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Preface

It is our great pleasure to introduce this collection of research papers which were pre-
sented at the 22nd International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT 2021). PDCAT is a major forum for scientists,
engineers, and practitioners throughout the world to present the latest research, results,
ideas, developments, and applications in all areas of parallel and distributed computing.

The conference started in Hong Kong in 2000, and PDCAT 2021 took place in
Guangzhou, China, after 21 years of success in different countries/regions including
Taiwan, Japan, China, South Korea, Singapore, Australia, and New Zealand. Due to the
impact of the COVID-19 pandemic, this year’s conference was conducted both online
for external participants and offline for local participants.

This year we received 97 submissions from authors in 15 different countries and
regions across the world. Out of these submissions, we have accepted 24 regular papers
and34 short papers. This represents an acceptance rate of 25%for regular papers and35%
for short papers. The submissionswere in general of high quality, making paper selection
a tough task. The paper review process involved all Program Committee members. To
ensure a high-quality program and provide sufficient feedback to authors, we made
great effort to have each paper reviewed by three independent reviewers on average. All
accepted papers are included in the proceedings.

It would not have been possible for PDCAT 2021 to take place without the help and
support of various people. The efforts of the authors, Program Committee members, and
reviewers were essential to the conference’s quality and deserve our utmost appreciation.
We also wish to thank the local organization committee members for all their hard
work in making PDCAT 2021 a great success, and we thank our sponsors, Sun Yat-sen
University and Springer, for their support. Last but not least, we wish to thank Guoliang
Chen from the Nanjing University of Posts and Telecommunications and Shenzhen
University, China; Depei Qian from Beihang University, China; Manu Malek as the
Editor-in-Chief of the Computers and Electrical Engineering journal; JiannongCao from
the Hong Kong Polytechnic University, China; Haibing Guan from Shanghai Jiao Tong
University, China; Zhiwen Yu from the Northwestern Polytechnical University, China;
Chengzhong Xu from the University of Macau, Macao SAR, China; Ajay Gupta from
Western Michigan University, USA; and Hiroyuki Takizawa from Tohoku University,
Japan,who delivered keynote speeches and helped attain the objectives of the conference.



vi Preface

We are grateful to all authors for submitting their up-to-date research results to the
conference and all participants for attending the conference. We hope that you found the
conference rewarding.

December 2021 Hong Shen
Yingpeng Sang

Yong Zhang
Nong Xiao

Hamid Arabnia
Geoffrey Fox
Ajay Gupta
Manu Malek
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Accelerating GPU-Based Out-of-Core
Stencil Computation with On-the-Fly

Compression

Jingcheng Shen(B) , Yifan Wu, Masao Okita, and Fumihiko Ino

Osaka University, 565-0871 Osaka, Japan
jc-shen@ist.osaka-u.ac.jp

Abstract. Stencil computation is an important class of scientific appli-
cations that can be efficiently executed by graphics processing units
(GPUs). Out-of-core approaches help run large scale stencil codes that
process data with sizes larger than the limited capacity of GPU memory.
Nevertheless, performance of out-of-core approaches is always limited by
the data transfer between the CPU and GPU. Many optimizations have
been explored to reduce such data transfer, however, published results
on the use of on-the-fly compression are insufficient. In this study, we
propose a method that accelerates GPU-based out-of-core stencil com-
putation with on-the-fly compression, introducing a novel data compres-
sion scheme that solves the data dependency between contiguous decom-
posed data blocks. We also modify a widely used GPU-based compression
library to support pipelining that overlaps data transfer with computa-
tion. Experimental results show that the proposed method achieved a
speedup of 1.2× compared with a method that involves no compression.
Moreover, although precision loss caused by compression increased with
the number of time steps, it was trivial up to 4,320 time steps, demon-
strating the usefulness of the proposed method.

Keywords: High performance computing · On-the-fly compression ·
Stencil computation · Simulation · GPGPU

1 Introduction

Stencil computation is the backbone of many scientific applications, such as
geophysics simulations [4,15,16], computational electromagnetics [1], and image
processing [22]. The key principle of stencil computation is to iteratively apply
a fixed calculation pattern (stencil) to every element of the input datasets. Such
a single-instruction multiple-data (SIMD) characteristic of stencil computation
makes itself a perfect scenario to use the graphics processing units (GPUs) for
acceleration. A GPU has thousands of cores and its memory bandwidth is 5–10
times higher than that of a CPU, thus excelling at accelerating both compute-
and memory-intensive scientific applications [5,13,18,19]. However, as a GPU

c© Springer Nature Switzerland AG 2022
H. Shen et al. (Eds.): PDCAT 2021, LNCS 13148, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-030-96772-7_1
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has a limited capacity of device memory (tens of GBs), it fails to directly run a
large stencil code whose data size exceeds the memory capacity.

A large entity of research on GPU-based out-of-core stencil computation has
been performed to address this issue [6,9,16,20,21]. For a large dataset whose
data size exceeds the capacity of the device memory, out-of-core computation
first decomposes the dataset into smaller blocks and then streams the blocks to
and from the GPU to process. Nevertheless, the performance of this approach
is often limited by data transfer between the CPU and GPU because the inter-
connects fail to catch up with the development of the computation capability of
GPUs as described in [19]. Data-centric strategies are thus necessary to reduce
the data transfer. Studies have introduced strategies such as temporal blocking
and region sharing to reuse the on-GPU data and to avoid extra data trans-
fer [6,9,16]. Nevertheless, according to [16], the performance of out-of-core code
was still limited by data transfer despite these strategies. We therefore need to
further optimize the methods to reduce data transfer time. A potential solu-
tion is to use on-the-fly compression to compress the data on the GPU before
transferring it back to the CPU, and decompress the data on the GPU before
processing. However, hitherto studies on the acceleration of GPU-based out-of-
core stencil computation with on-the-fly compression are really rare. According
to a comprehensive review [3], studies on leveraging compression techniques in
scientific applications mainly focused on scenarios such as post-analysis and fail-
ure recovery. We think that the scarcity of relevant research raises two research
questions:

– Would the overhead of compression/decompression outweighs the reduced
data transfer time?

– Would the precision loss involved by data compression be so huge that the
output becomes useless?

In this study, we (1) propose a method to accelerate out-of-core stencil com-
putation with on-the-fly compression on the GPU and (2) try to give answers to
the two above-mentioned questions. The contribution of this work is three-fold:

– We introduced a novel approach to integrate an on-the-fly lossy compression
into the workflow of a 25-point stencil computation. For large datasets that are
decomposed into blocks, this approach solves the data dependency between
contiguous blocks and thus secures the accessibility to the common regions
between contiguous blocks after compression.

– We modified a widely-used GPU-based compression library [8] to support
pipelining, which is mandatory for the purpose of overlapping CPU-GPU
data transfer with GPU computation.

– We analyzed experimental results to answer the aforementioned questions,
i.e., on-the-fly compression is useful in reducing the overall execution time of
out-of-core stencil computation, and the precision loss is tolerable.

The remainder of this study is organized as follows: Related studies on accel-
erating stencil and similar scientific applications with compression techniques
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are introduced in Sect. 2. Background of stencil computation and challenges in
applying on-the-fly compression to stencil computation are briefly described in
Sect. 3. Section 4 discusses the selection of an appropriate GPU-based compres-
sion library. The proposed method to integrate the compression processes into
the workflow of out-of-core stencil computation is described in Sect. 5. In Sect. 6,
experimental results are presented and analyzed. Finally, Sect. 7 concludes the
present study and proposes future research directions.

2 Previous Work

Nagayasu et al. [10] proposed a decompression pipeline to accelerate out-of-core
volume rendering of time-varying data. Their method was specified to handle
RGB data and the decompression procedure was partially performed on the
CPU.

Tao et al. [23] proposed a lossy checkpointing scheme, which significantly
improved the checkpointing performance of iterative methods with lossy com-
pressors. Their scheme reduced the fault tolerance overhead for iterative methods
by 23%–70% and 20%–58% compared to traditional checkpointing and lossless-
compressed checkpointing, respectively.

Calhoun et al. [2] proposed metrics to evaluate loss of accuracy caused by
using lossy compression to reduce the snapshot data used for checkpoint restart.
They improved efficiency in checkpoint restart for partial differential equation
(PDE) simulations by compressing the snapshot data, and found that this com-
pression did not affect overall accuracy in the simulation.

Wu et al. [25] proposed a method to simulate large quantum circuits using
lossy or/and lossless compression techniques adaptively. They managed to
increase the simulation size by 2–16 qubits. However, their method was designed
for CPU-based supercomputers and thus the compression libraries cannot be
used for GPU-based scenarios. Moreover, the adaptive selection between lossy
and lossless compression, i.e., using lossy compression if lossless one failed, is
impractical in GPU-based high performance applications because such failures
heavily impair the computational performance.

Jin et al. [7] proposed a method to use GPU-based lossy compression for
extreme-scale cosmological simulations. Their findings show that GPU-based
lossy compression can enable sufficient accuracy on post-analysis for cosmological
simulations and high compression and decompression throughputs.

Tian et al. [24] proposed Cusz, an efficient GPU-based error-bounded lossy
compression framework for scientific computing. This framework reported high
compression and decompression throughputs and a good compression ratio. How-
ever, according to their study, Cusz has sequential subprocedures, which prevents
us to use this framework as on-the-fly compression in our work due to the concern
of the overhead to shift from GPU to CPU computation.

Zhou et al. [26] designed high-performance MPI libraries with on-the-fly com-
pression for modern GPU clusters. In their work, they reduced the inter-node
communication time by compressing the messages transferred between nodes,
and the size of messages was up to 32 MB. On the other hand, our method
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Fig. 1. Five-point stencil computation. (a): Update of an element relies on its four
neighboring elements. (b): The decomposed blocks must be transferred with the halo
data.

Fig. 2. The contiguous blocks can share common regions on the GPU, thus avoid
transferring the amount of data equivalent to that of the halo areas.

compressed large datasets for stencil computation that were more than 10 GB
to reduce the data transfer time between the CPU and GPU (i.e., intra-node
communication time). Moreover, our method is specified to handle out-of-core
stencil code, solving the data dependency between decomposed data blocks.

3 Out-of-Core Stencil Computation

Stencil computation is an iterative computation that updates each element of
input datasets according to a fixed pattern that updates an element based on
the elements surrounding it. A hello-world application of stencil computation
is the solver of Laplace’s equation, which can describe the phenomenon of heat
conduction: A five-point stencil code, where the temperature of each data point
at the (t+1)-th time step is obtained by taking the average temperature of the
four surrounding points at the t-th time step (Fig. 1(a)).

To use out-of-core approaches that handle excess data, we decompose the
original datasets into smaller blocks and stream the blocks to and from the
GPU for processing. Due to data dependency of stencil computation, when we
transfer a block to the GPU, we must also piggyback the neighbor data (“halo
area”) with the block (Fig. 1(b)). The size of halo data we must transfer along
with the block increases in conformity with the number of time steps we want to
process the block on the GPU. As two contiguous blocks share common regions,
a block can get common regions from its former block as well as provide its later
block with common regions. By doing so, we can effectively reduce the amount
of data transfer equivalent to the size of halo data (Fig. 2).
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One challenge in integrating on-the-fly compression into the workflow of out-
of-core stencil computation is that we must solve the aforementioned data depen-
dency. Naively compressing each block not only consumes more memory space
but also prevents sharing of common regions across contiguous blocks. There-
fore, sophisticated compression strategy is necessary, and will be introduced in
Sect. 5.1.

4 On-the-Fly Compression

Another concern in leveraging on-the-fly compression in out-of-core stencil code
is the overheads of compression and decompression that are often considerable.
GPU-based compression libraries such as cuZFP [8], Cusz [24], and nvComp
[12] report high speeds in compression and decompression. The cuZFP and Cusz
libraries are based on lossy compression, whereas the nvComp is lossless.

In this study, we used cuZFP given that it is a library of high performance
with source code relatively easy to modify to implement functionalities we need.
The library allows users to specify the number of bits used to preserve a value.
For example, specifying 32 bits to preserve a double-precision floating-point (i.e.,
double-type) value achieves a compression ratio of 1/2.

We avoided using the lossless nvComp due to the concern of compression
ratio. In our preliminary experiments, we found the size of data compressed
with nvComp was larger than that of the original data. Therefore, we chose not
use nvComp in the present study because we could not estimate the upper bound
of the size of the compressed data, and we must allocate device memory every
time the compression happens instead of reusing pre-allocated device buffers
with fixed sizes. The reason why we avoided using Cusz was explained in Sect. 2.

5 Proposed Method

In this section, we introduce our proposed method, including separate com-
pression that solves the data dependency between contiguous blocks and thus
allows us to compress the decomposed datasets freely, and a pipelining version of
cuZFP that supports overlapping compression/decompression with CPU-GPU
data transfer.

5.1 Separate Compression

As shown in Fig. 2, two contiguous blocks have common regions that are share-
able. The bottom halo areas needed by the i-th block lie in the (i+ 1)-th block,
and the top halo areas needed by the (i+1)-th block lie in the i-th block. There-
fore, the common region between the two blocks consist of the top areas and a
part of the (i+1)-th block whose size is equivalent to that of the top halo areas.
If we transfer the i-th block together with its bottom halo areas, we can avoid
transferring the common regions for the (i + 1)-th block.
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Fig. 3. Separate compression approach to solve data dependency between contiguous
blocks. In this approach, the remainder and the common region are compressed sep-
arately for each block. As shown in (a), the i-th compressed remainder and common
region are decompressed on the GPU for computation; and in (b), after computation,
the remainder and common region are compressed and transferred back to CPU to
update the i-th remainder and (i− 1)-th common region, respectively.

Similarly, each block only needs to be transferred with its remainder and
bottom halo areas, so the two parts, i.e., the remainder and half of the common
region, must be exclusively readable and writable to the according contiguous
blocks. Based on this observation, we propose a separate compression approach
that compresses the two parts separately. As shown in Fig. 3(a), prior to compu-
tation, the i-th compressed remainder and the common region are decompressed,
therefore the i-th block can be computed on and provides the data needed by
the (i + 1)-th block. As shown in Fig. 2(b), after computation, the (i + 1)-th
block is compressed as the (i + 1)-th remainder and i-th common region.

5.2 Pipelining cuZFP

The cuZFP library [8] is mainly designed as a standalone tool that can be seam-
lessly used for post-analysis and CPU-centric scientific computations. However,
as an on-the-fly process in the out-of-core stencil computation, we have to modify
the source code to support pipelining that overlaps CPU-GPU data transfer with
GPU computations. Thanks to the good maintenance of the cuZFP project, we
managed to modify the source code to add such functionality with a reasonable
amount of programming effort. In pipelining cuZFP, we use three CUDA [11]
streams (Fig. 4).
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Fig. 4. Modified cuZFP that supports pipelining. Three CUDA streams are used to
perform operations, overlapping CPU-GPU data transfer with GPU kernels including
compression, decompression, and computation.

Table 1. Target stencil code.

No. of datasets Data type Dim. info. Entire data size

4 Double (1152+2×HALO)3, HALO= 4 46 GB

Table 2. Testbed for experiments.

GPU NVIDIA Tesla V100-PCIe

Device memory 32 GB

CPU Xeon Silver 4110

Host memory 500 GB

OS Ubuntu 16.04.6

CUDA 10.1

cuZFP 0.5.5

6 Experimental Results

In this section, we analyze the experimental results to evaluate the benefits of
using on-the-fly compression in out-of-core stencil computation on a GPU. The
stencil code we used is an acoustic wave propagator from a previous work [16].
The code is a 25-point stencil code that has two read-write datasets, a write-
only dataset, and a read-only dataset. The two read-write datasets store the
updated elements that need to be transferred to and from the GPU. The write-
only dataset stores intermediate results at run-time and does not need to be
transferred at all. The read-only dataset are constant values that must be refer-
enced at run-time and thus needs to be transferred to the GPU. The values are of
double-type because it is more preferable compared to single-precision floating-
point format (i.e. float-type) in iterative scientific applications. According to
a previous work [17], the CPU version of a code using float-type data leads to
outputs different from that of the GPU version. Such divergence becomes a more
severe problem with the increase of the total number of iterations. On the other
hand, when using double-type, results of the CPU and GPU versions of the same
code were consistent. Table 1 shows the detail of the datasets used by the stencil
code.
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Fig. 5. Performance of the four stencil codes.

Moreover, we used four codes in our experiments to evaluate the performance
and precision loss. The four codes include:

1. The original stencil code.
2. The stencil code with one read-write dataset compressed using a 32/64 rate

(i.e., using 32 bits to preserve each double value).
3. The stencil code with the read-only dataset compressed using a 32/64 rate.
4. The stencil code with one read-write dataset and the read-only dataset com-

pressed using a 24/64 rate. Note that we used 24 bits to preserve each double
value to reduce memory usage in conformity with the limited device memory
capacity.

The configuration to run the stencil codes is as the one described in [16] where
the number of division is 8 and the number of temporal blocking time steps is 12.
Accordingly, we divide the data into 8 blocks, and when a block is transferred
to the GPU, it will be computed on for 12 times before transferred back to
the CPU. For the total time steps, we used numbers from 480 to 4,320 with an
increment of 480. For specifications of the testbed for all experiments performed,
see Table 2.

6.1 Evaluation of Performance Benefits

As shown in Fig. 5, the three codes using on-the-fly compression ran faster than
the original code. The code compressing one of the read-write datasets and the
read-only dataset outperformed the others, running 1.20× as fast as the original
code. The code compressing the read-only dataset and the code compressing one
of the read-write datasets achieved speedups of 1.18× and 1.16×, respectively.
Based on these results, our proposed method is beneficial for GPU-based out-
of-core stencil computation in terms of performance. A detailed analysis of the
achieved performance improvement will be given in next section.
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Fig. 6. Breakdown of the execution time of the four GPU-based codes that ran for
12 time steps. The execution time of a CPU-based code was measured to show the
performance benefits of using GPU acceleration. Note that the bounding operation
time for the fourth GPU-based code was GPU computation time (bars in the middle),
whereas the bounding operation time for the other three GPU-based codes was CPU-
to-GPU data transfer time (dark green bars). (Color figure online)

6.2 Detailed Analysis of Achieved Performance Improvement

In this experiment, we ran the four GPU-based codes individually for 12 time
steps and profiled the breakdown of execution time. Moreover, we also ran a
CPU-based code for 12 time steps to show the advanced performance of GPU-
based code, compared to that of the CPU-based code. The CPU-based code was
parallelized with OpenMP [14] and executed with 40 CPU threads. As shown in
Fig. 6, we can see the three codes using compression reduced the CPU-to-GPU
time (dark green bars) that limited the overall performance. The most interesting
finding is that the fourth GPU-based code shifted from data-transfer-bounding
to computation-bounding compared to the former three GPU-based codes, which
is favorable because it theoretically means that the data transfer time can be
fully hidden by the computation time.

Moreover, although the code compressing the read-only dataset did not
reduce the GPU-to-CPU data transfer time, nor did it involve relatively sig-
nificant compression time (dark purple). Therefore, the code compressing the
read-only dataset slightly outperformed the code compressing one of the read-
write datasets. Nevertheless, the gaps between the overall execution time and
the bounding operation time (i.e., longest bar) of the three codes with compres-
sion are larger than that of the original GPU-based code. This suggests that the
compression or/and decompression involved some unidentified overheads that
compromised the efficiency of overlapping data transfer with GPU computa-
tion, otherwise the overall execution time should have been closer to the bound-
ing operation time. Therefore, more sophisticated measures to orchestrate the
pipelining could achieve further improvement, providing a direction for future
work.
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Fig. 7. Change in precision loss as total time steps increase.

6.3 Evaluation of Precision Loss

Besides showing performance benefits, demonstrating that the compression
involves no significant precision loss is crucial. After completing the total time
steps, we sampled 115,200 points (i.e., 100 points per plane) and compared the
point values of the three codes using compression with that of the original code
to calculate the average point-wise relative errors (Fig. 7). Although the relative
errors increased with an increase in the total time steps, they were still far from
significant at 4,320 time steps. The code compressing the read-only dataset had
the lowest precision loss because the read-only dataset does not need to be com-
pressed repeatedly. The code compressing one of the read-write datasets and
the read-only dataset using 24/64 rate resulted in the largest precision loss due
to the fewer bits we used to preserve the double values. Nevertheless, the code
is useful because the relative error was trivial (between 10−6 and 10−7). Given
this, the proposed method will not lead to intolerable precision loss at least for
a moderate number of time steps.

7 Conclusions and Future Work

In this study, we introduced a method to accelerate GPU-based out-of-core sten-
cil computation with on-the-fly compression. To realize the method, we proposed
a novel approach to compress the decomposed data, solving the data dependency
between contiguous blocks. We also modified the cuZFP library [8] to support
pipelining for overlapping data transfer with GPU computation. Experimental
results show that the proposed method achieved a speedup of 1.2× at the expense
of a trivial precision loss, i.e., an average point-wise relative error between 10−6

and 10−7. The results answer the two research questions mentioned in Sect. 1.
First, the reduction of CPU-GPU data transfer time achieved by using on-the-fly
compression outweighs the overhead of compression/decompression, improving
the overall performance of GPU-based out-of-core stencil computation. Secondly,
the on-the-fly compression does not cause severe precision loss for thousands of
time steps. Future work includes (1) comparing other on-the-fly compression
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algorithms to cuZFP and (2) orchestrating the pipelining for better efficiency in
overlapping data transfer with GPU computation.
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Abstract. Multiple-radio multiple-channel wireless mesh networks (MRMC
WMNs) are fitting as the wireless backbone networks for ubiquitous Internet
access. It is quite a challenge to satisfy the multiple traffic requests from multiple
source-destination pairs with different data transmission requirements. The mul-
tiple pair traffic flows may cause heavy conflict via the nature of wireless media.
To take almost full use of the limited resources, we design a routing algorithm
based on ant colony optimization. The pheromone leads the finding of primary
paths. The various simulations show the efficiency of the algorithm performance.

Keywords: Routing · Ant colony optimization · Wireless mesh networks · Link
interference

1 Introduction

Multi-radio multi-channel wireless mesh networks (MRMC WMNs) have become a
promising solution to provide convenient and ubiquitous broadband access to the Inter-
net, while aiming to provide ubiquitous information services [1]. WMNs can offer high
levels of service and wide coverage, while the deployment takes relatively inexpensive
costs [2].

Different from the traditional wireless network, WMNs is a dynamic self-organizing
and self-configuring network [3]. In other words, each node of a mesh network automat-
ically creates and maintain the network connection. The special features of WMNs also
present as high reliability and easy access to Internet for mobile devices. Compared with
traditional wireless network, MRMC WMNs provide higher capacity, but ant colony
method is rarely used in discussing multiple flow problem in MRMCWMNs.

It is common traffic mode for multiple users to transmit data at the same time. It is
a challenge to satisfy multiple traffic flows from different source-destination pairs. We
will try use ant colony to find nearly optimal routing and scheduling scheme for those
simultaneous traffic flows.

The interference is a nature character for wireless links, while interference will
decrease the performance significantly. Near neighbor nodes and links share the same
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channel will cause heavy interference. As interference will decrease the network per-
formance and waste the wireless network resources. Thus, interference free channel
assignment is also critical [4]. To get rid of the interference, we need design efficient
routing and channel assignment scheme for every real applications. If we can use ant
colony to find an effective scheme automatically, it will make sense to deploy various
MRMC WMNs.

For full usage of the limited network resources, to reduce link interference is a key
issue to improve network performance. The optimal multiple concurrent traffic flows is
a challenge problem from multi-pair requests, which is the common phenomenon of the
data stream and transmission requests [5]. Each data flow should have a path to forward
data packets hop by hop. An uncooperative scheduling of multiple flows may result in
unbalanced load, even serious interference. A simple fact is the transmission task not
completed in time [6].

The shortest path routing, which simply based on hop count, cannot achieve better
network performance [7]. Hence, we need consider some critical factors, such as the
topology, the radio interfaces, and the channels, etc. Although ant colony algorithms
were explored for sensor network, even forAdHoc, there are still few related conclusions
that meet the multiple flow problem of MRMC WMNs.

The main contribution of this paper is to propose an optimization routing algorithm
based on ant colony, which aims at effective use of network resources and improve
transmission performance. In order to find more multiple pair active paths by more
interference free links over independent orthogonal channels, pheromone based algo-
rithm is used to create optimal routing inWMNs. Through the regulation of pheromone,
we connect the characteristics of MRMC WMNs to produce a better scheme, toward
concurrent transmission and channel interference free.

The rest of the paper is as following. Section 2 gives a survey of related work.
Section 3 designs a routing algorithm. Section 4 evaluates the performance of our
algorithm. Section 5 is a short conclusion.

2 Related Work

In WMNs, routing the multiple flows is quite complex because more constraints have to
be considered for optimization, scheduling, routing, channel allocation, and interference
avoidance. For the combinatorial problem, even only one aspect involving, it is hard to
get an exact optimal solution. For example, if we schedule the multiple paths, we first
need give the channel assignment for real-time data flows. However, the CA problem
is NP-complete, because it can be reduced to the 3-partition problem [8]. The problem
to perform routing to achieve maximum utilization of network resources is also NP-
complete.

Various solutions from different angles have been proposed. For example, a dis-
tributed multi-flow opportunistic routing algorithm combining candidate node selection
and rate allocation is proposed by He et al. [9]. Chu et al. reported a distributed algo-
rithm to minimize the maximum channel congestion and solve the routing problem of
multiple concurrent flows based on MIMO [10]. They focused on the traffic load, but
other factors were not involved.
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Qiao et al. propose a loose joint cooperative routing and channel allocation algorithm
to promote network throughput effectively [11]. Bezzina et al. propose an interference
aware routing metric, which considers intra flow and inter flow as well as link rate [12].
Yan et al. propose a cross layer joint channel allocation and routing algorithm, which
greedily selects the channel with the least link interference in the channel allocation
phase [13]. However, there are rare discussion on multiple concurrent flows.

For ant colony algorithm, there are a lot research on sensor networks and other simple
cases of the radio and the channel. For example, an energy consumption optimization
algorithm based on ant colony algorithm is proposed for wireless sensor network by Li
[14]. These conclusions of wireless sensor network is not suitable to ourMRMCWMNs.
Most of researches do not consider multi-channel, multi-radio and link interference.
Even though Amudhavel et al. introduce a recursive scheme of ant colony optimization
in the WMNs [15], while they subdivide the large routing problem into smaller ones
and achieved some results, their algorithm does not make good use of the advantages of
MRMC.

Few reported algorithms aremeeting themultiple concurrent flowproblem.Those ant
colony algorithms for sensor networks have no attention on link interference avoidance.
In addition, most of the similar research pay attention on the deployed network, while
our algorithm can play a role in the precomputing for the network deployment.

As above, multiple pair concurrent paths problem inMRMCWMNs is a challenging
and not thoroughly studied one. In the aspect of routing, most of the existing solutions to
the concurrency problem need to use all the information of the network, like topology,
the radio interfaces and the available channels, which should be collected in advance.

In this paper, we tackle the optimal problem to maximize the utilization of wireless
network resources. Inspired by the beneficial studies, we propose a routing algorithm
based on ant colony optimization by using resources efficiently, in order to improve the
network performance.

3 Routing Algorithm

The Cartesian Product of Graph (CPG) model is useful to reduce the CA complexity
for the path selection criteria under the condition of multiple concurrent flows [16]. It
divides the network topology into different virtual layers according to the number of
channels like Fig. 1. When one link of a neighbor pair is working over a certain channel
layer, its other links over other layers can also work concurrently. It can intuitively help
us deal with channel conflicts. To facilitate a rigorous formulation of the problem, we
provide some symbols for both the model and the algorithm in Table 1.

For routing the multiple pair traffic, we need to combine channel allocation and
scheduling. For each request, routing algorithm should search a path from the source
node to the destination node. To facilitate expression, it can be represented by a sequential
node sequence. Our routing algorithm will take the channel allocation information and
resource information into account in the process of routing, so that the subsequent
channel allocation and scheduling can take full usage of the limited resources. If we
split the routing, channel allocation and scheduling with each alone, it is hard to reach
the optimal scheme.



18 J. Peng et al.

Table 1. List of the notations

Notations The symbolic meaning

(si , di) The ith source-destination node pair

l(i,j) The potential link of neighbor i and j

Pkij The probability of the k th ant passing l(i,j)

Ak The node set that the k th ant can reach

τij(t) The pheromones in l(i,j) at iteration t

ηij(t) The influence factor in l(i,j) at iteration t

ρ The residue coefficient of pheromone

C The available channel set

R The available radio interfaces

|C| The number of available channels

|R| The number of available interfaces

m The number of ants for each (si , di)

According to the number of orthogonal channels, the CPG model maps the MRMC
mesh into the virtual channel layers [17]. Each channel layer has the same topology, as
shown in Fig. 1. A link can only transmit over one available channel. Multiple links can
coexist to forward packets if and only if those links meet the following link interference
free conditions. For the senders, any two different sender’s distance is not less than two
hops. For the receivers, any two different receiver’s distance is not less than one hop.
For a sender and a receiver, the distance is more than one hop. The colored links can
coexist in each channel as in Fig. 1.

Fig. 1. A mesh. (Color figure online)

For the problem ofmultiple concurrent traffic flows, it is not suitable to consider only
the shortest path [18]. Because of interference and resource allocation, only considering
the shortest path can easily lead to overload, which makes the network performance
worse. Our algorithm does not simply find the shortest path. We will illustrate this
problem with a simple example based on Fig. 1, shown in Fig. 2.
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We layer the topology by the number of channels, and each layer represents the usage
of the channel. For example, this simple topology has three orthogonal channels c1 c2
and c3, so we divide it into three layers. When a link is working in a certain layer, other
links near it become unusable. We can calculate which links will conflict according to
the previously mentioned interference conditions.

Suppose a traffic request of node pair (1,9) gets the turn to transmit. Let denote the
potential link along a path from node i to node j as l(i,j). Figure 2(a) shows one of the
shortest paths, which contains three potential links, l(1,6), l(6,7) and l(7,9). The links can
be scheduled simultaneously over the channel of c1, c2 and c3 respectively. If only one
path, this choice is fine. However, for multiple pair requests, as we need to deal with
many concurrent requests, it may cause serious interference.

For example, if l(7,3) is working over channel c1, it interferes with l(1,6) in Fig. 2(a).
We may need to consider choosing another path to avoid congestion. In that case, the
path in Fig. 2(b) may reduce conflicts and get better performance. This path consists of
three links of l(1,6), l(6,7) and l(7,9), over the channels c1,c2 and c3. Sometimes the ant
chooses longer new path, while the path may lead to better performance.

Fig. 2. Paths for source-destination pair of (1,9). (Color figure online)

The better performance path should be the choice via pheromone in ant colony
algorithm, in order to improve the network performance. Ant colony optimization is
an algorithm that mimics the real ant colony behavior. When searching for food, ants
will leave pheromones on the path and other ants will choose the path according to the
pheromone concentrations. As the pheromones evaporate over time, the pheromones
get rapidly accumulated in the shorter paths. After repeated times, a shortest path will
be found. When there are multiple paths, ants spread into these directions at an equal
chance in the beginning. After some iterations, due to the accumulation of pheromones,
ants tend to choose the shorter path.

As the simple shortest path cannot avoid the conflicts, our algorithm focuses on
designing the pheromones. The pheromone in our algorithm will also evaporate over
time, but it will accumulate in the links with surplus resources. When there are multiple
paths, ants also spread in these directions with the same opportunity at the beginning.
Later, due to the accumulation of pheromones, ants tend to choose a more optimized
path rather than the shortest path. The formula of pheromone is defined as (3) in detail.
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Our algorithm is executed in a host to find the routing scheme for a given multiple
pairs of (si, di), i = 1, 2, . . . , k . The paths are found on demand for the first time. It will
be a proactive solution for the future if the perspective multiple pairs emerge again. Our
ant colony optimization algorithm steps are as follow:

1. Each link in the network topology is given the same initial pheromone value, in order
to reduce the impact caused by ants at the beginning of the algorithm.

2. One source node generates m ants, which explore the path from the source node.
3. Each ant selects the next hop node according to the transfer formula until it reaches

the destination node or exceeds the maximum hop count.
4. When all m ants complete a path search from the source point to the destination

node, the pheromone values will be updated.
5. Checkwhether the iteration is finished. If the paths converge, the iteration is finished.

Then, we get an available path. Otherwise, repeat steps 2 to 5.
6. Repeating the above steps to select paths for each request.

Algorithm 1. ACO routing algorithm
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The above contents are the steps of the algorithm and the pseudo code of our algo-
rithm. Some contents need to be described in more detail. In step 1, we set an initial
pheromone value. This value needs to be set according to the size of the topology. A
suitable initial value can make the algorithm converge faster. The initial value of the
64-node topology shown in Fig. 3 used in this paper is set to 20.

The number of ants m used in each iteration, which is mentioned in step 2, is set
according to the shortest-hop path between the pair. In this paper, we use 5 times of the
shortest hops.

When an ant selects a link, the algorithm will modify the resource data of the related
nodes, which will affect the selection of another ant serving other pairs. When an ant
is in the intermediate node, its next hop is determined by transfer formula, so it is an
important part of our algorithm.

The state transfer formula determines the rules that ant colony should follow, while
moving from the current state to the next. The rationality of the parameters will affect
the quality of paths selection. The formula of the transition probability Pk

ij is as follow:

Pk
ij =

{
τij(t)∗ηij(t)∑
s∈Ak τij(t)∗ηij(t)

, j ∈ Ak

0, otherwise
(1)

Where τij(t) is defined as the value of pheromones on link l(i,j) at iteration t. Ak is the
node set which k th ant can reach with one hop on node i. The formula of the transition
in the routing algorithm is used as the basis for ants to select the next hop node. For a
possible node that the ant may reach in the next hop, the probability will be computed
through the formula. We normalize the formula so that the sum of the probability of ants
selecting the next hop node is 1. Then, we describe each parameter in (1).

ηij(t) = 1

|C| ∗ |R| + 1
(2)

ηij(t) is the value of resource surplus for l(i,j). It is calculated from the number of
available channels and the number of available interfaces. After an ant completes its
path, the pheromone of the path is updated. According to the ant colony algorithm, the
pheromone on the link is defined as (3):

τij(t + 1) = τij(t) ∗ (1 − ρ) + �τij, 0 < ρ < 1 (3)

Where ρ denotes the residue coefficient of pheromone and t represents the number
of iterations. In the simulation, ρ is set to 0.2, that is, 20% of the pheromone will be
dispersed each time the pheromone is updated. �τ ij is the sum of pheromones released
by all ants walking through the l(i,j). We define the increment of pheromone by (4):

�τij =
∑m

k=1
�τ kij (4)

Where �τ kij denotes pheromone released by kth ant on l(i,j).Our algorithm is optimized
based on ant colony algorithm and applied to wireless mesh network, aiming at maxi-
mizing the utilization of network resources and reducing the link interference between
paths under multiple concurrent requests. For the problem of multiple concurrent paths,
the algorithm can give a path scheme without the global information collected.



22 J. Peng et al.

Fig. 3. Mesh topology

4 Performance Evaluation

The simulations are carried out under various network resource combinations and traf-
fic requests. We evaluate the performance of our ACO algorithm based on maximum
throughput. Therefore, we choose Dijkstra algorithm (DA) and joint optimal scheduling
scheme (COSS) for comparison.

The parameters and values are listed in following. The resource combinations are
virtually deployed with the numbers of available interfaces as one in {4,8,12,16,20},
and the number of interference free channels as one in {8,16,32}. Time duration is set
to be 5ms, packet size is set to be 1MB, and each link capacity is set to be 200 MB/s. In
general, the computing time depends on both the topology and the number of pairs. The
topology has two aspects: the size, and the special local distribution. On the topology in
the paper, a convergence solution takes after about 200 iterations.

To evaluate the performance of our algorithm, we conduct the simulation with a
random mesh topology of 64-node, as showed in Fig. 3.

The tendency of maximum throughput with different combinations of radios and
channels. By changing the number of radios and channels, we analyze the performance
of ACO as Fig. 4.

In Fig. 4, when |C| = 8, the maximum throughput of the network does not increase
significantly with the increase number of radios, which indicate that the dominant factor
limiting the maximum throughput of the network in this example is the number of
channels. When |C|=16, the maximum throughput of the network increases rapidly with
the increase number of radios. This shows that the dominant factor limiting themaximum
throughput of the network is the number of radios.When the number of radios is enough,
the dominant factor limiting the maximum throughput of the network becomes the
number of channels. When |C| = 32, the maximum throughput of the network increase
with the increase number of radios. The number of available channels is sufficient and the
maximum throughput of the network is no longer significantly improved by it. Through
Fig. 4, we can find that our algorithm can make full use of network resources. As long
as there are still available resources, the performance of our algorithm can be improved
steadily.
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Fig. 4. The maximum throughputs for the combinations of the number of radios and that of
channels

Network resource combinations are set as |C| = 8�|R| = 8, |C| = 16�|R| =
12, |C| = 32�|R| = 16, to evaluate the ACO algorithm for various traffic requests.
When the number of source-destination pairs varies from 20 to 200, the maximum
throughput improves slowly for one resource combination. However, it has significant
jumps compared to the lower resource deployment, as in Fig. 5.

The more the source-destination pairs, the bigger of maximum throughput. Mean-
while, the increasing tendency is greater with the more plenty resources. It is easy to
reason this fact, because the more network resource available means the more network
capacity can be accessed. Hence, more compatible paths can be scheduled over the
WMNs in a time slot.

At the same time, the maximum throughput of the network tends to a stable value,
this is because the number of source-destination pairs has exceeded the network capacity
and the number of compatible paths in the same time slot has reached the peak, so the
maximum throughput of the network is no longer significantly improved.
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Given different network resource combinations, Fig. 6 shows that the maximum
throughput of ACO algorithm is better than that of DA. With the increase of traffic
requests, our algorithm gradually exceeds COSS. Our algorithm can surpass the existing
algorithms without the need for global network information. This scheme can save a lot
of resources, because our algorithm is blind search one.

To evaluate the efficiency of ACO, we conduct comparison with DA and COSS on
maximum throughput. As a single source shortest path algorithm, DA does not consider
the available resource and mesh property, and it will lead to the overload of some nodes.
COSS is a combinatorial optimization algorithm. It uses heuristic methods to find many
compatible paths to realize the combinatorial optimization of compatible paths. When
there are a large number of traffic requests, DA will bring local overload and reduce
performance. The performance of COSS is also worse than ours in this case.

Moreover, with the increasing of network resource, the throughput performance of
ACO algorithm is getting better. In the routing stage, path selection criteria of ACO
algorithm can intelligently select the path of the maximum available resources under
the current network status, meanwhile, it may effectively reduce the overlaps between
multiple paths. With the resource intelligence, ACO realizes the node load balancing
and improve the network performance.

In order to achieve the multi-path simultaneous optimization, we proposed an ACO
algorithm for wireless mesh networks in which each path is avoiding interference. It
can improve the performance of this network and balance the load of nodes and chan-
nels. Simulation results show that the ACO algorithm can achieve better performance
under different network resource combinations and various traffic requests. Through the
throughput performance comparison, we can see that it is slightly better than DA and
COSS algorithm in the case of fewer conditions and resources.

0

2000

4000

6000

8000

0  4 0 8 0 1 2 0 1 6 0 2 0 0

th
ro

ug
hp

ut
 (M

B
/s

)

number of source-destination pairs

ACO DA COSS

Fig. 6. Maximum throughput comparison

5 Conclusion

This work mainly focuses on the routing in WMNs and evaluates the performance
by simulations. Paths are built upon the pheromone. The routing algorithm is based
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on ant colony optimization. The performance of the algorithm is verified via various
simulations, which show the algorithm efficiency.

In the research of routing algorithm optimization, we found that there are still some
points to tackle in future, such as how to use the solutions for those already known
traffic mode. We want to achieve the continuous optimization of the path scheme. After
obtaining the corresponding path scheme through the algorithm, we carry out the exper-
imental calculation. If we find that the effect is not good, we need to adjust the path
selection again. It would be better to get assistant of the last ant colony optimization,
and to support the new optimization. We may introduce localized scheme to improve in
a distributed way.
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Abstract. The rapid development of network services not only expands
the scale of Internet traffic, but also diversifies the types of traffic. In
this work, we design a light-weight compromise scheme to meet the
management requirements of large-scale and business sensitive scenarios.
The proposed scheme regards the mixed traffic as a whole and directly
analyzes the component structure for it. It converts the structural and
attribute features into a traffic profile by encoding, embedding and map-
ping. Then the traffic profile is used to infer the component structure
based on CNN. The proposed scheme has no need to perform flow-by-
flow classification, it is not limited to the “quantity” balance of traffic,
but also considers the types of traffic in each link. Based on the exper-
iments with actual dataset, the results show that the proposed scheme
can infer component structure for mixed traffic quickly and accurately.

Keywords: Component structure · Proportion analysis · Traffic profile

1 Background

The rapid development of network services has brought huge network traffic
with different requirements to the Internet, which results in new challenges to
the network. First, new devices and services bring massive traffic, which needs
to be transmitted through the Internet. Second, the increase of service types and
the access of heterogeneous devices lead to the complexity of network traffic. The
“best effort” service provided by traditional TCP/IP can not meet the diversified
and customized requirements of different business flows [1].

Existing work on this area mainly includes two major categories: improving
resource utilization [6] and guaranteeing end-to-end QoS [2]. These two kinds
of schemes have their own advantages and disadvantages. The schemes focus-
ing on the resource management can achieve balanced load distribution at the
resource level and improve the utilization of resources. However, they treat each
kind of traffic equally and can only achieve load balance from the perspective of
“quantity”, without considering the needs of different traffic at the business level,
which results the difficulty of guaranteeing the service quality. The schemes that
are designed for end-to-end QoS guarantee distinguishes service types through
c© Springer Nature Switzerland AG 2022
H. Shen et al. (Eds.): PDCAT 2021, LNCS 13148, pp. 27–35, 2022.
https://doi.org/10.1007/978-3-030-96772-7_3
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traffic classification method, and meets resource requirements of different service.
However, these schemes need to perform flow-by-flow identification. In large-scale
traffic scenarios, the performance is affected by the scale of the flow, leading to
huge computational overhead. In general, both the traditional resource manage-
ment and end-to-end QoS guarantee are not suitable for large-scale, business
sensitive network scenarios.

To meet these challenges, we propose a light-weight component structure
analysis scheme for large-scale, business sensitive scenarios. The scheme regards
the mixed traffic as a whole, and uses the attribute and structure features of
the mixed traffic to analyze the component structure, that is, the proportion of
various service. The main contributions of this work include two aspects:

(1) Compared with QoS guarantee scheme, there is no need to identify the flows
one by one so that it can avoid huge and meaningless overhead.

(2) Compared with resource management scheme based on “quantity”, our
scheme can realize load balancing in “quantity” and meet the link traffic
composition ratio at the business level of different scenarios, which is more
flexible.

2 Methodology

2.1 Overview

In order to formally define the problem, we use u ⊆ {1, 2, ..., U} to represent the
type of network traffic, and its proportion is calculated as follows:

Pu =
Nu

N
(1)

where Pu defines the ratio of Nu to N , Nu the number of five-tuple flow with
type u and N represents the number of all the five-tuple flows in the mixed
network traffic. In addition, the proportion of the rest of the network traffic is
represented as PU+1. Network traffic component structure analysis is to identify
the proportion of each type of traffic [P1, P2, ..., PU , PU+1] in the mixed traffic.

As shown in Fig. 1, the proposed scheme to solve component structure anal-
ysis problem consists of three modules: Preprocessing, Traffic analysis and Pro-
portion analysis, which are described in detail below.

2.2 Preprocessing

The Preprocessing module is responsible for extracting information from mixed
traffic and representing it in the traffic topology.

Traffic capture tool is deployed on the network link and collect IPs and
communication relationship which are stored in the IP set SIP and relationship
set S〈IP,IP′〉 respectively. Then, for each IP in SIP, we extract its eigenvector �fIP

and store them in the communication IP eigenvector set S�fIP
=

{
�fIP | IP ∈ SIP

}
.
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Fig. 1. Architecture

The information extracted from the original traffic sample is represented in
the traffic topology G = (V,E, F ), where V represents the node set of G and
each node v in V represents each IP in SIP; F represents the node’s eigenvector
set and each item �fv ∈ F corresponds to the �fIP ∈ S�fIP

which IP maps to the
node v; E represents the edge set of G, for every IP pair 〈IPi, IPj〉 ∈ S〈IP,IP′〉,
there exists a edge evi,vj

between node vi and vj .

2.3 Traffic Analysis

Obviously, the specifications of traffic topology generated by different traffic sam-
ples are different, so it is difficult to use a unified model for analysis. Therefore,
the design idea of the Traffic analysis module is to map the information in the
irregular traffic topology to a regular traffic profile, and then a unified model
can be used to analyze the component structure of the traffic profile.

Node encoding sub-module encodes all nodes according to its attribution
which maps nodes in different traffic topology to the same coding space and
divides the nodes into limited types, so that the traffic topology can be regarded
as constructed by finite types of nodes. In our scheme, we use the degree of
the node itself and its first-order neighbor to encode the node. Each node vi

is encoded as a two-tuple Cvi
=

(
Deg(vi),

∑vj∈Nvi
vj

Deg(vj)

|Nvi
|

)
, where Nvi

repre-

sents the first-order neighbor nodes. It should be emphasized that the encoding
attribution is not unique. Only the following two requirements need to be met:

(1) The value of this attribute is rich enough to divide the nodes into enough
categories to facilitate the subsequent construction of traffic profiles.

(2) This attribute is distinguishable enough to effectively realize node classifi-
cation.

Various connection modes of nodes lead to different structural characteristics
of traffic topology. Node embedding technology is used to learn the node context
relationship in the traffic topology and the procedure is shown as Algorithm 1.
For all samples G

′, R round random walkings are performed in each traffic
topology to generate sequence. The sequence set sequences is used to train the
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Algorithm 1.CODE2VEC(G′, δ)
Input:

G
′ = {G′

1, G
′
2, ..., G

′
n}: encoded traffic topology set

δ : dimension of embedding
Output:

Φ : map for node’s code to node’s embedding, and Φ(Cvi) ∈ R
δ

1: initialize sequences = {}
2: for G′

i ∈ G
′ do

3: for r = 1 → R do
4: for vj ∈ Vi do
5: sequence = randomWalk(G′

i, vj , L)
6: sequences.add(sequence)
7: end for
8: end for
9: end for

10: Φ ← word2vec(sentences)
11: return Φ

Fig. 2. Building traffic profile, where N f is 3 and δ is 2

word2vec model, which is used to get node’s embedding here. Then the map Φ
for node’s code to node’s embedding is outputted, where �HCvi

= Φ(Cvi
) ∈ R

δ.
For each encoded traffic topology G′, each node vi in V can get its node’s

embedding through Φ. And the encoded traffic topology can be updated to
embedded traffic topology G′′ = (V,E, F,C,H), where H = { �Hvi

| 1 ≤ i ≤ |V |}
and each node’s embedding �Hvi

∈ R
1×δ.

After completing the node embedding, we use the proposed method of build-
ing traffic profile to transform the irregular traffic topology into regular traffic
profile. It includes two steps: Node mapping and pixel assignment.

Node mapping is to map each node vi in the node set V to the δ-dimensional
space formed by the δ-dimensional embedding. For each node vi in the traffic
topology, the node’s embedding �Hvi

is regarded as the coordinate in the δ-
dimensional traffic profile, and the node is mapped to the corresponding pixel
of the traffic profile according to the coordinate. If the embedding of two nodes
�Hvi

, �Hvj
are the same, the two nodes vi,vj will be mapped to the same pixel.
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The pixel assignment operation is to assign each channel of the pixel after
mapping the node vi to the corresponding pixel. Firstly, the N f channel values
of each pixel in the traffic profile are initialized to 0. where N f is the same as
the dimension of the node’s eigenvector |�fvi

|. Then, for the target pixel to be
mapped, the values of its N f channels are set to the eigenvector �fvi

of the node
vi mapped to the pixel. If multiple nodes are mapped to the same pixel, the
value of the pixel is assigned to the mean value of the eigenvectors of all the
nodes, and for the pixels that are not mapped to, the default value is kept.

Figure 2 shows how to build a traffic profile when δ = 2 and N f = 3. In the
same way, when the value of δ is greater than 2, the δ-dimensional traffic profile
can also be built according to the method described above. The structure infor-
mation of the original traffic topology will be expressed in the pixel coordinates,
and the attribute information will be expressed in the value of the pixels.

2.4 Proportion Analysis

The Proportion analysis module analyzes the inputted multi-dimensional traffic
profile, and obtains the proportion results. The information of traffic profile
is contained in the arrangement and value of pixels, which is similar to images.
Therefore, we use the multi-dimensional CNN that is often used in image analysis
tasks to extract features in the traffic profile. Finally, these features are used to
predict the proportion of the original traffic sample.

For the convolutional layer in δ-dimensional CNN, the convolution kernel’s
size is defined as Sk

1 × Sk
2 × ... × Sk

δ , and the convolution operation is defined as:

yp
j1∼jδ

= bp +
c=N f∑
c=1

Sk
1∑

s1=1

Sk
2∑

s2=1

...

Sk
δ∑

sδ=1

W pc
s1∼sδ

xc
(j1+s1−1)(j2+s2−1)...(jδ+sδ−1) (2)

where yp
j1∼jδ

is the output value of the pixel with the coordinate (j1, j2, ..., jδ)
of the p-th output feature map; bp is the bias corresponding to the p-th output
feature map; c represents a channel of the input feature map. For the input
traffic profile, there are N f channels; Sk

1 × Sk
2 × ... × Sk

δ is convolutional kernel
size; W pc

s1∼sδ
is the weight corresponding to the position (s1, s2, .., sδ) of the

convolution kernel corresponding to the p-th output feature map and the c-
th input channel. xc

(j1+s1−1)(j2+s2−1)...(jδ+sδ−1) is the value of the pixel’s c-th
channel which locate in the position (j1 + s1 − 1, j2 + s2 − 1, ..., jδ + sδ − 1).

For the pooling layer of δ-dimensional CNN, the pooling window’s size is
defined as Sp

1 × Sp
2 × ... × Sp

δ . Maximum pooling is to find the maximum value
in the window, and average pooling is to calculate the average of all pixel values
in the pooling window.

U+1∑
u=1

P̂u = 1 (3)

Since our prediction goal is a multi-dimensional proportion vector and the
vector satisfies the constraint of sum 1, we add a fully connected network with



32 Z. Wu et al.

Fig. 3. proportion analysis model architecture

softmax as the activation function to analyze the features extracted by CNN
and make the output proportion result P̂1, P̂2, ..., P̂U , P̂U+1 meet the constraint.

3 Evaluation

3.1 Data Set

To demonstrate the performance of our scheme, We construct a mixed traffic
data set containing three types of traffic(web, P2P, and live), including a total
of 2000 samples with proportion label. Each sample contains traffic data for
30 seconds through the collection point. Among them, 1600 traffic samples are
divided into training sets, and the rest are divided into test sets.

3.2 Experiment Setting

For feature extracting, we first collect the communication IP and communication
relationship in the sample, and extract the following features for each IP: Aver-
age/Variance of traffics that the IP communicates with other IPs; Number of
different destination ports for the IP’s communication; Number of source ports
used for the IP’s communication; Ratio of the number of destination IP and the
number of destination ports for the IP’s communication.

For scheme setting, the embedding dimension is set as 3 and the profile size
is set as 32 × 32 × 32 × 5. The proportion analysis model is shown as Fig. 3.
Since the proportion analysis model is a regression model, we choose RMSE as
the loss function and Adam as optimizer with learning rate 0.0001.

For model evaluation, it mainly includes accuracy evaluation and real-time
evaluation. We firstly define an accuracy metric SOMP to measure the error
between the predicted proportions and the ground truth:

SOMP =
U+1∑
u=1

min(P̂u, Pu) (4)

where SOMP means sum of maximal proportion and U is the number of types
of traffic. Moreover, the mean number of SOMP SOMP and standard deviation
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Table 1. Experiment result

SSOMP SOMP TP(s) STP TA(s) STA T (s) ST

FS-Net[4] 99.7% 0.003 1.225 1.065 0.870 0.521 2.095 1.195

TRF+C4.5[3] 89.1% 0.102 2.429 1.429 1.879 0.867 2.472 1.441

CNN+LSTM[5] 87.3% 0.114 1.741 1.155 3.600 1.504 5.341 2.367

Traffics2Profile 94.9% 0.043 1.056 0.652 0.007 0.001 1.063 0.652

(a) Profile size discussion (b) discussion

Fig. 4. Parameter discussion experiment result

SSOMP are used to measure global error among the training set. For measuring
time performance, we separately calculate the traffic processing time TP and
the proportion analysis time TA. Among them, the traffic processing time is
the time to obtain the traffic profile from the original traffic sample, and the
proportion analysis time is the time to predict the traffic proportion based on the
traffic profile. Same as accuracy evaluation, we use mean number and standard
deviation of process time and analysis time to measure global time performance.

