and number of parties per tier nj is always
greater than |C|. The selection probability of a tier is controllable, which results in
different trade-offs. If the users’ objective is to reduce the overall training time,
they may increase the chances of selecting the faster tiers. However, drawing parties

11 Straggler Management 243

only from the fastest tier may inevitably introduce training bias due to the fact that
different parties may own a diverse set of heterogeneous training data spread across
different tiers; as a result, such bias may end up affecting the accuracy of the global
model. To avoid such undesired behavior, it is preferable to involve parties from
different tiers so as to cover a diverse set of training datasets. We show an empirical
analysis on the latency-accuracy trade-off in Sect. 11.4.

11.3.4 Adaptive Tier Selection Algorithm

While the above naive static selection method is intuitive, it does not provide a
method to automatically tune the trade-off to optimize the training performance nor
adjust the selection based on changes in the system. In this section, we describe
TiFL’s adaptive tier selection algorithm that can automatically strike a balance
between training time and accuracy and adapt the selection probabilities adaptively
over training rounds based on the changing system conditions.

The observation here is that heavily selecting certain tiers (e.g., faster tiers) may
eventually lead to a biased model; TiFL needs to balance the party selection from
other tiers (e.g., slower tiers). The question being which metric should be used to
balance the selection. Given the goal here is to minimize the bias of the trained
model, TiFL can monitor the accuracy of each tier throughout the training process.
A lower accuracy value of a tier t typically indicates that the model has been trained
with less involvement of this tier, therefore tier t should contribute more in the next
training rounds. To achieve this, TiFL can increase the selection probabilities for
tiers with lower accuracy. To achieve good training time, it also needs to limit the
selection of slower tiers across training rounds. Therefore, the idea of Creditst is
introduced, which is a constraint that defines how many times a certain tier can be
selected.

Specifically, a tier is initialized randomly with equal selection probability. After
the weights are received and the global model is updated, the global model is
evaluated on every party for every tier on their respective T estData and their
resulting accuracies are stored as the corresponding tier t’s accuracy for that round
r . This is stored in Ar

t , which is the mean accuracy for all the parties in tier t in
training round r . In the subsequent training rounds, the adaptive algorithm updates
the probability of each tier based on that tier’s test accuracy at every I rounds.
This is done in the function ChangeP robs, which adjusts the probabilities such
that the lower accuracy tiers get higher probabilities to be selected for training;
then with the new tier-wise selection probabilities (NewProbs), a tier which has
remaining Creditst is selected from all available tiers τ . The selected tier will have
its Creditst decremented. As parties from a particular tier get selected over and over
throughout the training rounds, the Creditst for that tier ultimately reduces down
to zero, meaning that it will not be selected again in the future. This is a way of
limiting the number of times a tier can be selected so as to control the training time
by controlling the maximum number of times the slower tiers are selected. This

244 S. Zawad et al.

Algorithm 11.2 Adaptive Tier Selection Algorithm. Creditst : the credits of Tier t ,
I : the interval of changing probabilities, T estDatat : evaluation dataset specific to
that tier t , Ar

t : test accuracy of tier t at round r , τ : set of Tiers

1: Aggregator: initialize weight w0, currentT ier = 1, T estDatat , Creditst ,
equal probability with 1

T
, for each tier t .

2: for each round r = 0 to N − 1 do
3: if r%I == 0 and r ≥ I then
4: if Ar

currentT ier ≤ Ar−I
currentT ier then

5: NewProbs = ChangeP robs(Ar
1, A

r
2 . . . Ar

T)

6: end if
7: end if
8: while T rue do
9: currentT ier = (select one tier from T tiers with NewProbs)

10: if CreditscurrentT ier > 0 then
11: CreditscurrentT ier = CreditscurrentT ier − 1
12: break
13: end if
14: end while
15: Cr = (random set of |C| parties from currentT ier)
16: for each party c ∈ Cr in parallel do
17: wc

r = T rainParty(c)

18: sc = (training size of c)
19: end for
20: wr = ∑|C|

c=1 wc
r+1 ∗ sc∑|C|

c=1 sc

21: for each t in τ do
22: Ar

t = Eval(wr, T estDatat)

23: end for
24: end for
25:

26: function ChangeProbsAccuraciesByT ier

27: A = SortAscending(AccuraciesByT ier)

28: D = n ∗ (n − 1)/2 where n = # of tiers with Creditst > 0
29: NewProbs = []
30: for each Index i, Tier t in A do
31: NewProbs[t] = i/D

32: end for
33: return NewProbs

34: end function

11 Straggler Management 245

serves as a control knob for the number of times a tier is selected and by setting
this upper-bound, TiFL can limit the amount of times a slower tier contributes to the
training, thereby effectively gaining some control over setting a soft upper-bound on
the total training time. For the straw-man implementation, the paper used a skewed
probability of selection to manipulate training time. Since TiFL wishes to adaptively
change the probabilities, the Creditst is added to gain control over limiting training
time.

On the one hand, the tier-wise accuracy At
r essentially makes TiFL’s adaptive

tier selection algorithm data heterogeneity aware; as such, TiFL makes the tier
selection decision by taking into account the underlying dataset selection biasness
and automatically adapts the tier selection probabilities over time. On the other
hand, Creditst is introduced to intervene the training time by enforcing a constraint
over the selection of the relatively slower tiers. While Creditst and Ar

t mechanisms
optimize toward two different and sometimes contradictory objectives—training
time and accuracy, TiFL cohesively synergizes the two mechanisms to strike a
balance for the training time-accuracy trade-off. More importantly, with TiFL,
the decision making process is automated, thus relieving the users from intensive
manual effort. A: Accuracy—One concern is that the uneven probability selection
might impact the overall accuracy of the model due to overfitting on data from a
particular tier or training too long on tiers with “bad” data. However, it has been
found that if “bad” tiers get selected too often, the impact is reflected on other tiers
as well, i.e., other tiers’ accuracies get decreased. As such, in the next rounds other
tiers are given a higher selection probability and are chosen more often, thereby
mitigating the effect of the “bad” tiers, thanks to the adaptive capability of the
dynamic algorithm. The adaptive algorithm is summarized in Algorithm 11.2.

11.3.5 Training Time Estimation Model

In real-life scenarios, the training time and resource budget are typically finite. As
a result, FL users may need to compromise between training time and accuracy. A
training time estimation model would facilitate users to navigate the training time-
accuracy trade-off curve to effectively achieve desired training goals. Therefore,
they build a training time estimation model that can estimate the overall training
time based on the given latency values and the selection probability of each tier:

Lall =
n∑

i=1

(max(Ltier_i) ∗ Pi) ∗ R, (11.6)

where Lall is the total training time, Ltier_i is the response latency of all the parties
in tier i, Pi is the probability of tier i, and R is the total number of training rounds.
The model is a sum of products of the tier and maximum latency of each tier, which

246 S. Zawad et al.

gives the latency expectation per round. This is multiplied by the total number of
training rounds to get the total training time.

Assume that for party ci , one round of local training using a differentially
private algorithm is (ε, δ)-differentially private, where ε bounds the impact any
individual may have on the algorithm’s output and δ defines the probability that
this bound is violated. Smaller ε values therefore signify tighter bounds and a
stronger privacy guarantee. Enforcing smaller values of ε requires more noise to
be added to the model updates sent by parties to the FL aggregator which leads
to less accurate models. Selecting parties at each round of FL has distinct privacy
and accuracy implications for party-level privacy-preserving FL approaches. For
simplicity it is assumed that all parties are adhering to the same privacy budget
and therefore same (ε, δ) values. Let us first consider the scenario wherein C is
chosen uniformly at random each round. Compared with each party participating in
each round, the overall privacy guarantee, using random sampling amplification [2],
improves from (ε, δ) to (O(qε), qδ) where q = |C|

|K| . This means that there is a
stronger privacy guarantee with the same noise scale. Parties may therefore add
less noise per round or more rounds may be conducted without sacrificing privacy.
For the tiered approach the guarantee also improves. Compared to (ε, δ) in the
all party scenario, the tiered approach improves to an (O(qmaxε), qmaxδ) privacy
guarantee where the probability of selecting tier with weight θj is given by 1

ntiers
∗θj ,

qmax = maxj=1...|ntiers | qj and qj = (1
ntiers

∗ θj)
|C|
|nj | .

11.4 Experimental Evaluation

We discuss the paper’s prototyped TiFL results on both the naive and the adaptive
selection approach and perform extensive testbed experiments under three scenar-
ios: resource heterogeneity, data heterogeneity, and resource plus data heterogeneity.

11.4.1 Experimental Setup

Testbed As a proof of concept case study, a FL testbed is built for the synthetic
datasets by deploying 50 parties on a CPU cluster where each party has its own
exclusive CPU(s) using TensorFlow [1]. In each training round, 5 parties are
selected to train on their own data and send the trained weights to the server which
aggregates them and updates the global model similar to [4, 14]. Bonawitz et al.
[4] introduces multiple levels of server aggregators in order to achieve scalability
and fault tolerance in extreme scale situations, i.e., with millions of parties. In the
prototype, the authors simplify the system to use a powerful single aggregator as it
is sufficient for the purpose here, i.e., the system does not suffer from scalability and

11 Straggler Management 247

fault tolerance issues, though multiple layers of aggregator can be easily integrated
into TiFL.

TiFL is developed by extending the widely adopted large scale distributed FL
framework LEAF [6] in the same way. LEAF provides inherently non-IID with data
quantity and class distributions heterogeneity. LEAF framework does not provide
the resource heterogeneity among the parties, which is one of the key properties of
any real-world FL system. The current implementation of the LEAF framework is
a simulation of a FL system where the parties and aggregator are running on the
same machine. To incorporate the resource heterogeneity they first extend LEAF to
support the distributed FL where every party and the aggregator can run on separate
machines, making it a real distributed system. Next, they deploy the aggregator and
parties on their own dedicated hardware. This resource assignment for every party
is done through uniform random distribution resulting in equal number of parties
per hardware type. By adding the resource heterogeneity and deploying them to
separate hardware, each party mimics a real-world edge device. Given that LEAF
already provides non-IIDness, with the newly added resource heterogeneity feature
the new framework provides a real-world FL system which supports data quantity,
quality, and resource heterogeneity. For the setup, the authors use exactly the same
sampling size used by the LEAF [6] paper (0.05) resulting in a total of 182 parties,
each with a variety of image quantities. Accuracy—The test sets for all the datasets
are generated through sampling 10% of the total data per party. As such, the test
distribution is representative of the distribution of the training set.

11.4.1.1 Experimental Results

Models and Datasets TiFL uses four image classification applications for eval-
uation. They use MNIST1 and Fashion-MNIST [15], where each contains 60,000
training images and 10,000 test images, where each image is 28 × 28 pixels. TiFL
uses a CNN model for both datasets, which starts with a 3 × 3 convolution layer
with 32 channels and ReLu activation, followed by a 3 × 3 convolution layer with
64 channels and ReLu activation, a MaxPooling layer of size 2×2, a fully connected
layer with 128 units and ReLu activation, and a fully connected layer with 10 units
and ReLu activation. Dropout 0.25 is added after the MaxPooling layer, dropout 0.5
is added before the last fully connected layer. They use Cifar10 [11], which contains
richer features compared to MNIST and Fashion-MNIST. There is a total of 60,000
color images, where each image has 32 × 32 pixels. The full dataset is split evenly
between 10 classes and partitioned into 50,000 training and 10,000 test images. The
model is a four-layer convolution network ending with two fully connected layers
before the softmax layer. It was trained with a dropout of 0.25. Lastly they also use
the FEMNIST data set from LEAF framework [6]. This is an image classification
dataset which consists of 62 classes and the dataset is inherently non-IID with data

1 http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/

248 S. Zawad et al.

quantity and class distributions heterogeneity. The standard model architecture as
provided in LEAF [5] is used in this case.

Training Hyperparameters TiFL uses RMSprop as the optimizer in local training
and set the initial learning rate (η) as 0.01 and decay as 0.995. Local batch size of
each party is 10, and local epochs is 1. For CIFAR10 the total number of parties
(|K|) is 50 and the number of participated parties (|C|) at each round is 5. For
FEMNIST they use the same number of total parties and parties per round as
CIFAR10 and default training parameters provided by the LEAF Framework (SGD
with lr 0.004, batch size 10). TiFL trains for a total of 2000 rounds for FEMNIST
and 500 rounds for the synthetic datasets. Every experiment runs 5 times and uses
the average values.

Heterogeneous Resource Setup All the parties are split into 5 groups with equal
parties per group. For MNIST and Fashion-MNIST, each group is assigned with 2
CPUs, 1 CPU, 0.75 CPU, 0.5 CPU, and 0.25 CPU per part, respectively. For the
larger Cifar10 and FEMINIST model, each group is assigned with 4 CPUs, 2 CPUs,
1 CPU, 0.5 CPU, and 0.1 CPU per part, respectively. This leads to varying training
time for parties belong to different groups. By using the tiering algorithm of TiFL,
there are 5 tiers.

Heterogeneous Data Distribution FL differs from the datacenter distributed
learning in that the parties involved in the training process may have non-uniform
data distribution in terms of amount of data per party and the non-IID data
distribution. For data quantity heterogeneity, the training data sample distribution
is 10%, 15%, 20%, 25%, 30% of total dataset for difference groups, respectively,
unless otherwise specifically defined. For non-IID heterogeneity, the TiFL paper
uses different non-IID strategies for different datasets. For MNIST and Fashion-
MNIST, they adopt the setting in [14], where they sort the labels by value first,
divide into 100 shards evenly, and then assign each party two shards so that each
party holds data samples from at most two classes. For Cifar10, they shared the
dataset unevenly in a similar way and limit the number of classes to 5 per party
(non-IID(5)) following [13, 17] unless explicitly mentioned otherwise. In the case
of FEMINIST they use its default non-IID-ness.

Scheduling Policies They evaluate several different naive scheduling policies of
the proposed tier-based selection approach, defined by the selection probability
from each tier, and compare it with the state-of-the-practice policy (or no policy)
that existing FL works adopt, i.e., randomly select 5 parties from all parties in each
round [4, 14], agnostic to any heterogeneity in the system named standard (called

vanilla in the plots and by the original paper [8]). fast is a policy that TiFL only

selects the fastest parties in each round. random demonstrates the case where the

selection of the fastest tier is prioritized over slower ones. uniform is a base case
for the tier-based naive selection policy where every tier has an equal probability

11 Straggler Management 249

Table 11.1 Scheduling policy configurations

DataSet Policy Selection probabilities

Cifar10/FEMNIST Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

standard N/A N/A N/A N/A N/A

slow 0.0 0.0 0.0 0.0 1.0

uniform 0.2 0.2 0.2 0.2 0.2

random 0.7 0.1 0.1 0.05 0.05

fast 1.0 0.0 0.0 0.0 0.0

MNIST/FMNIST standard N/A N/A N/A N/A N/A

uniform 0.2 0.2 0.2 0.2 0.2

fast1 0.225 F0.225 0.225 0.225 0.1

fast2 0.2375 0.2375 0.2375 0.2375 0.05

fast3 0.25 0.25 0.25 0.25 0.0

of being selected. slow is the worst policy that TiFL only selects parties from the
slowest tiers and is included to demonstrate the worst-case scenario. The paper also
demonstrates the sensitivity analysis when the policy prioritizes more aggressively
toward the fast tier, i.e., from fast1 to fast3 , the slowest tier’s selection probability
has reduced from 0.1 to 0 while all other tiers got equal probability. They also
include the uniform policy for comparison, which is the same as in CIFAR-10.
Table 11.1 summarizes all these scheduling policies by showing their selection
probabilities.

11.4.1.2 Training Time Estimation via Analytical Model

In this section, we discuss the accuracy of the training time estimation model on
different naive tier selection policies by comparing the estimation results of the
model with the measurements obtained from testbed experiments. The estimation
model takes as input of the profiled average latency of each tier, the selection
probabilities, and total number of training rounds to estimate the training time. The
authors use mean average prediction error (MAPE) as the evaluation metric, which
is defined as follows:

MAPE = |Lest
all − Lact

all |
Lact

all

∗ 100, (11.7)

where Lest
all is the estimated training time calculated by the estimation model and

Lact
all is the actual training time measured during the training process. Table 11.1

250 S. Zawad et al.

Table 11.2 Estimated VS
actual training time

Policy Estimated (s) Actual (s) MAPE (%)

Slow 46,242 44,977 2.76

Uniform 12,693 12,643 0.4

Random 5143 5053 1.8

Fast 1837 1750 5.01

demonstrates the comparison results. The results suggest the analytical model is
very accurate as the estimation error never exceeds more than 6% (Table 11.2).

11.4.2 Resource Heterogeneity

In this section, we show the performance of TiFL with static selection policies in
terms of training time and model accuracy in a resource heterogeneous environment
as depicted in Sect. 11.4.1 and assume there is no data heterogeneity. TiFL is evalu-
ated with adaptive selection policy in Sect. 11.4.5. In practice, data heterogeneity
is a norm in FL, and this scenario demonstrates how TiFL can tame resource
heterogeneity alone. The scenario with both resource and data heterogeneity is
shown in Sect. 11.4.4.

The results are organized in Fig. 11.3 (column 1), which clearly indicate that
when prioritized toward the fast tiers, the training time reduces significantly.
Compared with standard, fast achieves almost 11 times improvement in training
time, see Fig. 11.3a. One interesting observation is that even uniform has an
improvement of over 6 times over the standard. This is because the training time
is always bounded by the slowest party selected in each training round. In TiFL,
selecting parties from the same tier minimizes the straggler issue in each round and
thus greatly improves the training time. For accuracy comparison, Fig. 11.3c shows
that the difference between polices is very small, i.e., less than 3.71% after 500
rounds. However, if we look at the accuracy over wall-clock time, TiFL achieves
much better accuracy compared to standard, i.e., up to 6.19% better if training time
is constraint, thanks to the much faster per round training time brought by TiFL,
see Fig. 11.3e. Note here that different policies may take very different amount of
wall-clock time to finish 500 rounds.

11.4.3 Data Heterogeneity

In this section, the performance of TiFL under data heterogeneity due to both
data quantity heterogeneity and non-IID heterogeneity is shown in Sect. 11.4.1. To
demonstrate only the impact from data heterogeneity, they allocate homogeneous
resource to each party, i.e., 2 CPUs per party.

11 Straggler Management 251

 0

 10

 20

 30

 40

 50

vanilla

slow
uniform

random

fast

Tr
ai

ni
ng

 ti
m

e
[1

03
 s

]

(a) Training time 500 rounds

 0
 1
 2
 3
 4
 5
 6
 7
 8

vanilla

slow
uniform

random

fast

Tr
ai

ni
ng

 ti
m

e
[1

03
 s

]

(b) Training time 500 rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

vanilla
slow
uniform
random
fast

(c) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

vanilla
slow
unifrom
random
fast

(d) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 3 6 9 12

Ac
cu

ra
cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(e) Accuracy over time

 0

 0.2

 0.4

 0.6

 0.8

 0 1 2 3 4 5

Ac
cu

ra
cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(f) Accuracy over time

Fig. 11.3 Comparison results for different selection policies on Cifar10 with resource heterogene-
ity (0.5–4 CPUs) and homogenous data quantity (Column 1), and data quantity heterogeneity with
homogenous resources (2 CPUs per party) (Column 2). (a) Training time 500 rounds. (b) Training
time 500 rounds. (c) Accuracy over rounds. (d) Accuracy over rounds. (e) Accuracy over time.
(f) Accuracy over time

Data Quantity Heterogeneity The training time and accuracy results are shown
in Fig. 11.3 (column 2). From the training time comparison in Fig. 11.3b, it is
interesting that TiFL also helps in data heterogeneity only case and achieves up
to 3 times speedup. The reason is that data quantity heterogeneity may also result
in different round time, which shares the similar effect as resource heterogeneity.
Figure 11.3d and f shows the accuracy comparison, where we can see fast has
relatively obvious drop compared to others because Tier 1 only contains 10% of
the data, which is a significant reduction in volume of the training data. slow is
also a heavily biased policy toward only one tier, but Tier 5 contains 30% of the

252 S. Zawad et al.

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(a) standard

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(b) slow

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(c) uniform

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(d) random

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

IID
non-IID(10)
non-IID(5)
non-IID(2)

(e) fast

Fig. 11.4 Comparison results for different selection policies on Cifar10 with different levels of
non-IID heterogeneity (Class) and fixed resources. (a) standard. (b) slow. (c) uniform. (d) random.
(e) fast

data thus slow maintains good accuracy while worst training time. These results
imply that like resource heterogeneity only, data heterogeneity only can also benefit
from TiFL. However, policies that are too aggressive toward faster tier needs to be
used very carefully as parties in fast tier achieve faster round time due to using less
samples. It is also worth to point out that in the experiments the total amount of
data is relatively limited. In a practical case where data is significantly more, the
accuracy drop of fast is expected to be less pronounced.

Non-IID Heterogeneity Non-IID heterogeneity effects the accuracy. Figure 11.4
shows the accuracy over rounds given 2, 5, and 10 classes per party in a non-IID
setting. The IID results in plots are also shown for comparison. These results show
that as the heterogeneity level in non-IID heterogeneity increases, the accuracy
impact also increases for all policies due to the strongly biased training data.
Another important observation is that standard case and uniform have a better
resilience than other policies, thanks to the unbiased selection behavior, which helps
minimize further bias introduced during the party selection process.

11.4.4 Resource and Data Heterogeneity

This section presents the most practical case study with static selection policies,
since here they evaluate with both resource and data heterogeneity combined.

11 Straggler Management 253

 0
 5

 10
 15
 20
 25
 30

vanilla

uniform

fast1
fast2

fast3

Tr
ai

ni
ng

 ti
m

e
[1

03
 s

]

(a) Training time 500 rounds

0

2

4

6

8

10

12

Tr
ai
ni
ng

tim
e
[1
03

s]

20%
15%
10%

6%
4%
2%

0%
no policy

(b) Training time 500 rounds

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

vanilla
uniform
fast1
fast2
fast3

(c) Accuracy over round

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

vanilla
uniform
fast1
fast2
fast3

(d) Accuracy over round

Fig. 11.5 Comparison results for different selection policies on MNIST (Column 1) and FMNIST
(Column 2) with resource plus data heterogeneity. (a) Training time 500 rounds. (b) Training time
500 rounds. (c) Accuracy over round. (d) Accuracy over round

TiFL is evaluated for both resource and data heterogeneity combined with adaptive
selection policy in Sect. 11.4.5.

MNIST and Fashion-MNIST (FMNIST) results are shown in Fig. 11.5 columns
1 and 2, respectively. Overall, policies that are more aggressive toward the fast tiers
bring more speedup in training time. For accuracy, all polices of TiFL are close to
standard, except fast3 falls short as it completely ignores the data in Tier 5.

Cifar10 results are shown in Fig. 11.6 column 1. It presents the case of resource
heterogeneity plus non-IID data heterogeneity with equal data quantities per party
and the results are similar to resource heterogeneity only since non-IID data with
the same amount of data quantity per party results in a similar effect of resource
heterogeneity in terms of training time. However, the accuracy degrades slightly
more here as because of the non-IID-ness the features are skewed, which results in
more training bias among different classes.

Figure 11.6 column 2 shows the case of resource heterogeneity plus both the
data quantity heterogeneity and non-IID heterogeneity. As expected, the training
time shown in Fig. 11.6b is similar to Fig. 11.6a since the training time impact from
different data amounts can be corrected by TiFL. However, the behaviors of round
accuracy are quite different here as shown in Fig. 11.6d. The accuracy of fast has
degraded a lot more due to the data quantity heterogeneity as it further amplifies the
training class bias (i.e., the data of some classes become very little to none) in the
already very biased data distribution caused by the non-IID heterogeneity. Similar

254 S. Zawad et al.

 0

 10

 20

 30

 40

 50

vanilla

slow
uniform

random

fast

Tr
ai

ni
ng

 ti
m

e
[1

03
 s

]

(a) Training time 500 rounds

 0
 10
 20
 30
 40
 50
 60
 70
 80

vanilla

slow
uniform

random

fast

Tr
ai

ni
ng

 ti
m

e
[1

03
 s

]

(b) Training time 500 rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

vanilla
slow
uniform
random
fast

(c) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 100 200 300 400 500

Ac
cu

ra
cy

Rounds

vanilla
slow
uniform
random
fast

(d) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0 3 6 9 12

Ac
cu

ra
cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(e) Accuracy over time

 0

 0.2

 0.4

 0.6

 0.8

 0 3 6 9 12

Ac
cu

ra
cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(f) Accuracy over time

Fig. 11.6 Comparison results for different selection policies on Cifar10 with resource plus non-
IID heterogeneity (Column 1) and resource, data quantity, and non-IID heterogeneity (Column
2). (a) Training time 500 rounds. (b) Training time 500 rounds. (c) Accuracy over rounds.
(d) Accuracy over rounds. (e) Accuracy over time. (f) Accuracy over time

reasons can explain for other policies The best performing policy in accuracy here
is the uniform case and is almost the same as standard, thanks to the even selection
nature which results in little increase in training class bias. Figure 11.6f shows the
wall-clock time accuracy. As expected, the significantly improved per round time in
TiFL shows its advantage here as within the same time budget, more iterations can
be done with shorter round time and thus remedies the accuracy disadvantage per
round. fast still falls short than standard in the long run as the limited and biased
data limits the benefits of more iterations. fast also perform worse than standard as
it has no training advantage.

11 Straggler Management 255

11.4.5 Adaptive Selection Policy

The above evaluation demonstrates the naive selection approach in TiFL that can
significantly improve the training time but sometimes can fall short in accuracy,
especially when strong data heterogeneity presents as such approach is data het-
erogeneity agnostic. In this section, we show the evaluation results of the proposed
adaptive tier selection approach of TiFL, which takes into consideration of both
resource and data heterogeneity when making scheduling decisions without privacy
violation. Adaptive, standard (i.e., vanillain the plots) and uniform are compared,
and the latter is the best accuracy performing static policy.

Figure 11.7 shows that the adaptive policy outperforms both standard and
uniform policies in both training time and accuracy for resource heterogeneity
with data quantity heterogeneity (Amount) and non-IID heterogeneity (Class),
thanks to the data heterogeneity-aware schemes. In the combined resource and
data heterogeneity case (Combine), adaptive achieves comparable accuracy with
standard with almost half of the training time and a slightly higher training time
compared to uniform. The time difference arises when the adaptive policy tries to
balance training time and accuracy, i.e., the 10% difference in training time is for the
trade-off of achieving around 5% better accuracy. The other policy which achieves
this accuracy is standard, which has almost 2× more training time. Considering
this, we note that the training time difference is not significant and performs similar
as uniform in training time while improves significantly in accuracy.

The above robust performance of adaptive is credited to both the resource
and data heterogeneity-aware schemes. The accuracy over rounds for different
policies under different non-IID heterogeneity are shown in Fig. 11.8. It is clear
that adaptive consistently outperforms standard and uniform in different level of
non-IID heterogeneity.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

Class
Amount

Combine

Tr
ai

ni
ng

 T
im

e
[1

03
 s

ec
]

vanilla
uniform
TiFL

(a) Training time for 500 rounds

 50

 55

 60

 65

 70

 75

 80

Class
Amount

Combine

Ac
cu

ra
cy

 [p
er

ce
nt

] vanilla
uniform
TiFL

(b) Accuracy at 500 rounds

Fig. 11.7 Comparison results for different selection policies on Cifar10 with data quantity
heterogeneity (Amount), non-IID heterogeneity (Class), and resource plus data heterogeneity
(Combine). (a) Training time for 500 rounds. (b) Accuracy at 500 rounds

256 S. Zawad et al.

 0

 0.2

 0.4

 0.6

 0.8

 0 250 500

Ac
cu

ra
cy

Rounds

vanilla
uniform
TiFL

(a) 2-class per party

 0

 0.2

 0.4

 0.6

 0.8

 0 250 500
Rounds

vanilla
uniform
TiFL

(b) 5-class per party

 0

 0.2

 0.4

 0.6

 0.8

 0 250 500
Rounds

vanilla
uniform
TiFL

(c) 10-class per party

Fig. 11.8 Comparison results of Cifar10 under non-IID heterogeneity (Class) for different party
selection policies with fixed resources (2 CPUs) per party. (a) 2-class per party. (b) 5-class per
party. (c) 10-class per party

11.4.6 Adaptive Selection Policy

This section provides the evaluation of TiFL using a widely adopted large scale
distributed FL dataset FEMINIST from the LEAF framework [6]. This uses
exactly the same configurations (data distribution, total number of parties, model
and training hyperparameters) as mentioned in [6] resulting in total number of
182 parties, i.e., deploy-able edge devices. Since LEAF provides its own data
distribution among devices the addition of resource heterogeneity results in a range
of training times thus generating a scenario where every edge device has a different
training latency. The system here incorporates TiFL’s tiering module and selection
policy to the extended LEAF framework. The profiling modules collect the training
latency of each parties and creates a logical pool of tiers which is further utilized by
the scheduler. The scheduler selects a tier and then the edge parties within the tier
in each training round. For the experiments with LEAF, the paper limits the total
number of tiers to 5 and during each round we select 10 parties, with 1 local epoch
per round.

Figure 11.9 shows the training time and accuracy over rounds for LEAF with
different party selection policies. Figure 11.9a shows the training time for different
selection policies. The least training time is achieved by using the fast selection
policy; however, it impact the final model accuracy by almost 10% compared to
standard selection policy. The reason for the least accuracy for fast is the result of
less training point among the parties in tier 1. One interesting observation is that the
slow policy out performs the fast policy in terms of accuracy even though each of
these selection policies rely on data from only one tier. It must be noted that the slow
tier is not only the reason of less computing resources but also the higher quantity
of training data points. These results are consistent with the observations from the
results presented in Sect. 11.4.3.

Figure 11.9b shows the accuracy over rounds for different selection policies. The
proposed adaptive selection policy achieves 82.1% accuracy and outperforms the
slow and fast selection policies by 7% and 10%, respectively. The adaptive policy
is on par with the standard and uniform (82.4% and 82.6%, respectively), when

11 Straggler Management 257

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

vanilla

slow
uniform

random

fast
TiFL

Tr
ai

ni
ng

 ti
m

e
[1

03
 s

]

(a) Training time for 2000 rounds

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20

Ac
cu

ra
cy

Rounds (x100)

vanilla
slow
uniform
random
fast
TiFL

(b) Accuracy over rounds

Fig. 11.9 Comparison results for different selection policies on LEAF with default data hetero-
geneity (quantity, non-IID heterogeneity), and resource heterogeneity. (a) Training time for 2000
rounds. (b) Accuracy over rounds

comparing the total training time for 2000 rounds adaptive achieves 7× and 2×
improvement compared to standard and uniform, respectively. fast and random
both outperformed the adaptive in terms of training time; however, even after
convergence the accuracy for both of these selection policies shows a noticeable
impact on the final model accuracy. The results for FEMNIST using the extended
LEAF framework for both accuracy as well as training time are also consistent with
the results reported in Sect. 11.4.5.

11.5 Conclusion

In this section, we have investigated and quantified the heterogeneity impact on
“decentralized virtual supercomputer”—FL systems. We observe that stragglers
are indeed an issue, and it can be further complicated by data heterogeneity.
We presented a framework called TiFL and discussed it in detail as a means of
demonstrating the impact of stragglers as well as an example of potential mitigation
solutions.

References

1. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard
M et al (2016) Tensorflow: A system for large-scale machine learning. In: 12th USENIX
symposium on operating systems design and implementation (OSDI 16), pp 265–283

2. Beimel A, Kasiviswanathan SP, Nissim K (2010) Bounds on the sample complexity for private
learning and private data release. In: Theory of cryptography conference. Springer, pp 437–454

3. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal
A, Seth K (2017) Practical secure aggregation for privacy-preserving machine learning. In:
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security.
ACM, pp 1175–1191

258 S. Zawad et al.

4. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konecny J,
Mazzocchi S, McMahan HB et al (2019) Towards federated learning at scale: System design.
Preprint. arXiv:1902.01046

5. Caldas S, Konečny J, McMahan HB, Talwalkar A (2018) Expanding the reach of federated
learning by reducing client resource requirements. Preprint. arXiv:1812.07210

6. Caldas S, Wu P, Li T, Konečnỳ J, McMahan HB, Smith V, Talwalkar A (2018) Leaf: A
benchmark for federated settings. Preprint. arXiv:1812.01097

7. Chai Z, Fayyaz H, Fayyaz Z, Anwar A, Zhou Y, Baracaldo N, Ludwig H, Cheng Y (2019)
Towards taming the resource and data heterogeneity in federated learning. In: 2019 USENIX
conference on operational machine learning (OpML 19), pp 19–21

8. Chai Z, Ali A, Zawad S, Truex S, Anwar A, Baracaldo N, Zhou Y, Ludwig H, Yan F, Cheng Y
(2020) Tifl: A tier-based federated learning system. In: Proceedings of the 29th international
symposium on high-performance parallel and distributed computing, pp 125–136

9. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles
Z, Cormode G, Cummings R et al (2019) Advances and open problems in federated learning.
Preprint. arXiv:1912.04977

10. Konečnỳ J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D (2016) Federated learning:
Strategies for improving communication efficiency. Preprint. arXiv:1610.05492

11. Krizhevsky A, Nair V, Hinton G (2014) The cifar-10 dataset. Online: http://www.cs.toronto.
edu/kriz/cifar.html, 55

12. Li T, Sahu AK, Talwalkar A, Smith V (2019) Federated learning: Challenges, methods, and
future directions. Preprint. arXiv:1908.07873

13. Liu L, Zhang J, Song SH, Letaief KB (2019) Edge-assisted hierarchical federated learning
with non-iid data. Preprint. arXiv:1905.06641

14. McMahan HB, Moore E, Ramage D, Hampson S et al (2016) Communication-efficient
learning of deep networks from decentralized data. Preprint. arXiv:1602.05629

15. Xiao H, Rasul K, Vollgraf R (2017) Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. Preprint. arXiv:1708.07747

16. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: Concept and applications.
ACM Trans Intell Syst Technol (TIST) 10(2):12

17. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-iid data.
Preprint. arXiv:1806.00582

http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html

Chapter 12
Systems Bias in Federated Learning

Syed Zawad, Feng Yan, and Ali Anwar

Abstract Data parties typically vary significantly in data quality, hardware
resources, and stability, which results in challenges such as increased training times,
higher resource costs, sub-par model performance and biased training. They result
in hard systems challenges, and many existing works tend to address each of these
challenges in isolation. Specifically, the bias in hardware and data consequently
causes biased models. Additional challenges are introduced when party dropouts
are considered. While the “Stragglers Management” chapter focuses mostly on the
impact of stragglers, this chapter focuses on the impact of biasness. We take a look
at how factors such as device dropouts, biased device data, biased participation,
etc. affect the FL process from a systems perspective. We present a characterization
study that empirically demonstrates how these challenges together impact important
performance metrics such as model error, fairness, cost, and training time, and why
it is important to consider them together instead of in isolation. We then talk about
a method called DCFair which is a framework that comprehensively considers the
multiple aforementioned important challenges of practical FL systems. Discussions
on the characterization study and possible solutions are useful to gain a much deeper
understanding of the inter-dependency of systems properties in Federated Learning.

12.1 Introduction

The prevalence of mobile and internet-of-things (IoT) devices in recent years has
led to massive amount of data that can be potentially used to train state-of-the-
art machine learning models. However, regulations such as HIPAA [3, 36] and
GDPR [16, 43] limit the access and transmission of personal data in consideration

S. Zawad (�) · F. Yan
University of Nevada, Reno, Reno, NV, USA
e-mail: szawad@nevada.unr.edu; fyan@unr.edu

A. Anwar
IBM Research – Almaden, San Jose, CA, USA
e-mail: ali.anwar2@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_12

259

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_12&domain=pdf
mailto:szawad@nevada.unr.edu
mailto:fyan@unr.edu
mailto:ali.anwar2@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_12

260 S. Zawad et al.

of security and privacy. To enable training ML models using personal data with
privacy protection, Federated Learning (FL) has been proposed [23, 31], where
the main idea is that the data owners/parties train ML models locally and only
sent trained weights to the third-party for aggregation. For example, [30] uses
manufacturing robot data to predict their failure across different factories without
revealing their actual manufacturing process. Leroy et al. [25] utilizes app-generated
data for training keyword spotting models. In conventional ML training, data is
typically owned by a single party and maintained in a centralized location. Both
data and computation can be controllably distributed over a cluster of computing
nodes. However, data in FL is generated and owned by parties and the privacy
requirements prevent accessing or moving the personal data during training. This
leads to a few challenges unique to FL. One such problem is that data can vary
significantly in quality and quantity among parties (termed data heterogeneity).
This can result in biased model training and an overall sub-par model [26, 40, 45].
Bias in FL models is generally measured by the variance of accuracies of the
global model after being evaluated on the data of individual party’s test datasets
(termed good-intent fairness [33]). The quantity of datapoints per device also
varies widely, resulting in different amounts of training cost incurred by each
device.

Another challenge is that the local training times vary greatly across parties
depending on their hardware resources (known as resource heterogeneity) which
can result in stragglers and thus longer overall training time. Furthermore, mobile
and IoT devices are not dedicated to the training tasks. Only when parties meet
certain criteria for device properties such as battery status, idle time, training time,
and network status [6], they can participate in training. This can change even in the
middle of training, resulting in the phenomenon of party drops, which further leads
to imbalanced training.

Data heterogeneity, resource heterogeneity, and party drops are important char-
acteristics of FL and the study (Sect. 12.3) demonstrates that they can heavily impact
model error, fairness, cost, and training time of a model. However, previous works
consider them in isolation, resulting in sub-optimal models and long training time.
For example, [6, 8, 11, 17, 35] partially addressed the straggler problem but did
not consider model performance, cost nor fairness issues. Systems such as [6, 44]
pointed out that the party drop phenomenon is common and important in federated
learning but did not provide detailed analysis nor a solution to addressing its
negative impact. Other works like [9, 39, 47] considered local training costs but
ignored other factors. Mohri et al. [33] and Yu et al. [48] discussed the training
fairness without considering the impact of party drop and problems associated with
resource heterogeneity. The line of work on novel aggregation schemes [37, 40]
mainly focuses on data heterogeneity challenges.

In this chapter, we discuss a framework called DCFair, a holistic approach
that considers the impact of data heterogeneity, resource heterogeneity, and party
drop on model error, fairness, cost, and training time when selecting parties to
query. Based on the quantified impact of these factors on model convergence
and training time, DCFair makes judicious party selection decisions to achieve

12 Systems Bias in Federated Learning 261

the most profitable training results. DCFair formulates the problem as a multi-
objective optimization and considers two key properties when making a scheduling
decision: selection probability and selection mutualism. Both properties are derived
by taking into consideration data heterogeneity, resource heterogeneity, and party
drops. Selection probability describes how often a party should be selected and
its quantification is empowered by a training efficiency assessment approach that
employs Underestimation Index (UEI) [21] as a unified measure to represent
model error, fairness, and cost while preserving the privacy requirements. Selection
mutualism captures the mutualism among parties in terms of training time in a
specific training round and aims at minimizing the straggler and party drop effects
to improve the overall training time.

DCFair is implemented on a real distributed cluster where parties and aggre-
gation server are deployed on their own hardware. It is then evaluated on the
system using three benchmarks (FEMNIST, Cifar10, and Shakespeare). DCFair is
also compared with the state-of-the-art large-scale FL systems [6] and the widely
used bare-bone FL system [31]. We see that DCFair achieves better Pareto frontier
and outperforms the state-of-the-art and state-of-the-practice systems with between
4% and 10% better model accuracy, improved good-intent fairness, lower cost,
and faster training time [46]. In this chapter, we provide these discussions and
evaluations as they can be a very useful way of gaining a better understanding how
the many properties in FL systems come together to impact each other.

12.2 Background

For this section we discuss about the important FL properties to provide some
context and background for the rest of the chapter. The current state of the art in
systems which address the various corresponding properties are also discussed.

12.2.1 Fairness in Machine Learning

Fairness of models is an extensively explored concept in traditional ML [7, 12–
14, 18, 38] and many works have defined their own notions of “fairness“. For
example, [24] introduces counterfactual fairness where a decision is considered
fair towards an individual if the decision taken by a model would be the same
if that individual belonged to a different sample group. This topic was recently
explored in FL by Abay et al. [2]. Dwork et al. [15] talks about classification fairness
which measures how much a model is biased during inference towards or against
a particular target class. Hardt et al. [18] proposes a criterion for discrimination
against sensitive attributes for protected classes in general supervised learning.
Mehrabi et al. [32] extensively discusses current fairness issues in ML. While these

262 S. Zawad et al.

approaches focus on mitigating bias for unprivileged groups, e.g., race or gender,
the fairness definition does not consider such protected attributes.

12.2.2 Fairness in Federated Learning

Good-intent fairness was defined as the variance of party test accuracies of a model
in [33]. If a model performs well on one party’s dataset and bad on another, it
indicates that the model is biased against the features of the worse-performing party
and therefore is not fair. In this section we use this fairness definition. Mohri et
al. [33] also propose a minimax optimization framework called Agnostic Federated
Learning (AFL) to reduce overfitting on local party data by optimizing with learning
bounds on the parties with the highest losses. However, AFL does not consider
resource usage or the biased participation of parties which are important practical
concerns in FL.

Balakrishnan et al. [4] talks about utilizing resources fairly but does not take
resource heterogeneity or data heterogeneity into account. Li et al. [27] proposes
q-FFL, which is a method to reduce biasness in the global model by making
the party accuracies more uniform (i.e., increasing good-intent fairness). They do
this by assigning more weights to the party updates with higher empirical loss
values, thereby ensuring that the worst party updates can still contribute enough
to the global model and get a more uniform testing accuracy across parties. For
this work, we use the same definition of fairness and the objective is the same.
However, instead of focusing on the aggregation algorithm, we focus on the party
drops phenomenon of FL (i.e., how to be fair to parties if they do not consistently
contribute to the FL training process). This work works under the same assumptions
as [33] in that they assume equal participation of all parties. Yu et al. [48] and Khan
et al. [22] talk about fairness not in terms of good-intent fairness but how much
value a party gets from participation. Costs are considered in terms of monetary
compensation, which is orthogonal to this work. In this chapter, the focus is on the
cost in terms of resource efficiency (total samples used in training) instead.

12.2.3 Resource Usage in Federated Learning

Most works in FL focus on communication and energy efficiency [39, 42, 44, 47],
but few have explored policy-driven schedulers. Wang et al. [44] theoretically
analyzes the tradeoff between local update and global parameter aggregation to
minimize the loss function under a given resource budget. Mulya Saputra et
al. [39] uses reinforcement learning for optimizing caching, local computation
and communication efficiency. Nishio and Yonetani [35] selects parties every
round such that they can complete training within a given time limit, thereby
controlling the amount of resources consumed per round. Caldas et al. [9] focuses on

12 Systems Bias in Federated Learning 263

reducing model size using compression methods and update frequencies resulting
in less resources used overall. Muhammad et al. [34] proposed a novel aggregation
and global model distribution scheme that reduces time to converge and reduces
communication cost early in the training process. Reisizadeh et al. [37] introduces
FedPAQ with the aim to reduce communication overhead of too many devices trying
to communicate with the central aggregator at the same time. Bonawitz et al. [6]
proposes a comprehensive system to enable large-scale distributed FL frameworks.
Hosseinalipour et al. [19] focuses on scaling up wireless communication systems for
edge devices. Some works also focus on resource and data heterogeneity [8, 29, 41].
Li et al. [26] introduces FedProx, an aggregation algorithm that takes into account
data heterogeneity to get a better model. Chai et al. [11] proposes a novel system
to mitigate the effect of stragglers without compromising model performance. For
this chapter, we take a different perspective on resource usage focusing less on
optimizing resource usage at the local and global levels and more on optimizing
resource efficiency, which to our knowledge is the first work addressing this issue in
the scope of FL.

12.3 Characterization Study

Since systematically characterizing multiple variability points of FL has not been
studied in the past, in this section we start by formally defining multiple important
metrics in FL for better understanding the problem. We then discuss a characteriza-
tion study that demonstrates the tradeoffs involved between them.

12.3.1 Performance Metrics

The incentive for the global model owners in FL is to train a highly accurate and
generalizable ML model using other parties’ private data that would otherwise be
unavailable. Model performance and training time are two relevant metrics that
impact final applications for model owners. On the other hand, the incentive for
the local data owners in FL is to get better services from global model owners by
contributing their data to training under privacy protection. Thus data owners usually
prefer good user experience (i.e., with as less cost as possible) and fair reward
(i.e., the trained model performs well on their data). We identify four important
performance metrics when evaluating FL: model error, training time, cost, and
fairness. They are defined as follows:

• Model Error is defined as the test accuracy error on all datasets, i.e., mean error

of the global model on each of the party’s sampled test data, i.e., 1 −
∑n

i=0 Ai

n

where Ai is the accuracy of global model on test data of i and n is the total
number of parties.

264 S. Zawad et al.

• Training time is defined as the wall-clock time of training. Wall-clock time is
chosen instead of training rounds, as the round time can differ significantly due
to data and resource heterogeneity.

• Cost is defined as the samples that have been used for training. Note that even
if a party drops out during training, the used data samples also count into the
cost. Training samples is used instead of resource hours as the resource in FL
is highly heterogenous across parties. It is worth noting that more sophisticated
cost metrics can also be used such as carbon footprint, executed floating point
operations, but we use this for the sake of simplicity.

• Fairness is defined as good-intent fairness [33] that measures the accuracy
variance when the global model is evaluated using test datasets of individual
parties, i.e., the variance of the accuracies of the global model on each of the

party’s test data represented as
√∑n

i=0(A
i−Ā)2

n−1 where Ai is the accuracy of global

model on test data of i, n is the total parties and Ā is the mean accuracy.
Good-intent fairness was chosen as it effectively reflects the bias issue among
parties—the main contributors in FL. The lower the Fairness value, the more
fair the model is.

These metrics quantify the different performance aspects of federated learning
systems. In order to understand how these metrics influence each other, next we
discuss a set of characterization studies.

12.3.2 Tradeoff Between Fairness and Training Time

One of the focuses of state-of-the-art large-scale FL systems such as [6] is on
the reduction of overall training time. Due to the highly heterogeneous nature
of the local parties, the training latencies (defined as party’s local training time)
vary greatly. Given the round training time is bounded by the slowest party (i.e.,
straggler), the straggler effects significantly impact the overall training time. To
address this, Bonawitz et al. [6] suggests selecting 130% of parties but only use the
weights from the first 100% for training the global model and discard the weights
of the slowest 30%. While this does handle the straggler problem, it also results in
biased training since this approach always drops out the slower parties.

Figure 12.1a demonstrates the tradeoff between fairness and training time (see
the Evaluation section for the experiment setup). The GLOBAL curve represents the
mean of all the parties’ error. The FAST curve presents the mean error of the global
model on the fastest 70% of the parties. SLOW is the mean error of the slowest
30% of parties. Finally, DEFAULT shows the mean global error for default FL
systems where no party update is dropped. We observe a difference in test error
of around 15% between the fastest 70% and slowest 30% of the parties, showing
a significant difference in model performance between faster and slower parties,
leading to poor fairness. However, Fig. 12.1b shows a significant reduction in total
training time if the [6] policy (LS-FL) is implemented, proving that it can indeed

12 Systems Bias in Federated Learning 265

(a) Model Error over Rounds (b) Training Time

Fig. 12.1 Tradeoff of fairness and training time. Figure (a) shows the test accuracies of parties
with different training speeds over time. Using the LS-FL policy results in higher model error
for the slower parties (SLOW), resulting in overall sub-par performance compared to that of the
DEFAULT FL policy. (b) shows that LS-FL does reduce training time due to throwing away
straggler updates

reduce training time. We observe from these results that the choice of party selection
policy greatly affects model’s fairness and training time, which demonstrates a
tradeoff relationship.

12.3.3 Impact of Dropout on Fairness and Model Error

Apart from policy, party drops can also be caused on the party-side. As pointed out
in [6, 9, 20, 28], one major issue of training on IoT devices is the availability as
parties can dropout even in the middle of training. As such, FL training may suffer
from dropped weights due to party-side downtime (party-side dropouts) even with a
selection policy which is all-inclusive. This party-side dropout is non-deterministic
and thus can be modeled as a probability. To study the effects of party-side dropouts,
a randomly assigned probability called the Dropout Ratio (DR) is given to every
party with an exponential distribution with a scale of 0.4, resulting a skewed DR
distribution across parties. During training, whenever a party is selected it has the
probability of dropping out equal to its assigned DR. The same experiment is run
again as in the previous section using LEAF FEMNIST with the default policy
instead of [6]. The CCDF of each of the party’s test error distribution at convergence
is presented in Fig. 12.2a for party DROPOUTS and compare it to the test error
distribution derived if none of the parties had any DR (DEFAULT).

We observe that for the party DROPOUTS error distribution has a significantly
longer tail than the DEFAULT distribution. The parties on that end are those with
higher dropout ratios (DR > 0.7) and they tend to perform much worse than other
parties. This demonstrates that dropping out parties from the training process results
in the global model from being unable to train well on them and thus performing

266 S. Zawad et al.

(a) Error Distribution (b) DR vs. Accuracy

Fig. 12.2 (a) CCDF of the global model error on all the parties’ local test datasets. The right
tail of the error distribution is worse for parties that dropout, indicating that participation is vital
for a more fairer training process. (b) Party test accuracy vs. Dropout ratio (DR). The higher the
probability a party to drop out of training (i.e., increased DR), the higher the chances of the global
model performing worse on its test dataset

very badly on their test dataset. We also observe that the mean model error in
the case of party DROPOUTS is also significantly higher than party DEFAULT,
indicating that the loss of training data due to party drops adversely effects the
model’s performance. In Fig. 12.2b we see the correlation between the DR assigned
to a set of parties and their corresponding test accuracies at convergence. We observe
a clear trend where it shows that with lower DR, the parties tend to participate more
in the training process and so achieves higher accuracies and vice versa. From these
results, we conclude that party drops reduce participation of parties throughout the
whole training process resulting in reduced global accuracy as well as unfairness. In
order to make up for the skewed participation due to party drops, we shall discuss
a selection policy that can increase participation of high-dropout parties without a
significant bump in cost.

12.3.4 Tradeoff Between Cost and Model Error

One simple method of increasing overall participation is increasing the number of
parties selected per round. This causes all the parties to have more opportunity to
be selected in a round, thereby increasing total participation. The same experiment
as in Fig. 12.2a is performed again with party drops, but by increasing total number
of parties selected per round from 10 to 20 and observe its impact on Cost and
Model Error in Fig. 12.3. In Fig. 12.3a we show the total number of samples trained
over the same number of rounds (2000) for different number of parties selected per
round for comparison. As expected, increasing the total participants by a factor of
two also yields a twofold increase in resources consumed. While this does cause
a decrease in the mean error (Fig. 12.3b) of the global model due to the increased

12 Systems Bias in Federated Learning 267

(a) Cost (b) Model Error

Fig. 12.3 (a) Cost (total number of datapoints trained in 2000 rounds in Millions) vs. number of
parties selected in each round. Increasing the selection amount significantly impacts overall cost
for the system. (b) Mean model error for different numbers of parties selected per round. Even
though more parties selected per round increases cost, it also results in better model performance
thus demonstrating the tradeoff between these two factors

participation, a twofold increase is a significant burden on the local parties which
are already resource constrained. From this experiment, we conclude that increasing
participation can benefit in the training of the global model, but with a significant
increase in local resource usage. In the next section, we detail the DCFair’s proposed
party selection approach based on these findings.

12.4 Methodology

For this section, we define the problem formally and then use the observations from
the characterization study to discuss how they contributed to the development of the
DCFair framework.

12.4.1 Problem Formulation

The goal is to design an effective party selection scheduler that optimizes the
performance metrics in FL. The scheduling parameter is defined as the selection
probability of a party in each training round. Given there are four performance
metrics (model error, fairness, cost, and training time) to consider, we can formulate
the problem as multi-objective optimization. Assume that the FL system trains a
global model G on a set of parties D = [d1, d2, d3, . . . dn, . . . dN] according to
a party selection scheduler S defined as the selection probability of each party in
training round i: Si = [si

1, s
i
2, s

i
3, . . . s

i
n, . . . s

i
N]. Let the evaluation error of G on

the data of individual party in D as A = [a1, a2, a3, . . . an, . . . aN]. The goal is
to optimize the model’s mean test error defined as a(S) = 1 − mean(A), good-
intent fairness defined as f (S) = var(A), total training cost c(S) defined as the

268 S. Zawad et al.

total number of data points processed (including dropped out data points), and the
training time t (S):

minimize (a(S), f (S), c(S), t (S)). (12.1)

12.4.2 DCFair Overview

Simultaneously optimizing model error, fairness, cost, and training time in FL is
challenging as the data distribution is not accessible due to privacy requirements.
In addition, the scheduling probability is difficult to be directly connected with
these performance metrics. To solve the above challenges, the key idea is to find
a measurable metric that have the following properties: (1) preserve the privacy
requirements; (2) easy to be modeled with scheduling probability; (3) can represent
and unify some or all the optimization metrics.

The Underestimation Index (UEI) proposed in [21] has potential to meet the
above requirements. UEI is a metrics for measuring the distance between a model’s
prediction results and the actual labels, which is a good indicator of how well a
model has learned the features of that dataset. It is defined as:

UEIn = 1√
2
||
√

P
pr
n −

√
P act

n ||2, (12.2)

where n is the party index number, P act
n is the class distribution of the training

dataset, and P
pr
n is the predicted class distribution of global model. UEI values

range from 0.0 to 1.0, where higher UEI means more bias against the training
dataset. A party with a high UEI value indicates that the features in the data of this
party are not well captured in the global model, thus the party is “disenfranchised”
so far and more training involvement of this party helps fairness. In addition,
reducing UEI across all parties means the features of global data has been well
captured and thus improve model error. Furthermore, the participation of parties
with low UEI benefits less the training progress, thus such participation may
reduce resource efficiency and incur high cost. For parties with the same UEI , their
resource efficiency can be different, e.g., to reduce UEI by 10%, some party needs
to train 10,000 samples while other party may only need to train 500 samples. To
reflect the resource efficiency difference, DCFair introduces cost normalized UEI ,
defined as

CUEIn = UEIn

cn

. (12.3)

For optimizing training time, the main idea is to minimize the straggler and
party drop effects. Here DCFair proposes the idea of selection mutualism, which
captures the mutualism among training time of parties in a specific training round.

12 Systems Bias in Federated Learning 269

Specifically, parties with similar round training latency are given higher probability
to be selected in the same round to reduce the straggler effects and the average
dropout ratio of all parties in a round needs to be smaller than a user defined
threshold. The selection mutualism is inspired by the tiered FL approach proposed
in [11]. The proposed selection mutualism approach is more general as it removes
the fixed tiers in [11] and adds support to mitigate party drop effects to optimize
training time. DCFair employs the above methods to make optimal party selection
scheduling decisions. Next, we introduce in detail provided in DCFair on how to
quantify selection probability and selection mutualism and combine them to solve
the multi-objective optimization problem defined in Eq. 12.1.

12.4.3 Selection Probability

Due to the party drop effects in FL, the eventual participation rate of a party, termed
PRn, depends on both the selection probability of a party Sn and its dropout ratio
DRn:

PRn = Sn × (1 − DRn). (12.4)

To design a party selection scheduler that can minimize model error, fairness, and
cost, the selection probability can be set so that CUEI is minimized. In other
words, party with higher CUEI needs higher selection probability. In addition,
parties with high-dropout ratio also need to be compensated with higher selection
probability so that their eventual participation rate can be consistent with their
selection probability. Therefore, first the participation rate of party n as a function
of CUEI and then add the party drop ratio to compute selection probability. The
function used by DCFair is a standard exponential function as it produces a proper
skew from CUEI to participation rate. Specifically:

PRi
n = f (CUEI i

n) = σ ∗ 1

e−CUEIi
n

, (12.5)

where i is the round index and n is the party index. σ is a normalization term that
converts CUEI based metrics into a probability based metrics. By adding the party
drop ratio, the selection probability of a party n at round i would be:

Si
n =

⎧
⎨

⎩

PRi
n

1−DRi
n
= σ ∗ 1

e−CUEIi
n×(1−DRi

n)
if DRi

n < 1.0

PRi
n = σ ∗ 1

e−CUEIi
n

if DRi
n = 1.0.

(12.6)

270 S. Zawad et al.

Algorithm 12.1 DCFair Algorithm. wi : the global model for round i, D: List of
all participating parties, R: Total # of training rounds, I : Metric update frequency,
UEI, c,DR,L: List of UEI,C,DR and training time metrics for each party,
DRmax : minimum average DR in a round

1: Aggregator: initialize weight w0.
2: for each round i = 1 to R do
3: if i%I == 0 then
4: SendGlobalModel(wi,D)

5: UEI, c,DR,L = GetPartyMetrics(D)

6: end if
7: S = (Calculate using Eq. 6 and 7 with UEI, c,DR)
8: d = (randomly select one party from all parties using S)
9: S′ = (Calculate using Eq. 8 and 9 S,L)

10: s = (randomly select n parties using S′ such that DRmax is met)
11: wi+1 = T rain(s + d)

12: end for

Because the party selection probability sums to 1 (
∑N

n=1 Si
n = 1). We can

compute σ as:

σ =

⎧
⎪⎪⎨

⎪⎪⎩

1∑N
n=1

1

e−CUEIi
n×(1−DRi

n)

if DRi
n < 1.0

1∑N
n=1

1

e−CUEIi
n

if DRi
n = 1.0.

(12.7)

12.4.4 Selection Mutualism

As the round training time is bonded by the slowest party (i.e., straggler), the key
idea to minimize the straggler effect is to adjust the selection probability so that
parties with similar training latency can be selected in the same round. Specifically,
in a training round, after selecting the first party, DCFair uses its training latency
as the standard of this round, denoted as L. DCFair adjusts parties’ selection
probability based on the training latency difference between theirs and L. They
formulate the mutualism adjusted selection probability as:

S′i
n = f (Si

n, Ln, L) = θ ∗ Si
n ∗ e|Ln−L|, (12.8)

where Ln is the training latency of party n. They select exponential function as an
example to reflect the training latency difference’s impact on selection probability
and such function can be changed to adjust the impact. θ is a normalization

12 Systems Bias in Federated Learning 271

coefficient such that
∑N

i=1 S′i
n = 1 and can be computed as

θ = 1
∑N

n=1 Si
n ∗ e|Ln−L| . (12.9)

To minimize the party drop effects, the average dropout ratio of selected parties
should be below a threshold DRmax . This is to avoid the situation where too
many parties dropped out and the remaining number of parties could not meet
the requirement of minimum participants (e.g., too few participants may result in
failed privacy protection such as differential privacy [1] and secure aggregation [5]).
DRmax can be configured based on the specific scenarios.

The total training time t (S) can be computed as:

t (S) =
I∑

i=1

LSi, (12.10)

where i is the training round index and I is the total number of rounds. LSi is the
training latency of the slowest party selected in round i, which is impacted by the
mutualism based selection probability adjustment above. The detailed algorithm of
DCFair is presented in Algorithm 12.1.

12.5 Evaluation

In this section, DCFair is compared against [6] (named LS-FL for convenience) and
the DEFAULT FL system [31] by comparing the four performance metrics (model
error, fairness, cost, and training time) using different applications.

Benchmarks DCFair is evaluated on a real distributed cluster with three bench-
marks. They use Cifar10, which has been widely used in FL literature [2, 11, 49].
They also use FEMNIST (image classification) and Shakespeare (character pre-
diction) that are from the federated learning framework LEAF [10], which provides
a realistic data heterogeneous distribution between devices and has been considered
as the new standard for recent state-of-the-art FL works [9, 11].

Testbed Setup The cluster is set up by deploying the aggregation server exclusively
on a 32-CPU node and every party is deployed on separate 2-CPU nodes. The parties
are launched on separate individual hardware (details in Table 12.1). The system is
implemented using TensorFlow Keras and communication is handled via the socket
protocol. Training latencies are injected on each party by instrumenting the training
system via a sleep function approach. It is worth noting that the testbed is among the
most practical and largest scale in FL research (to the best of knowledge, only [6,
11] used similar testbed) and most existing FL works, even the latest ones, use
simulation based testbeds [5, 26, 49].

272 S. Zawad et al.

Table 12.1 Training setup

Dataset Model Train/Test split

Total
parties/selected
per round

Learning
rate/Batch
size

FEMNIST 2 conv 2 dense 53,839/5383 179/10 0.004/10

CIFAR10 4 conv 2 dense 50,000/10,000 100/10 0.0005/32

Shakespeare 256 cell lstm 1 dense 115,135/11,513 30/3 0.0003/2

Resource Heterogeneity It is generated by randomly assigning training latencies
per party using a Gaussian distribution sampling with a mean of 5 s and a standard
deviation of 1.5 s following [11]. This generates a set of parties with variable training
latencies to reflect resource heterogeneity and help the training time analysis. Party
drop ratios (probability of dropping out during a round) are also assigned to each
party using an exponential distribution of 0.4, which provides enough high-dropout
and low-dropout parties to have a noticeable impact on training.

12.5.1 Cost Analysis

Data Heterogeneity For Cifar10, data heterogeneity is generated using the class-
wise distribution as defined in [11, 49]. For FEMNIST and Shakespeare, the default
data heterogeneity and data quantity provided by LEAF are used. Further details of
the datasets and training setup are given in Table 12.1.

12.5.2 Model Error and Fairness Analysis

We first see how DCFair performs under the fairness metric without any constraints.
Figure 12.4 shows the CCDF of the test errors on the parties at convergence. For
all cases, we note that the worst-performing system is LS-FL due to its large tail, as
well as distinctly higher median and mean values than DEFAULT and DCFair. The
reasons are twofold: (1) LS-FL actively discards slower parties, and (2) it has no
mechanism to handle party drops, thereby falling victim to skewed participation.
Since DEFAULT does not have an active party drop policy, the participation of
parties is not as low as LS-FL and therefore achieves an overall lower mean and
median error distributions. DCFair performs best overall in both mean and variance
in distribution. This can be attributed to the policy taking into account the parties’
dropout probability as well as CUEI when making participation decisions. Since
DCFair promotes the participation of high-dropout parties as well as parties with
data on which the model is under-fitting (parties with high UEI), for every round it

12 Systems Bias in Federated Learning 273

(a) FEMNIST (b) Cifar10 (c) Shakespeare

Fig. 12.4 Model error CCDF distribution of global model. DCFair can consistently have a
lower distribution variance of accuracies (fairness) between devices compared to the LS-FL and
DEFAULT. (a) FEMNIST. (b) Cifar10. (c) Shakespeare

(a) FEMNIST (b) Cifar10 (c) Shakespeare

(d) FEMNIST (e) Cifar10 (f) Shakespeare

Fig. 12.5 Comparison of the training time, model error, and fairness (lower is better) for the
frameworks LS-FL, DEFAULT, and DCFair. While LS-FL can achieve lower training time, DCFair
performs better in terms of model error and fairness. The results are consistent across the three
benchmarks. Please note that the lower the fairness value, the more fair the model is. (a) FEMNIST.
(b) Cifar10. (c) Shakespeare. (d) FEMNIST. (e) Cifar10. (f) Shakespeare

chooses the parties that are most important to the model performance and fairness
which actively benefits the overall training process.

12.5.3 Training Time Analysis

Next we evaluate how DCFair compares against other frameworks in terms of
training time. In Fig. 12.5, we see the total training time at convergence against the
mean and variance (i.e., fairness) for error distributions. We observe that DCFair

274 S. Zawad et al.

(a) FEMNIST (b) Cifar10 (c) Shakespeare

Fig. 12.6 Cost comparison at the convergence time (CONV) and by limiting training time (LIM)
to 24, 5, and 14 h for FEMNIST, Cifar10, and Shakespeare datasets, respectively. M stands for
Millions. Time constraints are selected based on the fastest framework to converge, i.e., LS-
FL. DCFair achieves consistently lower cost, thanks to its cost-aware design. (a) FEMNIST.
(b) Cifar10. (c) Shakespeare

consistently has lower mean and variance of the test error distributions. DEFAULT
has the highest training time across the board, with LS-FL performing the best since
the former has no mechanism of handling stragglers and the latter simply selects
the faster 75% of devices only. For example, in FEMNIST comparison, DEFAULT
has a training time of 35 h, while LS-FL is around 24 h (around 0.7), while DCFair
takes around 29 h. LS-FL is expected to perform the best in training time here since
the slowest 25% of the parties never had a chance to participate in the training due
to being biasedly dropped. However, LS-FL has the highest variance and test error
across the board, showing that the training time reduction comes with a compromise
of model error and fairness. DCFair performs better than the DEFAULT but is
slower than LS-FL since it does not discriminate against slower parties. However,
DCFair does perform better than DEFAULT thanks to its selection mutualism. It
allows for more consistency of training time within rounds by grouping together
parties such that within any round it only selects faster or slower parties, but not
both. This reduces the probability of selecting slower parties in each round to reduce
the overall training time.

For this section, we observe how DCFair performs in terms of cost compared to
the other frameworks. Figure 12.6 shows the total cost incurred at convergence and
within a time constraint. We observe that DCFair has lower cost than the other two
systems across all datasets. Using CUEI for party selection enables DCFair to be
cost-aware, and as a result, DCFair tends to prioritize the selection of lower cost
parties. Since both DEFAULT and LS-FL have no mechanisms to handle cost, they
train significantly more datapoints and so have higher amount of cost.

12.5.4 Pareto Optimality Analysis

Lastly, we analyze all the performance metrics together in a full end-to-end
manner by looking at the Pareto frontier. Figure 12.7 shows the model error and

12 Systems Bias in Federated Learning 275

Fig. 12.7 Pareto optimality comparison results between DCFair and others in fairness and model
error against training time and cost (datapoints trained). DCFair demonstrates the best tradeoffs

fairness against cost and training time for the FEMNIST dataset. DCFair, LS-FL,
and DEFAULT are tuned such that they train for varying amounts of time and
cost and plot their corresponding error and fairness values. Across each of the
metric combinations, DCFair outperforms the other two frameworks by achieving
a better Pareto frontier. LS-FL consistently performs worse with model error due
to dropping out parties intentionally, which is also detrimental to fairness. While
DEFAULT performs better, it is still unable to handle party drops and results in poor
training time and cost. Therefore, DCFair achieves the best tradeoff among all the
performance metrics.

12.6 Conclusion

In this chapter, we talk about the different properties of FL such as device drops,
hardware heterogeneity, and fairness. We analyze how they are affected by each
other, how their biasness can be detrimental to the model quality, and how they
impact the overall training process and outcome. We talk about DCFair, the first
system that comprehensively takes into consideration resource heterogeneity, data
heterogeneity, and party drops to optimize a set of important performance metrics
simultaneously in order to mitigate the impact of biasness. We use this framework
under different tunings to demonstrate how the various metrics interact with each
other and in this process gain a better understanding of the overall FL process.

276 S. Zawad et al.

References

1. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L (2016) Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC Conference on
computer and communications security. ACM, pp 308–318

2. Abay A, Zhou Y, Baracaldo N, Rajamoni S, Chuba E, Ludwig H (2020) Mitigating bias in
federated learning. Preprint. arXiv:2012.02447

3. Accountability Act (1996) Health insurance portability and accountability act of 1996. Public
Law 104:191

4. Balakrishnan R, Akdeniz M, Dhakal S, Himayat N (2020) Resource management and fairness
for federated learning over wireless edge networks. In: 2020 IEEE 21st international workshop
on signal processing advances in wireless communications (SPAWC). IEEE, pp 1–5

5. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal
A, Seth K (2017) Practical secure aggregation for privacy-preserving machine learning. In:
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security.
ACM, pp 1175–1191

6. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konecny J,
Mazzocchi S, McMahan HB et al (2019) Towards federated learning at scale: System design.
Preprint. arXiv:1902.01046

7. Buolamwini J, Gebru T (2018) Gender shades: Intersectional accuracy disparities in
commercial gender classification. In: Conference on fairness, accountability and transparency,
pp 77–91

8. Cai L, Lin D, Zhang J, Yu S (2020) Dynamic sample selection for federated learning
with heterogeneous data in fog computing. In: 2020 IEEE international conference on
communications, ICC 2020, Dublin, Ireland, June 7–11, 2020. IEEE, pp 1–6

9. Caldas S, Konečny J, McMahan HB, Talwalkar A (2018) Expanding the reach of federated
learning by reducing client resource requirements. Preprint. arXiv:1812.07210

10. Caldas S, Wu P, Li T, Konečnỳ J, McMahan HB, Smith V, Talwalkar A (2018) Leaf: A
benchmark for federated settings. Preprint. arXiv:1812.01097

11. Chai Z, Ali A, Zawad S, Truex S, Anwar A, Baracaldo N, Zhou Y, Ludwig H, Yan F, Cheng Y
(2020) Tifl: A tier-based federated learning system. In: Proceedings of the 29th international
symposium on high-performance parallel and distributed computing, pp 125–136

12. Chen IY, Szolovits P, Ghassemi M (2019) Can AI help reduce disparities in general medical
and mental health care? AMA J Ethics 21(2):167–179

13. Cortes C, Mohri M, Medina AM (2015) Adaptation algorithm and theory based on generalized
discrepancy. In: 21st ACM SIGKDD conference on knowledge discovery and data mining,
KDD 2015. Association for Computing Machinery, pp 169–178

14. DiCiccio C, Vasudevan S, Basu K, Kenthapadi K, Agarwal D (2020) Evaluating fairness
using permutation tests. In: Gupta R, Liu Y, Tang J, Prakash BA (eds) KDD ’20: The 26th
ACM SIGKDD conference on knowledge discovery and data mining, Virtual Event, CA, USA,
August 23–27, 2020. ACM, pp 1467–1477

15. Dwork C, Hardt M, Pitassi T, Reingold O, Zemel R (2012) Fairness through awareness. In:
Proceedings of the 3rd innovations in theoretical computer science conference, pp 214–226

16. General Data Protection Regulation (2016) Regulation (EU) 2016/679 of the European
parliament and of the council of 27 April 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data, and repealing
directive 95/46. Off J Eur Union (OJ) 59(1–88):294

17. Gudur GK, Balaji BS, Perepu SK (2020) Resource-constrained federated learning with
heterogeneous labels and models. In: 3rd International workshop on artificial intelligence of
things (AIoT’20), KDD 2020

18. Hardt M, Price E, Srebro N (2016) Equality of opportunity in supervised learning. In:
Advances in neural information processing systems, pp 3315–3323

12 Systems Bias in Federated Learning 277

19. Hosseinalipour S, Brinton CG, Aggarwal V, Dai H, Chiang M (2020) From federated to fog
learning: Distributed machine learning over heterogeneous wireless networks. IEEE Commun
Mag 58(12):41–47

20. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles
Z, Cormode G, Cummings R et al (2019) Advances and open problems in federated learning.
Preprint. arXiv:1912.04977

21. Kamishima T, Akaho S, Sakuma J (2011) Fairness-aware learning through regularization
approach. In: 2011 IEEE 11th international conference on data mining workshops. IEEE,
pp 643–650

22. Khan LU, Pandey SR, Tran NH, Saad W, Han Z, Nguyen MNH, Hong CS (2020) Federated
learning for edge networks: Resource optimization and incentive mechanism. IEEE Commun
Mag 58(10):88–93

23. Konečnỳ J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D (2016) Federated learning:
Strategies for improving communication efficiency. Preprint. arXiv:1610.05492

24. Kusner MJ, Loftus J, Russell C, Silva R (2017) Counterfactual fairness. In: Advances in neural
information processing systems, pp 4066–4076

25. Leroy D, Coucke A, Lavril T, Gisselbrecht T, Dureau J (2019) Federated learning for keyword
spotting. In: ICASSP 2019–2019 IEEE international conference on acoustics, speech and
signal processing (ICASSP). IEEE, pp 6341–6345

26. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2018) Federated optimization in
heterogeneous networks. Preprint. arXiv:1812.06127

27. Li T, Sanjabi M, Beirami A, Smith V (2019) Fair resource allocation in federated learning. In:
International conference on learning representations

28. Li T, Sahu AK, Talwalkar A, Smith V (2020) Federated learning: Challenges, methods, and
future directions. IEEE Signal Process Mag 37(3):50–60

29. Lu S, Zhang Y, Wang Y (2020) Decentralized federated learning for electronic health records.
In: 2020 54th Annual conference on information sciences and systems (CISS). IEEE, pp 1–5

30. Machine learning to augment shared knowledge in federated privacy-preserving scenar-
ios (musketeer). https://musketeer.eu/wp-content/uploads/2019/10/MUSKETEER_D2.1-v1.1.
pdf. Accessed 03 Jan 2021

31. McMahan HB, Moore E, Ramage D, Hampson S et al (2016) Communication-efficient
learning of deep networks from decentralized data. Preprint. arXiv:1602.05629

32. Mehrabi N, Morstatter F, Saxena N, Lerman K, Galstyan A (2019) A survey on bias and
fairness in machine learning. Preprint. arXiv:1908.09635

33. Mohri M, Sivek G, Suresh AT (2019) Agnostic federated learning. In: international conference
on machine learning. PMLR, pp 4615–4625

34. Muhammad K, Wang Q, O’Reilly-Morgan D, Tragos E, Smyth B, Hurley N, Geraci J, Lawlor
A (2020) Fedfast: Going beyond average for faster training of federated recommender systems.
In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery
& data mining, pp 1234–1242

35. Nishio T, Yonetani R (2019) Client selection for federated learning with heterogeneous
resources in mobile edge. In: ICC 2019–2019 IEEE international conference on communi-
cations (ICC). IEEE, pp 1–7

36. O’herrin JK, Fost N, Kudsk KA (2004) Health insurance portability accountability act
(HIPAA) regulations: effect on medical record research. Ann Surg 239(6):772

37. Reisizadeh A, Mokhtari A, Hassani H, Jadbabaie A, Pedarsani R (2020) Fedpaq: A
communication-efficient federated learning method with periodic averaging and quantization.
In: International conference on artificial intelligence and statistics. PMLR, pp 2021–2031

38. Saleiro P, Rodolfa KT, Ghani R (2020) Dealing with bias and fairness in data science systems:
A practical hands-on tutorial. In Gupta R, Liu Y, Tang J, Prakash BA (eds) KDD ’20: The 26th
ACM SIGKDD conference on knowledge discovery and data mining, Virtual Event, CA, USA,
August 23–27, 2020. ACM, pp 3513–3514

https://musketeer.eu/wp-content/uploads/2019/10/MUSKETEER_D2.1-v1.1.pdf
https://musketeer.eu/wp-content/uploads/2019/10/MUSKETEER_D2.1-v1.1.pdf

278 S. Zawad et al.

39. Saputra YM, Hoang DT, Nguyen DN, Dutkiewicz E, Mueck MD, Srikanteswara S (2019)
Energy demand prediction with federated learning for electric vehicle networks. In: 2019
IEEE global communications conference (GLOBECOM). IEEE, pp 1–6

40. Sattler F, Wiedemann S, Müller KR, Samek W (2019) Robust and communication-efficient
federated learning from non-iid data. IEEE Trans Neural Netw Learn Syst 31(9):3400–3413

41. Savazzi S, Nicoli M, Rampa V (2020) Federated learning with cooperating devices: A
consensus approach for massive IoT networks. IEEE Internet Things J 7(5):4641–4654

42. Sun Y, Zhou S, Gündüz D (2020) Energy-aware analog aggregation for federated learning with
redundant data. In: ICC 2020–2020 IEEE international conference on communications (ICC).
IEEE, pp 1–7

43. Voigt P, Von dem Bussche A (2017) The EU general data protection regulation (GDPR). A
Practical Guide, 1st Ed., Springer International Publishing, Cham 10:3152676

44. Wang S, Tuor T, Salonidis T, Leung KK, Makaya C, He T, Chan K (2019) Adaptive
federated learning in resource constrained edge computing systems. IEEE J Sel Areas Commun
37(6):1205–1221

45. Wang X, Han Y, Leung VCM, Niyato D, Yan X, Chen X (2020) Convergence of edge
computing and deep learning: A comprehensive survey. IEEE Commun Surv Tutorials
22(2):869–904

46. Xu Z, Yang Z, Xiong J, Yang J, Chen X (2019) Elfish: Resource-aware federated learning on
heterogeneous edge devices. Preprint. arXiv:1912.01684

47. Yang Z, Chen M, Saad W, Hong CS, Shikh-Bahaei M (2020) Energy efficient federated
learning over wireless communication networks. IEEE Trans Wirel Commun 20:1935

48. Yu H, Liu Z, Liu Y, Chen T, Cong M, Weng X, Niyato D, Yang Q (2020) A fairness-aware
incentive scheme for federated learning. In: Proceedings of the AAAI/ACM conference on AI,
ethics, and society, pp 393–399

49. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-iid data.
Preprint. arXiv:1806.00582

Part III
Privacy and Security

Privacy and security are two important aspects that need to be considered for the
applicability of federated learning in the enterprise and consumer space. In this part
of the book, we cover in detail these aspects.

