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Abstract. This paper presents a structure consisting of two simple kinematic
chains for a hanged rigid. The analysis is performed in two cases: in case 1, both
kinematic chains are elastic ones, and in case 2, one kinematic chain is elastic,
while the other one is rigid. In both cases, we determine the equations of the free
and forced vibrations. A numerical example highlights the theory.
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1 Introduction

The problems of elastic kinematic chains may be divided into two categories: problems
concerning the mechanism in which one or more components are elastic ones, or prob-
lems dealing with platforms hanged by elastic kinematic chains. In the first situation,
researchers study the case of two flexible elements linked one to another by different
kinematic linkages, develop some numerical algorithms, and then apply the theory to a
four-bar mechanism [1]. In the case of a simple mechanism, like the crank-shaft one,
they [2] start from the second-order Lagrange equations and use a multibody approach.
The analysis of the rigidity of kinematic chains in a particular case of manipulator for a
platform is made in [3], while the case of a platform with elastic elements in kinematic
chains is discussed in [4]. For a Stewart platform, one may consider that linkages are
flexible, and use the Kane equations and principle of virtual work in order to perform
the kinematic analysis and, by linearization of the moving equations, one may deduce
the small oscillations of a satellite [5]. For the case of a double platform with flexible
kinematic linkages, in Ref. [6] the authors performed the static analysis and proved that
the rigidity of the manipulator depends on its position. The study of the mobile platforms
may be realized using different algorithms [7], or writing special programs [8]. Pandrea
[9] underlay the study of the mechanism and kinematic chains in plückerian coordinates
and developed the corresponding linear elastic calculation in the screw coordinates.

2 Mechanical System

One considers the rigid AB (Fig. 1) hanged by the kinematic chains AC1D1 and AC2D2,
each kinematic chain consisting of two elastic bars AC1, C1D1, and BC2, C2D2, respec-
tively. The kinematic linkages at the pointsC1 andC2 are cylindrical ones. We attach the
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reference system Cxyz to the rigid AB and the reference frames C1x1y1z1 and C2x2y2z2
as in Fig. 1. One knows the dimensions l and a, and the mechanical and geometric
properties of each bar. The rigid AB is acted by the forces P, which are parallel to the
Cx-axis. The requirements are the study of the free and forced vibrations of the rigid AB
in two cases: each kinematic chain is elastic, and the BC2D2 kinematic chain is rigid.
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Fig. 1. Mechanical model.

3 Rigidity Matrix

We calculate:

• rotational matrices of the systems Cixiyizi with respect to the reference system Cxyz

[R1] = [R2] =
⎡
⎣

0 0 1
0 1 0
−1 0 0

⎤
⎦;

• the matrices [GCi] =
⎡
⎣

0 −ZCi YCi

ZCi 0 −XCi

−YCi XCi 0

⎤
⎦, where XCi , YCi , ZCi are the coordinates

of the point Ci, i = 1, 2, with respect to the reference frame Cxyz;

• the matrices [TCi] =
[
[Ri] [0]
[GCi] [Ri]

]
, [TCi]−1 =

[
[Ri]T [0]

[Ri]T[GCi]T [Ri]T

]
, i = 1, 2;

• the columnmatrices of the linkages atC1 andC2 relative to theC1x1y1z1 andC2x2y2z2
systems,

{
uC1

} = [
0 0 1 0 0 0

]T
, and

{
uC2

} = [
0 1 0 0 0 0

]T
, respectively;

• the columnmatrices of the plückerian coordinates of the linkages at pointsCi , i = 1, 2,
relative to the Cxyz reference system

{
UCi

} = [
TCi

]{
uCi

}
, i = 1, 2;
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• the rigidity matrices of each kinematic chain (i = 1, 2), relative to the Cixiyizi
reference system

[ki] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 EiAi
l 0 0

0 0
6EiIzi
l2

0
12EiIzi

l3
0

0
6EiIyi
l2

0 0 0
12EiIyi

l3
GiIxi
l 0 0 0 0 0

0
4EiIyi

l 0 0 0 − 6EiIyi
l2

0 0
4EiIzi

l 0
6EiIzi
l2

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (1)

• the rigidity matrices of each kinematic chain, i = 1, 2, relative to the Cxyz reference
system {Ki} =

[
TCi

]
[ki]

[
TCi

]−1.

4 Case of Elastic Kinematic Chains

In this situation, the rigidity matrix of the system reads

[K] = [K1]+ [K2]. (2)

Denoting the inertial matrix of the rigid AB by [M],

[M] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 m 0 0
0 0 0 0 m 0
0 0 0 0 0 m
Jx 0 0 0 0 0
0 Jy 0 0 0 0
0 0 Jz 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

the column matrix of the displacements of the point C by {�},
{�} = [

θX θY θZ δX δY δZ
]T

, (4)

one obtains the matrix equation of the free vibration as

[M]{�} + [K]{�} = {0}. (5)

If the expression of force P is P = P0 cos(ωt + ϕ)i, where i is the unit vector of the
Cx direction, then the column matrix of the forces reads

{F} = [
P0 cos(ωt + ϕ) 0 0 0 0 aP0 cos(ωt + ϕ)

]T
,

while the matrix equation of the forced vibrations is

[M]{�} + [K]{�} = {F}. (6)
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5 Case of a Rigid Kinematic Chain

In this situation, we denote by
{
ξC2

}
the matrix of possible displacement in the linkage

at the point C2.
The equation of the free vibrations takes the from

{
UC2

}T
[η][M]

{
UC2

}{
ξC2

} + {
UC2

}T
[η][K1]

