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Abstract. Determining appropriate maintenance programmes for technical
inventory is recognized as important for quality reliability and safety management
in the oil and gas industry. The programme could be achieved through reliability-
centredmaintenance (RCM) analysis, where safety-critical equipment with poten-
tial for hidden failures is given particular attention. Output of the analysis is seen
in combination with relevant requirements to perform functional testing of the
equipment. The testing involves collecting and analysing data for verification of
acceptable reliability and safety levels during the operational phase. This testing
is often required in periodic intervals, where shorter intervals might be required
initially or after failures for more control. Despite the intention of such activity,
it could however influence equipment conditions in a negative way and over time
contribute to a reduced reliability performance, i.e., lead to maintenance-induced
failures. In this paper, focus is on periodic testing of the component ‘downhole
safety valve’ (DHSV), and mechanisms leading to its failure. We consider the use
of an age-adjusting imperfect repairmodel for analysing the effect ofmaintenance-
induced DHSV failures and discuss the influence of recommended industry guid-
ance. We particularly discuss the benefits of a test strategy having initially one to
three months intervals, compared with an alternative strategy with constant six-
month or one-year intervals. Based on the analysis, the 12-month interval gives
the highest overall probability of failure on demand despite reducing the probabil-
ity for maintenance-induced failures. There is a marginal difference between the
other two alternatives, where then the selected distributions and uncertainties play
a larger role. Barrier data collected by the Petroleum Safety Authority Norway
(RNNP project data) is used for the analysis.

1 Introduction

Reliability centred-maintenance (RCM) is a widely used technique within reliability
engineering practise, with over 40 years of history of successful application in various
industries [1], including the oil and gas industry. It provides a way of selecting the
appropriate maintenance policy and assessment of periodicity (scheduling), where high
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attention is given to safety critical equipment, especially passive equipment with ‘hid-
den failure’ potential such as blow-out preventers (BOPs) and downhole safety valves
(DHSVs). This paper will focus mainly on the latter.

RCM is a way to identify critical items and to develop appropriate maintenance pro-
grams maintaining inherent reliability [2]. Assessment of maintenance intervals (main-
tenance optimization) being a main step. A description of the steps is given in Rausand
et al. [3, p. 392]. The assessment covers attributes such as requirements, consequences,
cost, and the probability of failure on demand (PFD).

Functional testing is normally the default for passive safety critical equipment unless
there is failure-alerting condition-monitoring. When considering DHSV reliability as
part of theRCManalysis, for operations on theNorwegianContinental Shelf, such valves
are normally subject to a six-month functional test interval as recommended inNORSOK
D-010 [4]. The first year being a bit special, consisting of three one-month and then three
three-month intervals, afterwards resuming six-month intervals unless some functional
failure occurs. The interval could be adjusted depending on the reliability demonstrated,
but also based on planning of other maintenance activity, i.e., grouping of maintenance
tasks. Testing the functionality (proof-test) makes it possible to detect DHSV failures
before a demand and a potentially dangerous situation occurs. A shorter time between
the tests influences the expected time between failure and detection. The idea being
that shorter intervals is in favour of reliability and safety. Cost aspects might pull in the
opposite direction. One could also have maintenance-induced failures, challenging the
actual reliability and safety benefits of frequent testing.

When optimisingmaintenance, the potential formaintenance-inducing failures could
be included as part of an imperfect repair model, although the influence is often ignored
in practice [5]. According to Dekker [6] a main reason for why, is the lack of adequate
tools and methods for identification of such failures, besides the lack of good data. The
lack of sufficient degradation experience leads to extensive use of the exponential fail-
ure distribution when estimating the DHSV mean time to failure and PFD. However,
for DHSVs such a distribution might not be realistic as the industry recommended test
schedule indicate a higher failure rate during the first year of operation. Amain objective
of this paper is to consider the use of an age-based model, comparing the exponential
versus the Weibull distribution, as well as different test strategies for the DHSV mainte-
nance optimisation part of RCM. A Weibull distribution might be more realistic and is
often pointed to in qualification, but also waymore complex to integrate analytical-wise.
This as input for development of an imperfect repair model for scheduling of DHSV
proof-tests, where the effect of maintenance-induced failures may be studied.