Chapter provides a comprehensive overview of existing privacy threats to
federated learning systems and provides a detailed presentation of popular defenses
and their advantages and disadvantages. The threats described include model
inversion, training data extraction, membership inference, and property attacks.
The chapter discusses multiple state-of-the-art defenses including multiple crypto
systems, pair-wise masking, differential privacy among others. The chapter also
describes which defenses can be applied to a diverse set of scenarios. Chapter 14
covers two of the existing defenses in more detail, while Chap. 15 presents in great
detail popular gradient-based data extraction attacks.

Federated learning opens up new ways for malicious parties to compromise
the learning process and the outcome. Security concerns including byzantine,
poisoning, and evasion threats are addressed in Chap. 16. Several defenses against
these manipulation attacks are also reviewed. Chapter 17 takes a deep dive into the
byzantine threats and defenses when training neural networks.

Chapter 13
Protecting Against Data Leakage in
Federated Learning: What Approach
Should You Choose?

Nathalie Baracaldo and Runhua Xu

Abstract Federated learning (FL) is an example of privacy by design where the
primary benefit and inherent constraint is to ensure data is never transmitted. In
this paradigm, data remains with its owner. Unfortunately, multiple attacks capable
of extracting private training data by inspecting the resulting machine learning
models or the information exchanged during the FL training process have been
demonstrated. As a result, a plethora of defenses have surfaced. In this chapter,
we overview existing inference attacks to assess their associated risks and take a
close look at the significant corpus of popular defenses designed to mitigate them.
Additionally, we analyze common scenarios to help provide clarity on what defenses
are most suitable for different use cases. We demonstrate that one size does not fit
all when selecting the right defense.

13.1 Introduction

Privacy by design has been one of the main drivers of federated learning (FL),
where each training party maintains their data locally while collaboratively training
a machine learning (ML) model. Compared to existing ML techniques that require
the collection of training data into a central place, this new paradigm represents a big
improvement that balances utility of data and privacy. Given this significant change
in data collection, FL is becoming a popular approach to protect data privacy.

In its basic form, Fig. 13.1, the FL training process requires an aggregator and
parties to exchange model updates. Although no training data is shared during this
process, this basic setup has been shown to be vulnerable to inference of private
training data. Risks of inference of private information are prevalent in multiple
stages of the FL process. Inference attacks can be classified based on the attack
surface used to obtain private data into (1) those carried out on the final model

N. Baracaldo (�) · R. Xu
IBM Research – Almaden, San Jose, CA, USA
e-mail: baracald@us.ibm.com; runhua@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_13

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_13&domain=pdf
mailto:baracald@us.ibm.com
mailto:runhua@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_13

282 N. Baracaldo and R. Xu

Fig. 13.1 FL system with n parties P1, . . . Pn without any privacy protection techniques. All
entities participating in the FL training process are considered insiders while entities getting access
to the final predictive model are consider outsiders. The table shows the attack surface for each of
the entities; this information is available for multiple rounds

produced by the federation and (2) those executed using information exchanged
during the FL training process.

Attacks executed exploiting the final model are applicable to all ML models and
are not exclusive to FL. In other words, threats of inference based on a model
itself are inherent to ML regardless of how the model was trained. Attacks in
this category include data extraction, membership inference, model inversion, and
property inference attacks, e.g., [12, 57, 70]. All of them infer information about the
training data and in some cases the training data itself.

The second category of attacks are specific to FL and represent a new threat.
These attacks take advantage of the information transmitted during the FL training
process. For example, attack techniques such as [28, 39, 89, 91] use the newly
exchanged information, exercise the potential for manipulating the training process
or both. In some cases, this new information creates more successful attacks, while
in some other cases the threats are not as worrisome as attacks are only applicable
to some artificial settings. In this chapter, we present and contrast the differences
and similarities of carrying out attacks based on the model and the FL process in
Sect. 13.2.

13 Protecting Against Data Leakage in Federated Learning 283

The existence of inference risks have led to the proposal of a plethora of defenses
that aim to provide different privacy guarantees. These include the introduction of
differential privacy at the party side [30, 80, 84] and at the aggregator side, the
integration of different cryptosystems to enable secure aggregation including Pailler
[60], Threshold Pailler [19], different flavors of functional encryption [2–4, 8, 11],
pairwise masking [10], homomorphic encryption (HE) [29], or the combination of
multiple of those. The number of options available is substantial, and some of them
have been shown to be vulnerable to inference attacks on themselves.

With this plethora of attacks and defenses, important questions remain to be
answered: How critical are inference attacks? How much should we worry about
them? If we need to mitigate the risk, what defense should we use?

In this chapter, we set out to help answer these questions. Selecting a defense
technique for privacy preservation is not an easy task, and in the current landscape,
it is challenging to compare the assumptions, disadvantages, and advantages of
different solutions.

We show that one size does not fit all and that it is imperative to consider what
initially may be seen as nuances of different defenses. In fact, as it is often the case in
the security and privacy disciplines, a thorough risk assessment is needed to identify
a suitable threat model for a particular application1. In some cases, more than one
defense needs to be applied to mitigate stringent privacy requirements.

Unfortunately, there is no free lunch when incorporating defenses into the FL
process. Incorporating them may result in higher training times, lower model
performance, or more expensive deployments. For this reason, it is imperative to
decide the right level of protection for a particular federation. This sweet spot
highly depends on the scenario where FL has been applied to. For example, consider
a use case where a single company has stored its data in multiple clouds and
wants to run FL to obtain a ML model. Here, potential inference attacks may not
be relevant. However, if multiple competitors decide to train a model together,
there may exist mistrust and there may be an incentive for them to try to infer
private information of some other participating parties. In other cases, regulation
and compliance requirements may require additional protections, as it is the case
for healthcare data and personal information [14, 63].

In this chapter, our aim is to provide clarity in the area of inference attacks
to FL and to help provide some understanding of which attacks are relevant and
which defenses are suitable. In Sect. 13.2, we begin by presenting in detail the
system entities, assumptions and attack surfaces of the FL system as well as the
potential adversaries. We then provide a thorough overview of relevant state-of-
the-art inference attacks. Then, in Sect. 13.3 we characterize existing defenses in
terms of functionality offer, disadvantages, and existing vulnerabilities. To this end,
we carefully define various privacy goals and then compare defenses based on the

1 A threat model defines the trust assumptions place in each of the entities in a system. For
example, it determines if parties fully trust the aggregator or whether they only trust it to a certain
degree.

284 N. Baracaldo and R. Xu

different privacy guarantees offered and the attacks they can prevent. In some cases,
we also discuss potential vulnerabilities of some defenses. In Sect. 13.4 we discuss
some guidelines that demonstrate how to map threat models to some of the defenses
and subsequently conclude our chapter.

13.2 System Entities, Attack Surfaces, and Inference Attacks

Figure 13.1 presents an overview of the entities involved during the training and
inference process. We categorize relevant entities as insiders and outsiders, where
insiders are entities involved during the training process while outsiders are entities
that uniquely have access to the final model produced by the federation.

There are two main insider entities involved in the FL training process: the
parties who own the data and the aggregator who orchestrates the learning process.
Figure 13.1 presents a plain FL system; we refer to it as plain because no privacy-
preserving provisions have been added to it. The federation consists of n parties P1,
P2, . . . Pn, where each party Pi owns its private dataset Di . The training process
starts with the aggregator sending queries Qt requesting aggregated information
needed to build a ML model to the parties, and the parties use their training
data to answer that query. We refer to the reply sent back to the aggregator as a
model update and denote the model update of party Pi as Ri . When the aggregator
receives all the replies R1, R2. . . Rn., it proceeds to fuse or aggregate them creating
a new intermediate global model. At the end of round t , the intermediate global
model is denoted as Mt . The global model is then used as input to create the next
query for the parties and the process repeats until the target model performance is
reached.

Most privacy attacks are designed for gradient descent and its variants, which can
be used to train neural networks, linear models, support vector machines (SVMs),
among other model types. Hence, we briefly revisit how this algorithm is applied in
FL. For a training round t , the aggregator sends the initial weights of the model
to each party. Then, each party Pi runs gradient descent or stochastic gradient
decent (SGD) using its own dataset Di for a pre-specified number of epochs and
hyperparameters. The party then sends back the resulting model weights, which
are referred to as model updates. Alternatively, the party may send gradients as
model updates.2 The aggregator in its simplest form takes all the model updates and
fuses them. The most popular way to aggregate model updates is to use FedAvg
[53] where the aggregator uses the number of samples of each party to compute a
weighted average of the model updates. The new model weights are sent back to the
parties, and the process repeats until the target accuracy is reached or the maximum

2 Experimentally, we have found that exchanging model weights leads to faster convergence than
exchanging gradients.

13 Protecting Against Data Leakage in Federated Learning 285

rounds elapses. Notice that the fusion model updates obtained by the aggregator can
be used to acquire the ML model.

13.2.1 System Setup, Assumptions, and Attack Surfaces

To fully understand the attack surface in FL and the existing risks, we begin by
clearly defining the assumptions commonly made about the FL distributed system
setup and the information that is typically assumed to be known by insiders before
the training process begins.

From the machine learning perspective, there are multiple common assumptions.
Before FL starts, it is often assumed that data at each of the parties is already
annotated, that the set of labels are known, and that the model definition is available
[24, 50]. Thus, prior to the federation starting, the aggregator and the parties know
that there are, for example, five classes, and that each of the parties has pre-
processed its dataset in the same fashion. If structural data is used, all parties and
aggregator also know the number, order of the feature set, categorization, and the
pre-processing technique to be used. Accordingly, in this chapter, we assume this
information is known by all insiders participating in the FL process. Additionally,
the aggregator has access to the model updates sent by all the parties and the
intermediate models, while parties have access to their training data, aggregated
models, and model updates.

From the system perspective, it is important to set up the distributed system in a
secure way. In particular, throughout the FL process, messages exchanged between
parties and the aggregator need to be properly authenticated and secure channels
need to be established. In this way, external entities are prevented from snooping
messages exchanged between the aggregator and parties. Man-in-the middle attacks
where an adversary may try to impersonate a targeted party or the aggregator are
also prevented. Hence, in the following discussion we assume external entities
cannot snoop private information by inspecting exchanged messages or impersonate
insiders.

13.2.2 Potential Adversaries

In FL, the training data is not explicitly shared. Hence, we focus on inference threats.
The goal of an adversary is to infer private data based on the information they have
access to (we will elaborate on the attackers’ goals in more detail later as they differ
for each attack).

The table in Fig. 13.1 summarizes the information that is available for each
potential adversary and the information they can manipulate to their advantage.
As we can see, a malicious aggregator has the opportunity to manipulate the
aggregation process producing incorrect intermediate models and queries. It may

286 N. Baracaldo and R. Xu

also manipulate the final model. Similarly, a malicious party may manipulate
the model updates sent to the aggregator. Finally, outsiders have the power to
manipulate the inference queries to the final model to try to infer private information.

The adversaries can be further characterized according to their behavior as
follows:

• A Curious and passive aggregator may try to infer private information based
on all model updates exchanged during the training process. If the final or
intermediate models are known, this adversary may also try to use the model
to infer private data from participants.

• A curious and active aggregator may utilize the same information to perform
inferences but may try to manipulate the queries sent to each party, the interme-
diate and final model updates.

• A curious party may try to infer private information based on the queries received
and its knowledge about the learning objective.

• A curious and active party may try to infer private information based on
the queries received and may also carefully craft the attacks to try to further
determine information about other parties’ private data.

• Colluding parties are conspiring parties who may try to infer information by
orchestrating attacks together. These parties may share information among them
and may actively or passively attack the system to infer private information about
other parties.

• Curious colluding aggregator and parties it is possible for a curious aggregator
and a few malicious parties to try to passively or actively launch privacy attacks
to infer information about the training data and properties of a targeted party(ies).

• Curious outsiders are impersonated by external adversaries who do not partici-
pate in the training process but have access to the final ML model. They may try
to use the final model and its predictions to infer private training data or related
information.

Any such adversaries may carry out attacks to try to infer private information. In
the following we overview multiple inference attacks.

13.2.3 Inference Attacks to Federated Learning

Multiple inference attacks have been demonstrated in FL systems. They can be
classified according to their inference objective in the following four categories:

1. Training data extraction: These attacks aim to recover the exact individual
training samples used during the training process. In other words, for an image
based task, the output of the attack is a pixel-by-pixel output of the training data,
while for a text-classification task, the output of the attack is the word-by-word
text of the training corpus.

13 Protecting Against Data Leakage in Federated Learning 287

2. Membership Inference: In this type of attacks, the objective of the adversary is
to determine if a particular sample was part of the training data used to create a
model. This clearly constitutes a privacy violation if being part of a training set
reveals, for example, a medical condition, social or political association.

3. Model Inversion: Here, the goal of the adversary is to construct a representative
of each of the classes. This type of attack leads to great privacy violations in cases
where each class contains samples that are similar among them. Consider the case
of a face recognition model where a class contains information about a single
individual. In this case, the results of the model inversion are visually similar to
images of the person that were used during the training process. However, if the
class members are not all similar, the results do not look like the training data
[70], and hence this attack may produce innocuous results.

4. Property Inference: This type of attack focuses on revealing properties of the
training data that are not relevant for the training task at hand. Attacks in this
settings can extract global properties of the training dataset such as the ratio of
the samples included or can focus on extracting properties of sub-populations of
the training data.

We summarize the goals and outputs of these four types of attacks in Fig. 13.2. A
variety of attacks have been demonstrated. In Table 13.1 we characterize represen-
tative attacks based on the adversaries that execute them and the information that
they use to infer private training data. Again, we emphasize that attacks which can
be carried out by outsiders are not specific to FL.

We now briefly describe in some detail how the attacks are carried out. This will
help understand the vulnerabilities of the system and determine what defenses are
more suitable to mitigate different attacks in Sect. 13.3.

Fig. 13.2 Inference attacks to machine learning. The figure contrasts the different objectives of
each attack and presents sample outputs for different attacks. We use the faces ORL dataset of the
AT&T Laboratories Cambridge for illustration purposes. The output for the model inversion attack
was generated using the attack presented in [26]

288 N. Baracaldo and R. Xu

Table 13.1 Inference attacks to undefended FL systems

Attack surface

Attacks Model Model update Adversary

Training data extraction attacks

Henderson et al. [33], Carlini et
al. [12], Zanella et al. [87],
Carlini et al. [13]

Black-box Outsider, insiders

DLG [91], iDLG [89], Geping
et al. [28], Cafe [39]

Gradients Curious aggregator

Wang et al. [81], Wei et al. [83] White-box Gradients Curious aggregator

Song et al. [75] Gradients Aggregator active and
passive modes

Membership attacks

Shokri et al. [70], Salem et al.
[68], Hayes et al. [32],
Choquette et al. [16]

Black-box Outsider, insiders

Nasr et al. [57] (multiple
attacks)

Black-box Curious aggregator or
curious parties

Gradients Active curious party

Gradients Active curious
aggregator

Gradients Active isolating
aggregator

Model inversion

Fredrikson et al. [25, 26] Black-box Outsider, insider

Hitaj et al. [34] Gradients Curious party

Property attacks

Ateniese et al. [7], Ganju et al.
[27]

White-box Outsider, insider

Melis et al. [54] Gradients Curious party

13.2.3.1 Training Data Extraction Attacks

Multiple attacks have been proposed to extract data samples used during the training
process by querying a published model [12, 13, 33, 73, 87]. Most of them are devoted
to extracting training data from neural networks [12], text-based models [13, 87],
and embeddings [73], but there are some approaches for other types of models such
as [33].

Data memorization of generative text models has been studied for traditional
and FL settings in [12] and [78], respectively. Generative text models help users to
auto-complete their phrases to speed texting and email writing. The adversary’s goal
in this setting is to extract secret sequences of text to learn private information; for
example, inputting to the system the sentence my social security number is may lead
to the exposure of social security numbers used during the training process. In [12]

13 Protecting Against Data Leakage in Federated Learning 289

Carlini et al. proposed metrics to measure memorization in these types of models
when the adversary has black-box3 access to a published model that can query
at will. Later, Thakkar et al. [78] compare differences between the memorization
exhibited by models trained in FL versus those trained in traditional fashion. Their
experiments suggest that training in FL may help reduce memorization and they
hypothesize the diverse distribution of data among users is responsible the situation.
However, both studies are based on black-box access. That is, they only consider the
role of an outsider. Further analysis is required to identify how much information
can be leaked when the adversary has more information, as it is the case for FL
insiders.

A substantial number of data extraction attacks in FL for general models have
been highlighted and the great majority make use of model updates that contain
gradients [5, 28, 39, 81, 89, 91]. To understand how these attacks are possible,
consider a simple text-based classifier that uses a bag-of-words as a way to encode
the training data. Recall that once a party has been queried with an initial model, it
uses its local training data to train for a few epochs and then returns the gradients
to the aggregator. A curious aggregator may observe the gradients received from
a party, which may be sparse, and can trivially know whether a word was part of
the training data because a non-zero gradient is only possible if an original word
was present in the party’s training data [53]. Gradient-based attacks have also been
demonstrated for images including number digits [5], faces [91], and other datasets
[28].

An efficient attack known as Deep leakage from gradients (DLG) was proposed
in [91], where a curious aggregator can obtain the training samples and the labels
of a victim party. DLG was demonstrated to have high attack success rates in a
few optimization interactions for some network topologies; however, it does not
work unless the batch size utilized is small, for example, eight. A subsequent attack
[81] increases the recovery accuracy for more general model initialization by using
a distance metric based on a Gaussian kernel based on gradients. However, the
approach also has limited attack success rates for larger batch sizes. This is clear a
limitation that has raised the speculation on whether using higher batch sizes could
deter the problem.

Unfortunately, increasing the batch size to prevent these attacks has been shown
to be a naive defense in [39], where a new gradient-based attack called CAFE was
presented. CAFE’s attack success was demonstrated even under larger batch sizes
of 40. The attack uses a surrogate or synthetic dataset created offline. By assuming
the model is known, which is clearly the case for the aggregator, the aggregator can
pass the surrogate data through the model and compute fake gradients. After that, the
aggregator compares the resulting surrogate gradients with the real gradients coming
from the victim party and tries to minimize the difference by updating its surrogate

3 Black-box access in ML refers to a scenario where the adversary cannot access model
parameters and can only query the model. White-box access, conversely, refers to settings where
the adversary has access to the inner-works of the model.

290 N. Baracaldo and R. Xu

dataset. This process can continue over the course of training to recreate the original
dataset. An improvement in label guessing was presented in [89]. Additionally,
studies and approaches such as the one presented by Geiping et al. [28] have shedded
light into the vulnerabilities of commonly used vision network architectures beyond
the topologies originally considered by DLG. Other attack optimizations inspired
by the original DLG continue to emerge in the literature.

While most attacks are based on gradient-based inferences, gradient-based
algorithms in FL are frequently trained exchanging model weights. As mentioned
before, we have experimentally observed that exchanging model weights leads to
faster convergence times. In some circumstances, a curious aggregator could still
carry out the same inference procedure by computing the gradient between two
iterations with the same party. This, however, would require for the victim party to
be queried in subsequent training rounds that are not too far apart. Hence, further
experimental analysis in this direction is needed to evaluate the attacks under those
system setups. Finally, as our overview of these attacks shows, there is a trend to
continuously improve limitations of existing data extraction attacks.

13.2.3.2 Membership Inference Attacks

Multiple membership inference attacks [57, 68, 70] have demonstrated that it is
possible to know if a sample, called a target sample, was part of a training dataset,
violating the privacy when the inclusion in a training set is itself sensitive. For
example, consider an ML model trained based on photographs of people who suffer
from a taboo disease or a political or group affiliation. In this case, getting to know
if a person is part of the training set will reveal its health condition or that it is part
of a particular group.

Attacks in this category take advantage of the notoriously higher prediction
confidence that models exhibit when they are queried on their training data. This
is mainly caused by overfitting of the model to training samples. Traditional attacks
in this category assume the adversary has black-box access to the model (does not
know the model parameters) and can only query the model for prediction. The
adversary queries the model multiple times to understand how it behaves with
respect to a set of engineered inputs to reconstruct the loss surface of the model.
After multiple such queries, the adversary can determine if a sample was part of the
training dataset. Most attacks in this classification make use of the confidence scores
associated with a prediction query to guide the creation of informative queries.

Because a variety of attacks make use of the confidence score to achieve their
objective, some attempts to hide confidence scores or reduce the number of queries
a classifier can answer have been proposed as potential mitigation techniques
[38, 68, 85]. However, those solutions do not effectively prevent membership
inference. It has been demonstrated that even when a model does not expose the
confidence scores associated with its classification, it is possible for adversaries to
successfully execute a membership attack [16]. In the label-only attack presented
in [16], for a target sample, the adversary generates multiple perturbed samples and

13 Protecting Against Data Leakage in Federated Learning 291

queries the classifier to determine the robustness of the model to modifications. Data
augmentation and adversarial samples are used to generate the perturbed samples.
Based on the classifier’s replies, it is possible to determine if there is a strong or
weak membership signal.

Membership inference attacks can also be carried out in FL based on messages
exchanged. In particular, Nasr et al. [57] present a variety of attacks that take
advantage of the model updates exchanged during the training process. All the
attacks proposed in [57] inspect the gradients of each of the neural network layers
separately to take advantage of the fact that higher layers of the neural network are
fine-tuned to better extract high level features that may reveal private information at
higher rates than lower level layers of the network. To make decisions on whether
the network was trained using the target sample, the attack may use an unsupervised
inference model based on auto-encoders or a shallow model for scenarios where the
adversary has some background knowledge on the victim’s data.

Nasr et al. propose attacks that can be launched by a curious aggregator or a
curious party in active or passive mode. A curious aggregator can carry three types
of attacks (1) a passive attack where it observes each of the model updates of the
parties and tries to determine membership of a target sample for that party, (2) an
active attack where the aggregator manipulates the aggregated model according to
the previous discussion, and (3) an active and isolating attack where the curious
aggregator does not aggregate the model updates of other participants to increase
the attack success rate.

The attack proposed for malicious parties is limited with respect to the one launch
by an aggregator because parties can only see intermediate models. Hence, the
object of a curious party is limited to determine if any of the other parties has the
target sample. For malicious parties, the attack can be passive (no manipulation of
the model update) or active.

Active membership attacks are exclusive to FL; an active attack refers to whether
the adversary manipulates the model updates or model to induce observable gradient
behaviors on member samples. In the case of an active curious party trying to infer
the membership of a target sample x, the adversary will run gradient ascent on
sample x by the model and update its local model in the direction of the increasing
loss on the sample. This modified model weights are shared with the aggregator,
who then sends the new model updates with the parties. Interestingly, when a party
has sample x, its local SGD will abruptly reduce the gradient of the loss on x.
This signal can be captured to infer the party has the target sample by a supervised
or unsupervised inference model. Because multiple rounds are required to train a
model, the adversary has several opportunities to manipulate the model updates,
which leads to higher attack success rates.

In conclusion, FL does offer new opportunities for adversaries to carry out
membership inferences attacks.

292 N. Baracaldo and R. Xu

13.2.3.3 Model Inversion Attacks

The goal of model inversion attacks is to construct representative of each of the
classes. Model inversion attacks to traditional training processes include [25, 26].
Typically these attacks use the confidence score output by the model to guide
the reconstruction of data samples of a known and targeted label. For example,
Fredrikson et al. showed that an adversary with access to the model and some
demographic information about a patient can predict the patient’s genetic markers
[25].

Model inversion attacks have been tailored to FL in [34], where Hitaj et al.
proposed a Generative Adversarial Network (GAN)-based procedure that operates
on model updates and forces victims to reveal more information by carefully
crafting gradients. The attack can be carried out by any participating party, where
such curious party aims to gain information about a target label. The adversary
trains a GAN based on observed model updates. The GAN subsequently generates
prototypical samples of the private training set. The curious party can create
inputs to the training process that force the victim to release more accurate private
information. Concretely, the adversary will generate errors for recovered samples,
ensuring the victim party tunes the model and reveals further information about the
target sample. Here, the adversary actively manipulates the training process.

Finally, model inversion attacks are particularly dangerous if there is a meaning-
ful average representation of a class. Otherwise, the output may not provide useful
information to the attacker.

13.2.3.4 Property Inference Attacks

An adversary can infer information about the properties of the inputs, such as the
environment where the data was produced, even when the model task is completely
independent of that extracted information. Some approaches have focus on extract-
ing global properties of the training set [7, 27] while more recent approaches have
focused on extracting sub-population properties [54]. Global properties include the
distribution of different classes in the training dataset, for example, a neural network
trained to classify smiling faces may leak relative attractiveness of the individuals
in the training set. Another less innocuous example of inference of global properties
was presented by Ganju et al. [27] who demonstrated models may help an adversary
determine whether a machine where the training logs were collected contained two
important vulnerabilities that could lead the adversary to illicitly gain bitcoin by
exploiting such vulnerabilities. Sub-population properties refer to properties of a
particular sample in the training data, for example, in a model classifying medical
reviews, an adversary may be capable of inferring the medical speciality from which
they came [54].

Global property inference was first proposed by Ateniese et al. in [7], who
demonstrated that SVMs and hidden Markov models (HMM) easily leak global
properties. Their approach uses multiple meta-classifiers trained in surrogate

13 Protecting Against Data Leakage in Federated Learning 293

datasets that exhibit the tested properties and requires white-box access to the
model. After that, the approach was extended to work into fully connected neural
networks in [27].

With the introduction of FL, attacks that can further isolate sub-population
properties have been proposed. Melis et al. recently proposed a novel and more
fine-grained attack that combines membership and property inference in FL settings
in [54]. Here, a curious party can first identify the presence of a particular record
in the training dataset of a victim party by running a membership inference attack.
Similarly to global property attacks, this attack also trains meta-classifiers using
auxiliary labeled data and uses them to determine if a property exist or not in one
sub-populations. Experimental results show that the attack is successful for image
and text-classifiers, and that are possible with two to 30 parties. In this case, FL
opens attack surfaces for malicious insiders to leak more private information.

13.3 Mitigating Inference Threats in Federated Learning

While the amount of attacks to FL system keeps increasing, so do the number of
solutions that is proposed to address these threats. Defenses in this area are diverse
in nature and protect different aspects of the FL training process or deployment of
the model. Broadly speaking, defenses in this area include:

1. Modification of the training procedure and restrictive interfaces to query a
model: Examples in this category include pruning [37] or compressing the model
updates sent to the aggregator to deter gradient-based attacks, adding regularizers
to reduce overfitting [70] and prevent extraction attacks, minimize the number of
queries or avoid reporting confidence of models to prevent membership attacks
[85]. All these defenses have been demonstrated to fail under adaptive attacks
[16, 83, 83]. Because these solutions have been demonstrated to lead to a false
sense of privacy, we omit them in the following analysis.

2. Syntactic and perturbation techniques: Techniques in this category include
adaptations of k-anonymity [76] and differential privacy (DP) [22], which have
been incorporated to FL training process by multiple defenses including [80]
and [17], respectively. We will see these approaches may help deter some of the
attacks previously presented.

3. Secure aggregation and secure hardware techniques: This category includes
approaches that use different cryptosystems to ensure the aggregator cannot
access individual model updates, as well as approaches that require specialized
hardware execution environments to ensure the execution flow is followed and
the computation is maintained private.

How Do All These Techniques Compare? In the following, we characterize these
techniques based on the information that is maintained private according to the
following definitions which are illustrated in Fig. 13.3.

294 N. Baracaldo and R. Xu

Fig. 13.3 Illustration of the input privacy and output privacy concepts in the FL context. Function
f computed by the aggregator fusions model updates R1, R2, . . . , Rn sent by parties

1. Input Privacy: Solutions that fall in this category preserve the privacy of the
model updates shared by each of the parties. In other words, a solution provides
privacy of the input if the FL training process does not reveal anything other than
what can be inferred by the resulting final ML model.

Techniques in this category can be used to protect against threats coming
from malicious aggregators trying to isolate or infer private information from
parties. Multi-party computation techniques are often used to maintain this type
of privacy. However, we will see that these techniques come in many flavors and
provide different guarantees and some are vulnerable to inference attacks.

2. Output Privacy: Techniques in this category ensure that the final model or inter-
mediate models do not leak private information of the training data. Defenses
that fall in this category are designed to prevent attacks coming from outsiders
and insiders that make inferences base on the models. Differential privacy is a
defense in this category, but as we will see, it has its own limitations.

3. Privacy of the Input and Output: Approaches in this category preserve both the
privacy of the input and the output.

Based on these three definitions, we categorize some representative defenses
in Table 13.2. In the table, we also added a column to highlight that existing
techniques also differ on whether the intermediate or final models are exposed in
plaintext to the aggregator. This reflects a different trust model that is important to
select the right solution for different use cases. Note that even if the model is not
revealed in plaintext to the aggregator, a solution may not protect the privacy of the
output because the final model, when decrypted by the parties, is still vulnerable to
output inference. In the following, we briefly present existing defenses and provide
information about the attacks that they address and the ones they cannot thwart.

13 Protecting Against Data Leakage in Federated Learning 295

Table 13.2 Privacy-preserving defenses for Federated Learning. The second column refers to the
intended privacy goal; we will show that some of the approaches may lead to privacy leakage if
not deployed correctly. In particular, plaintext results may suffer from disaggregation inferences
if not deployed in conjunction with additional provisions

Privacy of Aggregator’s access to

Existing proposals Input Output fusion model updates

Secure aggregation:

– Partial HE [58, 88] ✓ ✗ Encrypted

– Fully HE [67] ✓ ✗ Encrypted

– Threshold Paillier (TP) [80] ✓ ✗ Plaintext

– Garbled Circuit (GC) ✓ ✗ Plaintext

– Pairwise Mask (PM) [10, 40, 72] ✓ ✗ Plaintext

– TPA-based Functional encryption
(FE) [84]

✓ ✗ Plaintext

Differential privacy:

– Global DP (Aggregator) ✗ ✓ Plaintext

– Local DP (Party side)
[6, 30, 80, 84]

✓ ✓ Plaintext with DP Noise

Hybrid approaches

– DP with Threshold Paillier [80] ✓ ✓ Plaintext with DP Noise

– DP with Functional Encryption
[84]

✓ ✓ Plaintext with DP Noise

– DP with pairwise masking [42] ✓ ✓ Plaintext with DP Noise

Special hardware support

– Truda (three aggregators)[15] ✓ ✗ Partial model in plaintext

Approaches specific for XGBoost

– Pairwise mask [48] ✓ ✗ Plaintext

– Oblivious TEE-based XGBoost
[46]

✓ ✗ Plaintext

13.3.1 Secure Aggregation Approaches

To achieve privacy of the input, secure multi-party computation has been proposed
to achieve secure aggregation (SA). SA allows an entity to compute a function f that
takes as input R1, R2, . . . , Rn without getting to know any of the inputs. There are
multiple ways to preform SA including pairwise masking and modern cryptographic
schemes such as fully homomorphic encryption, functional encryption, partial
homomorphic encryption, threshold Pailler, among others. These techniques differ
in multiple aspects as shown in Tables 13.2 and 13.3. The key differences are:

• Supported threat model: The threat model they cover differs on the trust each
of the SA techniques puts on the aggregator. Some approaches expose the
intermediate models to the aggregator while others only expose encrypted data
(see Table 13.2). Additionally, some techniques have verification provisions to

296 N. Baracaldo and R. Xu

Table 13.3 Behavior of the solutions under dynamic party participation

Verified Special

Approach aggregation New parties Dropout hardware

Secure aggregation

– Partial HE [58, 88] ✓ No rekeying ✗ ✗

– Fully HE [67] ✓ No rekeying ✓ ✗

– Threshold Paillier [80] ✗ Rekeying ✓ ✗

– Pairwise Mask [10, 40, 72] ✗ Rekeying ✓ ✗

– HybridAlpha (TPA-based FE) [84] ✓ No rekeying ✓ ✗

Special hardware support

– Truda (three aggregators)[15] ✓ No rekeying ✓ ✓

Federated boosted model

– Secure Federated GBM [48] ✗ Rekeying ✓ ✗

– Oblivious TEE-based XGBoost [46] ✓ No rekeying ✓ ✓

ensure that the aggregator can only fusion a minimum number of model updates
(see first column of Table 13.3).

• Dynamic participation: Another aspect where SA techniques differ is their
adaptability to parties joining the federation in the middle of the training
process and their tolerance to some parties leaving the federation intentionally
or accidentally. Some techniques require fully halting the training process to
re-key the system when a party drops or joins, while others are more resilient
against these changes and can continue training without modifications (see third
column Table 13.3). Clearly, techniques that do not require the entire system to
be rekeyed are preferred.

• Infrastructure: Each approach may require a different infrastructure setup. Some
of them require the use of additional fully trusted authorities or special hardware,
while others need multiple non-colluding servers that may increase the cost of
deployment a solution or special hardware.

In the following, we present in more detail each of SA techniques and discuss
their advantages and shortcomings.

13.3.1.1 Homomorphic Encryption-Based Secure Aggregation

Homomorphic encryption (HE) can be classified into partial HE and fully HE
depending on the types of operations that can be computed over encrypted data.

Partially Homomorphic Encryption schemes enable the computation of additive
operations over encrypted data by an untrusted entity. Paillier cryptosystem [60] and
its variants [56, 59] are some of the most used cryptosystems in this category. Partial

13 Protecting Against Data Leakage in Federated Learning 297

HE cryptosystems satisfy the following property:

Enc(m1) ◦ Enc(m2) = Enc(m1 + m2).

Where Enc(m1) and Enc(m2) are encrypted and ◦ represents a predefined function.
In other words, an untrusted entity receiving Enc(m1) and Enc(m2) can compute
their addition without decrypting the m1 and m2. Notice that the untrusted entity
only obtains the result Enc(m1 + m2) in encrypted form.

Because most aggregation functions in FL require uniquely additive operations,
these cryptosystems are a popular option for FL [58, 88]. We now examine how this
cryptosystem is applied to FL in more detail. During setup all parties agree upon a
public/private key pair(pk, sk), and the aggregator receives a public encryption key
pk. The parties encrypt their model updates using pk before sending them to the
aggregator. Once the aggregator receives all encrypted model updates, it computes
the addition of model updates using its public key pk obtaining the encrypted result.
The encrypted result is then forwarded to the parties, who in turn decrypt them using
sk and continue the training in plaintext.

Compared to other SA approaches, the final result of the aggregation is never
revealed to the aggregator, who always obtains the fusion result encrypted. Addi-
tionally, no rekeying is needed in case of new parties join or drop the federation.
However, according to [84], partial HE may result in high computation and
communication costs compared to competing options. To overcome this downside,
BatchCrypt, an approach where each party quantizes its gradient values into low-
bit integer representations and then encodes a batch of quantized values to a
long integer for encryption, was recently proposed in [88]. These pre-processing
operations allow faster encryption/decryption times.

Approaches in this category are limited to additive operations. For this reason,
fusion algorithms that require more than a simple average of the model updates
cannot be implemented with partially HE schemes.

Fully Homomorphic Encryption schemes support all operations over encrypted
data. Thus, they can be used to implement many more fusion algorithms. How-
ever, they are more expensive computationally speaking. One such approach was
presented in [67].

All HE approaches by themselves are capable of preventing a curious aggregator
from inferring data from the intermediate and final models. This is the case because
the aggregator can only see this information encrypted. However, parties can decrypt
the models and, hence, are still able to infer information from the model itself.
Therefore, in Table 13.2, we have marked HE approaches as not providing privacy
of the output.

13.3.1.2 Threshold Paillier-Based Secure Aggregation

The Threshold Paillier cryptosystem [19] is a variant of the Paillier encryption
system [60] and, thus, supports the additive HE property. The main difference

298 N. Baracaldo and R. Xu

is that in this variant, a predefined number of trusted parties t are required to
collaboratively decrypt the ciphertext.

The use of this cryptosystem in FL settings was proposed in [80] to prevent
collusion attacks by making sure the final fusion result cannot be obtained unless
t trusted parties collaboratively decrypt it. During setup, each participant obtains a
public key pk for encryption and a private share secret key ski for partial decryption,
and the aggregator receives a combing decryption key dk. Each participant uses pk

to encrypt its model update and sends it to the aggregator. The aggregator fuses the
received encrypted model updates and sends the result back to t parties. Each party
then uses its ski to perform its partial decryption and sends it back to the aggregator.
Finally, after the aggregator receives at least t partially decrypted results, it makes
use of dk to acquire the aggregated model updates in plaintext.

Threshold Pailler approaches for secure aggregation are suitable for federations
where the aggregator is trusted to obtain the aggregated model updates in plaintext.
Additionally, they provide an interesting property that ensures that at least t trusted
parties need to agree to decrypt the model update. However, this functionality comes
at the cost of more communication rounds between parties and aggregator resulting
in longer training times.

13.3.1.3 Pairwise Mask-Based Secure Aggregation

Each party conceals their model update using pairwise random masks between
users to hide the individual input. Following that, the aggregator simply adds up
those masked model updates to obtain the global model. The protocol is built
in such a way that the pairwise random masks are cancelled out after all model
updates are aggregated. The initial pairwise mask design [10] relies on t-of-n secret
sharing [69] and requires four rounds of communication among parties and the
aggregator. The overhead of [10] grows quadratically with the number of parties. To
further improve the efficiency and scalability of [10], Turbo-Aggregate [72] employs
additive secret sharing and a multi-group circular strategy for model aggregation,
while FastSecAgg [40] proposes a novel multi-secret sharing scheme based on a
finite-field version of the Fast Fourier Transform.

Although pairwise mask-based approaches support parties dropping out, apply-
ing these techniques increases the number of messages exchanged between parties
and the aggregator increasing the training time. Additionally, the approach requires
rekeying when new parties arrive to the federation.

13.3.1.4 Functional Encryption-Based Secure Aggregation

Functional encryption (FE) [11] is an emerging family of cryptosystems that allow
the computation of a function f over a set of encrypted inputs, where the decrypter
obtains the final result of f in plaintext. To compute the function, the decrypter
entity needs to use a functional key that depends on the function evaluated f and

13 Protecting Against Data Leakage in Federated Learning 299

the encrypted data. This functional key is provided by a trusted third party (TPA).
However, recently, new cryptosystems are removing the need for this entity.

The use of functional encryption for FL was first proposed by Xu et al. in [84],
where the concrete cryptosystem of choice is the multi-input inner-point functional
encryption [31]. This cryptosystem enables the aggregator to obtain in plaintext
the result of the function f (x, y) = ∑

i xiyi, where xi corresponds to the private
encrypted model update coming from party i and yi corresponds to the weight used
to fuse model update xi . That is, when y is a vector with ones, all model updates
have the same weight. When yi = 0, it means that xi will be ignored during the
aggregation.

During setup, given a maximum number of supported parties, the TPA initializes
the functional cryptosystem. Each party then receives its party-specific secret key
ski from the TPA. During training, each party encrypts its model update using
ski and sends the resulting ciphertext to the aggregator. After a predefined amount
of time elapses, the aggregator fusions all encrypted model updates received and
prepares vector y. Vector y is used to request a functional decryption key dky from
the TPA to fusion the received model updates and obtain the result in plaintext. If
some parties did not reply, the aggregator does not include a position for them in
vector y. This enables for a clean manage of dropouts without rekeying or further
communication rounds. Vector y is then sent to the TPA, who inspects y to ensure
providing the functional key for the received vector would not allow for inference
attacks where a malicious aggregator may try to isolate the model updates of one or
very few parties. If y complies with a pre-specified number of replies, the functional
encryption key is sent to the aggregator. Otherwise, the aggregator cannot compute
the aggregated result.

A distinctive advantage of the approach proposed in [84] is that it provides
support for verification of the number of aggregated model updates preventing
attacks from a curious aggregator trying to isolate a few model replies. It also
supports dynamic party dropout and new parties joining, without requiring more
than one message exchanged between the parties and the aggregator compared
to other SA approaches such as Pairwise Masking or threshold Pailler. On the
downside, the approach proposed in [84] requires the use of a TPA. This limitation
could be solved with new advances in the functional encryption field.

13.3.1.5 Summary Secure Aggregation

We overviewed representative SA approaches and highlighted their differences and
shortcomings. Some of the approaches are limited to additive fusion algorithms and
do not react fast to dynamic settings when parties join and drop requiring expensive
rekeying operations. Another salient difference is the number of messages that need
to be exchanged between the aggregator and parties to obtain the SA results, with
functional encryption solutions requiring a single message, while pairwise mask
solutions require four messages, and the threshold Pailler requiring three messages.

300 N. Baracaldo and R. Xu

Another main difference between SA solutions is their trust assumption in the
aggregator. Most approaches trust the aggregator with the SA results in plaintext
(Table 13.2), with the exception of Partial HE schemes where resulting SA model
updates are encrypted and remains unknown to the aggregator. In scenarios where
the aggregator deploys the final model and has test data to score the model
performance, having the model in plaintext is useful. For use cases in which the
aggregator is fully untrusted, Partial HE-based techniques may be more suitable.

SA techniques where the resulting SA fusion results are in plaintext have been
recently shown to be vulnerable to disaggregation attacks [45, 71]. In disaggregation
attacks, a curious aggregator may use SA results from multiple rounds to infer the
model of a single party. When the party’s model is isolated, the curious aggregator
can carry any attack presented in Table 13.1 that takes as input the model itself
making SA pointless. To prevent this type of attack, careful sub-sampling of parties
has been proposed in [71]. This approach adds an additional layer of protection
and requires the integration of TEE to bootstrap trust (Sect. 13.3.3). We note,
however, that the solution only works for federations with large number of parties.
Therefore, given the current state of the art, to prevent disaggregation attacks in
small federations, it is best to use SA techniques where the result is encrypted.

Finally, adequately employing SA defenses4 can only prevent inference based
on individual model updates. SA on itself does not prevent any of the attacks based
on the final or intermediate models. For that purpose, syntactic and perturbation
approaches have been proposed and we overview them in the following.

13.3.2 Syntactic and Perturbation Approaches

Defenses in this category include solutions that aim to prevent inference attacks
that use the final or model updates. K-anonymity and differential privacy are among
those inference prevention techniques.

13.3.2.1 K-Anonymity-Based Approaches

K-anonymity is a technique to anonymize data that relies in hiding records in
groups of k [76], these groups are defined by quasi-identifiers which are information
that may serve to identify a potential individual records. For example, zip code,
age, gender and race are quasi-identifiers that may serve to identify an individual.
Defining the quasi-identifiers requires identifying in advance what background
information an adversary may use to identify records in the training data.

4 By adequate we mean applying additional sub-sampling techniques required for SA approaches
vulnerable to disaggregation attacks as previously explained.

13 Protecting Against Data Leakage in Federated Learning 301

An adaptation of k-anonymity for FL training was presented in [17], where
Choudhury et al. claim the approach is legally compliant with privacy legislations
in the US, Canada and Spain (2020). The approach works for tabular data and
applies k-anonymity in each of the parties independently prior to training resulting
in multiple anonymization schemas. When the model is going to be used at inference
time, the input is pre-processed according to the closest k-anonymity schema of each
party.

One positive aspect of this approach is the interpretability of the parameters
used: hiding a sample in a group of k is a very intuitive concept. One of the mayor
drawbacks of k-anonymity-based approaches is the fact that the construct depends
on the defender’s ability to effectively anticipate the background information an
adversary will have. Hence, if the adversary has more background information
than anticipated, privacy can be compromised as demonstrated in [51]; albeit these
attacks have not been demonstrated in the FL setting. Differential privacy is an
alternative approach that addresses this shortcoming.

13.3.2.2 Differential Privacy-Based Approaches

Differential privacy (DP) [21] is a mathematical framework design to provide a
rigorous measure of information disclosure about individual records used in the
computation of a function. A training algorithm is described as deferentially private
if and only if the inclusion of a single sample in the training data causes only
statistically insignificant changes to the algorithm’s output.

The formal definition of DP is the following [21]: A randomized mechanism5 M
provides (ε, δ)-differential privacy if for any two neighboring database D1, D2 that
differ only in a single entry, ∀S ⊆ Range(M),

Pr[M(D1) ∈ S] ≤ eε · Pr[M(D2) ∈ S] + δ.

When δ = 0, M is said to satisfy ε-differential privacy.
The smaller the ε, the higher the protection. The additive term δ allows for a

relaxation of the definition and enables mechanisms to provide higher utility, in the
case of FL, this means increasing the model performance. To create a differential
private mechanism, noise proportional to the sensitivity of the output is added
to the algorithm’s output. The sensitivity measures the maximum change of the
output caused by the inclusion of a single data sample. Laplacian and Gaussian
mechanisms are popular functions to achieve DP and to reduce the sensitivity,
clipping values is a common practice.

An extensive set of mechanisms to optimally add DP noise while training ML
models when all data is in a central place are available in the literature, e.g., [1, 36,
74, 79]. In most cases, these mechanisms can be adapted to FL.

5 A mechanism can be understood as an algorithm designed to inject DP noise.

302 N. Baracaldo and R. Xu

There are three ways in which DP can be applied in FL settings: local, centralized
and using a Hybrid approach that encompasses DP with SA. Applying one or the
other addresses a different threat models.

• Local DP [41, 65] is applicable in settings where parties do not trust the
aggregator. For this reason, each party independently adds noise to the model
updates before sending them to the untrusted aggregator. The downside of this
approach is that the amount of noise typically causes the model to perform poorly.

• Global DP is applicable when the aggregator can be trusted to add DP noise to
the model. Global DP ensures that less noise is added resulting in higher model
performance compared to local DP.

• SA-and-Local DP Hybrid [80] This approach was created to overcome the
limitations of local DP to ensure faster convergence times and better model
performance. It is applicable to settings where parties do not trust the aggregator.
The approach consists of using a SA technique in combination to local DP.
This combination ensures that the model updates are not visible in isolation to
the aggregator. Hence, each party can add less noise to its model update while
maintaining the same privacy guarantee that would result by simply applying
local differential privacy. In other words, this hybrid approach ensures the same
DP guarantee can be obtained while the amount of total noise injected is reduced
by a factor of n, where n is the number of parties. A mathematical formulation
of why this is the case can be found in [80]. The SA approach proposed in [80]
was Threshold Pailler, but the technique also works for other types of SA as
demonstrated in [84].

A very appealing feature of DP is the mathematical guarantee it provides without
making assumptions on the background information an adversary may have. At the
same time, challenges of applying DP include defining the right ε value required for
a use case, and the fact that adding noise may result in lower performing models.
While ideally ε values should not be higher than 0.1 and the recommendation is
not higher than one [23], in reality simple queries require epsilon up to one and
for classical ML models epsilons up to 10. For neural networks, ε values greater
than 100 are common [16], raising concerns of the actual protection provided by
adding DP. The difficulty in interpretability of ε and the large values have motivated
the approach based on k-anonymity previously described in this section. However,
to ease this difficulty, Holohan et al. [35] proposed a methodology to map the
Randomize response survey technique [82] to epsilon values, which provides some
interpretability to ε.

Contrary to popular believe, DP is not a silver bullet against all privacy attacks
presented in Sect. 13.2. Membership inference, inversion attacks and extraction
attacks can be prevented by DP [12]. Let us revisit the DP definition to understand
why other attacks may not be prevented by adding noise. According to its privacy
definition, DP provides a quantitative privacy guarantee for indistinguishably of
individual samples. However, the general information on the population is still
available. In fact, one may argue that this is the main reason one would apply DP
in the first place: obtaining a good generalizable model without compromising the

13 Protecting Against Data Leakage in Federated Learning 303

privacy of individual records. Another assumption of DP is that records in the same
dataset are independent [18, 44], which may not be the case in FL or general ML
settings. Based on its definition and assumptions, it has been shown that using DP
does not deter property based attacks [7, 27, 54]. The reason for which DP does not
work against property attacks is the fact that they rely on aggregated properties of
the population, while DP focuses on protecting individual samples. It is important
to understand this difference to avoid falling into a false sense of privacy.

Currently, DP is one of the best ways to protect the privacy of individual samples
and is still an area of ongoing research. An interesting discussion of open challenges
and pitfalls of applying DP in real situations has been presented by Domingo et
al. in [20]. Additional research focuses on reducing the amount of noise under
the interactive nature of FL, where multiple rounds of communication between the
aggregator and parties are often required.

13.3.3 Trusted Execution Environments (TEE)

Another set of defenses rely on trusted execution environments (TEE) [46]. A
TEE is a secure area of computer’s main processor that is designed to protect
the confidentiality and integrity of the code and data loaded inside. Examples
TEEs include IBM Hyper Protect™ [62], Intel SGX™ [52], and AME Memory
Encryption™ [43]. One of the core features of TEEs is their ability to perform
remote attestation. Remote attestation allows a remote client to verify that a specific
software version has been securely loaded into the enclave. Hence, TEEs are suitable
to run code in untrusted environments while ensuring the code run is the expected.

Thanks to the secure attestation feature, it is possible to ensure an aggregator
running on a TEE uses the expected code preventing active attacks where a
malicious aggregator may deviate from the expected behavior. Hence, we can ensure
that the aggregator combines a minimum number of model updates preventing active
attacks that isolate one or a few model updates. It is also possible to ensure it
performs Global DP adequately and that, in general, it follows the right protocol.
If deploying special hardware is possible, using TEE at the parties side can also
improve the security of the system ensuring all participants run the pre-specified
source code. This, however, may not be easy to achieve in settings where parties are
consumer devices, run in legacy hardware or there is limited budget.

Potential vulnerabilities of the TEE include side-channel attacks and cukoo
attacks [64] that enable an adversary to compromise the privacy of the data loaded
by the TEE. To prevent potential side-channel attacks Law et al. [46] redesigned an
adaptation of XGBoost for FL to be data-oblivious. Finally, using a TEE requires
special hardware and setting up correctly the keys in the system to prevent cukoo
attacks that compromise the cryptographic keys of the system [64].

In [15], data extraction attacks where a curious aggregator takes advantage of
the gradients exchanged are deterred by decentralizing the aggregation process.
The solution, called Truda, changes the FL architecture by introducing three TEE-

304 N. Baracaldo and R. Xu

aggregators that receive a partial view of the model. Parties agree on what pieces
of the model sent to each aggregator, and no aggregator obtains all the model.
Truda works for fusion algorithms that only require average of model updates. More
advanced algorithms such as the ones required to train tree-boosting models based
or PFMN [86] cannot be adapted to this architecture.

13.3.4 Other Techniques for Distributed Machine Learning
and Vertical FL

In addition to the privacy-preserving approaches discussed above, there exist other
techniques designed for distributed ML that have slightly different architectures to
FL. These include Helen [90], Private Aggregation of Teacher Ensembles (PATE)
[61] and its variant [49], as well as SecureML [55], where data is distributed among
two non-colluding servers who jointly train a model using two-party computation.
Because their architectures are different to FL, we do not expand on them in this
chapter.

In this chapter, we focus our attention to the horizontal FL case, where all parties
have the same input data and, thus, can train locally their own models. Vertical FL
(Chap. 18) and split learning (Chap. 19) work for different setups. In vertical FL,
each party holds only a partial set of the features and only one party typically holds
the label while in split learning a different piece of the model may be trained in
different parties. Thus, a single party cannot train a model on their own. Inference
attacks and defenses have also been presented for these different setups [39, 47].
The threats in these settings may differ, for example, label inference is a potential
attack [47]. Determining their vulnerabilities and designing defenses is still an open
question.

13.4 Selecting the Right Defense

We have reviewed existing attacks and defenses and are now ready to define what
defenses are applicable in different cases. Unfortunately, there is no free lunch
when applying a defense as it was highlighted during their detail presentation in the
previous section. Incorporating different defenses may lead to longer training times,
lower performing models or more expensive deployment. Thus, it is necessary to
find a sweet spot to prevent relevant attacks for each federation. We now analyze
different scenarios.

13 Protecting Against Data Leakage in Federated Learning 305

13.4.1 Fully Trusted Federations

Consider a scenario where all the parties engage in the federation are owned by the
same company. This case is embodied, for example, by a company who has stored
data in different clouds, data warehouses, countries or has acquired other companies
resulting in fragmented datasets. Another example of this type of scenario is a
federation where the training task does not involve the use of sensitive data; yet,
participants do not want to transfer the data to a single place due to its large volume.

These are low risk scenarios where there is no reason to mistrust each of the
parties or the aggregator. Therefore, it is possible to employ plain FL without
other protections, other than our assumed secure-and-authenticated channels. With
respect to potential outsiders, it is possible to use Global DP to minimize attacks
based on the final model. Otherwise, no DP needs to be added.

13.4.2 Ensuring that the Aggregator Can Be Trusted

There are multiple ways to ensure a federation can trust an aggregator. A common
way to ensure this is the case is to run the aggregator by a trusted party. Alternatively,
the aggregator may be run as a service where through contractual clauses trust may
be achieved. The aggregator can also be required to be run using TEE so that parties
can verify the aggregator is running the correct code through attestation. Such an
aggregator as a service is a practical way to ensure fast deployment in consortium
cases where all participants can find trusted company to host the aggregator.

In some cases, adding proper accountability to the process may also help boost
trust in the aggregator and parties. Recently, an accountability framework for FL
was proposed in [9], where all entities engage can subsequently audited if needed. It
is in the best interest of a company running aggregators as a service to comply with
its contracts, and it is even more critical to do so if it can be audit. Accountability
services help ensure there is a way to verify different entities behaved as expected
while offering a way for potentially mistrusting parties to verifying during the
training process the system is behaving properly. Although accountability cannot
prevent inference of information by inspecting the results of the well-executed
process, it can help ensure the aggregator is a honest-but-curious adversary, meaning
that it adheres to the protocol but may try to infer information based on the
information it obtains in the process.

Whenever possible it is beneficial to trust the aggregator. One big advantage
of this type of deployment is that the aggregator can offer additional features that
require the inspection of individual replies. Among them are running robust learning
algorithms that are resilient against noisy model updates or failures in the setup,
as well as algorithms to detect and mitigate potential active attacks performed
by misbehaving parties. In other words, a risk assessment to see what is more
important for the federation is needed. In some cases, mitigating the aggregator’s

306 N. Baracaldo and R. Xu

capabilities to perform inference by using the above listed techniques is deemed as
enough mitigation to have it as an ally to prevent attacks from parties. In some other
scenarios, the risk exposure may be unbearable.

13.4.3 Federations with an Untrusted Aggregator

In some cases, the aforementioned provisions may not be enough to trust the
aggregator to obtain individual parties’ model updates. For instance, the consumer
space, where users may fear their private information is obtained by big companies.
In these cases, SA techniques and DP can be applied. In fact, Google, Apple, and
other consumer companies are already using local DP to provide privacy of the input
and create trust among their users while enabling service improvement [66, 77].

Not all SA techniques offer the same protection. Different SA mechanisms are
more suitable than others depending on whether the aggregator and other parties are
mistrusted simultaneously. Let us analyze these cases.

The Aggregator Is Trusted to Offer Additional Functionality that Requires Access to
the Model Consider the case where the federation wants to make use of an extended
set of services offered by the aggregator that require this entity to access the model
in plaintext. For example, the federation may want the aggregator to evaluate the
performance of a model based on public data or to deploy the resulting model as a
service. Solutions where the SA enables the aggregator to see the model in plaintext
are adequate for these use cases.

We also highlight that SA mechanisms that enable the aggregator to obtain the
model in plaintext need to be complemented with additional provisions to prevent
disaggregation attacks. To mitigate disaggregation inference risks, it is necessary
to ensure that all parties are selected and their model updates aggregated, or that
sub-sample parties selections of multiple rounds do not lead to inference. Clearly,
the first solution only works for small federations, while the second one can only
be applied to large federations. For small federations, the modification is not
particularly taxing, as it is typical to include all parties in all rounds to fully leverage
their data.

To mitigate the risk of a malicious aggregator isolating replies of a few parties,
HybridAlpha [84], the functional encryption-based SA presented in the previous
section provides an inference module that verifies a minimum number of replies
that have been aggregated before providing a functional key to obtain the model.
This module prevents this type of attack. Another potential solution is to run in a
TEE to verify the specified number of parties is indeed aggregated.

Now let us consider a federation where parties do not fully trust each other and
are concerned other parties may try to obtain private information. Example scenarios
in this category include multiple competitors collaborating to detect fraud, where
each competing party may benefit from learning data about other parties. In the case
the federation fears inference from different parties, for example, fearing attacks

13 Protecting Against Data Leakage in Federated Learning 307

where a few curious parties may collude. In those cases, the solution presented in
[80] which encompasses SA and DP is particularly useful. The cryptosystem of
choice, threshold Paillier, allows for verification that ensures a subset of t trusted out
of n total parties need to contribute to obtain the model in plaintext. As a bonus, the
solution prevents inference by reducing the noise compared to local DP as outlined
in the previous section.

The Aggregator Is Not Trusted with the Model In certain cases, a federation may
find too risky to provide the model to the aggregator. In these cases, HE techniques
are recommended. Notice that the final model is going to be accessible by parties
owning the cryptographic keys. If inferences over the model are relevant, then DP
may be added.

In the above analysis, we have avoided discussing particular regulations, as
regulations keep evolving and, to date, there is no clear mapping between regulation
requirements and technical solutions. This is a relevant open question that we expect
will be solved as FL is increasingly applied in regulated settings.

13.5 Conclusions

FL is a privacy by design system that has substantially improved the state-of-the-art
techniques that require transmitting private data to a central place. From the privacy
perspective, there is a clear benefit over other approaches that move data, as the
data can always remain with its rightful owner. Although, some inference attacks
have been demonstrated, current defenses and research efforts can be incorporated
to mitigate them. Inference of private data in FL systems is a relevant risk for
some federations where exposing private data is an important consideration. In this
chapter, we have overviewed the attack surfaces, the threats, and the defenses to help
provide a holistic view of the risk inherent to participating in FL. We also presented
multiple attacks characterizing them based on the attack surface, the objective the
adversary had and also providing some details on how they may be carried out. As
highlighted by our literature review, some attacks may not be realistic as simply
changing hyperparameters of the training process can easily deter them, while in
some other cases FL creates new relevant threats.

We also presented multiple defenses and highlighted their benefits and drawbacks
showing that one size does not fit all. The details of the design of each defense imply
various trust assumptions and made them suitable to different applications as they
have inherently diverse computational and transmission costs. Matching the right
level of protection to the use case is imperative to ensure only necessary overheads
are incurred by adding defenses, while deterring relevant risks. Without a doubt, new
attacks will emerge creating an arm’s race between defenders and adversaries. As
future work, enhancing different techniques to reduce overheads and understanding
how different legislation and regulation can be mapped to concrete technologies is

308 N. Baracaldo and R. Xu

required. We hope this chapter has helped clarify the state of the art of attacks and
available defenses to improve and facilitate the decision making process.

References

1. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L (2016) Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp 308–318

2. Abdalla M, Bourse F, De Caro A, Pointcheval D (2015) Simple functional encryption schemes
for inner products. In: IACR international workshop on public key cryptography. Springer, pp
733–751

3. Abdalla M, Benhamouda F, Gay R (2019) From single-input to multi-client inner-product
functional encryption. In: International conference on the theory and application of cryptology
and information security. Springer, pp 552–582

4. Ananth P, Vaikuntanathan V (2019) Optimal bounded-collusion secure functional encryption.
In: Theory of cryptography conference. Springer, pp 174–198

5. Aono Y, Hayashi T, Wang L, Moriai S et al (2017) Privacy-preserving deep learning via
additively homomorphic encryption. IEEE Trans Inf Forens Secur 13(5):1333–1345

6. Asoodeh S, Calmon F (2020) Differentially private federated learning: An information-
theoretic perspective. In: Proc. ICML-FL

7. Ateniese G, Mancini LV, Spognardi A, Villani A, Vitali D, Felici G (2015) Hacking smart
machines with smarter ones: How to extract meaningful data from machine learning classifiers.
Int J Secur Netw 10(3):137–150

8. Attrapadung N, Libert B (2010) Functional encryption for inner product: Achieving constant-
size ciphertexts with adaptive security or support for negation. In: International workshop on
public key cryptography. Springer, pp 384–402

9. Balta D, Sellami M, Kuhn P, Schöpp U, Buchinger M, Baracaldo N, Anwar A, Sinn M, Purcell
M, Altakrouri B IFIP EGOV (2021) Accountable Federated Machine Learning in Government:
Engineering and Management Insights (Best paper award), IFIP EGOV 2021

10. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal
A, Seth K (2017) Practical secure aggregation for privacy-preserving machine learning. In:
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security,
pp 1175–1191

11. Boneh D, Sahai A, Waters B (2011) Functional encryption: Definitions and challenges. In:
Theory of cryptography conference. Springer, pp 253–273

12. Carlini N, Liu C, Erlingsson Ú, Kos J, Song D (2019) The secret sharer: Evaluating and testing
unintended memorization in neural networks. In: 28th USENIX security symposium (USENIX
Sec 19), pp 267–284

13. Carlini N, Tramer F, Wallace E, Jagielski M, Herbert-Voss A, Lee K, Roberts A, Brown T, Song
D, Erlingsson U et al (2020) Extracting training data from large language models. Preprint.
arXiv:2012.07805

14. Centers for Medicare & Medicaid Services: The Health Insurance Portability and Accountabil-
ity Act of 1996 (HIPAA) (1996) Online at http://www.cms.hhs.gov/hipaa/

15. Cheng PC, Eykholt K, Gu Z, Jamjoom H, Jayaram K, Valdez E, Verma A (2021) Separation of
powers in federated learning. Preprint. arXiv:2105.09400

16. Choquette-Choo CA, Tramer F, Carlini N, Papernot N (2021) Label-only membership infer-
ence attacks. In: Meila M, Zhang T (eds) Proceedings of the 38th international conference on
machine learning, Proceedings of machine learning research. PMLR, vol 139, pp 1964–1974.
http://proceedings.mlr.press/v139/choquette-choo21a.html

17. Choudhury O, Gkoulalas-Divanis A, Salonidis T, Sylla I, Park Y, Hsu G, Das A (2020) A
syntactic approach for privacy-preserving federated learning. In: ECAI 2020. IOS Press, pp
1762–1769

http://www.cms.hhs.gov/hipaa/
http://proceedings.mlr.press/v139/choquette-choo21a.html

13 Protecting Against Data Leakage in Federated Learning 309

18. Clifton C, Tassa T (2013) On syntactic anonymity and differential privacy. In: 2013 IEEE 29th
international conference on data engineering workshops (ICDEW). IEEE, pp 88–93

19. Damgård I, Jurik M (2001) A generalisation, a simpli. cation and some applications of paillier’s
probabilistic public-key system. In: International workshop on public key cryptography.
Springer, pp 119–136

20. Domingo-Ferrer J, Sánchez D, Blanco-Justicia A (2021) The limits of differential privacy (and
its misuse in data release and machine learning). Commun ACM 64(7):33–35

21. Dwork C (2008) Differential privacy: A survey of results. In: International conference on
theory and applications of models of computation. Springer, pp 1–19

22. Dwork C, Lei J (2009) Differential privacy and robust statistics. In: STOC, vol 9. ACM, pp
371–380

23. Dwork C, Roth A et al (2014) The algorithmic foundations of differential privacy. Found
Trends Theor Comput Sci 9(3–4):211–407

24. FederatedAI: Fate (federated AI technology enabler). Online at https://fate.fedai.org/
25. Fredrikson M, Lantz E, Jha S, Lin S, Page D, Ristenpart T (2014) Privacy in pharmacogenetics:

An end-to-end case study of personalized warfarin dosing. In: 23rd {USENIX} Security
Symposium ({USENIX} Security 14), pp 17–32

26. Fredrikson M, Jha S, Ristenpart T (2015) Model inversion attacks that exploit confidence
information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security, pp 1322–1333

27. Ganju K, Wang Q, Yang W, Gunter C.A, Borisov N (2018) Property inference attacks on fully
connected neural networks using permutation invariant representations. In: Proceedings of the
2018 ACM SIGSAC conference on computer and communications security, pp 619–633

28. Geiping J, Bauermeister H, Dröge H, Moeller M (2020) Inverting gradients–how easy is it to
break privacy in federated learning? Preprint. arXiv:2003.14053

29. Gentry C (2009) A fully homomorphic encryption scheme. Ph.D. thesis, Stanford University
30. Geyer RC, Klein T, Nabi M (2017) Differentially private federated learning: A client level

perspective. Preprint. arXiv:1712.07557
31. Goldwasser S, Gordon S.D, Goyal V, Jain A, Katz J, Liu FH, Sahai A, Shi E, Zhou HS (2014)

Multi-input functional encryption. In: Annual international conference on the theory and
applications of cryptographic techniques. Springer, pp 578–602

32. Hayes J, Melis L, Danezis G, De Cristofaro E (2017) Logan: Membership inference attacks
against generative models. Preprint. arXiv:1705.07663

33. Henderson P, Sinha K, Angelard-Gontier N, Ke NR, Fried G, Lowe R, Pineau J (2018)
Ethical challenges in data-driven dialogue systems. In: Proceedings of the 2018 AAAI/ACM
conference on AI, ethics, and society, pp 123–129

34. Hitaj B, Ateniese G, Perez-Cruz F (2017) Deep models under the GAN: information leakage
from collaborative deep learning. In: Proceedings of the 2017 ACM SIGSAC conference on
computer and communications security, pp 603–618

35. Holohan N, Leith DJ, Mason O (2017) Optimal differentially private mechanisms for ran-
domised response. IEEE Trans Inf Forens Secur 12(11):2726–2735

36. Holohan N, Braghin S, Mac Aonghusa P, Levacher K (2019) Diffprivlib: the IBMTM

differential privacy library. Preprint. arXiv:1907.02444
37. Huang Y, Su Y, Ravi S, Song Z, Arora S, Li K (2020) Privacy-preserving learning via deep net

pruning. Preprint. arXiv:2003.01876
38. Jia J, Salem A, Backes M, Zhang Y, Gong NZ (2019) Memguard: Defending against black-

box membership inference attacks via adversarial examples. In: Proceedings of the 2019 ACM
SIGSAC conference on computer and communications security, pp 259–274

39. Jin X, Du R, Chen PY, Chen T (2020) Cafe: Catastrophic data leakage in federated learning.
OpenReview - Preprint

40. Kadhe S, Rajaraman N, Koyluoglu OO, Ramchandran K (2020) Fastsecagg: Scalable secure
aggregation for privacy-preserving federated learning. Preprint. arXiv:2009.11248

41. Kairouz P, Oh S, Viswanath P (2014) Extremal mechanisms for local differential privacy.
Preprint. arXiv:1407.1338

https://fate.fedai.org/

310 N. Baracaldo and R. Xu

42. Kairouz P, Liu Z, Steinke T (2021) The distributed discrete gaussian mechanism for federated
learning with secure aggregation. Preprint. arXiv:2102.06387

43. Kaplan D, Powell J, Woller T (2016) Amd memory encryption. White paper
44. Kifer D, Machanavajjhala A (2011) No free lunch in data privacy. In: Proceedings of the 2011

ACM SIGMOD international conference on management of data, pp 193–204
45. Lam M, Wei GY, Brooks D, Reddi VJ, Mitzenmacher M (2021) Gradient disaggregation:

Breaking privacy in federated learning by reconstructing the user participant matrix. Preprint.
arXiv:2106.06089

46. Law A, Leung C, Poddar R, Popa R.A, Shi C, Sima O, Yu C, Zhang X, Zheng W (2020)
Secure collaborative training and inference for xgboost. In: Proceedings of the 2020 workshop
on privacy-preserving machine learning in practice, pp 21–26

47. Li O, Sun J, Yang X, Gao W, Zhang H, Xie J, Smith V, Wang C (2021) Label leakage and
protection in two-party split learning. Preprint. arXiv:2102.08504

48. Liu Y, Ma Z, Liu X, Ma S, Nepal S, Deng R (2019) Boosting privately: Privacy-preserving
federated extreme boosting for mobile crowdsensing. Preprint. arXiv:1907.10218

49. Liu C, Zhu Y, Chaudhuri K, Wang YX (2020) Revisiting model-agnostic private learning:
Faster rates and active learning. Preprint. arXiv:2011.03186

50. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y, Radhakrishnan J,
Verma A, Sinn M et al (2020) IbmTM federated learning: an enterprise framework white paper
v0. 1. Preprint. arXiv:2007.10987

51. Machanavajjhala A, Kifer D, Gehrke J, Venkitasubramaniam M (2007) l-diversity: Privacy
beyond k-anonymity. ACM Trans Knowl Discov Data (TKDD) 1(1):3–es

52. McKeen F, Alexandrovich I, Berenzon A, Rozas C.V, Shafi H, Shanbhogue V, Savagaonkar UR
(2013) Innovative instructions and software model for isolated execution. In: Proceedings of
the 2nd international workshop on hardware and architectural support for security and privacy,
HASP ’13. Association for Computing Machinery, New York

53. McMahan B, Moore E, Ramage D, Hampson, S, y Arcas BA (2017) Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics.
PMLR, pp 1273–1282

54. Melis L, Song C, De Cristofaro E, Shmatikov V (2019) Exploiting unintended feature leakage
in collaborative learning. In: 2019 IEEE symposium on security and privacy (SP). IEEE, pp
691–706

55. Mohassel P, Zhang Y (2017) Secureml: A system for scalable privacy-preserving machine
learning. In: 2017 IEEE symposium on security and privacy (SP). IEEE, pp 19–38

56. Naccache D, Stern J (1997) A new public-key cryptosystem. In: International conference on
the theory and applications of cryptographic techniques. Springer, pp 27–36

57. Nasr M, Shokri R, Houmansadr A (2019) Comprehensive privacy analysis of deep learning:
Stand-alone and federated learning under passive and active white-box inference attacks. 2019
IEEE symposium on security and privacy (SP)

58. Nikolaenko V, Weinsberg U, Ioannidis S, Joye M, Boneh D, Taft N (2013) Privacy-preserving
ridge regression on hundreds of millions of records. In: 2013 IEEE symposium on security and
privacy. IEEE, pp 334–348

59. Okamoto T, Uchiyama S (1998) A new public-key cryptosystem as secure as factoring. In:
International conference on the theory and applications of cryptographic techniques. Springer,
pp 308–318

60. Paillier P (1999) Public-key cryptosystems based on composite degree residuosity classes. In:
International conference on the theory and applications of cryptographic techniques. Springer,
pp 223–238

61. Papernot N, Abadi M, Erlingsson U, Goodfellow I, Talwar K (2016) Semi-supervised
knowledge transfer for deep learning from private training data. Preprint. arXiv:1610.05755

62. Park S, McMullen A (2021) Announcing secure build for ibmTM cloud hyper protect virtual
servers. IBMTM Cloud Blog. https://www.ibm.com/cloud/blog/announcements/secure-build-
for-ibm-cloud-hyper-protect-virtual-servers

63. Parliament E of the European Union C (2016) General data protection regulation (GDPR) –
official legal text. https://gdpr-info.eu/

https://www.ibm.com/cloud/blog/announcements/secure-build-for-ibm-cloud-hyper-protect-virtual-servers
https://www.ibm.com/cloud/blog/announcements/secure-build-for-ibm-cloud-hyper-protect-virtual-servers
https://gdpr-info.eu/

13 Protecting Against Data Leakage in Federated Learning 311

64. Parno B (2008) Bootstrapping trust in a “trusted” platform. In: HotSec
65. Qin Z, Yang Y, Yu T, Khalil I, Xiao X, Ren K (2016) Heavy hitter estimation over set-valued

data with local differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp 192–203

66. Radebaugh C, Erlingsson U.: Introducing TensorFlow privacy: Learning with differential
privacy for training data. https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-
learning.html

67. Roth H, Zephyr M, Harouni A (2021) Federated learning with homomorphic encryp-
tion. NVIDIATM Developer Blog. https://developer.nvidia.com/blog/federated-learning-with-
homomorphic-encryption/

68. Salem A, Zhang Y, Humbert M, Berrang P, Fritz M, Backes M (2018) Ml-leaks: Model and data
independent membership inference attacks and defenses on machine learning models. Preprint.
arXiv:1806.01246

69. Shamir A (1979) How to share a secret. Commun ACM 22(11):612–613
70. Shokri R, Stronati M, Song C, Shmatikov V (2017) Membership inference attacks against

machine learning models. In: 2017 IEEE symposium on security and privacy (SP). IEEE, pp
3–18

71. So J, Ali RE, Guler B, Jiao J, Avestimehr S (2021) Securing secure aggregation: Mitigating
multi-round privacy leakage in federated learning. Preprint. arXiv:2106.03328

72. So J, Güler B, Avestimehr AS (2021) Turbo-aggregate: Breaking the quadratic aggregation
barrier in secure federated learning. IEEE J Sel Areas Inf Theory 2:479

73. Song C, Raghunathan A (2020) Information leakage in embedding models. In: Proceedings of
the 2020 ACM SIGSAC conference on computer and communications security, pp 377–390

74. Song S, Chaudhuri K, Sarwate AD (2013) Stochastic gradient descent with differentially
private updates. In: 2013 IEEE global conference on signal and information processing. IEEE,
pp 245–248

75. Song M, Wang Z, Zhang Z, Song Y, Wang Q, Ren J, Qi H (2020) Analyzing user-level privacy
attack against federated learning. IEEE J Sel Areas Commun 38(10):2430–2444

76. Sweeney L (2002) k-anonymity: A model for protecting privacy. Int J Uncertainty Fuzziness
Knowl Based Syst 10(05):557–570

77. Team DP (2017) Learning with privacy at scale. Machine Learning Research at AppleTM

78. Thakkar O, Ramaswamy S, Mathews R, Beaufays F (2020) Understanding unintended
memorization in federated learning. Preprint. arXiv:2006.07490

79. Tramèr F, Boneh D (2020) Differentially private learning needs better features (or much more
data). Preprint. arXiv:2011.11660

80. Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R, Zhou Y (2019) A hybrid
approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop
on artificial intelligence and security, pp 1–11

81. Wang Y, Deng J, Guo D, Wang C, Meng X, Liu H, Ding C, Rajasekaran S (2020) Sapag: a
self-adaptive privacy attack from gradients. Preprint. arXiv:2009.06228

82. Warner SL (1965) Randomized response: A survey technique for eliminating evasive answer
bias. J Am Stat Assoc 60(309):63–69

83. Wei W, Liu L, Loper M, Chow KH, Gursoy ME, Truex S, Wu Y (2020) A framework for
evaluating gradient leakage attacks in federated learning. Preprint. arXiv:2004.10397

84. Xu R, Baracaldo N, Zhou Y, Anwar A, Ludwig H (2019) Hybridalpha: An efficient approach
for privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on
artificial intelligence and security, pp 13–23

85. Yang Z, Shao B, Xuan B, Chang EC, Zhang F (2020) Defending model inversion and
membership inference attacks via prediction purification. Preprint. arXiv:2005.03915

86. Yurochkin M, Agarwal M, Ghosh S, Greenewald K, Hoang N, Khazaeni Y (2019) Bayesian
nonparametric federated learning of neural networks. In: International conference on machine
learning. PMLR, pp 7252–7261

87. Zanella-Béguelin S, Wutschitz L, Tople S, Rühle V, Paverd A, Ohrimenko O, Köpf B,
Brockschmidt M (2020) Analyzing information leakage of updates to natural language models.

https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html
https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html
https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption/
https://developer.nvidia.com/blog/federated-learning-with-homomorphic-encryption/

312 N. Baracaldo and R. Xu

In: Proceedings of the 2020 ACM SIGSAC conference on computer and communications
security, pp 363–375

88. Zhang C, Li S, Xia J, Wang W, Yan F, Liu Y (2020) Batchcrypt: Efficient homomorphic
encryption for cross-silo federated learning. In: 2020 USENIX annual technical conference
(USENIX ATC 20), pp 493–506

89. Zhao B, Mopuri KR, Bilen H (2020) IDLG: Improved deep leakage from gradients. Preprint.
arXiv:2001.02610

90. Zheng, W Popa RA, Gonzalez JE, Stoica I (2019) Helen: Maliciously secure coopetitive
learning for linear models. In: 2019 IEEE symposium on security and privacy (SP). IEEE,
pp 724–738

91. Zhu L, Han S (2020) Deep leakage from gradients. In: Federated learning. Springer, pp 17–31

Chapter 14
Private Parameter Aggregation for
Federated Learning

K. R. Jayaram and Ashish Verma

Abstract Federated learning enables multiple distributed participants (potentially
on different datacenters or clouds) to collaborate and train machine/deep learning
models by sharing parameters or gradients. However, sharing gradients, instead of
centralizing data, may not be as private as one would expect. Reverse engineering
attacks on plain text gradients have been demonstrated to be practically feasible.
This problem has been made more insidious by the fact that participants or
aggregators may reverse engineer model parameters while participating honestly
in the protocol (the so-called honest, but curious trust model). Existing solutions
for differentially private federated learning, while promising, lead to less accurate
models and require nontrivial hyperparameter tuning. In this chapter, we (1)
describe various trust models in federated learning and their challenges, (2) explore
the use of secure multi-party computation techniques in federated learning, (3)
explore how additive homomorphic encryption can be used efficiently for federated
learning, (4) compare these techniques with others like the addition of differentially
private noise and the use of specialized hardware, and (5) illustrate these techniques
through real-world examples.

