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Abstract. Automatic cardiac MRI segmentation, including left and
right ventricular endocardium and epicardium, has an essential role in
clinical diagnosis by providing crucial information about cardiac func-
tion. Determining heart chamber properties, such as volume or ejection
fraction, directly relies on their accurate segmentation. In this work, we
propose a new automatic method for the segmentation of myocardium,
left, and right ventricles from MRI images. We introduce a new archi-
tecture that incorporates SERes blocks into 3D U-net architecture (3D
SERes-U-Net). The SERes blocks incorporate squeeze-and-excitation
operations into residual learning. The adaptive feature recalibration abil-
ity of squeeze-and-excitation operations boosts the network’s representa-
tional power while feature reuse utilizes effective learning of the features,
which improves segmentation performance. We evaluate the proposed
method on the testing dataset of the MICCAI Automated Cardiac Diag-
nosis Challenge (ACDC) dataset and obtain highly comparable results
to the state-of-the-art methods.
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1 Introduction

Cardiovascular diseases (CVDs) cause major health complications that often lead
to death [19]. An evaluation of cardiac function and morphology plays an essen-
tial role for CVDs’ early diagnosis, risk evaluation, prognosis setting, and therapy
decisions. Magnetic resonance imaging (MRI) has a high resolution, contrast and
great capacity for differentiating between types of tissues. This makes MRI the
gold standard of cardiac function analysis [2]. Delineations of the myocardium
(Myo), left ventricle (LV), and right ventricle (RV) are necessary for quantitative
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assessment and calculation of clinical indicators such as volumetric measures at
end-systole and at end-diastole, ejection fraction, thickening measures, as well
as mass. Semi-automatic delineation is still commonly present in clinical prac-
tice. That is often a laborious, and time-consuming process, prone to intra- and
inter-observer variability. Hence, accurate, reliable, and automated segmentation
methods are required to facilitate cardiovascular disease diagnosis.

Various image processing methods have been proposed to automatize segmen-
tation tasks in the medical field [4,10,21]. While some of these approaches use
more traditional techniques like level sets [17], registration and atlases [5,8], fully-
automatic methods mostly employ fully convolutional neural networks (FCNNs)
[6]. Commonly used approaches include structures that consist of a series of con-
volutional, pooling, and deconvolutional layers such as U-Net architecture [7,22].
Generally, various deep learning methods have shown outstanding performance
on medical images for segmentation purposes [3,9,13–16,20,23,24]. Promising as
they are, the appearance of overfitting on limited training data, vanishing and
exploding gradients, and network degradation are significant concerns for FCNs.
The residual learning, introduced in ResNets [11], overcomes the above problems
by enhancing information flow over through the network using identity short-
cut connections. Squeeze and excitation operations, introduced in SeNets, [12]
improve the network’s representational power by modeling interdependencies of
channel-wise features and by dynamically recalibrating them.

Motivated by previously described advancements, we propose a 3D U-Net-
based network that incorporates residual and squeeze and excitation blocks
(SERes blocks). We introduce the squeeze and excitation (SE) blocks at 3D
U-Nets’ encoder and decoder paths after each residual block. We provide experi-
mental results of the proposed network for the task of LV, RV, and Myo segmen-
tation and show that our proposed approach obtains highly comparable results
to the state-of-the-art.

2 Method

2.1 Squeeze and Excitation Residual Block

The SERes block takes the advantages of the squeeze and excitation operations
[12] for adaptive feature recalibration and residual learning for feature reuse [11].

The 3D SERes block can be expressed with the following expression:

Xres = Fres(X) (1)

where X refers to the input feature, Xres is the residual feature, and Fres(X) is
residual mapping that needs to be learned. The squeeze function which groups
channel-wise statistics and global spatial information using global average pool-
ing can be expressed with:

Fsq(xres
n ) = pn =

1
L × H × W

L∑

i=1

H∑

j=1

W∑

k=1

xres
n (i, j, k) (2)
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where p = [p1, p2, ..., pn] and pn is the n−th element of p ∈ Rn, where, L×H×W
is the spatial dimension of Fres, xres

n ∈ RL×H×W represents the feature map of
the n− th channel from the feature Xres, and N referst to the residual mapping
channels’. Scale values for the residual feature channels s ∈ RN can be expressed
with:

s = Fex(p,W) = σ(W2δ(W1p)) (3)

where Fex is the excitation function which generates them. It is parameterized
by two fully connected layers (FCNs) with parameters W1 ∈ R

N
r ×N and W2 ∈

RN×N
r , the sigmoid function σ, the ReLU function δ and has reduction ration

determened with r. The multiplication between feature map and learned scale
value sn across channel can be expressed with:

X̃
res

n = Fscale(Xres
n , sn) = sn · Xres

n ,∈ RH×W×L (4)

Finally, applying the squeeze and excitation operations obtains the calibrated
residual feature, which can be expressed with:

X̃
res

= [X̃
res

1 , X̃
res

2 , ..., X̃
res

n ] (5)

The output feature Y after the ReLU function δ is obtained as:

Y = δ(X̃
res

+ X) (6)

where (X̃
res

+ X) refers to element-wise addition and a shortcut connection.
An illustration of the 3D ResNet block and 3D SERes block is shown in

Fig. 1.

