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Preface

Signal processing is a phenomenon which is a principal tool for all applications based
on computer technologies for an interaction with the real world. Data/signal retrieval,
processing, and visualization comprise the general methodology in most scientific areas.
Fromfilter design, Fourier and other transforms, feature extraction, etc. throughmachine
learning and system adaptation to user-oriented products like 5G networks, IoT, virtual
teleportation, or tele-surgery operations, this is a very brief resume of the power of signal
processing. Advanced signal processing is therefore a very complex topic with deeply
structuralized content.

The International Conference for Systems, Signal and Image Processing (IWSSIP)
is a well-established event with traditional participation of people from all continents.
In 2021, the 28th IWSSIP conference was organized by the Slovak University of Tech-
nology, Bratislava, Slovakia, following the previous successful IWSSIP 2020 event in
Rio de Janeiro, Brazil, and past conferences in various countries.

We are proud of having outstanding invited speakers who significantly increased the
scientific quality of this event. Touradj Ebrahimi from École Polytechnique Fédérale de
Lausanne, Switzerland, presented the state of the art in image compression standards
based on artificial intelligence. Gabriel Miro-Muntean from Dublin City University,
Ireland, gave a deep introduction to “Delivering High Quality Rich Media Content in
CurrentNetworkEnvironment: Challenges and Solutions”. AbirHussain fromLiverpool
John Moores University, UK spoke about the “Detection and Localization of Objects
Within Images Using Computer Vision and Machine Learning”. We are deeply thankful
to all three speakers for their valuable time and invited lectures.

Due to special COVID-19 pandemic regulations the presentations of all three keynote
speakers, as well as the whole conference, was organized in a strictly online format with
the stress on full interaction among IWSSIP participants. The whole conference was
powered by underline.io and wewould like to express our gratitude for their professional
help with organizing the online event.

Despite the fact that one of the main goals of scientific conferences is to gather
researchers working in similar areas in one place, there was still huge interest in the
online IWSSIP 2021 event.We received 76 paper proposals from authors in 17 countries.
The best 20 papers were accepted and selected for this publication. These papers are
closely related to advances in signal processing. The orientation of presented papers
shows the huge diversity and complexity of advanced signal processing.

We would like to thank all participants of IWSSIP 2021, as well as everyone who
helped to make this conference successful.

June 2021 Gregor Rozinaj
Radoslav Vargic
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Kačur, Juraj
Karwowski, Damian
Kominkova Oplatkova, Zuzana
Körting, Thales Sehn
Kos, Marko
Kultan, Matej
Laguna, Juana Martinez
Latkoski, Pero
Lima, Alan
Londák, Juraj
Lopes, Bruno
Lopes, Guilherme Wachs
Lourenço, Vítor
Malajner, Marko
Mandic, Lidija

Marana, Aparecido Nilceu
Marchevský, Stanislav
Markovska, Marija
Matos, Caio
Medvecký, Martin
Minárik, Ivan
Mocanu, Stefan
Mustra, Mario
Nyarko, Emmanuel Karlo
Paiva, Anselmo
Papa, Joao Paulo
Polak, Ladislav
Prinosil, Jiri
Rakús, Martin
Rodriguez, Denis Delisle
Rybárová, Renata
Silva, Aristófanes
Silvestre, Santiago
Slanina, Martin
Sousa De Almeida, Joao Dallyson
Sousa, Azael Melo E.
Tcheou, Michel
Toledo, Yanexis Pupo
Trúchly, Peter
Veras, Rodrigo
Vitas, Dijana
Vlaj, Damjan
Vukovic, Josip
Zamuda, Ales
Zeman, Tomas

Organizing Committee

Zuzana Brunclíková, Slovakia
Lucia Hlinková, Slovakia
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Segmentation and Quantification
of Bi-Ventricles and Myocardium Using

3D SERes-U-Net

Marija Habijan1(B) , Irena Galić1 , Hrvoje Leventić1 , Krešimir Romić1 ,
and Danilo Babin2

1 Faculty of Electrical Engineering, Computer Science and Information Technology
Osijek, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia

marija.habijan@ferit.hr
2 TELIN-IPI, Faculty of Engineering and Architecture, Ghent University – imec,

Ghent, Belgium

Abstract. Automatic cardiac MRI segmentation, including left and
right ventricular endocardium and epicardium, has an essential role in
clinical diagnosis by providing crucial information about cardiac func-
tion. Determining heart chamber properties, such as volume or ejection
fraction, directly relies on their accurate segmentation. In this work, we
propose a new automatic method for the segmentation of myocardium,
left, and right ventricles from MRI images. We introduce a new archi-
tecture that incorporates SERes blocks into 3D U-net architecture (3D
SERes-U-Net). The SERes blocks incorporate squeeze-and-excitation
operations into residual learning. The adaptive feature recalibration abil-
ity of squeeze-and-excitation operations boosts the network’s representa-
tional power while feature reuse utilizes effective learning of the features,
which improves segmentation performance. We evaluate the proposed
method on the testing dataset of the MICCAI Automated Cardiac Diag-
nosis Challenge (ACDC) dataset and obtain highly comparable results
to the state-of-the-art methods.

Keywords: Cardiac MRI segmentation · Left ventricle · Right
ventricle · Myocardium · Residual learning · Squeeze and excitation ·
3D SERes-U-Net

1 Introduction

Cardiovascular diseases (CVDs) cause major health complications that often lead
to death [19]. An evaluation of cardiac function and morphology plays an essen-
tial role for CVDs’ early diagnosis, risk evaluation, prognosis setting, and therapy
decisions. Magnetic resonance imaging (MRI) has a high resolution, contrast and
great capacity for differentiating between types of tissues. This makes MRI the
gold standard of cardiac function analysis [2]. Delineations of the myocardium
(Myo), left ventricle (LV), and right ventricle (RV) are necessary for quantitative
c© Springer Nature Switzerland AG 2022
G. Rozinaj and R. Vargic (Eds.): IWSSIP 2021, CCIS 1527, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-030-96878-6_1
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assessment and calculation of clinical indicators such as volumetric measures at
end-systole and at end-diastole, ejection fraction, thickening measures, as well
as mass. Semi-automatic delineation is still commonly present in clinical prac-
tice. That is often a laborious, and time-consuming process, prone to intra- and
inter-observer variability. Hence, accurate, reliable, and automated segmentation
methods are required to facilitate cardiovascular disease diagnosis.

Various image processing methods have been proposed to automatize segmen-
tation tasks in the medical field [4,10,21]. While some of these approaches use
more traditional techniques like level sets [17], registration and atlases [5,8], fully-
automatic methods mostly employ fully convolutional neural networks (FCNNs)
[6]. Commonly used approaches include structures that consist of a series of con-
volutional, pooling, and deconvolutional layers such as U-Net architecture [7,22].
Generally, various deep learning methods have shown outstanding performance
on medical images for segmentation purposes [3,9,13–16,20,23,24]. Promising as
they are, the appearance of overfitting on limited training data, vanishing and
exploding gradients, and network degradation are significant concerns for FCNs.
The residual learning, introduced in ResNets [11], overcomes the above problems
by enhancing information flow over through the network using identity short-
cut connections. Squeeze and excitation operations, introduced in SeNets, [12]
improve the network’s representational power by modeling interdependencies of
channel-wise features and by dynamically recalibrating them.

Motivated by previously described advancements, we propose a 3D U-Net-
based network that incorporates residual and squeeze and excitation blocks
(SERes blocks). We introduce the squeeze and excitation (SE) blocks at 3D
U-Nets’ encoder and decoder paths after each residual block. We provide experi-
mental results of the proposed network for the task of LV, RV, and Myo segmen-
tation and show that our proposed approach obtains highly comparable results
to the state-of-the-art.

2 Method

2.1 Squeeze and Excitation Residual Block

The SERes block takes the advantages of the squeeze and excitation operations
[12] for adaptive feature recalibration and residual learning for feature reuse [11].

The 3D SERes block can be expressed with the following expression:

Xres = Fres(X) (1)

where X refers to the input feature, Xres is the residual feature, and Fres(X) is
residual mapping that needs to be learned. The squeeze function which groups
channel-wise statistics and global spatial information using global average pool-
ing can be expressed with:

Fsq(xres
n ) = pn =

1
L × H × W

L∑

i=1

H∑

j=1

W∑

k=1

xres
n (i, j, k) (2)
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where p = [p1, p2, ..., pn] and pn is the n−th element of p ∈ Rn, where, L×H×W
is the spatial dimension of Fres, xres

n ∈ RL×H×W represents the feature map of
the n− th channel from the feature Xres, and N referst to the residual mapping
channels’. Scale values for the residual feature channels s ∈ RN can be expressed
with:

s = Fex(p,W) = σ(W2δ(W1p)) (3)

where Fex is the excitation function which generates them. It is parameterized
by two fully connected layers (FCNs) with parameters W1 ∈ R

N
r ×N and W2 ∈

RN×N
r , the sigmoid function σ, the ReLU function δ and has reduction ration

determened with r. The multiplication between feature map and learned scale
value sn across channel can be expressed with:

X̃
res

n = Fscale(Xres
n , sn) = sn · Xres

n ,∈ RH×W×L (4)

Finally, applying the squeeze and excitation operations obtains the calibrated
residual feature, which can be expressed with:

X̃
res

= [X̃
res

1 , X̃
res

2 , ..., X̃
res

n ] (5)

The output feature Y after the ReLU function δ is obtained as:

Y = δ(X̃
res

+ X) (6)

where (X̃
res

+ X) refers to element-wise addition and a shortcut connection.
An illustration of the 3D ResNet block and 3D SERes block is shown in

Fig. 1.

2.2 3D SERes-U-Net Architecture

Our proposed network architecture is based on the standard 3D U-Net [7]
which follows encoder-decoder architecture. The encoder or contracting path-
way encodes the input image and learns low-level features, while the decoder
or expanding pathway learns high-level features and gradually recovers original
image resolution.

Like 3D U-Net, our contracting pathway consist of three downsampling lay-
ers. We replace initially used pooling layers in the original 3D U-Net with con-
volutional layers with stride equal to 2. Instead of plain units, we adopt SERes
blocks consisting of squeeze and excitation operations followed by a residual
block, as described in 2.1, to accelerate convergence and training. Each residual
block inside the SERes block has two convolutional layers that are followed by
ReLU activation, and batch normalization (BN) as shown in Fig. 1(b). Similarly,
three SERes blocks are used in the expanding pathway. This pathway has three
up-sampling layers, each of which doubles the size of the feature maps, and are
followed by a 2 × 2 × 2 convolutional layer. The network can acquire the impor-
tance degree of each residual feature channel through the feature recalibration
strategy. Based on the importance degree, the less useful channel features are
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Fig. 1. An illustration of used residual blocks. (a) The original 3D ResNet block and
(b) structure of the 3D SERes block

suppresed while useful features are enhanced. Therefore, by modeling the inter-
dependencies between channels, the 3D SERes block performs dynamic recali-
bration of residual feature responses in a channel-wise manner. In this way, the
network can capture every residual feature channel’s importance degree, which
improves its representational power. SERes-U-Net architecture is presented in
Fig. 2.

3 Implementation Details

3.1 Dataset and Evaluation Metrics

The Automated Cardiac Diagnosis Challenge (ACDC) dataset consists of real-
life clinical cases obtained from an everyday clinical setting at the University
Hospital of Dijon (France). The dataset includes cine-MRI images of patients suf-
fering from different pathologies, including myocardial infarction, hypertrophic
cardiomyopathy, dilated cardiomyopathy, abnormal right ventricle, and normal
cardiac anatomy. Dataset has been evenly divided based on the pathological
condition and includes 100 cases with corresponding ground truth for training,
and 50 cases for testing through an online evaluation platform. Clinical experts
manually annotated LV, RV, and Myo at systolic and diastolic phases, for which
the weight and height information was provided as well. Images are acquired
as a series of short-axis slices covering the LV from the base to the apex. The
spatial resolution goes from 1.37 to 1.68 mm2/pixel, slice thickness is between
5–8 mm, while an inter-slice gap is 5 or 10 mm.
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Fig. 2. Illustration of SERes-U-Net architecture for LV, RV, Myo segmentation.

3.2 Network Training

To overcome high intensity irregularities of MRI images, we normalize each vol-
ume based on the standard and mean deviation of their intensity values. The
volumes were center-cropped to a fixed-size and zero-padded to provide fine
ROI for the network input. For data augmentation, we apply random axis mir-
ror flip with a probability of 0.5, random scale, and intensity shift on input image
channel. We use L2 norm regularization with a weight of 10−5 and employ the
spatial dropout with a rate of 0.2 after the initial encoder convolution. We use
Adam optimizer with initial learning rate of α0 = 10−4 and gradually decrease
it according to following expression:

α = α0 ∗
(

1 − e

Te

)0.9

(7)

where Te is a total number of epochs and e is an epoch counter. We employ
a smoothed negative Dice score [18] loss function, defined with:

Dloss = − 2
∑N

i=1 pigi + 1
∑N

i=1 pi +
∑N

i=1 gi + 1
(8)
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where pi is probability of predicted regions, gi is the ground truth classifica-
tion for every i voxel.

We use 80%-20% training and validation split, respectively. Final segmenta-
tion accuracy testing was done on an online ACDC Challenge submission page
on 50 patient subjects [1]. The total training time took approximately 34 h for
400 epochs using a two NVIDIA Titan V GPU, simultaneously.

4 Results

To evaluate the segmentation performance of the proposed method, we observe
distance and clinical indices metrics. Distance measures include calculation of
Dice score (DSC) and Hausdorff distance (HD) which provides information of
similarity between obtained segmentations for LV, RV, and Myo with their ref-
erence ground truth. The 3D Res-U-Net network achieves an average DSC for
LV, RV and Myo at end diastole of 93%, 86, 80 respectively. The addition of
squeeze and excitation operations, i.e., use of proposed SERes blocks, improves
DSC and HD for 2%, 4% and 3%, respectively. Similarly, the 3D Res-U-Net net-
work achieves an average DSC for LV, RV and Myo at end systole of 86%, 77, 81
respectively. The addition of squeeze and excitation operations, i.e., use of pro-
posed SERes blocks, improves DSC and HD for 0.2%, 6% and 4%, respectively.
Therefore, obtained results using proposed 3D SERes-U-Net shows significant
improvements in DSC in comparison to network without squeeze and excitation
operations (3D Res-U-Net). Detailed qualitative results are shown in Table 1
and Table 2 while Fig. 3 provides visual example of obtained segmentation pre-
dictions. Clinical metrics include calculation of the most widely used indicators of
hearts’ function, including volume of the left ventricle at end-diastole (LVEDV),
volume of the left ventricle at end-systole (LVESV), left ventricles’ ejection frac-
tion (LVEF), volume of the right ventricle at end-diastole (RVEDV), volume
of the right ventricle at end-systole (RVESV), right ventricles’ ejection fraction
(RVEF), myocardium volume at end-systole (MyoLVES), and myocardium mass
at end-diastole (MyoMED).

Table 1. The segmentation accuracy results for LV, RV and Myo expressed in Dice
score (DSC) and Hausdorff distance (HD) for the proposed method at end diastole for
3D Res-U-Net and proposed 3D SERes-U-Net.

Methods ED

LV RV Myo

Dsc Hd Dsc Hd Dsc Hd

3D Res-U-Net 0.93 38.2 0.86 52.9 0.8 32.95

(0.0636) (4.8721) (0.0919) (12.4414) (0.0636) (5.6003)

3D SERes-U-Net 0.95 11.53 0.9 23.41 0.83 13.77

(0.0071) (0.4101) (0.0212) (12.3571) (0.0071) (1.9871)
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Fig. 3. An example of obtained results. (a) Top row: original MRI image at end diastolic
phase of cardiac cycle. Middle row: Obtained segmentation. Bottom row: an overlay of
original image and obtained segmentation prediction. (b) Top row: original MRI image
at end systolic phase of cardiac cycle. Middle row: Obtained segmentation. Bottom
row: an overlay of original image and obtained segmentation prediction.

Table 2. The segmentation accuracy results for LV, RV and Myo expressed in Dice
score (DSC) and Hausdorff distance (HD) for the proposed method at end systole for
3D Res-U-Net and proposed 3D SERes-U-Net.

Methods ES

LV RV Myo

Dsc Hd Dsc Hd Dsc Hd

3D Res-U-Net 0.86 29.77 0.77 36.99 0.81 30.29

(0.0283) (1.7748) (0.0424) (5.3952) (0.0283) (1.1031)

3D SERes-U-Net 0.86 11.94 0.83 21.49 0.85 15.00

(0.1273) (8.4994) (0.0283) (5.7558) (0.0071) (1.9799)
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The Pearson correlation coefficient (R) and Bland-Altman and analysis of
the results obtained using proposed methed for LV, RV and Myo are shown in
Figs. 5, 6, 4.

Fig. 4. Comparison of the automatically obtained segmentations and the reference vol-
ume of the myocardium end systolic volume and myocardium mass. The image showns
correlation and Bland-Altman plots to compare automatically obtained segmentation
and the reference values.
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Fig. 5. Comparison of the automatically obtained segmentations and the reference
volumes of the MRI scans. The image showns correlation and Bland-Altman plots for
the LV volumes at and diastole and at the end systole as well as ejection fraction.
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Fig. 6. Comparison of the automatically obtained segmentations and the reference
volumes of the MRI scans. The image showns correlation and Bland-Altman plots for
the RV volumes at and diastole and at the end systole as well as ejection fraction.
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5 Conclusion

In this work, a deep neural network architecture named 3D SERes-U-Net was
introduced for automatic segmentation of LV, RV, and Myo from MRI images.
The significance of the proposed approach is in the two main characteristics.
First, the approach is based on 3D deep neural networks, which are suitable
for volumetric medical image processing. Second, the network introduces SERes
blocks which optimizes the deep network and extracts distinct features. By tak-
ing advantage of the 3DSERes block, the proposed method learns the features
with high discrimination capability, which is favorable to identify cardiac struc-
tures from the complex environment.
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dation under the Project UIP-2017-05-4968.
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Abstract. Fingerprints are widely used for biometric validation world-
wide. Since human fingerprints are unique and remain constant over
time, it provides an easy-to-use, reliable, and economical authentica-
tion method. In addition to that, fingerprint recognition systems are of
great importance because of their applicability in our lives. This work
presents a classification methodology based on Henry Classification Sys-
tem using Convolutional Neural Networks (CNNs) models, such as Dark-
net, Alexnet, Resnet, VGG16, and Deep Belief Network. Besides that,
we evaluate our proposal by carrying out experiments using grayscale
images and pre-processed images as input on the classification step with
the combination of the Gabor filter and the morphological thinning oper-
ation. We have obtained the highest result accuracy of 95.1% in the NIST
Special Database 4, a widespread fingerprint dataset, using the Resnet
34 model in grayscale images. The proposed approach was evaluated
with extraction strategies of classic attributes and based on convolutional
networks. According to the results, the proposed methodology presents
promising results, surpassing the traditional approaches present in the
literature.

Keywords: Fingerprint · Henry classification system · Classification ·
CNNs

1 Introduction

Fingerprints are impressions left on the surfaces by the friction ridges on a
human’s finger. The friction ridge refers to the upper epidermis’ elevated part
and is composed of connected friction ridge skin units.

Currently, fingerprints are the most popular biometric features used for per-
sonal identification. It presents an easy-to-use, reliable, and economical way
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Fig. 1. Example of each class in NIST special database 4 based on henry classification
system [12] after pre-processing.

to authenticate an individual since a human fingerprint is unique and remains
invariant over time [30].

Thereby, fingerprint prediction systems are an essential tool that groups fin-
gerprints according to their features and compares an input fingerprint with an
extensive fingerprint database. The query fingerprints that need to be combined
can be compared with a subset of fingerprints in the existing database [2,21].

The general structure of a fingerprint prediction system consists of four main
steps [21]:

1. The acquisition of fingerprint features is the process of obtaining a scanned
image of a person using a specific capture device.

2. Pre-processing allows improving the overall quality of the captured image.
3. Data features are extracted using different algorithms.
4. The classification of the extracted features is usually applied to perform the

individual’s recognition.

The performance of fingerprint-based systems depends directly on the relia-
bility and precision of the feature extraction stage [29]. The matching algorithms
are based on the pairing of features found in fingerprints. Abbood et al. [1] sug-
gest that the reliability of the extracted resources is related to the fingerprint’s
quality. Schuch et al. [28] indicate that the application of image enhancement
filters improves the reliability of the extracted resources.

The fingerprint classification problem has been widespread in the scientific
community for a long time [14]. Thereby, the Henry Classification System was
widely used, through the distribution in classes, which present their character-
istics, some of them pertinent to the delta1 and the other lines of the nuclear
system [12].

The American National Standards Institute (ANSI) classified fingerprints
based on the points of singularity proposed by Henry (Loop, Delta, and Whorl)
[12], in five different classes: (I) arch; (II) tented arch; (III) whorl; (IV) right
loop; (V) left loop. Examples of these classes are shown in Fig. 1.

This article presents a methodology for classifying fingerprints, using the
Henry Classification System based approach, using Convolutional Neural Net-
works (CNNs) models. In addition, the objective is to make comparisons with
1 A point in loop and whorl prints that lies within an often triangular, three-pronged,

or funnel-shaped structure.
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classic learning methods to assess the impact of promising technologies in the
context of digital classification. Besides that, we compared the results obtained
with those between the CNNs models. We will also evaluate the effects of filters
for pre-processing fingerprint images before classification.

The work is organized as shown: Sect. 2 presents some related works. Section 3
presents the methodology proposed in this work. In Sect. 4, we show the results
obtained with this methodology. Finally, we present the conclusion of the work
in Sect. 5.

2 Related Works

This section will briefly present works found in the literature related to finger-
print classification and recognition in digital images using Convolutional Neural
Networks (CNNs) and classical machine learning methods. Fingerprint classifi-
cation techniques solve various daily problems.

Several authors have recently addressed the subject of fingerprint classifi-
cation. Among them, we can mention Win et al. work’s [35], which presented
a review of fingerprint classification and identification methods in the context
of criminal investigation. The proposed methodology of Almajmaie et al. [3]
presented a digital recognition approach based on a modified multi-connection
architecture (MMCA) that was applied to the international database NIST 4,
which was also used in our work. Finally, works that are not so recent, such
as that by Liu [22], which presents an approach using the Adaboost classifier,
learning with singularity resources, can be compared with our work since it uses
a classic learning method.

A curious work created by Chhabra et al. [5], try to segment and classify
unintentional fingermarks left at crime scenes. The method uses ensemble tech-
niques to search best-extracted attributes based on Random Decision Forest
(RDF) and Adaboost classifier results.

Some works apply Deep Learning in fingerprint [7,15], such as the work of
Rim et al. [27], which identifies detailed fingerprint information using the Deep
learning approach. Their work developed private Dataset of fingerprints and
reached the best case accuracy of 90.98%.

Le et al. [19] developed a novel algorithm for fingerprint image enhance-
ment. Their methodology uses adaptive multi-linear algebra, higher-order SVD
(HOSVD) on a tensor of wavelet subbands. In the best case, the proposed method
achieved a classification accuracy of 98.05%.

3 Evaluation Methodology

As shown in Fig. 2, in this work, the evaluation methodology focuses on two
studying lines. The first evaluates the input images without applying pre-
processing operations (blue arrow). In this case, we want to assess the real need
to apply some effort to improve the image. A second line (gray arrow) evaluates
the images from the Gabor filter’s enhancement, followed by the application of a
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Fig. 2. Flowchart of the proposed evaluation methodology. The three blocks in the
center of the image represent the different approaches evaluated in this work. (Color
figure online)

thinning operation. It’s worth mentioning that we choose Gabor filter’s enhance-
ment because it is widely used in fingerprint applications since its purpose is
texture analysis.

Both experiments are evaluated in three different image classification
approaches: The first scenario, called the Classical Approach, evaluates methods
of extracting traditional attributes by combining them with traditional clas-
sifiers. The second scenario evaluates feature extractors’ performance based
on convolutional neural networks, producing results known as Deep Features.
Finally, the last scenario assesses six recent convolutional networks for classify-
ing incoming samples. As a way out of the system, we have a class prediction
based on Henry’s classification system. In all cases, the evaluation metrics used
are Accuracy (ACC), Positive predictive value (PPV), Sensitivity (Sen), and
F1-Score (F1S).

3.1 NIST Special Database 4

The NIST Special Database 4, refered as “NIST 8-Bit Gray scale Images of Finger-
print Image Groups (FIGS)” [34], is a database composed of 8-bit grayscale images
with a resolution of 512 × 512 pixels from fingerprint groups. This database con-
tains 4000 images classified based on the Henry Classification System [12], divided
equally into 800 pictures for each of the following classes: Arch (A), Left loop (L),
Right loop (R), Tented arch (T), and Whorl (W) as shown in Fig. 1.

3.2 Automatic Fingerprint Classification

Pre-processing. The pre-processing adopted in this methodology consists of
filtering combined with a thinning morphological operation applied in the fin-
gerprint image as grayscale. This stage aims to obtain a fingerprint image with
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enhanced ridges, emphasizing the delta and core that are the main regions to
the classification stage.

We use a Gabor filter for filtering, a linear filter used for texture analysis,
which essentially means that it analyzes any specific frequency content in the
image due to a region located around the point or in analyzed areas [8].

The Gabor filter is a Gaussian kernel function modulated by a complex sinu-
soidal plane wave [10], defined as:

G(x, y) =
f2

πγη
exp(−x

′2 + γ2y
′2

2σ2
)exp(j2πfx

′
+ φ) (1)

where x
′2 and y

′2 are, respectively, xcosθ + ysinθ and −xsinθ + ycosθ, f is
the frequency of the sinusoid, θ represents the stripes orientation, φ is the phase
offset, σ is the standard deviation of the Gaussian envelope and γ is the spatial
aspect ratio for the ellipticity.

Finally, we use a morphological thinning operation, which transforms a digital
image into a simplified, topologically equivalent image. It is a type of topological
skeleton, but using mathematical morphology operators [18]. The morphological
thinning operation is defined as [9]:

I ⊗ K = I ∩ (I � K)c (2)

where I is the two-dimensional input image and K is a cross structuring
element (kernel) of 5 × 5.

Fig. 3. Example of pre-processing using the proposed approach (a) original image (b)
pre-processed image.

Figure 3 presents an example of pre-processing using a Gabor filter and then
the morphological operation of thinning in an image of the dataset.

Fingerprint Classification. On the learning stage, aiming to perform the fin-
gerprint classification based on the five different fingerprint classes. To improve
our evaluation methodology, we apply classical machine learning methods, which
use a combination of classical feature extractors. As feature extractors, we
applied the Grey Level Co-occurrence Matriz (GLCM), Hu Moments, and Local
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Binary Patterns (LBP), and as machine learning classification methods, we eval-
uated Naive Bayes, k-Nearest Neighbors (kNN), Multi-Layer Perceptron (MLP),
Random-Forest (RF), and Support Vector Machine (SVM).

Unlike the traditional approach, CNNs have in their structure the ability
to learn better convolutional filters for processing samples during the training
process. This adaptive potential for identifying characteristics is explored in this
work as a feature extractor. Previous work has applied this strategy to fingerprint
images achieved promising results [24].

To transform CNNs into attribute extractors, we use pre-trained network
structures to classify objects present in the ImageNet [17] dataset. We removed
the fully connected layer from the CNN structure that estimates a percentage
probability by class present in the dataset. At the network output, we have a
vector of attributes that were produced throughout the entire architecture, from
the input layer until the penultimate layer. So, we have an attribute extractor
instead of a classifier. Figure 4 illustrates the vectorization of the last convo-
lutional layer to form a single vector of attributes. In this proposal, we will
evaluate ten different recent CNN architectures used in Deep Features approach
[24]: DenseNet121, DenseNet169, DenseNet201, InceptionV3, MobileNet, NAS-
NetLarge, ResNet101, ResNet152, VGG16, and VGG19.

Fig. 4. Deep feature extraction from CNN Architectures. Adapted from [24].

Present work evaluates classification techniques based on recent Convolu-
tional Neural Networks (CNN) methods. Specifically, we assessed the open-
source framework called Darknet. The Darknet is an open source neural network
framework written in C and CUDA language [26]. In this work, we evaluated six
different CNN models from scratch for the classification stage. The first one is
a straightforward and well-known model called a two-layer convolutional Deep
Belief Network (DBN) [16], with input image size of 28 × 28 pixels. The second
model used was the Darknet [31], with input image size of 256 × 256 pixels.
The third model used was the Alexnet [17], with input image size of 257 × 257
pixels. The fourth, fifth, and sixth are Resnet 18 and Resnet 34 [11], VGG16
[23], respectively, all this models using input image size of 256 × 256 pixels.
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4 Results

In this section, we evaluate the proposed methodology by comparing classic
learning methods using CNNs for image classification. This experiment uses
NIST Special Database 4, which contains 4000 images of 512 × 512 pixels.

4.1 Classical Approach

Table 1. Fingerprint classification using classic methods with grayscale images and
pre-processed images

Extractor Model
Grayscale (%) Gabor + Thinning (%)

Acc PPV Sen F1S Acc PPV Sen F1S

GLCM

Bayes 24.0 13.7 24.0 14.2 20.0 4.0 20.0 6.7

MLP 26.9 22.1 26.9 19.8 31.4 23.2 31.4 25.3

KNN 24.6 24.2 24.6 24.0 31.0 29.1 31.0 29.0

RF 27.2 26.1 27.2 24.4 33.7 30.2 33.7 28.5

SVM (Polynomial) 22.9 18.8 22.9 11.6 35.1 33.5 35.1 29.5

SVM (RBF) 26.9 16.2 26.9 18.1 31.7 24.4 31.7 25.3

HU

Bayes 22.0 18.1 22.0 17.9 19.3 13.4 19.3 15.4

MLP 23.1 23.9 23.1 21.7 19.0 14.9 19.0 16.2

KNN 20.7 20.7 20.7 20.7 21.3 21.6 21.3 20.1

RF 20.3 13.0 20.3 9.6 21.1 20.3 21.1 17.3

SVM (Polynomial) 23.2 24.3 23.2 21.1 20.5 24.6 20.5 15.3

SVM (RBF) 21.6 20.5 21.6 19.9 20.2 19.0 20.2 18.3

LBP

Bayes 26.4 24.0 26.4 21.4 41.1 39.6 41.1 37.4

MLP 27.5 20.6 27.5 21.3 35.9 35.7 35.9 29.9

KNN 20.1 12.6 20.1 9.8 36.8 39.4 36.8 33.6

RF 19.2 11.2 19.2 10.0 45.3 44.2 45.3 43.7

SVM (Polynomial) 21.2 9.8 21.2 10.8 24.7 18.5 24.7 13.9

SVM (RBF) 20.9 26.3 20.9 16.2 37.3 38.6 37.3 32.2

In order to assess the approach we executed 100 independent executions having
the dataset shuffled and then splitted in 75% for training with Cross Validation,
and 25% for testing.

According to Henry’s classification system, we present in Table 1 the classi-
fication results using a classic approach for the five fingerprint classes. Table 1
shows the results for the classification of images from fingerprints in grayscale,
without any enhancement pre-processing. We can observe that the HU extractor
presented the worst results, reaching a maximum of 23% accuracy on average.
On the other hand, the LBP extractor showed the classical approach’s best per-
formance, coming at 27.5% accuracy when combined with the MLP classifier.
These results, however, are well below desirable. The classical approach’s per-
formance indicates that the evaluated feature extractors do not have a robust
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potential for identifying characteristics, capable of discriminating samples from
a single class, failing in approximately 70% of cases, on average.

Table 1 also presents pre-processed images with a Gabor filter to enhance
papillary ridges, followed by a morphological thinning process. As we can see, it is
possible to notice an improvement in the classic metrics. The best combination is
presented by the LBP extractor combined with Random Forest, reaching 45.3%.
In addition to being better than the results using grayscale images, the results
with pre-processed images indicate that the applied enhancement favored the
process of class separation, assisting attribute extractors in identifying better
characteristics. However, the classic approach could not learn enough features
to correctly identify the samples, failing in more than 50% of cases, on average.

Table 2. Fingerprint classification using convolutional neural networks

Pre-processing Model Acc (%) PPV (%) Sen (%) F1-Score (%)

G
ra

y
sc

a
le

DBN 60.2 34.7 36.2 31.4

Darknet 93.9 85.9 85.5 85.6

Alexnet 91.3 81.5 80.2 80.4

Resnet 18 92.6 83.7 82.8 82.9

Resnet 34 95.1 88.7 88.4 88.4

VGG16 63.3 35.2 39.8 34.5

G
a
b
o
r+

T
h
in

. DBN 58.2 31.7 34.2 27.6

Darknet 93.3 87.0 84.1 83.9

Alexnet 93.4 84.7 84.5 84.5

Resnet 18 94.3 89.3 86.9 86.9

Resnet 34 94.6 88.3 87.0 87.1

VGG16 70.5 50.9 46.6 43.5

4.2 Deep Features Approach

As a more recent approach, Table 4 presents the results using a classification
based on the extraction of attributes through deep neural networks. In this
experiment, we evaluated ten different CNN architectures. Each of the CNNs
was used only as attribute extractors and then combined with traditional clas-
sification algorithms.

Table 4 presents the classification results for digital printing images in
grayscale, without any preprocessing. As for accuracy, it is possible to observe
that CNN InceptionV3 reaches lower metrics, with 23.3% when combined with
the SVM classifier of the polynomial type. The MLP classifier presented the
most stable results in terms of hit rates, showing superior results, on average,
considering all combinations of attribute extractors. On the other hand, CNN
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MobileNet combined with SVM type RBF the best performance, reaching 70.1%
correct classifications.

Considering the fingerprint enhanced images with the Gabor filter followed by
the application of morphological thinning, it is also possible to observe in Table 4
that the best combination of CNN as a feature extractor was DenseNet201 with
MLP, reaching 78.1% accuracy. This result surpasses up to 32.8%, the best index
presented by the classic approach with LBP and Random Forest. Finally, it is
possible to conclude that the feature extraction approach using CNN presents
an information extraction capacity that helps the classifiers better discriminate
the samples in the real classes. It is believed that this result is achieved by the
adaptive potential in the selection of convolutional filters proper to the learning
strategy of convolutional networks. Thus CNN gives a greater representation
capacity than in classical extraction.

4.3 CNN Approach

Fig. 5. Comparison with a bar plot between fingerprint classification results using
CNNs.

The dataset was randomly divided into training and testing, where 25% of the
data was destined for testing.

Performing analysis on the results obtained, we can see that the best result
using a classic approach with grayscale images was 27.5% accurate, combining
the LBP extractor with the MLP classifier. On the other hand, using classic
methods with Gabor filter + Thinning, there was a gain of 8.4% accuracy, and
the best result obtained with this approach was 45.3%.
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Analyzing Table 2 and Fig. 5, which presents the approach using CNNs, we
can see that the worst result was an accuracy of 60.2% using the DBN model
with grayscale images. On the other hand, the best result showed an accuracy of
95.1% using the Resnet 34 model with images in grayscale as well. The results
obtained comprise a significant difference between the approaches since there
was a gain of 49.8% of the best result using the classical methods for the best
result using CNNs.

It is worth mentioning that the pre-processing showed significant gains for
classic approaches; on the other hand, it presented losses for the process using
CNNs. Based on the F1-Score, we can emphasize that there was no discrepancy
in the dataset used since the presence of false positives and negatives are always
in the normal range.

Finally, our best approach obtained in the experiments, achieved accuracy of
95.1%. We emphasize that the proposed approach presented an accuracy on satis-
factory scales and competitive potential compared to other literature approaches.
Table 3 shows a comparison between different methodologies for classifying fin-
gerprints within the Henry system. However, we emphasize that all strategies
applied some selection within the image dataset, filtering samples for carrying
out experiments. In our work, every dataset was evaluated.

Table 3. Accuracy of fingerprint classification approaches on NIST-4 database

Work Acc. (%) Filtered data

Jain et al. [13] 90.00 Yes

Li et al. [20] 93.50 Yes

Liu [22] 94.10 Yes

Our Approach 95.10 No

Cao et al. [4] 95.90 Yes

Wang et al. [33] 96.55 Yes

Wang [32] 97.65 Yes

Miranda [25] 95.05 Yes

Ding [6] 93.83 Yes
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Table 4. Fingerprint classification using Deep Features combined with traditional
classification methods with grayscale images and pre-processed images

Extractor Model
Grayscale (%) Gabor + Thinning (%)

Acc PPV Sen F1S Acc PPV Sen F1S

D
en

se
N

et
1
2
1

Bayes 47.8 47.1 47.8 46.8 57.4 58.6 57.4 57.3

MLP 60.4 61.0 60.4 60.5 71.1 71.2 71.1 71.0

KNN 49.4 49.3 49.4 48.8 59.5 59.8 59.5 59.4

RF 51.9 53.8 51.9 49.7 67.3 68.9 67.3 67.1

SVM (Poly) 38.8 48.4 38.8 33.1 46.3 52.9 46.3 44.7

SVM (RBF) 60.6 60.8 60.6 59.8 70.3 71.0 70.3 70.3

D
en

se
N

et
1
6
9

Bayes 49.8 49.0 49.8 48.9 62.7 63.0 62.7 62.1

MLP 62.6 62.9 62.6 62.7 75.2 75.6 75.2 75.3

KNN 53.7 53.3 53.7 52.3 66.2 66.8 66.2 66.1

RF 48.8 51.2 48.8 45.5 71.2 72.7 71.2 70.6

SVM (Poly) 47.8 50.8 47.8 41.1 51.9 60.7 51.9 50.5

SVM (RBF) 66.0 65.8 66.0 65.0 77.4 77.9 77.4 77.3

D
e
n
se

N
e
t2

0
1 Bayes 52.8 52.8 52.8 52.0 62.5 65.0 62.5 62.4

MLP 63.9 64.1 63.9 63.9 78.1 78.6 78.1 78.2

KNN 54.3 55.2 54.3 54.2 66.8 66.9 66.8 66.4

RF 45.3 51.3 45.3 41.1 73.9 75.3 73.9 73.9

SVM (Poly) 47.6 61.4 47.6 46.1 42.3 52.3 42.3 36.5

SVM (RBF) 65.6 67.1 65.6 66.0 77.5 77.9 77.5 77.5

In
ce

p
ti

o
n
V

3

Bayes 40.0 37.8 40.0 38.1 48.8 48.1 48.8 48.2

MLP 54.2 54.2 54.2 54.1 63.3 63.4 63.3 63.3

KNN 43.0 41.6 43.0 41.7 50.7 49.8 50.7 49.9

RF 41.3 43.0 41.3 38.0 56.3 55.5 56.3 54.4

SVM (Poly) 23.3 16.7 23.3 12.3 26.8 26.0 26.8 18.5

SVM (RBF) 52.5 51.3 52.5 50.4 65.1 64.8 65.1 64.8

M
o
b
il
e
N
e
t

Bayes 51.5 52.4 51.5 50.8 56.1 56.6 56.1 55.2

MLP 66.5 66.6 66.5 66.4 68.6 69.0 68.6 68.7

KNN 54.6 54.6 54.6 53.9 63.1 62.8 63.1 62.7

RF 58.7 58.6 58.7 57.7 67.8 68.5 67.8 67.9

SVM (Poly) 68.3 68.9 68.3 68.2 70.9 71.6 70.9 70.9

SVM (RBF) 70.1 71.0 70.1 70.3 72.4 73.0 72.4 72.4

N
A

S
N

et
L
a
rg

e

Bayes 44.9 43.4 44.9 43.0 43.6 45.3 43.6 43.4

MLP 59.0 59.5 59.0 59.1 64.9 64.6 64.9 64.7

KNN 47.8 48.1 47.8 46.6 50.4 52.8 50.4 50.3

RF 50.8 50.5 50.8 49.6 57.1 57.4 57.1 56.5

SVM (Poly) 34.5 30.7 34.5 22.6 36.2 47.6 36.2 29.4

SVM (RBF) 58.4 59.5 58.4 58.2 64.4 65.3 64.4 64.5

R
es

N
et

1
0
1

Bayes 30.0 30.4 30.0 27.7 49.4 49.5 49.4 47.5

MLP 46.6 47.0 46.6 46.7 71.8 72.0 71.8 71.8

KNN 31.6 31.1 31.6 31.1 58.9 58.6 58.9 58.3

RF 39.2 38.5 39.2 37.3 66.8 67.7 66.8 66.6

SVM (Poly) 28.1 24.3 28.1 22.0 36.9 26.0 36.9 28.3

SVM (RBF) 44.9 44.5 44.9 44.0 73.6 73.6 73.6 73.5

R
es

N
et

1
5
2

Bayes 30.6 31.3 30.6 28.7 52.9 51.7 52.9 50.9

MLP 43.8 44.3 43.8 43.9 75.4 76.0 75.4 75.7

KNN 30.1 31.3 30.1 29.8 62.6 62.9 62.6 62.5

RF 33.9 35.8 33.9 31.4 70.8 71.0 70.8 70.5

SVM (Poly) 26.0 29.4 26.0 19.5 42.2 54.2 42.2 38.0

SVM (RBF) 38.3 44.8 38.3 37.2 76.2 76.8 76.2 76.4

V
G

G
1
6

Bayes 40.7 41.1 40.7 39.7 51.0 51.2 51.0 50.0

MLP 57.2 57.7 57.2 57.4 64.6 64.5 64.6 64.5

KNN 40.8 44.0 40.8 40.3 53.8 55.6 53.8 53.7

RF 53.7 53.6 53.7 52.5 66.6 67.1 66.6 66.4

SVM (Poly) 27.0 31.7 27.0 19.4 45.4 55.6 45.4 41.9

SVM (RBF) 61.0 61.2 61.0 61.0 67.6 68.3 67.6 67.8

V
G

G
1
9

Bayes 40.5 40.1 40.5 38.6 50.1 50.6 50.1 49.2

MLP 55.8 56.6 55.8 56.1 65.8 65.9 65.8 65.7

KNN 38.7 41.9 38.7 38.6 51.0 54.2 51.0 51.2

RF 54.2 53.8 54.2 53.0 62.6 63.1 62.6 62.6

SVM (Poly) 31.6 34.5 31.6 23.7 38.8 39.9 38.8 32.8

SVM (RBF) 56.3 56.5 56.3 56.3 66.8 67.8 66.8 67.1
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5 Conclusion

In this work, different approaches to fingerprint classification were evaluated
according to Henry’s classification system. Among the different scenarios, tech-
niques for extracting traditional features and based on deep features were evalu-
ated. Notably, the conventional extractors’ methods did not present satisfactory
results, with an accuracy below 30%, on average. The methodology following
feature extraction via CNN showed up to 78% accuracy, being superior to the
traditional technique.