14.1 Introduction

Some of the early success of distributed machine and deep learning (ML/DL) in
several application domains [29, 31] has been in the context of massive centralized
data collection, either at a single datacenter or at a cloud service. However,
centralized data collection at a (third-party) cloud service can be incredibly privacy-
invasive and can expose organizations (customers of the cloud service) to large
legal liability when there is a data breach. This is especially true in the case
of healthcare data, voice transcripts, home cameras, financial transactions, etc.

K. R. Jayaram (�) · A. Verma
IBM Research, Yorktown Heights, NY, USA
e-mail: jayaramkr@us.ibm.com; Ashish.Verma1@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_14

313

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_14&domain=pdf
mailto:jayaramkr@us.ibm.com
mailto:Ashish.Verma1@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_14

314 K. R. Jayaram and A. Verma

Centralized data collection often results in “loss of control” over data once it is
uploaded. A frequently asked question to which users often do not get a satisfactory
answer is “Is the cloud service using my data as promised? Is it actually deleting
my data when it claims to do so?”. Organizations that have not been convinced by
privacy violations and loss of control have been forced by governmental regulations
(like HIPAA and GDPR [34]) to restrict data sharing with third-party services.

Federated learning (FL) aims to mitigate these aforementioned issues while
maintaining accuracy of ML/DL models. An entity in an FL job can be as small
as a smart phone/watch or as large as an organization with multiple data centers.
An FL algorithm aims to train an ML/DL model, e.g., a specific neural network
model or an XGBoost model, on multiple entities, each with its own “local” dataset,
without exchanging any data. This results in multiple “local models,” which are
then combined (aggregated) by exchanging only parameters (e.g., the weights of a
neural network model). An FL algorithm may use a central coordinator to collect
parameters of all local models for aggregation, or it may be a peer-to-peer algorithm
(broadcast, overlay multicast, etc.)

Initially, it was believed that the exchanged model updates in Federated Learn-
ing (FL) communications would contain far less, if any, information about the
raw training data. Thus, sharing model updates was considered to be “privacy-
preserving.” However, even if not discernible immediately, training data information
is still embedded in the model updates. Recent research [14, 15, 17, 33, 42, 48,
50, 51] has demonstrated the feasibility and ease of inferring private attributes
and reconstructing large fractions of training data by exploiting model updates,
thereby challenging the privacy promises of FL in the presence of honest-but-
curious aggregation servers.

14.2 Focus, Trust Model, and Assumptions

FL is typically deployed in two scenarios: cross-device and cross-silo [23]. The
cross-device scenario involves a large number of parties (>1000), but each party has
a small number of data items, constrained compute capability, and limited energy
reserve (e.g., mobile phones or IoT devices). They are highly unreliable and are
expected to drop and join frequently. Examples include a large organization learning
from data stored on employees’ devices and a device manufacturer training a model
from private data located on millions of its devices (e.g., Google Gboard [4]).
A trusted authority, which performs aggregation and orchestrates training, is
typically present in a cross-device scenario. Contrarily, in the cross-silo scenario, the
number of parties is small, but each party has extensive compute capabilities (with
stable access to electric power or equipped with hardware machine learning (ML)
accelerators) and large amounts of data. The parties have reliable participation
throughout the entire FL training lifecycle but are more susceptible to sensitive
data leakage. Examples include multiple hospitals collaborating to train a tumor
detection model on radiographs, multiple banks collaborating to train a credit card

14 Private Parameter Aggregation for Federated Learning 315

fraud detection model, etc. In cross-silo scenarios, there exists no presumed central
trusted authority. All parties involved in the training are equal collaborators. The
deployments often involve hosting aggregation in public clouds, or alternatively one
of the parties acting as, and providing infrastructure for aggregation. In this chapter,
we focus on private parameter aggregation in cross-silo scenarios.

We assume that each participant is convinced of the benefits (improvements
in accuracy, robustness, etc.) of federated learning. We note that convincing
participants to collaborate by projecting potential gains in accuracy due to federated
learning is an open research problem. We focus on the so-called honest, but curious
trust model. Here, each participant is convinced enough that it follows the steps
of the federation protocol and does not collude with the coordinator to break
the protocol. But the participant may be curious about the data of others, and
it may be in their interest to reverse engineer the model parameters to try and
discover other participants’ data. We also assume that the coordinator is honest
but curious with respect to individual participants’ data. The participants want to
reduce the required amount of trust in the coordinator as much as possible. We
also assume that each participant does not attempt to poison or skew the global
model by maliciously generating weights. This trust model also includes the simpler
case where participants are forbidden from sharing data or the model parameters
derived from the data due to regulatory reasons (e.g., FedRAMP, EU data protection
guidelines [34]).

Examples and Use Cases This trust model is predominantly found in enterprise
federated learning; for example, a multinational bank having branches in multiple
countries and so regulated locally (BankA, BankA US, BankA UK, BankA India,
etc.), where the bank wants to learn a fraud detection model across data of all
its subsidiaries, but the data cannot be transferred to a central location due to
governmental data sovereignty and jurisdiction laws [34]. Each participant here is
a subsidiary with its national data center(s) and the coordinator might be located
in a cloud platform or a global datacenter. Another example is a set of hospitals
that want to collaborate to train a tumor detection model; each hospital is unable
to trust the others and unwilling to trust and transfer data to a central service.
Another example is a cloud-hosted machine learning service (e.g., Azure ML) that
has multiple (competing) corporate clients which do not trust each other but have
some level of trust in the cloud service to facilitate and secure federated learning.

14.3 Differentially Private Federated Learning

Differential privacy [12, 30] is a framework which deals with publishing the results
of computations or queries made on a dataset in such a way that limits the
disclosure of private information. In simple words, a computation on a dataset is
called differentially private if an observer seeing its output cannot tell if a specific
individual’s information was used in the computation. ε-differential privacy, the

316 K. R. Jayaram and A. Verma

typically used notion of differential privacy, is a mathematical definition for the
privacy loss associated with any release of derivative information from a dataset.

Differential privacy has been recently used by a number of researchers during
model training in a federated setting [1, 2, 32, 43]. A typical way to incorporate
differential privacy into a federated learning setup is to add random noise in each
of the model/data derivatives shared externally by a participant during the training
process. The amount of random noise to be added depends on the level of privacy
required by the participant. This noise addition adversely impacts the accuracy of
the trained model. While there have been some studies that demonstrate that impact
on accuracy can be minimized by adding a small amount of noise and carefully
choosing the hyperparameters of the training [1, 43], there is no systematic study
on how exactly the noise level impacts model convergence. This may require a
long empirical process to determine achievable level of privacy without sacrificing
too much accuracy. In this section, we describe this problem in more detail, with
empirical evidence.

14.3.1 Background: Differential Privacy (DP)

Differential privacy literature has gained significant attention in the computer
science field in the recent past. Here we briefly cover the differential privacy (DP)
framework in the interest of keeping this chapter self-contained. For a detailed
description of the differential privacy, we refer the reader to [12]. Differential
privacy literature states that a (randomized) function f (·) is ε-differentially private
if for all datasets X,X′ that differ by only a single data item and all values of t

∣∣∣∣ln
P(f (X) = t)

P (f (X′) = t

∣∣∣∣ ≤ ε (14.1)

The parameter ε quantifies the privacy risk; lower ε means higher privacy. We
work with a practical variant of the original differential privacy definition described
in [12], called (ε, δ) differential privacy defined for the function f (·):

P(f (X) = t) ≤ eεP (f (X′) = t) + δ (14.2)

This definition is interpreted as saying that f (·) is ε-differentially private with
probability 1−δ. In order to achieve differential privacy, a noise term is added to the
output of f (·) whose variance is dependent on the parameters ε and δ. Furthermore,
it has been demonstrated that using an additive Gaussian noise term with 0 mean
and variance

σ 2 = �f · 2 ln 1.25
δ

ε
(14.3)

14 Private Parameter Aggregation for Federated Learning 317

ensures (ε, δ)-differential privacy [12], where �f is the sensitivity of f (·). Sensi-
tivity is a measure of how much the computation can change when a single element
of the underlying dataset changes. More formally, the sensitivity �f is given by

�f = sup
(X,X′)

(‖f (X) − f (X′)‖l) (14.4)

The above definitions deal with differential privacy of a single query, and
however training a neural network requires many iterations, that is, many queries
of the data. This means we cannot restrict ourselves to merely choosing a single
value of ε but must consider the total privacy loss over the course of training.
According to the composition theorem 3.16 in [12], using multiple (ε, δ)-DP will
still be differentially private, but with a total privacy loss, referred to as the privacy
budget (β), equal to the sum over all used ε. This means if we train for T iterations,
using a constant value ε0 at each iteration will take a total privacy budget of
β = ∑T

i=1 ε0 = T ε0.
Of course, one’s privacy budget does not have to be spent in this naive manner.

Several authors have considered different strategies for spending privacy budgets
with various improvements in mind. Shokri and Shmatikov [41] propose a way to
limit the total number of queries, thus reducing overall privacy loss, and the work
[35] uses a generalization of differential privacy to achieve tighter bounds on privacy
loss per query.

14.3.2 Incorporating DP into SGD

Stochastic gradient descent (SGD) is one of the most popular optimization tech-
niques used to train deep learning and various other machine learning models [5].
In distributed SGD, a mini-batch of samples is distributed over multiple learners
who compute gradients of the model on their local share of the mini-batch and
then share the gradients with a centralized parameter server. The parameter server
computes the average gradient across the learners, updates the model parameters,
and distributes the updated model parameters back to the learners.

In a typical federated learning setting, gradients of the model parameters are
computed by the participants on their private dataset and shared with the centralized
aggregator. Furthermore, concepts from differential privacy literature are utilized to
modify SGD algorithm in order to prevent any leakage of information about the data
through the shared gradients. This modification results in the so-called differentially
private SGD [1], which is described below.

Let us now discuss how to use (ε, δ)-differential privacy in the context of
federated learning using SGD. Here, f (·) corresponds to computing the gradient
of the model parameters on the local dataset.

318 K. R. Jayaram and A. Verma

The update rule for mini-batch SGD with batch size S and learning rate η is

θk+1 = θk − η
1

S

S∑

i=1

g(xi) (14.5)

where g(xi) is the gradient of the loss function evaluated on data point xi ∈ X. The
quantity that is shared during gradient exchange is f (x) = η 1

S

∑S
i=1 g(xi). Note,

for the above formulation, the sensitivity would depend upon the gradient of only
one data point which is different in the two datasets X and X′, i.e.,

�f = ‖f (X) − f (X′)‖l

= η

S

∥∥∥∥∥

S∑

i=1

(g(xi) − g(x′
i))

∥∥∥∥∥
l

= η

S
‖g(xj) − g(x′

j)‖l

≤ η

S
· 2C

where the constant C is an upper bound on the gradient. Hence, following the result
from [12] above, the variance of the Gaussian noise term to be added to the gradients

to make them (ε, δ)-differentially private is 2C
η
S

ln 1.25
δ

ε
. We describe the high-level

algorithm for differentially private SGD [1] below.

Algorithm 14.1 (ε, δ)-differentially private SGD
Inputs: learning rate: η, batch size: S, clipping length: C, privacy budget: Tε0, initial
weights: θ0

for t = 0, 1, 2, 3, . . . , T do
Sample S data points uniformly at random

compute f (X) = ∑S
i=1 g(xi)

clip gradient: f (X) ← f (X)/ max(1,
‖f (X)‖

C
)

sample Zk from the distribution N(0, 2C
η
S

ln 1.25
δ

ε
)

θt+1 ← θt − ηf (X) + Zk

end for

14 Private Parameter Aggregation for Federated Learning 319

14.3.3 Experiments and Discussion

Let us now discuss some experiments to understand the challenges in applying
DP to federated learning in detail. Consider training two models on two different
datasets—Resnet-18 model [19] on the CIFAR-10 [27] dataset and the Resnet-
50 [19] model on the SVHN [37] dataset. All models are trained for 200 epochs
using plain and DP versions of SGD. The learning rate schedule was to use 0.1 for
the first 80 epochs, 0.01 for the next 40, and 0.001 for the remaining 80 epochs.

14.3.3.1 Accuracy vs ε

Figures 14.1 and 14.2 illustrate the convergence plots of different training runs for
various values of batch size and ε. The very first observation is that the models
converge to a lower accuracy as we decrease the value of ε. From Fig. 14.1, for a
given batch size, say 1024, we observe that training schemes with lower noise added
(corresponding to higher values of ε like 10, 1, and 0.1) have accuracy closer to the
accuracy of non-private training. Once enough noise is added (corresponding to ε of
0.05 and lower), accuracy drops and does so precipitously for 0.01 and lower values

Fig. 14.1 Validation accuracy of Resnet18 on CIFAR10 per epoch for different batch sizes (64,
1K, 4K, and 8K) and ε (from 10 down to 0.001). Lower ε implies more noise added and hence
more privacy

320 K. R. Jayaram and A. Verma

Fig. 14.2 Validation accuracy of Resnet18 on CIFAR10 per epoch for different batch sizes (64,
1K, 4K, and 8K) and ε (from 10 down to 0.001). Lower ε implies more noise added and hence
more privacy

of ε. We see this phenomenon throughout Figs. 14.1 and 14.2 for all the models for
a given batch size.

14.3.3.2 Accuracy vs Batch Size (Fixed ε)

An important observation from Figs. 14.1 and 14.2 is that even though the model
accuracy levels for the non-private versions are pretty much unchanged for various
values of batch sizes, the private version of training is highly sensitive to the batch
size S. We have been able to achieve similar accuracy levels for private version of
the models as those of the non-private versions even at very low values of ε by
simply increasing the batch size. This can be prominently observed in the case of
CIFAR10+Resnet18 in Fig. 14.1 for ε = 0.005 and 0.01 (green and orange plots in
Fig. 14.1, viewed left to right) but is true for all values of ε.

Quantitatively, for greater privacy corresponding to ε = 0.01 and 0.005, final
accuracy increases by approx. 37% and 78.5% by increasing batch size from 1024
to 8192, respectively, for CIFAR10+Resnet18. Similar trends can be observed from
Fig. 14.2. Overall, while differential privacy is a promising approach, it does seem

14 Private Parameter Aggregation for Federated Learning 321

to require careful hyperparameter tuning to minimize impact on accuracy. This may
involve spawning multiple FL jobs corresponding to different hyperparameters.

14.4 Additive Homomorphic Encryption

Research on secure and private federated learning and gradient descent is predom-
inantly based either on (1) clever use of cryptography—homomorphic encryption
and secure multi-party computation [3, 8, 10, 13, 16, 25, 26, 38] or on (2) modifying
model parameters or gradients through the addition of statistical noise to get
differential privacy [1, 2, 43]. Some techniques [45, 47] combine both.

Homomorphic encryption allows computation on ciphertexts, generating an
encrypted result which, when decrypted, matches the result of the operations as
if they had been performed on the plaintext [18]. Fully homomorphic encryption is
expensive, in terms of both encryption/decryption time and the size of the ciphertext.
However, averaging gradient vectors in federated gradient descent requires only
addition (division by the total number of participants can be done before or
after encrypted aggregation). Hence, we can easily employ additive homomorphic
encryption like the Paillier cryptosystem [22] to ensure privacy of gradients during
federated training. The Paillier cryptosystem is an asymmetric algorithm for public
key cryptography. Given only the public key and the encryption of m1 and m2, one
can compute the encryption of m1 + m2. The definition of homomorphic encryption
beautifully illustrates the challenge in applying it to private gradient aggregation. All
participants have to encrypt their gradients/parameters with the same public key.
This needs a trusted key generator/distributor. But, if all the participants send their
Paillier encrypted gradients to this key generator/distributor, it can decrypt them and
potentially reverse engineer the data. So, ideally, aggregation has to happen outside
the key generator/distributor. Furthermore, the key generator/distributor has to be
completely trusted to not leak the private key to any participant. Several designs
are possible to satisfy these constraints. In this section, we describe one system—
Mystiko [20] as an illustration—and compare it with differential privacy and secure
multi-party computation (SMC).

We emphasize that Mystiko is one of many systems that use Paillier cryptography
to secure aggregation. In [3, 38], the participants jointly generate a Paillier key
pair and send the encrypted gradient vectors to the coordinator who is completely
untrusted, except to add Paillier encrypted weights. The participants can then
decrypt the aggregated gradient vectors. This, however, requires each participant
to collaborate with the others to generate the Paillier keys and a high level of trust
that participants do not collude with the untrusted coordinator to decrypt individual
gradient vectors. One untrusted participant can leak the Paillier keys and potentially
lead to privacy loss.

Secure multi-party computation (SMC) is a subfield of cryptography with the
goal of creating methods for parties to jointly compute a function over their inputs
while keeping those inputs private. Unlike traditional cryptographic tasks, where

322 K. R. Jayaram and A. Verma

cryptography assures security and integrity of communication or storage and the
adversary is outside the system of participants (an eavesdropper on the sender and
receiver), the cryptography in this model protects participants’ privacy from each
other. SPDZ [10], and its variants (Overdrive [16, 25, 26]), optimizes classic SMC
protocols. The advantage of such protocols is that they work with any number of
honest+curious peers, do not change final accuracy of the trained model, and require
a large number of colluding peers to break. The drawback, however, is efficiency—
SMC protocols are computationally expensive (Sect. 14.6).

14.4.1 Participants, Learners, and Administrative Domains

Logically speaking, it is helpful to define federated learning algorithms in terms
of administrative domains. An administrative domain is a set of computing entities
(servers, VMs, desktops, laptops, etc.). Each entity inside an administrative domain
trusts the other, malice is not a concern, and there are no legal/regulatory hurdles
to sharing data and information derived from data. Note that an administrative
domain does not necessarily mean a company or a non-corporate organization. It
may be a project within a company handling confidential data; it may be not be
located within a corporate datacenter, and instead be associated with an account
on the public cloud. An organization can have multiple administrative domains.
Each participant in a federated learning algorithm corresponds to an administrative
domain. Computationally, the actual learning process (typically running on a GPU)
performing the neural network training is called a Learner. Each learner works on
(a batch of) data within the participant to compute the gradient vector.

14.4.2 Architecture

The main characteristics of any privacy preserving federated learning scheme
revolve around (a) what methodology is used to encrypt the data (or noise addition)
of the participants and (b) the communication protocol being used among the
participants and the coordinator (if any) for aggregation of the model parameters
or gradients. In MYSTIKO all participants encrypt individual data using a single
Paillier public encryption key, adding encrypted gradient vectors and decrypting
only the sum. Thus, only the participants are able to view their individual data,
ensuring privacy. The question now is (1) how to distribute a common Paillier public
key to all participants while keeping the corresponding private key secret? and (2)
how to prevent anyone from decrypting individual weights? These are explained in
the following sections.

For simplicity, we assume that there is exactly one learner per participant.
We will relax this assumption in Sect. 14.4.4. MYSTIKO is typically deployed
as a cloud service that mediates several participants. It involves a Job Manager,

14 Private Parameter Aggregation for Federated Learning 323

Membership Manager, a Key Generator, and a Decryptor. The Membership Man-
ager is responsible for establishing the relationship between each participant and
MYSTIKO and also keeping track of participants that belong to each federated
learning job. The Job Manager manages an FL job through its lifecycle—it
keeps track of participants, helps participants agree on hyperparameters, detects
failures, and updates to memberships. While the focus of this chapter is attacks on
the privacy of data from within a federation, traditional communication security
is nevertheless essential to prevent outside attacks on the federation. For this,
MYSTIKO and the participants (learners) agree to use a common public key
infrastructure (PKI) [44]. The PKI helps ensure confidentiality of communications
between the MYSTIKO components and the learners and also helps bootstrap the
Paillier infrastructure. The PKI provides certification authorities (CAs), along with
corresponding intermediate and Root CAs, creating a web of trust between the
learners and MYSTIKO. MYSTIKO creates a bidirectional TLS channel [39] using
the PKI for the security of control messages. The TLS channel is created using
strong but ordinary (non-homomorphic) cryptographic algorithms (e.g., RSA for
key exchange/agreement and authentication, AES for message confidentiality, and
SHA for message authentication [39, 44]). The TLS channel is not used for gradient
aggregation, but rather for all other communications, like registration of learners
with the MYSTIKO topology formation, rank assignment, transmitting the Paillier
public key to each learner, and transmitting the decrypted aggregated gradient vector
to each learner.

14.4.3 MYSTIKO Algorithms

In this section, we describe MYSTIKO algorithms, starting with the simple ring-
based algorithm, before adding parallelism and resiliency through broadcast and
All-Reduce based communication.

14.4.3.1 Basic Ring-Based Algorithm

The basic ring-based aggregation algorithm is illustrated in Figs. 14.3 and 14.4. This
algorithm operates across P participants, each in its own administrative domain and
represented by a learner (L). The algorithm starts with each participant registering
with MYSTIKO. MYSTIKO acts as the coordinator. The learners need not fully trust
MYSTIKO; they only need to trust it to generate good encryption key pairs, keep the
private key secret and follow the protocol.

MYSTIKO’s Membership Manager starts the federated learning protocol once all
expected learners are registered. The first step is to arrange the learners along a
ring topology (Fig. 14.3). This can be done in several straightforward ways: (1) by
location—minimizing geographic distance between participants, (2) by following a
hierarchy based on the name of the participants (ascending or descending order), or

324 K. R. Jayaram and A. Verma

MYSTIKO

Key Generator

MYSTIKO

Key Generator

LEARNER-1

LEARNER-2

LEARNER-3

LEARNER-4

Signed Paillier Public Key
(Additive Homomorphic)

Ring Topology
Establishment

With Rank

Ring Topology
Establishment

With Rank

Ring Topology
Establishment

With Rank

Ring Topology
Establishment

With Rank

Fig. 14.3 Topology establishment and key distribution

LEARNER-1

LEARNER-2
Encrypt local weights,
Add local and remote
encrypted weights

Aggregated Gradients
(delivered over TLS)

Decrypter
@ MYSTIKO

Pallier
Encrypted
 Gradients

(added)
Pallier
Encrypted
Gradients

LEARNER-3
Encrypt local weights
Add local and remote
encrypted weights

(added)
Pallier
Encrypted
Gradients

LEARNER-4
Encrypt local weights
Add local and remote
encrypted weights

Aggregated Gradients
(delivered over TLS)

Fig. 14.4 Basic aggregation protocol over a ring topology

(3) by using consistent hashing [24] on the name/identity of the participants. Once
the learners have been arranged in a ring, each learner gets a rank (from 1 to P)
based on its position in the ring.

MYSTIKO’s Paillier Key Generator, which generates a Paillier public and private
key pair for each federated learning job. Typically, a unique Paillier key pair is
generated for each federated learning job and the Paillier public key securely
distributed (over TLS) to all the learners. For long jobs, a separate key pair may
be generated either once every epoch or once every h minutes (this is config-
urable). MYSTIKO’s Decryptor is responsible for decrypting the Paillier encrypted

14 Private Parameter Aggregation for Federated Learning 325

aggregated gradient vector for distribution to the learners. Each learner receives a
Paillier encrypted gradient vector from the previous learners on the ring, encrypts
its own gradient vector with the Paillier public key, and adds (aggregates) the two
Paillier encrypted vectors. This aggregated, Paillier encrypted gradient vector is then
transmitted to the next learner on the ring. The last learner on the ring transmits the
fully aggregated, encrypted gradient vector to MYSTIKO for decryption. MYSTIKO’s
Decryptor decrypts the aggregated vector and transmits the same securely over TLS
to each of the learners.

Security Analysis Data never leaves a learner and by extension any administrative
domain. This ensures privacy of data, provided each server inside the administrative
domain has adequate defenses against intrusion. Unencrypted gradient vectors
do not leave the learner. If there are P participants, in P − 1 cases, only
aggregated Paillier encrypted gradient vectors leave the learner. Only MYSTIKO

has the private key to decrypt these. For the first learner in the ring, the non-
aggregated gradient vector is transmitted to the second learner, but it is Paillier
encrypted and cannot be decrypted by the same. In fact, none of the participants
are able to view even partially aggregated gradient vectors. After decryption, the
aggregated gradient vector is distributed securely to the participants over TLS.
Reverse engineering attacks, like the ones in [15] and [14], are intended to find
the existence of a specific data record in a participant or to find data items that
lead to specific changes in gradient vectors; both of which are extremely difficult
when several gradient vectors computed from large datasets are averaged [21].
Decryption after averaging ensures the privacy of gradients. MYSTIKO only sees
aggregated gradients and cannot get access to individual learner’s data or gradi-
ents.

Colluding Participants The basic ring-based algorithm is resistant to collusion
among P − 2 participants. That is, assuming an honest uncorrupted MYSTIKO

deployment, it can be broken only if P − 1 learners collude. For learner Li’s
gradients to be exposed, learners L1, L2, . . . , Li−1 and Li+1, . . . , LP should
collude, i.e., all of them should simply pass on incoming encrypted gradient vector
to the next learner, without adding any gradient of their own.

Fault Tolerance The disadvantage of a ring-based aggregation algorithm is that
rings can break; for good performance, it is essential that the connectivity between
each learner and MYSTIKO remains strong. Traditional failure detection techniques,
based on heartbeats and estimation of typical round-trip times, may be used.
Distributed synchronous gradient descent consists of a number of iterations, with
gradients being averaged at the end of each iteration. If the failure of a learner is
detected, the averaging of gradient vectors is paused until the learner is eliminated
from the ring by the MYSTIKO’s Membership Manager, or connection to the learner
is established again. Pausing gradient averaging can also be done when connection
to the MYSTIKO is temporarily lost.

326 K. R. Jayaram and A. Verma

14.4.3.2 Broadcast Algorithm

One of the main drawbacks of the ring-based algorithm is the establishment and
maintenance of the ring topology. To mitigate this, an alternative is to use group
membership and broadcast. Except for the establishment of the topology, the setting
remains the same. Learners register with the MYSTIKO’s Membership Manager,
agree on a common PKI, and know the identity and number of participants.
MYSTIKO generates a Paillier public–private key pair for each federated job and
distributes the public key securely to each learner.

Each learner Paillier encrypts its gradient vector and broadcasts the encrypted
vector to all other learners. Each learner, upon receipt of encrypted vectors from
P − 1 learners, adds them and sends the Paillier encrypted sum to the MYSTIKO for
decryption. After decryption, the aggregated gradient vector is transmitted securely
to all learners over TLS. The broadcast algorithm is redundant and wasteful, as
every learner computes the aggregate. But, with redundancy comes increased failure
resiliency. With the ring, the failure of one participant can lead to partial loss of
aggregated gradients, which is not the case for broadcast.

Colluding Participants The objective of breaking this algorithm is to determine
the plaintext gradient vector of a specific LA. This algorithm is resistant to collusion
and can be broken only if P −1 participants collude, which is highly unlikely. Also,
in the event that P −1 participants collude to Paillier encrypt zero vectors instead of
their actual gradient vectors, the broadcasted Paillier ciphertexts from all the P − 1
learners will be the same, which serves as a red flag enabling collusion detection. In
fact, given that data is likely to be different at each participant, getting exactly the
same Paillier encrypted gradient vector from even two learners is red flag.

14.4.3.3 All-Reduce

Ring-based All-Reduce [28] is essentially a parallel version of the ring-based
aggregation protocol described in Sect. 14.4.3.1. It is illustrated in Fig. 14.5. The
problem with the basic ring protocol in Sect. 14.4.3.1 is that each learner has to wait
for its predecessor. However, in All-Reduce, the Paillier encrypted gradient vector
is divided into P chunks where P is the number of participants. All learners then
aggregate Paillier encrypted chunks in parallel. For example, in Fig. 14.5, there are
three learners, and the gradient vectors are divided into three chunks each. Learner-2
does not wait for the entire vector of Learner-1 to be received. Instead, while it is
receiving the first chunk of Learner-1, it transmits its own second chunk to Learner-
3, which in parallel transmits its third chunk to Learner-3. In Step 2, Learner-2
transmits the partially aggregated chunk-1 to Learner-3, which transmits partially
aggregated chunk-2 to Learner-1, which transmits the partially aggregated chunk-3
to Learner-2. At the end of Step-2, each learner has Paillier encrypted, aggregated
chunks, which are transmitted to MYSTIKO’s Decryptor for concatenation and
decryption.

14 Private Parameter Aggregation for Federated Learning 327

a1 a2 a3

b1 b2 b3

c1 c2 c3
Learner-1

Learner-2

Learner-3
a2 a3+c3

a1+b1 b3

c1 b2+c2

Learner-1

Learner-2

Learner-3

a2+b2
+c2

a3+b3
+c3

a1+b1
+c1

Learner-1

Learner-2

Learner-3

Divided Paillier encrypted arrays Step 1: Parallel Addition of Chunks Step 2: Parallel Addition of Chunks

Fig. 14.5 MYSTIKO ring All-Reduce over Paillier encrypted arrays

Security Analysis We note that All-Reduce is the most efficient MYSTIKO proto-
col. With P learners, All-Reduce is essentially an instantiation of P − 1 rings (of
Sect. 14.4.3.1), all operating in parallel. In Fig. 14.5, the first ring starts at the first
chunk of Learner-1, the second ring starts at the second chunk of Learner-2, and the
third starts at the third chunk of Learner-3. This implies that the security guarantees
of All-Reduce are the same as that of the basic ring protocol.

14.4.4 Multiple Learners Per Administrative Domain

For presentation simplicity, we have assumed that there is exactly one learning pro-
cess (learner) per participant. More realistically, within an administrative domain,
data is partitioned among servers and multiple training processes (learners), which
periodically synchronize their gradient vectors using an aggregator process local
to the administrative domain. This is done for various reasons, including datasets
being large, compute resources being cheap and available, and the desire to reduce
training time. MYSTIKO’s protocols can be applied in a straightforward manner
to this case, with MYSTIKO’s protocols running between local aggregators (LAs)
instead of between learners. Local aggregation is not Paillier encrypted and non-
private because compute resources within an administrative domain are trusted
and can share even raw data. But aggregation between LAs follows MYSTIKO’s
protocols. This is illustrated in Fig. 14.6.

14.5 Trusted Execution Environments

A trusted execution environment (TEE) [40, 46] is a secure area of a main processor.
TEEs are isolated execution environment that provide key security features such
as isolated execution, integrity of applications executing with the TEE, along with
confidentiality of their data assets. TEEs establish an isolated execution environment
that runs in parallel with the standard operating system, such as Linux and
Microsoft Windows; its aim is to defend sensitive code and data against privileged
software attacks from a potentially compromised native OS. ARM TrustZone, IBM
Hyperprotect, and Intel SGX are examples of TEE technologies, which use a
combination of hardware and software mechanisms to protect sensitive assets. TEEs

328 K. R. Jayaram and A. Verma

Local Aggregator

Learner
Data

Learner
Data Data

DataLearner
Learner

Local Aggregator Local Aggregator

Local Aggregator

MYSTIKO

Key
Generator Decrypter

Pallier Encrypted Weights

(added)
Pallier Encrypted Weights

(added)
Pallier Encrypted Weights

Fig. 14.6 Federating gradient descent

are often designed so that only trusted applications, whose integrity is verified at
load time, can access the full power of the server’s processors, peripherals, and
memory. Hardware isolation provided by the TEE protects the applications inside
it from other installed applications (including malware and viruses) on the host
operating system. If multiple applications are contained within a TEE, software and
cryptographic isolation often protect them from each other.

To prevent the simulation of TEEs with attacker- or user-controlled software
on the server, TEEs involve a “hardware root of trust.” This involves embedding
a set of private keys directly into the TEE at the time of chip manufacturing,
using one-time programmable memory. These cannot be changed, even after device
resets or restarts. The public counterparts of these keys reside in a manufacturer
database, together with a non-secret hash of a public key belonging to the trusted
party (usually the chip vendor) which is used to sign trusted firmware alongside the
circuits doing cryptographic operations and controlling access. The TEE hardware
is designed in a way which prevents all software not signed by the trusted party’s
key from accessing the privileged features. The public key of the vendor is provided
at runtime and hashed; this hash is then compared to the one embedded in the chip.
If the hash matches, the public key is used to verify a digital signature of trusted
vendor-controlled firmware (such as a chain of bootloaders on Android devices or
’architectural enclaves’ in SGX). The trusted firmware is then used to implement
remote attestation.

In this chapter, we describe how one system—TRUDA [7]—leverages Trusted
Execution Environments (TEEs) to protect the model fusion process. Other exam-
ples include [6, 49] and [36]; each of which also has several optimizations. We

14 Private Parameter Aggregation for Federated Learning 329

restrict our treatment here to the basic aggregation process with TEEs using TRUDA
as an example. TRUDA runs every aggregator within an encrypted virtual machine
(EVM) via AMD Secure Encrypted Virtualization (SEV). All in-memory data are
kept encrypted at runtime during model aggregation. To bootstrap trust between
parties and aggregators, it uses a two-phase attestation protocol and develops a series
of tools for integrating/automating confidential computing in FL. Each party can
authenticate trustworthy aggregators before participating in FL training. End-to-end
secure channels, from the parties to the EVMs, are established after attestation to
protect model updates in transit.

14.5.1 Trustworthy Aggregation

TRUDA enforces cryptographic isolation for FL aggregation via SEV. The aggre-
gators execute within EVMs. Each EVM’s memory is protected with a dis-
tinct ephemeral VM Encryption Key (VEK). Therefore, TRUDA can protect
the confidentiality of model aggregation from unauthorized users, e.g., system
administrators, and privileged software running on the hosting servers. AMD
provides attestation primitives for verifying the authenticity of individual SEV
hardware/firmware. TRUDA employs a new attestation protocol upon the primitives
to bootstrap trust between parties and aggregators in the distributed FL setting. This
FL attestation protocol consists of two phases:

Phase 1: Launching Trustworthy Aggregators First, TRUDA securely launches
SEV EVMs with aggregators running within. To establish the trust of EVMs,
attestation must prove that (1) the platform is an authentic AMD SEV-enabled
hardware providing the required security properties and (2) the Open Virtual
Machine Firmware (OVMF) image to launch the EVM is not tampered. Once the
remote attestation is completed, TRUDA provisions a secret, as a unique identifier of
a trustworthy aggregator, to the EVM. The secret is injected into EVM’s encrypted
physical memory and used for aggregator authentication in Phase 2.

The EVM owner instructs the AMD Secure Processor (SP) to export the
certificate chain from the Platform Diffie-Hellman (PDH) Public Key down to the
AMD Root Key (ARK). This certificate chain can be verified by the AMD root
certificates. The digest of OVMF image is also included in the attestation report
along with the certificate chain.

The attestation report is sent to the attestation server, which is provisioned with
the AMD root certificates. The attestation server verifies the certificate chain to
authenticate the hardware platform and check the integrity of OVMF firmware.
Thereafter, the attestation server generates a launch blob and a Guest Owner Diffie–
Hellman Public Key (GODH) certificate. They are sent back to the SP on the
aggregator’s machine for negotiating a Transport Encryption Key (TEK) and a
Transport Integrity Key (TIK) through Diffie–Hellman Key Exchange (DHKE) and
launching the EVMs.

330 K. R. Jayaram and A. Verma

TRUDA retrieves the OVMF runtime measurement through the SP by pausing
the EVM at launch time. It sends this measurement (along with the SEV API version
and the EVM deployment policy) to the attestation server to prove the integrity
of UEFI booting process. Only after verifying the measurement, the attestation
server generates a packaged secret, which includes an ECDSA prime251v1 key. The
hypervisor injects this secret into the EVM’s physical memory space as a unique
identifier of a trusted aggregator and continues the launching process.

Phase 2: Aggregator Authentication Parties participating in FL must ensure that
they are interacting with trustworthy aggregators with runtime memory encryption
protection. To enable aggregator authentication, in Phase 1, the attestation server
provisions an ECDSA key as a secret during EVM deployment. This key is used for
signing challenge requests and thus serves to identify a legitimate aggregator. Before
participating in FL, a party first attests an aggregator by engaging in a challenge
response protocol. The party sends a randomly generated nonce to the aggregator.
The aggregator digitally signs the nonce using its corresponding ECDSA key and
then returns the signed nonce to the requesting party. The party verifies that the
nonce is signed with the corresponding ECDSA key. If the verification is successful,
the party then proceeds to register with the aggregator to participate in FL. This
process is repeated for all aggregators.

After registration, end-to-end secure channels can be established to protect
communications between aggregators and parties for exchanging model updates.
TRUDA enables TLS to support mutual authentication between a party and an
aggregator. Thus, all model updates are protected both within EVMs and in transit.

14.6 Comparing HE- and TEE-Based Aggregation with SMC

In this section, we compare all the three Mystiko algorithms with a state-of-the-
art protocol for secure multi-party computation (SPDZ [10, 11, 25]), and schemes
for differential privacy (DP) through the addition of statistical noise. We employ a
variety of image processing neural network models and datasets of various sizes:
(1) 5-Layer CNN (small, 1MB) trained on MNIST dataset (60K handwritten digit
images) (2) Resnet-18 (small–medium, 50MB) trained on the SVHN dataset (600K
street digit images), (3) Resnet-50 (medium-sized model, 110 MB) trained on
CIFAR-100 dataset (60K color images of 100 classes), and (4) VGG-16 (large
model, 600MB) trained on Imagenet-1K dataset (14.2 million images of 1000
classes).

Experiments were conducted on a 40-machine cluster to evaluate all the algo-
rithms on a varying number of participants from 2 to 40. No more than one
participant was ever run on any machine, each of which was equipped with 8
Intel Xeon E5-4110 (2.10 GHz) cores, 64GB RAM, 1 NVIDIA V100 GPU, and a
10GbE network link. The machines were spread over four datacenters, and in every
experiment, participants were uniformly distributed across datacenters. In every

14 Private Parameter Aggregation for Federated Learning 331

experiment, the dataset was uniformly and randomly partitioned across participants.
Mystiko was executed on a dedicated machine in one datacenter. All data points
henceforth are computed by averaging 10 experiment runs.

14.6.1 Comparing MYSTIKO and SPDZ

In federated learning, learners (or local aggregators) learn on local data for a
specific number of iterations before federated gradient aggregation and model
update. Privacy loss happens during gradient aggregation, which is where MYSTIKO

and other systems like SPDZ intervene. Hence, we use the following two metrics
to evaluate MYSTIKO and SPDZ: (1) total synchronization time, which measures
the total time needed for privacy preserving gradient transformations (Paillier
encryption in MYSTIKO, share generation in SPDZ, etc.) and the time required
to communicate the transformed gradients to participants for federation and (2)
communication time, which only measures communication time.

Figure 14.7 plots total synchronization time and communication time against the
number of parties involved in federation, for all of our model/dataset combinations.
From Fig. 14.7, we observe that All-Reduce is the most scalable of all the protocols,
as the number of participants increases. This is mainly because it is a parallel
protocol, where each learner/LA is constantly transmitting a small portion of the
gradient array. The basic ring protocol is the least scalable because it is sequential.

Fig. 14.7 MYSTIKO: total synchronization time (seconds) vs. number of parties (top plots) and
total communication time (seconds) vs. number of parties (bottom). Recall that total synchroniza-
tion time is the sum of the communication time and the gradient transformation time

332 K. R. Jayaram and A. Verma

Table 14.1 MYSTIKO: performance slowdown of Broadcast, Ring, and SPDZ relative to All-
Reduce. Full trend available at Fig. 14.7

Communication time

MYSTIKO

Parties All-reduce Broadcast Ring SPDZ

20 1 6.4–7.2× 38.2–39.9× 13.1–14.2×
40 1 7.9–8.6× 70.5–80.8× 13.8–14.7×
Total synchronization time

MYSTIKO

Parties All-reduce Broadcast Ring SPDZ

20 1 12–51% 27–100% 2.2–6.1×
40 1 6–25% 15–59% 1.3–2.6×

Broadcast performs and scales better than the basic ring protocol because each
participant is broadcasting without waiting for the others. SPDZ performs and scales
worse than broadcast because its communication pattern is close to (but not exactly)
a dual broadcast—each item of the gradient vector at each participant is split into
secret shares and broadcast to the other participants; after secure aggregation, the
results are broadcast back. MYSTIKO obviates the need for dual broadcast through
the use of Paillier encryption and centralized decryption of aggregated gradients.
Table 14.1 illustrates the performance impact of using other protocols for two cases
(20 and 40 parties from Fig. 14.7).

However, the “enormous” speedups of using All-Reduce do not materialize
when total synchronization time is considered. The scalability trends among the
four protocols remain the same; the speedups in total synchronization time remain
significant (as elucidated for two cases in Table 14.1). But the speedups are lower
than the speedups due to communication. This demonstrates that the predominant
overhead of private gradient descent in MYSTIKO and SPDZ vs. non-private
gradient descent is gradient transformation prior to communication. From Fig. 14.7
and Table 14.1, we also observe that for small models (5-Layer CNN and Resnet-
18), communication time plays a larger role. But for large models (Resnet-50 and
VGG-16), gradient transformation plays a larger role.

Lastly, we observe that when compared to training time (illustrated using epoch
time), synchronization time for private gradient descent is significantly larger than
non-private gradient descent. This is primarily because training happens on V100
GPUs (with thousands of cores), while gradient transformation happens on CPUs.
While there is a GPU accelerated version of fully homomorphic encryption ([9],
which has worse performance than Paillier on CPUs), we are not aware of any GPU
accelerated version of the Paillier algorithm.

14 Private Parameter Aggregation for Federated Learning 333

14.6.2 Overheads of Using TEEs: AMD SEV

Compared to MYSTIKO and SPDZ, the biggest advantage is that the overheads are
very low. The overhead of using TEEs comes from performing aggregation inside
the EVMs. Overhead, measured as an increase in end-to-end latency, was between
2% and 4% per federated synchronization round [7]. And there was no difference in
accuracy or convergence rate [7].

14.7 Concluding Remarks

In this chapter, we have examined various options for private parameter aggregation
for federated learning. It is clear that each method has a unique set of advantages
and disadvantages, and the search for a perfect solution is an active area of research.
Differential privacy is very promising from an information leakage standpoint, but it
(1) decreases the accuracy of the model and (2) involves nontrivial hyperparameter
tuning (batch size, learning rate schedule) to obtain optimal results (or even near-
optimal results). Hyperparameter tuning by trying different parameters may not be
possible in federated settings due to the fact that all participants are not guaranteed
to be available for extended time periods and also because running multiple
experiments increases overall latency. Homomorphic encryption and secure multi-
party computation do not alter accuracy or convergence rate and do not require
hyperparameter tuning. But they incur high runtime overhead—using additive
homomorphic encryption can minimize this to a great extent as illustrated by
MYSTIKO, if the aggregation protocol is carefully designed. Finally, using TEEs
has the potential to make aggregation overhead negligible without incurring any
accuracy or convergence penalty, but it does require the use of specialized hardware.

References

1. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L (2016) Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, association for computing machinery, New York, NY,
CCS ’16, pp 308–318

2. Agarwal N, Suresh AT, Yu FXX, Kumar S, McMahan B (2018) cpSGD: Communication-
efficient and differentially-private distributed SGD. In: NeurIPS 2018

3. Aono Y, Hayashi T, Trieu Phong L, Wang L (2016) Scalable and secure logistic regression
via homomorphic encryption. In: Proceedings of the Sixth ACM conference on data and
application security and privacy. Association for Computing Machinery, New York, NY,
CODASPY ’16, pp 142–144

4. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konečnỳ J,
Mazzocchi S, McMahan HB et al (2019) Towards federated learning at scale: System design.
Preprint. arXiv:190201046

334 K. R. Jayaram and A. Verma

5. Bottou L (1998) On-line learning and stochastic approximations. In: On-line learning in neural
networks. Cambridge University Press, New York

6. Chen Y, Luo F, Li T, Xiang T, Liu Z, Li J (2020) A training-integrity privacy-preserving
federated learning scheme with trusted execution environment. Inf Sci 522:69–79

7. Cheng P, Eykholt K, Gu Z, Jamjoom H, Jayaram KR, Valdez E, Verma A (2021) Separation of
powers in federated learning. CoRR abs/2105.09400. https://arxiv.org/abs/2105.09400, http://
2105.09400

8. Cramer R, Damgrd IB, Nielsen JB (2015) Secure multiparty computation and secret sharing,
1st edn. Cambridge University Press, Cambridge

9. Dai W, Sunar B (2016) cuHE: A homomorphic encryption accelerator library. In: Cryptography
and information security in the Balkans. Springer International Publishing

10. Damgård I, Pastro V, Smart N, Zakarias S (2012) Multiparty computation from somewhat
homomorphic encryption. In: Proceedings of the 32nd annual cryptology conference on
advances in cryptology — CRYPTO 2012 - Volume 7417. Springer-Verlag, Berlin, Heidelberg,
pp 643–662

11. Data61 C (2020) Multi-Protocol SPDZ. https://github.com/data61/MP-SPDZ
12. Dwork C, Roth A (2014) The algorithmic foundations of differential privacy. Found Trends

Theor Comput Sci 9(3–4):211–407
13. Evans D, Kolesnikov V, Rosulek M (2018) A pragmatic introduction to secure multi-party

computation. Found Trends Privacy Secur 2:70
14. Fredrikson M, Lantz E, Jha S, Lin S, Page D, Ristenpart T (2014) Privacy in pharmacogenetics:

An end-to-end case study of personalized warfarin dosing. In: 23rd USENIX security sympo-
sium (USENIX Security 14). USENIX Association, San Diego, CA, pp 17–32. https://www.
usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew

15. Fredrikson M, Jha S, Ristenpart T (2015) Model inversion attacks that exploit confidence
information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security. Association for Computing Machinery, New York,
NY, CCS ’15, pp 1322–1333

16. Garg S, Sahai A (2012) Adaptively secure multi-party computation with dishonest majority.
In: Safavi-Naini R, Canetti R (eds) Advances in Cryptology – CRYPTO 2012. Springer Berlin
Heidelberg, Berlin, Heidelberg, pp 105–123

17. Geiping J, Bauermeister H, Dröge H, Moeller M (2020) Inverting gradients–how easy is it to
break privacy in federated learning? Preprint. arXiv:200314053

18. Gentry C (2010) Computing arbitrary functions of encrypted data. Commun ACM 53(3):97–
105

19. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016
IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

20. Jayaram KR, Verma A, Verma A, Thomas G, Sutcher-Shepard C (2020) Mystiko: Cloud-
mediated, private, federated gradient descent. In: 2020 IEEE 13th international conference on
cloud computing (CLOUD). IEEE Computer Society, Los Alamitos, CA, pp 201–210

21. Jayaraman B, Evans D (2019) Evaluating differentially private machine learning in practice.
In: 28th USENIX Security Symposium (USENIX Security 19), USENIX Association, Santa
Clara, CA, pp 1895–1912. https://www.usenix.org/conference/usenixsecurity19/presentation/
jayaraman

22. Jost C, Lam H, Maximov A, Smeets BJM (2015) Encryption performance improvements of
the paillier cryptosystem. IACR Cryptology ePrint Archive. https://eprint.iacr.org/2015/864

23. Kairouz P, McMahan HB, Avent B, Bellet A, Bennis M, Bhagoji AN, Bonawitz K, Charles
Z, Cormode G, Cummings R et al (2019) Advances and open problems in federated learning.
Preprint. arXiv:191204977

24. Karger D, Lehman E, Leighton T, Panigrahy R, Levine M, Lewin D (1997) Consistent hashing
and random trees: Distributed caching protocols for relieving hot spots on the world wide
web. In: Proceedings of the twenty-ninth annual ACM symposium on theory of computing.
Association for Computing Machinery, New York, NY, STOC ’97, pp 654–663

https://arxiv.org/abs/2105.09400
http://2105.09400
http://2105.09400
https://github.com/data61/MP-SPDZ
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/fredrikson_matthew
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://www.usenix.org/conference/usenixsecurity19/presentation/jayaraman
https://eprint.iacr.org/2015/864

14 Private Parameter Aggregation for Federated Learning 335

25. Keller M, Yanai A (2018) Efficient maliciously secure multiparty computation for ram. In:
EUROCRYPT (3). Springer, pp 91–124. https://doi.org/10.1007/978-3-319-78372-7_4

26. Keller M, Pastro V, Rotaru D (2018) Overdrive: Making SPDZ great again. In: Nielsen
JB, Rijmen V (eds) Advances in cryptology – EUROCRYPT 2018. Springer International
Publishing, Cham, pp 158–189

27. Krizhevsky A (2009) Learning multiple layers of features from tiny images. https://www.cs.
toronto.edu/~kriz/learning-features-2009-TR.pdf, https://www.cs.toronto.edu/~kriz/cifar.html

28. Kumar V, Grama A, Gupta A, Karypis G (1994) Introduction to parallel computing: design and
analysis of algorithms. Benjamin-Cummings Publishing, California

29. Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nat Cell Biol 521(7553):436–444
30. Lee J, Clifton C (2011) How much is enough? choosing ε for differential privacy. In: Lai X,

Zhou J, Li H (eds) Information security. Springer Berlin Heidelberg, Berlin, Heidelberg, pp
325–340

31. Marr B (2018) 27 Incredible examples of AI and machine learning in practice. Forbes
Magazine

32. McMahan HB, Andrew G (2018) A general approach to adding differential privacy to iterative
training procedures. CoRR abs/1812.06210. http://arxiv.org/abs/1812.06210

33. Melis L, Song C, De Cristofaro E, Shmatikov V (2019) Exploiting unintended feature leakage
in collaborative learning. In: 2019 IEEE symposium on security and privacy. IEEE, pp 691–706

34. Millard C (2013) Cloud computing law. Oxford University Press
35. Mironov I (2017) Rényi differential privacy. In: 2017 IEEE 30th computer security foundations

symposium (CSF), pp 263–275
36. Mo F, Haddadi H, Katevas K, Marin E, Perino D, Kourtellis N (2021) PPFL: Privacy-

preserving federated learning with trusted execution environments. In: Proceedings of the 19th
annual international conference on mobile systems, applications, and services. Association for
Computing Machinery, New York, NY, MobiSys ’21, pp 94–108

37. Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, Andrew Y. Ng Reading
digits in natural images with unsupervised feature learning NIPS workshop on deep learning
and unsupervised feature learning 2011

38. Phong LT, Aono Y, Hayashi T, Wang L, Moriai S (2018) Privacy-preserving deep learning via
additively homomorphic encryption. Trans Inf Forens Secur 13(5):1333–1345

39. Rescorla E (2018) The transport layer security (TLS) protocol version 1.3. RFC 8446
40. Sabt M, Achemlal M, Bouabdallah A (2015) Trusted execution environment: What it is, and

what it is not. In: 2015 IEEE Trustcom/BigDataSE/ISPA, vol 1, pp 57–64. https://doi.org/10.
1109/Trustcom.2015.357

41. Shokri R, Shmatikov V (2015) Privacy-preserving deep learning. In: ACM CCS ’15
42. Shokri R, Stronati M, Song C, Shmatikov V (2017) Membership inference attacks against

machine learning models. In: 2017 IEEE symposium on security and privacy (SP), pp 3–18
43. Song S, Chaudhuri K, Sarwate A (2013) Stochastic gradient descent with differentially private

updates. In: 2013 IEEE global conference on signal and information processing, GlobalSIP
2013 - Proceedings, 2013 IEEE global conference on signal and information processing,
GlobalSIP 2013 - Proceedings, pp 245–248

44. Stallings W (2013) Cryptography and network security: principles and practice, 6th edn.
Prentice Hall Press, Upper Saddle River

45. Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R, Zhou Y (2019) A hybrid
approach to privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop
on artificial intelligence and security. Association for Computing Machinery, New York, NY,
AISec’19, pp 1–11

46. Volos S, Vaswani K, Bruno R (2018) Graviton: Trusted execution environments on GPUs.
In: 13th USENIX symposium on operating systems design and implementation (OSDI 18).
USENIX Association, Carlsbad, CA, pp 681–696. https://www.usenix.org/conference/osdi18/
presentation/volos

47. Xu R, Baracaldo N, Zhou Y, Anwar A, Ludwig H (2019) Hybridalpha: An efficient approach
for privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on

https://doi.org/10.1007/978-3-319-78372-7_4
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/cifar.html
http://arxiv.org/abs/1812.06210
https://doi.org/10.1109/Trustcom.2015.357
https://doi.org/10.1109/Trustcom.2015.357
https://www.usenix.org/conference/osdi18/presentation/volos
https://www.usenix.org/conference/osdi18/presentation/volos

336 K. R. Jayaram and A. Verma

artificial intelligence and security. Association for Computing Machinery, New York, NY,
AISec’19, pp 13–23. https://doi.org/10.1145/3338501.3357371

48. Yin H, Mallya A, Vahdat A, Alvarez JM, Kautz J, Molchanov P (2021) See through gradients:
Image batch recovery via GradInversion. Preprint. arXiv:210407586

49. Zhang X, Li F, Zhang Z, Li Q, Wang C, Wu J (2020) Enabling execution assurance of federated
learning at untrusted participants. In: IEEE INFOCOM 2020 - IEEE conference on computer
communications, pp 1877–1886

50. Zhao B, Mopuri KR, Bilen H (2020) iDLG: Improved deep leakage from gradients. Preprint.
arXiv:200102610

51. Zhu L, Liu Z, Han S (2019) Deep leakage from gradients. In: Advances in neural information
processing systems, pp 14774–14784

https://doi.org/10.1145/3338501.3357371

Chapter 15
Data Leakage in Federated Learning

Xiao Jin, Pin-Yu Chen, and Tianyi Chen

Abstract Federated learning (FL) is a recent distributed machine learning
paradigm, which allows the data owners to participate in the training process while
keeping the data privacy. However, recent studies have shown that data can be still
leaked through the gradient sharing mechanism in FL. Increasing batch size is often
viewed as a promising defense strategy against data leakage. In this chapter, we
provide an overview of data leakage problems in FL, revisit this attack premise, and
propose an advanced data leakage attack to efficiently recover batch data from the
aggregated gradients. We name our proposed method as catastrophic data leakage
in federated learning (CAFE). Comparing to existing data leakage attacks, CAFE
demonstrates the ability to perform large-batch data leakage attack with high recov-
ery quality. Our experimental results suggest that data participated in FL, especially
the vertical case, have a high risk of being leaked from the training gradients.

15.1 Introduction

In this section, we introduce the motivation and then present the necessary back-
ground of federated learning.

15.1.1 Motivation

Deep neural networks are currently one of the most frequently used models on
AI tasks such as classifying and recognizing [27]. Since the performances of
deep learning techniques are closely related to the amount of training data, large

X. Jin (�) · T. Chen
Rensselaer Polytechnic Institute, Troy, NY, USA
e-mail: xj2285@columbia.edu; chent18@rpi.edu

P.-Y. Chen
IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA
e-mail: pin-yu.chen@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_15

337

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_15&domain=pdf
mailto:xj2285@columbia.edu
mailto:chent18@rpi.edu
mailto:pin-yu.chen@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_15

338 X. Jin et al.

companies such as Google and Facebook may achieve massive amounts of training
data collection from their users and vast computational power to train their model
on a large scale. However, the centralized collection of data has some privacy
leakage risks. The users who provide personal sensitive data may contain sensitive
information neither have the chance to delete then nor have the access to the training
process. Furthermore, in some domains such as medicine and finance, it is illegal to
share or gather individual data.

Under such a circumstance, the concept of FL is proposed as a new machine
learning system in which multiple parties jointly train machine learning models
such as neural networks without sharing their own local datasets. This new protocol
has the advantage that companies can spend less time and money gathering data.
Meanwhile, more potential training data can be mined to participate in the model
training once privacy protection is granted.

Consequently, it is essential to develop privacy-preserving algorithms and
defense strategies against information leakage during the FL process.

15.1.2 Background and Related Work

We will provide necessary background for both FL and data leakage from gradients.

15.1.2.1 Federated Learning

The core part of FL is to build machine learning models or deep learning models
on data distributed across multiple devices while data privacy is preserved. The data
owner set (N owners) can be denoted by {F1,F2, . . . ,FN }.

We also define their corresponding datasets as [36]

Dfed = {D1,D2, . . . ,DN }. (15.1)

A machine learning model trained by conventional integrated data D can be denoted
by Msum, where [36]

D = D1 ∪D2 · · · ∪DN. (15.2)

We denote the feature space of the data D participating in the FL as X, the label
space as Y, and the sample identity (ID) space as I. As a result, federated dataset
Dfed can be rewritten as [36]

Dfed = {I,X,Y}. (15.3)

According to the data distribution in the feature and sample ID space, FL can be
briefly classified into horizontal federated learning, vertical federated learning, and
federated transfer learning.

15 Data Leakage in Federated Learning 339

Horizontal federated learning (HFL) represents the scenarios in which data
distributed in different parties share the same feature space but different sample
IDs. We summarize HFL mathematically as [36]

Xi = Xj ,Yi = Yj ,Ii �= Ij ,∀ Di ,Dj , i �= j. (15.4)

Figure 15.1 illustrates an example of general architecture for a HFL system. In the
system, there are k parties participating the model training under the control from a
parameter aggregator.

The training process can be summarized into several steps below:

1. The aggregator broadcasts the model to all parties.
2. Parties use the current model to compute the gradients, encrypt them, and upload

them to the aggregator.
3. The aggregator aggregates the uploaded encrypted gradients securely according

to some gradients aggregation algorithms such as FedAvg [21].
4. The aggregator uses the aggregated gradients to update the model.

Each round will go through all the steps above until the federated model is fully
converged. For an enterprise user, the case is probably different. We will introduce
the case for enterprise uses in the next part.

In some cases, some local datasets may share the same ID space but differ in
feature space. As a result, vertical federated learning (VFL) is applicable to those
cases. In a VFL system, we have [36]

Xi �= Xj ,Yi �= Yj ,Ii = Ij ,∀ Di ,Dj , i �= j. (15.5)

Fig. 15.1 Architecture for a HFL system [36]

340 X. Jin et al.

Fig. 15.2 Architecture for a VFL system [36]

Figure 15.2 illustrates an example of a general architecture for a VFL system. In
the system, we suppose several cooperators participate in the VFL training process
under the authority of a third trusted party (the aggregator). The training process
consists of two parts.

Entity Alignment
Firstly, the systems need to align the data by the encryption-based data ID
techniques [16, 26] without exposing their own data.

Model Training
The training process can be summarized into several steps below:

(s1) The aggregator creates encryption pairs and sends public key to parties.
(s2) All parties encrypt and exchange their intermediate results compute the loss.
(s3) All parties compute their respective gradients. All parties encrypt their gradi-

ents and upload them to the aggregator.
(s4) The aggregator decrypts the gradients and updates the model.

It is generally regarded safe to let parties exchange intermediate results. The
dimensionality of intermediate results is so small compared with the dimensionality
of original training data that privacy protection can be guaranteed. Since both of
the parties only have data with incomplete feature space, they can only compute
incomplete gradients of the model. The trusted third party, namely the aggregator,
to some extent, needs to aggregate the incomplete gradients together to get the
complete gradients of the whole model.

15 Data Leakage in Federated Learning 341

15.1.3 Privacy Protection

Different from the traditional centralized machine learning scenarios, FL requires
collaboration between distrustful parties. Therefore, each honest part has to con-
tribute to the FL based on its own local data while defending various attacks from
other attackers [20, 35]. An attack can be launched from any device in the whole FL
system including both the local and the aggregator part [10].

Adversarial Inference In [6], the authors proposed a model inversion method to
infer features characterizing each class and thus construct representatives of these
classes. Hitaj et al. [11], in another way, trained a GAN to infer class representatives.
Membership inference is one of the simplest inference attacks in FL. Publications
such as [4, 19, 28] show the black-box membership inference techniques on a
machine learning model.

Deep Leakage from Gradients (DLG) Although attackers can launch inference
attacks in many ways, it was widely believed that sharing gradients of the federated
model between parties and the aggregator is safe and will not leak training data.
However, Zhu et al. [39] proposed an effective way to reconstruct training data from
shared gradients. Despite the fact that some previous studies [6, 11, 22] have already
revealed some data information from the gradients, DLG, however, does not need
any generative models and prior knowledge. It can directly infer the data and labels
only from the shared public gradient through a few optimization rounds.

Figure 15.3 gives the overview of the DLG algorithm. All variables to be changed
are marked with bold borders. Suppose we define the real data as X, the real labels
as y, the fake data as X̂, and the fake labels as ŷ. We also have federated model
L(X; y, θ) in which θ is the model parameters and the output is the loss. The real
gradients ∇θL(Xt ; yt , θ t) and the fake gradients ∇θL(X̂t ; ŷt , θ t) at t th iteration
can be denoted by

∇θL(Xt ; yt , θ t) = 1

N

N∑

i

∇θL(Xt
i; yt

i , θ
t) (15.6)

Fig. 15.3 The overview of DLG [39]

342 X. Jin et al.

∇θL(Xt
i; yt

i , θ
t) = ∂L(Xt

i; yt
i , θ

t)

∂θ t (15.7)

∇θL(X̂t ; ŷt , θ t) = 1

N

N∑

i

∇θL(X̂t
i; ŷt

i , θ
t) (15.8)

∇θL(X̂t
i; ŷt

i , θ
t) = ∂L(X̂t

i; ŷt
i , θ

t)

∂θ t (15.9)

D(X̂t ; ŷt) = ‖∇θL(Xt ; yt , θ t) − ∇θL(X̂t ; ŷt , θ t)‖2, (15.10)

where ∇θL(Xt
i; yt

i , θ
t) and ∇θL(X̂t

i; ŷt
i , θ

t) represent the local gradients uploaded

by the local part i and its corresponding fake gradients, respectively. D(X̂t ; ŷt) in
Eq. (15.10) measures the distance between real gradients and fake gradients. The
terms Xt

i /X̂
t
i and yt

i /ŷ
t
i indicate the real/fake training data and the real/fake training

labels at t th round from local part i. The real/fake gradients of the whole training
data can be denoted by Zhu et al. [39]

∇θL(X; y, θ) = ∂L(X; y, θ)

∂θ
(15.11)

∇θL(X̂; ŷ, θ) = ∂L(X̂; ŷ, θ)

∂θ
(15.12)

D(X̂; ŷ) = ‖∇θL(X; y, θ) −∇θL(X̂; ŷ, θ)‖2. (15.13)

The objective function of DLG can be denoted by Zhu et al. [39]

X̂∗; ŷ∗ = arg min
X̂;ŷ

D(X̂; ŷ). (15.14)

Since newly defined objective function is differentiable with respect to both X̂ and
ŷ. We can optimize X̂ and ŷ through their gradients of the objective function [39]

∇X̂D(X̂; ŷ) = ∂D(X̂; ŷ)
∂X̂

(15.15)

∇ŷD(X̂; ŷ) = ∂D(X̂; ŷ)
∂ ŷ

. (15.16)

Algorithm 15.1 gives the pseudo-code of DLG algorithm. DLG performs well on
many datasets and fully recovers training data in just a few rounds.

Figure 15.4 demonstrates the visualization of DLG on images from several
datasets. The algorithm outperforms all previous data leakage methods both in pixel
accuracy and in speed.

15 Data Leakage in Federated Learning 343

Fig. 15.4 DLG visualization on images from MNIST, CIFAR-100, SVHM, and LFW [39]

Algorithm 15.1 Deep leakage from gradients (DLG) [39]
1: Input differentiable model L(.), θ parameter weights, ∇θ real gradients com-

puted by real training data, learning rate η

2: procedure DLG(L(.), θ , ∇θL(X; y, θ))
3: Initialize dummy data X̂1 and dummy labels ŷ1

4: for t ← 1, . . . , n do
5: compute fake loss L(X̂t , ŷt , θ)

6: compute fake gradient ∇θL(X̂t ; ŷt , θ) ← ∂L(X̂t ,ŷt ,θ)
∂θ

7: D(X̂t ; ŷt) ← ‖∇θL(X; y, θ) −∇θL(X̂t ; ŷt , θ)‖2

8: Compute ∇X̂D(X̂t ; ŷt), ∇ŷD(X̂t ; ŷt)

9: X̂t+1 ← X̂t − η∇X̂D(X̂t ; ŷt)

10: ŷt+1 ← ŷt − η∇ŷD(X̂t ; ŷt)

11: end for
12: return X̂t+1, ŷt+1

13: end procedure

Although DLG raises a big threat to FL, there are still some defense strategies
which can successfully prevent data leakage.

(s1) Noisy gradients and random masks [9, 29]. Simulations indicate that when
the variance of noise add on real gradients is larger than 10−2, it can
successfully prevent data leakage [12]. However, the model accuracy will also
be affected.

(s2) Pruning and compression. Pruning [13] and compression [1] are good ways
to defend against data leakage. However, it is still important to find a balance
between privacy protection and model accuracy.

344 X. Jin et al.

(s3) Perturbation. Another defending strategy is to perturb data representation so
that the recovered data is degrade [32].

(s4) Large batch. DLG only works for batch size less than 8 and image resolution
less than 64 × 64. As a result, increasing large batch size is regarded as a good
way to defend against data leakage. However, we proposed a new algorithm
based on DLG to enable large-batch data leakage. We will discuss the new
algorithm in detail in the next subsection.

Other Related Works Some other works based on [34, 39] have improved the
algorithm from many aspects. Zhao et al. [37] proposed an effective way to extract
the ground-truth labels analytically with 100% accuracy when the model is trained
with cross-entropy loss on single-label classification tasks and [15] raised several
strategies to prevent labels leakage in VFL. Li et al. [14] discuss the information
leakage on federated approximated logistic regression models. Geiping et al. [7]
discussed the relationship between network structure and DLG performances. They
found that, generally, an untrained network is easier to leak data than a trained one.
Convolutional layers with more channels have a larger potential of being attacked
than ones with fewer channels. In [7], a newly designed cost function that compares
the cosine similarity between the real and fake gradients has been proposed to
replace the cost function in DLG (15.14)

X̂∗; ŷ∗ = arg min
X̂∈[0,1]n;ŷ

1 − < ∇θL(X; y, θ),∇θL(X̂; ŷ, θ) >

‖∇θL(X; y, θ) − ∇θL(X̂; ŷ, θ)‖ + αTV(X̂).

(15.17)

The loss function in (15.17) consists of the cosine similarity between real and
fake gradients and the total variation norm of X̂. Furthermore, it also proposed in
[7] that the input to a fully connected layer with bias can be derived analytically
which indicates that most fully connected layers are vulnerable to the attack. It is
an essential point which we made fully use of it when we designed our algorithm
CAFE. Additionally, [38] extends the attack in [7] to more general CNNs and FCNs
with or without bias terms.

15.2 Data Leakage Attack in FL

The contributions of this chapter are summarized in the following:

1. We develop an advanced data leakage attack that we term CAFE to overcome
the limitation of current data leakage attacks on FL. CAFE is able to recover
large-scale data both in VFL and in HFL.

2. Our large-batch data recovery is based on the novel use of data index alignment
and internal representation alignment in FL, which can significantly improve the
recovery performance.

15 Data Leakage in Federated Learning 345

3. The effectiveness and practical risk induced from our data leakage algorithm is
justified in the dynamic FL training setting when the model is updated every
round.

15.2.1 Catastrophic Data Leakage from Batch Gradients

To realize large-scale data recovery from aggregated gradients, we propose our
algorithm named as CAFE: Catastrophic dAta leakage in Federated lEarning.
While CAFE can be applied to any type of data, without loss of generality, we use
image datasets throughout the chapter.

15.2.1.1 Why Large-Batch Data Leakage Attack Is Difficult?

We start by providing some intuition on the difficulty of performing large-batch data
leakage from aggregated gradients based on the formulation of DLG [39]. Assume
that N images are selected as the input for a certain learning round. We define the
data batch as X = {xn, yn|xn ∈ R

H×W×C, n = 1, 2, . . . , N}, where H,W, and C

represent the height, the width, and the channel number of each image. Likewise,
the batched “recovered data” is denoted by X̂ = {x̂n, ŷn|x̂n ∈ R

H×W×C, n =
1, 2, . . . , N}, which have the same dimension as X. Then. the objective function
is

X̂∗ = arg min
X̂

∥∥∥∥∥
1

N

N∑

n=1

∇θL(θ , xn, yn) − 1

N

N∑

n=1

∇θL(θ , x̂n, ŷn)

∥∥∥∥∥

2

. (15.18)

Note that in (15.18), the dimension of the aggregated gradients is fixed. However,
as the N increases, the dimension of X̂ and X grows. When N is sufficiently large,
it will be more challenging to find the “right” solution X̂ of (15.18) corresponding
to the ground-truth dataset X. On the other hand, CAFE addresses this large-batch
issue by data index alignment, which can effectively exclude undesired solutions.

CAFE vs DLG Suppose that N = 3 and (15.18) can be rewritten as

X̂∗ = arg min
X̂

∥∥∥∥∥
1

3

3∑

n=1

∇θL(θ , xn, yn) − 1

3

3∑

n=1

∇θL(θ , x̂n, ŷn)

∥∥∥∥∥

2

. (15.19)

We assume that there is a global optimal solution for (15.19) as

X̂∗ = [{x1, y1}; {x2, y2}; {x3, y3}]. (15.20)

346 X. Jin et al.

However, besides the optimal solution, there might be other undesired solutions,
such as X∗ shown in (15.21), whose gradients satisfy (15.22).

X̂∗ = [{x̂∗1, ŷ1
∗}; {x̂∗2, ŷ2

∗}; {x3, y3}] (15.21)

2∑

n=1

∇θL(θ , xn, yn) =
2∑

n=1

∇θL(θ , x̂∗n, ŷn
∗
)

∇θL(θ , xn, yn) �= ∇θL(θ, x̂∗n, ŷn
∗
). (15.22)

Although the solutions (15.20) and (15.21) have the same loss value in (15.19),
solution (15.21) is not an ideal solution for data recovery, which needs to be
eliminated by introducing more constraints. When the number N increases, the
number of both optimal and undesired solutions explodes. It is hard to find an
approach which can converge to a certain solution through only one objective
function. However, in CAFE, the number of objective functions can be as many
as
(

N
Nb

)
. As the case above, suppose Nb = 2. Then, we can list all the objective

functions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X̂0∗ = arg min
X̂0

∥∥∥∥∥
1
2

2∑
n=1

∇θL(θ , xn, yn) − 1
2

2∑
n=1

∇θL(θ , x̂n, ŷn)

∥∥∥∥∥

2

X̂1∗ = arg min
X̂1

∥∥∥∥∥
1
2

3∑
n=2

∇θL(θ , xn, yn) − 1
2

3∑
n=2

∇θL(θ , x̂n, ŷn)

∥∥∥∥∥

2

X̂2∗ = arg min
X̂2

∥∥∥∥∥
1
2

3∑
n=1,n �=2

∇θL(θ , xn, yn) − 1
2

3∑
n=1,n �=2

∇θL(θ, x̂n, ŷn)

∥∥∥∥∥

2

.

(15.23)

Comparing with (15.19), (15.23) has more constraint functions which restrict X̂ and
dramatically reduces the number of undesired solutions. Solution (15.21) thus can
be eliminated by the second and the third equations in (15.23). It suggests that CAFE
helps the fake data converge to the optimal solution.

As a motivating example, Fig. 15.5 compares our proposed attack with DLG
on a batch of 40 images. The recovery quality of DLG is far from satisfactory,
while CAFE can successfully recover all images in the batch. It is worth noting
that because DLG is not effective on large-batch recovery, it is suggested in [39]
that increasing batch size could be a promising defense. However, the successful
recovery of CAFE shows that such defense premise gives a false sense of security
in data leakage and the current FL is at risk, as large-batch data recovery can be
accomplished.

CAFE in VFL In VFL, the aggregator sends public keys to parties and decides
the data index in each round of training and evaluation [2, 3, 36]. During the
training process, parties exchange their intermediate results with others to compute
gradients and upload them. Therefore, the aggregator has the access to both the

15 Data Leakage in Federated Learning 347

(a) Original

(b) DLG (batch size = 40)

(c) CAFE (batch size = 10 × 4)

Fig. 15.5 Illustration of large-batch data leakage on CIFAR-10 from shared gradients in FL. (a)
Original. (b) DLG (batch size = 40). (c) CAFE (batch size = 10 × 4)

Fig. 15.6 Overview of CAFE in VFL

model parameters and their gradients. Notably, CAFE can be readily applied to
existing VFL protocols where the batch data index is assigned.

Figure 15.6 gives an overview of CAFE in the VFL setting. The blue part
represents a normal VFL paradigm and the red part represents the CAFE attack.
Since data are vertically partitioned among different parties, data index alignment
turns out to be an inevitable step in the vertical training process, which provides
the aggregator (the attacker) an opportunity to control the selected batch data index.
Suppose that there are M parties participating FL and the batch size is N . The
aggregated gradients can be denoted by

∇θL(θ ,Xt) = 1

Nb

Nb∑

n=1

∇θL(θ,Xt
n) with Xt

n = [xt
n1, x

t
n2, . . . , x

t
nM, yt

n].
(15.24)

348 X. Jin et al.

Algorithm 15.2 CAFE in VFL (regular VFL protocol and CAFE protocol)

1: for t = 1, 2, . . . , T do
2: The aggregator broadcasts the model to all M parties

3: for m = 1, 2, . . . , M do
4: Party m takes real batch data
5: Party m computes the intermediate results and exchanges them with

other parties
6: Party m uses the exchanged intermediate results to compute local

aggregated gradients
7: Party m uploads real local aggregated gradients to the aggregator.
8: end for
9: The aggregator computes real global aggregated gradients ∇θL(θ ,Xt)

10: The aggregator computes the fake global aggregated gradients
∇θL(θ, X̂t)

11: The aggregator computes CAFE loss: D(Xt ; X̂t) and ∇X̂tD(Xt ; X̂t)

12: The aggregator updates the batch data X̂t with ∇X̂tD(Xt ; X̂t)

13: The aggregator updates the model parameters θ with ∇θL(θ ,Xt)

14: end for

A benign aggregator will perform legitimate computations designed by FL protocol.
However, as shown in Fig. 15.6, a curious aggregator can provide the same
legitimate computation as a benign aggregator while simultaneously perform data
recovery in a stealthy manner. The aggregator symmetrically generates fake images
corresponding to the real ones. Once a batch of original data is selected, the
aggregator takes the corresponding fake batch and obtains the fake gradients as

∇θL(θ , X̂t) = 1

Nb

Nb∑

n=1

∇θL(θ, X̂t
n) with X̂t

n = [x̂t
n1, x̂

t
n2, . . . , x̂

t
nM, ŷt

n].
(15.25)

Algorithm 15.2 gives a pseudo-code that implements our CAFE attack in VFL cases.
The key part in our algorithm is aligning the real data batch indices with the fake
ones. We define the squared 2 norm of the difference between the real and fake
aggregated gradients in (15.26). Since the aggregator has the access to the model
parameters, the attacker is able to compute the gradient of fake data from the loss in
(15.26) and optimize the fake data for the purpose of recovering real data.

D(Xt ; X̂t) = ∥∥∇θL(θ ,Xt) −∇θL(θ, X̂t)
∥∥2

. (15.26)

15 Data Leakage in Federated Learning 349

Auxiliary Regularizers In addition to the gradient matching loss in (15.26), we
further introduce two regularization terms—internal representation regularization
and total variance (TV) norm. Motivated by Geiping et al. [7], the input vectors of
the first fully connected layer can be directly derived from the gradients, we define
the real/fake inputs of the first fully connected layer at the t th round as Zt /Ẑt ∈
R

N×P , and we use 2 norm of their difference as what we call internal representation
regularization.

To promote the smoothness of the fake images, we assume the TV norm of the
real images as a constant, ξ , and compare it with the TV norm of the fake ones,
TV(X̂). For each image x ∈ R

H×W×C in data batch Xt , its TV norm is denoted by
TV(x) = ∑

c

∑
h,w

[|xh+1,w,c − xh,w,c| + |xh,w+1,c − xh,w,c|
]
.

As a result, the loss at the t th round D(Xt , X̂t) can be rewritten as

D(Xt ; X̂t) = ∥∥∇θL(θ,Xt) −∇θL(θ , X̂t)
∥∥2 + βT V (X̂t) · 1{T V (X̂t)−ξ≥0}

+ γ
∥∥Zt − Ẑt

∥∥2
F
, (15.27)

where β and γ are coefficients and 1{T V (X̂t)−ξ≥0} is the indicator function. We
will provide an ablation study in Sect. 15.3.5 to demonstrate the utility of these
regularizers.

CAFE in HFL Similarly, we can apply our CAFE algorithm to HFL as well. Let
Xt

m denote the original batch data and labels taken by local part m at the t th round.
The gradients of the parameters at the t th round is

∇θL(θ,Xt) = 1

M

M∑

m=1

∇θL(θ ,Xt
m) , Xt = {Xt

1,X
t
2, . . . ,X

t
m, . . . ,Xt

M }.
(15.28)

Similarly, we define the batch fake data and fake aggregated gradients as

∇θL(θ, X̂t) = 1

M

M∑

m=1

∇θL(θ , X̂t
m) , X̂t = {X̂t

1, X̂
t
2, . . . , X̂

t
m, . . . , X̂t

M }.
(15.29)

Algorithm 15.3 gives a pseudo-code that implements our CAFE attack in VFL
cases and Fig. 15.7 shows the overview of CAFE in HFL settings. The left blue
part indicates a normal HFL process and the right red part represents the attack.
According to our simulation, more than 2000 private images from 4 parties can be
leaked by CAFE.