3.3 Experiment

We compare with three traffic classification methods and show results in Table 1.
According to Table 1, we can obtain two conclusions about accuracy and time
performance evaluation. Firstly, for accuracy evaluation, FS-Net achieve highest
average SOMP value of 99.7% and its performance is very stable. FS-Net is a
SOTA method in traffic classification field, and it realizes proportion prediction
through one-by-one classification. Therefore, it is very reasonable for such fine-
grained method to achieve higher accuracy. The average accuracy of our coarse-
grained method Traffics2Profile has also reached 94.9%. Although the accuracy
and stability are not as good as those traffic classification methods, the accuracy
can meet most of the coarse-grained network management scenes. Secondly, for
time performance evaluation, Traffics2Profile outperforms all the other methods.
Among them, the traffic processing time slightly exceeds other methods, because
no matter which method needs to extract features from the original traffic, how
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to extract features efficiently is not the focus of this article. As for the proportion
analysis time, our method greatly exceeds other traffic classification methods due
to its overall analysis which meets our expectations.

Profile’s size may have an impact on the prediction effectiveness, we set pro-
file’s size to 16, 20, 24, 28, 32 and 36 to explore its impact. According to exper-
iment result shown in Fig 4a, With the increase of traffic profile’s size, the
accuracy of the method first improves and then slightly decreases. When the
size of the traffic profile is small, the resolution of the traffic profile is also low.
The nodes with similar embedding will be mapped to the same pixel, thus los-
ing part of the structural information in the original traffic. However, excessively
increasing the profile’s size will result in an increase of invalid pixels in the traffic
profile. These noisy pixels have a negative impact on the accuracy performance.

Embedding dimension δ is also an important parameter to affect method’s
accuracy. We set δ to 2, 3, 4 and use CNN with corresponding dimension to anal-
ysis traffic profile. According to experiment result shown in Fig. 4b, when the
embedding dimension is 3 or 4, the accuracy is significantly better than the accu-
racy when the embedding dimension is 2. This is because higher-dimensional
embedded vector representations can represent richer structure information,
which can better realize the proportion analysis. However, when the embed-
ding dimension is 3 and 4, the difference in accuracy is very small, which shows
that there is a boundary for the embedding dimension to improve accuracy.

4 Conclusion

In this paper, we proposed a component structure analysis scheme, which can
effectively analyze the proportion of various traffic components in the mixed
flow. A mixed traffic data set was collected to verify the effectiveness of our
proposed scheme. The result shows that our scheme had a significant advantage
in both time consumption and performance for traffic proportion analysis task.
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Abstract. SX-Aurora TSUBASA (SX-AT) is a vector supercomputer
equipped with Vector Engines (VEs). SX-AT has not only such a new
system architecture, but also some execution modes to achieve high per-
formance on executing a real-world application that often consists of
vector friendly and unfriendly parts. Vector Engine Offloading (VEO) is
a programming framework to offload only a vector-friendly part to VEs,
and neoSYCL has been developed on top of VEO to allow programmers
to use the standard SYCL interface at offload programming on SX-AT.
However, it is unclear how much neoSYCL based on VEO can conform
to the SYCL standard, which is primarily based on OpenCL. Therefore,
this paper discusses the conformance of neoSYCL to the SYCL standard,
and also the performance. Our thorough evaluation with SYCL-Bench
kernels demonstrates that neoSYCL is conformant to the SYCL standard
except for OpenCL-related features. In addition, the runtime overhead
for using the SYCL interface on top of VEO is negligible in most cases,
allowing the neoSYCL codes to achieve comparable performance with
the VEO codes.

Keywords: SX-Aurora TSUBASA · SYCL · Benchmarking

1 Introduction

SYCL is an open industry standard for programming a wide range of heteroge-
neous architectures [5]. The design of SYCL allows standard C++ source code
to be written such that it can run on either an accelerator device or on the
host. It features high-level abstractions, easing many of the burdens commonly
encountered in parallel programming, while still allowing for fine-grained control
over performance and hardware features.

NEC SX-Aurora TSUBASA (SX-AT) is the latest vector supercomputer [9].
An SX-AT system is equipped with two kinds of processors, Vector Hosts (VHs)
c© Springer Nature Switzerland AG 2022
H. Shen et al. (Eds.): PDCAT 2021, LNCS 13148, pp. 36–47, 2022.
https://doi.org/10.1007/978-3-030-96772-7_4
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and Vector Engines (VEs). A VH is a standard x86 processor for running the
Linux operating system and hosting VEs, while a VE is NEC’s vector processor
of eight cores implemented as a PCI-e device card. Having six High-Bandwidth
Memory 2E (HBM2E) modules, a VE can provide high memory bandwidth of
1.53 TB/s [6]. Despite of the heterogeneous hardware configuration, users can
run a program on the VE as if the whole program is running on the standard
Linux environment. However, since a practical application is often a mix of
vector friendly and unfriendly parts, there is a demand for offloading only the
vector friendly parts to VEs and executing the rest on VHs. Thus, an offload
programming model called Vector Engine Offloading (VEO) [10] is also provided
by NEC. However, the programming interface of VEO is not only low-level but
also non-portable to other platforms.

A SYCL implementation named neoSYCL is the first and only SYCL imple-
mentation for SX-AT based on VEO [4]. At the source code level, neoSYCL
provides a simple tool to identify and separate the kernel part of a SYCL appli-
cation, and thereby converting it to a distinct function. Relying on this simple
approach, neoSYCL has been implemented as a collection of only header files,
internally using VEO functions. Due to architectural differences between the vec-
tor processor and GPU, some of OpenCL’s concepts employed in the SYCL stan-
dard do not fit in the vector architecture as discussed in [12]. Hence, neoSYCL
implements only a subset of the standard SYCL specification. In addition, for
VEs to achieve high sustained performance, the kernel code should be vector-
friendly, containing vectorizable long loops. Therefore, this paper discusses the
conformance and performance of neoSYCL through some evaluation results.

The purpose of this paper is to demonstrate that neoSYCL is conformant
to the SYCL standard at offload programming for SX-AT. There are a large
number of features defined in the SYCL standard, and some of them are used
mostly for GPU platforms, not for others such as Field Programmable Gate
Arrays (FPGAs) [13]. Consequently, this paper focuses on basic and popular
SYCL features to be likely used for SX-AT, and discusses the conformance of
neoSYCL. In addition, this paper also experimentally discusses the runtime over-
heads induced by neoSYCL’s abstraction layer.

The main contributions of this paper are as follows.

1. This is the first work to demonstrate the conformance and performance of
the neoSYCL implementation with a variety of benchmark programs.

2. Based on SYCL-Bench [7], we have developed a portable benchmark suite,
named VEO-SYCL-Bench, to compare neoSYCL and VEO versions of a pro-
gram.

3. We investigate the performance gain of using another framework, Alternative
VE Offloading (AVEO) [2], instead of VEO.

2 NEC SX-Aurora TSUBASA

SX-AT is a new generation of NEC’s SX-series supercomputers with dedicated
vector processors. SX-AT employs a heterogeneous hardware configuration con-
sisting of VHs and VEs. A VH is a standard x86 processor for running the Linux
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Fig. 1. Software stack of SX-AT.

operating system (OS) as well as hosting VEs. To control VEs, VEOS is a Linux
process running on the VH and providing OS functionality to VE programs
running on VEs. Each VE is packaged in the form factor of a PCI-e card. The
vector processor consists of eight cores, six HBM2E modules, and one Last-Level
Cache (LLC) of 16 MB shared by all the cores. Figure 1 shows an overview of
an SX-AT system. Since there is no OS kernel on the VE side, VEOS running
on the VH provides the OS functionality to a user process running on the VE.

VEOS consists of the ve exec command and the VEOS service. The ve exec
command loads a VE program, requests permission to create a VE process,
and handles the system calls and exceptions of the VE process. The VE driver
installed in the VH Linux kernel space is a PCI device driver that provides
VE resource accessibility and handles interrupts from the VEs. NEC provides
C, C++, and Fortran compilers to build a program executable on a VE. Since
the vector processors can achieve high performance on executing the vectorized
code, these compilers support automatic vectorization of loops. In other words, to
achieve high performance, the application code should be vector-friendly, mean-
ing that the execution time of the code is mostly spent for executing vectorizable
long loops.

There are two execution models to run a program with the VE. The first
execution model is the native execution that simply runs the whole program
on a VE to avoid the data transfer between VHs and VEs. However, in some
applications and application areas, it might not be straightforward to vectorize
the whole of an application, and thus non-vectorized parts of the application
could critically degrade the overall performance. Since most execution time of a
scientific program is likely spent only on a particular loop (expressed as a kernel
in SYCL), the second execution model is VEO, which is one of the accelerator-
style programming models such as OpenCL [8] and CUDA [11]. In VEO, a
compute-intensive kernel part of an application is offloaded to VEs while the
rest is executed on the VH. It provides a set of APIs that allow loading a shared
library into the VE, locate functions and symbols in the library, allocate and
free memory chunks on the VE, transfer data to and from the VE as well as
asynchronously execute functions on the VE side. By properly offloading only
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a kernel part of an application to the VE, the total performance is improved
in many cases. However, programmers need to invest more effort in modifying
the original source code. In addition, an application developed with VEO is not
portable to other platforms because the VEO programming interface is dedicated
to SX-AT. Therefore, we need a standard offload programming interface available
for the SX-AT platform.

3 Overview of neoSYCL

neoSYCL is a new SYCL implementation that aims to address the productivity
issue of offload programming on SX-AT. The SYCL standard is designed to
encourage and support a data-parallel programming style. A SYCL single source
code contains both host code that runs natively on the host CPU, and device
code that is executed on SYCL devices. Although the host code and device code
can be written within a single source file, we need to use different compilers
for VHs and VEs. Thus, neoSYCL first extracts a kernel part from the source
code and writes it to another file as a distinct function. This is so-called kernel
outlining, and the neoSYCL project provides a kernel generator tool for it. The
tool can extract and transform a kernel part at the source-code level. Since
the kernel part has been converted to a C/C++ function, the function can be
compiled by a device compiler for VEs and linked to the host program to be run
on the VH.

The proof-of-concept implementation of neoSYCL in [4] provides important
SYCL concepts, including buffers, accessors, and queues. All of them are imple-
mented by internally using VEO APIs.

In the SYCL specification, data storage and data access are handled by
sycl::buffer and sycl::accessor classes, respectively. A sycl::accessor
instance is created by calling sycl::buffer::get access() to represent basic
operations to the data storage associated with the instance. A sycl::buffer
instance can be associated with a 1D, 2D, or 3D array that is accessible from ker-
nels by using the corresponding sycl::accessor instance. The sycl::buffer
class is a C++ template with two parameters, the type and dimension of the data
stored in the buffer. In the neoSYCL implementation, a sycl::buffer instance
is implemented as a standard C++ array, and copying data to the VE can be
done by just copying the whole array to the VE’s memory space. Accordingly,
the original neoSYCL implementation provides buffers and accessors conformant
to the SYCL specification.

Unlike buffers and accessors, queues in the original neoSYCL implementa-
tion are not conformant to the SYCL specification. A sycl::queue instance
represents a mechanism, through which a host code submits work to a device
for execution in the future. A sycl::queue instance passes kernels to devices in
an asynchronous manner. In neoSYCL, there are two kinds of devices available.
One is a VE device as a device or an accelerator, and the other is a VH device
working also as a host. A sycl::queue instance is by default bound to the VH
running the application. Any task submitted to the queue is executed on the
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VH without any data transfers between VH memory and VE memory. In the
original neoSYCL implementation [4], only a sycl::ve queue instance could be
bound to a VE to execute the kernel part on the VE. Although a SYCL appli-
cation should be able to bind a queue to the host device or other accelerator
devices by using the sycl::device selector class, the original version of the
neoSYCL implementation does not support the sycl::device selector class.
With the original neoSYCL implementation, it has been needed to replace every
queue with a special one, sycl::ve queue, to run a standard SYCL program on
a VE. Therefore, to improve the conformance to the SYCL standard, we have
modified the neoSYCL implementation to support the sycl::device selector
class compatible with the SYCL specification.

In this way, we have reviewed neoSYCL classes one by one to check if they
are conformant to the SYCL specifications. Some classes are rewritten if they
are needed for offload programming on SX-AT but not conformant to the SYCL
specification.

In the SYCL specification, there are two ways of invoking a kernel. One is
to use sycl::queue::single task() (or its variant) to create a single thread
on the device side to execute a kernel. If necessary, the single thread could later
become the master thread and swan other worker threads for multi-thread execu-
tion. For example, we can use OpenMP directives [1] for multi-thread execution
of the kernel loop. The other way is to use sycl::queue::parallel for() (or
its variant) to create multiple threads on the device side to execute a kernel. The
nd item and nd range classes are used to express the information about kernel
invocation, such as the number of threads (work items) to be created. The lat-
ter way is a basic SYCL feature inherited from OpenCL, which has originally
been designed with keeping GPU computing in mind. However, although GPUs
need to create a large number of concurrent threads for efficient data parallel
processing, its execution model does not necessarily fit in non-GPU platforms.
Accordingly, we have decided that the current neoSYCL implementation should
not support SYCL features relevant to the nd item and nd range classes, and
thus this paper discusses the conformance and performance of neoSYCL except
for the unsupported features.

4 Evaluation and Discussions

This section discusses the conformance of the original and new neoSYCL imple-
mentations through testing the basic test cases provided by DPC++ [3]. Mean-
while, we use SYCL-Bench kernels to further measure the conformance and
performance of the neoSYCL implementations. The neoSYCL implementations
support only SX-AT, while other SYCL implementations are not available on SX-
AT. Therefore, existing SYCL implementations cannot be directly compared to
neoSYCL. However, this paper can still discuss the runtime overhead introduced
by neoSYCL by comparing its performance to that of two offloading frameworks
for SX-AT, VEO and AVEO. The specifications of the system used in the fol-
lowing experiments are listed in Table 1. We use the default optimization level
for VH and VE compilers to compile the programs used in our evaluations.
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Table 1. System specifications.

NEC SX-Aurora TSUBASA A100-1

VH processor Intel xeon gold 6126 CPU

VH memory 96 Gbytes

VH compiler Clang version 12.0.0

VE processor NEC vector engine type-10C

VE memory 24 Gbytes

VE compiler NEC ncc compiler 2.5.1

Operating system CentOS Linux 7.9.2009

VEOS 2.7.4

VEO 2.5.0

Software DPC++ source code1

SYCL-Bench2

1https://github.com/intel/llvm/tree/sycl/sycl/test
2https://github.com/bcosenza/sycl-bench

4.1 Conformance Test Cases

DPC++ provides test cases that cover various aspects of the SYCL specifica-
tion [3]. In this work, our neoSYCL implementations are compared in terms of
conformance by using DPC++ test cases, while the conformance is quantified by
the number of test cases passed. Note that some of their test cases are designed
for Intel hardware and additional extensions. Therefore, we use only the most
basic and important test cases in the following evaluation. Specifically, 37 test
cases including runtime classes (device selection, device, platform, context, queue
and event), data access and storage (buffer and accessor) are used because they
are the most common APIs in SYCL applications.

We evaluate the conformance of the original and new neoSYCL implementa-
tions by running these test cases on SX-AT. In the original neoSYCL implemen-
tation, an instance of special class, ve queue, must first be created, and a task is
submitted to the VE via the ve queue instance. However, in the SYCL specifi-
cation, at any point where the SYCL runtime needs to select a SYCL device
through an explicit device selector specialization or through the implicit
default selector, the system will call select device(), which will query all
available SYCL devices in the system, pass each to this function call operator
and select one device. In order to make neoSYCL more conformant to the SYCL
standard, the ve queue is deprecated in this work and the device selector
classes are implemented. Since a VE can be seen as a kind of accelerator,
accelerator selector is defined as a derived SYCL device selector class
that selects a VE as a SYCL device. As a result, standard SYCL applications
can be executed on SX-AT without code modification. Therefore, the original
neoSYCL implementation can only pass 20 test cases (54%), while the new
neoSYCL implementation can pass 35 test cases (95%).

https://github.com/intel/llvm/tree/sycl/sycl/test
https://github.com/bcosenza/sycl-bench


42 J. Li et al.

Table 2. The detailed list of benchmarks included in the VEO-SYCL-Bench suite.

Benchmark name Short Domain

lin reg coeff LRC Data analytics

lin reg error LRE Data analytics

median MEDIAN Image processing

mol dyn MD Physics simulation

scalar prod SP Linear algebra

sobel3/5/7 SOBEL3/5/7 Image processing

vec add VA Linear algebra

2DConvolution 2DCON Image processing

2mm 2MM Linear algebra

3DConvolution 3DCON Image processing

3mm 3MM Linear algebra

atax ATAX Linear algebra

bicg BICG Linear algebra

correlation CORR Data mining

covariance COV Data mining

fdtd2d FTD2D Stencils

gemm GEMM Linear algebra

gesummv GESUM Linear algebra

gramschmidt GRAMS Linear algebra

mvt MVT Linear algebra

syr2k SYR2K Linear algebra

syrk SYRK Linear algebra

The SYCL specification inherits some concepts from OpenCL, and some of
those features are not supported by neoSYCL at present. However, there are still
two test cases not passed even by the new neoSYCL implementation. This is
because two functions parallel for work group and parallel for work item
used in test cases are not supported by the neoSYCL implementations. Due
to a great disparity between VEs and GPUs, it is difficult for VEs to efficiently
support those OpenCL-related functions [12]. Although the new neoSYCL imple-
mentation does not currently support those APIs, the results demonstrate that
the new neoSYCL implementation conforms to most important and commonly-
used SYCL APIs.

4.2 VEO-SYCL-Bench

The SYCL-Bench suite [7] contains a number of benchmarks which are real-world
applications and kernels from different domains such as linear algebra, image pro-
cessing, and molecular dynamics. It is a benchmarking framework that provides a
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(a) vec add benchmark of SYCL-Bench.

(b) vec add benchmark of VEO-SYCL-Bench.

Fig. 2. SYCL-Bench and VEO-SYCL-Bench versions of the vec add benchmark.

lot of features, such as the command line arguments, a verification layer for all
benchmarks and the automated execution of the entire benchmark suite. How-
ever, SYCL-Bench is not portable because some of APIs used in the framework are
not conformant to the standard SYCL specification, and thus neither DPC++ nor
neoSYCLcan compile the original SYCL-Bench.Hence, based onSYCL-Bench,we
have developed a simple but portable version of those benchmarks. To discuss the
runtime overhead induced by the neoSYCL’s abstraction layer, we also developed
a VEO version of those benchmarks. The collection of our SYCL benchmarks and
VEO benchmarks is named VEO-SYCL-Bench1. Table 2 is the list of the bench-
marks.

In SYCL-Bench, many of benchmarks provide variants for different ker-
nel invocation mechanisms mentioned in Sect. 3. Since neoSYCL supports only
single task() and parallel for(), we have copied only the kernels invoked

1 https://github.com/Tohoku-University-Takizawa-Lab/veo-sycl-bench.

https://github.com/Tohoku-University-Takizawa-Lab/veo-sycl-bench
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Fig. 3. Performance and code complexity comparison between VEO and neoSYCL
versions of benchmark programs.

with parallel for() from SYCL-Bench to VEO-SYCL-Bench, and rewrote the
other parts such as buffer allocation and initialization that are performance
insensitive. Figure 2 serves as an illustrating example. Figure 2a shows the orig-
inal vec add benchmark consists of the most important parts including buffer
initialization and kernel function, while the arguments, queue and device selec-
tion are initialized through the framework. Hence, we simplify the SYCL-Bench
code for VEO-SYCL-Bench as shown in Fig. 2b. The queue is bound to VE as
a device by explicitly passing a sycl::accelerator selector instance to the
constructor. Data required by the kernel are initialized by using sycl::buffer
instances. The kernel part is almost the same as that of the SYCL-Bench version.
Since our VEO-SYCL-Bench only uses standard SYCL APIs, it can be easily
used by other SYCL implementations.

Figure 3 shows the execution time of benchmarks using two different imple-
mentations. At the time measurement, we run each benchmark 10 times with
a small input size, and then calculate the average execution time. The results
show that the neoSYCL version is only 0.42% slower than the native VEO version
on average. Although it is common that high-level abstraction introduces some
runtime overhead, the results show that the overhead caused by the neoSYCL
runtime is small enough and negligible. Furthermore, to evaluate the impacts of
SYCL on productivity, a code complexity analyzer, called Lizard [14], is used to
measure the code complexities of different implementations. Figure 3 also shows
the NLOC (the number of lines of code without comments) of two implementa-
tions for each benchmark. Other metrics including CCN (cyclomatic complexity
number) and the token (the number of distinct operators and distinct operands)
are also calculated in our experiments. The average CCN and token values of
SYCL versions are 10 and 653, respectively. On the other hand, the average CCN
and token values of VEO versions are 12 and 764.5, respectively. All results show
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Fig. 4. Performance comparison between the VEO and AVEO implementations.

that SYCL versions are less complex and thus easier to maintain. In conclusion,
because of employing the SYCL programming interface, neoSYCL can decrease
the code complexity with achieving almost the same performance.

AVEO is an alternative implementation of the VEO framework, which is fully
compatible with the original VEO [2]. It has been redesigned to solve a set of
problems in VEO and improve the kernel invocation latency as well as the data
transfer bandwidth. Therefore, in this paper, we also evaluate the performance
of the neoSYCL implementation with AVEO while changing the input data size.
The neoSYCL implementations on top of VEO and AVEO are called neoSYCL-
VEO and neoSYCL-AVEO, respectively.

The kernel invocation latency of the original VEO is about 100 µs, while
Focht [2] has shown that the kernel invocation latency of AVEO is in the range
of 5.5–6 µs. In this work, however, most benchmarks invoke kernels only a few
times. As a result, the time spent on kernel invocation is almost negligible in
comparison with the time spent on executing the kernel. Therefore, a reduction
in the kernel invocation latency may not significantly decrease the total execution
time.

On the other hand, the data transfer bandwidth between a VH and a VE
is essential even for those benchmarks, because the benchmarks usually need to
transfer a certain amount of data between the VH and the VE. For example, 3D
Convolution is an image processing benchmark from SYCL-Bench, and stores a
large amount of data on both of the VH memory and the VE memory. Therefore,
the improvement in data transfer bandwidth could potentially decrease the total
execution time.

Figure 4 shows the performance comparison between neoSYCL-VEO and
neoSYCL-AVEO for the 3D Convolution benchmark. In the case of a small buffer
size, VEO and neoSYCL-VEO can achieve a better performance than AVEO and
neoSYCL-AVEO. However, by increasing the input size, AVEO and neoSYCL-
AVEO outperform VEO and neoSYCL-VEO. This is because the architecture of



46 J. Li et al.

AVEO is more complex than that of VEO, resulting in some overhead in small
input cases. Since the performance for large input data is more important in
practice, these results suggest that it is more promising to use AVEO for imple-
menting neoSYCL, though the performance difference is not very significant in
this particular benchmark. The results also show that both neoSYCL-VEO and
neoSYCL-AVEO can always achieve comparable performance respectively with
VEO and AVEO no matter of the input size. Thus, it is again demonstrated that
the abstraction penalty induced by the neoSYCL implementation is negligible.

5 Conclusions

SX-AT is a heterogeneous computing system equipped with VEs, which can
provide the world’s highest memory bandwidth, and neoSYCL is a SYCL imple-
mentation for enabling offload programming on SX-AT with the standard pro-
gramming interface. Although the original neoSYCL implementation has already
supported most of the major SYCL features, there are some unsupported ones.
In this work, therefore, we demonstrate the conformance and performance of
the neoSYCL implementation with a variety of benchmark programs. We have
reviewed the SYCL classes one by one, and modified some classes to improve the
conformance. Although the improved neoSYCL implementation still has some
unsupported features due to the hardware limitations, our evaluation has shown
that most SYCL benchmarks can be executed on SX-AT.

For the performance evaluation, we also have developed a benchmark suite,
named VEO-SYCL-Bench. The evaluation results indicate that the performance
difference between neoSYCL and VEO versions of a program is small and thus
the runtime overhead induced by neoSYCL is negligible in practice. Meanwhile,
the results of code complexity metrics show that neoSYCL can always outper-
form the native implementation. Moreover, we investigate the performance gain
of using AVEO. Our results show that VEO can perform better than AVEO for
small input data, while for large input data, AVEO can outperform VEO.

In our future work, we will improve the neoSYCL implementation to support
more SYCL features and various devices. Meanwhile, due to a great distinc-
tion among computing architectures, an efficient device selection mechanism is
required to fully utilize computing resources. Thus, we will discuss the automa-
tion of a task-to-device mapping mechanism.
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Abstract. In heterogeneous computing systems, efficient task schedul-
ing is essential for utilizing resources and reducing computing time. This
problem has been shown NP-complete in the general case. Existing solu-
tions are mainly heuristic-based that would easily track into optimal
local solutions and reinforcement learning-based that need an expensive
computation cost for data training on neural networks. To overcome the
shortcomings, we propose a Bayesian optimization based task schedul-
ing algorithm that automatically searches for the best heuristic strat-
egy in the problem space. Our algorithm builds a Bayesian optimization
model on heuristic strategy and scheduling performance, and updates the
model by interacting with the environment to find the optimal solutions
globally. To enhance the confidence of our experiments, we measure the
average (weighted) makespans and running time of our algorithm. The
experimental results show that our approach can improve the scheduling
performance compared to the baselines.

Keywords: Task scheduling · Bayesian optimization · Heuristic

1 Introduction

A cloud data center containing heterogeneous servers interconnected in a high-
speed network supports parallel execution of multiple tasks. In this paper, we
study the problem of job (workflow) scheduling in a data center. For a given set
of jobs, each job is represented as a task graph (directed acyclic graph or DAG),
where nodes represent tasks in the job and edges represent the dependencies
between the tasks. Under the task dependency constraints, we need to jointly
determine the execution order of each task and the task-to-server allocation plan
to minimize the overall makespan of all jobs.

Improving the performance of task scheduling is remarkably challenging and
has critical importance in boosting the profit of cloud computing platforms. Exist-
ing static task scheduling methods can be roughly classified into three categories
(heuristic-based scheduling, meta-heuristic scheduling, and machine learning-
based scheduling algorithms). The heuristic-based scheduling algorithms [1,11,12]
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have advantages over execution time. In contrast, the performance of those algo-
rithms relies on the specific heuristic strategy, so is poor in robustness. Meta-
heuristic [8] is another type of popular algorithms, which provide good quality
of schedules but the scheduling latency is much higher than other categories. In
recent years, with the rapid development of machine learning technique, many
researchers have attempted to address the problem of task scheduling with rein-
forcement learning [3,4,7] that can interact with the environment and automati-
cally generate the scheduling strategy but requires expensive costs in computing
with the neural network.

We propose a Bayesian optimization based task scheduling algorithm for the
static task schedules on a heterogeneous system to handle the above problems.
We summarize the main contributions of the paper as follows:

– We propose a Bayesian optimization based scheduling algorithm to handle
the problem of task scheduling. Our algorithm searches for the best heuristic
strategy in the problem space, effectively improving the performance and
reducing the latency in the scheduling.

– We analyze the mathematical property of our algorithm and provide a guar-
antee for convergence in theory. The worst time complexity of our algorithm
is less than other search methods (random search, grid search, etc.).

– We conduct simulation experiments to validate our algorithm. The experi-
mental result illustrates that our algorithm can improve the scheduling per-
formance compared against the baselines.

2 Related Work

Existing research efforts have been proposed for the task scheduling problem,
and various algorithms are provided in the literature, which can be tradition-
ally classified into three categories (heuristic-based scheduling, meta-heuristic
scheduling, and machine learning-based scheduling algorithms).

The heuristic is a kind of traditional algorithms to solve the scheduling prob-
lem, utilizing the heuristic strategy to guide the scheduling process. Hetero-
geneous Earliest-Finish Time (HEFT) [11] is the most well-known list-based
scheduling algorithm. Predict Earliest-Finish Time (PEFT) [1], Lookahead [2],
Critical-Path-on-a-server (CPOP) [11] have been proposed as extensions of
HEFT. The heuristic-based algorithms have low computational complexity but
easily get the optimal local solution, so that poor in robustness and often need
a slight change in the problem space.

Meta-heuristic is another popular algorithm, such as genetic algorithm, sim-
ulated annealing algorithm, ant colony optimization. Manasrah [8] proposes a
hybrid GA-PSO algorithm that aims to reduce the makespan and the cost and
balance the load of the dependent tasks over the heterogeneous resources in cloud
computing environments. Meta-heuristic algorithms have the main disadvantage
of the high computational cost.

In recent years, with the rapid development of machine learning, machine
learning-based scheduling algorithms have been proposed which reduce the com-
putation time. In [9], the authors use reinforcement learning (Q-learning and
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SARSA) to solve the workflow scheduling problem for computation resources
that reduces the task execution time. In [5,7], and [4], reinforcement learning
and deep learning are combined to solve more difficult problems in real life. The
machine learning-based scheduling algorithms have the main disadvantage on
the high cost of training and computing in the neural network.

3 Problem Description

3.1 Scheduling Model

In this section, we formulate the task scheduling model. In a heterogeneous
computing system, the user submits jobs (workflows) {ji}N

i=1 to be executed,
and each job can be represented as a directed acyclic graph, where vertices
indicate tasks and edges indicates dependencies between tasks. We call a task
node without any parent as an entry node and a task node without any child as
an exit node. The task scheduling process always begins with the entry nodes.
We assume the heterogeneous environment consists of servers {pi}M

i=1.
For each job jn, it contains tasks {tn,i}Kn

i=1, where the required resource
{rn,i}Kn

i=1 and the workload {wn,i}Kn
i=1 are known in advance. For a task tn,i

to be execute on a server pj , the execution time is obtained as:

cj
n,i =

wn,i

Wj
. (1)

In this paper, we aim to minimize the total weighted Job Completion Time
(JCT):

T = min
N∑

n=1

Wn · Jn (2)

where Wn indicates the weight of job jn and Jn shows the completion time,
respectively. We suppose that important jobs are assigned higher weights.

3.2 Constraints

Resources Capacity Constraint. We use Vu to present a set of tasks running
in server pu, and introduce Eq. 3 to ensure that resources are sufficient enough
to support performing tasks:

∑

t∈Vu

rt ≤ Ru (3)

Task Dependency Constraint. For each job jn, the completion time Jn has
the following constraint:

Jn = max
i∈{1,...,Kn}

Cn,i (4)

where Cn,i indicates the completion time of task tn,i. It’s noticeable that Cn,i

starts timing after the job jn arrives. The completion time of a job depends on
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the completion time of the latest task that composes it. Similarly, a task tn,i can
be scheduled after the job jn is released, which has the following constraint:

Rn = min
i∈{1,...,Kn}

Sn,i (5)

where Sn,i indicates the start time of task tn,i, and Rn indicates the releasing
time of jn. Consider the dependencies in each job, one task can start after the
tasks it depends on has completed the transmission. The dependency constraint
can be expressed as:

Sn,i = max
t′∈succ(tn,i)

(Ct′ + m(t′, tn,i)) (6)

Algorithm 1: Bayesian optimization based scheduling algorithm.
Input: A set of jobs to be scheduled: {ji}N

i=1; A set of servers {pi}M
i=1.

Output: The weighted job completion time T .

1 Init a multivariate Gaussian process model M : {wi}4
i=1 → T ; /* Ref to 1.1

*/

2 repeat
3 Get the most promising candidate {w∗

i }4
i=1 by minimizing M ; /* Ref to

1.2 */

4 T ′ ← 0;
5 S ← ∅;

6 J ← {ji}N
i=1;

7 foreach job ji in J do
8 foreach task ti,n in ji do
9 if indegree(ti,n) is equal to 0 then

10 S ← S ∪ {ti,n}; /* Ref to 2.2 */

11 ji ← ji/ti,n;

12 end

13 end

14 end
15 while S is not empty do
16 Select (t, p) from t ∈ S and p ∈ {Pi}M

i=1 with the highest priority
according to f∗; /* Ref to 2.3 */

17 S ← S/t;
18 Release the dependencies from t to its predecessors and append new

tasks without dependencies to S;
19 if all the task in j′ is completed then
20 T ′ ← T ′ + Wj′ ∗ J ′;
21 end

22 end
23 M ← FITMODEL(M , (w∗, T ′)); /* Ref to 1.2 */

24 T = min(T , T ′); /* Ref to 2.4 */

25 until The result T is acceptable;
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where succ(·) indicates the set of immediate successors, and m(·, ·) indicates the
transmission time.

4 Algorithm

In this section, we first introduce the scheduling strategy and then present our
algorithm for finding the best scheduling strategy in the problem space auto-
matically.

4.1 Scheduling Strategy

In heuristic-based scheduling, the scheduling strategy assigns priorities to tasks
and decides the execution order. The format of the scheduling strategy is also
different with various algorithms. In this paper, we present the strategy f as
a linear combination of some scheduling indicators (such as resource utilization
rate, upward rank, and so on) and express it as:

f(t, p) = w1 · xru(t, p) + w2 · xup(t) + w3 · xdown(c) + w4 · xexec(t, p), (7)

where f(t, p) measures the priority of an executable pair (t, p), and the definition
of resource utilization rate xru, upward rank xup, downward rank xdown, and
execution time xexec are introduced next.

Resource utilization rate for one task t executing on the server p can be
represented as:

xru(t, p) =

rt +
∑

t′∈Vp

rt′

Rp
, (8)

Execution time is defined in the Eq. 1.
Upward rank can be represented below:

xup(t) = wt + max
t′∈succ(t)

(xup(t′) + m(t, t′)) (9)

where wt is the workload of t, succ(t) is the set of immediate successors of t, and
m(t, t′)) is the transmission cost between task t′ and task t.

Downward rank can be represented below:

xdown(t) = max
t′∈pred(t)

(xdown(t′) + wt′ + m(t, t′)), (10)

where pred(t) is the set of immediate predecessors of task t.
According the the Eq. 7, the quality of f is determined with the parameters

{wi}4i=1. We divide the scheduling process of our algorithm into two phases,
which are introduced in the next subsection.
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4.2 First phase: Bayesian optimization training

We regard the relationship between the parameters and the total completion time
as a black-box function, and describle it with the help of Bayesian optimization:

1.1 Propose a Gaussian process model M : {wi}4i=1 → T , where {wi}4i=1

indicates the parameters in Eq. 7 and T is defined in Eq. 2;
1.2 Fetch parameter {w′}n

i=1 by minimizing M , gain the observe data
({w′′

i }4i=1, T ′) by simulating the scheduling process, and update M with the
observe data;

1.3 Repeat 1.2 until we obtain an acceptable result.

4.3 Second Phase: Task Scheduling Simulation

In this phase, we predict the total completion time T ′ with {w′
i}4i=1.

2.1 Determine the heuristic strategy f ′ with the given parameters {w′
i}4i=1;

2.2 For the input {ji}N
i=1, define a set of all executable task list lexecute and

initialize the lexecute with the entry nodes in {ji}N
i=1;

2.3 With the help of the heuristic strategy f ′, we fetch a pair (t, p) having
the highest priority assigned with f compared with all the candidates, where t
is from lexecute and p is a server. If the task t is selected, it should be removed
from lexecute and release the dependencies with other tasks. Other tasks without
dependencies should be appended to the lexecute;

2.4 Repeat 2.3 until the lexecute is empty, then we obtain the reward T ′

defined in Eq. 2.

4.4 Theoretical Analysis

In this subsection, we explore the effectiveness of our algorithm. We first intro-
duce the assumption about Gradients of GP Sample Paths [6]:

Lemma 1. For the optimal solutions T = F (w∗) in Bayesian optimization
which can be represented as F (w∗) = maxi=1,...,jF (wi), we have

F (w∗) − max
i=1,2,...,j

F (wi) ≤ E[F (w∗) − F (wj)] ≤ E[L‖w∗ − wj‖] ≤ d

τj
E[L]

≤ d

τj

∫ inf

0

ae
t2

b2 dt =
dab

√
π

2τj
=

1
2j2

where j indicates the iteration times and wi indicates the most promising can-
didate w from M in the i-th iteration. The first step bounds the difference in
the function values by the largest partial derivative and the L distance between
the points. The second step uses the properties of the discretization.

We follow Lemma 1 and have the ratio between the optimal solution F (w∗)
and the best observed solution maxi=1,2,...,j F (wi) at the j-th iteration:

F (w∗)
maxi=1,2,...,j F (wi)

≤ 1 +
1

2j2 · maxi=1,2,...,j F (wi)
1 +

1
Ψj · 2j2

. (11)
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And we apply the result here [10]

E[Ψj ] = μj + σjΦ
−1(

j − π
8

j − π
4 + 1

). (12)

The result below is workable:

F (w∗)
maxi=1,2,...,j F (wi)

≤ 1 +
1

2j2μj + 2j2σjΦ−1(1 + π−8
16−4π )

≤ 1 +
1

2j2μj + 2.36j2σj
(13)

where φ(x) = 1√
2πexp(− 1

2x2)
and Φ(x) =

∫ x

−∞ φ(z)dz. The Eq.13 indicates that
our algorithm can guarantee the convergence.

5 Experimental Results

5.1 Research Questions

We discuss the research questions in the remainder of the section:
RQ1 Does the algorithm we propose workable and effective? Does our algo-

rithm obtain high-quality scheduling results compared with other scheduling
algorithms?

RQ2 Does the running time of our algorithm better than other algorithms?
How does the running speed of our algorithm differ from others?
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5.2 Baselines

In this subsection, we compare the performance with four typical algorithms:
HEFT [11], PEFT [1], GA-PSO [8], and RLTS [5], where HEFT and PEFT
belong to heuristic-based scheduling, GA-PSO belongs to meta-heuristic schedul-
ing, and RLTS belongs to reinforcement learning-based scheduling (Figs. 1
and 2).
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5.3 Experiments

We set up two main experiments to answer the research questions listed above.
In the first experiment, we examine the performance of our algorithm compared
with other task scheduling algorithms. We can see that all the values of makespan
calculated by our algorithm are less than other algorithms. This is because our
algorithm tries to search for the best heuristic strategy in the problem space
and interact with the scheduling environment to avoid presenting local optimal
solutions. In the second experiment, we evaluated the average running time of
those algorithms. We can see that the running time of our algorithm is less than
RLTS and GA-PSO, which indicates that our algorithm has less time complexity
than the reinforcement learning-based algorithm and meta-heuristic algorithm.
The running time of our algorithm is more than HEFT and PEFT because those
algorithms have low computational complexity but can often be ended at local
optimal solutions.

6 Conclusion

We propose a Bayesian optimization based scheduling algorithm to automati-
cally search for the best heuristic strategy in the problem space. We also show
theoretical guarantee of convergence of our algorithm. The experimental results
show that our algorithm can improve the scheduling performance compared to
the baselines.
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Abstract. Driven by the prevalence of video generation devices and
the development of network infrastructures, there has been an explosive
growth of Crowdsourced Video Livecast (CVL) services in the past few
years. Significant efforts have been made to provide high quality CVL ser-
vices with limited bandwidth availability. However, most of the existing
works focused on optimizing downlink bandwidth for video distribution
rather than uplink bandwidth for video uploading. For example, upload-
ers (i.e., broadcasters) in Twitch can arbitrarily set their upload rates,
which may lead to a significant waste of upload bandwidth with the
increasing number of uploaders. In this paper, we propose an effective
low-complexity algorithm called Bubal to optimize upload bandwidth
allocation among massive uploaders. Our objective is to optimize the util-
ity of video uploading from the perspective of CVL platform operators
by considering both viewers Quality-of-Experience (QoE) and upload
bandwidth cost. To guarantee the effectiveness and fairness of band-
width allocation, we adopt the optimization framework of Nash Bargain-
ing Solution (NBS), which can determine the optimal bandwidth budget,
upload bitrate and datacenter selection for each uploader jointly. Finally,
we conduct extensive trace-driven simulations to evaluate our proposed
algorithm and the results show that our algorithm achieves much higher
utility than alternative strategies in various conditions.

Keywords: Crowdsourced Video Livecast · Upload bandwidth ·
Quality-of-Experience (QoE) · Utility maximization · Nash bargaining
solution

1 Introduction

In recent years, Crowdsourced Video Livecast (CVL) flourishes with the preva-
lence of high-end user devices by leveraging the power of cloud computing
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platforms. A number of worldwide crowdsourced video livecast platforms have
emerged, such as Twitch.tv, YouTube Live, Azubu.tv, and Hitbox.tv. As one
of the most successful CVL platforms, Twitch.tv has attracted over 200 million
concurrent viewers and more than 3 million concurrent broadcasters at its peak
hours [2]. What’s more, CVL has received research attention from both industry
and academia, spanning from measuring real platforms, developing transcoding
frameworks to optimizing resources consumed by viewers.

Despite extensive contributions made by previous researchers, there is very
limited work focusing on optimizing bandwidth resources allocated to uploaders.
However, according to the measurement study [18], 25% of upload bandwidth
has been wasted by broadcasters. The reason is that, with an arbitrarily selection
of upload bitrates, all uploaders prefer to choose the highest upload bitrates that
they can support to maximize the streaming quality of their viewers no matter
how many viewers there are, which can cause significant resource wastage.

From the perspective of the CVL platform operators, their goal is to maximize
overall utility by maintaining good enough viewers’ QoE with reasonable band-
width cost. However, it is non-trivial to determine the optimal upload bitrate
and datacenter selection for the reasons as follows: First, we need to balance the
upload bitrates of different uploaders to achieve high overall QoE of the platform
while minimizing the bandwidth cost. Second, since the bandwidth prices and
locations of datacenters are different, we need to carefully choose appropriate
datacenters for uploaders to upload their videos. Third, the viewer population
of a particular video stream may fluctuate significantly and rapidly with time.
Therefore, the optimal bandwidth and upload bitrates of uploaders should be
changed dyanmically with the latest viewer population.

In this paper, to address the above challenges, we attempt to determine an
optimal bandwidth budget, upload bitrate and datacenter selection to maximize
the overall utility from the perspective of a CVL platform operator. We adopt
the Nash Bargaining Solution (NBS ) to ensure the effectiveness and fairness,
and design an effective low-complexity algorithm called Bubal, which can help
CVL platforms control cost and enhance their service quality with a massive
number of uploaders.

In summary, our contributions are summarized as follows:

– To the best of our knowledge, we are the first to consider the optimization
of upload bandwidth allocation among broadcasters in crowdsourced video
livecast systems. We formulate the problem as a constrained utility optimiza-
tion problem and balance the tradeoff between bandwidth cost and QoE of
viewers.

– By exploiting the Nash bargaining solution (NBS ) optimization framework,
we design an effective low-complexity algorithm called Bubal to solve the
optimization problem, which can determine the optimal bandwidth budget,
upload bitrate and datacenter selection for each uploader.

– To evaluate the effectiveness of our proposed algorithm, we conduct extensive
trace-driven simulations by utilizing the public Twitch live streaming traces.
Experimental results show that our proposed algorithm achieves much higher
utility than alternative strategies in various conditions.
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The rest of this paper is organized as follows. We first introduce the system
model in Sect. 3. In Sect. 4, we propose the solution of QoE optimization problem
with a given bandwidth budget. In Sect. 4.3, we explore how to solve the utility
optimization problem to find the optimal bandwidth budget. We conduct a series
of experiments to evaluate the performance of our design in Sect. 5. We discuss
the related work in Sect. 2 and conclude the paper in Sect. 6.

2 Related Work

The popularity of Crowdsourced Video Livecast (CVL) has attracted significant
attention recently. Related studies can divided into two major categories: i)
measurements and pattern analysis of CVL systems, and ii) optimization of
transcoding and scheduling.

To understand viewer interactions, Wang et al. [15] performed a comprehen-
sive measurement study of the viewer interactions on a popular crowdsourced
live broadcasting website in China and further deigned methodologies to pre-
dict the popularity of channels. Yi et al. [17] for the first time conducted an
experiment-based measurement of YouTube’s 360 degree live video streaming
and concluded the primary design weakness of current CVL systems.

There are quite a few papers focusing on the optimization of the transcoding
or scheduling and resource provisioning. Luo et al. [9] adopted a novel live video
ingest approach, named CrowdSR, to transform a low-resolution video stream
into high-resolution video stream for viewers in crowdsourced livecast with super-
resolution method. Zhang et al. [19] designed a novel framework, CastFlag, to
predict the highlights, i.e., key events in livecast and optimize the transcoding
task workload. Ma et al. [10] conducted a viewer-assisted Crowdsourced Livecast
Services (CLS) framework with a fairness-guaranteed task assignment scheme,
which was solved by a dynamic programming problem. Wang et al. [14] presented
an edge-assisted crowdcast framework called DeepCast toward to the heteroge-
neous and personalized QoE demands of viewers leveraging DRL. Besides, a
review study of crowdcast solutions, challenges and opportunities for personal-
ized CVL with intelligent edge technology was provided by Wang et al. [13]

Our work differs from previous work in mainly three aspects. Firstly, we
focus on upload bandwidth allocation problem instead of the optimization on
video transcoding or distribution of CVL platforms in previous paper. Secondly,
we focus on utility optimization, considering bandwidth cost and QoE profits of
viewers, jointly. Thirdly, this paper provides guidelines, used to empirically set
by CVL platforms, for operators to find the optimal bandwidth budget.

3 System Model

In this section, we first introduce our system model for the CVL system. Then,
we describe how to formulate the problem as a constrained optimization problem.
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3.1 System Overview

In a generic CVL system, there are three major players: ui ∈ U (or broadcasters),
CVL platform with multiple datacenters dm ∈ D, and viewers. N = |U| and M =
|D| are total number of elements in uploader and datacenter set, respectively.
Vi represents the amount of viewers associated with ui. A specified workflow is
described as follows: the uploader ui uploads live stream with a bitrate ri,m to
a datacenter dm, and then the CVL platform transcodes the video to multiple
bitrates under the uploaded bitrate and delivers video streams to viewers with
a suitable bitrates. The goal of our design is to achieve the maximum utility of
video uploading by balancing the viewers’ QoE and upload bandwidth cost.

3.2 QoE and Bandwidth Cost

The uploaded video is transcoded by the CVL platform based on network con-
ditions and viewers’ devices. To evaluate the impact of videos’ upload bitrates
on viewers’ QoE, we define Opportunity QoE with the video upload bitrate ri,
which is treated as the upper bound of the actual QoE at the viewers’ side1.

Assume that each viewer needs to be served with the minimum bitrate as
rmin and similar to the QoE model in [6], the opportunity QoE Qo

i for all viewers
watching the video uploaded by ui is defined as:

Qo
i = Q(ri, rmin) = ln

(
1 +

ri
rmin

)
,

where the minimum opportunity QoE for each viewer watching the video
uploaded by uploader ui is defined as Qmin

i = Q(rmin, rmin).
In our problem, upload bandwidth cost is incurred when uploaders are

uploading videos to datacenters. We define Cm as the bandwidth cost asso-
ciated with the datacenter dm. We adopt a pricing model similar to that of
Google [1] cloud platform. Let cm denote the unit price of upload traffic in data-
center dm, and bandwidth cost associated with datacenter dm can be defined
as Cm =

∑N
i=1 ri,m ∗ cm. As the perspective of CVL platforms, we define

C =
∑M

m=1 Cm as the total upload bandwidth cost of the CVL platform.

3.3 Problem Formulation

Before the problem formulation, we first introduce some constraints in our model.
We denote rmin

i , rmax
i as the minimum and maximum upload bitrates, respec-

tively. Thereby, we have the following constraints:

rmin
i ≤ ri =

M∑
m=1

ri,m ≤ rmax
i ,∀ri,m ≥ 0, (1)

M∑
{m1=1}

M∑
{m2=1,m2 �=m1}

ri,m1 ∗ ri,m2 ≤ 0,∀i. (2)

1 Transcoded bit rates can not exceed the uploaded bitrate.
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In the above constraints, constraint (1) ensures that upload bitrate ri,m would
be non-negative and the global upload bitrate ri of uploader ui would neither
exceed the upper bound nor less than the lower bound. Constraint (2) ensures
that the uploader can connect to at most one datacenter at a time. Besides,
we assume that each datacenter dm has the bandwidth of bm ∈ b, where b =
{bm,∀m} is the total bandwidth of all datacenters. In order to guarantee that
the bandwidth requirement of uploaders can not exceed the bandwidth of all the
datacenters, we introduce the following constraint:

N∑
i=1

ri,m ≤ bm,∀m. (3)

Note that our goal is to solve the utility optimization problem with any utility
function of aggregated viewers’ QoE and bandwidth cost. Then we define the
utility optimization problem as:

P1 : argmax
r ,b

f(r, b) − k ∗ g(r, b),

s.t. (1)(2)(3).

where k is a tunable parameter representing the weight of upload bandwidth
cost. Besides the total bandwidth cost of all the datacenters is defined as:

g(r, b) =
M∑

m=1

Cm.

We propose to tackle problem P1 by solving two subproblems: 1)Optimiza-
tion of upload bitrates allocation r with a given bandwidth budget; 2)Optimiza-
tion of utility with vary bandwidth budgets

For the first subproblem, given the total upload bandwidth budget b, the
major objective of a CVL platform is to maximize the overall QoE of all viewers
by determining the upload bitrate and datacenter selection for each uploader,
i.e., r = {ri,m,∀i,∀m}, which is indeed a bandwidth allocation problem. Con-
sidering both effectiveness and fairness, we employ the Nash bargaining solution
(NBS ) in game theory to tackle this problem, which was firstly presented by
Mazumdar et al. [11] in communication networks. Besides, we introduce the key
concepts of NBS in our scenario according to the game-theoretical optimization
frameworks [16]. The N uploaders can be viewed as the players who are com-
peting for given upload bandwidth b in a CVL system. For each viewer in Vi

associated with uploader ui, the initial profit is the basic QoE represented as
Qb

i . We need to maximize the profit gain represented as (Qo
i − Qb

i ). Define the

set G = {ri,j | ln(1 +
∑N

i=1 ri,m
rmin ) ≥ Qb

i ,∀i ∈ N,∀m} and (G,Qb
i ) is a bargaining

game by supposing G is nonempty.
Due to the fact that the numbers of viewers associated with different upload-

ers are distinct, all the players in game have their asynashimmetric weights [4] by
adopting the exponentiation of the profit gain, i.e., (Qo

i −Qb
i )

Vi . Intuitively, if an
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uploader has more viewers, he (or she) should be allocated with more bandwidth
resources. Thus, we can define the aggregated viewers’ QoE

f(r, b) =
N∏
i=1

(Qo
i − Qb

i )
Vi

as the Nash product and with a mathematical derivation, the first subproblem
is then formulated as the following Nash bargaining problem:

P2 : argmin
r

−
N∑
i=1

Vi · ln(Qo
i − Qb

i ),

s.t. (1)(2)(3).

P2 depicts the joint profit in the bargaining game, represented as the product
of the profit gains of all the players, which can be maximized by the Nash
bargaining solution.

4 Upload Bitrate Allocation with Bandwidth Constraints

In this section, we tackle the optimization problem P2 defined in previous. P2
is a mixed-integer convex programming (MICP) problem, which is a NP-hard
problem [8]. Therefore, we relax the problem P2 into a convex problem P3. Then
we adopt Lagrangian transformation, dual decomposition, subgradient method
and design an effective algorithm to obtain the optimal solution of the problem
P3. In addition, we also design a heuristic algorithm to obtain the sub-optimal
solution for the problem P2. With the output of the P2, we find the optimal b
for maximum overall utility and solve the problem P1.

4.1 Problem Relaxation

The first and third constraints in P2 follow the disciplined convex programming
(DCP) ruleset [5] while the second constraint violates the DCP rules, which
ensures that each uploader can connect to at most one datacenter. If we define
a binary variable I ∈ RN∗M , the second constraint is mathematically equivalent
to

∑M
m=1 I(i,m) ≤ 1,∀i, which can be regraded as a binary variable constraint.

Therefore, P2 can be converted to a mixed-integer convex programming (MICP)
problem with the binary variable constraint [7]. Hence, we relax constraint (2)
and formulate P3 as follows:

P3 : argmin
r

−
N∑
i=1

Vi ln(Qo
i − Qb

i ),

s.t. (1)(3).