2 Imperfect Repair Modelling

A typical objective or objective function when optimizing maintenance, is cost; the
optimization criteria typically expressed as expected cost over a time period. Reliability
might also serve as a criterion, e.g., the number of failures or the PFD. When the prime
focus is safety, a key is to ensure acceptable safety integrity performance. In general, the
criteria can be expressed through time-based models, which are widely applied in the
context of RCM; such as P-F interval models, block-replacement, and age-replacement
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models (see model descriptions in e.g. Lindqvist [7]; Moubray [1] and, Rausand et al.
[3, p. 549]). The influence of maintenance-induced failures for passive safety equipment
is discussed in e.g., Hafver et al. [8], where two BOP test schemes are compared, i.e. a
scheme with constant testing intervals and a scheme with adaptive scheduling. Adaptive
scheduling means that time to next test is adjusted to compensate for changes in failure
rate or failure frequency during the operational cycle to maintain the reliability. Such
flexibility allows for more efficient test scheduling.

In modelling of repairable systems, such as DHSVs, the impact of imperfect repair
is typically reflected by adjustment of the failure frequency w(t) as the starting point
following (immediately after) a repair action. The basis is then that the failure frequency
immediately after the repair should reflect the quality of the maintenance. The w(t) is
sometimes referred to a rate of occurrence of failure (ROCOF).

One of the simplest ways is to assign a repair efficiency function (or index) for the
maintenance quality, i.e., the probability of maximum condition improvement, and link
this to the w(t) or the PFD. This could be modelled binary by assigning ρ(t) as the
probability of perfect repair (as-good-as new), with 1−ρ(t) as the probability of the item
condition being as immediately before the failure occurs (as-bad-as old). Such a concept
could be applied for any maintenance policy. The concept could also be extended to
multistate as suggested in e.g., Doyen and Gaudoin [9]. It represents a type of imperfect
repair modelling based on w(t) adjustment, where each maintenance event could lead
to either perfect repair (as the best) or minimal repair (as the worst), or something in
between. However, the steepness of the failure rate curve at time t, the w’(t), is not
influenced by the adjustments. A different way to adjust, is to make time the basis for
w(t) reduction. This could change the steepness of w(t), where the reduction factor or
function moves the failure rate (virtually) back in time (age reduction). However, such
an adjustment will not have much effect under assumption of an exponential failure
distribution, where the w(t) is constant. The reduction factor then gives the percentage
of time reduction based on the time elapsed since the previous repair or total elapsed
time. The adjustment is then limited to the development recorded for the earlier period.

Assuming that failures only are revealed from proof-testing at intervals with length
τ and as-good-as-new after repair, the average PFD can be calculated from:

PFDAVG = 1

τ

∫ τ

0
F(t)dt (1)

Where F(t) is the PFD at time t; P(T < t). For each cycle, and immediately after the
repair, the item is virtually moved back to t = 0. However, if the repair is imperfect,
unless the failure rate is decreasing, the PFDAVG will be increasing for each test cycle
of length τ . F(t) can be calculated with reference to the failure rate z(t):

F(t) = PFD = 1 − exp

[
−

∫ t

0
z(t)dt

]
(2)

In (2) if z(t) is a constant z(t)= λ the integral in (2) equals λ · t, giving the exponential
distribution. F(t) for theWeibull distribution is presented in Sect. 4. Following each cycle
of tests, the underlying failure density distribution and F(t) may then change depending
on the repair quality. Let Fi(t) denote the PFD in the interval from immediately after
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test number i−1 to test i. For constant test intervals with length τ: F1(τ ) → F2(2τ ) →
F3(3τ ) → … → Fn-1[(n−1)τ ] → Fn(nτ ).

A change in Fi would then reflects the change in z(t) induced by the maintenance.
In addition, the maintenance effect could be modelled by adjusting the virtual start
time for cycle i. Instead of start at t = 0, it could start at a point in time reflecting the
current equipment condition at start-up to match the PFD. Such a modelling may allow
for adjustment of the initial cycle level and for the development up to next test. The
PFDAVG for cycle n specifically could be expressed as:

PFDAVG(n) = 1

τ

∫ S(n)+τ

S(n)
Fn(t)dt; for n > 0 (3)

where S(n) is a function assigning virtual start-up time of cycle n. This is used as
basis for modelling the effects of maintenance-induced DHSV failures in Sect. 4. For
more details and presentation of different imperfect repair models, we refer to reviews
of imperfect repair models given in e.g., Wang and Pham [10, p. 13], Pham and Wang
[11]. See also Rausand et al. [3, p. 455] and Nakagawa [12, p. 171; 13].