350 X. Jin et al.

Algorithm 15.3 CAFE in HFL (regular HFL protocol and CAFE protocol)

1: for t = 1, 2, . . . , T do
2: The aggregator broadcasts the model to all M parties

3: for m = 1, 2, . . . , M do
4: Party m takes batched data Xt

m

5: Party m uses the received model to compute L(θ ,Xt
m) and gradients

∇θL(θ,Xt
m)

6: Party m uploads real local aggregated gradients to the aggregator
7: end for
8: The aggregator computes real global aggregated gradients ∇θL(θ ,Xt)

9: for m = 1, 2, . . . , M do
10: The aggregator takes corresponding batched data X̂t

m

11: The aggregator uses the received model to compute L(θ, X̂t
m) and

∇θL(θ, X̂t
m)

12: end for
13: The aggregator computes fake global aggregated gradients

∇θL(θ, X̂t)

14: The aggregator computes CAFE loss: D(Xt ; X̂t) and ∇X̂t
m
D(Xt ; X̂t)

15: for m = 1, 2, . . . , M do
16: The aggregator updates the batch data X̂t

m

17: end for

The aggregator updates the model parameters θ with ∇θL(θ ,Xt)

18: end for

Fig. 15.7 Overview of CAFE in HFL

15.3 Performance Evaluation

In this chapter, we introduce our algorithm named CAFE. We provide simulation
results in both plot and table form to support our algorithm.

15 Data Leakage in Federated Learning 351

15.3.1 Experiment Setups and Datasets

We conduct experiments on CIFAR-10, CIFAR-100, and Linnaeus 5 datasets in both
HFL and VFL settings. All the fake data are initialized uniformly and optimized by
the normalized gradient descent method. Our algorithm can recover all the data
participating in FL with a relatively large batch size (more than 40). Scaling up to
our hardware limits, CAFE can leak as many as 2000 images in the VFL setting
including 4 parties.

Evaluation Metrics To measure the data leakage performance, we introduce peak
signal-to-noise ratio (PSNR) [8] value with mean squared error (MSE) defined
in (15.30) and (15.31). A higher PSNR value of leaked data represents better
performance of data recovery.

MSEc(x, x̂) = 1

HW

H∑

i=1

W∑

j=1

[xijc − x̂ijc]2 (15.30)

PSNR(x, x̂) = 1

C

C∑

c=1

[
20 log10(max

i,j
xijc) − 10 log10(MSEc(x, x̂))

]
. (15.31)

BaselineMethods for Comparison We compare CAFE with three other baselines,
(1) DLG [39], (2) DLG given labels (iDLG) [37], and (3) using cosine similarity to
compare the real and fake gradients [7]. We implement the original DLG and our
CAFE under the same model and optimization methods. We run the DLG on 50
single images, respectively, and compute the average rounds required to make the
PSNR value of a single leaked image above 30. We also compute the expected round
number per image leakage for our CAFE algorithm. Furthermore, we fix the batch
size and compare the PSNR value obtained by CAFE with that of DLG. We also
test the impact of given labels on CAFE by using the techniques in [37]. Moreover,
we compare the performance of CAFE under different loss functions: (1) replacing
the squared 2 norm term with the cosine similarity of two gradients (CAFE with
cosine similarity) and (2) loss proposed in [7], which only contains the TV norm
regularizer.

15.3.2 CAFE in HFL Settings

In the HFL setting, we use a neural network consisting of 2 convolutional layers and
3 fully connected layers. The number of output channels of the convolutional layers
is 64 and 128, respectively. The number of nodes of the first two fully connected
layers is 512 and 256. The last layer is the softmax classification layer. We assume
that 4 parties are involved in HFL and each of them holds a dataset including 100

352 X. Jin et al.

Fig. 15.8 CAFE loss ratio and PSNR curves. (a) HFL loss. (b) HFL PSNR. (c) VFL loss. (d) VFL
PSNR

images. The batch size of each part in the training is 10, so there are 40 (10 × 4)
images in total participating per round. For each experiment, we initialize the fake
data using uniform distribution and optimize them for 800 epochs.

Figure 15.8a and b shows the CAFE loss curves and the PSNR curves on the
three datasets in HFL cases. In the loss ratio curve, we set the ratio of current CAFE
loss and the initial CAFE loss L(θ ,Xt)

L(θ ,X0)
as label y. The PSNR values are always above

35 at the end of each CAFE attacking process, suggesting high data recovery quality
(see Fig. 15.5 as an example). Figure 15.9 shows the attacking process of CAFE on
Linnaeus. Under CAFE, PSNR reaches 35 at the 450th epoch where the private data
are completely leaked visually.

Comparison with DLG Baseline In Table 15.1a, we set the batch ratio in CAFE
as 0.1 and compare it with DLG under different batch sizes. Clearly, CAFE
outperforms DLG thanks to our novel design of large-batch data leakage attack. As
shown in Table 15.2a, DLG cannot obtain satisfactory results when the batch size
increases to 40, while CAFE successfully recovers all the images. We also compare
the algorithm performance in both given label and not given label cases.

From Table 15.3a and Fig. 15.10, recovery results on dataset with more categories
are more likely to be effected if the labels are given. However, recoveries on datasets
with few categories (10 or 5) have little influence.

15 Data Leakage in Federated Learning 353

(50) (100) (200) (300) (450) (600) Original
data

Fig. 15.9 CAFE on Linnaeus (Epoch: 50, 100, 200, 300, 450, 600, Original data)

Table 15.1 CAFE vs DLG in speed

Iters/Img

Datasets

Batch size CIFAR-10 CIFAR-100 Linnaeus

(a) Comparison of data leakage speed in HFL protocol. Lower round

count is faster

1(DLG) 284.4 266.9 366.7

10 × 4(CAFE) 9.50 6.00 9.50

20 × 4(CAFE) 6.75 3.86 4.75

30 × 4(CAFE) 4.83 3.41 3.17

40 × 4(CAFE) 3.75 3.75 2.375

(b) Comparison of data leakage speed in VFL protocol. Lower iteration

count is faster

1(DLG) 1530 1590 1630

10(DLG) 16.4 13.7 35.9

10(CAFE) 9.26 6.48 8.00

40(CAFE) 6.50 6.00 5.50

160(CAFE) 1.19 1.50 1.56

Comparison with Cosine Similarity Table 15.4a shows that the PSNR values are
still above 30 if we use cosine similarity instead of 2 norm. The slight drop in PSNR
value may result from scaling ambiguity in cosine similarity. There is a performance
gap between the loss of CAFE and the loss in [7], which validates the importance
of our proposed auxiliary regularizers.

354 X. Jin et al.

Table 15.2 CAFE vs DLG in performance

PSNR

Datasets

Algorithm CIFAR-10 CIFAR-100 Linnaeus

(a) Comparison of leakage performance in HFL protocol. Higher PSNR is better.

Batch size = 40

CAFE 35.03 36.90 36.37

DLG 10.09 10.79 10.10

(b) Comparison of leakage performance in VFL protocol. Higher PSNR is better.

Batch size = 40

CAFE 66.20 66.33 38.72

DLG 34.67 45.12 29.49

Table 15.3 Impact by given labels

PSNR

Datasets

Setting CIFAR-10 CIFAR-100 Linnaeus

(a) HFL

Not given labels 35.03 36.90 36.37

Given labels 35.93 39.51 38.07

Number of categories 10 100 5

(b) VFL

Not given labels 41.80 44.42 38.96

Given labels 40.20 40.29 39.50

Number of categories 10 100 5

(a) (b) (c)

Fig. 15.10 Impact by given labels (HFL). (a) CIFAR-10. (b) CIFAR-100. (c) Linnaeus

15.3.3 CAFE in VFL Settings

We test the performance of CAFE on various factors. We slice one image into 4
small pieces. Each party holds one piece and the feature space dimension of each

15 Data Leakage in Federated Learning 355

Table 15.4 PSNR via loss

PSNR

Datasets

Loss CIFAR-10 CIFAR-100 Linnaeus

(a) HFL (4 parties, batch ratio = 0.1, batch size 10 × 4)

CAFE (15.27) 35.03 36.90 36.37

CAFE with cosine similarity 30.15 31.38 30.76

Loss in [7] 16.95 19.74 16.42

(b) VFL (4 parties, batch ratio = 0.1, batch size 40)

CAFE (15.27) 66.20 66.33 38.72

CAFE with cosine similarity 30.96 43.68 34.90

Loss in [7] 12.76 10.85 10.46

piece is 16 × 16 × 3. The model is composed of 2 parts. The first part consists of
2 convolutional layers and 3 fully connected layers for each part. The second part
only consists of the softmax layer. In the training process, the pieces are sent into
the first part, respectively, and turn to vectors as intermediate results. Parties then
exchange their intermediate results, concatenate them, and put them into the second
part. We set the batch size as 40 in VFL. Figure 15.8c and d shows the CAFE loss
curves and the PSNR curves on the three datasets in VFL cases. The data recovery is
even better than the results in HFL. The PSNR values of CIFAR-10 and CIFAR-100
rise higher than 40. By comparing with iDLG, we get the same conclusion as we
discuss in the HFL part from Table 15.3b.

Comparison with DLG Baseline In Table 15.1b, we also set the batch ratio in
CAFE as 0.1 and compare it with DLG with a single image and with a mini-batch
(10 images) under different batch sizes. Clearly, CAFE still outperforms DLG. As
shown in Table 15.2b, the PSNR values of CAFE keep 40 on average ahead of the
ones of DLG.

Comparison with Cosine Similarity From Table 15.4b, we can conclude that the
PSNR values still keep close to the ones by using CAFE. Scaling ambiguity in
cosine similarity may also cause the drop in PSNR value. The performance gap
between the loss of CAFE and the loss in [7] is much larger than the one in VFL,
which indicates the utility of our auxiliary regularizers.

15.3.4 Attacking While Training in FL

Previous works have shown that DLG performs better on an untrained model than a
trained one [7]. We also implement CAFE in the “attacking while learning” mode, in
which the FL process is ongoing. When the network is training, the selected batch

356 X. Jin et al.

Fig. 15.11 PSNR and training loss curves

data and the parameters of the model change every round, which may cause the
attack loss to diverge. To address this issue, for each real data batch, we compute
the real gradients and optimize the corresponding fake data k times. We demonstrate
on Linnaeus dataset, set k = 10, and stop CAFE after 1000 rounds (100 epochs).
Figure 15.11 gives the curves of the training loss and the corresponding PSNR value.
The PSNR value still can be raised to a relatively high value. It indicates that CAFE
can be a practical data leakage attack in a dynamic training environment of FL and
data can be recovered easier before the model is fully converged. It is mainly for
the reason that the gradients are too small to recover data at the end of the training
process.

15.3.5 Ablation Study

We test CAFE under different batch size, batch ratio, and with (without) auxiliary
regularizers.

PSNR via Batch Size Table 15.5 shows that the PSNR values still keep above
30 when the batch size increases with a fixed number of parties and batch ratio.
The result implies that the increasing batch size has little influence on data leakage
performance of CAFE.

PSNR under Different Batch Ratio In HFL, 4 parties participate in the learning
setting and we fix the amount of data held by each part as 500. In the VFL case, we
implement CAFE on a total of 800 images. In Table 15.6, we change the batch ratio
from 0.1 to 0.01 while keeping the trained epochs as 800. For both settings, the data
leakage performance keeps at the same level.

15 Data Leakage in Federated Learning 357

Table 15.5 PSNR under Different Batch Ratio

PSNR

Datasets

Batch size CIFAR-10 CIFAR-100 Linnaeus

(a) HFL (4 parties, batch ratio = 0.1)

10 per party 35.03 36.90 36.37

20 per party 33.14 33.99 36.32

30 per party 32.31 33.21 35.96

40 per party 30.59 30.70 35.49

(b) VFL (4 parties, batch ratio = 0.2)

8 41.80 44.42 39.96

40 59.51 65.00 41.37

80 57.20 63.10 43.66

160 54.74 64.75 38.72

Table 15.6 PSNR under Different Batch Ratio

PSNR

Datasets

Batch ratio CIFAR-10 (HFL) Linnaeus (HFL) CIFAR-10 (VFL)

0.1 34.10 35.38 48.78

0.05 34.49 32.92 55.46

0.02 37.96 35.66 48.45

0.01 35.39 36.56 46.46

Impact of Auxiliary Regularizers Table 15.7 demonstrates the impact of auxiliary
regularizers. From Fig. 15.12, adjusting the threshold ξ prevents images from
being over blurred during the reconstruction process. TV norm can eliminate the
noisy patterns on the recovered images and increase the PSNR. Images leaked
without regularizing the Frobenius norm [33] of the difference between the internal
representations Z and Ẑ may lose some details and cause the drop of PSNR.

Remarks We uncover the risk of catastrophic data leakage in federated learning
(CAFE) through an algorithm that can perform large-batch data leakage with high
data recovery quality. Extensive experimental results demonstrate that CAFE can
recover large-scale private data from the shared aggregated gradients on both
vertical and horizontal FL settings, overcoming the batch limitation problem in
current data leakage attacks. Our advanced data leakage attack and its stealthy nature
suggests practical data privacy concerns in FL and poses new challenges on future
defenses.

358 X. Jin et al.

Table 15.7 Effect of auxiliary regularizers

PSNR

Datasets

Algorithm CIFAR-10 CIFAR-100 Linnaeus

(a) HFL (4 parties, batch size = 10 per part, 800 epochs)

CAFE 35.03 36.90 36.37

CAFE (ξ = 0) 26.53 27.43 28.99

CAFE (β = 0) 23.19 22.09 31.67

CAEE (γ = 0) 25.41 18.14 24.17

CAEE (β, γ = 0) 20.42 16.50 20.33

(b) VFL (4 parts, batch size = 40, 800 epochs)

CAFE 66.20 66.33 38.72

CAFE (ξ = 0) 45.35 36.86 37.37

CAFE (β = 0) 67.94 52.02 44.13

CAEE (γ = 0) 12.51 12.60 13.03

CAEE (β, γ = 0) 8.49 8.72 9.30

CIFAR-10

CIFAR-
100

Linnaeus

Linnaeus

CAFE = 0 = 0 = 0 = 0 Original

Fig. 15.12 Effect of auxiliary regularizers

15.4 Concluding Remarks

In this chapter, we summarize our algorithm CAFE and give a discussion on open
research directions.

15 Data Leakage in Federated Learning 359

15.4.1 Summary

In this chapter, we review the previous work on FL and potential attacking
algorithms on it. We introduce a new algorithm named DLG for data attacking
in FL. We improve the algorithm and propose CAFE as a new attacking method.
By comparison, CAFE outperforms DLG when the training batch size is large.
Moreover, we also add additional regularizers to help improve the algorithm
performance. The simulation results indicate that CAFE can be a powerful attack
in FL systems especially in the vertical protocols where a higher privacy protection
level is required. The idea is simple yet effective.

15.4.2 Discussion

The assumption that the aggregator knows the sample indices may be strong in
HFL settings. However, we have demonstrated that CAFE is an effective attacking
method in VFL settings. To make the simulation results more convincing, more
VFL simulations on other distributed datasets should be added. Our simulations on
CAFE are only based on image data. Simulations on time serial or natural language
processing models will also be added to show the attack performance. In CAFE,
TV norm is designed only for image reconstruction. New regularizers should be
designed to help recover other types of data in the attack algorithm.

It is common in FL that parties communicate locally trained weights instead of
gradients [23]. Thus, the aggregator can derive the gradients of those parts of the
model by using the change of the parameter. Even if the communication does not
need to occur in each round, the aggregator can regard all the updates between two
consecutive communications as a big round in which the batch size is the sum of the
batch size in every single round which makes it possible to apply CAFE on other FL
scenarios besides the ones we mentioned above. More simulations should be done
to discuss the impact on algorithm performance in different FL scenarios.

Although [7] gives the complete proof of deriving the input of a fully connected
layer with biases and in [5, 25], it is claimed that the input data can be reconstructed
under some conditions. However, the paper cannot directly generalize this conclu-
sion to the case where the input is a batch of data [24]. In our case, we assume
the real internal representation is already known to us. From a new angle, it is also
worth building new secure and privacy-preserving FL protocols [17, 18, 23, 30, 31]
to prevent data leakage.

360 X. Jin et al.

References

1. Beguier C, Tramel EW (2020) SAFER: Sparse secure aggregation for federated learning. arXiv,
eprint:200714861

2. Chen T, Jin X, Sun Y, Yin W (2020) VAFL: a method of vertical asynchronous federated learn-
ing. In: International workshop on federated learning for user privacy and data confidentiality
in conjunction with ICML

3. Cheng K, Fan T, Jin Y, Liu Y, Chen T, Yang Q (2019) Secureboost: A lossless federated learning
framework. arXiv, eprint:190108755

4. Dwork C, Smith A, Steinke T, Ullman J, Vadhan S (2015) Robust traceability from trace
amounts. In: 2015 IEEE 56th annual symposium on foundations of computer science, USA, pp
650–669

5. Fan L, Ng K, Ju C, Zhang T, Liu C, Chan CS, Yang Q (2020) Rethinking privacy preserving
deep learning: How to evaluate and thwart privacy attacks. arXiv, eprint:200611601

6. Fredrikson M, Jha S, Ristenpart T (2015) Model inversion attacks that exploit confidence
information and basic countermeasures. In: Proceedings of the 22nd ACM SIGSAC conference
on computer and communications security. Association for Computing Machinery, New York,
NY, pp 1322–1333

7. Geiping J, Bauermeister H, Dröge H, Moeller M (2020) Inverting gradients - how easy is it to
break privacy in federated learning? In: Advances in neural information processing systems,
vol 33, pp 16937–16947

8. Gonzalez RC, Woods RE (1992) Digital image processing. Addison-Wesley, New York
9. Guerraoui R, Gupta N, Pinot R, Rouault S, Stephan J (2021) Differential privacy and byzantine

resilience in SGD: Do they add up? arXiv, eprint:210208166
10. Guo S, Zhang T, Xiang T, Liu Y (2020) Differentially private decentralized learning. arXiv,

eprint:200607817
11. Hitaj B, Ateniese G, Pérez-Cruz F (2017) Deep models under the GAN: information leakage

from collaborative deep learning. arXiv, eprint:170207464
12. Huang Y, Song Z, Chen D, Li K, Arora S (2020) TextHide: Tackling data privacy in language

understanding tasks. In: The conference on empirical methods in natural language processing
13. Huang Y, Su Y, Ravi S, Song Z, Arora S, Li K (2020) Privacy-preserving learning via deep net

pruning. arXiv, eprint:200301876
14. Li Z, Huang Z, Chen C, Hong C (2019) Quantification of the leakage in federated learning.

In: International workshop on federated learning for user privacy and data confidentiality. West
118–120 Vancouver Convention Center, Vancouver

15. Li O, Sun J, Yang X, Gao W, Zhang H, Xie J, Smith V, Wang C (2021) Label leakage and
protection in two-party split learning. arXiv, eprint:210208504

16. Liang G, Chawathe SS (2004) Privacy-preserving inter-database operations. In: 2nd Sympo-
sium on intelligence and security informatics (ISI 2004), Berlin, Heidelberg, pp 66–82

17. Liu R, Cao Y, Yoshikawa M, Chen H (2020) FedSel: Federated SGD under local differential
privacy with top-k dimension selection. arXiv, eprint:200310637

18. Liu Y, Kang Y, Zhang X, Li L, Cheng Y, Chen T, Hong M, Yang Q (2020) A communication
efficient vertical federated learning framework. arXiv, eprint:191211187

19. Long Y, Bindschaedler V, Wang L, Bu D, Wang X, Tang H, Gunter CA, Chen K (2018) Under-
standing membership inferences on well-generalized learning models. arXiv, eprint:180204889

20. Lyu L, Yu H, Ma X, Sun L, Zhao J, Yang Q, Yu PS (2020) Privacy and robustness in federated
learning: Attacks and defenses. arXiv, eprint:201206337

21. McMahan HB, Moore E, Ramage D, y Arcas BA (2016) Federated learning of deep networks
using model averaging. arXiv, eprint:160205629

22. Melis L, Song C, Cristofaro ED, Shmatikov V (2018) Inference attacks against collaborative
learning. In: Proceedings of the 35th annual computer security applications conference.
Association for Computing Machinery, New York, NY, pp 148–162

15 Data Leakage in Federated Learning 361

23. Niu C, Wu F, Tang S, Hua L, Jia R, Lv C, Wu Z, Chen G (2019) Secure federated submodel
learning. arXiv, eprint:191102254

24. Pan X, Zhang M, Yan Y, Zhu J, Yang M (2020) Theory-oriented deep leakage from gradients
via linear equation solver. arXiv, eprint:201013356

25. Qian J, Nassar H, Hansen LK (2021) On the limits to learning input data from gradients. arXiv,
eprint:201015718

26. Scannapieco M, Figotin I, Bertino E, Elmagarmid A (2007) Privacy preserving schema and
data matching. In: Proceedings of the ACM SIGMOD international conference on management
of data, Beijing, pp 653–664

27. Shokri R, Shmatikov V (2015) Privacy-preserving deep learning. In: Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications Security, Association for
Computing Machinery, New York, NY, CCS ’15, pp 1310–1321

28. Shokri R, Stronati M, Song C, Shmatikov V (2017) Membership inference attacks against
machine learning models. In: 2017 IEEE symposium on security and privacy (SP), pp 3–18

29. So J, Guler B, Avestimehr AS (2021) Byzantine-resilient secure federated learning. arXiv,
eprint:200711115

30. So J, Guler B, Avestimehr AS (2021) Turbo-aggregate: Breaking the quadratic aggregation
barrier in secure federated learning. arXiv, eprint:200204156

31. Sun L, Lyu L (2020) Federated model distillation with noise-free differential privacy. arXiv,
eprint:200905537

32. Sun J, Li A, Wang B, Yang H, Li H, Chen Y (2020) Provable defense against privacy leakage
in federated learning from representation perspective. arXiv, eprint:201206043

33. Trefethen LN, Bau D (1997) Numerical linear algebra. SIAM, Philadelphia
34. Wei W, Liu L, Loper M, Chow KH, Gursoy ME, Truex S, Wu Y (2020) A framework for

evaluating gradient leakage attacks in federated learning. arXiv, eprint:200410397
35. Wei K, Li J, Ding M, Ma C, Su H, Zhang B, Poor HV (2021) User-level privacy-preserving

federated learning: Analysis and performance optimization. arXiv, eprint:200300229
36. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: Concept and applications,

vol 10. Association for Computing Machinery, New York, NY
37. Zhao B, Mopuri KR, Bilen H (2020) iDLG: Improved deep leakage from gradients. arXiv,

eprint:200102610
38. Zhu J, Blaschko MB (2021) R-GAP: Recursive gradient attack on privacy. In: International

conference on learning representations
39. Zhu L, Liu Z, Han S (2019) Deep leakage from gradients. In: Advances in neural information

processing systems, Vancouver, pp 14774–14784

Chapter 16
Security and Robustness in Federated
Learning

Ambrish Rawat, Giulio Zizzo, Muhammad Zaid Hameed,
and Luis Muñoz-González

Abstract Federated learning (FL) has emerged as a powerful approach to decen-
tralize the training of machine learning algorithms, allowing the training of collab-
orative models while preserving the privacy of the datasets provided by different
parties. Despite the benefits, FL is also vulnerable to adversaries, similar to other
machine learning (ML) algorithms in centralized settings. For example, just a
single malicious or faulty participant in an FL task can entirely compromise the
performance of the model when using unsecure implementations. In this chapter,
we provide a comprehensive analysis of the vulnerabilities of FL algorithms to
different attacks that can compromise their performance. We describe a taxonomy
of attacks comparing the similarities and differences with respect to centralized ML
algorithms. Then, we describe and analyze different families of existing defenses
that can be applied to mitigate these threats. Finally, we review a set of comprehen-
sive attacks that aim to compromise the performance and convergence of FL.

16.1 Introduction

Artificial intelligence (AI) and especially machine learning (ML) are at the core
of the fourth industrial revolution. ML has become one of the main components
of many systems and applications with success stories across different sectors,
including healthcare [37], financial markets [10], or Internet of Things (IoT) [19].
The benefits of ML technologies are clear, as they allow the efficient automation of
many processes and tasks by leveraging their capability to analyze a huge amount
of data.

A. Rawat (�) · G. Zizzo
IBM Research Europe, Dublin, Ireland
e-mail: ambrish.rawat@ie.ibm.com; giulio.zizzo2@ie.ibm.com

M. Z. Hameed · L. Muñoz-González
Imperial College, London, UK
e-mail: muhammad.hameed13@imperial.ac.uk; l.munoz-gonzalez@imperial.ac.uk

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_16

363

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_16&domain=pdf
mailto:ambrish.rawat@ie.ibm.com
mailto:giulio.zizzo2@ie.ibm.com
mailto:muhammad.hameed13@imperial.ac.uk
mailto:l.munoz-gonzalez@imperial.ac.uk
https://doi.org/10.1007/978-3-030-96896-0_16

364 A. Rawat et al.

Recently, federated learning (FL) has emerged as a promising approach for the
development of distributed ML systems, allowing us to resolve challenges in some
application domains. FL allows us to train a shared ML model from a federation
of participants who use their own datasets to locally train a machine learning model
while preserving the privacy of their datasets within the federation. In this approach,
there is a central aggregator (server) that combines the information that controls the
learning process and aggregates the information from the parties (clients) during the
training of the ML model. These parties train the models locally using their own
dataset and send the model updates back to the central aggregator in an iterative
manner. In this way, during training, the data always remains with the party, keeping
their datasets private.

Given current laws and privacy regulations such as the General Data Protection
Regulation (GDPR) in the European Union, or the Health Insurance Portability
and Accountability Act (HIPAA) in the US, FL offers an appealing alternative to
build collaborative models across different institutions or companies in sensitive
domains, such as healthcare or financial markets, by preserving the privacy of the
party data. On the other hand, with the increasing computational capabilities of edge
devices, including smartphones, sensors, and other IoT devices, FL also allows us
to decentralize the training of the ML models and push the computation to edge
devices. Thus, the data does not need to be collected and centralized, but edge
devices contribute toward the shared FL model performing local computations using
their own data.

Despite the benefits and the advantages of ML and FL technologies, there are
still challenges and risks that need to be analyzed, understood, and mitigated. ML
algorithms are known to be vulnerable to attackers. At training time, ML algorithms
can be subject to poisoning attacks, where attackers can influence the training of the
learning algorithm to manipulate and degrade its performance. This can be achieved,
for example, by manipulating the data that is used to train the ML model. Attackers
can also introduce backdoors during the training of the learning algorithm, so that
the performance of the model is not altered for regular inputs, but a specific and
unexpected behavior of the model is observed for inputs containing a trigger that
activates the backdoor [12]. During deployment, ML algorithms are particularly
vulnerable to adversarial examples, inputs specifically crafted by the attacker that
contain a very small perturbation with respect to the original sample, that are
designed to produce errors in the system [16].

These vulnerabilities of the learning algorithms are also present in FL. However,
the mechanisms that attackers can leverage to compromise the learning algorithms
are, in some cases, different to those where ML is applied to centralized data
sources, requiring special consideration. In this chapter, we provide a comprehen-
sive description of the different attacks that can be performed to compromise FL
algorithms, including an extended taxonomy to model the attack surface compared
to the taxonomies typically used for centralized learning algorithms. Using this
taxonomy, we categorize these different sets of attacks as well as defenses that can
be applied to mitigate them both at training and test time. This includes data and
model poisoning attacks aiming to compromise the performance or the convergence

16 Security and Robustness in Federated Learning 365

of the FL algorithms, backdoors, and evasion attacks as exemplified by adversarial
examples.

The rest of the chapter is organized as follows: In Sect. 16.2 we describe the
threat model and present a taxonomy of attacks that can be performed against FL
algorithms. Section 16.3, explains different defensive schemes capable of mitigating
these threats. Section 16.4 provides a comprehensive description of different attack
strategies that have been proposed to compromise FL algorithms, both at training
and test time. Finally, Sect. 16.5 concludes the chapter.

16.1.1 Notation

In the rest of the chapter, we take classification models as the guiding example, but
many principles transfer to other types of machine learning tasks. In a federated
learning process, C parties with their individual data source, {Di}Ci=1, composed
of (x, y) data–label pairs, seek to learn a common ML model fw. During each
training round, N parties participate by sending update vectors {vi}Ni=1 to the central
aggregator. They obtain this update vector by optimizing for a common objective
L with respect to their respective private data partition. The aggregator combines
these updates, often by averaging, and broadcasts the corresponding vector to all C

parties. For most of the discussions in the following section, we assume that all N

parties participate in each training round.

16.2 Threats in Federated Learning

In this section, we present a threat model to describe the different threats and
attacks possible against FL systems. This allows us to understand the vulnerabilities,
providing a systematic framework to analyze the security aspects of FL.

For this, we rely on the frameworks originally proposed in [2, 18] and extended
and revised in [25] for standard ML algorithms. Thus, we describe the threat model
characterizing attacks according to the attacker’s goal, capabilities to manipulate the
data and influence the learning system, knowledge of the target system and data, as
well as the attacker’s strategy. Although some of these aspects are similar to those
for standard learning algorithms, there are certain aspects of the threat model that
are unique to FL scenarios which we discuss in the following sections.

16.2.1 Types of Attackers

Before contextualizing the threat model in similar terms to those in non-distributed
ML algorithms, we need to define the specific types of attackers that are possible

366 A. Rawat et al.

in FL scenarios. This differs from centralized ML algorithms, where the attacker
is typically considered external to the system and aims to compromise or degrade
the system’s performance, produce errors in the system, or leak information about
the target system or the data used to train the model. In other cases, the attackers
can also manipulate the software or code implementations used to train the machine
learning models. In addition to this, in FL, some of the parties (users) within the
system can also behave maliciously.

Thus, in FL systems, we can categorize attackers as:

• Outsiders: similar to the case of centralized learning algorithms, outsiders are
attackers that are not users (parties) of the platform. They can compromise the
FL system at training time by poisoning the training datasets of benign parties
to perform poisoning or backdoor attacks. At test time, they can exploit the
weaknesses and blind spots of the resulting models to produce errors, e.g., with
adversarial examples [16], or to extract some knowledge from the target model,
e.g., membership inference attacks [28]. This category can also include attackers
that are capable of intercepting and tampering with the communications between
the central node and some of the parties of the FL platform.

• Insiders: this includes cases where one or several users (parties) of the FL
platform are malicious. These attackers can also manipulate and degrade the
performance of the system to gain some advantage with respect to other parties
but have more freedom than outsiders to do so. For example, for poisoning the
federated learning model, insiders can directly manipulate the parameters of the
model sent to the aggregator. Insiders can also aim to leak information from the
datasets used by the other users, e.g., with property inference attacks [17, 23, 28].
In cases where there are several insiders in the FL platform, as shown in Fig. 16.1,
there are different possible scenarios depending on whether the attackers collude
toward the same malicious objective.

16.2.2 Attacker’s Capabilities

The capabilities of the attacker to compromise an FL system can be categorized
in terms of the attacker’s influence on the data, the model, and any additional
constraints which limit the attacker such as the presence of defensive algorithms.

16.2.2.1 Attack Influence

According to the capabilities of the attacker to influence or compromise the ML
model, attacks can be classified as:

• Causative: if the attacker can influence the learning algorithm by injecting or
manipulating data used to train the learning algorithms or providing malicious

16 Security and Robustness in Federated Learning 367

Fig. 16.1 Different scenarios of insider attackers in FL: (a) single attacker. (b) Several non-
colluding attackers, i.e., the attackers have different objectives. (c) Group of colluding attackers.
(d) Different groups of colluding attackers

information to manipulate the parameters of the system. These attacks are
commonly referred to as poisoning attacks. Byzantine attacks [8] which send
arbitrary updates to compromise model performance also qualify as causative
within this categorization.

• Exploratory: the attacker cannot influence the training process but can attempt
to exploit the weaknesses and blind spots of the system at test time or to extract
information from the target system. Scenarios where attackers aim to produce
errors in the target system are usually referred to as evasion attacks.

Poisoning attacks are an important threat in scenarios where the data collected
to train the learning algorithms is untrusted. This is common in applications that
collect data from humans who can act dishonestly or devices whose integrity can
be at risk. In FL systems, poisoning attacks can be performed by both insiders and
outsiders. In the case of outsiders, poisoning attacks can be achieved by injecting
malicious data in the training datasets used by the participants, by compromising
the integrity of software used by the participant or compromising communications
between the participants and the central node. In this latter case, the attackers can
perform stronger poisoning attacks via model poisoning [5].

368 A. Rawat et al.

At run-time, in evasion attacks, even if the data used for training the FL model is
trusted and all the participants are honest, the attackers can probe the resulting model
to produce intentional errors, for example, by crafting adversarial examples. On the
other hand, there are other exploratory attacks that aim to compromise the privacy of
the model, extracting or leaking information about the model and its training data.
In this sense, similar to non-distributed ML settings, FL models can be vulnerable
to membership inference attacks, where the attacker tries to assert if a data point has
been used for training the learning algorithm, as described in Chap. . In this case,
the difference in FL is that the attacker may not know which participant provided
that data point. FL on the other hand leverages data from numerous participants,
and the model is often trained with more data points compared to the centralized
case, which increases the effort for the attacker to perform membership inference
attacks [28]. In some settings, insider attackers can also perform property inference
attacks, aiming to infer properties from the training data used by other participants
[17, 23]. This can be achieved by examining the model updates during training.
However, these attacks can only achieve a certain degree of success under very
particular conditions: a limited number of participants and highly differentiated
properties across the datasets of the participants.

16.2.2.2 Data Manipulation Constraints

The attacker’s capabilities may be limited by the presence of constraints for the
manipulation of the data or the parameters of the model in the case of model
poisoning attacks. The attacker can also self-impose some constraints to remain
undetected and perform stealthy attacks by, for example, crafting attack points that
do not differ too much from benign data points. The manipulation constraints are
also strongly related to the particular application domain. For example, in ML-based
malware detection, the attacker’s aim is to evade detection by manipulating the
malware code, but those manipulations need to preserve the malicious functionality
of the program [11, 32]. In contrast, in some computer vision applications, it is
reasonable to assume that the attackers can manipulate every pixel in an image or
every frame in a video.

In data poisoning attacks, the adversary can have different degrees of freedom
to manipulate the data. For certain cases, the attacker may be in control of part of
the labeling process (e.g., when using crowdsourcing). These are known as label
flipping attacks. In other scenarios, even if the attacker is not in control of the
labels assigned to the poisoning points, they can reliably estimate the label that
will be assigned to the injected malicious points. For example, in a spam detection
application, the attackers can assume that most of the malicious emails injected in
the system will be labeled as spam.

When assessing the robustness of ML and FL algorithms to attacks, it is
important to model realistic data constraints to better characterize worst-case
scenarios, for example, through optimal attack strategies, where the attacker aims to
maximize the damage on the target algorithm. However, it is important to consider

16 Security and Robustness in Federated Learning 369

appropriate detectability constraints; otherwise, the attacks can be trivial and can
be easily detected with orthogonal methods, such as data pre-filtering or outlier
detection [30, 31].

16.2.3 Attacker’s Goal

The goal of the adversary can be categorized based on the type of security violation
that the attacker seeks to achieve and the specificity of the attack, which can be
described in terms of the number of data points affected by the attack, or on the type
of errors to be produced in the system.

16.2.3.1 Security Violation

We can differentiate three different security violations against ML and FL sys-
tems:

• Integrity violation: when the attack evades detection without compromising the
system’s normal operation.

• Availability violation: when the attacker aims to compromise the functionality
of the system.

• Privacy violation: when the adversary obtains private information about the
target system, the data used for training, or the users of the system.

Integrity and availability violations depend upon the application to be deployed
and the attacker’s capabilities to influence the training of the learning algorithm. In
this sense, in FL, for insider threats, the attackers can not only poison the learning
algorithm but also prevent the algorithm to converge during its training. On the
privacy side, as mentioned previously, FL models can be vulnerable to membership
and property inference attacks.

16.2.3.2 Attack Specificity

This characteristic is defined by a continuum spectrum that describes the specificity
of the attacker’s intention ranging from targeted to indiscriminate attack scenar-
ios:

• Targeted Attacks: where the attacker aims to degrade the performance of the
system or to produce errors for a reduce set of target data points.

• Indiscriminate Attacks: where the attacker aims to degrade the system’s
performance or to produce errors in an indiscriminate fashion, i.e., affecting a
broad set of cases or data points.

370 A. Rawat et al.

Different from the taxonomy originally proposed in [2, 18], in the research
literature on adversarial examples, i.e., evasion attacks for specific inputs, the term
targeted attack usually refers to the case where the attacker aims to evade the target
model producing a specific type of error, whereas untargeted attacks refer to those
attacks that just aim to produce errors regardless of the nature of the error. However,
the related work on poisoning attacks follows the original taxonomy [2, 18], so
that indiscriminate poisoning attacks are those that produce errors for a large set of
inputs, and targeted poisoning attacks are those that produce errors on a reduced
set of target inputs. However, the taxonomy in [2, 18] is limited to describe attacks
depending on the nature of the errors. This limitation was addressed by Muñoz-
González et al. [26], extending the taxonomy to categorize attacks according to the
type of errors that the attacker wants to produce.

16.2.3.3 Error Specificity

As described in [26], in some cases, such as multi-class classification, depending
on the nature of the errors that the attacker seeks to produce in the system, we can
categorize the attacks as:

• Error-generic: when the adversary wants to produce errors in the target system
regardless of the type of error to be produced.

• Error-specific: when the attacker aims to produce a specific type of errors
in the system. This can be application dependent. In fact, depending on their
capabilities, the attackers can be constrained on the type of errors that can be
produced in the system.

While the categorization of targeted and indiscriminate attacks is based on
specificity with respect to data samples, the error specificity characterizes the
orthogonal dimension of quality of error—like an error-specific attacker could
seek misclassification while an error-generic attacker might pursue more general
objectives for system compromise. For example, in the context of data poisoning, an
error-specific indiscriminate poisoning attack aims at maximizing the performance
of the model over a large set of test inputs producing specific type of errors (e.g.,
classifying all the samples from all classes as samples from class “0”), whereas in
the case of an error-generic indiscriminate attack, the adversary does not care about
the nature of the errors produced in the system and just aims at maximizing the
overall error of the model for a large set of inputs.

16.2.4 Attacker’s Knowledge

The attacker’s knowledge of the target FL system includes the following aspects:

• The datasets used by one or more participants
• The features used to train the learning algorithm and their range of valid values

16 Security and Robustness in Federated Learning 371

• The learning algorithm, the objective function to be optimized, and the aggrega-
tion method used by the central node

• The parameters of the FL algorithm and the resulting model

Depending on how much the attacker knows about the previous points, we can
differentiate two main scenarios: perfect and limited knowledge attacks.

16.2.4.1 Perfect Knowledge Attacks

These are scenarios where we assume that the attacker knows everything about the
target system. Although this assumption can be unrealistic in most cases, perfect
knowledge attacks are useful to assess the robustness and security of ML and
FL algorithms in worst-case scenarios, helping to provide lower bounds in the
performance of the algorithm for different attack’s strength. Furthermore, they can
be useful for model selection, by comparing the performance and robustness of
different algorithms and architectures tested against these type of attacks.

16.2.4.2 Limited Knowledge Attacks

There is a broad range of possibilities to model attacks with limited knowledge.
Typically, in the research literature, two main categories are considered:

• Limited knowledge attacks with surrogate data: this includes scenarios where
the attacker knows the model used for the learning algorithm, the feature
representation, the objective function, and the aggregation scheme used by the
aggregator. However, the attackers do not have access to the training data,
although they can have access to a surrogate dataset with similar characteristics
to the dataset used to train the target learning algorithm. Then, the attacker can
estimate the parameters of the targeted model by using this surrogate dataset,
which can enable successful attacks depending on the quality of the surrogate
dataset. In the case of FL, this is a reasonable assumption to model insider
attackers. Such an adversary has access to the model information and their own
dataset, but not to the datasets of the rest of the participants.

• Limited knowledge attacks with surrogate models: this category includes
scenarios where the attackers have access to the dataset and the feature rep-
resentation used by the target system, but they do not have access to the ML
model, the objective function to be optimized, or the aggregation method used
by the central node. In these cases, the attackers can train a surrogate model to
estimate the behavior of the system. By crafting attacks against this surrogate
model, the resulting malicious points are used to attack the real model. This
strategy can be effective to achieve successful attacks, especially if the surrogate
models are similar, as the vulnerabilities of different model architectures and
learning algorithms are similar in some cases. This is commonly referred to as
attack transferability and has been shown for both evasion [29] and poisoning
attacks [26].

372 A. Rawat et al.

Although perfect knowledge attacks can be helpful to model worst-case scenarios
for testing the robustness of many FL systems, a balance between realistic and
worst-case scenarios should be considered in practical deployments. For example,
in most cases, both insider and outsider attackers will not have access to the
datasets from all the participants. Therefore, asserting robustness of FL algorithms
against weaker adversaries can be a useful and well motivated threat model to
investigate.

16.2.5 Attack Strategy

Attack strategies against both standard ML and FL systems can be formulated as
an optimization problem capturing different aspects from the threat model. The
attacker’s goal can be characterized by an objective function evaluated on a set
of predefined data points, which can be a specific set of target points or, for
indiscriminate attacks, a representative set of the underlying data distribution used
by the target system. This objective function typically helps the attacker to assess
the effectiveness of an attack strategy. The objective function can also include
specific constraints to prevent being detected by the defender. In Sect. 16.4, we will
show a comprehensive set of attack strategies that can be used to compromise FL
algorithms.

Finally, Table 16.1 summarizes the threat model presented in this section.

16.3 Defense Strategies

We now look at different defense strategies that have been devised to counter
the different types of attacks described in the previous section. Designing a
defense method incurs several challenges. To take one, it is essential that defense
mechanisms preserve the model performance in the absence of malicious parties.
The FL model assumptions may also affect the design strategy for defenses. The
aggregator, for instance, may not have the ability to inspect model updates [9].
In this section we distill some broad themes that have been used for designing
defenses for FL systems. First, we look at defenses developed for convergence
attacks. Broadly speaking, these methods inspect the set of updates across all parties
during each training round and use a filtering criterion with the aggregation. We then
describe an alternate line of defenses which incorporate the update history for this
process. A third category of defenses are based on redundancy between party data
partitions.

It is worth noting that a large class of defenses developed for centralized systems
naturally apply to federated settings. However, FL-specific scenarios do require
specialized approaches which we discuss in the following section.

16 Security and Robustness in Federated Learning 373

Table 16.1 Threat model in federated learning

Types of attack-
ers • Outsiders: attackers external to the platform

• Insiders: attackers that are participating in the FL task

Attacker’s
capabilities

Attack influence

• Causative attacks: the attacker can influence the learning algorithm
(e.g., poisoning or backdoor attacks)

• Exploratory attacks: the attacker can only manipulate data at test time
(e.g., adversarial examples)

Attacker’s goal Security violation

• Integrity attacks (e.g., backdoor attacks)
• Availability attacks (e.g., poisoning attacks)
• Privacy violation (e.g., property inference attacks)

Attack specificity

• Targeted attacks: focused on a specific set of cases or data points
• Indiscriminate Attacks: target a broader set of cases or data points

Error specificity:

• Error-generic attacks: the attacker just aims to produce errors in the
system, regardless of their nature

• Error-specific attacks: the attacker aims to produce specific types of
errors in the target system

Attacker’s
knowledge • Perfect knowledge: the attacker knows everything about the target

system
• Limited knowledge:

– Surrogate dataset: the attacker knows the target model but not the
training dataset (or has partial knowledge of it)

– Surrogate model: the attacker knows the training dataset but not the
model (e.g., transfer attacks)

Backdoor attacks often include a subtask for which the adversary seeks high
performance. The first lines of defenses against such attacks are implemented at
the aggregator and assume that the updates for backdoor tasks would be outside
the natural spread of benign updates. Two strategies that handle this perspective
include norm clipping and weak differential privacy. For norm clipping, the central
aggregator inspects the difference between the broadcasted global model and the
received updates from the selected parties and clips the updates that exceed a
pre-specified norm threshold [39]. On the other side, weak differential privacy

374 A. Rawat et al.

approaches, as in [39, 43], add Gaussian noise with a small standard deviation to
the model updates prior to the aggregation. Weak backdoor attacks can be easily
countered with such defenses as the addition of Gaussian noise can neutralize the
backdoor update.

Defenses that function against evasion attacks can similarly be employed in a
federated setting. Adversarial training, [22] in which the defender trains against
adversarial examples, is one such popular defense, and however this is a challenging
training task and its difficulty increases in federated learning settings. For example,
Shah et al. [36] observed that the performance against adversarial examples was
strongly influenced by the amount of local computation conducted by the party, and
Zizzo et al. [50] noted that the proportion of adversarial examples to clean data
in a batch has a significant impact. The work in [41] also shows that robustness
against affine distribution shifts (which can occur between parties in federated
learning) can offer protection against adversarial examples. Effectively conducting
adversarial training in a federated context remains an open problem, not only due
to the underlying optimization difficulties but also attackers can interfere with the
training process and create brittle models with misleading performance metrics for
a defender [50].

16.3.1 Defending Against Convergence Attacks

For convergence attacks, we need to protect against adversaries who aim to
degrade model performance in an unrestricted manner. A common attacker model
to defend against in this scenario is a Byzantine attacker. This corresponds to
a strong adversary who can send arbitrary model updates. Typically, in these
attacks, the malicious model updates differ significantly from those sent by the
benign parties and aim to produce a completely useless machine learning model,
i.e., the performance of the resulting model is very poor. This can be achieved
by, for example, sending random model updates adding noise with a very large
variance to all the model’s parameters. Blanchard et al. [8] showed that a single
Byzantine adversary is enough to completely compromise a federated learn-
ing model when using standard aggregation methods, such as federated averag-
ing.

This can be easily shown: for a set of party updates {vk}Nk=1, if the attacker aims
for the global model to have a specific set of parameters w, and they control the
party k = N , then the update required can be exactly computed as

w = 1

N

N−1∑

k=1

vk + 1

N
vN (16.1)

16 Security and Robustness in Federated Learning 375

vN = Nw −
N−1∑

k=1

vk. (16.2)

Even without the knowledge of benign party updates, an attacker can trivially
compromise the system. An attacker controlled party can send arbitrarily large
updates which, when averaged with the benign parties, will break the model.

Thus, for practical FL deployments, it is essential to include mechanisms to filter
out malicious (or faulty) model updates that can compromise the overall system’s
performance. This vulnerability has fostered research on robust aggregation meth-
ods aiming to detect and mitigate different types of poisoning attacks, including
Byzantine adversaries.

16.3.1.1 Krum

Krum is one of the first algorithms proposed to defend against convergence attacks
in FL [8]. A naive defender could try and filter out attackers by computing a score
based on the squared distance between update i and all other received updates, to
then select the update with the lowest score. This mechanism will however only
tolerate a single Byzantine party. As soon as two Byzantine parties collude, then
one Byzantine party can propose an update which shifts the barycenter of the benign
party updates toward the other Byzantine update.

Krum solves this problem by being more selective in computing distance
measures. Given N party updates {vk}Nk=1, Krum selects the update u which has
the lowest squared Euclidean distance with respect to its N − F − 2 neighbors,
where F is the allowable number of malicious parties in the system. We can express
this as

s(i) =
∑

i→j

||vi − vj ||2, (16.3)

where we only sum over the N − F − 2 parties with the lowest squared distance.
Krum requires that the number of malicious workers satisfies 2F + 2 < N . We can
see an example of Krum acting on a 2D set of updates in Fig. 16.2 where we only
sum over the N − F − 2 parties with the lowest squared distance.

Although Krum can be effective to mitigate some attacks, especially Byzantine
adversaries, it has been shown that this defense is not effective to mitigate other type
of attacks, like label flipping attacks [27], or can be brittle against adaptive attacks
targeting Krum [39]. Apart from this, the use of Krum slows the convergence of the
FL algorithm, requiring more training rounds to achieve a good level of performance
[8]. On the other side, Krum requires to compute the Euclidean distance between the
model updates sent by all the parties participating at each training round, which can
be computationally very demanding for scenarios where the number of parties is
large.

376 A. Rawat et al.

Fig. 16.2 Illustration of the Krum defense in a synthetic example with two parameters for the FL
model. If we score each update based on its square distance to all other updates, then, by selecting
the update which has the minimum score (white vector), we can successfully handle one Byzantine
party. However, two malicious parties can collude, and now one update shifts the barycenter of all
the supplied updates so that the original attacker update is selected. Note that this new Byzantine
update (red line in the middle plot) is extremely large as it needs to counter the effect of all the
benign parties. In fact, as we can see from the middle plot, it extends well beyond the w1 and w2
ranges we visualize. However, from the rightmost plot, if we apply Krum (which only considers
the closest N − F − 2 parties), then many benign parties never have their score influenced by the
malicious parties, and we can see that Krum reselects a benign party

The problems on the slow convergence of Krum can be partially mitigated with
Multi-Krum, a straightforward variant of the algorithm where, instead of selecting
a single update, we select the lowest scoring M updates so that the final update is
given by

1

M

∑

i

v∗
i , (16.4)

where v∗ is the set of the M lowest scoring party updates. This intuitively is
interpolating between Krum and federated averaging, with M acting as a tunable
parameter that a defender can set to prioritize convergence speed or robust-
ness.

16.3.1.2 Median-Based Defenses

Methods based on the median form a broad family of defenses. If the number
of malicious parties, F , is less than half of the total number of parties N ,
F ≤ N

2 ! − 1, then the median of a particular parameter must come from
a benign party. Therefore, with this group of defenses, we are computing the
median independently for every dimension of a parameter update. This is in
contrast to Krum, which by using the squared Euclidean distance between two
updates does not distinguish between the cases where updates differ significantly
on only a few components, compared to when updates differ slightly on many
components.

16 Security and Robustness in Federated Learning 377

In its simplest form, we independently compute the median along every dimen-
sion and apply it to the global model as an update. However, there are a group of
defenses that perform filtering around the median and then average the resulting
parties. These are broadly referred to as Trimmed Mean-based defenses [24, 45, 49].
Concretely, the median for j th dimension in the N party updates {vk}Nk=1 is
computed and a filtering operation is conducted. The remaining updates on each
dimension are then averaged resulting in the final update vector. This is expressed
as

w(j) = 1

|Uj |
∑

i∈Uj

v
(j)
i , (16.5)

where |Uj | is the cardinality of the selected updates on dimension j . It is in the
filtering step that the different Trimmed Mean algorithms differ. In particular,

• In [45], with F ≤ N
2 ! − 1, select the closest N − F values to the median to

average.
• In [24], with N − 2F ≥ 3, only pick the nearest N − 2F updates.
• Finally, for [49], with F ≤ N

2 ! − 1, remove the largest and smallest F updates
on each dimension.

16.3.1.3 Bulyan

The Bulyan [24] defense seeks to combine the strengths of the previously discussed
defenses. Krum has a shortcoming as it analyzes party updates based on the
Euclidean distances of the local models across parties. Thus, adversaries can
propose model updates which differ significantly on only a few parameters which
will have little effect on the overall distance with respect to model updates from
benign parties, but that can have a significant impact on the model performance.
Bulyan thus computes a two-step process, in which Krum first produces a set of
likely benign parties and then Trimmed Mean acts on this set derived from Krum.
To be more precise,

• On the set of received party updates V = {vi}Ni=1, apply Krum which will select
a single update.

• Add the update selected by Krum to a selection set S and remove the update from
V .

• Apply the above two steps N −2F times. Thus, we are shrinking V and growing
S by one update every iteration.

• Finally, apply Trimmed Mean on the resulting selection set S.

The Bulyan defense has robustness up to N ≥ 4F + 3.
A different route is to directly limit the influence of the absolute value of any

party’s updates on the overall aggregation. One method for achieving this is to con-
sider the sign of an update [4, 20]. In addition to limiting the influence of individual

378 A. Rawat et al.

parties, it makes the communication between the parties and the aggregator much
more efficient as only one-bit update is needed for every dimension in the update
vector. Sign-based methods have been shown, under the assumption that updates
are unimodal and symmetric about the mean, to be able to converge. Sign methods
can also be viewed, as was done in [20], as a form of L1 regularization. However,
simple sign-based methods can be vulnerable to adaptive adversaries. Consider the
algorithm in [4] in the following attack:

Example: Consider a system of 9 parties. The benign updates are modelled
as coming from a Gaussian distribution N(0.2, 0.15). We model 5 benign
workers which generate updates vb = {0.037, 0.4, 0.24,−0.026, 0.11},
which when signed have vb = {1, 1, 1,−1, 1}. The attacker breaks the
unimodal requirement and submits updates from 4 malicious parties of vm =
{−1,−1,−1,−1} with a negative sign. Although the true update direction
should be positive, the sum over all signed updates is now −1.

16.3.1.4 Zeno

Should the aggregator have additional capabilities with access to the data itself,
then further analysis can be conducted by examining the effect of the update on
the model’s performance on the aggregator data. This was examined in [48] which
proposed the Zeno defense. Zeno produces a score s for every supplied gradient
update v which indicates its reliability. The key idea here is to use the validation
data to estimate the descent of the loss function value after a party update is applied.
The score, s, is defined as

s = L(w,X) − L(w − γ v,X) − ρ||v||2, (16.6)

where w is the current parameter vector, γ is the learning rate at the aggregator,
X represents samples of data drawn from the data distribution, and L is the loss
function of the underlying machine learning task. The updates with the highest
scoring s are averaged and used to update w. This can offer very strong defensive
performance, and however the existence of an aggregator side dataset introduces
additional requirements for the FL system.

16.3.2 Defenses Based on Parties’ Temporal Consistency

In the previous section, we discussed defense aggregation methods that analyze
a party’s updates in each training round independently of their behavior during
earlier rounds. This means a party’s update in one training round does not affect

16 Security and Robustness in Federated Learning 379

its participation in the overall aggregation at later stages. Parties under the influence
of attacks are likely to exhibit consistent malicious behavior across different training
rounds and defense schemes can benefit from this knowledge by monitoring a
party’s temporal behavior during the training process. This insight can be employed
for efficient and more accurate detection of malicious parties. Robust aggregation
schemes based on these observations have been proposed in [27, 41], which
either directly model the party’s behavior during the training process or use a
detection scheme to identify the parties sending malicious updates during the course
of training. Furthermore, once the malicious parties are identified, they can be
prevented from further participating in the training process which can result in
reduced communication cost at the aggregator side.

16.3.2.1 Adaptive Model Averaging (AFA)

Muñoz-González et al. [27] propose an algorithm that relies on two components: (1)
a robust aggregation rule to detect malicious model updates and (2) a probabilistic
model using a hidden Markov model (HMM) that learns the quality of the model
updates provided by each party during training and models their behavior.

The parameters of HMM are updated during each training round and implicitly
incorporate the quality of update history for each party. They further use the HMM
to detect a malicious party and then subsequently bar the malicious party from
further participating in the training process. The proposed robust scheme aggregates
the update at iteration t + 1 as

∑

k∈Kg
t

pkt nk

P
vk, (16.7)

where pkt is the probability of party k providing a useful model update at iteration
t and P = ∑

k∈Kg
t

pkt nk , where nk is the size of the dataset owned by party k. The

set Kg
t ⊂ Kt contains the parties that provide a good update according to the robust

aggregation algorithm proposed in this chapter. For this, at each training round,
AFA aims to detect malicious model updates iteratively using a distance-based
algorithm (using cosine similarity or Euclidean distance). This detection algorithm
is independent from the past contributions of the parties, to avoid situations where
attackers are silent for some training rounds. At the start of the training process,
updates from all parties are in the set of good updates. The aggregated model is
estimated from Eq. 16.7 for given probabilities of the parties and the number of
training data points provided. Then, the similarity of each party with respect to
the aggregated model is calculated, and finally the mean, μ̂, and the median, μ̄,
of all these similarity measures are calculated as shown in Fig. 16.3. Thereafter,
each party’s similarity score is compared to a threshold based on median score μ̄

and the standard deviation of the similarities. All model updates that are beyond
that threshold (below or above depending on the position of the mean with respect

380 A. Rawat et al.

Fig. 16.3 (a) Considering that the benign parties are in majority during the training, they tend to
send “similar” updates. (b) AFA calculates the median and mean of estimated similarity values of
parties updates with the aggregated update. Parties whose similarity values are at a distance greater
than a threshold based on these mean and median values of similarity can be identified easily in
case of a single attacker. (c–d) AFA allows to detect different groups of attackers with different
objectives by iteratively removing bad model updates at each training round

to the median) are considered as malicious. Then, the global model is recomputed
and the procedure repeated until no model updates are considered as malicious.
This iterative process allows to identify different types of attacks that can occur
simultaneously, as described in Fig. 16.3. Finally, the probability pkt of each party
is updated using the HMM accordingly for each party, depending on whether the
model update at current training iteration was considered as malicious or not. If a
party consistently sends malicious model updates, AFA includes a mechanism to
block the user based on the beta posterior probability distribution used to model the
parties’ behavior.

Compared to Krum, AFA is more scalable, as it only needs to compute the
similarity for each party model update with respect to the aggregated model,
whereas Krum requires to compute the similarities among the model updates
from all the parties. On the other side, compared to Krum and median-based
aggregation rules, AFA enables the detection of the malicious parties and improves
the communication efficiency by blocking parties that consistently send malicious
model updates.

16.3.2.2 PCA

An alternative use of history was proposed in [41] to specifically combat against
label flipping attacks. Given an update, for each output class, change (or delta) in
the corresponding row in the final neural network layer is extracted and a history
over many communication rounds is stored for each output class. From this history,
the deltas are projected down to 2D via PCA, and the authors show that malicious
and benign parties form well separated clusters.

16 Security and Robustness in Federated Learning 381

16.3.2.3 FoolsGold

Along the same line, Fung et al. [15] devise a defense strategy based on comparison
of historical updates between multiple parties. The algorithm works under the
assumption that update from malicious parties tend to have similar and less diverse
updates than those of honest parties. Cosine similarity is used to compare the
histories of different participants and the party updates are rescaled to reflect the
confidence before the subsequent aggregation.

16.3.2.4 LEGATO

Varma et al. [42] propose a fusion algorithm that can mitigate the effect of malicious
gradients in various Byzantine attacks setting to train neural networks in FL. In
particular, it analyzes the change of the norm of the gradient per layer and employs
a dynamic gradient reweighing scheme based on layer-specific robustness computed
based on the gradient analysis. Details about LEGATO can be found in Chap. 17.

16.3.3 Redundancy-Based Defenses

Thus far, the defenses we have discussed rely on improving the aggregation
mechanism. However, an alternative line of proposed defensive methods function
based on redundancy [13, 34, 38]. These defenses function by replicating data
across several devices, so that each data partition is seen by at least R parties.
If R ≥ 2S + 1, where S is the number of malicious parties, then, by simple
majority vote, the true update can be recovered. An example of this is illustrated in
Fig. 16.4. The difficulty is that naively replicating data across R parties and having
each party send R gradient updates corresponding to each replicated portion of
data are computationally expensive. Thus, approaches have considered encoding
all the gradients computed at each party. Then, the encoded representation is sent,
and the individual gradients at the aggregator are then decoded [13]. Or, in [34], a
hierarchical scheme was considered when combined with robust aggregation. More
precisely, parties are assigned into groups and parties within the same group all
perform the same redundant computation. The results from different groups are then
hierarchically combined into a final model.

In general, redundancy-based defenses can be extremely strong and come with
rigorous guarantees of the robustness offered. However, they have several significant
drawbacks for application in federated (as opposed to distributed) learning. First,
there is an inescapable communication overhead as the data will need to be
replicated across devices. Second, there are privacy concerns with sharing data in
such a manner. Data could potentially be anonymized prior to transmission (either
by employing differential privacy or by other privacy mechanisms), and however,
the risk might still be higher than not sharing data altogether.

382 A. Rawat et al.

Fig. 16.4 Example of a simple redundancy-based defense. The two benign parties 1 and 2 each
compute gradients g1−3 on data points x1−3. Party 3 supplies arbitrary updates z1−3. By a majority
vote, the correct gradients g1−3 are used

16.4 Attacks

With a broad understanding of different threat models and defense strategies, we are
now in a position for closer examination of specific attacks. The ability to supply
arbitrary updates during model training allows an attacker to pursue a wide range
of goals for data and model poisoning. Here, we categorize the types of attacks into
three broad categories. First, convergence attacks which seek to indiscriminately
degrade the global model performance on the underlying task. Second, in targeted
attacks an adversary aims to produce errors for specific target data points or to
introduce backdoors. For instance, a backdoor attacker can introduce a key (or
trigger) into the data which will cause a machine learning model to always output
an attacker chosen class when presented with the key, or alternatively backdoor task
might consist in targeted misclassification for a subset of samples. Compared to
targeted poisoning attacks, backdoors do not compromise the normal operation of
the system, i.e., the performance of the resulting model is not affected for regular
examples, and it only produces “unexpected” outputs for inputs that contain the key.
Finally, we briefly discuss other attack strategies from centralized settings which
naturally extend to federated setups.

Many of these attacks are specifically designed to counter certain defensive
strategies. For scenarios where a defender is not employing any defense, it can
be trivial to subvert a model undergoing federated learning [8]. An important
dimension to consider for attack strategies is the amount of system compromise
required in order to achieve the attack objective. Backdoor attacks, for instance,
often require significantly lower compromise, with successful attacks needing as
little as one malicious party. For cross-device setups, the frequency of attacks also
affects their success rates. An attacker might control a fixed level of compromise for
every selected quorum or might control a number of devices, a portion of which is
selected every round of federated learning.

16 Security and Robustness in Federated Learning 383

An alternative attack is for an adversary who crafts samples which expose the
vulnerabilities of a deployed model at run-time. Machine learning models are known
to be vulnerable to such adversarial examples. They represent indistinguishably
perturbed inputs from a human standpoint that are misclassified with high confi-
dence by a trained machine learning model [7, 16, 40]. Such attack vectors can
be computed for both white-box and black-box scenarios and are even known to
transfer across different models. Communication channels for model update sharing
and broadcasting in federated learning could potentially expose additional surfaces
for some of these white-box attacks, especially for insiders.

16.4.1 Convergence Attacks

For convergence attacks, an adversary seeks maximum damage to the model perfor-
mance within the limits imposed by defensive aggregation schemes. According to
the taxonomy in Sect. 16.2, these correspond to indiscriminate causative attacks,
where the attackers can manipulate the parameters of the aggregated model by
providing malicious local model updates, aiming to compromise the overall model’s
performance.

In this line, the simplest attacks that could be performed are Byzantine attacks,
as the one proposed in [8], where malicious parties send model updates with very
large values, which is enough to compromise vanilla aggregation methods, such as
federated averaging. Another effective way to accomplish a convergence attack is
to aim for the aggregation schemes to select an update with the sign that is opposite
to the true update direction. This line of research has been examined in [14, 47]. If
the secure aggregation scheme being targeted is using a median-based defense, the
developed attacks in [14, 47] are similar. The strategy exploits benign parties that
may supply updates with the opposite sign to the mean update of the benign parties.
The attacker can force their selection either by supplying updates that are larger than
any benign client, thereby trying to force the selection of a positive update, or by
supplying malicious updates that are less than any of the benign parties, thus trying
to select a negative direction.

Example: If the benign updates V = {−0.2, 0.2, 0.5}, then the true update
mean μ = 0.167. A simple median-based aggregation on this set would
yield 0.2. However, if the attacker supplies updates smaller than min(V),
the selection of a negative gradient can be obtained. The attacker submits
Vattacker = {−1,−1}; now with the combined update set being V =
{−1,−1,−0.2, 0.2, 0.5}, the median selects −0.2.

384 A. Rawat et al.

For Krum, the two methodologies [14, 47] differ more substantially. Both
methods try to deviate the chosen update vector toward the opposite sign of the
true update mean μ. In [47], the formulation is similar to an attack on median-based
defenses with the malicious update being

vattacker = −εμ (16.8)

while in [14] the malicious update was formed via

vattacker = w − λs (16.9)

where w is the global model, s is the sign of the direction the parameters should
change by with only benign parties, and λ is our perturbation parameter.

In both cases, we would like to maximize the deviation ε or λ while still being
selected by Krum. With [47], the deviation was manually set to a reasonably small
number as to have a high selection chance. Conversely, in [14], the maximum value
of λ was determined by running a binary search.

Example: With the benign updates of V = {0.0, 0.1, 0.25, 0.35, 0.5, 0.65},
we want a negative update that is selected by Krum. If the attacker con-
trols 3 malicious parties, we search over −λ in a simple grid search
and see that λ = 0.21 is selected. Therefore, the attacker supplies
Vattacker = {−0.21,−0.21,−0.21}. The updates as seen by the aggregator
are {−0.21,−0.21,−0.21, 0.0, 0.1, 0.25, 0.35, 0.5, 0.65} with the minimum
Krum score belonging to a party that supplied −0.21.

Neither of those attacks considered Bulyan as a defensive method, which was
instead tackled in [3]. The key observation that the authors exploited in their attack
is that malicious updates can still cause significant harm by hiding in the natural
spread of benign updates. The benign updates are modelled following a normal
distribution with mean μ and variance σ . Then, the attacker submits updates of
the form μ + kσ . By setting k to the appropriate value, we can ensure that there
are benign party updates that lie further away from the mean then the malicious
updates. These parties support the selection of the malicious updates, which are
selected with a high degree of probability by a robust aggregation algorithm. We
can see an example for this attack in a 2D case in Fig. 16.5.

16.4.2 Targeted Model Poisoning

Having examined convergence-based attacks, we now turn our attention to model
poisoning attacks which aim to be more specific in their objective. In particular, this

16 Security and Robustness in Federated Learning 385

Fig. 16.5 Example illustration for the attack in [3] targeting Bulyan. Going from the plots left
to right: we initially start with the distribution of two model parameters, w1 and w2, submitted
by the benign parties (blue dots). The attackers submit model updates (orange dots) offset to
the true mean, but still within the update variance. Then, in the middle plot, we apply the initial
Krum filtering and we can see many malicious updates are still present. In the final plot, we apply
Trimmed Mean on w1 and a large amount of adversarial updates are included in the final averaging
for w1. An equivalent operation is also then done for w2

involves attacks-based training a model on data that has had its feature manipulated
through the insertion of backdoors or targeted label flipping attacks where particular
data points are mislabelled. By performing one of these attacks, an adversary can
force a model to learn attacker chosen correlations and therefore misclassify certain
points at test time. We should note that this type of misclassification differs from the
case of adversarial examples, as this results from explicit manipulations during the
training process.

Both backdoor or label flipping attacks involve training models on manipulated
data. One manner in which this can be achieved is if the adversary is able to
tamper with the data collection process of the benign parties in a federated learning
system. Thus, if manipulated data can be given to the benign parties, then the model
learned through the federated learning process can be vulnerable. However, the more
commonly modelled attack vector is that the adversary joins a federated learning
system controlling one or more parties. The adversary then sends corrupted updates
to the aggregator. This can be considered a stronger adversarial model compared
to just poisoning the data that benign parties have access to, as the adversary has
control over the update vector and its participation rate, and can even collude with
other malicious parties to improve the attack success rate [5].

Should the adversary pursue their attack via label flipping, then the features of
particular training data samples are left unchanged, but their associated labels are
altered. An example of this in practice is changing the labels of all the green cars
in a dataset to an attacker chosen class [1]. The model will then learn to associate
green cars with the attacker class, rather than their original label. Label flipping
attacks have been explored in a wide range of works [6, 15, 21, 30, 41, 44]. For
label flipping attacks, it has been shown that attacking the model in the later part
of training near convergence is more successfully compared to attacking the model
during initial stage of training [41].

386 A. Rawat et al.

On the other hand, an adversary can mount backdoors by manipulating features,
like certain pixels in the case of images, and also changing the label of the data
point. Thus, a model will learn to associate the backdoor with a particular label and
ignore the rest of the features in a data point if a backdoor is present. Although this
is the most common attack method by which backdoors are inserted, clean label
backdoor attacks in which the label is not altered are also possible [35].

Other nuances that can affect a backdoor attack depend also on the total
proportion of samples in the training set that the attacker controls and wishes to
affect. To continue our running example with misclassification of green cars to an
attacker class, the attack will be easier if the attacker is able to control all the green
cars in the dataset, rather than just a portion of them [39].

When attempting backdoor attacks, the challenge for an adversary depends on
both:

1. The complexity of the target subtask, as an adversary might require varying
numbers of malicious parties and potentially high participation frequency if the
subtask has a high degree of complexity.

2. And the robust aggregation methods and anomaly detectors at the aggregator end,
which need to be accounted for wen fabricating the malicious updates so as to
circumvent such defenses.

In the simplest case where the aggregator uses federated averaging as the update
rule, if the attacker sends their updates after training their local model on the
backdoor task then as the number of parties that the attacker controls can be small
in comparison to the total number of parties participating in an FL round then the
backdoor updates can be cancelled out. To make these attacks effective, the work
of [1] builds a strategy based on the observation that near convergence the updates
sent by honest parties tend to be similar. An adversary can take advantage of this and
rescale their update to ensure that the backdoor survives the eventual aggregation,
thereby successfully replacing the global model with the malicious one. Specifically,
with a global model wt on round t , the attacker replaces it with their corrupted model
wcorrupt by submitting v computed via

vattacker ← γ
(
wcorrupt − wt

)+ wt (16.10)

where γ is a scaling parameter. Independently, the work of [5] also arrives a similar
rescaling strategy (explicit boosting) that accounts for the scaling at aggregation.

Example: Near convergence, a global model with parameter value of {4.03},
might receive update from honest parties as 0.08, 0.083, 0.09. The malicious
model might seek to replace the parameter value with {3.98}. Assuming that
the aggregator will combine the updates with a learning rate of 0.015, the
adversary in this case supplies update as 1

0.015 (3.98 − 4.03) + 4.03 = 0.696
as opposed to −0.05.

16 Security and Robustness in Federated Learning 387

In order to supply updates that fall within the natural spread of updates received
from non-malicious parties, an adversary can include additional constraints. For
instance, Bhagoji et al. [5] proposes to include additional loss terms corresponding
to benign training samples and regularizes the current update to be as close to
the combined update from benign parties in the previous communication round.
Similarly, Wang et al. [43] considers adversaries that employ projected gradient
descent where the intermediate parameter states are periodically projected to an ε-
ball around the previously received global update. Alternatively, rather than having
the same backdoor key on all the data, in [46], the key is split between each
malicious party according to a decomposition rule. Thus, each malicious party only
inserts a part of the backdoor key into their data. The sum of all the key fragments
is equal to the full backdoor key. Testing on LOAN and three image datasets shows
that this approach yields better attack success rates as well as being more stealthy
against FoolsGold [15] and RFA [33].

16.5 Conclusion

In this chapter, we have discussed the security of FL systems. In a similar fashion to
standard, non-distributed ML systems, FL is vulnerable to attacks both at training
and test time. For example, FL algorithms can be completely compromised during
training just by the presence of one single malicious participant when using standard
aggregation methods. Thus, the analysis of robust methods for FL is critical for the
use of this technology in most practical settings.

In this chapter, we provide a comprehensive overview of different attack
strategies and approaches to defend and mitigate them. However, some of the
vulnerabilities of FL still need to be better understood and defending against some
type of attacks remains an open research challenge. In this sense, it is also necessary
to characterize and analyze further different trade-offs present in the design of
FL systems, for example, a trade-off among performance, robustness and data
heterogeneity or among performance, robustness, and privacy, just to cite some.