In the problem P3, each uploader may be connected to more than one data-
center. However, the upload bitrate for each uploader is aggregated by the upload
bitrates over all datacenters, i.e., ri =

∑M
m=1 ri,m, indicting that the eliminated

constraint would not affect the QoE of viewers if the sum ri is identical.
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4.2 UBA Algorithm Design

For the convex problem P3, we note that the constraints of the variable r are
linear so that we can apply the method of Lagrange multipliers and the dual-
based decomposition to solve P3. Therefore, we define the Lagrangian function
L(·) associated with P3 with KKT conditions [5]:

L(r, α, β, κ, γ) = −
N∑

i=1

Vi ∗ ln(Qo
i − Qb

i ) −
N∑

i=1

M∑

m=1

αi,m ∗ ri,m

+
N∑

i=1

βi(
M∑

m=1

ri,m − rmax
i ) +

N∑

i=1

γi(r
min −

M∑

m=1

ri,m) +
M∑

m=1

κm(
N∑

i=1

ri,m − bm),

(4)

where α,β,κ,γ are the dual variables associated with the problem. Let the
derivative of Lagrangian function equal to zero and we can obtain

∇L(r∗,α,β,κ,γ) = 0, (5)

where r∗ = {r∗
i,m,∀i,∀m} is the optimal solution of P3. Besides, the Lagrange

dual function d(·) corresponding to the L(·) function is defined as follows:

d(α,β,κ,γ) = inf
r

L(r,α,β,κ,γ). (6)

Note that P3 is a convex problem and the variable r follows the KKT con-
ditions [5]. Therefore, we can obtain the dual problem corresponding to P3
without duality gap. The dual problem can be depicted in the following form:
Max d(α,β,κ,γ) = L(r∗,α,β,κ,γ), where d(·) is the dual function and L(·) is
the Lagrangian function of P3. On the basis of the sub-gradient algorithm, the
iterative expressions of α,β,κ,γ and the partial derivatives of d(α,β,κ,γ) can
be obtain directly, which are omitted for space reasons. The iterative algorithm is
terminated when |d(s+1)−d(s)| ≤ σ, where σ is a very small positive scalar and
s is the step number. The sub-gradient updating laws guarantee that α,β,κ,γ
will converge to the optimal multipliers α∗,β∗,κ∗,γ∗ as long as ξ satisfies the
diminishing step size rules [5].

Based on the above formulation, we design an Upload Bitrate Allocation
(UBA) algorithm for allocating upload bandwidth resource to each uploader,
whose details are shown in Algorithm 1. In the UBA algorithm, each uploader
firstly maximizes the profits of his (or her) viewers by calculating an optimal
upload bitrate in each iteration based on the upload bitrates of other uploaders
in the previous iteration. When the algorithm converges, all uploaders can obtain
stable upload bitrates with a highest overall profit, which maps to the key idea
of the Nash bargaining solution, i.e., no player can profitably deviate, given the
actions of other players and the overall utility is maximized. After the optimal
solution r∗ of P3 is obtained, we also design a heuristic algorithm to obtain the
sub-optimal solution of P2. The details of the heuristic algorithm are shown in
line 7–22 in Algorithm 1, whose key is to calculate the sum of bitrates for each
uploader firstly and then assign it into datacenters. If the assignment can not be
satisfied, we will sacrifice the uploaders with the smallest number of viewers by
setting the basic bitrate to these uploaders.
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Algorithm 1: Upload Bitrate Allocation Algorithm
Require: b = {bm, ∀m}; rmin, rmax

i , ∀i; Vi, ∀i; ξ; σ.
Ensure: Optimal bandwidth allocated to uploaders: r∗

1: Initialize the Lagrangian multipliers, let flag = N , � = 0.01;
2: while |d(s + 1) − d(s)| > σ do
3: Update ri,m, ∀i, ∀m based on Eq. (5);
4: Update step size ξ and iteration round s ← s + 1;
5: Update α, β, κ, γ based on the partial derivatives of Eq. (6);
6: end while
7: while Not all uploaders are allocated in a specific datacenter do
8: Initialization: Let rsubi,m = 0, ∀i, ∀m;
9: for i = 1 to N do

10: if i ≤ flag then
11: ri =

∑M
m=1 r∗

i,m;
12: else
13: ri = rmin + �;
14: end if
15: for m = 1 to M do
16: if ri ≤ (bm − ∑N

i=1 rsubi,m) then
17: rsubi,m = ri; break;
18: end if
19: end for
20: end for
21: flag = flag − 1;
22: end while

4.3 Bubal: UBA Algorithm with Optimal Bandwidth Budget

In this subsection, we find the optimal b for maximum overall utility and solve
the problem P1 with the output of the P2 obtained in last subsection. We
assume that all the datacenters have a maximum bandwidth constraint, denoted
as bmax = {bmax

m ,∀m}. Let B = |b| denote the value of the total bandwidth
budget. We can derive the lower and upper bounds of B as bl = N ∗ rmin and
bup =

∑N
i=1 rmax

i , and we assume |bmax| > bl. Note that if we assign B with
a specific value, there exist different b = {bb,∀m} which can ensure B = |b|.
If the value of B is given, more bandwidth budget should be allocated to the
datacenter with smaller unit price of upload traffic. With the Assumption that
the datacenters are arranged in an ascending order according to the unit price,
i.e., c1 ≤ c2 ≤ ·· · ≤ cm, we can determine the unique division b when B is given:

b = {bmax
1 , ..., bmax

i−1 , B −
i−1∑
j=1

bmax
j , 0, 0, ...},

i−1∑
j=1

bmax
j ≤ B ≤

i∑
j=1

bmax
j ,

(7)
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where B is in the range of bl and bup. Besides, assume that f(·) is a concave
function and g(·) is a linear function, there exists an optimal value B∗ between
bl and bup to maximize the overall utility in P1.

Therefore, we design our algorithm called Bubal to search the optimal value
of B∗ and the related b∗. In this algorithm, we iteratively divide the domain
space of bandwidth budget in three-fold to obtain the utility with the constraint
of bandwidth budget at the fold point and shorten the domain by eliminating
the part with lower utility until the space of the domain less than a tiny positive
value.

5 Performance Evaluation

In this section, we conduct extensive trace-driven simulations based on the public
Twitch living streaming traces.

5.1 Experimental Settings

In our simulation, we discretize time into slots corresponding to a 5-min interval.
We retrieve the public Twitch living streaming dataset from [12] to simulate the
behaviors of 1000 uploaders in each slot. The unit price for datacenters is set as
[0.02 + 0.02 ∗ m] per GB, where m is the index of the datacenter. The minimum
and maximum of the upload bitrates for each uploader are set as 0.4 Mbps
and 5 Mbps for simplicity. The maximum bandwidth of datacenters is set as
bmax = [400, 1000, 600, 2000] and we can derive the lower and upper bounds of
B∗ as bl = 400 and bup = 5000. In addition, the weight of bandwidth cost defined
in P1 is initialized as 0.5 and we can increase the value of k to emphasize the
importance of bandwidth cost.

In order to evaluate the performance of our proposed algorithm Bubal, we
mainly select two alternative strategies as baselines:

– Proportional Allocation (Proportional) [3], in which the upload bandwidth
will be allocated for each uploader based on the proportion of the amount of
viewers. If an uploader has a larger proportion of viewers, he (or she) will be
allocated with more bandwidth.

– Average Allocation (Average), in which we allocate the upload bandwidth
among all uploaders evenly.

Figure 1(a) describes the total number of viewers of 1,000 uploaders over 500
time slots. First, it is obvious that the number of viewers is highly dynamic. Sec-
ond, there are about 480,000 online viewers of these 1,000 uploaders in the peak
time period and the peak-to-valley gap is about 285,000. Figure 1(b) illustrates
the CDF of viewers for the uploaders in the time slot 500 and from this figure,
nearly 80% uploaders have less than 100 viewers.
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Fig. 1. Descriptions of the dataset and some experiment results of the bandwidth
budget.

5.2 Performance Comparison

We firstly explore the performance of our design compared to alternative strate-
gies. To evaluate our algorithm with different tradeoff requirements between
bandwidth cost and viewer QoE, we conduct simulations with three different
values of k as 0.5, 0.2, 0.05, the results of which are shown in Fig. 2. When k is
higher, it means the CVL platform is more sensitive to bandwidth cost. We find
that when k = 0.5, which simulates the most cost-sensitive CVL platforms, our
proposed Bubal achieves the best overall utility and QoE gain compared to the
other two baselines while having a slightly higher bandwidth cost. When k = 0.2
and k = 0.05, which respectively simulate the scenarios that CVL platforms are
moderately cost-sensitive and the least cost-sensitive, our proposed Bubal still
achieves a better overall utility compared to two baselines while having a slightly
lower QoE gain but lowest bandwidth cost.

To further explain why Bubal always achieves the best overall utility while
not always having the highest QoE gain and the lowest bandwidth cost, we show
the detailed impact of parameter k (varying from 0 to 1) on bandwidth budget
in Fig. 1(c). k = 0 means that the bandwidth cost is ignored and all uploaders
can be allocated with the maximum upload bitrate. When k increases, the band-
width budget B∗ decreases as CVL platforms care more about the bandwidth
cost. As such, three algorithms perform very differently with various bandwidth
budgets shown in Fig. 1(d). When the bandwidth budget is low, the slope of QoE
gain with Bubal is the highest, which means Bubal can achieve a high QoE gain
benefit. Therefore, as shown in Fig. 2(a), when k = 0.5, Bubal achieves the best
QoE gain while having a slightly higher bandwidth cost. When the bandwidth
budget is higher, the slopes of QoE gain with Proportional and Average are the
steepest, successively. Therefore, Proportional and Average achieve the best QoE
gain while having the highest bandwidth cost in Fig. 2(b)/2(c), respectively.



Optimizing Uplink Bandwidth Utilization for Crowdsourced Livecast 67

0 100 200 300 400 500

−0.8

−0.6

−0.4

−0.2

Utility

Time slot

Th
e 

ut
ilit

y 
of

 to
ta

l u
pl

oa
de

rs

Bubal
Average
Proportional

0 100 200 300 400 500
0

0.5

1

1.5
QoE gain

Time slotTh
e 

Q
oE

 g
ai

n 
of

 to
ta

l v
ie

w
er

s

Bubal
Average
Proportional

0 100 200 300 400 500
1.5

2

2.5

3

3.5
Bandwidth cost

Time slot

Th
e 

ba
nd

w
id

ht
h 

co
st

 ($
)

Bubal
Average
Proportional

(a) The most cost-sensitive CVL platforms (k = 0.5).
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(b) The moderate cost-sensitive CVL platforms (k = 0.2).
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(c) The least cost-sensitive CVL platforms (k = 0.05).

Fig. 2. The overall utility, QoE gain and bandwidth cost for different k.

6 Conclusion

In this paper, we focus on utility optimization of upload bandwidth from the
perspective of CVL platform operators. We adopt the Nash Bargaining Solu-
tion (NBS ) optimization framework to ensure the effectiveness and fairness and
design an effective low-complexity algorithm to determine an optimal bandwidth
budget, upload bitrates and datacenter selection. At last, some trace-driven sim-
ulations are conducted and the results show that our design can significantly
improve the overall utility. In our future work, we plan to study the impact of
dynamic network conditions. In addition, we plan to consider more live streaming
scenarios and more complicated network structures.
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Abstract. Batched linear algebra problems are becoming increasingly
important in engineering and scientific applications. As the performance
of graphics processing units (GPUs) improves rapidly, GPUs are very
attractive to solve this class of problems. This paper presents a parallel
blocked Jacobi SVD algorithm for many small matrices on GPUs. The
parallelism of the Jacobi algorithm is squeezed sufficiently. Our algo-
rithm can be mapped to the GPU memory hierarchy properly due to
the blocking structure. Reduction operations used for computing inner
products and having low thread utilization are instead by performing the
Jacobi rotation on the Gram matrix in parallel. We identify the kernels
with sharing data and fuse them to improve memory locality by plac-
ing shared data, originally passed via off-chip global memory, into the
on-chip shared memory. Numerical results on an NVIDIA Tesla V100
GPU show that our batched SVD routine outperforms state-of-the-art
approaches between 2.0× and 4.1× for the examples tested. As one of the
applications for our routine, the numerical simulation of quantum lattice
systems is tested and achieves a maximum of 54.1× speedups over the
CPU implementation running on a 48-core Xeon CPU.

Keywords: Batched execution · SVD · Blocked algorithms · Kernel
fusion · GPU

1 Introduction

Batched linear algebra problems are to solve many independent problems simul-
taneously. When the matrices are large enough to take full advantage of the
computing resources of the device, these independent problems are preferred
to be solved in serial for better data locality and reuse, thus there is no need
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for batched routines. However, when matrices are small, such as the matrices
of size no more than 512, the workloads of a single matrix cannot saturate
the device, especially GPUs. To this end, a lot of matrices should be solved
together, and batched routines are required. Up to now there are many batched
linear algebra routines, such as batched general matrix-matrix multiplication
(GEMM), batched Cholesky factorization, batched lower-upper (LU) factoriza-
tion, batched singular value decomposition (SVD), to name a few. These routines
are widely used in machine learning, computer vision, astrophysics, and other
fields [1–4]. The development of routines for batched small matrices comput-
ing is relatively easy for multicore CPUs. For example, a combination of the
OpenMP and highly optimized LAPACK/BLAS libraries (such as MKL, open-
BLAS) usually obtain an optimistic performance, since most of the computation
can be performed through the fast CPU cache. However, the development is not
intuitive for GPUs due to the lack of large caches.

Batched GEMM may be the most basic operation in dense linear algebra
probably because many other batched routines also call it. Many vendors pro-
vide the batched GEMM implementation on their devices [5,6] to satisfy the
growing demand from different fields. The University of Tennessee also gives an
implementation for batched GEMM in open-source package MAGMA both on
CPUs and GPUs. There are also a lot of works focusing on batched LAPACK
routines on GPUs [7]. For example, Dong et al. [8] presented different implemen-
tations of batched Cholesky factorizations. Abdelfattah et al. [9] demonstrated
a high-performance routine of batched LU factorization with partial pivoting.

Unlike the Cholesky factorization and LU factorization, the SVD algorithm
is iterative, so the computation of all matrices can terminate at the same time
barely. After most of the matrices converge, the remaining matrices cannot fully
utilize the streaming multiprocessors on GPUs. As a result, it is more challeng-
ing to design batched SVD algorithms on GPUs. The cuSOLVER library [10]
released by NVIDIA support only batched SVD decompositions for matrices no
more than 32 × 32. Dong et al. [11] presented a method to accelerate the SVD
bi-diagonalization stage of a batch of small matrices using GPUs. However, the
following SVD diagonalization stage remains unresolved. Badolato et al. [12]
used each thread within a warp to compute the SVD of a single matrix. The
algorithm implemented in their work was a conventional non-blocked Jacobi
algorithm. Boukaram et al. [13] presented batched SVD routines and used these
routines for the compression of hierarchical matrices. For the matrices of sizes
that were no more than 64×64, whole matrices were loaded up to the register or
the shared memory, and thus the good performance was achieved. For the matri-
ces of sizes that were larger than 64 × 64, because the register and the shared
memory cannot hold the entire matrices, the blocked Jacobi SVD algorithm was
employed. But the blocked Jacobi rotations in a single matrix were conducted
serially, then the GPUs could not be satiated after some matrices terminated
early. The batched SVD routines were integrated into the KBLAS library [14].

In this paper, we present an optimized routine for batched SVD decomposi-
tion on GPUs and it’s applications. We summarize our contributions as follows:
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(1) design a parallel blocked Jacobi SVD algorithm, as well as efficient implemen-
tations and optimization techniques. In our design, the blocked Jacobi rotations in
a single matrix were conducted concurrently. This is the main difference between
our work and previous works; (2) replace reduction operations with low thread
utilization by performing the Jacobi rotation on the Gram matrix in parallel; (3)
show the application of our work by accelerating the quantum lattice simulation.

The remainder of this paper is organized as follows. Section 2 introduces the
algorithmic background. In Sect. 3, efficient implementations and optimization
techniques are presented. Section 4 provides the experimental results and analy-
sis. Section 5 shows the accelerating of the quantum lattice simulation. Section 6
concludes this paper and outlines the future work.

2 Algorithmic Background

Given a m × n real matrix A, the SVD decomposition of A is to find a m × m
orthonormal matrix U , a m × n diagonal matrix Σ, and a n × n orthonormal
matrix V , such that

A = UΣV T (1)

The columns of U and V are called the left singular vectors and the right singular
vectors respectively. The diagonal entries of Σ are called the singular values and
are sorted in decreasing order.

2.1 Jacobi Algorithms

Algorithm 1 describes the canonical one-sided Jacobi SVD algorithm. The algo-
rithm is a repeatedly orthogonalized procedure in sweeps using the Jacobi rota-
tion until all columns are mutually orthogonal up to machine precision. The
process of any pair of columns is orthogonalized once is called a sweep, so a
sweep includes n(n − 1)/2 pairs of columns. There are many methods to give all
pairs of columns in a sweep. The classical methods include the row-cyclic order-
ing method and column-cyclic ordering method. Unfortunately, the two methods
result in poor parallelism.

One of the superiorities of Jacobi SVD algorithms is parallelism. As long as
the picked columns are excluded, step 3 and step 4 can be performed simulta-
neously. The most common two methods to give all pairs of columns in a sweep
that are suitable for parallel calculations are the round-robin method [15] and
odd-even method [16]. Despite the parallelism of the round-robin method being
superior to the odd-even method, the round-robin method does not converge for
some particular matrices [17]. Hence, the odd-even method is adopted because
it converges for all matrices [17].

As shown in Algorithm 1, the Jacobi rotation is the core module. Let ap and
aq be the pth and qth columns of matrix A respectively, then the 2 × 2 Jacobi
rotation matrix Jp,q can be achieved by some formulas depending on the inner
product of ap and aq [15]. The off-norm of a matrix in Algorithm1 is defined by
the Frobenius norm of a new matrix which is equal to the initial matrix except
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Algorithm 1: Jacobi algorithms
Input: A
Output: U, Σ, V

1 while off(AT A) > ε do
2 foreach (p, q) in {All pairs of columns in a sweep} do

3 Calculate the Jacobi rotation matrix Jp,q

4 Conduct the Jacobi rotation: [ap aq] = [ap aq] · Jp,q /* BLAS-1

operation */

5 end

6 end

7 Calculate the singular values Σ: Σ =
√

AT A
8 Calculate the left singular vectors U : U = AΣ−1

9 Calculate the right singular vectors V : V = Σ−1UT A
10 Sort the singular values and move the corresponding singular vectors if necessary

that the diagonal elements are all zero. In addition, ε is the convergence toler-
ance. As the Jacobi rotation is a memory-bounded BLAS-1 operation, Algorithm
1 is also memory-bounded.

2.2 Parallel Blocked Jacobi Algorithms

The blocked versions of algorithms accumulate some BLAS-1 or BLAS-2 oper-
ations into a BLAS-3 operation. Therefore, the blocked versions are compute-
intensive and perform well on a modern machine. In the blocked SVD algorithms,
the matrix A is divided into a lot of panels, i.e., A = [A1 A2 · · · AK ]. For sim-
plicity, we assume that K is even and the sizes of all panels are equal to NB.
The blocked SVD algorithms follow a similar workflow with Algorithm1 and
also iterate sweep by sweep until converge. In each iteration, a pair of panels are
picked and the blocked Jacobi rotation is conducted. However, the computation
of the blocked Jacobi rotation matrix BJp,q is more complicated, and iterative
algorithms must be used.

In [13], two algorithms are used. One is to compute the SVD decomposition
of the Gram matrix, i.e. the inner product of the picked panels. Another is
to carry out the QR factorization on the picked panels first, and then apply
the SVD decomposition on the upper triangular matrix arising from the QR
factorization. The former achieved higher performance than the latter. In this
paper, we get the blocked Jacobi rotation matrix by conducting Algorithm1 on
the picked panels directly. However, a trivial design of Algorithm1 results in
poor performance because the calculations of the inner product are reduction
operations and can not make good use of GPUs’ numerous cores. Our approach
is to update the inner product of matrix columns in parallel, and the details are
presented in Algorithm 2. In fact, the Gram matrix is the inner product of the
columns of the matrix. Except for the initial step (step 4 in Algorithm2), the
costly iterative process (steps 7 to 9 in Algorithm 2) does not visit the picked



A Batched Jacobi SVD Algorithm on GPUs 73

Algorithm 2: Parallel blocked Jacobi algorithms
Input: A
Output: U, Σ, V

1 while off(AT A) > ε do
2 foreach (p, q) in {All pairs of panels in a sweep} do parallel

/* Steps 3 to 11 is essentially Algorithm 1 */

3 Initialize BJp,q as an identity matrix I : BJp,q = I

4 Calculate the Gram matrix Hp,q: Hp,q = [Ap Aq]
T · [Ap Aq]

5 while off(Hp,q) > ε do
6 foreach (pin, qin) in {All pairs of columns in a sweep} do

parallel
7 Calculate the Jacobi rotation matrix Jpin,qin

8 Conduct the Jacobi rotation on Hp,q:
Hp,q[pinqin] = Hp,q[pinqin] · Jpin,qin

(Hp,q[pinqin])T = (Hp,q[pinqin])T · Jpin,qin

9 Conduct the Jacobi rotation on BJp,q:
BJp,q[pinqin] = BJp,q[pinqin] · Jpin,qin

10 end

11 end
12 Conduct blocked Jacobi rotation on [Ap Aq]: [Ap Aq] = [Ap Aq] · BJp,q

/* BLAS-3 operation */

13 end

14 end
15 Calculate Σ, U , and V in a similar way with Algorithm 1
16 Sort the singular values and move the corresponding singular vectors if necessary

panels which reside on the global memory. On the other hand, there are no
reduction operations from steps 7 to 9. As a result, the performance is greatly
improved.

Similar to Algorithm 1, the blocked SVD algorithms are also suited for par-
allel development. As long as the picked panels are excluded, the blocked Jacobi
rotations can be conducted simultaneously. On the other hand, we employ par-
alleled Algorithm 1 to achieve the blocked Jacobi rotation matrix. Therefore, a
parallel blocked Jacobi SVD algorithm (Algorithm2) enjoying a two-tier parallel
can be developed.

3 Design Details

We assumed that all matrices have been stored in the global memory of GPU, and
the matrix elements are aligned in a column-major manner. The representative
CUDA is used as the programming model of GPUs. However, our ideas are also
available for other programming models such as OpenCL and HIP.
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3.1 Overall Design

The previous work depended on the independence of the batched execution. For
a single matrix, the serial block Jacobi algorithm was used. As a result, the one-
dimensional grid was a good choice. Unlike the Cholesky factorization and LU
factorization, the Jacobi SVD algorithm is iterative, so the computation of all
matrices can terminate at the same time barely. After some matrices terminate
early, the remaining matrices cannot utilize the computing resources of GPUs
effectively. This problem can be overcome by conducting the parallel block Jacobi
algorithm for a single matrix. Therefore, the two-dimensional grid is more favor-
able. The first dimension of the grid is n/(2NB). The second dimension of the
grid is equal to the number of matrices. Then each matrix has a unique ID, and
all matrices are factorized concurrently. Because matrices are two-dimensional,
the two-dimensional thread block is an appropriate candidate, and the size of
the thread block is (2NB,NB). We use a thread block to conduct the blocked
Jacobi rotation of a pair of panels and have a 1:2 map between threads and the
elements of the Gram matrices.

One of the advantages of CUDA is that users can program on the L1 cache
through the on-chip shared memory. The shared memory has the same physical
structure and the same bandwidths as the L1 cache, but lower access latency
than the L1 cache. It is a pity that the shared memory is a precious resource
and the size is no more than 48KB for most GPUs. In our design, the panel
size NB is chosen such that the shared memory can hold the Gram matrix
which is a 2NB × 2NB matrix. In that way, the costly iterative process (steps
7 to 9 in Algorithm 2) can be performed on the shared memory entirely, so high
performance can be achieved. In addition, a column of threads is used to perform
steps 7 to 9 in Algorithm 2 for a pair of columns.

Calculating the Gram matrix (step 4 in Algorithm2) and conducting the
blocked Jacobi rotation (step 12 in Algorithm2) can be fulfilled by batched
GEMM routines. There are many excellent batched GEMM routines to use
directly. However, in our scenario, the two panels picked are not continuous
in memory. Memory copy is inevitable to call existing batched GEMM routines,
thereby degrading performance. So new solutions must be proposed.

Our implementation of batched GEMM is similar to the MAGMA but equips
a flexible interface. Based on the flexible interface, we just need to shift the
pointer to access the picked panels with uncontinuous addresses for performing
GEMM and thus avoid unnecessary memory copy. The well-known techniques
such as efficient off-chip memory access and double-buffering are used to optimize
the efficiency of matrix computations [18].

3.2 Kernel Optimization

For designing batched algorithms on GPUs, higher performance can be delivered
by improving data reuse. A common way to improve the reuse is to fuse kernels.
Kernel fusion [19] is employed in this paper not only to decrease the associated
overload of launching kernels but also to improve memory locality by placing the
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data shared by multiple kernels, originally passed via off-chip global memory, into
the on-chip memory shared memory. We fuse all kernels corresponding to steps 3
to 12 of Algorithm 2 into a single kernel, which brings the following two benefits.
First and foremost, different kernels cannot share the register files and the shared
memory, so the global memory with the greatest access latency must be used to
exchange data. As noted before, the Gram matrix resides on the shared memory.
Lunching only a kernel can avoid reading and writing the Gram matrix form and
to the global memory. Second, launching kernels is associated with kernel launch
overhead. It is advantageous to decrease the number of kernels.

3.3 Convergence Criterion

Since the rates of convergence for different matrices are not equal, keeping
track of every matrix is necessary to identify the unconverged matrices. For
our batched SVD routine, we exploit the highly optimized batchedGEMM rou-
tine from cuBLAS and some auxiliary routines, which are not difficult to develop
so the details are omitted for brevity, to calculate the off-norms (step 1 in Algo-
rithm2). Then, we find the maximum value of the off-norms for all matrices.
The algorithm terminates when the maximum value is less than the given toler-
ance ε. Another convergence criterion i.e. step 5 in Algorithm 2 that is applied
within a single thread block can be implemented in a more intelligent way. We
use a root thread to calculate the off-norm and broadcast the off-norm to other
threads through the shared memory. The iterative process comes to an end when
the off-norm is less than the given tolerance ε.

4 Experimental Results and Analysis

4.1 Experimental Setup

We conduct our experiments on a computing platform with a CPU and a GPU.
The CPU is an Intel(R) Xeon(R) Gold 6240R CPU whose frequency is 2.4 GHz
and has a total of 48 cores. The GPU is an NVIDIA V100-PCIe-32GB GPU. The
CUDA version used in this paper is 11.1. Our batched SVD routine is developed
in C without any use of low-level instruction sets.

The following two types of synthetic matrices are used to test the performance
of our batched SVD routine.

– Type 1: All matrix elements are generated randomly from the uniform distri-
bution U(0, 1).

– Type 2: The matrices are first arranged to upper triangular matrices. What’s
more, the diagonal elements are equal to n. The remaining matrix elements
are generated randomly from the uniform distribution U(0, 1). Matrices in
this type are row diagonally dominant.

Figure 1 shows the convergent sweeps of two types of matrices for our batched
SVD routine. The sizes of matrices are from 96 to 512. For each size, 200 matrices
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are tested and the convergent sweeps shown in Fig. 1 are the maximum sweep
among the 200 matrices. It is observed that the convergent sweeps of type 1 are
larger than the type 2 for all sizes.
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types of matrices.

50 100 150 200 250 300 350 400 450 500 550
Matrix size

1000

1200

1400

1600

1800

2000

2200

G
flo

ps
/s

Type 1
Type 2
Unfused version for Type 1
Unfused version  for Type 2

Fig. 2. Performance improvement
using kernel fusion.

4.2 Performance Analysis

To verify the impact of kernel fusion, we also develop an unfused version where
three kernels are launched for step 4, steps 5 to 11, and step 12 respectively. The
Gram matrix and the blocked Jacobi rotation matrix sharing by different kernels
are transmitted through the global memory. Figure 2 shows the test results of two
versions using 200 matrices that are from type 1 or type 2 and are from the same
type. It can be seen that kernel fusion can achieve increments of performance
ranging from 6% to 10%. What’s more, the benefits of kernel fusion are greater
while the matrices become larger. This is because more kernels are launched for
larger matrices in the unfused version.

In the following, we compare our routine with kernel fusion with the KBLAS
library. There are two batched SVD routines in the KBLAS: the Gram SVD
routine and the direct SVD routine. The performance of the Gram SVD routine
is higher than the direct SVD routine. Therefore, we compare our routine with
the Gram SVD routine. First, we generate matrices with varying amounts for
testing. In this test, matrices are all from type 1, and results are shown in
Fig. 3(a). Second, 200 matrices mixed with different types based on the ratio
of type 1 versus type 2 are generated for testing. The ratios are 2:8 and 8:2.
Figure 3(b) presents the results. It is obvious that our routine outperforms the
KBLAS for all test cases, scoring speedups ranging from 2.0× up to 4.1×. What’s
more, the KBLAS gets poor performance for small amounts of matrices but our
routine also achieves considerable performance.

In all tests, the singular values, the left singular vectors, and the right singular
vectors are both computed. Four quantities errσ, errU , errV and errD defined
in (2) and (3) are used to depict the accuracy of SVD implementations. The σex

i
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Fig. 3. Performance comparison of our routine versus the KBLAS.

are the exact singular values. In practice, the exact singular values of random
matrices are unavailable, so we use the SVD routines in LAPACK to acquire
singular values instead. The Σ̂, Û and V̂ are the calculated singular values,
calculated left singular vectors, and calculated right singular vectors respectively.
Table 1 gives the numerical error of our routine and the KBLAS. We can see that
our routine is comparable to the KBLAS in the results of errσ. Nevertheless,
our routine is slightly inferior to the KBLAS in the other three quantities. As
we can see in Sect 5, the accuracy is sufficient for practical applications.

errσ = max
1≤i≤n

|σex
i − σ̂i|

max(1, σex
i )

, errD =

∥
∥
∥A − ÛΣ̂V̂

∥
∥
∥

F√
n ‖A‖F

(2)

errU =

∥
∥
∥I − ÛT Û

∥
∥
∥

F√
n

, errV =

∥
∥
∥I − V̂ T V̂

∥
∥
∥

F√
n

(3)

5 Application to Quantum Lattice Systems

One of the applications on top of our batched SVD routine presented in this
paper is numerical simulations of quantum lattice systems which are very impor-
tant in modern condensed matter physics. We only show the application of our
proposed routine on one-dimensional systems, and multi-dimensional systems
can also be applied trivially. For one-dimensional quantum lattice systems, an
optimal tensor network is matrix product states (MPS). Reviewing and analyz-
ing MPS algorithms are beyond the scope of this paper. Here we focus on the
narrow task of calculating time evolution for one-dimensional quantum lattice
systems by the time-evolving block decimation (TEBD) algorithm. We just give
a brief description of the TEBD algorithm, and the details can be found in [20].
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Table 1. Numerical error of our routine and the KBLAS.

Matrix dimension Our KBLAS

errσ errU errV errD errσ errU errV errD

96 2.4E–17 1.9E–15 6.4E–14 1.1E–15 3.4E–17 4.3E–16 4.0E–14 4.9E–16

128 7.1E–17 2.1E–15 1.1E–13 2.4E–15 5.8E–17 5.2E–16 4.0E–14 5.2E–16

192 3.4E–17 2.5E–15 1.2E–13 3.0E–15 4.4E–17 6.1E-16 4.0E–14 6.5E-16

256 3.9E–18 2.5E–15 1.1E–13 1.4E–15 3.5E–17 7.2E–16 7.1E–14 7.7E–16

320 5.0E–17 3.2E–15 8.0E–13 2.4E–15 2.8E–17 8.2E–16 4.0E–13 8.7E–16

384 3.6E–17 3.2E–15 5.7E–12 1.9E–15 1.2E–17 9.0E–16 2.3E–12 9.7E–16

448 7.7E–18 3.5E–15 3.8E–13 4.6E–15 1.7E–17 8.8E–16 1.9E–13 9.3E–16

512 8.8E–17 3.8E–15 2.8E–13 3.1E–15 3.9E–17 9.6E–16 1.2E–13 1.0E–15

Table 2. THE SVD routine time ratio of the TEBD algorithm.

Matrix dimension Percentage

96 70.6%

128 74.1%

256 90.6%

512 95.9%

There are two main steps of the TEBD algorithm. The first step is to contract
the two-site-operators and tensors in MPS representation, which results in a non-
MPS representation. To recover the MPS representation, each tensor needs to
be split into two tensors. To achieve this, the tensors are reshaped to matrices,
and the routines of SVD decompositions for matrices are employed. This is the
second step.

As a benchmark, we first implement the TEBD algorithm using the
TNSPackage [21] with version 3.5.8, which is a highly optimized Fortran 2003
library for tensor network state methods. The one-dimensional quantum lattice
system used in this paper is the Heisenberg model. The number of quantum lat-
tices is 100. The physical degree freedom on each site is 2. The initial time step
is 0.1, and the time step is decreased to 1

5 after ten steps walkthrough. The total
steps are 50, so the minimum time step is 0.00016. Experimental environments in
this section are the same as the Sect. 4. Table 2 shows the running time percent-
age of SVD routine in the TEBD algorithm implemented by the TNSPackage.
We can see that the ratios grow with the increase of matrix dimensions, and
the ratio is up to 95.9% when the matrix dimension is equal to 512. Therefore,
accelerating the SVD routine is critical for improving the performance of the
TEBD algorithm.

In the TEBD algorithm, the splits of tensors are independent, thus the split-
ting can be conducted simultaneously. For utilizing our proposed batched SVD
routine, we first reshape all tensors to matrices and then do SVD decomposition
of all matrices simultaneously. Table 3 displays the time in seconds of the TEBD
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Table 3. The comparison of the TEBD algorithm for different implementations.

Matrix dimension TNSPackage Our Speedup Difference

96 27.168 3.700 7.3× 1.6E–13

128 64.320 5.074 12.7× 2.0E–13

256 561.428 17.211 32.6× 2.2E–13

512 4542.161 83.958 54.1× 1.9E–13

algorithm implemented by the TNSPackage and our batched SVD routine. It
can be seen that the implementation based on our batched SVD routine outper-
forms the TNSPackage for all dimensions tested, and the maximum speedup is
up to 54.1×. We also compare the numerical difference of the TEBD algorithm
implemented by the TNSPackage and our batched SVD routine. The difference
is presented in Table 3. In fact, the approximation error of the TEBD algorithm
is O(δt) introduced by the Trotter-Suzuki decomposition [20]. Obviously, the dif-
ference presented in Table 3 is much less, which indicates that our bathed SVD
routine is trustworthy.

6 Conclusion

In this paper, we presented a parallel blocked Jacobi algorithm and its efficient
implementation for singular value decomposition of many small matrices. Our
approach exploits adequately the blocking structure and the parallelism of the
blocked Jacobi SVD algorithm thus fitting well into the SIMT GPU architec-
tures. Our implementation needs a CPU only for controlling flow and deliver
high performance against state-of-the-art solutions. For illustrating the power
of our routine, we further develop an application, the numerical simulation of
quantum lattice system, on top of our routine, and achieve a maximum speedup
of 54.1× versus its CPU counterpart. In the future, we plan to generalize our
methodology for non-uniform workloads.

Acknowledgment. We would like to acknowledge He L. and Dong S. for helpful
conversations and insights on numerical simulations of quantum lattice systems.
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Abstract. In this paper, we develop a multi-scale model to simulate the
aggregation of platelets in a low shear-coefficient flow. In this multi-scale
model, the Morse potential is used to describe the interaction between
the αIIbβ3 receptor and fibrinogen, the dissipative particle dynamics
(DPD) is used to simulate fluids on the macro-scale, and the coarse-
grained molecular dynamics (CGMD) is used to simulate the fine-scale
receptors’ biochemical reactions. Moreover, with the assistance of the
high-throughput simulations on the heterogeneous cluster, we calibrate
the parameters for the Morse potential which are critical in the proper
simulation of the aggregation of platelets. With this model, we simulate
the long-term behaviour of thrombus formation constructed by many
platelets. Our simulating results are consistent with in-vitro experiments
on contact areas and detaching forces. Moreover, it reduces the compu-
tational cost significantly.

Keywords: Platelet aggregation · High-throughput simulation ·
Molecular dynamics · Morse potential

1 Introduction

Platelet aggregation is a common phenomenon in the blood flow, which pro-
motes wound repair in general. However, platelet aggregation might also be a
crucial factor in triggering thrombosis. For patients suffering from cardiovascu-
lar disease or wearing some extracorporeal blood circulation device, abnormal
platelet aggregation caused by high blood pressure may cause serious complica-
tions. Therefore, understanding the mechanism of platelet aggregation is of great
significance for the prevention and treatment of cardiovascular diseases. So far,
many medical experiments have been completed to understand the mechanism of
platelet aggregation. For instance, some experiments show that platelet aggrega-
tion in the vein or aorta with the low-to-medium shear flow is due to fibrinogen
c© Springer Nature Switzerland AG 2022
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[11,16,17] binding distributed in the blood to the αIIbβ3 protein [2]. Some other
experiments discover that the initial small clot will attract more platelets to par-
ticipate, and eventually, they combine to form a large thrombus. Since various
factors, including platelet surface proteins, ligands, and shear stress, will partici-
pate in the reaction during platelet aggregation, it seems very difficult to discover
the mechanism of platelet aggregation only by medical/chemical experiments.

Recently, more and more scientists tried to use numerical simulation to reveal
the mechanism of platelet aggregation. Since the process of platelet aggregation
usually involves multi-scale physical or chemical behaviors such as the macro-
scale fluid flow, and molecular-size reaction occurs among surface proteins, a
high-precision simulation requires a multi-scale numerical model that covers at
least fluid mechanics and molecular dynamics. Usually, a good simulation model
[4–6,18–21] includes three scales: macro-scale, meso-scale, and micro-scale. With
the macro-scale model, we simulate the flow of blood in vessels. Note that the
classical fluid dynamics equation such as Navier-Stokes equation and some par-
ticle methods [14], such as SPH [10], DPD [1], and SDPD [8,15], etc., can also
be used to characterize the blood flow. With the meso-scale model, we simulate
the interaction between the blood fluid and the platelet. The motion of platelets
caused by blood flow and the change of flow field due to immersed platelets and
thrombi can be calculated in this scale. With the micro-scale model, we simulate
the nanometer-level size proteins, which play a critical role in the aggregation of
platelets.

It is challenging to simulate all the platelet aggregation process details using
full-atom molecular dynamics, but multi-scale models are available. For instance,
in [4], Prachi et al. simulate the platelet aggregation with the DPD-CGMD model
[20], in which the DPD method is used to solve viscous flow, and the CGMD
is used to simulate the movements of the particles in the interior of platelets.
With their method, they successfully simulate the aggregation process of two
platelets in a blood flow. However, the massive amount of computation limits the
application of their model to simulate the aggregation process of more platelets,
even on the fastest modern supercomputer.

In this paper, we propose a rigid platelet multi-scale model to simulate
the aggregation of more platelets. In our model, each platelet is regarded as
a rigid body in the sense that there is no relative movement between the par-
ticles/molecules of the same platelet. Of course, this simplified model cannot
simulate the process of platelet deformation to produce filopodia. However, our
model includes the interaction of the particles/molecules distributed on the mem-
brane of platelets. Since the real platelet aggregation is driven by many αIIbβ3
proteins distributed on the membrane of platelets and the mediation of fibrino-
gen in the blood, our simplified model can simulate the following main process of
platelet aggregation: once there exists two platelets gathers together, the blood
flow speed will be slowed down, the consequent increase of shear pressure leads
to aggregation of more platelets, and eventually to form an enormous clot.
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2 A Rigid Platelet Multi-scale Model

This section introduces basic ingredients to stimulate platelet aggregation with
the MD-based rigid platelet multi-scale model.

2.1 DPD Model for Blood Flow

From the microcosmic point of view, calculating the statistical properties for
all fluid molecule trajectories is the way to realize the fluid dynamics. However,
the enormous of calculations cannot be implemented even on the fastest modern
supercomputer. Therefore, the mesoscopic DPD fluid model [12] was established
and used in the simulation of biological fluids. Here, the DPD particle represents
a cluster of fluid molecules, similar to the renormalization group [7]. Although
the details of a single molecule are lost, the physical property of a bunch of DPD
particles still can reflect the fluid’s motion characteristics [3], even turbulence.
Assuming that within the cut-off distance, the ith particle is affected by its
surrounding DPD particles, the resultant force and the change in velocity can
be written as follows,

dvi =
1

mi

N∑

j �=i

(
FC

ijdt + FD
ijdt + FE

ijdt + FR
ij

√
dt

)
. (1)

Here, mi, FC
ij , FD

ij , FR
ij and FE

ij represent the mass of the ith particle, the
conservative force, dissipation force, random force and external force of the jth
particle on the ith particle, respectively. Detailed representations of the above
forces are expressed as below.

FC
i = a

(
1.0 − rij

rc

)
eij ,

FD
ij = −γωD (rij) (eij · vij) eij ,

FR
ij = σωR (rij) ςijeij ,

ωD (rij) =
[
ωR (rij)

]2
=

(
1.0 − rij

rc

)2k

.

(2)

The physical meaning of the conservative force FC
ij is the compressibility of the

fluid. Here rij is the distance between two particles, rc represents the cut-off
distance, eij is the unit vector pointing from the ith particle to the jth particle,
and the coefficient a is determined by letting the two particles be in the same
position (i.e. rij = 0). We may observe that the conservative force is the linear
function of the negative correlation with the distance rij . That is to say, the
conservative force attenuates with a larger distance in a linear format. When
the particle density increase, the decrease of average distance cause more par-
ticles to move in the range of cut-off distance. But the larger repulsive force
will promote the density of particles to be stable, which shows compressibility
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likes spring. Similarly, the small repulsive force corresponding to the low density
always attracts other particles to increase the density. The dissipation force FD

ij

reflects the frictional force between particles that run irregularly in the fluid.
Namely, the dissipation force indicates the viscosity of the liquid. The parame-
ter γ is the coefficient of the dissipative force. The magnitude of the dissipative
force is related to the relative distance and relative speed between particles. The
negative sign of FD

ij means the decelerating effect in the direction of relative
velocity. The random force FR

ij reflects the characteristics of the random Brown-
ian motion of liquid particles. To meet the features of the constant-temperature,
constant-volume ensemble (NVT), according to the fluctuation-dissipation the-
orem, the coefficients of the conservative force, random force, and dissipation
force satisfy the following relationship,

a = 75kbT/ (ρfrc) , (3)

σ2 = 2γkBT, kBT = 1.0, (4)

where ρf is the density of DPD particles, and according to Prachi’s [4] simulation,
the above parameters can be chosen as

a = 25.0, γ = 67.5, k = 0.25, rc = 1.7. (5)

2.2 CGMD-DPD Model for Fluid-Platelet Interaction

The DPD model at the fluid level only considers the interaction between fluid
particles. To present the interaction between fluid particles and particles in the
platelet membrane, we need to introduce a platelet interface potential of which
the velocity update function can be written as below:

dvi =
1

mi

N∑

j �=i

(
∇ULJ (rij) dt + FD

ijdt + FR
ij

√
dt

)
. (6)

where, FD
ij = −γωD (rij) (eij · vij) eij , FR

ij = σωR (rij) ςijeij and

ULJ = 4ε

[(
σ

rij

)6

− 2
(

σ

rij

)12
]

.

In this model, the particles on the surface of platelets are regarded as a partic-
ular part of the fluid during the coupling of fluid and platelets. However, since
the pressure from the fluid on the membrane particles can be ignored, there
is no conservative force in the above formula. Moreover, the external force is
represented by Lenord-Jones potential ULJ , preventing the flow particle from
penetrating the membrane [19].

Note that in [4] the L-J potential is replaced by

VCGMD =
∑

bonds

kb (r − r0)
2 +

∑

L−J

4εij

[(σij

r

)12

−
(σij

r

)6
]

, (7)



Multi-scale Platelet Aggregation Model and High-Throughput Simulation 85

where kb is the bond energy between two adjacent membrane particles. The bond
energy term L-J is used to maintain the structure of the platelet; otherwise, the
platelet will shrink to a clump with the minimal energy principle. Since the
platelet is assumed to be a rigid body with no deformation for our model, the
platelet structure will never change. Therefore, we keep using (6) as our model
to simulate the fluid-solid interaction.

2.3 The Morse Potential for Platelet-Platelet Interaction

When two platelets move close to each other, the protein on the surface binds
to fibrin to produce an aggregation effect. The attractive force between particles
of different platelets drives the aggregation progress. The Morse potential is
a common tool to describe the interaction for diatomic molecular in chemical
reactions. Prachi and Zhang et al. [19] modified the Morse potential function to
simulate fluid and platelet aggregation by calibrating with experimental data.
They define

E = D0

[
e−2α(r−r0) − 2e−α(r−r0)

]
+

fA

2r0
(r − r0)

2
. (8)

According to the literature, the CGMD elastic model with harmonic and LJ
potentials in Eq. (7) leads to more computational cost. Therefore, we consider
building the rigid model that ignores Eq. (7) with original Morse potential to
simulate the aggregation. The relationship between the potential energy and the
distance for original Morse potential is as follows,

E = D0

[
e−2α(r−r0) − 2e−α(r−r0)

]
. (9)

In Eq. 9, D0 is the coefficient to measure the energy when one molecule moves
from the stabilizing point of minimum energy to infinity. r0 is the equilibrium
distance, and alpha is a parameter related to the molecule. When the distance
of r − r0 is minimal, the equation will perform a simple harmonic motion at the
equilibrium point using Taylor expansion. Hence, two platelets will vibrate near
the aggregate balance point when the driven force can be neglected than the
Morse force. The parameters D0, α, and r0 in Eq. 9 should be specified to make
the model computable, which means we should exhaust the parameter space and
compare the output metric data with experiment results. In summary, Table 1
lists the equation of each scale for the rigid platelet model, and the contribution
of the work is to achieve the detailed parameters for Eq. 9 by using the high-
throughput simulation.

3 Parameters Calibration

To determine the parameters multi-scale for platelet aggregation, we need to
compare two indicators: contact area and detaching force with medical exper-
imental data. Since molecular dynamics is a multi-body problem, the relation-
ship between the parameters and experimental medical data results is nonlin-
ear. Finding appropriate parameters often takes considerable time and cost.
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Table 1. Model of each layer for the rigid platelet model

Layer Model

Fluid Eq. 1

Interaction of Fluid-Platelet Eq. 6

Interaction of Platelet-Platelet Eq. 9

Here, we use the Hygon DCUs (Deep Computing Units) [22] to accelerate the
high-throughput molecular dynamics simulation to achieve model parameters.
Figure 1 demonstrates the size of the system as 16µm × 16µm × 8µm, and the
system contains 256,000 DPD particles, 23, 592× 2 platelets particles. As shown
in the figure, each particle (blue point) represents the protein on the membrane,
and the bounding of protein and fibrinogen will be described with Morse poten-
tial. The max velocity of Poiseuille flow is 0.28 cm/s that driven by a constant
force and no-slip boundary conditions [13].

16µm
8µm

16µm

0.28cm/s

During Aggregation

Fibrinogen

23592 
particles

Fig. 1. Profile of the system.

3.1 Contact Area and Detaching Force

When the distance between two platelets is smaller than the critical distance,
the protein on the membrane of the platelet will attract the nearest protein to
drive the aggregation of two platelets. During the reaction progress, part of the
protein detached due to the external force of fluid. Still, part of the proteins will
re-aggregate if the driven pressure from the liquid is not too enormous, which
is similar to the effect of nylon buckles. Therefore, the contact area calculation
can be converted into a particle pair whose distance is less than the sum of the
length of the fibrinogen protein and the membrane protein. Some work indicates
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that the fibrinogen protein length is about 47.5 nm, and the membrane protein
is about 20 nm above the cell membrane surface. Therefore, when the distance
between two proteins on the surface of two platelets is less than 87.5 nm, namely,
0.5 in the L-J unit, two proteins can be considered as contacted. Consequently,
the contact area between two small platelets can be calculated by the following
formula,

Ca = |CAB| · S

Ns
. (10)

Here, CAB can be calculated as follows,

CAB =
{
ri | rij < Td, rij = ‖ri − rj‖2 ri ∈ NA, rj ∈ NB

}
. (11)

S is the surface area of the membrane; Ns is the number of distance pairs less on
the membrane surface, Td represents the critical distance. |CAB| is the number
of distance pairs of the nearest neighbor distance between A and B platelets
less than Td. In the system, Ns = 23592, S ≈ 22.696 um2 with semi-major axis
a, b = 1.78 um and c = 0.445 um.

Two platelets will produce an interaction force when they aggregate. When
the external force exceeds the critical value, two platelets will separate, so the
interaction force can also be called the detaching force. For a single fibrin-αIIbβ3
protein pair, the interaction force can be measured by atomic force microscopy.
Atomic force microscopes use contact currents to image the surface of a sample,
which can distinguish single atoms. The detaching force can be obtained by
calculating the sum of the Morse force corresponding to all the distance pairs
where the distance is less than Td at the time of contact,

Fdetaching =
∑

rij<Td

D0

[
−2αe−2α(rij−r0) + 2αe−α(rij−r0)

]
. (12)

The result [9] from atomic force microscopy shows that the bonding force between
a pair of αIIbβ3 and fibrinogen is about 10–20 pN. Considering the number of
bounded proteins, the detaching force Fdetaching between the two platelets is
about 9.1 nN–18.2 nN.

3.2 Parameter Calibration with High-Throughput Simulation

During the simulation, we found that DCU acceleration can greatly reduce the
calculation time of molecular dynamics than CPU architecture. The benchmark
test results show that for a DPD system with the size of 128mm × 128mm ×
256mm, including 0.5 billion particles, the calculation speed of the DCU is
increased by 13 times compared with CPU parallelism after acceleration. For
the case in this manuscript, the 1000-core for one hour of Tianhe-2 has the same
efficiency as four nodes with 16 DCU cards for ten minutes in the Kunshan
Computing Center. Therefore, the computational cost is reduced to one-tenth,
allowing high-throughput molecular dynamics simulation for parameter fitting.

Firstly, we performed coarse-grained searching, where the range of parameter
D0 is 10 to 110 with step 20; α is 0.5 to 2.1 with step 0.2; rc is 0.6 to 1.0 with
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(a) rc = 0.7 (b) rc = 0.8

Fig. 2. Contact area phase diagrams of α and D0.

step 0.1. The coarse-grained results show that when rc = 0.7 or 0.8, platelet
aggregation can occur. Figure 2 shows the phase diagrams of the contact area
related to D0 and α. The contact area is represented by color. The blue region
represents the infeasible region caused by the penetration of two platelets. When
rc = 0.8 (see Fig. 2(b)), the maximum contact area is about 0.36µm2, and when
rc = 0.7 (see Fig. 2(a)), the maximum contact area is about 1.405µm2 marked
with the white rectangular area, which is much more close to the experiment
result.

(a) rc = 0.7 (b) rc = 0.8

Fig. 3. Contact area and detaching force phase diagrams of α and D0.

With the coarse-grained parameter simulations, we determined the approxi-
mate region for D0 ∈ [10, 35]×α ∈ [0.85, 1.1]. The high precision high-throughput
simulation was carried out and displayed in Fig. 3(a) for the white rectangular
part, as shown in Fig. 2(a). In the case of fine-grained search, as shown in Fig. 3,
we picked up the parameters with maximum contact area (Fig. 3(a)) and the
green region that detaching force ranges from 10–20 nN, the parameters of the
Morse model were finally determined: D0 = 18, α = 0.85, r0 = 0.7. With these
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parameters, the aggregation simulation with Morse potential is in good agree-
ment with the experimental data.

(a) the evolution of contact area (b) the evolution of detaching force

Fig. 4. The evolutions of platelet contact area and detaching force during the aggre-
gation time.

Figure 4 shows the evolution of platelet contact area and detaching force
when D0 = 18, α = 0.85, r0 = 0.7. When two platelets are very close, they will
attract in less than 1 µs. Two platelets slipped driven by the fluid, and the
contact area gradually increased and exceeded the lower bound of the contact
area after 16µs. In the aggregation progress, detaching force is always kept in
the range of 10 nN–20 nN, as shown in Fig. 4, which is consistent with in-vitro
experiments.

Figure 5 shows the contact region of two platelets when t = 40µs. The gray
shape represents the projection of the two platelets in the x − y direction, and
the red part represents the area where the two platelets aggregate. The contact

Fig. 5. The contact region for t = 40µs
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Table 2. Comparison of literature and in-vitro results.