These results, however, do not exceed the scenario of using CNN as an image
classifier. In the latter case, this work indicates that applying prior filtration with
a Gabor filter combined with the thinning technique can contribute to results in
some cases.

In the future, we plan to propose a new CNN architecture to solve finger-
print classification and recognition problems. Besides that, we plan to provide a
complete evaluation with a time comparison between approaches. Other moti-
vations arise from improving fingerprint recognition systems since acquisition is
not always practical.
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Abstract. The main aim of this article is to compare U-Net models
with different methods of medical image segmentation in ophthalmol-
ogy when searching for the optic disc and vessels on the retina. We
used freely available databases to analyze the results. DRIVE, STARE
and MESSIDOR were used for blood vessel segmentation and DRION
database was used for optic disc segmentation. In vascular segmenta-
tion, we compared the method based on morphological operations with
U-Net convolutional network. The best results were obtained by neural
network, where we achieved accuracy of 96.7% on DRIVE dataset. Meth-
ods based on morphological operations, Attentional U-Net network and
Fast Radial Symmetry Transform were used for optic disc localization,
where the U-net network achieved the best sensitivity of 91.6%. We show
that in our tests U-Net architectures achieve better results in vessel and
optic disc segmentation even compared to standard methods, that do
not depend on the amount of available data.

Keywords: Attention U-Net · FRST · Morphological operations ·
Optic disc · Vessel segmentation · Ophthalmology

1 Introduction

Over time, several algorithms and methodologies have been developed for auto-
matic identification, localization, and extraction of anatomical structures of the
human retina. We can divide these approaches into two basic groups, rule-driven
techniques, composed of combination of deterministic algorithms and machine
learning approaches. There are many methods based on deterministic algorithms,
such as the kernel-based method that compares pixel intensity variations in com-
bination with the retinal cross-sectional profile [1]. Different filtering algorithms
were developed to extract the vascular structure. Wu et al. [2] used a combina-
tion of Hessian and matched filters, which were applied to improve the contrast
c© Springer Nature Switzerland AG 2022
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between the vascular structure and other parts of the retina. These methods
are mostly based on pixel intensity monitoring. Mathematical morphology con-
cerns more on the structure and shape of objects in the image. Jiang et al. [3]
presented the work of vascular structure extraction using global thresholding
based on morphological operations. This method achieved an average accuracy
of 95.88% on merged (STARE+DRIVE) dataset and 95.27% for cross-dataset
evaluation when trained on DRIVE and tested on STARE database. Segmenta-
tion of the optic disc is mostly based on pixel contrast analysis, as it is usually the
region with the highest pixel intensity [4]. Important feature of the optic disc is
also its shape and structure, which is approximately circular. Popular approaches
for circle detection are FRST [5] and the Hough transform [6,7]. Morphological
operations are also frequently used methods for an optic disc localization [8].

In recent years, machine learning methods have come to the fore. These are
often convolutional networks that can solve the task effectively if they have
enough training data. However, sufficient data is often a problem, especially in
medicine. Ronneberger et al. [9] recently designed the U-Net architecture, which
enables efficient deployment in biomedical applications for image segmentation
through the ability to train effectively using very few images. However, these
architectures are usually compared to deep learning approaches, i.e. standard
convolutional networks. In this work, we therefore focus on the evaluation of U-
Net models in comparison with standard approaches, which are not dependent
on the large number of available training data.

2 Methods

2.1 Evaluation Techniques

The ability of the segmentation algorithm to correctly distinguish the structure
of retinal vessels and optic disc can be determined using different metrics. The
most often used metrics in medical applications are TPR (True Positive Rate),
FPR (False Positive Rate), average specificity, accuracy, sensitivity and F1 score,
which is also known as the Sørensen - Dice coefficient (DSC) [10]. The vessel
segmentation was evaluated on the pixel level and for optic disc we measured
the percentage of intersection of ground truth region with the resulting segment.
In our experiments we used free available databases with marked vessels:

DRIVE: this database contains 40 color images of healthy retina with size 768
× 584 pixels. Each image contains a black and white mask of vessels [11].

STARE: this database contains 20 color 700 × 604 pixel image of the retina
with black and white masks of vascular structure. This database contains two
sets of masks for blood vessels, one created by ophthalmologist A. Hoover and the
second by V. Kouznetsova. We compared our algorithms with masks created by
A. Hoover. The images in this database often contain some degree of pathology,
such as exudates or lesions [12].
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MESSIDOR: this database was created thanks to funding from the French
Ministry for research and defense [13]. The database contains 1200 images in
TIF format in 3 different resolutions: 1440 × 960, 2240 × 1488 and 2304 × 1536
pixels. As this database contains for each image only the degree of disease and
does not contain vascular masks, thanks to ophthalmologist V. Kurilova, were
created for the three images with a resolution of 2240 × 1488 pixels a black and
white masks of the vascular structure of the retina [14].

The optic disc segmentation methods were tested on DRION database [15]
with 109 images with resolution 600 × 400 pixels, where optic disc segments are
assigned as binary image masks for each image.

Each of these databases were divided according to 3 fold-cross validation
approach including one held-out set. Images in every database were randomly
shuffled and divided into 4 sets. Three sets were assigned for the training and
one static set for the held-out test. DRIVE database was divided into 10 images
intended for training, 10 for validation and 20 for testing. The training set of
STARE database contained 5 images. Validation set contained also 5 images and
test set was comprised of 10 images. Since MESSIDOR database contained only
three images with the evaluated vascular masks, we have assigned all the images
to the test set. We used the same data sets for training and validation as for the
STARE database.

The 90 images were randomly divided into 3 groups of 30 images for training
and validation. The fourth group with 19 images was used for testing.

2.2 Vessel Segmentation

We tested two methods of vessel segmentation. We compared method based on
mathematical morphology that selects the vascular features by suitable struc-
tural elements [14] with the deep learning U-Net model, based on compression
and reconstruction of image data.

Method Based on Morphological Operations. For our comparison, we
used the method described in [14]. The green component of the color image was
selected and normalized according to the intensity of pixels. The segmentation
algorithm run on green channel in two independent threads with similar oper-
ations, but different structural elements. Various structural elements define dif-
ferent vessel characteristics. Smaller elements define thinner vessels, they could
be distorted by larger elements. The achieved results of single threads were sub-
sequently combined. For binary segmentation, the Otsu’s thresholding method
[16] was used. Finally, the rotated linear structural elements with rotation step
4◦ in 60 directions were applied.

Method Based on U-Net Convolutional Network. The principle of U-Net
model is image processing in two stages. In the first stage, the image data are
reduced progressively to get the characteristic image features and in the second
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stage, subsequent image reconstruction is applied to segment the desired struc-
ture. In the first stage, we used a stochastic loss function proposed by Khanal
et al. [17] to obtain an overall probability map for each pixel of the image. The
goal of this map is not to segment the image directly, but to identify the proba-
bility of a particular pixel being frequented by a vessel. Image segmentation does
not take place at this stage due to the downsampling used by the U-Net net-
work. The original vessels are blurred, which makes it difficult to correctly mark
thin vessels. We then identified those pixels that are most likely misclassified,
such as narrow vessels and pixels at the edges of thick vessels. Subsequently, we
applied a second convolutional network to these areas, the so-called Mini U-Net
[17]. This Mini U-net uses a middle layer of U-Net architecture. Inputs to this
network are two channels, a complete probability map (the output of the first
network) and a version of this map that contains ambiguous pixels.

Fig. 1. Model of used U-Net neural network.

2.3 Optic Disc Segmentation

Optic disc is the region in retinal fundus image, where the optic nerve ends. It
is usually the lightest approximately circular object.

Optic Disc Segmentation Based on Attention U-Net Convolution Net-
work. We based this segmentation on research described in [18]. In this method,
a U-Net network with attention was used. Proposed attention gates are included
into the standard U-Net architecture (Fig. 1). Information extracted from the
coarse scale image is used in gating to eliminate irrelevant and noisy responses
via bridging connections. This is performed directly before the pooling layers
to merge the relevant activations. In addition, attention gates filter neural acti-
vations during forward, as well as backward pass. Gradients originating from
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the background areas are weighted during backpropagation. This allows us to
update the parameters of model in shallower layers mostly on spatial areas that
are relevant for given task [18].

Optic Disc Segmentation Based on Morphological Operations. This
method was inspired by research described in [19]. In the image pre-processing
stage, the combination of channels of different colour image models was used.
First, a 3 × 3 median filter was applied to the image. The saturation and value
channels from image in HSV colour space were multiplied pixel by pixel by
the red channel of the RGB image colour space. Subsequently, morphological
closing was applied to resulting grayscale image. After this operation, contrast
was enhanced by contrast limited adaptive histogram equalization (CLAHE)
[20]. After equalization, global threshold was found. We were increasing treshold
value until the number of white pixels in the thresholded image was less than
7500. This value was determined experimentally and achieved the best results
for the given database. The thresholded image was processed by morphological
filtering to remove white objects smaller than 2000 pixels. Also the black spots
smaller than 3000 pixels were filled. Finally, the boundaries of the optic disc
were determined by the Canny edge detector [21].

Method Based on Fast Radial Symmetry Transform - FRST. FRST is
a transform based on radius symmetry, first introduced in [5]. This transform is
calculated for one or more radii n ∈ N , where N is the set of radii of radially
symmetric objects to be detected. For each radius n, two images are created,
namely an oriented image On and a magnitude image Mn of the projected image.
These images are generated by examining the gradient g, in each pixel p. In this
method, we used the research from [22], where we replicated the process of
segmentation of the optic disc accurately. In addition to the original method, we
used the parameter γ, where γ is an approximation of the highest gradient at
the boundaries of the optic disc. This means that the gradient value greater than
γ is not considered to be a part of the optic disc. We then applied this method
to the image, setting the γ parameter to 12, β in this case equals 0 and α is
0.01. We ran the algorithm several times to search for a radius in the range of
10 to 90 pixels with step 10. We obtained the center of the optic disc by finding
the global maximum from the complete transformation S. We then determined
the optic disc mask as a circle centered at a global maximum and a radius of 50
pixels.

3 Experiments and Results

3.1 Vessel Segmentation

Vessel Segmentation Based on Morphological Operations. The exper-
iments were performed on a test samples from databases DRIVE, STARE and
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MESSIDOR, on which we also determined the efficiency of neural network seg-
mentation.

The Table 1 contains a summary comparison of this method on all databases.
This method was optimized for high resolution images and in accordance with
this, it achieved the best results on MESSIDOR database.

Table 1. Evaluation metric for vessel segmentation by morphological operations on
the test datasets.

Database DRIVE STARE MESSIDOR

F1 0.585 0.588 0.750

Sensitivity 0.431 0.458 0.724

Specifity 0.996 0.992 0.992

Positive predictive value 0.921 0.839 0.778

Accuracy 0.945 0.948 0.981

In mathematical morphology, the size of either the structural element or the
segmented parts of the image were particularly important. It is therefore obvious
that even vessels that would have a width of a few pixels in the STARE or
DRIVE database, in MESSIDOR images they have width of many more pixels,
and therefore they were not filtered out during morphological operations.

In particular, thick vessels were segmented on the STARE and DRIVE
databa-ses, and morphological operations filtered out thin veins and capillar-
ies, which led to a deterioration in the results.

Vessel Segmentation Based on U-Net Convolution Network. Based on
the principle of cross-validation, we prepared three sets from each database and
the resulting value of evaluation metrics were averaged from the outputs of each
dataset. For training on the DRIVE database, 1120 images were created. They
were evaluated during training with a batch size of 2 images. The input images
had dimensions of 572 × 572 pixels, but only the 388 × 388 area was evaluated.
For the STARE database, we created 1080 input training images. Images were
created to enlarge the training set based on sliding window method with overlap
and step of 20 pixels.

Since MESSIDOR contains only three images with the evaluated vascular
masks, we determined all these images as test images. The masks of this data-
base were created by ophthalmologist. We used the same datasets for training
as for the STARE database.

In total, the network was trained by standard backpropagation algorithm
minimizing categorical cross-entropy loss using Adam optimizer for the fixed
number of 5 epochs and default hyperparameters for each database. Due to
limitations, we used mini-batch size 2 with offline augmentation in an effort
to improve the visibility of the searched objects in the retinal images. First, the
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input images were resized as needed and per channel normalized over the dataset
by subtracting the mean and dividing by standard deviation. Subsequently, we
normalized the images to the range < 0, 1 > by maximum value division (Figs.
2, 3, 4, 5, 6, 7, 8, 9 and Table 2).

Table 2. Evaluation metric for vessel segmentation by U-Net convolutional network
on test datasets.

Database DRIVE STARE MESSIDOR

F1 0.817 ± 0.003 0.761 ± 0.024 0.474 ± 0.106

Sensitivity 0.828 ± 0.022 0.673 ± 0.043 0.374 ± 0.108

Specificity 0.981 ± 0.003 0.993 ± 0.002 0.994 ± 0.0009

Positive predictive value 0.810 ± 0.020 0.899 ± 0.021 0.756 ± 0.012

Accuracy 0.967 ± 0.0009 0.967 ± 0.002 0.971 ± 0.003

Fig. 2. [From left to right] a) Original images of DRIVE database b) Ideal masks
c) Segmentiation with U-net network d) Segmentation with morfological operation
method.

3.2 Optic Disc Segmentation

Optic Disc Segmentation Based on Attention U-Net Convolution Net-
work. We applied three fold cross-validation to correctly evaluate the neural
network performance on all used datasets. Again, 800 network input images
were generated from each training data with sliding window method as in the
Sect. 3.1. For each image used, we ensured there existed the black-and-white
optic disc target mask, as the ground truth image for the prediction verification.
The training was performed with fixed number of 10 epochs using the same
hyperparameters as in previous experiments. In Table 3 we present the results of
individual metrics of the cross validation. The value of the standard deviation is
negligibly small in all cases, which indicates stability of this approach.
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Table 3. Evaluation results for optic disc segmentation.

Method F1 Sensitivity Specificity Positive predictive

value

Accuracy

Attentional U-Net 0.917 ± 0.02 0.916 ±0.010 0.998 ± 0.0009 0.918 ± 0.028 0.995 ± 0.001

Morphological operations 0.773 0.738 0.996 0.817 0.988

FRST 0.486 0.503 0.982 0.472 0.967

Optic Disc Segmentation Based on Morphological Operations. This
method has obtained satisfactory results, which can be seen in Table 3.

The resulting images can then be divided into three groups:

1. Correctly Specified Images: These images had high metric values and
were segmented with sufficient quality. Most of such images were from DRION
database, specifically 91.8%. However, the share of these images in the test
data dropped to 73.7%.

Fig. 3. Example of DRION image (left) and algorithm output (right) with correctly
specified optic disc.

2. Two Optic Disc Locations Specified: This option accounted for 5.5% in
all 109 images. However, the test data contained three such images, i.e. the
percentage in the test image set was higher, specifically 15.8%. The reason
for these results was probably the phenomenon that the surroundings had
a similar intensity as the optic disc. To minimize these conditions, a ring
search method such as FRST (Fast Radial Symmetry Transform) or Hough
Transform could be used to decide which feature is more likely to be an optic
disc.

Fig. 4. Example of DRION image (left) and algorithm output (right) with two optic
disc segmentation.
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3. Incorrectly Determined Images: There were four incorrectly determined
images in the entire DRION dataset, two of which were in the test data, which
is about 10.5% in the test data and 3.7% in the entire database. This was due
to the fact that the green channel contained higher ambient pixel intensities
than the optic disc itself. It is also caused by the value of 7500, if this value
was higher, then these images were qualified as correctly determined.

Fig. 5. Example of DRION image (left) and algorithm output (right) with incorrect
optic disc segmentation.

Optic Disc Segmentation Based on Fast Radial Symmetry Transform.
We tested this method on 109 DRION database images. To compare this method
with neural networks, we used the same datasets as in 3 cross-validations for neu-
ral networks. However, since this is a deterministic algorithm we only compare
the test dataset of images. The overall accuracy on the test data set by the FRST
method can be seen also in Table 3.

1. Correct Localization: these images showed minimal deviation. Their met-
rics were relatively high. There were 31.2% of such images, of all 109 images.

Fig. 6. Example of DRION image (left) and algorithm output (right) with correct optic
disc segmentation.

2. Correct Localization with Shifted Optic Disc: The result of these
images showed significant deviations in the centers of the optic discs, and
the optic disc itself was shifted by a certain distance. However, part of the
localized disc was in the disc mask of the image.
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Fig. 7. Example of DRION image (left) and algorithm output (right) with shifted optic
disc segmentation.

3. Incorrect Localization: these images accounted for 11.9% of the entire
image database. These images showed zero, or a value close to zero for sensi-
tivity, F1 coefficient and positive predictive value.

Fig. 8. Example of DRION image (left) and algorithm output (right) with incorrect
optic disc segmentation.

Fig. 9. Localization of optic disc with U-Net network (left), morphological operation
method (in the middle) and FRST method (right).

4 Conclusion

A better method in the case of testing and training on DRIVE database is the U-
Net neural network, as it was able to more accurately identify capillaries. In the
case of evaluation on the STARE database, the neural network was again better
than standard methods. Again, morphological operations failed to segment fine
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vessels. This could be due to the size of the structural elements used in the
method. In the case of the MESSIDOR database, we can see that morphological
operations achieved the best segmentation. There are few reasons for this result.
First, the algorithm was optimized for high resolution MESSIDOR dataset and
so it achieved worse results on DRIVE and STARE datasets. Second, there are
only 3 images with marked vessels, that would not be enough data to train the
U-Net network. Because of that, U-Net was trained only on lower resolution
images from DRIVE and STARE. These two segmentations were comparable to
the naked eye. However, we assume that if the U-Net network could be trained
on a larger amount of data and hyperparameters would be tuned, results would
be further improved.

As we can see in the results of individual methods, the Attention U-Net net-
work achieved best results compared to standard methods that do not depend
on the amount of data available. In addition, U-Net network was able to accu-
rately determine the correct shape of the optic disc, with no completely poorly
segmented image.
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Abstract. This work presents the use of computer vision and machine
learning techniques to implement a semi-automated system to aid on
understanding scintigraphy DICOM exams. In such a way, all aspects
included from the image preprocessing to the identification and final
classification of bone anomalies by the digital scintigraphy images are
presented in details.

Keywords: Bone scintigraphy · Medical images processing · Bone
metastasis

1 Introduction

Metastases can develop when cancer cells break away from the primary tumor
and enter the system of carry fluids around the body (i.e. the bloodstream or
lymphatic system) [1].

To perform the identification of bone metastasis from a primary cancer, is
necessary a systematic inspection of scintigraphy images by trained and expert
physician. However, in the majority of occasions, this process is performed only
through visual analysis without quantitative assessment of the extent and sever-
ity of these metastases.

This aforementioned way of examination makes impractical to compare the
progression of the patient over the time in a more objective way, since results
based only on the deduction of a professional in a given inspection may not be
faithfully reproducible at a future examination by himself and even less coinci-
dent with the evaluation of another professional.

The goal of this research is to verify the viability of using image analysis,
computer vision and machine learning techniques to propose a system that is
capable of assisting a qualified professional in bone metastases analysis.
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The work presented in this paper had the participation of resident students of
the postgraduate course in nuclear medicine at Universidade Federal Fluminense
- UFF. These colleagues were coauthors in the development and advisers in the
stages related to the understanding and manipulation of medical and biological
data, providing, with their high expertise, subsidies in the construction of the
system.

To accomplish the proposed goal, the application must perform various pre-
vious stages linked to the process. The system stages are: (1) the management of
the digital files of the exams stored in the Digital Imaging and Communications
in Medicine (DICOM) format after their acquirement, (2) the pre processing of
the original images that compose an exam, (3) the segmentation of these pre pro-
cessed images, (4) the identification of the important elements in the segmented
parts, (5) classification of these elements and (6) finally the quantification of
bone anomalies that can be found using the mentioned digital image process-
ing and machine learning techniques. All such stages will be detailed in next
sections.

2 Bone Scintigraphy

Although there are three-dimensional imaging techniques combining information
from scintigraphy with computed tomography like the Single Photon Emission
Computed Tomography (SPECT) and Positron Emission Tomography (PET)
[2], for bone metastases, scintigraphy is still one the most common imaging pro-
cedures in nuclear medicine, according to the European Association of Nuclear
Medicine (EANM) [3].

Bone scintigraphy is a particularly important method for the clinical diag-
nosis of metastases [4]. When other examination methods are unable to provide
a reliable diagnosis, scintigraphy becomes the most suitable means of making a
final conclusion [4–6].

Scintigraphy allow the bone metastasis diagnosis by representing the physi-
ological response to the active element used, making it possible to highlight the
regions (in the whole skeleton) where this element is being more absorbed [6]
(i.e. bone abnormalities areas are related to intensive activity of radionuclides).
To perform this examination, a venous injection composed of a pharmaceutical
agent called a radiotracer is applied to the patient. This application can occur
up to 3 h before the scintigraphic image is collected (this is an exam that has a
long duration).

As previously described, using a purely visual approach, examining each of
the regions of intensive radio nuclide activity becomes a complex task even for
specialized professionals. This complexity is due to the number of tasks that
must be performed, since they must be able to visually identify, quantify and
classify the areas of interest in the image from the exam. In addition to the
inherent difficulty of the approach, other factors such as low contrast and noise
(present in the image) can make this analysis more difficult and impair correct
visual quantification and diagnosis. The idea of this work is to use the computer
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to assist in this task, initially helping the organization of data and then facilitat-
ing physicians to carry out the various stages of the analysis of a scintigraphic
exam. Examples of these are the improvement of the image quality by con-
trast enhancement, inclusion of automatic segmentation mechanisms to identify
regions of greater activity, the collection of representative attributes from each
of these identified regions and the use of a computational intelligence algorithm
for the classification process.

The exams used in this study were provided by the physicians and researchers
partners from the nuclear medicine course of the Universidade Federal Flumi-
nense (UFF). More specifically, the data consist of DICOM scintigraphic exams,
reports and information about real patients of the university hospital: Hospital
Universitário Antonio Pedro (HUAP).

The Image Processing techniques and the methods used for machine learning
will be discussed right after a quick bibliographic review, which will be done
in the next section. In the last section, the results achieved and the ideas for
improvement and continuation of this research will be commented.

3 Related Works for Scintigraphy Aid

An interesting work carried out on automation of the classification and quantifi-
cation of bone metastases was the EXINI [7] project published in 2006 and later
BONENAVI [8]. They investigated artificial neural networks (ANN) application
in the use of the Bone Scan Index (BSI). BSI is a parameter introduced with the
proposal of serving as a clinical, quantitative and reproducible means to measure
the evolution of bone metastases [1].

At 2017, another project from the Lund University studied the usage
of convolutional neural networks(CNNs) to classify bone scan hotspots as
metastatic/non-metastatic. The dataset for this task contained a total of 10427
hotspots, of which 3169 are positive (high risk of metastasis) and 7258 are neg-
ative (low risk of metastasis) [9] and was also provided by EXINI. The best
performing ensemble of CNNs gave a area under the receiver operating charac-
teristic curve score of 0.97 [9].

More recently, in 2020, another study investigates the application of a CNN
to classify bone metastasis using whole body images of men initially diagnosed
with prostate cancer. The proposed method employs different CNN-based archi-
tectures with data normalization, data augmentation and shuffling [1]. At the
end of the study the algorithm scored with a recall of 98%, accuracy of 97% and
precision of 95%.

Analyzing previous works on this field, it is noted that there are a number
of possibilities for new approaches and implementation strategies to promote
better medical evaluation of this type of examination.
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4 An Overview of the Implemented System

The developed system offers an intuitive interface so that physicians and spe-
cialized professionals can perform analysis, segmentation and classification of
scintigraphic exam files in DICOM format.

The application interface uses the WWW and was implemented with
React.Js, HTML, CSS3 and TypeScript technologies. The system communicates
through HTTP (Hypertext Transfer Protocol) requests in JSON (JavaScript
Object Notation) format with a server maintained in the cloud. This server,
implemented with Node.Js, TypeScript, Express, PostgreSQL and Redis is
responsible for handling and processing all requests coming from the web appli-
cation, performing requested operations related to image processing and artifi-
cial intelligence. The server also runs sub-processes (children) implemented in
Python. Python libraries used were: Pydicom for reading and processing files in
DICOM format; Skimage, Opencv and Scipy to perform operations related to the
analysis and processing of digital images and SkLearn and Keras to classification
and learning tasks.

The source code of this project is open, free and accessible at the
following online repositories: github.com/josemorista/bm-server (server) and
github.com/josemorista/bm-web (web application). The implemented web appli-
cation is also available online for public access at bm-diag.org.

5 Data Entry: Patient Management and Exams Upload

To enter the application, the user’s authentication is checked (Fig. 1). Previously,
the user must create his account by providing basic data such as e-mail address,
name, institution, job and password for access. The password is encrypted using
the Bcrypt function. After the account creation, the user can access the system
with his email address and password.

Fig. 1. View of the system homepage and registration.

Once authenticated in the platform, the user is redirected to a page where the
already register patients can be found. To perform the insertion of a new patient
in the system, it is necessary to include information such as the patient name,
age, sex and complementary data such as previous cancer diagnoses, history of

https://github.com/josemorista/bm-server
https://github.com/josemorista/bm-web
http://bm-diag.org/
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radiotherapy or chemotherapy treatments, previous injuries on the body and
implants (please see Fig. 2).

By selecting one of the patients in the system, respective information and a
link to access the list of available exams are presented (as shown in Fig. 2). In
order to include new files to be stored for the same patient the user can click on
the “Novo exame” button, that means “New exam” (the main language of this
implementation version was Portuguese).

Fig. 2. View of the pages of new patient creation and exams.

After clicking this button, the user is redirected to the first stage of the
assisted diagnostic flow, in which it is possible to provide additional information
about the patient’s position at the exam and upload the scintigraphic image
file (.dcm). After submitting the form, the file is sent to the server and the
corresponding exam created in the system database.

6 Preprocessing

When the file arrives in the server, it stores a copy of it in its own file system, so
that it can carry out the various filtering, segmentation and learning operations
that will be described in the following sections.

The first operation consists of a new linear transformation of the values of
the absorption matrix extracted from the DICOM file in the range 0–4000 to
floating point values in the range of 0 to 1. A simple filter performed in this
step refers to the application of a maximum threshold (specified by the user) for
the analysis of the file, thus, intensities above this threshold are replaced by the
maximum value of 1. This allows the removal of a small group of pixels which
intensities makes difficult to visualize the image file after its transformation.

After this conversion, the result image is presented to the user in order to
carry on the desired image treatment operations. The available operations are the
median, Gaussian and bilateral filters. If no option is selected, the default choice
for this step is the usage of the median filter, since during the testing phase of the
implementation it presented best results for the available images. For example,
in Fig. 3 is possible to see the system screen referring to this operation and a
comparison of a scintigraphy image in a inverted mode (that is image intensity
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Fig. 3. Noise removal system screen (left) and original and final image in inverted mode
(center and right).

level changed in it’s gray level in order to promote better visualization of the
differences) before and after executing the median filter.

After the image treatment is carried out, the segmentation phase begins. In
this, a threshold related to the intensity of the gray tones of the pixels present
in the image is defined, in order to promote better segmentation, leaving only
the background and the detected anomalies. For this, by default the application
recommends the use of a combination of segmentation through K-Means unsu-
pervised learning followed by the Otsu thresholding algorithm for definition of
the best intensity to binary limits. It is important to note that for the application
of the K-Means technique, the user must provide the level of intensity ranges
in which the wanted image will be presented, so the algorithm can perform the
operation considering the desired number of clusters. Figure 4 shows the inter-
face for this operation and the result of a processed and segmented image with
the combination of K-Means and Otsu in inverted mode.

If the user is not satisfied with the result or does not wish to use the suggested
algorithm, a manual thresholding can also be applied by the use of Random
Walker algorithm. The process of applying the algorithms described in this phase
can be repeated as wanted until the segmentation is considered satisfactory by
the end user.

The next phase considers edge detection. At this point, the default method
of the application is the Sobel filter, this standard choice is motivated by the
good performance and computational cost of the method at some performed
tests, however, other options are available such as Prewitt, Roberts and Scharr.
Figure 5 illustrates the result obtained by this step in a inverted mode and the
page in the system related to these operations.
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Fig. 4. Thresholding system screen (left) and original and final image in inverted mode
(center and right).

Fig. 5. Edge detection system screen (left) and original and final image in inverted
mode (center and right).

7 Generation of Feature Vectors for Each Exam

Once an image with well-defined edges and regions is obtained, the process of
generating the feature vectors that will be used in subsequent supervised learning
tasks begins. For this purpose, was used the function findContours of the imple-
mentation of the algorithm described by Suzuki [10] (available in the OpenCV
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library). After executing this function, a list of entries is obtained, each one refer-
ring as a subregion containing a closed contour of the image, from this region
it is possible to extract geometric information such as area, enclosing rectangle
and others. Ten (10) features are computed and used to compose the feature
vector to describe each region.

The first one is the area of the region. This is computed by the number of
pixels present inside each boundary converted to square millimeters (mm2) using
the dots per inch (dpi) metadata available in the DICOM exam file.

The second feature refers to the perimeter of each region. Obtained by count-
ing the border pixels, this value was later converted to millimeters (mm) also
using the DICOM metadata available.

The third and fourth represent the horizontal and vertical position of the
centroid of each possible metastasis. These values are calculated considering the
point of origin of the coordinate system at the top left of the image and obtained
through the first geometric moments of the region divided by the area (or zero
order moment).

The fifth feature of the vector symbolizes the area proportion (or aspect
ratio). For this, initially, the best bounding box is calculated for each one, and
then its horizontal (width) and vertical (height) size are evaluated. The ratio
between width and height of this bounding box represents this feature.

The feature referring to the sixth position of the vector represents the ratio
between the area of the region (calculated in the first vector position) and the
area of the bounding box.

Position seven of the attribute vector considers an attribute called equivalent
diameter. This value represents the diameter of the circle of the same area of
the grouped region (square root of the area divided by pi).

The eighth position shows the value of the average intensity of the shades of
gray on the pixels present inside the grouped region.

Position number nine symbolizes the orientation of the region. Defined as
the orientation of the ellipse that has the same second moments of the region,
ranging from −π/2 to π/2 counterclockwise.

The tenth position of the vector refers to the eccentricity of the region. This
is calculated by the eccentricity of the ellipse that has the same second moments
of the region considered at position one. The eccentricity is the proportion of
the focal length (distance between the focal points) over the length of the main
axis. The value must be in the range [0, 1]. When it is 0, the ellipse becomes a
circle.

In addition to the features related to the geometry and intensities of the
regions, for each one of these regions, were added attributes related to the
patient’s medical data informed by the physician at the time of its insertion.
These features consist of a history of radiotherapy and chemotherapy treatment,
history of cancerous diseases and bone lesions, this are represented with values
of 1 and 0 symbolizing true or false.

At the end of the processing step, a set of feature vectors is obtained, each
one referring to a region of high absorption detected in the image after the
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required processing and operations. For a better visualization of the obtained
result, Fig. 6 outlines the enclosing rectangles and areas of each of the detected
regions on the original image. Table 1 presents examples of some of the attributes
that are present in the feature vectors built in this phase (Fig. 7).

Table 1. Examples of attributes collected for the detected regions.

Area Perimeter Ratio of areas Mean intensity Orientation Eccentricity

138.00 61.70 0.77 0.49 0.16 0.81

108.00 53.32 0.75 0.32 0.93 0.81

150.00 72.28 0.79 0.33 −0.13 0.87

Fig. 6. Example highlighting detected regions and the areas obtained in mm2 for each
one.

Fig. 7. Overview of processing steps.
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8 Specification of Exams and Patients Database

As mentioned, the used database was provided by the nuclear physicians partners
in this research. It is composed by 10 entire body scintigraphic exams, acquired
according to the examination protocol and stored as DICOM standard. This
research was approved by the Ethics Committee of the Brazilian Federal Gov-
ernment under the number CAAE: 45645121.7.0000.5243, title: “Optimization of
a MACHINE LEARNING method for classification of scintigraphic images” in
Portuguese: “Otimização usando método de MACHINE LEARNING para classi-
ficação de imagens cintilográficas” on 01.06.2021. Each exam is also accompanied
by a detailed medical report, with the correct and accurate description (consid-
ered by medical consensus) of what was detected and the classification of each
of the anomalies presented.

This dataset was used for training four used classifiers. This set was processed
using the same sequence of steps described in Sect. 7 (i.e. establishing thresholds,
doing image processing operations, detecting edges and computing features of
detected regions). After processing the exams of these patients, a total of 77
entries was obtained from the dataset.

9 Machine Learning

To perform the supervised learning task, four (4) techniques were selected: K-
Nearest neighbors (K-NN), Decision Tree (DT), Support Vector Machine (SVM)
and Multilayer Perceptron (MLP).

Before applying these algorithms, the elements of the feature vectors were
normalized to be in the [0, 1] range. For this, the entire 77 set of high absorption
regions were used to find the maximum and minimum values of each of the 10
attributes that composes a vector position, for normalization, was applied the
following equation:

xnorm =
(x − xmin)

(xmax − xmin)
(1)

where (xmax) and (xmin) represent the maximum and minimum values of an
specific x attribute, respectively.

A new attribute with values 1 or 0 was included in each feature vector,
indicating respectively: a metastatic bone disease region or an area with intensive
activity of radionuclides but not related to the presence of cancer cells.

10 Results and Validation

In order to evaluate the quality of the predictions produced by the software for
each of the classifiers, the database was divided using the technique of stratified
random division into training and test sets. For the training set, 70% of the
samples contained in the database were used, while the remaining 30% were
used to quantify the accuracy of the results.
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For the KNN algorithm, was selected a number of neighbors equals to 1, since
during the executions, this parameter presented the highest accuracy value. For
the MLP, were taken as hyper-parameters 100 hidden layers, Adam optimizer
and logistic activation function; SVM parameters were radial basis function ker-
nel with a gamma of 0.08 and no hard limit on iterations.

Accuracy, recall, precision and the area under the receiver’s operating char-
acteristic curve (ROC) were computed with the obtained results. The results of
the training and test sets are presented in Tables 2 and 3.

Table 2. Results for training set.

Classifier Accuracy (%) Precision (%) Recall (%) ROC

K-Nearest Neighbor 100 100 100 1.00

Multilayer Perceptron 81 84 57 0.76

Decision Tree 100 100 100 1.00

Support Vector Machine 94 100 84 0.92

Table 3. Results for test set.

Classifier Accuracy (%) Precision (%) Recall (%) ROC

K-Nearest Neighbor 82 70 87 0.83

Multilayer Perceptron 73 62 62 0.71

Decision Tree 86 77 87 0.87

Support Vector Machine 78 66 75 0.77

11 Conclusion and Future Works

Based on the results of the implemented learning techniques, it is possible to
state that this is a very promising research, since despite having a low number
of samples, the DT technique reached for all index values above 77%. The low
results obtained by the SVM and MLP indicate the oblivious need of a larger
set for training to improve these models.

Another aspect to be observed are the result of 100% accuracy obtained
by the DT for the training set, suggesting a possible overfitting despite the
relatively short tree (built with 11 nodes and depth 4). These values must be
observed carefully in future executions and if necessary, implement pruning and
growth limitation algorithms.

Aspects for improvement are: the segmentation and classification stages, the
inclusion of a larger number of data to increase the training database, new
strategies for filters and better adjustment of the hyper-parameters for learning.
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Analyzing the results obtained by the developed research, although still ini-
tial, it shows itself to be considerably promising to its established goal, this being
offer support to a qualified professional in the tasks of examining, detecting and
classifying metastatic bone diseases through scintigraphic images.
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Abstract. In this work, we present a viewpoint selection method specif-
ically designed for fibrous structures in a pre-operative context. A view
quality metric based on entropy was developed, which integrates the typ-
ical requirements of surgery planning. We applied our approach in the
case of cranial nerves surrounding skull base tumors. The relevance of the
viewpoints selected by our method was assessed qualitatively by a neu-
rosurgeon and quantitatively based on statistical tests. These viewpoints
were proven to have a high informative content, and therefore to enable a
good understanding and mental representation the 3D anatomical scene
in a pre-operative context.

Keywords: viewpoint selection · Entropy · Fiber tractography ·
Cranial nerves · Skull base tumor · Surgical planning

1 Introduction

Skull base tumor surgery remains a challenge since it requires complex surgical
approaches reaching deep-seated tumors within a dense anatomical environment
[11]. This environment includes cranial nerves, which are bundles of white matter
fibers with sensorial or motor functions (e.g. the optic nerve). The preservation of
the cranial nerves functions is one of the main stakes of tumor resection surgery.
In this context, a thorough visualization of the nerves surrounding or displaced
by the tumor could be of help for intervention planning, as attested by recent
studies [2,5,13].

Advances in dMRI have used the unequal movement of water molecules along
axons to reconstruct the 3 dimensional trajectory of the white matter fibers
through tractography. However, tractography involves a complex multistep pro-
cessing pipeline and is still difficult to apply to small-scale structures such as
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cranial nerves [6]. As a result, tractography datasets might be hard to visual-
ize due to excessive amount of streamlines that are running in very different
directions. Moreover, it moves away from the conventional radiological practice
where datasets are visualized in 2 dimensions (2D). In this context, the selection
of the viewpoints which best enhances the display of the important anatomical
structures, here the tumor and nerves, as well as the whole scene, is valuable
for surgery planning. It would reduce the complexity of the data, facilitate the
understanding of the scene in 3 dimensions and guide the selection of the oper-
ative viewpoint.

To our knowledge, viewpoint selection for tractography fibers has never been
investigated in the literature. This idea has been explored for other anatom-
ical structures like organs, bones, vessels and tumors [3,9], but the proposed
methods, based on geometrical criteria such as minimum distance or occlusion
between objects, can hardly be applied to scattered and complex structures like
tractography. Besides, one of the purposes of this work is to propose a local met-
ric to prioritize the fibers according to their anatomical relevance. Prioritization
of the structures of interest for medical applications was not introduced in any
of the previous works.

Shannon’s entropy quantifies the information content in a dataset, and is
commonly used in the computer vision field to find informative viewpoints on
meshes [1]. Moreover, it was shown to be an interesting measure to filter and visu-
alize velocity streamlines [4], which have a nature close to tractography fibers.
In this paper, we propose to use the local entropy of fibers as a selection metric
to select the best viewpoints on a 3 dimensional scene including a tumor and
surrounding nerves.

In Sect. 2, we give details on the acquisition of the medical images, the trac-
tography pipeline employed and the anatomy of the cranial nerves of interest.
In Sect. 3 we describe the application of Shannon entropy to tractography fibers
and the calculation of the viewpoint quality score. Our validation strategy is
explained. Finally, in the Sect. 4, the quality of the selected views is assessed
both qualitatively and quantitatively, demonstrating the pertinence of the selec-
tion method.

2 Material

2.1 Cranial Nerves

The fibers of the white matter connects the different areas of the brain. Cranial
nerves are organized bundles of white matter fibers with important sensorial or
motor functions. Five cranial nerves or nerve groups located near the skull base
were considered in this study: the optic nerve (Chiasma); the oculomotor nerve
(III); the trigeminal nerve (V); the fascial and cochleo-vestibular nerves group
(NF) and the mixed nerves groups (NM). Their mean diameter was estimated
according to the known anatomy [7,10,16], and reported in Table 1.
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Table 1. Estimated diameter of the studied nerves from the literature.

Nerve definition Nerve abbreviation Diameter (mm)

Optic Chiasma 10

Oculomotor III 5

Trigeminal V 7

Facial and cochleo-vestibular NF 3

Mixed NM 2

2.2 Patients

Patient data (n = 31) used in this work is based on the study carried out between
December 2015 and December 2017 in [5] (IRB Number 2015-A01113-46). Inclu-
sion criteria were: skull base tumor; at least two cranial nerves in contact with
the tumor; legal capacity; consent provided after fair information; 3T MRI data
with dMRI acquisition. Exclusion criteria were: MR contraindications.

2.3 MRI Acquisition

A set of MR sequences were acquired in order to reconstruct the anatomical
structures of interest. T1 post contrast weighted sequence and T2 steady state
sequence are high resolution images(0.23 × 0.23 × 0.34 mm), which were used as
an anatomical reference. The segmentation of the tumors was made manually
from the T1 sequence by a neurosurgeon. Diffusion images were acquired in
order to compute the trajectories of fibers. It encodes the local diffusion of
water molecules in 32 directions. This modality have a lower spatial resolution
(1.75 × 1.75 × 2 mm). Distortions were corrected using the top-up and eddy tools
of the FMRIB software library (FSL) software [12].