References

1. Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V (2020) How to backdoor federated
learning. In: Chiappa S, Calandra R (eds) The 23rd international conference on artificial
intelligence and statistics, AISTATS 2020, 26–28 August 2020, Online [Palermo, Sicily, Italy],
Proceedings of machine learning research. PMLR, vol 108, pp 2938–2948

2. Barreno M, Nelson B, Joseph AD, Tygar JD (2010) The security of machine learning. Mach
Learn 81(2):121–148

3. Baruch G, Baruch M, Goldberg Y (2019) A little is enough: Circumventing defenses for
distributed learning. In: Wallach H, Larochelle H, Beygelzimer A, d'Alché-Buc F, Fox E,
Garnett R (eds) Advances in neural information processing systems 32, pp 8635–8645. Curran

388 A. Rawat et al.

Associates. http://papers.nips.cc/paper/9069-a-little-is-enough-circumventing-defenses-for-
distributed-learning.pdf

4. Bernstein J, Zhao J, Azizzadenesheli K, Anandkumar A (2018) signSGD with majority vote is
communication efficient and fault tolerant. Preprint. arXiv:1810.05291

5. Bhagoji AN, Chakraborty S, Mittal P, Calo S (2019) Analyzing federated learning through an
adversarial lens. In: International conference on machine learning. PMLR, pp 634–643

6. Biggio B, Nelson B, Laskov P (2012) Poisoning attacks against support vector machines. In:
Proceedings of the 29th international conference on machine learning, ICML 2012, Edinburgh,
Scotland, June 26–July 1, 2012. icml.cc/Omnipress. http://icml.cc/2012/papers/880.pdf

7. Biggio B, Corona I, Maiorca D, Nelson B, Srndic N, Laskov P, Giacinto G, Roli F (2013)
Evasion attacks against machine learning at test time. In: Blockeel H, Kersting K, Nijssen
S, Zelezný F (eds) Machine learning and knowledge discovery in databases - European
conference, ECML PKDD 2013, Prague, September 23–27, 2013, Proceedings, Part III,
Lecture notes in computer science, vol 8190. Springer, pp 387–402

8. Blanchard P, Guerraoui R, Stainer J et al (2017) Machine learning with adversaries: Byzantine
tolerant gradient descent. In: Advances in neural information processing systems, pp 119–129

9. Bonawitz K, Ivanov V, Kreuter B, Marcedone A, McMahan HB, Patel S, Ramage D, Segal
A, Seth K (2017) Practical secure aggregation for privacy-preserving machine learning. In:
Thuraisingham BM, Evans D, Malkin T, Xu D (eds) Proceedings of the 2017 ACM SIGSAC
conference on computer and communications security, CCS 2017, Dallas, TX, October 30–
November 03, 2017. ACM, pp 1175–1191

10. Buehler H, Gonon L, Teichmann J, Wood B (2019) Deep hedging. Quant Financ 19(8):1271–
1291

11. Castro RL, Muñoz-González L, Pendlebury F, Rodosek GD, Pierazzi F, Cavallaro L (2021)
Universal adversarial perturbations for malware. CoRR abs/2102.06747. https://arxiv.org/abs/
2102.06747

12. Chen X, Liu C, Li B, Lu K, Song D (2017) Targeted backdoor attacks on deep learning systems
using data poisoning. Preprint. arXiv:1712.05526

13. Chen L, Wang H, Charles Z, Papailiopoulos D (2018) Draco: Byzantine-resilient distributed
training via redundant gradients. In: International conference on machine learning. PMLR, pp
903–912

14. Fang M, Cao X, Jia J, Gong N (2020) Local model poisoning attacks to byzantine-robust
federated learning. In: 29th {USENIX} security symposium ({USENIX} Security 20), pp 1605–
1622

15. Fung C, Yoon CJ, Beschastnikh I (2018) Mitigating sybils in federated learning poisoning.
Preprint. arXiv:1808.04866

16. Goodfellow IJ, Shlens J, Szegedy C (2015) Explaining and harnessing adversarial examples.
In: International conference on learning representations

17. Hitaj B, Ateniese G, Pérez-Cruz F (2017) Deep models under the GAN: information leakage
from collaborative deep learning. In: Thuraisingham BM, Evans D, Malkin T, Xu D (eds)
Proceedings of the 2017 ACM SIGSAC conference on computer and communications security,
CCS 2017, Dallas, TX, October 30–November 03, 2017. ACM, pp 603–618

18. Huang L, Joseph AD, Nelson B, Rubinstein BIP, Tygar JD (2011) Adversarial machine
learning. In: Chen Y, Cárdenas AA, Greenstadt R, Rubinstein BIP (eds) Proceedings of the
4th ACM workshop on security and artificial intelligence, AISec 2011, Chicago, IL, October
21, 2011. ACM, pp 43–58

19. Hussain F, Hussain R, Hassan S.A, Hossain E (2020) Machine learning in IoT security: Current
solutions and future challenges. IEEE Commun Surv Tutorials 22(3):1686–1721

20. Li L, Xu W, Chen T, Giannakis GB, Ling Q (2019) RSA: Byzantine-robust stochastic
aggregation methods for distributed learning from heterogeneous datasets. In: Proceedings
of the AAAI conference on artificial intelligence, vol 33, pp 1544–1551

21. Liu Y, Ma S, Aafer Y, Lee W, Zhai J, Wang W, Zhang X (2018) Trojaning attack on neural
networks. In: 25th Annual network and distributed system security symposium, NDSS 2018,
San Diego, California, February 18–21, 2018. The Internet Society

http://papers.nips.cc/paper/9069-a-little-is-enough-circumventing-defenses-for-distributed-learning.pdf
http://papers.nips.cc/paper/9069-a-little-is-enough-circumventing-defenses-for-distributed-learning.pdf
http://icml.cc/2012/papers/880.pdf
https://arxiv.org/abs/2102.06747
https://arxiv.org/abs/2102.06747

16 Security and Robustness in Federated Learning 389

22. Madry A, Makelov A, Schmidt L, Tsipras D, Vladu A (2018) Towards deep learning models
resistant to adversarial attacks. In: International conference on learning representations. https://
openreview.net/forum?id=rJzIBfZAb

23. Melis L, Song C, Cristofaro ED, Shmatikov V (2019) Exploiting unintended feature leakage
in collaborative learning. In: 2019 IEEE symposium on security and privacy, SP 2019, San
Francisco, CA, May 19–23, 2019. IEEE, pp 691–706

24. Mhamdi EME, Guerraoui R, Rouault S (2018) The hidden vulnerability of distributed learning
in Byzantium. Preprint. arXiv:1802.07927

25. Muñoz-González L, Lupu EC (2019) The security of machine learning systems. In: AI in
cybersecurity. Springer, pp 47–79

26. Muñoz-González L, Biggio B, Demontis A, Paudice A, Wongrassamee V, Lupu EC, Roli F
(2017) Towards poisoning of deep learning algorithms with back-gradient optimization. In:
Thuraisingham BM, Biggio B, Freeman DM, Miller B, Sinha A (eds) Proceedings of the
10th ACM workshop on artificial intelligence and security, AISec@CCS 2017, Dallas, TX,
November 3, 2017. ACM, pp 27–38

27. Muñoz-González L, Co KT, Lupu EC (2019) Byzantine-robust federated machine learning
through adaptive model averaging. Preprint. arXiv:1909.05125

28. Nasr M, Shokri R, Houmansadr A (2019) Comprehensive privacy analysis of deep learning:
Passive and active white-box inference attacks against centralized and federated learning. In:
2019 IEEE symposium on security and privacy, SP 2019, San Francisco, CA, May 19–23,
2019. IEEE, pp 739–753

29. Papernot N, McDaniel PD, Goodfellow IJ (2016) Transferability in machine learning: from
phenomena to black-box attacks using adversarial samples. CoRR abs/1605.07277. http://
arxiv.org/abs/1605.07277

30. Paudice A, Muñoz-González L, György A, Lupu EC (2018) Detection of adversarial training
examples in poisoning attacks through anomaly detection. CoRR abs/1802.03041. http://arxiv.
org/abs/1802.03041

31. Paudice A, Muñoz-González L, Lupu EC (2018) Label sanitization against label flipping
poisoning attacks. In: Alzate C, Monreale A, Assem H, Bifet A, Buda TS, Caglayan B, Drury
B, García-Martín E, Gavaldà R, Kramer S, Lavesson N, Madden M, Molloy I, Nicolae M,
Sinn M (eds) ECML PKDD 2018 Workshops - Nemesis 2018, UrbReas 2018, SoGood 2018,
IWAISe 2018, and Green Data Mining 2018, Dublin, September 10–14, 2018, Proceedings,
Lecture Notes in Computer Science, vol 11329. Springer, pp 5–15

32. Pierazzi, F, Pendlebury, F, Cortellazzi, J, Cavallaro, L (2020) Intriguing properties of adversar-
ial ML attacks in the problem space. In: 2020 IEEE symposium on security and privacy, SP
2020, San Francisco, CA, May 18–21, 2020. IEEE, pp 1332–1349

33. Pillutla VK, Kakade SM, Harchaoui Z (2019) Robust aggregation for federated learning. CoRR
abs/1912.13445. http://arxiv.org/abs/1912.13445

34. Rajput S, Wang H, Charles Z, Papailiopoulos D (2019) Detox: A redundancy-based framework
for faster and more robust gradient aggregation. Preprint. arXiv:1907.12205

35. Shafahi A, Huang WR, Najibi M, Suciu O, Studer C, Dumitras T, Goldstein T (2018) Poison
frogs! targeted clean-label poisoning attacks on neural networks. Preprint. arXiv:1804.00792

36. Shah D, Dube P, Chakraborty S, Verma A (2021) Adversarial training in communication
constrained federated learning. Preprint. arXiv:2103.01319

37. Shen L, Margolies LR, Rothstein JH, Fluder E, McBride R, Sieh W (2019) Deep learning to
improve breast cancer detection on screening mammography. Sci Rep 9(1):1–12

38. Sohn Jy, Han DJ, Choi B, Moon J (2019) Election coding for distributed learning: Protecting
signSGD against byzantine attacks. Preprint. arXiv:1910.06093

39. Sun Z, Kairouz P, Suresh AT, McMahan HB (2019) Can you really backdoor federated
learning? Preprint. arXiv:1911.07963

40. Szegedy C, Zaremba W, Sutskever I, Bruna J, Erhan D, Goodfellow IJ, Fergus R (2014)
Intriguing properties of neural networks. In: Bengio Y, LeCun Y (eds) 2nd International
conference on learning representations, ICLR 2014, Banff, AB, April 14–16, 2014, Conference
Track Proceedings. http://arxiv.org/abs/1312.6199

https://openreview.net/forum?id=rJzIBfZAb
https://openreview.net/forum?id=rJzIBfZAb
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1605.07277
http://arxiv.org/abs/1802.03041
http://arxiv.org/abs/1802.03041
http://arxiv.org/abs/1912.13445
http://arxiv.org/abs/1312.6199

390 A. Rawat et al.

41. Tolpegin V, Truex S, Gursoy ME, Liu L (2020) Data poisoning attacks against federated
learning systems. In: European symposium on research in computer security. Springer, pp
480–501

42. Varma K, Zhou Y, Baracaldo N, Anwar A (2021) Legato: A layerwise gradient aggregation
algorithm for mitigating byzantine attacks in federated learning. In: 2021 IEEE 14th
international conference on cloud computing (CLOUD)

43. Wang H, Sreenivasan K, Rajput S, Vishwakarma H, Agarwal S, Sohn Jy, Lee K, Papailiopoulos
D (2020) Attack of the tails: Yes, you really can backdoor federated learning. Preprint.
arXiv:2007.05084

44. Xiao H, Xiao H, Eckert C (2012) Adversarial label flips attack on support vector machines.
In: Raedt LD, Bessiere C, Dubois D, Doherty P, Frasconi P, Heintz F, Lucas PJF (eds) ECAI
2012 - 20th European conference on artificial intelligence. Including prestigious applications
of artificial intelligence (PAIS-2012) System demonstrations track, Montpellier, August 27–31,
2012, Frontiers in artificial intelligence and applications, vol 242. IOS Press, pp 870–875

45. Xie C, Koyejo O, Gupta I (2018) Generalized byzantine-tolerant SGD. Preprint.
arXiv:1802.10116

46. Xie C, Huang K, Chen PY, Li B (2019) Dba: Distributed backdoor attacks against federated
learning. In: International conference on learning representations

47. Xie C, Koyejo O, Gupta I (2019) Fall of empires: Breaking byzantine-tolerant SGD by inner
product manipulation. In: Globerson A, Silva R (eds) Proceedings of the thirty-fifth conference
on uncertainty in artificial intelligence, UAI 2019, Tel Aviv, Israel, July 22–25, 2019. AUAI
Press, p 83. http://auai.org/uai2019/proceedings/papers/83.pdf

48. Xie C, Koyejo S, Gupta I (2019) Zeno: Distributed stochastic gradient descent with suspicion-
based fault-tolerance. In: International conference on machine learning. PMLR, pp 6893–6901

49. Yin D, Chen Y, Ramchandran K, Bartlett P (2018) Byzantine-robust distributed learning:
Towards optimal statistical rates. Preprint. arXiv:1803.01498

50. Zizzo G, Rawat A, Sinn M, Buesser B (2020) Fat: Federated adversarial training. Preprint.
arXiv:2012.01791

http://auai.org/uai2019/proceedings/papers/83.pdf

Chapter 17
Dealing with Byzantine Threats to Neural
Networks

Yi Zhou, Nathalie Baracaldo, Ali Anwar, and Kamala Varma

Abstract Messages exchanged between the aggregator and the parties in a feder-
ated learning system can be corrupted due to machine glitches or malicious intents.
This is known as a Byzantine failure or Byzantine attack. As such, in many federated
learning settings, replies sent by participants may not be trusted fully. A set of
competitors may work collaboratively to detect fraud via federated learning where
each party provides local gradients that an aggregator uses to update a global model.
This global model can be corrupted when one or more parties send malicious
gradients. This necessitates the use of robust methods for aggregating gradients
that mitigate the adverse effects of Byzantine replies. In this chapter, we focus
on mitigating the Byzantine effect when training neural networks in a federated
learning setting with a focus on the effect of having parties with highly disparate
training datasets. Disparate training datasets or non-IID datasets may take the form
of parties with imbalanced proportions of the training labels or different ranges
of feature values. We introduce several state-of-the-art robust gradient aggregation
algorithms and examine their performances as defenses against various attack
settings. We empirically show the limitations of some existing robust aggregation
algorithms, especially under certain Byzantine attacks and when parties admit non-
IID data distributions. Moreover, we show that LayerwisE Gradient AggregaTiOn
(LEGATO) is more computationally efficient than many existing robust aggregation
algorithms and more generally robust across a variety of attack settings.

Y. Zhou (�) · N. Baracaldo · A. Anwar
IBM Research – Almaden, San Jose, CA, USA
e-mail: yi.zhou@ibm.com; baracald@us.ibm.com; ali.anwar2@ibm.com

K. Varma
University of Maryland, College Park, MD, USA
e-mail: kvarma@umd.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_17

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_17&domain=pdf
mailto:yi.zhou@ibm.com
mailto:baracald@us.ibm.com
mailto:ali.anwar2@ibm.com
mailto:kvarma@umd.edu
https://doi.org/10.1007/978-3-030-96896-0_17

392 Y. Zhou et al.

17.1 Background and Motivation

In this section, we aim to provide more background information about non-IID
party distributions and their associated challenges one may face when dealing with
Byzantine threats.

As discussed in the introduction chapter, in a federated learning system, parties
will collect and maintain their own training datasets and no training data samples
will leave their owners. Parties therefore collect their training data samples from dif-
ferent data sources. For example, in a federated learning task involving collaboration
among multiple hospitals, the local training data distribution may be affected by the
speciality of the hospital, which might lead to heterogeneous local distribution. For
instance, pediatric medical centers have more younger patients and general hospitals
have more adult patients. Another example will be considering a federated learning
system with multiple cellphones as parties trying to train an image recognition
model using the photos stored with their phones to identify animals. Cellphone
owners having a dog as a pet would have more dog pictures in their local training
datasets, whereas cat owners would have more cat pictures.

As one of the key features for federated learning, heterogeneous local data
distribution has raised challenges even for basic federated learning settings. It
significantly affects the global model’s performance and hence has motivated a new
line of research addressing this issue, see, e.g., [6, 10, 18], and the references therein.
However, the situation is even more complicated in a real-world scenario since there
can be Byzantine threats presented in a federated learning system.

17.1.1 Byzantine Threats

Our goal in this section is to formally define Byzantine threats potentially present in
a federated learning system. In particular, we discuss Byzantine failures and Byzan-
tine attacks, which both aim at diminishing the final global model’s performance.

We formally define Byzantine failures [8] as scenarios in a federated learning
system when one or more parties have malfunctions in their computing devices or
have encountered communication errors and consequently send corrupted informa-
tion to the aggregator, which may compromise the quality of the global model. As
shown in Fig. 17.1, consider a federated learning system with n parties where at
t-round the reply from party P2 received by the aggregator is corrupted as colored
in red. Such a Byzantine failure may occur unintentionally or may be executed in
the form of an attack, which we refer to as a Byzantine attack. Malicious entities
intentionally corrupt an FL system by providing strategically dishonest replies.
This powerful attack can be performed by only a single party like P2 in Fig. 17.1
and can adversely affect indefinite numbers of models that are used in sensitive
areas such as healthcare, banking, personal devices, and so on. We refer the party
unintentionally sending inaccurate replies or intentionally performing Byzantine

17 Dealing with Byzantine Threats to Neural Networks 393

Fig. 17.1 A federated learning system with n parties where the second party’s reply encounters
Byzantine failure

attacks as a Byzantine party. The goal of Byzantine attacks is to produce a final
global model with poor performance, usually referring to bad accuracy and F1
scores, and hence breaking the FL collaboration. A class of robust aggregation
algorithms (a.k.a. robust fusion algorithms) have been introduced to defend against
Byzantine attacks, in particular, mitigating the bad effects of those attacks and
ensuring a final global model with good performance.

Now, we are ready to formally introduce two well-known Byzantine attacks that
can happen in a federated learning system.

Gaussian Attack This type of Byzantine attack, first introduced in [20], can be
performed by a single party in a federated learning system and does not need any
collaboration among Byzantine parties. Parties performing this attack will randomly
sample their replies from a Gaussian distribution, N(μ, σ 2 ∗ I), and its probability

density function is 1
σ

exp{−(x−μ)2/2σ 2}
2π

, where μ and σ are the mean and the standard
deviation respectively, regardless of their local training datasets.

Fall of Empires Attack Proposed in [22], it is designed to break robust aggregation
algorithms like Krum [1] and coordinate-wise median (CWM) [23]. It requires a
minimum number of Byzantine parties, which depends on the robust algorithms,
to collaboratively construct the attack. Moreover, it belongs to the class of perfect
knowledge attacks defined in Chap. 16, Security and Robustness in Federated
Machine Learning, which assumes that the Byzantine parties know the replies sent
by the honest parties. Let vi, i = 1, ..., m, be the replies sent by m honest parties.
The malicious replies, uj , sent by the Byzantine parties who perform the Fall of

394 Y. Zhou et al.

Empires attack can be formulated as

u1 = u2 = ... = un−m = − ε

m

m∑

i=1

vi, (17.1)

where ε is a real non-negative factor that depends on the lower and upper bounds of
the distances between each reply. A detailed definition of this attack can be found
in Chap. 16.

17.1.2 Challenges of Mitigating the Effects of Byzantine
Threats

The aforementioned Byzantine attacks are very powerful. We can see from Fig. 17.2
that Gaussian attacks with larger σ values create more damage to the global model’s
performance, i.e., resulting in a global model with poorer test accuracy.

Krum and CWM are proven to successfully identify the malicious Byzantine
parties in the setting where parties have independent identically distributed (IID)
local datasets (see Fig. 17.3). Besides the IID scenario, we also examine their
performances as defenses against Byzantine attacks when parties have heteroge-

Fig. 17.2 This experiment involves 25 parties with 1000 IID data points from MNIST. We
compare the performance of gradient averaging where 4 Byzantine parties execute a Gaussian
attack with μ = 0 and varying σ . Here, we use a mini-batch size of 50 and a learning rate of 0.05

17 Dealing with Byzantine Threats to Neural Networks 395

Fig. 17.3 This experiment involves 25 parties with 1000 data points randomly sampled from
MNIST for an IID setting and 1000 points containing only 1 label per party for a non-IID setting,
respectively. We compare the performance of gradient averaging, Krum, and coordinate-wise
median where 4 Byzantine parties execute a Gaussian attack with μ = 0 and σ = 20. Here
we use a mini-batch size of 50 and a learning rate of 0.05

neous data distributions, which is a characteristic of FL [12]. From Fig. 17.3,
we can see that they failed significantly when parties have heterogeneous local
datasets. It can also be shown that even without any Byzantine attacks these robust
aggregation algorithms cannot guarantee a global model with good performance
under heterogeneous party data distributions. We will cover the details of these two
robust algorithms in Sects. 17.2.3 and 17.2.4.

So far, we have shown empirically that several well-known fusion algorithms
cannot defend against Byzantine attacks, especially in the non-IID setting. We want
to conclude this section with opportunities and challenges we may have in this area.

Challenge One Can a robust aggregation algorithm smartly detect whether a
party sending a “different” reply is a malicious party or a benign party with an
unrepresentative local data distribution?

Challenge Two Can a robust aggregation algorithm train a global model under the
non-IID local data distribution setting with reasonable performance?

Challenge Three Can a robust aggregation algorithm utilize all the information
collected from parties to diagnose the parties’ behaviors?

Different layers of a neural networks have different functionality and may behave
different toward different input data samples. We may use this fact when dealing

396 Y. Zhou et al.

with the training of neural networks in a federated learning setting under Byzantine
threats. We will propose a promising approach to largely mitigate the Byzantine
threats, especially in the non-IID setting, for training neural networks in a federated
learning system. But, we will first discuss gradient averaging, Krum, and CWM
from a theoretical perspective and point out the drawbacks of these algorithms in
our next section.

17.2 Gradient-Based Robustness

In this section, we briefly introduce a class of popular algorithms widely used for
training neural networks in federated learning systems. In particular, parties will
share gradients as model updates computed on their local datasets and the aggregator
will use the collected gradients to updates the global model.

We first start with the basic gradient averaging algorithm in Sect. 17.2.1, and then,
after introducing the threat model, we move on to gradient-based robust algorithms.
Existing approaches to perform robust gradient aggregation can be classified into
two different directions: (1) robust statistics and (2) anomaly detection. Examples
of algorithms using robust statistics include CWM, trimmed mean [23], and their
variants [2, 3, 7, 15, 20]. Krum [1] and other algorithms, e.g., [5, 13, 14, 16, 19, 21],
exploit certain metrics like the 2 distance of the collected gradients to perform
anomaly detection. In this section, we will take a close look at CWM (Sect. 17.2.3)
and Krum (Sect. 17.2.4) since they are the most popular state-of-the-art robust
aggregation algorithms in the literature.

17.2.1 Gradient Averaging

Very similar to FedAvg proposed in [12], the gradient averaging algorithm is a
“distributed” version of (mini-batch) stochastic gradient descent. Instead of sharing
local model weights like in FedAvg, the gradient averaging algorithm requires
parties to share gradients. In particular, the gradient averaging algorithm requires
the aggregator to request the gradient information from all registered parties at
each round, which they compute based on their local datasets and the global
model’s weights, and then a simple averaging aggregation is performed over the
collected gradients. The global model’s weights are then updated by a gradient
descent step using the resulting aggregated gradient and a predefined learning
rate. Algorithm 17.1 shows the basic algorithmic schema of the gradient averaging
algorithm.

It should be pointed out that in Line 7 of Algorithm 17.1, there is a simple
average of the collected gradients, and however, one can employ a more involved
aggregation step, for example, performing a weighted average of collected gradients

17 Dealing with Byzantine Threats to Neural Networks 397

Algorithm 17.1 The gradient averaging algorithm
Input: Initial weight vector w0, maximum global round K , a learning rate policy
{ηk}, training batch-size B, and (Optional) a target accuracy ε.

1: procedure: Aggregator (w0,K, η, ε)

2: for round k = 1, . . . , K do
3: if (Optional) current global model reaches the target accuracy ε then
4: return wk

5: else
6: Query party i ∈ P with the current global model weights wk−1 for its

current gradient gi
k .

7: wk = wk−1 − ηk
1
|P|

∑
i∈P gi

k

8: end if
9: end for

10: return wK

11: end procedure
12: procedure: Party (B,w)

13: Initialize the local model with w0 = w

14: g = ∇(w0;B) { denotes the loss function.}
15: return g

16: end procedure

where the weights depend on the parties’ local training dataset size. This is the same
weighing approach used by FedAvg in [12].

Recently, the researchers have developed more robust aggregation methods to
fuse the collected information from parties in an FL system. A majority of them are
motivated by potential Byzantine threats presented in the FL system. We will discuss
several state-of-the-art robust gradient aggregation algorithms in the following
sections.

17.2.2 Threat Model

We first describe the threat model we assume throughout the rest of the chapter.
We assume that the aggregator is honest and follows a provided procedure to detect
malicious or erroneous gradients received and aggregate the gradients to update the
global model iteratively during the training process. Parties may be dishonest and
may try to provide gradient updates designed to evade detection. We also assume
that malicious parties may collude and can obtain access to gradients of other
parties to perform those attacks. Under this threat model, we will assess all fusion
algorithms discussed within this chapter.

398 Y. Zhou et al.

17.2.3 Coordinate-Wise Median

Coordinate-wise median [23] (cf. Algorithm 17.2) is very similar to gradient
averaging except for Line 6 where instead of computing the average of the collected
gradients, it computes the coordinate-wise median of all collected gradients. From
[23], the definition of coordinate-wise median is as the following:

For vectors xi ∈ R
d , i ∈ [m], the coordinate-wise median g := med{xi : i ∈ [m]} is a

vector with its k-th coordinate being gk = med{xi
k : i ∈ [m]} for each k ∈ [d]}, where med

is the usual (one-dimensional) median.

Algorithm 17.2 The coordinate-wise median algorithm
Input: Initial weight vector w0, maximum global round K , a learning rate policy
{ηk}, training batch-size B, and (Optional) a target accuracy ε.

1: procedure: Aggregator (w0,K, η, ε)

2: for round k = 1, . . . , K do
3: if (Optional) current global model reaches the target accuracy then return

wk

4: else
5: Query party i ∈ P with the current global model weights wk−1 for its

current gradient gi
k .

6: gk = med{gi
k : i ∈ P}

7: wk = wk−1 − ηkgk

8: return wK

9: end if
10: end for
11: end procedure
12: procedure: Party (B,w)

13: Initialize the local model with w0 = w

14: g = ∇(w0;B) { denotes the loss function.}
15: return g

16: end procedure

CWM requires the following assumptions for each loss function fi and the
overall generalization loss function F . It also requires the gradient of the loss
function fi of party i ∈ P.

Assumption 1 (Smoothness of fi and F) For any training data sample, assume the
k-th coordinate of the partial derivative of fi with respect to the weight vector w is
Lk-Lipschitz for each k ∈ [d] and each loss function fi is L-smooth. Also assume
that the generalization loss function F(·) := Ez∼D[f (w; z)] is LF -smooth, where
D denotes the overall data distribution across parties.

17 Dealing with Byzantine Threats to Neural Networks 399

Assumption 2 (Bounded Variance of Gradients) For any w ∈ W, Var(∇fi(w)) ≤
V 2,∀i ∈ P.

Assumption 3 (Bounded Skewness of Gradients) For any w ∈ W, ‖γ (∇fi(w))‖∞
≤ S,∀i ∈ P, where γ (X) := E[X−E(x)]3

Var(X)3/2 is the absolute skewness of the vector X.

These assumptions are satisfied usually in the case where the parties’ local data
distribution is IID and the potential noise added during the data collection process
is also IID. However, it will not hold for the non-IID case where parties have
heterogeneous data resources.

17.2.4 Krum

In [1], Krum chooses party gradients to aggregate using the choice function
Kr(X1, X2, . . . , Xn), which is defined as follows. For each party i, let us denote
s(i) = ∑

i→j,i �=j ‖Xi − Xj‖2, where i → j denotes the set of vectors that are the
n − t − 2 closest vectors to Xi and t is the maximum number of Byzantine parties
in the federated learning system. Additionally, Kr(X1, X2, . . . , Kn) := Xi∗ , where
s(i∗) ≤ s(i),∀i ∈ P.

Algorithm 17.3 The Krum algorithm
Input: Initial weight vector w0, maximum global round K , a learning rate policy
{ηk}, training batch-size B, and (Optional) a target accuracy ε.

1: procedure: Aggregator (w0,K, η, ε)

2: for round k = 1, . . . , K do
3: if (Optional) current global model reaches the target accuracy then return

wk

4: else
5: Query party i ∈ P with the current global model weights wk−1 for its

current gradient gi
k .

6: gk = Kr(g1
k , g

2
k , . . . , g

|P|
k)

7: wk = wk−1 − ηkgk

8: return wK

9: end if
10: end for
11: end procedure
12: procedure: Party (B,w)

13: Initialize the local model with w0 = w

14: g = ∇(w0;B) { denotes the loss function.}
15: return g

16: end procedure

400 Y. Zhou et al.

As shown in Algorithm 17.3, assuming that the maximum number of Byzantine
parties is 0 ≤ t ≤ n, Krum [1] can evade Byzantine attacks. Specifically, Krum
enables the aggregator to only use a single party’s gradients to update the global
model in a global training round, rather than computing an aggregated gradient that
incorporates all parties’ gradients. The Krum choice function is called in Line 6
to choose a party at every round which is deemed the most trustworthy by having
the smallest 2 distance with respect to all other parties’ gradients. In other words,
its local gradient is the most similar to all other local gradients. Since the Krum
choice function requires the summation of at least n − t − 2 number of closest
distances for each party, Krum enforces a limitation of minimum number of parties
in a federated learning system to be at least 5. Therefore, it will not work for small
federations of less than 5 parties. Moreover, similar to CWM, Krum assumes that the
gradient vectors gi

k proposed by the benign parties are IID random vectors, which
might not be true for the case where parties have non-IID local data distributions.
The computational complexity required by Krum is also much higher than gradient
averaging which is only O(dn).

The time complexity of the Krum Function Kr(X1, . . . , Xn), where X1, . . . , Xn are d-
dimensional vectors, is O(n2(d + log n)).

We can conclude that all the abovementioned algorithms reject gradients that are
assumed to be Byzantine under the assumption that a collected gradient is dishonest
if it is comparatively more distant than the other gradients are to each other. One
weakness of all aforementioned solutions is that they require bounds on the variance
of the honest gradients [4], which has been shown unknown in practice and has been
exploited through attack strategies such as the Fall of Empires attack [22].

17.3 Layerwise Robustness to Byzantine Threats

As we conclude from Sect. 17.2, many robust aggregation algorithms utilize some
form of “outlier detection” to identify and filter out potential Byzantine gradients
based on the assumption that in comparison to Byzantine gradients honest gradients
will be “similar.” However, it is not hard to find out that the similarity among
gradients is closely related to the individual party’s local distribution. Let us use
a simple example to illustrate this statement. We can see in Fig. 17.4 that there are
two clusters which correspond to two classes in a classification problem, blue and
orange. In the case where each party has only one class label in its local training
dataset, the gradient sent by a party will pull the gradient descent direction toward
its own local data cluster (distribution). The relative similarity of gradients will
decrease as the similarity of their local distributions decreases. For simplicity, we
now refer to parties owning the blue class as the blue team and those owning orange
class as the orange team. Once the robust aggregation algorithm, such as Krum, has
decided the gradients sent by the blue team are benign, which often happens when
there are more parties in the blue team in the FL system, it will eliminate gradients

17 Dealing with Byzantine Threats to Neural Networks 401

Fig. 17.4 Two-dimensional data distribution with two clusters

Table 17.1 List of trainable
layers of a simple CNN

Order Layer Parameters Dimension

1 conv1 Weights 288

Biases 32

2 conv2 Weights 18, 432

Biases 64

3 dense1 Weights 1, 179, 648

Biases 128

4 dense2 Weights 1280

Biases 10

sent by parties from the orange team. This is because these gradients lie far away
from replies sent by the blue team and are considered “malicious.” In this case, the
global model will always be updated based on gradients sent by the blue team and
hence predict accurately for blue class, but not for the orange class since the model
never gets to see gradients computed based on data samples from the orange class.

Instead of eliminating any gradient that seems to be malicious, we consider
the problem of mitigating Byzantine threats via evaluating the reaction of a
neural network layer when under certain Byzantine attacks. We hence conduct a
preliminary study to verify our conjecture that different layers of a neural network
will behave differently under a Byzantine attack. In this study, we construct an
FL system with ten parties to collaboratively train a convolutional neural network
(CNN) with two convolutional layers and dense layers, which we refer to as
conv1, conv2, dense1, and dense2. We list the trainable layer weights and biases
in Table 17.1. Notice that we separate the weights and biases from the same layer,
since based on our experiment results (see Fig. 17.5), they behave differently toward

402 Y. Zhou et al.

Fig. 17.5 Normalized 2 norms associated with the biases of the first convolutional layer and the
weights of the first dense layer. This experiment involves ten workers with 1000 IID data points
from MNIST. We compare results with and without two Byzantine workers executing a Gaussian
attack with μ = 0 and σ = 200

Gaussian attacks. Each party has 1000 data points randomly drawn from the MNIST
dataset [9] and thereby the parties’ local distributions are IID.

Before we discuss the details of our experimental study and key observations
from this study, we first provide the notation used throughout the rest of this chapter.

Notation We use n to represent the total number of parties in an FL system. To
denote the d-dimensional gradients of party p for layer l at global training round k,
we use gk

p,l ∈ R
d . We use L to denote the total number of layers in a neural network.

To denote the complete set of gradients of a party p at round k, we use Gk
p. Finally,

we use Gk to represent a list of collected party gradient vectors at round k.
Since the parties’ local data distribution is IID, we expect local gradients sent

by each party to be relatively similar. Therefore, in our study, we use the 2 norm
to measure the difference among them. In particular, at round k, we compute the
normalized 2 norm of a specific layer, P k

l as follows:

P k
l ← ‖ [gk

1,l , g
k
2,l , ..., g

k
n,l] ‖2∑n

p=1 xp

, (17.2)

17 Dealing with Byzantine Threats to Neural Networks 403

where xp is the norm of the current gradient of the party p, i.e., xp =‖<
gk

p,0, g
k
p,1, . . . , g

k
p,L >‖2, and [gk

1,l , g
k
2,l , ..., g

k
n,l] denotes a matrix with the p-th

row being the l-th layer of party p’s current gradient. We compute these normalized
2 norms across all of ten total parties at each round and compare the results between
the layer weights and biases over time. We run our experiment in two settings, one
of which is a normal FL training without any attack and the other is an FL training
with two out of ten Byzantine parties. These Byzantine parties execute a Gaussian
attack by sending gradients that are randomly sampled from a Gaussian distribution,
N(0, 2002I), which we take from [20].

Figure 17.5 compares the results for two layer parameters’ gradients under non-
attack and Byzantine attack scenarios. In absence of the Byzantine attack, the bias
gradients from the first convolutional layer have similar 2 norms to the weight
gradients from the first dense layer until around round 150. Then, the convolutional
bias gradients’ 2 norms become clearly larger and more varied across rounds than
the weights of the first dense layer. However, even after 150 rounds, we can see that
the normalized 2 norm does not vary too much when there are no Byzantine parties
in the FL system. And hence we confirm our previous statement that local gradients
sent by each party tend to be relatively similar even at the layer level when they have
IID local data distribution.

We further study the similarity at a layer level with the inclusion of Byzantine
gradients. In the Byzantine case, the convolutional bias norms start to even more
decisively exceed the dense weight norms even earlier in training. While the
variance of the dense layer 2 norms across rounds is comparably small in both
settings, the variance in the convolutional layer norms is significantly amplified
with the addition of Byzantine workers. These patterns demonstrate the fact that the
gradient variance imposed by the Byzantine workers is more drastically affecting
the convolutional bias gradients than the dense weights. They also have larger and
more varied norms across rounds in the attack and non-attack settings separately.
Therefore, we conclude more generally that the layers whose gradient norms
vary more across rounds have greater inherent vulnerability that is more intensely
exploited by Byzantine attacks.

17.4 LEGATO: Layerwise Gradient Aggregation

We introduce a new robust gradient aggregation method, which utilizes a layerwise
robustness factor to reweigh collected gradients, for training neural networks in a
federated learning setting. It is inspired by the observations of the preliminary study
in Sect. 17.3. This new robust algorithm is called LayerwisE Gradient AggregatTiOn
(LEGATO) [17]. The goal of LEGATO is to be able to mitigate the effect of
erroneous or malicious gradients while preserving potential useful information
collected from parties owning rare training data samples.

404 Y. Zhou et al.

Algorithm 17.4 Federated learning with LEGATO
Input: Initial weight vector w0, maximum global round K , a learning rate policy
{ηk}, training batch-size B.

1: procedure: Aggregator (w0,K, {ηk})
2: for round k = 1, . . . , K do
3: Gk ← new list
4: Query party p ∈ P with the current global model weights wk−1 for its

current gradient Gk
p and add it to Gk

5: Gk
agg = LEGATO(Gk) {Aggregates gradients as in Algorithm 17.5}

6: wk = wk−1 − ηkGk
agg

7: end for
8: end procedure
9: procedure: Party (B,w)

10: Initialize the local model with w0 = w

11: g = ∇(w0;B) { denotes the loss function.}
12: return g

13: end procedure

17.4.1 LEGATO

Before we present the details about the LEGATO algorithm, we first describe a
basic federated learning process in Algorithm 17.4. In this FL setting, we adopt
the scheme of the mini-batch stochastic gradient descent method for parties to
compute the local gradients and for the aggregator to update the global model via the
aggregated gradients. In particular, an aggregator will iteratively request all parties
in the system to send their current gradients computed based on the shared global
model weights and their local datasets as shown in Line 4 of Algorithm 17.4. It
then aggregates the collected gradients via some robust aggregation method, e.g.,
LEGATO, in Line 5 and update the global model via a gradient descent step using
the aggregated gradient as shown in Line 6. It needs to be pointed out that we
solely consider a synchronous setting, meaning the aggregator will wait until it
receives responses from all queried parties. The aggregator also keeps a log of
the most recent past gradients from all parties. At round k, the log is denoted by
GLog := [Gk−m,Gk−m+1, . . . ,Gk−1], where m is the maximum size of the log.

LEGATO starts when the aggregator receives gradients from all parties at each
round of training. First, the aggregator updates the gradient log, GLog, so that it
contains the most recent m gradients collected from all parties. In Lines 7–11, the
aggregator exploits the gradient log GLog to compute the layerwise normalized 2
norms P k

l for layer l at round k in the same way as (17.2). It then computes the
reciprocal of the standard deviation of these norms across all logged rounds as a
robustness factor that is assigned to each layer and normalized across all layers (see
Lines 13–14). These steps are inspired by the observations from the experimental

17 Dealing with Byzantine Threats to Neural Networks 405

Algorithm 17.5 LEGATO. An aggregation algorithm to aggregate gradients at
round k

Input: Current round number k, a list of current parties’ gradients Gk =
[Gk

1,G
k
2, . . . ,G

k
n], and a log of recent past party’s gradients with maximum size

m GLog := [Gk−m,Gk−m+1, . . . ,Gk−1].
1: procedure: Aggregator)(k,Gt)

2: if k = 1 then
3: Initialize an empty log GLog
4: else
5: UpdateGradientLog(GLog, Gt)
6: end if
7: for Gk in GLog and each party p in P do
8: xp =‖ Gk

p ‖2
9: end for

10: for each layer l do

11: P k
l ← ‖[gk

1,l ,g
k
2,l ,...,g

k
n,l]‖2

‖[x0,x1,...,xn]‖1
12: end for
13: for each layer l do
14: wl ← Normalize(1√

Var(P 1
l ,...,P k

l)
)

15: end for
16: for p in P and each layer l do
17: G∗

p,l ← wlG
k
p,l + 1−wl

m−1

∑m−1
j=1 G

k−j
p,l

18: end for
19: return

∑
p∈P G∗

p,l

20: end procedure
21: procedure: UpdateGradientLog(GLog, Gk)

22: GLog ← GLog+ Gk

23: if len(GLog) > m then
24: GLog ← GLog[1 :]
25: end if
26: end procedure

study conducted in Sect. 17.3 that the less the 2 norms vary across rounds, the
more robust a layer is. In Line 17, each party’s gradient information is updated as a
weighted sum of the average of the party’s historic gradients and its current gradient
vector. The weights are chosen as a function of the robustness factor per layer that
allows the updates of less robust layers to rely more heavily on the average of past
gradients. Finally, all of these reweighed gradients are averaged across all parties at
Line 19, and the result is used as round k’s aggregated gradient, Gt

agg .
LEGATO is robust and also stretches the aggregator’s ability to utilize as much of

the information provided by the parties as possible. On the one hand, this reweighing

406 Y. Zhou et al.

strategy in Line 19 is ultimately dampening the noise across gradients that may be
a result of a Byzantine attack, with the goal of mitigating the Byzantine gradients’
effect of pulling the aggregated gradient away from an honest value. On the other
hand, the fact that it applies this dampening step at the most vulnerable layers
allows reliable layers’ current gradients, which are most accurate, to still weigh
heavily into the aggregated gradient, and hence limits the sacrifice of convergence
speed that could result from using past gradients. Furthermore, the online robustness
factor computation allows LEGATO to generalize to a variety of model architectures
because it adopts online factor assignments rather than relying on an absolute
quantification of robustness. As is evidenced in [24], the knowledge of layerwise
robustness varies between architectures, so an online and model-agnostic approach
is more desirable.

17.4.2 Complexity Analysis of LEGATO

Due to its simplicity, gradient averaging is one of the most efficient gradient
aggregation algorithms. It has computational complexity that is linear in terms of
n. Other robust algorithms that utilize robust statistics have similar computational
complexity, for example, coordinate-wise median.

Recall that we assume that there are n parties in a federated learning system
and each neural network layer has at most d dimension. Proposition 17.1 states
that LEGATO has time complexity O(dn + d), which is also linear in n. This is a
crucial improvement that LEGATO has over state-of-the-art robust algorithms such
as Krum [1] and Bulyan [13] whose time complexities are O(n2).

Proposition 17.1 LEGATO has time complexity O(dn + d).

Proof First, for each logged round at each layer, the aggregator computes the 2
norms of each worker’s gradients, which has time complexity O(dn). Then, for each
logged round at each layer, the aggregator computes the 2 norm of the matrix of
the party’s gradients and normalizes it by dividing by the 1 norm of all parties’ 2
gradient norms, which adds time complexity of O(dn). The step that computes the
standard deviation across these normalized round 2 norms for each layer incurs a
time complexity of O(dn). Next, the aggregator normalizes the reciprocals of the
standard deviations corresponding to each layer induces O(d). It then computes
the average of logged gradients from each worker at each layer, which is O(dn).
Lastly, workers computes a weighted average of the gradients with the weight vector
assigned by the workers, ends up with a time complexity of O(dn).

Note that iterating through each individual layer of gradients does not add a
factor of l to the time complexity because d encompasses all gradients at all layers.
Therefore, iterating through all gradients by layer is O(d) and iterating through all
gradients in a flattened vector is also O(d).

In conclusion, summing up the time complexity of all steps, the resulting time
complexity of O(dn + d) follows immediately. ��

17 Dealing with Byzantine Threats to Neural Networks 407

LEGATO’s space complexity is formalized in the following proposition.

Proposition 17.2 LEGATO has space complexity O(dmn), where m is the selected
log size for LEGATO.

Proof LEGATO’s maintenance of a gradient log stores m past gradients from each
party which introduces a space requirement of O(dmn). ��

17.5 Comparing Gradient-Based and Layerwise Robustness

In this section, we evaluate LEGATO’s performance against Krum [1] and
coordinate-wise median (CWM) [23] under a variety of non-attack and attack
settings in Sects. 17.5.1 and 17.5.2, respectively. We also demonstrate the potential
advantages of LEGATO over gradient averaging (see Algorithm 17.1) in an
overparameterized neural network setting.

Through numerical experiments, we can make the following claims:

• In settings without strictly bounded honest gradient variance, which we demon-
strate through experiments with non-IID data, LEGATO is more robust than
Krum and CWM.

• LEGATO has the best performance of the three algorithms in the absence of a
Byzantine attack in both IID and non-IID settings.

• Considering two attack settings we test against LEGATO is generally the most
robust of the three robust aggregation algorithms.

Throughout this section, we use the IBM Federated Learning library [11] to con-
duct our numerical experiments. We use a standard datasets: MNIST handwritten
digits for our experiments. All experiments train a global model in an FL system
with 25 parties where each party’s training data points are randomly sampled either
across the entire dataset (in the IID setting) or across only one class each (in the
non-IID setting, the same as in [25]). Parties use mini-batch technique to compute
the gradient based on its local dataset before responding to the aggregator’s request
at every global training round. The global model for MNIST is a simple CNN with
two convolutional layers, one dropout and two dense layers. We use 10 as the size
of the log/history of past gradients. Considering we use a nearly balanced global
test set to evaluate the global model’s performance, we use accuracy across global
training rounds as a performance metric, which would be comparable to F1 score in
these experiments.

17.5.1 Dealing with Non-IID Party Data Distributions

Many robust aggregation algorithms assume that gradients collected from the honest
parties are bounded (see the details in Sects. 17.2.3 and 17.2.4). However, this may

408 Y. Zhou et al.

Fig. 17.6 MNIST dataset, non-IID setting, where each party has 1000 training images. All
algorithms use mini-batch size of 50 and a learning rate of 0.05

not be necessarily true in the non-IID setting where each party only has some labels,
in particular one label in our experimental setting, in its local training dataset.

In Fig. 17.6, we can see that Krum and CWM perform poorly in the non-
IID setting without any attack presented. In fact, they falsely identify the benign
gradients from parties owning different local distributions as Byzantine replies. In
contrast, LEGATO, independent of the aforementioned assumption, performs fairly
well in such non-IID setting.

17.5.2 Dealing with Byzantine Failures

In this section, we consider the case where there are possible Byzantine attacks in
the FL system. In particular, we evaluate the performances of LEGATO, Krum, and
CWM under the following Byzantine attacks:

Fall of Empires For Krum, we create 11 Byzantine parties out of a total of 25
parties in the FL system, and we use ε = 0.001, following a similar attack setting
as in [22].

Gaussian Attacks In our experiments, we set μ = 0 and vary the selection of σ to
be either relatively large or relatively small.

17 Dealing with Byzantine Threats to Neural Networks 409

Fig. 17.7 MNIST dataset, IID setting, where each party has 1000 training images. All algorithms
use mini-batch size of 50 and a learning rate of 0.05

17.5.2.1 Defense Against Fall of Empires

We first study the case when the Fall of Empires attack is presented. Figure 17.7
shows results for robust algorithms against the Fall of Empires attack for training
on MNIST dataset. As it can be seen in the figure, the Fall of Empires attack is
effective against Krum, but not against LEGATO or gradient averaging. The reason
behind this is that all Byzantine gradients in this attack are the same and hence
form a large cluster. Therefore, Krum identifies these Byzantine parties’ gradients
as being more trustworthy and will use them to update the global model. The Fall
of Empires attack takes advantage of Krum’s reliance on the assumption that honest
gradients are sufficiently clumped [4] and a similar effect is shown for the CWM
algorithm.

17.5.2.2 Defense Against Gaussian Attacks

Let us investigate the performances of three robust algorithms under Gaussian
attacks with different magnitudes of variance.

As we can see from Fig. 17.8, Krum and CWM perform almost similarly for
both cases where the variance of the Byzantine attacks varies from 20 to 100. They
cannot distinguish between Byzantine gradients and the benign gradients sent from
parties owning different local distributions. Recall that both Krum and CWM require
the assumption that benign gradients look “alike”; in other words, the gradients
sent from the parties are supposed to be IID. Our experimental results demonstrate
that LEGATO is independent of this assumption. LEGATO is able to obtain better
model test accuracy than Krum and CWM, despite being affected by Byzantine
parties. In particular, when the Gaussian attack uses a small variance, σ = 20,
LEGATO achieves a significant improvement in model accuracy compared to Krum
and CWM. It is also slightly better than gradient averaging, especially after 200
rounds. When σ = 100, LEGATO significantly outperforms Krum and gradient

410 Y. Zhou et al.

Fig. 17.8 MNIST dataset, non-IID setting, where each party has 1000 training images. For
Gaussian attacks, 4 out of the 25 parties are Byzantine and randomly sample gradients from
N(0, σ 2I). For all cases, the mini-batch size is 50 and the learning rate is 0.03

averaging, but only slightly exceeds CWM in terms of model accuracy after 175
rounds because the high standard deviation exploits a vulnerability LEGATO has to
extreme outliers.

17.5.3 Dealing with Overparameterized Neural Networks

Increasing the overparameterization of the model is a condition worth studying due
to its common existence in practice. In this section, we investigate a special neural
network architecture where the neural network to be trained is overparametrized.
Specifically, the global model possesses more convolutional layers and is able to
capture more information and/or noises during the training process. Our goal is to
observe if LEGATO is more robust than gradient averaging in this special case.

Figure 17.9 shows that the performance gap of LEGATO and gradient averaging
widens when more convolutional layers are added to the model architecture. As
the number of parameters increases, neural networks become more susceptible
to learning the Gaussian noise in the same way that they would become more
susceptible to learning noise in training data and over-fitting in non-attack settings.
Since LEGATO exploits the layerwise robustness factors to aggregate the collected
gradients, it is able to dampen the gradient oscillations, which resembles the effect
of regularization methods for reducing over-fitting. It is worth mentioning that the

17 Dealing with Byzantine Threats to Neural Networks 411

Fig. 17.9 Comparing the accuracy of gradient averaging and LEGATO for training a CNN with
eight convolutional model layers instead of the well-known architecture with two convolutional
layers. All algorithms use a mini-batch size of 50 and a learning rate of 0.05. Four of twenty-five
parties are Byzantine parties executing a Gaussian attack where gradients are randomly sampled
from N(0, 202I)

overall performances of LEGATO and gradient averaging drop comparing to those
training a model with two convolutional layers because overparameterized neural
networks are more vulnerable to Gaussian attacks.

17.5.4 Effectiveness of the Log Size

In this section, we examine the effect of the log size for the LEGATO algorithm, in
particular, how the log size affects LEGATO’s ability to defend against Byzantine
threats.

From Fig. 17.10, we can see that the choice of log size does not affect the model’s
performance a lot in the non-attack and Gaussian attack with small variance cases,
but in the case of Gaussian attack with high variance, the selection of log size is
quite crucial. It is reasonable that when log size is as small as five, the performance
of LEGATO will lean toward gradient averaging, while as the log size increases, the
LEGATO algorithm becomes more conservative to make a move toward the new
gradient direction. Therefore, when the log size is as large as 30, it will converge
very slowly and even oscillate around a certain point for a long time.

17.6 Conclusion, Open Problems, and Challenges

We have shown that a layerwise gradient-based robust algorithm (LEGATO)
performs better than other gradient-based robust algorithms, e.g., Krum and CWM,
for training neural networks in non-IID settings with Byzantine attacks, where a

412 Y. Zhou et al.

0.8

0.6

0.2

0.4

0.8

0.6

0.2

0.4

0.6

0.5

0.3

0.2

0.1

0.4

A
cc

ur
ac

y

A
cc

ur
ac

y

A
cc

ur
ac

y

0 50 100 150 200 250
Rounds

0 50 100 150 200 250
Rounds

0 50 100 150 200 250
Rounds

nonattack, m = 5
nonattack, m = 10
nonattack, m = 20

= 20, m = 5
= 20, m = 10
= 20, m = 20
= 20, m = 30

= 100, m = 5
= 100, m = 10
= 100, m = 20
= 100, m = 30

(a)

(b)

.

(c)

Fig. 17.10 MNIST dataset, non-IID setting, where each party has 1000 training images. For
Gaussian attacks, 4 out of the 25 parties are Byzantine and randomly sample gradients from
N(0, σ ∗ I). For all cases, the mini-batch size is 50 and the learning rate is 0.03. We vary the
log size from 5 to 30. (a) Non-attack setting. (b) Gaussian attack, σ = 20. (c) Gaussian attack,
σ = 100

party or a subset of parties aims to bring down the final model’s performance by
sending crafted malicious replies to the aggregator during the FL training process.
Although LEGATO is a first successful attempt to mitigate Byzantine threats for
training neural networks in federated learning, it is not a general algorithm that
can be applied to train all types of machine learning models in an FL setting. Other
models, like linear models, Support Vector Machines (SVMs), and XGBoost among
others, do not possess a layered architecture similar to neural networks that can be
utilized by LEGATO. One open problem in this field is determining a general robust
aggregation algorithm that can be applied to mitigating Byzantine threats even under
the non-IID local data distribution setting.

Moreover, as we can see in the case when the variance of the Gaussian attack is
very high, the effectiveness of LEGATO is largely affected, since it does not reject
any gradient information and hence is vulnerable to extreme outliers. Another open
problem in this field is finding a good way to define and identify “extreme outliers”

17 Dealing with Byzantine Threats to Neural Networks 413

according to the problem context. In particular, the procedure to define and identify
those “extreme outliers” should be data-aware, i.e., based on local data distributions
from all parties. This is a very challenging problem since it will be hard to identify
“extreme outliers” while maintaining some level of a party’s local data privacy.

References

1. Blanchard P, El Mhamdi EM, Guerraoui R, Stainer J (2017) Machine learning with adversaries:
byzantine tolerant gradient descent. Advances in Neural Information Processing Systems, p 30

2. Charikar M, Steinhardt J, Valiant G (2017, June) Learning from untrusted data. In: Proceedings
of the 49th annual ACM SIGACT symposium on theory of computing, pp 47–60

3. Chen, Y., Su, L., & Xu, J. (2017). Distributed statistical machine learning in adversarial
settings: Byzantine gradient descent. Proceedings of the ACM on measurement and analysis of
computing systems, 1(2), 1–25

4. El-Mhamdi, E. M., Guerraoui, R., & Rouault, S. (2020). Distributed momentum for byzantine-
resilient learning. arXiv preprint arXiv:2003.00010

5. Fung, C., Yoon, C. J., & Beschastnikh, I. (2018). Mitigating sybils in federated learning
poisoning. arXiv preprint arXiv:1808.04866

6. Gao D, Liu Y, Huang A, Ju C, Yu H, Yang Q (2019) Privacy-preserving heterogeneous
federated transfer learning. In: 2019 IEEE international conference on big data (Big Data).
IEEE, pp 2552–2559

7. Krishnaswamy R, Li S, Sandeep S (2018, June) Constant approximation for k-median and k-
means with outliers via iterative rounding. In: Proceedings of the 50th annual ACM SIGACT
symposium on theory of computing, pp 646–659

8. Lamport L, Shostak R, Pease M (1982) The byzantine generals problem. ACM Trans Program
Lang Syst 4(3):382–401. https://doi.org/10.1145/357172.357176

9. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86:2278–2324

10. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2018) Federated optimization in
heterogeneous networks. Preprint. arXiv:1812.06127

11. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y, Radhakrishnan J,
Verma A, Sinn M et al (2020) IBM federated learning: an enterprise framework white paper
v0. 1. Preprint. arXiv:2007.10987

12. McMahan B, Moore E, Ramage D, Hampson S, y Arcas, B. A. (2017, April) Communication-
efficient learning of deep networks from decentralized data. In: Artificial intelligence and
statistics, PMLR, pp 1273–1282

13. Guerraoui R, Rouault S (2018, July) The hidden vulnerability of distributed learning in
byzantium. In: International conference on machine learning. PMLR, pp 3521–3530

14. Muñoz-González, L., Co, K. T., & Lupu, E. C. (2019). Byzantine-robust federated machine
learning through adaptive model averaging. arXiv preprint arXiv:1909.05125

15. Pillutla, K., Kakade, S. M., & Harchaoui, Z. (2019). Robust aggregation for federated learning.
arXiv preprint arXiv:1912.13445

16. Rajput S, Wang H, Charles ZB, Papailiopoulos DS (2019) DETOX: A redundancy-based
framework for faster and more robust gradient aggregation. CoRR abs/1907.12205. http://
arxiv.org/abs/1907.12205

17. Varma K, Zhou Y, Baracaldo N, Anwar A (2021) Legato: A layerwise gradient aggregation
algorithm for mitigating byzantine attacks in federated learning

18. Wang H, Yurochkin M, Sun Y, Papailiopoulos D, Khazaeni Y (2020) Federated learning with
matched averaging

https://doi.org/10.1145/357172.357176
http://arxiv.org/abs/1907.12205
http://arxiv.org/abs/1907.12205

414 Y. Zhou et al.

19. Xia Q, Tao Z, Hao Z, Li Q (2019) Faba: An algorithm for fast aggregation against byzantine
attacks in distributed neural networks. In: Proceedings of the twenty-eighth international
joint conference on artificial intelligence, IJCAI-19. International joint conferences on artificial
intelligence organization, pp 4824–4830. https://doi.org/10.24963/ijcai.2019/670

20. Xie, C., Koyejo, O., & Gupta, I. (2018). Generalized byzantine-tolerant sgd. arXiv preprint
arXiv:1802.10116

21. Xie C, Koyejo S, Gupta I (2019, May) Zeno: distributed stochastic gradient descent with
suspicion-based fault-tolerance. In: International conference on machine learning. PMLR, pp
6893–6901

22. Xie C, Koyejo O, Gupta I (2020, August) Fall of empires: breaking byzantine-tolerant sgd by
inner product manipulation. In: Uncertainty in artificial intelligence. PMLR, pp 261–270

23. Yin D, Chen Y, Kannan R, Bartlett P (2018, July) Byzantine-robust distributed learning:
towards optimal statistical rates. In: International conference on machine learning. PMLR, pp
5650–5659

24. Zhang, C., Bengio, S., & Singer, Y. (2019). Are all layers created equal?. arXiv preprint
arXiv:1902.01996

25. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., & Chandra, V. (2018). Federated learning with
non-iid data. arXiv preprint arXiv:1806.00582

https://doi.org/10.24963/ijcai.2019/670

Part IV
Beyond Horizontal Federated Learning:
Partitioning Models and Data in Diverse

Ways

In this part of the book, we cover two enterprise use cases that do not comply with
the horizontal federated learning setup that we have discussed this far. In particular,
this part of the book focuses on two new paradigms vertical federated learning and
split learning, where a single party does not have all the information to train a model
by itself.

Vertical federated learning arises in enterprise settings where a single party does
not have all the data required to train a model by itself. Therefore, algorithms for
horizontal federated learning training cannot be applied in this setting. Chapter 18
provides an overview of vertical federated learning techniques and in particular
discusses a novel and efficient approach based on functional encryption that consid-
ers some important enterprise requirements, including no peer-to-peer connections
between participating parties.

Split learning is an alternative approach where multiple parties may train
different parts of a model ensuring their data remains private. Multiple setups of
the system are possible. Chapter 19 introduces this novel approach and associated
algorithms in detail.

Chapter 18
Privacy-Preserving Vertical Federated
Learning

Runhua Xu, Nathalie Baracaldo, Yi Zhou, Annie Abay, and Ali Anwar

Abstract Many federated learning (FL) proposals follow the structure of horizontal
FL, where each party has all the necessary information to train a model available to
them. However, in important real-world FL scenarios, not all parties have access to
the same information, and not all have what is required to train a machine learning
model. In what is known as vertical scenarios, multiple parties provide disjoint
sets of information that, when brought together, can create a full feature set with
labels, which can be used for training. Legislation, practical considerations, and
privacy requirements inhibit moving all data to a single place or freely sharing
among parties. Horizontal FL techniques cannot be applied to vertical settings.
This chapter discusses the use cases and challenges of vertical FL. It introduces the
most important approaches for vertical FL and describes in detail FedV, an efficient
solution to perform secure gradient computation for popular ML models. FedV is
designed to overcome some of the pitfalls inherent to applying existing state-of-the
art techniques. Using FedV substantially reduces training time and the amount of
data transfer and enables the use of vertical FL in more real-world use cases.

18.1 Introduction

Federated learning (FL) [21] has recently been proposed as a promising approach
for enabling collaborative training of ML models. Parties—under the orchestration
of a central node (an aggregator)—train together, without having to share any of
their raw training data.

There are two types of FL approaches, horizontal FL and vertical FL, which
differ based on how data is partitioned between parties. In horizontal FL, each
party can access the entirety of its own feature set and labels, and hence each party
can train a complete local model based on its dataset. The aggregator can query

R. Xu (�) · N. Baracaldo · Y. Zhou · A. Abay · A. Anwar
IBM Research – Almaden, San Jose, CA, USA
e-mail: runhua@ibm.com; baracald@us.ibm.com; yi.zhou@ibm.com; anniek@ibm.com;
ali.anwar2@ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_18

417

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_18&domain=pdf
mailto:runhua@ibm.com
mailto:baracald@us.ibm.com
mailto:yi.zhou@ibm.com
mailto:anniek@ibm.com
mailto:ali.anwar2@ibm.com
https://doi.org/10.1007/978-3-030-96896-0_18

418 R. Xu et al.

each party for model updates and create a global model by fusing together model
weights from the updates. Most of the literature about FL focuses on horizontal
FL, addressing issues related to privacy and security [10, 32], system architecture
[3, 19], and new learning algorithms [7, 37].

In contrast, vertical FL (VFL) refers to FL scenarios where individual parties
do not have a complete set of features and labels. Thus, they cannot train a local
model using their data. For instance, in a financial scenario involving a set of
banks and a regulator, banks may want to collaboratively create an ML model
using their data to flag accounts involved in money laundering. If several banks
collaborate to find a common feature vector for the same set of clients, and a
regulator provides labels showing which clients have committed money laundering,
such fraud can be identified and mitigated. However, banks may not want to share
their clients’ account details, and in some cases, they are prevented from sharing
data by regulations. As a result, such a money laundering detection scenario would
benefit substantially from a VFL solution.

The critical steps of VFL include (1) private entity resolution and (2) private
vertical training. In private entity resolution, parties’ datasets need to be aligned
to create the complete feature set while maintaining data privacy. Private vertical
training focuses on training the global model in a privacy-preserving way. Various
approaches, e.g., [5, 9, 12, 13, 26, 31, 34, 36], have been proposed to perform VFL.
Most are model-specific and rely on particular privacy-preserving techniques, such
as garbled circuits, secure multi-party computation (SMC), differential privacy noise
perturbation, partially additive homomorphic encryption (HE), and inner-product
functional encryption schemes.

In this chapter, we provide an overview of VFL, its challenges, and the state-
of-the art. Section 18.2 provides an overview of the overall process required to
train a model in VFL settings. In Sect. 18.3, we explain the inherent challenges of
training using gradient descent according to the restrictions imposed by VFL. Then,
we explore representative VFL solutions from communication topology, system
efficiency, and supported ML models in Sect. 18.4. Finally, we present FedV, an
efficient VFL solution in Sect. 18.5. We conclude the chapter in Sect. 18.6.

18.2 Understanding Vertical Federated Learning

VFL is a powerful approach that can help create ML models in many real-world
scenarios where horizontal FL is not applicable, i.e., where a single entity does
not have access to all the training features or labels. In the healthcare domain,
different entities may collect diverse sets of data about patients that, if combined,
can help achieve significant improvements in the prediction and diagnosis of the
patients’ health conditions. For instance, a sensor company may collect records of
body sensors, including heart rate and sleep cycle data of a patient. Then, a hospital
that keeps track of a patient’s medical history (including labels) can use VFL by
training a machine learning model that can assist in diagnosing the patient’s health

18 Privacy-Preserving Vertical Federated Learning 419

conditions more accurately. Another example use case is predicting the lifecycle of
a product using information about its fabrication, transportation, and shelf life to
determine if it will be returned due to malfunction. Linking information collected
at the (1) factory where the device is produced, (2) during the transportation period,
i.e., such as the monitored temperature and shaking, and (3) from stores including
when the item was sold and whether it was returned could help this use case. Here,
whether the product was sold or not and if it was returned at a point of time is a
valuable label.

In all of these examples, different information is available at multiple locations
and is owned by several organizations (parties) that do not share their information
with each other. In VFL, it is often assume that a single party has access to the
labels. However, there are three potential scenarios:

1. A single party owns the labels and labels are private. This case follows most of
our previously discussed examples.

2. A single party owns the labels, but they are not private and can be shared with
all other parties.

3. All parties have a label for their data. Labeling data is often costly and
cumbersome. Hence, this use case is not common. Additionally, it opens the door
for potential discrepancies in the labeling.

In this chapter, we focus on the first case that reflects most of the use cases we
have encountered in real-world scenarios. We thus discuss VFL in settings where
only one party has the class labels and wants to keep them private. We call active
party the party owning the label, while we refer to other parties without labels
passive parties.

18.2.1 Notation, Terminology and Assumptions

To help make the discussion more concrete, we now introduce the notation used
throughout the rest of the chapter. Let P = {pi}i∈{1,...,n} be the set of n parties in
VFL. Let D[X,Y] be the training dataset across the set of parties P, where X ∈ R

d

represents the feature set and Y ∈ R represents the labels. The goal of VFL is to
train a ML model M over the dataset D from the party set P without leaking any
party’s data.

In VFL, a dataset D is vertically distributed across multiple parties, where each
local dataset Dpi

has all of the training data samples, but only a portion of the
feature set. Figure 18.1 presents a simple representation of how D can be vertically
partitioned among two parties. Following the scenarios explained before, feature
sets and labels involved in the learning need to be kept private during the VFL
process.

420 R. Xu et al.

Fig. 18.1 Vertically partitioned data across parties. In this example, p1 and p2 have overlapping
identifier features, and p1 is the active party that has the labels

18.2.2 Two Phases of Vertical FL

When features are distributed among parties, two questions arise:

1. How can we correctly match data samples to corresponding feature values from
different parties without leaking data?

2. How can we train a model with vertically partitioned data while complying with
the FL privacy constraints?

When each party collects data independently, it is necessary to first identify
common records and match the records. This process is called entity matching or
entity resolution and requires that all parties have an identifier or a set of identifiers
that can serve to determine when two of their records belong to the same sample. For
example, in the case of multiple hospitals collecting data from patients, the social
security number of each patient can serve to link patient’s information collected at
different hospitals. Private entity resolution is a set of techniques that have been
developed to deal with record matching without revealing to parties the records that
they share.

After the private entity resolution takes place, vertical training can start. Typi-
cally, an aggregator coordinates the entity resolution and training process among
parties. In the following, we present in more detail the private entity resolution
process and then highlight some of the challenges of training in vertical settings.

18.2.2.1 Phase I: Private Entity Resolution (PER)

One crucial requirement of entity resolution is ensuring the process does not
leak private information about the parties’ training data. An honest-but-curious or
adversary party should not be able to infer the presence or absence of a specific data
sample. To achieve privacy-preserving entity resolution, existing approaches, such
as [14, 23], usually employ techniques or tools like bloom filters, random oblivious
transfer, or private set intersection that help to match data without sacrificing the
privacy guarantee [14, 23]. Among those approaches, a common assumption is
that there exist public record identifiers, such as names, dates of birth, or universal
identification numbers, that can be used to perform entity matching.

18 Privacy-Preserving Vertical Federated Learning 421

Fig. 18.2 Illustration of privacy-preserving entity resolution based on anonymous linking code

Figure 18.2 illustrates a common PER approach adopted by VFL techniques such
as [13, 33]. This typical entity resolution approach employs an anonymous linking
code technique called cryptographic long-term key (CLK), and a corresponding
matching method called the Dice coefficient [24]. First, each party generates a set of
CLKs based on the identifiers of the local dataset and shares it with an aggregator,
which matches the CLKs received and generates a permutation vector that each
party uses to shuffle its local dataset. As a result, the shuffled local datasets are
similarly ordered and ready to be used for private VFL training.

18.2.2.2 Phase II: Private Vertical Training

After the data has been matched and aligned according to PER, training can start.
In vertical training, the aggregator coordinates the training process among parties.
Each party trains a “partial model update” (i.e., partial gradient computation results
or intermediate results) and employs privacy-preserving approaches to protect
the “partial model update.” In each training round, the aggregator orchestrates a
specially designed training process that performs secure computations to ensure data
is never moved or shared. In the following section, we overview the challenges of
applying Gradient Descent in VFL.

18.3 Challenge of Applying Gradient Descent in Vertical FL

The Gradient Descent (GD) and its variants, e.g., [8, 11, 16, 17, 21] and the reference
therein, have been the dominant approaches to train a model in (distributed) machine
learning. In particular, GD can be applied to train non-tree-based traditional models

422 R. Xu et al.

including logistic regression, lasso, and support vector machines, as well as deep
learning models.

As the subsets of feature set are distributed among different parties, it is not
possible to directly adopt the normal gradient-based methods in vertical partition
settings. Here, we show the challenge of such an adoption.

18.3.1 Gradient Descent in Centralized ML

GD method [22] represents a class of optimization algorithms that find the minimum
of a target loss function; for example, a typical loss function can be defined as
follows:

ED(w) = 1

n

n∑

i=1

L(y(i), f (x(i);w)) + λR(w), (18.1)

where L is the loss function, y(i) is the corresponding class label of data sample x(i),
w denotes the model parameters, f is the prediction function, and R is regularization
term with coefficient λ. GD finds optimal w that minimizes Eq. (18.1) by iteratively
moving in the direction of the local steepest descent, as defined by the negative of
the gradient, i.e.,

w ← w − α∇ED(w), (18.2)

where α is the learning rate, and ∇ED(w) is the gradient computed at the current
iteration. GD and its variants (i.e., SGD) have become common approaches to
find optimal parameters (weights) of a ML model due to their simple algorithmic
schemes [22].

18.3.2 Gradient Descent in Vertical FL

In a VFL setting, since D is vertically partitioned among parties, the gradient
computation ∇ED(w) is more computationally involved than in a centralized ML
setting. Considering the simplest case where there are only two parties, p1 and p2,
in a VFL system, as illustrated in Fig. 18.1, and Mean Squared Loss (MSE) is used
as the target loss function, i.e.,

ED(w) = 1

n

n∑

i=1

(y(i) − f (x(i);w))2. (18.3)

18 Privacy-Preserving Vertical Federated Learning 423

The gradient of ED(w) is computed as

∇ED(w) = −2

n

n∑

i=1

(y(i) − f (x(i);w))∇f (x(i);w). (18.4)

If we expand Eq. (18.4) and compute the result of the summation, we need to
compute −y(i)∇f (x(i);w) for i = 1, . . . n, which requires feature information
from both p1 and p2, and labels from p1. And, clearly,

∇f (x(i);w) = [∂wp1
f (x(i)

p1
;w); ∂wp2

f (x(i)
p2

;w)]

does not always hold for any function f , since f may not be well-separable with
respect to w. For instance, when it applies in linear functions, such as

f (x(i);w) = x(i)w = x(i)
p1

wp1 + x(i)
p2

wp2 , (18.5)

Equation (18.4), namely, the partial gradient ∇ED(w) will be reduced as follows:

2

n

n∑

i=1

(
[(x(i)

p1
wp1 − y(i)

p1
+ x(i)

p2
wp2)x

(i)
p1

; (x(i)
p1

wp1 − y(i)
p1

+ x(i)
p2

wp2)x
(i)
p2

]
)

.

(18.6)

In such a case, this may lead to exposure of training data between two parties, due to
the computation of some terms, as demonstrated in Eq. (18.6). For example, it may
result in the leakage of the second party’s input x

(i)
p2 to the first party p1.

In short, under the VFL setting, the gradient computation at each training epoch
requires either (i) the parties’ collaboration, to exchange their “partial model update”
with each other or (ii) parties sharing their data with the aggregator to compute the
final gradient update. Therefore, any naive solutions will lead to a significant risk of
privacy leakage, countering the initial goal of FL, to protect data privacy.

18.4 Representative Vertical FL Solutions

The studies and mining of data across vertically partitioned datasets is not a novel
topic in machine learning literature. Several previous approaches, such as those in
[26, 28, 29, 35], have been developed for distributed data mining, where methods
are proposed to train specific ML models, such as support vector machines [35],
logistic regressions [26], and decision trees [29]. Vaidya’s survey [28] presents a
summary of vertical data mining methods. These solutions place a higher premium
on developing distributed data mining algorithms in a vertical context than on
ensuring strong privacy in a variety of threat model scenarios and thus are not
designed to prevent upcoming inference of private data threats. For instance, the

424 R. Xu et al.

privacy-preserving decision tree model in [29] has to reveal class distribution over
the given attributes and thus trivially leaks private information.

Additionally, split learning [25, 30], a new paradigm to train deep learning, was
recently proposed to train neural networks without sharing raw data. Split learning is
also an alternative approach to achieve VFL [27]. However, the approach’s primary
objective is to horizontally or vertically partition the neural networks among parties,
rather than to ensure strong privacy protections. At first glance, split learning
appears to be a private process because only the intermediate computing results
of the cut layer are exchanged among parties, rather than raw features or labels.
However, it has been demonstrated that this gradient exchange method is vulnerable
to inference attacks. For example, Li et al. describe how to uncover labels by
utilizing the norm of the active party’s exchanged gradients [18].

Numerous emerging inference attacks are proposed in [15, 18, 20], with a focus
on vertical federated learning. The threats in these settings include, for example,
label inference [18] and batch gradient’s inference [15] during the training phase,
and feature inference during the prediction stage [20]. To address the privacy
leakage issue posed by those inference attacks in the context of VFL, a few
emerging VFL solutions have incorporated privacy-preserving mechanisms into
VFL, resolving those privacy inference attacks completely or partially. In this
section, we compare and summarize those approaches from three perspectives:
communication topology, privacy-preserving offered, and supported ML models,
respectively.

18.4.1 Contrasting Communication Topology and Efficiency

One of the crucial challenges of VFL is computing the gradient descent in a vertical
setting, as discussed in Sect. 18.3. For simplicity, let us take the linear function as
an example. As demonstrated in Eq. (18.6), the key steps of computing gradients
∇ED(w) in VFL are as follows:

(i) Enabling all parties to collaboratively compute partial model prediction u(i) in
a private manner:

u(i) ← y(i) −
∑

i

x(i)
pi

wpi
.

(ii) Allowing the aggregator compute gradient update ∇ED(w) without leaking
private data:

∇ED(w) ← −2

n

n∑

i=1

([u(i)x(i)
p1

; u(i)x(i)
p2

]).

18 Privacy-Preserving Vertical Federated Learning 425

Figure 18.3 summarizes the five types of communication topologies used by
existing VFL proposals to compute the vertical gradient update. The communication
type includes generic multi-party computation communication, peer-to-aggregator
communication, and (partial) peer-to-peer communication. Notably, the VFL solu-
tion utilizing generic garbled circuits, as illustrated in Fig. 18.3 Type (E), does
not follow the previously stated SGD-based gradients computation and hence has
a different and more complex architecture than the other four types. Except for
a recent VFL framework [33], elaborated on in Sect. 18.5, most existing vertical
solutions require at least two rounds of communication to compute a gradient
descent step.

Table 18.1 presents VFL proposals contrasting the communication and inter-
action topology. The proposals presented in [13, 34] rely on fully peer-to-peer
communication to compute u(i) and then each party pi shares u(i)xpi

to the
aggregator to finalize the gradients update. The solutions in [12, 36] relax the

Fig. 18.3 Communication topology of existing VFL solutions

Table 18.1 Communication topology summary of VFL solutions

Proposal Communication and interaction topology

Gascón et al. [9] Multi-party computation interactions

Hardy et al. [13] Full peer-to-peer + 1 round peer-to-aggregator

Yang et al. [34] Full peer-to-peer + 1 round peer-to-aggregator

Gu et al. [12] Partial peer-to-peer + 2 rounds peer-to-aggregator

Zhang et al. [36] Partial peer-to-peer + 2 rounds peer-to-aggregator

Chen et al. [5] 2 rounds peer-to-aggregator

Wang et al. [31] 2 rounds peer-to-aggregator

Xu et al. [33] 1 round peer-to-aggregator

426 R. Xu et al.

requirement of fully peer-to-peer communication by adopting tree-based partial
peer-to-peer and peer-to-aggregator communications to compute u(i).

Another line of research [5, 31] focuses on asynchronous VFL using the
coordinate descent (CD) approach rather than the standard gradient descent method.
Instead of peer-to-peer communication, these systems rely on two rounds of peer-
to-aggregator communication to coordinate immediate results and compute the final
gradients update. The recent FedV framework [33] requires only one round of peer-
to-aggregator communication.

18.4.2 Contrasting Privacy-Preserving Mechanisms and Their
Threat Models

Existing solutions use a diverse set of privacy-preserving mechanisms. There are
multiple applied techniques, including those based on mixed-protocol multi-party
computation techniques and other cryptosystems like HE and functional encryption.
In Table 18.2, we present the privacy-preserving approaches that each VFL solution
employs. Gascón et al. [9] employ mixed traditional MPC techniques such as
secret sharing, garbled circuits, and oblivious transfer. Approaches presented in
[12, 36] adopt tree-based communication with random masking, and [5, 31] employ
differential privacy mechanisms. The solutions presented in [13, 33, 34] rely on
cryptosystems, such as partially additive homomorphic encryption (i.e., the Paillier
cryptosystem) and inner-production functional encryption.

As shown in Table 18.2, there exist three types of computation: garbled
circuits-based secure computation, computation over ciphertext, and plaintext where
model updates are transmitted without encryption to the aggregator. Unfortunately,
achieving privacy-preserving objectives while computing gradient descent nega-
tively impacts computation, communication, and model performance. In particular,
solutions based on tree-structured communication with random noise perturbation
are constrained to scenarios where all parties are assumed to be trustworthy and non-
colluding, limiting these approaches’ applicability. Differential privacy often leads

Table 18.2 Privacy-preserving approach summary of VFL solutions

Proposal Computation over Privacy-preserving approach

Gascón et al. [9] Garbled circuits Mixed-protocol multi-party computation

Gu et al. [12] Plaintext Random mask + tree-structured communication

Zhang et al. [36] Plaintext Random mask + tree-structured communication

Chen et al. [5] Plaintext Gaussian DP perturbation

Wang et al. [31] Plaintext Gaussian DP perturbation

Hardy et al. [13] Ciphertext Cryptosystem (partially HE)

Yang et al. [34] Ciphertext Cryptosystem (partially HE)

Xu et al. [33] Ciphertext Cryptosystem (Functional Encryption)

18 Privacy-Preserving Vertical Federated Learning 427

Table 18.3 Entities and assumptions of representative VFL solutions

Proposal Entities and assumptions

Gascón et al. [9] Semi-honest, non-colluding crypto service provider (CSP) and evaluator

Hardy et al. [13] Semi-honest parties and aggregator

Yang et al. [34] Semi-honest parties and aggregator

Gu et al. [12] Semi-honest and non-colluding parties

Zhang et al. [36] Semi-honest and non-colluding parties

Chen et al. [5] Semi-honest parties and aggregator

Wang et al. [31] Semi-honest parties

Xu et al. [33] Semi-honest aggregator, dishonest passive parties, and trusted crypto
service

to less accurate models, while mixed-protocol MPC techniques require multiple
rounds of communication for a simple function, incurring substantial transmission
overheads; their cryptosystems also consume extra computational resources.

The different privacy mechanisms presented in Table 18.2 are designed to cover a
variety of threat models and may require deployment of additional entities. A threat
model defines how different entities in the system should behave in order to ensure
the defined privacy goals are met. We summarize the threat models for the analyzed
solutions in Table 18.3. A semi-honest entity is one that adheres to the protocol but
may use the information produced during the operation to infer private data.1

Gascón et al. [9] use garbled circuits and an architecture with two additional
semi-honest, non-colluding entities: a crypto service provider for generating crypto-
related parameters and an evaluator to assist with secure protocol evaluation. Hardy
et al. [13] and Yang et al. [34] rely on an additive homomorphic encryption
cryptosystem to ensure privacy. Their architecture utilizes an aggregator to coor-
dinate the VFL training process. They make the assumption that all parties and the
aggregator are semi-honest.

Chen et al. [5] also employ an aggregator to coordinate the training process and
assume semi-honest parties and aggregator. Wang et al. [31] propose an architecture
where the active party acts as a coordinator of the entire process. Likewise, Gu
et al. [12] and Zhang et al. [36] propose employing tree-based communication
with random noise perturbation to preserve privacy among all semi-honest active
and passive parties but indicate that parties do not collude. Xu et al. [33] deploy
an honest-but-curious aggregator and dishonest passive parties, with the additional
assumption that the aggregator and passive parties are not colluding. Additionally,
they require a trustworthy crypto infrastructure capable of providing key services.

1 The term honest-but-curious has the same meaning as the term semi-honest in the crypto
community.

428 R. Xu et al.

18.4.3 Contrasting Supported Machine Learning Models

Table 18.4 presents a summary of the ML models supported by existing VFL
solutions. Logistic regression is the most popular supported model. For non-crypto
solutions, only the proposal [5] can be applied to neural networks model. Homo-
morphic encryption-based approaches such as [13, 34] rely on Taylor approximation
technique to transform the nonlinear loss function used by regression models to an
approximated linear loss function, and hence those approaches may result in under-
performing models. Only the FedV framework [33] can be used to train logistic
regression models without requiring Taylor series approximation.

Existing techniques suffer from one or more limitations:

1. Most approaches apply to a limited pool of models. They require the use of
the Taylor series approximation to train nonlinear ML models, such as logistic
regression, which possibly weakens the model’s performance and cannot be
generalized to solve classification problems. Furthermore, the prediction and
inference phases of these VFL solutions rely on approximation-based secure
computation or noise perturbation. As such, these solutions cannot predict as
accurately as a centralized ML model could.

2. Most approaches that use cryptosystems as part of the training process may
substantially increase the training time, unless they reduce the number of
communication rounds.

3. Most protocols require a large number of peer-to-peer communication rounds
among parties, making it challenging to deploy them in systems that have poor
connectivity, or where communication is limited to a few specific entities due to
regulations, such as HIPAA.

4. Approaches such as [35] require sharing class distributions, which may lead to
potential leakage of parties’ private information.