Parameters Rigid (our work) Rigid (Prachi [4]) Deformable (Prachi [4]) In vitro results

Contact area (μm2) > 1.4660 0.213 ± 0.001 2.227 ± 0.003 1.4660 − 2.4340

Detaching force (nN) 16.1 ± 0.5 0.844 ± 0.007 17.842 ± 0.027 9.10 − 18.20

region is a round shape due to the regular surface of the rigid body. Table 2
compared Prachi’s and our results. In [4], the contact area of rigid platelet is
much smaller than non-rigid bodies with the same parameters. But our work of
the high-throughput molecular dynamics simulation shows that the model with
appropriate potential parameters for a rigid body also can reflect the experiment
result.

Fig. 6. The contact region for t = 40µs

4 Conclusion

Thrombus is closely related to various diseases. High-precision platelet aggrega-
tion simulation helps to understand the formation mechanism of thrombus. Most
elastic platelet models based on molecular dynamics are computationally expen-
sive, and it isn’t easy to achieve further thrombosis simulation. High-throughput
molecular dynamics show that the simulation results of the rigid platelet model
are consistent with the actual experimental data. Our rigid platelet model with
calibrated parameters is successfully applied to simulate the aggregation of four
platelets, as shown in Fig. 6. The simulation of the formation process of throm-
bosis containing hundreds or thousands of platelets is our next goal.
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Abstract. We study the multi-depot capacitated arc routing problem
(MCARP), which generalizes the classical arc routing problem to the
more realistic situation with multiple depots. We propose approximation
and polynomial algorithms for different variants of the MCARP. First,
we present the first constant-factor approximation algorithms for the
MCARP and the nonfixed destination variant. Second, for a restricted
case of the MCARP with infinite vehicle capacity, called the multi-depot
rural postman problem, we devise a (2− 1

2k+1
)-approximation algorithm

with k indicating the number of depots. Lastly, we show that the equal-
demand MCARP defined on a line graph is polynomially solvable and
develop a 2-approximation algorithm for the multi-depot capacitated
vehicle routing problem on a line.

Keywords: Approximation algorithm · Multi-depot · Vehicle routing
problem · Arc routing problem · Rural postman problem

1 Introduction

Given an undirected graph G = (V,E), which may be a multigraph, with vertex
set V and edge set E. Each edge e ∈ E is associated with a nonnegative cost
c(e) and a nonnegative integer demand d(e). There is a fleet of homogeneous
vehicles with capacity Q located at a specified vertex o ∈ V , called the depot.
The Capacitated Arc Routing Problem (CARP) is to find a set of routes (or
closed walks), starting from and ending at the depot, for the vehicles to serve
the edges with positive demands such that each vehicle serves a total demand of
at most Q (capacity constraint) and the total cost of the routes is minimized. If
the demands are defined for the vertices instead of the edges in the CARP, we
obtain the Capacitated Vehicle Routing Problem (CVRP).

As noted by Golden and Wong [13], the CVRP can be seen as a special case of
the CARP. Because we can split the vertices in the CVRP into two vertices which
are connected by a zero-cost edge with a demand equal to the original vertex
demand. The CARP occurs frequently in practice applications, including the
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inspection of electric power lines [9], distribution service [16], garbage collection
[10], school bus routing problem [24], and so on.

A natural extension of the CARP/CVRP is the Multi-Depot Capacitated
Arc/Vehicle Routing Problem (MCARP/MCVRP) where there are multiple
depots instead of a single depot and the routes are required to start from and end
at the same depot (but different routes may use different depots). The motivation
to study the MCARP/MCVRP lies not only in their theoretical interest, but also
in their wide-spread applications. For the CARP/CVRP, when the service area
is large, multiple depots are usually setting up to meet the service requirements
[11]. Such depots correspond to vehicle stations, warehouses, dumping places,
supply points or relay boxes. For example, the online shopping business usually
operates at multiple depots to improve the customers experience and satisfac-
tion in cities [19]. Other applications of the MCARP/MCVRP encompass mail
delivery [17], explosive waste recycling [27], police patrolling [7], etc.

One can see that the CARP (resp. CVRP) is NP-hard, since it contains the
well-known Rural Postman Problem (resp. Metric Traveling Salesman Problem)
as a special case where the vehicle capacity is infinite. In turn, as a generaliza-
tion of the CARP/CVRP, the MCARP/MCVRP is also NP-hard. Therefore,
the existing literature on the MCARP/MCVRP has centered on branch-and-cut
approach (e.g. see [12,20]) and meta-heuristics (e.g., see [17,19,23]). However,
we address the multi-depot CARP from the point view of approximation algo-
rithms. As far as we know, there are few approximability results on multi-depot
variants for the CARP/CVRP. In particular, we have not aware any approxima-
tion algorithm for the MCARP.

The research of approximation algorithms for the CARP/CVRP was initiated
by Haimovich and Rinnooy Kan [14], who studied the equal-demand CVRP,
which is a special case of the CVRP with d(v) = 1 for each vertex v. They gave
the well-known Iterated Tour Partition heuristic, denoted by ITP (α), where α
indicates the approximation ratio of the metric TSP (α ≤ 3

2 due to the results in
[5,8]), and proved that ITP (α) achieves an approximation ratio of 1+ (1− 1

Q )α
if the number n = |V | of vertices is a multiple of Q. Later, Haimovich et al. [15]
and Altinkemer and Gavish [2] removed the condition that n is a multiple of
Q while achieving the same result1. For the general CVRP, Altinkemer and
Gavish [1] obtained a (2+(1− 2

Q )α)-approximation algorithm, called UITP (α),
which is an extension of ITP (α) to the general case of unequal demands. A
simplified proof of this result can be found in [15]. Recently, Blauth et al. [6]
have managed to improve the longstanding ratio for the CVRP to 2+α − 2ε for
some absolute constant ε > 0. For the equal-demand case, they also devised an
improved (1 + α − ε)-approximation algorithm.

Besides the results on the CVRP defined on general graphs, there are also
approximation algorithms tailored for the CVRP defined on special graphs.
Labbe et al. [21] devised a 2-approximation for the CVRP on trees. If the graph
is a line, Wu and Lu [26] further improved the ratio to 5

3 . Note that the CVRP on

1 Actually, the versions of ITP (α) in [2,15] are slightly different from that in [14], but
we still refer to them as ITP (α).
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a half-line (i.e. the depot is located at one of the end point of the line) is already
NP-hard [3]. What’s worse, the CVRP on a half-line cannot be approximated
within ratio 3/2 unless P = NP [26].

As for the CARP, Jansen [18] showed how to generalize the above ITP (α)
and UITP (α) heuristics for the CVRP to obtain approximation algorithms with
ratios 1 + (1 − 1

Q )α0 and 2 + (1 − 2
Q )α0 for the CARP with triangle inequality,

where α0 is the approximation ratio for the Rural Postman Problem (due to the
results in [4,9], α0 ≤ 3

2 ). Wohlk [25] presented an alternative (2 + (1 − 2
Q )α0)-

approximation algorithm for the CARP with triangle inequality. Interestingly,
van Bevern [4] proved that any factor β approximation algorithm for the CARP
with triangle inequality yields a factor β approximation algorithm for the general
CARP (without the triangle inequality). As a result, the (equal-demand) CARP
admits an approximation algorithm of ratio 2 + (1 − 2

Q )α0 (1 + (1 − 1
Q )α0).

For the multi-depot CVRP, Li and Simchi-Levi [22] developed approximation
algorithms with ratios 1+ (2− 1

Q )α and 2+(2− 2
Q )α for the equal-demand case

and the general case, respectively. In addition, they also considered the nonfixed
destination MCVRP, i.e. a variant of the MCVRP where the vehicles are allowed
to depart from one depot but end at another depot, and gave two approximation
algorithms with ratios 1+ (1− 1

Q )α and 2+(1− 2
Q )α for the equal-demand case

and the general case, respectively.
In this paper, we mainly obtain the following results. First, we present the

first approximation algorithms for the MCARP and the nonfixed destination
variant, which have constant approximation ratios. Second, for the multi-depot
Rural Postman Problem (MRPP), which is a restricted case of the MCARP
with infinite vehicle capacity, we devise a better approximation algorithm with
ratio 2 − 1

2k+1 , where k indicates the number of depots. Lastly, we investigate
the MCARP/MCVRP defined on a line graph and show that the equal-demand
MCARP on a line is polynomially solvable and propose a 2-approximation algo-
rithm for the MCVRP on a line.

The rest of the paper is organized as follows. We give some notations used
throughout the paper in Sect. 2. In Sect. 3 we deal with the approximation algo-
rithms for the nonfixed destination MCARP. Subsequently, we discuss the (fixed
destination) MCARP in Sect. 4. Approximation algorithms for the MRPP are
presented in Sect. 5. At last, we give approximation and polynomial algorithms
for the MCARP/MCVRP defined on a line graph in Sect. 6.

2 Notations

Throughout the paper, we analyze algorithms on different versions of the
MCARP/MCVRP. For the MCARP, we denote by Z∗ the optimal value. Z∗

n

indicates the optimal value of the nonfixed destination MCARP. ZA denotes the
objective value of the solution obtained by some algorithm A.

Let G = (V,E) be the underlying graph with vertex set V and edge set E,
c(e) ≥ 0 indicates the cost (or length) of edge e ∈ E. If e = (u, v), we call u, v
the end vertices of e. The nonnegative integer demand of vertex v (edge e) is
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denoted by d(v) (d(e)). The edges with d(e) > 0 are called required edges. The
set of all required edges is denoted by R. Q is the capacity of the vehicles. For
any u, v ∈ V , cs(u, v) denote the length of the shortest path between u and v. For
a subgraph H of G, V (H) and E(H) denote the vertex set and edge (multi)set
of H, respectively. The cost of H is defined as c(H) =

∑
e∈E(H) c(e). Let cR(H)

be the sum of the costs of the required edges in H. Consequently, the sum of the
costs of the non-required edges in H equals c(H) − cR(H).

3 The Nonfixed Destination MCARP

In this section, we extend the algorithm for the nonfixed destination MCVRP
in [22] to solve the nonfixed destination MCARP. Our algorithm, called
NMCARP (β), also has a simple description by using the result for the CARP
(without triangle inequality) in [4]. Here β indicates the approximation ratio for
the CARP.

Let G = (V,E) be the original graph for the nonfixed destination MCARP
and D ⊆ V is the depot set. NMCARP (β) uses a β-approximation algorithm
for the CARP as a subroutine and consists of two stages. The first stage is to
contract the set D of depots in G into a single depot d to generate a new graph
G′ and use the β-approximation for the corresponding CARP to derive a solution
composed of a series of routes starting from and ending at d. The second stage
of the algorithm is to uncontract d back to the original set D of depots, which
produces a feasible solution of the original MCARP. The following is the formal
description of the algorithm.

Algorithm NMCARP (β)

Step 1. Obtain a new graph G′ = (V ′, E′) from G = (V,E), where V ′ = {d} ∪
(V \ D) and each edge (u, v) ∈ E corresponds to an edge (u′, v′) ∈ E′ with
the same cost and demand such that

⎧
⎪⎪⎨

⎪⎪⎩

u′ = u, v′ = v, if u, v ∈ V \ D;
u′ = u, v′ = d, if u ∈ V \ D, v ∈ D;
u′ = d, v′ = v, if u ∈ D, v ∈ V \ D;
u′ = v′ = d, if u, v ∈ D.

Note that the last case indicates that (u′, v′) is a self-loop in G′.
Step 2. Apply a β-approximation algorithm for the CARP defined on G′ to

generate a solution consisting of l routes C ′
1, . . . , C

′
l starting from and ending

at the depot d. Moreover, we assume w.l.o.g that each C ′
i contains d exactly

twice 2.
Step 3. For each C ′

i (i = 1, . . . , l), replacing each edge (u′, v′) of C ′
i by the original

edge (u, v) corresponding to (u′, v′). This will result in a route Pi in G whose
both end points are depots in D (but may be different).

2 Otherwise, we can break C′
i into a series of routes containing d exactly twice.
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Step 4. Return the routes in P1, . . . , Pl.

Lemma 1. ZNMCARP (β) ≤ βZ∗
n.

Proof. Let Z∗(G′) be the optimal value of the CARP defined on G′ in Step 2. It
can seen that any feasible solution to the nonfixed destination MCVRP induces a
feasible solution to the CARP defined on G′ of no greater cost after contracting
the depots in D into a single depot d. This implies that Z∗(G′) ≤ Z∗

n. By
definition, the total cost of the routes C ′

1, . . . , C
′
l is at most βZ∗(G′). Observe

that in Step 3 the total cost of the routes in P1, . . . , Pl is the same as the total
cost of the routes C ′

1, . . . , C
′
l . Therefore, ZNMCARP (β) ≤ βZ∗(G′) ≤ βZ∗

n. ��
Due to the results in [4,18,25], there exists an approximation algorithm, say

UITP (α0), with ratio 2 + (1 − 2
Q )α0 for the CARP and another approximation

algorithm, which we call ITP (α0), with ratio 1+(1− 1
Q )α0 for the equal-demand

problem. Recall that α0 is the approximation ratio for the Rural Postman Prob-
lem. Using Lemma 1, this yields the following result.

Theorem 1. The nonfixed destination MCARP admits a (2 + (1 − 2
Q )α0)-

approximation algorithm. If the demands are equal, there is a (1 + (1 − 1
Q )α0)-

approximation algorithm.

Remark 1. One can see that our algorithm has a very simple description, which
thanks to the adoption of the β-approximation algorithm for the CARP without
triangle inequality. In particular, when constructing the graph G′ we need not
alter the costs and demands of the edges except for contracting the depot set. In
contrast, the UITPn(α) heuristic for the nonfixed destination CVRP, given by
Li and Simchi-Levi [22], has to further revise the edge costs by computing the
all-pairs shortest path between the vertices in G′ and add some dummy edges.
Because their algorithm invokes the UITP (α) heuristic for the CVRP, which
need the triangle inequality, and G′ may not respect the triangle inequality.

4 The (Fixed Destination) MCARP

We now discuss the (fixed destination) MCARP where all the routes are required
to start from and end at the same depot.

We give an algorithm, called MUITP (α0), for the MCARP by modifying
the algorithm NMCARP (β) as follows. First, we replace the β-approximation
algorithm in Step 2 by the above-mentioned algorithm UITP (α0). Then we
modify the solution generated in Step 4 to derive a feasible solution for the
MCARP. Let Pi = d

(i)
1 , v

(i)
1 , . . . , v

(i)
r , d

(i)
2 be the ith route with

c(Pi) = cs(d
(i)
1 , v

(i)
1 ) +

r−1∑

h=1

cs(v
(i)
h , v

(i)
h+1) + cs(v(i)

r , d
(i)
2 ),
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where d
(i)
1 , d

(i)
2 ∈ D are the depots and v

(i)
h ∈ V \ D (h = 1, . . . , r). The mod-

ification of Pi (i = 1, . . . , l) to Ci is defined as below: if d
(i)
1 = d

(i)
2 then Pi is

already feasible and we set Ci = Pi, otherwise Ci is replaced by

Ci =

{
d
(i)
1 , v

(i)
1 , . . . , v

(i)
r , d

(i)
1 , if cs(d

(i)
1 , v

(i)
1 ) + cs(v

(i)
r , d

(i)
1 ) ≤ cs(d

(i)
2 , v

(i)
1 ) + cs(v

(i)
r , d

(i)
2 );

d
(i)
2 , v

(i)
1 , . . . , v

(i)
r , d

(i)
2 , if cs(d

(i)
1 , v

(i)
1 ) + cs(v

(i)
r , d

(i)
1 ) > cs(d

(i)
2 , v

(i)
1 ) + cs(v

(i)
r , d

(i)
2 ) .

To analyze the performance of the algorithm MUITP (α0), we define L∗ as
the cost of the optimal rural postman tour with respect to G′ in Step 2. In other
words, L∗ is the length of the shortest closed walk in G′ going through 0 and
all required edges. L(α0) is the cost of an α0-approximate rural postman tour
used by UITP (α0). Clearly, L(α0) ≤ α0L

∗. Moreover, according to UITP (α0)
it holds that

∑l
i=1

∑r−1
h=1 cs(v

(i)
h , v

(i)
h+1) ≤ L(α0).

We proceed to show the following result.

Lemma 2. ZMUITP (α0) ≤
(
2 +

(
2 − 2

Q

)
α0

)
Z∗.

Proof. Similarly to the analysis of the ITPf (α) heuristic for the MCVRP in [22],
we can show that c(Ci) ≤ c(Pi) +

∑r−1
h=1 cs(v

(i)
h , v

(i)
h+1) and hence

ZMUITP (α0) =
l∑

i=1

Ci ≤
(

2 +
(

1 − 2
Q

)

α0

)

Z∗
n + L(α0) .

Since Z∗
n ≤ Z∗ and L(α0) ≤ α0L

∗ ≤ α0Z
∗, the proof of is completed. ��

By substituting ITP (α0) for UITP (α0) in the above algorithm
MUITP (α0), we can obtain an approximation algorithm for the equal-demand
MCARP with ratio 1 + (2 − 1

Q )α0. To sum up, we have the following result for
the MCARP.

Theorem 2. There exists a (2 + (2 − 2
Q )α0)-approximation algorithm for the

MCARP. Moreover, for the equal-demand problem there is a (1 + (2 − 1
Q )α0)-

approximation algorithm.

5 The Multi-depot Rural Postman Problem

In this section, we consider the multi-depot Rural Postman Problem (MRPP),
which is a restricted case of the MCARP with infinite vehicle capacity, i.e.,
Q = +∞. Suppose that there are k = |D| depots. Then the MRPP is essentially
to find at most k closed walks, each of which starts from and ends at a distinct
depot, such that these walks cover all the required edges and the total cost of
the walks is minimized.

Theorem 3. There exists a (2− 1
2k+1 )-approximation algorithm for the MRPP.
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6 Multi-depot CARP on a Line

In this section, we deal with the MCARP/MCVRP defined on a line graph. We
show that the equal-demand MCARP on a line can be solved in O(n2) time. For
the MCVRP on a line, we give the first 2-approximation algorithm.

Theorem 4. The equal-demand MCARP on a line can be solved in O(n2) time.

Theorem 5. The MCVRP on a line admits a 2-approximation algorithm.
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Abstract. In this paper, we propose a Zero-shot Face Swapping Net-
work (ZFSNet) to swap novel identities where no training data is avail-
able, which is very practical. In contrast to many existing methods that
consist of several stages, the proposed model can generate images con-
taining the unseen identity in a single forward pass without fine-tuning.
To achieve it, based on the basic encoder-decoder framework, we pro-
pose an additional de-identification (De-ID) module after the encoder
to remove the source identity information, which contributes to remov-
ing the source identity retaining in the encoding stream and improves
the model’s generalization capability. Then we introduce an attention
component (ASSM) to blend the encoded source feature and the target
identity feature adaptively. It amplifies proper local details and helps
the decoder attend to the related identity feature. Extensive experiments
evaluated on the synthesized and real images demonstrate that the pro-
posed modules are effective in zero-shot face swapping. In addition, we
also evaluate our framework on zero-shot facial expression translation to
show its versatility and flexibility.

Keywords: Face swapping · Facial expression translation ·
Adversarial learning

1 Introduction

Image-to-image translation is changing a particular aspect of a given image to
the required one, such as changing facial identity, facial expression, hairstyle and
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Fig. 1. Visualizations of the image translation results of ZFSNet. The first and second
row illustrate the face swapping and facial expression translation results respectively.

gender. It is a popular topic with ubiquitous access to the usage of social media.
Face swapping (as shown in the first row of Fig. 1) is a task that transforms
the target identity into a source image while keeping the source content like
pose, expression, yaw/pitch unchanged. This technique can be widely used for
entertainment [10] and data augmentation. With the introduction of generative
adversarial networks (GANs) [6], recent years have witnessed great progress in
image translation [4,6,7]. However, the success of image translation relies heavily
on enormous paired training data, which is unlikely to collect training data for
every class in the real world. In order to tackle this situation, we propose a zero-
shot face swapping network, which attempts to transfer an unseen target identity
to the source face image. It is practical, especially when the target images are
difficult to collect.

Recently, existing methods achieve face swapping with deep generative mod-
els [6]. For example, Deepfakes [1] firstly leverages the autoencoder network for
face swapping and achieves a promising result. However, it requires hundreds or
even thousands of examples to train the network and the model could only be
applied to a specific identity. Aiming at loosing the one-to-one face swapping
constraint, [15] proposes a many-to-many face swapping framework by disentan-
gling identity and content features of faces, and then recombining the content
feature with another identity feature. But, it suffers from the limited generaliza-
tion capability. When tested with unseen identities that are not included in the
training data, the model’s performance would deteriorate. One explanation of
this phenomenon might be that the embedded content features still retain some
source identity information, and the redundant source identity could result in an
unidentifiable face. To address this problem, [2,14] constrain the content embed-
ding by the standard Gaussian. Specifically, they regularize the content distri-
bution qθ(z|x) based on the KL divergence between q(z|x) and p(z) = N(0, I)
to force the content embedding to be general and neglect the identity informa-
tion. Nevertheless, images generated based on this method are usually blurry.
A possible cause is that the posterior defined by qθ(z|x) is not complex enough
[22]. Alternatively, [20] creates a few-shot face reenactment model. It requires
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a few examples to generalize the model to unseen targets via fine-tuning the
trained model, but the time-consuming fine-tuning process restricts its potential
application.

In this paper, a general one-stage Zero-shot Face Swapping Network (ZFS-
Net) is presented to address the challenging zero-shot face swapping, which
requires only one target image and no fine-tuning. The generated image not only
has the identity of the unseen targets, but also retains the content (such as pose
and expression) of the source image. To achieve it, based on the basic encoder-
decoder framework, we propose a novel De-IDentification (De-ID) module to
destroy the identity-specific features of source images based on an adversarial
classifier. As a result, the generated image will not be disturbed by the source
identity information. We conduct extensive experiments to validate its effective-
ness to destroy the source identity. Then we propose an Attentive Spatial Style
Modulation (ASSM) module to fuse the source content feature and the target
identity adaptively, allowing the decoder to retrieve the appropriate code for
each spatial location and pay attention to local details. Extensive experiments
are conducted to demonstrate that the proposed modules are effective, and the
network can be applied to other image translation tasks, such as facial expression
translation (as shown in the second row of Fig. 1).

2 Method

2.1 Overall Framework

As shown in Fig. 2, the basic ZFSNet contains a content encoder ΦEc to learn
content features zc, an identity encoder ΦEi to extract the identity information
of the target image, and an decoder ΦD to generate a new image. Then we
innovatively introduce a De-IDentification module ΦCl to disturb the ΦEc to
learn source identity features via the adversarial learning. As a result, there is
no stable representation of identity features in zc and the identity information
of source image can not be clearly decoded from zc. Furthermore, in decoder
ΦD, we propose an Attentive Spatial Style Modulation module to help fuse the
source content and the target identity feature adaptively. Therefore, the gener-
ated image can contain the identity of the target image and the content of the
source image. More details are shown in the following subsections.

2.2 De-identification Module

As mentioned in the previous section, given a source image Ic, a content encoder
is employed to extract the face content feature zc. Intuitively, we expect zc
contains as little identity information as possible while keeping enough content
information for the decoder to recover the content of the output face. Inspired
by popular adversarial learning method [16], we introduce a de-identification
module after the content representation and train the content encoder in an
adversarial fashion.
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Fig. 2. The framework of our ZFSNet. The model is trained based on a mix-batch
training strategy. In paired training, the inputs of the network have the same identity,
while in unpaired training, the inputs of the network have different identities.

In this module, we employ a classifier ΦCl which is a multi-layer perception
network (as shown in Table 1), and it takes zc as input. The learning of ΦCl and
the other sub-networks, i.e. ΦEc , ΦEi and ΦD, are conducted in two iterative
steps. In the first step, the parameters of ΦEc are fixed and the classic cross
entropy loss is introduced as follows:

Lcls = E[− log P(y = ŷ|x = zc))], (1)

where ŷ is the ground truth identity label of Ic. In this phrase, ΦCl is trained to
extract the identity information from zc and therefore differentiates the identity
of Ic. In the second step, ΦCl is frozen, and a de-identification loss is imposed. In
specific, the de-identification loss Ldeid is the negative entropy of ΦCl prediction.

Ldeid = E[−H(y|x = ΦEc(Ic))]. (2)

It should be noted that Ldeid is jointly imposed with other functional losses
to learn ΦEc . In this manner, the content-related feature in zc can be effectively
encoded by ΦEi but the identity-related features in zc is unstable due to Ldeid,
and the identity of the source image can not be learned and captured.

Table 1. Network architecture of the classifier ΦCl . ID represents the identity number.

Model ΦCl
BN, FC (1024), FC (1024), FC (1024), FC (1024), FC (512), FC (512), FC (ID)

BN, BN, BN, BN, BN, BN,

LeakyRelu LeakyRelu LeakyRelu LeakyRelu LeakyRelu LeakyRelu
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2.3 Attentive Spatial Style Modulation Module

The decoder is required to recover the target identity from the identity encoder.
Inspired by recent works [8,9], controlling the statistics, a.k.a styles, of feature
maps can enable the decoder to yield controllable face synthesis results. How-
ever, in [9], features across each spatial location share the same style code. Face
editing tasks usually require spatial-aware style modification. Instead of gener-
ating global styles, we design an attentive spatial style modulation module to
help the decoder retrieve the corresponding style code adaptively.

Concretely, the ASSM module takes a content feature F and an identity
feature Fi as inputs, and returns the modulated feature F̃. More concretely, F
produces a query map Q, and Fi generates styles V and the corresponding keys
K, where Q, K and V are produced by 1 × 1 convolutions.

Then an attentive matrix A is calculated as

A(i, j) =
exp(λatQ(i)T · K(j)T)

∑
τ∈H′·W ′ exp(λatQ(i)T · K(τ)T)

, (3)

where λat denotes the temperature term to control the sharpness of softmax
distribution, i and j are the indices of the row and column in A, which are
spatial locations in Q and K respectively. λat is set to 0.01 as a default setup.

The retrieval style γ is the weighted average of V by multiplying A as

γ(i) =
∑

j∈H′×W ′
A(i, j) · V(j). (4)

Finally, the modulated feature F̃ are generated by Norm(Conv(F ⊗ γ)), where
Norm(X) is the normalization operator, and ⊗ refers to element wise product.

Therefore, the modulated feature map F̃ contains both the content of F and
the style of Fi, which is achieved by adaptively combining the identity features
according to the corresponding semantics in F.

2.4 Mix-Batch Training Strategy

During the training phase, we employ a Mix-batch Training Strategy. As shown in
Fig. 2, the batch of images is mixed by two different components. One component
contains paired images which means Ic and Ii1 come from the same person, and
the output Io must to be the same as the Ic. This component can help the
network quickly learn to generate face images by providing strong reconstruction
supervision. Meanwhile, the other component consists of unpaired images that
means Ic and Ii2 have different identities, and the output Io contains the pose,
expression of Ic and the identity of Ii2. The unpaired training is essential to
enhance the target identity or attribute transfer ability of the model.

When paired images are fed into the network, the output is the reconstruction
of Ic as well as its binary face mask Mc. The reconstruction loss are as follows:

Lrec = SSIM(Ic · Mc, Io · M)), Lmask1 = L1(Mc,M), (5)
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where Io represents the predicted image, M is the predicted mask, and SSIM
refers to the Structural Similarity (SSIM) [19] loss. It is worth mentioning that
we just force the network to reconstruct the facial area of the image regardless
of the background. Finally, we can simply apply alpha blending by using Ic, Io
and M to get the final face swapping result Ib as Ib = M · Io + (1 − M) · Ic.

As mentioned in Sect. 2.2, we introduce a de-identification classifier ΦCl in
the latent space and train the network ΦCl and ΦEc in an adversarial way. The
training losses are formulated in Eqs. 1, 2.

For the unpaired branch, to ensure that the generated face in Io keeps the
same identity of Ii2, we propose an identity preserving loss Lid. We also add a
mask reconstruction loss Lmask2 to guide the network to learn the pose of the
source image.

Lid = L2(f(Io), f(Ii2)), Lmask2 = L1(Mc,M). (6)

where f(·) indicates a pre-trained facial identity extractor [5].
The adversarial loss Ladv following WGAN-GP [6] is used to learning the

parameters of the generator and discriminator. Ladv is formulated as Eq. 7, where
the first two terms are original critic losses and the last term is a penalty on the
gradient norm. Pr is the real data distribution, Pg is the generator distribution,
PĨ is the random interpolation distribution and λgp is a penalty coefficient.

Ladv = EIo∈Pg [D(Io)] − EIc∈Pr [D(Ic)]

+λgpEĨ∈PĨ
[(‖ � D(̃I)‖2 − 1)2].

(7)

Finally, we combine these constraints to optimize our network. In the test
time, a source image and a target image are fed into the content encoder ΦEc

and the identity encoder ΦEi , respectively, and the decoder ΦD equipped with
the ASSM module outputs the results.

3 Experiments

3.1 Experiment Setup

Datasets. Our model is trained on the VGGFace2 [3] and FaceForensics++ [17]
datasets. To verify the generalization ability of the model over unseen subjects,
we choose the last 50 videos of FaceForensics++ as the unseen test set N ,
meaning that the identities inside are not included in the training data. We also
prepare a seen test set S, consisting of 100 subjects with 20 images per subject.
The 100 subjects in test set S are exposed in training and the images are not
included in the training. The remaining image sequences of the FaceForensics++
dataset are the training data.

In addition, we validate that our ZFSNet can be applied to other facial trans-
lation tasks flexibly. Since face swapping is closely related to facial expression
translation, which is a task that changes the source expression of a given image
to the target expression, we employ ZFSNet on expression data RaFD [13]. To
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validate the model, we also prepare the seen test set S and the unseen test set
N on RaFD. Following [4], we exclude the ‘neutral’ expression during training
and regard the ‘neutral’ images as the N test set. The remaining 7 expression
categories are retained for training. From the 7 categories, we randomly selected
20 images from each category as a test set S.

Implementation Details. For face swapping, we align and crop the face image
with MTCNN [21] and utilize the face recognizer VGGFace2 [3] to extract 256-
dim face identity embedding. The cropped image is of size 256 × 256, and then
resized as 128 × 128.

For facial expression translation, we first train an expression classification
model on the RaFD training set based on the VGG19 [18] network and then test
the classification accuracy on the set S. The accuracy of the classifier is 99.28%.
The expression classification model is used to extract expression embedding.

Metrics. For identity preserving capacity, we compute the Cosine similarity
of embedding vectors extracted from the widely used face recognition model [5].
The larger value means a higher similarity between the two images. During the
experiment, for each subject in the test sets, we firstly find a frontal face image
by the Euler angle calculated by Dlib [11] and the frontal face images are used as
target images for face swapping. The identity preserving metrics are calculated
between the generated image and the frontal target image. To inspect the pose
and expression fitting accuracy, we use Dlib [11] to estimate Euler angles and
Landmark position of face images. Then, we compute the root mean square
error of Euler angles and the mean distance of the Landmark vectors normalized
by the face’s binocular distance between the synthesized image and the source
image. For these two indicators, a lower value means a smaller difference in pose
and expression.

3.2 Ablation Study

The Effectiveness of the Proposed Components. We conduct ablation
study to validate the proposed De-ID module and the ASSM module. The con-
figurations are as follows: (1) Ours is the proposed network with the De-ID and
the ASSM modules. (2) w/o De-ID is the network without the De-ID adversar-
ial learning. (3) w/ KL refers to the network that constrains the content feature
with the KL divergence regularization instead of the proposed De-ID. (4) w/o
ASSM corresponds to the network without the ASSM module.

Table 2 shows the quantitative results and Fig. 3 visualizes the outputs. We
can find that the output images of ZFSNet have the content of the source image
and the identity of the target image. On the contrary, when ZFSNet is trained
without the De-ID module, the generated images sometimes retains some identity
information from source image.

The Impact of the De-ID Module on Content Feature Learning.
We further explore whether the De-ID module really prevent the encoder from
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Table 2. Quantitative results on N − N swapping setting.

Method Cosine ↑ Euler ↓ Landmark ↓
Our 0.520 18.910 2.877

w/o De-ID module 0.385 20.35 1.631

w/ KL 0.429 31.252 3.324

w/o ASSM 0.481 21.683 2.027

Fig. 3. Results on ablation setups. The source-target images are all from N set.

extracting identity information. Concretely, we train two models with and with-
out the De-ID module on both face swapping and face expression dataset. Taking
zc of pre-trained models as the input feature, we train classifiers to classify zc
to their corresponding class. Ideally, the more identity related information con-
tained in zc, the more accurate the classifier will be. Therefore, we expect a
significant drop on classification performance or an increase in converged loss
when zc is trained with De-ID.

The training losses of the classifiers are shown in Fig. 4, where each classi-
fier is trained for 2000 iterations, and the weights of ZFSNet are fixed during
training. The converged training losses with De-ID module are close to the orig-
inal training losses with randomly initialized classifiers. Therefore, we can safely
draw the conclusion that the De-ID module indeed disturbs the encoder from
extracting identity features.

Fig. 4. Training loss of adding and not adding the De-ID module.
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3.3 Comparison

We compare our methods with popular face swapping methods Deepfakes [1]
and FaceSwap [12]. Deepfakes [1] is an one-to-one swapping model based on the
denoising autoencoder. FaceSwap is also a one-to-one swapping model based on
the convolutional network by rendering an image with the style of the target
image. Our ZFSNet is many-to-many framework for zero-shot face swapping,
which requires only one target image and no fine-tuning. Importantly, this com-
parison is unfair for us, since Deepfakes and FaceSwap need to retrain the face
swapping model for each source-target subject pair, and the target identity are
used during training. Compared with them, our method can achieve comparable
performance or better performance, which proves that our model successfully
achieves zero-shot face translation.

Quantitative Comparison. We provide two quantitative comparisons to eval-
uate our model ZFSNet to validate its zero-shot translation ability. Our ZFSNet
is a many-to-many framework and can translate images without fine-tuning. The
comparisons are implemented on N − N swapping (source and target identities
are all from the unseen test set) and S − N swapping (source and target identi-
ties are from the seen test set and the unseen test set respectively). The results
are shown in Tables 3, 4. On N −N swapping, our method performs better than
Deepfakes and FaceSwap, which is our main concern in this paper. On S − N
swapping, the performance of our method is comparable to Deepfakes and better
than FaceSwap. Our ZFSNet achieves results comparable to or even better than
[1,12] without fine-tuning and without using the target image during training.
The results illustrates the effectiveness of our method.

Table 3. Quantitative face swapping results on N − N swapping setting.

Method Cosine ↑ Euler ↓ Landmark ↓
Deepfakes [1] 0.506 49.078 4.194

FaceSwap [12] 0.441 29.903 2.593

Ours 0.520 18.910 2.877

Table 4. Quantitative face swapping results on S − N swapping setting.

Method Cosine ↑ Euler ↓ Landmark ↓
Deepfakes [1] 0.530 73.137 8.515

FaceSwap [12] 0.446 42.215 4.453

Ours 0.515 29.889 4.855

Qualitative Comparison. We also visualize the outputs of our method in the
Fig. 5. It is obvious that our ZFSNet can preserve the identity of target faces
but also retain the content, such as pose, yaw/angle, expression of source faces.
It achieves results comparable to Deepfakes and FaceSwap.



110 H. Li et al.

Fig. 5. Quantitative comparison on FaceForensics++ image sequences.

3.4 Facial Expression Translation

We also verifies our ZFSNet on the facial expression translation task. In practice,
the facial expression embedding is defined as a kind of identity embedding. We
train our model on (RaFD) [13]. The source image and the target expression
image are fed into the content encoder and the expression encoder to get content
feature zc and expression feature zi. Then the decoder decodes zc and zi to
generate a new expression image Io.

Fig. 6. Results of transferring seven facial expressions to the unseen neutral expression.
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To validate the zero-shot expression translation, the source images are
selected from the seen 7 expression data and the target image is taken from
the unseen neutral expression data. Figure 6 shows the result of translating the
expression into the unseen neutral expression. It can be seen that our ZFSNet
outputs high quality neutral images, indicating that this model can be flexibly
applied to unseen domains.

4 Conclusion

In this paper, we propose a general Zero-shot Face Swapping Network (ZFSNet),
which can realize the unseen target face swapping using only one target image.
Specifically, we propose a de-identification (De-ID) module to constrain the con-
tent encoder and alleviate the identity information retaining problem in the
learned content feature. The De-ID module and the content encoder are learned
in an adversarial manner. Then we design an attentive spatial style modulation
module (ASSM) to combine the content feature and the target identity feature
adaptively, guiding the decoder to attend to related local details. Through these
improvements, the ZFSNet can successfully generate images containing the spe-
cific unseen identity. Moreover, the proposed method is generic and can be easily
applied to other attribute translation tasks, such as facial expression translation.
Extensive experiments validate the effectiveness of our method. In future work,
we will further improve the generalization ability of the model.

References

1. Deepfakes. faceswap (2016). https://github.com/deepfakes/faceswap. Accessed 06
Feb 2019

2. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving
face synthesis. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 6713–6722 (2018)

3. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: A dataset for
recognising faces across pose and age. In: Proceedings of the IEEE International
Conference on Automatic Face & Gesture Recognition, pp. 67–74 (2018)

4. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified
generative adversarial networks for multi-domain image-to-image translation. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 8789–8797 (2018)

5. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFACE: additive angular margin loss
for deep face recognition. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4690–4699 (2019)

6. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of wasserstein gans. In: Proceedings of the conference on Neural Informa-
tion Processing Systems, pp. 5767–5777 (2017)

7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with condi-
tional adversarial networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1125–1134 (2017)

https://github.com/deepfakes/faceswap


112 H. Li et al.

8. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative
adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 4401–4410 (2019)

9. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and
improving the image quality of stylegan. arXiv preprint arXiv:1912.04958 (2019)

10. Kim, H., et al.: Deep video portraits. ACM Trans. Graph. 37(4), 1–14 (2018)
11. King, D.E.: Dlib-ml: a machine learning toolkit. J. Mach. Learn. Res. 10, 1755–

1758 (2009)
12. Korshunova, I., Shi, W., Dambre, J., Theis, L.: Fast face-swap using convolutional

neural networks. In: Proceedings of the IEEE International Conference on Com-
puter Vision, pp. 3677–3685 (2017)

13. Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H., Hawk, S.T., Van Knippen-
berg, A.: Presentation and validation of the radboud faces database. Cogn. Emot.
24(8), 1377–1388 (2010)

14. Natsume, R., Yatagawa, T., Morishima, S.: FSNet: an identity-aware generative
model for image-based face swapping. In: Proceedings of the Asian Conference on
Computer Vision, pp. 117–132 (2018)

15. Natsume, R., Yatagawa, T., Morishima, S.: Rsgan: face swapping and editing using
face and hair representation in latent spaces. arXiv preprint arXiv:1804.03447
(2018)

16. Perera, P., Nallapati, R., Xiang, B.: OCGAN: one-class novelty detection using gans
with constrained latent representations. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2898–2906 (2019)

17. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Face-
forensics++: learning to detect manipulated facial images, pp. 1–11 (2019)

18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale
image recognition (2014). arXiv preprint arXiv:1409.1556 3 (2014)

19. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Peprocessing
13(4), 600–612 (2004)

20. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learn-
ing of realistic neural talking head models. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 9459–9468 (2019)

21. Zhang, K., Zhang, Z., Li, Z., Qiao, Y.: Joint face detection and alignment using
multitask cascaded convolutional networks. IEEE Signal Process. Lett. 23(10),
1499–1503 (2016)

22. Zheng, Z., Sun, L.: Disentangling latent space for vae by label relevant/irrelevant
dimensions. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition. pp. 12192–12201 (2019)

http://arxiv.org/abs/1912.04958
http://arxiv.org/abs/1804.03447
http://arxiv.org/abs/1409.1556


An User-Driven Active Way to Push ACL
in Software-Defined Networking

Haisheng Yu2,3(B), Dong Liu1,3, Wenyong Wang1,2, Keqiu Li4, Sai Zou5,
Zhaobin Liu6, and Yan Liu1

1 Macau University of Science and Technology, Macao, China
2 University of Electronic Science and Technology of China, Chengdu, China

3 BII Group, Beijing, China
4 Tianjin University, Tianjin, China

5 Guizhou University, Guiyang, China
6 Dalian Maritime University, Dalian, China

yuhaisheng1@gmail.com

Abstract. Compared with the traditional network, Software-Defined
Networking (SDN) provides a more convenient network paradigm to
build Access Control List (ACL) application. There has been a few stud-
ies focusing on ACL application in SDN up to now, but most of the
existing work adopts a reactive way to enforce ACL, resulting in new
ACL update can not take effect immediately. In this paper, we propose
CLACK, an approach for user-driven centralized ACL in SDN. We imple-
ment CLACK on both Floodlight and ONOS controller. The experimen-
tal results show that CLACK has a better performance than the existing
Floodlight firewall application.

Keywords: Access Control List (ACL) · Software-Defined Networking
(SDN) · Security · Floodlight · ONOS

1 Introduction

Internet, accommodating a variety of heterogeneous networks and distributed
applications [12], has achieved great success and been the enormous power of
promoting social and economic development since it is proposed [10]. However,
the current Internet environment has changed dramatically as a result of the
emerging network services and the network scale expansion, the traditional archi-
tecture of Internet has exposed serious deficiencies, such as unexpected delays
for data communication [14] and difficulty in the traffic load balance among links
[9]. The fundamental reason for that is the tight coupling of control logic and
data forwarding in network devices (e.g. router, switch) and the distributed con-
trol of network devices [3]. SDN provides an open software programmable model
and a diversity of network control functions. It has gained wide recognition and
good support from both academia and industry.

Access Control List (ACL) is a network security enhancement. It applies a set
of ACL rules to each IP packet and determines whether to forward or drop the
c© Springer Nature Switzerland AG 2022
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packet based on its header fields. ACL is similar to the stateless firewall or packet
filtering firewall which provides basic traffic filtering capabilities [13]. In tradi-
tional networks, ACL is often placed in network devices (e.g. router, switch) and
can be configured to control both inbound and outbound traffic. Network devices
examine each packet and determine whether to forward or drop the packet on the
basis of the rules specified in ACL [4]. Unfortunately, the approach has several
deficiencies. Firstly, network devices should have appropriate hardware and pro-
cessing capabilities to enforce ACL, causing a vast expense. What’s worse, it is
too complicated to design and configure ACL in distributed network devices, not
to mention the situation when network security policy changes. The cumbersome
maintenance of ACL in complex networks is also prone to error.

The root reason for that lies in the distributed way to enforce ACL in tradi-
tional networks. Software-defined Networking (SDN) just provides an convenient
network paradigm to solve the problem. SDN separates control logic and forward-
ing logic in traditional networks, and SDN controller configures networks in a
centralized manner rather than distributed configuration [8].

In this paper, we propose CLACK, an approach for user-driven centralized
ACL in SDN. CLACK adopts a proactive way to enforce ACL thus to avoid
additional delay and save controller’s resource, it reacts to new ACL update
and network view update in real time to ensure network security. CLACK uses
abstract network view to accelerate processing and does match check for new
added ACL rule to avoid invalid rule. We implement CLACK on both Floodlight
and ONOS controller [2], and CLACK is also integrated into the new version of
both controllers.

Fig. 1. Network security violation in a reactive way
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Fig. 2. CLACK architecture

2 Clack Design

2.1 Overview

Figure 2 depicts CLACK’s architecture, CLACK provides REST API for users
and contains two core modules, Accessing Pair (AP) Manager and Access Con-
trol List (ACL) Manager. Each module has several submodules in charge of
different processing.

In CLACK, each ACL rule contains several match fields and an action field.
Packets defined in match fields are forwarded or dropped following the action
field. An ACL rule is denoted as:

R{id;nw proto; src ip; dst ip; dst port; action}
Each ACL rule has a distinct id. Match fields comprises nw proto (network
protocol), src ip (source IP address), dst ip (destination IP address), dst port
(TCP or UDP destination port). Match field value may be a wildcard, which
can be substituted for all possible field values. src ip and dst ip field use CIDR
IP address, which can designate many unique IP addresses. action field value is
either “ALLOW” or “DENY”.

CLACK provides a friendly and centralized user interface through REST
API for users to add, remove, and query ACL rules. Users can use CLACK
easily by sending an HTTP request containing JSON string, and they don’t
need to configure distributed switches one by one any more for CLACK does all
the work.
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CLACK filters IP packets by ACL flow entries exactly reflecting ACL rules
in ingress or egress switches. After receiving user’s new ACL update request,
CLACK updates ACL rules and ACL flow entries immediately.

We will describe CLACK’s core modules in the following subsections.

Fig. 3. Abstract network view and Accessing Pair (AP)

2.2 Accessing Pair (AP) Manager

In CLACK, the real network view is transformed to an abstract network view.
The abstract network view conceals internal network topology, and it only
exposes the interfaces between edge switches and external hosts in the networks,
as Fig. 3 depicts.

We use Accessing Pair (AP) to store the interface information in the abstract
network view. An AP is denoted as:

AP : {id; dpid; ip}

The fields represent AP id, edge switch’s dpid (data path id), and host’s IP
address, respectively.

AP Manager is a CLACK module, which maintains AP information in real
time and provides a query function. AP Manager monitors host update event in
the networks and stores all interface information in AP Set.

When a new host appears or disappears in the networks, AP Manager
updates AP Set correspondingly and calls ACL Manager for further process-
ing which will be described in Sect. 2.3.
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AP Manager also provides a query function getSwitchSet. Given a CIDR IP
address, the function traverses AP Set and returns a switch set. Each switch
in the set connects with a host whose IP address is contained in the CIDR IP
address. This function will be used when generating ACL flow entry.

2.3 Access Control List (ACL) Manager

Access Control List (ACL) Manager is a CLACK module, which updates ACL
and processes AP update.

After receiving a new ACL update request, ACL Manager verifies its validity
and returns an error message if not valid.

If user requests to add a new ACL rule, ACL Manager firstly parses user’s
request JSON string and generates a new ACL rule. It then traverses ACL Rule
Set to check whether the new ACL rule matches another existing rule, the new
rule is rejected if a match is found. ACL Manager generates a distinct id for
each rule passing match check, adds it to ACL Rule Set and starts the enforcing
stage.

Match check is important because it rejects invalid rules, so as to reduce
storage overhead in both switches and controller. Two functions are used in
match check, and they give the definition of match:

cover(Rnew,Rold,field): A Boolean function, where Rnew, Rold denote ACL
rules and field denotes ACL rule’s match field. We

cover(Rnew, Rold, field) = true if:

for fieldε{nw proto, dst portg}, Rold.field has a wildcard value, and
Rnew.field has an user-assigned value;

for fieldε{src ip; dst ip}, Rold.field contains all the IP addresses in
Rnew.field.

match(Rnew,Rold): A Boolean function. We say:

match(Rnew;Rold) = true if:

for fieldε{nw proto, src ip, dst ip, dst port}, there is: Rnew.field = Rold.field or
cover(Rnew,Rold.field) = true.

We say ACL rule Rnew matches Rold if all packets filtered by Rnew is already
filtered by Rold, and Rnew will not work at all if added.

If user requests to remove an existing ACL rule, ACL Manager firstly parses
user’s request and gets the rule’s id. It then removes the rule from ACL Rule
Set and starts the enforcing stage.

3 Evaluation

We compare CLACK with the Floodlight firewall application. As is mentioned
before, to enforce ACL, CLACK works in a proactive way while Floodlight
adopts a reactive way. It means that different events trigger their ACL enforcing
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process, user’s request for CLACK and Packet-in message for Floodlight firewall
application; therefore it is unreasonable to compare their performance in general
situation. We create a situation that a new ACL update conflicts with ACL flow
entry in switches and compare the delay for a new ACL update to take effect,
like in Fig. 1.

We build a virtual network in Mininet [1] and run several experiments. For
each experiment, we add different numbers of ACL rules in advance and insure
that CLACK has to traverse ACL Rule Set during update. Then we let host A
in the network send ICMP packets to host B using Ping command. If host A
succeed in Ping host B at first, we add a new ACL rule to deny the flow and
record the delay until an ACL flow entry drops the flow. If there is already a
ACL rule denying the flow and host A fails to Ping host B at first, we then
remove that ACL rule and record the delay until an regular flow entry forwards
the flow.

The delay in the Floodlight firewall application is more than 5000 ms because
a flow entry’s default idle timeout is set to 5000 ms in Floodlight, no Packet-in
messages is sent to the controller as long as the ACL flow entry persists. As a
result, new ACL update will not take effect at all until after at least an idle
timeout. We regard the delay as 5000 ms uniformly.
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Fig. 4. Add a new ACL rule (single-controller version)

As Fig. 4 shows, in the single-controller version, the delay for rule adding and
removing in CLACK goes up linearly as the existing ACL rule number increases
because CLACK needs to traverse ACL Rule Set. The delay for enforcing ACL
update vibrates for reason that CLACK needs to communicate with switches,
and the delay depends on the network quality at that time.
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Fig. 5. Add a new ACL rule (multi-controller version)

As Fig. 5 shows, The evaluation result for the multi-controller version is
mostly similar with the single-controller version except that the delay for rule
removing remains almost unchanging. That is because we use hash tables rather
than a single set to store ACL rules, and hash tables is move effective when
processing indexing and updating.

The comparison result indicates that CLACK beats the Floodlight firewall
application by miles when handling new ACL update requests at the collision
situation.

4 Conclusion and Future Work

In this paper, we propose CLACK, an approach for user-driven centralized ACL
in SDN. CLACK adopts a proactive way to enforce ACL and reacts to new ACL
update and network view update in real time. We implement CLACK on Flood-
light and ONOS controller and then conduct a large number of experiments.
The experimental results show that CLACK has a better performance than the
existing Floodlight firewall application. Dynamic flow tunneling scenario shows
that malicious application can evade ACL by simply adding a few flow entries
in SDN [11]. The root reason lies in that OpenFlow allows various Set-Field
actions that can dynamically change the packet headers [5]. P. Kazemian pro-
posed a real time policy checking tool called NetPlumber [6] based on Header
Space Analysis [7]. We intent to add security check capability based on HSA in
CLACK to prevent attacks from adversaries in the future.

Acknowledgement. This work is supported by Macau Science and Technology Devel-
opment Fund (Grant No. 0018/2021/A).
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Abstract. Conventional electronic Artificial Neural Networks (ANNs)
accelerators focus on architecture design and numerical computation
optimization to improve the training speed. Optical technology with low
energy consumption and high transmission speed are expected to play
an important role in the next generation of computing architectures. To
provide a better understanding of optical technology used in ANN accel-
eration, we present a comprehensive review for the optical implementa-
tions of ANNs accelerator in this paper. We propose a classification of
existing solutions which are categorized into optical computing accelera-
tion and optical communication acceleration according to optical effects
and optical architectures. Moreover, we discuss the challenges for these
photonic neural network acceleration approaches to highlight the most
promising future research opportunities in this field.

Keywords: Optical neural networks · Optical interconnection
networks · Neural network accelerator

1 Introduction

The wide applications of Artificial Intelligence (AI), such as computer vision,
speech recognition, and language processing, call for efficient implementation of
the model training and inference phases in machine learning [16]. Especially for
Artificial Neural Networks (ANNs), due to the seminal work by Hinton et al.
on deep learning in 2006, ANNs have reappeared in people’s vision [5]. Multiple
neural networks have been studied and applied in different fields. However, with
large data sets and massively interconnected ANNs, the traditional computer
architectures suffer from the efficient inference and prediction due to the limited
device computing power.

Photonic architectures with low power consumption, high bandwidth and
high transmission speed have been considered as a potential future alternative
for electronic architectures. Optical solutions for ANNs computing and com-
munication acceleration emerge as the times require. To this aim, many linear
c© Springer Nature Switzerland AG 2022
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Fig. 1. Classification of photonic implementation in ANN accelerators.

transformations have been demonstrated to be able to performed with passive
optics without power consumption and with minimal latency [14]. The feasibility
of optical logic gates has also been demonstrated [7]. Hence, optical implemen-
tations of neural networks have been investigated to increase the ANN training
speed and the energy efficiency [15]. Moreover, optical on/off chip network archi-
tectures have been designed, with the aim of increasing model parallelism and
data transmission speed.

In this paper we present a survey of approaches for implementing Optical
Neural Network (ONN) accelerator. A classification of the existing solutions is
proposed which includes two categories: optical implementations for computing
and communication. Previous citation focused either on the computing accelera-
tion in neural network or on bottlenecks of photonics technologies, which ignored
the contribution of on-chip optical communication to neural networks acceler-
ation. The remainder of this paper is organized as follows: The classification
for photonic computing and communication in ANN accelerators is presented
in Fig. 1. In Sect. 2, we review the most relevant solutions categorized according
to the optical implementations for computing, while in Sect. 3 we describe the
optical approaches devised for the communication acceleration of ANN training.
Section 4 discusses the challenges and future research opportunities in this field,
while Sect. 5 concludes the paper.