2.4 Tractography

Tractography is the method used to reconstruct the trajectory of the white mat-
ter fibers from the diffusion images. Figure 1 shows both the tractography recon-
struction and a per-operative view for the oculomotor nerve. In this study, the
tractography process was carried out from the acquired diffusion images using
the Mrtrix3 software [14]. A brain mask was drawn to restrain the fiber recon-
struction to the brain area. A spherical constrained deconvolution (6 spherical
harmonic terms) was used to create a map of orientation distribution function
(ODF) from the 32 directions of diffusion images. Cubic region-of-interest for the
initialization of the tractography were designed by overlaying the ODF map on
the T2-weighted MRI in order to identify the location of the cranial nerves with
a great precision. A probabilistic tractography algorithm was used for the track-
ing of cranial nerves from the regions of interest [5]. The minimum fiber length
required for the tracking was set to 10 mm and the number of fibers of each nerve
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to be reconstructed was set from 200 to 1000 according to the estimated nerve
diameter. The output is a list of the spatial coordinates of the fibers.

Fig. 1. Tractography fibers of the oculomotor nerve, superimposed on the T1 modal-
ity (top image). Post-operative view of the oculomotor nerve (bottom images). The
position of the tumor before resection and the nerve trajectory are highlighted.

3 Methods

3.1 Entropy

Shannon’s entropy is a measure commonly used in information theory, which
quantifies the content of information in a dataset from its distribution. For a
discrete random variable X with n classes, each class xi having a probability
p(xi) to appear, the entropy e(X) is defined as:

e(X) = −
∑

i=1...n

p(xi)log2(p(xi)). (1)

This measure can be easily applied to a vector field, by creating an orientation
histogram of these vectors. With this orientation histogram, the probability of
the vectors in the bin xi, i.e. the vectors corresponding to a specific orientation,
is calculated as:

p(xi) =
C(xi)∑

i=1...n C(xi)
, (2)

where C(xi) is the number of vectors in bin xi. Figure 2 illustrates this process
in a two dimensional case for a case of orientation disorder (Fig. 2-a: low entropy)
and of orientation coherence (Fig. 2-b: high entropy).

In a similar way, we can compute the entropy of the 3 dimensional vector field
that encodes the local direction of the tractography fibers. In this way, entropy
can be used to discriminate the fibers of homogeneous orientation, located in the
core of the nerve, from the more chaotic fibers badly impacting the visual result.
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Fig. 2. Vector fields and their associated orientation histogram. The score given in the
right column corresponds to the entropy value of the central vector calculated using a
3 × 3 neighborhood and 10 bins. The more the vector field is scattered the higher the
entropy value.

A low entropy indicates that the location contains structures of medical interest
and need to be preserved and enhanced in the visualization. The conversion of
the fibers into a vector field is described in Sect. 3.2.

3.2 Vector Field Reconstruction

To apply entropy to tractography data, we first need to obtain a vector field
of local fiber orientations. This information could be extracted from the main
eigenvector of the diffusion tensor estimated from the raw dMRI data. However,
this method is very sensitive to noise, particularly because of the low resolution
of the dMRI data (2 mm) compared to the diameter of the nerves (2–10 mm:
cf Table 1). We therefore propose to reconstruct a vector field from the fibers
themselves. These are indeed less sensitive to noise because they have undergone
numerous post-treatments during the of tractography process. Considering that
fibers are sampled more than 10 times finer than the dMRI voxel, the resolution
of the final vector field can be drastically improved.

In this sense, the fibers are first transformed into a 3D image encoding the
local fiber density information. Then, a map of the maximum intensity gradient
direction of this image is calculated using a 3× 3× 3 neighborhood according to
the method in [15]. Since the gradient orientation is normal to the actual fiber
orientation, the vectors are reoriented according to the average of the vector
products of the central voxel and its neighbors in the 3 × 3 × 3 neighborhood.
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3.3 Entropy Map

In order to produce a three dimensional entropy map E(x, y, z) that represents
the local entropy value of the fibers, each voxel of coordinates (x, y, z) in the
vector field is associated to a small cubic neighbourhood n × n × n. Considering
3D vectors, an orientation histogram in the neighborhood of the considered voxel
is computed. This is achieved in 3D by decomposing the unit sphere into patches
of equal area [8], and using the cones connecting the patches to the center of the
sphere as bins for the orientation histogram. Each vector in the neighborhood
is assigned to the appropriate bin (i.e. cone) and the computed entropy value is
assigned to the corresponding voxel (x, y, z) in the 3D entropy map E(x, y, z).

Based on Eq. (1) and (2), entropy map depends on two parameters; the num-
ber of bins n used in the histogram and the size of neighborhood considered to
build the histogram. In our case, the parameters are chosen taking into account
priors on the dMRI acquisition and the anatomy of the cranial nerves. The
number of bins corresponds roughly to the number of diffusion directions used
in dMRI acquisition and the neighborhood size is proportional to the diameter
of the considered nerve, as given in Table 1.

The resolution of the computed vector field (see Sect. 3.2) also impacts the
computed 3D entropy map. As shown by Fig. 3, working at a better resolution
makes it possible to use a neighborhood size for entropy computation smaller
than the diameter of the nerve and hence to have a low entropy at the center of
the nerve, as expected.

Fig. 3. Minimum entropy projections along the axial view for the optic nerve. Entropy
maps were built from reconstructed vector fields of resolution 2 mm for (a) and 0.2 mm
for (b).

3.4 Viewpoint Selection

Viewpoints are finally evaluated based on the information of the 3D entropy
map. For a given viewpoint, we compute a 2D projection of the entropy map
according to the specific view angle, as illustrated by Fig. 4. For each pixel of the
2D projection, we store the minimum entropy value found in the given direction.
The projections are hereafter referred to as minimum entropy projection (MEP).
The average of the entropy values in the MEP, which we call entropy score, is
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Fig. 4. Minimum entropy projection of a scene with a tumor and several nerves accord-
ing to a given viewpoint. For clarity, a mesh of the tumor and fibers (colored according
to their main direction) is represented instead of the 3D entropy map.

used as a quality metric for the viewpoint. A viewpoint with a low entropy score
is considered to display relevant information about the 3D scene.

In order to combine the different anatomical structures which compose the
scene, the raw entropy map has to undergo some pre-treatments before the
projections. First, the entropy map of each cranial nerve is min-max normalized
to give the same importance to each nerve in the scene to be visualized. Second,
to prevent the occlusion of cranial nerves by themselves, the entropy is computed
in a isotropic environment (in terms of number of pixels) to average the entropy
on the same number of pixels regardless of the cranial nerve orientation. To do
so, a bounding sphere of maximal entropy (entropy = 1) centered on the nerves
is used.

Finally, the tumor-nerve occlusion is taken into account by including the
tumor in the MEPs. A binary segmentation mask of the tumor is produced from
the T2-weighted MRI data and registered to dMRI. The tumor voxels are then
identified in the entropy map and set to the maximal entropy value (entropy = 1).
As a result and illustrated in Fig. 4, the score of entropy of the MEP where the
nerve hides the tumor and vice versa increases and the viewpoint associated is
less likely to be selected.

For every scene, the MEPs associated 60 different angles in spherical coor-
dinates (θ, φ) with θ ∈ [0, π] and φ ∈ [−π, π] are produced. A total of 60 view
angles, equally distributed over the unit sphere according to [8], are evaluated.
MEPs are ranked according to their entropy score. The viewpoints with the
lowest and highest entropy scores are considered respectively best and worst
viewpoints, as illustrated by Fig. 5 in the case of the optic nerve.
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Fig. 5. Result of the best (a) and worst (b) viewpoints selection on the optic nerve.
(c) shows the change in best viewpoint if we add a tumor (in purple). For each view,
the corresponding MEP is given. (Color figure online)

3.5 Validation

A surgical intervention planning context is simulated in order to measure the
usefulness of the viewpoint selection algorithm in clinical routine. For all the
patients included in our study, the cranial nerves of surgical interest were iden-
tified by a neurosurgeon: they correspond to the nerves that are very close to
the tumor and might be damaged during surgery. For each patient, the entropy
score of 60 viewpoints on the tumor and nerves of surgical interest is computed,
as described in Sect. 3.4. The viewpoints of minimal entropy score Emin and
maximal entropy score Emax, referred hereafter respectively as best and worst
viewpoint, were identified.

The performance of the viewpoint selection is first evaluated qualitatively
by comparing the best viewpoint selected to the viewpoint chosen for surgery.
The idea is to assess if the selected viewpoint can retrieve or surpass the surgi-
cal viewpoint. For this, we asked the neurosurgeon to systematically qualify it
as better, equivalent or worse than the surgical viewpoint. In other words, the
expert must assess whether the selected view better highlights the nervous struc-
tures in relation to the environment (other nerves and tumor) for the purpose
of tumor resection.

The global performance of the proposed viewpoint selection method can be
quantified from the appreciations given by the expert by computing the preva-
lence of better or equivalent views such as:
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prevalence =
|Sup| + |Eq|

|Sup| + |Eq| + |Inf| , (3)

where Sup, Eq and Inf respectively correspond to the patient cases where the
viewpoint associated with Emin is superior, equivalent or inferior to the surgical
viewpoint according to the expert.

Finally, the entropy scores associated to respectively Emin and Emax and
Emin and Esurg are compared on the basis of a paired sample t-test. The entropy
Esurg associated with the surgical viewpoint was estimated from its orientation,
which was repositioned in the framework of the 60 viewpoints tested in Sect. 3.4
and associated with the nearest viewpoint on the basis of a Euclidean distance
on the angles.

4 Results

Counting the occurrences of binary score results at the scale of all patients, as
explained in Sect. 3.5 enables us to assess that the viewpoint of best entropy,
compared to the surgical viewpoint, provides additional information in 60% of
the cases (17/28), a similar level of information in 28% of the cases (7/28) and
bring a lower level of information in 14% of the cases (4/28). It was not possible
for the neurosurgeon to assess three surgical cases, which is why the occurrence
was performed on a total of 28 patients and not 31 as announced in Sect. 2.2.
Overall, the view selection method provides additional or similar information
compared to the surgical viewpoint up to 88% (see Eq. 3). Regarding the fact
that the surgical viewpoint had been carefully selected by the medical expert, this
results shows that the entropy score proposed in this work is relevant in a clinical
context and meets the requirements of neurosurgeons in terms of visualization.

Fig. 6. Distribution of entropy associated with viewpoints in patients. The viewpoints
associated to Emin, Emax and the surgery are respectively annotated “best”, “worst”
and “surgical”.
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Moreover, a statistical analysis of the entropy scores associated with the
best, surgical and worst viewpoint was conducted as proposed in Sect. 3.5. The
Fig. 6, illustrates the distribution of the entropy scores Emin, Esurg and Emax for
all the patients. A paired sample t-tests shows a significant difference between
the entropy scores of the best and the worst viewpoints (p-value = 3e−13) and
between the entropy scores of the best and surgical viewpoints (p-value = 2e−06).
The best viewpoints scores significantly better than the surgical viewpoint, which
indicates that the surgical viewpoint selection can be improved by our algorithm.

Furthermore, as illustrated on Fig. 7, the best viewpoint selected with our
algorithm clearly depicts the tumor and the displaced nerves. Although occlu-
sion areas still exist, this viewpoint seems to provide the best trade-off between
showing the nerves of interest in their entirety and minimizing occlusion with
the tumor and the most disorganized fibers. Figure 7 shows the cases of three
patients with respectively medium, high and low information gains from the
surgical viewpoint as depicted by the curves on top of each row.

In the case of patient 1, the worst viewpoint is particularly unfavorable: high
entropy fibers are present in the foreground, causing occlusion of both the tumor
and the nerves. On the contrary, from the best viewpoint, the trajectory of the
nerves V, III, and NF can be clearly observed, even if the nerve III and the tumor
partially overlaps. The surgical viewpoint gives less information on the nerves
and their context because the tumor masks nerves III and V and NF is hidden
behind III, but still outperforms the worst view. The case of patient 2 is the most
interesting as regards the contribution of our algorithm. Because of the important
size of the tumor and the very close location of the nerves, very few viewpoint
enables an optimal representation of the scene. Few choices were offered for the
approach way of the tumor, resulting in a very poor visualization on the surgical
viewpoint where the huge tumor masks almost completely the nerves NF and
V. Even for this difficult case, our algorithm was able to find a viewpoint where
all the nerve and their trajectory can be clearly identified. This representation
can therefore be seen by the surgeon before the operation and used for the pre-
surgery planning. In the case of patient 3, where the gain is low, the best and
surgical viewpoint offers a very similar information on the nerve trajectory and
tumor position. In comparison, the worst viewpoint appear very poor: the tumor
and nerve NF are almost completely hidden by the most disorganized fibers of
the nerve V, making the scene very difficult to understand. In all the illustrated
cases, the entropy score seems to match correctly the qualitative evaluation of
the different viewpoints.
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Fig. 7. MEPs, anatomical reference and scene visualization for the surgical viewpoint
and the best and worst viewpoints returned by our algorithm. The difference of entropy
score between the 3 viewpoints is given through a step function. A partial transparency
of the tumor helps the visualization of the fibers inside and behind it.

5 Conclusion

In this paper, we presented a viewpoint selection framework for fibrous struc-
tures applied in the context of tumors surrounded by cranial nerves. The entropy
of the direction of the white matter fibers was identified as an interesting metric
to enhance the areas of the scene with high informative content (i.e. inside a
nerve), in accordance with the concerns of the surgery. The occlusion caused by
the tumor was taken into account. The best viewpoints selected by our algorithm
were judged equivalent or superior than the viewpoint used for surgery in 88%
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of the cases. The difference of quality score for those two viewpoints is signif-
icant. This results indicates that neurosurgeons could benefit from the present
algorithm in the choice of the surgery viewpoint. However, we acknowledge some
limitation to this work; in clinical routine, the choice of the surgical viewpoint
is restricted by anatomical considerations. Some viewpoints can not be realisti-
cally chosen, for instance viewpoints going through the face or the neck of the
patient. As a future work, we want to include such anatomical constraints in
the viewpoint selection process. We also plan to extend the use of the entropy
metric to filter tractography fibers for an enhanced visualization.
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Abstract. In the recent years, special emphasis has been placed on
visual-based gait recognition due to its unique characteristics such as
not requiring a special user action, or its long-distance recognizability.
In general, there exist two methods - model-based and appearance-based
methods - both of which come with their own advantages and disadvan-
tages. In an effort to harness the best of both worlds we create a compact
3D human model-based gait representation out of 2D images with the
help of the DensePose algorithm. We design a simple CNN and train
several instances to show that the obtained gait representation can in
fact be used to improve gait recognition accuracy. Experimental results
are based on the publicly available CASIA-B dataset.

Keywords: Biometrics · Gait recognition · DensePose Energy Image

1 Introduction

Gait recognition describes the process of recognizing a person based on body
shape or walking style. In contrast to other biometric modalities, gait possesses
unique properties which make it an attractive alternative for recognition pur-
poses. For instance, gait recognition does not require a certain user action such
as entering a password, providing a fingerprint or looking into a camera. It does
not require user cooperation or physical contact, which might be particularly of
interest in turbulent times of COVID-19. Gait data is simple to collect and most
notably gait is the only biometric modality which can be processed from very
large distances. Furthermore, gait recognition can be performed with data from
different kinds of sensors. A list of wearable sensors is provided in [7]. Apart
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from those, gait data can also be acquired with audio sensors [8] or visual-
based sensors such as cameras. This work focuses on the latter. Apart from
the above mentioned advantages and the fact that gait data is very versatile
regarding data acquisition, there are a few drawbacks. When it comes to visual-
based gait data we can differentiate between internal and external factors that
influence gait recognition. Internal factors include walking speed, weight change,
age, mood, drugs, injuries, diseases, pregnancy or physical training. External
factors include multi-gait conditions [1], clothing, shoes, walking surface, view-
point, (self-)occlusion, shadows, reflections and accessories like bags. When it
comes to visual-based gait recognition, two approaches can be found in literature
namely model-based and appearance-based approaches. Model-based methods
map the input to an underlying human-like skeleton model, while appearance-
based methods compute feature vectors based on the raw input data. One advan-
tage of model-based methods is that they can handle self-occlusion and differing
viewing-angles better than appearance-based methods, especially 3D models [5].
This comes to the disadvantage of additional costs regarding data acquisition
and computation. Contrary to this, appearance-based methods are cheap and
simple to compute. Among the most common examples of appearance-based
features is the Gait Energy Image (GEI).

In this work the main focus is to show that acquiring useful gait information
from a 3D human model for identification purposes can effectively be done with
machine learning approximations as provided by DensePose [2] and does not
necessarily require an expensive camera setup. DensePose is a machine learning
based system that is able to accurately map a 2D image of a person onto the sur-
face map of a 3D human model. Visual-based gait recognition can be partitioned
into the following sequence of processes:

a) Object Recognition: Check if a person is present in a frame.
b) Object Detection: Find all persons in a frame.
c) Instance Segmentation: Find all pixels that belong to one person.
d) Object Tracking: Track person over space and time.
e) Feature Extraction: Compute a feature vector for identification purposes.

Our work leverages the capabilities of DensePose which takes care of steps a)
to c). Furthermore, object tracking is not relevant in this work, since experiments
are conducted on data that only contains one person instance per frame. Since
we want to show that the information obtained from DensePose is indeed useful
for identification purposes, we choose a simple gait representation to conduct
our experiments on, i.e. a variation of the GEI which we call DensePose Energy
Image (DPEI).

The video data which is used in this work is taken from the publicly available
dataset CASIA-B [9]. We apply the DensePose algorithm to all input frames to
acquire 3D-like human silhouettes from the 2D images provided by CASIA-
B. A simple convolutional neural network (CNN) is utilized to transform gait
features like DPEIs and GEIs respectively into feature vectors which are used
for classification. This approach potentially allows to enjoy the advantages of
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3D model-based gait recognition as well as the rather low computational costs
of 2D appearance-based methods.

2 Related Work

Since research on gait recognition has been done for decades, there already exists
a plethora of gait representations. Appearance-based methods are based on a
person’s shape or silhouette. The best known example is the Gait Energy Image
which was originally proposed in [3]. It is computed by averaging the centered
silhouettes of a gait sequence, thereby representing a gait sequence compactly
in a single image without the complete loss of temporal information.

While 3D model-based methods tend to be more accurate, they suffer from
the problem that data acquisition is expensive. The approach in [5] for instance,
requires multiple calibrated cameras to obtain gait information from their motion
tracking algorithm.

The authors of [4] require a special camera that can record depth information.
However, they also complement their data acquisition process by utilizing a
human pose estimation algorithm.

The research in [6] goes one step further than DensePose by directly recon-
structing the 3D shape of a person from a 2D image. Even though it only works
well on high resolution images, this can potentially be used to overcome the
viewing-angle challenge in gait recognition methods.

3 Proposed Method

3.1 CASIA-B Dataset

The CASIA-B dataset [9] contains walking sequences of 124 different subjects.
Each walking sequence is captured by 11 cameras from 11 equidistant viewing
angles. Each subject is recorded ten times. Six times under normal conditions,
twice under carrying conditions and twice under changing clothing conditions.
This dataset also contains binary person silhouettes for each video, but they are
not needed in our work. From each of the 124 subjects four normal walks are
used for training and the remaining two normal walks are used for testing.

3.2 Preprocessing

We preprocess each video by applying the DensePose algorithm to each video
frame. What we get is another image where every pixel of the 2D input image
that belongs to a person is mapped onto the texture map of a 3D human model.
This means we get a silhouette-like representation where every pixel of the person
is assigned a color value that corresponds to the UV-coordinates of the texture
map space of the corresponding part of the 3D human model. Figure 1 shows
an example of how this looks like. Unfortunately, in some cases the DensePose
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algorithm annotates parts of the background as a person too which is also illus-
trated in Fig. 1. To remove those artifacts we first extract the non-zero columns
of an image. If the column indices do not form a consecutive chain, we can
infer that there exist at least two person annotations. In this case, we delete all
the columns that are not connected to the larger sequence of non-zero column
indices. Overall, this seems to work pretty good as the artifacts are rather small
compared to the real person silhouettes.

Fig. 1. Example input image from CASIA-B [9] and output of DensePose.

Additionally, the first and last ten frames of each video are discarded due
to two different reasons. Either the person is too close to the camera which
results in having the upper body cover most of the frame, or the person has
not yet entered the frame completely. After excluding these 20 frames, sets of 25
consecutive frames are created with a step size of five. After manually inspecting
the dataset we found that on average 25 frames make up a complete gait cycle.
The step size of five is chosen as a trade-off between generating enough data
for the training process and producing data with enough variation to counter
overfitting.

In case there are still frames included that barely contain a person silhouette,
i.e. frames with a silhouette pixel width below ten, a mechanism is in place to
exclude them. As mentioned above, this can occur when a person enters/leaves
the frame and potentially reduces the number of frames per Energy Image below
25, however this should happen only rarely. Only in four cases (subjects 037, 051,
109, and 120) we ended up with not enough frames after preprocessing. As this
is the first study in which we want to evaluate the potential of our approach, we
simply excluded the whole subject from the experiment. This does not influence
the evaluation as we exclude the subjects for all experiments equally.

3.3 DensePose Energy Image (DPEI)

We compute the DPEI analogously to the GEI. For each set of frames a DPEI is
generated as follows. First, the average DensePose silhouette height is computed.
Each DensePose silhouette is then scaled according to the average height and
positioned in the center of the image. Summing up the pixel values and dividing
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them by the number of frames yields the final DensePose Energy Image. GEIs
do not need to be computed separately, we just convert the DPEIs to gray-scale.

3.4 Network Architecture

The GEIs as well as the DPEIs introduced in this work represent the input of
a simple CNN. The architecture of the CNN as well as number of filters and
filter size is visualized in Fig. 2. We choose Stochastic Gradient Descent with
a learning rate of 0.001 to optimize the categorical crossentropy loss between
labels (subject IDs) and predictions. Design decisions are based on empirical
tests, without spending much time on fine tuning.

Fig. 2. Neural network architecture

4 Experimental Results

We conducted three experiments. In experiment 1 the CNN described in Sect. 3.4
is trained on the GEIs. In experiment 2 the same CNN architecture is used,
with the exception of the color channels. Since DPEIs are RGB-images the CNN
requires three color channels for training, whereas training on GEIs only requires
one channel. Experiment 3 uses the exact same model as experiment 1, this time
however we train not one but three separate models, one for each color channel
of the DPEIs. The final accuracy score is computed as a weighted average of
each of the three models.

The evaluation procedure for all experiments is the same. From the CASIA-
B dataset only the videos recorded under normal walking conditions are used.
After preprocessing we are left with 120 different subjects. The CNN performs
a 1 : N comparison where N = 120. We use 6-fold cross-validation over all six
normal walks of CASIA-B, with each fold containing four walks for training and
two walks for testing. This can be seen in Table 1 which also shows the Top-
1 accuracy for each experiment as well as the average accuracy over all folds.
The results of these initial experiments underline the potential of our approach.
Compared to the classical GEIs, our DPEIs achieve slightly higher classification
accuracies in experiment 2 and significantly higher accuracies in experiment 3.
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Table 1. Classification accuracy per fold - highest accuracy is marked in bold.

Cross-validation split Top-1 Accuracy Top-5 Accuracy

Train walks Test walks Exp. 1 Exp. 2 Exp. 3 Exp. 1 Exp. 2 Exp. 3

[’01’, ’02’, ’03’, ’04’] [’05’, ’06’] 0.887 0.898 0.933 0.967 0.958 0.969

[’02’, ’03’, ’04’, ’05’] [’06’, ’01’] 0.912 0.923 0.952 0.960 0.947 0.969

[’03’, ’04’, ’05’, ’06’] [’01’, ’02’] 0.921 0.906 0.955 0.955 0.981 0.982

[’04’, ’05’, ’06’, ’01’] [’02’, ’03’] 0.930 0.941 0.959 0.925 0.970 0.986

[’05’, ’06’, ’01’, ’02’] [’03’, ’04’] 0.912 0.946 0.953 0.978 0.988 0.994

[’06’, ’01’, ’02’, ’03’] [’04’, ’05’] 0.917 0.933 0.957 0.976 0.966 0.990

Average 0.913 0.924 0.951 0.960 0.968 0.982

5 Conclusion and Future Work

We have shown that utilizing model-based gait information harnessed from
machine learning applications such as DensePose can increase gait recognition
accuracy. Even though only simple Energy Images are used in this experiment,
a consistent improvement in recognition accuracy can be seen. In the future we
plan to work with more complex features (e.g. real 3D features not just 2D fea-
tures that are derived from a 3D model) in an effort to overcome some of the
challenges concerning gait recognition. For instance the viewing-angle problem
could be interesting in this regard or gait recognition under clothing variations.
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Abstract. In this paper, a simple IIR filter is used in system identification. Uni-
form white sequence is used as an input signal for the unknown system. A noise
white sequence signal, which is not correlated with the input signal, is added to the
systemoutput. An illustrative example is solved, and the optimization is performed
using the Simplex method by Nelder and Mead. A comparison is done to results
by a genetic algorithm and a simulated annealing algorithm. It is demonstrated,
that a gradient based algorithm gets stuck in a local minimum. The obtained result
confirms the efficiency and efficacy of this approach.

Keywords: System identification · Adaptive filtering · Convex optimization

1 Introduction

System identification is a broad field of research related to signal processing (see for
example [1–3]), and connected with the use of various optimization techniques, such as
Genetic algorithms (GA) [4, 5], Particle swarm optimization (PSO) algorithms [6, 7],
Artificial been colony algorithms (ABC) [8], Neural networks (NN) [9, 10], and adaptive
filtering using a least squares algorithm (LMS) on FIR and IIR adaptive filters [11–14].
Applications with adaptive IIR filters are discussed in [15].

For the purpose of finding the optimal parameters of the system, the adaptive filtering
technique is used, in which the parameters of the filter change at each iteration. Adaptive
filters are divided into filters with finite impulse response (FIR) and filters with infinite
impulse response (IIR). It has been found that with the same number of coefficients IIR
filters have much better performance than FIR filters [16, 17]. In addition to this advan-
tage, IIR filters have two important shortcomings: 1) When optimizing the coefficients
of the IIR filter, the objective function (error function surface) can be multimodal, i.e.
the search for a global minimum is necessary. 2) During the adaptation process, the
IIR filter may become unstable [18, 19]. The second shortcoming can be overcome by
limiting the parameter space to an appropriate range of values. The first shortcoming
is related to the fact that with a multimodal objective function, gradient-based methods
usually finish the search process into local minima and cannot reach the global mini-
mum. For this reason, metaheuristics and global optimization algorithms such as Tabu
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search (TS), Simulated annealing (SA), Differential evolution (DE), Genetic algorithms
(GA), Particle swarm optimization (PSO), artificial bee colony (ABC) algorithms, and
other evolutionary algorithms are used [17, 20–24]. In addition to these algorithms, the
derivative-free method by Nelder and Mead [25] can also be used successfully.

A Genetic algorithm is used in [16] for multi-modal error optimization. Its negative
features are the high computational complexity and the slow convergence. A hybrid
LMS-GA having better performance is proposed in [2]. It is characterized by a simple
implementation, less sensitivity to the parameters selection, ability to find out the global
optimal solution, and faster convergence. The slow convergence and the poor efficacy
are the main drawbacks of many evolutionary algorithms, as well as of SA algorithm.
TS metaheuristic can have higher accuracy but its implementation is more complex.

In this paper, the system identification is realized through the technique of adaptive
filtering, and the optimization is performed by means of a solver implementing the
Nelder and Mead’s simplex method. A solver based on a genetic algorithm and a solver
based on the simulated annealing algorithm were used for comparison. Finding a local
optimum using a gradient-based method is also shown. The obtained result confirms the
advantages of the used approach.

The paper is organized as follows: Sect. 2 presents the problem formulation and the
algorithm for its solution. An illustrative example is described in Sect. 3. The experi-
mental results are presented in Sect. 4. Finally, the results obtained are discussed in the
Conclusion.

2 Problem Formulation and Algorithm for Solving

2.1 Problem Formulation

The IIR filter equation has the form:

y(k) =
n∑

i=0

aix(k − i) −
m∑

j=1

bjy(k − j) (1)

where y(k) is the output signal at time step k, and x(k) is the input signal at time step k.
Respectively x(k − i) and y(k − j) denote the input and the output signals i and j steps
before the time step k. The coefficients a0, a1,…, an; and b1,…, bm; are parameters that
have to be calculated. By m (≥n) is denoted the filter order.

The transfer function is the relationship between the input and output signals. For
discrete signals Z-transform is used and the IIR filter transfer function is expressed by:

Hf (z) = A(z)

B(z)
= a0 + a1z−1 + . . . + anz−n

1 + b1z−1 + . . . + bmz−m
, (2)

The System identification setup is shown in Fig. 1. The unknown system (unknown
plant) has a transfer function Hs(z) and an adaptive filtering algorithm is applied to
calculate the coefficients of IIR filter used to model the system.

The transfer function of the unknown system is expressed in a similar way:

Hs(z) = S(z)

V (z)
= s0 + s1z−1 + . . . snsz−ns

1 + v1z−1 + . . . vmsz−ms
, (3)
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The coefficients s0, s1,…, sns; and v1,…, vms; are system parameters that have to be
calculated during the optimization process. By ms (≥ns) is denoted the system order.

Fig. 1. Setup of adaptive IIR filtering for system identification

Let the filter coefficient vector is denoted by

wf = [aTbT]T = [a0, a1, . . . , an,−b1, . . . − bm]T (4)

and the system coefficient vector is denoted by

ws = [sTvT]T = [s0, s1, . . . , sns,−v1, . . . − vms]T (5)

If the signal vector is denoted by ϕT(k) = [x(k),…, x(k − n), y(k − 1),…, y(k − m)],
Eq. (1) can be written in the form of a linear regression:

y(k) = wT
f (k) · ϕ(k) (6)

Let the noise signal be denoted by p(k) and the system output - by ys(k). In this paper
an output error formulation is considered. The error signal e(k) has the form:

e(k) = d(k) − y(k), (7)

where

d(k) = ys(k) + p(k). (8)

Alternative error formulations are discussed in [2, 26].
Here is formulated a time-averaged objective function

f (ws) = 1

N

N∑

k=1

(d(k) − y(k))2 (9)

for the system identificationwith adaptive filtering using the above setup.ByN is denoted
the data length (the number of time steps). Here f (ws) has to be minimized to obtain the
optimal system parameters ws. When the filter order m is smaller than the system order
ms, the optimization problem can become multimodal [26].

Based on this formulation an adaptive filtering algorithm, similar to that one in [2]
is used. The filter coefficients are adapted (updated consecutively) and for each fixed wf
vector the system parameter vector ws is optimized minimizing the objective function
(9).
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2.2 Flowchart of the System Parameters Optimization Algorithm

The flowchart of adaptive filtering algorithm is presented in Fig. 2:

Fig. 2. Flowchart of adaptive filtering algorithm

2.3 Filter Coefficients Adaptation Algorithm

To update the filter coefficients a procedure similar to that one, described in [26] is used.
The formula for filter coefficients updating is:

wf (k + 1) = wf (k) + αF−1(k + 1) · ϕT(k) · e(k), (10)

which is known as “recursive Gauss-Newton algorithm” [26, 27]. Here F is the estimate
of the Hessian matrix of f (wf ). The positive scalar α is the step size which controls the
algorithm convergence rate. Also the so called “forgetting factor” λ = 1 − α is used in
the formula for updating the estimate of Hessian matrix:

F(k + 1) = λF(k)α · ϕ(k) · ϕT(k). (11)
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It is assumed that λ ∈ [0.9 1). The algorithm is initialized setting F(0) to be identity
matrix: F(0) = I. In this study is assumed that λ = 0.9; α = 0.1. The step size should
be chosen sufficiently small, so that the filter coefficients adapt slowly. The algorithm
for filter coefficients adaptation will converge if F is always positive definite and if the
filter is stable, i.e. the poles of B(z) always should lie inside the unit circle [26].

3 Illustrative Example

To illustrate the system identification by the adaptive filtering the following example
corresponding to the setup in Fig. 1 is used:

Hs(z) = s0 + s1z−1

1 + v1z−1 + v2z−2 , (12)

and

Hf (z) = a0
1 + b1z−1 (13)

The system input signal is a uniform white sequence having values in the interval
[0, 1]. The noise is also a white sequence, not correlated with the input signal and the
SNR is 40 dB.

The data length used to calculate (9) is N = 1000. The filter order is smaller than
the system order and the objective function is multimodal. Applying the above adaptive
filtering algorithm the global optimal solution was found.

4 Test Results

The formulated optimization problem was solved initially by means of a Genetic algo-
rithmwith standard default options inMATLAB “Optimization toolbox”, and with 2000
generations.

The initial filter parameters were:

a0 = −0.4239; b1 = −0.8506;
The best obtained solution after 10 runs of “ga” solver is:

f (ws) = 0.22786590139436105 E − 3.

s0 = −0.1291764026606757, s1 = −0.1857579753212366,

v1 = −1.1632084380302095, v2 = 0.2699488019212094;
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Then the problem was solved by the Simulated annealing algorithm in MATLAB
“Optimization toolbox”, starting with the same filter values.

The “simulannealbnd” solver obtained the following solution after 2000 iterations:

f (ws) = 0.3859736161248466 E − 3

s0 = 0.0500009309144380, s1 = −0.4761473455691334,

v1 = 1.1378140941588529, v2 = 0.2574377307374864;
Then lower and upper bounds on the system parameters were imposed, and the

problem was solved by a gradient-based method (Interior point method) by “fmincon”
solver.

The lower and upper bounds were:

LB = [−0.5, −1., −1.5, 0.], UB = [1. 0. 0. 1.];
In 38 iterations the following solution was obtained:

f (ws) = 0.21969251311102905 E − 3

s0 = 9.305345179303844E − 9, s1 = −0.1899447651947604,

v1 = −0.2288134708171158, v2 = 0.07538157888894959;
This solution was locally optimal.
Then the problem was initially solved by the Nelder & Mead method [25]

(“fminsearch” solver) without any constraints. After 384 iterations the following
solution was obtained:

f (ws) = 0.2054162721878904 E − 3

s0 = −0.10766247565753506, s1 = −0.3373361559811813,

v1 = −0.8373482273289539, v2 = −0.0118407567339429;
The search process is shown in Fig. 3:



System Identification Applying the Method by Nelder and Mead 77

Fig. 3. Initial optimization of system parameters by means of Nelder & Mead method

The results from initial optimization by different solvers are presented in Table 1.

Table 1. Test results from initial optimization by 4 different solvers

Solver f (ws) Iterations System parameters

s0, s1 v1, v2

ga 0.22786590 E−3 2000 s0 = − 0.129176
s1 = − 0.185758

v1 = − 1.163208
v2 = 0.269949

simulannealbnd 0.38597362 E−3 2000 s0 = 0.050001
s1 = − 0.476147

v1 = 1.137814
v2 = 0.257438

fmincon 0.21969251 E−3 38 s0 = 9.3053 E–9
s1 = − 0.189945

v1 = − 0.228813
v2 = 0.075382

fminsearch 0.20541627 E−3 384 s0 = − 0.107662
s1 = − 0.337336

v1 = − 0.837348
v2 = − 0.011841

After that the 10 consecutive times of filter parameter adaptation and optimization
of the system parameters, the system parameters were optimized. The obtained results
are summarized in Table 2 and Table 3.
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Table 2. Test results from filter parameters adaptation

Filter
adaptation №

Filter parameters Filter adaptation
№

Filter parameters

a0 b1 a0 b1

1 0.07450850 0.00000000 6 −0.00903115 −0.00065132

2 0.01081365 0.00093356 7 −0.00930555 −0.00065463

3 0.00650676 0.00052281 8 −0.00968732 −0.00066194

4 0.00252375 0.00021969 9 −0.00998623 −0.00067347

5 −0.0035148 −0.00022428 10 −0.01012415 −0.00068159

Table 3. Test results from system parameters optimization

System optim. № Iterations System parameters f (ws)

s0 s1 v1 v2

1 467 0.01159215 −0.03564219 −0.01078790 0.05755069 0.2051056093787718 E−3

2 392 −0.06404563 −0.03707844 0.06288819 0.06160814 0.2049287784228326 E−3

3 294 −0.06841385 −0.03751504 0.06716681 0.06200449 0.2049205843211464 E−3

4 223 −0.07245369 −0.03795820 0.07112433 0.06238915 0.2049131296288906 E−3

5 234 −0.07857874 −0.03870096 0.07712497 0.06300324 0.2049020432504497 E−3

6 259 −0.08417464 −0.03945466 0.08260678 0.06359603 0.2048921312576315 E−3

7 223 −0.08445302 −0.03949383 0.08287945 0.06362616 0.2048916438430020 E−3

8 202 −0.08484032 −0.03954866 0.08325881 0.06366820 0.2048909664998534 E−3

9 201 −0.08514356 −0.03959188 0.08355583 0.06370122 0.2048904367127861 E−3

10 177 −0.08528349 −0.03961191 0.08369286 0.06371654 0.2048901923928147 E−3

The final error was smaller than the given tolerance.
The last two optimizations of the system parameters are shown in Fig. 4 and Fig. 5.
The last obtained output error values are very close and the correspondent error

gradient is very small.
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Fig. 4. Optimization of system parameters № 9

Fig. 5. Final optimization of system parameters

5 Conclusions

In this paper the system identification is realized through adaptive filtering, and the sys-
tem parameters optimization is performed by means of the Simplex method by Nelder &
Mead. The initial results, obtained by a Genetic algorithm and by a Simulated annealing
show that the performance of the Nelder & Mead method is better. The property of this
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method to self-accelerate allows it to fast overcome the plateaus with solutions, having
almost one and the same value of the objective function. The result obtained by the
gradient based Interior point method illustrate that the gradient type methods can fall
into the trap of locally optimal solutions. In contrast the Nelder & Mead method is able
to avoid the locally optimal solutions in the presented illustrative example. This result
is encouraging and confirms the efficiency and efficacy of the used approach.
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Abstract. An event-based looming objects detection algorithm for
asynchronous event-based cameras is presented. The algorithm is fast
and accurate both in the detecting the correct number of objects as well
as whether the objects are looming.

1 Introduction

In perception, looming is an optical phenomenon in which the size of a given
object rapidly expands [18]. Looming often occurs when an object moves closer
to the viewer. Fast and accurate looming detection is essential both in nature
and robotics.

There are many looming object detection algorithms developed for conven-
tional frame-based cameras (for example, [4,5,7,14,15,20]). However, conven-
tional cameras are limited by their frame rates and also produce redundant data
for parts of the scene that remain static. The Dynamic Vision Sensor (DVS)
is designed based on the human retina [12]. The DVS is an event-based cam-
era which asynchronously transmits events only when significant changes in the
log-luminance of individual pixels are detected. There is no “frame” to collect
events over a time interval, and no data is transmitted when there is no signifi-
cant change. These cameras can react to events faster while their electrical and
computational power requirement is lower.

The goal of this paper is to provide a real-time and automatic solution for
the problem of detecting multiple looming objects. Optical flow is first computed
using an event-based algorithm [17]. Clustering techniques are adapted for asyn-
chronous optical flow events to identify potential objects, and the optical events
for each objects are analyzed to determine if the object is looming. Our cluster-
ing algorithm does not require a priori assumptions on the shapes and number
of objects and can adapt to changing number of moving objects in the scene. In
addition, our algorithm can run on modest hardware without parallel processing.

2 Preliminaries

2.1 Event-Based Cameras

The Dynamic Vision Sensor (DVS) is a neuromorphic camera which behaves
similar to the human visual system by modeling the human retina [12]. Unlike
c© Springer Nature Switzerland AG 2022
G. Rozinaj and R. Vargic (Eds.): IWSSIP 2021, CCIS 1527, pp. 82–95, 2022.
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frame-based cameras which collect frames and transmit them synchronously at a
fixed frame rate, the DVS asynchronously transmits events as soon as each event
occurs. When there are no changes in the log-luminance in the scene, the DVS
produces no output. When there is a significant change in the log-luminance
of any pixel, the DVS asynchronously reports an event which is described by
the coordinates, the timestamp, and the polarity (+/−) of the change. The
magnitude of the change is not reported. In the DVS, each pixel can adapt to
its own intensity because they are independent from the other pixel sensors.
As a result, the DVS has a very high dynamic range. A good survey on the
event-based cameras and their applications can be found in [6].

2.2 Event-Based Optical Flow

Ridwan and Cheng [17] presented an event-based optical flow algorithm that
detect movements by identifying correlations among events. When objects move
in a scene, the log-luminance changes occur mostly at the object boundaries. The
pixels of a boundary edge will produce the same polarity along the direction of
the motion over a period of time. Therefore, finding events of the same polarity
in close proximity in time and space might be an indication of the motion.

The output of this algorithm is a stream of events containing the time, loca-
tion and direction in eight compass directions (�v0, . . . , �v7). For each DVS event
that arrives, the algorithm searches the eight neighbours of the location for a
matching recent event with the same polarity. Experimental results showed that
each event can be processed in around two microseconds with very modest hard-
ware. More details of the algorithm can be found in [17].

2.3 Event-Based Object Clustering and Tracking

Barranco et al. presented a method [1] based on mean shift clustering and
adapted this algorithm to process asynchronous events. To reduce the required
computation time, this method processes events in parallel and in small packets
of a few hundred events at a time. Using Kalman filters, this method can track
multiple targets [11]. High temporal resolution results in accurate velocity mea-
surements. Despite the advantages of using this method, it does require parallel
processing to be feasible for real-time applications.