2.2 3D SERes-U-Net Architecture

Our proposed network architecture is based on the standard 3D U-Net [7]
which follows encoder-decoder architecture. The encoder or contracting path-
way encodes the input image and learns low-level features, while the decoder
or expanding pathway learns high-level features and gradually recovers original
image resolution.

Like 3D U-Net, our contracting pathway consist of three downsampling lay-
ers. We replace initially used pooling layers in the original 3D U-Net with con-
volutional layers with stride equal to 2. Instead of plain units, we adopt SERes
blocks consisting of squeeze and excitation operations followed by a residual
block, as described in 2.1, to accelerate convergence and training. Each residual
block inside the SERes block has two convolutional layers that are followed by
ReLU activation, and batch normalization (BN) as shown in Fig. 1(b). Similarly,
three SERes blocks are used in the expanding pathway. This pathway has three
up-sampling layers, each of which doubles the size of the feature maps, and are
followed by a 2 × 2 × 2 convolutional layer. The network can acquire the impor-
tance degree of each residual feature channel through the feature recalibration
strategy. Based on the importance degree, the less useful channel features are
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Fig. 1. An illustration of used residual blocks. (a) The original 3D ResNet block and
(b) structure of the 3D SERes block

suppresed while useful features are enhanced. Therefore, by modeling the inter-
dependencies between channels, the 3D SERes block performs dynamic recali-
bration of residual feature responses in a channel-wise manner. In this way, the
network can capture every residual feature channel’s importance degree, which
improves its representational power. SERes-U-Net architecture is presented in
Fig. 2.

3 Implementation Details

3.1 Dataset and Evaluation Metrics

The Automated Cardiac Diagnosis Challenge (ACDC) dataset consists of real-
life clinical cases obtained from an everyday clinical setting at the University
Hospital of Dijon (France). The dataset includes cine-MRI images of patients suf-
fering from different pathologies, including myocardial infarction, hypertrophic
cardiomyopathy, dilated cardiomyopathy, abnormal right ventricle, and normal
cardiac anatomy. Dataset has been evenly divided based on the pathological
condition and includes 100 cases with corresponding ground truth for training,
and 50 cases for testing through an online evaluation platform. Clinical experts
manually annotated LV, RV, and Myo at systolic and diastolic phases, for which
the weight and height information was provided as well. Images are acquired
as a series of short-axis slices covering the LV from the base to the apex. The
spatial resolution goes from 1.37 to 1.68 mm2/pixel, slice thickness is between
5–8 mm, while an inter-slice gap is 5 or 10 mm.
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Fig. 2. Illustration of SERes-U-Net architecture for LV, RV, Myo segmentation.

3.2 Network Training

To overcome high intensity irregularities of MRI images, we normalize each vol-
ume based on the standard and mean deviation of their intensity values. The
volumes were center-cropped to a fixed-size and zero-padded to provide fine
ROI for the network input. For data augmentation, we apply random axis mir-
ror flip with a probability of 0.5, random scale, and intensity shift on input image
channel. We use L2 norm regularization with a weight of 10−5 and employ the
spatial dropout with a rate of 0.2 after the initial encoder convolution. We use
Adam optimizer with initial learning rate of α0 = 10−4 and gradually decrease
it according to following expression:

α = α0 ∗
(

1 − e

Te

)0.9

(7)

where Te is a total number of epochs and e is an epoch counter. We employ
a smoothed negative Dice score [18] loss function, defined with:

Dloss = − 2
∑N

i=1 pigi + 1
∑N

i=1 pi +
∑N

i=1 gi + 1
(8)
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where pi is probability of predicted regions, gi is the ground truth classifica-
tion for every i voxel.

We use 80%-20% training and validation split, respectively. Final segmenta-
tion accuracy testing was done on an online ACDC Challenge submission page
on 50 patient subjects [1]. The total training time took approximately 34 h for
400 epochs using a two NVIDIA Titan V GPU, simultaneously.