2 Optical Implementations for Computing

2.1 Optical Resonance Based Neural Network Accelerators

Inspired by the field of neuroscience in which biological neurons communicate by
short pulses. Optical resonance based ANN accelerators have been carefully stud-
ied. Since the wavelength specificity of Microring-Ring-Resonator (MRR), a key
element of ANN accelerator, the realization of Wavelength Division Multiplex-
ing (WDM) approach is made possible, which is closely tied to the noncoherent
architectures of the ONN. In contrast to spatial multiplexing, the WDM channel
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Fig. 2. The Broadcast-and-weight architecture proposed by [17].

can coexist in a single bus waveguide channel without interference, which simpli-
fies the interconnection network of neurons to some extent. An on-chip optical
architecture for neural network implementations, named Broadcast-and-Weight
(BW) was explored in [17]. As shown in Fig. 2, the BW architecture employs
multiple wavelengths to transfer data in parallel with each distinct wavelength
outputted to a common bus waveguide. The outputs are multiplexed and dis-
tributed to all-neuron connection, in which the broadcast is realized by passively
splitting the bus waveguide. The MRR weight bank is an array of reconfigurable
filters that can be tuned to drain energy from their resonant wavelength, thereby
imprinting the weight coefficient to each corresponding channel.

Inspired by the BW protocol, an photonics convolution accelerator (PCNNA)
was proposed for CNNs inference-mode in [11]. PCNNA designed a single-layer
multiplexing CNN architecture, which enables the propagation of different neural
network layers. The authors argued that as multiple kernels share the same
receptive field values per layer, convolution computations for different kernels
can be performed in parallel. In the high-level framework, PCNNA is designed
to run on two clock cycle domains, the faster domain is used for the operation of
the optical network, and the slower domain is used for interfacing with electronic
circuits.

2.2 Optical Diffraction Based Neural Network Accelerators

Diffraction effects are usually the main factor limiting the performance of optical
devices, while appropriately using the principle of diffraction effect can effectively
realize the ONN. Holographic Optical Element (HOE) is one of the research
focuses currently in information storage, which is considered to be a great storage
tool for weights and directions in the ONN connection [13]. In [19], Zuo et al.
presented a Spatial Light Modulator-based (SLM) all-optical ANN, in which
optical matrix multiplication is implemented in a clever way. The authors divided
the SLM into several regions according to the number of input beams, and each
region is a superposition of multiple phase grating stacks, i.e., holograms. The
multiplication of ANN is realized by the diffraction of the incident beam in the
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Fig. 3. Diffractive deep neural networks (D2NN) depicted by [10].

HOEs, in which the weight of the neural network is mapped to the direction of
the incident beam. After the diffracted beam passes through a convex lens, it
performs a Fourier transform. Finally, beams are focused on the plane in the
same direction to realize the accumulation operation.

In addition to holograms, based on the sequentially cascading phase masks,
Lin et al. [10] explored a diffraction-based all-optical neural network called
D2NN. As depicted in Fig. 3, in D2NN, the fully connected neural network is
implemented by multiple 3D printed phase masks which are formed as a hier-
archical array in order and with interval. Each layer has only one single phase
mask representing one layer in the fully connected neural network. The small
grids in phase masks denote the neurons, which are loaded as different weight
information by different refractive indices and thicknesses in grids. In the same
direction of the incident beam, each neuron can be connected to all neurons
in the next layer after diffraction, so all neurons can be fully connected in each
phase mask. D2NN changes weight to the neural network by adjusting the phases
and changing the light attenuation.

2.3 Optical Interference Based Neural Network Accelerators

Different from diffraction, interference effect usually requires fewer linear light
waves, in which waveguides are needed to propagate the light waves. Interference
based ANNs implementation mainly relies on the optical device Mach-Ze-Delphi
Interferometer (MZI) that is made of two waveguides with directional couplers
and phase shifters. MZI has a coherent structure that loads the weight informa-
tion into the neural network by adjusting the phase and amplitude of the input
light. Shen et al. in [15] proposed an all-optical neural network using coherent
nanophotonic circuits which became kind of a seminal work for all future inter-
ference based ANN accelerator. Singular Value Decomposition (SVD) [9] is used
to realize optical matrix multiplication which decomposes the matrix M into
M = U

∑
V including two unitary matrices U and V and a diagonal matrix∑

. MZIs are set up as a cascaded array that is divided into three parts, with
each part realizing the matrix U ,

∑
and V respectively. The cascaded array can
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be regarded as a fully connected neural network. When the input lights pass
through the MZIs, the accelerator applies two parallel coherent light waves at
both phase shifters which will cause interference to the input light, so that the
matrix multiplication operation in CNN can be well realized in these processes.

3 Optical Implementations for Communication

Existing ANNs have been challenged by the fact that high computational com-
plexity, large amount of computational data, strong demand for memory access,
and high demand for system parallelism exist widely in current model training.
In the latest ANNs, tens to hundreds of megabytes of parameters are required
to execute a single inference pass. Over one billions of operations will gener-
ate large amounts of memory access requirements from the processing elements
(PE) which makes existing architectures face the challenge of memory wall. In
the processing of model training, a large amount of reusable data is usually gen-
erated. For example, a huge amount of filter data, input feature map data, and
partial sum data are created in the processing of convolution in CNN, in which
these data can be regarded as reusable resources.

3.1 Off-Chip Communication for Neural Network Accelerators

Optical interconnection have a deep research history in the field of datacen-
ter. To improve communication performance, prior work shows the benefits of
reconfigurable topologies in datacenter networks by adding optical links to the
electrical topology [4,12] or by creating all-optical datacenter interconnects [1].
Nevertheless, there are only a limited number of studies on using optical inter-
connection to optimize the ANN accelerator. In [6] proposed all-optical inter-
connects for ANN systems named SiP-ML, for strong scaling of ML workloads
by leveraging SiP chiplets. Considering the parallelism of ANN algorithm and
the singleness and repeatability of communication pattern during entire train-
ing, Sip-ML designed two data reuse based topologies at opposite ends of the
spectrum. As shown in Fig. 4a, an Optical Circuit Switch (OCS) based topol-
ogy called SiP-OCS is proposed consisting of Q commercially available optical
switches. Each OCS has N ports (the same as the number of GPUs), and each
GPU is connected to every OCS in a flat topology. Due to the 10 ms reconfigu-
ration latency, Sip-OCS can last through the entire model training. Meanwhile,
Micro-ring resonators embedded in SiP ports are used to build a switch-free
topology which completely removes switching elements, named Sip-Ring. MRRs
act as spectral filters to select and forward wavelengths, and they enable the
reuse of wavelengths across non-overlapping segments of the ring. In contrast to
SiP-OCS, SiP-Ring reconfigures wavelengths within each port to achieve logi-
cally rich topologies.

Moreover, an Inter/Intra-Chip silicon photonic network for rack-scale com-
puting systems called RSON was presented in [18]. RSON adopts circuit switch-
ing for the inter-chip and ONoC because of the relatively high overhead on
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Fig. 4. Two topologies for SiP-ML proposed by [6].

optical path setup/teardown and the difficulty on buffering optical signals. [18]
utilized the inter-node interface as the medium to coordinate the request from
both local ONoC and optical switch. A channel partition and dynamic path pri-
ority control scheme is designed to reduce the control complexity and arbitration
overhead.

3.2 On-Chip Communication for Neural Network Accelerators

In [8], the authors considered that electrical interconnection in the existing many-
core platform would not be sustainable for handling the massively increasing
bandwidth demand of big data driven AI applications. Hence, a rapid topol-
ogy generation and core mapping of ONoC (REGO) for heterogeneous multi-
core architecture was proposed. Based on the genetic algorithm, REGO receives
an application task graph including the number of cores and ONoC parame-
ters as inputs, which further includes the available router structure and loss and
noise factors of the optical elements. Thus, the REGO can accommodate various
router structures and optical elements because it calculates the worst-case OSNR
through loss and noise parameters obtained in advance through the parameters
of optical.

A fine-grained parallel computing model for ANNs training was depicted in
[3] on ONoC, in which the trade-off between computation and communication
can be analyzed to support the ANN acceleration. To minimize the total training
time, three mapping strategies were designed in each ANN training stage which
has the optimal number of cores. The advantages and disadvantages for each
mapping strategy are discussed and analyzed in terms of hotspot level, memory
requirement, and state transitions.

4 Challenges and Opportunities

In this paper, we reviews the optical approaches to accelerate neural networks
from two aspects, i.e., computing and communication. In recent years, with the
maturity of ANN theory and the development of silicon optical technology, one of
the areas with growing concerns is the implementations of ONN. Nevertheless,
there are still some outstanding challenges that limit the inference accuracy,
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reliability and scalability of ONNs. Hence, we summarize the challenges and
opportunities to offer suggestions for future research.

Scalability: The exiting works that have been discussed in this review mainly
focus on three approaches to accelerate ANNs model training that are small
optical neural network implementation, matrix vector multiplication accelera-
tion and optical network architectures for communication accelerating. The two
major issues of the above approaches are area consumption and energy atten-
uation of the optical devices. The schemes in [14] and [2] described that the
optical depth (the number of MZI units traversed through the longest path) for
the unitary matrix is limited to 2N − 3 and N , in an ANN with N number of
neurons, respectively. The optical depth increases linearly with the number of
neurons increasing which directly translates into additional loss in silicon pho-
tonics integrations. Research is thus needed to design new novel architectures
for reducing silicon photonic hardware complexity.

Robustness: Robustness also becomes more and more critical due to the scale-
up. Specifically, since the phase of each MZI is highly impacted by environmental
change, thermal crosstalk and imperfect manufacturing, the phase error is cas-
caded throughout the computation. Whereas the on-chip thermal crosstalk can
be suppressed, the finite encoding precision on phase settings will remain as
the fundamental limitation for the ONNs with high computational complexity.
The phase errors, in particular, accumulate when the lightwave signal traverses
the MZI mesh with an optical depth of 2N + 1. In addition, such errors propa-
gate through each layer of the network, which ultimately restricts the depth of
the neural network. In order to realize robust photonic accelerator, research is
needed to achieve effective photonic crosstalk mitigation, phase noise correction,
and noise resilient photodetection.

5 Conclusion

In this paper, we provide a comprehensive survey for optical implementation
of ANN accelerators, including Photonic computing acceleration and Photonic
communication acceleration. For the optical neural networks, we present the
current ANN accelerators that are realized by the optical effects. For the opti-
cal interconnection, we introduce the existing studies from the perspectives of
off-chip communication and on-chip communication for ANN accelerator. Fur-
thermore, we point out the open challenges and the future research opportunities
for photonic neural network accelerator, which is expected to provide guidance
and insight for future researchers and developers on this research field.
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Abstract. Multi-layer Perceptron (MLP) is a class of Artificial Neu-
ral Networks widely used in regression, classification, and prediction. To
accelerate the training of MLP, more cores can be used for parallel comput-
ing on many-core systems. With the increasing number of cores, intercon-
nection of cores has a pivotal role in accelerating MLP training. Currently,
the chip-scale interconnection can either use electrical signals or optical
signals for data transmission among cores. The former one is known as
Electrical Network-on-Chip (ENoC) and the latter one is known as Opti-
cal Network-on-Chip (ONoC). Due to the differences of optical and elec-
trical characteristics, the performance and energy consumption of MLP
training on ONoC and ENoC can be very different. Therefore, comparing
the performance and energy consumption between ENoC and ONoC for
MLP training is worthy of study. In this paper, we first compare the differ-
ences between ONoC and ENoC based on a parallel MLP training method.
Then, we formulate their performance model by analyzing communica-
tion and computation time. Furthermore, the energy model is formulated
according to their static energy and dynamic energy consumption. Finally,
we conduct extensive simulations to compare the performance and energy
consumption between ONoC and ENoC. Results show that compared with
ENoC, the MLP training time of ONoC is reduced by 70.12% on average
and the energy consumption of ONoC is reduced by 48.36% under batch
size 32. However, with a small number of cores in MLP training, ENoC
consumes less energy than ONoC.

Keywords: Multi-layer perceptron · Optical network-on-chip ·
Artificial Neural Networks · Energy consumption

1 Introduction

Multi-layer Perceptron (MLP) is one type of deep learning model that can be
applied to classification, recommendation engine, and anomaly detection. How-
ever, the training of complex MLP model can be very slow with large data sets.
Since the MLP has intrinsic characteristic for parallel computation, more cores
can be integrated in many-core systems to accelerate the training of MLP. With
c© Springer Nature Switzerland AG 2022
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the increasing number of cores integrated into the chip, on-chip interconnec-
tion becomes an essential factor to accelerate MLP training which is normally
constrained by the communication cost and memory requirements. Electrical
Network-on-Chip (ENoC) was first proposed to improve the system performance
with communications among cores using electrical signals. However, it has scala-
bility issues due to the hop-by-hop routing via electrical routers, which does not
scale well with a large number of cores. Optical Network-on-Chip (ONoC) was
proposed as a promising alternative paradigm for ENoC using optical communi-
cations among cores. Compared with ENoC, ONoC has many advantages, such
as low transmission delay, low power cost, high bandwidth, and large through-
put [1]. Moreover, ONoC enables multiple signals transmission in one waveg-
uide using different wavelengths by Wavelength Division Multiplexing (WDM)
technology [2]. With these advantages, ONoC has great capability to efficiently
perform intensive inter-core communications, and can effectively accelerate the
parallel computing of MLP training.

However, ONoC also has some extra overheads such as OE/EO conversion
cost, insertion loss caused by the light transmission of the waveguide, and tuning
power of micro-ring, which can affect the performance and energy consumption
for MLP training. Moreover, the performance of MLP training also depends on
different communication patterns in on-chip network, which is dependent on the
number of cores, batch size, NN benchmarks, and etc. Up to date, there have
been no comparative studies that compare MLP training between ENoC and
ONoC regarding the training performance and energy consumption. Only sev-
eral pieces of work on performance comparison between ENoC and ONoC can
be found. The paper [3] compares performance between ENoC and ONoC under
different topologies and the report [4] shows performance and energy consump-
tion between ENoC and ONoC by using synthetic traffic. Nevertheless, these
studies does not consider the comparisons in scenario of neural network train-
ing. Therefore, it is of great importance to investigate the comparison of MLP
training efficiency between ONoC and ENoC under different configurations. The
research questions include: 1) Does ONoC always outperform ENoC for training
MLP training? 2) How much improvement can be achieved for MLP training on
ONoC compared with ENoC under different configurations? 3) In what condi-
tions and settings, ENoC consumes less energy than ONoC for the MLP train-
ing? In this paper, we aim to compare the performance and energy consumption
of MLP training on ONoC and ENoC under different configurations. We answer
the above questions with key contributions summarized as follows:

1. We compare the differences between ONoC and ENoC based on a parallel
MLP training method [5]. We formulate their performance by analyzing their
communication and computation costs and formulate their energy based on
the static and dynamic energy costs.

2. We conduct extensive simulations to compare the MLP performance and
energy consumption betwen ONoC and ENoC under different batch sizes
using different NN benchmarks. Results show that ONoC outperforms ENoC
with an average training time reduction of 70.12% and ONoC is more energy-
efficient than ENoC especially when a large number of cores are used.
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The remaining part of the paper proceeds as follows: Sect. 2 describes the
background of this paper, which includes MLP training, ONoC/ENoC sys-
tem. Section 3 first illustrates the parallel MLP training on NoC systems, then
presents the performance and energy models of ONoC and ENoC. Section 4 com-
pares performance and energy consumption between ONoC and ENoC. Finally,
Sect. 5 concludes the paper.

2 Background

2.1 Training of MLP

The training process of MLP consists of forward propagation and backward
propagation. We use Zl to represent the input vector in the layer l (output vector
of layer l − 1) and Wl to represent the weight matrix at layer l. In the forward
propagation, the forward propagation of MLP with nl neurons at layer l can be
defined as Zl = f(WlZl−1 + bl), where f(∗) is the activation function, and bias
vector is bl in layer l. In backward propagation, we use the El, ΔWlto represent
error vector and gradient of weight in layer l. The error can be calculated as
El = (El+1W

T
l )f ′(Zl), where f ′(∗) is the derivative function of f(∗). Then, by

using error vector El, the gradient of weight can be calculated as ΔWl = ZT
l El+1.

Finally, after we obtain the gradient, weights are updated as Wl = Wl + σΔWl,
where σ is the learning rate.
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Fig. 1. Overview of (a) Optical network-on-chip system and (b) Electrical network-on-
chip system; (c) Illustration of periods in parallel MLP training.
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2.2 Optical and Electrical On-Chip Interconnects

We first illustrate the major differences, advantages, and disadvantages of ONoC
and ENoC respectively, then we demonstrate the ONoC and ENoC architectures
used in this paper. The main difference between ENoC and ONoC is that they
use different transmission media for communications among cores. In ENoC, the
communications among cores are conducted through the electrical routers, where
the electrical packets from the source go through electrical links and routers until
the destination. While the transmission among cores in ONoC is different via
optical routers, which can use different wavelengths to communicate in parallel
through the waveguide using Wavelength Division Multiplexing (WDM) tech-
nology. The merits of optical communication can be summarized as follows: low
transmission delay (2–3 cycles between any two points on the chip with a 2 GHz
clock), low power cost (roughly independent of the distance), high bandwidth
(up to 40 Gb/s per wavelength) and the feasibility of wavelength division mul-
tiplexing (64 per waveguide). One of the drawbacks of ONoC is that ONoC
requires a large number of optical components, which dissipate a lot of static
power. Compared with ONoC, ENoC has good flexibility (a variety of topolo-
gies) and it performs well in short distance communication, but ENoC does not
scale well resulting in high latency with more cores integrated into the chip.

The overview of ONoC and ENoC architectures used to train the MLP in
this paper are shown in Fig. 1(a) and (b) respectively, which are based on ring
topology. The ONoC architecture is similar to the one proposed in [6], where
the optical network plane has an optical control plane for configuring the opti-
cal router (a pair of transmitter and receiver). In the router, the receiver is set
with a splitter to split optical signals. As can be seen from Fig. 1(a), the PEs
and the optical routers are connected to the optical network interface through
vertical links for router configuration and data transmission. Before the com-
munication, Manager Processing Element (MPE) and the Routing Wavelength
Allocator (RWA) are used to configure the optical network. After the configu-
ration is finished, the corresponding modulators in transmitters and drop filters
in receivers are configured and ready for communications. We assume only one
optical waveguide is used in this paper. The ENoC architecture consists of elec-
trical network plane and core plane, as can be seen from Fig. 1(b). The network
interface in each PE connects a electric router, and the routers in the elec-
trical network plane concatenate with each other via electrical links by a ring
topology. Note that each core in the core plane for ONoC/ENoC has an on-
chip distributed memory architecture with its L1 private cache and distributed
SRAM connected to the main memory via the memory controller. More details
about system parameters will be described in Sect. 4.

3 Methodology on Parallel MLP Training
on ONoC and ENoC System

3.1 Parallel MLP Training

We first use an example given in Fig. 1(c) to explain the process of MLP training
on ONoC/ENoC system. For parallel computation during MLP training, the
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neurons in the MLP can be mapped to multiple cores to execute in parallel,
where multiple neurons can be mapped onto the same core. As illustrated in
Fig. 1(c), one epoch of training is divided into multiple periods based on layers
and these periods are executed sequentially. In the initialization process (Period
0), data and MLP instructions in the main memory are loaded to the distributed
SRAM of cores. In the subsequent periods, the cores mapped with neurons in the
corresponding layer perform computations concurrently and then exchange the
outputs with the cores mapped with neurons in the next layer through inter-core
communications instead of accessing the main memory.

3.2 Performance Model

As illustrated in Fig. 1(c), one epoch of training is divided into multiple peri-
ods based on layers. The FP process is divided into l + 1 periods labeled from
Period 0 to Period l, and the BP process is divided into another l periods labeled
from Period l + 1 to Period 2l. Note that Period 0 is the initialization period,
which does not have any computations and communications. To take advantage
of data locality, the cores used in the forward propagation will be used in the
back propagation. In this way, all MLP parameters and intermediate values are
stored in SRAM of the corresponding cores distributively, with these parameters
staying in the corresponding SRAM during one epoch of training. Cores used in
different layers exchange data by communications on ONoC/ENoC. During the
MLP training process, the only difference between ENoC and ONoC is the com-
munication stage, which can result in different training time. Therefore, we first
formulate the communication time of ONoC and ENoC separately and then for-
mulate their computation time. Finally, we derive their total MLP training time
respectively. Because each epoch of MLP training is repetitive, the formulation
below is based on one epoch of MLP training.

Communication Time. We use m to represent the number of cores used in
the parallel MLP training and assume the neurons are evenly mapped to the m
cores in each period. Let di, ni represent the transferred data volume and neuron
number in period i, where i ∈ [1, 2l]. According to the parallel training of FP
and BP process, the transferred data volume varies by using different number of
cores, as can be calculated by

di =

⎧
⎪⎨

⎪⎩

0, i = 1, l and 2l;
niva

m , i ∈ [2, l − 1];
(nin2l−i+ni)va

m , i ∈ [l + 1, 2l − 1],
(1)

where v and a represent the number of batch size and storage size of one param-
eter, respectively. d1, dl, d2l = 0 because there is no communication in these
periods.
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ONoC Communication Time: The communication time of MLP training on
ONoC in period i equals the amount of time that the m cores in period i finish
exchanging their data di with other cores using optical communications. Let s
represent the size of flit, then the total number of flits transmitted in period
i equals

⌈
di

s

⌉
. Assume the number of available wavelengths is λmax. By lever-

aging the WDM technology, the communications of ONoC in each period can
be parallelized by letting multiple cores transmit simultaneously using differ-
ent wavelengths. For period i that demands communications, all the m cores
can transmit concurrently if m ≤ λmax; otherwise Time Division Multiplex-
ing (TDM) needs to be used to complete the transmissions from the m cores.
The delay of O/E/O conversion, time of flight, de/serialization, and routing and
wavelength assignment are represented by Do, Df , Ds, Da, respectively. Let
ε1(i) be the amount of time required to complete communications in period i
for ONoC. We have

ε1(i) =
⌈

m

λmax

⌉(⌈
di

s

⌉

(Do + Df + Ds) + Da

)

. (2)

ENoC Communication Time: The communication time of MLP training on
ENoC in period i equals the time that the m cores in period i finish exchanging
data volume di with each other via electrical routers. The communication pattern
on ENoC is the same as an all-gather/all-reduce operation among cores. As Bulk
synchronous parallel (BSP) model is widely used for evaluating the performance
of parallel algorithm in distributed-memory system [7], we use the BSP model to
evaluate the performance of all-gather/all-reduce operation during parallel MLP
training on ENoC system, with the communication time on ENoC formulated as
follows. Each super-step in the BSP model is regarded as one execution period of
MLP on ENoC. We denote hi

j as the number of flits that core j sends or receives
during period i, where i ∈ [1, 2l] and j ∈ [1,m]. Then, the maximum number
of flits among all the cores sent or received in period i, denoted as Hi, can be
calculated as

Hi =
m

max
j=1

(hi
j). (3)

The process of all the cores exchanging their data with any other cores in each
execution period is an all-gather/all-reduce process, in which we use recursive
doubling method [8] to execute the all-gather operation. Then, this all-gather/all-
reduce process takes log2 m sub-steps to finish. The size of data in each core dou-
bles at each sub-step until di data volume is fully gathered/reduced. Then, the
cost of sending or receiving data volume of di in period i is gHi

∑log2 m
k=1 (di/2k),

where g is the bandwidth of the ENoC to transmit data, and k (k ∈ [1, log2 m])
is the index of the sub-steps in the all-gather/all-reduce process. Let ε2(i) be the
amount of time required to complete communications for ENoC in period i. We
have

ε2(i) = gHi

log2 m∑

k=1

(di/2k) + bi, (4)

where bi is the latency for barrier synchronization in period i.
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Computation Time. The computation time in each period equals the time
that the corresponding cores finish processing its computation workload for that
period. We use ρi to represent the amount of computation for each neuron in
period i of the FP process and use σi to represent the amount of computation
to calculate the gradients and update the weight of one connection based on
all training samples. When the batch size (i.e., the number of samples in one
training epoch) is larger than one, ρi is the amount of computation for each
neuron in period i to process all samples in the current training. According to
the definition of periods, the neurons in layer i where i ∈ [1, l] get involved
in period i during the FP process, and the neurons in layer 2l − i + 1 where
i ∈ [l + 1, 2l] get involved in period i during the BP process. Therefore, the
corresponding number of neuron ni in FP process is the same as n2l−i+1 in
the BP process. Then, the amount of computation for FP process is ρini

m where
i ∈ [1, l] and the amount of computation for BP process is σin2l−i+1(n2l−i+1)

m
where i ∈ [l + 1, 2l].

Let τ(i) represent the amount of computation time required for each of the
m cores in period i and assume all the cores are homogeneous with same com-
putation capacity C. We have

τ(i) =

{
ρini

mC , i ∈ [1, l];
σini(n2l−i+1)

mC , i ∈ [l + 1, 2l].
(5)

Total Training Time. Since we have obtained the communication costs on
ONoC and ENoC by Eq. (2) and Eq. (4) and their computation cost by Eq.
(5), we can derive the total MLP training time on ONoC and ENoC as follows.
The total training time of ONoC, denoted as Tonoc, equals the sum of ONoC
communication time, computation time, and initialization delay in one epoch of
training. Then

Tonoc =
2l∑

i=1

(ε1(i) + τ(i)) + ξ, (6)

where ξ represents the initialization delay caused by loading input data and
MLP instructions from the main memory to the cores in initialization process
and other extra main memory access, software overhead, etc.

Similarly, the total training time of ENoC, denoted as Tenoc, can be formu-
lated as follows:

Tenoc =
2l∑

i=1

(ε2(i) + τ(i)) + ξ. (7)

3.3 Energy Model

ENoC Energy Consumption. We use PS and PL to represent the power of
switch and power of link. Let Estat be the static energy consumption of ENoC,
which can be calculated as
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Estat =

(
ns∑

i=1

PSi +
nl∑

i=1

PLi

)

× Tenoc, (8)

where ns is the number of switches and nl is the number of links used during
the MLP training.

We use ESi and ELi to represent the energy/bit of the ith switch and link.
BSi and BLi are used to represent the bits transmitted through the ith switch
and link. Let Edyn be the dynamic energy consumption of ENoC, then we have

Edyn =
ns∑

i=1

(ESi × BSi) +
nl∑

i=1

(ELi × BLi) . (9)

ONoC Energy Consumption. The static energy consumption of ONoC is
denoted as OEstat, which is related to the energy costs for micro-ring tuning,
laser, and electric-to-optical conversion. So, then static energy consumption of
ONoC can be calculated by

OEstat = (Pmt + Plaser + Poe) × Tonoc, (10)

where Pmt, Plaser and Poe represent the powers of micro-ring tuning, laser and
electric-to-optical conversion respectively.

The dynamic energy consumption of ONoC is denoted as OEdyn, which
is decided by the overall amount of optical flits that traverse through modu-
lator, photo-detector, serializer/deserializer, and waveguide. We use Em, Ep,
Es and Ew to represent the energy/flit of modulator, photo-detector, seri-
alizer/deserializer and waveguide respectively. According to [9], the dynamic
energy consumption of ONoC can be calculated as

OEdyn = (Em + Ep + Es + Ew) × N3
flits, (11)

where Nflits is the number of flits.

4 Comparison of MLP Training on ENoC and ONoC

4.1 Simulation Setup

Since the computation part for both ONoC and ENoC are identical, we separate
the simulation of computation and communication into the two processes. For
the communication level simulation, we build an in-house simulator to simulate
the ONoC based on the cost model in Sect. 3.2 while the communication time
of ENoC is tested on Garnet standalone mode [10]. To collect computation time
and communication traces, we implemented the MLP in C using GNU Scientific
Library and BLAS gemm [11] in a machine with an intel i5 3200 CPU and
32 Gb main memory. To get the accurate computation time of each core, we
repeat the computation workload of each core a thousand times and then obtain
the average time. In this way, we make sure the computation is carried out in the
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CPU caches, which matches our simulated architecture. We run the configured
workloads with up to 300 threads to generate the communication traces for up to
300 cores. The communication traces are fed into our ONoC and ENoC simulator
to obtain the communication time of the simulated ONoC and ENoC systems.
Based on the simulated results, we calculate the energy consumption of ONoC
and ENoC using the energy model in Sect. 3.3, where the values of ONoC/ENoC
energy parameters are retrieved from DSENT [12].

We use the three well-known MLP models [5] for processing fashion-mnist and
cifar-10 datasets with high classification accuracy for our simulation, the hyper-
parameters for the neural networks can be seen in Table 1. The parameters of
the simulated architecture are shown in Table 2, and other ONoC parameters
are set as follows: bandwidth/per wavelength 40 Gb/s, waveguide propagation
1.5 dB/cm, waveguide bending 0.005 dB/90o, spliter 0.5 dB, MR pass 0.005
dB/MR, laser efficiency 30%, MR drop 0.5 dB/MR, coupler 1 dB. These param-
eters are obtained from [5,9,13]. The packet size and flit size for ONoC/ENoC are
set as 64 bytes and 16 bytes, respectively. Note that the size of distributed SRAM
in Table 2 is the maximum memory requirement for the NN benchmarks under
batch size 32 calculated by the worst case. The value of distributed SRAM can
be greatly reduced if we adopt state-of-the-art pruning technique for the neural
network [14]. If the memory requirement of NN is beyond the memory capacity,
the performance will be degraded because additional main memory accesses are
required causing extra delay for the training time.

Table 1. Hyper-parameters for Neural network

NN1 784–1000–500–10

NN2 784–1500–784–1000–500–10

NN3 1024–4000–1000–4000–1000–4000–1000–4000–10

Table 2. Parameters of simulated architecture

Core 3.4 GHz, 6 GFLOPS (64 bit)

Private L1 (I cache/ D cache) 128/128 KB

L1 latency 1 cycle

Distributed SRAM 42 M

Distributed SRAM latency 10 cycles (front end/back end)

Memory controller latency 6 cycles

Bandwith of main memory 10 Gb/s

NoC Parameters setup

ENoC 2D-Ring, 2 cycles/hop, 2 cycles/routing,

32 nm, shortest-path routing,

4 virtual channel router

ONoC 3D-Ring, 1 waveguide, 30mm length,

Time of flight & OE/EO: 1 cycle/flit, 64 wavelengths

De/Serialization: 2 cycles/flit, 10 Gb/s
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4.2 Performance Comparison

To better show the performance comparison of ONoC and ENoC, we first com-
pare their computation and communication time by using the NN benchmarks
with a list of fixed number of cores (50, 100, 150, 200, 250, 300) under batch size
32. Note that the following results are obtained from one epoch of MLP training
including forward and back propagation.

Fig. 2. Performance comparisons of ONoC and ENoC with different number of cores.

From Fig. 2, we can see that the communication time of ONoC during one
epoch training almost keeps steady, and the total training time keeps decreasing
with the increasing number of cores. However, the communication time of ENoC
shows an upward trend with the increasing number of cores and the training
time of ENoC (for most of NNs) first decreases and reaches the bottom within
the range from 50 to 100 cores, then keeps increasing. The reason for this is
that the communication cost on ENoC relates to the number and locations of
the communication cores. According to Eq. (4), communication time of ENoC
mainly depends on the synchronization time and maximum cost of sending or
receiving di message in ENoC. The barrier synchronization time of each exe-
cution period equals the latency of barrier synchronization for each sub-steps
multiplied with the number of sub-steps log2 m during the all-gather process.
Though data volume to transfer from each core is reducing with the increasing
number of cores, the number of sub-steps and synchronization time are increased
because more cores need to exchange data with other cores. Therefore, the com-
munication time of ENoC greatly increases with the increasing number of cores.
However, the communication time in ONoC depends on the transmission data
volume and the number of time slots according to Eq. (1) and Eq. (2). With the
increasing number of cores, data volume to transfer from each core is reduced but
more time slots are needed to communicate between cores due to limited number
of wavelengths. Compared with ENoC, the communication time of ONoC only
occupies a very low percentage in the total training time. On average, the MLP
training time of ONoC is reduced by 70.12% compared with ENoC.

In conclusion, ONoC outperforms ENoC under different number of cores in
MLP training. This effect is more notable when more cores are used for the
training (e.g. 300 cores).
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4.3 Comparison of Energy Consumption

To show the energy consumption of ONoC and ENoC in a better way, we first
compare their static and dynamic energy consumption by using 3 NN bench-
marks with a list of number of cores (50, 100, 150, 200, 250, 300) in wavelength
number 64 and batch size 32.

Fig. 3. Energy comparisons of ONoC and ENoC with different number of cores.

Figure 3 shows the energy consumption of 3 NN benchmarks with different
number of cores under batch size 32. It can be seen from Fig. 3 that, with the
increasing number of cores, the total energy consumption of ONoC is decreasing
while its dynamic energy is increasing slowly. However, the energy consumption
of ENoC shows a different trend with both total energy and dynamic energy
increasing with the increasing number of cores. Besides, we also notice that the
total energy consumption of ONoC is larger than ENoC when the number of
cores is small (e.g. 50), but is smaller than ENoC with the increasing number
of cores. This is because the static power is dominant in ONoC, which is largely
dependent on training time according to Eq. (10). However, the dynamic energy
consumption is dominated in ENoC, which is mainly related to the commu-
nication quantity. From Eqs. (8) and (10), we know that the static energy of
both ONoC and ENoC has a linear relationship with the training time. Thus,
the static energy consumption of ONoC is decreasing by using more cores in
MLP training. Also, as can be seen from Eqs. (9) and (11), the dynamic energy
of ENoC is dominated by the electrical components (e.g. switches and links)
that flits traverse, while the dynamic energy of ONoC is related to the num-
ber of flits that traverse the optical components. When we use more cores in the
MLP training on ENoC, the communication requires more electrical components
involved which consumes much more dynamic energy resulting in the increasing
total energy consumption. When we use a smaller number of cores (e.g. 50), the
training time of ENoC and ONoC is more close, but ONoC has a larger static
power, which results in larger total energy consumption of ONoC than ENoC.
On average, the energy consumption of ONoC is reduced by 48.36% compared
with ENoC for the 3 NNs.
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In summary, ONoC is more energy-efficient especially when a large number
of cores are used for MLP training. ENoC shows better energy efficiency than
ONoC when a small number of cores is used for MLP training (e.g. less than 50
in our simulations).

5 Conclusion

In this paper, we first compare the differences of ONoC and ENoC based on a
parallel MLP training method. Next, we formulate their performance according
to the communication and computation time and formulate their energy con-
sumption based on static and dynamic energy consumption respectively. Then,
we conduct simulations to compare performance and energy efficiency of ONoC
and ENoC using MLP training. The results show that ONoC outperforms ENoC
in MLP training time with 70.12% time reduction on average. Moreover, the
energy consumption of ONoC is reduced by 48.36% compared with ENoC under
batch size 32. Results also show that, when a smaller number of cores is used
in the MLP training, ENoC consumes less energy than ONoC. Our future work
can be conducted with extension to other neural networks and other topologies.
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Abstract. We propose a multi-valued processor called reconfigurable
quaternary logic processor (RQLP), where we use two binary bits to
express one quaternary (i.e. 4-valued) bit. The RQLP can be built with
massive processor bits. Each processor bit has a unified structure con-
sisting of four column operators which are gathered by an electric poten-
tial combiner. The structure of each column operator is composed of a
signal selector, working enabler, reconfiguration register, reconfiguration
circuit, output enabler, and output generator. The unified structure of
each processor bit can be reconfigured into one of 416 types of two-input
quaternary logic operators. Compared with modern binary 64-bit pro-
cessors, the proposed many-bit RQLP can perform much more types of
logic operations via hardware, where the massive processor bits on a sin-
gle RQLP can be divided for parallel processing. We design a general
structure of RQLP and provide the prototype circuit for RQLP’s proces-
sor bit. We implement the RQLP using FPGA and verify it with different
quaternary logic operations. Our results demonstrate the effectiveness of
RQLP in the aspect of correctness and reconfigurability.

Keywords: Multi-valued logic · Quaternary logic operator ·
Reconfigurable processor · Many-bit processor · FPGA

1 Introduction

In the digital world, although the binary expression and Boolean logic have
become the foundation of modern computing, multi-valued or many-valued logic
is still a very active field of study [1–3,5–9]. Multi-valued logics differ from
binary logic by the fundamental fact that they do not restrict the number of
truth values to only two: they allow for a larger set of truth degrees. For exam-
ple, 4-valued logic or quaternary logic allows four truth degrees which could be
represented by four symbols. For binary logic, there are only 2(2×2) = 16 types
of two-input binary logic operations. For quaternary logic, however, there are
4(4×4) = 4, 294, 967, 296 types of two-input quaternary logic operations in total.
c© Springer Nature Switzerland AG 2022
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It is impossible and unnecessary to design the specific circuit for each of the
many types of quaternary logic operators individually.

In this paper, we propose a quaternary processor called reconfigurable qua-
ternary logic processor (RQLP), where we use two binary bits to represent the
four symbols of a quaternary bit. The RQLP can be built with massive proces-
sor bits. Each processor bit has a unified structure, which can be reconfigured
into any specific two-input quaternary logic operator. We only have to set dif-
ferent reconfiguration instructions into a processor bit’s reconfiguration register
in order to realize different logic functions. The main contributions of this paper
are summarized as follows:

• We propose a structure of RQLP with massive processor bits. The unified
structure of each processor bit consists of four column operators which are
gathered by an electric potential combiner. The structure of each column
operator is composed of a signal selector, working enabler, reconfiguration
register, reconfiguration circuit, output enabler, and output generator. The
RQLP has the ability of performing all types of quaternary logic operations.

• We design a prototype circuit for RQLP and its processor bits. Each pro-
cessor bit is equipped with a reconfiguration register. We use reconfiguration
instructions to determine specific logic functions for column operators. The
logic function of each processor bit can be changed (or reconfigured) while
the RQLP is running, by simply rewriting another reconfiguration instruction
into its reconfiguration register.

• We implement a 1-bit RQLP (with only one processor bit) on FPGA device,
and verify the effectiveness and reconfigurability of the proposed processor
structure and circuit. Based on the 1-bit RQLP, we then realize a many-bit
RQLP with 1,696 processor bits.

Compared with conventional binary 64-bit processors, the proposed many-
bit RQLP have three merits. Firstly, it can perform much more (almost 4.3
billion) types of logic operations via hardware. Secondly, the massive processor
bits on a single RQLP can be divided and assigned to different tasks for parallel
processing, where any group of processor bits can be configured into a user-
specific operator. Thirdly, the processor bits can be regrouped and reassigned,
while the hardware logic function of each processor bit can be reconfigured.

These merits will bring new algorithms and new ways to deal with difficult
problems in various fields, where many potential applications can be envisaged.
For example, tasks like quaternary logic operations, quaternary symbol trans-
formation and quaternary decision-making, which can only be processed slowly
by software in the current binary computers, will be accelerated to finish in one
clock cycle on a quaternary logic operator. Currently, we are developing a novel
encryption chip that utilizes 416 types of quaternary logic operators to achieve
one-time pad encrypted real-time communication.

Moreover, the prototype circuit for RQLP and its processor bits can be sim-
plified to implement reconfigurable ternary (i.e. 3-valued) logic processor, or it
can be extended to implement reconfigurable n-valued logic processor (where
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n > 4). We hope RQLP and its construction method will provide new insight
into the development of modern processors.

2 Reconfigurable Quaternary Logic Processor

There are various expression methods for n-valued logic. The most common
method is one-dimensional n-valued expression. That is, a logic value is expressed
by one symbol, where the symbol has n different possible values. For example,
a one-symbol set for n-valued logic expression could be {0,1,2,...,n − 1}, where
n = 4 in the case of quaternary logic expression. However, the values of n-
valued logic may be alternatively expressed by multiple symbols, which is a
mathematically equivalent information expression form. For example, two binary
values could be used for quaternary logic expression, and it is called “2-binary-
bit” expression in the rest of this paper. We use 2-binary-bit set {00, 01, 10,
11} for quaternary logic expression during the design of RQLP in the rest of
this paper. The advantage of adopting this expression form is that it can make
full use of existing binary logic devices to make n-valued logic operators in a
convenient and inexpensive way.

The design of RQLP starts from a truth table for quaternary logic operation.
Conventionally, the truth table for a quaternary logic operation is a 4×4 square
table, such as the four examples shown in Table 1 where A and B are two inputs
while C is the output. Each A, or B, or C is represented by the 2-binary-bit
quaternary logic expression set {00, 01, 10, 11}.

2.1 General Structure

The RQLP is designed to have massive processor bits, where each processor
bit corresponds to a quaternary logic unit that can perform any types of the
416 quaternary logic operations. Inspired by the decrease-radix design principle
[11] and the reconfigurable ternary optical processor [4,10], we design a general
structure called column operator with four different forms.

Figure 1 shows a schematic diagram of the structure of an m-bit RQLP. Each
processor bit includes four column operators, such as 3 and 4 , which are
connected by an electric potential combiner with four input terminals, such as
11 . The output terminal of the kth column operator is connected to the kth

input terminal of the electric potential combiner, where k ∈ {0, 1, 2, 3}. The
output of the ith electric potential combiner forms the output signal of the ith

processor bit, where i ∈ {0, 1, ...,m− 1}. In Fig. 1, the output of the kth column
operator included in the ith processor bit is denoted as C k

i (i ∈ {0, 1, ...,m−1},
and k ∈ {0, 1, 2, 3}).

Each of the four column operators mainly includes six components,
namely output enabler 5 , output generator 6 , A-signal selector 7 , working
enabler 8 , reconfiguration register 9 , and reconfiguration circuit 10 .

The working procedure of the m-bit RQLP is based on the reconfiguration
register. A reconfiguration instruction, which can be written into the recon-
figuration register by using the line G, determines a specific function for the
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Fig. 1. Schematic diagram of the structure of an m-bit RQLP.

corresponding column operator, that is, to implement one of the 416 types of
quaternary logic operations or no operation.

The electric potential combiner of the ith processor bit is designed to combine
output signals of all the column operators of that processor bit, and to form a
final output signal of that processor bit. Since no matter what value the ith bit
of input data A is, it will satisfy the selection requirement of one of the four
A-signal selectors among the four column operators. Hence, the processor bit can
definitely complete the logic operation for any value of the ith bit of the input
data A and B. (Note that the inputs A and B are m-bit quaternary data.)

The many processor bits can be divided into different groups with flexible
group size, where each group can be reconfigured into a specific quaternary logic
operator with k (k ≤ m) processor bits according to user’s need, by writing cor-
responding reconfiguration instructions into the reconfiguration registers. After
the task is finished, the many processor bits can be re-grouped and reconfigured.

2.2 Circuit of RQLP’s Processor Bit

Based on the general structure, we design a circuit structure of the RQLP’s
processor bit. An m-bit RQLP (Fig. 1) contains m processor bits, where each
processor bit has the same structure (Fig. 2) and working principle. Here, we
only give the structure of the ith (i ∈ {0, 1, ...,m − 1}) processor bit, as shown
in Fig. 2. Each processor bit includes four column operators (13, 14, 15, and
16) and one electric potential combiner (17). The differences among the four
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column operators only lie in that A-signal selectors (20, 40, 41, and 42) have
different structures: 20 is a NOR gate whose two input terminals are respec-
tively connected to A 1

i (high bit of the ith line of input data A) and A 0
i (low

bit of the ith line of input data A); 40 is an AND gate with one inverted input
terminal, where the inverted input terminal is connected to A 1

i while the other
input terminal is connected to A 0

i ; 41 is also an AND gate with one inverted
input terminal, where the inverted input terminal is connected to A 0

i while the
other input terminal is connected to A 1

i ; 42 is an AND gate whose two input
terminals are respectively connected to A 0

i and A 1
i . The remaining parts of the

four column operators are identical, and we depict them only in the first column
operator in Fig. 2.

Fig. 2. Schematic diagram of the structure of a RQLP’s processor bit. The structure
is only for one processor bit where other processor bits are the same.

Now we explain the first column operator in detail. It includes an A-signal
selector, a working enabler, a reconfiguration register, a reconfiguration circuit,
an output enabler, and an output generator. The A-signal selector is imple-
mented by a NOR gate 20 . The working enabler is implemented by an AND
gate 19 . The reconfiguration register is implemented by a register 29 denoted
as RG 0

i . (Similarly, RG k
i is used to denote the reconfiguration register in the

kth column operator of the ith processor bit.) The reconfiguration circuit con-
sists of two components. One component is formed by an 8-to-1 multiplexer 23;
two XOR gates 22 and 24; an AND gate 25 ; two AND gates with inverted
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input terminal 26 and 27; and a NOR gate 28. Similarly, the other component
is formed by an 8-to-1 multiplexer 32; two XOR gates 31 and 33; an AND
gate 34; two AND gates with inverted input terminal 35 and 36; and a NOR
gate 37. The output enabler is implemented by an AND gate 18. The output
generator is implemented by two AND gates 21 and 30.

The connections among the parts in the column operator are as shown in
Fig. 2. For the two 8-to-1 multiplexers, D0∼D7 are eight input signals while
C0∼C2 are three select lines. Eight input lines of the 8-to-1 multiplexer are
respectively connected to one circuit for filtering the input data Bi signal.
According to the circuit structure and the working principle of column operators,
we can work out the reconfiguration instructions for all 16 possible situations
of a column operator. Then, each of the m processor bits can be reconfigured
into one bit of quaternary logic operator, so that the entire processor becomes
a composite operator having various quaternary logic units.

3 Experiments

To verify the effectiveness of the proposed RQLP, we implement the circuit struc-
ture on an embedded Zynq AX7020 FPGA device. We make column operator
a module, and we connect four column operator modules according to Fig. 2 to
form a RQLP’s processor bit. As for resource utilization, it takes 18 LUTs and
36 FFs to implement a processor bit.

Table 1. Truth tables of four tested quaternary logic operations.

Test No.1 Test No.2 Test No.3 Test No.4

B1B0

C1C0 A1A0
00 01 10 11 00 01 10 11 00 01 10 11 00 01 10 11

00 00 01 10 11 11 10 01 00 01 10 11 10 01 10 00

01 00 01 10 11 00 11 10 01 10 10 00 01 10 11 10

10 00 01 10 11 01 00 11 10 11 00 00 11 00 01 10

11 00 01 10 11 10 01 00 11 10 01 11 01 00 10 11

We test the processor bit on four quaternary logic operations, whose truth
tables are listed in Table 1. Test case No. 1 is a relatively simpler truth table
where each column has the same value. Test case No. 2 is a complex truth table
where each column and each row all have four different values. Test case No.3 is
randomly chosen from all 416 quaternary logic operations. Test case No.4 is also
a randomly chosen truth table but with the third column deleted.

Based on the circuit of RQLP’s processor bit and the working principle of
column operators, we obtain the reconfiguration instructions of the four test



148 H. Wang et al.

cases. Each tested quaternary logic operation has four 9-bit (G8–G0) reconfigu-
ration instructions for the four column operators, forming a 36-bit reconfigura-
tion instruction for the processor bit.

In order to verify the reconfigurability of the proposed RQLP, we test the four
quaternary logic operations one-by-one without turning off the FPGA device,
so that the processor reconfiguration is done at runtime. For each test case, we
firstly input its 36-bit reconfiguration instruction, finishing processor reconfigu-
ration. Then, we input all the 16 A–B combinations one-by-one and check the
output results. After the first test case is finished, we continue to test the second
one in the same way, without turning the FPGA device off and on again. All
the observed outputs of tested cases are consistent with the expected values in
Table 1.

The above experiments prove that, for the proposed RQLP, 1) the processor
structure and reconfiguration circuit function correctly; 2) the reconfiguration
instructions are effective; 3) the processor reconfigurability is valid.

Based on the implemented processor bit, we build a RQLP with massive
processor bits. We make 32 processor bits together as a group, where we use a
5:32 address decoder for addressing the 36-bit reconfiguration register of each
processor bit. Then, we combine 53 groups using a 6:64 address decoder to form
a RQLP with 1,696 processor bits in total. As for resource utilization, this many-
bit RQLP takes 31,436 LUTs and 79,938 FFs on the FPGA device.

4 Conclusions and Future Work

In this paper, we have proposed a general structure of RQLP. We have instan-
tiated the general structure, and designed a prototype circuit for processor bit.
We have proposed to use reconfiguration instructions to determine specific logic
functions for column operators, that is, to implement one of the 416 types of
quaternary logic operations. We have implemented a 1-bit RQLP using FPGA
and tested it with four carefully selected examples of quaternary logic opera-
tions. Based on the 1-bit RQLP, we have also implemented a many-bit RQLP
with 1,696 processor bits. Experimental results have verified the effectiveness
and reconfigurability of the RQLP structure and circuit.

As a starting work in RQLP, we currently use FPGA to verify the correctness
and functionality of our circuit design. In future, we will gradually perform
timing and speed evaluation, ISA design, programming model, etc. We will also
experimentally compare RQLP with other architectures such as normal CPU or
GPU implementations for executing specific applications or benchmarks. The
ultimate goal is ASIC chip of multi-valued processor with reconfigurability. On
the one hand, we should study how to make the reconfigurable multi-valued
processor cooperate seamlessly with current CPUs and GPUs. On the other
hand, we need to find more interesting applications that can take full advantage
of this new class of processors.
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Abstract. The navigation error of aircraft increases in task. Aircraft
has to correct the navigation error under structure constraints to avoid
path deviation caused by navigation error. Aircraft path planning with
navigation correction under the turning radius constraint is a challenge
for traditional path planning methods. In this paper, we propose a 3D
Dubins curve constructing method which can draw a smooth path in 3D
space for the aircraft, next we extend Dynamic Programming for Navi-
gation Error Correction method by 3D Dubins curves to abtain a feasible
path under the constraints of turning radius, and then we improve par-
ticle swarm optimization method to compute an almost optimal Dubins
curve. Finally our algorithm return a feasible smooth path with approxi-
mately the optimal length for the path planning problem with navigation
correction under the turning radius constraint.

Keywords: Path planning · Dubins curve · Particle swarm
optimization

1 Introduction

Aircraft path planning is a multi-objective optimization problem involving in
collision avoiding, complicated landform, structure constraint, risk avoiding and
so on. Aircraft path planning is always based on many factors, such as turn-
ing radius and climb ability of aircraft. Aircraft path planning has been widely
applied in many tasks, such as topographic survey [1], war information recon-
naissance [2], electronic interference [3], material placement [4] and so on. The
solution of aircraft path planning can be devided into two parts: the first one is
to choose the regions of feasible path; the second one is to calculate the aircraft
trajectory planning. The regions of feasible path have already been chosen in [5],
but the aircraft trajectory planning problem remains to be solved.

For an aircraft trajectory planning strategy, turning radius is an important
factor. Many methods aim to compute a feasible aircraft path under the con-
straint of turning radius, such as the Dubins curve [6] and Clothoid curve [7].
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[8] extended continuous Bezier curves along Z-axis to construct 3D Dubins curve,
which is derived from two-dimensional Dubins curve.

In this paper, we propose a novel method to compute the feasible path under
the constraint of turning radius in 3D space. We have select feasible navigation
error regions based on DyProg [5]. We parameterize a feasible path based on
dubins curve under the condition of smoothness and coplanarity. We optimize
the parameter by PSO to have the shortest feasible path.

This paper is organized as follows: In Sect. 2, we state the problem of path
planning with navigation error correction formally. In Sect. 3, we show that the
turning radius constraint is considered in the problem of path planning with
navigation error correction, and then we propose the 3D Dubins curve to describe
the aircraft path with turning radius and improve PSO to calculate the length
of this path. In Sect. 4, we show and analysis the experimental results of the
proposed methods on simulated data. In Sect. 5, we conclude our work and show
some prospects in future.

2 Problem Formulation

Let A and B be the departure and destination respectively. For a path p from
A to B, we continue to use the error correction restriction [5] as the condition
restriction of path p, and define {pi}ni=1 as the collection of error correction
regions in p. We add a new restriction that turning radius R is no fewer than r.

We consider the problem that how to compute a feasible path such that both
the number of error correction regions and the length of the path is minimal.

3 Proposed Methods for Path Planning with Dubins
Curve

The feasible path p has been calculated in [5]. In this section, we show the
method to compute the feasible path by 3D Dubins curve. In subsection A, we
propose a three-dimensional dubins curve to solve the problem of path planning
with turning radius. In subsection B, we propose Dynamic Programming for
Navigation Error Correction (DyProg) [5] based on 3D Dubins curve to calculate
the feasible path. In subsection C, we improve PSO to compute a feasible path
with almost minimal length.

As the calculation method is similar, we regard A as p0 and B as pn+1 in the
calculation process.