3 Single Object Looming Detection

In this section, we assume that there is only a single moving object in the scene.
We describe an algorithm to detect if this object is looming, and present exper-
imental results demonstrating its effectiveness. The input to our algorithm is
the optical flow event stream from the event-based optical flow algorithm [17].
Object boundaries are identified by grouping similar optical flow events—if their
angles differ by 45 degrees or less.. The boundary obtained consists mostly of
the leading and trailing edge of the moving object. Object movement is classified
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into three types: moving towards the viewer (looming); moving away from the
viewer; or moving sideways. The boundary of a looming object moves away from
the center of the object. When an object moves away from the viewer, its bound-
ary moves towards the center. When an object moves sideways, the leading edge
of the object moves away from the center while the trailing edge moves towards
the center. The arithmetic mean of the locations of all boundary optical flow
events is computed to obtain an interior point. Let �v be the vector associated
with the direction in the reported optical flow event, and �u be the vector from
the interior point to the event on the boundary. If �u · �v > 0, we conclude that �v
is pointing away from the interior (Fig. 1).

Fig. 1. Determining if an optical flow event is pointing away from the interior point or
vise versa using dot product.

Optical flow events are collected into “pseudo-frames” of a certain length,
and if the number of events pointing away from the interior is more than twice
the number of events pointing towards the interior, our algorithm reports that
a looming object is detected in the scene. To reduce the effect of noise, looming
should only be reported if there is a significant number of vectors pointing away
from the interior compared to the number of pixels in the scene. In our experi-
ments, looming is reported only if the number of vectors pointing away from the
interior is at least 0.5% of the total number of pixels in the scene.

The single object looming detection algorithm is shown in Algorithm 1. The
algorithm produces an output event only if there is a looming object detected.
Otherwise no output is produced. A queue Q(x,y) is used at each pixel to store
recent optical flow events. The thresholds required are the length of the pseudo-
frame L, and time thresholds Tlow and T such that only those events between
Tlow and T seconds before the current event are considered recent. A set S is
used to collect optical flow events into a pseudo-frame and a global variable
last is used to record the timestamp of the last pseudo-frame. On average the
complexity is constant for each event.

3.1 Experimental Results

We have performed experiments on our looming object detection algorithm on
various scenarios. We have used simple objects with the DVS for these exper-
iments. For visualization, an optical flow event is shown as a blue line moving
towards a red dot. A data set was created to test the effectiveness of the algo-
rithm by using thd DVS to capture motion in a scene. A brief of the description
of the data set used is given below.
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Algorithm 1. Looming detection algorithm.
procedure Looming(x, y, t, �v)

Remove all events (x′, y′, t′, �v′) such that t − t′ > T from the front of Q(x,y).
Add (t, �v) to the back of Q(x,y)

boundary ← false
for each (x′, y′) an 8-neighbour of (x, y) do

Search in Q(x′,y′) for an event e′ = (x′, y′, t′, �v′) such that Tlow < t − t′ ≤ T

AND �v and �v′ are similar
if NOT found then

boundary ← true
end if

end for
if NOT boundary then

return
end if
S ← S ∪ {(x, y,�v)}
if t − last > L then

(cx, cy) ← centroid of all events in S
pos, neg ← 0, 0
for each (x, y,�v) ∈ S do

d ← ((x, y) − (cx, cy)) · �v
if d > 0 then

pos ← pos + 1
else if d < 0 then

neg ← neg + 1
end if

end for
if pos > 2 × neg AND pos > 0.005 × total pixels then

Report LOOMING at time t
end if
S ← {}
last ← t

end if
end procedure

Round looming object: a round object is moving towards the viewer
(Fig. 2(a)).

Round object moving sideways: a round object is moving from right to left
(Fig. 2(b)).

Square looming object: a square object is moving towards the viewer
(Fig. 2(c)).

Square object moving sideways: a square object is moving from left to right
(Fig. 2(d)).

For these experiments, the constants and the thresholds we have chosen
experimentally are shown in Table 1. The results of our experiments are shown
in Table 2.
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Fig. 2. (a) A round looming object. (b) A round object is moving sideways. (c) A
square looming object. (d) A square object is moving sideways.

Table 1. Values of all thresholds and constants for all experiments.

Name Value Unit

COLS 180 Pixels

ROWS 190 Pixels

Timestamp threshold (T ) 25,000 µs

Low timestamp threshold (Tlow) 100 µs

Length of pseudo-frame (L) 25,000 µs

4 Multiple Object Looming Detection

When there are multiple objects in the same scene, our looming detection algo-
rithm (Sect. 3) fails to detect the looming objects. Our goal in this section is to
separate the events in the scene into multiple objects using clustering, and then
apply our single object looming detection algorithm to each segmented object.

Clustering algorithms generally require a set of data points to group them
into different clusters. However, the optical flow event stream is asynchronous.
New events can arrive at any time and old events also need to be removed.
Some algorithms solve this problem by using pseudo-frames. Although there
are some real-time clustering algorithms adopted for event-based data points
[1,13], they required parallel processors or special FPGA hardware for real-
time performance. Only the coordinates of the optical flow events are used for
clustering. The label of each point along with the centroid of each cluster is
reported by the clustering algorithm. We also use L as a parameter for the
algorithm to adjust the length of pseudo-frame.
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Table 2. Results of single looming object detection.

Round
looming
object

Round object
moving
sideways

Square
looming
object

Square object
moving
sideways

Number of events 668530 672201 850175 792649

Video length 3.92 s 2.81 s 5.10 s 10.07 s

Run time/event 1.69µs 2.82µs 2.27µs 2.59µs

Decision Looming Not looming Looming Not looming

4.1 K-Means Event Clustering

The K-means algorithm [9] is a well-known clustering algorithm. As the number
of clusters is not known in advance, the K-means algorithm is executed with
different values of K = 1, . . . , M , where M is the maximum number of clusters
to consider. A “compactness” measure C is used to compare different outputs
produced by clustering algorithms with different values of K:

C =
n∑

i=1

‖xi − cl(xi)‖2, (1)

where l(xi) is the label assigned to event xi, ‖xi − cl(xi)‖ is the distance between
each data point xi and each cluster’s centroid cl(xi). By plotting the compactness
as a function of K, we can find the “elbow point” where the rate of reduction
changes drastically [8,10,21]. The elbow point is a good candidate for the number
of clusters. Figure 3 shows the elbow point and the change in the compactness
measure as the number of clusters increases. There is no consensus on a mathe-
matically rigorous definition of the elbow point [10]. The Kneedle algorithm [19]
had been proposed for finding the elbow point, but experiments show that it
was not well-suited for the data arising in our application.

4.2 The Elbow Method

Heuristically, the elbow point is the point at which the angle of the curve is
the greatest (Fig. 3). Only those points in which the decrease in compactness is

Fig. 3. The elbow point method.
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greater than the average decrease over all values of K are considered, and the
point with the largest angle is reported as the number of clusters (Algorithm 2).
In the algorithm, M is the maximum number of clusters to consider, and Ci is
the compactness measure when the K-means algorithm is used to cluster the
events into i clusters.

Algorithm 2. The elbow method
procedure Elbow(M, C1, . . . , CM )

avg = C1−CM
M−1

βmax = 0
for i = 1, . . . , M − 1 do

Δi = Ci+1 − Ci � Note: Δi < 0
end for
for i = 1, . . . , M − 2 do

if Δi ≤ Δi+1 AND −Δi ≥ avg then

β = arccos
(

(1,Δi)·(1,Δi+1)

‖(1,Δi)‖·‖(1,Δi+1)‖

)

if β > βmax then
βmax = β
K = i + 1

end if
end if

end for
return K

end procedure

4.3 Sequential K-Means Clustering

Sequential K-means clustering is a variation of the standard K-means cluster-
ing algorithm that processes one data point at a time and update the clusters’
centroids at each step [3]. centroids at a particular time. When a new data point
x is received, the algorithm chooses the centroid ci closest to x and adds x to
the corresponding cluster. The centroid ci is updated by

ci+1 = ci +
1
n

(x − ci) , (2)

where n is the total number of data points assigned to that cluster, including x.
For each data point, the number of operations required is proportional to

K because of the search for the nearest centroid. As a result, the update can
be done very quickly for each point, and it is even feasible to perform K-means
clustering for multiple values of K simultaneously. The compactness measure for
each value of K can be used by the elbow method to determine the appropriate
number of clusters.
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4.4 Cluster Merging

When objects are too large, the clustering algorithms may fail to detect the cor-
rect number of clusters by dividing them into separate clusters. This is because
these algorithms try to minimize the average squared distance between each data
point and the centroid of the clusters.

As a solution to this problem, we can merge these clusters to form a sin-
gle cluster. Clusters that are connected as 8-neighbours are merged into one
connected component as a new cluster.

5 Experiments and Results

Tje different proposed clustering algorithms described in Sect. 4 are evaluated.
The algorithms are tested with event streams generated from both captured and
simulated scenarios. The algorithms are tested with data sets shown in Table 3.
The captured event streams were obtained with the DVS specified in Table 4.

Table 3. Captured data sets.

Data set Description Number of polarity
events

Number of optical
flow events

Number of
pseudo-frames

1 A single ball
is falling

14900 9074 18

2 Two round
objects are
moving
sideways

113240 81214 291

3 A round
object is
looming

79850 52786 73

4 Two balls
are rolling
sideways

22026 14831 18

5 Four round
objects are
looming

40900 26302 35

All algorithms were implemented in C++ and the OpenCV library [2]. To
evaluate the correctness of the cluster detection algorithms we reported the num-
ber of pseudo-frames in which the correct number of clusters was detected. To
evaluate the quality of each detected cluster, we manually checked the labelling
in each pseudo-frame. We manually labelled the looming results of each pseudo-
frame and we compared them with the results generated by the algorithms. A
looming object detected correctly is a true positive, while a true negative occurs
when the algorithm produce no output when there are no-looming objects. The
commonly used Recall and Precision measures [16] are computed.
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Table 4. The DVS specifications used for experiments.

Name Value

Model DVS 240 B

I/O USB2.0

Power consumption Low/high activity: 30/60mA @ 5 VDC

Number of columns (COLS) 180 pixels

Number of rows (ROWS) 190 pixels

The figures show the detected clusters in different colours and depict the
centroid of each cluster by a dot surrounded by a circle with the same colour
of its cluster. The detected looming clusters are shown as yellow circles on their
centroids (Fig. 4).

Fig. 4. (a) five detected clusters. (b) Five detected looming clusters

In Data Set 1, a ball is falling in front of the camera. The goal of this experi-
ment is to determine whether the clustering algorithms is capable of detecting a
single cluster. Figure 5 shows the optical flow events and output of clustering for
one of the pseudo-frames of this data set. All of the results of experiments on cap-
tured data sets are reported in Table 5. Both sequential and OpenCV’s K-means
algorithms failed to detect the correct number of clusters in all pseudo-frames.
Overall applying the merge algorithm enhanced the results drastically. Using
the elbow method and sequential K-means algorithm, only five pseudo-frames
have an the incorrect number of detected clusters. In this data set the sequential
K-means is at least 54 times faster than OpenCV’s K-means and 10 times faster
than the mean shift algorithm without parallel processing (Sect. 2.3).

In Data Set 2, two round objects are moving sideways. The goal of this
experiment is to compare the accuracy of algorithms when objects move straight
versus when objects are rolling (Data set 6) in front of the camera. Figure 6
shows the optical flow events and clustering output for a pseudo-frame of this
data set. All algorithms were able to detect the correct number of clusters in all
pseudo-frames. The fastest algorithm is sequential K-means which on average
took about 0.6 ms to process each pseudo-frame.
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Fig. 5. A single ball is falling.

Fig. 6. Two round objects are moving sideways.

In Data Set 3, a ball is approaching the camera. We moved the ball very close
to the camera to see how the algorithms can perform when the dimensions of the
objects are large or when they are close to the camera. None of the algorithm
was able to detect the correct number of clusters. The reason is that when the
object is so close to the camera, the algorithms separate it to multiple clusters to
decrease the average squared distance from each event to the computed centroid.
Figure 7 shows a pseudo-frame in this situation. Applying the merge algorithm
enhanced the results. Figure 8 shows a pseudo-frame in which the merge algo-
rithm was able to merge multiple clusters to a single cluster. However, due to
both noises and lack of events in some parts of the object, the clustering algo-
rithms were not able to detect a single cluster even by using the merge algorithm.
The sequential K-means algorithm is again the fastest method and processed
each pseudo-frame about 60 times faster than OpenCV’s K-means algorithm.

Fig. 7. A single looming ball which is incorrectly detected as two clusters. The merge
algorithm was not applied.



92 B. Kamranian and H. Cheng

Fig. 8. Single ball is looming and detected as a single cluster by applying the merge
algorithm.

For Data Set 4, two balls are rolling sideways. Figure 9 shows a pseudo-frame
of the optical flow and clustering output of this data set. The algorithms were
able to detect the correct number of clusters in most pseudo-frames. Applying
our merge algorithm enhances the results further.

Fig. 9. Two balls are rolling sideways.

For Data Set 5, the camera is moving toward four round objects in a solid
white background. Figure 10 shows the optical flow events and clustering output
for a single pseudo-frame of this case. Our algorithm was able to detect the
correct number of clusters, though the recall rate is low because the camera is
approaching the objects from an angle and it classifies the motion as sideways
instead of looming.

Fig. 10. Four round objects are looming.
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Table 5. The results of experiments on captured data sets.

Dataset Clustering

methods

Correct

number of

clusters (%)

Looming correctness (%) Processing

time/Pseudo-frame (ms)
Precision Recall

1 K-means

88.88

72.22 100.00 28.125

Seq.

K-means 72.22

66.66 100.00

0.543

2 K-means 100.00 97.93 100.00 26.944

Seq.

K-means

100.00 96.90 100.00

0.693

3 K-means

56.16

95.71 91.17 41.596

Seq.

K-means 41.09

98.59 95.89

0.799

4 K-means 100.00 88.88 100.00 34.514

Seq.

K-means

100.00 80.55 100.00

0.632

5 K-means

25.71

100.00 7.14 36.391

Seq.

K-means

100.00 100.00 5.71

0.667

The results of the experiments indicate the advantages of using sequential K-
means algorithm compared to other methods. This is a real-time algorithm, and
does not require any parameter adjustment. It can automatically adapt itself
in all experiments cases to changing number of objects and movement types.
Compared to other clustering algorithms, it is much faster and can process each
pseudo-frame in less than 0.8 ms depending on the size of the input. This is
at least 30 times faster than OpenCV’s K-means algorithm. In addition, the
sequential K-means algorithm achieved the highest accuracy in cluster detection
compared to other algorithms in most data sets.

6 Conclusion

We presented a real-time looming object detection algorithm using event-based
camera. It does not require any a priori knowledge of the number of objects in the
scene and can adapt to changing number of objects. The proposed algorithm is
significantly faster than the conventional K-means algorithm, and the accuracy
for looming object detection is similar.

While our algorithm performs very well when objects are looming directly
towards the camera, recall rate is low when the objects are looming towards the
camera at an angle. Future works will address this limitation.
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Abstract. Over the last decades, images have become an important source of
information in many domains, thus their high quality has become necessary to
acquire better information. One of the important issues that arise is image denois-
ing, which means recovering a signal from inaccurately and/or partially measured
samples. This interpretation is highly correlated to the compressive sensing the-
ory, which is a revolutionary technology and implies that if a signal is sparse
then the original signal can be obtained from a few measured values, which are
much less, than the ones suggested by other used theories like Shannon’s sam-
pling theories. A strong factor in Compressive Sensing (CS) theory to achieve the
sparsest solution and the noise removal from the corrupted image is the selec-
tion of the basis dictionary. In this paper, Discrete Cosine Transform (DCT) and
moment transform (Tchebichef, Krawtchouk) are compared in order to achieve
image denoising of Gaussian additive white noise based on compressive sensing
and sparse approximation theory. The experimental results revealed that the basis
dictionaries constructed by the moment transform perform competitively to the
traditional DCT. The latter transform shows a higher PSNR of 30.82 dB and the
same 0.91 SSIM value as the Tchebichef transform. Moreover, from the sparsity
point of view, Krawtchouk moments provide approximately 20–30% more sparse
results than DCT.

Keywords: Compressive sensing · Image moments · Denoising · Tchebichef
moments · Krawtchouk moments · DCT

1 Introduction

Compressive Sensing is an important contribution for the reason that it overthrows the
traditional sampling theory of Shannon andNyquistwhere in order to reconstruct a signal
without error the sampling rate should be at least twice the signal’s maximum frequency
component. Compressive sensing as introduced by Donoho et al. [1], Candes et al. [2]
gave the potential to reconstruct a full signal even if it is sparse. With these results over
the past decades has been done a significant effort in the development of techniques
in many domains around CS and sparse representation theory because it affects many
domains from the perspective of storage to the recovery of corrupted information despite
the structure of the signal. With the introduction of this theory many image processing
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and computer vision problems are affected not only in the compression but to denoising
or inpainting of images. Besides CS-based denoising or inpainting, there is a variety of
research work that has been done in image watermarking [3], image hiding [4].

In general CS and sparse representation theory makes two conjectures: that any
natural image can be sparse in a basis or a dictionary, constructed by Fourier, wavelet,
DCT, or any other transforms, where only a few transform coefficients are significant
and the rest are zero or negligible, and that the measurement basis is incoherent with the
basis, which the image is sparse [5].

In image denoising, the techniques can be divided into two groups: spatial-domain
and transform-domain methods. In the former category are included methods based on
the Perona-Malik equation, which brings good noise reduction and edges preservation
[6], or the bilateral filter technique, which acquires the original image with noise reduc-
tion [7]. The transform-domain denoising methods include some modern algorithms
arising from CS and sparse representation theory where the sparsity of the signal is
exploited through some transform. For example, Strack et al. [8] proposed a new geo-
metric multiscale transform Curvelet and in comparison with wavelet, it achieved better
results in image denoising.

There is a huge variety of implementations that have been proposed around the
above theory, from the different transformations in the basis dictionary to the creations
of new algorithms that are applied to several data structures for different domains. In
this paper, the moment transform is proposed in CS and sparse representation theory for
the description of images in a denoising task, in comparison with classic transformation
Discrete Cosine Transform (DCT). More specifically, two different moment families are
used the Tchebichef and Krawtchouk moments. The former moment family is known
for its noise invariance and later one for its capabilities to describe a signal locally.

Themain contribution of this paper is the proposal for thefirst time, themoment trans-
form in the denoising problem based on CS and sparse representation theory, towards
advantaging from the noise tolerance and local description of the examined moment
families. From the experimental results, it is proven that moment transform brings more
sparse results and thus more compressible than DCT according to the increase of noise
level, although brings similar reconstruction quality.

The rest of this paper is organized as follows: Sect. 2 presents the theory of transform-
based compressive sensing. Section 3 describes the moment transform, with emphasis
on the Tchebishef and Krawtchouk moments used in this work, along with the pro-
posed methodology. The proposed moment-based compressive sensing methodology is
described in Sect. 4 and experimental results are discussed in Sect. 5. Finally, Sect. 6
concludes this work.

2 Transform-Based Compressive Sensing

The sampling technique in CS theory gives the potential to sample a signal at rates pro-
portional to the amount of information in the signal by exploiting the sparsity properties
of signals. Considering that a signal e.g. an image or can have a sparse representation
when expressed w.r.t. some basis or a dictionary Ψ ∈ R

n×m. This dictionary shows a
complete structure where n = m, or an overcomplete structure where n < m. Then a
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signal x can be represented as a linear combination of basis Ψ atoms, with a ∈ R
n×m

being the projection coefficients of signal x in Ψ domain, expressed in as:

x = �a, (1)

then the compressed signal y is derived as follows:

y = �x = ��a = Da. (2)

If the processed signal is contaminated with noise or it is corrupted with irrelevant
content (2) can be expressed as:

y = Da + z. (3)

In (3) z represents noise measurements of any type and D is the sensing matrix.
The meaning of compression is that signal y will be smaller than the original signal x.
Thus the task is to recover x based on y, D, and Ψ . The sensing matrix D guarantees
the signal sparsity or the separation between noise and signal content and must satisfy
the Restricted Isometry Property (RIP) for any k-sparse signal x as proposed by [9] and
expressed as:

(1 − δ)‖a‖2 ≤ ‖Da‖2 ≤ (1 + δ)‖a‖2, (4)

where δk ∈ (0, 1) is the Restricted Isometry Constant (RIC).
The above theory highlights the importance of the transformation selection that will

describe the image in a more sparse form. The intrinsic properties of the signals may
not be suitably interpreted by all transformations, which makes sparsity not feasible.
The transformation selection as the basis dictionary of the signal for different tasks is
a topic that still concerns the research community. Ansari et al. [10] implemented a
comparison between various transformations e.g. Wavelet, Curvelet, and Contourlet for
denoising remote-sensed images contaminatedwithGaussian noise. They concluded that
Curvelet denoising preserves better the sharpness of the boundaries. Starck et al. [11]
proposed Undecimated Wavelet Transform (UWT) where it is proven that overcomes
the disadvantage of the discrete wavelet transform regarding its shift invariance property.
Wang et al. [12] proposed Shearlet Transform (ST) in CS theory, which is a directional
multiresolution transformation, providing higher PSNR in different sampling ratios than
the Wavelet Transform (WT). The shifting of the input signal causes small changes to
the transform coefficients, which results in a bad representation of edges and borders.
Dragotti et al. [13] introduced Directionlets, which is a transformation that provides an
efficient interpretation for the nonlinear approximation of images and compared to the
WT provides better PSNR with similar complexity.

3 Moment Transform

Image moments are the coefficients of the Moment Transform (MT) that has achieved
a significant contribution around signal processing in a variety of domains [14]. Their
advantage arises from the robustness in describing an image with fewer coefficients
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than the actual size of the image, which is a characteristic that matches the CS and
sparse representation theory. Among several moment types, the orthogonal moments
include orthogonal polynomials as kernel functions, owing desirable properties in both
continuous and discrete coordinate spaces [15]. Due to the orthogonality property, image
moments provide a more compact representation of an image and robustness to noise.

The first orthogonalmomentswere expressed in continuous space and it was Zernike,
Pseudo-Zernike, Fourier-Mellin, Legendre and are used in many applications for feature
description as Kadir et al. [16]. The disadvantage of continuous orthogonal moments
is the approximation errors that arise for the reason of the coordinate normalization
and space granulation procedures. To overcome this disadvantage discrete orthogonal
moments have proposed where defined inside the discrete coordinate system of the
image, with the Tchebichef [17], Krawtchouk [18], and dual Hahn [19] moments being
the most representative discrete moment families. As a transformation image moments
have been proposed in many applications from pattern recognition [20] and adversarial
computer vision [21] to the interpretation of EEG signals for seizure classification [22]
where the proposed method is proven the robustness of the moment transform in the
presence of noise.

Tchebichef moments are robust to high noise levels and object description in com-
parison with other image orthogonal moments. The Tchebichef Moments (TMs) for an
image with NxN pixels size are defined as:

Tnm = 1

ρ(n,N )ρ̃(m,N )

∑N−1

x=0

∑N−1

y=0
t̃n(x)t̃m(y)f (x, y). (5)

In (5) the first term ρ(n,K) corresponds to the normalized norm of the Tchebichef
polynomials and the term t̃n(x) is the normalized Tchebichef polynomials defined as:

t̃n(x) = tn(i)/β(n,N ), (6)

with

tn(i) = (1 − N )n3F2(−n,−x, 1 + n; 1, 1 − N ; 1

= n!
∑n

k=0
(−1)n−k

(
N − 1 − k

n − k

)(
n + k
n

)(
x
k

)
, (7)

and β(n,N ) is usually equal to Nn.
Krawtchouk moments [18] are another family of discrete orthogonal moments, char-

acterized by their high local representation capabilities. The locality characteristic of
Krawtchouk moments is controlled by the parameters p1, p2 and express the spread of
the coefficient calculation in an image. The Krawtchouk moments (KMs) of order n and
repetition m for a NxN pixels are computed with the following formula:

Knm =
∑N−1

x=0

∑N−1

y=0
Kn(x; p1,N − 1)Km(y; p2,N − 1)f (x, y), (8)

where Km are the weighted Krawtchouk polynomials defined in [18].
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4 Compressive Sensing Based on Moment Transform

Asdiscussed above, imagemoments are robust to noise presence and describe the content
of an image in a compact way. Based on the theory, there are two alternative strategies for
denoising: one is by compression, which is achieved through the transformation where in
this occasion is themoment transform and the second is the optimal sparse representation
of the signal through the transformation. The computed basis dictionary for Tchebichef
and Krawtchouk moments, which are examined in this study can be expressed as:

�nm = [
Polyn

]T
Polym,, (9)

where Polyn and Polym are the nth andmth order orthogonal polynomials of any moment
family, respectively. According to (9) the basis dictionary of a specific moment family
is extracted in order to be used in sparse coding or reconstruction algorithm to recover
an image.

Next, the reconstruction process takes place through a sparse recovery algorithm
from the family of greedy algorithms, which are faster than convex algorithms. These
algorithms rely on an iterative approximation of the image coefficients, by obtaining an
improved estimation of sparse representation of the image at each iteration that attempts
to account for the mismatch to the measured data. The algorithm that is used in this work
is the Orthogonal Matching Pursuit (OMP), which is an improvement of the matching
pursuit algorithm. It computes the inner product of the residue and the measurement
matrix and then selects the index of the maximum correlation column, extracts this
column in each iteration and adds it to the selected set of atoms. Then an orthogonal
projection is performed over the subspace of previously selected atoms, which provides
a new approximation vector used to update the residual. Since in themeasurementmatrix
the columns are orthogonal there will be no column selected twice.

As presented in (2) there is an attempt to select the fewer columns ofD that participate
in y. With OMP as a reconstruction algorithm, there are two steps that need to be fulfilled
according to:

λt = arg max
j=1,2...,N

∣∣( rt−1,Ψ j
〉 ∣∣, (10)

where λt is the index that solves the above optimization problem, which consists of the
terms r and Ψ which are the residual and the transformation basis, respectively. Next, a
least squares problem is solved to obtain a new image estimation:

xt = arg min
x

‖Dtx − y‖2. (11)

Then a new approximation of data and the new residual are calculated:

at = Dtxt, (13) rt = y − at . (12)

The above are calculated for a number (t)of iterations and terminateswhen a stopping
criterion is met.
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5 Experiments

In this paper, the denoising of five benchmark images Lena, Barbara, Baboon, Pirate,
and Peppers, contaminated with Gaussian additive noise, using sparse coding with OMP
algorithm is applied, andTchebichef, Krawtchouk, andDCTbasis dictionaries are exam-
ined. The experiments are implemented in Python with the usage of Scikit-learn library
and executed in a Ryzen 3700 CPU with 16 GB RAM. Figures 1, 2 and 3, depict the
basis dictionaries for each transformation.

Fig. 1. Tchebichef basis dictionary Fig. 2. Krawtchouk basis dictionary

Fig. 3. DCT basis dictionary

Next, the input images are described in overlappedpatches of 12×12pixels size in all
image dimensions, in order to achieve a redundant structure between image information
and noise presence. The selection of this patch dimension is calculated by the square
root of image dimensions, which are 144 × 144. Such patches are presented as 144-
dimensional vectors of gray-scale values. The DC value and the mean of the gray-scale
values were subtracted from each vector as a preprocessing step. The result is a linear
dependency between the components of the observed data and therefore the dimension
of the data was reduced by one. The denoising results for each benchmark image and
different noise ratios are presented in the following Table 1, 2, 3, 4 and 5 and Figs. 4,
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5, 6, 7 and 8. It is worth noting that the PSNR (in dB) and SSIM indices are used to
evaluate the quality of the denoised images. First the mathematical expression of PSNR
is:

PSNR = 10 log10
N 2

∑N−1
i=0

∑N−1
j=0

(
x(p)
i,j − x(0)

i,j

)2 . (13)

In (13) N is the maximum value of the pixel and the denominator is the reconstruction
Mean Squared Error. The definition of SSIM is presented as:

SSIM(x, y) =
(
2μxμy + c1

)(
2σxy + c2

)
(
μ2
x + μ2

y + c1
)(

σ 2
x + σ 2

y + c2
) . (14)

In (14) x and y are the two images and μx with μy are the average of each image, σ 2
x

with σ 2
y is the variance of each image, σxy is the covariance of the two images and finally

c1 and c2 are two variables in order to stabilize the operation in the occasion that the
denominator is weak.

Table 1. TMs, KMs, DCT denoising performance in Peppers.

Noise ratio PSNR-
TMs

PSNR-
KMs

PSNR-
DCT

SSIM- TMs SSIM- KMs SSIM- DCT

0.1 27.27 27.02 26.92 0.91 0.88 0.91

0.2 24.35 25.36 23.96 0.78 0.79 0.78

0.3 22.32 23.54 21.81 0.67 0.69 0.66

0.4 20.16 21.48 19.64 0.57 0.58 0.56

0.5 18.21 19.52 17.98 0.48 0.49 0.47

Fig. 4. Selected coefficients on the left and SSIM on the right for TMs, KMs and DCT in Peppers.

From the above results, it is concluded that moment transform in comparison with
DCT is bringingmore sparse results and almost equal PSNR and SSIMmetrics. TMs and
DCT perform almost equal for both PSNR and SSIM, in the case of Peppers, Baboon,
and Pirate images, but TMs achieve more sparse results than DCT. Next in Barbara and
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Table 2. TMs, KMs, DCT denoising performance in Barbara.

Noise ratio PSNR-
TMs

PSNR-
KMs

PSNR-
DCT

SSIM- TMs SSIM- KMs SSIM- DCT

0.1 27.69 26.51 27.96 0.88 0.85 0.88

0.2 26.19 25.47 26.36 0.81 0.79 0.81

0.3 24.26 23.82 24.29 0.72 0.71 0.72

0.4 21.68 21.84 21.71 0.61 0.62 0.62

0.5 20.38 20.13 19.86 0.54 0.53 0.53

Fig. 5. Selected coefficients on the left and SSIM on the right for TMs, KMs and DCT in Barbara.

Table 3. TMs, KMs, DCT denoising performance in Lena.

Noise ratio PSNR-
TMs

PSNR-
KMs

PSNR-
DCT

SSIM- TMs SSIM- KMs SSIM- DCT

0.1 30.47 29.84 30.82 0.91 0.89 0.91

0.2 28.04 27.38 28.08 0.81 0.79 0.79

0.3 25.22 24.87 25.07 0.68 0.67 0.66

0.4 22.88 22.93 22.89 0.57 0.58 0.57

0.5 20.75 20.99 20.74 0.48 0.49 0.48

Fig. 6. Selected coefficients on the left and SSIM on the right for TMs, KMs and DCT in Lena.
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Table 4. TMs, KMs, DCT denoising performance in Baboon.

Noise ratio PSNR-
TMs

PSNR-
KMs

PSNR-
DCT

SSIM- TMs SSIM- KMs SSIM- DCT

0.1 24.89 24.23 24.84 0.79 0.76 0.79

0.2 24.03 23.47 23.96 0.73 0.71 0.73

0.3 22.74 22.42 22.63 0.65 0.65 0.65

0.4 21.33 21.55 21.21 0.57 0.56 0.57

0.5 19.98 19.89 19.88 0.51 0.49 0.51

Fig. 7. Selected coefficients on the left and SSIM on the right for TMs, KMs and DCT in Baboon.

Table 5. TMs, KMs, DCT denoising performance in Pirate.

Noise ratio PSNR-
TMs

PSNR-
KMs

PSNR-
DCT

SSIM-
TMS

SSIM-
KMs

SSIM-
DCT

0.1 27.01 26.16 27.04 0.85 0.82 0.85

0.2 25.66 25.21 25.68 0.77 0.76 0.77

0.3 23.87 23.72 23.18 0.69 0.68 0.68

0.4 21.98 22.03 21.81 0.58 0.59 0.58

0.5 20.07 20.25 19.83 0.48 0.51 0.49

Fig. 8. Selected coefficients on the left and SSIM on the right for TMs, KMs and DCT in Pirate.
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Lena DCT achieves the highest PSNR in low noise ratios with small differences with
TMs, where it takes the leading place for higher noise ratio than DCT, a conclusion that
is confirmed in all cases. Same as previous in the last two cases TMs achieve more sparse
results than DCT. Finally, an important notice is that TMs are more robust than DCT as
the noise level increases.

Krawtchouk moments and DCT achieve the sparsest solutions in all cases. KMs are
not achieved high scores in PSNR and SSIM like DCT in low noise ratio but we can
come to the conclusion that same with TMs for higher noise ratios KMs are bringing
almost equal metrics with DCT and even better in some cases. Finally, it is important
to mention that according to all figures, image moments in comparison with DCT are
bringing better metrics for higher noise ratios and the sparsest solutions in all levels of
noise for all benchmark images. In the following Figs. 9, 10, 11, 12 and 13, the denoised
images for the case of 20% noise ratio for all benchmark images are presented.

Fig. 9. Peppers: From left to right noisy image, DCT, TMs, and KMS denoised images.

Fig. 10. Barbara: From left to right noisy image, DCT, TMs, and KMS denoised images.

Fig. 11. Lena: From left to right noisy image, DCT, TMs, and KMS denoised images.
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Fig. 12. Baboon: From left to right noisy image, DCT, TMs, and KMS denoised images.

Fig. 13. Pirate: From left to right noisy image, DCT, TMs, and KMS denoised images.

6 Conclusions

The previous study proved that moment transform based on Tchebichef and Krawtchouk
families are bringing more sparse solutions than DCT with almost equal metrics. As a
result, imagemoments are suitable for Compressive Sensing and sparse representation in
denoising applications from the point of strong and convenient features. In this context,
the interest arises onwhat other problems of this theory canmoment transform be applied
from dictionary learning to other domains. Moreover, fractional or quaternion moments
recently proposed in the literature can be applied.
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Abstract. Veterinary medicine emphasizes accidents caused by toxic
plants with domestic animals as an extremely important topic, as the
right diagnosis can be crucial for the affected animal. In this work, we
propose the classification of toxic ornamental plants, according to nine
different categories, using five widely-known CNN architectures, namely:
DenseNet, ResNet, VGG16, VGG19 and Xception. The rationale behind
it is that the automatic identification of these types of plant can be a
useful tool to help in the prevention of those accidents. The authors have
carefully curated a database to support the development of this work,
collecting images available on the Pinterest website, and also perform-
ing some important data pre-processing. This database was also made
available as a contribution of this work. Transfer learning was employed
by taking advantage of feature learned from the ImageNet dataset. We
also analyzed the heat maps generated by the Layer-wise Relevant Prop-
agation method, which allowed to observe the individual behavior of the
best and worst architectures. The best performance was achieved using
DenseNet, with an accuracy of 97.67%. That model managed to gener-
alize very well, even to deal with noisy images, which are frequent in
photos of decorative environments.

Keywords: Plant classification · Toxic ornamental plants for
animals · Convolutional Neural Networks · Computer vision · Machine
learning · Pattern recognition · Layer-wise Relevant Propagation

1 Introduction

Plant cultivation is a common practice in most households, whether indoors
or outdoors, as they are important decorative objects, with many varieties. Its
popular use is an art passed down orally through information transmitted by gen-
erations [2]. However, among the species appreciated, many have toxic potential,
which can reflect serious consequences when their active principle is introduced
into the organisms of living beings [15].
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Ornamental plants are those that are able to awake various stimuli through
their characteristics, whether by color, texture, size, shape, or harmonic compo-
sition according to the context [1]. Such plants are considered toxic when they
have substances that can alter the functional-organic set due to organic incom-
patibility in certain metabolisms, causing different biological reactions [19]. The
ingestion of plants is a recurrent habit of domestic animals, especially dogs and
cats in different places, public or private, such as gardens, interiors of houses
and parks; motivated by various impulses, including curiosity, monotony, age of
the animal and change of environment [11].

Veterinary medicine emphasizes the importance of intoxication of small ani-
mals by these plants, as the symptoms can often be confused with infectious or
parasitic diseases. Therefore, the correct diagnosis must specify correctly whether
there was contact with a possible toxic plant [18].

Convolutional Neural Networks (CNNs) have been receiving a great promi-
nence in image recognition, allowing its wide use due to large repositories of pub-
lic images (e.g. ImageNet), and high-performance computing systems (e.g. GPUs
and clusters) [16]. Therefore, its use for classification is increasingly widespread.

Thus, the objective of our work is to implement the classification of nine
categories of toxic ornamental plants species for domestic animals, using five
CNN architectures: DenseNet, ResNet, VGG16, VGG19 and Xception.

To carry out this work, we used data published by the Toxicological Informa-
tion Center of the Brazilian state of Rio Grande do Sul (CIT/RS)1. According
to CIT/RS, in the period from 2001 to 2009, the preeminent accidents involving
poisoning of small animals through toxic plants were caused by: Castor Bean
(Ricinus communis), Peace Lily (Spathiphyllum wallisii), Pothos (Epipremnum
pinnatum), Snake Plant (Dracaena trifasciata) and Dumb Cane (Dieffenbachia
seguine) [5]. One of the major compounds of these plants are the calcium oxalate
crystals. The main symptoms of this intoxication include oral irritation with
abundant salivation, vomiting, colic, bloody diarrhea, depression, weakness, and
in some cases, it can cause the death of the animal by poisoning [23].

We also considered the 2019 article published (see Footnote 1) by CIT/RS,
which reports exposures of domestic animals to toxic plants that year. In addi-
tion to the plants mentioned above, we included Anthurium (Anthurium spp.),
Rue (Ruta graveolens), Calla Lily (Calla aethiopica) and Swiss Cheese Plant (
Monstera delicious) into the dataset as well. Through the information obtained
by CIT/RS, we built a database containing 900 images of the aforementioned
plants. Data pre-processing and data augmentation were also performed, and
the best performance was obtained using the DenseNet architecture, reaching
97.67% of accuracy.

2 Related Works

Classification involving plants using deep learning is a well-accepted practice for
different purposes, as it can be seen in the recurring solutions to the challenges
1 http://www.cit.rs.gov.br/.

http://www.cit.rs.gov.br/
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launched in The Plant Identification Task of LifeCLEF, in which the participants
are asked to identify images of plants taken from different environments [17].

Ghazi et al. [6] used the GoogleNet, AlexNet and VGGNet architectures to
identify plant species in photographs, and then, they measured the performance
of these architectures. In addition, the image database was increased using data
augmentation. The authors performed a combination of GoogleNet and VGGNet
architectures, obtaining a better accuracy. The method used by the authors
performed better than those originally obtained in LifeCLEF 2015.

Goeau et al. [7] gathered the main works submitted for LifeCLEF 2017, and
observed that those using CNNs obtained a better result, especially when submit-
ted to images with noise, demonstrating a good adaptability and generalization
in those cases, even with a constant number of training iterations.

The work of Lee et al. [9] addressed the identification of 44 plant species
using a pre-trained CNN for automatic learning of leaf characteristics, avoiding
the use of hand-crafted methods. This model proved to be successful to address
that task and reached an accuracy of 99.5%, being superior to conventional
learning methods, based on the use of handcrafted features and SVM classifier.

Yalcin and Razavi [21] proposed a CNN architecture to identify 16 types
of plants common in agriculture. In the same work, SVM-based classifiers were
implemented, using resources such as LBP and GIST. The CNN model obtained
the highest accuracy rate, around 97.47%; in contrast, the best accuracy obtained
by a SVM classifier was 89.94%. Thus, CNN proved to be a good method to
achieve the expected objective.

Finally, Nakahata et al. [12] experimented five different CNN architectures
aiming at performing bonsai style classification, taking into account seven dif-
ferent categories. The best result (i.e. 0.896 of F-Measure) was obtained using
the VGG19 with features learned on the ImageNet.

3 Proposed Method

The steps followed to reach the objectives of this work are described in the
following subsections.

3.1 Database Creation

As the focus of our work are toxic ornamental plants, we needed to create a
database containing the nine classes identified in the problem. The acquisition
of the images was carried out through the Pinterest2 platform, which brings
together a large number of users who organize images around a certain theme,
resulting in a rich collection of metadata [24]. Each class received 100 images,
totaling 900 images. Aiming at circumventing copyright restrictions, the content
of the database can be accessed through the website designed especially for
this work3, where the URLs of the images used are listed, and not the images
themselves. Figure 1 presents one example of image from each class.
2 https://pinterest.com/.
3 https://sites.google.com/view/toxic-ornamental-plants.

https://pinterest.com/
https://sites.google.com/view/toxic-ornamental-plants
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3.2 Data Pre-processing

The images selected to compose this database were obtained manually. In addi-
tion, the images were pre-processed according to the steps described following.

Fig. 1. Examples of image for each class.

In the first step, we resized all the images in order to standardize them. So, all
samples received the dimensions of 224× 224 pixels, since it is a value commonly
used in CNN architectures.

As the database was created manually without pre-filtering repeated images,
we implemented mechanisms to ensure that all samples were different from each
other. Aiming to guarantee a good level of integrity for the base, we used the tech-
niques Mean Squared Error (MSE) and Structural Similarity (SSIM) to detect
similar images. In some classes, the similarity degree was very high due to the
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positioning and background, being necessary to submit them into two verifiers
to guarantee the proof of the images distinction.

MSE is a popular similarity index for measuring distance in images. For two
images x and y, sized N × M , the MSE can be calculated by Eq. 1 [14].

MSE = (
1

NM
)

M∑

i=1

N∑

j=1

(x(i, j) − y(i, j))2 (1)

The lower the MSE result, the more similar the images are.
SSIM provides good image quality prediction performance, being widely used

in situations involving image distortion. In a spatial domain between two image
patches x = xi|i = 1, ...M and y = yi|i = 1...M , the SSIM index is defined in
the Eq. 2 [14].