{
UC2

}{
ξC2

} = {0}. (7)

Taking into account that
{
ξC2

} = [
0 τY 0 0 0 0

]T
and performing the calculations

required by Eq. (7), one gets

(
ml2 + JY

)
τ̈Y + 4E1Iy1

l
τY = 0, (8)

that is, a periodical motion in the form τY = τY0 cos(ω0t + ϕ0), where

ω0 =
√

4E1Iy1(
ml2 + JY

)
l
, (9)

while τY0 and ϕ0 are constants obtained from the initial conditions.
In the case of the forced vibrations, we have the equation

{
UC2

}T
[η][M]

{
UC2

}{
ξC2

} + {
UC2

}T
[η][K1]

{
UC2

}{
ξC2

} = {
UC2

}T
[η]{F}, (10)

where

{F} = [
P0 cos(ωt + ϕ) 0 0 0 0 2aP0 cos(ωt + ϕ)

]T
. (11)

It results in the equation

(
ml2 + JY

)
τ̈Y + 4E1Iy1

l
τY = P0l cos(ωt + ϕ). (12)

The square matrix [η] is given by

[η] =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (13)
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6 Numerical Example

In this section, wewill consider six cases. The following values are common for all cases:
E1 = E2 = 2.1 × 1011 N

/
m2, G1 = G2 = 8.1 × 1010 N

/
m2, l = 0.2 m, a = 0.2 m,

m = 50 kg, r = 0.1 m (the radius of the rigid AB considered as a homogeneous bar),
ω = 20 rad

/
s, ϕ = 0 rad, tmax = 3 s (the interval of simulations), the bars of the

kinematic chains are homogeneous. For the first, the third, and the fifth case, one has
P = 0 N (free vibration), while for the second, the fourth, and the sixth caseP = 1000 N
(force vibrations). The first and the second case are characterized by d1 = 0.005 m (the
diameter of the bars of the first kinematic chain), d2 = 0.005 m (the diameter of the
bars of the second kinematic chain), the force P = 0 N, while the initial conditions are:
θX = 0.002 rad, θY = −0.001 rad, θZ = 0.001 rad, δX = 0.001 m, δY = 0.002 m,
δZ = −0.001 m, θ̇X = θ̇Y = θ̇Z = 0 rad

/
s, δ̇X = δ̇Y = δ̇Z = 0m/s. For the third and

the fourth case, we consider d1 = 0.010 m, and d2 = 0.005 m, while for the fifth and
the second case d1 = 0.005 m, d2 = 0.005 m. The initial conditions for the second, the
third, and the fourth case are the same as in the first case, while for the fifth and the sixth
case, the initial conditions are: τY = 0.002 rad, τ̇Y = 0 rad

/
s. The results are captured

in the next figures (Figs. 2, 3, 4, 5, 6, and 7). In all figures θX and δX were drawn in blue,
θY and δY were drawn in green, while θZ and δZ were drawn in red. The reader may
easily observe the periodicity of the free and forced vibrations in all cases. In the first
four cases, the variable δZ presents a transitory period in which the amplitude decreases,
after this period, the oscillations being periodical.
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Fig. 2. Time histories in the first case.

In the fifth and the sixth case, the amplitudes of the parameters θX , θZ , δY , and δZ
are equal to zero.

It results that when the two kinematic chains are elastic, then the vibration of the
rigid AB is a complex one, the motion having non-zero components. In the case when
a kinematic chain is a rigid one, the dynamics of the rigid simplifies and consists only
in a rotational motion about the Y -axis, and a translational one along the X axis. The
same observation concerning the diminishing of the amplitude of vibrations may be also
stated in the third and fourth case when the bars which compound the first kinematic
chain have greater rigidities.
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Fig. 3. Time histories in the second case.

0 0.5 1 1.5 2 2.5 3
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

t [s]

θ X, θ
Y, θ

Z [r
ad

]

0 0.5 1 1.5 2 2.5 3

-2

-1

0

1

2

x 10-3

t [s]

δ X, δ
Y, δ

Z [m
]

Fig. 4. Time histories in the third case.
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Fig. 5. Time histories in the fourth case.
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Fig. 6. Time histories in the fifth case.
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Fig. 7. Time histories in the sixth case.

7 Conclusions

This paper deals with the study of the dynamics of the rigid hanged by two elastic
kinematic chains or hanged by an elastic kinematic chain and a rigid kinematic chain.
In both situations, we determined the rigidity matrix of the system and the equations of
the free and forced vibration.

The numerical results prove that in the case when both kinematic chains are elastic,
the dynamics of the rigid simplifies, remaining periodic

In many cases, the platforms are acted by asymmetric loads resulting in different
reactions in the legs; consequently, the legs may have different rigidities. In this way,
it is possible that one leg has a rigidity much greater than the other ones. It results that
the flexibility matrix that corresponds to the kinematic chain assigned to that leg may
be neglected compared to the flexibility matrices of the rest of the kinematic chain and,
consequently, the flexibility matrix of the systemmay be calculated only as a function of
the flexibility matrices of the rest of the kinematic chains. The results obtained using this
approach are different from those obtained using the approach proposed in this paper.
Our model considers that the hanged rigid solid with one rigid kinematic chain has a
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constrained motion; hence the model may be generalized to systems with more general
constraints and kinematic chains.

In our future studies, we will consider more complicated cases of the mechanical
systemwith one rigid kinematic chain and several elastic kinematic chains with different
acting forces, and we will discuss their dynamics. Greater attention will be paid to the
platforms, especially the Stewart ones.
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