3.1 Smooth Path with Dubins Curve

In this section, we propose a novel method to computing a smooth path from
A to B which goes through given error correction regions {pi}ni=1. We construct
two-dimensional dubins curve for each adjacent error correction regions. And
then, we construct a three-dimensional dubins curve by splicing multiple two-
dimensional dubins curves together smoothly.
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To construct two-dimensional dubins curves, we need to change three-
dimensional parameters to the corresponding two-dimensional parameters. And
we need to maintain a linear change in velocity to construct a smooth path. The
two-dimensional Dubins curve is smooth, and then we need to keep the velocity
in each error correction regions consistent. Define the velocity at pi is −→vi , so as
to −−→vi+1. The Dubins curve is from pi to pi+1, and −→vi , −−→vi+1 are both in the plane
γ: −−−−→pipi+1 · (−→vi × −−→vi+1) = 0. (1)

We convert 3D space to two-dimensional plane with Gram-Schmidt Orthog-
onalization to calculate Dubins curve. For each case from pi to pi+1, we create
a two-dimensional coordinate system. We define pi as the origin point. The fol-
lowing are −→x and −→y :

−→x =
−−−−→pipi+1

‖−−−−→pipi+1‖−→
y′ = −→vi − (−→vi · −→x )−→x
−→y =

−→
y′

|−→y′ |

(2)

We transform the point Q′(Q′
X , Q′

Y ) in the two-dimensional plane into the point
Q three-dimensional space by the following formula:

Q = pi + Q′
X · −→x + Q′

Y · −→y (3)

In the two-dimensional plane, pi is (0, 0) and pi+1 is (‖−−−−→pipi+1‖, 0). We define
the incidence angle of the dubin curve as η and the exit angle as |λ|. We calculate
η and |λ| by the following formula:

η = arccos(
−→vi · −−−−→pipi+1

‖−→vi‖‖−−−−→pipi+1‖ )

λ′ = arccos(
−−→vi+1 · −−−−→pipi+1

‖−−→vi+1‖‖−−−−→pipi+1‖ )

λ = λ′ if −−→vi+1 · −→y ≥ 0
λ = −λ′ if −−→vi+1 · −→y < 0
η ∈ (0, π), λ ∈ (−π, π)

(4)

The two-dimensional Dubins curve can be used to obtain a aircraft path that
satisfies the constraints of η, λ, ‖−−−−→pipi+1‖.
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Fig. 1. 3D Dubins curve

In Fig. 1, we show a 3D Dubins curve. We set three error correction regions
and give the direction of the velocity of each error correction region, then get a
smooth 3D curve through the Dubins curve.

3.2 Dynamic Programming Algorithm with Turning Radius
Constraint

We consider improving DyProg to calculate a feasible aircraft path with turning
radius. The aircraft cannot change the direction of velocity immediately, so we
add a turning radius constraint to this discrete constraint optimization problem.
Since the path from pi to pj is determined by the directions of −→vi and −→vj , we
consider the upper bound of the length of the path from pi to pj to calculate
the navigation error instead of the Euclidean Distance from pi to pj in DyProg.

In our case, the distance between two error correction regions is far
shorter than turning radius, define the path in Dubins Set D =

{
LSL,RSR,

RSL,LSR
}
, the shortest path in D as the shortest Dubins curve. Redefine the

distance between pi and pj as dij = ‖pipj‖
R , η and λ still as above. The upper

bound of the Dubins curve Dubins(max) as follows [9]:

Dubins(max) = min(D)
≤ min(RSR,LSL)
= |η − λ|mod(2π) + P

≤ 2π + P

(5)
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P in RSR means as follows:

P(rsr) =
√

2 + d2 − 2cos(η − λ) + 2d(sinλ − sinη)

≤
√

2 + d2 − 2 ∗ (−1) + 2d(1 + 1)
= d + 2

(6)

From 5 and 6, we can get

Dubins(max) = 2π + d + 2

Define the length of path from pi to pj as lenij :

lenij = (2π + 2) ∗ R + ‖pipj‖ (7)

We can get the feasible error correction regions by DyProg, but need to consider
how to calculate the length of specific aircraft path.

3.3 Improved Partical Swarm Optimization

We describe the velocity −→vi of each error correction regions pi by (μi, ψi) and
compute a smooth path from A to B. We calculate the aircraft path with minimal
length through optimization {(μi, ψi)}n+2

i=0 by PSO [10]. Assuming the direction
of velocity the aircraft at each region, we can describe the aircraft path between
two error correction regions by Dubins curve to get a complete aircraft path.
The aircraft path changes with the direction of velocity the aircraft at each
region. We optimize the aircraft path by PSO to get a set of direction of velocity
to make the aircraft path as short as possible. Then our problem becomes the
Optimization Problem [11]:

min(sum(dubins(pi, pi+1))) (8)

Two-dimensional Dubins curve describing aircraft path needs to ensure that the
aircraft paths between every two error correction regions are coplanar, so we
need to add 1 to 8:

min(sum(dubins(pi, pi+1)))
s.t. −−−−→pipi+1 · (−→vi × −−→vi+1) = 0(i = 0, 1, 2, ..., n + 2)

Then we turn Optimization Problem 8 into:

min(sum(dubins(pi, pi+1) + |−−−−→pipi+1 · (−→vi × −−→vi+1)|)) (9)

The problem becomes Optimization Problem 9. Considering the direction of
velocity the aircraft at each error correction region pointing to the centre of ball
which contains all error correction regions, we can assume the direction of −→vi in
polar coordinates. −→vi can be defined by (μi, ψi) as follows:

xi = cosμisinψi

yi = sinμisinψi

zi = cosψi
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−−−−→pipi+1 can be defined as follows:

−−−−→pipi+1 = (−−−−→pipi+1[x],−−−−→pipi+1[y],−−−−→pipi+1[z])

We adjust {(μi, ψi)}n+2
i=0 to calculate the aircraft path with minimal length, so

we optimize 2n + 4 parameter by PSO.
Optimization Problem 9 is difficult to accurately guarantee Constraints 1. If

coplanarity cannot be guaranteed, we cannot characterize the 3D aircraft path.
We propose the improved PSO to solve the problem of non-coplanarity. For each
Dubins curve, the coplanar condition is Constraints 1. vi and vi+1 both contain
two values. In the ith curve, if we have μi,ψi and μi+1, then we calculate ψi+1

by the Constraints 1:
∣
∣
∣
∣
∣
∣

−−−−→pipi+1[x] −−−−→pipi+1[y] −−−−→pipi+1[z]
cosμisinψi sinμisinψi cosψi

cosμi+1sinψi+1 sinμi+1sinψi+1 cosψi+1

∣
∣
∣
∣
∣
∣
= 0 (10)

For simplicity, define equ1, equ2, equ3, equ4, equ5, equ6 as follows:

equ1 = −−−−→pipi+1[x]sinμisinψicosψi+1

equ2 = −−−−→pipi+1[y]cosψicosμi+1sinψi+1

equ3 = −−−−→pipi+1[z]cosμisinψisinμi+1sinψi+1

equ4 = −−−−→pipi+1[x]cosψisinμi+1sinψi+1

equ5 = −−−−→pipi+1[y]cosμisinψicosψi+1

equ6 = −−−−→pipi+1[z]sinμisinψicosμi+1sinψi+1

Constraints 10 equal to:

equ1 + equ2 + equ3 − equ4 − equ5 − equ6 = 0

For simplicity, define equ7, equ8, equ9 as follows:

equ7 = cosμisinψi
−−−−→pipi+1[y] − sinμisinψi

−−−−→pipi+1[x]
equ8 = cosμisinψi

−−−−→pipi+1[z]sinμi+1 − sinμisinψi
−−−−→pipi+1[z]cosμi+1

equ9 = cosψi
−−−−→pipi+1[x]sinμi+1 − cosψi

−−−−→pipi+1[y]cosμi+1

Then we can repersent ψi+1 with equ7, equ8, equ9 as follows:

ψi+1 = arctan(
equ1

equ2 − equ3
) (11)

For the first curve, we assume μ1, μi+1 and ψ1, and then ψi+1 can be derived.
For the ith curve, we assume μi and μi+1. ψi of the pi region is obtained from
the i − 1th curve, and ψi+1 can be derived. And then our optimization problem
become the Optimization Problem 9. The PSO sets two values at p0 and one
value at the other error correction regions, so we can optimize n + 3 parameter
and calculate the other n + 1 parameter by 11.
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Algorithm 1. Improved Partical Swarm Optimization For Track Planning

Inputs: {pi}n−1
i=0 , a feasible path p

Outputs: A 3D aircraft path op
Initialization: set PSO parameters, iteration N , particle initial position and

velocity, particle initial position fitness
Step 1: Update and iterate particles:

while iterationnumber < N do
Update particle speed and position
Calculating particle fitness fitness(x)
Update particle swarm individual optimal value and population optimal
value

end while
Go to Step 2.

Step 2: Calculate 3D Dubins curve:
for i = 0 to length(p) do

T,Q = dubins(pi, pi+1)
Establishing a two-dimensional coordinate system
Pi(0, 0) Pi+1(dis, 0)
Vi(cosηi, sinλi) Vi+1(cosηi+1, sinλi+1)
radius of Dubins curve
Ri(sinηi,−cosλi) Ri+1(sinηi+1,−cosλi+1)
Label1, Label2 = 1
if Incident Dubins curve turn left then

Label1 = −1
end if
if Exit Dubins curve turn left then

Label2 = −1
end if
circle center of Dubins curve
ri = Pi + Label1 ∗ Ri ∗ R
ri+1 = Pi+1 + Label2 ∗ Ri+1 ∗ R
incident Dubins curve
arci = ri + R ∗ (Ri ∗ cosτ + Vi ∗ sinτ), τ ∈ (π, π − T )
3D incident Dubins curve
Arci = pi + arci[0] ∗ xaxis + arci[1] ∗ yaxis
exit Dubins curve
arci+1 = ri+1 + R ∗ (Ri+1 ∗ cosτ + Vi+1 ∗ sinτ), τ ∈ (π, π + Q)
3D exit Dubins curve
Arci+1 = pi+1 + arci+1[0] ∗ xaxis + arci+1[1] ∗ yaxis
τ = π − T , a1 = Arci
τ = π + Q, a2 = Arci+1

Str = a1a2

op ∪ {Arci, Arci+1, Str}
end for



A 3D Dubins Curve Constructing Method 157

return op
fitness(x): for i = 0 to length(p) do−→vi [x] = cosμisinψi−→vi [y] = sinμisinψi−→vi [z] = cosψi

calculate ψ by Formula 11
Fitness+ = dubins(pi, pi+1)

end for
return Fitness

dubins(pi,pi+1): η = arccos(
−→vi ·−−−−→pipi+1

‖−→vi‖‖−−−−→pipi+1‖ )
−→vi =

−→vi

‖−→vi‖ as xaxis positive direction
yaxis = −→vi − (xaxis · −−−−→pipi+1)−−−−→pipi+1

yaxis = yaxis

‖yaxis‖as yaxis positive direction

|λ| = arccos(
−−→vi+1·−−−−→pipi+1

‖−−→vi+1‖‖−−−−→pipi+1‖ )
if −−→vi+1 · yaxis < 0 then

λ = −|λ|
end if
di,i+1 = ‖pipi+1‖

R
choose the case of the Dubins curve with η, λ, dis by scheme
calculate the Dubins curve with η, λ, dis and case by formula

4 Experiment

In this section, we show the experimental results of our methods on simulated
data. In our experiment, we show that Algorithm 1 processes the feasible path
into 3D Dubins curve. More details will be shown later in this section. First, let
us see the set up of the experiment.

4.1 Experimental Set Up

The datasets of our experiments are simulated and there exists at least one
feasible path for each of them. All other error correction regions are generated
randomly. In our experiment, we choose two group of simulated parameters:
Parameters I and Parameter II. The details of Parameter I are shown as follows:

α1 = 25, α2 = 15, δ = 0.001, r = 200
β1 = 20, β2 = 25, θ = 30

The details of Parameter II are show as follows:

α1 = 20, α2 = 10, δ = 0.001, r = 200
β1 = 15, β2 = 20, θ = 20



158 C. Ji et al.

From the results of simulations, there are more feasible paths for Parameter I
than that for Parameter II if the number of error correction regions is similar.
In our experiment, we simulate datasets 1 to 8 whose parameters are shown in
Table 1:

Table 1. Parameters of simulated data 1 to 8

No. Parmeter Number of error
correction regions

1 I 200–400

2 I 400–600

3 I 600–800

4 I 800–1000

5 II 200–400

6 II 400–600

7 II 600–800

8 II 800–1000

In our experiment, our proposed methods are shown as follows:

– DyProg2: DyProg with turning radius constraint.
– IPSO: 3D Dubins curve calculating which is shown in Algorithm 1

In our experiment, the performance of feasible paths is measured by the
length of path and running time (RT) in the same hardware environment.

4.2 Experimental Results on Simulated Data

In this section, we calculate the 3D Dubins curve by our methods DyProg2
and IPSO. In DyProg2, we use 7 instead of the Euclidean Distance and then
run DyProg. We can get the error correction regions of a feasible path. And
then we use the error correction regions to calculate the optimized curve in
IPSO. We record the path length before optimization (PLBO, Unit: km), path
length after optimization (PLAO, Unit: km), straight path length (SPL, Unit:
km), optimization rate (OR), RT of DyProg2 (RTOD, Unit: s) and RT of IPSO
(RTOP, Unit: s) in Table 2.

The results of aircraft trajectory planning experiment is shown in Table 2.
In Experiment 5, we cannot find a feasible path for the distribution of error
correction regions. In the other experiments, DyProg2 and IPSO have a good
performance. The optimized length of aircraft path is far less than before opti-
mization. We subtract the SPL from the curved path which contain PLBO and
PLAO, and calculate the optimization rate. The optimization rate of Parameter
I is up to 85% and the Parameter I is higher than 60%. The RT of DyProg2 is
less than 10 s. The RT of PSO is a little longer, but not more than 2 min.
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Table 2. Experimental results of RT (Unit: s) on parameters I, II

No. PLBO PLAO SPL OR RTOD RTOP

1 122.17 120.64 120.41 86.67% 0.688 73.203

2 113.49 111.81 111.77 96.61% 2.281 57.719

3 113.32 111.19 111.03 93.01% 6.047 58.719

4 109.27 107.84 107.67 89.48% 8.671 54.234

5 – – – – – – – – – – – –

6 118.90 116.22 115.32 75.04% 2.484 84.969

7 129.03 125.94 125.27 82.18% 5.531 90.797

8 113.81 111.99 110.89 62.30% 9.828 85.188

5 Conclusion

In this paper, we consider the problem of aircraft path planning under the con-
straint of turning radius. In this problem, we propose a 3D Dubins curve, and use
this curve to accurately plan the aircraft path. We apply the PSO on optimiz-
ing the aircraft path length and obtain an almost optimal aircraft path. In the
future, we will try to use different curves to make the feasible paths more suit-
able for aircraft, and use parallel and distributed computing methods to increase
the speed of aircraft path planning.
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Abstract. NEC SX-Aurora TSUBASA is the latest vector supercom-
puter, consisting of host processors called Vector Hosts (VHs) and vector
processors called Vector Engines (VEs). The final goal of this work is to
simultaneously use both VHs and VEs to increase the resource utiliza-
tion and improve the system throughput by co-executing more work-
loads. However, performance interferences among VH and VE workloads
could occur because they share some computing resources and potentially
compete to use the same resource at the same time, so-called resource
conflicts. As the first step to achieve efficient workload co-execution, this
paper experimentally investigates the performance interference between
a VH and a VE, when each of the two processors executes a different
workload. Our evaluation results clearly demonstrate that some char-
acteristics of a workload such as system call frequency can be used as
a good indicator to predict if the workload can affect the performance
of another co-executing workload. We believe that this will be helpful
to identify a pair of workloads causing frequent resource conflicts, and
thus reduce the risk of performance interference between co-executing
workloads on an SX-AT system.

Keywords: Workload colocation · SX-Aurora TSUBASA ·
Performance interference

1 Introduction

Recently, high-performance computing systems often adopt heterogeneous sys-
tem architectures equipped with different kinds of processors. NEC SX-Aurora
TSUBASA (SX-AT) is one of heterogeneous computing systems, which consists
of x86 processors and vector processors, called Vector Hosts (VHs) and Vector
Engines (VEs), respectively [20]. A VE is physically implemented as a PCI-
Express card, which is similar to an accelerator such as a graphics processing
c© Springer Nature Switzerland AG 2022
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Fig. 1. The hardware configuration of a VI.

unit (GPU). On the other hand, a VH is responsible for executing the operating
system (OS) and managing VEs. In one compute node, each VH could manage
multiple VEs. Such a node of VHs and VEs is called a Vector Island (VI). The
hardware configuration of one VI is illustrated in Fig. 1. Since a VE has a high
memory bandwidth of 1.53 TB/s, VEs are expected to achieve high sustained
performance at executing memory-intensive scientific computations while using
the standard x86 environment provided by the VH [4,9].

Unlike other accelerators such as GPUs, a VE can execute an application as
if the whole application is running on the VE. However, when the application
running on a VE invokes a system call, the system call is implicitly forwarded to
the VH, and processed by the OS running on the VH. In addition to the VH’s
CPU time for handling system calls, some other computing resources such as
the VI’s network bandwidth are shared by the VEs. Thus, on a large SX-AT
system shared by many users, each VI is exclusively assigned to a job so as to
avoid performance interferences among jobs, which could occur by sharing VHs.
For example, in the AOBA system installed at Tohoku University Cyberscience
Center [17], multiple jobs do not usually share one VI, and one VI might co-
execute multiple jobs only if every of the jobs uses only a single VE in the VI. In
such an operation policy, a job does not necessarily use all VEs in the assigned
VIs, and some of VEs are thus unused during the job execution. Therefore, if
multiple jobs are assigned to one VI so that more VHs and VEs are used for
the execution, it is possible to increase the utilization of computing resources.
However, multiple jobs running on a VI may simultaneously require the same
computing resource. This is a so-called resource conflict, and could cause severe
performance degradation. For this reason, understanding the performance inter-
ference between multiple jobs running on a VI is an important technical issue to
achieve high efficiency on SX-AT systems.

This paper first empirically investigates the performance interference between
a VH and a VE, when each of the two processors executes a different workload.
Then, we discuss workload co-execution with reducing the performance inter-
ference due to resource conflicts, in order to improve the resource utilization.
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Evaluation results demonstrate that some characteristics of workloads such as
system call frequency can be used as a good indicator to identify a pair of work-
loads causing frequent resource conflicts, and thus reduce the risk of performance
degradation while improving the resource utilization.

2 Resource Conflicts on an SX-Aurora TSUBASA
System

This section briefly reviews the resource conflicts among VH and VE workloads
co-executing in one VI.

When an application is running on a standard x86 Linux system, the appli-
cation has a user memory space, which is logically different from the kernel
memory space used by the OS. On the other hand, when a user memory space
is assigned to an application running on a VE, unlike the standard system, the
user memory space physically resides on the memory devices attached to the VE.
However, even on an SX-AT system, the kernel memory space is located in the
VH memory. Namely, when an application is running on a VE, its user memory
space is not only logically but also physically isolated from the kernel memory
space. System calls on the VE are forwarded to a dedicated process running on
the VH, called a VEOS pseudo process, that actually invokes the corresponding
system calls on the VH to call the OS kernel. Accordingly, when an application
is running on a VE, it internally uses a VH within the VI.

Moreover, if each of a VH and a VE within one VI executes a different
application, both of VH and VE workloads share the VH and have their own
memory spaces, which are logically and physically isolated from each other. In
this case, if the VE workload invokes a system call, the system call request is
forwarded to the VEOS process and then the VH workload would be context-
switched to the VEOS process so that the VH core can handle the system call
from the VE workload. Since the VEOS process spends the CPU time, the VH
workload execution would be delayed, degrading the VH performance. If the VH
workload cannot immediately be switched to the VEOS process for any reasons,
the system call from the VE workload might be delayed, degrading the VE
performance. In this way, VH and VE workloads may compete to use the same
computing resources such as the VH’s CPU time, the VH’s memory bandwidth,
network and file access. Therefore, the VH and VE workloads can affect their
performance each other, referred to as inter-process performance interferences.

Performance interference is expected to occur especially if a workload on
either of the VH or the VE intensively uses the shared computing resources. For
example, suppose that a memory-intensive workload is running on one of the VH
cores. Then, if the memory bandwidth is spent out, the memory access latency
of the VEOS process increases and thus the system call from the VE workload
is delayed, degrading the VE performance. As in research dealing with perfor-
mance interference on a single processor [19], in order to maximize the benefits
of concurrency while efficiently controlling the overall performance degradation
that may occur, it is necessary to clarify the characteristics of the applications
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that cause conflict through quantitative research. As one kind of major resource
conflict, it is known that the total execution time of a workload increases due
to access conflicts to the file system [2], which is one of the shared computing
resources. If such a root cause of performance interferences is known in advance,
it would be possible to schedule jobs so as to avoid resource conflicts among
them.

3 Performance Interference by Workload Co-execution

3.1 Evaluation Setup

In this work, we experimentally investigate the effect of co-executing various
VH and VE workloads on their performances, and identify the combinations of
VH and VE workloads causing severe performance interferences on SX-AT. The
execution time of each workload is adjusted to be almost the same. In the evalu-
ation, popular benchmarks of Himeno [5], IOR [1], Intel MPI [6], STREAM [10],
b eff [13], MiniAMR [15], and HPL [12] are first used as VH and VE workloads for
general discussions on performance interferences. After that, we further discuss
the performance interferences with some tiny benchmark programs that inten-
sively use only particular computing resources, such as the CPU time, memory
bandwidth, file I/O, and network. Each benchmark program is compiled for both
of a VH and a VE, and executed by using all cores in the processor. The system
specifications used in the following evaluations are listed in Table 1.

Table 1. Hardware configuration of NEC SX-Aurora TSUBASA A300-8.

Vector host Xeon Gold 6126 (12 cores) × 2

Vector engine Type 10B (8 cores) × 8

Host channel adaptor Mellanox HDR100 × 2

Operating system CentOS Linux 8.1.1911

VEOS veos-2.6.2-1.el8.x86 64

VH compiler gcc-4.8.5

VE compiler ncc-3.3.1

3.2 Interference Evaluation Results

We evaluate the changes in execution time when a VH and a VE within one VI
co-execute the benchmark programs, expecting that the performance interference
will increase the execution time. Figure 2 shows the increase in execution time
of each VH benchmark program while changing the combination of VH and VE
workloads. On the other hand, Fig. 3 shows the increase in execution time of each
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Fig. 2. Increases in elapsed time of VH workloads.

Fig. 3. Increases in elapsed time of VE workloads.

VE benchmark program. The system call frequency of each benchmark program
is shown in Fig. 4.

Comparing Figs. 2 and 3, we can see that the VH performance is likely to
degrade more significantly than the VE performance when co-executing VH and
VE workloads. This is because the VH’s computing resources such as the CPU
time and memory bandwidth are spent not only by the VH workload but also
the VEOS process for handling system calls from the VE workload. Since the
Himeno [5] and STREAM [10] benchmarks are memory-intensive workloads,
their performances are degraded mainly by sharing the memory bandwidth with
the VEOS process. The HPL benchmark is compute-intensive, and thus the per-
formance is degraded by sharing the VH’s CPU time with the VEOS process. In
comparison with the VH performance, the VE performance degradation is small
because the VE computing resources are dedicated to each VE workload, and
only the system call overhead increases by co-executing VH and VE workloads.
In most scientific computing applications, most of the total execution time is
spent for executing kernel loops and hence the system call overhead is not sig-
nificant. Therefore, these results clearly show that co-execution of VH and VE
workloads is a promising approach to improving the resource utilization without
critical performance degradation except for some cases.

In Fig. 2, the execution time of every VH workload obviously increases when
the IOR benchmark is running on the VE. Similarly, in Fig. 3, the execution time
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Fig. 4. System call frequency.

of every VE workload increases when the IOR benchmark is running on the VH.
Thus, it is clear that the performance interference occurs if the IOR benchmark
is running on either of the VH or the VE. This is because the IOR benchmark
invokes system calls very frequently for measuring the file I/O performance.
As shown in Fig. 4, the IOR benchmark frequently invokes system calls of file
I/O operations. Therefore, it is demonstrated that frequent context-switching for
handling system calls from the IOR benchmark hinders the co-executing program
from consuming the CPU time as well as other shared computing resources.

In addition, VH workloads of MPI applications are generally more sensitive
to resource conflicts than VE workloads. One reason for this is that only some
of VH cores are spent for executing the VEOS processes and the others are not,
resulting in the load imbalance among MPI processes that could lead to a long
delay at synchronizations such as MPI collective communications.

The results above suggest that performance interference at co-execution of
VH and VE workloads can significantly be affected by the system call frequency.
To further analyze the causes of performance interferences, we develop a micro-
benchmark program that invokes typical system calls at an arbitrary interval.
The program is executed on one processor, either of the VH or the VE, and
another benchmark program is co-executed on the other processor. In this work,
we have developed tiny benchmark programs to repetitively invoke a pair of
system calls at a certain time interval, and evaluate the performance degradation
due to the system call overheads. The evaluation results with changing system
call frequencies are shown in Figs. 5 and 6. In those figures, Alone indicates the
execution without co-execution, and thus there is no interference. When we ran
the HPL benchmark on the VH side while invoking the read and write system
calls on the VE side to exchange 10 KB of data every 100 ms, the performance
drop is too large to finish the execution for time measurement. The results clearly
indicate that the system call frequency correlates to performance interference.
It is because a system call could cause context-switching, switching between
kernel and user modes, and access shared computing resources on the VH side
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via the system call. These results demonstrate that the system call frequency is
a good indicator to detect if a workload can degrade the performance of another
co-executing workload.

3.3 Avoidance of Performance Interferences

The evaluation results discussed so far have clarified that the system call fre-
quency of a workload can be used to quantify the risk of degrading the per-
formance of co-executing workloads. If a job scheduler knows the system call
frequency of each job in advance, the job scheduler might be able to find a
combination of jobs that can safely share VIs for co-execution. Since the main
purpose of this paper is to experimentally investigate the performance inter-
ferences at workload co-execution on an SX-AT system, such a job scheduling
mechanism will be discussed in our future work.

Even if a pseudo VEOS process running on the VH core invokes system
calls so frequently to cause conflicts, it does not significantly affect the memory
access latency nor bandwidth. Figures 7 and 8 show that co-execution of VH and
VE workloads (lmbench [11]) does not drastically affect their sustained memory
bandwidths, while the overhead of context switching obviously increases with
the number of co-running processes and thus the context switching frequency.
Those results indicate that, on the VH side, one main factor of causing conflicts
is frequent context switching. One major reason for this would be that context

(a) mmap and munmap (b) open and close

(c) read and write (10 bytes/call) (d) read and write (10 Kbytes/call)

Fig. 5. Changes in elapsed time of VH workloads when changing system call frequency
and type.
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(a) mmap and munmap (b) open and close

(c) read and write (10 bytes/call) (d) read and write (10 Kbytes/call)

Fig. 6. Changes in elapsed time of VE workloads when changing system call frequency
and type.

(a) memory latency (b) memory bandwidth (c) context switch cost

Fig. 7. VH memory access performance at executing a VH workload alone.

switching could save the context in cache memory by evicting other data and thus
increase cache misses. Therefore, it is experimentally shown that VH workloads
intensively accessing cached data are prone to be affected by frequent context
switching.

One might consider that one approach to avoiding context switching over-
heads due to the interference is allocating some VH cores to handling the system
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(a) memory latency (b) memory bandwidth (c) context switch cost

Fig. 8. VH memory access performance at co-executing VH and VE workloads fre-
quently invoking system calls.

calls forwarded from the VE workloads. However, we have experimentally con-
firmed that this approach is ineffective for a VI consisting of multiple VEs, such
as the configuration in Table 1. Notice that, in our evaluation, the total number
of VE cores in the VI is 64 while the total number of VH physical cores is 24.
As a result, if all the VE cores are used to execute VE workloads, 64 VEOS
processes compete to use 24 VH physical cores, resulting in severe performance
degradation. Thus, the degradation is clearly alleviated when the number of
VEs managed by the VH becomes smaller, as shown in Fig. 9. In the figure,
the vertical axis indicates the increase rate of the execution time at executing
the HPL benchmark on the VH side. In this evaluation, a tiny benchmark of
calling mmap and munmap is executed on the VE side, by changing the num-
ber of VE cores executing the tiny benchmark program in parallel. As shown
in Fig. 5(a), this combination of VH and VE workloads cause resource conflicts,
resulting in performance degradation. Note that the number of VE workloads
running in parallel is changed from 12 to 64 without changing the frequency for
each workload to invoke system calls. In Fig. 9, we can see that the performance
degradation is clearly mitigated by reducing the number of VE workloads and
making some VE cores unused. Consequently, the performance degradation of
VH workloads can be restrained by sufficiently reducing the number of VE used
cores, simply assuming that every VE workload invokes system calls with the
same frequency. However, as this approach also reduces the utilization of VE
cores, a way of finding a good trade-off point between performance interference
avoidance and resource utilization will be discussed in our future work.

4 Related Work

In Sect. 2, we reviewed that SX-AT adopts a heterogeneous configuration. There-
fore, the challenges discussed so far in improving the computational efficiency of
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Fig. 9. Increases in elapsed time of a VH workload by increasing the number of VE
workloads.

a standard CPU-GPU system might provide interesting insight also for improv-
ing the SX-AT efficiency.

A GPU workload running on a standard CPU-GPU system is likely to satu-
rate shared hardware resources, such as memory and network bandwidths due to
their massive thread parallelism. Hence, in [7], a platform has been proposed to
control the performance trade-off between CPU and GPU workloads. The pro-
posed platform can dynamically determine the GPU concurrency level so as to
maximize the system performance with considering both system-wide memory
and network conflict information as well as the state of GPU cores.

Another related study introduces a runtime framework for scheduling each of
multiple users’ OpenCL tasks to its optimal device, either a GPU or a CPU on
a CPU-GPU system [18]. The runtime framework uses a performance prediction
model based on machine learning at runtime to select optimal devices.

Some algorithms and power prediction models are proposed in [21] for sched-
ulers to co-execute workloads with considering the impact on power consumption
as well as other shared resources.

There are many other studies on oversubscription [2], where each CPU is
used for the concurrent execution of multiple workloads. However, most of these
studies do not assume a heterogeneous computing system consisting of different
types of processors. On the other hand, studies on job scheduling and resource
allocation for heterogeneous computing systems usually focus on whether a CPU
or a GPU is used to execute each job [3], and those existing approaches cannot
directly be applied to SX-AT, on which a pseudo process, i.e., VEOS, is running
on the VH to control the VE and sharing the VH resources with VH workloads.

Several researchers have evaluated the performance of SX-AT and reported
various scientific applications [4,9], VH-VE offload programming [8,16], and I/O
performance [14]. However, there is no report that quantitatively evaluates the
performance interference when VH and VE workloads coexist. We believe that
this study is the first to discuss the concurrent execution of VH and VE workloads
through quantitative performance evaluation results.
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5 Concluding Remarks

This paper has experimentally investigated the performance interference between
a VH and a VE, when each of the two processors executes a different workload.
The evaluation results clearly demonstrate that the system call frequency of a
workload can be used as a good indicator to predict if the workload can affect
the performance of another co-executing workload. It is also worth considering
the number of used cores, because performance interference could be restrained
if there are some unused VE cores when co-executing VH and VE workloads.
These experimental results will be helpful to identify a combination of workloads
causing frequent resource conflicts, and thus reduce the risk of performance
interference between co-executing workloads on an SX-AT system.

In our future work, we will develop a job scheduling mechanism that uses
the experimental findings in this paper to realize conflict-aware workload co-
execution on an SX-AT system.
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Abstract. The process of extracting, transforming, and loading (also
known as ETL) of a high volume of data plays an essential role in
data integration strategies in data warehouse systems in recent years. In
almost all distributed ETL systems currently use in both industrial and
academia context, a simple heuristic-based scheduling policy is employed.
Such a heuristic policy tries to process a stream of jobs in the best-
effort fashion, however, it can result in under-utilization of computing
resources in most practical scenarios. On the other hand, such inefficient
resource allocation strategy can result in an unwanted increase in the
total completion time of data processing jobs. In this paper, we develop
an efficient reinforcement learning technique that uses a Graph Neu-
ral Network (GNN) model to combine all submitted tasks graphs into
a single graph to simplify the representation of the states within the
environment and efficiently make a parallel application for processing of
the submitted jobs. Besides, to positively augment the embedding fea-
tures in each leaf node, we pass messages from leaf to root so the nodes
can collaboratively represent actions within the environment. The per-
formance results show up to 15% improvement in job completion time
compared to the state-of-the-art machine learning scheduler and up to
20% enhancement compared to a tuned heuristic-based scheduler.

Keywords: Extract Transform Load (ETL) operations · Scheduling
policy · Data streaming processing system · Graph neural networks ·
Job completion time · Reinforcement learning

1 Introduction

The process of extracting, transforming, and loading (also known as ETL) a
high volume of data plays an essential role in data integration strategies in data
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warehouse systems in recent years. A typical ETL process gathers several types
of data from different sources, and then tries to refine and delivers the refined
sets to a Data Warehouse (DW) platform (e.g., Amazon Red-shift [1], Azure
Data Warehouse Service [2], or Google Big-Query [3]) where the underlying
engine allows the end-users to effectively perform the critical business intelli-
gence (BI) activities (such as data predictive analytic). Data processing systems
over batch/streaming flows are becoming more and more prominent in the past
few years as there is a need to manage apply a set of distributed data mining
algorithms over massive data-sets in a petabyte scale.

The range of versatility allows the end-users to submit and run a variety of
different algorithms with different load characteristics. In particular, the set of
end-users jobs can be scheduled by running a simple scheduling heuristic-based
algorithm such as Round Robin (RR), rule based scheduling heuristics, First
Come First Serve (FCFS), Shortest Job First (SJF) among others [4,5]. While
on a small scale, the achieved performance of such simple scheduling policy
can be considered in an acceptable level, the performance degradation caused
by applying such simple policies becomes immediately visible on larger clusters
that handle various large workloads on their expensive compute applications.
As a result, achieving a near optimal solution that can effectively cope with
the challenging issues of dedicating an appropriate number of executors to each
job or stage when the arrival rate of jobs or data is unknown in prior is highly
desirable.

In most distributed ETL frameworks in data warehouse environments, the set
of data processing jobs are broken down into smaller sub-tasks which is known
as processing stages. Each of these processing stages can be conceptually linked
together to form an abstract processing structure (as a graph) that represents the
dependencies between the processing stages. Breaking the submitted processing
jobs down into smaller stages/fragments makes them more manageable. More-
over, fragmentation makes it possible to run sub tasks in a concurrent/parallel
fashion. In most practical scenarios, such smaller tasks are linked together to
form an underlying structure for the application that is usually referred to as a
Directed Acyclic Graph (DAG). When encoded as DAGs, dedicating jobs to
each cluster node is shown to be an NP-hard problem, but we can approximate
the solution using graph processing techniques [6]. As such, we use the infor-
mation present within the job structure to find patterns of efficient execution.
Manually traversing all the execution paths to make a decision is not feasible (or
extremely slow) for large job sets. Therefore, in this paper, we aim to develop an
innovative way to look ahead from the leaf nodes to the root node of the DAG
using Graph Neural Networks (GNNs) and decide the order of execution.

Original Contribution

In this paper, we develop an efficient embedding plan to reduce the time of con-
vergence and enhances the amount of the reward in each episode of the reinforce-
ment learning (RL) agents. We employ a Double Deep Q-Networks (DDQN) [7]
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can tune the parameters of the graph neural networks to set the efficient embed-
ding for the DAGs. For any DQN based algorithm to find an efficient policy
(e.g., [8]), it has to explore the state space sufficiently. However, this will make
the converging and conforming to a policy take a long time. We use an initial
step of the heuristic-based scheduler and reinforcement learning- neural networks
agent to assist for efficient policy exploration through the first episode.

Further, we solve the executor limit selection by limiting a stage to one
executor and allowing the Agent to select the order. Limiting the number of
executors per node allows more executors to be accessible at a given time. We
test our model on a simulator built for Apache Spark that also simulates Decima
[9]. Our method, Decima, FIFO, and a heuristic-based dynamic partitioning, are
compared based on average job completion time, executor usage, and training
time.

The main contribution of the current study is summarized as follows.

– We use SageCONV to implement message passing in the reverse direction,
which allows us to embed more information in each node for taking actions.

– We make the training process a significant order of magnitude faster by
directly representing the Q-values by node feature embedding in the rein-
forcement learning agent.

– We combine all the DAGs into a single DAG structure to enhance reinforce-
ment learning parallelism and descriptively in-state representation. We train
the model by utilizing DDQNs for continuous job arrival.

The rest of this paper is organized as follows. Section 2 highlights the main
challenges associated with scheduling of sub-tasks for performing data ETL oper-
ations in distributed data processing platforms (such as a data warehouse sys-
tem). Section 3 presents the details of our proposed scheme. The performance of
the proposed solution against famous heuristic-based static and dynamic algo-
rithms is evaluated in Section 4. Finally, Section 5 concludes our work.

2 Problem Statement

The process of data extraction from data sources, transformation, and load-
ing to a central host (commonly known as ETL operations) is among the core
strategies and technologies used by enterprises for the data analysis of business
information for making business decisions in common Business intelligence (BI)
platforms. Business intelligence technologies can handle large amounts of struc-
tured/unstructured data to develop and create new strategic business opportu-
nities by easy interpretation of big data sets usually derived from the market in
which an enterprise operates (also known as the external data) with data from
the internal sources of the business (such as financial and operations data). Such
insights can provide enterprises with a competitive market advantage and long-
term stability at the broadest level. Common applications of the BI tasks include,
but not limited to online analytical processing, data/process/text mining, com-
plex event processing, and predictive/prescriptive analytic. Such applications
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can empower enterprises to gain insight into new markets or to assess demand
and suitability of products and services for different market segments.

Large scale data processing systems can involve a considerable amount of
complexity; hence, a significant operational problem can occur when one employs
improperly designed data processing systems. Creating an effective scheduling
of data processing tasks over limited computing resources across the lifetime
of its usage is immensely important in such systems. In particular, an efficient
scheduling policy must solve issues such as the decomposition of the original
data processing applications to some smaller independent tasks which may be
processed in a parallel or distributed manner. Further, thread management, their
synchronization and communication can exacerbate the problem as the amount
of data becomes larger. Parallel processing of data stream is a very active research
topic and there are a myriad of researches that proposed different scheduling
strategies to process data streams or real-time data streams [10,11]. The common
requirements for all systems are throughput (efficient utilization of available
resources) [12]. The average or p-99 response time becomes the target of some
previous researches to address. In the rest of this section, we highlight some main
challenges when designing a scheduling policy for a large scale data processing
application.

Job Scheduling Challenge. Scheduling policies can be grouped to two
broad categories of either domain-specific [12,13] or general data processing
approaches. The domain-specific policies mostly concentrate on efficient separa-
tion of tasks into efficient processing sub-tasks. On the other hand, the general
data processing approaches focus on separation of the general jobs into multi-
ple stages and tasks regardless of their intrinsic behavior [11,14,15]. The most
commonly used scheduler policies in the industrial projects are those that are
designed based on simple heuristic-based [4,5,16] approaches. Authors in [17–20]
propose a control-based approach for guaranteeing the Quality-of-Service (QoS)
requirements associated with parallel running queries in distributed stream pro-
cessing engines and event-driven serverless platforms. Such policies usually sim-
plify the scheduling policies by modeling the task properties based on the embed-
ded features of the jobs. These modeling policies can be improved by con-
sidering the dependencies among tasks [21], or making them hybrid with the
learning mechanisms [22]. However, it has been proven they are inefficient for
complex, and high-frequency job arrival [9]. The current trend is to provide a
self-intelligible scheduler to enhance resource allocation through time [15,23].

Graph Structure Challenge. Effective handling of task scheduling problems
are critically important part of any data processing framework. Because an appli-
cation can be composed of several partial smaller tasks/operations (also known
as the underlying application graph), an optimal scheduler must be optimized
accordingly. The goal can be optimizing the utilization of the CPU or mem-
ory of the underlying system or to reduce the response time of the tasks (or a
combination of both). Having the application graph helps to reduce the model
complexity substantially and introduces tools for efficient learning, fast training,
and low latency scheduling [24].
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Graph Neural Networks. Graph Neural Networks (GNNs) is a deep learning
structure that addresses graph-related problems represented via vertices and an
edge regarding dependencies. Graph neural networks have a wide variety of appli-
cations in Social network recommendations, node classifications, medicinal drug
delivery, and protein-protein interaction. The graph embedding is developed to
change the nodes and edges representation of the graphs to preserve information
while compressing them down to a manageable size. There are multiple ways
in which this embedding can be done, but all the procedures use message pass-
ing in some way to include the features in the adjacent nodes. Computing the
node embedding is based on the user-specified function, and, similarly, edges
can have features of their own, and the embedding for each edge is calculated
by considering the connected nodes and the node features themselves [24].

Reinforcement Learning. Machine Learning, in essence, is trying to find pat-
terns in data. Very often, optimal data is required by ML algorithms to make the
correct prediction. However, data for the optimal solution does not exist in some
instances, such as decision-making environments. The optimum has to be found
itself without the correct data. Reinforcement learning algorithms provide a way
of interacting with the environment to make decisions and classify a decision as
good or bad. Reinforcement learning is always goal-directed and is implemented
in an active learning model, i.e., the model learns while interacting with the
environment.

Reinforcement learning models that make decisions are called agents. An
agent has a state, a policy, a value function, and a model. The actions per-
formed by an agent entirely depend on the state it is in, and this state is not
to be mistaken by the environmental state. Environment states are generally
not completely visible to the Agent; however, there are cases where the envi-
ronment state is visible in games like Chess. A policy defines agent behavior
and maps from state to action, and it is represented by π in the Eqs. 1 and 2.
The value function calculates the expected reward by following π for a state s,
and the model predicts what the environment does. The model is never perfect
but a good approximation of the environment. For reinforcement learning algo-
rithms, the environment is always considered Markovian, i.e., the current time
step represents all the time steps before it.

π(action|state) = P (action|state) (1)

vπ(s) = E [ Gt | St , At → π(s) ] (2)

In Eq. 2 and Eq. 3, Gt represents the total expected reward for state St and
the action At as per policy π. Gt can also be expanded as Eq. 3 to represent
the total expected reward. The discount factor γ, shown in Eq. 4, represents the
uncertainty with which the reward for the next steps will be computed. The
objective of the algorithm is to find the optimal policy π∗.

Gt = Rt+1 + γRt+2 + γ2Rt+3... (3)
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π∗ = max(
∑

t>0

γtRt) (4)

3 Proposed Approach: Design and Analysis

The information present within the structure of the job would help to find effi-
cient patterns of execution. We develop an innovative way to look ahead from the
leaf nodes to the root node of the DAG using Graph Neural Networks (GNNs)
[6] and decide the order of execution according to an enhanced agglomeration of
information. A Double Deep Q-Networks [7] tunes the parameters of the graph
neural networks to set efficient embedding for the DAG features. GNNs general-
ize the conventional deep learning by representing their structure as a set of nodes
and edges as their dependencies [25]. The graph neural network can be used to
represent the deep neural networks hierarchically to reduce the complexity of
training by creating replicated kernels [26–29]. Besides, the stages are limited to
one executor, and the Agent decides to dedicate free executors after resources
are allocated. To deal with time-consuming convergence in search for an efficient
policy on the proposed approach in [8], we propose a hybrid heuristic-based
scheduler to assist by executing for the first few episodes. Along with creating
a large DAG structure, we also utilize a state representation that helps us to
parallelize the training and inference processes.

3.1 Preliminaries

Apache Spark is one of the most widely used open-source computing engines.
Spark applications run as independent sets of processes on a cluster, coordinated
by the SparkContext object, that is in the main program. To run a Spark
engine on a cluster, the SparkContext object needs to connect to the cluster
manager. SparkContext object can connect to YARN, Mesos, Kubernetes or
Spark’s default Standalone manager. Once the nodes are connected to the cluster
manager, Spark engine acquires executors on the worker nodes in the cluster,
which are processes that run computations and store data for the application.
Then, the SparkContext object sends the submitted tasks to the executors to
be executed.

Spark engine provides a rich selection of APIs and libraries that support
Extract Transform Load (ETL) operations, graph computations, streaming jobs,
real-time query processing, and Machine Learning capabilities. The model pro-
posed in this paper would be tested based on an accurate simulator built for
Apache Spark [9]. The comparison metrics would be average job completion
time, executor usage, and training and inference time. Our model would be
compared with various heuristic-based schedulers, including First in First out
(FIFO), dynamic partitioning algorithms, and the state-of-the-art reinforcement
learning-based scheduler named Decima. The proposed workflow in this paper is
represented in Fig. 1.
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Table 1. Notation used in the paper

Entity Symbol

Discount factor γ

Action At

Policy function π

State St

3.2 State Representation

The environment state at any given point contains all the job DAGs that have
not been executed. Each job DAG is a sparse matrix of edges and vertices, along
with a matrix of features for each node. An environment state can be represented
as a collection of sparse matrices with their corresponding feature matrices. The
proposed solution in this paper uses something similar to describe the environ-
ment state, i.e., it uses one large graph containing all the DAGs present i.e.,
DAGs that have not been fully executed. A flag is changed to indicate it has
completed its execution. The “soft” delete is done to keep the node numbering
and positions correct. In the Sect. 3.2, the node numbering for some nodes has
been repeated, and these repetitions are representative of the new job arrivals.
To identify nodes internally, they’ve been numbered from 0 to node count where
node count is the total number of nodes in the graph. Having this structure
allows for adding new jobs quickly by appending them to the existing list. The
job features keep changing as new jobs arrive and the cluster state changes. So,
it’s better to compute the feature matrix just before training or inference. The
process of feature calculation is also not expensive as most frameworks provide
this information about the node. This aggregated state representation also allows
an efficient way to parallelize and compute the embedding in the next step. The
final step is to reverse the directions of all the edges in the graph, this is required
for the leaf embedding to have influence from the higher nodes.
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Fig. 1. The workflow and the structure of the proposed solution.
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3.3 Graph Embedding

A graph neural network is used to embed each node information as logits. In the
case of our solution, the resulting logits are just one number which represents
the Q value for selecting a node as its action. The graph neural network takes
job dags and the features of each node as input and outputs a Q value for each
node. In the graph neural network, we adopted three GraphSAGE [30] layer. In
first two layers, the number of input and out features are five while last layer
takes five features from the output of second layer as input but it outputs only
one feature which is the Q value or logits for each node.

Since the Message Passing path is reversed, the leaf node values calculated
will have influence from nodes that are a few generations (in terms of depen-
dency) above it. So, the leaf node value will represent the “path” from the leaf
to some parent node. For any node in the graph the embedding is calculated as
follows.

xl
parent(u) = agg( { xl−1

v ∀ v ε parent(u) } ) (5)

xl
u = σ( W . concat(xl−1

u , xl
parent(u)) ) (6)

The N or the Neighborhood of a given node automatically changes to the par-
ents/dependants of the node. One round of message passing will not be enough
for the leaf nodes to have enough influence from the nodes that are higher up.
So, to have a reasonable influence, three rounds of message passing is done. This
assures an embedding that will take into account the neighbourhood that spans
reasonably away from the leaf nodes. The next step is to train the embedding
to give accurate/efficient Q-values per node.

4 Performance Evaluation Results

The proposed approach is based on the Decima spark simulator [9]. We com-
pared the results with FIFO as spark default scheduling, dynamic partitioning
scheduler, and Decima. The executor usages, average job completion time, and
cumulative distribution of the rewards are three significant evaluated criteria.
The jobs are generated randomly based on the TPC-H dataset [31], and the
rewards may be increased based on extending the generated job set. The pro-
posed solution includes the same randomness of input jobs, and the evaluation
is based on the average ratio for the improvement over multiple runs.

Instead of focusing on matrix factorization, which is a common embedding
technique in GCN, we use an inductive method based on node features in Graph-
SAGE [30] to learn the embedding features that would generalize to unseen
nodes. Our model is based on an aggregation of feature information based on
the neighboring nodes, and the back-propagation by stochastic gradient descent
is used to train the parameters. The symmetric aggregator function makes the
model trainable by ordering the unordered set of vectors as the neighbors of
each node. We considered two different aggregator functions, mean and pooling,
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Fig. 2. Performance evaluation of decima executor usage versus dynamic scheduling

Table 2. Parameters for different training stages based on pooling and mean aggregator
stages.

Parameter Pooling Mean

Stage – 1 2

Burning 1000 1000 1000

Learning rate 0.001 0.001 0.001

Episodes 0.001 15 30

Gamma 0.9 0.9 0.9

Assist 90% 100% 0%

Random exploration 10% 0% 100%

Exploration decay 0.9999 0.9998 0.9998

to train the models. Our experimentation in Fig. 3 shows that the pool aggre-
gator requires more training episodes, and the loss value converges considerably
slower than the mean aggregator. However, the convergence policy is compara-
ble in terms of the efficiency of scheduling. The parameters are initialized as
provided in Table 2.
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Fig. 3. GraphSAGE with pool aggregator converges fairy fast in the beginning episodes
then stabilizes. The left side figure shows the average losses plot, the right side figures
represent the average QS value. Top images represent training via pooling aggregator
and the down images are stage 1 and stage 2 for mean aggregator.

5 Conclusion

Graphinator successfully reduces the job completion time in high-frequency job
arrival cases. Our results show that having a graph neural network computing
the Q-value helps execute jobs much more efficiently. Irrespective of the num-
ber of parallel nodes assigned, this work also shows that with the assistance of
optimized scheduling algorithms, the training time for a model can drastically
be reduced. We also show that assigning one executor per stage in a job DAG
works well for high-load environments. However, we also observed that the over-
all response time (makespan) of the jobs is the limiting factor of assigning one
node per stage. This limitation can be solved by manually tuning the algorithm
for lower loads and increasing the maximum number of executors per stage. The
ability to learn of our model helps to efficiently enhance its performance for an
extended duration of time with more randomized real-life cluster loads. As future
work, the proposed method can be continued to optimize hardware requirements
with limited memory, CPU, and storage.
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Abstract. With the explosive growth of data in modern storage sys-
tems, erasure coding is widely used to ensure data reliability because of
its low storage cost and high reliability. However, a small update can lead
to a partial update for erasure-coded storage system, the update of data
incurs high I/O latency. This paper proposes an adaptive update app-
roach, named DETOG, which efficiently speeds up the partial update
for erasure-coded storage systems. DETOG employs machine learning
approaches to classify files into non-write-only and write-only files. For
non-write-only files, DETOG uses the data deltas that are the differ-
ences between latest data values and original data values, rather than
the parity deltas, to reconstruct the lost data. This allows erasure-coded
storage systems only need to read the old data for the first update instead
of each update. For write-only files, DETOG directly appends the new
data to the logs of the data nodes and the parity nodes. This allows
erasure-coded storage systems not to read the old data for each update.
We implement DETOG on the newly designed prototype storage sys-
tem to perform performance evaluation. Extensive experimental results
on real-world traces show that, DETOG can efficiently improve the I/O
throughput.

Keywords: Partial updates · File classifier · Erasure coding · Data
delta · Logging

1 Introduction

Modern storage systems continuously expand in scale to cope with the ever-
increasing volume of data storage. In large-scale storage systems, it is neces-
sary to ensure both high data availability and data reliability, because failures
become more prevalent due to disk crashes, sector errors, or server outages, etc.
[10,12,14]. To ensure both high data availability and data reliability, keeping
additional redundancy in storage systems is a commonly used approach to enable
data recovery once failures occur [7]. Two representatives of redundancy mech-
anisms are replication and erasure coding (EC) [7]. When replication is applied,
c© Springer Nature Switzerland AG 2022
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the identical replicas of each data are copied and then distributed across multiple
data nodes of storage systems. This can incur substantial storage overhead, espe-
cially in the face of the ever-increasing volume of data being stored nowadays.
When EC is applied, original data blocks are encoded to generate new parity
blocks, such that a subset of data and parity blocks can sufficiently recover all
original data blocks. It is known that EC introduces less storage overhead and
write bandwidth than replication under the same degree of fault tolerance as
replication [16].

Although EC can provide fault tolerance with low redundancy, it can intro-
duces additional performance overhead for small updates. This is because EC
needs to maintain the consistency of parity chunks to ensure the correctness of
data reconstruction [15]. In EC, two representatives of update mechanisms are
re-encoding and delta-based write [5,11,13,16]. In re-encoding, the new parity
blocks can be generated by computing a linear combination of the unmodified
data blocks and the new data blocks of an EC group [9,14]. Delta-based write
computes the new parity blocks based on the change of data blocks instead of
summing over all data blocks. It employs the difference between new data and
old data to compute the parity deltas, then uses the parity deltas to reconstruct
the lost data blocks. In small write scenarios, delta-based write significantly
outperforms re-encoding [2,16].