S(x, y) =
(2μxμy + C1)(2δxy + C2)

(μ2
x + μ2

y + C1)(δ2x + δ2y + C2)
(2)

where C1 and C2 are two small positive constants, μx = 1
M

∑M
i=1 xi, δ2x =

1
M

∑M
i1

(xi − μx)2, δxy = 1
M

∑M
i=1(xi − μx)(yi − μy). The SSIM index value 1 is

reached if and only if x and y are identical.

Fig. 2. Example of similar images and the MSE and SSIM values between them.

We discarded and replaced all images with MSE index below 3000, and
SSMIM index above 8.5. Figure 2 presents an example of two images of the
same class, and the similarity degree between them using the MSE and SSIM
indexes.

3.3 Data Augmentation

Due to the small amount of images in the database, we used the data augmen-
tation technique to overcome this problem and avoid over-fitting.
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The problem of over-fitting reduces the ability of CNNs to generalize unsu-
pervised data. Thus, the data augmentation process was necessary to enrich the
training set, adding new samples in their respective classes, with transformations
such as scale, zoom and translations [20]. Ten new images were generated for
each original image from each class, totaling a total set of 9900 images. Figure 3
shows transformations of zoom range, width shift range and height shift of 0.3,
horizontal flip, vertical flip and 90◦ rotation range performed during the data
augmentation process, which may occur simultaneously.

Fig. 3. Examples of data augmentation.

3.4 Transfer Learning

All CNN architectures were submitted to the transfer learning method using the
ImageNet4 database. It consists of about 15 million labeled images, separated
into 22000 categories [10]. Since the classes presented in this work are composed
of popular plants, this procedure was a strong ally for pre-training the CNNs
models, and allowed them to better generalize their classifications in a smaller
number of epochs.

3.5 Convolutional Neural Networks

CNN architectures are extensions of deep learning of artificial neurons [21]. They
consist of Multi-hidden Layer Perceptrons (MLPs), with convolutions, pooling,
ReLU and fully connected layers. In general, resource maps of the previous layers
are convolved with weights that are learnable in a convolutional layer, and,
through activation functions, they are fed back to form output resource maps.

In the present work, we used five CNN architectures, namely: DenseNet,
ResNet, VGG16, VGG19 and Xception.

DenseNet: In the DenseNet architecture [25], the network structure is progres-
sively hierarchical, resulting in a more generalizable network. Each layer in the
network is directly connected to the front layers. To ensure that resource maps
are concatenated, they must be consistent. So, the exits from the convolutional
layer are the same size as the inlet.

4 http://www.image-net.org/.

http://www.image-net.org/
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ResNet: The creation of ResNet [3,8] was motivated by counter-intuitive exper-
imental discoveries that indicated that adding more layers increases the chances
of errors in training. ResNet allows deeper networks to be trained, maintaining
good performance. The models are implemented with double or triple layer skips
without linearity (ReLU) and normalization of batches.

VGGNet: The VGGNet architecture [16] is widely used for image classification,
obtaining good results for this kind of task. It is a very deep network and uses
very small convolution filters (3× 3) with a pool layer added after every two or
three convolutional layers. The two most used models are VGG16 and VGG19,
with 16 and 19 weight layers respectively.

Xception: Xception [4] works as a linear stack of convolution layers that can
be separated in depth with residual connections, making it easy to define and
modify, using a high-level library, such as Keras or TensorFlow-Slim.

As we chose to maintain the same characteristics for all CNNs models in order
to observe the behavior with common parameters, each model received, at input,
the images with 224× 224× 3 dimension. To resize the features to one dimension,
we used a Flatten; after that, we added a dense layer with 256 neurons and a
dropout of 0.1. The activation function chosen was ReLU, because it is fast and
it does not harm the performance. The output layer received nine neurons (one
for each class), along with the Softmax activation function. To calculate the loss,
we used the categorical crossentropy function, considering the presence of many
classes. We implemented the Stochastic Gradient Descent (SGD) optimizer as it
is one of the most popular and faster among the best known techniques, and also
the Nesterov-accelerated Adaptive Moment Estimation (Nadam); both with a
10−4 learning rate.

3.6 Layer-wise Relevance Propagation (LRP)

To analyze the results of the best architectures, we used the Layer-wise Rele-
vance Propagation (LRP) decomposition method. This technique helps to visu-
ally explain network predictions individually. Its function is to decompose the
predicted probability of a specific area into a set of relevant pixels, more details
in [22].

4 Experimental Results and Discussion

In order to evaluate the performance of each neural network, the five models were
implemented individually, and we calculated their results considering a ten-folds
cross-validation. The metrics used were recall, precision, F1-score, in addition to
accuracy, and the Macro-averaging precision. The division of the image set used
for training and validation is available on the website (see Footnote 3) created
by the authors. All models were trained in ten epochs.

Initially, we implemented the SGD optimizer due to its greater popularity
and its speed in updating the parameters for each training sample [13]. However,
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Table 1. Results using SGD optimizer

Precision (%) Recall (%) F1-score (%) Accuracy(%)

DenseNet 85.56 85.56 85.55 85.60

ResNet 23.30 25.00 22.42 23.30

VGG16 49.78 47.88 48.15 49.78

VGG19 49.56 47.20 47.93 49.56

Xception 74.00 74.40 73.82 74.00

we noticed that the results obtained using the SGD did not exceed 85.6%, as it
can be seen in Table 1.

Searching for better results, we decided to evaluate the Nadam optimizer.
In this way, we have successfully achieved better classification rates. The new
results are shown in Table 2.

Table 2. Results using Nadam optimizer

Precision (%) Recall (%) F1-score (%) Accuracy (%)

DenseNet 97.67 97.67 97.70 97.67

ResNet 53.44 61.73 52.86 53.44

VGG16 92.55 92.61 92.54 92.56

VGG19 94.44 94.46 94.42 94.44

Xception 94.22 94.22 94.21 94.22

Considering the results obtained using the Nadam optimizer, we also gener-
ated the boxplot for each architecture, shown in Fig. 4.

Fig. 4. Boxplots created from the five CNN architectures
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As noted, the best architecture for the proposed objective was DenseNet,
achieving 97.67% of total accuracy. Its representation in the boxplot exhibits
the high values obtained through folds; there was an outlier occurrence, where
the accuracy of one of the folds reached 100%. Figure 5 shows the confusion
matrix for this model.

We noticed that the class that had more errors was Pothos, with a subtotal
of 93 hits; its erroneous classification was given by the Anthurium class in two
occurrences. The best performance happened in the Snake Plant class, where
there was the maximum number of hits. In fact, the samples for this class had
the lowest incidence of noise, and a better standardization of images. In addition,
the shape of this plant is very peculiar and quite distinct from the other plants
analyzed in the work.

Fig. 5. DenseNet confusion matrix.

With the exception of ResNet, the other architectures showed low variance
in their accuracy, maintaining an average of high values through their folds.

Figure 6 shows the heat maps generated by the LRP method for the ResNet,
VGG19 and DenseNet architectures in a random image from each class of the
data set. In the case of VGG19 and DenseNet, both were able to map positive
pixels relevant to the shape of the plant. It is possible to observe, through the



Classification of Toxic Ornamental Plants for Domestic Animals Using CNN 117

Fig. 6. Heat maps created with LRP method for ResNet, VGG19 and DenseNet.
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blue color, that VGG19 accused more pixels as negatively influential for a future
classification. However, even so, its heat map resembles that of DenseNet.

ResNet, in turn, did not obtain a good result to generalize the relevant pixels.
We were able to observe the areas with a higher concentration of pixels, however,
they can be totally misinterpreted by the absence of a format that could char-
acterize it into one of the classes. It is also notable that, even in a neutral and
noiseless background, the ResNet underperformed by far the best architectures.

5 Conclusion

In this paper, we investigated the performance of five different CNN architec-
tures aiming to identify nine species of ornamental plants toxic to domestic
animals. As the dataset was created manually by the authors, it was necessary
to perform a careful pre-processing, such as resizing and checking non-repeated
images for standardization and avoiding over-fitting, respectively. The use of
transfer learning proved to be a great ally to the accomplishment of this task
when using weights trained on the ImageNet, mainly because the plants in ques-
tion are very popular and have many images available on online platforms, such
as Pinterest, where we obtained the images to create a fully exclusive dataset
for the development of this work. The dataset was made available aiming to
encourage other researchers to continue the investigations in this task.

As we have noticed, although the SGD optimizer has a large presence in the
literature, it did not contribute significantly to the results obtained in this work,
in general. Thus, we chose to experiment the use of Nadam, increasing the accu-
racy of all models. The DenseNet architecture presented an accuracy of 97.67%,
being the very best performance for the classification on the dataset we have
created. Thus, in this context, DenseNet seems to be the most suitable model to
carry out the identification of toxic plants that may be present in environments
in which domestic animals can have access, since this model has achieved good
results even with many images with noise, i.e., photos that reproduce decorative
spaces, as it is a predominant feature of ornamental plant functions.

In future works, we intend to include new types of plants, and also to increase
the amount of samples in general, including images with different kinds of noise.
Furthermore, we intend to include some specific details of the plant, such as
individual leaves. We also plan to perform fine-tuning techniques, individually,
to improve the performance of the investigated networks.
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Abstract. Monitoring plant growth with computer vision is an impor-
tant topic in plant science. This monitoring can be challenging when
plants are located in outdoor conditions due to light variations and other
noises. On other hand, there is a lack of annotated datasets available for
such outdoor environments to train machine learning algorithms while
indoor similar datasets may be more easily available. In this communi-
cation, we investigate, for the first time to the best of our knowledge
in plant imaging, how to take benefit from model trained in fully con-
trolled environment to build model for an outdoor environment. This is
illustrated with a use case recently published for indoor conditions that
we revisit and extend. We compare various spatial and spatio-temporal
neural network architectures including long-short term memory convo-
lutional neural network, time distributed convolutional neural network
and transformer. While the spatio-temporal architectures outperform the
spatial one in indoor conditions, the temporal information appears to be
degraded by the presence of shadows due to the variation of light in out-
door conditions. We introduce a specific data augmentation and transfer
learning approach which enables to reach a performance of 91% of good
classifications with very limited effort of annotation.

Keywords: Plant phenotyping · Deep learning · Transfer learning ·
Data augmentation · CNN-LSTM · Time distributed deep learning ·
Transformers

1 Introduction

With the breakthrough of deep learning almost ten years ago, the state-of-the-
art in most data-driven image processing domains shifted from classical machine
learning with hand-crafted features to end-to-end learning [9]. As a consequence,
the bottleneck in developing image processing solutions are now related to the
annotation of images which is a very time-consuming and error-prone task. This
bottleneck is specially important in applied domains of computer vision for which
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much fewer annotated datasets are publicly available. This is the case for instance
with plant imaging [11], the applied domain of this communication. Two main
subcommunities are concerned by plant imaging. On one side, plant phenotyp-
ing facilities are studying the development of plant in controlled conditions in
order to study the genotype-environment interactions and their impact on the
observable phenotype [10]. On another side, outdoor conditions are of the highest
interest for agricultural practices which can also benefit from computer vision
[12]. An open question is if machine learning models trained indoor could be
useful to help the outdoor conditions.

Several workaround approaches has been proposed to address the bottleneck
of annotation in applied computer vision including the development of ergonomic
tools to speed up annotation, data augmentation, transfer learning, generation
of simulated images or the use of generative neural networks. These approaches
have been applied to the domain of plant imaging and the communication here is
in this trend [4,5,14,16]. We recently developed a spatio-temporal deep learning
algorithm to monitor the growth of seedlings in a controlled environment from
top-view in RGB images [15]. Here, we propose an extension of this work by
investigating the possibility to transfer this knowledge to the outdoor environ-
ment where the lighting conditions are not controlled and shadow may occur
due to the position of the sun or the presence of clouds passing by. This is to
the best of our knowledge the first trial of this type in plant imaging.

As most related works to our proposal, one can point that the computer vision
community has in recent years addressed the automatic detection and removal of
shadows in RGB images with deep learning [2,8,13]. As often encountered when
considering the translation of such literature to other application domains some
basic practical issues may appear. In the current work, the spatial content and
resolution from [2,8,13] are clearly different from the one considered in seedling
growth. As a consequence direct transfer learning would very likely fail and would
require additional annotated images. Our proposal here is rather to investigate
the possible transfer of knowledge from plant observed in indoor conditions to
outdoor conditions.

2 Datasets

2.1 Real Indoor and Out Door Data

Two distinct datasets have been produced. The first dataset consists of 449286
images (600 different pots) from red clover (Trifolium pratense) and alfalfa (Med-
icago sativa) which were captured in a fully controlled environment [15]. This
dataset or a pre-processed version of it will serve as the training dataset in
this study. The second dataset includes 22212 images (36 different pots) cap-
tured from sunflower seedlings in a non controlled-environment (greenhouse).
This second dataset serves a testing dataset in this study. Both datasets have
been recorded with the frame rate of one image every 15 min. Figure 1 shows an
example of each dataset. Both datasets record the first developmental stages of
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the growth of seedlings. This includes four stages with the soil, the first appear-
ance of the cotyledon (FA), the opening of the cotyledons (OC), the appearance
of the first leave (FL).

The objective of the work is to transfer knowledge from a model trained on
the first dataset to the second dataset as illustrated in Fig. 2. While the species of
both datasets are different they are both dicotyledons so that they share similar
shapes at the early stages of development. Moreover, the two cameras share the
same spatial resolution. As visible in Fig. 1, the color of the crop observed indoor
and outdoor are not exactly the same. This color discrepancy happened to be
none critical to transfer knowledge from indoor to outdoor. As done in [15], the
plant is filtered from the soil with a standard thresholding approach to avoid any
impact on the difference of soil and surrounding background. The challenge in
the proposed experiment therefore lay in the presence of shadows which occurs
in outdoor environment only.

Fig. 1. (a) Images from controlled environment on which seedling development is
trained. (b) Images from outdoor environment on which we want to test the trained
model. The four developmental stages to be detected are the soil, the first appearance
of the cotyledon (FA), the opening of the cotyledons (OC), the appearance of the first
leave (FL).

2.2 Simulated Outdoor Data

To simulate images acquired in the outdoor environment from indoor images, we
propose an automatic shadow generator as detailed in Algorithm1. The shadows
are randomly positioned by using a thresholded speckle generator [5,7]. All sizes
of shadow can be present outdoor. However, only shadows larger than the typical
size of seedling organs and smaller than a single plant are expected to impact
the detection of seedling development. We adjusted the number of phasors in the
speckle generator in order to fit with this prior knowledge and produce shadows
corresponding to the maximum area of the seedling (40% of the size of the pot
in our training dataset). Modulation of maximum intensity during the day was
recorded in the validation dataset. This information was used to adjust the value
of the threshold in the algorithm (found to threshold = 0.5 in our validation
dataset). Each image in the indoor database is then spatially modulated by the
generated shadow with a simple multiplication.
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Fig. 2. Left panel illustrates the imaging system in controlled environment associated
with the large database of [15]. Right panel illustrates the imaging system in an out-
door environment with a smaller database. We investigate the possibility of transfer of
knowledge from left to right panels.

2.3 Proposed Methods

We shortly recall the deep neural networks used in [15] and tested here on the
transfer of knowledge from indoor to outdoor environmental conditions. We then
extend to other methods, not included in [15] and tested for the first time in
plant imaging.

First, we included in [15] a basic CNN architecture performing a 4 classes
classification to discriminate between the images of Fig. 1(a). The architecture
of CNN is composed of five convolutional layers with filters of size 3× 3 and
respective numbers of filters 64, 128, 128, 512 and 512 each followed by rectified
linear unit (RelU) activations and 2× 2 max-pooling; a fully connected layer with
512 units and ReLU activation, a fully connected output layer with 4 classes
corresponding to each event and a softmax activation. We use cross-entropy
as loss function and adam as optimizer. The architecture optimized for this 4
classes task is visible in Fig. 4 and served as the baseline in [15] since it does not
embed any memory about the growth process. We demonstrated in [15] the added
value to embed in controlled environment such a memory and demonstrated the
superiority of a CNN-LSTM (see Fig. 4.b) by comparison with a sole LSTM
architecture (see [15]). The optimal duration of the memory was found to 4
images in [15] corresponding to 1 h of recording.

To further enrich the investigation on memory, we added other neural net-
work architectures. We tested gated recurrent unit (GRU) networks [1], an alter-
native to LSTM, which has been demonstrated empirically to converge faster.
GRU uses two gates: the update gate and the reset gate while there are three
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Algorithm 1: Pseudo-code to simulate random shadows
Data: I: Original image, n:number of phases, s:threshold (0, 1).
Result: Iaug: Image with shadow

1 l ← height of original image
2 c ← width of original image
3 shadow ← zeros (l,c)
4 Phases ← exp (2 ∗ π ∗ Rand(n, n) ∗ i)
5 shadow (1:n,1:n) ← Phases
6 shadow ← |FFTshift(IFFT (shadow))|
7 shadow ← shadow / (Max(shadow)
8 for i ← 1 to l do
9 for j ← 1 to c do

10 if shadow(i, j) < threshold then

11 shadow(i,j) ← threshold

12 Ishadow=I ∗ shadow

gates in LSTM. This difference makes GRU faster to train and with better per-
formance than LSTMs on less training data [18]. A last class of neural network
dedicated to time series are the transformers. Since their introduction in [17]
they have been shown to outperform recurrent neural networks such as LSTM
and GRU specially in the field of natural language processing as they do not
require that the sequential data be processed in order. Transformers have been
shown suitable to process temporal information carried by single pixels in satel-
lite images time series [6,19,20]. Transformers have recently been extended to
the process of images [3] where images were analysed as a mosaic of subparts of
the original images creating artificial time series. In our case, we directly have
meaningful subparts of the original images which corresponds to the field of
view of the pots. We, therefore, provide the transformer of [3] with time series
of consecutive images of the same pot (we used the same time slot as in the
other spatio-temporal methods). We used 32 transformer layers with batch size
64, feed forward layer as classification head layer and the size of our patch size
was equal to 89 × 89 pixels.

The performances of the models proposed in [15] for controlled conditions are
recalled in Table 1 in addition to the three new methods added in this commu-
nication CNN-GRU, TD-CNN-GRU, Transformer. The performance of the TD-
CNN-GRU model and Transformer are found to outperform the other methods
in controlled environment. A possible interpretation is that, in the TD-CNN-
GRU and Transformer models, time and space are stacked and processed at the
same time while CNN-LSTM first processes space and then time in a sequen-
tial way. In the following, we investigate how the performances of the methods
shown in Table 1 evolve when the models are applied in outdoor environment.
For this experiment, we selected the memoryless CNN model and the best time-
dependent neural network models: TD-CNN-GRU and Transformer.
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Fig. 3. Example of original indoor images (left), shadows generated with Algorithm 1
(middle) and, indoor images with simulated shadows (right).

Table 1. Tested models in the fully controlled environment. Mean and standard devi-
ation of the accuracy from 5 different trials for each model.

Models Accuracy

CNN 0.80 ± 0.08

CNN-LSTM 0.90 ± 0.08

CNN-GRU 0.91 ± 0.06

TD-CNN-GRU 0.96 ± 0.01

Transformer 0.92 ± 0.01

3 Results

Several transfers of knowledge has been tested from indoor conditions to out-
door conditions. First, as baseline we have applied a brute transfer where the
models trained indoor have directly been applied to predict the outdoor images.
The performance with the CNN model, visible in Table 2, shows a clear drop
although it does not vanishes to pure randomness. Then, we have used data
augmentation based on the simulation of shadows applied on indoor images as
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(a) CNN

(b) CNN-LSTM

(c) TD-CNN-GRU

(d) Transformer

Fig. 4. Neural networks architecture tested. Panel (a) Optimized CNN proposed in
[15], (b) optimized CNN-LSTM model proposed in [15], (c) optimized TD-CNN-GRU
proposed here, (d) transformer adapted from [3].

presented in Sect. 2.2. As visible in Table 2, this simple simulation brings a sig-
nificant increase of 10% to the overall accuracy on the CNN model. Fine tuning
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the model trained on these simulated outdoor data with a small amount of real
outdoor data improved the performance up to 91% while the model trained
on the same amount of real data produced 70% accuracy on the CNN model.
Interestingly, as demonstrated in Fig. 5, fine tuning training on data augmented
indoor data with shadow converges to a high plateau of performance with a very
small number of input plants. This plateau of performance reached with 7 plants
produces a confusion matrix shown in Fig. 6. The remaining errors are limited
to adjacent classes of seedling development and therefore constitute reasonable
errors.

Table 2. Performance of CNN in outdoor conditions.

Models Train Validation Test Accuracy

Brut transfer 400 200 4 0.53 ± 0.02

Data augmentation 800 400 4 0.64 ± 0.10

Outdoor training 26 6 4 0.81 ± 0.02

Outdoor training 7 6 4 0.70 ± 0.03

Fine tuning training 7 6 4 0.91 ± 0.02

Fig. 5. Classification accuracy as a function of number of pots used in train database
after data augmentation and fine tuning.

Similar experiments have been carried with the TD-CNN-GRU model as
provided in Table 3 and with the Transformer in Table 4. Indoor classification
performances with these spatio-temporal methods were better than the spatial
CNN. However, they appear to drop when applied to outdoor data and become
less interesting than the pure spatial CNN approach. The data augmentation
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Fig. 6. Confusion matrix of CNN after data augmentation and fine tuning training
model using seven pots.

approach with the proposed shadow generator is improving the performance
of the TD-CNN GRU and the Transformer by comparison with a direct brut
transfer. Yet, they perform in the end with this data augmentation at the same
level as if they had been trained fully outdoor.

Several parameters could influence the temporal information from indoor
to outdoor. Despite similar speed of the seedling development (approximately
72 h for the whole process on average) for indoor and outdoor conditions, the
difference of growing conditions may have influenced the kinetics to pass from one
developmental stage to another. Therefore a systematic analysis of the statistics
to pass from the developmental stage to another could be interesting to carry
out. However, data augmentation with shadow systematically improved all tested
methods. This demonstrates that the presence of these shadows is a critical
limitation when moving from indoor to outdoor.

Table 3. Performance of TD-CNN GRU in outdoor conditions.

Models Train Validation Test Accuracy

Brut transfer 400 200 4 0.32 ± 0.04

Data augmentation 800 400 4 0.59 ± 0.04

Outdoor training 26 6 4 0.72 ± 0.04

Fine tuning training 26 6 4 0.74 ± 0.02
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Table 4. Performance of transformer in outdoor conditions.

Models Train Validation Test Accuracy

Brut transfer 400 200 4 0.23 ± 0.03

Data augmentation 800 400 4 0.56 ± 0.04

Outdoor training 26 6 4 0.74 ± 0.03

Fine tuning training 26 6 4 0.76 ± 0.02

4 Conclusion

In this communication, we have investigated the possibility of transfer of knowl-
edge from indoor to outdoor conditions in a plant science application. We have
considered the automatic detection of early stages of seedling development to
this purpose. While in controlled conditions, time dependence was found to
bring additional information, we found that the presence of shadows in outdoor
conditions are destroying this information. However, we have demonstrated that
transfer of knowledge from indoor was yet possible via the simulation of shadows
to be applied to indoor images. We have demonstrated the interest to train on
such simulated data and fine tune on limited amount of real data. The proposed
approach is of interest in plant science since outdoor conditions are of impor-
tance for agricultural practice while indoor conditions have received considerable
attention via the development of phenotyping platforms.

The outdoor noise considered here was limited to shadow. However, other
sources of noise could also be included to extend the result of this study. This
includes for instance the presence of wind causing motion blur which could also
easily be simulated with data augmentation following the approach presented in
this study.
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12. Patŕıcio, D.I., Rieder, R.: Computer vision and artificial intelligence in precision
agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153,
69–81 (2018)

13. Qu, L., Tian, J., He, S., Tang, Y., Lau, R.W.: DeshadowNet: a multi-context
embedding deep network for shadow removal. In: Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 4067–4075 (2017)

14. Samiei, S., Rasti, P., Richard, P., Galopin, G., Rousseau, D.: Toward joint
acquisition-annotation of images with egocentric devices for a lower-cost machine
learning application to apple detection. Sensors 20(15), 4173 (2020)

15. Samiei, S., Rasti, P., Vu, J.L., Buitink, J., Rousseau, D.: Deep learning-based
detection of seedling development. Plant Meth. 16(1), 1–11 (2020)

16. Sapoukhina, N., Samiei, S., Rasti, P., Rousseau, D.: Data augmentation from
RGB to chlorophyll fluorescence imaging application to leaf segmentation of
Arabidopsis thaliana from top view images. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 4321–
4328 (2019)

17. Vaswani, A., et al.: Attention is all you need. arXiv preprint arXiv:1706.03762
(2017)

18. Yin, W., Kann, K., Yu, M., Schütze, H.: Comparative study of CNN and RNN for
natural language processing. arXiv preprint arXiv:1702.01923 (2017)

19. Yuan, Y., Lin, L.: Self-supervised pre-training of transformers for satellite image
time series classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 14,
474–487 (2020)

20. Zhou, K., Wang, W., Hu, T., Deng, K.: Time series forecasting and classification
models based on recurrent with attention mechanism and generative adversarial
networks. Sensors 20(24), 7211 (2020)

http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1702.01923


Banana Ripening Classification Using Computer
Vision: Preliminary Results

Matheus T. Araujo1, Miguel W. de V. Santos1, Flávio F. Feliciano2, Pedro B. Costa3,
and Fabiana R. Leta1(B)

1 Fluminense Federal University, R. Passo da Pátria 156, Niterói, RJ, Brazil
{araujo_matheus,miguelwenzel,fabianaleta}@id.uff.br

2 Fluminense Federal Institut, Cabo Frio, RJ, Brazil
3 Federal University of Minas Gerais, Av. Antonio Carlos 6627, Belo Horizonte, MG, Brazil

Abstract. Color is one of themain features for the evaluation of fruit ripeness. Part
of the quality control is based on the ripening status, where fruits should be placed
with others with the same ripening phase. However, this color analysis can be done
automatically using computer vision techniques. This work presents an evaluation
of the ripeness status of bananas, based on the analysis of the texture features
obtainedwith a digital camera. The novelty lies in assessingwhich parameters best
define the maturation stage to automate the classification process with accuracy.
The results aim to determine which texture feature can provide better results for
the automatic classification of the bananas ripening phase, which is an important
challenge to food industry for export.

Keywords: Computer vision · Banana ripening · Texture feature

1 Introduction

For many years, food selection processes were carried out, necessarily, by a human
operator, only using visual inspection. It is one of the oldest existing techniques and it
is widely used for the evaluation of product quality conditions due to the easiest exe-
cution and because it does not require special equipment. However, with technological
advances, food industries and large producers, aiming mostly at exporting products, are
demanding advances in the selection process in other to increasing product analysis.

One of the biggest challenges for image inspection systems consists in joining the
quality of data acquisition with the reduction of costs and losses during the process, con-
sidering the reliability and accuracy provided (Gomes and Leta 2012). The development
of an inspection system should consider that it can be performed in the same way and
with the same quality responses anywhere it is applied.

In Brazil, banana production in 2018 was 6,752,171 tons, accounting for approx-
imately 2% of this year’s agricultural production. Due to this advance and the high
demand for banana exports in Brazil, automated inspections become an important solu-
tion for quality control involving the evaluation of color, texture and shape, which are the
characteristics observed by consumers when purchasing the product and in cultivation

© Springer Nature Switzerland AG 2022
G. Rozinaj and R. Vargic (Eds.): IWSSIP 2021, CCIS 1527, pp. 132–139, 2022.
https://doi.org/10.1007/978-3-030-96878-6_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96878-6_12&domain=pdf
https://doi.org/10.1007/978-3-030-96878-6_12


Banana Ripening Classification Using Computer Vision 133

monitoring (Gomes and Leta 2012; Jaffery and Dubey 2016; Hou et al. 2015; Mazen
and Nashat 2019). In the international market, bananas are one of the most commercial-
ized fresh fruits. For its commercialization fruits are classified according to the stage of
ripening, mainly on the basis of peel color (Gomes et al. 2014).

The banana peel color is not homogeneous during ripening. This characteristic can
be evaluated from the perspective of texture analysis. Adebayo et al. (2016) affirm
that ripening in fruit is correlated with alterations in the fruit texture which are more
pronounced in climacteric fruits such as banana. In this context, this paper presents
an evaluation of the ripeness state of bananas, essential for the commercialization and
exportation of this product, based on a peel texture analysis.

Texture analyses methods have been used in many applications, especially in recog-
nizing the material corrosion (Xia et al. 2020; Da Silva et al. 2015; Medeiros et al. 2010;
Ahuja and Shukla 2017). The presentedmethodology is based on a similar approach used
to analyze the changes in steel surface appearance, considering its corrosion degradation.
Feliciano et al. (2015) proposed the use of texture analysis for nondestructive surface
corrosion monitoring. They evaluated six textural characteristics and the obtained result
shows that the technique was feasible as a new method to check the surface corrosion
state.

2 Texture Analysis

Texture is characterized by the image repetition (textel) in a given region. The textel can
be repeated on the image with variations in size, intensity, color and orientation and still
contain noise. The texture analysis goal is to identify the neighbourhood of these similar
elements that characterize the connectivity, density, and homogeneity.

Some techniques can be found in the literature to identify texture features. Most of
them are based on greyscale pixels. A widely used texture feature is entropy. Entropy is
a concept used in thermodynamics to measure the degree of organization of a system.
However, this conceptwas introduced to other areas of knowledge.As information theory
and, consequently, in pattern recognition. Therefore, entropy is a statistical measurement
of randomness of intensity distribution.

There are techniques that take into account the pixels’ spatial relationship (frequency
p(i,j) at which a pixel with a grey level i and another with grey level j occur in an image
separated by a distance d). From relationship matrices, it is possible to calculate numer-
ical values called descriptors that provide information about the original image; among
them are probability, differences moments, energy, variance, correlation, homogeneity,
and others. To name the most common: Contrast is the measure of intensity contrast
between a pixel and its neighbour, correlation is the statistical measure of how corre-
lated a pixel is to its neighbour over the whole image and homogeneity is the measure
of closeness of the distribution of elements in relationship matrix.

The most appropriate texture parameter for each application should be defined
based on the context because despite the existence of several methods, none are able to
effectively target all types of texture.
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3 Materials and Methods

In this paper we use the visual classification standards considering environment condi-
tions determined by theBrazilian Program for theModernization ofHorticulture (PBMH
and PIF 2006). This classification is based on the observation of the ripening process
in the banana’s peel, where the color changes is intense. Changes observed from the
green due the high chlorophyll rate, to the yellow that appears in consequence of the
chlorophyll degradation along the ripening process. The favorable environmental con-
ditions for the storage of bananas are temperature between 14 °C to 24 °C and relative
humidity between 80 and 90%. The maturation speed is proportional to the temperature,
that is, the higher the temperature, the faster the maturation because of the dehydration.
Maintaining the humidity in the mentioned range causes the longevity of the fruit.

In the experiment six Brazilian ‘Prata’ banana (Musa sapientum AAB) were exposed
to the given condition in a selected environment. The details of the image acquisition,
the condition and the environment will be described in the following items.

3.1 Computer Vision System

Image Acquisition
Image acquisition was carried out using a led ring with light diffuser, 10 W power and
5500 K color temperature. A smartphone camera with following setup: the automatic
ISO, ranging between 100 and 140, auto focus with fixed camera aperture and JPG
format with 7.9 MP.

Figure 1 shows the light camara prototype.

Fig. 1. Light camara prototype.
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Samples
The samples are the banana units detached from the bunch of Brazilian ‘Prata’ type,
purchased in a street market in their stage 3, according to Von Loesecke’s scale (Gomes
et al. 2014). The samples don’t have any additives on their peel and they were cleaned.

Environment
In this experiment the bananas were exposed to an ordinary environment condition
in Brazil that is characterized by being a small room, but with good air circulation,
which avoids large variations in temperature and humidity, and protected from possible
rain and direct solar radiation on the fruits, being beneficial for a minimum control of
these variables since it is not possible to perform in a properly controlled laboratory
environment due to the restrictions imposed to contain the new COVID-19 pandemic.
In this environment the bananas were exposed to the ambient air without any direct
protection, aiming to maintain the common ripening process of the fruit.

The banana goes through the ripening process varying according to the temperature
conditions and relative air humidity to which they are submitted, thus, considering the
conditions and the ripening point at the moment of purchase of the bananas to be ana-
lyzed, the time of analysis was 80 h, 3 days and 8h, with photos taken every 8h totaling,
counting the photo from the initial point 0h, 11 photos per banana.

3.2 Image Processing

In the tests performed the registrationsweremade in such away that the distance between
camera and object, the camera angle and the lighting were the same for all bananas, thus
ensuring that the algorithms run the same way in all registered images and reducing the
possibilities of undesired variations between photos of the same banana.

Regarding the dimensions, the images obtained at a distance of 23 cm from the base
have dimensions 1940 × 4096 pixels. Each image, due to the reduction of brightness
and shadows, is used completely for the beginning of the processing, that is, without any
previous cut.

There are 6 bananas for each condition, totaling 24 bananas in all. As mentioned
in item 3.1, each banana was photographed in 11 moments throughout the test, which
generates 66 images in the interval of 80 h. Figure 2 shows an example of an image
sequence of one of the 6 bananas.

For the ripening process analysis, all images were processed using the methods
described in 2.2, i.e., processed from the grayscale version in order to perform the
segmentation and extract the values of the following texture characteristics: percent
cover; entropy; contrast; color-pixel ratio; energy; homogeneity.

The segmentation was performed in two stages, the first of them performing the
separation between object and background through automatic thresholding, obtained
through the image histogram, and, after this first stage, it is processed a morphological
filter to fulfil distortions due the segmentation in the banana peel.
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Fig. 2. Example of a sequence of images taken from one of the 6 bananas analyzed (Color figure
online)

4 Results

The aim of this step is to identify which of the features extracted from bananas can be
considered as the best candidate for a future stage to be applied in the automatic ripening
classification.

Thus, the technique must present a significant discrepancy when the ripenning class
changes and the numerical differences are not significant while the fruit remains in the
same stage of ripeness.

The first analysis carried out was a visual analysis of the graphs of the extracted
features, as a way of observing the behaviors of the characteristics over the 80 h of
samples monitoring.

Through this first analysis, the characteristics Contrast and Homogeneity exhibited
constant characteristics in the graph, either of growth or decrease over time during the
analysis.

4.1 ANOVA

The second step was the application of statistical techniques in order to identify
the numerical variations in the chosen characteristics and when these variations are
significant enough to identify a change in class during the experiment.

The data were organized to perform a one-factor test. Where the factor was the time,
divided into 11 levels, and for each level, 6 replicates of the experiment were performed,
as shown in Table 2.
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Table 2. Results from the homogeneity feature

Homogeneity

Samples 0 h 8 h 16 h 24 h 32 h 40 h 48 h 56 h 64 h 72 h 80 h

B1 0,894 0,882 0,871 0,868 0,848 0,850 0,826 0,815 0,798 0,777 0,774

B2 0,888 0,877 0,867 0,862 0,849 0,843 0,821 0,811 0,799 0,779 0,753

B3 0,883 0,880 0,872 0,867 0,850 0,851 0,839 0,823 0,809 0,796 0,773

B4 0,906 0,900 0,894 0,886 0,866 0,858 0,840 0,852 0,835 0,822 0,798

B5 0,896 0,893 0,888 0,884 0,877 0,866 0,854 0,825 0,806 0,802 0,798

B6 0,894 0,888 0,876 0,869 0,851 0,843 0,821 0,808 0,807 0,810 0,791

For the test, the hypothesis of whether or not a term τi exists that causes changes
between the levels of the factor.

H0 : τ0 = τ1 = τ2 = · · · = τa

H1 : τi �= 0 at least one i
(1)

Applying the F test, the p value obtained was p= 1.4× 10–19 for homogeneity and p
= 1.1 × 10–13 for contrast feature. Both values provide significant evidence of rejection
of the null hypothesis of variations being equal to zero between the 80 h in which the
samples were captured.

In order to try to identifywhen the variations are significant, theMinimumSignificant
Difference method was used. The method provides, based on the significance of 0.05,
limits in which the differences between the averages of the levels can be considered
statistically equal or not.

With the application of the MDS, 2 class variations were identified for the contrast
and 4 using homogeneity. When comparing the visual analyzes, the method does not
present significant results, since the visual analysis identified 5 or 6 classes, depending
on the operator.

4.2 Linear Regression

To improve the numerical analysis and find a method that is able to find the differences
between the classes more closely than the differences found by the visual ripening
analysis, a linear regression was used.

For this, linear equations were adjusted for the averages of the 6 samples for each of
the 11 evaluated points.

After the curve adjustments, confidence intervals were calculated for each of the
points obtained in the experiments, as shown in figure X.
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From the confidence intervals for each sampling performed, it is possible to infer that
the characteristic of homogeneity identified significant statistical variations allowing the
identification of 6 different classes, while the contrast characteristic identified 5 different
groups.

When comparing the visual evaluations performed by two operators, the results are
quite significant, since one of the operators identified five different classes during the
80 h of the experiment and a second operator identified six classes.

5 Conclusions

The present work aimed to evaluate the use of characteristics, typical of texture analysis
used in computer vision, to determine the status of banana ripening.

Among the characteristics analyzed, contrast and homogeneity shown a linear
behavior throughout the 80 h of sampling.

In a second stage, statistical techniques were used in order to evaluate if during the
80 h of sampling could be identify significantly differences between texture values.

The techniques of homogeneity and contrast, observed by a regression analysis
showed that it was possible to identify a similar number of classes to that observed
in a visual analysis performed by human operators.

In a next step, new tests will be carried out to validate the automatic classification
of the banana ripening phase using the procedure and the proposed characteristics.
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Abstract. Particle colliders are machines built to probe fundamen-
tal questions in physics. The properties of the produced particles are
measured by complex experiments which use a wide variety of devices,
such as the calorimeter system. In the ATLAS experiment at LHC, the
Tile Calorimeter (TileCal) comprises about 10,000 readout channels that
amplify, shape, and sample each signal every 25 ns. Since LHC collisions
occur every 25 ns, and due to the increase of the luminosity level, signals
from adjacent collisions may be read out within the same TileCal readout
window, deforming the expected signal, and degrading the energy esti-
mation efficiency. Therefore, this work compares the performance of the
currently available methods for TileCal energy estimation using LHC col-
lision data. Different pile-up conditions are considered. The results show
that the performance in terms of the uncertainty of the energy estimation
can be improved up to 35% in high-occupancy readout channels.

Keywords: Optimal filter · Signal estimation · Wiener filtering ·
Pile-up · High-energy calorimetry.

1 Introduction

The electronics for high-energy physics experiments deal with enormous techno-
logical challenges as a large amount of data needs to be processed within a short
time. The calorimeter systems of such complex experiments play an important
role as they are used to measure the energy of incident particles. The informa-
tion provided by the calorimeter systems is used for event reconstruction and
particle identification [23].

Typically, a calorimeter is segmented into readout cells (tens of thousands
in modern calorimeters), providing spatial resolution to the detector. The read-
out signals are processed by a pulse-shaping electronic circuit, which gives the
pulse of a well-defined shape with an amplitude proportional to the particle
energy [15]. Thus, the problem of energy estimation can be stated as determin-
ing the amplitude of the pulse produced by the calorimeter readout channel.
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Energy is the most important information in high-energy calorimetry systems,
being a fundamental property for the reconstruction of events and validation of
models for physical phenomena.

The commonly employed mathematical methods for energy estimation for-
mulate the problem as estimating the amplitude of a pulse immersed in additive
noise, where the identification of channels with relevant information is performed
through an energy threshold at the output of the estimator. Usually, when mod-
eling the problem, these approaches consider a fixed pulse shape and additive
Gaussian noise [1,11].

However, modern colliders, such as the LHC [10], operate with high event
rates and high luminosity levels. The luminosity is defined as a proportional fac-
tor between the number of events per second and the interaction cross section,
having the unit of cm2s−1 [13]. In such conditions, the particle density in the
beam cross-section is increased so that many interactions could occur at each
collision point, generating more signals in the detectors, such as the calorime-
ters [16]. As a result, the energy estimation problem becomes more complex
because of that can be observed where two or more pulses are acquired within
the same readout window. To mitigate the, new methods based on the deconvolu-
tion of superimposed signals have been proposed [3,6]. Additionally, an approach
based on Wiener filtering has also been tested for severe conditions [19].

The ATLAS (The Toroidal LHC AparatuS ) experiment [4] covers a wide spec-
trum of physics of interest at the LHC, and the information from its calorimeter
system is important for the complex trigger system which selects only the rel-
evant information from the collisions to be stored. Future LHC upgrades are
planned to increase the collision energy and the luminosity level. The increase
in luminosity raises the number of proton-proton interactions per collision, pro-
ducing more data and increasing the probability of observing events of inter-
est. However, in the calorimeter system, signals from neighboring events that
occurred in different time may be read out causing the effect which degrades
the performance of typical energy estimation methods. In the Tile Calorimeter
(TileCal) [5] of the ATLAS, three energy estimation methods address the in dif-
ferent ways. Therefore, this work evaluates the performance of these methods in
different conditions using collision data acquired during 2018 data-taking.

In the next section, the TileCal is briefly introduced. In Sect. 3 the meth-
ods used in TileCal for energy estimation are described. The results describing
the performance analysis of the methods using real proton-proton collision data
acquired in 2018 in ATLAS are presented in Sect. 4. Finally, in Sect. 5 conclusions
are derived.