Table 18.4 Supported machine learning models of VFL solutions. Solutions that do not rely on
Taylor approximation are preferred

Proposal Supported models with SGD training

Gascón et al. [9] Linear regression

Hardy et al. [13] Logistic regression (LR) with Taylor approximation

Yang et al. [34] Taylor approximation-based LR with quasi-Newton method

Gu et al. [12] SVM with kernels

Zhang et al. [36] Logistic regression

Chen et al. [5] DP noise-injected LR and neural networks

Wang et al. [31] DP noise-injected LR

Xu et al. [33] Linear models, LR, and SVM with kernels

18 Privacy-Preserving Vertical Federated Learning 429

18.5 FedV: An Efficient Vertical FL Framework

This section introduces the FedV framework, an efficient VFL solution. It signifi-
cantly decreases the total number of communication interactions required to train
models. FedV does not require peer-to-peer communication between parties and
can be used to train a range of machine learning models using gradient-based algo-
rithms such as stochastic gradient descent and its derivatives. FedV achieves these
benefits by orchestrating various non-interactive functional encryption techniques,
which accelerates the training process in comparison to state-of-the-art approaches.
Additionally, FedV supports multiple parties and enables parties to drop out and
rejoin without the requirement for dynamic re-keying, while other approaches do
not.

18.5.1 Overview of FedV

The FedV framework consists of three components: an aggregator, a group of par-
ties, and an optional third-party authority (TPA) crypto-infrastructure for functional
encryption that depends on the specific employed cryptosystem. The aggregator
orchestrates the private entity resolution process and oversees the parties’ training.
Each party has a training dataset with a subset of features and wishes to collectively
train a global model. There are two sorts of parties: one active party that has a
partial feature set and class labels (denoted by p1 in the rest of the section), and
several passive parties that own only the partial feature set.

Algorithm 18.1 FedV framework
Input: batch size s, maxEpochs, and total batches per epoch S, total number of

features d.
Output: TPA initializes cryptosystems with keys and a secret seed r to each party.

Party:

Re-shuffle samples using entity resolution vector (π1, . . . ,πn)

Use r to generate its one-time password chain for batch selection

Aggregator:

w ← random initialization
foreach epoch in maxEpochs do

∇E(w) ← FedV-SecGrad(epoch, s, S, d,w)
w ← w − α∇E(w)

end for
return w

430 R. Xu et al.

Algorithm 18.1 illustrates the generic operations of FedV. To begin, the system
is initialized by creating the necessary cryptographic keys. Following that, a PER
process is performed to align the training data samples across all parties, in which
each party receives an entity resolution vector, π i , and shuffles its local data samples
appropriately.

For each training epoch, the proposed Federated Vertical Secure Gradient
Descent (FedV-SecGrad) approach is used to securely compute the gradient update,
which is then used to guide the training process forward. FedV-SecGrad is a two-
phased secure aggregation operation that enables the computation of gradients as
stated in Sect. 18.2 and requires the parties to conduct sample and feature dimension
encryption, as well as transmit ciphertext to the aggregator.

The aggregator then generates a fusion weight vector based on each party’s
assigned weight and submits it to the TPA in order to request the functional
decryption key. For instance, when the aggregator receives two encrypted inputs
ct1 and ct2 from parties p1 and p2, respectively, it constructs a fusion weight
vector (w1, w2), each element of which corresponds to the party’s assigned weight.
Following that, the aggregator transmits it to the TPA. The TPA provides the
aggregator with the functional decryption key for computing the inner product
between (ct1, ct2) and (w1, w2). Remain aware that the TPA does not have access to
ct1, ct2, or the aggregated result. Additionally, keep in mind that the fusion weight
vectors include no secret information; they just contain the weights required to
aggregate ciphertext received from parties.

A curious aggregator may try to manipulate a fusion weight vector to infer private
gradient data. To eliminate this potential inference threat, once the TPA receives
a fusion weight vector, a special module called the Inference Prevention Module
(IPM) inspects the vector to ensure it does not isolate any replies according to a pre-
specified aggregation policy. If the IPM determines that the fusion weight vectors
are not manipulated by a curious aggregator, the TPA supplies the aggregator with
the functional decryption key.

Notably, FedV is also compatible with TPA-free FE schemes in which the
functional decryption key is generated by all parties collaboratively. The IPM can
also be deployed at each party in this circumstance. The aggregator then obtains the
result of the corresponding inner product via decryption, which is performed with
the use of the functioning decryption key. As a result, the aggregator can acquire the
exact gradients to update the model.

18.5.2 FedV Threat Model and Assumptions

FedV’s primary objective is to train a machine learning model while securing the
privacy of the features provided by each party. Thus, FedV guarantees the privacy
of the input, and the adversary’s objective is to infer the features of the parties.

FedV considers an honest-but-curious aggregator, who follows the algorithms
and protocols appropriately but may attempt to acquire private information from

18 Privacy-Preserving Vertical Federated Learning 431

aggregated model updates. FedV also assumes a small number of dishonest parties
who may attempt to infer the private information of the honest parties. In real-
world applications, the aggregator is typically run by large businesses, making it
more difficult for adversaries to manipulate the protocol without being noticed.
Dishonest parties may collude with each other to try to obtain features from other
participants. We presumptively exclude potential collusion between the aggregator
and the parties in FedV.

A TPA may be used to facilitate functional encryption. However, FedV is also
compatible with functional encryption systems that do not use TPA, such as in
[1, 6]. In a cryptosystem that makes use of a TPA, the TPA must be completely
trusted by the other entities in the system in order to provide the aggregator and
party with corresponding keys. In real-world circumstances, various sectors already
have entities capable of acting as TPAs. For instance, the Federal Reserve System
typically fulfills this role in the banking business. In other areas, TPAs can be
managed by third-party corporations such as consulting firms.

Finally, FedV does not explicitly cover denial of service attacks or backdoor
attacks [2, 4] in which parties attempt to force the final model to generate a targeted
misclassification.

18.5.3 Vertical Training Process: FedV-SecGrad

FedV-SecGrad supports a variety of machine learning models, including logistic
regression, SVM, and others. Formally, it can encompass any prediction function
that can be written as

f (x;w) := g(wᵀx), (18.7)

where g : R → R is a differentiable function, and x and w denote the feature vector
and the model weights, respectively.

If g is the identity function, then f is simplified to a linear model; otherwise,
it defines a subclass of nonlinear machine learning models. When g is the sigmoid
function, for example, the defined machine learning objective is a logistic classi-
fication/regression model. The following portion of this section contains a more
in-depth discussion.

18.5.3.1 FedV-SecGrad for Linear Models

Suppose that we use mean-squared loss as the loss function and g is the identity
function, for simplicity, g(wᵀx) = wᵀx. In the case of linear models, the target
loss is denoted as

432 R. Xu et al.

E(w) = 1

2n

n∑

i=1

(y(i) − wᵀx(i))2. (18.8)

Following that, the computation of gradients over vertically partitioned data in FedV-
SecGrad is denoted as

∇E(w) = −2

n

n∑

i=1

(y(i) − wᵀx(i))x(i). (18.9)

Then, the secure computation can be simplified to two types of operations: feature
dimension aggregation and sample/batch dimension aggregation. FedV-SecGrad
performs these two actions using a two-phase secure aggregation (2Phase-SA)
technique. Feature dimension secure aggregation securely aggregates a batch of
training data from all parties via grouping across features, to acquire the value of
y(i) −wᵀx(i) for each data sample. Next, Sample dimension secure aggregation can
securely aggregate one party’s training data via grouping across samples with the
weight of y(i) − wᵀx(i) for each sample, to obtain the batch gradient ∇E(w) as
illustrated in Eq. (18.9). The interaction between the parties and the aggregator is
one-way and requires only one round of message.

To explain FedV-SecGrad, we will assume the simple example of two parties,
where p1 is the active party and p2 is the passive party. Recall that the training batch
size is s and the total number of features is d. The current training batch samples for
p1 and p2 can be denoted as

Bs×m
p1

: {y(i); x(i)
k1

}1≤i≤s
1≤k1≤m, (18.10)

Bs×(d−m)
p2

: {x(i)
k2

}1≤i≤s
m+1≤k2≤d , (18.11)

where, to be more precise, active party p1 has labels y(i) and partial features indexed
from 1 to m, whereas passive party p2 only has partial features indexed from m + 1
to d. Then, two distinct types of secure aggregation are performed:

• Feature Dimension Secure Aggregation. The objective of feature dimension
secure aggregation is to securely aggregate the sum of multiple parties’ partial
model prediction, denoted as

wᵀ
p1

x(i)
p1

= w1x
(i)
1 + w2x

(i)
2 + . . . + wmx(i)

m , (18.12)

wᵀ
p2

x(i)
p2

= wm+1x
(i)
m+1 + wm+2x

(i)
m+2 + . . . + wdx

(i)
d , (18.13)

without disclosing the inputs x
(i)
p1 and x

(i)
p2 to the aggregator. Taking the sth

data sample in the batch as an example, the aggregator is capable of securely
aggregating w

ᵀ
p1x

(s)
p1 − y(s) + w

ᵀ
p2x

(s)
p2 . For this purpose, the active party and

all other passive parties perform slightly different pre-processing steps before
invoking FedV-SecGrad.

18 Privacy-Preserving Vertical Federated Learning 433

The active party, p1, directly subtracts w
ᵀ
p1x

(i)
p1 with labels y to obtain

w
ᵀ
p1x

(s)
p1 − y(s) as its “partial model prediction.” For the passive party p2, its

“partial model prediction” is defined by x
(i)
p2 wp2 . Each party pi encrypts its

“partial model prediction” using the multi-input functional encryption (MIFE)
algorithm with its encryption key skMIFE

pi
and sends it to the aggregator. Once

the aggregator receives the partial model predictions, it prepares a fusion weight
vector vP of size equal to the number of parties involved in the aggregation
(as explained in Sect. 18.5.1) and sends it to the TPA, to request a functional
decryption key dkMIFE

vP . With the received key dkMIFE
vP , the aggregator can

obtain the sum of wm×1
p1

Bs×m
p1

− y1×s and w
(d−m)×1
p2 Bs×(d−m)

p2 through one-step
decryption.

• Sample Dimension Secure Aggregation. The purpose of the sample dimension
secure aggregation is to securely aggregate the batch gradients. For instance, for
feature weight w1 from p1, the aggregator is able to securely aggregate “partial
gradient updates” via sample dimension secure aggregation, denoted as

∇E(w1) =
s∑

k=1

x
(k)
1 uk, (18.14)

where aggregated model prediction uk = w
ᵀ
p1x

(k)
p1 − y(k) + w

ᵀ
p2x

(k)
p2 is the

aggregation result of previous feature dimension secure aggregation. This secure
aggregation protocol requires the party to encrypt its batch samples with its pub-
lic key pkSIFE using the single-input functional encryption (SIFE) cryptosystem.
The aggregator then requests a functional decryption key dkSIFE

u from the TPA
using the results of the feature dimension secure aggregation, i.e., the aggregated
model prediction u as discussed above. Following that, the aggregator is able to
decrypt the ciphertext and obtain the batch gradient ∇E(w) using the functional
decryption key dkSIFE

u .

The protocol described above is simple to generalize to n parties. In this situation,
the fusion vector v can be specified as a binary vector with n elements, with 1
indicating that the aggregator has received responses from the appropriate party and
0 indicating that it has not.

18.5.3.2 FedV-SecGrad for Nonlinear Models

FedV-SecGrad requires the active party to share plaintext labels with the aggregator
for nonlinear models. Due to the fact that g is not the identity function and may be
nonlinear, the associated gradient computation does not involve exclusively linear
operations. We will briefly discuss the extension of logistic and SVM models here.
Additional information is available in [33].

434 R. Xu et al.

• Logistic Models. Here, following the generic equation (18.7), the prediction
function is described as

f (x;w) = 1

1 + e−wᵀx
, (18.15)

where g(·) is the sigmoid function, i.e., g(z) = 1
1+e−z . Assuming we are working

on a classification problem and employing cross-entropy loss, the gradient
computation over a mini-batch B of size s can be expressed as

∇EB(w) = 1

s

∑

k∈B
(g(wᵀx(k))) − y(k))x(k). (18.16)

As explained above, the aggregator is capable of securely acquiring z(k) =
wᵀx(k) via the feature dimension SA procedure. Following that, it can compute
the aggregated model prediction uk = g(z)−y(k) using the shared labels. Finally,
sample dimension SA is applied to compute ∇EB(w) = ∑

i∈B uix
(i).

FedV-SecGrad also offers an alternate strategy in circumstances where label
sharing is prohibited, by transferring the logistic calculation to linear computa-
tion via Taylor approximation, as several existing VFL solutions [13, 34] do.

• SVM Models. SVM with kernel is typically employed when the data is not
separable linearly. The linear SVM model employs a squared hinge loss function
with the goal of minimizing the following function:

1

n

∑

k∈B

(
max(0, 1 − y(k)wᵀx(k))

)2
. (18.17)

Then, the gradient computation over a mini-batch B of size s can be described as

∇EB(w) = 1

s

∑

k∈B
−2y(k)(max(0, 1 − y(k)wᵀx(k)))x(k). (18.18)

With the provided labels and acquired wᵀx(k) as explained above, the aggregator
is capable of securely computing the following aggregated model prediction
value:

uk = −2y(k) max(0, 1 − y(k)wᵀx(k)). (18.19)

Following that, the partial gradients ∇EB(w) = 1
s

∑
k∈B ukx

(k) can be updated
as the same simple dimension secure aggregation approach.

Additionally, for the case of SVM with nonlinear kernels, assuming the
prediction function is

18 Privacy-Preserving Vertical Federated Learning 435

f (x;w) =
n∑

i=1

wiyik(xi , x), (18.20)

where k(·) denotes the corresponding kernel. Nonlinear kernel functions, such
as polynomial kernel (x

ᵀ
i xj)

d , and sigmoid kernel tanh(βx
ᵀ
i xj + θ) (β and

θ are kernel coefficients), are based on inner-product computation, which is
supported by our feature dimension secure aggregation and sample dimension
secure aggregation protocols. These kernel matrices can be generated prior to
the start of the training procedure. The objective stated previously for SVMs
with nonlinear kernels will be reduced to an SVM with linear kernels using the
pre-computed kernel matrix. Then, the gradient computation procedure for these
SVM models will be reduced to that of a conventional linear SVM, which FedV-
SecGrad can plainly support.

18.5.4 Analysis and Discussion

We present the performance comparison of FedV, HE-VFL by Hardy et al. [13], and
centralized LR. HE-VFL is a VFL solution with secure protocols developed using
additive homomorphic encryption (HE), and centralized LR is a centralized (non-
FL) logistic regression with and without Taylor series approximation. It is denoted
by the acronyms centralized LR and centralized LR(approx.). Correspondingly,
FedV also trained two models: a logistic regression model, referred as FedV, and
a logistic regression model with Taylor series approximation, which reduces the
logistic regression model to a linear model, referred as FedV(approx.).

The test accuracy and training time for each approach to logistic regression
training on several datasets are shown in Fig. 18.4. FedV and FedV(approx.), HE-
VFL and centralized have comparable accuracy across all four datasets. With 360
total training epochs, FedV’s and FedV(approx.) cut training time for a set of chosen

Fig. 18.4 Model accuracy and training time comparisons for logistic regression with two parties

436 R. Xu et al.

Fig. 18.5 Total data transmitted while training a LR model over 20 training epochs with two
parties

datasets. The variance in training time reduction across datasets is due to the fact
that data sample sizes and model convergence speed are varied. As illustrated
in Fig. 18.5, FedV also improves with respect to data transmission efficiency as
compared to additive homomorphic encryption-based VFL solution; this is because
FedV depends entirely on non-interactive secure aggregation methods and does not
require the multiple communication rounds.

In some applications, parties may suffer connectivity issues that temporarily
prevent them from communicating with the aggregator. The ability to easily recover
from such disturbances, without losing other parties’ computations, would help
reduce training time. FedV dynamically permits a restricted number of inactive
parties to leave and rejoin throughout the training phase. This is achievable because
FedV does not require sequential peer-to-peer communication between parties nor
does it require re-keying procedures in the event of a party failure. To overcome
failure situations, FedV enables the aggregator to set the corresponding element in
fusion weight vector to zero.

18.6 Conclusions

The majority of existing privacy-preserving FL systems are limited to datasets
that are horizontally partitioned. In some real-world FL scenarios, datasets may
be partitioned vertically, which means that not all parties have access to the
same feature set. As a result, parties cannot independently train a complete
local model, as done in horizontal FL. To overcome this limitation, several VFL
solutions have been proposed. In this chapter, we have reviewed these solutions and
demonstrated differences in communication, computation requirements, number
of entities required, and trust assumptions. These differences make the solutions
suitable for different types of FL scenarios. We also presented FedV, an approach
that substantially reduces the training time and data transfer by eliminating all
communication between parties.

18 Privacy-Preserving Vertical Federated Learning 437

References

1. Abdalla M, Benhamouda F, Kohlweiss M, Waldner H (2019) Decentralizing inner-product
functional encryption. In: IACR international workshop on public key cryptography. Springer,
pp 128–157

2. Bagdasaryan E, Veit A, Hua Y, Estrin D, Shmatikov V (2018) How to backdoor federated
learning. Preprint. arXiv:1807.00459

3. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, Kiddon C, Konecny J,
Mazzocchi S, McMahan HB et al (2019) Towards federated learning at scale: System design.
Preprint. arXiv:1902.01046

4. Chen B, Carvalho W, Baracaldo N, Ludwig H, Edwards B, Lee T, Molloy I, Srivastava B
(2018) Detecting backdoor attacks on deep neural networks by activation clustering. Preprint.
arXiv:1811.03728

5. Chen T, Jin X, Sun Y, Yin W (2020) Vafl: a method of vertical asynchronous federated learning.
Preprint. arXiv:2007.06081

6. Chotard J, Sans ED, Gay R, Phan DH, Pointcheval D (2018) Decentralized multi-client
functional encryption for inner product. In: International conference on the theory and
application of cryptology and information security. Springer, pp 703–732

7. Corinzia L, Buhmann JM (2019) Variational federated multi-task learning. Preprint.
arXiv:1906.06268

8. Fang C, Li CJ, Lin Z, Zhang T (2018) Spider: Near-optimal non-convex optimization via
stochastic path integrated differential estimator. Preprint. arXiv:1807.01695

9. Gascón A, Schoppmann P, Balle B, Raykova M, Doerner J, Zahur S, Evans D (2016) Secure
linear regression on vertically partitioned datasets. IACR Cryptology ePrint Archive 2016, 892

10. Geyer RC, Klein T, Nabi M (2017) Differentially private federated learning: A client level
perspective. Preprint. arXiv:1712.07557

11. Ghadimi S, Lan G (2013) Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM J Optim 23(4):2341–2368

12. Gu B, Dang Z, Li X, Huang H (2020) Federated doubly stochastic kernel learning for vertically
partitioned data. In: Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pp 2483–2493

13. Hardy S, Henecka W, Ivey-Law H, Nock R, Patrini G, Smith G, Thorne B (2017) Private fed-
erated learning on vertically partitioned data via entity resolution and additively homomorphic
encryption. Preprint. arXiv:1711.10677

14. Ion M, Kreuter B, Nergiz AE, Patel S, Raykova M, Saxena S, Seth K, Shanahan D, Yung M
(2019) On deploying secure computing commercially: Private intersection-sum protocols and
their business applications. IACR Cryptol. ePrint Arch. 2019, 723

15. Jin X, Du R, Chen PY, Chen T (2020) Cafe: Catastrophic data leakage in federated learning.
OpenReview - Preprint

16. Kingma DP, Ba J (2014) Adam: A method for stochastic optimization. Preprint.
arXiv:1412.6980

17. Lan G, Lee S, Zhou Y (2020) Communication-efficient algorithms for decentralized and
stochastic optimization. Math Program 180(1):237–284

18. Li O, Sun J, Yang X, Gao W, Zhang H, Xie J, Smith V, Wang C (2021) Label leakage and
protection in two-party split learning. Preprint. arXiv:2102.08504

19. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y, Radhakrishnan J,
Verma A, Sinn M, et al (2020) IBM federated learning: an enterprise framework white paper
v0. 1. Preprint. arXiv:2007.10987

20. Luo X, Wu Y, Xiao X, Ooi BC (2021) Feature inference attack on model predictions in vertical
federated learning. In: 2021 IEEE 37th international conference on data engineering (ICDE).
IEEE, pp 181–192

21. McMahan HB, Moore E, Ramage D, Hampson S et al (2016) Communication-efficient learning
of deep networks from decentralized data. Preprint. arXiv:1602.05629

438 R. Xu et al.

22. Nesterov Y (1998) Introductory lectures on convex programming volume I: Basic course.
Lecture Notes 3(4):5

23. Nock R, Hardy S, Henecka W, Ivey-Law H, Patrini G, Smith G, Thorne B (2018) Entity
resolution and federated learning get a federated resolution. Preprint. arXiv:1803.04035

24. Schnell R, Bachteler T, Reiher J (2011) A novel error-tolerant anonymous linking code.
German Record Linkage Center, Working Paper Series No. WP-GRLC-2011-02

25. Singh A, Vepakomma P, Gupta O, Raskar R (2019) Detailed comparison of communication
efficiency of split learning and federated learning. Preprint. arXiv:1909.09145

26. Slavkovic AB, Nardi Y, Tibbits MM (2007) Secure logistic regression of horizontally and
vertically partitioned distributed databases. In: Seventh IEEE international conference on data
mining workshops (ICDMW 2007). IEEE, pp. 723–728

27. Thapa C, Chamikara MAP, Camtepe S (2020) Splitfed: When federated learning meets split
learning. Preprint. arXiv:2004.12088

28. Vaidya J (2008) A survey of privacy-preserving methods across vertically partitioned data. In:
Privacy-preserving data mining. Springer, pp 337–358

29. Vaidya J, Clifton C, Kantarcioglu M, Patterson AS (2008) Privacy-preserving decision trees
over vertically partitioned data. ACM Trans Knowl Discov Data (TKDD) 2(3):14

30. Vepakomma P, Gupta O, Swedish T, Raskar R (2018) Split learning for health: Distributed
deep learning without sharing raw patient data. Preprint. arXiv:1812.00564

31. Wang C, Liang J, Huang M, Bai B, Bai K, Li H (2020) Hybrid differentially private federated
learning on vertically partitioned data. Preprint. arXiv:2009.02763

32. Xu R, Baracaldo N, Zhou Y, Anwar A, Ludwig H (2019) Hybridalpha: An efficient approach
for privacy-preserving federated learning. In: Proceedings of the 12th ACM workshop on
artificial intelligence and security. ACM

33. Xu R, Baracaldo N, Zhou Y, Anwar A, Joshi J, Ludwig H (2021) Fedv: Privacy-preserving
federated learning over vertically partitioned data. Preprint. arXiv:2103.03918

34. Yang, K, Fan T, Chen T, Shi Y, Yang Q (2019) A quasi-newton method based vertical federated
learning framework for logistic regression. Preprint. arXiv:1912.00513

35. Yu H, Vaidya J, Jiang X (2006) Privacy-preserving SVM classification on vertically partitioned
data. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 647–
656

36. Zhang Q, Gu B, Deng C, Huang H (2021) Secure bilevel asynchronous vertical federated
learning with backward updating. Preprint. arXiv:2103.00958

37. Zhao Y, Li M, Lai L, Suda N, Civin D, Chandra V (2018) Federated learning with non-IID
data. Preprint. arXiv:1806.00582

Chapter 19
Split Learning: A Resource Efficient
Model and Data Parallel Approach
for Distributed Deep Learning

Praneeth Vepakomma and Ramesh Raskar

Abstract Resource constraints, workload overheads, lack of trust, and competition
hinder the sharing of raw data across multiple institutions. This leads to a shortage of
data for training state-of-the-art deep learning models. Split Learning is a model and
data parallel approach of distributed machine learning, which is a highly resource
efficient solution to overcome these problems. Split Learning works by partitioning
conventional deep learning model architectures such that some of the layers in the
network are private to the client and the rest are centrally shared at the server. This
allows for training of distributed machine learning models without any sharing of
raw data while reducing the amount of computation or communication required by
any client. The paradigm of split learning comes in several variants depending on
the specific problem being considered at hand. In this chapter we share theoretical,
empirical, and practical aspects of performing split learning and some of its variants
that can be chosen depending on the application of your choice.

19.1 Introduction to Split Learning

Federated learning [1] is a data parallel approach where the data is distributed
while every client that is part of a training round trains the exact same model
architecture using its own local data. The server that could potentially be a powerful
computational resource in the real world ends up performing a relatively easier
computation, which is that of performing a weighted average of the weights learnt
by each of the clients. In the real world, there often exist clients that are relatively
resource constrained in comparison to a server.

P. Vepakomma (�) · R. Raskar
Massachusetts Institute of Technology, Cambridge, MA, USA
e-mail: vepakom@mit.edu; raskar@mit.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_19

439

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_19&domain=pdf
mailto:vepakom@mit.edu
mailto:raskar@mit.edu
https://doi.org/10.1007/978-3-030-96896-0_19

440 P. Vepakomma and R. Raskar

Split learning [2, 3] caters to this realistic setting by splitting the model
architecture across layers such that each client maintains the weights up to an
intermediate layer known as the split layer. The rest of the layers are held at the
server.

Benefits and Limitations This approach not only reduces the computational work
that is to be performed at any client, but it also reduces the size of communication
payloads required to be sent during the distributed training. This is because it only
requires activations from just one layer (split layer) to be sent to the server from
any client during the forward propagation step. At the same time gradients from
only one layer (the layer after the split layer) need to be sent by the server to
the client during the backpropagation step. In terms of model performance, we
empirically observe that the convergence of SplitNN remained much faster than
federated learning and large batch synchronous stochastic gradient descent [4].
That said, it requires a relatively larger overall communication bandwidth when
training over a smaller number of clients although it ends up being much lower than
other methods in settings with large number of clients. Advanced neural network
compression methods such as [5–7] can be used to reduce the communication load.
The communication bandwidth can also be traded for computation on client by
allowing for more layers at client to represent further compressed representations.

Sharing of activations from intermediate layers as in split learning is also relevant
in distributed learning approaches of local parallelism [8], features replay [9], and
divide and conquer quantization [10]. This is as opposed to weight sharing as is
done in federated learning.

19.1.1 Vanilla Split Learning

In this method each client trains the network up to a certain layer known as the split
layer and sends the weights to server (Fig. 19.1). The server then trains the network
for rest of the layers. This completes the forward propagation. Server then generates
the gradients for the final layer and back-propagates the error until the split layer.
The gradient is then passed over to the client. The rest of the back-propagation is
completed by the client. This is continued till the network is trained. The shape of
the split could be arbitrary and not necessarily, vertical. In this framework as well
there is no explicit sharing of raw data.

19.1.1.1 Synchronization Step

After each client finishes its epoch, the next client that is in queue to finish its epoch
receives the local weights (weights up to the split layer) from the previous client as
its initialization for its epoch.

19 Split Learning 441

Fig. 19.1 Split learning setup with multiple clients and a server with dotted green line showing
the split between the client’s share of layers and the server’s share of layers. Activations from only
the split layer (last layer of client) are shared during forward propagation and gradients from only
first layer of server are shared with client during backpropagation

19.1.1.2 Relaxing Synchronization Requirements

This additional communication between clients can be avoided via approaches like
BlindLearning [11] for split learning, which is based on using a loss function
that is an average of losses obtained by the forward propagations completed by
each client. Similarly, the communication and synchronization requirements are
further reduced via splitFedv1 [12], splitFedv2 [12], and splitFedv3 [13], which
are hybrid approaches of split learning and federated learning. A hybrid approach
that improves upon latencies is provided in [14].

19.2 Communication Efficiency [15]

In this section we describe our calculations of the communication efficiency for
both of the distributed learning setups of split learning and federated learning. For
analyzing the communication efficiency, we consider the amount of data transferred
by every client for the training and client weight synchronization since rest of the
factors affecting the communication rate is dependent on the setup of training cluster
and is independent of the distributed learning setup. We use the following notation
to mathematically measure the communication efficiencies.

Notation K = # clients, N = # model parameters, p = total dataset size, q =
size of the split layer, η = fraction of model parameters (weights) with client, and
therefore 1 − η is fraction of parameters with server.

In Table 19.1 we show the communication required per client per one epoch
as well as total communication required across all clients per one epoch. As
there are K clients, when size of the training dataset across each client is the

442 P. Vepakomma and R. Raskar

Algorithm 19.1 SplitNN. The K clients are indexed by k; B is the local minibatch
size, and η is the learning rate
Server executes at round t ≥ 0:
for each client k ∈ St in parallel do
Ak

t ← ClientUpdate(k, t)

Compute Wt ← Wt − η�L(Wt ;At)

Send �L(At ;Wt) to client k for ClientBackprop(k, t)

end for

ClientUpdate(k, t): // Run on client k
Ak

t = φ

for each local epoch i from 1 to E do
for batch b ∈ B do

Concatenate f (b,Hk
t) to Ak

t

end for
end for
return Ak

t to server

ClientBackprop(k, t,�L(At ;Wt)): // Run on client k
for batch b ∈ B do
Hk

t = Hk
t − η�L(At ;Wt ; b)

end for

Table 19.1 Communication per client and total communication for the distributed learning setup
as measured by the data transferred by all of the nodes in the learning setup

Method Communication per client Total Comm.

Split learning (client weight sharing) (p/K)q + (p/K)q + ηN 2pq + ηNK

Split learning (no client weight sharing) (p/K)q + (p/K)q 2pq

Federated learning 2N 2KN

same, there would be p/K data records per client in split learning. Therefore
during forward propagation the size of the activations that are communicated per
client in split learning is (p/K)q and during backward propagation the size of
gradients communicated per client is also (p/K)q. In the vanilla split learning
case where there is client weight sharing, passing on the weights to next client
would involve a communication of ηN . In federated learning the communication
of weights/gradients during upload of individual client weights and download of
averaged weights are both of size N each.

19 Split Learning 443

Table 19.2 Computation load (per client), total communication load, and latency required for one
global round

Methods Comp. Comm. Latency

FL |D||w| 2|w|K 2|w|K
R

+ |D||w|
PC

SplitFed α|D||w| (2q|D| + 2α|w|)K (2q|D|+2α|w|)K
R

+ α|D||w|
P

+ (1−α)|D||w|K
PS

Hybrid α|D||w| (q|D| + 2α|w|)K (q|D|+α|w|)K
R

+ αβ|D||w|
PC

+
max

(
α|w|K

R
+ α(1−β)|D‖w|

PC
,

(1−α)|D||w|K
PS

)

19.3 Latencies

Depending on the computing power constraints of the client and server, latencies
in computation need to be minimized while keeping the communication efficiency
to be high. To that effect, [14] provides analytical comparison of latencies of
vanilla split learning, splitFed, and the approach proposed in [14]. They consider
the following notation of model size being |w|, proportion of weights on client αw

and server (1 − α)|w|, computing powers of client PC and that of server PS , and
uplink and downlink transmission rates of R and K being the number of clients.
The time required for forward propagation is modeled as β|D||w|

P
and time required

for backward propagation as (1−β)|D||w|
P

. With this notation [14] gives the following
Table 19.2 comparing the latencies, and resource efficiencies of federated learning,
splitFed, and the recent hybrid method between split learning and federated learning
in [14].

19.4 Split Learning Topologies

19.4.1 Versatile Configurations

In addition to the discussed vanilla split learning and its variants that require lesser
synchronization, there are other topologies in which split learning could be used as
described below.

1. U-shaped configuration for split learning without label sharing [3, 16]: The
other two configurations described in this section involve sharing of labels
although they do not share any raw input data with each other. We can completely
mitigate this problem by a U-shaped configuration that does not require any
label sharing by clients. In this setup we wrap the network around at end
layers of server’s network and send the outputs back to client entities as seen
in Fig. 19.2b. While the server still retains a majority of its layers, the clients
generate the gradients from the end layers and use them for backpropagation
without sharing the corresponding labels. In cases where labels include highly

444 P. Vepakomma and R. Raskar

Fig. 19.2 Split learning configuration for health shows raw data is not transferred between the
client and server health entities for training and inference of distributed deep learning models with
SplitNN. (a) Simple vanilla split learning. (b) Split learning without label sharing. (c) Split learning
for vertically partitioned data

sensitive information like the disease status of patients, this setup is ideal for
distributed deep learning.

2. Vertically partitioned data for split learning [17]: This configuration allows
for multiple institutions holding different modalities of patient data to learn
distributed models without data sharing. In Fig. 19.2c, we show an example
configuration of SplitNN suitable for such multi-modal multi-institutional col-
laboration. As a concrete example we walk through the case where radiology
centers collaborate with pathology test centers and a server for disease diagnosis.
As shown in Fig. 19.2c radiology centers holding imaging data modalities train
a partial model up to the split layer. In the same way the pathology test center
having patient test results trains a partial model up to its own split layer. The
outputs at the split layer from both these centers are then concatenated and sent
to the disease diagnosis server that trains the rest of the model. This process is
continued back and forth to complete the forward and backward propagations in
order to train the distributed deep learning model without sharing each other’s
raw data.

3. Extended vanilla split learning: As shown in Fig. 19.3a we give another
modification of vanilla split learning where the result of concatenated outputs
is further processed at another client before passing it to the server.

4. Configuration for multi-task split learning: As shown in Fig. 19.3b, in this
configuration multi-modal data from different clients is used to train partial
networks up to their corresponding split layers. The outputs from each of these
split layers are concatenated and then sent over to multiple servers. These are
used by each server to train multiple models that solve different supervised
learning tasks.

5. Tor [18] like configuration for multi-hop split learning: This configuration
is an analogous extension of the vanilla configuration. In this setting multiple
clients train partial networks in sequence where each client trains up to a split
layer and transfers its outputs to the next client. This process is continued as

19 Split Learning 445

Fig. 19.3 Split learning configuration for health shows raw data is not transferred between the
client and server health entities for training and inference of distributed deep learning models with
SplitNN. (a) Extended vanilla. (b) Multi-task output with vertically partitioned input. (c) ‘Tor’ [18]

shown in Fig. 19.3c as the final client sends its activations from its split layer to
a server to complete the training.

We would like to note that although these example configurations show some
versatile applications for SplitNN, they are by no means the only possible configu-
rations.

19.4.2 Model Selection with ExpertMatcher [19]

In some scenarios a powerful server hosts a repository of multiple proprietary
models that it would like to use in a machine learning as a service (MLaaS)
business model via a prediction API. The proprietary models cannot be offered to be
downloaded by the client. At the same time, the clients often have sensitive datasets
that it would like to obtain predictions for. In this setup, arises the problem of
matching the right model(s) from the server’s repository with respect to the dataset
held by the client. ExpertMatcher is such a model-selection architecture based on
the U-shaped boomerang split learning topology.

19.4.3 Implementation Details

We assume that we have K pre-trained expert networks on the centralized server,
each of these networks has its corresponding pre-trained unsupervised representa-
tion learning models (we consider autoencoders (AE) in this example) φK trained
on a task-specific dataset. Given the dataset on which the AE was trained on, we
extract the encoded representations of the whole dataset and compute an average
representation of the dataset μk ∈ R

d , k ∈ {1, . . . , K}, where d is the feature

446 P. Vepakomma and R. Raskar

dimension. Assuming the dataset consist of N object classes, we also compute the
average representation of each class in the dataset μn

k ∈ R
d , n ∈ {1, . . . , N}, k ∈

{1, . . . , K}.
The clients (Client A and Client B) utilize a similar approach as the server, where

the clients train their unique AE’s one for each pth and qth datasets, Client A:
p ∈ {1, . . . , P } and Client B: q ∈ {1, . . . ,Q}. Let us assume for Client A, the
intermediate features extracted from a hidden layer for a sample X1

p are given as

x1
p = φ1

p(X1
p), and similarly, for Client B it is x2

q = φ2
q(X2

q). For brevity, we denote

the intermediate representation coming from any client as x
′
.

We would like to first explain the notion of coarseness or fineness of labels, by
which we mean that the classes in the data are separated by high-level (coarse) or
low-level (fine) semantic categories. As an example, classes that separate dogs from
cats are coarse categories, while classes that separate different types of dogs are fine
categories. In the concept of ExpertMatcher, for coarse assignment (CA) of clients
data: To the encoded representation x

′
, we assign a server AE, k∗ ∈ {1, . . . , K}, that

has maximum similarity of x
′

with μk; see Fig. 19.4.
For fine-grained (FA) assignment of clients data: To the encoded representation

x
′
, we assign an expert network Mn, n ∈ {1, . . . , N}, that has the maximum

similarity of x
′
k∗ with μn

k . The choice of similarity used for assignment depends
on the user. Cosine similarity, distance correlation, information theoretic measures,
Hilbert–Schmidt independence criterion, maximum mean discrepancy, kernel target
alignment, and integral probability metrics are just a few possibilities for the
similarity metric.

Finally after the assignment of the given sample to the model, one can easily train
a SplitNN type architecture [3].

In the current setup, a weak level of privacy is preserved as the server does not
have access to the raw client’s data, but rather a very low dimensional encoded
representation.

Fig. 19.4 Pipeline of ExpertMatcher with encoded representations at the client and server for
automatic model selection from a repository of server models based on their relevance to query
data set hosted by the client. The matching is done based on encoded intermediate representations

19 Split Learning 447

Note that there is a shortcoming of this approach. If the server has no AE model
dedicated to the client data, the wrong assignment of client data takes place because
of maximum cosine similarity criteria—this can be resolved by adding an additional
model on the server that performs a binary classification: if the client data matches
the server data or not.

19.5 Collaborative Inference with Split Learning

As organizations are able to train ultra-large machine learning models on huge
datasets with massive computing resources, it opens up a new set of problems for
external clients that intend to predict with these models. The client would not like to
download these large models in their entirety on-device given that they often have
billions of parameters. Predicting with these models is computationally resource
intensive to solely be performed on-device. This opens up the problem of private
collaborative inference (PCI) where the model is split across the client and server
(Table 19.3).

The clients’ data is private and therefore the activations that are communicated
in this setting need to be formally privatized to prevent membership inference and
reconstruction attacks. There has been considerable work in the alternate setting,
where the server intends to privately share the weights of a trained model. In this
setting of PCI, the privacy considered is with regard to the server’s own data. The
setting of PCI is instead relatively new, as it requires private sharing of activations
during private inference with regard to client’s own private data as opposed to private
sharing of weights after private training with regard to server’s data. This requires
innovations at the intersection of distributed machine learning based on activation
sharing as opposed to weight sharing and formal privacy.

19.5.1 Preventing Reconstruction Attacks in Collaborative
Inference

The client’s data records on which the predictions need to be obtained are private
and therefore the model’s intermediate representations (or activations) that are com-

Table 19.3 Differences between the settings of private collaborative inference and private
distributed model training

Private collaborative inference Private model training

Communication payload Intermediate activations Weights
Inference mechanism Model inference is distributed Client downloads model

Privatized entity Query sample Training data

448 P. Vepakomma and R. Raskar

Fig. 19.5 The setting of reconstruction attacks from intermediate activations in the context of split
learning

municated in this setting of PCI need to be desensitized to prevent reconstruction
attacks (Fig. 19.5). Privacy-preserving machine learning has not reached its AlexNet
moment from an architectural perspective. The field has made rapid strides on
formal privacy mechanisms like DP-SGD [24] and its variants. There is still a lot
of room for improving the current tradeoffs of privacy vs. utility in these methods
to make them amenable to many production use cases. We now describe some
advances in activation sharing for (a) preventing membership inference attacks with
respect to training data and (b) in preventing reconstruction attacks of prediction
query data in the setting of PCI.

19.5.1.1 Channel Pruning

The work in [20] shows that learning a pruning filter to selectively prune out
channels in the latent representation space at the split layer helps in empirically
preventing various state-of-the-art reconstruction attacks during the prediction step
in the setting of PCI (Fig. 19.6).

19.5.1.2 Decorrelation

The key idea here is to reduce information leakage by adding an additional loss
term to the commonly used classification loss term, categorical cross-entropy. The
information leakage reduction loss term we use is distance correlation, a powerful
measure of non-linear (and linear) statistical dependence between random variables.
The distance correlation loss is minimized between raw input data and the output of
any chosen layer whose outputs need to be communicated from the client to another
untrusted client or untrusted server. This setting is crucial to some popular forms of
distributed machine learning that require sharing of activations from an intermediate

19 Split Learning 449

Fig. 19.6 Reference [20] shows that learning a pruning filter to selectively prune out channels in
the latent representation space at the split layer helps in empirically preventing various state-of-
the-art reconstruction attacks during the prediction step in the setting of PCI

layer. This has been motivated under the “activation sharing” subsection in the
motivation section.

Optimization of this combination of losses helps ensure the activations resulting
from the protected layer have minimal information for reconstructing raw data
while still being useful enough to achieve reasonable classification accuracies upon
post-processing. The quality of preventing reconstruction of raw input data while
maintaining reasonable classification accuracies is qualitatively and quantitatively
substantiated in the experiments section. The joint minimization of distance corre-
lation with cross entropy leads to a specialized feature extraction or transformation
such that it is imperceptible in leaking information about the raw dataset with respect
to both the human visual system and more sophisticated reconstruction attacks.

19.5.1.3 Loss Function

The total loss function for n samples of input data X, activations from protected
layer Z, true labels Ytrue, predicted labels Y, and scalar weight α is given by:

αDCOR(X,Z) + (1 − α)CCE(Ytrue,Y). (19.1)

19.5.2 Differential Privacy for Activation Sharing

Arachchige et al. [21] provides a differentially private mechanism for sharing
activations post a flattening layer obtained after the convolutional and pooling
layers. These flattened outputs are binarized and a “utility enhanced randomization”

450 P. Vepakomma and R. Raskar

mechanism inspired by RAPPOR is applied to create a differentially private binary
representation. These are then communicated to the server where fully connected
layers act on them to generate the final predictions. The work in [22] provides a
differentially private mechanism for supervised manifold embeddings of features
extracted from deep networks in order to perform image retrieval tasks from a
database on the server. The work in [23] looks at preventing leakage of information
about the labels in the context of split learning. They provide defenses to prevent
from norm and hint attacks for revealing label information.

19.6 Future Work

There are several aspects to study with regard to distributed machine learning
methods like split learning and federated learning. These include issues of resource
efficiency, privacy, convergence, non-homogeneity in real-world data, latency of
training, collaborative inference, straggler clients, topologies of communication,
attack testbeds, and so forth making this field an active area of current research.

References

1. Konečnỳ J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D (2016) Federated learning:
Strategies for improving communication efficiency. Preprint. arXiv:1610.05492

2. Gupta O, Raskar R (2018) Distributed learning of deep neural network over multiple agents. J
Netw Comput Appl 116:1–8

3. Vepakomma P, Gupta O, Swedish T, Raskar R (2018) Split learning for health: Distributed
deep learning without sharing raw patient data. Preprint. arXiv:1812.00564

4. Chen J, Pan X, Monga R, Bengio S, Jozefowicz R (2016) Revisiting distributed synchronous
SGD. Preprint. arXiv:1604.00981

5. Lin Y, Han S, Mao H, Wang Y, Dally WJ (2017) Deep gradient compression: Reducing the
communication bandwidth for distributed training. Preprint. arXiv:1712.01887

6. Han S, Mao H, Dally WJ (2015) Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding. Preprint. arXiv:1510.00149

7. Louizos C, Ullrich K, Welling M (2017) Bayesian compression for deep learning. Preprint.
arXiv:1705.08665

8. Laskin M, Metz L, Nabarro S, Saroufim M, Noune B, Luschi C, Sohl-Dickstein J, Abbeel P
(2020) Parallel training of deep networks with local updates. Preprint. arXiv:2012.03837

9. Huo Z, Gu B, Huang H (2018) Training neural networks using features replay. Preprint.
arXiv:1807.04511

19 Split Learning 451

10. Elthakeb AT, Pilligundla P, Mireshghallah F, Cloninger A, Esmaeilzadeh H (2020) Divide
and conquer: Leveraging intermediate feature representations for quantized training of neural
networks. In: International conference on machine learning. PMLR, pp 2880–2891

11. Gharib G, Vepakomma P (2021) Blind learning: An efficient privacy-preserving approach
for distributed learning. In: Workshop on split learning for distributed machine learning
(SLDML’21)

12. Thapa C, Chamikara MAP, Camtepe S (2020) Splitfed: When federated learning meets split
learning. Preprint. arXiv:2004.12088

13. Madaan H, Gawali M, Kulkarni V, Pant A (2021) Vulnerability due to training order in split
learning. Preprint. arXiv:2103.14291

14. Han DJ, Bhatti HI, Lee J, Moon J (2021) Han DJ, Bhatti HI, Lee J, Moon J (2021) Accelerating
federated learning with split learning on locally generated losses. In: ICML 2021 workshop on
federated learning for user privacy and data confidentiality. ICML Board

15. Singh A, Vepakomma P, Gupta O, Raskar R (2019) Detailed comparison of communication
efficiency of split learning and federated learning. Preprint. arXiv:1909.09145

16. Poirot MG, Vepakomma P, Chang K, Kalpathy-Cramer J, Gupta R, Raskar R (2019) Split
learning for collaborative deep learning in healthcare. Preprint. arXiv:1912.12115

17. Ceballos I, Sharma V, Mugica E, Singh A, Roman A, Vepakomma P, Raskar R (2020) SplitNN-
driven vertical partitioning. Preprint. arXiv:2008.04137

18. Dingledine R, Mathewson N, Syverson P (2004) Tor: The second-generation onion router.
Technical report, Naval Research Lab Washington DC

19. Sharma V, Vepakomma P, Swedish T, Chang K, Kalpathy-Cramer J, Raskar R (2019)
Expertmatcher: Automating ML model selection for clients using hidden representations.
Preprint. arXiv:1910.03731

20. Singh A, Chopra A, Garza E, Zhang E, Vepakomma P, Sharma V, Raskar R (2020) Disco:
Dynamic and invariant sensitive channel obfuscation for deep neural networks. Preprint.
arXiv:2012.11025

21. Arachchige PCM, Bertok P, Khalil I, Liu D, Camtepe S, Atiquzzaman M (2019) Local
differential privacy for deep learning. IEEE Internet Things J 7(7):5827–5842

22. Vepakomma P, Balla J, Raskar R (2021) Differentially private supervised manifold learning
with applications like private image retrieval. Preprint. arXiv:2102.10802

23. Li O, Sun J, Yang X, Gao W, Zhang H, Xie J, Smith V, Wang C Label leakage and protection
in two-party split learning. Preprint. arXiv:2102.08504

24. Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, Zhang L (2016) Deep
learning with differential privacy. In: Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security, pp 308–318

Part V
Applications

This part sheds more light on multiple enterprise use cases of federated learning.
This includes financial services and healthcare, two domains in which federated
learning has been adopted early due to their high degree of privacy regulation. We
also discuss retail and telecommunications and the needs of these domains.

This part starts with the quite formal discussion of applications of FL in their
respective domains but also extends to experiences shared by an FL platform
provider and to opportunities lined out for the telecommunications industry.

Chapter 20 reviews an application of federated learning for financial crimes
detection, in particular anti-money laundering. This is a typical example of collabo-
ration between different institutions in a non-competitive field. Financial regulators
require financial institutions to take measure to combat fraud and money laundering
due to the social cost incurred by drug trade, people trafficking, and tax evasion.
Chapter 21 introduces an interesting case in which federated learning is used for
financial portfolio management. This chapter illustrates the use of reinforcement
learning in a federated setting.

Chapter 22 provides an interesting example of using federated learning in med-
ical imaging for both segmentation and classification tasks. Chapter 23 addresses
the practical application of federated learning in the medical field, also in the
context of COVID-19. The chapter is written by an author from Persistent Systems,
which offers federated learning services to clients in the medical field. The chapter
provides guidance for the development of FL platforms in healthcare based on
practical experiences.

Chapter 24 introduces a retail use case and federated learning algorithms for a
product recommender system. This is a good example of how to avoid aggregating
data in a large-scale retail network, avoiding privacy risk and regulatory scrutiny.
It outlines insights into practical issues such as the strong imbalance of data sets
between stores.

Lastly, Chap. 25 discusses potential use cases in the telecommunication industry,
one of the potentially largest users of federated learning.

Chapter 20
Federated Learning for Collaborative
Financial Crimes Detection

Toyotaro Suzumura, Yi Zhou, Ryo Kawahara, Nathalie Baracaldo,
and Heiko Ludwig

Abstract Mitigating financial crime risk (e.g., fraud, theft, money laundering)
is a large and growing problem. In some way it touches almost every financial
institution, as well as many individuals, and in some cases, entire societies.
Advances in technology used in this domain, including machine learning-based
approaches, can improve upon the effectiveness of financial institutions’ existing
processes. However, a key challenge that most financial institutions continue to
face is that they address financial crimes in isolation without any insight from other
firms. Where financial institutions address financial crimes through the lens of their
own firm, perpetrators may devise sophisticated strategies that may span across
institutions and geographies. In this chapter, we describe a methodology to share
key information across institutions by using a federated graph learning platform that
enables us to train more accurate detection models by leveraging federated learning
as well as graph learning approaches. We demonstrate that our federated model
outperforms a local model by 20% with the UK FCA TechSprint data set. This new
platform opens up the door to efficiently detect global money laundering activity.

20.1 Introduction: Financial Crimes Detection

Financial crime [3–6, 8, 14] is a broad and growing class of criminal activity
involving the misuse, misappropriation, or misrepresentation of entities with mon-
etary value. Common subclasses of financial crime include theft, fraud, and money

T. Suzumura
The University of Tokyo, Tokyo, Japan
e-mail: suzumura@acm.org

Y. Zhou (�) · N. Baracaldo · H. Ludwig
IBM Research – Almaden, San Jose, CA, USA
e-mail: yi.zhou@ibm.com; baracald@us.ibm.com; hludwig@us.ibm.com

R. Kawahara
IBM Research, Tokyo, Japan
e-mail: RYOKAWA@jp.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_20

455

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_20&domain=pdf
mailto:suzumura@acm.org
mailto:yi.zhou@ibm.com
mailto:baracald@us.ibm.com
mailto:hludwig@us.ibm.com
mailto:RYOKAWA@jp.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_20

456 T. Suzumura et al.

laundering (i.e., obscuring the true origin of monetary entities to evade regulations
or avoid taxes). The monetary value of such crimes can range from tens of dollars
to tens of billions of dollars. However, the overall negative consequences of such
crimes extend far beyond their monetary value. In fact, the consequences may even
be societal in scope, such as in cases of terrorist financing or large-scale frauds that
topple major institutions and governments.

In response, regulators require efforts to combat money laundry from financial
institutions. Financial institutions spend substantial resources to develop compli-
ance programs and infrastructures in order to combat financial crimes. Managing
financial crime risk presents challenges due to the scale of the effort (large banks
may have upwards of 100 million customers or more, which together generate
billions of transactions that must be screened) and the availability of data (when
transactions cross bank or country boundaries, little may be known about the remote
counterparty). Current technology employed to assist with these processes focuses
on the identification of anomalies and known patterns of malfeasance. However,
usually also a large number of false positive alerts are created in the process. These
alerts then require further (often manual) review to parse out suspicious behavior
from valid financial activity that is inadvertently picked up by the models (referred
to as “false positives”).

20.1.1 Combating Financial Crimes with Machine Learning
and Graph Learning

Recently, financial institutions have been exploring the use of machine learning
techniques to augment existing transaction monitoring capabilities. Machine learn-
ing techniques offer a promising capability to identify suspicious activity from an
incoming stream of transactions, as well as to filter the false positives from the
alerts generated by current technology, thereby making existing processes more
efficient and ultimately more effective. These machine learning techniques rely
on a set of features generated from knowledge about the transacting parties, from
individual and aggregate transaction metrics, and from the topology of party-
to-party relationships derived from static knowledge and transactional history.
Topological features are computed from graph embeddings or from the results of
traditional graph algorithms such as PageRank [13], count of suspicious parties
within an egonet network. An ego network consists of a focal node (“ego”) and
the nodes to whom ego is directly connected to (these are called “alters”) plus the
ties, if any, among the alters.

Overall, this approach has been shown to have a positive effect when evaluated
against a ground truth determined by currently deployed methods. In one such
evaluation, false positives were reduced by 20–30%.

20 Federated Learning for Collaborative Financial Crimes Detection 457

20.1.2 Need for Global Financial Crimes Detection and
Contributions

Notwithstanding the value of leveraging machine learning in the context of transac-
tion monitoring, financial institutions are limited to identifying suspicious activity
as it pertains to their organization. This presents a conundrum since bad actors are
increasingly sophisticated with their techniques that often span across organizations
and geographies (i.e., many use multiple banks to launder money). Financial
institutions are realizing that without looking at data across multiple organizations,
it would be impossible to detect a portion of suspicious activity. Regulatory require-
ments, data privacy concerns, as well as commercial competitiveness, all pose
challenges to explicit sharing in information among financial institutions. Given the
challenge at hand, an innovative solution is needed to detect suspicious activities
across organizations. This chapter uses an approach to combine federated graph
learning across parties with a federated machine learning approach to facilitate the
collaboration of multiple financial institutions in training better detection models for
money laundering. Its main contributions are:

• A federated graph learning platform detects global financial crime activities
across multiple financial institutions.

• It demonstrates the effectiveness of federated graph learning as a tool to help
identify financial crime during the TechSprint hosted by the United Kingdom’s
Financial Conduct Authority (FCA) in 2019, using the data set and use cases
provided by the FCA.

• We combine federated learning with graph learning as a means to detect potential
financial crimes and share typologies across multiple financial institutions for
which money laundry detection is a non-competitive activity.

The rest of this chapter is organized as follows: We outline our core technologies,
including preliminaries for Graph Learning. This is followed by the overall archi-
tecture and our federated graph learning capabilities. We then provide an overview
of an implementation and evaluate using the data set provided by the UK FCA for
its TechSprint. Finally we describe concluding remarks and future directions.

20.2 Graph Learning

This section describes the underlying technologies, along with relevant prior art, that
constitute our platform—including graph learning or machine learning techniques
to detect financial crimes.

Graph learning is defined as a type of machine learning that utilizes graph-
based features to add richer context to data by first linking that data together as
a graph structure and then deriving features from different metrics on the graph.
Various graph features can be defined by exploiting a set of graph analytics such as

458 T. Suzumura et al.

connectivity, centrality, community detection, and pattern matching. Graph features
can also be combined with non-graph features (e.g., features on attributes for a
specific data point). Once a set of features including graph features and non-graph
features are defined, a problem can then be formulated as a supervised machine
learning problem (assuming that label data is provided). However, if label data is not
provided, it can be approached as an unsupervised machine learning problem so that
we can apply clustering (e.g., k-means) or outlier detection (e.g., LoF or DBScan).
Recently, there have been many advances in scalable graph computation for billion-
scale or even trillion-scale graphs [7, 16]. Hence, it is reasonable to expect that this
approach would remain practical, even for large graphs.

The paper of Akoglu et al. [2] provides a good review of prior art about graph-
based approaches for general anomaly detection problems. Molloy et al. [11] use
PageRank-based features for fraud detection. The papers [9] and [17] explore graph
embedding methods for financial crime detection applications such as anti-money
laundering (AML). Recently research communities are also exploring the use of
neural networks to compute graph embeddings without determining pre-defined
graph topologies as graph features. However, the lack of explainability of the black-
box model of neural network presents adoption challenges for financial institutions
that have stringent model validation processes that hinge on explainability of the
decisions.

Notably these prior works focus more on local graph features, while the approach
in this chapter is focused on global graph features spanning multiple financial
institutions.

20.3 Federated Learning for Financial Crimes Detection

In this section we propose a new platform that enables us to capture complex global
money laundering activities spanning multiple financial institutions as opposed to
current AML (Anti-Money Laundering) systems that only look at transactions at a
single bank. The proposed federated learning system is comprised of 3 steps: First,
we compute local features, then, we compute global graph features, and finally we
perform federated learning over computed features. Subsequent sections describe
each step.

20.3.1 Local Feature Computation

We firstly compute local features for each financial institution. As local features,
we can firstly compute demographic features of customers such as account types
(individual or business), business types, countries, account opening date, and some
risk flags based on “Know Your Customer” (KYC) attributes. KYC refers to
onboarding process when a client opens a bank account to prove his or her identity

20 Federated Learning for Collaborative Financial Crimes Detection 459

by providing his/her personal information such as driver information, etc. We then
compute various statistical features on transaction behaviors such as min, max,
average, mean, and standard deviation for transaction of various types such as
international wire, domestic wire, credit, cash, check, and so forth. We can also
compute graph features such as egonet, pagerank, and degree distribution, similarly
to the practice in a single bank case.

20.3.2 Global Feature Computation

As a next step, we compute global features that provide global context related to sus-
picious activities among multiple financial institutions—using a privacy-preserving
graph computation framework called GraphSC [12]. Global graph features are
mainly computed using graph analytics over the entire graph of transactions and
a party relationship graph—while each party does not have to reveal their graph to
other parties. Graph features include 1 hop/2 hop egonets, cycle and temporal cycle,
betweeness centrality, community detection, and so forth. The advantage of using
global features over local graph features is if we can create richer and denser graph
by assembling sub-graphs from multiple graphs, then the graph features should be
more effective since you can also acquire contexts from other financial institutions
as to which bank accounts may be associated with bad actors.

For computing global graph features, we need to take privacy into account, so
as not to disclose any sensitive information from each financial institution. For
instance, if there is a cycle of transactions consisting of 3 accounts in two different
financial institutions—starting from an account A in Financial Institution X to an
account B in Financial Institution Y, and to an account C in Financial Institution Y.
A challenge is that a transaction from B to C in Financial Institution Y cannot be
revealed to Financial Institution X. Thus, one of the requirements is to design and
implement a secure protocol that allows Financial Institution X to send an inquiry
to Financial Institution Y to ask whether there is a transaction between B and C—
without letting Financial Institution Y to reveal sensitive information. GraphSC [12]
is one of such secure graph computation frameworks, and we implemented some
graph features such as temporal cycle features based on this approach.

20.3.3 Federated Learning

Next, we build a federated learning model using local features and global features
that we describe in the previous sections. It uses one of federated learning platforms
[10], which implements a centralized federated learning approach. Data owners
share model updates with a central server, the aggregator, which does not have
access to the data of any of the parties. This central server is hosted by a third
party such as a Financial Intelligence Unit (FIU), a common type of financial crimes

460 T. Suzumura et al.

watchdog in many mature financial markets. To further protect the privacy, even
the model updates shared with the aggregator can be strictly secured via privacy-
preserving techniques such as differential privacy, secure multi-party computation,
or different encryption techniques.

We target a scenario where different financial institutions collaborate together to
train a model that can more accurately predict suspicious money laundering efforts.
In our setup, each financial institution trains on its local data and shares the model
parameters of the trained model with the central aggregator. The aggregator then
fuses all of the model parameters and generates a global model whose weights will
be sent back to all the collaborating banks to reinitialize their local model for another
round of local training. This process is repeated for a set number of rounds or until
desired model accuracy is achieved.

The framework [10] that we used is a framework designed for federated learning
in an enterprise environment. It provides a basic fabric for federated learning
on which advanced features, such as differential privacy and secure multiparty
computation, can be added. It is agnostic to the specific machine learning platform
used and supports different learning topologies, e.g., a shared aggregator, and
protocols.

20.4 Evaluation

In this section we describe how federated learning can help improving model
accuracy for AML problems across multiple financial institutions.

20.4.1 Data Set and Graph Modelling

For the evaluation of the approach described in this chapter, we use the data set
provided by the FCA (Financial Conduct Authority) of the United Kingdom, who
hosted a TechSprint in 2019 [1]. The data set is a simulated—but realistic—data
set comprised of data from 6 financial institutions in the UK and reflects real-world
statistical distributions and well-known suspicious patterns.

The data set spans 2 years of activity and includes customer profile, transactions,
customer relationship data, an indicator of suspicious activity alerts, and an
indication of whether the customer relationship is terminated over suspicion of
misconduct. We use the last item as a form of ground truth for suspicious activity.

On the basis of this data set, we build two types of graphs: one called a transaction
graph where a vertex represents a bank account and an edge represents a money
transfer. Another graph is called party relationship graph where a vertex represents
a customer and an edge represents a social relationship between customers such as
family.

20 Federated Learning for Collaborative Financial Crimes Detection 461

20.4.2 Graph Features for Party Relationship Graph

As a preliminary evaluation, we firstly focus here only on the party relationship
graph, which consists of social relationships between bank accounts. For example,
a person who owns a company can use both his or her personal account and the
company’s business account. In this case, those two bank accounts can be related
through the owner. This kind of relations could be an important indicator of a
financial crime because a criminal might use an account indirectly through the
relationship (e.g., ownership of a company) to send his or her private money to
obscure the true source or beneficiary (i.e., the layering).

Here, we assume that a bank has the following information for each customer:

• Customer profile (e.g., account ID, name, date of birth, nationality, etc.)
• Related party profiles (e.g., name, date of birth, etc.)
• Relations between the customer and the related parties (e.g., director, owner,

family, etc.)
• Customer risk intelligence (e.g., past Suspicious Activity Report (SAR) flags,

financial crime exit markers)

Such information is obtained in the course of the KYC (Know-Your-Customer)
processes (when onboarding new customers or in performing periodic reviews of
existing customers) or when performing detailed investigations of AML alerts. The
related parties may or may not be a customer of a financial institution and could
include the customer itself. If multiple customers have relationships with a common
related party, this indicates that the accounts of the customers might be affected by
a single party and thus could work in a coordinated manner.

Since there are many financial institutions in the market, one needs to consider
the case of an individual having accounts in multiple financial institutions. Similarly,
the same related party could appear in the data of multiple financial institution. To
reveal the connection between accounts across the financial institution boundaries,
one needs to go through the process of “entity resolution” to draw the connections
between the customer profiles and related party profiles. That is, one needs to
identify the profiles that correspond to the same entity by comparing the attributes
such as the names, addresses, or identification numbers.

Here, we applied the following simple rule for the entity resolution:

• Individual customer or party: (full name, date of birth, and nationality are equal)
OR (ID document type, ID document number, and nationality are equal)

• Business customer or party: (full name, date of incorporation, and country of
incorporation are equal) OR (company registration type, company registration
number, and country of incorporation are equal)

However, in practice, entity resolution presents many challenges due to the existence
of typos, document quality issues, OCR errors, or fluctuations in conversions of
non-Latin characters. There are a number of commercial products that address this

462 T. Suzumura et al.

Fig. 20.1 Relation between customers and related parties

challenge in contexts where raw data can be shared; however, performing entity
resolution under privacy-preserving constraints remains an area of future work.

Once the entity resolution for the customers and their related parties has been
performed, one will get a graph of those entities, as shown in Fig. 20.1. In the figure,
CP1, CP2, · · · are the customers, each of which has an account, RP1, RP2, · · · are
their related parties, GRP1, GRP2, · · · and GCP1, GCP2, · · · are the grouping IDs
issued in the course of the entity resolution. Edges between the customers and the
related parties are the social relations, and edges between the grouping IDs and the
customers or related parties are created if those parties are identified as belonging
to the same entity by the entity resolution.

Since the connected accounts (customers) in the graph are possible collaborators,
we think that the risk of being involved in money laundering is shared among the
accounts. From this hypothesis, we compute each customer’s features based on
the statistics in each (weakly) connected component in the graph. In the current
implementation, the following features are used:

• Number of customers who have alerted by a transaction monitoring system in the
past within the connected component

• Number of customers who have SAR flags in the past within the connected
component

• Number of customers who have financial crime exit markers in the past within
the connected component

• Number of the nodes within the connected component

The status of the risk flags (SAR, financial crime exit marker, etc.) can be obtained
from the customer risk intelligence data as mentioned in a previous paragraph in
this section. Please note that the risk flag status of a customer is often used as a
target variable in a machine learning-based prediction/classification task of financial
crimes. In such cases, those features must not include the status of the risk flag of the

20 Federated Learning for Collaborative Financial Crimes Detection 463

Fig. 20.2 Conditional probability of a customer’s fincrime exit marker being flagged as a function
of a feature. Left: the feature is the number of SAR-flagged customers in the same connected
component. Right: the feature is the number of nodes in the connected component

customer in question and must contain the information from only other customers
when those are used as a training or a testing data set.

Our preliminary analysis on the synthetic data set used in the course of the
TechSprint is shown in Fig. 20.2. Here, we assume that the financial crime exit
marker of a customer is the target variable to be predicted for the supervised
machine learning setting. It shows a positive correlation between the probability of
a customer being flagged with a fincrime exit marker and the number of customers
who have SAR flags (left) within the same connected component and the number
of nodes (including the customers, related parties, and the grouping IDs) within the
same connected component. This result indicates that these values can be used as
features for detecting money laundering with other features.

20.4.3 Model Accuracy

Here we show the evaluation result of our federated graph learning using the
TechSprint data. We compute local features including transaction-based features,
global graph features in party relationship graph defined in the previous section,
and global graph features in transaction graph, and local transaction features.

With regard to the platform setting, in an ideal federated learning environment,
each financial institution will perform its local training on its own server or virtual
machine and communicate with the aggregator, which can be hosted by a third
party (e.g., government agency) or by one of the banks, after each local training
period is performed. However, due to the limited resources provided by during
the TechSprint, we only had one host and hence needed to simulated 6 processes
representing 6 UK banks’ local training processes and one process was used as a
proxy for the role of the aggregator using our federated learning framework [15]. We
have trained several types of machine learning models, for example, -1 regularized
logistic regression, -2 regularized linear support vector machine (SVM), a decision
tree, and a simple neural network.

464 T. Suzumura et al.

We found similar performance results (with less than 10% difference in testing
accuracy and F1 scores) for these machine learning models. Therefore, we only
report the results for the neural network, which is composed of two dense layers of
sigmoid units and a sigmoid layer with binary cross-entropy loss. As previously
noted, explainability for neural networks is still an ongoing research area, so
we could leverage existing work or use other machine learning models for the
current financial regulation policy that requires transparency and explainability in
the machine learning models that are used. Since the data set that was provided is
highly imbalanced with only around 5% bank accounts containing labels on whether
they were filed as Suspicious Activity Reports (SAR) and around 0.4% are labeled
as financial criminals, we exploited the under-sampling strategy in the majority
label class (i.e., the clean bank accounts, to create balance training data sets for
all financial institutions). We then trained local models and the aggregated model all
based on the balanced training data sets.

In Table 20.1, we provide the results of local models trained on each financial
institution’s transaction records. We observed that since the local test sets are
balanced, the test accuracy and F1 score are the same, which seems to demonstrate
good performance of the local models. However, if we test the local trained model
against account records from all financial institutions, we can see that F1 scores drop
significantly due to the imbalanced nature of the test set and the test accuracy also
drops a bit. Moreover, if we add graph features that we described in the previous
section into our training features, we see improvements in both test accuracy and F1
scores as shown in Table 20.2. From Table 20.3, we can conclude from the results
that by training an aggregated model collaboratively via federated learning, all
financial institutions can benefit from the aggregated model without sacrificing their
data privacy. This also includes significantly reducing costs related to processing
false positives of money laundry.

The improvement in accuracy and F1 means a more accurate flagging of cases
has the potential to significantly reduce the compliance cost for banks, reducing the
need for follow-up.

Table 20.1 Centralized local models trained on transaction features

BWBAGB PCOBGB NUBAGB HCBGGB GVBCGB FOCSGB

Local test
set (Accu-
racy/F1)

0.971/0.971 0.976/0.976 0.984/0.984 0.982/0.982 0.967/0.966 0.988/0.988

All record
test set
(Accu-
racy/F1)

0.956/0.550 0.956/0.550 0.953/0.546 0.957/0.551 0.960/0.550 0.962/0.552

20 Federated Learning for Collaborative Financial Crimes Detection 465

Table 20.2 Local models trained on transaction and graph features

BWBAGB PCOBGB NUBAGB HCBGGB GVBCGB FOCSGB

Local test
set
(Acc/F1)

0.996/0.996 0.997/0.997 0.997/0.997 0.996/0.996 0.990/0.990 1/1

All record
test set
(Acc/F1)

0.994/0.761 0.994/0.769 0.990/0.692 0.995/0.766 0.995/0.764 0.995/0.765

Table 20.3 Federated model
trained on transaction and
graph features

Aggregated model

Accuracy 0.995

F1 0.769

20.5 Concluding Remarks

In this chapter we described a novel framework that enables us to better iden-
tify patterns of suspicious activity by sharing insights across multiple financial
institutions without sharing any raw data between each financial institution or
a third party. This was made possible by combining graph learning techniques
with federated learning. We described the overall architecture and prototypical
implementation. We demonstrated that the federated learning model using multiple
financial institutions outperformed a local model by 20% based on a data set from
the 2019 FCA TechSprint. We believe that this capability lays the foundation to pilot
these techniques on real-world data and scenarios.

Federated learning combined with graph analysis provides a good approach
for financial institutions to collaborate identifying patterns of financial fraud, in
particular patterns of money laundering. If privacy and security of customers’
transaction data can be guaranteed, financial institutions can collaborate in this non-
competitive area or be compelled to do so by regulators. Reduced rates of false
positives provide savings of regulatory costs to the financial sector, but the reduction
of money laundry has large societal benefits: Drug, arms, and sex trafficking as well
as reduced terrorism financing becomes more difficult and is hopefully reduced.
Moreover, this form of collaboration can be extended to other industries that face
fraud or crime in a similar way and can address this in a non-competitive way if
secrecy and privacy is maintained. Detecting counterfeit goods or retail theft are
good candidates.

References

1. 2019 global AML and financial crime techsprint (2019). https://www.fca.org.uk/events/
techsprints/2019-global-aml-and-financial-crime-techsprint

https://www.fca.org.uk/events/techsprints/2019-global-aml-and-financial-crime-techsprint
https://www.fca.org.uk/events/techsprints/2019-global-aml-and-financial-crime-techsprint

466 T. Suzumura et al.

2. Akoglu L, Tong H, Koutra D (2015) Graph based anomaly detection and description: a survey.
Data Min Knowl Discov 29(3):626–688

3. Alexandre C (2018) A multi-agent system based approach to fight financial fraud: an
application to money laundering. ArXiv

4. Chen Z, Van Khoa LD, Teoh EN, Nazir A, Karuppiah E, Lam KS (2018) Machine learning
techniques for anti-money laundering (AML) solutions in suspicious transaction detection: a
review. Knowl Inf Syst 57:245–285

5. Colladon AF, Remondi E (2017) Using social network analysis to prevent money laundering.
Expert Syst Appl 67:49–58

6. Han J, Barman U, Hayes J, Du J, Burgin E, Wan D (2018) NextGen AML: distributed deep
learning based language technologies to augment anti money laundering investigation. In:
Proceedings of ACL 2018, system demonstrations. Association for Computational Linguistics,
pp 37–42

7. Hanai M, Suzumura T, Tan WJ, Liu ES, Theodoropoulos G, Cai W (2019) Distributed edge
partitioning for trillion-edge graphs. CoRR abs/1908.05855, http://arxiv.org/abs/1908.05855,
1908.05855

8. Jamshidi MB, Gorjiankhanzad M, Lalbakhsh A, Roshani S (2019) A novel multiobjective
approach for detecting money laundering with a neuro-fuzzy technique. In: 2019 IEEE 16th
international conference on networking, sensing and control (ICNSC), pp 454–458. https://doi.
org/10.1109/ICNSC.2019.8743234

9. Liu W, Liu Z, Yu F, Chen P, Suzumura T, Hu G (2019) A scalable attribute-aware network
embedding system. Neurocomputing 339:279–291

10. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y, Radhakrishnan J,
Verma A, Sinn M, Purcell M, Rawat A, Minh T, Holohan N, Chakraborty S, Whitherspoon S,
Steuer D, Wynter L, Hassan H, Laguna S, Yurochkin M, Agarwal M, Chuba E, Abay A (2020)
IBM federated learning: an enterprise framework white paper v0.1. 2007.10987

11. Molloy I, Chari S, Finkler U, Wiggerman M, Jonker C, Habeck T, Park Y, Jordens F, Schaik R
(2016) Graph analytics for real-time scoring of cross-channel transactional fraud

12. Nayak K, Wang XS, Ioannidis S, Weinsberg U, Taft N, Shi E (2015) GraphSC: parallel secure
computation made easy. In: 2015 IEEE symposium on security and privacy, pp 377–394.
https://doi.org/10.1109/SP.2015.30

13. Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order
to the web. Technical Report 1999-66, Stanford InfoLab. http://ilpubs.stanford.edu:8090/422/,
previous number = SIDL-WP-1999-0120

14. Savage D, Wang Q, Chou PL, Zhang X, Yu X (2016) Detection of money laundering groups
using supervised learning in networks. ArXiv abs/1608.00708

15. Truex S, Baracaldo N, Anwar A, Steinke T, Ludwig H, Zhang R (2018) A hybrid approach to
privacy-preserving federated learning

16. Ueno K, Suzumura T, Maruyama N, Fujisawa K, Matsuoka S (2017) Efficient breadth-first
search on massively parallel and distributed-memory machines. Data Sci Eng 2(1):22–35.
https://doi.org/10.1007/s41019-016-0024-y

17. Weber M, Chen J, Suzumura T, Pareja A, Ma T, Kanezashi H, Kaler T, Leiserson CE,
Schardl TB (2018) Scalable graph learning for anti-money laundering: a first look. CoRR
abs/1812.00076, http://arxiv.org/abs/1812.00076, 1812.00076

http://arxiv.org/abs/1908.05855
https://doi.org/10.1109/ICNSC.2019.8743234
https://doi.org/10.1109/ICNSC.2019.8743234
https://doi.org/10.1109/SP.2015.30
http://ilpubs.stanford.edu:8090/422/
https://doi.org/10.1007/s41019-016-0024-y
http://arxiv.org/abs/1812.00076

Chapter 21
Federated Reinforcement Learning for
Portfolio Management

Pengqian Yu, Laura Wynter, and Shiau Hong Lim

Abstract Financial portfolio management involves the constant redistribution of
wealth over a set of financial assets and can, by its sequential nature, be modelled
using reinforcement learning (RL). Federated learning allows traders to jointly train
models without revealing their private data. We show on S&P500 market data how
personalized, robust federated reinforcement learning using Fed+ produces trading
policies that offer higher annual returns and Sharpe ratios than other methods.

21.1 Introduction

In reinforcement learning (RL), the goal is to learn a multi-step, or long-term,
policy to control a system through trial and error. There are two key aspects to
reinforcement learning that distinguish it from other areas in machine learning.
Firstly, policies are multi-step decisions that generally will be used over a time
horizon of interest. Secondly, the policy is trained not in a supervised manner
but rather by trial and error, that is, in a semi-supervised manner. Specifically,
RL algorithms have access to the system dynamics through sampling rather than
through an analytical model of the dynamics. Information on the likely reward
obtained when a policy leads an agent to a particular state is assumed to be
given; hence, the reinforcement learning algorithm tries successive policies so as
to maximize the long-term reward. Reinforcement learning solves the problem of
correlating immediate actions with the delayed returns that they will eventually
produce through sampling.

Deep reinforcement learning incorporates deep learning into the method of
solving for optimal policies. In this case, the policy or other relevant func-
tions are represented by a neural network. The use of neural networks to learn
and represent the policy allows for a seamless use of federated learning in the

P. Yu · L. Wynter (�) · S. H. Lim
IBM Research, Singapore, Singapore
e-mail: lwynter@sg.ibm.com; shonglim@sg.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_21

467

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_21&domain=pdf
mailto:lwynter@sg.ibm.com
mailto:shonglim@sg.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_21

468 P. Yu et al.

process: the federation never shares data on the agent experiences, or state–
action pairs and their rewards, but it rather shares policy neural network parame-
ters.

Federated reinforcement learning is of particular interest as reinforcement
learning requires a tremendous amount of data to learn good policies via trial and
error. Being able to leverage the data, or so-called “experiences” of the agents under
different states and actions, without requiring the parties to explicitly share them, is
a great advantage to training reinforcement learning policies in real-world settings,
from robotics to navigation to financial trading.

Indeed, federated learning offers significant potential value for financial portfolio
management for two main reasons: (i) Historical financial data is limited and
so traders often augment public data using their own data models that they do
not wish to share with other traders. Federated learning offers an avenue for
them to jointly train policies on far more data, without revealing their private
data. (ii) Financial markets are highly non-stationary. Federated learning on het-
erogeneous data offers the benefits of multi-task learning in a privacy-protected
manner.

This chapter proceeds as follows. We begin by introducing the formulation and
notation needed to describe federated reinforcement learning. Then, we introduce
the model for RL-based financial portfolio management. After that we define
the key methods used for data enrichment, an important aspect of the federated
portfolio management application. Lastly, we provide extensive experimental results
on federated portfolio management and conclude with the key take-home mes-
sages.