Erasure-coded storage systems usually combine delta-based write and logging
to speed up partial updates. Full-logging (FL) saves the disk read overhead
of parity chunks by appending all data and parity updates. That is, after the
modified data range and parity deltas are respectively sent to the corresponding
data and parity nodes, the storage nodes create logs to store the updates [2].
Parity-logging (PL) takes a hybrid of full-overwrite (FO) and FL. It saves the
disk read overhead of parity chunks and additionally avoids merging overhead on
data chunks introduced in FL, because FO applies in-place updates to both data
and parity chunks. However, FL and PL still have to perform a time-consuming
write-after-read for each partial update. A speculative partial write scheme for
fast parity logging. PARIX performs write-after-write instead of write-after-read
to reduce the seek overhead. However, it introduces an extra write for each partial
update, in comparison to replication.

In this paper, we focus on how to minimize the I/O overhead of partial
updates for erasure-coded storage systems. We propose an adaptive update app-
roach, named DETOG, to solve the problem. DETOG classifies files into non-
write-only and write-only using a decision tree (DT) [8]. For non-write-only files,
DETOG uses the data deltas that are the differences between latest data values
and original data values, rather than the parity deltas, to reconstruct the lost
data. This allows DETOG to perform single write instead of write-after-read for
the last n − 1 partial updates, when handling a series of n partial writes to the
same data. For write-only files, DETOG performs partial updates using FL. This
allows DETOG directly sends the new data to the data nodes and the parity
nodes for each update, thereby transforming write-after-read to single write for
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each partial update. The main contributions of this paper are summarized as
follows.

– We propose an adaptive update approach DETOG to speed up partial
updates. DETOG uses data deltas instead of parity deltas to bypass the
computation of parity deltas and the read of old data. DETOG classify files
into non-write-only and write-only using machine learning. When updating
non-write-only files for a series of n partial updates to the same data, DETOG
performs write-after-read for the first partial update and single write for the
last n−1 partial updates. When updating write-only files, DETOG performs
single write for each partial updates.

– Based on DETOG, we have designed a distributed prototype file system for
small-write-intensive workloads. We have implemented DETOG, compared
it with the latest work on the proposed storage system through the same
real-world I/O trace used in [3]. Extensive experimental results show that
DETOG can successfully improve the I/O throughput.

2 Preliminary

We divide file content into blocks and apply EC independently on a per-block
basis. We denote an (k,m)-code as an EC approach defined by two parameters
k and m. An (k,m)-code encodes k equal-size data blocks to form m parity
blocks. Let n denote the number of nodes (or servers) in an erasure-coded storage
cluster. We assume n ≥ k+m, and the collection of k+m data and parity blocks
distributed across k +m of the n nodes in the erasure-coded storage cluster. We
mainly consider Maximum Distance Separable (MDS) codes. It has been proved
that MDS codes can achieve the optimal storage efficiency for a given level of
fault tolerance [3]. For example, regarding an (k,m)-code, k original data blocks
are encoded to generate m parity blocks, and the original data blocks can be
reconstructed from any k of the k + m data and parity blocks.

In an EC group, each parity block can be encoded by computing a linear
combination of k data blocks. For an (k,m)-code, let dj(1 ≤ j ≤ k) denote a
data block, pi(1 ≤ i ≤ m) denote a parity block, then pi can be computed by

pi = γi1d1 + γi2d2 + · · · + γikdk (1)

where γij(1 ≤ j ≤ k, 1 ≤ i ≤ m) denotes an encoding coefficient. All arith-
metic operations are performed in the Galois Field GF (2w) [9]. The re-encoding
approach computes the new parity blocks by Eq. (1).

The linearity property of EC provides an alternative to reduce the I/O over-
head for computing the new parity blocks, when one or more data blocks are
updated. Assume that the data block dl (1 ≤ l ≤ k) is updated to d

′
l in an EC

group, then each parity block in the group must be updated. Each new parity
block p

′
i (1 ≤ i ≤ m) can be computed by

p
′
i =

k∑

j=1,j �=l

γijdj + γild
′
l = pi + γil(d

′
l − dl) = pi + γil × Δdl = pi + Δpi (2)



190 B. Wei et al.

where Δdl is the data delta, Δpi is the parity delta. Thus, instead of summing
over all data blocks, the new parity blocks can be computed by the old par-
ity blocks and the change of the data blocks. The delta-based write approach
computes the updated parity blocks by Eq. (2). Furthermore, Eq. (2) can be gen-
eralized when only part of a data block is updated, but a subtlety is that a data
update may affect different parts of a parity block depending on the erasure code
construction

Delta-based write leverages the linearity of EC described in Eq. (2), it intro-
duces smaller I/O overhead than re-encoding for small updates. Three typical
delta-based write approaches used in modern EC based storage systems are
described as follows.

FO. FO applies in-place updates to both data and parity blocks. It requires
an additional disk reads of old parity block at the specific offset.
FL. FL appends all data and parity updates to logs for saving the disk read
overhead. That is, after the modified data range and parity deltas are respec-
tively sent to the corresponding data and parity nodes, the storage nodes
create logs to store the updates. The logs will be merged with the original
blocks when the blocks are read subsequently.
PL. PL can be regarded as a hybrid of FO and FL. It saves the disk read
overhead of parity blocks and additionally avoids merging overhead on data
blocks introduced in FL. Because data blocks are more likely to be read
than parity blocks, merging logs in data blocks can significantly degrade read
performance.

Data node 1 Data node 2 Parity node 1

Incoming data 
stream x1' x2'

PL
pix piy pix2pix1x1 y1 y2x2

FL
pix piy pix2pix1x1 y1 x1' x2'y2x2

FO
pix piyx1 y1 y2x2

Data

Parity

Data update

Parity delta

Fig. 1. Illustration on different parity update approaches.

Figure 1 illustrates the differences of the delta-based approaches, using a
(2,1)-code as an example. FO performs in-place writes for both data updates
and parity deltas; FL appends both data updates and parity deltas according to
the incoming order; PL performs in-place writes for data updates and appends
parity deltas.

FO introduces extra disk reads for the old parity blocks, in comparison to FL
and PL. FL introduces additional disk seeks to the update log for reads, because
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the data are scattered in the log. PL updates data with in-place manner and
uses logging to update parities. It can effectively improve the update performance
without affecting data reads.

3 Proposed Approach DETOG

This section presents the proposed approach DETOG, which classifies files
into non-write-only and write-only first, then uses different delta-based write
approaches to perform updates. In large-scale storage clusters, users are diverse
and varying, which results in dynamic features. Machine learning approaches not
only accomplish efficient data analysis, but also adapt to dynamic workloads
and automatically adjust feature selection. Therefore, we use machine learn-
ing approaches to classify files. For non-write-only files, DETOG uses data delta
based approach to perform partial updates. For write-only files, DETOG directly
appends the new data to the logs of the data nodes and the parity nodes, so as
to bypass the read of old data.

3.1 File Classification

In our scenario, both high AUC and low complexity are important. Therefore, we
choose DT as the file classifier. Feature extraction dominates the implementation
effect of prediction algorithms. The features used in the DT is listed as follows.

File type: file type is strongly related to file classes. For example, a large
number of image files that are used to store the checkpoint of applications,
are frequently appended, but rarely read. However, some document files are
frequently read, but rarely written.
File age: file age is measured by the time interval between current time and
the creation time. Intuitively, newer files are more popular.
Recency: the difference between the current access time and the last access
time.
File size: file size is related to file classes. In general, for a file, the larger the
size, the higher possibility of being frequently appended.
Owner: the owner of a file. There are some file owners who no longer read
or write the files after uploading them.
Recent access requests: the number of access requests in a recent config-
ured internal. In general, a higher number means a more high activity of the
whole user group.
Access count: the access count of a file in a day.

For a given feature set {a1, a2, ..., an} that has n features, we choose the
optimal feature based on the information gain. In general, the larger the infor-
mation gain, the better the classification. For example, we first choose ai that
has the largest information gain to construct the target set {ai}, then remove ai

from the original feature set. Again, we move the optimal feature {aj} from the
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original feature set to the target set. If {ai, aj} is superior to the previous target
set {ai}, which means the effect of the new classification is better than that of
the old classification, then the iteration will be repeated accordingly. Otherwise,
the process terminates.

3.2 File Updates

Intuitively, PL is the best choice for non-write-only files. However, the old on
data nodes have to be read to compute parity deltas in PL. This leads to a time-
consuming write-after-read for each partial update. We use data deltas instead
of parity deltas to bypass the computation of parity deltas and the read of old
data.

Let p
(r)
i denote the rth update on parity pi, and pi is corresponding to the

data dl in an EC group. Let d
(0)
l and p

(0)
i denote the original data of dl and the

original parity of pi, respectively. Assume that dl is updated r times, then we
have d

(1)
l , d

(2)
l , · · · , d

(r)
l , p

(1)
i , p

(2)
i , · · · , p

(r)
i . According to Eq. (2), we have

p
(r)
i = p

(0)
i − γild

(0)
l + γild

(1)
l − γild

(1)
l + γild

(2)
l

− · · · − γild
(r−2)
l + γild

(r−1)
l − γild

(r−1)
l + γild

(r)
l

= p
(0)
i + γil(d

(r)
l − d

(0)
l )

(3)

the equation illustrates that p
(r)
i can be computed by p

(0)
i , d

(r)
l , and d

(0)
l . We

propose a new update approach, named data-delta based PL (DDBPL), which
is built on PL and Eq. (3).

Figure 2 shows the procedure of DDBPL for non-write-only files, in terms of
partial updates. For each partial update, the client first forwards the new data
d
(r)
l to the data node, then the data node forwards d

(r)
l to the parity node. The

original data value d
(0)
l is read in the 1st partial update, whereas it will no longer

be read in subsequent partial updates. In Fig. 2(a) shows the procedure of the
1st partial update. When receiving d

(1)
l , the data node knows that d

(0)
l has not

been updated by retrieving its log. Then the data node reads d
(0)
l directly. When

receiving d
(1)
l , the parity node appends d

(1)
l to its logs, then explicitly request

d
(0)
l asking the data node. Once receiving the request. The data node appends

d
(1)
l to its log after sending d

(0)
l . Once receiving d

(0)
l , the parity node appends it

to the logs and then return success to the parity node.
Figure 2(b) shows the procedure of the rth (r > 1) partial update. The data

node directly sends the d
(r)
l to the parity node. Then the data node in-place

writes d
(r)
l into the original file. Meanwhile, the parity node appends d

(r)
l to its

own logs.
In FL, d

(0)
l will never be overwritten. Therefore, the data node does not

need to send d
(0)
l to the parity node. Based on this analysis, we propose a new

update approach, named data-delta based FL(DDBFL), which is built on FL and
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(a) Procedure of the 1st partial write.

Client Data node Parity node i

W write dl
(1)

to log
R read dl

(0)

W write dl
(0)

to log

W write dl
(1)

to log

Client Data node Parity node i

W write dl
(r)

to log
W

in-place 
write dl

(r)

(b) Procedure of the rth (r >1) partial write.

Fig. 2. Procedure of DDBPL for non-write-only files, in terms of partial updates.

Client Data node Parity node i

W write dl
(r)

to log
W

write dl
(r)

to log

Fig. 3. Procedure of DDBFL for write-only files, in terms of partial updates.

Eq. (3). Figure 3 shows the procedure of DDBFL for write-only files, in terms of
partial updates. For each update, the data node and the parity node append d

(r)
l

(r ≥ 1) to their own logs.

4 Implementation

Based on DETOG, we implement a prototype of distributed file system named
DETFS. DETFS splits file content into fixed-size data blocks, it stores each block
at a single data node. DETFS encodes each k consecutive data blocks of a file
to generate m parity blocks. The size of a parity block is the same as that of a
data block, each parity block is independently stored on a single parity node.

Figure 4 shows the architecture of DETFS. DETFS implements a global mas-
ter (metadata node) to maintain all file system metadata. The master chooses
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the node to host a data block or a parity block. When reading a file, the DETFS
client first asks the master for the location information of the blocks of the file.
It then contacts the data node that holds the target block for data transfer.
When writing a file, the DETFS client first asks the master to choose the nodes
to host the data block and the corresponding parity blocks. The file classifier
is implemented on client. The classifier classifies files into non-write-only and
write-only. DETFS uses DDBPL and DDBFL to perform partial updates for
non-write-only files and write-only files, respectively. When the utilization of a
node (ratio of used disk space at the node to total capacity of the node) reaches
a threshold, merging compactions are performed asynchronously to shrink the
disk usage of the logs.

DETFS master

block handle, byte range

block data

(file name, operation type, offset, size)

...

...

(block handle, block locations)

File namespace system.meta
Block 32ea
Block 25fb

...

Linux file system

Data node server

Linux file system

Parity node server

Server state

Instructions to server

Application

DETFS client

Fig. 4. Architecture of DETFS.

5 Experiments

Our experiments are conducted on 8-node machines, four of which are the data
nodes, two of which are the parity nodes, one of which is the client, and the
last one is the master. Each machine is configured with two 20-core 2.2 GHz
Intel Xeon 4114 CPUs, 128 GB of memory, four 4 TB disks, and the Ubuntu
18.04 LTS operating system. The network is 1-Gigabit Ethernet. The size of
each data block or parity block is 64 MB. For an EC(k,m) group, k and m are
set to 4 and 2, respectively. This is the same as did as [16]. We evaluate our
proposed approach DETOG by comparing with the following four state-of-the-
arts: 1) FL [2]; 2) PL [6]; 3) PARIX [16]; and 4) three-way replication (R3) [4].
R3 takes in-place writes for data updates. All approaches are implemented into
the DETFS. We evaluate the performance of all approaches using NFS trace set
[1]. We randomly sample trace data of each trace in the set using the following
steps: 1) extracting distinct files to construct the file set S; 2) constructing the
file set S′ by randomly sampling on S at 1:100; and 3) extracting the records
whose file id belongs to S′ from the original data set, so as to construct a new
trace sequence according to the timestamp.
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(a) dasna_w1 (13.7% update;
7.4% write-only file)

(b) lair62_w2 (35.6% update;
12.2% write-only file)

(c) home03_w1 (51.6% update;
38.2% write-only file)

(d) lair62b_w1 (63.7% update;
47.16% write-only file)

(e) home04_w3 (87.6% update;
66.1% write-only file)

(f) dasna2_w2 (95.2% update;
89.4% write-only file)
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Fig. 5. I/O throughput for all approaches when replaying NFS traces.

5.1 Trace Evaluations

We choose six representative traces with different percentages of overwrites and
write-only files to perform performance evaluations. Merging compactions are
triggered whenever the utilization of a node (ratio of used space at the node to
total capacity of the node) is greater than the threshold value.

Figure 5 shows the I/O throughput for all approaches when replaying NFS
traces. R3 always works with the highest I/O throughput for all selected traces.
This is because it does not need to perform additional read, parity computation,
and data compaction. DETOG performs better than FL, PL, and PARIX for all
selected traces, particularly for the traces with the high percentages of updates
and write-only file. For example, Fig. 5 (a) shows that DETOG can improve
the I/O throughput by 29.55%, 18.71%, and 9.88%, compared with FL, PL,
and PARIX, respectively, when the trace dasna w1 with a update percentage
of 13.7% and a write-only file percentage of 7.4% is replayed; whereas Fig. 5
(f) shows that DETOG can improve the I/O throughput by 51.41%, 75.77%,
and 62.69%, compared with FL, PL, and PARIX, respectively, when the trace
dasna w2 with a update percentage of 95.2% and a write-only file percentage
of 89.4% is replayed. This behavior occurs because DETOG performs a single
write for the r(th) (r ≥ 2) partial updates on the same data for non-write-only
files, and a single write for each partial update for write-only files. The higher
the overwrite percentage and the write-only file percentage of a trace, the larger
the advantage of DETOG.
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5.2 Storage Overhead

Figure 6 shows the storage overhead for different approaches replaying NFS
traces. R3 always works with the highest storage overhead, and its storage
overhead is 3× for all traces. This is because R3 keeps three replicas for every
data block, and employs in-place writes instead of log-based writes to perform
updates. The storage overhead of FL, PL, PARIX, and DETOG is much lower
than that of R3. This demonstrates that EC can significantly reduce storage
overhead.
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Fig. 6. Storage overhead for different approaches replaying NFS traces.

PL always works with the lowest storage overhead. This is because it updates
data block using in-place writes. The storage overhead of PARIX is greater than
that of PL. This is because the original data have to be stored on the parity
nodes. The storage overhead of DETOG is greater than that of PARIX. This
is because DETOG performs logging-based update for the first update on the
same data for non-write-only files and performs logging-based update for each
update for write-only files. The storage overhead of FL is greater than that of
DETOG. This is because FL appends all data and parity updates to logs.

6 Conclusion

We have proposed DETOG, an adaptive update approach to support fast partial
updates for erasure-coded storage systems. DETOG classifies files into non-write-
only and write-only. For non-write-only files, DETOG uses data deltas rather
than parity deltas to bypass the read of old data and the computation of parity
deltas. For write-only files, DETOG directly appends the new data to the logs
of data nodes and parity nodes, so as to bypass the read of old data. Exten-
sive experimental results show that DETOG has successfully improved the I/O
throughput compared with the sate-of-the-art.
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Abstract. High performance computing (HPC) systems have become
highly parallel aggregations of heterogeneous system elements. Differ-
ent kinds of processors, memory regions, interconnects and software
resources constitute the modern HPC computing platform. This makes
software development and efficient program execution a challenging task.
Previously, we have developed a platform description framework for
describing multiple aspects of computing platforms. It enables tools and
users to better cope with the complexities of heterogeneous platforms in
a programming model and system independent way.

In this paper we present how our platform model can be used to
describe program implementation variants that utilize different paral-
lel programming models. We show that by matching platform models
of program implementations to descriptions of a concrete heterogeneous
system we can increase overall resource utilization. In addition, we show
that our model featuring control relationships brings significant perfor-
mance gains for finding platform patterns within a commonly used het-
erogeneous compute cluster configuration.

Keywords: Modeling · Platform · Heterogeneous computing

1 Introduction

Software development and efficient program execution for highly parallel com-
puting systems has always been challenging. With the spread of heterogeneous
computing paradigms those challenges got aggravated. Users and tools now have
to cope with different kinds of hardware resources and diverse programming envi-
ronments available within a single system. Achieving high computational perfor-
mance while maintaining productivity is very demanding. Therefore, methods
and tools are required to better support programming of heterogeneous systems.

Previously we have developed an XML-based platform description language
(PDL) as well as a generic platform model [13]. The main goal of these plat-
form description facilities is to enable programmers to describe – in a machine-
readable way – hardware- and software-properties that are relevant for appli-
cation tuning, tool support and portability of software. They provide a holistic
c© Springer Nature Switzerland AG 2022
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view about the computing platform which we define as a set of hardware- and
software resources.

Our platform description facilities also enable to describe generic platform
patterns. Platform patterns describe how processing- and memory resources
interact. Such interactions are usually only defined implicitly by programming
models and not available in a machine-readable form. Multiple programming
models may adhere to high-level platform patterns. In addition to high-level
interactions of resources, our modeling approach also allows to capture low-level
hardware and software information such as memory-sizes, locality and CPU-
properties. By supporting both aspects, high-level resource interactions and low-
level entity properties, we aim at providing descriptor facilities that are usable
for a variety of use-cases at different layers of abstraction.

In this paper we make the following contributions:

– We introduce our platform description framework which is based on a generic
platform model.

– We use our platform modeling framework to model characteristics of pro-
gram implementation variants developed with MPI [11], OpenMP [10], Nvidia
CUDA [12] and AMD HIP [7].

– We show that by matching platform descriptors of program implementation
variants and of a target system we can increase resource utilization. Utilizing
our modeling framework we generate optimized program execution configu-
rations that improve benchmark application performance by up to 2.9x.

– We show that our hierarchical modeling approach based on control relation-
ships results in more efficient graph search for finding platform patterns com-
pared to an approach that does not use a hierarchical model.

This paper is structured as follows. In Sect. 2 we present context and related
work. In Sect. 3 we introduce our platform description framework. Sect. 4 shows
how our approach is used to improve resource utilization on a highly heteroge-
neous system. In Sect. 5 we evaluate our modeling approach with respect to the
applicability of a graph algorithm. Section 6 summarizes our findings.

2 Context and Related Work

Using higher level models that capture aspects of the computing environment is
a common method in all software development domains. Especially in the con-
text of high performance computing (HPC) we observe a wide variety of plat-
form abstractions to improve programmer productivity. In many cases utilized
abstractions focus on locality information and are tightly coupled with specific
programming languages or runtime systems.

A prominent example is the X10 [4] programming language. X10 introduces
the concept of place which describes a locality boundary for data and compu-
tational tasks. How such places are mapped to concrete resources of an execu-
tion environment can be influenced externally with low programmer interaction.



200 M. Sandrieser and S. Benkner

This methodology highly increases programmer productivity and code porta-
bility. Therefore, there exist multiple similar approaches to improve portability
through adaptable locality abstractions e.g., Chapel [3], HPX [8], Charm++ [9].

The memory hierarchy is a key factor for achieving high computational per-
formance. Hence, the projects Sequoia [6], HPT [16] and Legion [1] utilize tree-
based models of a system’s memory organization. Also, these projects use change-
able mappings of abstract descriptors to concrete hardware resources to improve
code portability.

The previously mentioned approaches all combine abstract platform mod-
eling and mapping with specific programming languages or runtime systems.
Our approach does not include a specific programming environment. In fact,
in addition to locality information, we aim at describing the properties and
resource interactions of the programming approach itself. This serves to support
the interoperability of software in heterogeneous environments where multiple
programming models are combined within one system or application.

In this paper, we use our modeling approach to support the selection of pro-
gram implementation variants. Implementation variants achieve the same com-
putational task but are implemented in different flavors, often with different pro-
gramming models and resource requirements. Such a programming methodology
is common in heterogeneous environments where programs need to be adapted to
a diverse set of hardware resources. However, in many cases the resource require-
ments of implementation variants are only defined implicitly with string-based
identifiers. Our approach aims at providing more detailed, machine processable
structural information on how an implementation variant utilizes resources.

3 Platform Descriptors

Describing relevant properties of the computing platform in a structured and
machine-readable way is a challenging task. Description facilities have to be
generic and adaptable to support a wide variety of use-cases ranging from high-
level platform patterns to low-level hardware specific information.

Our platform descriptor facilities utilize a generic platform model. This model
is based on a hierarchical aggregation of processing units, memory regions and
interconnect entities. We represent this model as an undirected graph with dif-
ferent node and edge types. The nodes in this graph are of type processing
unit (PU) or memory region (MR). Edges between nodes represent control rela-
tionships between processing units or interconnects. An Interconnect describes
communication and data-transfer within the platform. In addition, we define a
control relationship as the possibility for offloading computational tasks from one
processing unit to another [13]. Due to this hierarchical control relation between
PUs, we further introduce three different PU-types: Master, Hybrid and Worker.
Master PUs may delegate work to other processing units and at least one mas-
ter must exist within a platform. Worker PUs execute work delegated by other
PUs but cannot offload work. Hybrid PUs may act as both, master or worker.
Figure 1 depicts an example platform graph with 5 processing units and a single
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M
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H

MR

IC
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Fig. 1. Example platform graph with master (M), hybrid (H) and worker (W0, W1,
W2) processing units. One memory region (MR) is accessible for all processing units.
This memory interconnect is depicted as dashed edges. The control edges are shown
as solid lines.

shared memory region. The PUs form a hierarchy with one intermediate level
(H). The shared memory access is modeled by interconnect edges between the
PUs and the memory region (MR).

3.1 Programming Models

What distinguishes our approach from other approaches that focus on hardware
description (e.g., [2]) is the capability to express logical relationships between
system entities which are usually defined implicitly by the programming envi-
ronment. Hence, in our approach multiple platform descriptions for the same
physical hardware may exist depending on how system resources are utilized.
Moreover, platform descriptions may combine multiple platform models within
one graph. For example, this situation arises for hybrid programs that combine
multiple programming models. This is a common scenario for clusters of shared-
memory machines (e.g., MPI+OpenMP) or machines equipped with accelerators
(e.g., OpenMP+OpenCL).

3.2 Abstraction Levels

To be applicable for a wide variety of use-cases, platform description facilities
should enable system modeling at different levels of abstraction. Our model has
been designed to support coarse grained and fine grained modeling of software
and hardware characteristics. Therefore, in addition to the structural graph-
based model, we support the attachment of arbitrary descriptor properties to all
system entities. This support has been realized via a generic key-value scheme.
We distinguish between the following descriptor abstraction levels:
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– High-Level: Generic platform patterns which capture entity interactions
found in multiple programming environments. We have pre-specified generic
patterns often found in the HPC domain such as Threading, Message-Passing
or Accelerator (see Fig. 2).

– Mid-Level: Platform descriptors that may comprise abstract higher-level
patterns but make further refinements regarding entity quantities and their
connectivity. For example, a high-level thread pattern might be present at
several sub-parts of a complex platform that features multiple shared memory
regions (i.e., a cluster of shared-memory machines).

– Low-Level: Platform descriptors that include mappings of the abstract plat-
form entities (processing units, memory regions and interconnects) to concrete
hardware and software resources of a computing system.

A major motivation for our approach is that the same modeling facilities can
be used at all levels of the computing platform. This aims at improving the
interoperability between programming approaches, supporting portability and
performance optimization.

3.3 Programming Support

We have implemented our platform modeling framework as a C++ programming
library. This library supports the import and export of platform descriptors
to/from an XML-based storage format. In addition, it provides functionality
to work with high-level platform models, store and query entity properties and
automatic creation of platform descriptions for concrete target systems.

4 Case Study: Improving System Utilization

In this section we investigate a common performance tuning problem occurring
in heterogeneous systems and show how our approach can improve application
throughput and resource utilization.

Problem: We consider a highly heterogeneous compute cluster. Each of the
compute nodes has different hardware characteristics and therefore efficient pro-
gram execution requires the utilization of different programming models and/or
configuration parameters on each machine. Finding good configurations usually
requires the manual examination of program implementation variants (i.e., for
each available programming model) and low-level hardware details. This process
is often time consuming and requires a high degree of expert knowledge.

Our approach provides means to describe programming model characteristics
as well as low-level platform details. By comparing descriptors of a program’s
required platform and descriptors of the concrete execution environment, efficient
program mapping configurations can be created automatically. This approach
alleviates users from time-consuming application tuning steps and improves
portability.
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In what follows we show a concrete example for a highly challenging heteroge-
neous system configuration. We generate program execution configurations that
can utilize all available resources of the heterogeneous platform and therefore
increase application throughput.

Execution Environment: The heterogeneous compute cluster Exa is com-
prised out of 4 compute nodes (exa01-04) that are connected via 4X QDR
Infiniband and an Ethernet network. Exa01 features 4 Intel Xeon 6138 2.0 GHz
(4× 20cores) with 4 NUMA domains and 192 GB RAM. Exa02 is comprised of 2
AMD Epyc 7501 2.0 GHz (2× 32cores) with 8 NUMA domains and 96 GB RAM.
The nodes exa03 and exa04 each feature 2 Intel Xeon 6130 2.1 GHz (2× 16cores)
with 2 NUMA domains and 96 GB RAM. Exa03 is further equipped with one
Nvidia Tesla V100 32 GB GPU. The node exa04 features one AMD Radeon
Instinct MI25 16 GB GPU. With the complex memory configurations, different
kinds of processors and GPU accelerators, this system poses great challenges for
executing applications that aim at using all available resources.

We automatically created a platform description for the whole system in the
following way. As input we use hardware locality information gathered from the
Hwloc [2] library, Cmake-based library discovery and Nvidia/AMD GPU man-
agement libraries. For each NUMA domain we model one memory region (MR).
Per NUMA memory region we then use one CPU-core as master processing
unit and the remaining cores as worker entities. We insert control relationship
edges between master and worker PUs. Processing units and memory regions
are connected via shared memory interconnect edges. Those edges also store
relative distances between PUs and NUMA domain MRs as edge properties. In
addition, the GPUs in exa03 and exa04 are modeled as worker PUs with one
distinct memory region. There is one CPU-core acting as master for one GPU
worker. Subsequently, we insert interconnect edges between the GPU memory
region and the related master and worker PUs. To express the availability of
a message-passing library on the target system, we insert message interconnect
edges between master processing units.
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shmIC

shmIC

(a) Thread
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W MR
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Fig. 2. Platform patterns used in program implementation variant descriptions.

Application: We investigate the execution of the XSBench Monte Carlo neutron
transport application benchmark [15]. This application is available in a variety
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of different programming models and is therefore suitable to run on all available
resources of the Exa machine. We use implementations that utilize the following
programming models: OpenMP, CUDA, HIP and MPI. Each program imple-
mentation variant is compiled into a separate binary executable. In addition to
the intra-process parallelism of the application, multiple processes can be com-
bined via an MPI [11] coordination layer. This may result in complex execution
configurations featuring different programming models (e.g., MPI+OpenMP+X)
within one application run. To utilize our approach for generating suitable map-
pings to the target environment, we model each application variant.

For the OpenMP programming model, we create a model that utilizes a
Thread pattern. As depicted in Fig. 2a, this pattern has one master PU and
one worker PU connected to a shared memory region. For the CUDA and HIP
implementation variants we model an Accelerator pattern. Fig. 2b shows this
pattern with one master PU and one worker PU with one additional distinct
worker memory region (AccMR). The worker refers to a CUDA/HIP device. To
distinguish between the CUDA and HIP programming environments, we further
annotate the accelerator entities with key/value properties. For implementation
variants featuring message-passing, we use a Message pattern (Fig. 2c) consisting
of a message interconnect between master processing units.

Mapping: We use an execution configuration generator that produces MPI
rankfiles equipped with additional information on executable filenames and
thread counts. For finding suitable mappings, we search for platform patterns
message, thread and accelerator defined by the requirement descriptors that
model the application implementation variants. We search for these platforms
within the concrete execution environment description of the Exa system. Since
all descriptors utilize the graph-based model described in Sect. 3, we can rely
on the wide-spread VF2 [5] (sub-)graph isomorphism algorithm. The generator
records all concrete system entities from the target description that are capable of
forming a specific platform pattern. It maps message interconnect participants
to MPI ranks, worker PUs of the thread model to thread groups and worker
entities of the accelerator pattern to GPUs.

Results: We have conducted experiments on the Exa system with 4 reference
configurations OpenMP (OMP), CUDA, HIP, MPI+OMP. The reference config-
urations were executed on exa01 (OMP), exa03 (CUDA), exa04 (HIP) and nodes
exa01-04 (MPI+OMP). Reference configurations were run with default settings
with resource selection as specified by the original application. We compare the
reference against two auto-generated execution configurations created by our
approach. These versions utilize all compute nodes exa01-04. All programs were
run on CentOS 7.8.2003, Kernel 3.10 and have been compiled with GCC 8.3.0
with -O3 flags. For the GPUs we used NVCC/CUDA 11.3 and HIP 4.1.0 with
Clang 12. In addition, OpenMPI 4.0.5 with UCX 1.8.1 was used. All distributed
(MPI) application versions execute the full amount of work (no work sharing
across ranks) and use MPI for coordination and performance data reporting.
Hence, we show total lookups measured by all ranks. We use XSBench V20 with
benchmark size large and event-based simulation. For the GPU-based variants we
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Fig. 3. XSBench performance for different program execution configurations. Using
our modeling framework, we can automatically generate execution configurations that
utilize all available resources and improve performance.

include device data-transfer in the timing. All results are mean values gathered
from 10 repeated application runs.

Figure 3 shows the application performance of different execution configu-
rations. We observe that since the threading pattern in the target platform
description is built around NUMA domains our generated MPI+OMP config-
uration outperforms the reference version that does not consider the NUMA
organization. The highest overall performance is achieved by our generated con-
figuration MPI+OMP+CUDA+HIP that uses all available program variants.
This version considers NUMA-based mapping and selects the CUDA and HIP
implementations for compute nodes exa03 and exa04.

5 Model Performance Evaluation

Introducing a platform model that includes the logical relationships of how pro-
cessing units are utilized is an uncommon approach. Many existing projects
follow a platform model that is predetermined by the physical hardware organi-
zation. This usually results in tree-like hierarchies that often resemble a system’s
memory hierarchy. Our approach also provides memory locality information, but
achieves this through a more generic graph structure with memory-associated
interconnect edges.

To evaluate our platform model, we have performed experimental evaluations
that aim at answering the following question:

Does the hierarchical platform model featuring control relationships
and different processing unit classes bring an advantage for finding
platform patterns?
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Therefore, we evaluate the search performance of the VF2 [5] algorithm for
finding platform patterns. We compare our hierarchical platform model against
a reference modeling approach that does not utilize control relationships and
different processing unit classes.

Experimental Setup: Our implementation uses the Boost Graph Library
(BGL) [14] from Boost Version 1.74.0. For matching of platform patterns in
larger platform graphs, we use the VF2 [5] (sub-)graph isomorphism algorithm
implementation from BGL. All examples have been compiled with GCC 8.3.0
and -O3 optimization flag.

We search for small platform pattern graphs within larger platform graphs.
These larger graphs resemble a commonly used HPC system configuration
which is based on shared-memory multi-processor systems with multiple NUMA
domains. This model represents a commonly used multi-socket compute node
where each processor features multiple CPU cores. Compute nodes are further
connected to a larger cluster via a networking fabric. For all experiments, we have
modeled a generic cluster of shared-memory compute nodes in the following way:
16 processing units (PU) have two shared-memory interconnect relations with
two distinct memory regions (MR). One MR is local and the other MR is remote
to each group of PUs. This distance is stored as an edge property with the inter-
connect in the graph representation. Each of the compute nodes in the system
features 2× 16 general-purpose PUs that represent CPU cores and two distinct
MRs representing NUMA domains. For experiment configurations that feature
accelerators, we assume that 10% of the compute nodes are equipped with one
accelerator per NUMA domain. We evaluate the platform pattern search perfor-
mance for platform graphs representing systems with up to 100 compute nodes.

We consider a common HPC use-case of hybrid parallel programs that use
message-passing for communication and combine the message-passing model
with another parallel programming environment (i.e., MPI+X). For the message-
passing layer, we model a topology of participating processes in a Cartesian grid.
Hence, we insert message interconnect edges in the platform graph in such a
way that a 3-dimensional processing unit topology is constructed. The result-
ing platform graph structure resembles a commonly used 3D-torus interconnect
network topology. In the example, this kind of messaging interconnect exists
between general-purpose master processing units.

We have conducted the experiments on a server machine running CentOS
7.8.2003, Kernel 3.10, which was equipped with two Intel Xeon Gold 6130 16-
core 2.10 GHz processors and 96 GB RAM. All results are based on the mean
from 10 repeated runs. Error bars in plots show the 95% confidence interval.

For the pattern search, we check vertex equivalence by comparing vertex
types (Master, Hybrid, Worker, Memory). For edge equivalence we compare edge
types (Control, Interconnect) and sub-types (e.g., Message, Shared-Memory).

Thread: As described in Sect. 4, this platform pattern features one master PU
and one worker PU which share a memory region (MR). Since the concrete sys-
tem under investigation features 2× 16 CPU-cores and two NUMA domains, we
model one master PU and 15 worker PUs which have access to two MRs, one for
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Fig. 4. Pattern search performance with and without control relationships

each NUMA domain. The master PUs are connected via messaging interconnect
edges in a 3D-torus fashion.

For the alternative modeling approach that is used as comparison, we omit
control relationships and therefore also do not use the worker PUs. However,
to still capture a threading relation between processing units, we insert message
interconnects between one PU that takes a coordinative role and the remaining
15 PUs in the same NUMA domain. All the PUs are modeled as master PUs
but only the coordinative master is participating in the inter-NUMA 3D-torus
messaging interconnect. Since there is no further differentiation between message
interconnects, there is a semantic gap in the reference model. The reference also
matches for PU interactions that span across remote NUMA domains. Hence, we
observe that the control relationships provide more utility for locality modeling.

We observe that the control relationship approach for modeling of the thread
patterns brings significant performance advantages. As shown in Fig. 4, for all
cluster sizes of up to 100 compute-nodes featuring 3200 CPU-cores, the mean
time to find all thread patterns with control relationships is well below 40ms.
For the reference thread pattern that omits control relationships mean search
times are higher in all cases.

Accelerator: Due to the increase of heterogeneous computing, this pattern
became more and more important in recent years. The accelerator pattern mod-
els the offloading of computational tasks to often specialized compute units that
feature distinct memory regions. We model this pattern by introducing a control
relationship between a master and a worker PU.

As the reference modeling approach that does not use control relationships,
we use a onesided model. The structural difference of this model is that the
control relationship is again replaced by a message interconnect and no worker
PUs are used. Similar to the thread model we use the coordination master PU
for the inter-NUMA torus messaging interconnect.

The experimental results show that finding the reference pattern without
control relationships has much higher performance variations and lower perfor-
mance compared to when control relationships are used. As shown in Fig. 4,
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the average search times for the reference can reach around 250 ms whereas our
approach does not go beyond 50 ms.

6 Conclusion

Utilizing heterogeneous computing systems is a challenging task. Users have to
consider a diverse set of hardware and software resources. This makes software
development and application tuning time-consuming and error-prone. Methods
and tools are needed that improve productivity and performance.

In this paper we utilized a platform description framework that supports tools
and users to better cope with heterogeneous systems. Our approach is based on
a hierarchical platform model that enables to capture major characteristics of
hardware and software in a structured way. In addition to low-level system prop-
erties, our framework enables to describe high-level structural platform patterns
which are usually implicitly defined by the programming environment.

We have shown that our approach can support the automatic generation of
optimized program execution configurations in a highly heterogeneous environ-
ment. By automatically combining different program implementation variants,
each developed with a different programming model, we could increase resource
utilization of a highly heterogeneous cluster. We achieved this by describing soft-
ware implementations as well as the target execution environment with the same
platform modeling framework. We then used a common graph algorithm to deter-
mine which implementation variant should be mapped to which sub-parts of the
target machine. This approach alleviates users from time-consuming optimiza-
tion tasks that usually require expert knowledge about software implementations
and the hardware execution environment. Using our approach, we could improve
the performance of a hybrid benchmark application by up to 2.9×.

In addition, we did show the applicability of our approach for modeling a
100-node heterogeneous compute cluster with complex NUMA memory setup,
3200 CPU-cores and GPU accelerators. We could show that our model is well
suited for finding high-level platform patterns in the 100-node cluster model. In
addition, we did show that our hierarchical platform model brings significant
search performance improvements compared to a reference approach that omits
hierarchical control relationships between processing units.

In the future we will perform the automatic generation of platform descrip-
tors from program execution runs. In addition, we will investigate the use of
platform models for task-based runtime systems to facilitate dynamic adapta-
tion of programs.
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Abstract. Despite a number of techniques have been proposed over the years to
detect clones for improving software maintenance, reusability or security, there
is still a lack of language agnostic approaches with code granularity flexibility
for near-miss clone detection in big code in scale. However, it is challenging to
detect near-miss clones in big code since it requires more computing and memory
resources as the scale of the source code increases. In this paper, we present Fast-
DCF, a fast and scalable distributed clone finder, which is partial index based and
optimized with multithreading strategy. Furthermore, it overcomes single node
CPU and memory resource limitation with MapReduce and HDFS by scalable
distributed parallelization, which further improves the efficiency. It cannot only
detect Type-1 and Type-2 clones but also can discover the most computationally
expensive Type-3 clones for large repositories. Meanwhile, it works for both func-
tion and file granularities. And it supports many different programming languages.
Experimental results show that FastDCF detects clones in 250million lines of code
within 24 min, which is more efficient compared to existing clone detection tech-
niques, with recall and precision comparable to state-of-the-art approaches. With
BigCloneBench, a recent and widely used benchmark, FastDCF achieves both
high recall and precision, which is competitive with other existing tools.

Keywords: Clone detection · Distributed algorithm · Large scale code analysis ·
Efficiency and scalability · Language agnostic · Multiple granularities

1 Introduction

Code clones are source code fragments that are identical or similar to each other, which
widely exist in different software projects [1]. Code clones can be categorized according
to the level of similarity [22], i.e., Type-1 are exact clones, Type-2 are parameterized
clones, Type-3 are clones with further modifications (like inserting or deleting state-
ments) based on Type-1/2, and Type-4 are clones that are not syntactically similar but
semantically similar. Code fragments that are not exactly identical but share certain level
of similarity are known as near-miss clones [14].
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Code cloning can be helpful if it is properly used, but it is also regarded as a bad
programming since it can raise maintenance costs [15], reduce code quality [16], and
even propagate software vulnerabilities [3, 6]. Many researchers have proposed code
clone detection to address these clone-related problems.

In the big data era, large scale software iswidely deployed inmission critical systems.
Studying clones in big code is a useful way to improve the code quality and to facilitate
inter-project maintenance. Therefore, it is necessary to extend clone detection to large
scale systems. However, as code size grows, the detection turns much more expensive
since the number of code fragment comparisons to detect clones drastically increases.
For instance, the time complexity of one-to-one code segment matching is O(n2), which
makes 25 million comparisons for only 5 thousand segments. Thus, enormous compu-
tation resources and memory are required. Furthermore, near-miss clones are the most
common clones in software systems and the most needed in code clone detection [20].
However, near-miss clone detection is particularly expensive because numerous differ-
ences (i.e., insertion, deletion or modification of source code lines or tokens) between
code segments need to be examined. Detecting near-miss clones in large scale systems
is a challenging task.

Anumber of tools havebeenproposed to address this problem [2, 7, 22–25].However,
non-distributed techniques still take hours or even days to detect inter-project clones
on 250 million lines of code (MLOC) [22, 23] because of limited computation and
memory resources in single node. Distribution is an effective way to solve this problem.
However, existing distributed approaches have some problems. Benjamin et al. present
an index-based clone detection approach [25]. It is both incremental and scalable to very
large codebases. But it only supports Type-1 and Type-2 clone detection. IBFET [2] is
a MapReduce based tool which utilizes an index-based features extraction technique
to detect code clones. But IBFET is non-distributed in preprocessing stage, and this
will become a bottleneck when processing large code. Furthermore, since inter-projects
often contains codewritten in diverse programming languages, whichmakes it necessary
to support multi-language code detection to work with codes cross large repositories.
And it is also important to be flexible to support different granularities of detection.
For example, function-level detection is suitable for vulnerable detection based on clone
detection [6]while file-level detection is handy for license violation checking. Therefore,
it is necessary for a clone detection approach to support for many different languages
and multiple granularities.

In this paper, we present FastDCF, an efficient and effective distributed clone detec-
tion approach that can detect clones in inter-project/intra-project big codewith flexibility
in both programming language and code processing granularity:

Efficiency and Scalability: In order to break the limitation of computation and mem-
ory resources, we design FastDCF as a fully distributed approach. This makes FastDCF
can work efficiently and scalably on a massive code base. To further improve the effi-
ciency of our approach, we use partial token indexing to reduce the number of required
comparisons.

Type-1/2/3 Clone Detection: To detect near-miss clones, FastDCF use a simple and
fast bag-of-tokens strategy which is resilient to Type-3 changes to compare code blocks.
Therefore, FastDCF can detect Type-1/2/3 clones.
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Language Agnostic and Multiple Granularities: By our designed parser, FastDCF
transforms source code into their lower-case equivalent. This allows FastDCF sup-
port many languages such as C, C++, Java, Python, and C Sharp, and support code
granularities at both file and function levels.

We evaluate FastDCF in terms of efficiency, scalability, recall, precision, language
support and multi-granularity detection. The experimental results show that FastDCF
significantly outperforms existing typical tools, including IBFET [2], DCCFinder [24],
SourcererCC [22], CloneWorks [23] and so on. It takes only a fewminutes for FastDCF to
detect clones on 250MLOC. FastDCF is 10 times faster than CloneWorks on 250MLOC
and 60 times faster than SourcererCC on 75 MLOC. According to available literature
and the test results, FastDCF is the fastest approach which has been implemented to
detect near-miss clones for large scale systems.

The rest of this paper is organized as follows. Section 2 summarizes existing
approaches concerning code clone detection. Section 3 discusses several key issues
for designing a fast and scalable distributed code detection tool and presents the design
of FastDCF. Section 4 describes our implementation. Section 5 demonstrates compre-
hensive experimental evaluations and the results between our approaches and the most
competitive existing tools with large scale real-world code. The paper concludes with
discussion in Sect. 6.

2 Related Work

There are many approaches on large scale code clone detection, and we can divide them
into two categories: non-distributed and distributed scalable clone detection.

Non-distributed Scalable Clone Detection. Nicad is a text-based single node process-
ing approach [7], which uses longest common subsequence algorithm to compare lines
of source code. It can detect Type-1, Type-2 and Type-3 clones. SourcererCC [22] and
CloneWorks [23] are also non-distributed approaches. They use effective token-based
single node methods. Though these approaches improve the efficiency of clone detec-
tion on large scale code, there are bottlenecks in these approaches since the resources of
single node are limited.

Distributed Scalable Clone Detection. With the development of hardware capabilities
and virtualization technology, distributed and parallel processing optimization for clone
detection is emerging. DCCFinder [24] is the first distributed clone detection tool which
run CCFinder [4] in parallel. In order to be analyzed with CCFinder, the target must be
partitioned into small pieces. Every node loads two pieces to detect clones between them.
Hummel et al. use an index-based strategy to enlarge the scale of clone detection and to
provide real-time cloning information for very large software [25]. However, they can
only detect Type-1 and Type-2 clones. IBFET is an index-based method that uses hash
algorithms to extract features from source code and these features are saved by HBase
[2]. IBFET can scale clone detection to billions of LOC at file level granularity. However,
IBFET is not a fully distributed clone detection tool since it only optimizes feature-based
index creation and code clone detection and retrieval by parallelization, with core steps
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such as preprocessing and normalization, and feature extraction not parallelized. This
significantly affects the overall efficiency of it and these non-distributed core steps will
turn to be bottlenecks, if the code is very large.

3 Design

3.1 Preliminary Concepts and Definition

In this section, we introduce concepts and definition regarding code clones or appear in
our approach.

Code block is a continuous segment of source code, which can be a function or a
sequence of statements in a source file. A clone pair is a pair of code blocks that are
similar and detected as clones. A clone group is a set of similar code blocks and consists
of a number of clone pairs. Clones are made up of clone pairs or groups. Query code
block is the code block which is used to query index and get potential clones.Candidates
are code blocks returned by query code blocks’ query index. They are potential clones of
query code blocks. Zipf’s law is an assertion. It claims that f, the frequencies of specific
events, is inversely proportional to their rank r in probability [11].

3.2 Efficiency and Scalability Limitation of Existing Techniques: Experiments
and Analysis

Due to single node capacity limitation of main memory and CPU, the scalability of
non-distributed tools is usually prohibited when the size of code reaches a threshold.
SourcererCC is the first approach proposed and implemented to detect clones in MLOC.
To illustrate this dilemma, we evaluate SourcererCC [22] with bcb_reduced dataset, the
data size of which is 10 MLOC. The experimental environment is set according to [22].
The tests are carried out in a workstation with 4 Intel Xeon Platinum 8269CY cores and
16G RAM (8G are set as available). Figure 1 shows the CPU usage and memory usage
changes over the time.

From Fig. 1(a), we can see that the CPU usage rate shows a fluctuating increase in
the start, and it finally reaches the usage rate of almost 100% shortly after the start. This
suggests that SourcererCC contains mainly CPU intensive tasks and has a large demand
for computing resources when processing large scale code. As shown in Fig. 1(b), the
memory usage increases in a more fluctuating way in the begging. Then it reaches nearly
52% of the upper limit we set. This is because the big code data are usually loaded from
and kept in the memory. The larger the amount of code, the more memory is required.
From Fig. 1(the screenshots of the running system), we can see memory and CPU
usage are always close to upper limit since detecting clones in big code requires much
computation and memory resources.

3.3 Design Goals and Our Approaches

We want to design an approach that can detect clones in inter-project/intra-project big
code with flexibility in both programming language and code processing granularity.
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(a) Usage rate of CPU (b) Usage rate of main memory

Fig. 1. SourcererCC: the usage rate of CPU and main memory

From Fig. 1, we can know detecting clones in big code requires much computation and
memory resources. In order to address this problem, we propose I2nOPT, an intra/inter-
node optimized method which combines distributed parallelization and token-based
partial indexing.And by building our parserwith flexible source code parsing techniques,
we allow our approach can support multi language and granularity code clone detection.

3.3.1 I2nOPT: Combination of Distributed Parallel Optimization and Token-
Based Partial Indexing

We propose a fast and scalable approach combined both distributed parallel optimization
and token-basedpartial indexing.Weusedistribution as inter-nodeoptimization to breaks
the boundary of single node resource limitation and use token-based partial indexing as
intra-node optimization to further improve the efficiency and scalability of our approach.
Another benefit of using token-based partial indexing is that it can detect near-miss
clones.

Inter-node Optimization. Generally speaking, clone detection is divided into two
stages, preprocessing stage and clone detection stage, both of which require a lot of
computing and memory resources. We parallelize FastDCF in both preprocessing stage
and clone detection stage. Multi-threading is used in each stage. Codebase in our design
consists of many projects which are collected and maintained by administrators. User
code is the project which is submitted by users and is used to find clones between user
code and codebase. Sub-codebase is a part of codebase, which is used for parallelization.

Distributed preprocessing stage is the first parallelization stage. We divide the job
into smaller tasks and assigns them to each node. The big codebase is split into a number
of smaller sub-codebases and the preprocessing is executed independently in a mapper
for each sub-codebase.

In clone detection stage, source code has been split into many small fragments. In
order to detect all clones between two projects, each node loads a preprocessed sub-
codebase and keeps it in memory. Then the user code is streamed into the main memory
to node and detect clones between user code and loaded sub-codebase. User code is not
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stored in the memory. This is repeated until all of the potential clones are identified.
This way makes our approach faster since it makes full use of the distributed CPU and
memory resources.

Intra-node Optimization. When detecting clones between a loaded sub-codebase and
user code, token-based partial index [22, 23] is accepted. In traditional token-based
approaches, the source code is converted into code blocks made up of tokens and each
code block are compared with another to detect clone pairs. The time complexity is
O(n2) and is not desirable in large scale clone detection. Thus, we use partial index into
FastDCF to reduce the number of comparisons and to save the computational overhead.
We state it in the form of the following property formally:

Property 1: Code block A consist of t1 tokens and B consist of t2 tokens, each in
predefined order. Denote a sub-block of A as SA and a sub-block of B as SB. If |A ∩ B| ≥
i, i is the given threshold, then any sub-blocks SA which consists of t1-i+1 and SB which
consists of t2-i+1 tokens will have at least one token overlapped.

To illustrate this property, let us consider two code blocks A = {T1, T2, T3, T4,
T5} and B = {T6, T7, T3, T4, T5} with 5 tokens (t = 5) each. If two blocks have more
than 4 common tokens, they are considered as clones (i = 4). Then if we want to find
out if A and B are clones, according to this property, we only need to check if any of
their sub-blocks consisting of t-i+1 = 2 tokens have shared tokens. In this example,
they do not because they have no common tokens in their sub-blocks (marked in bold).
We could have most certainly figured out that A and B are not clones because even if
the remaining tokens are all the same, the number of shared tokens will not reach the
threshold. In other words, this property can help us deduce if two blocks will not be
clones by comparing only their sub-blocks instead of comparing all the tokens of A
and B. Tokens in sub-blocks are used as partial index in our approach. Furthermore,
software vocabulary exhibit very similar characteristics to natural languages corpus and
also follow Zipf’s law [11]. That means the frequency of tokens decreases very rapidly
with rank, and a few popular tokens prevail in most of the code blocks and rare tokens
are shared by a few code blocks. According to this law, we sort code blocks from low to
high frequency and take first f-t+i tokens as sub-blocks.

Near-Miss Clone Detection. Near-miss clones are common clones in real projects, and
it is necessary to detect near-miss clones when designing a clone detection tool. FastDCF
is token based. And compared to existing token-based tools, FastDCF can detect near-
miss clones in that it supports bag-of-tokensmodel. Themodel is similar to bag-of-words
model. It computes similarity by common tokens. It can detect near-miss clones as long
as two code blocks share enough tokens to exceed a given threshold. While other token-
based approaches use token sequences as a unit of match [4], which is more difficult to
detect near-miss clones.