3 The Downhole Safety Valve Situation at NCS

DHSV is a main barrier element in offshore wells and plays a key role for safety man-
agement for oil and gas facilities. Each year the Petroleum Safety Authorities Norway
(PSA) publish a risk level report including a DHSV reliability status. Figure 1 gives an
overview of the development in fraction of failed tests from 2002 to 2019 based on data
reported from the oil and gas companies to the PSA (see [14]).

In total over the period 89,514 tests are registered, with 2,582 failures; see also
Table 1. As indicated by the figure, there is a significant increase in fraction of failures
per test, and data show that 35 out of 80 facilities have a fraction above the critical
level of 0.02 in 2019. For the full period almost half of the facilities are above this
critical level. Assuming a six-month test interval this gives a constant failure rate λ =
6.68 · 10−6/h, meaning an expected time to failure of 17.3 years. Due to confidentially
issues, field-specific data are not presented.
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Fig. 1. Fraction of DHSV failures on number of tests
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According to the PSA reporting, previous analysis shows that facilities with more
than 20 years of operation, ismore prone toDHSV failures compared to younger facilities
(for the period 2008 to 2017). The analysis also shows that facilities with 6 to 20 years
of operation have a significantly lower fraction of failures; supporting a lower failure
frequency in the middle of the lifetime.

Table 1. Number of DHSV tests with failures at the Norwegian Continental Shelf

Year Tests Failures Fraction of failed

2002 3 851 31 0.00805

2003 3 098 46 0.01485

2004 3 566 67 0.01879

2005 3 322 80 0.02408

2006 4 787 95 0.01985

2007 5 290 153 0.02892

2008 5 863 130 0.02217

2009 4 993 156 0.03124

2010 4 993 135 0.02704

2011 5 227 149 0.02851

2012 5 624 135 0.02400

2013 5 772 149 0.02581

2014 4 592 169 0.03680

2015 5 016 168 0.03349

2016 5 786 200 0.03457

2017 6 051 252 0.04165

2018 6 032 243 0.04029

2019 5 651 224 0.03964

Amain challenge for the failed valves is the failuremode ‘leakage in closed position’.
A presentation by Molnes [15] shows that this specific failure mode accounts for around
35% of historical failures, being the dominating one. It represents a type of failure
that could be traced to the maintenance activity and number of tests performed. The
challenge being primarily the robustness of the seal. Number of tests may influence the
performance, but also the time between tests if there are long dormant periods (as for
having one-year test intervals) with fluids or sand particles eroding the seal, inducing
‘sticking’ and insufficient closing ability. Several publications, e.g., Vick et al. [16] and
Vinzant et al. [17], focus on the sealing technology as a performance limiting factor. We
refer to Selvik and Abrahamsen [18] for DHSV reliability review.
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4 Modelling the Effect of Maintenance-Induced DHSV Failures

The modelling presented in this section is based on (3), where The PFDAVG for each
cycle is interpreted as the mean value for the specific period. The overall PFDAVG can
then be calculated from the arithmetic mean over the n periods with length τ:

Overall PFDAVG(n) = 1

n

∑n

i=1

1

τ

∫ S(i)+τ

S(i)
Fi(t)dt (4)

For a test cycle i, the function S(i) is here seen as a function assigning a value in [0, ∞)
based on the stresses accumulated by the i tests performed, assuming no use of the valves
except the test demands, with S(i−1) ≤ S(i); 0 < i ≤ n. S(i) comprise as such the tests’
probability of reducing DHSV condition or functionality; with 0 as ‘as-good-as-new’, τ
as ‘as-bad-as old’, and t > τ as a decrease in condition and at worst a complete loss of
function. It depends on the number of tests, quality of the tests, and the condition at the
test. One way is to specify periods of equal length from τ. We select here 45 periods as
the number of cycles m assumed before the valve is in a ‘as-bad-as-old’ condition after
testing, giving (in hours) when τ is six months:

S(i) = τ

m
(i − 1) = 96.0(i − 1) (5)