2 The ATLAS Tile Calorimeter

The ATLAS calorimetry system is sectioned according to the interaction nature:
electromagnetic (electrons and photons) and hadronic (e.g. protons and neu-
trons). The Tile Calorimeter (TileCal) is the central hadronic calorimeter of
ATLAS and provides accurate measurements of jet energy, and assists in the
missing transverse moment calculation and muon detection.
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TileCal is a sampling calorimeter that uses scintillating plastic plates (or tiles)
as the active material, interspersed with steel layers as the absorbent material,
according to the illustration of a module depicted in Fig. 1. Both sides of each tile
are connected to a specific type of optical fiber, called WLS (Wavelength Shift-
ing), composed of a photo-fluorescent material that absorbs a high-frequency
photon and emits multiple low-frequency photons. Multiple tiles are grouped
into cells and each cell is connected to two photo-multipliers (PMTs). TileCal
is composed of four partitions (EBC, LBC, LBA, and EBA). Each partition is
divided into 64 modules with 32 to 48 readout channels per module, producing
approximately 10.000 readout signals per collision.

Fig. 1. Schematic diagram of a single TileCal module (extracted from [7]).

When a hadronic particle passes through the calorimeter, it generates a
shower of secondary particles and loses energy by the interaction with the pas-
sive material (steel as an absorbent material) and also interacts with the active
material (scintillating tiles), emitting light. This light is conducted by optical
fibers and read out by PMTs, which generate an electrical pulse in response to
the light signal. The pulse generated by the PMT is conditioned by a conforma-
tion circuit (shaper), which provides a pulse with a known shape and amplitude
proportional to the deposited energy [2]. This analog pulse is digitized by an
Analog to Digital Converter (ADC) with a sampling frequency of 40 MHz. A
window with seven time samples is available to extract the parameters from the
readout pulse.

The deposited energy in each cell of the calorimeter can be calculated by
correctly estimating the pulse amplitude, which is an approach commonly used in
modern calorimeters. Physically, only cells located along the shower development
should contain energy deposits and are selected for energy reconstruction [21].

The average number of interactions per collision <μ> is used to represent how
occupied a given readout cell is at each collision. Currently, the LHC operates
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with <μ> approximately equal to 40, and this value should increase for Run
3 [22]. As a consequence of the increase in luminosity, the probability of the
occurrence of signals within the same TileCal readout channel also increases.
When signals from adjacent events are acquired within a same readout window,
the effect is observed as illustrated by Fig. 2.

Fig. 2. An illustration of the pile-up effect. The black pulse is the signal of interest
and the red one is the time-shifted signal. The resulting received pulse is in magenta
(extracted from [14]). (Color figure online)

3 Energy Estimation in TileCal

The problem of the energy reconstruction in calorimeters is commonly addressed
as a parameter estimation problem. Currently, TileCal has three methods avail-
able for energy reconstruction of signals from collisions: the Optimal Filter, the
Constrained Optimal Filter (COF), and the Wiener Filter. The methods address
the in different ways as described below.

3.1 The Optimal Filter

The Optimal Filter (OF) method aims to estimate the amplitude of an input
signal, which is proportional to the energy. This estimator is designed to minimize
the estimation variance using the knowledge of the pulse shape (output of the
shaper circuit). The main noise source in ATLAS calorimeters readout channels
is the electronics, which can be modeled by a Gaussian distribution. Under this
constraint, the filter operates optimally which makes this method widely used
in ATLAS [9,18].

The implemented version of this estimator in TileCal is called OF2 and has
been in operation since 2014, being used for online and offline energy reconstruc-
tion [11]. This method is also used in other calorimeters in ATLAS, such as the
Liquid Argon Calorimeter (LAr) [18].
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In the OF2 method, the digital sample x[k] at time k can be modeled by

x[k] = Ag[k − τ ] + n[k] + ped , (1)

where A is the pulse amplitude, g[k] the reference pulse values (shaper), n[k] the
additive noise, τ the phase shift of the signal, and ped the pedestal or baseline,
a constant parameter added to the analog signal before its digitization.

The input signal amplitude is estimated through a low computational cost
process, which uses a weighted sum operation given by

ÂOF =
N−1∑

k=0

x[k]w[k], (2)

where w[k] is the filter coefficient and x[k] is the sample of the received signal.
To calculate the OF2 coefficients w[k], the digital signal received from TileCal

can be approximated by a first-order Taylor series, given by

x[k] = Ag[k] − Aτġ[k] + n[k] + ped, (3)

where ġ[k] represents the derivative of the reference pulse g, and k =
0, 1, 2, . . . , N − 1.

To guarantee an unbiased estimator, the absence of estimation bias, the
expected value of ÂOF is required to equal A. Therefore, replacing Eq. (3) in (2)
and considering that the average noise is zero (E{n[k]} = 0), where E represents
the expectation operator, the expected amplitude value becomes

E{ÂOF } =
N−1∑

k=0

(Aw[k]g[k] − Aτw[k]ġ[k] + w[k]ped), (4)

and
E{ÂOF } = A . (5)

For the estimator to be independent of the pedestal and the phase, the fol-
lowing restrictions are established

N−1∑

k=0

w[k]g[k] = 1,
N−1∑

k=0

w[k]ġ[k] = 0, and
N−1∑

k=0

w[k] = 0. (6)

The first restriction guarantees an unbiased estimator, while the second and
third restrictions guarantee, respectively, that the estimator is immune to phase
and pedestal fluctuations.

The estimator’s variance is given by

E{(ÂOF − A)
2} =

N−1∑

k=0

N−1∑

j=0

w[k]w[j]C[k, j]

= wTCw,

(7)

where w is the weights vector of the estimator and C the noise covariance matrix.
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To determine the weights w, it is necessary to minimize the expression of
the estimator’s variance using the Lagrange multiplier method. The solution of
this system results in the set of weights w[k] of the OF2 estimator that currently
operate online and offline in TileCal. It is worth mentioning that currently the
noise covariance matrix C is approximated by the identity matrix, which does
not take into account the effect.

3.2 The COF Method

Another algorithm also available for offline reconstruction in TileCal is the COF
method (Constrained Optimal Filter). COF computes a linear transformation
that recovers the amplitude of superimposed signals for a given readout window.
Hence, the central pulse, assigned to the collision of interest, can be dissociated
and reconstructed [3].

In this respect, the COF method models the energy deposition in a given
calorimeter cell as a Kronecker delta function [20], which produces an output
corresponding to the TileCal reference pulse. Thus, considering a set of energy
depositions a[k], the received signal can be modeled as

x[k] =
∑

i

(g[i]a[n − i]) + n[k]. (8)

In this way, estimating the deposited energy in a given calorimeter cell implies
deconvolution of the sequence x[k] of the impulse response g[k]. Applying a sim-
ilar procedure as for the OF method, considering the vector of x[k] (represented
as x) time samples, the j set of amplitudes âj can be given by

âj = UT
j x, (9)

where
Uj = C−1

j Gj(GT
j C−1

j Gj)
−1

. (10)

The Gj parameter corresponds to the matrix of shifted versions of TileCal ref-
erence pulse, where j is the number of collisions within the calorimeter readout
window, and Cj is the noise covariance matrix. When j = N , the number of
collisions is equal to the size of the readout window, thus the estimator will take
the form

â = G−1
j x. (11)

It is also worth pointing out that this expression does not depend on the
noise covariance matrix C, which is one of the advantages of the COF method
over the OF method. Finally, COF method applies a linear cut to select only the
amplitudes above a predefined threshold, defined in the filter design. This step
aims at re-designing COF through Eq. (10), avoiding estimating signals with-
out information (noise), and improving the amplitude estimates with relevant
information. The drawback is that signals outside the readout window are not
considered in the COF design.
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3.3 The Wiener Filtering

A third recently implemented and validated approach for energy estimation in
TileCal readout channels is based on the Wiener filtering. In this method, a
digital linear filter c[0], c[1], . . . , c[N − 1] is designed, where the output y[N ]
provides an estimate of the desired response d[n] (acquired through simulation),
given an input signal with N elements x[0], x[1], . . . , x[N − 1]. The Wiener filter
design aims to minimize the mean square value of the estimation error, which
leads to a mathematically more treatable problem. Unlike the OF method, the
Wiener filter considers the uncertainties from the signal and the noise in its
minimization process. In particular, this criterion based on the mean square
error results in a second-order dependence of the cost function on the filter
coefficients. Furthermore, the cost function has a distinct global minimum that
defines singularly the optimal design of the filter, in the statistical sense [12]. In
this approach, the filter output is given by the sum

y[n] =
N−1∑

k=0

c[k]x[n − k], (12)

such that the error between the desired value and the estimated value e[n] =
d[n]−y[n] is minimized. To optimize the filter design, the criterion of minimizing
the mean square error was adopted. For this, the following cost function is defined
by

J = E{e[n]2}. (13)

The minimum of the cost function J in respect to the coefficients c[k] is given
by

N−1∑

i=0

c[i]E {x[n − k]x[n − i]} = E {x[n − k]d[n]} , (14)

where k = 0, 1, . . . , N − 1. From Eq. (14), it can be seen that:

1. The expected value E {x[n − k]x[n − i]} is the auto-correlation function of
the filter input for the i − k lag. This expression can be rewritten as

R[i, k] =
1
N

N−1∑

n=0

x[n − k]x[n − i]. (15)

2. The expected value E {x[n − k]d[n]} is the cross-correlation between the filter
input and the desired output for the i − k lag. This expression can also be
rewritten as

p[k] =
1
N

N−1∑

n=0

x[n − k]d[n]. (16)

Equations (15) and (16) are known as the Wiener-Hopf equations. It should
be stressed that for nongaussian noise (such as pile-up), this method operates in
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sub-optimal conditions. Substituting these equations in Eq. (14), a linear equa-
tion system is obtained as a necessary and sufficient condition to optimize the
filter, as follows

N−1∑

i=0

c[i]R[i, k] = p[k] k = 0, 1, . . . , N − 1. (17)

Finally, this equation system can be rewritten in the matrix form and the Wiener
filter optimal weights can be expressed by

c = R−1p, (18)

where R represents the auto-correlation matrix of the input signals samples
(Eq. (15)) and p represents the cross-correlation matrix between the input signals
samples and the desired values for the filter output (Eq. (16)).

It is worth mentioning that Wiener filter results in the optimal filter in the
sense of minimizing the mean square error (error dispersion), taking into account
the statistics present in the input data (signal plus noise). However, the Wiener
filter considers that the noise has a zero mean (average value), which does not
correspond to the case of uni-polar signals pile-up noise. To circumvent the
noise average problem, an additional coefficient is included in the Wiener filter
optimization process. This additional element of constant value equal to 1 is
added to each input signal as the last element. In this way, the input signal has
N + 1 elements and the coefficient vector is also increased by one element.

The goal of including this additional element is to cancel the independent
component of the signal in the optimization procedure, absorbing the average
noise value in order to compensate for its contribution in the amplitude mea-
surement of a given readout window. As a result, the estimation of the ÂFW

amplitude of the proposed Wiener filter is given by the sum of the products of
the received signal temporal samples and the first N coefficients of c. At the end
of the operation, the last coefficient c[N ] is added to the result, compensating
for the average noise value as shown in Eq. (19).

ÂFW =

(
N−1∑

i=0

c[i]x[i]

)
+ c[N ]. (19)

4 Results

Real proton-proton collision data acquired in 2018 by the LHC (last data acquisi-
tion period) were used for performance evaluation of the described methods [17].
Different levels were tested, with an average number of interactions per collision
<μ> ≈ 30, <μ> ≈ 40, <μ> ≈ 50, and <μ> ≈ 90. The datasets for each case
contain about 1 million events. For <μ> ≈ 30 and <μ> ≈ 50, the Wiener filter
method was designed using a dataset of <μ> ≈ 40, in order to profit of the
number of signals used to design the methods. For <μ> ≈ 90, the dataset was
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divided equally into two subsets, the development set (used to design the meth-
ods), and the test set (used to evaluate their efficiency). Since the OF and COF
methods use only the pulse shape information in their models, the same design
of each method was used for all <μ> values.

It is worth mentioning that the data used were obtained from datasets called
ZeroBias Stream, where only random triggers are used. Therefore, only electronic
noise and pile-up information were acquired. In other words, in these events it is
not expected to observe any signal of interest in the acquisition window, consti-
tuting only noise data. Hence, the mean value and RMS of the energy estimation
of these events represent, respectively, the estimation bias and variance associ-
ated with each algorithm.

The Wiener filter is designed from a dataset composed of signals of inter-
est immersed in noise, as well as the known amplitude values of the respective
signals. Therefore, a pulse simulator was developed and validated to produce
a dataset of signals of interest with the known amplitudes values, considering
both pulse deformation and phase shift uncertainties. The amplitude follows
a uniform distribution in the range of [0, 1023] ADC counts, since TileCal’s
analog-to-digital converter has 10 bits [2]. Thus, each amplitude value has the
same probability of occurrence. Finally, the generated signals were added to the
events of the dataset used to derive the Wiener filter coefficients.

4.1 Efficiency Analysis

To analyse the efficiency of the studied filters for severe conditions, the most
affected cells in terms of effect in TileCal, called E4 cells, were used. Figs. 3a and b
show the reconstructed energy distributions by the Wiener filter, COF, and OF2,
considering <μ> ≈ 50 and <μ> ≈ 90, respectively. It can be seen the histograms
for the Wiener filter shows less dispersion followed by the COF method. This
result shows that for channels with high pile-up levels the Wiener filter presents
a promising performance.

Fig. 3. Reconstructed energy distribution for (a) <µ> ≈ 50 and (b) <µ> ≈ 90
(extracted from [8]).
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The evolution of the mean and RMS of the estimation error distributions
according to the <μ> value are shown in Figs. 4a and b, respectively. Again, the
Wiener filter has a lower mean and RMS compared to the COF and OF2 filters
in the highest occupancy readout cells. For instance, for <μ> ≈ 90, the Wiener
filter shows an improvement of approximately 20% and 35% in terms of RMS
compared to the COF and OF2 filters, respectively.

Fig. 4. Evolution of the (a) mean and the (b) standard deviation of reconstructed
energy distribution with collision data (extracted from [8]).

In order to verify the estimation performance in other TileCal channels, a
complete module was used (Module 01 of the EBA partition). In this analysis,
the bias and variance of the three methods are compared. Figure 5a shows the
difference in the estimated energy distribution mean between the Wiener filter
and COF, using the OF2 method as a reference. Positive values represent higher
mean values than OF2 and negative values represent lower values. For example,
considering channel 1 (E4 cells), the reference method (OF2) presents a larger
mean error with respect to the Wiener Filter (see Fig. 4a), which produces the
negative values for the data-points shown in Fig. 5a.

Figure 5b shows the relative percentage difference of the standard deviation
of the energy distribution of the methods, adopting the OF2 as a reference and
considering only one module. Once again, it is noted that the most significant
improvements achieved by using the Wiener filter with respect to COF and OF2
are visible for channels 0 and 1 (cells of highest occupancy in the module). For
the other channels, the COF method proved to be more efficient, surpassing the
Wiener and OF2 filter, improving the RMS by approximately 25% with respect
to the OF2 method.
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Fig. 5. Variation of the (a) difference of mean and (b) relative deviation from the
standard deviation of the energy distribution for the Wiener and COF filters, adopting
the OF2 method as a reference. Only Module 1 of TileCal’s EBA partition is considered.
Hatched areas correspond to non-instrumented channels (extracted from [8]).

5 Conclusions

This paper addressed the parameter estimation problem applied to energy recon-
struction in the ATLAS Tile calorimeter cells under high pile-up conditions which
introduce new challenges for the energy estimation task.

Using collision data for severe pile-up conditions (<μ> ≈ 90), the Wiener fil-
ter method shows an improvement of approximately 35% on the uncertainty of
the energy reconstruction compared to the currently used method (OF2), in the
most occupied TileCal cells. It was also observed that for low and medium occu-
pation ranges, the COF method presents the best performance for energy esti-
mation, improving the estimation variance by approximately 25% with respect
to OF2.

The impact of the different energy reconstruction techniques on the physics
objects reconstruction is under study.
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Abstract. This article describes a method for detection of cognitive defects based
on eye tracking during reading. The aim of this research is to pursue and extend
the experiments conducted in Sweden by introducing Conventional signal theory.
The dataset used for experiment was acquired by the authors of the research article
Screening for Dyslexia Using Eye Tracking during Reading. The provided data
consist of 185 subjects divided into two groups. The first group comprises of
88 low risk (LR) subjects and the second group comprises of 97 high risk (HR)
subjects. Our measurements achieved a classification accuracy score 86.164% by
classifying the subjects into the correct groups.

Keywords: Dyslexia · Eye tracking · KNN · Conventional signal theory

1 Introduction

Using tracking eye movements during reading we are able to create the path of visual
attention. Cognitive defects in a subject can be detected by detailed investigation of
visual path. Various types of cognitive disorders as autism, schizophrenia, dementia can
be identified by using eye tracking. Important scientific publications that focuses on
modeling human visual attention have been published since 1988 [1]. Early diagnosis
of cognitive disorders is essential in order to detect them at an early stage and begin
the treatment. Currently, there are several active researches dealing with visual attention
of subjects regarding various cognitive disorders [2–4]. Tracking eye movement of the
individual is used in the detection of cognitive disorders, which form basic indicators of
cognitive processes. For tracking eye movements and regions of interest of the pictures
are commonly employed, for example ROR pictures were used for the identifying the
subjects with schizophrenia [2]. In the other cases for the detection of cognitive disorders
in subjects with autism or dementia, the text was presented to subjects for reading and
based on eye movements the differences between individuals with and without detected
dyslexia [6, 7]. This article is specifically dedicated to dyslexia. Eye movements in sub-
jects with dyslexia differ from eye movements in subjects without dyslexia. Individuals
with dyslexia require more time to decode particular words and it results in longer and
more frequent fixation periods leading to shorter saccades. Fixations are defined as a
state when eyes remain steady at least for 50 ms, saccades are determined as move-
ments above threshold distance [4]. We decided to omit the division of eye movements
and the input for our classification represents the coordinates of vector of the whole
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scanned text. Our research is aimed on the experiment, to proof if it is possible to sort
out and classify the subjects through Conventional signal theory and if this method is
sufficient for the evaluation of acquired data from eye tracker. The article is organized
as follows. The first part includes a description of our approach, designed block scheme
and displayed vectors view of selected subjects from LR (low risk) and HR (high risk)
group and also magnitude spectrum serving for classification of subjects by classifier.
In the second part we describe the experiment and the dataset. The final part is devoted
to results of experiment, the comparison with already published research, conclusion,
acknowledgment and references.

2 Proposed Approach

It was assumed that the data input of coordinates from the right eye (X) and the left eye
(Y) which represent the averaged values of coordinates (1) and (2) eye movements of
the left eye in the x and y directions (Rx, Lx, Ry, Ly).

X = Rx + Lx

2
(1)

Y = Ry+Ly

2
(2)

Ablock schemeof the designed system is displayed inFig. 1. In general the sequences
are differently long because subjects had various reading speed, that is why the data were
interpolated by DCT3 base function to have the same length,

DCT3Uk,n =
√

2

N
cncos

(
π((2k + 1)n)

2N

)
(3)

k, n = 0, 1, . . . ,N − 1,
where k represents order in the spectrum and n order in time. Subsequently, the

values of the ratio were calculated between original and aligned length. The coordinates
in x and y axis were multiplied with the given values of the corresponding subject. The
x axis was cut down to particular value, as it is shown in Figs. 2 and 3. Because subjects
paid attention to other points after reading the text that eye tracking captured and the
redundant information formed approximately half of the total information.

The coordinates of vector are different for subject LR and HR during comparing the
amplitudes of the subjects over the time. Fluent course is visible on the x axis of subject
3 LR which is displayed as saw-tooth course and the amplitude is proportional to the
line length. Whilst the subject 93 HR does not recognize the course, the eye movement
along the x axis is unpredictable during reading particular lines. The eye movement
in the horizontal direction was sufficient the most (x axis), that is why vertical eye
movement was excluded (y axis). The Discrete Fourier Transform (DFT) was applied to
the coordinates of vector of the x axis. The half of the magnitude spectrum of all subjects
from LR and HR group was an input into the classifier, Figs. 4 and 5. DC component
was omitted from the magnitude spectrum.
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Fig. 1. Block scheme of the designed system.

Fig. 2. The eye movement of subject 3 LR in the horizontal direction.
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Fig. 3. The eye movement of subject 93 HR in the horizontal direction.

Fig. 4. Magnitude spectrum of subject 3 LR – input into the classifier.
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Fig. 5. Magnitude spectrum of subject 93 HR – input into the classifier.

3 Experiments

The text used during experiment consists of 10 sentences divided into 8 lines with an
average length of 4.6 words. The text was printed on one side of high contrast white
paper. The sentences were selected appropriately for the age group of subjects tested
[4].

3.1 Tested Subjects

Subjects with cognitive disorder were in the HR – reading disorder was identified in 97
subjects (71 male and 21 female subjects). In the LT group were tested 88 subjects (69
male and 19 female subjects). Subjects attended the third grade of elementary school
and had 9 to 10 years. None of tested subjects did not suffer mental retardation [4].

3.2 Data Acquisition

To detect eye movements was used goggle-based system Obe-2 TM (formerly Permobil
Meditech Inc., Woburn MA,). System operates on recording infrared corner reflection
of subject. The eye movements were recorded in horizontal and vertical direction at
frequency 100 Hz [4]. The eye movements were averaged for our research and only
horizontal eye movements were taken into consideration. Authors of published research
[4] tracked the changes in the visual path and eye movements of individuals – fixations,
saccades, sweeping movements and transients.
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3.3 Process of Experiment

The k-nearest neighbors (KNN) algorithm was used for data classification. The tested
subject is classified into the appropriate group in this method according to the k-nearest
neighbors that influence the subject. The data were divided into two groups of training
subjects – 184 subjects and 1 test subject. In the first step, we selected a specific subject
from the training data group that served as the test subject. This cycle was repeated
185 times to test each subject for k-nearest neighbors. The correlation coefficient was
chosen as metric. After data classification we calculated the positive predictive value
PPV – precision (4), TPR – true positive rate, the recall or sensitivity (5), TNR – true
negative rate, specificity (6), F1 score (7) and ACC - accuracy (8) for the HR group with
dyslexia.

PPV=
TP

TP + FP
(4)

TPR=
TP

TP + FN
(5)

TNR=
TN

TN + FP
(6)

F1 = 2× PPH× TPR

PPH + TPR
(7)

ACC=
TP + TN

TP + TN + FP + FN
(8)

4 Results

Several series of calculations with different value of k neighbors was conducted in the
KNN classification. K = 5, 19, 25, 33 a 55. The results show us an overview which of
the selected number of k-nearest neighbors provides the best classification result. The
highest ACC was achieved at K = 33 and K = 25, where accuracy of correct subject
classification was 87.03%. The best score for TPR attained 90.72% at K= 33. For TNR
the highest reached value was 84.09% at K = 25 and the lowest value was at K = 5,
79.55%. The highest score F1 reached at K= 33 was 88% and the lowest score reached
at K = 5 was 86.14%, all results are in Table 1.
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Table 1. PPV, TPR, TNR, F1 and ACC score.

PPV [%] TPR [%] TNR [%] F1 [%] ACC [%]

K = 5 82.86 89.69 79.55 86.14 84.86

K = 19 85.29 89.69 82.95 87.43 86.49

K = 25 86.14 89.69 84.09 87.87 87.03

K = 33 85.44 90.72 82.95 88 87.03

K = 55 85 87.63 82.95 86.29 85.41

Recall and precision curves use different probability thresholds and through this they
summarize for a predictive model the trade-off between the true positive rate and the
positive predictive value, Fig. 6.

Fig. 6. Recall precision curve for K = 5, 19, 25, 33, 55.

Compared to the results obtained in the previously published research, the authors
took into consideration various eye movements and not the whole coordinates of vector
of the scanned text, the overall classification accuracy by using SVM-RFE 95.6%± 4.5.
In our case the overall accuracy reached 86.164% with standard deviation±0.88 (Table
2).

In our study, we focused on the correct classification of the individuals in the HR
group,where the highest precision classification achieved 90.72%, itmeans that 88 out of
97 subjects were classified properly in the KNN, when K= 33 and the lowest precision
of classification was achieved when K = 55, 85 subjects out of 97 were classified
with accuracy 88%. In cases, where misclassification of different subjects is penalized
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Table 2. Comparison of methods.

KNN SVM-RFE

Accuracy of detection [%] 86.164 (±0.88) 95.6 (±4.5)

differently, it is not enough to minimize the number of misclassified objects. In medical
diagnostics, themisclassification of healthy patient among ill subjects, initiated treatment
would have small side effects and it is less dangerous than not providing treatment to
seriously ill subject. That means that cost of incorrect classification to the HR group is
lower than the cost of incorrect classification to the LR group [5].

5 Conclusion

In comparison to SVMFRE our method propose simpler approach to classification of
subjects, due to faster processing of data (only direction of the movement of eyes). The
advantage of our system is that the input is only coordinates of vector and there are
no other required definitions of events expressing eye movements (number of fixations,
length of fixations or length of saccades) and subsequently their selection for vector of
features for classification. The answer for our question, whether the Conventional signal
theory is suitable for detection reading disorders, is yes, it is. To increase the accuracy
it is necessary to analyze the influence and order of shortening the input sequence, its
interpolation and the influence of establishing additional relevant feature in the feature
vector for classification. Furthermore, it will be interesting to track how another type of
classifier will deal with magnitude spectrum of preprocessed signals, for example deep
neural network. Whilst this type of reading analysis appears to be appropriate diagnostic
methods for other disorders, it might be interesting to monitor if Conventional signal
theory would provide good results.
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Abstract. In recent years the native advertisement is becoming more
and more prevalent in online spaces. Differentiating between genuine
content and native advertisement using Natural Language Processing is
therefore also becoming a very interesting research topic. In this paper,
we examine the possibilities of using deep textual representation for the
Slovak language to recognize the “PR (Public relations) articles” (that
serve as a native advertisement in this context) from authentic news arti-
cles on popular Slovak news websites. We show that the BERT (Bidi-
rectional Encoder Representations from Transformers) embeddings as a
text representation are sufficient for this task (achieving accuracy over
80% even with a statistical model - Logistic Regression) and that the
models generally perform better without prior lemmatization.

We have scraped three Slovak news websites (for a total of 5455 news
articles containing both paid-for content and a wide variety of genuine
categories), and we have evaluated multiple binary classification meth-
ods (Logistic Regression, Random forest classifier and Support Vector
Machines) trained on top of generated RoBERTa sentence embeddings.
On our testing set, we were able to achieve an accuracy of 85.13%.

Keywords: NLP · Slovak language · Native advertisement · Text
classification

1 Introduction

The topic of document classification is a very popular field of Natural Language
Processing (NLP), mainly focusing on the categorization based on topic, senti-
ment, or entailment [11]. However, one could argue that the detection of genuine
(or authentic) content from paid content is a topic that also deserves the atten-
tion of researchers, mainly since the rise of native advertisement in recent years.
The term native advertisement (later also referenced as “PR content” or “paid-
for content”) was first introduced in 2011, and ever since then, it has infiltrated
almost every big internet platform, including digital news websites.

This paper presents a method on how to distinguish between native advertise-
ments and genuine news articles - using BERT multilingual model [16] for text

c© Springer Nature Switzerland AG 2022
G. Rozinaj and R. Vargic (Eds.): IWSSIP 2021, CCIS 1527, pp. 161–171, 2022.
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encoding and then training a classifier to distinguish between real and paid-for
content.

The rest of the paper is organized as follows: in the next subsections, we
briefly introduce the concept of native advertisement, the motivation behind
the paper, and related works. In Sect. 2 we discuss the properties of our digital
news dataset used for training and testing. In Sect. 3 the methodology of our
experiments is summarized. Then, in Sects. 4 and 5 we present and analyse
results achieved on our testing set.

1.1 Native Advertisement

Native advertisement in digital newspapers is a type of advertisement trying to
be indistinguishable from the actual content being published - in formatting,
tone, and to an extent, even content.

Fig. 1. A native advertisement placed among authentic articles on the news page web-
site.

Sponsored news articles have also been on the rise in recent years and are
often listed among news website’s genuine content. They aim to provide exciting
or entertaining information to the reader and “connect” with him, sometimes
including brand name or hyperlink only in the later parts of the article. Even
though disclosure that the article belongs among a sponsored content is usually
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present on the news websites, its position on the website can confuse human
readers and possibly skew results of automated media analysis (example of PR
articles placement is shown in Fig. 1).

The topic of recognizing native advertisements is also relevant because of
the amount of native PR content appearing on the Slovak websites. According
to IAB Slovakia - an association for online advertising in Slovakia - in 2020,
the total cost of native advertising makes up 4% of all advertisement costs in
Slovak online space1, and the popularity is steadily rising (14.26% increase in
cost between 2019 and 2020).

1.2 Related Work

The problem of document classification using deep representation has received
much attention ever since deep learning became popular for natural language
processing tasks. It has quickly replaced statistical methods as the state-of-the-
art for many text classification tasks.

With deep learning, it seems that over the years the focus has shifted from
generating representation for words (e.g. Word2Vec [10] or GloVE [13]) to gener-
ating embeddings for whole sentences or texts. Many architectures were explored
for this task; however, prevalent (and accurate for many NLP tasks) are models
using Transformers architecture [20], which consists of series of attention-based
blocks. This architecture allows for self-supervised training and variable-length
input.

BERT (Bidirectional Encoder Representations from Transformers) is a model
for sentence encoding based on Transformers architecture introduced in 2018 [4],
which can be considered state-of-the-art embedding model [11]. BERT models
generally consist of stacks of Encoder and Decoder layers, composed of a self-
attention layer, feed-forward layer, and a residual skip connection.

There have been multiple variants of BERT introduced after 2018, for exam-
ple ALBERT [8] (a lightweight version of BERT with smaller memory consump-
tion and faster training), or DistilBERT [17] (also smaller and faster, but pre-
trained through knowledge distillation).

An interesting extension is the SBERT (Sentence BERT) [15], where a BERT
model is fine-tuned in a siamese/triplet architecture - this model is computa-
tionally efficient and also produces embeddings that can be compared using
cosine similarity reflecting semantical meaning. Important extension has also
been RoBERTa [9], since it is a multilingual model capable to perform well on
low-resource languages.

While there are many papers published and models available for texts in
English, the topic of NLP in other languages is limited, however gaining traction
in recent years [16,22]. In this paper we are focusing on the Slovak language,
for which deep representation was previously used for sentiment classification
[12], document summarization [18] or punctuation restoration [5]. In [18] the

1 Report available at: https://www.iabslovakia.sk/vydavky-do-reklamy/vydavky-do-
internetovej-reklamy-2020-sk/ (Last accessed 09 Apr 2021).

https://www.iabslovakia.sk/vydavky-do-reklamy/vydavky-do-internetovej-reklamy-2020-sk/
https://www.iabslovakia.sk/vydavky-do-reklamy/vydavky-do-internetovej-reklamy-2020-sk/
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researchers also present a Slovak summarization dataset build from scraping
Slovak news websites.

The topic of native advertisement is also attracting researchers’ attention
since its surge in 2011 [19]. The problem of detecting the paid-for content was
studied in [14], where the authors build a system to detect native advertisements
and other extraneous content in podcast episodes, also using BERT multilingual
model on episodes transcript.

2 Dataset

Since NLP datasets for the Slovak language are limited (especially with the
connection to advertisements), we have built our own. The dataset that was
used for experiments in this paper was collected using web scraping from three
Slovak news websites2. We have tried to build the collection by choosing the
subcategory of authentic articles that the native advertisements most commonly
try to emulate - for example, celebrity news (since in the paid-for articles, it is
often a celebrity promoting a product) or health news (self-help angle is also
often present).

Altogether there were 3000 genuine and 2455 PR articles, which were later
used for training our models. The details of our scraped database are summarized
in Table 1. The publishing date of articles from websites ranges from November
2006 to March 2021.

Since the information about whether an article is PR content is disclosed on
the scraped websites (and they can be found in their own subsection), we were
able to assign labels for the documents automatically. Some mislabelling was
present on the news websites, and it was manually corrected to the best of our
ability.

3 Methodology

After acquiring the dataset, we have built a system for training our model for
binary classification. This process can be split into three steps:

– preprocessing of texts consisting of text cleaning, splitting into parts and
lemmatization,

– deep representation using BERT multilingual model to generate embed-
dings for different parts of scraped articles,

– binary classification used on top of our generated embeddings, using both
statistical and machine learning methods.

A more detailed description of these steps is in the following subsections.

2 Available at URLs: https://www.aktuality.sk/, https://www.cas.sk/, https://
techbox.dennikn.sk/ (Last accessed 09 Apr 2021).

https://www.aktuality.sk/
https://www.cas.sk/
https://techbox.dennikn.sk/
https://techbox.dennikn.sk/
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Table 1. Properties of scraped dataset.

Source Total number of articles Section Authentic
content

PR content

www.aktuality.sk 1759 Home news
Economics
Health
Culture
PR content

1000 759

www.cas.sk 2499 PR content
Culture and
celebrity
news
Health

1000 1499

www.techbox.sk 1197 Technews
PR content

1000 197

Total 5455 — 3000 2455

3.1 Data Preparation

In the first step, three parts from every article on the news websites were
extracted:

1. title,
2. introduction (structurally highlighted on the website - usually a first para-

graph or a short summary),
3. main content.

We have cleaned all of them from hyperlinks, scripts, and all the formatting
to get only the pure text from all the relevant tags. We have then checked the
language of scraped articles.

Then, we have lemmatized the texts using open-source model3 from
SparkNLP library [6]. Using these steps, we have created eight different pos-
sible texts for every document, which were later used for our experiments and
are summarized in Sect. 4.

For better understanding of the dataset and our problem, we include Table 2,
where we show some exemplary titles from PR articles.

3.2 Deep Representation

Next we have generated the embeddings for the text using BERT multilingual
model4 [16].
3 Available at https://nlp.johnsnowlabs.com/2020/05/05/lemma sk.html (Last

accessed 09 Apr 2021).
4 Known as stsb-xlm-r-multilingual ; available at: https://huggingface.co/sentence-

transformers/stsb-xlm-r-multilingual (Last accessed 09 Apr 2021).

www.aktuality.sk
www.cas.sk
www.techbox.sk
https://nlp.johnsnowlabs.com/2020/05/05/lemma_sk.html
https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
https://huggingface.co/sentence-transformers/stsb-xlm-r-multilingual
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Table 2. Sample titles of paid-for articles in our database (english translation provided
by authors).

Sample titles of PR articles

[Original ] Chcete tankovať lacneǰsie? Máme pre Vás skvelý tip!

[Lemmatized ] chcete, tankovať, lacný, ?, máme, pre, vás,
skvelý, tip, !

[English translation] Do you want to pay less for gas? We
have a tip for you!

Original ] Zabudnite na sv. Valent́ına: Toto sú oslavy lásky, o
ktorých ste ani
netušili!
[Lemmatized ] zabudnite, na, sv, ., valent́ın, :, toto, byť, oslava,
láska, ,, o, ktorý,
byť, ani, netušǐt, !
[English translation] Forget about Valentine’s day: Here are
love celebrations
which you have never heard about before!

[Original ] Čo všetko muśı absolvovať práčka, kým sa dostane
až ku vám domov?
[Lemmatized ] čo, všetko, musieť, absolvovať, práčka, ,, kto, sa,
dostať, až, k,

vy, dom, ?
[English translation] What does a washing machine have to go
through
before it gets to your home?

This model has been trained using a teacher-student architecture, where a
teacher model is monolingual (in this case using SBERT architecture [15]) and a
student model is multilingual (using XLM-RoBERTa [3]). The training process
tries to map all the embeddings from the student model (for multiple languages)
to be similar to the embedding of a teacher model. This model creates a 768
dimensional representation for every input text (of variable length).

Using this architecture, the student model (with 12 layers and 12 heads) cre-
ates a representation for Slovak texts, which should have the same advantages as
the original SBERT embeddings (mainly semantic cosine-similarity). The mod-
els were trained on corpora from SNLI [1], MultiNLI [21] and STS benchmark
train set [2].

Considering our experiments with prior lemmatization, an important note for
the student embedding model is that it starts with SentencePiece tokenization
- an unsupervised data-driven and language-independent tokenizer5 [7]. Using
this tokenization, a sentence “Slovensko zasiahla vlna obrovského nárastu dopytu
po produktoch na kĺby!” (an exemplary title of a PR article from dataset) would
be split into tokens “[‘ Slovensko’, ‘ za’, ‘sia’, ‘hla’, ‘ v’, ‘lna’, ‘ obrovské’, ‘ho’,

5 Available at https://github.com/google/sentencepiece (Last accessed 09 Apr 2021).

https://github.com/google/sentencepiece
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‘ ná’, ‘rast’, ‘u’, ‘ dop’, ‘ytu’, ‘ po’, ‘ produkto’, ‘ch’, ‘ na’, ‘ k’, ‘́l’, ‘by’, ‘!’ ]”,
which will then be processed by the RoBERTa model. This tokenization keeps
punctuation and also codes inflectional morphology.

Embeddings were computed for every one of the eight possible texts con-
nected to a single article separately.

3.3 Training

After we have generated the embeddings - vector of size 768 - for every text
configuration, multiple models for each configuration from preprocessing were
trained:

– Logistic Regression,
– Random Forest Classifier,
– and Support Vector Machine Classifier.

We have split the dataset into training and testing subsets using a ratio of
75:25, totaling 4072 samples for training and 1358 for testing. The models were
trained using cross-validation with a 5-fold split.

A grid search to find optimal training parameters was also employed for every
classifier - type of penalty for logistic regression, cost parameters and kernel type
(linear or RBF) for SVMs, and the number of trees and split stopping parameters
for random forest classifier.

4 Results

Altogether we have trained 32 models with different input data and machine
learning method. Their respective details and accuracies are summarized in
Table 3.

As we can see, the best results were achieved using embeddings generated
from only the title of the articles coupled with their introduction without prior
lemmatization. The best performing model was a Support Vector Classifier with
RBF kernel and cost parameter set to 1, while the lowest accuracy was achieved
using Random Forest Classifier.

Detailed results (with achieved accuracies also for subcategories of authentic
content) for our best performing model are summarized in Table 4. While the
resulting dataset size of the respective subcategories in the testing set is not
large, these results suggest there is no specific issue with any authentic article
subtype and that the model was able to differentiate between PR and authentic
content even in the subcategories which may seem more challenging (for example
category health).

A couple of interesting notes can be observed from the presented results:

– Models, in general, perform better without prior lemmatization.
This was previously observed by researchers using BERT models for the Slo-
vak language [12,18]. While lemmatization is still often used in automatic lan-
guage processing for the Slovak language (especially coupled with statistical
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Table 3. Achieved results.

Method Lemma-tized Part of text Category PR Category authentic Accuracy

Precision Recall Precision Recall

Logistic

regression

Yes Title 0.7470 0.7368 0.8028 0.8111 0.7791

Introduction 0.7223 0.7470 0.8035 0.7827 0.7673

Title + Introduction 0.7759 0.7692 0.8265 0.8318 0.8049

Full text 0.7826 0.7692 0.8276 0.8383 0.8085

No Title 0.7530 0.7402 0.8059 0.8163 0.7835

Introduction 0.7475 0.7538 0.8125 0.8072 0.7842

Title + Introduction 0.7718 0.7863 0.8360 0.8241 0.8078

Full text 0.7838 0.7932 0.8420 0.8344 0.8166

Random Forest Yes Title 0.7656 0.6308 0.7534 0.8538 0.7577

Introduction 0.7608 0.6308 0.7526 0.8499 0.7555

Title + Introduction 0.8251 0.6855 0.7890 0.8900 0.8019

Full text 0.7888 0.6957 0.7889 0.8590 0.7887

No Title 0.7634 0.6564 0.7649 0.8461 0.7644

Introduction 0.7697 0.6342 0.7557 0.8564 0.7607

Title + Introduction 0.7895 0.6923 0.7870 0.8603 0.7879

Full text 0.7940 0.7179 0.8010 0.8590 0.7982

SVM Yes Title 0.7772 0.7692 0.8269 0.8331 0.8056

Introduction 0.7961 0.7675 0.8287 0.8512 0.8152

Title + Introduction 0.8153 0.800 0.8508 0.8629 0.8358

Full text 0.8202 0.8034 0.8535 0.8668 0.8395

No Title 0.7843 0.7709 0.8289 0.8396 0.8100

Introduction 0.7983 0.7915 0.8430 0.8473 0.8233

Title+ Introduction 0.8296 0.8239 0.8674 0.8719 0.8513

Full text 0.8280 0.7983 0.8514 0.8745 0.8417

Table 4. Detailed results for our best model.

Subcategory Size of testing subset Accuracy

PR article 858 0.8239

Culture and celebrity news 192 0.8802

Home news 67 0.8955

Technews 261 0.8774

Economy 66 0.8636

Health 187 0.8503

analysis of texts), this behaviour is perhaps not surprising (since the authors
of the RoBERTa model we have used do not mention using lemmatization
while training). Also, it can be theorized that the model performs better with
inflectional morphology since it can help assess the tone or subject of the
sentence for the Slovak language (and that SentencePiece representation of
tokens could have the capacity to capture these inflections).

– Longer texts do not necessarily yield higher accuracies. There was
only a small observable benefit to encoding full text instead of just title
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and introduction (first paragraph). For clarification purposes, the minimum,
maximum, and mean length of the used texts parts are summarized in Table 5.

Table 5. Length (number of words) of texts used for training.