4 Results

To evaluate the segmentation performance of the proposed method, we observe
distance and clinical indices metrics. Distance measures include calculation of
Dice score (DSC) and Hausdorff distance (HD) which provides information of
similarity between obtained segmentations for LV, RV, and Myo with their ref-
erence ground truth. The 3D Res-U-Net network achieves an average DSC for
LV, RV and Myo at end diastole of 93%, 86, 80 respectively. The addition of
squeeze and excitation operations, i.e., use of proposed SERes blocks, improves
DSC and HD for 2%, 4% and 3%, respectively. Similarly, the 3D Res-U-Net net-
work achieves an average DSC for LV, RV and Myo at end systole of 86%, 77, 81
respectively. The addition of squeeze and excitation operations, i.e., use of pro-
posed SERes blocks, improves DSC and HD for 0.2%, 6% and 4%, respectively.
Therefore, obtained results using proposed 3D SERes-U-Net shows significant
improvements in DSC in comparison to network without squeeze and excitation
operations (3D Res-U-Net). Detailed qualitative results are shown in Table 1
and Table 2 while Fig. 3 provides visual example of obtained segmentation pre-
dictions. Clinical metrics include calculation of the most widely used indicators of
hearts’ function, including volume of the left ventricle at end-diastole (LVEDV),
volume of the left ventricle at end-systole (LVESV), left ventricles’ ejection frac-
tion (LVEF), volume of the right ventricle at end-diastole (RVEDV), volume
of the right ventricle at end-systole (RVESV), right ventricles’ ejection fraction
(RVEF), myocardium volume at end-systole (MyoLVES), and myocardium mass
at end-diastole (MyoMED).

Table 1. The segmentation accuracy results for LV, RV and Myo expressed in Dice
score (DSC) and Hausdorff distance (HD) for the proposed method at end diastole for
3D Res-U-Net and proposed 3D SERes-U-Net.

Methods ED

LV RV Myo

Dsc Hd Dsc Hd Dsc Hd

3D Res-U-Net 0.93 38.2 0.86 52.9 0.8 32.95

(0.0636) (4.8721) (0.0919) (12.4414) (0.0636) (5.6003)

3D SERes-U-Net 0.95 11.53 0.9 23.41 0.83 13.77

(0.0071) (0.4101) (0.0212) (12.3571) (0.0071) (1.9871)
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Fig. 3. An example of obtained results. (a) Top row: original MRI image at end diastolic
phase of cardiac cycle. Middle row: Obtained segmentation. Bottom row: an overlay of
original image and obtained segmentation prediction. (b) Top row: original MRI image
at end systolic phase of cardiac cycle. Middle row: Obtained segmentation. Bottom
row: an overlay of original image and obtained segmentation prediction.

Table 2. The segmentation accuracy results for LV, RV and Myo expressed in Dice
score (DSC) and Hausdorff distance (HD) for the proposed method at end systole for
3D Res-U-Net and proposed 3D SERes-U-Net.

Methods ES

LV RV Myo

Dsc Hd Dsc Hd Dsc Hd

3D Res-U-Net 0.86 29.77 0.77 36.99 0.81 30.29

(0.0283) (1.7748) (0.0424) (5.3952) (0.0283) (1.1031)

3D SERes-U-Net 0.86 11.94 0.83 21.49 0.85 15.00

(0.1273) (8.4994) (0.0283) (5.7558) (0.0071) (1.9799)
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The Pearson correlation coefficient (R) and Bland-Altman and analysis of
the results obtained using proposed methed for LV, RV and Myo are shown in
Figs. 5, 6, 4.

Fig. 4. Comparison of the automatically obtained segmentations and the reference vol-
ume of the myocardium end systolic volume and myocardium mass. The image showns
correlation and Bland-Altman plots to compare automatically obtained segmentation
and the reference values.
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Fig. 5. Comparison of the automatically obtained segmentations and the reference
volumes of the MRI scans. The image showns correlation and Bland-Altman plots for
the LV volumes at and diastole and at the end systole as well as ejection fraction.
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Fig. 6. Comparison of the automatically obtained segmentations and the reference
volumes of the MRI scans. The image showns correlation and Bland-Altman plots for
the RV volumes at and diastole and at the end systole as well as ejection fraction.
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5 Conclusion

In this work, a deep neural network architecture named 3D SERes-U-Net was
introduced for automatic segmentation of LV, RV, and Myo from MRI images.
The significance of the proposed approach is in the two main characteristics.
First, the approach is based on 3D deep neural networks, which are suitable
for volumetric medical image processing. Second, the network introduces SERes
blocks which optimizes the deep network and extracts distinct features. By tak-
ing advantage of the 3DSERes block, the proposed method learns the features
with high discrimination capability, which is favorable to identify cardiac struc-
tures from the complex environment.
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