We also assume the F(t) to be independent on the cycle number, i.e., F0(t) equals Fi(t).
As input, we refer to the failure data presented in Sect. 4 and will use these as the
field-specific results. Regarding the F(t), we consider two common distributions: the
exponential distribution with parameter λ = 6.68 · 10−6[h−1]; (giving a mean time to
failure MTTF = 17.3 years), and, the Weibull distribution with rate parameter λ (and
scale parameter 1/λ), and shape parameter k = 1.3; and with F(t) = 1− exp[− (t · λ)k ]
(MTTF = 15.8 years). The Weibull k parameter is derived from available qualification
testing results. The comparison is then achieved by considering three distinct testing
strategies: the one with one-year shorter initial tests, a constant six-month strategy, and
a maximum 12-month strategy.

For the overall PFDAVG formula (4) under assumption of a constant failure rate λ,
and fixed test intervals τ i = τ , the formula can be expressed as:

Overall PFDAVG(n) = 1

n

∑n

i=1

1

τi

∫ S(i)+τi

S(i)

(
1 − e−λ·t)dt (6)

= 1

nτ

∑n

i=1

[
t + 1

λ
e−λt]

]S(i)+τ

S(i)
= 1 + 1

nτ

∑n

i=1

1

λ

(
e−λ·(S(i)+τ) − e−λ·S(i)

)
(7)

The overallPFDAVG(n)when applying theWeibull distribution can then be expressed
as:

Overall PFDAVG(n) = 1

n

∑n

i=1

1

τi

∫ S(i)+τi

S(i)

(
1 − e−(λi t)ki

)
dt (8)

In practical applications there will be initially higher failure probability. However, this
is not included here. The effect would be a higher probability in the first year, although
it is uncertain how large this effect would be.
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When assuming an exponential distribution the probability of failure at each test
is shown in Fig. 2. Longer test intervals have a higher probability of failure from the
beginning, but the difference diminishes over the cycles due to maintenance induced
wear. Due to the maintenance induced failures, the PFD at the start of a cycle will be
larger for shorter test intervals. The PFDAVG for a short test interval policy will therefore
become greater than the PFDAVG for a longer interval policy earlier than Fig. 2 might
indicate. The 6-month intervals policy will have a higher PFDAVG than the 12-month
interval policy after 21.8 years, and with more frequent initial testing already after
17.8 years.
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Fig. 2. Probability of the DHSV being in a failed state for a test with exponential distribution,
conditioned on that it was functioning at the start of the interval, when the test is performed either
at 6 or 12-month intervals or 6-month intervals with more frequent tests initially.

When considering the Weibull distribution, there can be seen an effect of wear in
Fig. 3. The more frequent initial test intervals demonstrate a lower probability of being
in a failed state for a test during the early years, at the cost of slightly higher probability
due to test-induced wear in the later years. There is also a slight curvature to the lines
in the plot caused by the increase in failure rate due to the time-adjusted aging. For
the Weibull situation, the 6-month intervals policy will have a higher PFDAVG than the
12-month interval policy after 23.0 years, and with more frequent initial testing after
19.2 years; 1.4 years later than for the exponential.
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Fig. 3. Probability of the DHSV being in a failed state for a test with Weibull distribution, when
the test is performed either at 6 or 12-month intervals or 6-month intervals with more frequent
tests initially.
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Alternative modelling-approaches are shown below. Figure 4 shows aWeibull distri-
bution where the scale parameter is reduced by a fixed amount per interval. Even though
the four additional tests performed in the first year only changes the probability by a
small amount initially, the effect grows larger later in life. If the scale is reduced by a
percentwise reduction per test a similar difference increase is seen, as shown in Fig. 5.
Finally, a scenario where the maintenance activity does not modify the distribution, but
rather an independent increasing probability of failure occurring due to the maintenance
itself that is then added to the failures that can occur within the interval is shown in Fig. 6.
In this case each maintenance activity causes a fixed increase that remains constant over
time.
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Fig. 4. Probability of DHSV being in a failed state for a test usingWeibull distribution, where the
scale parameter is reduced linearly by each test, when the test is performed either at 6 or 12-month
intervals or 6-month intervals with more frequent tests initially.
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Fig. 5. Probability of DHSV being in a failed state for a test using Weibull distribution, where
the scale parameter is reduced by a percent for each test, when the test is performed either at 6 or
12-month intervals or 6-month intervals with more frequent tests initially.
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Fig. 6. Probability of DHSV being in a failed state for a test usingWeibull distribution, where the
maintenance activity can cause failures independently of wear state, when the test is performed
either at 6 or 12-month intervals or 6-month intervals with more frequent tests initially.