21.2 Deep Reinforcement Learning Formulation

In reinforcement learning (RL), the goal is to learn a policy to control a system mod-
elled by a Markov decision process, which is defined as a 6-tuple 〈S,A, P , r, T , γ 〉.
Here, S = ⋃

t St is the state space and A = ⋃
t At is the action space, both

assumed to be finite dimensional and continuous; P : S × A × S → R is
the transition kernel density and r : S × A → R is the reward function;
T is the (possibly infinite) decision horizon; and γ ∈ (0, 1] is the discount
factor. Deterministic policy gradient learns a deterministic target policy using deep
neural networks with weights θ [16]. A policy parameterized by θ is a mapping
μθ : S → A, specifying the action to choose in a particular state. At each
time step t ∈ {1, . . . , T }, the agent in state st ∈ St takes a deterministic action
at = μθ(st) ∈ At , receives the reward r(st , at), and transits to the next state st+1
according to P

21 Federated Reinforcement Learning for Portfolio Management 469

An RL agent’s objective is to maximize its expected return given the starting
distribution

J (μθ) � Est∼P

[
T∑

t=1

γ t−1r(st , μθ (st))

]
.

Then, an optimal policy to achieve the objective can be found by applying the
deterministic policy gradient theorem (see Theorem 1 in [16]), where the idea is
to adjust the parameters θ of the policy in the direction of the performance gradients
∇θJ (μθ). Deterministic policy gradients can be estimated more efficiently than their
stochastic counterparts (see [17]), thus avoiding solving a problematic integral over
the action space.

21.3 Financial Portfolio Management

Portfolio management consists of sequentially allocating wealth to a collection of
assets in consecutive trading periods [7, 12]. Due to the sequential decision-making
nature of portfolio management, it is possible to apply reinforcement learning
(RL) to model asset reallocation. Since rewards are delayed, and the process is
time dependent, the RL formulation is furthermore a natural paradigm to use in
developing trading policies. See, for example, recurrent RL [1], model-free off-
policy RL [8], an optimal hedging framework [5], and state-augmented RL [18].

Federated learning offers significant potential value in this application for two
main reasons, as mentioned above:

(i) Historical financial data on any particular asset of interest is limited. Consider the
S&P500: the size of a training set for any S&P500 asset over the past 10 years is
at most 2530 observations, as there are 253 trading days per year. Assets coming
onto the market more recently will then have even less training data available.
Traders thus augment public data using their own data models, which they do
not wish to share with other traders. We describe several such data augmentation
models in the next section. Federated learning offers an avenue for traders to
jointly train policies on far more data, without revealing their private data.

(ii) Financial markets are highly non-stationary. As such the policies learned from
the historical training data may not generalize well due to distribution shift over
time. Federated learning, when involving independent parties jointly training
models on heterogeneous data, offers the benefits of multi-task learning in a
privacy-protected manner. Multi-task learning is known to improve the transfer-
ability of models as is needed in a non-stationary environment such as financial
markets.

Assume from here on out that the financial market is sufficiently liquid such
that any transactions can be executed immediately with minimal market impact.

470 P. Yu et al.

Following [8], let t denote the index of asset trading days and vi,t , i = {1, . . . , η},
the closing price of the ith asset at time t , where η is the number of assets in a given
asset universe. The price vector vt consists of the closing prices of all n assets. An
additional dimension (the first dimension indexed by 0) in vt , v0,t , denotes the cash
price at time t . We normalize all temporal variations in vt with respect to cash so
v0,t is constant for all t . Define the price relative vector at time t as yt � vt+1)vt =
(1, v1,t+1/v1,t , . . . , vη,t+1/vη,t)

�, where) denotes element-wise division.
Define wt−1 as the portfolio weight vector at the beginning of time t , where

its ith element wi,t−1 represents the proportion of asset i in the portfolio after
capital reallocation and

∑η
i=0 wi,t = 1 for all t . The portfolio is initialized

with w0 = (1, 0, . . . , 0)�. At the end of time t , the weights evolve according
to w′

t = (yt * wt−1)/(yt · wt−1), where * is element-wise. The reallocation
from w′

t to wt is gotten by selling and buying relevant assets. Paying all fees,
this reallocation shrinks the portfolio value by βt � c

∑η
i=1 |w′

i,t − wi,t |, where
c = 0.2% is the buy/sell fee; let ρt−1 denote the portfolio value at the beginning
of t and ρ′

t at the end, so ρt = βtρ
′
t . The normalized close price matrix at t is

Y t � [vt−l+1) vt |vt−l+2) vt | · · · |vt−1) vt |1], where 1 � (1, 1, . . . , 1)� and l is
the time embedding.

The financial portfolio management can then be formulated as a RL problem
where, at time step t , the agent observes the state st � (Y t ,wt−1), takes an
action (portfolio weights) at = wt , and receives an immediate reward r(st , at) �
ln(ρt/ρt−1) = ln(βtρ

′
t /ρt−1) = ln(βtyt · wt−1). Considering the policy μθ , the

objective of RL agent is to maximize an objective function parameterized by θ :
maxμθ J (μθ) = maxμθ

∑T
t=1 ln (βtyt · wt−1)/T . By deterministic policy gradient

theorem [16], the optimal μθ can be found via the following update rule for
parameters θ :

θ ← θ + λ∇θJ (μθ),

where λ is the learning rate.
Suppose now that there are N participants (parties), each with an RL agent

performing portfolio management. Each party has its trading asset universe (data)
In for n ∈ {1, 2, . . . , N}, and the cardinality (number of assets) in every asset
universe In is the same. The goal is to aggregate each party’s model such that
it can benefit from others. Since each party is trading on various asset universes,
this multi-agent portfolio management problem is essentially a multi-task problem.
In particular, each party’s task is a Markov decision process 〈Sn,A, Pn, r, T , γ 〉,
where the action space A and the reward function r are common to all parties. The
state space Sn depends on each party’s trading asset universe In and the transition
kernel Pn should be inferred from the underlying stock price dynamics of In. Each
party maximizes its objective and updates its RL agent using the deterministic policy
gradient through the federation.

21 Federated Reinforcement Learning for Portfolio Management 471

21.4 Data Augmentation Methods

Historical financial data is limited for any given asset. As noted above, the size
of a training set for any S&P500 asset active for the past 10 years is only 2530
observations, as there are 253 trading days per year. One way that traders handle
this relatively low volume of historical data is to augment it, by building generative
models for each asset. Thus, such models are private to the trader, and the trader
would seldom wish to share the data resulting from these models.

We present three approaches for training generative models to produce aug-
mented financial price history of publicly traded assets. Specifically, we describe
below Geometric Brownian Motion (GBM), Variable-Order Markov (VOM) model,
and Generative Adversarial Network (GAN) approaches.

21.4.1 Geometric Brownian Motion (GBM)

Geometric Brownian Motion (GBM) is a continuous-time stochastic process in
which the logarithm of the randomly varying quantity follows a Brownian motion
with drift [9]. GBM is often used in mathematical finance to model stock prices
in the Black–Scholes model [4] mainly because the expected returns of GBM are
independent of the values of the stock price, which agrees with what we expect
in reality [9]. In addition, a GBM process shows the same kind of “roughness”
in its paths as we often observe in real stock prices. The close price of asset i

follows a GBM if it satisfies the following stochastic differential equation: dvi,t =
μivi,t dt + σivi,t dWt . Here Wt is a Brownian motion, μi is the mean return of the
stock prices given a historical date range, and σi is the standard deviation of returns
of the stock prices in the same date range. The differential equation can be solved
by an analytic solution: vi,t = vi,0 exp((μi − σ 2

i /2)t + σiWt). We choose the initial
price value vi,0 to be the last day’s close price of the asset in the training set, and we
use the asset returns in the date range of RL training set to estimate μi and σi.

21.4.2 Variable-Order Markov (VOM)

Variable-Order Markov (VOM) models are an important class of models that extend
the well-known Markov chain models [2], where each random variable in a sequence
with a Markov property depends on a fixed number of random variables. In contrast,
in VOM models this number of conditioning random variables may vary based
on the specific observed realization. Given a sequence of returns {pt }Tt=0 where
pi,t = (vi,t+1 − vi,t)/vi,t for asset i in asset universe I at time t , the VOM
model learns a model P that provides a probability assignment for each return
in the sequence given its past observations. Specifically, the learner generates

472 P. Yu et al.

a conditional probability distribution P(pt |ht ′), where hi,t ′ = {pi,t ′ }t−1
t ′=t−k−1

represents a sequence of historical returns of length k up to time t . VOM models
attempt to estimate conditional distributions of the form P(pt |ht ′) where the context
length |hi,t ′ | = k varies depending on the available statistics. The changes in the
logarithm of exchange rates, price indices, and stock market indices are usually
assumed normal in the Black–Scholes model [4]. In this chapter, we make a
similar assumption and let P be a multivariate log-normal distribution. That is,
ln(pt |ht ′) ∼ N(μ, σ 2), where μ and σ are the mean and covariance matrix of
the assets’ returns, respectively.

21.4.3 Generative Adversarial Network (GAN)

The Generative Adversarial Network (GAN) is a machine learning framework that
uses two neural networks, pitting one against the other, in order to generate new,
synthetic instances of data that can pass for real data [6]. One neural network,
called the generator, is responsible for the generation of stock price paths, and the
second one, the discriminator, has to judge whether the generated paths are synthetic
or from the same underlying distribution as the data (i.e., the asset returns). We
denote x as a collection of all assets’ daily returns pi,t in asset universe I for
t = 0, 1, . . . , T . To learn the generator’s distribution Pg over the asset returns x,
we define a prior on input noise variables Pz(z) and then represent a mapping to
data space as G(z; θg), where G is a differentiable function represented by dense
layers with parameters θg . We use convolution layers [10] followed by dense layers
for D(x; θd) that outputs a single scalar. D(x) represents the probability that x

came from the historical price returns rather than Pg . We train D to maximize the
probability of assigning the correct label to both training examples and samples from
G. We simultaneously train G to minimize log(1−D(G(z))). In other words, D and
G play the following two-player minimax game: minG maxD Ex∼P(x)[log D(x)] +
Ez∼Pz(z)[log(1 − D(G(z)))].

21.5 Experimental Results

In this section, we perform numerical experiments to illustrate the use of federated
reinforcement learning to develop financial trading policies for portfolio manage-
ment. The parties in the federation represent traders, or portfolio managers, each
with its own approach for data enrichment using the data generation methods
provided in the previous section. They each develop their own policies on their own
portfolios but jointly train models by sharing parameters from the neural network
policy mappings.

21 Federated Reinforcement Learning for Portfolio Management 473

It is to be noted that each trader has a unique universe of assets, in this case taken
from the S&P500. While there may be overlap of assets across the traders, this is not
needed for the trained policies to transfer across traders and across asset universes.
The neural network model proposed here allows for an invariance across the set of
assets used, and a policy trained on one set of assets can be successfully used for
trading on a different set, thanks to this invariance.

We show two main benefits in this section of federated reinforcement learning for
portfolio management. The results demonstrate the benefit of reinforcement learning
for this application as well as the benefit of federated learning; the profit accrued
to parties using federated reinforcement learning is greater than that from policies
learnt independently without federated learning, and also better than policies using
standard financial trading baselines without reinforcement learning. Details of
the experimental setup are provided below, followed by the results in terms of
annualized return and Sharpe ratio.

21.5.1 Experimental Setup

Given N parties, each with its own trading asset universe and data In for n ∈
{1, 2, . . . , N}. The number of assets in each universe In is the same. Each trader
generates one year of additional, synthetic time-series data for each of their assets.
The synthetic data is generated every 1000 RL local training iterations and appended
to the last day’s real closing prices of the assets. This combined synthetic–real data,
which is strictly confidential to each party, is used by each party to train its RL
agent.

The agent models follow the Ensemble of Identical Independent Evaluators
(EIIE) topology with the online stochastic batch learning of [8], the latter of which
samples mini-batches consecutively in time to train the EIIE networks. We choose
the discount factor γ = 0.99 and time embedding l = 30 and use a batch size of
50 and a learning rate of 5 × 10−5 for all experiments. Other experimental details
including the choice of time embedding and the RNN implementation of the EIIE
for agent models are the same as those of [8]. We conduct our experiments on 10
virtual machines where each machine has 32 Intel® Xeon® Gold 6130 CPUs and
128 GM RAM and can support up to 5 party processes.

The experiments are performed on 50 assets from the S&P500 technology
sector.1 Each party n constructs its own asset universe In by randomly choosing
9 assets and pre-trains a private data augmentation method, i.e., GBM, VOM, or

1 We use the following 50 assets from the S&P500 technology sector: AAPL, ADBE, ADI, ADP,
ADS, AKAM, AMD, APH, ATVI, AVGO, CHTR, CMCSA, CRM, CSCO, CTL, CTSH, CTXS,
DIS, DISH, DXC, FB, FFIV, FISV, GLW, GOOG, IBM, INTC, INTU, IPG, IT, JNPR, KLAC,
LRCX, MA, MCHP, MSFT, MSI, NFLX, NTAP, OMC, PAYX, QCOM, SNPS, STX, T, TEL, VZ,
WDC, WU, and XRX.

474 P. Yu et al.

GAN, on their assets in In. S&P price data from 2006 to 2018 is used for training
data augmentation and the RL policies; 2019 price data is used for testing.

In each experiment, we assume all parties participate in the training. The number
of global rounds K = 800 and local RL iterations E = 50. We use a fixed
regularization parameter α = 0.01 for each party’s Local-Solve. In practice, we find
that initializing the local model to a mixture model (i.e., using a small positive value
of λ instead of the default λ = 0) at the beginning of every Local-Solve subroutine
for each party yields good performance. Such a mixture model is computed using a
convex combination of each party’s local model and latest global model with weight
λ = 0.001. In addition, we keep λt

k (also the diagonal entries for the diagonal matrix
�t

k) constant for all t . Results are based on training over a sufficiently wide grid of
fixed λt

k (typically 10–13 values on a multiplicative grid of resolution 10−1 or 10−3).
Results are for the best fixed λk

n selected individually for each experiment. Two
metrics measure performance: the most intuitive is the geometric average return
earned by an investment each year over a given period, i.e., annualized return. To
take into account risk and volatility, we also report the Sharpe ratio [15], which in its
simplest form is E[X]/√var[X], where X is the (random) return of a portfolio. The
Sharpe ratio is thus the additional return an investor receives per unit of increase in
risk.

We make use of several federated learning algorithms for model fusion, but as
we shall see the Fed+ family of methods is the best adapted to the financial portfolio
management problem in that each trader wishes to obtain a policy that is optimized
for the particular portfolio of assets. A single global model trained over all traders’
portfolios need not perform best for any single trader’s portfolio. In the remainder
of this section we illustrate this by evaluating several federated learning fusion
algorithms.

An additional benefit of the Fed+ family of algorithms for this application comes
from the stability gained in the training process. In settings where data across parties
may be very heterogeneous, it can happen that forcing convergence to a single model
impacts negatively the training process, leading to a collapse of the training process.
This can be a consequence of very large changes in the models from one training
round to the next, as shown in Fig. 21.1.

Figure 21.2 takes a deeper dive into this phenomenon on the portfolio manage-
ment application. The figure illustrates the behavior of the different algorithms as
a function of how close the local party moves from a purely local model toward a
common, central model. A local party update occurs in each subplot on the left side,
at λ = 0. Observe that the local updates improve the performance from the previous
aggregation indicated by the dashed lines. However, performance degrades after the
subsequent aggregation, corresponding to the right-hand side of each subplot, where
λ = 1. In fact, for FedAvg [13], RFA [14], and FedProx [11], performance of the
subsequent aggregation is worse than the previous value (dashed line). Intermediate
values of λ correspond to moving toward, but not reaching, the common, central
model.

21 Federated Reinforcement Learning for Portfolio Management 475

Fig. 21.1 Impact of federated learning aggregation on consecutive model changes. Absolute value
of the model change (neural network parameters) before and after federated model aggregation on
the financial portfolio optimization problem. Observe that FedAvg, RFA, coordinate-wise median,
and FedProx cause large spikes in the parameter change that do not occur without federated
learning or when using Fed+. The large spikes coincide precisely with training collapse, shown
in Fig. 21.8 (bottom four figures)

Fig. 21.2 Before and after aggregation, along the line given by varying λ ∈ [0, 1] using a convex
combination of local update and the common model. Performance on the financial portfolio
optimization problem is shown as a function of locally shifting λ. Dashed lines represent the
common model at the previous round. The right-hand side lower than the left-hand means that
a full step toward averaging (or median) all parties, i.e., λ = 1, degrades local performance. This
is the case with the standard FedAvg as well as with the robust methods

21.5.2 Numerical Results

We first consider the case where there are N = 10 parties, each with different
asset universes. The learning curves obtained by training each party independently
(no fusion) can be found in Fig. 21.3. Note that parties 2, 6, 7, 8, 9, and 10 have
unstable, diverging learning patterns as compared to parties 1, 3, 4, and 5. As shown
in Table 21.1, the averaged 2 and Frobenius norms of the covariance matrix for
assets’ returns in asset universes I2,I6,I7,I8,I9, and I10 are larger. In the

476 P. Yu et al.

Fig. 21.3 Learning curve for
each party in the financial
portfolio management
problem, without fusion.
Notice that several parties
experience some training
issues, which combined, are
compounded, and lead to
training collapse in the
federated training (see, for
example, Fig. 21.5)

Table 21.1 Average norms of covariance matrix for assets’ returns in different asset universes

Asset universes I1,I3,I4, I5 I2,I6,I7, I8,I9,I10

Averaged 2-norm 1.35 × 10−3 1.73 × 10−3

Averaged Frobenius norm 1.51 × 10−3 1.93 × 10−3

Fig. 21.4 Average portfolio
value in the 10-party financial
portfolio management
problem in the test period,
across methods

federated setting, the average portfolio value in the testing period for 10 parties is
shown in Fig. 21.4. For baseline methods FedAvg [13], RFA [14], coordinate-wise
median [19], and FedProx [11] and their Fed+ extensions, we average across the 10
different asset universes; the average performance is summarized in Table 21.2.

To investigate the learning behavior, we plot the average learning performance
across 10 parties in Fig. 21.5. It is clear that the average performance for FedAvg
training is significantly affected by participants with diverging learning behavior
such as parties 2, 6, 7, 8, 9, and 10 as illustrated in Fig. 21.3. Results show that
FedAvg degrades the performance of all parties due in a large part to a collapse in
the training process (at training round 380). The robust federated learning methods,
RFA, coordinate-wise median, and FedProx, achieve stable learning and yield better
performance in 10-party federation. It is worthwhile to note that FedAvg+ stabilizes
FedAvg as shown in Fig. 21.6. In addition, Fed+ algorithms improve the annual
return by 1.91% and the Sharpe ratio by 0.07 on average as shown in Table 21.2.

21 Federated Reinforcement Learning for Portfolio Management 477

Table 21.2 Average performances of different methods over 10 parties

Method Annualized return Sharpe ratio

FedAvg 27.38% 1.43

RFA 35.30% 1.77

Coordinate-wise median 36.03% 1.80

FedProx 36.56% 1.83

FedAvg+ 35.62% 1.75

FedGeoMed+ 36.01% 1.79

FedCoMed+ 35.56% 1.78

Fig. 21.5 Average learning
performance over 10 parties
in the financial portfolio
management problem, across
methods. Note the training
failure of the federated
learning algorithms, which is
not caused by adversarial
parties or party-level failure,
as evidenced by the
single-party training curve in
Fig. 21.3

Fig. 21.6 Average learning
performance of Fed+
algorithms on the financial
portfolio optimization
problem with 10 parties.
Compare this with Fig. 21.5
using the baseline algorithms.
No training collapse occurs
with any of the Fed+
algorithm variants

We next consider the case where there are N = 50 parties. The average
performance with 50 parties is shown in Table 21.3 and the average portfolio value
in the testing period is shown in Fig. 21.7. It is clear that Fed+ algorithms outperform
FedAvg, RFA, coordinate-wise median, and FedProx baseline algorithms. The
average learning curves can be found in Figs. 21.8 and 21.9. In this larger federation,
the baseline (non-Fed+ algorithms) including both of the baseline robust federated
learning methods, RFA and coordinate-wise median, experiences the same kind of
collapse in training performance as seen previously. This suggests larger distribution
mismatch across the 50 asset universes.

478 P. Yu et al.

Table 21.3 Average performance of different methods over 50 parties

Method Annualized return Sharpe ratio

FedAvg 0.99% 0.11

RFA 4.90% 0.30

Coordinate-wise median 21.71% 1.17

FedProx −1.46% −0.02

FedAvg+ 32.93% 1.67

FedGeoMed+ 32.23% 1.64

FedCoMed+ 32.47% 1.65

Fig. 21.7 Average portfolio value of the 50-party financial portfolio management problem during
the test period, across methods. The Fed+ methods are superior to the baselines by a significant
margin as regards the financial portfolio management application

As we have seen above, such sharp model change can lead to a collapse
of the training process. Figure 21.8 (four bottom curves) shows the collapse of
training, averaged over 50 parties, using FedAvg, RFA, coordinate-wise median,
and FedProx. Note that this example does not involve adversarial parties or party
failure in any way, as evidenced from the fact that the single-party training on the
same dataset (top curve) does not suffer any failure. Rather, this is an example of
federated learning on a real-world application where parties’ data are not IID from
a single dataset. As such, it is conceivable that federated model failure would be a
relatively common occurrence in real-world applications using the vast majority of
algorithms.

Data distribution similarity between each pair of universes (each asset universe
is a multi-variate time series) was measured using Dynamic Time Warping (DTW;
[3]). Unlike the Euclidean distance, DTW compares time series of variable size and
is robust to shifts or dilatations across time. The averaged pairwise distance for
the 50 asset universes is 154.51, which is 21.63% larger than that of the 10 asset

21 Federated Reinforcement Learning for Portfolio Management 479

Fig. 21.8 Illustration of training collapse. Average training performance over 50 parties of the
financial portfolio optimization problem. The top curve is the average of 50 single-party training
processes, each party on its own data. The training processes collapse using all four federated
learning algorithms. Note that there are no adversarial parties in the federation, nor are there any
party-level failures across the 50 parties. This can be verified from the top curve that does not
experience training collapse. Rather, the training collapse is due to the federated learning process
itself and occurs when party-level training is forced to concur with a single, central model

Fig. 21.9 Average learning performance of Fed+ algorithms on the financial portfolio optimiza-
tion problem with 50 parties. Compare with Fig. 21.8 taken from the same problem using the
baseline algorithms. No training collapse occurs with any of the Fed+ algorithm variants

universes. The DTW warping/alignment curves for asset universes I1 and I2 are
illustrated in Fig. 21.10.

Performance across baseline methods is shown in Fig. 21.8 where the failure
of the standard methods, FedAvg, RFA, coordinate-wise median, and FedProx,
is clear. The parameter change before and after federated model aggregation is
shown in Fig. 21.1. Observe that there are large spikes at a particular point in the
training processes of the FedAvg, RFA, coordinate-wise median, and FedProx algo-
rithms, implying that single-model methods may not work well in heterogeneous
environments. Fed+, on the other hand, stabilizes each party’s learning process
and is robust, as shown in Fig. 21.9. Table 21.3 further shows that Fed+ and our
variant algorithms outperform FedAvg, RFA, coordinate-wise median, and FedProx,

480 P. Yu et al.

Fig. 21.10 Dynamic time warping/alignment curve for the data of the financial portfolio manage-
ment problem, shown for returns of asset universes I1 and I2. Note that two multi-variate time
series have different length. The graphic shows that the distance between data distributions given
by the asset universes increases with the length of the time series, up to 2500 in this figure, leading
to heterogeneity across parties

improving the annualized return by 26.01% and the Sharpe ratio by 1.26 on average.
This improvement implies that each party benefits from sharing model parameters
using Fed+, whereas the benefits were not seen with FedAvg, RFA, coordinate-wise
median, and FedProx.

For the best performing variant of Fed+ on this application, FedAvg+, we
further investigate how the risk-return performance improves as more parties share
their local tasks. In particular, compared with single-party, no-federated-learning
(no-fusion) training, the maximum improvements in annualized return are 4.06%,
12.57%, and 35.50%, and in Sharpe ratio are 0.19, 0.63, and 1.52 when N = 5, 25,
and 50. This demonstrates that the benefit of using Fed+ increases as the number of
parties increases.

21.6 Conclusion

This chapter presented an approach for federated reinforcement learning that makes
use of deep learning models as a function estimator to represent the policy used by
the RL agents. We demonstrated federated reinforcement learning on an application
to financial portfolio management, whereby the trading strategies are policies to be
trained using RL. The use of federated learning, and specifically the Fed+ algorithm
family, allows portfolio managers to each improve their local models, i.e., their own
policies, by benefiting from others, without sharing their private data. Private data
in this setting comes from the use of private generative models used to augment
public asset price data. We demonstrated the significant gains that can be achieved
for portfolio managers through federated RL and Fed+, both in terms of annualized
returns and Sharpe ratio. The gains can be seen with respect to independently
training policies, i.e., without federated learning, as well as through the use of

21 Federated Reinforcement Learning for Portfolio Management 481

reinforcement learning to train the policies, as compared to standard (non RL-based)
trading strategies.

Similar benefits from a federated approach can be expected in other application
domains of reinforcement learning. Of particular interest are robotics and navi-
gation. In robotics and navigation applications, simulation results and real-world
experiences need not coincide, and hence federating multiple parties with their
individual experiences can bring considerable improvements to each. As in the case
of financial portfolio management, the Fed+ family of methods that allows for an
emphasis on local models may prove to be critical to achieving the most dramatic
benefits.

References

1. Almahdi S, Yang SY (2017) An adaptive portfolio trading system: a risk-return portfolio
optimization using recurrent reinforcement learning with expected maximum drawdown.
Expert Syst Appl 87:267–279

2. Begleiter R, El-Yaniv R, Yona G (2004) On prediction using variable order Markov models. J
Artif Intell Res 22:385–421

3. Berndt DJ, Clifford J (1994) Using dynamic time warping to find patterns in time series. In:
KDD workshop, Seattle, vol 10, pp 359–370

4. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ
81(3):637–654

5. Buehler H, Gonon L, Teichmann J, Wood B (2019) Deep hedging. Quant Financ 19(8):1271–
1291

6. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio
Y (2014) Generative adversarial nets. In: Advances in neural information processing systems,
pp 2672–2680

7. Haugen RA, Haugen RA (2001) Modern investment theory, vol 5. Prentice Hall, Upper Saddle
River

8. Jiang Z, Xu D, Liang J (2017) A deep reinforcement learning framework for the financial
portfolio management problem. arXiv preprint arXiv:170610059

9. Kariya T, Liu RY (2003) Options, futures and other derivatives. In: Asset pricing. Springer,
Boston, MA, pp 9–26

10. Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, pp 1097–1105

11. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) Federated optimization in
heterogeneous networks. Proc Mach Learn Syst 2:429–450

12. Markowitz H (1959) Portfolio selection: efficient diversification of investments, vol 16. Wiley,
New York

13. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Communication-efficient
learning of deep networks from decentralized data. In: Artificial intelligence and statistics.
PMLR, pp 1273–1282

14. Pillutla K, Kakade SM, Harchaoui Z (2019) Robust aggregation for federated learning. arXiv
preprint arXiv:191213445

15. Sharpe WF (1966) Mutual fund performance. J Bus 39(1):119–138
16. Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014) Deterministic policy

gradient algorithms. In: Proceedings of the 31st international conference on international
conference on machine learning – JMLR.org, ICML’14, vol 32, pp I–387–I–395

482 P. Yu et al.

17. Sutton RS, McAllester DA, Singh SP, Mansour Y (2000) Policy gradient methods for
reinforcement learning with function approximation. In: Advances in neural information
processing systems, pp 1057–1063

18. Ye Y, Pei H, Wang B, Chen PY, Zhu Y, Xiao J, Li B (2020) Reinforcement-learning based
portfolio management with augmented asset movement prediction states. In: Proceedings of
the AAAI conference on artificial intelligence, vol 34, pp 1112–1119

19. Yin D, Chen Y, Kannan R, Bartlett P (2018) Byzantine-robust distributed learning: towards
optimal statistical rates. PMLR, Stockholmsmässan, Stockholm, vol 80. Proceedings of
Machine Learning Research, pp 5650–5659. http://proceedings.mlr.press/v80/yin18a.html

http://proceedings.mlr.press/v80/yin18a.html

Chapter 22
Application of Federated Learning
in Medical Imaging

Ehsan Degan, Shafiq Abedin, David Beymer, Angshuman Deb,
Nathaniel Braman, Benedikt Graf, and Vandana Mukherjee

Abstract Artificial intelligence and in particular deep learning have shown great
potential in the field of medical imaging. The models can be used to analyze
radiology/pathology images to assist the physicians with their tasks in the clinical
workflow such as disease detection, medical intervention, treatment planning, and
prognosis to name a few. Accurate and generalizable deep learning models are
in high demand but require large and diverse sets of data. Diversity in medical
images means images collected at various institutions, using several devices and
parameter settings from diverse populations of patients. Thus, producing a diverse
data set of medical images requires multiple institutions to share their data. Despite
the universal acceptance of Digital Imaging and Communications in Medicine
(DICOM) as a common image storage format, sharing large numbers of medical
images between multiple institutions is still a challenge. One of the main reasons
is strict regulations on storage and sharing of personally identifiable health data
including medical images. Currently, large data sets are usually collected with
participation of a handful of institutions after rigorous de-identification to remove
personally identifiable data from medical images and patient health records. De-
identification is time consuming, expensive, and error prone and in some cases can
remove useful information. Federated Learning emerged as a practical solution for
training of AI models using large multi-institute data sets without a need for sharing
the data, thereby removing the need for de-identification while satisfying necessary
regulations. In this chapter, we present several examples of federated learning for
medical imaging using IBM Federated Learning.

E. Degan (�) · S. Abedin · D. Beymer · V. Mukherjee
IBM Almaden Research Center, San Jose, CA, USA
e-mail: edehgha@us.ibm.com

A. Deb · B. Graf
IBM Watson Health Imaging, Cambridge, MA, USA

N. Braman
Tempus Labs, Chicago, IL, USA

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_22

483

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_22&domain=pdf
mailto:edehgha@us.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_22

484 E. Degan et al.

22.1 Introduction

With the advent of deep learning, computer vision algorithms have taken a big leap
forward. Similar progress is expected in the field of computer vision for medical
images. Application of computer vision tasks such as detection, segmentation, and
classification to medical images can be extremely helpful in assisting physicians in
performing their tasks faster, more accurately, and more consistently. Many tasks
such as disease detection, tumor localization, treatment planning, and prognosis, to
name a few, can benefit from deep learning models (see [1] and references therein).
However, to train accurate, reliable, and generalizable deep learning models, one
requires a large data set of training samples from various sources. Although large
and diverse sets of natural images are readily accessible in public domain [2],
publicly available medical imaging data sets are relatively small and from a few
sources [3, 4]. There are two main reasons for lack of such large and diverse training
data sets: (1) requirement for labels and annotations, and (2) difficulty in sharing
health data.

In order to conduct a supervised training, one requires labels or annotations for
the images. Acquiring labels for natural images through crowd-sourcing is relatively
easy and inexpensive. However, in the medical domain, labels and annotations
should be produced by medical experts. Recently, Natural Language Processing
(NLP) methods are used to analyze radiology reports and automatically produce
labels at large scale [5, 6]. However, if detailed annotations, such as contouring
around organs or tumors are required, the annotation task can become prohibitively
expensive. Self-supervised and unsupervised learning methods are being developed
to train models with less dependency on annotated data and overcome the first
obstacle.

Sharing medical images across multiple institutions is still a challenge, despite
worldwide acceptance of Digital Imaging and Communications in Medicine
(DICOM) format [7]. The main reason for this challenge is that medical images,
like other health records, may contain Protected Health Information (PHI) and are
strictly guarded by laws and regulations such as Health Insurance Portability and
Accountability Act (HIPAA) in the USA [8] or General Data Protection Regulation
(GDPR) in Europe [9]. As a result, sharing medical images requires rigorous de-
identification. De-identification is time consuming, expensive, and error prone and
in some cases can remove useful information.

Federated learning is a machine learning technique that allows several parties
to participate in model training without sharing their local sensitive data [10]. In a
federated learning scenario, each training party trains a model using its local data
and sends its model update, not the training data, to an aggregator that combines the
updates coming from different parties into a single model (see Fig. 22.1). Federated
learning allows us to train generalizable models using large and diverse data sets
while satisfying security and privacy regulations by obviating the need to share
sensitive data. Therefore, federated learning is a very attractive solution for medical
imaging.

22 Application of Federated Learning in Medical Imaging 485

Fig. 22.1 Data flow diagram of Federated Learning

In this chapter, we demonstrate implementation of two of the most common
computer vision applications in medical imaging: image classification and image
segmentation. In the first task, an image is classified into positive or negative
depending on the presence or absence of a collection of target image findings. In
the second task, the model produces a binary mask delineating a target object.

We train our models using IBM Federated Learning [11], which provides
infrastructure and coordination for federated learning. Although this framework
applies to deep learning models as well as other machine learning methods, we
strictly use it to train deep learning models.

In the following sections, we demonstrate the application of federated learning
to the two above-mentioned tasks. We report our work on image segmentation
to delineate pulmonary embolisms in volumetric CT images. We also carried
out experiments on 2D and 3D image classification by training models to detect
Pneumothorax in X-ray images and Emphysema in 3D CT images. For image
segmentation and 3D image classification, we implemented a simulated federated
learning scenario. In this scenario, the training data is recorded in a centralized
repository, but it is partitioned into different groups and each group of data is
exclusively used by a party to train the model. As data are kept in a centralized
location, the trained model can be compared to a centrally trained one. For the 2D
classification task, however, we used two sources of data kept in two geographically
distant repositories to demonstrate a more realistic scenario.

22.2 Image Segmentation

Outlining an organ, abnormality, or other image findings is one of the main applica-
tions of computer vision in medical imaging. In order to demonstrate the capabilities
of federated learning in such a task, we implemented a segmentation model to

486 E. Degan et al.

delineate pulmonary embolisms in contrast-enhanced chest CT images. Pulmonary
Embolism (PE) is a blockage in the pulmonary arteries most likely caused by a
blood clot. CT Pulmonary Angiogram (CTPA) is the imaging modality of choice
to detect PE. Detecting clinically evident PE is important in quickly diagnosing
patients with symptoms and signs of venous thromboembolism. Untreated clinically
apparent PE has a nearly 30% mortality rate in contrast to an 8% mortality rate
for those patients who receive treatment [12–16]. Although the mortality rate
from PE alone is only 2.5% [17], timely detection and anticoagulation therapy
improves the patient’s outcome. Patients suspected of PE are recommended to
take a D-Dimer test followed by a CT Pulmonary Angiography (CTPA) for high
probability clinical assessment. A radiologist has to carefully inspect each branch
of the pulmonary arteries for suspected PE. Consequently, diagnosis of PE hinges
on the radiologist’s experience, attention span, and eye fatigue, among others.
Computer Aided Detection (CAD) software for PE detection has historically shown
to help radiologists detect and diagnose PE [18–22]. In addition, detecting PE in CT
angiography (CTA) images can be useful in a retrospective setup where the CAD
software is used to detect missed findings.

PE usually has small-size irregular-shaped pathological patterns. Hence, the
image region distinctive for PE classification may only account for a small portion
of the imaging data even when image patches are used. Localizing the distinctive
image region is critical for successful PE classification. Computer aided methods
have been developed to automatically detect PE. These methods are often two-stage
solutions where the first stage produces a group of PE candidates in the image and
the second stage classifies the candidates into true PE and false positives [23–25].
The first stage can be implemented as a segmentation task in which a model analyzes
the images and delineates candidate embolisms to be classified by the second stage.

In this section, we train a PE segmentation model as the first stage using 2 data
sets in a federated setup. The first data set [26] consisted of 40 CTPA images, each
from a different patient. The scans were acquired at Unidad Central de Radiodiag-
nóstico in Madrid, Spain, from several scanners using a local institutional CTPA
protocol. Each CTPA volume was annotated by three board-certified radiologists
with several years of experience, independently, and a reference standard was finally
created by consolidating all three annotations. We used this data set at Party 1.
The second data set [27] consisted of Computed Tomography Angiograms (CTA)
images for pulmonary embolism of 35 different patients published by Ferdowsi
University of Mashhad, Iran. Each CTA volume was annotated by two radiologists
and consolidated to create a reference standard. We used this data set at Party 2.

For testing, we used a private data set that consisted of 334 volumes that include
both CTA and CTPA volumes acquired from multiple scanners and hospitals. For
annotating each PE positive volume, a team of 7 board-certified radiologists drew
a contour around each embolism on slices spaced approximately 10 mm apart. The
annotators had non-overlapping assignments, such that each CT volume is annotated
by only one annotator.

For more efficient detection, we apply PE segmentation to identify embolism
candidates. In order to provide more context for the annotated slices, we used a slab-

22 Application of Federated Learning in Medical Imaging 487

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 2 4 6 8 10 12

Di
ce

Round

PE Segmenta on Performance

Dice Central.

Dice Fed.

Fig. 22.2 Comparison of centralized and federated learning in terms of continuous Dice coeffi-
cient

based 2D segmentation method using U-Net [28]. Instead of using just 2D slices, a
slab of nine slices is fed to the network with the corresponding binary mask as the
ground truth. The U-Net model in our segmentation task consists of 70 layers with
a contracting path with repeated 3 × 3 convolutions, each followed by a rectified
linear unit (ReLU) and a 2 × 2 max pooling operation with a stride of 2 for down-
sampling. The expansive path consists of up-sampling of features followed by a 2×2
convolution, concatenation with the correspondingly cropped feature map from the
contracting path and 3 × 3 convolutions, each followed by a ReLU. The probability
map is computed by a pixel-wise softmax over the final feature map. For training,
the continuous dice loss (DL) function [29] is used.

For the federated training, we trained the aforementioned network by both parties
for 10 rounds of 50 epochs each. We used Federated Averaging [10] to aggregate the
model updates from each party. For comparison, we also trained the segmentation
model using the combined data set for 100 epochs, which reached a dice coefficient
of 0.45 on our test set. After each round, we evaluated the aggregated model using
the test data set. The results of the aggregated model after each round are compared
to the results of the centrally trained model in Fig. 22.2. Remarkably, the aggregated
model was able to achieve similar performance to the central model after just 5
rounds.

22.3 3D Image Classification

In this section, we used federated learning to train a classifier to detect emphysema
in 3D chest CT scans. As opposed to segmentation, which estimates a dense binary
mask indicating the localized presence of disease, classification requires just a

488 E. Degan et al.

single binary detection result per 3D volume. When training, this translates into
a labeling requirement of a single disease detection per volume, which is much less
burdensome than the dense 3D mask for segmentation. For labeling the training data,
it also opens up possibilities for leveraging disease diagnosis codes in the patient
medical records, and NLP on imaging radiology reports. Let us now explore disease
classification of emphysema.

Emphysema is a disease of the lung where alveoli—the terminal chambers of
the respiratory tract—collapse and merge, leaving regions of open airspace in the
lungs. In CT scans, this appears as dark patches of low attenuation. The challenge for
computer aided detection of emphysema is that the low attenuation regions may still
have a variety of appearances, and emphysema lesions may only appear in a portion
of the lung volume. Researchers have recently used machine learning approaches
for emphysema detection and quantification, such as multiple instance learning
[30–33], Convolutional Neural Networks (CNNs) [34–36], and Convolutional Long
Short-Term Memory (ConvLSTM) [37].

The architecture for our classifier is based on ConvLSTM [38] taken from our
previous work on detection of emphysema [37]. This architecture is a variant of the
popular LSTM model that utilizes convolutional operations to distinguish variations
in spatial patterns. For instance, ConvLSTM excels in detecting spatiotemporal
patterns, such as video classification. Rather than applying ConvLSTM to time
series image data, we instead propose its use to scan through a series of consecutive
slices of an imaging volume to learn patterns of disease without manual annotations
of its location. Our approach allows the detection of disease on and between slices,
storing them through multiple bidirectional passes through a volume and output as
a final set of features characterizing overall disease presence.

Our architecture, depicted in Fig. 22.3, consists of four units. Each unit features
two 2D convolutional layers, which extract features from each slice separately,
followed by max pooling, and then finally by a ConvLSTM layer to process the
volume slice by slice. Each convolutional layer has a kernel size of 3 × 3 and

Fig. 22.3 Network architecture for detection of emphysema in 3D chest CT scans

22 Application of Federated Learning in Medical Imaging 489

Table 22.1 Emphysema
training and testing data

Positive Negative Total

Training Party 1 492 526 1018

Party 2 477 540 1017

Testing 519 465 984

rectified linear unit (ReLU) activation, followed by batch normalization. The outputs
from the convolutional layers for each slice are then processed sequentially by a
ConvLSTM layer, with tanh activation and hard sigmoid recurrent activation. All
layers within a unit share the same number of filters and process the volume in
ascending or descending order. The four units have the following dimensionality and
directionality: Ascending Unit 1: 32 filters, Descending Unit 1: 32 filters, Ascending
Unit 2: 64 filters, Descending Unit 2: 64 filters. The final ConvLSTM layer outputs
a single set of features, which summarizes the network’s findings after processing
through the imaging volume multiple times. A fully connected layer with sigmoid
activation then computes probability of emphysema.

We use a simulated 2 party configuration for training our emphysema detection
network in a federated manner. For training data, our images are from a large body
of CT scans collected from our data providing partner. We divided a set of 2035 CT
scans between the 2 parties—1018 for party 1 and 1017 for party 2, with a roughly
even split between positive and negative examples for each party (see Table 22.1).
For testing data, we used the same data source, forming a testing cohort of 984 CT
scans with 465 negatives and 519 positives. For labeling the data either positive or
negative for emphysema, we leveraged the associated imaging report. In order to
detect emphysema in the reports, we searched for the word emphysema and a list of
its synonyms. The results were manually verified.

The model is initially trained in a centralized manner, using a set of low dose
CT scans from the National Lung Screening Trial (NLST) [39] data set, with 7100
scans for training and 1776 for validation. Low dose CT scans are more suitable for
screening purposes and expose the subject to lower levels of radiation compared to
regular dose CT. To help generalize the model to regular dose CT scans, we next
applied transfer learning using a set of CT scans from the Lung Tissue Research
Consortium (LTRC) [40] data set, with 858 training and 200 validation scans. We
used the weights of this model as initial weights for federated learning.

To demonstrate federated learning, we perform a number of experiments with
different configurations for parties 1 and 2, as well as a comparison with centralized
training. In order to compare the models, we calculate the area under the receiver
operating characteristic curve (AUC) using our test set. First, we train the model
at each party, independently, for 5 epochs, starting from the initial model from the
NLST/LTRC training. This essentially performs transfer learning, independently,
for each of the parties, and the test set AUCs are shown in Fig. 22.4. Next, we
perform federated learning with parties 1 and 2 with 20 rounds of 5 epochs each.
Similar to the PE segmentation case, we used Federated Averaging [10] for model
aggregation. For federated learning, the test set AUC is evaluated at the end of each

490 E. Degan et al.

0.8576

0.8954 0.8979
0.9024 0.8997

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

0.91

Ini al Model Party 1 - 5
epochs

Party 2 - 5
epochs

Federated - 20
rounds of 5

epochs

Centralized

AUC

Fig. 22.4 Performance of emphysema detection model trained with different scenarios in terms of
AUC

round, and the maximum AUC is reported in Fig. 22.4. Finally, for a comparison to
centralized learning on the combined training sets of parties 1 and 2, we train the
model in a standard centralized manner, yielding the test set AUC in Fig. 22.4, right.
We also tested the initial model on the test set as shown in Fig. 22.4.

As it can be seen, the model trained in a federated setup outperforms each of
the individually trained models and shows better generalizability. It also slightly
outperforms the centrally trained model after only 5 rounds although the difference
may be caused by the random nature of stochastic gradient descent and the
difference between the number of epochs in the centralized training and the effective
number of epochs in the federated learning scenario.

22.4 2D Image Classification

In this section, we implemented a more realistic federated learning scenario where
the two parties were located at geographically distant locations and communicated
over the internet with a secure connection. In this scenario, we trained a model to
classify X-ray images for detection of Pneumothorax, a collapsed lung that occurs
when air leaks between the lung and the chest wall. Severe Pneumothorax can
be fatal and needs immediate medical intervention. Therefore, timely detection of
Pneumothorax is vital. The most commonly utilized imaging modalities for the
detection of Pneumothorax are chest X-ray, CT scan, and thoracic ultrasound.

We used two sources of data for our training. The first source was from a large
body of X-ray images collected by our data providing partner. We use this data set
as Party 1, located at IBM Rochester Data Center in Rochester, NY. Each imaging
study was accompanied by its radiology report. We used an in-house NLP algorithm
to analyze the reports and obtain disease labels for the images.

22 Application of Federated Learning in Medical Imaging 491

Table 22.2 Pneumothorax
data composition

Private MIMIC

Positive Negative Positive Negative

Training 260 743 206 747

Testing 2241 15,074 266 1476

For the second data set, we used MIMIC-CXR database [3, 4]. This is a large and
publicly available database of X-ray images and their radiology reports collected at
the Beth Israel Deaconess Medical Center in Boston, MA. This database contains
377,110 images corresponding to 227,835 radiographic studies, all anonymized to
satisfy HIPPA requirements. We use this data set as Party 2, located at IBM Almaden
Research Center, San Jose, CA. We labeled the studies in this data set based on the
agreement of CheXpert [5] and NegBio [6] algorithms. We assumed a study was
positive for Pneumothorax when both NLP algorithms classified it as positive and it
was negative when both classified it as negative.

In order to provide a proof of concept quickly, we used only a fraction of the
data available to us. Our training and testing data set is shown in Table 22.2. In
total, we used 1003 randomly selected training samples from 1003 studies from our
private data source and 953 randomly selected training samples from 953 patients
from MIMIC data set. Positive and negative samples are randomly selected in a way
to have a similar distribution between the two parties.

For testing samples from the MIMIC data set, images were selected from patients
who did not contribute to the training samples. However, our private data set was
anonymized in a way that it is impossible for us to group studies based on patients.
Therefore, for testing samples from our private data set, we used images from
studies that were not present in the training set. As we selected our test samples from
different acquisition months than our training samples, the likelihood of leakage
between training and testing is low, but not zero.

Each chest X-ray study may include frontal and lateral images. We only used
frontal images for our training and testing. To this end, we used a deep learning
model to classify X-ray images into frontal and lateral images. The frontal images
were cropped to the area around the lungs and re-sampled to 1024 × 1024 pixels.

We started by using a DenseNet-121 [41] pre-trained on ImageNet [2]. Then,
the model weights were updated using more than 100,000 images from our private
data set in a centralized fashion. For this stage, we used CheXpert NLP [5] to create
labels for 14 different categories of findings that included Pneumothorax. Lastly, we
selected only the output corresponding to Pneumothorax and used this model as the
initial model sent by the aggregator to the training parties to be trained by the data
in Table 22.2 in a federated fashion.

For Party 1 we used a GPU server at IBM Rochester Data Center with 8 Nvidia
GeForce GTX 1080 GPU devices. For Party 2, we used a GPU server at IBM
Almaden Research Center with 8 Nvidia Tesla P100 GPU devices. We used a server
without GPU as the aggregator. We used 4 GPU devices at Party 1 and 3 GPU
devices at Party 2 to train with a batch size of 9. We used the Adam optimizer with a

492 E. Degan et al.

learning rate of 1e-4. All images were augmented on-the-fly with a random rotation
of ±10◦, height and width shift of ±10%, shear range of ±10%, and zoom between
1 and 1.1. Images were augmented with a probability of 80%. We used Federated
Averaging [10] for model aggregation.

In the Federated Learning proof of concept implementation, the data sets that
were used in training the algorithm by the remote training servers were treated as
potentially containing PHI. These servers and the training data were operating in air-
gapped networks with very restricted access. The aggregator and the participating
training servers communicated via REST APIs. Even though the information
exchanged via these APIs did not contain any sensitive information, because of the
sensitive nature of the data in these training environments, only encrypted commu-
nication was allowed for any inbound or outbound network flows. This also allowed
securing the information exchanged from any malicious on-path attacks. For the
proof-of-concept implementation, all communications between the aggregator and
remote training servers were encrypted by the Transport Layer Security (TLS)
protocol and only were allowed over specific exposed ports. As an additional layer
of security, only requests originating from certain white-listed server IP addresses
were allowed and only a set of privileged users were allowed SSH access to
these training servers via a strict access control mechanism. Figure 22.5 shows
the different network flows that were involved in the communication between the
aggregator and the remote training servers:

Fig. 22.5 Network flow for the proof of concept experiment

22 Application of Federated Learning in Medical Imaging 493

0.852

0.908

0.880

0.927 0.926

0.800

0.820

0.840

0.860

0.880

0.900

0.920

0.940

Initial Model Party 1 Party 2 Federated - 5 Rounds 10
Epochs

Federated - 5 Rounds 50
Epochs

AUC

Fig. 22.6 Performance of models trained with different scenarios in terms of AUC

In order to demonstrate the performance of federated learning, we conducted the
following experiments. For the first experiment, we trained the model at each party,
independently, for 50 epochs. For the second experiment, we trained the model in
a federated fashion for 5 rounds of 50 epochs each. Lastly, we trained the model
for 5 rounds of 10 epochs at each party. In the latter two experiments, convergence
was achieved before round 5. We used the test set in Table 22.2 and calculated the
AUC for all the trained models as well as the initial model. Figure 22.6 shows the
results. As it can be seen, the models trained in a federated fashion outperform both
individually trained models. We did not train a central model as we could not share
data between the two parties.

22.5 Discussion

In this chapter, we used IBM Federated Learning [11] for image classification and
image segmentation tasks. These two tasks cover a wide range of medical imaging
applications. IBM Federated Learning can easily integrate custom layers, loss
functions, data loader and data augmentation methods as well as custom aggregation
algorithms. Therefore, it can be easily used to train many other imaging tasks in a
federated setup. As mentioned above, different number of GPU devices can be used
at each party to accommodate the size of the data set as well as hardware availability.

For all the experiments in this chapter, we used Federated Averaging [10] as our
aggregation method. However, IBM Federated Learning [11] supports several other

494 E. Degan et al.

aggregation methods, including user defined ones, suitable for different problems
and applications.

As part of training or testing data for each of the experiments above, we used a
private data set from our data providing partner. These images were collected over
several months and from several hospitals. This private data set is anonymized at
source. HIPAA is fully enforced and all data are handled according to the Dec-
laration of Helsinki. As mentioned before, due to the specific data anonymization
protocol used, we cannot correspond imaging studies to patients. As a result, we
could only separate training and testing data sets at a study level, not a patient level.

For 3D classification and image segmentation tasks, we compared the federated
model with a centrally trained one. Since we were conducting a simulated federated
learning scenario, training a model using data from both parties was possible. For
2D classification task, however, we treated the problem as a real federated learning
setup and did not move data between parties. Therefore, it was not possible to train a
model using data from both parties. For this reason, we compared the model trained
in a federated setup to two models trained at each of the parties, independently. As
expected, the federated model outperforms both models on a test set that has data
from both parties. Figure 22.6 shows that the model trained at Party 1 (using private
data) performs better than the model trained at Party 2 on the test set. As it can be
seen in Table 22.2, the test set contains more samples from Party 1 data distribution
than that of Party 2. This can explain the superior performance of the model trained
at Party 1 with private data on our test set.

In Sect. 22.1 we discussed that there are two main hurdles for training of
medical imaging models on large and diverse collections of data—the difficulty in
obtaining large-scale annotated data and the challenges in sharing medical images.
As we demonstrated in the example experiments shown in this chapter, the latter
obstacle can be overcome by using federated learning that obviates the need for
sharing data. For our classification tasks, we used NLP algorithms to automatically
analyze readily available radiology reports and provide labels for our training
and testing samples. As NLP algorithms get better at their tasks, combination of
NLP algorithms for data labeling and federated learning can provide a viable path
toward scalable and generalizable computer vision for medical images. It should be
mentioned, however, that the segmentation task still requires expert annotations.
Unsupervised and semi-supervised methods can, hopefully, be combined with
federated learning to provide a solution.

22.6 Conclusions and Future Work

In this chapter, we demonstrated the application of federated learning in two
fundamental tasks of medical imaging: image segmentation and image classifica-
tion. In the segmentation task, we showed that a federated model for segmenting
PE can achieve a performance equivalent to a model trained on a centralized
data set in as few as 5 communication rounds. In a realistic setup, we trained

22 Application of Federated Learning in Medical Imaging 495

a model for classification of X-ray images in a federated setup between two
parties at two different geographical locations. We used air-gapped servers and
encrypted communication for security. The model trained in the federated setup
outperforms each of the individual models, trained independently at each party. This
demonstrates the importance of federated learning in training generalizable models
when data sharing is not possible.

In the future, we plan on experimenting with different aggregation methods to
investigate their effects on the convergence of the aggregated model. We will also
train models at large scales with data contributions from various sources. In partic-
ular, we intend to use our NLP algorithm to label 2D and 3D images for various
diseases and image findings using the available reports and use these automatically
generated labels in a federated learning setup between several imaging centers for
scalable and generalizable model training.

References

1. Kim M, Yun J, Cho Y, Shin K, Jang R, Bae HJ, Kim N (2019) Deep learning in medical
imaging. Neurospine 16(4):657–668. https://doi.org/10.14245/ns.1938396.198

2. Russakovsky O, Deng J, Su H et al (2015) ImageNet large scale visual recognition challenge.
Int J Comput Vis 115:211–252

3. Johnson A, Pollard T, Mark R, Berkowitz S, Horng S (2019) MIMIC-CXR Database (version
2.0.0). PhysioNet. https://doi.org/10.13026/C2JT1Q.

4. Johnson AEW, Pollard TJ, Berkowitz SJ et al (2019) MIMIC-CXR, a de-identified publicly
available database of chest radiographs with free-text reports. Sci Data 6:317. https://doi.org/
10.1038/s41597-019-0322-0

5. Irvin J, Rajpurkar P, Ko M, Yu Y, Ciurea-Ilcus S (2019) CheXpert: a large chest radiograph
dataset with uncertainty labels and expert comparison. In: 33rd AAAI conference on artificial
intelligence

6. Peng Y, Wang X, Lu L, Bagheri M, Summers RM, Lu Z (2018) NegBio: a high-performance
tool for negation and uncertainty detection in radiology reports. In: AMIA 2018 informatics
summit

7. (2001) DICOM reference guide. Health Dev 30:5–30
8. HIPAA (2020) US Department of Health and Human Services. https://www.hhs.gov/hipaa/

index.html
9. GDPR (2016) Intersoft consulting. https://gdpr-info.eu

10. McMahan HB, Moore E, Ramage D, Hampson S, Arcas BAY (2017) Communication-efficient
learning of deep networks from decentralized data. arXiv preprint arXiv:1602.05629

11. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y, Radhakrishnan J,
Verma A, Sinn M et al (2020) IBM federated learning: an enterprise framework white paper
V0.1. arXiv preprint arXiv:2007.10987

12. Dalen JE (2002) Pulmonary embolism: what have we learned since Virchow? Natural history,
pathophysiology, and diagnosis. Chest 122(4):1440–1456

13. Barritt DW, Jordan SC (1960) Anticoagulant drugs in the treatment of pulmonary embolism: a
controlled trial. The Lancet 275(7138):1309–1312

14. Hermann RE, Davis JH, Holden WD (1961) Pulmonary embolism: a clinical and pathologic
study with emphasis on the effect of prophylactic therapy with anticoagulants. Am J Surg
102(1):19–28

https://doi.org/10.14245/ns.1938396.198
https://doi.org/10.13026/C2JT1Q
https://doi.org/10.1038/s41597-019-0322-0
https://doi.org/10.1038/s41597-019-0322-0
https://www.hhs.gov/hipaa/index.html
https://www.hhs.gov/hipaa/index.html
https://gdpr-info.eu

496 E. Degan et al.

15. Morrell MT, Dunnill MS (1968) The post-mortem incidence of pulmonary embolism in a
hospital population. Br J Surg 55(5):347–352

16. Coon WW, Willis PW 3rd, Symons MJ (1969) Assessment of anticoagulant treatment of
venous thromboembolism. Ann Surg 170(4):559

17. Carson JL, Kelley MA, Duff A, Weg JG, Fulkerson WJ, Palevsky HI, Schwartz JS, Thompson
BT, Popovich J Jr, Hobbins TE, Spera MA (1992) The clinical course of pulmonary embolism.
N Engl J Med 326(19):1240–1245

18. Das M, Mühlenbruch G, Helm A, Bakai A, Salganicoff M, Stanzel S, Liang J, Wolf M, Günther
RW, Wildberger JE (2008) Computer-aided detection of pulmonary embolism: influence on
radiologists’ detection performance with respect to vessel segments. Eur Radiol 18(7):1350–
1355

19. Zhou C, Chan HP, Patel S, Cascade PN, Sahiner B, Hadjiiski LM, Kazerooni EA (2005)
Preliminary investigation of computer-aided detection of pulmonary embolism in three-
dimensional computed tomography pulmonary angiography images. Acad Radiol 12(6):782

20. Schoepf UJ, Schneider AC, Das M, Wood SA, Cheema JI, Costello P (2007) Pulmonary
embolism: computer-aided detection at multidetector row spiral computed tomography. J
Thorac Imaging 22(4):319–323

21. Buhmann S, Herzog P, Liang J, Wolf M, Salganicoff M, Kirchhoff C, Reiser M, Becker CH
(2007) Clinical evaluation of a computer-aided diagnosis (CAD) prototype for the detection of
pulmonary embolism. Acad Radiol 14(6):651–658

22. Engelke C, Schmidt S, Bakai A, Auer F, Marten K (2008) Computer-assisted detection of pul-
monary embolism: performance evaluation in consensus with experienced and inexperienced
chest radiologists. Eur Radiol 18(2):298–307

23. Liang J, Bi J (2007) Computer aided detection of pulmonary embolism with tobogganing
and multiple instance classification in CT pulmonary angiography. In: Biennial international
conference on information processing in medical imaging. Springer, Berlin/Heidelberg,
pp 630–641

24. Tajbakhsh N, Gotway MB, Liang J (2015) Computer-aided pulmonary embolism detection
using a novel vessel-aligned multi-planar image representation and convolutional neural
networks. In: International conference on medical image computing and computer-assisted
intervention. Springer, Cham, pp 62–69

25. Huang SC, Kothari T, Banerjee I, Chute C, Ball RL, Borus N et al (2020) PENet—a scalable
deep-learning model for automated diagnosis of pulmonary embolism using volumetric CT
imaging. NPJ Digit Med 3(1):1–9

26. Gonzalez G. CAD-PE challenge website. Available online: http://www.cad-pe.org
27. Masoudi M, Pourreza HR, Saadatmand-Tarzjan M, Eftekhari N, Zargar FS, Rad MP (2018)

A new data set of computed-tomography angiography images for computer-aided detection of
pulmonary embolism. Sci Data 5(1):1–9

28. Ronneberger O, Fischer P, Brox T (2015) U-Net: convolutional networks for biomedical image
segmentation. In: International conference on medical image computing and computer-assisted
intervention. Springer, Cham, pp 234–241

29. Milletari F, Navab N, Ahmadi SA (2016) V-Net: fully convolutional neural networks for
volumetric medical image segmentation. In: 2016 fourth international conference on 3D vision
(3DV). IEEE, pp 565–571

30. Ørting SN, Petersen J, Thomsen LH, Wille MMW, Bruijne de M (2018) Detecting emphysema
with multiple instance learning. In: 2018 IEEE 15th international symposium biomedical
imaging (ISBI), pp 510–513

31. Cheplygina V, Sørensen L, Tax DMJ, Pedersen JH, Loog M, de Bruijne M (2014) Classification
of COPD with multiple instance learning. In: 2014 22nd international conference on pattern
recognition, pp 1508–1513

32. Peña IP, Cheplygina V, Paschaloudi S et al (2018) Automatic emphysema detection using
weakly labeled HRCT lung images. PLoS ONE 13(10). https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC6188751/

http://www.cad-pe.org
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188751/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188751/

22 Application of Federated Learning in Medical Imaging 497

33. Bortsova G, Dubost F, Ørting S et al (2018) Deep learning from label proportions for
emphysema quantification. In: Medical image computing and computer assisted intervention—
MICCAI 2018, pp 768–776

34. Karabulut EM, Ibrikci T (2015) Emphysema discrimination from raw HRCT images by con-
volutional neural networks. In: 2015 9th international conference on electrical and electronics
engineering, ELECO, pp 705–708. http://ieeexplore.ieee.org/document/7394441/

35. Negahdar M, Coy A, Beymer D (2019) An end-to-end deep learning pipeline for emphysema
quantification using multi-label learning. In: 41st annual international conference on IEEE
engineering in medicine biology society, EMBC 2019, pp 929–932

36. Humphries S, Notary A, Centeno JP, Strand M, Crapo J, Silverman E, Lynch D (2020) Deep
learning enables automatic classification of emphysema pattern at CT. Radiology 294(2):434–
444

37. Braman N, Beymer D, Degan E (2018) Disease detection in weakly annotated volumetric
medical images using a convolutional LSTM network. arXiv preprint arXiv:1812.01087

38. Shi X, Chen Z, Wang H, Yeung DY, Wong WK, Woo WC (2015) Convolutional LSTM
network: a machine learning approach for precipitation nowcasting. Adv Neural Inf Process
Syst 2015:802–810

39. National Lung Screening Trial Research Team; Aberle DR, Berg CD, Black WC, Church TR,
Fagerstrom RM, Galen B, Gareen IF, Gatsonis C, Goldin J, Gohagan JK, Hillman B, Jaffe C,
Kramer BS, Lynch D, Marcus PM, Schnall M, Sullivan DC, Sullivan D, Zylak CJ (2011) The
national lung screening trial: overview and study design. Radiology 258(1):243–253

40. Hohberger LA, Schroeder DR, Bartholmai BJ et al (2014) Correlation of regional emphysema
and lung cancer: a lung tissue research consortium-based study. J Thorac Oncol Off Publ Int
Assoc Study Lung Cancer 9(5):639–645

41. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional
networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR),
pp 2261–2269. https://doi.org/10.1109/CVPR.2017.243

http://ieeexplore.ieee.org/document/7394441/
https://doi.org/10.1109/CVPR.2017.243

Chapter 23
Advancing Healthcare Solutions
with Federated Learning

Amogh Kamat Tarcar

Abstract As the COVID19 pandemic began spreading, there were only pockets
of information available with hospitals across geographies. Researchers attempting
to analyze information scrambled to collaborate. These efforts were hampered due
to regulations and privacy protection laws in various nations, which frequently
confine access to clinical information. On the one hand machine learning and AI
were helping doctors to make quicker diagnostic decisions using predictive models
and on the other pharmaceutical companies could leverage AI for advancing drug
discovery and vaccine research. COVID19 is one example among many research
efforts for advancing treatment for ailments concerning prominent health issues such
as cancer treatment and rare diseases. Yet, these AI systems were being developed
in silos and their capabilities were hampered by the lack of a collaborative learning
mechanism, thus limiting their potential. In this chapter we describe how multiple
healthcare services can collaboratively build common global machine learning
models using federated learning, without directly sharing data and not running
afoul of regulatory constraints. This technique empowers healthcare organizations
harness data from multiple diverse sources, much beyond the reach of a single
organization. Furthermore, we will discuss some engineering aspects of FL project
implementation such as data preparation, data quality management, challenges over
governance of models developed with FL, and incentivizing the process. We also
cover some challenges arising from data as well as model privacy concerns, which
could be addressed with solutions such as differential privacy, Trusted Execution
Environments, and homomorphic encryption.

A. K. Tarcar (�)
Lead Data Scientist in AI Research, Persistent Systems Limited, Goa, India
e-mail: amogh_tarcar@persistent.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_23

499

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_23&domain=pdf
mailto:amogh_tarcar@persistent.com
https://doi.org/10.1007/978-3-030-96896-0_23

500 A. K. Tarcar

23.1 Introduction

As the COVID19 pandemic began spreading far and wide, there were only pockets
of information available with hospitals across geographies. Researchers attempting
to analyze information scrambled to collaborate. These efforts were hampered due
to regulations and privacy protection laws in various nations, which frequently
confine access to clinical information. On the one hand machine learning and AI
were helping doctors to make quicker diagnostic decisions using predictive models
and on the other pharmaceutical companies could leverage AI for advancing drug
discovery and vaccine research. COVID19 is one example among many research
efforts for advancing treatment for ailments concerning prominent health issues such
as cancer treatment and rare diseases. Yet, these AI systems were being developed
in silos and their capabilities were hampered by the lack of a collaborative learning
mechanism, thus limiting their potential.

Data scientists encountered numerous hurdles as they started exploring the idea
of building image classifier with chest X-ray data for facilitating faster diagnosis
as well as predict severity of COVID-19 infection. Even though researchers had
narrowed down on X-ray medical imagery datasets from various healthcare data
modalities such as pathological data, clinical data, and medical history data, it was
hard to obtain this X-ray data as the healthcare industry is heavily regulated and
this data is inherently sensitive. Furthermore there are multiple legal and ethical
facets while working on aggregating this data for training machine learning models.
Keeping pace with the diverse demographics affected by the pandemic was another
challenge. For building competent machine learning models, the dataset needs to
represent real-world data distribution. The dataset needs to be curated across various
demographics covering varied age groups, ethnicities, and medical conditions. As
the pandemic spread wide around the globe, data would need to be aggregated
from geographies spreading multiple countries and continents for developing an
impactful model.

Data anonymization and de-identification could perhaps help to work around the
legalities of data aggregation, but the challenge of aggregating diverse demographic
data is non-trivial. Data aggregation represents one component of the dataset
preparation process. The other component includes curation and annotations by
radiologists and medical professionals, which is equally challenging.

Another perspective on trying to understand why it is difficult to aggregate data
from various healthcare businesses can be attributed to the growing awareness
about the monetary value of private data. There is significant competitive advan-
tage building healthcare solutions, which are enhanced with data-driven insights.
Aggregating data from competing healthcare institutions is an important challenge
when building AI solutions in healthcare. The business value perspective gets all the
more emphasized as we explore AI solutions for advancing vaccine research. The
pharmaceutical sector is extremely sensitive with respect to their proprietary data,
yet challenging times such as fighting the COVID-19 pandemic has made it clear
that collaboration is the only way for speeding up the process of drug discovery and
vaccine research.

23 Advancing Healthcare Solutions with Federated Learning 501

23.2 How Can Federated Learning Be Applied in
Healthcare?

Federated Learning has the potential to flip these data aggregation challenges on its
head. Instead of aggregating data to create a single ML model, Federated Learning
aggregates ML models themselves. This ensures that data never leaves its source
location, and it allows multiple parties to collaborate and build a common ML model
without directly sharing sensitive data.

Academic researchers working in healthcare were quick in adopting Federated
Learning techniques and applying it in the space of medical imaging tasks.
Researchers from the University of Pennsylvania, USA, and Kings College, London,
have demonstrated the feasibility of utilizing FL for brain tumor [1, 2] using
decentralized MRI data. On similar lines, researchers improved a breast density
classifier using mammograms [3].

Another interesting application of FL in the image domain includes analyzing
pathology data from biomedical studies. The HealthChain consortium [4] in
France is utilizing FL for helping oncologist devise better treatment for patients
using histopathology and dermoscopy images. Considering the potential of FL
technology, medical institutions have invested in programs such as the Trustworthy
Federated Data Analytics (TFDA) project [5], the Federated Tumour Segmentation
(FeTS) project [6], and the German Cancer Consortium’s Joint Imaging Platform
(JIP) [7].

Beyond imaging data, there have been interesting applications of FL in text
mining and analysis as well. Researchers from Harvard Medical School demon-
strated improved patient representational learning and phenotyping by utilizing
clinical notes from different hospitals and clinics using FL [8]. In a similar vein,
researchers worked with electronic health records to find clinically similar patients
across hospitals [9].

On a parallel track, the pharmaceutical industry also has been embracing
FL for advancing drug discovery and vaccine research by collaborating together
with competitors. MELLODY (Machine learning ledger orchestration for drug
discovery) is a project wherein 10 pharma companies have agreed to participate in
collaborating together by providing access to insights on their proprietary data for
various ML tasks using Federated Learning [10]. An example of application in drug
discovery includes FL-based quantitative structure–activity relationship (QSAR)
analysis [11].

23.3 Building a Healthcare FL Platform at Persistent with
IBM FL

A collaborative platform powered by Federated Learning could help overcome
hurdles of data access without running afoul of the regulatory constraints. For
instance, if diagnostic models for detecting the severity of Covid infections were

502 A. K. Tarcar

developed in the USA using traditional machine learning approaches, then their
potential would be limited by the availability of data within the reach of this specific
organization or geography. As the Covid infection spread in Italy before making
headway in the USA, researchers could potentially use a collaboration platform to
utilize vast amounts of data from Italy and the other regions of Europe and make
faster progress while building diagnostic models. Thus, a FL platform could be
leveraged in order to accelerate the development of performant machine learning
models by enabling global collaboration. To put it in perspective, the progress
made by researchers can be accelerated manifold with the help of this collaborative
platform.

Cloud technologies such as containerization facilitate solution deployment by
providing support for consistent application deployment environment. Platform
components can be containerized and distributed using cloud infrastructure.

At Persistent, we developed a platform leveraging the IBM FL library, which
could facilitate the development as well as the deployment of FL models. Our
platform, following the solution architecture outlined in Fig. 23.1, consists of
two core components: the first component is the aggregator container, which
could be deployed on a hosted cloud environment. The second component is the
client container, which is deployed either in customer premises or customer cloud
infrastructure and is provided access to data. The aggregator container orchestrates
federated training rounds over multiple client nodes. These global models are stored
on the cloud. The client container node can request for latest global models using
cloud API services and render predictions.

We have developed multiple prototype machine learning models using this plat-
form, which healthcare organizations can use to predict recommendations for their
on-duty medical staff. For instance, one model analyzes X-ray reports to predict

Fig. 23.1 Federated Learning Platform Reference Architecture

23 Advancing Healthcare Solutions with Federated Learning 503

the severity of a COVID infection while another one analyzes gastrointestinal
endoscopy images (GI tract) and predicts clinically significant labels.

This platform is a building block for the development of machine learning
solutions alleviating problems concerning prominent health issues such as cancer
treatment, heart ailments, etc. as well across various biomedical domains such as
vaccine research and drug discovery. It empowers healthcare businesses to leverage
data from multiple diverse sources and offers a key advantage of maintaining the
data at its source while enabling the machine learning model to gain insights on
data, from all participating nodes.

23.4 Guiding Principles for Building Platforms and Solutions
for Enabling Application of FL in Healthcare

Based on our experience in building the prototype platform, we believe there
is broad scope in developing engineering platforms and tools to facilitate build-
ing these FL solutions to compliment the core technical applicability of FL in
healthcare. Especially considering cross silo collaboration between organizations,
a platform should provide the necessary infrastructure for running FL frameworks
and also integrate well with existing infrastructure and software components. The
following are desirable features to consider while building a FL platform from a
practitioner’s point of view.

23.4.1 Infrastructure Design

The FL platform can enable the execution of projects in various party and aggregator
topologies. In contrast to central machine learning a star FL topology with a
central server and multiple collaborating parties would need a reinforced computing
infrastructure and connectors with existing data components. As federated learning
is often based on synchronous communication between collaborating nodes, in par-
ticular for scenarios not involving mobile devices, the network infrastructure is the
first major module while building FL platform. While network connectivity during
Core FL training rounds is critical, there could be various layers of connectivity
desired between a central aggregator and parties to facilitate orchestration of FL
tasks, which need to be built by building communication channels for exchanging
meta data.

As the compute-intensive work of training models is now running on client
nodes, the client infrastructure needs to be upgraded as required by the planned
high level ML tasks. For instance, in medical imaging tasks, processing and training
on high resolution images would need GPU equipped computing infrastructure.
Another major component are data connectors that would integrate with existing
data infrastructure to facilitate data flow into the client nodes.

504 A. K. Tarcar

23.4.2 Data Connectors Design

As the data residing in silos at each independent party is organized organically as
required by the various applications generating and consuming this data, platforms
need to be cognizant of loading data from diverse data sources. Also, depending
on the maturity of the participating organizations, data might be arranged in on-
premise data warehouses, in structured databases, or in unstructured cloud data
lakes. Platforms need to have support for plugging into these party data sources
as well as running various Extract, Transform, and Load (ETL) jobs. Depending on
the federated machine learning task at hand, there needs to be support for running
data preprocessing and standardization workloads as well. As the healthcare sector
is heavily regulated, there are multiple data standardization regulations in effect.
A recent regulation in the USA has suggested using FHIR [12] guidelines for the
implementation of various APIs by care providers and payers. This would be a
major advantage for data connectors with standardized protocol for interfacing with
various healthcare organizations.

23.4.3 User Experience Design

When designing a user interface for FL platform, it is important to identify its
using personas and analyze the interaction flow for each persona. Some common
personas in healthcare include healthcare researchers, medical professionals, data
owners, and data scientists. For instance, consider a case wherein a FL platform is
deployed in a healthcare research laboratory, which analyzes histopathology slides
and applied vision models for segmentation and classification of these slides [13].
The first persona could be of data scientist who would need an application view,
which helps them focus on the detailed process of tweaking model parameters and
fusion algorithms. A pathology subject matter expert persona would need to be
provided with an application view, which abstracts the technical details of federated
learning and underlying infrastructure and helps focus solely on the application
end result of classification and explore facets such as visually inspect ML model
performance using explainable AI tools. Likewise, data owners would prefer to
have a clear application view of how data pipelines can be integrated with existing
infrastructure and how data flow can be orchestrated in and out of the platform client
nodes.

Beyond supporting the primary tasks of executing FL tasks, the platform should
also support personas such as product managers and dev-ops personnel, who will
be monitoring the model building process as well as maintaining numerous models
and their versions across multiple FL projects.

23 Advancing Healthcare Solutions with Federated Learning 505

23.4.4 Deployment Considerations

Careful considerations are required for crafting the production deployment of FL
platform. The deployment should be easy to set up and facilitate adding more collab-
orating parties with minimal friction. Furthermore, for supporting multiple machine
learning workloads it should be flexible to scale horizontally in party development
environment. The FL platform should also have features for automation of various
operational workloads and integrate with industry standard Continuous Integration
and Continuous Delivery tools.

It is recommended to have platform components packaged as containers in
a micro services-based architecture for ease of automation in operations and
deployments. They offer the flexibility of deployment on-premises as well as on
private or public cloud infrastructure.

23.5 Core Technical Considerations with FL in Healthcare

23.5.1 Data Heterogeneity

Machine learning models perform better when trained with Identical and Indepen-
dently Distributed (IID) data. In the case where data is aggregated at a central
location data scientists can work on analyzing the observed data distribution and
craft preprocessing steps for converting data into a homogeneous distribution. Even
in cases where the decentralized training is applied wherein multiple training nodes
train in parallel for reducing the training time, data scientists attempt to distribute
data across nodes to be IID.

Real-world data conditions are seldom identical or independent. They are often
very diverse. Aggregating diverse data, which enables machine learning models to
generalize well, is a challenging task. Depending on the geographies and medical
protocols prevalent in a particular region, data will be inherently Non-Identical
and Non-Independently distributed (Non-IID). There lies the advantage of applying
federated learning for building models by federating over multiple diverse datasets.

The data will be Non-IID due to the diverse demographics exhibiting the
healthcare problem as well as technical factors such as differences between medical
equipment employed across various geographies. For instance, there could be image
resolution differences depending on the medical equipment and calibration or bias
based on the regions wherein the diagnostic labs are situated. This heterogeneity of
data must be accounted for when designing machine learning models in Federated
Learning setting. There are multiple solutions described in this book for attempting
to address model convergence issues due to heterogeneity of the data. From an
algorithmic point of view, Fed+ [13] and Siloed Federated Learning [14] could
potentially help solving this challenge.

506 A. K. Tarcar

Another data concern is feature alignment across collaborating parties. In the
case of horizontal federated learning, each party needs to present training data to the
model with a set of predefined feature columns. The party data preparation process
would involve setting up protocols for how to get feature alignment correct across
all the parties as well make sure that the normalization needed for models is applied
correctly. This could be facilitated by meta data exchange between collaborating
parties.

23.5.2 Model Governance and Incentivization

From a machine learning model lifecycle perspective, it is desirable for federated
learning to follow regular model dev-ops practices. A FL platform should organize
the federated training process as a series of iterative runs, which produces model
artifacts at the aggregator as well as party nodes. These iterative runs need to be
parameterized for reproducibility and version control. This gains prominence when
paired with regulations such as “GPDR right-to-be-forgotten” clause. At a high
level, upon receiving a request to be forgotten, data owners are expected to comply
by erasing the requester’s data and updating systems that were built using it. For
machine learning systems, this could trigger retraining models if necessary.

Federated learning enables building models collaboratively by learning shared
insights across data silos. In a collaborative setup, some parties may contribute
quantitatively, while others may enrich the global model by qualitatively diverse
training data. Thus, there is a need for accountability and quantifiable measures
of contributions made by each collaborating party. These quantifiable measures
need to be implemented as a part of the technical protocol to be followed while
orchestrating federated training rounds. For instance, a quantifiable measure could
be the percentage increase in accuracy over a common mutually agreed test dataset,
which will need to be calculated and entered in a ledger before aggregator fuses the
models to update the global model. Optionally, this ledger could then be used for
incentivizing collaborative parties by rewarding them or for revenue sharing in case
the global model will be made available as a chargeable service in inference mode
for other consumers. Depending on the level of trust in the consortium, this ledger
could be implemented over Distributed Ledger Technology with smart contracts for
processing contributions [15–17].