Min length Max length Mean length

Title 1 25 9.581 ± 3.156

Introduction 4 112 30.922 ± 15.673

Content 7 3791 367.614 ± 275.247

– Relatively good results can be achieved using only the title of the
article. This was surprising since the titles are usually short (in our dataset,
the maximum length was 21 words, while the mean length was only 9.577
words). It can perhaps be explained from the nature of data itself - while
the goal of a native advertisement is to appear as close to genuine content as
possible, human readers are often capable of determining whether an article
is paid-for from the title itself and it would appear that the embeddings carry
this sentiment as well. Adding longer texts (providing more context) improves
the results further.

5 Conclusion and Future Work

The results in this paper show that the BERT multilingual model performs well
for the task of recognition of paid-for content in the Slovak language. We have
also observed that the models trained on texts without lemmatization performed
better (confirming findings from [12] and [18]), which may not be surprising
since the BERT models use SentencePiece tokenization. Also we have found that
this problem can be solved using only short texts of the articles (title and/or
introduction).

However what may be surprising are the (relatively) high accuracies of all the
trained models, since it is the goal of native advertisements to appear as close
as possible to the genuine content published on the websites. However, there are
some clues by which even human readers can distinguish between true and PR
content without explicit labeling (positive tone, direct addressing of the readers,
etc.) and it can be hypothesized that the BERT model encodes those well.

For future research, it may be interesting to infer which content is paid for
not only from the text but also from different articles’ properties. In our experi-
ments, we have striped the text from the hyperlinks or formatting. However, one
can hypothesize that those often help human readers distinguishing the content
types.

Also, perhaps more informative results can be achieved by further specifying
the subtype of PR articles used for training and evaluation since there is a
varying level of emulating the genuine content between them.
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We believe it is important to research this topic further since the native
advertising strategies are becoming more and more popular (they seems to also
gain traction on social media)- and often not only for promoting products. It
may also become crucial because not all online spaces are disclosing the paid-for
content.
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Abstract. The writing can be used as an important biometric modal-
ity which allows to unequivocally identify an individual. It happens
because the writing of two different persons present differences that
can be explored both in terms of graphometric properties or even by
addressing the manuscript as a digital image, taking into account the
use of image processing techniques that can properly capture different
visual attributes of the image (e.g. texture). In this work, we perform a
detailed study in which we dissect whether or not the use of a dataset
with only a single sample taken from some writers may skew the results
obtained in the experimental protocol. In this sense, we propose here
what we call “Document Filter”. The Document Filter protocol is sup-
posed to be used as a preprocessing technique, in such a way that all the
data taken from fragments of the same document must be placed either
into the training or into the test set. The rationale behind it, is that
the classifier must capture the features from the writer itself, and not
features regarding other particularities which could affect the writing in
a specific document (e.g. emotional state of the writer, pen used, paper
type, and etc.). By analyzing the literature, one can find several works
dealing with the writer identification problem. However, the performance
of the writer identification systems must be evaluated also taking into
account the occurrence of writer volunteers who contributed with a sin-
gle sample during the creation of the manuscript databases. To address
the open issue investigated here, a comprehensive set of experiments
was performed on the IAM, CVL and BFL databases. They have shown
that, in the most extreme case, the recognition rate obtained using the
DF protocol drops 30.94% points.

Keywords: Writer identification · Single-sample writer · Document
filter · Texture

1 Introduction

Writer identification is an ordinary task, necessary in some specific domains,
such as forensic science. The main goal in this task is to define who is the person
that wrote a document by handwriting text. Automatic writer identification is a
hot topic, intensively addressed by the pattern recognition research community.
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This task, as the writer identification task, may be considered a quite chal-
lenging task, because each writer corresponds to one class in these problems,
thus characterizing a problem with numerous classes. In addition, sometimes the
writing style of different people presents a reasonable similarity, which makes the
inter-class likeness increase proportionally to the number of writers [18].

Another adversity happens because as well as two distinct people do not have
identical writing, one person does not reproduce its own writing twice identically
[13]. This detail implies in an additional difficulty to identify whether or not two
given manuscripts were written by the same person.

By analyzing the literature, we can easily find several experiments attack-
ing the task investigated here with very high performance rates [3,9,22]. How-
ever, as we know, in real world problems the scenery found is frequently differ-
ent from that enforced by many databases used in some typical experimental
setup. In many cases, the experimentation is performed using a scarce amount
of manuscript samples per writer, what makes difficult to build a more robust
classifier model.

With that in mind, in this work we try to open up this “black-box” developing
a series of experiments to evaluate a quite subtle issue surrounding the writer
identification task. For this purpose, we evaluate the impacts of the introduction
of a mandatory restriction which prohibits the use of data taken from different
fragments of the same manuscript both on the train and test sets. We call this
restriction “Document Filter” or “DF”, and it was inspired by a similar protocol
introduced by Pampalk et al. [17] in the music genre classification task. In that
work, the authors intended to avoid the creation of classifiers able to classify
artist (“Artist Filter”), instead of music genre. It was reported that in the most
extreme case, the recognition rate reduced from 71% to 27% when that filter
was applied.

There are several factors that can help to understand why using a single
document from a writer can somehow introduce a bias to the results. It hap-
pens because there are some factors that may introduce slight differences in two
different documents written by the same person, like the emotional state of the
writer; the fluency of the pen/pencil used for writing; and the paper writability
(smooth/rough), among others [13].

To demonstrate this hypothesis, we evaluate the difference between perfor-
mances with or without the DF protocol. Hence, we have two different protocols:
i) With samples taken from the same document (i.e. different regions of the same
document image) both in train and test sets, and ii) with samples from different
documents in the train and test sets. A set of experiments was carried out, and
they confirm that, in the most extreme cases, the identification rate obtained
using DF can drop from 62.85% to 31.91% on the IAM dataset, from 79.30% to
63.15% on the CVL dataset, and from 67.65% to 46.92% on the BFL dataset.

This paper is organized as follows: in Sect. 2 we present details about the
experimental setup; Sect. 3 shows the obtained results; a critical review is
described in Sect. 4; finally, we present the concluding remarks in Sect. 5.
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2 Experimental Setup

In this section, we describe the databases used to perform the experiments in
Subsect. 2.1. Following, we describe in details how we organized the data aiming
to get the desired evaluation in Subsect. 2.2. Lastly, we present some information
about the feature extraction method used in our experiments Sect. 2.3.

Figure 1 illustrates the proposed method. Figure 1(a) shows the proposed
scheme without use of DF and Fig. 1(b) illustrates the use of DF protocol.

(a) Approach without DF.

(b) Approach with DF.

Fig. 1. General overview of the proposed/evaluated approach.

2.1 Databases

The databases chosen to perform the experiments are IAM, CVL, and BFL.
The IAM database is composed of documents written in English and presents a
significant variation regarding the amount of content per manuscript, as it has
been created on the text-independent mode, i.e. the volunteers are free to create
the manuscript content. The current version of the IAM, presented by Marti and
Bunke [14] has 115,320 samples of handwriting words, distributed in 13,353 lines
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of text, and the 657 writers produced the handwritten content using a lexicon
with 10,841 different words. The number of handwritten samples collected per
writer varies widely (i.e. from 1 to 59 samples per writer), and the vast majority
(356 writers) contributed with only a single sample.

CVL database [12] is a text-dependent database, with contributions of 310
writers. The texts are excerpts from literary works, and they contain between 47
and 90 words. This database can be also employed in multi-script tasks because it
contains documents written both in English and German. All writers contributed
with at least four documents in English and one in German, totaling 1,604
handwriting samples. The documents were digitalized generating images in RGB
color space, with 300 dpi of resolution.

The BFL database, proposed by Freitas et al. [7] is composed of manuscripts
taken from 315 writers and contains three document samples per writer collected
according to the text-dependent mode (i.e. the writers are asked to copy prede-
fined texts). The texts were written in Portuguese and were carefully chosen, in
such a way that they contain all letters, numbers, and special characters from
the Portuguese Language. The volunteers who contributed to the creation of
the database used their own pen, and the text was written on white paper with
no pen-draw baseline. Last, the documents were scanned in gray levels with a
resolution of 300 dpi.

The databases chosen to be used in this work, were selected because they have
suitable characteristics to support the investigations intended here. Moreover,
they have been widely used in other works described in the literature. It is

Fig. 2. Example of original document from IAM database and split preprocessed doc-
ument in nine blocks.
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important to observe that we had to discard some samples for many writers, as
we used only two samples for each writer for all the datasets created from the
three databases used in this work.

2.2 Data Organization

Aiming to properly address the main investigations we intend to do in this work,
we decided to organize the databases in several different versions. From now, we
will refer to these versions by using the name of the database, followed by a
subscripted text with the number of writers considered in the dataset, and the
number of samples per writer, respectively. For example, the dataset created
from the IAM database, considering only a single sample for all the 657 writers,
will be referred to as IAM657,1.

Considering that some writers have only one handwriting document available
in some databases, we divided each document into nine blocks of size (m ×
n), where m and n are, respectively, width and height from the preprocessed
document divided by three. In this way, we obtained more than one sample
from these writers, which tends to improve the performance for identification,
as we increase the number of samples for training. This zoning pre-processing
was evaluated on all databases. Figure 2 illustrates the splitting of a document
in blocks.

Firstly, we evaluated the IAM, CVL and BFL databases using two documents
per writer (i.e. IAM301,2, CV L310,2 and BFL315,2), even for those who have more
than one sample in the database. From these documents, we took six blocks from
the nine created blocks to compose the training set, and the others three blocks
were used to make the test set. In case of experiments without DF, samples
from the same document was used both in train and test set. When DF protocol
is used, six blocks from one document were used for training and others three
blocks from a second document for testing.

We have done it three times per document (three folds): using the first six
blocks, the first three and last three blocks, and the last six blocks as training
sets, respectively. The results described in Sect. 3 correspond to the mean and
the standard deviation of these three executions.

In the second experiment, we intended to evaluate the performance using
documents from all the 657 writers of the IAM dataset, but using DF only for
those writers who have more than one manuscript sample. In case of writers
from whom we have more than one document available (i.e. 301 writers), we
also set three testing folds, but using blocks exclusively taken from the second
document. Following the nomenclature notation defined here, this part of the
data is called IAM301,2. It is worth mentioning that, in case of single-sample
writers (i.e. 356 writers), we kept the blocks from the same document, as it was
the only option in order to use the all writers of the dataset. Considering the
nomenclature defined here, this part of the data is called IAM356,1. We have
used the same classification model in both cases.

After that, we isolated the 356 single-sample writers and performed the same
classification scheme to evaluate only the behaviour of the data, from which
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it is not possible to make investigations considering the DF protocol. These
experiments were performed trying to get a better view of the influence of this
part of the dataset on the results performed with the dataset as a whole. This
subset is called IAM356,1, as we are using strictly the single-sample writers.

To analyze the impact of DF, we also set a scenario in which the filter can
be applied to every writer. For this purpose, we selected the first two documents
from each writer with two or more documents (i.e. 301 writers). In this way, the
DF protocol already described can be suitably applied to these data. The subset
used here is IAM301,2, as we took two documents from the writers with at least
two samples. These versions created for IAM do not make sense for CVL and
BFL databases, as they always have more than one sample for each writer.

2.3 Descriptors

Considering that texture is one of the main visual attributes on manuscript
images, and also results previously described in the literature[8,16,23], in this
work, we have used the following feature extractors: BSIF [10], EQP [15], LDN
[19], oBIF [5], LETRIST [21], SURF [1]. In Table 1 are described the main param-
eters used by these descriptors. Details and codes can be found in their respective
references.

Table 1. Features dimensions and main parameters.

Feature Parameters Dimensions

BSIF filter = ICAtextureFilters-11×11-8bit 256

EQP loci = ellipse 256

LDN mSize = 3; mask = kirsch; σ = 0.5 56

LETRIST sigmaSet = 1, 2, 4; noNoise 413

oBIF α = 2, 4; ε = 0.001 484

SURF SurfSize = 64 257

3 Experimental Results and Discussion

Our main goal in this work is to evaluate if the neglection in the use of the DF
protocol can lead to misleading results. For this, we choose the three aforemen-
tioned databases, and six different feature descriptors that have already proved
to be efficient on the task investigated here.

Support Vector Machine (SVM) was chosen as the classifier because it has
already been successfully used in this task in several works described in the liter-
ature [2,3,6,20]. The parameters C and γ from SVM classifiers were determined
by grid search with 5 − fold cross-validation, using LibSVM [4] library. Once
the SVM predictions are obtained individually for each block of the document,
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we perform a fusion of these predictions in order to get the final decision for
the document as a whole. In this sense, we used the Sum Rule to combine the
classifier’s output [11], as it has already shown a good performance in this task
[3].

The rates presented in this Section are, in many cases, lower than those
already published in the literature. However, in this paper, we are not pursuing
the improvement of the performance in terms of rates, but we aim to evaluate
the impact when parts of the same document are used both on train and test
sets. Furthermore, the reduction of performance is even expected to a certain
extent, because hypothetically we are making the task investigated somehow
more difficult.

The results described in Table 2 show us that regardless the texture descriptor
used, there is a difference on performance when the DF protocol is employed. In
this cases, the performance rates decrease if compared to the rates obtained with-
out the use of DF for all texture descriptor evaluated. These results evidenced
that the use of data taken from the same manuscript simultaneously both on
train and test sets tends to positively bias the results. In the most extreme case,
the difference between the rates obtained with or without the use of DF reaches
30.94% points, for the LDN descriptor. In the minority of cases, the difference
is not significant if the standard deviation is observed (i.e. BSIF Descriptor). In
addition, we can highlight the performance of the SURF descriptor as it presents
the best rate and lowest standard deviation.

Table 2. Performance (%) using IAM301,2 dataset

Descriptor Without DF (σ) With DF (σ) DIFF∗

BSIF 74.26 (±6.59) 70.95 (±4.88) 3.31

EQP 61.41 (±5.40) 54.87 (±3.69) 6.54

LDN 62.85 (±7.18) 31.91 (±2.57) 30.94

LETRIST 60.69 (±5.27) 31.84 (±2.55) 28.85

oBIF 80.40 (±6.47) 65.38 (±3.84) 15.02

SURF 84.89 (±3.29) 69.97 (±2.40) 14.92
∗ From this table, DIFF stands for the absolute differ-
ence between the rates with or without DF.

SURF, oBIF and BSIF continue the Top-3 best descriptors also on the CVL
database, as we can see in Table 3. CVL database presented a high standard devi-
ation regardless of the texture descriptor used. In this experiment, documents
one and three of the CVL database were used, both written in English. We can
also observe a difference between rates showed by strategies with and without
DF. However, due to the high standard deviation presented, these differences
may be statistically questionable.



Document Filter for Writer Identification 179

Table 3. Performance (%) using CV L310,2 dataset

Descriptor Without DF (σ) With DF (σ) DIFF

BSIF 78.50 (±6.47) 67.17 (±4.19) 11.33

EQP 67.15 (±4.57) 55.86 (±5.28) 11.29

LDN 60.81 (±6.11) 48.40 (±6.47) 12.41

LETRIST 61.78 (±8.82) 45.72 (±4.56) 16.06

oBIF 85.05 (±7.04) 75.13 (±6.46) 9.92

SURF 79.30 (±9.26) 63.15 (±7.68) 16.15

The results achieved using the BFL database confirm that the SURF, oBIF,
and BSIF are the best texture descriptors for the writer identification task when
blocks are used (see Table 4). The oBIF texture descriptor presents a remarkable
result, as it proved to be robust even when the DF protocol is applied.

Table 4. Performance (%) using BFL315,2 dataset

Descriptor Without DF (σ) With DF (σ) DIFF

BSIF 81.06 (±3.89) 74.91 (±3.23) 6.15

EQP 58.84 (±11.01) 45.72 (±3.86) 13.12

LDN 60.10 (±9.63) 42.10 (±3.53) 18.00

LETRIST 67.65 (±5.84) 46.92 (±4.21) 20.73

oBIF 88.04 (±3.09) 84.83 (±3.01) 3.21

SURF 89.06 (±3.18) 79.80 (±3.58) 9.26

As already pointed, taking into account similar conditions in other classifi-
cation tasks investigated in the literature, the use of parts taken from the same
document both in the train and test sets is supposed to introduce a bias in favour
of the results.

However, some descriptors can contribute to more robust models so that they
can generalize very well, even when the DF protocol is imposed. Results pre-
sented with the IAM and BFL databases reinforce this hypothesis, that descrip-
tors which present lower rates are more impacted with the use of the DF protocol.

We performed a statistical test for the texture descriptor with the best perfor-
mance (SURF), and for LETRIST, the descriptor with the biggest difference in
results achieved with and without the DF protocol. We applied the Student’s T-
test, this statistical analysis shows us that there is statistical significance between
results (P -value ≤ 5%) both on IAM and BFL databases. The lower was the
P -value, we have stronger evidence against the null hypothesis. The P -values for
IAM, CVL and BFL were 3.7e−09%, 0.032% and 0.001%. We have a null hypoth-
esis on the CVL database, that is, we have enough evidence that the results are
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different from each other. The P -values were evaluated using the LETRIST
descriptor. In this case, all rates were smaller with P -value, 7.8e−13%, 0.0006%
and 3.0e−07% on IAM, CVL and BFL respectively.

Next, we evaluate the impact of the DF protocol using the SURF descriptor
on all the IAM versions introduced in the Sect. 2.2 (i.e. IAM657,1, IAM356,1, and
IAM301,2). We will present the experiments in the same order that described the
subsets in Sect. 2.2. In all experiments reported below were used the parameters
previously described. In the first case, the IAM657,1 database was used, such a
way that all the 657 writers were considered. In this case, we did not use the DF
protocol, as the IAM657,1 is composed by a single document per writer. As we
can see in Table 5, the identification rate achieved using all writers without DF
was 70.12%.

In the following experiments, we check the writer identification performance
on the IAM dataset, applying the DF protocol when it is possible, and not
using the DF protocol for those writers with just one document. In this way,
we conducted an evaluation using the subsets IAM301,2 (with DF protocol) and
IAM356,1 (without DF protocol). We check the writer identification performance
on the IAM dataset using the DF protocol only for writers to which it is possi-
ble. In this experiment, we obtained an identification rate of 63.83%. The results
obtained suggest that the use of DF protocol tends to make the writer identi-
fication task harder than when it is not applied, as its usage has impacted the
identification rate with a fall of 6.29%, and a P -value smaller than 5%. These
results were not included in Table 5, as the DF protocol was applied in part of
the database and in another part they are not applicable.

In the next experiment, we evaluate IAM356,1 subset with 356 writers and
one document per writer. In this case, the DF protocol was not used. The exper-
iment performed in this scenario achieved a high identification rate, 81.83%.
Lastly, we evaluate the IAM301,2 subset with 301 writers and two document
samples per writer. In this experiment, we can evaluate two scenarios, with the
DF protocol and without the DF protocol. The first scenario was addressed for
obvious reasons, and the second was performed aiming to compare the impacts
of DF protocol on exactly the same subset. The results are described in Table 5.
The P -value obtained using Student’s t-test was 3.7e−09%, that is, smaller than
the threshold established on the literature (5%). Thus, we can conclude that
there is a significant difference between applying or not the DF protocol.

As we can see in Table 5, the lowest identification rates happens when the
DF protocol is employed. Moreover, the rate is 14.92% points lower than that
obtained exactly on the same dataset but not using the DF protocol.

Table 5. Identification rates (%) using SURF descriptor

Training # Writers Without DF (σ) With DF (σ) DIFF

IAM657,1 657 70.12 (±5.80) – –

IAM356,1 356 81.83 (±1.06) – –

IAM301,2 301 84.89 (±3.29) 69.97 (±2.40) 14.92
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In addition, we show in Fig. 3 that the use of the DF protocol produces lower
rates in all cases. It is one more piece of evidence that corroborates the rationale
behind this work. It is still important to point out that although the performance
rates are lower using the DF protocol, we believe these rates are more realistic.

4 Critical Review

At a first glance upon the problem addressed in this work, even those researchers
used to the pattern recognition literature can think that this discussion is not
applicable, since the use of different parts of the data taken from the same
instance both in the training and test sets may be a controversial practice, out
of place in several other application domains. However, it is important to observe
that this kind of fine-tuning regarding the experimental protocol may vary widely
from one application domain to another. As already mentioned here, Pampalk et
al. [17] raised an intriguing question in 2005 about the results obtained until that
moment in the music genre classification task. As a consequence, the authors
introduced a new concept (i.e. artist filter) which has influenced most of the
works in that field of research, having been considered as a restriction almost
mandatory from that moment on.

Fig. 3. Bar graph with results with or without DF.

In the case of the writer identification task, there are limits naturally imposed
on the research community due to the limitations of many databases typically
used in this kind of work. This is why it is not particularly rare to find works
concerning writer identification in which data taken from the same manuscript
are used both on the training and test sets, which is inconceivable in other
application domains.
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There are some factors that can help to understand why the lack of the DF
protocol can somehow introduce a bias to the results on writer identification.
That is because the same person has variations in their writing style on different
occasions. In this regard, we can observe: the emotional state of the writer;
the fluency of the pen/pencil used for writing; the lighting level around the
writer; and the paper writability (smooth/rough), among others [13]. So, if we
use fragments taken from the same manuscript both on train and test sets, the
identification rates tend to be biased.

That said, we should consider the feasibility of the use of the DF protocol
when creating new manuscript databases, avoiding single-sample writers, as it
could introduce some bias to the identification rates obtained using those data.

Finally, the last important matter to cogitate here regards alternatives to
minimize the impacts of single-sample writers on the development of experiments
performed on databases already available in which it occurs. The researchers
could consider performing experiments applying the DF protocol on those parts
of the data in which it is possible, like done here.

5 Concluding Remarks

In this work, we proposed a novel restriction to be imposed for the development
of writer identification experiments, which we call “Document Filter”. The DF
protocol enforces that all the data obtained from fragments of the same document
must be placed into one, and only one, set during the division to create training
and test sets.

In this vein, we evaluate the impacts of the introduction of the DF protocol
on three databases widely used by the research community (i.e. IAM, CVL and
BFL). Experiments showed that the identification rates tend to decrease at a
considerable level when the DF protocol is taken into account.

It is worth mentioning that with this work we intend to show the effects
of having single-sample writers when doing the writer identification task. We
do not intend to discredit previous works or databases already described in the
literature. In addition, we would suggest the enforcement of the DF protocol
when creating/organizing databases in the future, once in the most extreme
case of our experimentation, the recognition rate obtained using the DF protocol
dropped 30.94% points when it was used.

In the future, we aim to investigate the impact of the availability of a
restricted amount of text (i.e. only one paragraph per writer, only one line per
writer, and only one word) on the performance of writer identification systems.
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Abstract. In the presented contributionwe propose amotor imagery basedBrain-
Computer Interface system for device control. Based on the EEG datasets we
perform a two and three class classification of selected features for real motor and
motor imagerymovements. Features are created using complexwavelet transform.
The classification is based on convolution neural networks. The results show that
the method has a similar performance as the known reference method for given
datasets.
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1 Introduction

The aim of the Brain-Computer Interface (BCI) is to enable direct communication
between humans and computers using control signals in the form of biological signals
from the brain, which can be measured and interpreted by various methods.

Themost commonmethod ofmeasurement of brain activity is a non-invasivemethod
called Electroencephalography (EEG). It uses electrodes placed on the surface of the
head as sensors that detect electrical changes in brain activity [1].

EEG based BCI is widely used in the combination with Motor Imagery (MI). MI
is a cognitive process in which the subject imagines movement without any muscular
activity. Sensorimotor rhythms (SMR) are generated in somatic, sensorimotor areas and
are concentrated mainly in the Alpha (8–13 Hz), Beta (13–30 Hz) and Gamma (more
than 31 Hz) frequency bands. Execution or imagination of movements of individual
parts of the body, e.g. legs, creates a unique response in the SMR [5, 6].

Nowadays there are still a lot of obstacles to using EEG based BCI. In general, the
signal has poor spatial resolution and a low signal-to-noise ratio (SNR). During signal
measurement, various artifacts and interferences are mixed with the desired information
signal. Undesirable factors that affect the signal can be, for example, eye blinking,muscle
activity, and background activities during signal acquisition [7, 8]. Using the BCI system
along with the MI can be implemented in various fields and has a wide range of uses,
such as drone control [15] (in particular the unmanned aerial vehicles), robotic arm [16],

© Springer Nature Switzerland AG 2022
G. Rozinaj and R. Vargic (Eds.): IWSSIP 2021, CCIS 1527, pp. 185–197, 2022.
https://doi.org/10.1007/978-3-030-96878-6_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96878-6_17&domain=pdf
http://orcid.org/0000-0002-0617-5237
https://doi.org/10.1007/978-3-030-96878-6_17
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various robots [17], as additional modality in Human Computer Interaction (HCI), e.g.
to replace the gestures [19] or to complement saliency information [20] when sensing a
scene.

For MI-based BCI research, there are available more datasets. In the following
summary, the authors used the Gelwin Schalk Dataset (2009) [9, 10].

The authors in [11] selected different EEG channels (especially in the frontal lobe
area) and compared their relevance using Fast Fourier Transform (FFT) to extract the
features such as mean, standard deviation and skewness in spectrum split into bands.
The real movement data were used for training and the MI data were subsequently used
as a test dataset. Their goal was to differentiate the real movement from the same type of
MI movement while finding a correlation between these. K-nearest neighbors algorithm
(KNN) was used as a classification method obtaining accuracy 48.2%–52.8% (on the
different EEG channels). With careful selection of relevant features, they were able to
obtain accuracy from46.3% to 79.8%. The best results were obtained from the electrodes
Fc1, Fcz, Fc2, F6 and Ft8.

In [13] the authors used a convolutional neural network for extracting and classifying
EEG signals. Their model reached an average cross-validation accuracy of 87.98%,
76.61%, 65.73% respectively, for the two-, three-, and four-class classification tasks.
After they reduced the amount of input data to the first three seconds, global accuracy
values obtained were 80.38%, 69.82% and 58.58% respectively.

The authors in [12] performed two-, three-, and four-class classification:

• 2-class: MI opening/closing left or right fist,
• 3-class: MI opening/closing left or right fist and Baseline data,
• 4-class: MI opening/closing left or right fist, Baseline, MI opening/closing both feet.

They used Qnet, as feature extraction and classification method. As they claimed in the
paper, Qnet is a Neural Network designed to differentiate EEG signal, and the impor-
tance of different electrodes data, and in addition to extracting relevant features. Using
80% as training data and 20% as testing data from all 64 electrodes, they achieved an
accuracy of 82.88%, 74.75% and 65.82% in the two-, three- and four-class of classifi-
cation, respectively. Authors compared their results to results described in [13] and they
considered the results from [13] slightly worse.

Authors in [2] used dataset from BCI competition III: dataset IV-A [14]. They per-
formed two-class classification of the right-foot and right-handmovements. In the feature
extraction phase, the Short Time Fourier transform, and Continuous Wavelet transform
were used. They obtained the best classification accuracy of 99.35%with the CNN called
AlexNet.

In [3] the authors used the dataset from Technical University in Graz [4]. The goal
was to differentiate right and left MI movements. They used different classification
algorithms including LDA (Linear Discriminant Analysis), QDA (Quadratic classifier),
GMM (Gaussian mixture model) and APNN (Adaptive probabilistic neural network).
The classification accuracy obtained with these methods was 74.91%, 83.54%, 87.63%
and 90.16% respectively. With the proposed APNN method they achieved greater accu-
racy thanwas the best result obtained in the BCI 2003Competition, for which this dataset
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was originally measured. The highest value of classification accuracy achieved in this
competition was 89.3%.

In this paper, we worked with EEG Gelwin Schalk Dataset (2009) [9, 10] perform-
ing two- and three-class classifications of the selected features, both for Real and MI
movements. Features were created using Fast Fourier Transform (FFT), Short Time
Fourier Transform (STFT) and Continuous wavelet transform (CWT). We tried differ-
ent approaches and combinations of the mentioned methods to observe the impact on the
classification results. As the classificationmethods, we used theKNNalgorithm (as basic
reference) and convolution neural network called AlexNet. Our goal was to differentiate
most effectively MI movement from the state without movement (calm state).

In the Sect. 2, we explained data. In the Sect. 3, we proposed different methods. In the
Sect. 4, we described results that we obtained using different methods and approaches.
And in the last section, we discussed further possibilities for extending the proposed
approaches.

2 Reference Dataset

As a reference dataset we decided to use the EEGMotor Movement/Imagery dataset [9,
10] as for this dataset there were available some reference methods to which we could
compare [11–13]. This dataset contained measurements obtained from 109 subjects.
Each of them performed 14 runs. Runs 1 and 2 were one-minute baseline runs (with
open and closed eyes). Runs 3 to 14, were two-minute runs with real and MI movement.
In runs 3 to 14, the subject has performed 4 different tasks (such as open and close left or
right fist, imagine opening and closing left or right fist). In total there were 30 executions
(subtasks) in each run. Data were sampled at 160 samples per second.

These tasks were performed while 64-channels (EEG 10-10 system) (Fig. 1) were
recorded using the BCI2000 system. Measurements were obtained on 64 electrodes.
During the following experiments, we mainly worked with electrodes C3, Cz and C4, as
they are located in the sensorimotor center which is known to be responsible for activity
and movement.

For our purposes, we chose data from runs 3 to 14, which were runs where the
subjects performed left or right hand movements (both MI and Real movements). In
particular we chose the following subtasks:

1. RF: opening and closing right fist (Real or MI movement
2. LF: opening and closing left fist (Real or MI movement)
3. Calm: rest period between RF and LF movements

In addition, we selected only data from the first four seconds of each subtask.
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Fig. 1. 10-10 EEG system

3 Proposed BCI Realization

In this contribution, we used various methods, some of them only for basic performance
comparison.

In the method, which we refer to as method A, we used frequency-based feature
extraction coupled with a classical classifier. Feature extraction was performed by cal-
culation of total energy in Alpha (8–13 Hz), Beta (13–30 Hz) and Gamma frequency
(31–40 Hz) bands and their combinations. These bands are known for reflecting brain
activity during MI and real movements. The total energy was calculated as a sum of
the energy on all three of the mentioned electrodes. We used the k-nearest neighbors
algorithm (KNN) as a classifier. For a better understanding of spectral energy feature
relevance, we provide an example in Fig. 2, where we depict the KNN (k = 11) clas-
sification accuracy for pairs features denoted as F1 and F2 which measure the amount
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of energy within 5 Hz bandwidth (BW) around the specified frequency. Note the dis-
torted band around 60 Hz (blue vertical and horizontal stripes forming a cross), which
corresponds to AC energy distribution frequency.

In the method that we refer to as B, we used time-frequency based feature extraction.
For this purpose, we selected spectrogram and scalogram as both belong to quadratic
time-frequency distributions and show the distribution of energy in time and frequency.
The spectrograms were computed using Short Time Fourier Transform (STFT) with
various window functions and variable window size. The scalogram was computed
using various Continuous Wavelet Transforms (CWT) such as Amor, Morse, Bump.
As the time-frequency representation is two-dimensional, it is naturally suitable for
image-based classification method such as Convolutional Neural Network (CNN).

For our experiments, we selected AlexNet [18]. AlexNet takes as input, images of
size 227 × 227 × 3. As the AlexNet takes input images that have three color channels,
we decided to use 2 types of inputs: single electrode and three electrodes.

Fig. 2. Frequency energy relevance in 2D, measured using the KNN classifier (k= 11). The same
size of training and testing data group (real movement data).

In a single electrode case, we have created grayscale images – the same values were
mapped to each color channel. In the three-electrode case, we created RGB images, and
wemapped each electrode to separate color channel (R-C3,G-Cz, B-C4). Corresponding
example inputs for scalogram and spectrogram are shown in Figs. 3 and 4. These inputs
cover the whole available frequency band from 0 Hz to 80 Hz (as the input sample rate
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was 160 Hz). The variants of method B include usage only of partial sub-bands (from
5 Hz to 30 Hz) which include Alpha and Beta sub-bands as they were considered as the
most relevant based on experiments such as depicted in Fig. 2. Example scalograms and
spectrograms are shown in Fig. 5.

Fig. 3. Examples of scalogram images (with Amor wavelet). The x-axis corresponds to time (0–
4 s), y-axis corresponds to scale (0–80Hz equivalent). Left: single C3 electrode (grayscale image).
Right: C3, Cz, C4 electrodes (RGB image). Real movement data.

Fig. 4. Examples of spectrogram images (with 1s Hanning window). The x-axis corresponds to
time (0–4 s), y-axis corresponds to frequency (0–80 Hz). Left: single C3 electrode (grayscale
image). Right: C3, Cz, C4 electrodes (RGB image). Real movement data.
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Fig. 5. Left: example of band-limited (5–30 Hz) scalogram. Right: example of band-limited (5–
30 Hz) spectrogram. Based on the data depicted in Figs. 3 and 4.

4 Evaluation Results – Method A

Withmethod Awe have performed various experiments with configuration for two-class
classifications, real and MI movement with opening and closing left/right fist.

Various combinations of Alpha, Beta and Gamma bands were explored, as well as
a full search of variable-sized bands and their combinations. Table 1 is showing the
best KNN classification results using Euclidian distance based on a different number
of k-neighbors for real and MI movement. The data were used only from the first 55
subjects to speed up the analysis. The accuracy obtained was up to 59.1% performing
realmovement classification between left fistmovement and calm state. And up to 58.8%
performing MI movement classification between left fist and right fist movements.

Omitting the Gamma frequency band from the sum of the total energy had more
impact on MI movement than it had on real movement, but overall, this impact was
negligible.

The local optimum k-neighbors number varied across all the experiments, but overall
results are showing that a smaller number of k is- performing better for the realmovement
classification while MI movement shows higher accuracy with a greater number of k.
For a better understanding of how the frequency bands can be useful, we run a lot of
tests with different hyperparameters with full frequency band scan using various selected
bandwidths used for energy computation.

One of such configurations is shown as an example in Fig. 2, where the full scan
search for the best combination of 2 independent frequency bands (frequency energy
relevance in 2D) with bandwidth 5 Hz was used, and the accuracy of the resulting KNN
classification was displayed. The number of k-neighbors was 11 and the classification
was performed between right fist and calm state (real movement) for all 109 subjects.
As one can see, the most important areas are around Alpha (8–15 Hz) and Beta (16–
31 Hz), which confirms the theoretical background of this topic. On the opposite side,
the bands that include 60 Hz frequency are significantly impaired what we attribute to
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the frequency of electricity distribution in the public grid. By varying the bandwidth,
the same approximate importance layout of bands was discovered. For more examples,
see Fig. 6.

Table 1. KNN best classification results for 2class real and MI movement.

Type Classes k-neighbors Frequency bands Accuracy

Real movement LF, Calm 23 Alpha, Beta 59.1%

Real movement LF, Calm 7 Alpha, Beta, Gamma 59.0%

MI movement LF, RF 399, 403 Alpha, Beta 58.8%

MI movement LF, RF 451 Alpha, Beta, Gamma 58.2%

Fig. 6. Examples of frequency energy relevance with different bandwidths (0.25 Hz and 2 Hz),
measured using the KNN classifier (k= 11). The same size of training and testing data group (real
movement data).

5 Evaluation Results – Method B

We realized many 2-class and 3-class classification experiments using method B
and its variants. The variants included the whole frequency band, the partial fre-
quency band, scalograms (with various windowing functions and with variable window
widths), spectrograms (with various wavelets), single-electrode resulting in grayscale or
three-electrodes resulting in RGB image mappings.

In the beginning, we tuned the spectrogram time-frequency features. The perfor-
mance differences when using Gauss, Blackman, Hanning and Hann windowing func-
tions were negligible, more differences were found by using different windows sizes.
Representative results using the Hanning window are shown in Table 2. For further
comparisons, we have used the Hanning window and 1s window width.
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We also have checked the relevance of the C3, Cz and C4 electrode selection, when
using a three-electrode color mapping. We tried to change these electrodes to other
electrodes (single change at a time) and checked, how it influences the results. Sample
results when exchanging the electrode C4 are shown in Table 3. We see that electrode
change to the nearby electrodes only led to performance degradation.Weobtained similar
results exchanging the electrodes C3 and Cz.

Table 2. AlexNet classification results for 2class real andMImovements for STFT using different
size of Hanning window.

Type Classes Window size Electrodes Frequency Accuracy

Real movement Calm, LF 0.25 s C3, Cz, C4 0–80 Hz 79.7%

Real movement Calm, LF 0.5 s C3, Cz, C4 0–80 Hz 76.6%

Real movement Calm, RF 1 s C3, Cz, C4 0–80 Hz 76.6%

Real movement Calm, RF 0.125 s C3, Cz, C4 0–80 Hz 75.5%

Real movement Calm, LF 1.5 s C3, Cz, C4 0–80 Hz 68.5%

Real movement Calm, RF 0.25 s C3, Cz, C4 5–30 Hz 78.1%

Real movement Calm, LF 0.125 s C3, Cz, C4 5–30 Hz 76.0%

Real movement Calm, LF 0.5 s C3, Cz, C4 5–30 Hz 74.4%

Real movement Calm, LF 1 s C3, Cz, C4 5–30 Hz 74.1%

Real movement Calm, LF 1.5 s C3, Cz, C4 5–30 Hz 71.5%

Table 3. AlexNet classification results for 2class real and MI movement (0–80 Hz) using
measurements from different electrodes.

Type Classes Method Electrodes Accuracy

Real movement Calm, RF CWT (amor) C3, Cz, C4 80.9%

Real movement Calm, RF CWT (amor) C3, Cz, C5 73.5%

Real movement Calm, RF CWT (amor) C3, Cz, C1 75.1%

Real movement Calm, RF CWT (amor) C3, Cz, C2 73.6%

Real movement Calm, RF CWT (amor) C3, Cz, C6 73.4%

MI movement Calm, LF CWT (amor) C3, Cz, C4 74.3%

MI movement Calm, LF CWT (amor) C3, Cz, C5 65.7%

MI movement Calm, LF CWT (amor) C3, Cz, C1 66.5%

MI movement Calm, LF CWT (amor) C3, Cz, C2 67.8%

MI movement Calm, LF CWT (amor) C3, Cz, C6 67.7%
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The overall best results for real andMImovement are shown in Table 4. The accuracy
for the real movement was up to 80.9% while the accuracy for MI was up to 74.3%.
Both results were obtained in 2class classification between left fist/right fist movement
and calm state. In addition, the best accuracy was obtained using measurements from
3 electrodes at once (RGB image). When comparing accuracy from the point of view
of different types of wavelets, higher accuracy is observed while using Amor. Method
B variants that use the scalogram generated using Continuous Wavelet transform have
significantly better results than variants using Short Time Fourier transform. The accu-
racy of the variants using STFT was up to 76.6% for the real movement and up to 65%
for MI movement.

Table 4. AlexNet classification results for 2class real and MI movement (0–80 Hz).

Type Classes Method Electrodes Accuracy

Real movement Calm, RF CWT (amor) C3, Cz, C4 80.9%

Real movement Calm, RF CWT (bump) C3, Cz, C4 80.2%

Real movement Calm, RF CWT (morse) C3, Cz, C4 79.4%

MI movement Calm, LF CWT (amor) C3, Cz, C4 74.3%

MI movement Calm, LF CWT (morse) C3, Cz, C4 70.5%

MI movement Calm, LF CWT (bump) C3, Cz, C4 67.0%

Real movement Calm, RF STFT C3, Cz, C4 76.6%

Real movement Calm, LF STFT C3, Cz, C4 73.0%

MI movement Calm, LF STFT C3, Cz, C4 65.0%

MI movement Calm, RF STFT C3, Cz, C4 64.3%

Real movement Calm, RF CWT (amor) C3 70.5%

Real movement Calm, LF CWT (amor) C4 70.3%

Real movement Calm, RF CWT (amor) Cz 66.5%

MI movement Calm, RF CWT (bump) C3 64.3%

MI movement Calm, RF STFT C4 64.3%

MI movement Calm, RF STFT Cz 65.2%

Although the best results were obtained for three electrodes variants, it is worth
mentioning also results for single electrode variants. The real movement accuracy on
electrode C3 was up to 70.5% while classifying between calm state and right fist move-
ment and on electrode C4 up to 70.3% classifying between calm state and left fist
movement. The MI movement accuracy on electrodes C3 and C4 were up to 64.3%
but in contrast with the real movement, the higher accuracy was observed while using
bump wavelet along with STFT while classifying right fist movement and calm state. As
assumed, the results obtained using the Cz electrode achieved lower accuracy (as this
electrode is used as a reference electrode while measuring the EEG signal).
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We also realized various experiments using classification between all three classes,
but the higher accuracy observedwas up to 57.80% for realmovement and below50% for
MImovement.Altogether,AlexNet can distinguish better betweenone type ofmovement
and calm state, than between two types of movements (or between more than 2 classes
of data).

Based on the expectations, that the Gamma band could be redundant for the clas-
sification we tried to band limit the scalograms and spectrograms from 5 Hz to 30 Hz
frequency band. The corresponding results related to the cases stated in Table 2 are listed
in Table 5. As one can see, the achieved accuracy is lower, and the average difference is
about 4.5%.

Table 5. AlexNet classification results for 2class real and MI movement (5–30 Hz).