Overall PFDAVG for the different cases are shown in Table 2 below.

Table 2. PFDAVG for different maintenance schemes and different maintenance-induced failure
models.

Test
intervals

Weibull Exponential

6 months Initially more
frequent

12 months 6 months Initially more
frequent

12 months

Time
adjustment

1.54% 1.59% 1.64% 3.85% 3.94% 4.04%

Linear scale
reduction

0.72% 0.75% 1.36% 2.01% 2.07% 3.31%

Percentage
scale
reduction

0.79% 0.83% 1.46% 2.16% 2.22% 3.50%

Independent
failure
increase

0.85% 0.88% 1.31% 4.24% 4.51% 3.06%

Table 2 presents then the average probability of failure over the 39 years calculated
for the different models. The maintenance scheme with 6-month intervals results gives
the lowest values in most cases, although for failure independent of running time longer
intervals are better with the exponential distribution.

5 Discussion

5.1 The Effect of Maintenance-Induced DHSV Failures

A key is the difference in effect between the test policies. As seen in the above calcula-
tions, frequent testing in the initial phase will reduce the maximum probability reached
of being in a failed state at a test, at the cost of slightly higher probabilities in later years.
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From the overall average probability of failure on demand, it is seen that 12-month
intervals are worse off in most cases. However, this depends on the severity of damage
caused by the testing. It is nevertheless obvious that maintenance is a trade-off between
reducing the highest probability of being in a failed state and the overall probability
of being in a failed state (such as during the initial phase). This depends on the failure
distribution as well.

Howmaintenance-induced failures occur matters. In most of the examples where the
increased testing shifts towards a state of increased wear, either through time-adjustment
or through parameter adjustment, the changes seen are not drastic but will accumulate to
a greater overall probability of failure over the lifetime. In the examples where failures
are actually induced by maintenance, rather than just causing an increase in failure
rate during the next cycle, the failure probability will here shift the curves upwards,
which illustrates how frequent initial testing can deteriorate the valves quickly. Similar
behaviour is difficult to achieve with models that simply “age” the valves when wear-out
failures occur relatively late in the example distribution used. Distributions with a finite
support (i.e., components with limited lifespan) would be able to develop much stronger
differences.

5.2 RCM Value

The modelling of maintenance-induced failures is important to understand if frequent
early initial testing is worth the wear to reduce the probability of being in a failed state
within a test interval. If there is a fixed cost (in terms of failures) to wear, such as if
there is a constant probability of failure due to the maintenance, then the frequency of
maintenance can be done by focusing on keeping the maximum probability of failure in
an interval as low as possible without considering additional long-term effects. In other
cases, the long-term effect of maintenance should be considered, as the total probability
of failure during the time the valve is installed can be larger.

When discussing maintenance, other aspects can also be considered, such as the
associated costs as well as the needs. If during the early stages there is greater uncertainty
in subsurface conditions there is also a greater need for a functioning DHSV, while if the
uncertainty is low and therefore low probability of a demand for the DHSV the condition
of the valve is less precarious. In such situations one could discuss having more frequent
tests when a demand is more likely, and rather increase the test intervals when a demand
is less likely to avoid excessive wear.

While several deterministic models are shown here to illustrate some different alter-
natives to modelling maintenance induced failures, when making decision related to
maintenance based on reliability modelling the uncertainty of these models and the
underlying failure causes they attempt to represent must be considered.

6 Conclusions

In this paper, DHSV failures and imperfect repair modelling has been presented, includ-
ing a dataset from the NCS. A Weibull distribution and exponential distribution based
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on this dataset was then used to illustrate the effect of different models for maintenance-
induced DHSV failures. The results illustrate the cost frequent testing can have on later
reliability. Tomake correct decisions regarding testing, it is important that also the uncer-
tainty aroundmaintenance-induced failures, wear during operation and their interactions
are included.
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