23.5.3 Trust and Privacy Considerations

The parties collaborating in federated learning could vary from being siloed offices
belonging to the same company to institutions driven by social causes forming con-
sortia for advancing state-of-the-art solutions to competitor companies collaborating
for economic gains. Depending upon the nature of the consortium, there will be

23 Advancing Healthcare Solutions with Federated Learning 507

multiple levels of trust dynamics in effect when training models collaboratively. At
a high level, we can bucket concerns into two broad categories: First, due to the
distributed nature of the federated training process, there are concerns regarding the
integrity of each collaborating party or the aggregator in executing the assigned task.
Second, due to the sensitive nature of the data over which models are being trained
there are concerns regarding the potential of information leakage.

As discussed in the earlier chapters of this book, the federated learning process
can be fortified against these concerns driven by nefarious motives using various
approaches such as differential privacy, secure multiparty Computation, homomor-
phic encryption [18], and Trusted Execution Environments (TEEs) [19]. Let us try
to understand the nuances of trust and privacy with a couple of healthcare examples.

Consider having formed a consortium of healthcare research institutions with an
aim of collaboratively building models with medical imaging data. The sensitive
medical imaging data does not leave its source. However, the model parameter
updates are being exchanged across the network and are fused together by the central
aggregator to update the global model. In case there are no privacy preserving
measures in place, the models built by this consortia could be vulnerable to
adversarial attacks. A health insurance company with nefarious motives could
attempt to run membership inference attacks on these models to determine whether
a subset of their clientele was part of the training data. Obfuscating the model
updates by implementing differential privacy will be considered as a good defense
against such attempts for protecting information leakage. However, as discussed in
the paper [18], adding differential privacy could lead to accuracy trade-offs in cross
silo consortia with limited number of collaborating nodes. A solution suggested
by this paper includes securing model updates by pairing homomorphic encryption
with differential privacy for fortifying against information leakage.

In another scenario of a collaboration between pharmaceutical companies for
building models, which helps in drug discovery, the trust dynamics in effect could
raise concerns over integrity of execution by aggregator or collaborating party
node. Typically, in this setting, parties allow models to be trained over proprietary
data. The model updates carry insights, which are shared with the aggregator
for performing model aggregation. The compromised execution of the aggregator
protocol implementation could make the model updates shared by collaborating
parties vulnerable to ulterior motives; this includes trying to retain and compare
model updates for attempting to probe the model for leaking information about the
private data. Another motive could be attempts to alter the aggregator protocol in
an unethical way to perturb model updates or discard model updates to favor some
collaborators over others or cause hindrance to model convergence. Implementing
the fusion algorithms in trusted execution environments such as Intel SGX could
help build trust in the process of federated aggregation of model updates [19].
Taking advantage of the attestation provided by hardware backed trusted execution
environments, healthcare companies could adopt federated learning technology
holistically as a platform for trustworthy win–win collaboration.

508 A. K. Tarcar

23.5.4 Conclusion

As discussed in this chapter, Federated Learning has a strong potential for building
bridges between the silos that exist today across healthcare industry for developing
impactful AI solutions. By solving the access to real-world data across demo-
graphics and private firewalls, FL unlocks the potential of ML models to enabling
researchers to solve challenging problems across various disciplines ranging from
improved clinical diagnosis to accelerating vaccine and drug discovery. However
as prevalent in any emerging technology, federated learning, by virtue of its
decentralized implementation, brings with it the complexity of distributed execution
as well as security and privacy vulnerabilities, which will be addressed with time
by robust engineering and rigorous research efforts. We are optimistic about the
evolution of FL and its high impact in the field of advancing healthcare solutions.

References

1. Sheller MJ, Reina GA, Edwards B, Martin J, Bakas S (2018) Multi-institutional deep learning
modeling without sharing patient data: a feasibility study on brain tumor segmentation. In:
International MICCAI brain lesion workshop. Springer, pp 92–104

2. Li W et al (2019) Privacy-preserving federated brain tumor segmentation. In: International
workshop on machine learning in medical imaging. Springer, pp 133–141

3. Medical Institutions Collaborate to Improve Mammogram Assessment AI (2020). https://
blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment

4. HealthChain consortium (2020). https://www.substra.ai/en/healthchain-project
5. Trustworthy federated data analytics (TFDA) (2020). https://tfda.hmsp.center/
6. The federated tumor segmentation (FETS) initiative (2020). https://www.fets.ai
7. Joint Imaging Platform (JIP) (2020). https://jip.dktk.dkfz.de/jiphomepage/
8. Liu D, Dligach D, Miller T (2019) Two-stage federated phenotyping and patient representation

learning. In: Proceedings of the 18th BioNLP workshop and shared task. Association for
Computational Linguistics, Florence, pp 283–291

9. Lee J, Sun J, Wang F, Wang S, Jun CH, Jiang X (2018) Privacy-preserving patient similarity
learning in a federated environment: development and analysis. JMIR Med Inform 6:e20

10. Machine learning ledger orchestration for drug discovery (2022). https://www.melloddy.eu
11. Chen S et al (2020) FL-QSAR: a Federated Learning-based QSAR prototype for collaborative

drug discovery. Bioinformatics 36:5492–5498
12. FHIR—Fast Healthcare Interoperability Resources (2022). https://www.hl7.org/fhir
13. Yu et al (2020) Fed+: a family of fusion algorithms for federated learning
14. Andreux M et al (2020) Siloed federated learning for multi-centric histopathology datasets. In:

MICCAI 2020 DCL workshop
15. Drungilas V et al (2021) Towards blockchain-based federated machine learning: smart contract

for model inference. Appl Sci 11:1010. https://doi.org/10.3390/app110310102019(2021)
16. Ma C et al (2020) When federated learning meets blockchain: a new distributed learning

paradigm
17. Trustless federated learning (2020). https://www.scaleoutsystems.com/ai-blockchain
18. Baracaldo N et al (2019) A hybrid approach to privacy-preserving federated learning. In:

AISec’19: proceedings of the 12th ACM workshop on artificial intelligence and security, pp 1–
11

19. Ping An: Security Technology Reduces Data Silos (2020). https://www.intel.in/content/www/
in/en/customer-spotlight/stories/ping-an-sgx-customer-story.html

https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment
https://www.substra.ai/en/healthchain-project
https://tfda.hmsp.center/
https://www.fets.ai
https://jip.dktk.dkfz.de/jiphomepage/
https://www.melloddy.eu
https://www.hl7.org/fhir
https://doi.org/10.3390/app110310102019(2021)
https://www.scaleoutsystems.com/ai-blockchain
https://www.intel.in/content/www/in/en/customer-spotlight/stories/ping-an-sgx-customer-story.html
https://www.intel.in/content/www/in/en/customer-spotlight/stories/ping-an-sgx-customer-story.html

Chapter 24
A Privacy-preserving Product
Recommender System

Tuan M. Hoang Trong, Mudhakar Srivatsa, and Dinesh Verma

Abstract B2C companies with multiple business locations or retail stores make
extensive use of recommender systems, which make suggestions to customers
on what products to buy, provide coupons that most relevant to a customer, and
offer discounts personalized to a user and similar functions. While traditional
recommender systems are designed to mine customer transaction data from a central
database, the high level of risk associated with data breach at a central site is
motivating a need to create recommender systems using principles of federated
learning. In distributed recommender systems, customer and transaction data is kept
in many different partitions, e.g., one approach would be to keep all transaction data
to be stored locally at each store for a retailer with many physical stores. However,
such partitioning leads to unique challenges, e.g., data can be unbalanced and
incomplete (lacking customer information or customer feedback) across partitions.
In this chapter, we examine such a recommender system, which has been integrated
into the IBM Federated Learning (FL) framework.

24.1 Introduction

A recommender system predicts the rating and preferences of a customer for a given
item, where the items are products being sold to the customers. Example of items
could include products sold at any retail outlet, music videos, and news articles.
Recommender systems are used in both physical retail stores as exemplified by
the discount coupons that get printed out at the cash register and online stores as
exemplified by music recommendation, suggested news articles, or related product
links.

Early work on recommender systems started with the development of Tapestry
in the mid-1990s [1] which used content-based collaborative filtering techniques. In

T. M. Hoang Trong (�) · M. Srivatsa · D. Verma
IBM Research, Yorktown Heights, NY, USA
e-mail: tmhoangt@us.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_24

509

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_24&domain=pdf
mailto:tmhoangt@us.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_24

510 T. M. Hoang Trong et al.

this system, email users were able to provide a filter that enables them to select
the right emails from various mailing lists. People “collaborated” to help each
other create better filters by providing “annotations” to the email they read. These
annotations could be accessed by the filters, which could map a user’s annotations
to those of users with similar annotations and use that to determine how the filter
should operate.

With the growth of e-commerce, usage of recommender systems has become
more widespread, with applications such as song recommendations in companies
like Spotify, product recommendations in companies like Amazon, movies recom-
mendations in companies like Netflix, and wine recommendations from FirstLeaf.
Recommender systems are getting more complex and make use of a diverse set
of inputs, including user-generated contents of various types (e.g., comments on
products) [2], user-defined or service-defined constraints [3], and context-aware
information such as time and location of input data [4, 5].

Typically, the development of a recommender system is a multidisciplinary effort
that involves experts from various fields such as Artificial intelligence, Human-
Computer Interaction, Information Technology, Data Mining, Statistics, Adaptive
User Interfaces, Decision Support Systems, Marketing, or Consumer Behavior [6].
Most of the time, the target of a recommender system is an individual user; but it
can also be a group of users [3]. Applications of group-based recommender systems
can be music, movies, or travel destination recommendation [7].

With the increase in data collected about individual users, personalized-focused
recommender systems are getting more complex using AI models such as deep
learning [8, 9]. However, this also brings around issues related to user privacy [10].
It is customary in most industries to maintain the data at a central data warehouse
to ease the task of mining. However, such centralized systems have a significant
business risk associated with regulatory requirements and privacy loss if the central
data warehouse is breached, as well as high maintenance cost for big-data systems
such as Hadoop in processing centralized data [11, 12].

Federated Learning [13] provides an alternative approach where data is dis-
tributed among different parties and learns a shared model by aggregating locally
computed updates via a central coordinating server called the aggregator [14]. For
enhanced security, a differential policy can be used for adding noise to training data
[15, 16]. Alternatively, encrypted communication such as homomorphic encryption
(HE) can be used before sending the model update to the cloud or central server.
Federated learning can be deployed in several data-constrained scenarios [17].

In this chapter, we share our work in building a product recommender system
using federated learning as depicted in Fig. 24.1. This was based on the use case
shared with us by our colleagues at a leading U.S. retailer. With the federated
approach, customer transaction data is maintained at each store instead of aggre-
gating all data to a central store. The federated learning framework enables the
deployment of model training at each store. Each store trains the model on its local
data, and the individual store can control what information should be used to create
the model. After each training, the agent at the individual store sends the model
parameters to the central location. The central location (aggregator) combines all

24 A Privacy-preserving Product Recommender System 511

Fig. 24.1 A hypothetical scenario showing two stores in that models are trained using (a)
centralized approach, and (b) federated approach

models and sends the result, in the form of a model update object, back to each
store. The model update is used to construct a final AI model at the store. For every
new transaction in the store, this final AI model suggests what products the customer
is likely to buy next and generates a coupon for those products. Models are updated
periodically, first at the store (using in-store new data), then aggregated across all
the stores through the central aggregator.

24.2 Related Work

Federated learning is a natural requirement in the context of edge computing. Sheller
et al. (2018) described their work in training neural net in the context of edge
devices [18]. A hash ledger is used to track local data that are permitted in local
training, with a trusted mechanism to allow global update only from trusted edge
devices using techniques such as Byzantine Gradient Descent (BGD) [19]. Shiqiang
et al. also discuss this aspect in the chapter on Efficient Federated Learning in Edge
Computing Systems.

512 T. M. Hoang Trong et al.

Some works have focused on reducing data transmission during the model
update, in that the updated matrix has a predefined structure such as low-rank or
sparse matrix [20] or the work discussed in a previous chapter on Communication-
Efficient Federated Optimization Algorithms. While our work does not try to
improve such aspects of federated learning, we also showed that the approach is
also memory efficient.

Ammad-ud-din et al. (2019) introduced the first federated implementation of a
collaborative filter using user profile [21]. Qu et al. (2020) introduced a federated
news recommender system [22]. Here, local gradients from a group of randomly
selected users are uploaded to the aggregator, from there the gradients are combined
at the global news recommendation model. The same updated global model is then
distributed to each user device for local model update. Random noise and local
differential privacy are applied to the local models before sharing.

24.3 Federated Recommender System

Instead of a user profile-based recommender system, we propose a recommender
system based on buying patterns. In our approach, we model the transaction data
available as a buying matrix (B) of size TxP where each of the T rows represents
a customer buy transaction and P is the number of products available at the store.
For each of the transaction rows, context-aware information such as the buying time
or specific customer attribute can also be added, but we will initially focus just on
the raw transaction data without the context attributes. From a federated learning
perspective, the ith store matrix Bi would have Ti rows.

We use a three-phase federated machine learning system: (1) to map individual’s
transactional data into buying pattern’s behavior, upon which (2) the system then
can generate buying pattern’s product rating profile matrix and (3) uses this matrix
to train the recommender system via the high memory efficiency and performance
sparse linear memory algorithm (SLIM) [23, 24].

To deal with the large number of users, we map different users into groups
identified by their buying patterns. Each store maps its transaction-item matrix B
into a group rating matrix (A) of size GxP where G is the number of buying patterns
and P is the number of products. The number of groups (G) is much smaller than
the number of users and reduces the transaction matrix into each store into a matrix
with common rows and columns across all of the stores. Each future transaction can
be mapped into one of the existing buying patterns, and the SLIM algorithm can be
used for making a product recommendation. This process is shown in Fig. 24.2.

By learning the relationship of products to a buying pattern, rather than to a user
profile, we overcome the limitations of user profile-based approach. Specifically,
we can eliminate personal data from the model, reduce data transmission cost, and
handle unbalanced set of transactions across different stores better. When a customer
with an unknown profile comes into a store and buys some products, this system is

24 A Privacy-preserving Product Recommender System 513

Fig. 24.2 The figure shows major components in the system: Bi is the transactional matrix at store
ith, the buying pattern/product rating matrix Ai at each store; the buying pattern/product rating
matrix Aagg after aggregated the data Ai from all the stores

able to determine the best matching buying pattern and make a recommendation
despite having no associated profile.

An unsupervised clustering algorithm is used to determine the buying patterns.
The initial stage of federated learning for recommender systems consists of a feder-
ated unsupervised clustering algorithm. Transactions at one store may cover some,
but not all buying patterns. The federated learning mechanism runs the unsupervised
clustering algorithms on local data, and then sends the model parameters over to the
aggregator. The model parameters would capture details such as centroids of clusters
and the radius of each cluster, the overall density of the clusters, as well as densities
at different percentiles of the radius (e.g., 25% of the overall radius). By sending
these parameters, the technique hides the details of the transactional data and any
user information and reduces data amount.

The aggregator collects all of these parameters and identifies a global set of
clusters using such parameters. It re-creates the samples using the parameters
provided, after which any clustering mechanism can be applied onto the samples.
These mechanisms include K-means or using a KD-tree method to identify the
nearest centroids and merge them by finding the new centroids based on the sides of
the two components clusters [25].

The result will be sent back to each store to calculate the “inertia” metric. The
inertia is calculated as the mean-squared error of all the samples to the associated
centroids. The local inertia is sent to the aggregator, which computes the global
inertia. If the global inertia is improved, it will keep the new centroid, and move on
to the next ones. This process repeats until no further improvement is observed. This
global set of centroids are then sent back to individual stores to assess the buying
pattern/product rating matrix using the local data.

514 T. M. Hoang Trong et al.

Once the set of buying patterns have been calculated, the transaction data is
converted to the group matrix which computes the frequency of products being
bought in each buying pattern. Each row in the transaction matrix is binary with a
1 marking each product bought in the transaction and 0 indicating a product that
is not bought. When buying patterns are identified, transactions belong to each
buying pattern are used to calculate a rating matrix, where each entry in the row
indicates the probability that the product will be bought according to that buying
pattern. This rating matrix is then passed to the SLIM model to learn the aggregation
matrix W which later will be sent back to each store for performing top-N product
recommendation.

24.3.1 Algorithms

The pseudo-code of the three-phase federated machine learning system is shown in
Fig. 24.3. In phase 1, the unsupervised clustering is used to map an individual’s
transactional data into a buying pattern. The number of buying patterns is the
hyperparameter at this stage. The higher the number of buying patterns, the more
accurate the relationship among products in a transaction is captured. If it is equal
to the number of transactions, each transaction is a unique pattern. However, to
reduce the size of the buying pattern matrix, a value much smaller than the number
of products should be used.

Given the local data of transactions, we aim to generate a collection of buying
patterns, Fig. 24.3—top box. The information from each buying patterns, as

Fig. 24.3 The pseudo-code of the algorithm being used at each stage of the three-stage learning
strategy

24 A Privacy-preserving Product Recommender System 515

represented by the cloud of points in the P-dim space, is then aggregated based on
the following statistics: centroid locations, the radius of the cluster, the density of the
clusters, and the densities at different percentiles of the cluster’s radius (e.g., 25%
and 50% of the overall radius). Once a global buying pattern is achieved, through
federated training using KD-tree [25], the rating profile matrix A is then generated in
stage 2. The rating profile matrix captures the score of each product in each buying
pattern. A product can appear in multiple buying patterns. This max-score is the
hyperparameter in this stage. Essentially, it tells the range of values and how the
normalization process is used to normalize the scores across buying patterns.

Through federated training, the global rating profile matrix is generated at the
aggregator site, which is then fed into the high memory efficiency and performance
sparse linear memory algorithm (SLIM). The SLIM model is then returned in the
form of two sparse matrices, which captures the memory efficiency of sharing the
model. There are two types of models that are trained and produced in this three-
phase system. The first one is the grouping model and the second one is the rating
model. At deployment, the grouping model is used to map a transaction from the
transactional space to the buying pattern, along with its vector representation in the
grouping space, and then the rating model is used to generate the recommended
product for the vector representing the transaction in the grouping space.

24.3.2 Implementation

We have implemented the three-phase recommender system using the IBM FL
framework, which is a Python-based library for implementing federated algo-
rithm [14]. The framework provides for creating a fusion handler class at the
centralized location, and a local training handler class to be used on individual
sites, e.g., retail stores. The fusion handler is managed by the aggregator daemon
(ibmfl.aggregator.aggregator), running on the centralized server and the local
training handler, which can link to an external AI model, is managed by the party
daemon (ibmfl.party.party) running on each site. The party manages two more
handlers: data handler and connection handler; while the aggregator manages one
more handler: connection handler.

Each party runs on its dedicated machine at a site, connected via the Internet to
an aggregator in a data center or on the Cloud. The daemons using this framework
must select a networking mechanism which makes use of one of a few built-in
mechanisms, such as Flask, TCP, or RabbitMQ, for coordinating activities between
the individual parties, and the aggregator. The information is provided via a YAML
config file which is passed to the commands to launch the daemons like below.

python -m ibmfl.aggregator.aggregator <agg_config>
python -m ibmfl.party.party <party_config>

The aggregator’s possible actions are determined by its state which can be
given from the console. A dedicated Aggregator class’s method will be evoked for

516 T. M. Hoang Trong et al.

each command. At the console level, the state can be changed by going through
a sequence of commands. At first, a server thread on the aggregator needs to be
activated using the “START” command, waiting for connection from all parties.

The party’s possible actions are also determined by its state, as well as the
message type sent from the aggregator. At the console level, the state can be
changed by going through a sequence of commands. At first, a dedicated thread on
the party for listening to the message from the aggregator needs to be activated using
the “START” command. The party then can register itself to the aggregator using the
“REGISTER” command, which requires the aggregator to be in the “START” state
first. The information needed for a party to connect to the aggregator is provided via
a YAML file.

Once all parties are registered, the aggregator can initiate one of the following
actions: SAVE_MODEL, SYNC_MODEL, EVAL_MODEL, and TRAIN; each
triggers a corresponding action on the fusion handler. Among them, the “TRAIN”
command which is linked to the start_global_training() method that needs to be
implemented by the designated fusion handler class whose name is provided via the
YAML file, e.g., FedRecFusionHandler class. Inside this method, the fusion handler
class can setup payload, and use any of the following mechanism to evoke the action
on the parties:

• query(func, payload, parties): ask all or a given list of parties to execute the given
function “func” of the local training handler,

• query_parties(payload, parties): ask a group of parties to perform the train()
method of the local training handler,

• query_all_parties(payload): ask all parties to perform the train() method of the
local training handler.

Using query_all_parties() or query_parties() APIs triggers the train() in the local
training handler that in turn evokes the fit_model() API of the AI model to be trained
locally. In many federated learning scenarios where the single AI model is being
trained, this pattern helps to simplify the model development as the user-defined
model needs only to override the single fit_model() API of the FLModel-derived
class.

In our use case, the party needs to execute a sequence of functions and coordinate
the result with the aggregator. The sequence of commands is captured and explained
in Fig. 24.4. This is achieved using a hook mechanism in that the fusion handler
controls the sequence of execution using query() mechanism which can call an
arbitrary function defined within the local training model, as shown in Fig. 24.5.

The details for setting the YAML config files are outlined in detail in [26]. Here,
we briefly introduced the changes needed for our use case. The YAML file for
the aggregator should contain four sections: connection, fusion, hyperparams, and
protocol_handler; and two optional sections: metrics and model. In our example,
we override two sections: fusion and hyperparams, as shown in Fig. 24.6.

The YAML file for each party should contain five sections: aggregator, con-
nection, local_training, data, and protocol_handler. In our example, we override
three sections: data, local_training, and model, as shown in Fig. 24.7. Unlike the

24 A Privacy-preserving Product Recommender System 517

Fig. 24.4 The diagram showing the overall sequence of global training at each party sides and
aggregator side: connect()—each party registers itself to the aggregator, learn1()—each party
performs the first stage of learning, send1()—each party returns the ModelUpdate to the aggregator,
Fed.learn1()—the aggregator performs its first stage of fusion, Fed.send2()—the aggregator sends
its ModelUpdate to each party; learn2()—each party performs its second stage of learning;
Fed.learn2()—the aggregator performs its second stage of fusion

Fig. 24.5 The sequence of execution at the aggregator site to perform federated training

aggregator, which does not need to know the information of the parties, the parties
need to know the connection information to the aggregator.

24.4 Results

In order to evaluate the performance of the federated learning mechanism, we used
synthetic data that was generated and vetted for reasonableness with our colleagues
from a leading U.S. retailer. Actual transaction data was not used to protect against
user privacy.

518 T. M. Hoang Trong et al.

Fig. 24.6 A portion of the YAML config file for the aggregator. Here, the FedRecFusionHandler
class is the user-defined class, derived from FusionHandler base class, with dedicated APIs to be
implemented for the use case

Fig. 24.7 A portion of the YAML config file for a party. Here, the “store_id” needs to be unique
for each store, which is used to retrieve the data for the demo

Synthetic data was generated for two stores: one representing an urban area
(store-1) and the other representing a suburban area (store-2). The urban store had
3 times as many transactions as the suburban store. As shown in Fig. 24.8, both
stores had different buying patterns. There were 700 users in store-1 and 200 users
in store-2. We perform the model evaluation by generating synthetic transaction data
representing 10 buying patterns of consumers (numbered 0–9) across 100 products
at both stores. Each buying pattern is a propensity for a user to preferentially buy
a specific group of products. The set of products which had a non-zero fraction of
being bought in each group (buying pattern) are as shown below:

• group 0 [1 2 5 7 8 11 13 16 23 41 47 48 49 52 54 63 66 78 80 87 91 94 97],
• group 1 [6 10 12 19 22 24 30 59 79 85],
• group 2 [29 31 37 43 73 81 83 93 98 99],
• group 3 [28 30 34 44 79 85 86 88],
• group 4 [4 14 15 20 44 70 84 86 88],

24 A Privacy-preserving Product Recommender System 519

Fig. 24.8 The fraction of the number of transactions in each buying pattern. The size of the circle
reflects the amount of data available in each store, and the size of the pie reflects the amount of
data for each buying pattern in a given store

• group 5 [0 10 21 24 25 30 31 46 50 57 67 69 73 76 96 98],
• group 6 [3 10 26 31 35 40 55 56 57 58 72 75 89 90 92 95],
• group 7 [9 12 18 29 32 39 42 60 68 71 77 79 82 85 93 98],
• group 8 [17 27 33 36 38 45 51 61 62 64 74],
• group 9 [5 6 22 30 33 49 51 53 62 65 97].

Each transaction was generated following the steps by randomly drawing the
group index, then randomly drawing the number of products purchased from that
group. Each user transaction had a probability of 80% of buying products from one
buying pattern, and 20% from a second randomly chosen pattern. Each user had
about 3000 transactions.

Different mixes of buying patterns at two different stores were simulated. A mix
represents how the ten buying patterns were distributed across stores, Table 24.1.
One store had thrice as many transactions as the other. Both approaches (federated
and centralized recommendation) were implemented, and their approaches in
identifying and grouping users into buying patterns were compared. By shuffling
the buying patterns at each store, we estimate how often the buying pattern group
identified by two approaches match. Using the generated data, by averaging the five
different mixes, the result shows overall matching of 94% in Fig. 24.9.

In the second experiment, we examined the amount of data that would be
sent to/from the central data server in both approaches. Each store is assumed
to have a million transactions, and there is no data compression during the data
transmission. Here, we estimated that federated approach for 1000 stores and
we estimated that the federated way uses 1/250th of inbound bandwidth and
1/6th of outbound bandwidth compared to the centralized approach (Fig. 24.10).
Several other approaches potentially also aimed to provide the communication-

520 T. M. Hoang Trong et al.

Table 24.1 Mixing of different buying patterns

Mix Buying patterns in store 1 Buying patterns in store 2

1 [0–4], 5, 6, 7 5, 7, 8, 9, 10

2 [0–4], 5, 6, 8 5, 7, 8, 9, 10

3 [0–4], 5, 8, 9 5, 7, 8, 9, 10

4 [0–4], 5, 7, 9 5, 7, 8, 9, 10

5 [0–4], 6, 7, 9 5, 7, 8, 9, 10

Fig. 24.9 The matching between results from centralized approach and federated approach at each
mix

Fig. 24.10 The data sent and received by the aggregator is measured, by varying the number of
parties

efficient result as reviewed in chapter titled Communication-Efficient Federated
Optimization Algorithms.

24.5 Conclusion

We described in this chapter a multi-stage, federated, non-deep-learning-based
recommender system that can be quickly deployed on conventional hardware and
runs on available compute infrastructure at a retail store. The method is based on
the well-tested algorithm in a recommender system called SLIM. The result shows
that a federated product recommender system is a viable approach for retail product
recommendation in that the results are comparable to the traditional centralized
approach. Importantly, data privacy is maintained by design in the federated rec-

24 A Privacy-preserving Product Recommender System 521

ommender system. A federated recommender system is more bandwidth-efficient
than a centralized recommender system. In general, a federated AI is not limited
to product recommendation but has many more applications that are mentioned in
other chapters in the book.

References

1. Goldberg D, Nichols D, Oki BM, Terry D (1992) Using collaborative filtering to weave an
information tapestry. Commun ACM 35(12):61–70

2. Xu Y, Yin J (2015) Collaborative recommendation with user generated content. Eng Appl Artif
Intell 45:281–294

3. Felfernig A, Boratto L, Stettinger M, Tkalčič M (2018) Group recommender systems: an
introduction. Springer

4. Villegas NM, Sánchez C, Díaz-Cely J, Tamura G (2018) Characterizing context-aware
recommender systems: a systematic literature review. Knowl-Based Syst 140:173–200

5. Adomavicius G, Tuzhilin A (2011) Context-aware recommender systems. In: Recommender
systems handbook. Springer, Boston, MA, pp 217–253

6. Ricci F, Rokach L, Shapira B, Kantor PB (2011) Recommender systems handbook. Springer
7. Sriharsha Dara C (2020) Ravindranath Chowdary, “a survey on group recommender systems”.

J Intell Inf Syst 54:271–295
8. Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: a survey and

new perspectives. ACM Comput Surv (CSUR) 52(1):1–38
9. Khan ZY, Niu Z, Sandiwarno S, Prince R (2020) Deep learning techniques for rating prediction:

a survey of the state-of-the-art. Artif Intell Rev:1–41
10. https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en, Retrieved Feb,

19, 2021
11. Zhao Z-D, Shang M-S (2010) User-based collaborative-filtering recommendation algorithms

on Hadoop. In: 2010 third international conference on knowledge discovery and data mining.
IEEE, pp 478–481

12. Dahdouh K, Dakkak A, Oughdir L, Ibriz A (2019) Large-scale e-learning recommender system
based on spark and Hadoop. J Big Data 6(1):1–23

13. Jakub K, Brendan McMahan H, Ramage D, Richtárik P (2016) Federated optimization:
distributed machine learning for on-device intelligence. arXiv preprint arXiv:1610.02527

14. Ludwig H, Baracaldo N, Thomas G, Zhou Y, Anwar A, Rajamoni S, Ong Y et al
(2020) IBM federated learning: an enterprise framework white paper v0.1. arXiv preprint
arXiv:2007.10987

15. Rodríguez-Barroso N, Stipcich G, Jiménez-López D, Ruiz-Millán JA, Martínez-Cámara E,
González-Seco G, Victoria Luzón M, Veganzones MA, Herrera F (2020) Federated Learning
and Differential Privacy: software tools analysis, the Sherpa. ai FL framework and method-
ological guidelines for preserving data privacy. Inform Fusion 64:270–292

16. https://github.com/IBM/differential-privacy-library
17. Yang Q, Liu Y, Chen T, Tong Y (2019) Federated machine learning: concept and applications.

ACM Trans Intell Syst Technol (TIST) 10(2):1–19
18. Sheller M, Cornelius C, Martin J, Huang Y, Wang S-H Methods and apparatus for federated

training of a neural network using trusted edge devices. Intel Corp. https://patents.google.com/
patent/US20190042937A1

19. Alistarh D, Allen-Zhu Z, Li J (2018) Byzantine stochastic gradient descent. arXiv preprint
arXiv:1803.08917

20. Hugh BM, David MB, Jakub K, Xinna Y (2020) Efficient communication among agents.
Google, LLC. https://patents.google.com/patent/GB2556981A/en

https://ec.europa.eu/info/law/law-topic/data-protection/data-protection-eu_en
https://github.com/IBM/differential-privacy-library
https://patents.google.com/patent/US20190042937A1
https://patents.google.com/patent/GB2556981A/en

522 T. M. Hoang Trong et al.

21. Ammad-Ud-Din M, Ivannikova E, Khan SA, Oyomno W, Fu Q, Tan KE, Flanagan A (2019)
Federated collaborative filtering for privacy-preserving personalized recommendation system.
arXiv preprint arXiv:1901.09888

22. Qi T, Wu F, Wu C, Huang Y, Xie X (2020) Privacy-preserving news recommendation model
learning. In: Proceedings of the 2020 conference on empirical methods in natural language
processing: findings, pp 1423–1432

23. Sculley D (2010) Web scale K-means clustering. In: Proceedings of the 19th international
conference on world wide web

24. Ning X, Karypis G (2011) Slim: sparse linear methods for top-n recommender systems. In:
2011 IEEE 11th international conference on data mining. IEEE, pp 497–506

25. Bentley JL (1975) Multidimensional binary search trees used for associative searching (KD-
tree). Commun ACM 18(9)

26. https://github.com/IBM/federated-learning-lib

https://github.com/IBM/federated-learning-lib

Chapter 25
Application of Federated Learning
in Telecommunications and Edge
Computing

Utpal Mangla

Abstract Federated Learning is gaining significant prominence in the Telecommu-
nication Industry as Communication Service Providers (CSPs) look at harnessing
their data assets, while maintaining data privacy requirements and building new use
cases to monetize opportunities made possible by this data.

One of the biggest assets that CSPs have is data. The top 50 carriers
globally contain data of over five billion consumers worldwide. As telecom-
munication companies use Artificial Intelligence and Machine Learning
(AI/ML) technologies to extract analytical and predictive capabilities, federated
learning is becoming an important imperative for building centralized models
with distributed training data. 5G and Edge computing enable significantly
improved network capacity, lower latency, higher speeds, and increased
efficiency.

25.1 Overview

Federated Learning is gaining significant prominence in the Telecommunication
Industry as Communication Service Providers (CSPs) look at harnessing their data
assets, while maintaining data privacy requirements and building new use cases to
monetize opportunities made possible by this data.

One of the biggest assets that CSPs have is data. The top 50 carriers globally
contain data of over five billion consumers worldwide. As telecommunication
companies use Artificial Intelligence and Machine Learning (AI/ML) tech-
nologies to extract analytical and predictive capabilities, federated learning
is becoming an important imperative for building centralized models with
distributed training data. 5G and Edge computing enable significantly improved
network capacity, lower latency, higher speeds, and increased efficiency [1].

U. Mangla (�)
IBM, Toronto, ON, Canada
e-mail: utpal.mangla@ca.ibm.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Ludwig, N. Baracaldo (eds.), Federated Learning,
https://doi.org/10.1007/978-3-030-96896-0_25

523

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96896-0_25&domain=pdf
mailto:utpal.mangla@ca.ibm.com
https://doi.org/10.1007/978-3-030-96896-0_25

524 U. Mangla

Fig. 25.1 5G and edge landscape

Data and AI models will be distributed across multiple nodes in 5G Edge
computing but sharing the information can be complex for security, bandwidth,
storage, and other constraints so Federated Learning is ideal for such an
environment.

The illustration above (Fig. 25.1) depicts a typical edge environment integrated
into the CSP’s 5G infrastructure. The far edge consists of many edge devices which
capture the essential data and transmit them to edge clusters located close to the far
edge. The edge cluster will consist of Multi-Edge Compute Nodes (MEC) [2]. The
far edge has limited compute power and will usually only run the trained models.
Trained models will also exist at the MEC where further processing of the data can
occur as the edge clusters will have greater compute power than the edge devices.
The core network will have greater compute power permitting even more powerful
models processing larger data sets. The CSPs will generally own and manage the
network in the edge environment while the applications will be customized for
different industries. Managing the AI models in this distributed environment can
be greatly enhanced by Federated Learning where an aggregator, when placed at the
appropriate node, can distill a model which can be shared and then distribute it to
the relevant nodes.

We will now elaborate on a few Federated Learning use cases applicable to the
telecommunications industry and then provide a unified use case which brings them
together. We will conclude by discussing some of the challenges the industry will
face when implementing Federated Learning to monetize the massive amounts of
data they have.

25.2 Use Cases

There are many Federated Learning use cases and the following are some examples.
We will start with some core Telcom use cases which will benefit from federated
learning and then provide an integrated use case which builds on the core use case
to create an end-to-end solution for CSPs.

25 Application of Federated Learning in Telecommunications and Edge Computing 525

25.2.1 Vehicular Networks

Vehicular networks are growing in importance in intelligent transportation systems
as it permits vehicles to operate more effectively through data sharing. IEEE predicts
that autonomous cars will comprise 75% of total traffic on the road by the year
2040 [3]. These vehicles have to deal with large amounts of data from multiple data
sources in various formats. Providing the essential data in a timely, secure fashion
is critical and Federated Learning will play an important role. Normally, Federated
training in vehicular networks includes the following processes: Initialization, Local
Training, and Global Aggregation [4]. Initialization sets up the environment and
determines the training needed. During local training the models are trained using
local data. The parameters are then loaded to the aggregator by the participants
where the global model is created. The updated parameters are then sent back to
the participants. In synchronous mode all vehicles upload their training parameters
to the server periodically at the end of predefined interval. In asynchronous mode,
each vehicle will complete its training and upload the parameters when sufficient
information is collected locally and the FL server will update the global model upon
receipt of a set of parameter uploads. Vehicular networks provide many benefits
including early warning signals for motorist, better provisioning in transit, inter-
vehicle and road-vehicle communication as well as enabling autonomous vehicles
to operate effectively.

25.2.2 Cross-Border Payment

The telecom industry is impacted by government regulations such as Federal
Communications Commission in the USA and regulatory bodies in the EU. In
addition, telecom companies have to follow standards set up by various bodies
such as European Telecommunications Standards Institute. To enable greater
transparency, visibility, and to prevent fraud, it is imperative that various telecom
companies globally work in close coordination with each other. As consumers travel
globally and start using greater roaming services and perform financial transactions
supported by their respective telecom companies, protection of data privacy and data
security becomes extremely critical.

New use cases are being created by telecom providers to generate monetization
opportunities by tapping into customer data that they possess. Cross-border payment
system (CBPS) is an opportunity that carriers are interested in tapping into [5].
Figure 25.2 illustrates some of the key players that participate in cross-border
contactless payments and the interactions among them.

Federated learning will become extremely critical to solving this problem and
ensuring that personalized models are built between banks, carriers, and networks.
Federated learning will become the foundation to building a cross-enterprise, cross-
data, and cross-domain platform in which an ecosystem is created by ensuring the

526 U. Mangla

Fig. 25.2 Roles within a cross-border payment system. Source: IBM Institute for Business Value.
[5]

appropriate models can be created and enhanced across the different players while
ensuring data integrity and security is maintained.

25.2.3 Edge Computing

Edge computing is built on computing resources where the workload is placed closer
to where the data is created permitting actions which can then be taken in response
to an analysis of the data. By harnessing and managing the compute power that is
available on remote premises, such as factories, stadiums, or vehicles, developers
can create applications that reduce latencies, lower demands on network bandwidth,
increase privacy of sensitive information, and enable operations even when networks
are disrupted. Federated learning can be used for AI/ML models to learn from data
residing across multiple edges, without sharing the raw data, thereby offering higher
levels of data privacy. For example, models can be trained at different edge nodes for
a video surveillance system. Models running on cameras (edge device) or the MEC
(edge cluster) at certain locations can be trained to identify certain objects due to
clarity of images at that location. The learning for a set of devices using localized
data can occur at the edge cluster and an aggregator can be present at the nodes
further up-stream including the core network or in the cloud. The aggregator can
distill a model that recognizes well common objects occurring, which can be shared
and then distribute it to relevant new or existing nodes so these nodes do not have
to go through the retraining. It is important that the aggregator be placed at the right
nodes, and this is one of the challenges that need to be addressed especially as the
number of nodes grows.

25 Application of Federated Learning in Telecommunications and Edge Computing 527

25.2.4 Cyberattack

Cyberattacks can seriously impact mobile edge networks so detecting and correcting
the attacks is critical. Nguyen et al. [6] describe how Deep Learning techniques
can accurately detect a wide range of attacks. This detection, however, needs the
right dataset in sufficient amounts in order to train the models but this data can be
sensitive given the nature of security data. Abeshu and Chilamkurti [7] describes
how Federated Learning can create effective models to detect cyberattack models.
Each edge node owns a set of data for intrusion detection. Each model is trained
at the different edge nodes and then sent to the Federated Learning system. The
system will aggregate all parameters from the participants and send the updated
global model back to all the edge nodes. Each edge node can therefore learn from
other edge nodes without a need of sharing its real data. A key benefit of using
Federated Learning to detect cyberattacks is improved accuracy in detecting attacks
while maintaining privacy at the edge nodes.

Bagdasaryan et al. [8] have identified Federated Learning being vulnerable to
backdoor attacks. For example, malicious training samples can be introduced to
the edge nodes resulting in the final model being tainted. Secure protocols have
been developed to guard against malicious attacks (e.g., defensive distillation and
adversarial training regularization). These protocols are enhanced by integrating
them with Blockchain; with its immutability and traceability, it can be an effective
tool to prevent malicious attacks in federated learning [9]. Changes made by each
node to its local model can be chained together on the distributed ledger offered by
a blockchain such that those model updates are audited. This provides traceability
to participants using Blockchains inherent characteristics which help the detection
of tamper attempts and malicious model substitutes.

25.2.5 6G

6G is still being developed but there are many areas where Federated Learning can
be applied to improve the rollout of 6G [10]. Some key enhancements that 6G will
provide over 5G and impact Federated Learning include the following:

• Better Performance and Availability: 6G will deliver 1 Tbps data rate per
user, ultra-low end-to-end delay, and high energy efficiency networking. It will
also support more extensive networking including less dense areas such as the
underwater environment. In addition, 6G communications will support highly
diversified data, thus extending the types of applications that can be built. 6G is
therefore being designed to support more devices which will be able to handle
the new data types and applications which will be available.

• Greater Security: Data security and privacy will be an important part of 6G
communication. As more and more data will be managed at edge nodes, it
is essential that this data is protected during transmission and when stored at

528 U. Mangla

different locations. Wang et al. [11] discuss key aspects of 6G networks including
edge computing with the relevant security and privacy issues including that
vehicle networks should consider not only the network environment but also the
physical environment in a 6G environment.

• Intelligent Services: 6G will be much more complex to handle as the complexity
of the network, applications, and services provided will be greater. The 6G
network and applications running on the network will therefore need to auto-
matically identify and correct themselves in a close loop automated fashion with
minimal human intervention using AI [10].

The above will permit implementing new use cases which are either not possible
now or can only currently be implemented in a limited fashion due to network
shortcomings. Examples of such use cases include sophisticated augmented/virtual
reality interactions, real-time eHealth permitting advanced medical procedures,
complex industrial implementations that extend beyond Industry 4.0, and very
extensive unmanned mobility integrating mobile sensors, autonomous land vehicles,
and aerial devices such as drones.

To achieve the above, it is essential that the large number of far edge devices
using different services can collaboratively train a shared global model using
their own local datasets. When 6G is rolled out, the devices will be much more
sophisticated than what is currently available so will be able to run much more
sophisticated models than current systems handling more complex data. Examples
of such models could include root cause network analysis, predictive network
models, and video analytics thus offloading some of the activities which may run
on the MEC to the far edge device. Model updates of all selected devices need to
be managed for aggregation to obtain new global models which can then be used to
further enhance the far edge models. The aggregation can take place in a peer-to-
peer way or be sent to a central location in the core network or the cloud.

25.2.6 “Emergency Services” Use Case to Demonstrate
the Power of Federated Learning

We will now look at a use case that integrates the key points mentioned above to
illustrate how federated learning will be used in an actual implementation.

Today, a 911 emergency response time can take anywhere from 37.5 to 43 min
according to a study conducted by the University of California, San Francisco, based
on 63,000 cardiac arrest cases—a life-threatening condition—occurring outside of
the hospital premises [12]. With the advent of 5G, an end-to-end 5G network slice
can be established between the 911 caller, Emergency Medical Technician (EMT),
and the hospital alongside an optimal driving route that supports rich multimedia
communication between the EMT and the attending physician; it is possible to make
critical real-time decisions on behalf of the patient.

25 Application of Federated Learning in Telecommunications and Edge Computing 529

With the confluence of 5G, MEC, and AI/ML, such scenarios are closer to reality.
To achieve that, the network should support a common architecture from Core to
Edge, for both Network and IT workloads, with the flexibility to move workloads
across the network, as per the ebbs and flows of network and customer traffic
supported by dynamic network slicing [13]. It should also support the flexibility of a
“build once and deploy anywhere” on the Core to Edge spectrum to provide the best
experience even with bandwidth intensive use cases. This should be complemented
with DevSecOps [14] methodology and robust security framework to ensure 5G
and Edge network security, cloud and container security, devices, application, and
data security.

There are various types of data collected for analysis, such as the vital statistics
of the patient, the status and location of the ambulance, the video feed from the
ambulance to the hospital, etc. This generates a large quantity of data to help train
the models to better determine and predict the health of the patient and changes
to be made to the ambulance operation. Changes could include determining if the
ambulance is on the right route to be associated with the optimal network signal
or network slice, avoiding disruptions such as a tunnel that can interrupt the signal
and traffic jams that can delay the patient reaching the hospital. A key observation
is that diverse representative data that can truly enhance machine learning models
are encountered rarely [15]; the rest of the data is fairly predictable and redundant,
and hence a summary of the most important data, accounting for data privacy, can
suffice to train the models. Sending the summary data will also help reduce network
traffic and prevent overloading the systems receiving the data, as only relevant data
is sent to the receiving systems.

The following set of activities are occurring (Fig. 25.3).

1. Data is created as the ambulance moves across different locations.
2. The data is transferred through the 5G network to the network edge.
3. Summary data is sent from the network edge to the central cloud.

There are various types of data in large volumes collected for analysis, such as the
vital statistics of the patient, the status and location of the ambulance, and the video
feed from the ambulance to the hospital. To get the best results from the models, it
is best to use diverse geographical data that spans multiple edges:

• Not only from city roads, but also highways.

Fig. 25.3 Sample flow across 5G and edge landscape

530 U. Mangla

• Various weather conditions such as rain, snow, and sunny days; day and
nighttime, etc.

• Patient data of the illness for various demographics of age, gender, race, physical
conditions, pre-existing medical conditions, etc.

• Network data as the ambulance moves through different locations, and thus span
multiple vRANs (Radio Access Networks), IP/transport layers, and multiple
MEC servers (Mobile Edge Computing).

Fusion of data across multiple geographical edges and patients helps us train the
models to improve the overall treatment provided to the patient in transit. However,
there are some key points to be considered here:

• How do we ensure the security and privacy of the edge data? This data can be
used to train the models at the edge, but private data should not be shared with
others in its raw form.

• How can the models running at a given edge be enhanced by the learnings at
other edges and while ensuring the data is not shared? There has to be some level
of collaboration between these edge nodes to make this possible.

• How to scale model training in a cloud and multi-edge environment? With some
of the training occurring at the edge while others at the central cloud, how does
one scale this mode of training while keeping the data secure?

• How to dynamically orchestrate resources across cloud and multi-edges to
facilitate model training and scoring in a telco network cloud? Such solutions
should leverage the inherent strengths of 5G networks such as dynamic network
slicing, improving the bandwidth or QoS of a slice, or migrating the ambulance
traffic to another suitable slice.

Federated learning will enable us to address many of the points above. For
example, the server is designed to have no visibility into an agents’ local data
and training process because of privacy concerns. The aggregation algorithm used
is usually weighted averaging of the agent updates to generate the global model.
In the ambulance use case, there is both data/resource similarity and diversity.
These characteristics make these data points ideal candidates for federated learning
models.

To make the most efficient use of the limited computation and communication
resources in edge computing systems, researchers have explored the design of
efficient federated learning algorithms [16]. These algorithms track the resource
variation and data diversity at the edge, based on which optimal parameter aggre-
gation frequency, gradient sparsity, and model size are determined. The key idea is
that model parameters only need to be aggregated by the server when necessary. In
cases where different agents have similar data, the amount of exchanged information
can be significantly less than cases where agents have diverse data. The optimal
degree of information exchange also depends on the trade-off between computation
and communication. When there is abundant computation resource (CPU cycles,
memory, etc.) but low communication bandwidth, it is beneficial to compute more
and communicate less, and vice versa. Various experiments show that our algorithms

25 Application of Federated Learning in Telecommunications and Edge Computing 531

can significantly reduce the model training time, compared to the standard (non-
optimized) federated averaging (FedAvg) algorithm [17]. When combined with
model pruning [18], we can also largely improve the inference time, making it
possible to deploy trained models to resource-limited edge devices.

While federated learning has many benefits, it adds a new vulnerability in the
form of misbehaving agents. Studies have explored the possibility of an adversary
controlling a small number of agents, with the goal of corrupting the trained model
[19]. The adversary’s objective is to cause the jointly trained global model to
misclassify a set of chosen inputs with high confidence, i.e., it seeks to poison the
global model in a targeted manner. Since the attack is targeted, the adversary also
attempts to ensure that the global model converges to a point with good performance
on the test or validation data. Such attacks emphasize the need for admitting trusted
agents in federated learning and develop model training algorithms that are robust
to adversarial attacks [20]. These defenses are being increasingly adapted into the
federated learning setup (e.g., in the design of robust model fusion algorithms) to
detect and secure the learning process against such attacks.

25.3 Challenges and Future Directions

Federated learning is clearly applicable to many areas of telecommunications
but there are also many challenges. Some of the challenges and future research
directions are discussed below.

25.3.1 Security and Privacy Challenges and Considerations

The above use cases illustrate that telecom systems require different machine
learning models to run on numerous devices distributed across the far edge, near
edge, core data centers, and public cloud. This also makes the system vulnerable
to malicious attacks. Telcos have a lot of data about their subscribers including
call details, mobility information, and network of contacts. In addition, critical and
sensitive financial, health, and first responder data is transmitted by the telecom
network. Federated Learning is also vulnerable to communication security issues
such as Distributed Denial-of-Service (DoS) and jamming attacks [4]. Security
and privacy is therefore paramount to telcos and will be critically examined
before implementing a solution using Federated Learning. It is possible for models
to not reveal their data using a secure aggregation algorithm aggregating the
encrypted local models without the need for decrypting them in the aggregator
[21]. However, the adoption of these approaches sacrifices the performance and also
requires significant computation on participating mobile devices. There currently is
a trade-off between privacy guarantee and system performance when implementing

532 U. Mangla

Federated Learning, which needs to be addressed to implement robust solutions
using Federated Learning for Telecom.

25.3.2 Environment Considerations

For most current studies on FL applications, the focus mainly lies in the federated
training of the learning model, with the implementation challenges neglected. Tele-
com systems will often have limited communication and computation resources.
There may not be enough local learners at an edge node to participate in the global
update, systems will have to trade-off between model performance and resource
preservation, and the model updates might still be large in size for low-powered
devices. In the existing approaches, mobile devices need to communicate with
the server directly and this may increase the energy consumption. In summary,
the telecom environment including wireless applications, communication cost, and
quality of the energy costs should also be considered in the model creation.

25.3.3 Data Considerations

Telecom data can vary a lot and can be inconsistent. Many Federated Learning
approaches assume the wireless connections of participants are always available
but this may not be the case due to network, device, or other issues. A large
number of dropped data from the training participation can significantly degrade
the performance [22] so the algorithms need to be robust to accommodate for the
varying data quality during training. Labeled data is often needed for supervised
learning but the data generated in the network may be unlabeled or mislabeled
[23] so this poses a challenge to identify participants with appropriate data for
model training. The above are just examples of data considerations that need to
be examined further to successfully implement Federated Learning in Telecom.

25.3.4 Regulatory Consideration

There are many regulations that telecom companies need to adhere to. The United
States has the Federal Communications Commission which governs regulations in
the US. It is therefore essential that any implementation adheres to the regulations.
One example is network failure for disaster communications. Most federated models
are, like regular deep neural networks and some forms of ensemble models, black-
box models and the unexplainable predictions or decisions output by the black-box
model may cause huge losses to users. 5G networks are beginning to rely on AI
models to operate. A failure can have regulatory implications, and it is important

25 Application of Federated Learning in Telecommunications and Edge Computing 533

to explain why the systems responded the way it did but current tools are limited
in providing the explanations. In addition, these models will introduce biases over
time so need to be explained and corrected. Given the complex network system
supported by telecoms and the huge impact if the systems fail, the development of
an interpretable federated models will become important.

25.4 Concluding Remarks

In summary, federated learning provides a secure model training strategy for many
telecom use cases which can impact multiple industries. The training of the models
is distributed between multiple agents on the edge which allows learning across
multiple edges, without having to actually share the raw data between them, often
resulting in better models for deployment at the edge. Doing this enables telecoms
to manage and monetize their data at the edge, thus enabling them to significantly
improve their rollout of next-generation networks.

References

1. https://developer.ibm.com/articles/edge-computing-architecture-and-use-cases/
2. Multi-access edge computing. https://www.etsi.org/technologies/multi-access-edge-

computing
3. Look Ma, no hands. http://www.ieee.org/about/news/2012/5september_2_2012.html
4. Tan K, Bremner D, Krenec JL, Imran M (2020) Federated machine learning in vehicular

networks: a summary of recent applications. In: 2020 international conference on UK-China
emerging technologies (UCET)

5. https://www.ibm.com/thought-leadership/institute-business-value/report/contactless-payment-
tele

6. Nguyen KK, Hoang DT, Niyato D, Wang P, Nguyen D, Dutkiewicz E (2018) Cyberattack
detection in mobile cloud computing: a deep learning approach. In: Proceedings of the IEEE
WCNC, pp 1–6

7. Abeshu A, Chilamkurti N (2018) Deep learning: the frontier for distributed attack detection in
fog-to-things computing. IEEE Commun Mag 56(2):169–175

8. Bagdasaryan E, Veit A, Hua Y, et al (2019) How to backdoor federated learning. ArXiv Preprint
ArXiv:1807.00459. https://arxiv.org/abs/1807.00459

9. Preuveneers D, Rimmer V, Tsingenopoulos I et al (2018) Chained anomaly detection models
for federated learning: an intrusion detection case study. Appl Sci. https://doi.org/10.3390/
app8122663

10. Liu Y, Yuan X, Xiong Z, Kang J, Wang X, Niyato D (2020) Federated learning for 6G
communications: challenges, methods, and future directions. China Commun 17(9):105–118.
https://doi.org/10.23919/JCC.2020.09.009

11. Wanga M, Zhua T, Zhang T, Zhangb J, Yua S, Zhoua W (2020) Security and privacy in 6G
networks: new areas and new challenges. Digital Commun Netw 6(3):281–291

12. wendychong-ibm-2020.medium.com/ai-edge-saving-grace-with-advanced-ai-ml-accelerators-
for-5g-edge-computing-use-cases

https://developer.ibm.com/articles/edge-computing-architecture-and-use-cases/
https://www.etsi.org/technologies/multi-access-edge-computing
http://www.ieee.org/about/news/2012/5september_2_2012.html
https://www.ibm.com/thought-leadership/institute-business-value/report/contactless-payment-tele
https://arxiv.org/abs/1807.00459
http://doi.org/10.3390/app8122663
http://doi.org/10.23919/JCC.2020.09.009
http://wendychong-ibm-2020.medium.com/ai-edge-saving-grace-with-advanced-ai-ml-accelerators-for-5g-edge-computing-use-cases

534 U. Mangla

13. Dynamic network slicing: challenges and opportunities. https://link.springer.com/chapter/
10.1007/978-3-030-49190-1_5

14. DevSecOps. https://www.ibm.com/cloud/architecture/adoption/devops. Aug 2020
15. ibm.medium.com/ai-edge-coreset-intelligent-data-sampling-for-ai-ml-at-the-5g-edge
16. S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He, and K. Chan, “Adaptive

federated learning in resource constrained edge computing systems,” IEEE J Select Areas
Commun, vol. 37, no. 6, pp. 1205–1221, Jun. 2019

17. Konečný J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D (2016) Federated learning:
strategies for improving communication efficiency. arXivpreprint arXiv:161005492

18. Wenyuan X, Fang W, Ding Y, Zou M, Xiong N (2021) Accelerating federated learning for IoT
in big data analytics with pruning, quantization and selective updating. IEEE Access

19. Bhagoji A, Chakraborty S, Mittal P, Calo S (2019) Analyzing federated learning through an
adversarial lens. In: International conference on machine learning (ICML)

20. ibm.medium.com/ai-edge-federated-learning-learn-on-private-and-partitioned-dataset
21. Bonawitz K et al (2016) Practical secure aggregation for federated learning on user-held data.

In: NIPS workshop on private multi-party machine learning
22. McMahan HB et al (2016) Communication-efficient learning of deep networks from decentral-

ized data. [Online]. Available: arXiv:1602.05629
23. Gu Z et al (2019) Reaching data confidentiality and model accountability on the Caltrain. In:

Proceedings International Conference on Dependable Systems and Networks, pp 336–348

https://springerlink.bibliotecabuap.elogim.com/chapter/10.1007/978-3-030-49190-1_5
https://www.ibm.com/cloud/architecture/adoption/devops
http://ibm.medium.com/ai-edge-coreset-intelligent-data-sampling-for-ai-ml-at-the-5g-edge
http://ibm.medium.com/ai-edge-federated-learning-learn-on-private-and-partitioned-dataset

	Preface
	Contents
	1 Introduction to Federated Learning
	1.1 Overview
	1.2 Concepts and Terminology
	1.3 Machine Learning Perspective
	1.3.1 Deep Neural Networks
	1.3.2 Classical Machine Learning Models
	1.3.3 Horizontal, Vertical Federated Learning and Split Learning
	1.3.4 Model Personalization

	1.4 Security and Privacy
	1.4.1 Manipulation Attacks
	1.4.2 Inference Attacks

	1.5 Federated Learning Systems
	1.6 Summary and Conclusion
	References

	Part I Federated Learning as a Machine Learning Problem
	2 Tree-Based Models for Federated Learning Systems
	2.1 Introduction
	2.1.1 Tree-Based Models
	2.1.2 Key Research Challenges of Tree-Based Models in FL
	2.1.3 Advantages of Tree-Based Models in FL

	2.2 Survey of Tree-Based Methods for FL
	2.2.1 Horizontal vs. Vertical FL
	2.2.2 Tree-Based Algorithm Types in Federated Learning
	2.2.3 Handling Security Requirements for Tree-Based Federated Learning
	2.2.4 Implementations of Tree-Based Models in FL

	2.3 Preliminaries on Decision Trees and Gradient Boosting
	2.3.1 The Federated Learning System
	2.3.2 Preliminaries on Centralized ID3 Models
	2.3.3 Preliminaries on Gradient Boosting

	2.4 Decision Trees for Federated Learning
	2.5 XGBoost for Federated Learning
	2.6 Open Problems and Future Research Directions
	2.6.1 Data Fidelity Threshold Policies
	2.6.2 Fairness and Bias Mitigation Methods for Tree-Based FL Models
	2.6.3 Training Tree-Based FL Models on Alternative Network Topologies

	2.7 Conclusion
	References

	3 Semantic Vectorization: Text- and Graph-Based Models
	3.1 Introduction
	3.2 Background
	3.2.1 Natural Language Processing
	3.2.2 Text Vectorizers
	3.2.3 Graph Vectorizers

	3.3 Problem Formulation
	3.3.1 Joint Learning
	3.3.2 Vector-Space Mapping

	3.4 Experimentation and Setup
	3.4.1 Datasets
	3.4.2 Implementation

	3.5 Results: Joint Learning
	3.5.1 Metrics
	3.5.1.1 Natural Language
	3.5.1.2 Graph

	3.6 Results: Vector-Space Mapping
	3.6.1 Cosine Distance
	3.6.2 Rank Similarity

	3.7 Conclusions and Future Work
	References

	4 Personalization in Federated Learning
	4.1 Introduction
	4.2 First Steps Toward Personalization
	4.2.1 Fine-Tuning Global Model for Personalization
	4.2.2 Federated Averaging as a First-Order Meta-learning Method

	4.3 Personalization Strategies
	4.3.1 Client (Party) Clustering
	4.3.2 Client Contextualization
	4.3.3 Data Augmentation
	4.3.4 Distillation
	4.3.5 Meta-learning Approach
	4.3.6 Mixture of Models
	4.3.7 Model Regularization
	4.3.8 Multi-task Learning

	4.4 Benchmarks for Personalization Techniques
	4.4.1 Synthetic Federated Datasets
	4.4.2 Simulating Federated Datasets
	4.4.3 Public Federated Datasets

	4.5 Personalization as the Incidental Parameters Problem
	4.6 Conclusion
	References

	5 Personalized, Robust Federated Learning with Fed+
	5.1 Introduction
	5.2 Literature Review
	5.3 Illustration of Federated Learning Training Failure
	5.4 Personalized Federated Learning
	5.4.1 Problem Formulation
	5.4.2 Handling Robust Aggregation
	5.4.3 Personalization
	5.4.4 Reformulation and Unification of Mean and Robust Aggregation
	5.4.5 The Fed+ Algorithm
	5.4.6 Mean and Robust Variants of Fed+
	5.4.6.1 FedAvg+
	5.4.6.2 FedGeoMed+
	5.4.6.3 FedCoMed+
	5.4.6.4 Hybridization via the Unified Fed+ Framework with Layer-Specific ϕ

	5.4.7 Deriving Existing Algorithms from Fed+

	5.5 Fixed Points of Fed+
	5.6 Convergence Analysis
	5.7 Experiments
	5.7.1 Datasets
	5.7.2 Results

	5.8 Conclusion
	References

	6 Communication-Efficient Distributed Optimization Algorithms
	6.1 Introduction
	6.2 Local-Update SGD and FedAvg
	6.2.1 Local-Update SGD and Its Variants
	6.2.2 Federated Averaging (FedAvg) Algorithm and Its Variants

	6.3 Model Compression
	6.3.1 SGD with Compressed Updates
	6.3.1.1 Unbiased Compressor Without Error Feedback
	6.3.1.2 General Compressor with Error Feedback

	6.3.2 Adaptive Compression Rate
	6.3.3 Model Pruning

	6.4 Discussion
	References

	7 Communication-Efficient Model Fusion
	7.1 Introduction
	7.2 Permutation-Invariant Structure of Models
	7.2.1 General Formulation of Matched Averaging
	7.2.2 Solving Matched Averaging

	7.3 Probabilistic Federated Neural Matching
	7.3.1 PFNM Generative Process
	7.3.2 PFNM Inference
	7.3.3 PFNM in Practice

	7.4 Unsupervised FL with SPAHM
	7.4.1 SPAHM Model
	7.4.2 SPAHM Inference
	7.4.3 SPAHM in Practice

	7.5 Model Fusion of Posterior Distributions
	7.5.1 Model Fusion with KL Divergence
	7.5.2 KL-Fusion in Practice

	7.6 Fusion of Deep Neural Networks
	7.6.1 Extending PFNM to Deep Neural Networks
	7.6.2 FedMA in Practice

	7.7 Theoretical Understanding of Model Fusion
	7.7.1 Preliminaries: Parametric Models
	7.7.2 The Benefits and Drawbacks of Model Fusion in Federated Settings

	7.8 Conclusion
	References

	8 Federated Learning and Fairness
	8.1 Introduction
	8.2 Preliminaries and Existing Mitigation Methods
	8.2.1 Notation and Terminology
	8.2.2 Types of Bias Mitigation Methods
	8.2.3 Data Privacy and Bias

	8.3 Sources of Bias
	8.3.1 Centralized and Federated Causes
	8.3.2 Federated Learning-Specific Causes
	8.3.2.1 Data Heterogeneity
	8.3.2.2 Fusion Algorithms
	8.3.2.3 Party Selection and Subsampling

	8.4 Exploring the Literature
	8.4.1 Centralized Methods
	8.4.2 Adapting Centralized Methods for FL
	8.4.3 Bias Mitigation Without Sensitive Attributes

	8.5 Measuring Bias
	8.6 Open Issues
	8.7 Conclusion
	References

	Part II Systems and Frameworks
	9 Introduction to Federated Learning Systems
	9.1 Introduction
	9.1.1 Chapter Overview

	9.2 Cross-Device vs. Cross-Silo Federated Learning
	9.3 Cross-Device Federated Learning
	9.3.1 Problem Formulation
	9.3.2 System Overview
	9.3.3 Training Procedure
	9.3.4 Challenges

	9.4 Cross-Silo Federated Learning
	9.4.1 Problem Formulation
	9.4.2 System Overview
	9.4.3 Training Procedure
	9.4.4 Challenges

	9.5 Conclusion
	References

	10 Local Training and Scalability of Federated Learning Systems
	10.1 Party-Side Local Training
	10.1.1 Computation
	10.1.2 Memory
	10.1.3 Energy
	10.1.4 Network

	10.2 Large-Scale FL Systems
	10.2.1 Clustered FL
	10.2.1.1 Design Challenges
	10.2.1.2 Pros and Cons
	10.2.1.3 Notable Examples in Literature

	10.2.2 Hierarchical FL
	10.2.2.1 Design Challenges
	10.2.2.2 Pros and Cons
	10.2.2.3 Notable Examples in Literature

	10.2.3 Decentralized FL
	10.2.3.1 Design Challenges
	10.2.3.2 Pros and Cons
	10.2.3.3 Notable Examples in Literature

	10.2.4 Asynchronous FL
	10.2.4.1 Design Challenges
	10.2.4.2 Pros and Cons
	10.2.4.3 Notable Examples in Literature

	10.3 Conclusion
	References

	11 Straggler Management
	11.1 Introduction
	11.2 Heterogeneity Impact Study
	11.2.1 Formulating Standard Federated Learning
	11.2.2 Heterogeneity Impact Analysis
	11.2.3 Experimental Study

	11.3 Design of TiFL
	11.3.1 System Overview
	11.3.2 Profiling and Tiering
	11.3.3 Straw-Man Proposal: Static Tier Selection Algorithm
	11.3.4 Adaptive Tier Selection Algorithm
	11.3.5 Training Time Estimation Model

	11.4 Experimental Evaluation
	11.4.1 Experimental Setup
	11.4.1.1 Experimental Results
	11.4.1.2 Training Time Estimation via Analytical Model

	11.4.2 Resource Heterogeneity
	11.4.3 Data Heterogeneity
	11.4.4 Resource and Data Heterogeneity
	11.4.5 Adaptive Selection Policy
	11.4.6 Adaptive Selection Policy

	11.5 Conclusion
	References

	12 Systems Bias in Federated Learning
	12.1 Introduction
	12.2 Background
	12.2.1 Fairness in Machine Learning
	12.2.2 Fairness in Federated Learning
	12.2.3 Resource Usage in Federated Learning

	12.3 Characterization Study
	12.3.1 Performance Metrics
	12.3.2 Tradeoff Between Fairness and Training Time
	12.3.3 Impact of Dropout on Fairness and Model Error
	12.3.4 Tradeoff Between Cost and Model Error

	12.4 Methodology
	12.4.1 Problem Formulation
	12.4.2 DCFair Overview
	12.4.3 Selection Probability
	12.4.4 Selection Mutualism

	12.5 Evaluation
	12.5.1 Cost Analysis
	12.5.2 Model Error and Fairness Analysis
	12.5.3 Training Time Analysis
	12.5.4 Pareto Optimality Analysis

	12.6 Conclusion
	References

	Part III Privacy and Security
	13 Protecting Against Data Leakage in Federated Learning: What Approach Should You Choose?
	13.1 Introduction
	13.2 System Entities, Attack Surfaces, and Inference Attacks
	13.2.1 System Setup, Assumptions, and Attack Surfaces
	13.2.2 Potential Adversaries
	13.2.3 Inference Attacks to Federated Learning
	13.2.3.1 Training Data Extraction Attacks
	13.2.3.2 Membership Inference Attacks
	13.2.3.3 Model Inversion Attacks
	13.2.3.4 Property Inference Attacks

	13.3 Mitigating Inference Threats in Federated Learning
	13.3.1 Secure Aggregation Approaches
	13.3.1.1 Homomorphic Encryption-Based Secure Aggregation
	13.3.1.2 Threshold Paillier-Based Secure Aggregation
	13.3.1.3 Pairwise Mask-Based Secure Aggregation
	13.3.1.4 Functional Encryption-Based Secure Aggregation
	13.3.1.5 Summary Secure Aggregation

	13.3.2 Syntactic and Perturbation Approaches
	13.3.2.1 K-Anonymity-Based Approaches
	13.3.2.2 Differential Privacy-Based Approaches

	13.3.3 Trusted Execution Environments (TEE)
	13.3.4 Other Techniques for Distributed Machine Learning and Vertical FL

	13.4 Selecting the Right Defense
	13.4.1 Fully Trusted Federations
	13.4.2 Ensuring that the Aggregator Can Be Trusted
	13.4.3 Federations with an Untrusted Aggregator

	13.5 Conclusions
	References

	14 Private Parameter Aggregation for Federated Learning
	14.1 Introduction
	14.2 Focus, Trust Model, and Assumptions
	14.3 Differentially Private Federated Learning
	14.3.1 Background: Differential Privacy (DP)
	14.3.2 Incorporating DP into SGD
	14.3.3 Experiments and Discussion
	14.3.3.1 Accuracy vs ε
	14.3.3.2 Accuracy vs Batch Size (Fixed ε)

	14.4 Additive Homomorphic Encryption
	14.4.1 Participants, Learners, and Administrative Domains
	14.4.2 Architecture
	14.4.3 Mystiko Algorithms
	14.4.3.1 Basic Ring-Based Algorithm
	14.4.3.2 Broadcast Algorithm
	14.4.3.3 All-Reduce

	14.4.4 Multiple Learners Per Administrative Domain

	14.5 Trusted Execution Environments
	14.5.1 Trustworthy Aggregation

	14.6 Comparing HE- and TEE-Based Aggregation with SMC
	14.6.1 Comparing Mystiko and SPDZ
	14.6.2 Overheads of Using TEEs: AMD SEV

	14.7 Concluding Remarks
	References

	15 Data Leakage in Federated Learning
	15.1 Introduction
	15.1.1 Motivation
	15.1.2 Background and Related Work
	15.1.2.1 Federated Learning

	15.1.3 Privacy Protection

	15.2 Data Leakage Attack in FL
	15.2.1 Catastrophic Data Leakage from Batch Gradients
	15.2.1.1 Why Large-Batch Data Leakage Attack Is Difficult?

	15.3 Performance Evaluation
	15.3.1 Experiment Setups and Datasets
	15.3.2 CAFE in HFL Settings
	15.3.3 CAFE in VFL Settings
	15.3.4 Attacking While Training in FL
	15.3.5 Ablation Study

	15.4 Concluding Remarks
	15.4.1 Summary
	15.4.2 Discussion

	References

	16 Security and Robustness in Federated Learning
	16.1 Introduction
	16.1.1 Notation

	16.2 Threats in Federated Learning
	16.2.1 Types of Attackers
	16.2.2 Attacker's Capabilities
	16.2.2.1 Attack Influence
	16.2.2.2 Data Manipulation Constraints

	16.2.3 Attacker's Goal
	16.2.3.1 Security Violation
	16.2.3.2 Attack Specificity
	16.2.3.3 Error Specificity

	16.2.4 Attacker's Knowledge
	16.2.4.1 Perfect Knowledge Attacks
	16.2.4.2 Limited Knowledge Attacks

	16.2.5 Attack Strategy

	16.3 Defense Strategies
	16.3.1 Defending Against Convergence Attacks
	16.3.1.1 Krum
	16.3.1.2 Median-Based Defenses
	16.3.1.3 Bulyan
	16.3.1.4 Zeno

	16.3.2 Defenses Based on Parties' Temporal Consistency
	16.3.2.1 Adaptive Model Averaging (AFA)
	16.3.2.2 PCA
	16.3.2.3 FoolsGold
	16.3.2.4 LEGATO

	16.3.3 Redundancy-Based Defenses

	16.4 Attacks
	16.4.1 Convergence Attacks
	16.4.2 Targeted Model Poisoning

	16.5 Conclusion
	References

	17 Dealing with Byzantine Threats to Neural Networks
	17.1 Background and Motivation
	17.1.1 Byzantine Threats
	17.1.2 Challenges of Mitigating the Effects of Byzantine Threats

	17.2 Gradient-Based Robustness
	17.2.1 Gradient Averaging
	17.2.2 Threat Model
	17.2.3 Coordinate-Wise Median
	17.2.4 Krum

	17.3 Layerwise Robustness to Byzantine Threats
	17.4 LEGATO: Layerwise Gradient Aggregation
	17.4.1 LEGATO
	17.4.2 Complexity Analysis of LEGATO

	17.5 Comparing Gradient-Based and Layerwise Robustness
	17.5.1 Dealing with Non-IID Party Data Distributions
	17.5.2 Dealing with Byzantine Failures
	17.5.2.1 Defense Against Fall of Empires
	17.5.2.2 Defense Against Gaussian Attacks

	17.5.3 Dealing with Overparameterized Neural Networks
	17.5.4 Effectiveness of the Log Size

	17.6 Conclusion, Open Problems, and Challenges
	References

	Part IV Beyond Horizontal Federated Learning: Partitioning Models and Data in Diverse Ways
	18 Privacy-Preserving Vertical Federated Learning
	18.1 Introduction
	18.2 Understanding Vertical Federated Learning
	18.2.1 Notation, Terminology and Assumptions
	18.2.2 Two Phases of Vertical FL
	18.2.2.1 Phase I: Private Entity Resolution (PER)
	18.2.2.2 Phase II: Private Vertical Training

	18.3 Challenge of Applying Gradient Descent in Vertical FL
	18.3.1 Gradient Descent in Centralized ML
	18.3.2 Gradient Descent in Vertical FL

	18.4 Representative Vertical FL Solutions
	18.4.1 Contrasting Communication Topology and Efficiency
	18.4.2 Contrasting Privacy-Preserving Mechanisms and Their Threat Models
	18.4.3 Contrasting Supported Machine Learning Models

	18.5 FedV: An Efficient Vertical FL Framework
	18.5.1 Overview of FedV
	18.5.2 FedV Threat Model and Assumptions
	18.5.3 Vertical Training Process: FedV-SecGrad
	18.5.3.1 FedV-SecGrad for Linear Models
	18.5.3.2 FedV-SecGrad for Nonlinear Models

	18.5.4 Analysis and Discussion

	18.6 Conclusions
	References

	19 Split Learning: A Resource Efficient Model and Data Parallel Approach for Distributed Deep Learning
	19.1 Introduction to Split Learning
	19.1.1 Vanilla Split Learning
	19.1.1.1 Synchronization Step
	19.1.1.2 Relaxing Synchronization Requirements

	19.2 Communication Efficiency 19:singh2019detailed
	19.3 Latencies
	19.4 Split Learning Topologies
	19.4.1 Versatile Configurations
	19.4.2 Model Selection with ExpertMatcher 19:sharma2019expertmatcher
	19.4.3 Implementation Details

	19.5 Collaborative Inference with Split Learning
	19.5.1 Preventing Reconstruction Attacks in Collaborative Inference
	19.5.1.1 Channel Pruning
	19.5.1.2 Decorrelation
	19.5.1.3 Loss Function

	19.5.2 Differential Privacy for Activation Sharing

	19.6 Future Work
	References

	Part V Applications
	20 Federated Learning for Collaborative Financial CrimesDetection
	20.1 Introduction: Financial Crimes Detection
	20.1.1 Combating Financial Crimes with Machine Learning and Graph Learning
	20.1.2 Need for Global Financial Crimes Detection and Contributions

	20.2 Graph Learning
	20.3 Federated Learning for Financial Crimes Detection
	20.3.1 Local Feature Computation
	20.3.2 Global Feature Computation
	20.3.3 Federated Learning

	20.4 Evaluation
	20.4.1 Data Set and Graph Modelling
	20.4.2 Graph Features for Party Relationship Graph
	20.4.3 Model Accuracy

	20.5 Concluding Remarks
	References

	21 Federated Reinforcement Learning for Portfolio Management
	21.1 Introduction
	21.2 Deep Reinforcement Learning Formulation
	21.3 Financial Portfolio Management
	21.4 Data Augmentation Methods
	21.4.1 Geometric Brownian Motion (GBM)
	21.4.2 Variable-Order Markov (VOM)
	21.4.3 Generative Adversarial Network (GAN)

	21.5 Experimental Results
	21.5.1 Experimental Setup
	21.5.2 Numerical Results

	21.6 Conclusion
	References

	22 Application of Federated Learning in Medical Imaging
	22.1 Introduction
	22.2 Image Segmentation
	22.3 3D Image Classification
	22.4 2D Image Classification
	22.5 Discussion
	22.6 Conclusions and Future Work
	References

	23 Advancing Healthcare Solutions with Federated Learning
	23.1 Introduction
	23.2 How Can Federated Learning Be Applied in Healthcare?
	23.3 Building a Healthcare FL Platform at Persistent with IBM FL
	23.4 Guiding Principles for Building Platforms and Solutions for Enabling Application of FL in Healthcare
	23.4.1 Infrastructure Design
	23.4.2 Data Connectors Design
	23.4.3 User Experience Design
	23.4.4 Deployment Considerations

	23.5 Core Technical Considerations with FL in Healthcare
	23.5.1 Data Heterogeneity
	23.5.2 Model Governance and Incentivization
	23.5.3 Trust and Privacy Considerations
	23.5.4 Conclusion

	References

	24 A Privacy-preserving Product Recommender System
	24.1 Introduction
	24.2 Related Work
	24.3 Federated Recommender System
	24.3.1 Algorithms
	24.3.2 Implementation

	24.4 Results
	24.5 Conclusion
	References

	25 Application of Federated Learning in Telecommunications and Edge Computing
	25.1 Overview
	25.2 Use Cases
	25.2.1 Vehicular Networks
	25.2.2 Cross-Border Payment
	25.2.3 Edge Computing
	25.2.4 Cyberattack
	25.2.5 6G
	25.2.6 “Emergency Services” Use Case to Demonstrate the Power of Federated Learning

	25.3 Challenges and Future Directions
	25.3.1 Security and Privacy Challenges and Considerations
	25.3.2 Environment Considerations
	25.3.3 Data Considerations
	25.3.4 Regulatory Consideration

	25.4 Concluding Remarks
	References