Type Classes Method Electrodes Accuracy

Real movement Calm, RF CWT (amor) C3, Cz, C4 79.9%

Real movement Calm, RF CWT (bump) C3, Cz, C4 77.1%

Real movement Calm, RF CWT (morse) C3, Cz, C4 79.9%

MI movement Calm, LF CWT (amor) C3, Cz, C4 67.2%

MI movement Calm, LF CWT (morse) C3, Cz, C4 59.3%

MI movement Calm, LF CWT (bump) C3, Cz, C4 61.3%

Real movement Calm, RF STFT C3, Cz, C4 71.5%

Real movement Calm, LF STFT C3, Cz, C4 74.1%

MI movement Calm, LF STFT C3, Cz, C4 61.3%

MI movement Calm, RF STFT C3, Cz, C4 56.8%

Real movement Calm, RF CWT (amor) C3 66.0%

Real movement Calm, LF CWT (amor) C4 67.5%

Real movement Calm, RF CWT (amor) Cz 67.4%

MI movement Calm, RF CWT (bump) C3 59.3%

MI movement Calm, RF STFT C4 52.2%

MI movement Calm, RF STFT Cz 56.8%

To pursue the reason for this performance degradation,we formulated the hypothesis,
that CNN could train to artefacts around 60 Hz, above 60 Hz and near DC components
(signal drifts) which were wiped out after the band limitation. So, we constructed two
other band limitations: from 1 Hz to 58 Hz and from 1 Hz to 80 Hz to be able to compare
the results. The representative results using best cases for real and MI movement results
are shown in Table 6. We can see that there was no abrupt performance degradation of
these new cases against the unlimited 0–80 Hz case.

So, we concluded that the hypothesis was not valid, and the degraded performance
of the 5–30 Hz case was caused by multiple factors, whose determination is not trivial
nor straightforward.
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Table 6. AlexNet classification results for 2class real and MI movement (1–80 Hz and 1–58 Hz).

Type Classes Method Frequencies Electrodes Accuracy

Real movement Calm, RF CWT (amor) 1–58 Hz C3, Cz, C4 81.9%

Real movement Calm, RF CWT (amor) 1–80 Hz C3, Cz, C4 80.1%

Real movement Calm, RF CWT (amor) 0–80 Hz C3, Cz, C4 80.9%

MI movement Calm, LF CWT (amor) 1–58 Hz C3, Cz, C4z 70.2%

MI movement Calm, LF CWT (amor) 1–80 Hz C3, Cz, C4 71.8%

MI movement Calm, LF CWT (amor) 0–80 Hz C3, Cz, C4 74.3%

6 Conclusion

In the presented paper we realized multiple methods of motor imagery based Brain-
computer interface system for device control.

Method A using simple frequency-based features achieved accuracy up to 59%.
Method B using complex time-frequency feature extraction coupled with convolutional
neural network achieved significantly better accuracy, up to 82%, which is compara-
ble with results published in papers [12] and [13], proving the selected approach as
competitive.

For the feature work, we would like to extend time-frequency features based on
Modes such as Empirical Mode Decomposition and Variational Mode Decomposition.
We would like to work on more sophisticated classification methods.
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Abstract. Over the last year the need for video conferences has risen
significantly due to the ongoing global pandemic. The goal of this project
is to improve user experience from having access to only voice and plain
2D image by adding a third spatial dimension, creating a more immersive
setting. Azure Kinect Development Kit utilizes multiple cameras, namely
the RGB camera and depth camera. Depth camera is based on ToF prin-
ciple, which uses near-IR to cast modulated illumination onto the scene.
The setup uses multiple Azure Kinect devices in sync and offset in space
to obtain non-static 3D capture of a person. Unity engine with Azure
Kinect SDK is used to process the data gathered by all devices. Firstly,
a depth spatial map is created by combining overlaid outputs from each
device. Secondly, RGB pixels are mapped onto depth spatial points to
provide a final texture to the 3D model. Taking into account the need to
export a continuous capture of raw data to a server, body tracking and
image processing algorithms are used. Finally, the processed data can be
exported and utilized in AR, VR or any other 3D capable interface. This
3D projection aims to enhance sensory experience by utilising non-verbal
communication along with classical speech in video conferences.

Keywords: 3D sensing · Volumetric alignment · Point cloud

1 Introduction

Over the last year the need for video conferences has risen significantly due to the
ongoing global pandemic. More and more people stay home, whole countries close
borders and many people work remotely. Personal, work or school meetings have
migrated to the online world where people are forced to use currently available
communication technology like Google Meet, Zoom or Microsoft Teams.

These communication technologies have multiple useful features like support
for a large number of connected users in real time, support for sending mul-
timedia and some services serve as cloud storage for groups of people and all
of that with high reliability and simplicity. But even though with all of these
benefits, virtual meeting is still incomparable with real life meeting. There are
many reasons, one of which states that verbal and vocal communication con-
tributes to only 45% of interpersonal communication. The rest is composed of
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non-verbal communication. This kind of communication includes body posture,
distance between people while talking, gesticulation, facial expressions and many
more. Such aspects of communication are not even captured because of current
limitations of our technology. Also as a next major reason could be lack of a
third special dimension which current web cameras are not capable of capturing
and transmitting over the network [1].

Authors’ research team published several papers in the topic on experience-
based videoconferencing, which is a new generation of standard videoconfer-
encing approach [2–4]. In this paper we would like to focus on these problems
(address these shortcomings) and how to solve them. We came up with a solu-
tion which could enrich such meetings with all of the mentioned missing aspects
of communication.

2 Depth-Sensing Approaches

The concept of depth sensing can be described as capturing spatial and RGB
aspects of a scenery. The three-dimensional depth image combined with the 2D
RGB image result in a real time 3D reconstruction of a scene. Such technol-
ogy has a broad spectrum of uses in many different fields. For example, robotics,
medicine, telecommunication, architecture, etc. There are plenty of devices capa-
ble of depth sensing on the market. However, they differ in the technology that
is used to capture and process the depth information. Common are RGB cam-
eras and infrared sensors. Some devices use multiple RGB cameras to create the
depth map. That is particularly demanding on the computation, but produces
a higher resolution depth map. On the other hand, devices that use infrared
sensors in addition to RGB cameras lack the high-resolution in-depth map, but
are less demanding on the system. Therefore, the choice of the device depends
on the environment in which it is going to be used.

2.1 Depth Sensing Using Structured Light

The principle of using structured light (SL) lies in active stereo-vision method.
SL uses a preconfigured sequence of light in a geometric pattern, which is peri-
odically projected onto an object. The pattern, originally in 2D plane, deforms
along the shape of an object tracing its structure as it can be seen in Fig. 1. This
deformed pattern is then captured by a camera from a different angle, analysed
and processed creating a depth map [5].

2.2 Depth Sensing Using Time-of-Flight

Time-of-flight (ToF) technology is based on knowing the time it takes the light
to bounce off an object. A light signal is created by a light generating unit and
then captured by a sensor as it is reflected by an object. In recent years the ToF
has found its use and that led to the creation of ToF cameras. The most popular
technology used in ToF cameras is Continuous Wave Intensity Modulation. The



200 I. Minárik et al.

scene is constantly illuminated by infrared light, which intensity is modulated
so it creates pulses. As an object reflects the light it is then captured by a
sensor. This principle can be seen in Fig. 1. Due to the constant speed of light
the infrared sensor can determine the distance of a point in space measuring
the time it has travelled from the source and back. Device creates a depth map
knowing the time shift of the light reflected by an object at different points in
space. The resolution of the depth map depends on the resolution of the IR
sensor [5].

Fig. 1. Principle of structured light and time of flight vision

2.3 Depth Sensing Using Stereoscopic Depth Vision

Active infrared stereoscopic technology works similarly to human vision. Two
IR cameras in parallel are used to illuminate an object with IR light. The light
has specific textures, which overlap on the object. Both cameras then analyse
common points from two different angles. The depth map is then calculated
using the spatial shift of these common points. Passive stereo vision combines
images from two different angles without the addition of infrared camera. Both
technologies can be seen in Fig. 2 [6].

3 Commonly-Available Depth-Sensing Hardware

3.1 Intel RealSense D455

RealSense D445 is a camera with support for depth vision based on technology of
stereoscopic vision. Main advantage of this device is its ratio between size, price
and its features. Implementation of stereoscopic vision is done by two infrared
cameras collecting data of the scene. This data is then sent to a dedicated on-
device processor for further processing. Resulting depth image is created by
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Fig. 2. Principle of active and passive stereo vision

differences of these two images after combining. Resolution of the depth camera
is adjustable where maximal resolution is set to 1280 × 720 pixels. Framerate is
also adjustable where maximum depth for the camera is set to 90 frames per
second. Device is capable of operating in an outdoor environment [7].

3.2 Microsoft Kinect V1

Kinect v1 was the first device from Microsoft which introduced a depth capable
device for the user market in 2010. Microsoft’s original intention was to use
the device in the gaming industry as an add-on to Microsoft Xbox 360 game
consoles. The specific implementation is based on two main components, namely
an infrared projector operating at a wavelength of 830 nm and a video camera
capable of capturing reflection of this information. A specific implementation
is based on projecting pseudo-random sequences of points on the scene which
are then observed by the infrared sensor. The resulting depth image will be
calculated thanks to triangulation. The device is capable of capturing an image
with a resolution of 640× 480 at 30 frames per second. The minimum operating
distance reaches 0.5 m and the maximum operating distance with reliable results
reaches up to 8 m. User detection is possible at a distance of 1.8 m from the sensor
[8,9].

3.3 Microsoft Kinect V2

Kinect v2 is a direct successor to the Kinect v1 available since 2014. The second
generation is dramatically different from the first because Microsoft has aban-
doned structured light technology and introduced ToF technology, which has
been detailed above. The device contains an RGB camera, an infrared projector
and an infrared receiver. The sensor is capable of capturing depth images with
resolution of 512× 424 and the RGB camera supports a resolution of 1920 × 1080
at a maximum of 30 frames per second. Compared to its predecessor, its depth
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vision reach has increased by up to 60% and it is able to detect the user at a
half distance of 0.9 m. The device is capable of recognising up to 6 people in the
sensor’s range and is also capable of recognizing gestures, facial expressions and
detecting and tracking 25 independent joints per person [8,9].

3.4 Microsoft Azure Kinect

Azure Kinect is a direct successor to the second generation Kinect, with the
difference that its target market has changed from gaming to industrial. This
device is easily integrable with Azure Cognitive Services, which provide many
online services using artificial intelligence. The Azure Kinect camera consists of
an RGB camera and an infrared camera. The RGB camera offers several resolu-
tion modes where the highest possible resolution is 3840 × 2160 px at 30 frames
per second. The infrared camera has the highest resolution of 1024× 1024 px
and uses the ToF principle similarly to its predecessor. In addition, both cam-
eras support different field of view modes. Azure Kinect also has an IMU sensor,
consisting of a three-axial accelerometer and a gyroscope, with which the device
can estimate its own position in space. Microsoft also offers a Body Tracking
SDK that is capable of detecting and tracking the movements of multiple users,
each with 32 joints. This SDK is available for Windows and Linux operating
systems and the C++ and C# programming languages. Unlike the previous
generation of kinetic, current one now support more skeletal joints such as eyes
and ears [9,10].

3.5 Comparison of Depth-Sensing Devices

Here we compare the aforementioned camera systems in various aspects. Tech-
nical specifications of the systems are summed up in Table 1.

The Influence of Temperature. They found that the Kinect v2 ToF camera
because the infrared emitter warms up during operation and needs to be cooled
down. The Kinect v1 shows a weak correlation to the temperature. The depth
values remain stable and the standard deviation is on an almost constant level.
However, in the case of the Kinect v2 the distance measurements exhibit a strong
correlation to the temperature. The depth captured varies significantly until the
device reaches constant temperature. To achieve stable results using Kinect v2
they recommend to let the device run 25 min before capturing in order to avoid
temperature influences.

The Influence of the Camera Distance. In case of Kinect v1 they detected an
exponentially increasing offset for increasing distance. While the offset for 0.5 m
is below 10 mm, the offset increases more than 40 mm for 1.8 m meaning the
image is more precision, but only at close range. Furthermore, it uses a stripe
pattern, which is difficult to model and has a huge offset near the edges. On the
other hand, Kinect v2 provides an offset of around 18 mm independent of dis-
tance. They consider the constant offset to be an advantage in 3D reconstruction
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applications, since a constant offset can be easily modelled. The central pixels
do not deviate, only corner pixels do slightly, due to IR light not illuminating
the scene homogeneously.

The Noise. Kinect v2 manages noise per pixel, which implies that less accurate
depth measurements appear noisy, because of bigger difference in neighbouring
pixels. Furthermore, they mention an artifact called Flying pixel, which is com-
mon for ToF cameras. It can occur near edges, image boundaries and depth
discontinuities and can also cause noise. On the other hand, Kinect v1 manages
noise per-patch appearing less noisy and has no Flying pixels, whilst not using
ToF.

Multipath Interference is an effect that occurs when a particular pixel receives
light originally sent out for another pixel. It happens commonly when capturing
concave surfaces. In the case of Kinect v1 they say the effect is not present.
However, for Kinect v2 big offset can be detected in places where the physical
properties of the scene cause the light bounce off and interfere with one another.
Furthermore, they detected offsets near sharp edges caused by smoothing algo-
rithms.

The Influence of Colour and Surfaces. They say Kinect v1 is not affected by dif-
ference in colour. However, Kinect v2 is affected by colour and reflectivity. Darker
colours have 10mm higher depth value than lighter colours and have greater devi-
ation. Also, less reflective surfaces are more difficult to capture. Therefore, they
suggest using colours with similar reflectivity [11].

Intel RealSense D455 uses stereo cameras, which depth image quality is
related to brightness, emitter power, texture, and distance. Brightness of the
environment has a negative effect on the image in high contrast scenery. The
brighter the environment is, the more power the emitter needs to use. With
greater distance or more complex structure the power needs to be also increased.
Running at higher power heats up the device and can cause higher noise. Stereo
cameras compare two images and calculate depth, therefore the image quality
depends on the complexity of the texture. The most prevalent downfall is cap-
turing repetitive textures at further distance, which can cause misinterpretation.
Advantage of this camera is it can capture more dense point cloud at 60 fps than
Kinect v2 [12,13].

Azure Kinect is similar to Kinect v2 and can be considered an upgraded
version. It has a higher resolution, on which it can operate at decent fps. Older
generations have rectangular area of capture fitted with valid data. Azure Kinect
has a wide field of view, which allows for more compact setup. offers a hex area
for narrow field of view and a circular area for a wide field of view. Therefore
there are pixels in the rectangular capture that have no information, but the
device provides raw, uncropped images. Considering the improved technology
and ease to setup Azure Kinect is a best choice for this application [14].
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Table 1. Camera specifications.

RealSense Kinect v1 Kinect v2 Azure Kinect

Depth
sensing
technology

Active IR
Stereo

Structured
light-pattern
projection

ToF (Time-of-
Flight)

ToF (Time-of-Flight)

RGB camera
resolution

1280× 800 px
@ 30 fps

1280× 720 px
@ 12 fps

1920× 1080 px
@ 30 fps

3840× 2160 px
@30 fps

Depth
camera
resolution

1280× 720 px
@ 90 fps

320× 240 px @
30 fps

512× 424 px @
30 fps

up to 1024 × 1024 px
@ 15 fps

Field of view 87◦ H, 58◦ V 57◦ H, 43◦ V 70◦ H, 60◦ V up to 120◦ H 120◦ V

Measuring
distance

0.6–6m 0.4–4m 0.5–4.5m NFOV unbinned 0.5–
3.86m
NFOV binned 0.5–
5.46m
WFOV unbinned
0.25–2.21m
WFOV binned
0.25–2.88m

Number of
joints

18 20 25 32

4 Solution

The core principle is to have a room equipped with multiple Azure Kinect
devices. A presenter is then placed into the room and captured by those devices.
The data collected from all connected Kinect devices will then be further pro-
cessed. Firstly, a depth representation of the captured scene using the point
cloud method is created from each connected device. Subsequently, we detect
users in the image using the Body Tracking SDK. These skeletons are then com-
bined into shared space in which we can then attach point cloud representations
captured by Kinect devices. The remaining captured points of the scene can be
then filtered out as we know where the person is and which points are relevant
to him. We can then combine these filtered points into polygons and we can
create a vivid dynamic texture or in other words a 3D model in real time for
each person. This live 3D model can be then recorded, viewed or streamed over
the network.

4.1 Hardware Setup

Our goal is to capture 360 image, and to do that we use Kinect Azure devices.
Each Kinect is mounted on a tripod to ensure stability and constant distances
of sensors. The configuration is as shown in Fig. 3, two opposing devices facing
towards each other with a slight shift to the side. The reason to shift cameras is to
avoid interference. We have encountered difficulties setting up the configuration,
because the cables supplied in the standard box are not sufficient for this setup.
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There is a need to get a 3.5 mm jack cable long enough to connect the two
devices. Furthermore, the power cable and the USB cable are both not long
enough to connect without extensions. Synchronizing the devices requires a 3.5
jack cable connected to both devices. This way we can set one Kinect to be a
master and other one a slave device. Another important step is to set a delay one
of the infrared pulse generators in order to prevent misinterpretation of depth
data or full on blindness of one sensor due to them being in sync. Then if there
is too much noise it is necessary to change the direction of the sensors slightly,
until it decreases that noise caused by mutual interference.

HW requirements: Seventh Gen Intel c©CoreTMi5 Processor (Quad Core
2.4 GHz or faster), 4 GB RAM, NVIDIA GeForce GTX 1050 or equivalent, ded-
icated USB 3.0 port.

Fig. 3. Example of devices placement

4.2 Unity

Unity is a modern game engine that provides its own development environment.
It supports creation of games and applications on many platforms such as PC,
mobile devices, game consoles and the web. It also supports game creation in
2D, 3D, AR & VR. Unity currently has several versions available where the basic
version is free and the other versions are paid. Free version offers all the basic
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functionalities for personal use. Paid versions focus on companies and game stu-
dios and offer additional services and applications alongside the base version.
Unity is also an excellent environment for experimenting and testing new tech-
nologies. The basic building block of Unity is a game object that can acquire
additional properties such as textures, meshes or scripts. Such an object is then
inserted into a scene where it can interact with other objects. This develop-
ment environment is an ideal tool for our project, as it has native support for
three-dimensional space, the C# programming language, and it can also support
Azure Kinect DK [15,16].

4.3 Integration with Unity

Azure Kinect DK comes with a multi-platform SDK. The SDK contains a col-
lection of classes, functions and drivers that we will use during development.
For development, we decided to use the Windows operating system in which we
installed the drivers to support the Microsoft Kinect device. In unity we cre-
ated a new project in which we had to install the NuGetForUnity package. This
package will install the NuGet package manager, which can be used to add other
packages available in the NuGet registry to the project. From this registry, with
the help of the installed NuGet manager, we will install Azure Kinect Sensor
package that will provide us with methods and functions for accessing and con-
trolling the Azure Kinect device itself. This package also requires a driver library
for Azure Kinect which can be imported from the system. From this point, it is
possible to work with the device in the project. In the project, we created a script
for opening and managing the Kinect. We then collect data from this Kinect,
which we then process. Our first attempt was to manipulate the data into the
so-called point cloud so that we could get a 3D representation of the captured
scene, with the background being cut from a distance defined by us. A point
cloud is a set of points captured by a depth camera where each of those points
has its own position in space using the X, Y and Z coordinates. Each such point
is also defined by its corresponding colour value captured by the RGB camera.
We managed this relatively easily by filtering out all points that had a higher
Z value than the value we set. The result is shown in the image below (Fig. 4).
In the image we can see the scanned scene with several coloured dots placed in
3D. A better view could be created by joining these points into polygons, thus
creating a dynamic texture in real time.
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Fig. 4. Example of devices placement

4.4 Body Tracking

Applying a Config Loader script and main body tracking SDK script from
Azure Kinect SDK onto a stick figure object we get a visualization of how the
person is captured. To map a model of a character we use humanoid anima-
tion type in Unity and add the character model into the Unity Scene. We use
Kinect4AzureTracker to connect the device to the avatar. Next, we map a sta-
tionary part of the human body to a joint on the stick figure. By mapping a
pelvis to the root position of Kinect4AzureTracker we get an animated model.
Assigning the 3D RGB model to the avatar we create a 3D model of a recog-
nizable person. We can then further modify such a model where, for example,
instead of a point cloud representation, we would connect the points to polygons
and thus create a dynamic texture in real time [17].

5 Results and Future Work

Utilising Microsoft’s innovative approach to their Kinect Azure camera and intro-
ducing ready to use SDKs, we were able to digitize a person, and, subsequently,
create a 3D model. For one, we made a model using texture created from cap-
tured point cloud points in real time. To fill the gaps in the point cloud a mesh of
polygons has proven to sufficiently render humanoid representation of a person.
Then, we added a colour aspect in sufficient resolution according to the RGB
image. Different approach was to attach a pre-existing humanoid model to joints
of a body-tracked skeleton. Adding a template RGB image to the model, we cre-
ated an avatar of a person. Both 3D models can be captured in 30 fps. This data
is then serialized and transmitted to server from where it is distributed. Working
AR application can then receive this data and display them with ARkit used in
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devices such as Apple iPhone. ARkit enables our humanoid model to be viewed
in a scene through phone camera and observed in AR (Fig. 5).

Fig. 5. Example of the final 3D human model placed in real life environment

Our proposed solution can be used in various industries. In healthcare, for
example, a patient can be streamed and observed by a doctor in real time.
Another major industry is the gaming industry where people can immerse into
a fully virtual world. But one of the main industries we put our efforts in is
video conferencing. We plan to continue working on this project in such a way
that we will be able to distribute 3D model over the network in real time. The
main idea is to create a platform that would allow the connection of multiple
users to one conference, in which there would be one presenter. This person
would be scanned using Kinect devices, where the complete 3D model would
be serialized and compressed on a scanning device from which it would be sent
over to the server. The server would then redistribute this model among all
connected participants who can join the conference using a generated link. For
displaying the resulting model many technologies can be used. Firstly, we would
like to address augmented reality using mobile device. Using such a device, the
participant could join the conference through the generated link. The participant
can then place the received 3D model anywhere in the space.
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Abstract. This paper presents a method for source detection within
unknown chemical mixtures using several spectroscopy measurement
modalities. Contrary to the well studied case of single source detection,
this approach enables simultaneous detection of multiple chemical compo-
nents by exploiting the mixing coefficients resulting from supervised linear
unmixing and thresholded non-negative least-squares. The first contribu-
tion of this work is to propose an automated procedure to compute an
optimized binary classifier rule for each component independently using
a database of known mixtures. The second contribution is to propose a
global decision rule based on the fusion of the multimodal decisions using
weighting schemes such as those used in multiple classifier systems (MCS).
A real database of Ion Mobiliy Mass Spectrometry (IMMS) data is used to
evaluate the detection performance. The main result is to reach an increase
of the detection accuracy using the multiple thresholds within the indepen-
dent classifiers approach as compared to single modality detection.

Keywords: Multimodal supervided spectral unmixing · Sensor
fusion · Chemical mixture analysis

1 Introduction

Source detection from spectral data is at the core of several applications of signal
processing methods in physical sensing problems, such as chemical substance
analysis [6] and hyperspectral imaging [17]. The concept of a source signal is
defined as the spectral signature associated to a chemical component.

Classical approaches for source detection and identification are based on the
recognition of some discriminant patterns or features of the sought sources [24].
These features can be determined empirically [13,18] or learned from a large-scale
database [10]. Often, the measured signal is interpreted as the linear combination
of an unknown set of several sources. In such cases, multivariate analysis tech-
niques [21] such as independent component analysis and non-negative matrix
factorization can be used. But, even if these blind separation methods yield
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estimates of the source and their relative abundances (mixing coefficients), their
identification as a physically meaningful components is not guaranteed in all
situations.

Alternatively, one can consider a known set of sought sources and estimate the
mixing coefficients by a linear regression under non-negativity constraint. These
coefficients are then used to make a decision on the presence or the absence of
each source in the mixture. In this supervised linear unmixing framework, various
methods can be applied, such as thresholded non-negative least-squares [25], non-
negative orthogonal greedy algorithms [20] or constrained sparse regression [1].
The main challenge in these approaches is to estimate the sparsity level corre-
sponding to the appropriate number of mixture components. For non-negative
least-squares (NNLS), hard thresholding based methods may require a tuning of
the threshold level [25] or a setting of an appropriate stopping strategy of the
iterative process [2]. For greedy algorithms, the sparsity level should be defined
manually or estimated automatically by adopting an adequate stopping rule
during the decomposition. In this paper, we explore more specifically the hard
thresholding based approach for which we propose two enhancements. The first
one is to adopt a source dependent threshold which allows more accurate detec-
tion. The second proposal is to use a training database of known mixtures to
determine an optimized detection threshold for each sought source separately.

The abundance of each source in an observed mixture data depends on the
sensitivity of the sensing modality to this source. Consequently, a lack of sensi-
tivity to some sources in one modality leads to a poor detection of these sources
using this modality and conversely an accurate detection will be achieved from
another modality more sensitive to these sources. Exploiting multi-modality will
therefore enhance detectability of all the sources present in a mixture [7,11]. In
the case of multiple measurements of the mixture recorded in the same modality,
it has been shown that joint analysis of the data can enhance performance [5,27].
In the case where different measurement modalities are available, an appropriate
fusion strategy should be defined. The second contribution of this paper is to
adopt a decision fusion method based on a multiple classifier system (MCS) [9].
Finally, the proposed approaches of component-dependent thresholding and mul-
timodal decision fusion are tested on a challenging example of chemical mixture
analysis using Ion Mobility Mass Spectrometry (IMMS) data [12,26], where spec-
tral responses of the mixtures and the sources are recorded using two ionization
modes and complementary measurement modalities.

2 Problem Statement

Let us consider the case of a single measurement modality. The measurement
vector of the mixture is noted y ∈ R

M , where M represents the number of
samples provided by the sensor. Measurement vectors associated to N sources
are gathered in a matrix S = [s1, ...sN ] ∈ R

M×N . The measurement model is
assumed to be a linear mixing:



212 J. Lefeuvre et al.

y =
N∑

i=1

aisi + e, (1)

where the additive noise term e corresponds to measurement errors. Computing
the vector of mixing coefficients a = [a1, ..., aN ]t ∈ R

N can be efficiently done
by solving the following problem:

â = arg min
a∈C

‖y − Sa‖22, (2)

where C denotes the constraint set of the coefficients. For the considered applica-
tion, measured data correspond to mass spectrometry and ion mobility spectra
and are assumed to follow a linear mixing model. The leas- squares problem
above (2) is therefore solved under the constraint of non-negativity using a non-
negative least-squares algorithm (NNLS) [16] or an interior-point least-squares
(IPLS) [4]. The estimated mixing coefficients in each measurement modality are
then used to retrieve the detection vector d = [d1, ..., dN ]t ∈ {0, 1}N from a
where for i ∈ 1, ..., N, di = 1 when component i is present in the mixture and
di = 0 otherwise.

In the case where L independent measurement modalities are available,
for each modality l ∈ 1, ..., L, the measurement vector of the mixture is
noted y(l) ∈ R

Ml and the spectra of the N sources are gathered in a matrix
S(l) = [s(l)1 , ...s

(l)
N ] ∈ R

Ml×N where Ml is the length of the data vector in the
l-th modality. The observation model is then expressed as:

y(l) =
N∑

i=1

a
(l)
i s

(l)
i (3)

with linearly independent abundance vectors a
(l)
i . The detection of the compo-

nents which are present in the mixture should therefore be realized by accounting
for the values of the mixing coefficients in all modalities using a decision fusion
strategy.

Figure 1 shows the proposed detection pipeline. It consists in firstly solving
a non-negative linear regression problem in each modality and then deducing
the binary detection vectors (d(1), ...,d(L)). The proposed method to compute a
fused detection vector dfus from the L unimodal detection vectors (d(1), ...,d(L))
is presented in Sect. 4. Section 5 details an application of the proposed detection
method in the case of chemical mixture analysis using IMMS spectrometry data.

3 Detection from Single Modality Measurements

A first step of the proposed approach consists in estimating the mixing coef-
ficients (ai, for i ∈ 1, ..., N) by solving Problem (2). A NNLS algorithm [16]
is used for this purpose. Dedicated optimisation algorithms [4] can be used in
order to account for additional constraints (such as sum-to-one). The detection
of each mixture components from these mixing coefficient values is addressed as
a binary classification problem between two states: presence or absence of each
source.
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Fig. 1. Multimodal detection pipeline

3.1 Detection Approach

The decision rule related to the two states leads to a binary classifier hθi
(ai) :

R → {0, 1} according to:

hi(ai; θi) =

{
1 if ai ≥ θi

0 otherwise
(4)

Our proposal consists in adopting thresholds θi which are specific to each source
in the considered measurement modality. It allows to account for the different
sensitivities of the measurement modalities on the sought sources. The detection
vector is then given by di = hi(ai; θi) for i ∈ 1, ..., N . The values of the thresh-
olds θi are defined by optimization of the detection performance on a training
database of known mixtures. The best detection threshold values are chosen in
such a way to reach a balance between sensitivity and specificity of the binary
classifier.

3.2 Specification of the Detection Thresholds

Let Y = [y1, ...,yK ] ∈ R
M×K denote a matrix of K mixtures with a subset of

known sources among a set of N sources. The detection performance for each
binary classifier corresponding to the i-th source are evaluated in terms of true
positive rate and false positive rate

TPRi (θi) =
TPi

TPi + FNi
and FPRi(θi) =

FPi

FPi + TNi
, for i = 1, . . . , N,

where TP (True Positive) and FP (False Positive), correspond to the number
of times that sources are detected as present by the binary classifier and they
are actually present (resp. absent) in the mixture. TN (False Negative) and
FN (False Negative) correspond to the cases where components are detected as
absent by the binary classifier and they are actually absent (resp. present) in
the mixture. The best compromise between sensitivity (TPR) and specificity
(1-FPR) is achieved by defining the threshold values according to

θ̂i = arg min
θi∈R

‖(TPRi(θi),FPRi(θi)) − (1, 0)‖22. (5)
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Note that the ideal point (1, 0) corresponds to the detection of the source (sensi-
tivity) when it is present in the mixtures and without any false positive detection
(specificity).

3.3 Illustration on a Real Mixture Data Set

A real database of IMMS data from 85 lubricant mixtures is considered. Each
mixture contains between 5 and 7 components among 20 possible ones. More
details on this data set are given in Sect. 5. Figure 2-(a) gives the distance
between the receiver operating characteristic (ROC) curve for the detection of
different sources. It can be noted that the optimal detection thresholds for the
considered sources (C6, C15 and C17) are different, which suggests to use a
source dependent threshold. Moreover, the global threshold seems to be appro-
priate for C15 but it is not optimal for the two other sources (C6 and C17).

Fig. 2. Influence of the threshold values on the detection performance

Figure 2-(b) shows a comparison between the average ROC curve obtained
when applying a source dependent threshold and the ROC curve obtained by
using the same threshold for all the sources. Both the Area Under Curve (AUC)
and the average performance at the optimal point are higher in the case of source
dependent thresholds.

4 Detection Strategy in the Multimodal Case

This section addresses the detection in the case where L > 1 independent mea-
surement modalities are available. To illustrate the relevance of this strategy let
us compare the ROC curves, shown in Fig. 3, obtained with two different sources
C1 and C3 in the four modalities offered by the IMMS spectrometer. The ROC
curves of modality M2 (to the left) yields the best performance and M3 the worst
performance for source C1. In contrast, for component C3, the best detection is
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obtained by modality M1 and the worst detection is obtained with modality M4.
This example illustrates the complementarity of the different modalities and the
need for a decision fusion strategy for an accurate detection of the entire set of
sources.

Fig. 3. ROC curves for source detection in four modalities

4.1 Weighting Schemes

The fusion of the independent binary classifiers (h(1)
i , . . . , h

(L)
i ) in the L modal-

ities is performed using a linear combination rule according to

gi

(
a
(1)
i , . . . a

(L)
i

)
=

L∑

l=1

ω
(l)
i h

(l)
i

(
a
(l)
i ; θ(l)i

)
, (6)

where θ
(l)
i and ω

(l)
i correspond to the detection threshold and the decision weight

associated to the detection of i-th component in the l-th measurement modality.
A resulting fused decision corresponds to a Multiple Classifier System [9] defined
subsequently as:

dfusi =

{
1 if gi

(
a
(1)
i , . . . a

(L)
i

)
≥ 0.5

0 otherwise
(7)

Depending on the values assigned to the decision weights, one can distinguish
mainly three different fused classifiers.

a) Majority Vote (MV). It consists of retaining the decision taken by the
absolute majority of classifiers [3]. It is defined as below:

ω
(l)
i =

1
L

. (8)

However, the MV classifier doesn’t account for the performance of the binary
classifiers in the different measurement modalities.
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b) Weighted Majority Vote (WMV). Weighted Majority Vote [15], [19] is
a decision fusion rule in the case of independent classifiers and the weights are
defined as:

ω
(l)
i = log

μ
(l)
i

1 − μ
(l)
i

(9)

where μ
(l)
i is the considered measure of the i-th classifier performance (distance

to ideal point, global accuracy, balanced accuracy, etc.) in the l-th modality.

c) Dynamic Classifier Selection (DCS). DCS [8] is a simple and powerful
multiple classifier fusion strategy consisting in selecting the most efficient clas-
sifier for each source and discarding the others. The chosen decision weights in
(6) depend on the performance index of the binary classifiers in each modality.
The values of ω

(l)
i are set according to:

ω
(l)
i =

{
1 if μ

(l)
i = maxk∈[[1,L]]{μ

(k)
i }.

0 otherwise.
(10)

4.2 Performance Index

The weighting schemes for decision fusion are based on classifier performance.
The most commonly used performance measure is the detection accuracy (ACC),
defined as:

μacc
i =

TPi + TNi

TPi + TNi + FPi + FNi
. (11)

This index is commonly used for evaluation of classifiers with balanced occur-
rences of presence/absence of the sources.

In the case of our application, the source component are more often absent
than present in the mixtures which leads trivial classifiers with high rejection
rate to yield good global accuracy scores. This phenomenon called “curse of
accuracy” [14] is avoided by choosing a more adapted performance index such
as the Mathews Correlation Coefficient (MCC) [23], which is defined as

μmcc
i =

TPi × TNi − FPi × FNi√
(TPi + FPi)(TPi + FNi)(TNi + FPi)(TNi + FNi)

. (12)

This index is considered as one of the best binary classifier performance metrics
since it is not affected by class imbalances in the training set. An ideal classifier
leads to μmcc

i = 1, a random classifier gives μmcc
i = 0 whether or not the train-

ing set is balanced, meanwhile a classifier systematically predicting the exact
opposite of the ground truth will hace an MCC value μmcc

i = −1.
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5 Application to Mixture Analysis by IMMS
Spectrometry

In this section, detection performance of the presented MCS are compared to
the performance obtained separately on each modality on a supervised chemical
mixture analysis by an IMMS spectrometer.

5.1 Mixture Synthesis

A database of 85 mixture made from 20 different chemical components has been
designed. Each mixture contains 5, 6 or 7 components randomly chosen from a
set of 20 classical components involved in lubricant formulation [22]. Samples
from each mixture and each source components have been analysed twice with
an IMMS spectrometer [12]. This spectrometer ionizes the analyte sample to
create a swarn of ions. In a second step, bidimensional maps corresponding to
distribution of drift times and time of flight of the ions through two separation
chambers are recorded. The distribution of drift time through the first chamber
is called the ion mobility spectrum and the distribution of time of flight in the
second chamber leads to the mass spectrum. Mass spectra and ion mobility
spectra are considered as the spectral signatures of the analyte sample.

Fig. 4. Spectral responses of a mixture and one source in four measurement modalities

Two distinct ionization modes have been used, therefore 4 one-dimensional
spectra are recorded for each sample. Those modalities are called M1, M2, M3
and M4, corresponding to positive ionisation mass spectra, negative ionisation
mass spectra, positive ion mobility spectra and negative ion mobility spectra.
The spectral signatures of one of the mixture are presented in Fig. 4-(a). Figure 4-
(b) shows the spectral signatures of one component of this mixture.
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5.2 Mixture Analysis

The IPLS algorithm [4] is used for the mixing coefficient estimation under non-
negativity constraint. Among the 85 observed mixtures, a set of randomly chosen
60 mixtures, with balanced occurrences of each component, are retained for
training the algorithms in terms of optimal threshold values setting and decision
weights calculation. The remaining set of 25 observed mixtures are retained for
the performance evaluation. This procedure is repeated with 60 independent
realizations to get statistically robust global performance indexes.

5.3 Unimodal Detection and Majoruty Vote

Global performance of each optimized unimodal classifier and the majority vote
of the 4 modalities on the database are presented in Table 1. It can be noted
that modality M2 seems to present the best global performance in terms of true
positive rate, false negative rate and overall accuracy. It can be noted that a
naive global fusion scheme such as MV leads to an improvement of specificity
(lower TPR) but at the expense of sensitivity (higher FPR). This results suggests
adopting alternative fusion strategies

Table 1. Performance of unimodal detection

Modalities Fusion

Score M1 M2 M3 M4 MV

TPR (%) 74.2 77.7 59.8 63.8 62.5

FPR (%) 21.5 18.4 26.3 29.2 8.2

MCC 0.50 0.57 0.31 0.32 0.57

ACC (%) 77.4 80.8 69.7 69.3 83.9

5.4 Decision Fusion for Multimodal Detection

The results of the application of the two fusion strategies based on binary clas-
sifier performance are reported in Table 2. Two weighting strategies based either
on ACC and MCC indices are considered. For all the presented metrics, one
can notice that these weighted methods (WMV and DCS) outperform the best
of unimodal classifiers. More specifically, a significant improvement in ACC and
MCC indices is achieved. An accuracy value of 87.9 % for the MCC based WMV.
It notably reduced the rate of false positives (5.1%) while being less sensitive
than the modality M2. However, the MCC based DCS classifier is the most
sensitive one (82.3 %) and presents a moderate rate of false alarms (13.2 %).

5.5 Discussion on Component Detection

Figure 5 shows the detection results of two groups of sources. In the first group,
the sources are well detected by positive ionization mode while in the second
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group, the sources are better detected using negative ionization mode. For each
group of components, unimodal detection results are compared to the multi-
modal detection. In both cases, the performance of the fused decision is equiv-
alent to the best of all the unimodal classifiers. The proposed framework has
therefore been able to fully exploit the complementarity of the modalities.

Table 2. Performance of fusion strategies based on either ACC or MCC measures.

ACC MCC

Score WMV DCS WMV DCS

TPR (%) 77.3 81.5 68.3 82.3

FPR (%) 11.8 12.5 5.1 13.2

MCC 0.65 0.67 0.62 0.67

ACC (%) 85.5 86.0 87.9 85.6

Fig. 5. Detection performance using measurements with two ionization modes

6 Conclusion

The concrete problem of identifying chemical components in an unknown mix-
ture from multi-model spectrometry data, while being an instance of the well-
known source separation problem, poses many challenges among which the
source-dependent response sensitivity and need to derive robust decision fusion
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strategies to combine information provided by the different modalities. It has
been shown on real data that a more accurate detection is achieved by propos-
ing a component-specific threshold in each modality and adopting a decision
fusion scheme exploiting the detection performance in each modality, measured
in a training database. We also noted that DCS classifiers tend to be very sensi-
tive while WMV are more specific. Future works will be directed at investigating
methods based on greedy sparse recovery, proposing adequate rules for the joint
decomposition of the observed data with multiple modalities. Another perspec-
tive proposal of decision rules based on machine learning approaches and that
will not requite the linear mixing model hypothesis.
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sifier fusion methods for classification in pattern recognition tasks. In: Yeung,
D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR /SPR 2006.
LNCS, vol. 4109, pp. 705–713. Springer, Heidelberg (2006). https://doi.org/10.
1007/11815921 77

20. Nguyen, T.T., Idier, J., Soussen, C., Djermoune, E.: Non-negative orthogonal
greedy algorithms. IEEE Trans. Signal Process. 67(21), 5643–5658 (2019)

21. Pomareda, V., Calvo, D., Pardo, A., Marco, S.: Hard modeling multivariate curve
resolution using lasso: application to ion mobility spectra. Chemom. Intell. Lab.
Syst. 104(2), 318–332 (2010)

22. Ponthus, J., Riches, E.: Evaluating the multiple benefits offered by ion mobility-
mass spectrometry in oil and petroleum analysis. Int. J. Ion Mobility Spectrom.
16(2), 95–103 (2013)

23. Powers, D.: Evaluation: from precision, recall and F-factor to ROC, informedness,
markedness & correlation. J. Mach. Learn. Technol. 2, 37–63 (2011)

24. Scharf, L.L., Friedlander, B.: Matched subspace detectors. IEEE Trans. Signal
Process. 42(8), 2146–2157 (1994)

25. Slawski, M., Hein, M.: Sparse recovery by thresholded non-negative least squares.
In: Proceedings of the 24th International Conference on Neural Information Pro-
cessing Systems (NIPS 2011), pp. 1926–1934. Curran Associates Inc., Red Hook
(2011)

26. Szymańska, E., Davies, A.N., Buydens, L.M.: Chemometrics for ion mobility spec-
trometry data: recent advances and future prospects. Analyst 141(20), 5689–5708
(2016)

27. Tropp, J., Gilbert, A., Strauss, M.: Algorithms for simultaneous sparse approxi-
mation. Part i: greedy pursuit. Signal Process. 86, 572–588 (2006)

https://doi.org/10.1007/11815921_77
https://doi.org/10.1007/11815921_77


Author Index

Andicsova, Vanesa 161
Araujo, Matheus T. 132

Babin, Danilo 3
Bertolini, Diego 172
Botelho, Heron 41
Britto Jr., Alceu S. 108, 172
Bukovcikova, Zuzana 161

Calvo, Rodrigo 108
Cheng, Howard 82
Conci, Aura 41
Costa, Pedro B. 132
Costa, Yandre M. G. 108, 172

da Silva, José M. Carneiro 41
de Souza, João W. Mendes 15
Decroocq, Méghane 53
Delayens, Franck 210

Feliciano, Flávio F. 132
Fernandes, Fernando 41
Frindel, Carole 53
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