3.3.2 Flexible Source Code Parsing

In addition to fast and scalable clone detection, we hope our approach is convenient and
user friendly, and can be applied to different scenarios. We hope FastDCF is language
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agnostic and support multiple-granularities detection. In order to achieve this goal, we
need a flexible parser to convert the source code of different languages into intermediate
representation in any granularity we want. Therefore, we aim to build our parser by
using TXL [9]. TXL is a functional programming language specifically designed for
expressing source transformation tasks. We use it in FastDCF to extract code blocks
from source code at different granularities. Thus, FastDCF is language agnostic and can
detect clones at both file level and function level.

4 FastDCF Implementation

We implement FastDCF in Java with about 3000 lines of code. As shown in Fig. 2, Fast-
DCF fulfills the fast and effective detection of big code in four stages: data submitting,
codebase splitting, preprocessing and clone detection. The output of the previous step
becomes the input of the next step and it yields the final detection by elaborate steps.
We use HDFS [21] and MapReduce [5] as the distributed computing framework of our
parallelization.

Data Submitting. In data submitting stage, the administrator uploads the codebase and
the user submits the code for clone detection. In order to improve the disk space usage,
we package a number of small files into one big file in SequenceFile format.

Fig. 2. Implementation of FastDCF

Codebase Splitting. The whole codebase is too large to fit into the memory. In order
to solve this problem, we break the codebase into smaller sub-codebases and the size of
each sub-codebase is suitable for the memory capacity of each node.

Preprocessing. Preprocessing stage converts data blocks (the sub-codebase or the user
code) into token sequences. Each node loads a sub-codebase as an input. Then it per-
forms code block retrieval, filtering and token extraction. The code block retrieval mod-
ule retrieves code blocks from given sub-codebase by using the robust parser. Filtering
module filters code blocks which do not satisfy required size. In token extraction mod-
ule, tokens are extracted with operator and separator filtered and assembled into token
sequences. Finally, the preprocessed token sequences are written back into HDFS.
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Clone Detection. In clone detection stage, clones between the codebase and the user
code are to be detected. Each node loads a sub-codebase and all user code. By counting
the frequency of each token in sub-codebase via token frequency creation module, local
token frequency is produced. Then index creation module creates partial index for each
sub-codebase. In code search module, tokens in sub-block from the user code are used to
query the index info and to generate candidates. Finally, FastDCFcomputes the similarity
by using Jaccard approach [22] and outputs the detection results.

5 Evaluation

FastDCF is evaluated in four aspects: 1) we evaluate the scalability and efficiency of
FastDCF using inputs of varying sizes in terms of lines of code and compare it with
other start-of-art tools. 2) we measure FastDCF’s recall BigCloneBench [27], and we
also measure the precision. 3) we verify the effectiveness of our distributed optimization
by comparing the efficiency before and after using distribution 4) we show the ability of
FastDCF to detect clone at file-level and function-level. We rented a total of 23 instance
ESC machines. Each machine has a quad-core CPU, 16 G memory and 60 G hard disk.
The Hadoop version is 2.7.7, and Ubuntu16.04 is used as the operating system. We
limit each task to use up to 10 G of memory. We evaluate distributed tools on multiple
machines and non-distributed tools on a single machine.

5.1 Execution Time and Scalability

Table 1. Execution time for varying input sizes

FastDCF CloneWorks Nicad SourcererCC

1M 42 s 22 s 1 min 1 s 1 min 18 s

10M 5 min 41 s 4 min 16 s 2 h 4 min 12 s 29 min 18 s

30M 7 min 36 s 18 min 7 s Internal 49 min 19 s

75M 9 min 42 s 52 min 19 s _ 9 h 47 min 15 s

150M 15 min 7 s 1 h 54 min 35 s _ _

250M 23 min 19 s 4 h 3 min 24 s – –

Comparing with Non-distributed Methods. We compare FastDCF’s execution time
and scalability against three clone detection tools, including CloneWorks [23], Sourcer-
erCC [22] andNicad [7], which are representative and pioneerwork in clone detection for
big code. We chose them because they perform well in large-scale detection [2]. Nicad
is a popular tool that support Type-3 detection. SourcererCC is the first tool designed
for large scale clone detection. CloneWorks optimizes the implementation details on the
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basis of SourcererCC and the efficiency is improved. Files were randomly selected form
IJaDataset [12] to build inputs of different size, ranging from 1 MLOC to 250 MLOC.
Experimental results are shown in Table 1.

FromTable 1,we can see that FastDCF is able to scalewith reasonable execution time
when the input size increases. Its execution time decreases from 1MLOC 2 250MLOC.
In contrast, Nicad is able to scale to the 10 MLOC input, but it cannot scale to a dataset
of 30 MLOC or more. According to the description in [8], due to the limitation of its
internal data structure, it cannot handle large computation of clone pairs, which prevents
its scaling up when the code size turns larger. CloneWorks can scale better than Nicad
and SourcererCC. But it spends more time than FastDCFwhen the input is larger than 10
MLOC.When the size is less than 10MLOC, the effect of FastDCF’s distributed strategy
is not obvious and its execution speed is slightly inferior to CloneWorks. The reason is
that parallelization brings extra delay. However, as the size of the input becomes larger,
FastDCF’s lead over other tools becomes obvious. When the size of the input reaches
250 MLOC, the efficiency of FastDCF is 8 times that of CloneWorks.

Comparing with Distributed Methods. We also compare FastDCF with representa-
tive distributed methods, including the technique of Hummel et al. [25] and IBFET.
Table 2 shows the comparison results of clone detection with other index-based dis-
tributed clone detection techniques. We use Linux 2.6 as the dataset, which contains
about 11 MLOC. Hummel’s method can only detect Type-1 and Type-2 clones and they
spend much more time than IBFET and FastDCF. IBFET can support Type-1, Type-2
and Type-3 clones. However, FastDCF has an obvious advantage over IBFET on execu-
tion time. FastDCF performs best in three tools because of its subtle distributed design
which is based on partial index.

Table 2. Clone detection execution time comparison

Techniques Linux-Kernel Clone types

Hummel 47 min 29 s T-1, T-2

IBFET 20 min 40 s T-1, T-2, T-3

FastDCF 7 min 45 s T-1, T-2, T-3

5.2 Distributed Parallelization

In order to measure the performance speedup through distributed parallelization in Fast-
DCF, we conduct two experiments. In the first experiment, the number of nodes is kept
constant and the size of the data grows. In the second experiment, input size is kept
constant while the number of nodes grows.

Figure 3 illustrates the results of the first experiment. The number of nodes is fixed
at 23. The value represented by the y-axis is the ratio of the time required for distributed
methods to the time required for non-distributed methods and x-axis’s value means
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input size, which is from 1M to 250M. When the code size is less than or equal to
10M, the performance of distributed approach is worse than non-distributed approach
(except 10M preprocessing). This is mainly due to the extra communication overhead
of distrusted nodes. When the code size grows, the effect of parallelization optimization
turns obvious.

Fig. 3. Different size of the data

Figure 4 shows the results of the second experiment. The code size is 250MLOC.The
value of x-axis is the number of nodes that varies from 1 to 23. The value represented by
the y-axis is ratio of multiple nodes to a single node and time.When the number of nodes
increases, the average time spent on preprocessing and clone detection decreases. And
the optimization effect of the preprocessing is even better than that of clone detection.
And the speedup of the preprocessing and the clone detection are both nearly linear.

Fig. 4. Different number of the nodes

5.3 Precision and Recall

BigCloneBench is a big clone benchmark of manually validated clone pairs in the inter-
project software repository IJaDatset [12]. In order to measure the recall in more detail,
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we further divide the Type-3 and Type-4 clones into four categories based on their
syntactical similarity: Very Strongly Type-3 (VST3) clones have a syntactical similar-
ity between 90% and 100%, Strongly Type-3 (ST3) in 70%–90%, Moderately Type-3
(MT3) in 50%–70% and Weakly Type-3/Type-4 (WT3/4) in 0–50%. The more details
are explained in [27]. MT3 andWT3/4 are not belong to near miss clones, therefore they
are not in consideration of our work.

It can be seen from Table 3 that FastDCF has perfect detection of Type-1 and near-
perfect Type-2 detection. This means that FastDCF has strong ability to detect Type-1
and Type-2 clones. FastDCF has excellent Type-3 recall for the VST3 category. Fast-
DCF’s Type-3 recall is slightly lower for the ST3 recall. Though Nicad can detect more
clones, as we see previously in Sect. 5, the execution time of Nicad for larger inputs
and its scalability constrains at the 100 MLOC input are not as good. CloneWorks and
SourcererCC are both competitive Type-3 clone detectors.

Table 3. BigCloneBench recall and precision results

Type-1 Type-2 VST3 ST3 Precision

FastDCF 100 99 93 67 94

CloneWorks 100 99 94 62 93

Nicad 100 100 100 95 80

SourcererCC 100 98 93 61 86

Precision. Measuring clone detection precision remains an open problem since there
is no standard benchmark or methodology. We estimate the precision of the tools by
manually validating a random sample of their outputs, which is the typical accepted
approach. We randomly selected 100 clones, which is a statistically significant sample.
The results are show in Table 3. FastDCF has the best precision of 94%, which is slightly
better than CloneWorks. Nicad and SourcererCC also have good precision but is lower
than that of FastDCF.

5.4 Multi-granularity Detection

FastDCF can detect clones at different granularities. The function-level detection is
validated in the experiments in previous sections. We use Linux-kernel 5.10 to measure
the function of file level granularity detection. The results show that FastDCF is capable
to input codes in the format of files. And the file level clones can be detected. For
instance, FastDCF detects the clone pair of “linux-master/arch/x86/um/ptrace_32.c”
and “linux-master/arch/x86/um/ptrace_64.c” which is similar in content.

6 Conclusion

In this paper, we propose FastDCF, a fast and scalable near-miss clone detection tech-
nique, which exploits distribution strategy over MapReduce framework to scale the
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detection to large scale and uses partial indexing and multi-threading to improve the
scalability and efficiency. We measure the efficiency and scalability with 250 MLOC
of IJaDataset. Experimental results show that outperforms existing work in scale. Fast-
DCF’s recall and precision are comparable to the state-of-the-art clone detection tools.
And it achieves the goal of multi-language support and multiple code granularities. To
the best of our knowledge, FastDCF is the most efficient tool which has been imple-
mented to detect near-miss clone. For the future work, we plan to apply our approach to
vulnerability detection for large scale software such as OS distributions, Web servers,
data-intensive large systems and so on.
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Abstract. Increasing computing power has become available through
the use of GPUs, bringing new opportunities to accelerate fast matrix
multiplication using GPUs. Although researchers have proposed several
optimization schemes for the Strassen algorithm on the GPU, they have
not fully utilized the computing resources of CPU. In this paper, we pro-
pose a CPU-GPU heterogeneous implementation for the Winograd algo-
rithm based on task graph scheduling. It uses work-stealing scheduler to
achieve balanced load. We also propose two recursive task graph exten-
sion strategies: homogeneous and heterogeneous extension. We invoke
different execution strategies in different recursive levels and design a
predictor based on the random forest regression model to make a deci-
sion. Finally, the experimental evaluations are performed on a CPU-GPU
heterogeneous platform. It shows that the improved Winograd algorithm
achieves an average speedup of 1.6x, 1.5x and 1.4x against to cuBLAS,
Winograd on CPU, and Winograd on GPU for matrices with matrix
dimension greater than 5000, respectively.

Keywords: Winograd algorithm · Matrix multiplication · Random
forest regression · CPU-GPU heterogeneous architecture

1 Introduction

Matrix multiplication is an important linear algebra operation with a myriad of
applications in image processing, scientific computing, etc. Fast matrix multi-
plication algorithms have lower time complexity than standard matrix multipli-
cation with O(n3) time complexity. In 1969, Volker Strassen proposed the first
fast matrix multiplication with a time complexity of O(n2.81), which is named
Strassen algorithm [19]. It is a divide-and-conquer algorithm that decomposes
matrix multiplication, reorganizes the calculation based on block matrix mul-
tiplication, and completes the calculation through 7 recursive matrix multipli-
cations and 18 matrix additions. Its proposal has led to more research on fast
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matrix multiplication, resulting in faster methods, such as the Coppersmith-
Winograd algorithm.

Heterogeneous computing system usually consists of one or multiple CPUs
with a set of computing cores, and a GPU. In the system, the CPU is a latency-
optimized general purpose processor that is best for executing a wide variety
of tasks quickly, while the GPU is a throughput-optimized specialized processor
that is designed to accelerate a number of specific tasks that demonstrate a high
degree of parallelism. At present, the CPU-GPU heterogeneous computing is
mainly divided into two cases: (1) The CPU is only responsible for task schedul-
ing and not involved in calculation; (2) Both CPU and GPU are responsible for
calculation. Most of the existing Strassen algorithms are implemented on GPU
or CPU, and the computing resources of both computing units cannot be fully
utilized at the same time. Our implementation based on the collaborative com-
puting of the CPU and GPU can fully tap the computing performance of the
CPU and GPU.

In this paper, we propose a CPU-GPU heterogeneous implementation for the
Winograd algorithm based on task graph scheduling. We also propose two recur-
sive task graph extension strategies: homogeneous and heterogeneous extension.
We invoke different execution strategies in different recursive levels. In our imple-
mentation, a predictor based on the random forest regression model is applied to
find the approximate optimal extension strategy for a given matrix. The input
of the runtime system is the task graph generated according to the extension
strategy, and the runtime system uses work-stealing scheduler to achieve bal-
anced load. Finally, we perform the experimental evaluations on a CPU-GPU
heterogeneous platform consisting of Intel i9-10920X CPU and GTX 3090 GPU.
It shows that the proposed Winograd algorithm achieves an average speedup of
1.6x, 1.5x and 1.4x against to cuBLAS, Winograd on CPU, and Winograd on
GPU for matrices with matrix dimension greater than 5000, respectively.

2 Related Work

In order to reduce the time complexity of matrix multiplication, some researchers
have conducted a myriad of researches [13,18]. Pan constructed a fast linear non-
commutative algorithm for matrix multiplication by using the trilinear opera-
tions with a time complexity of O(n2.7951) [16]. Bini et al. proposed an approx-
imate algorithm with a time complexity of O(n2.7799) [3]. Strassen achieved the
time complexity of O(n2.4785) by using the laser method [20]. Subsequently Cop-
persmith and Winograd adopted the laser method to reduce the time complexity
to O(n2.376) [4]. Francois Le Gall proposed a method based on convex optimiza-
tion to reduce the time complexity to O(n2.3728639) [13]. However, the current
research has only theoretical significance.

Although fast matrix multiplications have lower complexity, they have
numerical stability problems. Some researchers have studied the numerical stabil-
ity problem of fast matrix multiplications, and found that a limit on the number
of recursion levels will not affect the numerical stability of the algorithm [6,8].
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Therefore, after some levels of recursion, the subsequent implementation relies
on the standard general matrix multiplication.

With the improvement of the performance of multi-core processors, fast
matrix multiplications based on multi-threaded architecture have an extensively
research [5,11]. Huang et al. used the BLIS software framework to implement the
Strassen algorithm, which effectively avoided the additional intermediate matrix
storage [9]. Ballard et al. developed an automatic code generation tool that can
automatically generate sequential and shared-memory implementations of each
fast algorithm [2].

The fast matrix multiplications based on the GPU architecture have been
widely implemented as the computing performance of the GPU improves. Li
et al. implemented the Strassen and Winograd algorithms based on NVIDIA
C1060 GPU [14]. Lai et al. implemented the Strassen algorithm and proposed
to determine the cut-off point based on the experience-driven model [12]. Ray et
al. compared Strassen’s algorithm and classical matrix multiplication on CPU
and GPU respectively [17]. Huang et al. proposed the novel Strassen primitive
under the GPU architecture, which effectively reused the shared memory and
registers to avoid additional memory space overhead [10].

Although fast matrix multiplications have been extensively optimized based
on CPU or GPU, the implementations have failed to effectively utilize the com-
puting resources of CPU and GPU.

3 Method

3.1 Overall Framework

As shown in Fig. 1, the overall framework includes the runtime system and task
graph generation transforming the recursive Winograd algorithm into a non-
recursive task graph. First, we perform feature calculations based on the input
matrix, use the offline training model to obtain the optimal extension strategy,
and finally generate a task graph based on the extension strategy. The task graph
can be abstracted into a directed acyclic graph. In the task graph, each circle
represents a task node, representing matrix operation, and the flow between
nodes represents the dependency between tasks. The runtime system schedules
tasks based on the task graph. Current task scheduling algorithms can be clas-
sified into two main groups: static scheduling and dynamic scheduling. Static
scheduling is the mechanism, where the decision is made before the task is exe-
cuted, while the dynamic scheduling algorithm allocates resources at runtime. In
our implementation, we adopt the dynamic scheduling algorithm based on work
stealing, and its process is shown in Fig. 2. The CPU and GPU, called worker,
have a ready queue of ready tasks respectively. Initially, we assign tasks to the
CPU and GPU based on the Round-Robin scheduling algorithm. At runtime,
the worker firstly check the ready queue. If the queue is not empty, it will remove
the head of the queue and execute it. When a task is completed, it may cause
some tasks to become ready. If there exist such tasks, the tasks will be placed
at the end of the ready queue of the current worker. When the worker runs out
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of the ready tasks, it will perform the stealing operation from another worker,
and the tail of the stolen ready queue will be inserted into the tail of the current
ready queue.

Fig. 1. The framework of the het-
erogeneous implementation of fast
matrix multiplication.

Fig. 2. Task scheduling process
based on work stealing.

The analysis method of offline trace is applied to evaluate the heterogeneous
load of the work stealing scheduling method. It is mainly divided into two parts:
grabbing task runtime trace and visualization using the bokeh library. After all
the tasks are completed, the trace information captured through the heteroge-
neous runtime system that manages the running environment and records the
running time of each task is written to the trace file. The running time includes
the start time and finish time of the task. The format of the trace is divided
into two parts. The first part is in the format of “running device 0 - running
device 1”, accounting for the first line independently. The second part is the
specific execution trace of the task in the format of “running device - start time
- finish time”, which takes up from the second line to the last line. As shown in
Fig. 3, it is an example of the heterogeneous load visualization using the bokeh
library. The horizontal axis represents the time, and the vertical axis represents
the device name. The area covered in red indicates that the device is performing

Fig. 3. Offline trace visualization of the heterogeneous system load.



Towards Optimal Fast Matrix Multiplication on CPU-GPU Platforms 227

tasks, and the blank gap is either used for data transmission or idle. It can be
seen from the figure that the load of CPU and GPU is basically balanced.

3.2 Winograd

Table 1. The 18-variables Winograd algorithm

ID Task ID Task

1 S3 = A11 − A21 12 P1 = A11 * B11

2 T3 = B22 − B12 13 U2 = P1 + P6

3 P7 = S3 * T3 14 U3 = U2 + P7

4 S1 = A21 + A22 15 U4 = U2 + P5

5 T1 = B12 − B11 16 U7 = U3 + P5

6 P5 = S1 * T1 17 U5 = U4 + P3

7 S2 = S1 − A11 18 T4 = T2 − B21

8 T2 = B22 − T1 19 P4 = A22 * T4

9 P6 = S2 * T2 20 U6 = U3 − P4

10 S4 = A12 − S2 21 P2 = A12 * B21

11 P3 = S4 * B22 22 U1 = P1 + P2

The Winograd algorithm is a variant of Strassen algorithm. Its computing
sequence is shown in Table 1. Considering the computing sequence as a set of
tasks, a single level Winograd algorithm can be abstracted into the task graph
based on the dependency between variables, as shown in Fig. 4(a). Because 18
additional intermediate matrices are needed, this algorithm is called 18-variables
Winograd algorithm. In order to facilitate synchronization between tasks in a
heterogeneous environment, we add an empty task named “Join” to the task
graph. For the convenience of analysis, assume that the matrix multiplication
involves a square matrix, that is, m = k = n. Assuming that the extra stor-
age used by the above algorithm is denoted as E(m, k, n). The expression is as
follows:

E(m, k, n) = 4 · m
2
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2
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2
+ 3 · m
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2
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logm∑
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1
4i

(4 ·mk + 4 · kn + 3 ·mn) (2)

With the continuous recursion of the algorithm, more intermediate storage will
be introduced. Because of the obvious advantages of the algorithm for large-
scale matrix, the storage space consumption is severe. Lai et al. implemented the
Winograd algorithm with the number of intermediate matrices of 2, optimizing
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(a) 18-variables Winograd. (b) 2-variables Winograd.

Fig. 4. The task graph of the Winograd algorithm with 18 and 2 additional interme-
diate matrices.

the number of the intermediate storage [12]. The task graph is shown in Fig. 4(b).
The sequence of the computation is shown in Table 2.

Table 2. The 2-variables Winograd algorithm

ID Task ID Task

1 S3 = A11 − A21 X 12 P1 = A11 * B11 X

2 T3 = B22 − B12 Y 13 U2 = P1 + P6 C12

3 P7 = S3 * T3 C21 14 U3 = U2 + P7 C21

4 S1 = A21 + A22 X 15 U4 = U2 + P5 C12

5 T1 = B12 − B11 Y 16 U7 = U3 + P5 C22

6 P5 = S1 * T1 C22 17 U5 = U4 + P3 C12

7 S2 = S1 − A11 X 18 T4 = T2 − B21 Y

8 T2 = B22 − T1 Y 19 P4 = A22 * T4 C11

9 P6 = S2 * T2 C12 20 U6 = U3 − P4 C21

10 S4 = A12 − S2 X 21 P2 = A12 * B21 C11

11 P3 = S4 * B22 C11 22 U1 = P1 + P2 C11

It is assumed that the additional storage of the algorithm is denoted as
R(m, k, n), which is as follows:
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Compared with the 18-variables algorithm, the algorithm introduces fewer inter-
mediate matrices, reducing the overall storage.

4 Regression Model Predictor

4.1 “Depth First” and “Breadth First”

In the field of parallel computing, researchers have carried out breadth-first and
depth-first parallel strategies to avoid communication problems. Depth-first and
breadth-first are alternative ways for processors to process subproblems in the
recursive problems. At a depth-first step, subproblems are executed in sequence,
while at a breadth-first step, subproblems are executed in parallel.

Although the breadth-first strategy reduces the amount of communication
between subproblems and exposes higher parallelism, the extra memory con-
sumption is required compared to the depth-first strategy. In the shared-memory
environment, the interleaving strategies of the depth-first and breadth-first will
affect the memory consumption of fast matrix multiplication algorithm, cache
access mode, the number of execution threads and the size of base problem. All of
these will lead to the performance difference. In the heterogeneous environment,
we can speculate that different interleaving strategies can lead to different per-
formance of fast matrix multiplication. Because the number of threads adopted
in this paper is fixed, it is different from the implementation in homogeneous
environment. Since the 2-variables Winograd algorithm has more dependencies
and most of the tasks are executed in sequence, the execution is similar to
the depth-first, so the depth-first strategy in this paper corresponds to the 2-
variables Winograd algorithm, while the breadth-first strategy corresponds to
the 18-variables Winograd algorithm.

4.2 Strategy Sequence

Recursive task graph extension includes the homogeneous extension and hetero-
geneous extension. The homogeneous extension means that the task graph gen-
erated by each recursion is same, which is reflected in the Winograd algorithm
with 18 variables or 2 variables in each recursion. The heterogeneous exten-
sion means that the algorithm used for each recursion is distinct. The strategy
sequence is applied to describe the task graph generation.

The strategy sequence is a string consisting of the character B and D. Each
character represents a recursive extension strategy, where D represents a depth-
first strategy that is the 2-variables Winograd algorithm, and B represents a
breadth-first strategy that is the 18-variables Winograd algorithm. The length
of the sequence determines the cutoff point for fast matrix multiplication. The
task graph of the homogeneous extension strategy sequence “BB” and the het-
erogeneous extension strategy sequence “BD” are shown in Fig. 5.
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(a) BB. (b) BD.

Fig. 5. The task graph of the homogeneous extension strategy sequence “BB” and the
heterogeneous extension strategy sequence “BD”

4.3 Details of the Implementation

Recursive task graph extension can be divided into the homogeneous extension
and heterogeneous extension. Due to the complexity and diversity of extension
strategies for the same matrix, a predictor based on the random forest regres-
sion algorithm is applied to find the approximate optimal extension strategy by
predicting the performance. Suppose that for a given matrix M, the set of exten-
sion strategies is {SEQ1, SEQ2,...,SEQn}. The performance is in the case of
G(M,SEQi), i = 1, 2, ..., n. The predictor can return an approximately optimal
extension strategy based on the predicted performance:

Seq = argmax(G(M,SEQ1), G(M,SEQ2), ..., G(M,SEQn)) (5)

As shown in the Fig. 6, the prediction consists of two phases. The first is the
offline training phase, which focuses on generating performance data on a het-
erogeneous runtime system using a series of extension strategies based on a given
dataset. Then, the random forest regression algorithm is used for training based
on the performance data, and the selected series of features (matrix size, exten-
sion strategy, recursion depth, number of temporary matrices, maximum size of
temporary matrices, and minimum size of temporary matrices). The second stage
is the online decision phase, where a series of features are generated according
to the extension strategy for a given matrix, and the trained model is applied
to predict the performance, and finally the extension strategy with the optimal
prediction performance is selected as the output.
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Fig. 6. Regression model predictor based on random forest regression algorithm.

5 Experiment

5.1 Experimental Setup

All experiments are conducted on a heterogeneous platform consisting of a GTX
3090 GPU and Intel i9-10920X CPU. The CPU is running at 3.5 GHz with 12
cores and 256 GB of memory. The GPU has 10,496 cuda cores with a 24 GB
GDDR6X memory configuration. Our software environment is based on Ubuntu
OS, GCC 9.0 and cuda 11.0.

5.2 Performance Evaluation

In order to evaluate the performance of heterogeneous fast matrix multiplication
quantitatively, GFLOPS is used to measure the strengths and weaknesses of each
implementation. The expression for computing GFLOPS is shown below:

GFLOPS =
2n3

seconds
× 10−9 (6)

5.3 Heterogeneous Implementation

In order to evaluate the effectiveness of the heterogeneous implementation, a
series of experiments are conducted. We select a total of 113 matrices at intervals
of 64 between matrix sizes from 1024 to 8192 and extension strategies of “BDB”,
“BD”, “B”, “BB”, “BDDB”, “D”, “BBD”, “DBD”. As shown in Fig. 7, it shows
that the improved Winograd algorithm achieves an average speedup of 1.6x,
1.5x and 1.4x against to cuBLAS, Winograd on CPU, and Winograd on GPU
[12] for matrices with matrix dimension greater than 5000, respectively, and the
performance of the “BB” and “BD” extension strategies drops suddenly in a
matrix size of 5200. Based on the analysis of the trace information, we find that
the decrease in speedup is due to the overhead involved in a large-scale submatrix
multiplication task executed by CPU.
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Fig. 7. The speedup ratio of each extension strategy relative to cuBLAS, GPU-
Winograd and CPU-Winograd implementation.

5.4 Extension Strategy

Different recursive extension strategies correspond to different algorithm imple-
mentations. We conduct experimental evaluations for extension strategies, and
analyze the impact of different extension strategies on performance. We take a
total of 113 matrices selected from a matrix range of 1024–8192 with an inter-
val of 64 as an example, and select some extension strategies for performance
statistics.
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Fig. 8. The performance comparison between different extension strategies.

It can be seen from the Fig. 8 that the extension strategies corresponding to
the best performance of different matrices are distinct. The extension strategies
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of “B”, “BB”, “D” and “BD” have shown the optimal performance when the
matrix size is less than 2000. The performance of “BDB”, “DBD”, etc. improves
as the matrix size increases. The extension strategies of “BDB”, “DBD”, and
“BBD” show better performance than other strategies for the relatively large
matrices. Therefore, different execution strategies in different recursive levels
have a significant impact on the performance.

5.5 Regression Model Predictor

The performance predictor based on the random forest regression can predict
the performance of a given matrix. In order to distinguish from the training
dataset, we take 103 matrices with an interval of 70 between 1023 and 8193 as
an example to illustrate the effectiveness of the predictor. As shown in Fig. 9, the
red circle solid line represents the best performance predicted by the predictor
for each matrix. The blue triangle solid line represents the performance of the
actual optimal extension strategy for each matrix.
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Fig. 9. The comparison between the predicted performance of the model and the actual
performance of each extension strategy. (Color figure online)

In order to measure the correctness of the predictions, we use the root mean
square error (RMSE), the maximum, the minimum, and the mean absolute error
(MAE) for evaluation, as follows:

RMSE =

√√√√ 1
m

m∑

i=1

(yi − yi)2 (7)

MAE =
1
m

m∑

i=1

|yi − yi| (8)

In the above formula, yi is the performance of the actual optimal extension
strategy for the i− th matrix, yi is the performance predicted by model in mil-
liseconds. The evaluation results are shown in Table 3. From the table, it shows
that the performance predicted by model is similiar to that of the actual optimal
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strategy, the maximum error is less than 100 ms, and the minimum error is less
than 0.1ms. As shown in Fig. 10, we take two matrices as examples to evaluate
the rationality of the extension strategy predicted by model. The maximum and
minimum errors of the matrix with a scale of 4733 are 26.278 ms and 0.2217 ms,
and the maximum and minimum errors of the matrix with a scale of 8163 are
120.039 ms and 5.015 ms. It can be seen that the performance of the extension
strategy predicted by model for matrices is similar to the performance of the
actual extension strategy. The optimal strategies predicted by model are “BD”,
and “BBD”, respectively, which are also consistent with the actual optimal exten-
sion strategies. Moreover, in the online decision-making stage, the preprocess-
ing time for predicting the optimal extension strategy is about 6 milliseconds.
The proportion of preprocessing overhead decreases as the matrix size increases.
Therefore, the random forest regression model designed in this paper has feasi-
bility in selecting the optimal extension strategy by predicting performance.

Table 3. The evaluation results.

Evaluation index Milliseconds

Root mean squard error 20.087428

Mean absolute error 12.618624

Max absolute error 93.297792

Min absolute error 0.004760

(a) 4733 4733 4733. (b) 8163 8163 8163.

Fig. 10. The performance of the extension strategies predicted by model.

6 Conclusion

In this paper, a CPU-GPU heterogeneous Winograd algorithm is implemented.
We propose two recursive task graph extension strategies: homogeneous and het-
erogeneous extension, invoke different execution strategies in different recursive
levels and design a predictor based on the random forest regression model to
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make a decision. In our implementation, we firstly perform feature calculations
based on the input matrix, then invoke the trained model to obtain the optimal
extension strategy, and generate task graph based on the extension strategy. The
input of the runtime system is the task graph, and the runtime system uses work-
stealing scheduler to achieve balanced load. Overall, our method achieved higher
performance than GPU-based approaches, including CUBLAS, and CPU-based
approach.
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Abstract. The scale of data shows an explosive growth trend, with wide use of
cloud storage. However, there are problems such as network latency and power
costs. The emergence of edge computing brings data close to the edge of the
network, making edge computing a good supplement to cloud computing. The
spatiotemporal characteristics of data have been largely ignored in studies of data
placement and storage optimization. To address this, we propose a temperature
matrix-based data placement method using an improved Hungarian algorithm
(TEMPLIH). A temperature matrix reflects the influence of data characteristics on
its placement. A replica selection algorithm based on a temperature matrix (RSA-
TM)canmeet latency requirements.An improvedHungarian algorithm (IHA-RM)
is proposed on the basis of replica selection, which satisfies the balance among
the multiple goals of latency, cost, and load balancing. Compared with commonly
used data placement strategies, experiments show that TEMPLIH can effectively
reduce the cost of data placement while meeting user access latency requirements
and maintaining a reasonable load balance between edge servers.

Keywords: Edge computing · Data placement · Data temperature · Hungarian
algorithm · Load balancing

1 Introduction

Cloud computing has developed rapidly. However, with the advent of artificial intelli-
gence and 5G, applications continue to appear and amounts of data increase, placing
high demands on network latency. Hence, edge computing is in great demand because
it places computing at or near the physical location of the data source, enabling faster
and more reliable service.

From the perspective of application providers, centralized cloud computing adapts
with difficulty to accommodate frequent data interaction. It has become increasingly
powerless in terms of network latency, broadband load, and data management costs.
Hence, they seek to reduce their operating costs while meeting the service requirements
of users, and data caching in the edge computing environment is the object of much
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research. Although researchers have done much optimization work, they have focused
on improving the optimization algorithm itself in terms of latency, cost, and service
quality. In fact, with increasing amounts of data, there is a huge space for exploration,
especially in terms of regional temporal and spatial characteristics. Whether in social
networks or streaming media, there are obvious differences between individuals and
regions.

Therefore, in this study, we propose a concept of data temperature that considers
the temporal and spatial characteristics to model and calculate data. To be precise, it is
based on the temperature matrix to obtain a data replica placement scheme that satisfies
the latency. Finally, the improved Hungarian algorithm based on the cost matrix reduces
the cost of data placement while ensuring reasonable load balancing.

This study makes three main contributions:

• We propose the concept of data temperature and its calculation model. On this basis,
we construct a data temperature matrix, which can be used to optimize the placement
of data;

• To meet the user’s latency needs and improve the user experience, we propose a data
replica matrix selection algorithm based on a temperature matrix (RSA-TM), which
can obtain a replica placement solution that meets latency requirements;

• We propose an improved Hungarian algorithm (IHA-RM) based on the data replica
matrix, which can satisfy user latency needs, and guarantees the load balance and
cost-effectiveness of data placement.

The remainder of this paper is organized as follows. Section 2 discusses related
work. Section 3 provides related definitions and the calculation model of the problem.
Section 4 discusses the design of the algorithm. Section 5 compares our algorithm with
some classic algorithms. Section 6 presents our conclusions.

2 Related Work

As the quantity of data increases, so does the number of users. The reasonable place-
ment of data must not only meet the increasingly high service-quality requirements of
users, but also take into account the constraints of system storage space and computing
power in the context of large-scale data storage in a real-world environment. Current
research on strategy optimization of data placement focuses on cost optimization, latency
optimization, and load balancing in the cloud computing environment.

Cloud computing has an on-demand usage model. Service providers hope to reduce
operating costs while meeting user service requirements. Wang et al. [1] proposed a
multi-cloud storage architecture. Amulti-objective optimization problemwas defined to
minimize total cost andmaximize data availability. This can be solved by amethod based
on non-dominated sorting genetic algorithm II (NSGA-II) and a set of non-dominated
solutions called a Pareto optimality set. Wang et al. [2] proposed an adaptive data place-
ment architecture that can adjust according to time-varying data access patterns and
topics to minimize the total cost and maximize data availability. Wang et al. [3] pro-
posed a method based on an ant colony algorithm for data hosting in a multi-cloud
environment, constrained by optimization objectives such as cost and availability.
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With the development of the network and the emergence of various applications,
service providers cannot just reduce costs and ignore increasing latency requirements of
users.Wang et al. [4] analyze the geographical distribution characteristics of data centers
through a clustering algorithm, and propose an effective data initialization strategy, then
they use a genetic algorithm to further optimize the cost-effectiveness and minimal
latency. Rao et al. [5] studied the problem of minimizing the total cost while ensuring
the quality of service for different locations and times, modeling it as constrained mixed
integer programming problem.

The load balance of the system is another important factor affecting performance [6].
Pujol et al. [7] proposed an algorithm to locate connected user data in the same service
while maintaining load balance, with the aim to maintain a better online social environ-
ment. Tran and Zhang [8] proposed a framework based on evolutionary algorithms to
place data to minimize and balance the server load, and to optimize storage efficiency.
Chen et al. [9] proposed a method to explore the potential social relationships of users
in social networks while balancing the workload between servers to minimize the traffic
between them.

The emergence of edge services can effectively provide real-time, high-bandwidth,
and low-latency access to applications. There has been much research on content place-
ment in a combined edge environment. Cao et al. [10] presents a method combined
NSGA-II with multi-group method which has better ability of global search to help
users determine cloud and edge services to store and access data object. Xu et al. [11]
studied the service caching problem in MEC’s cellular network. An online algorithm
was proposed for the random online service caching of edge computing to minimize
computational latency under the constraint of long-term energy consumption.

While there is a lack of research on data placement based on the edge environment.
Most such research has addressed the optimization of algorithms, without considering
the temporal and spatial characteristics of the data. We propose temperature matrix-
based data placement using an improved Hungarian algorithm (TEMPLIH), combining
temperature, replica, and cost matrices. While ensuring user latency, we can reduce
storage costs asmuch as possible while balancing loads through the improvedHungarian
algorithm.

3 System Model and Problem Definition

We introduce the system structure of edge data placement; define the three matrices,
including the temperature matrix, data replica matrix, and cost matrix; and define the
optimization objectives and constraints.

3.1 System Framework

We define a dataset D,D = {d1, d2, d3, . . . dm} as a data block of a user’s requests for
data. The user area, R = {r1, r2, r3, . . . rN }, is the access area formed by the user set,
and is used for latency calculation. The edge server, S = {s1, s2, s3, . . . sK }, includes
a number of edge server sets in each area provided by each service provider to store
data blocks that meet latency requirements. Each edge server is associated with a set of
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attributes<Ps
e,P

b
e ,P

o
e , le>, where Ps

e is the storage price, P
b
e is the bandwidth price, P

o
e

is the obtained operation price, and le is the storage capacity. The relationship between
edge server, user area and data is shown in Fig. 1.

Fig. 1. Framework of data placement in edge environment.

3.2 Data Temperature and Calculation

Since the popularity of data access differs across regions, data have their own attributes
according to the degree of access to them in different regions [12]. This degree of
preference must consider the changes in data attributes and spatial characteristics during
a certain period of time. Spatiotemporal data refers to geographic entities whose spatial
elements or attributes change over time. We propose the concept of data temperature
based on the attributes of the data and the regional characteristics of the data distribution.
On this basis, we define that each data block contains a set of attributes<dc, dt, dd , df >,
where dc is the number of clicks, dt is the number of comments, dd is the number of
downloads of the video, and df is a user-favorited video. The importance xi of each
data block di is evaluated and calculated by the number of clicks and views, numbers,
downloads, and favorites. The number of views, comments, and downloads accounts for
0.8, while the number of favorites accounts for 0.2; i.e.,

xi = 0.8(dc + dt + dd ) + 0.2df . (1)

The relative weight wi of data block di is determined by the ratio of the importance
of xi to that of all other data,

wi = xi
∑m−1

i xi
. (2)

According to the change characteristics of data temperature, H is the temperature
value of the current data, w is the relative importance, H0 is the initial temperature,
and k is the attenuation coefficient. Heat is positively correlated with importance and
timeliness, and negatively correlated with time.

H (t) = w ∗ H 0 ∗ e−kt (3)
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The data temperature matrix Tmn is defined to store the temperature values of data
in different regions, i.e., the temperature value hm,n of data m in area n,

Tmn =
⎛

⎜
⎝

h1,1 · · · h1,n
...

. . .
...

hm,1 · · · hm,n

⎞

⎟
⎠. (4)

In addition, because the number of edge servers differs by region, their computing
power, storage cost, and operational cost also differ. We define a regional server matrix
to record servers by region.

Rnk =
{
1 Server k is in area n
0 Server k is not in area n

(5)

3.3 Network Latency

Satisfying the user’s access latency requirements is important in the optimization of data
placement strategies. We take time latency as a constraint to ensure that users can access
the data they want within an acceptable time. We guarantee that the maximum response
time of each request is 200 ms [13]. We use geographic distance as a rough measure
of network latency, which we express as a linear function of distance. The correlation
between latency and geographic distance can be obtained through network latency data
collection, and the round-trip time (RTT) [14, 15] is used to calculate the data access
latency,

lm = max
d∈S(t)

{5 + 0.02D(d)}. (6)

where D(d) is the distance between the user and the data center, D
∧

is the maximum
acceptable time latency, and the average access latency is as follows.

a(
∑M

i=1
li) ≤ D

∧

(7)

3.4 System Cost

To reduce the average access latency, the number of data copies must be appropriately
increased, which will increase the cost. The cost of the service provider and the average
latency in responding to user requests are conflicting considerations. To place more
copies of content on edge nodes can reduce the average latency in responding to file
requests, but it will increase the resource usage of edge nodes. We consider the three
main parts of resource usage costs, i.e., the costs of data calculation, bandwidth, and
storage.

At time t, the storage cost of data di is the total cost of storage for a placement plan,
including storage, network, and operation, is

P
∧

C =
∑

e∈S(t) ziP
s
e +

∑

e∈S(t) ziP
b
e +

∑

e∈S(t) dcP
o
e (8)
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3.5 Load Balancing

With the explosive growth of data requiring storage and processing, to maintain a good
system balance is of practical significance. If the server stores a group of active users, a
large number of visits will be accepted. At this time, a longer response timewill diminish
the user experience. By maintaining a good load balance of the storage system, system
performance and response speed can be improved. The load of a data placement scheme
is

L =
√

1

K

∑M

i=1
(Um − UK )

2 (9)

where K is the total number of servers,M is the number of servers where data is placed,
Um is the server utilization, and UK is the total server utilization. The smaller the value
of L, the more balanced the load.

3.6 Problem Definition

The optimization goal is to perform reasonable data placement for any given data object
and to give its placement plan in the edge environment, so that its cost and load at the
edge can reach a relatively balanced state. Therefore, the entire optimization problem
can be defined as follows.

minC =
∑M ,N ,K

m=1,n=1,k=1
EmnkP

∧

C (10)

minL =
√

1

K

∑M

i=1
(Um − UK )

2 (11)

a(
∑M

i=1
li) ≤ D

∧

(12)

4 Algorithm Design

TEMPLIH consists of a data replica selection algorithm based on a temperature matrix
(RSA-TM), and the improvedHungarian algorithm based on a replicamatrix (IHA-RM).

RSA-TM considers the characteristics of the data and obtains the data temperature
matrix, which can screen suitable data and reduce unnecessary resource consumption.
When the latency condition is met, placement is stopped and the data placement area is
recorded. Otherwise, we select areas to place the data in descending order according to
the data temperature matrix, and stop placing it when the latency requirement is met. The
time complexity in calculating the temperaturematrix is O(MN).We define a data replica
matrix based on the temperature matrix. The placement area where data m satisfies the
latency in area n is recorded as 1, and otherwise it is 0, i.e.,

Lmn =
{
1 Datam is placed in area n
0 Datam is not placed in area n

. (13)
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When meeting user access latency, to obtain a data placement solution at the least
cost while ensuring load balance, we propose an improved Hungarian algorithm based
on the replica matrix (IHA-RM). The data server placement matrix Dmk expresses the
placement relationship between data m and area server k,

Dmk =
{
1 Datam is placed on server k
0 Datam is not placed on server k

. (14)

We combine the regional server matrix Rnk and data server placement matrix Dmk
to get the placement cost of the data on the server in each region according to the cost
calculation formula. The cost matrix PN = [p1, p2, p3, ..., pN ] represents the placement
cost of the data block on the server in each region, i.e., the data placement cost matrix P
of data blockm and server k under the N areas is collected, the cost of the server storage
data block is recorded as Ck,m, and

Pn =
⎛

⎜
⎝

C1,1 · · · C1,m
...

. . .
...

Ck,1 · · · Ck,m

⎞

⎟
⎠. (15)

In our scenario, the data and servers in each area are often not equal. Therefore, we
compare the numbers of data blocks and computing resources in each area. If these are
equal, the standard Hungarian algorithm can be used to solve the problem. If they are
unequal, we must determine the numbers of servers and data blocks. If the number of
servers exceeds the number of data blocks, we add the number of virtual data blocks
(add 0) to create as many dimensions as the number of servers, and then use the standard
Hungarian algorithm. If there are more data blocks than there are servers, the cost matrix
is split, according to the dimension of the number of servers, into a small matrix of the



244 Y. Zhao et al.

number of data blocks divided by the number of servers. If the number of data blocks in
the last sub-matrix is less than the number of servers, the number of virtual data blocks
(add 0) is added to make it consistent with the number of servers. After completing the
matrix, we use the traditional Hungarian algorithm to determine the data placement plan.
The time complexity of calculating the data server matrix and cost matrix is O(NMK).

5 Experimental Evaluation

We introduce simulation experiment settings and give multiple benchmark algorithms
for comparison. Experimental evaluation shows that our algorithm can balance the
cost and load balance goals of data placement under the premise of satisfying latency
requirements.
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5.1 Experiment Setup

We introduce the video dataset, edge server information, and parameter settings. The
dataset is a YouTube popular video dataset with 40,726 items, including the number of
views, shares, comments, and likes.

Regional edge server information was obtained from the websites of major cloud
service providers, including storage price ($/GB), bandwidth price ($/GB), get operation
price ($/10k times), and latitude and longitude of the edge server.

The experiment was run on a computer with an Intel Core i7-7500U at 2.7 GHz,
with 8 GB memory and Windows 10.

5.2 Experimental Results and Analysis

We compared the cost and load rate of TEMPLIH with those of several other algorithms
for data placement with the same experimental data.

• Random: The distribution relationship between the data and server is obtained from
the replica matrix, and the data block is randomly placed on the regional edge server.

• Latency-based [16]: The data are placed on the regional edge server with the lowest
total network latency. We calculate the data placement considering cost and load
balancing.

• Cost-based [5]: According to the replica matrix, we can obtain the distribution rela-
tionship between the data and server. We place the data block on the edge server with
the lowest cost.

• Load Balance [8]: After the data replica matrix that meets the latency requirement is
known, the data blocks are sequentially placed in the edge server.

The algorithm performance was evaluated by changing the number of data blocks
from 6000 to 13000. The data block size was fixed at 0.6 GB, the number of servers was
425, and the server capacity was 600 GB. Figures 3 and 2 describe the cost and load rate,
respectively, of the data placement schemes obtained by the five algorithms. It can be
seen that the load rate of our algorithm is similar to that of the load balance algorithm,
but its total average cost is 18.9% less.

Fig. 2. Comparison of load rate with
changing of data blocks.

Fig. 3. Comparison of cost with changing of
data blocks.
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The data block size was changed to 1.2 GB, with 10,000 fixed data blocks. The num-
ber of servers and their capacities were consistent with the above experiment. Figure 5
shows the cost changes of the placement schemes obtained by the five algorithms. It can
be seen that the data block size was too large, the data resources tended to be saturated,
and the cost was reduced. Figure 4 compares the load rates of the five algorithms. As the
size of the data block increases, the distribution of blocks becomes more dispersed, so
the load rate decreases when the number of servers and their capacities are unchanged.
The load will be more balanced. Our TEMPLIH algorithm is less effective in cost than
the data solution obtained by the Cost algorithm. However, Fig. 4 demonstrates that
the load rate of the cost-based algorithm is 32.8 times that of our proposed algorithm
in terms of load conditions. It is worth noting that the load balancing of the algorithm
based on cost is much worse than the TEMPLIH algorithm.

Fig. 4. Comparison of load rate with
changing data block size.

Fig. 5. Comparison of cost with changing data
block size.

Changing the range of server capacity from 400 GB to 650 GB, there were 10,000
data blocks of size 0.6GB, and the number of servers remained unchanged. Figures 6 and
7 show the changes in load rate and the cost of data placement, respectively, for the five
algorithms when the server capacity changed. It can be seen that the load rate increases
with the server capacity. This is because the increase in server capacity enables better
placement options for data blocks when resources are relatively abundant. Combined
with Figs. 6 and 7, with the increase of server capacity. The load rate of the algorithm
we proposed is similar to that of the load balancing algorithm. Figure 7 shows that
our proposed method (TEMPLIH) performs better than the load balancing algorithm in
terms of cost, and our algorithm saves 16.8% in total average cost.
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Fig. 6. Comparison of load rate with
changing server capacity.

Fig. 7. Comparison of cost with changing
server capacity.

6 Conclusion and Future Work

In the current environment where the scale of data and the number of terminals continue
to expand, demands on network latency continue to increase. In the edge environment, the
edge server can take advantage of its own lightweight, real-time computing capabilities,
and closer proximity to users to place data reasonably,which can effectively improve user
experience. However, how to use data characteristics and quickly weigh the relationship
between various indicators is a problem that remains to be solved in the field of data
placement. Our proposed TEMPLIH can optimize the cost and load balance of data in the
edge environment under the premise of meeting the latency requirements. Specifically,
the RSA-TM and the IHA-RM are adopted. Experiments have proved that with respect
to optimization effects, the TEMPLIH strategy, which considers the data temperature
matrix is better than the traditional multi-cloud data storage strategy. In future work, we
will consider data characteristics for collaborative application research ondata placement
and task scheduling.
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Abstract. In this paper, we propose a way of distributed processing
of realtime physics simulations for 3D video games with a large virtual
space. The basic idea of the proposed method is to divide a given vir-
tual space into multiple subspaces, and to simulate each subspace with
a physics simulator running on a container of virtual environment by
assuming that subspaces are sufficiently independent so that each sim-
ulation is not affected by the others. In the prototype system we have
implemented, the configuration of objects in the subspace allocated to a
client is exchanged among hosts every few frames through WebSocket.
According to the experiments conducted with the prototype system, it is
confirmed that we could achieve a sufficiently high processing speed and
high frame rate by bounding the number of objects in each subspace,
even if the entire virtual space contains a huge number of virtual objects
exceeding 10,000.

Keywords: Edge computing · Virtual world · Physics simulation ·
Docker container · Cloud game

1 Introduction

A Japanese novelist Reki Kawahara wrote a light novel called Sword Art Online
in 2002, which depicts various conflicts of characters playing a VRMMORPG
(Virtual Reality Massively Multiplayer Online Role-Playing Game) called Sword
Art Online, launched in 2022 (in the novel). This virtual online game allows more
than 10,000 players to simultaneously log in to the system, and the scenery of
the virtual world including the shape of monsters and the face of other players
dynamically changes in realtime according to: the movement of the location
and the gaze of the player (e.g., through walking or flying), interfering with the
virtual world (e.g., engagement in battles), and other miscellaneous game events.

From a technical point of view, realtime rendering of high-resolution videos
such as 4K or 8K quality is becoming a reality with the rapid progress in GPU
technology. A typical example is Detroit: Become Human, which is a game soft-
ware for PlayStation 4 released by Sony Interactive Entertainment (SIE) in 2018.
On the other hand, in recent years, specific game software called VR games have
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become widely popular, especially in game genres such as shooting, action, sim-
ulation and strategy, so that realistic artificial images which can be mistaken for
photographs are being developed through head-mounted display (HMD) of game
players. Based on the above technological trends, this paper focuses on another
important issue in VRMMORPG: the scalability issue related to the complexity
of the virtual space and the number of players. The basic idea of our proposed
method is to divide the entire virtual space into several subspaces, and assign
each subspace to a separate machine for processing, in order to keep the peak
load of each physical server as low as possible.

If objects in the virtual space and the gaze of the player are both stationary,
we can generate a high resolution still image within a short time by using a
sophisticated rendering engine provided on the server, and even when the player’s
gaze dynamically changes, the rendering results for each gaze can be combined
to generate a realistic video stream. Therefore, the remaining problem is how
to keep track of the position and state of virtual objects in the virtual space as
they are updated by external events. In this paper, we consider this challenging
issue and propose a method for calculating the position and state of virtual
objects without exceeding the processing capacity. Such physics simulations are
generally conducted by using physics engines such as PhysX1, Open Dynamics
Engine, and Newton Game Dynamics. It should be worth noting here that in the
physics simulation for video games, the accuracy can be often sacrificed to some
extent since a high responsiveness is much more important than the accuracy. In
fact, it is common to treat only limited number of objects relevant to the player
as the target of physics simulations and regard the rest as static images, since
the changes in the distant scene on the human retina are usually very small, even
if any. However, there could exist some situations in which the details of moving
images which becomes visible as a result of player’s actions have a significant
impact on the player’s impression; e.g., the reader could imagine the ears of
wheat rustling in the wind and the changes in the scene of a snowstorm caused
by changes in temperature. With those observations, we thought that it would
be of great significance to study the basis for realizing such physics simulations
in a scalable manner with as little loss of accuracy as possible.

In this paper, we focus on PhysX as the concrete real-time physics engine, and
investigate the way of decentralizing physics simulations using a container-based
virtual environment. We implemented a prototype system consisting of one server
application and one or more client applications. Each application is assigned a
specific machine, where each client is executed on a Docker container to allow
for live migration of clients depending on the change of the load of physical
machines. The partitioning of a large virtual space into subspaces is realized
by using the coordinates in the virtual space, which could dynamically change
according to the load of the clients. In order to properly conduct such a subspace
processing, the server should designate the information on the subspace in a rigid
manner, and should send it to the clients in a reliable and timely manner. To
this end, we introduce a specific data format called O-data (object data) and

1 https://github.com/NVIDIAGameWorks/PhysX.
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use WebSocket to send network commands written as a text data. With the
prototype system, we conducted experiments to evaluate the performance of the
proposed method. The result of experiments shows that although it reduces the
load of the physics simulation, the aggregation of the simulation results becomes
a bottleneck so that the host could not keep a high frame rate such as 90 fps.

The remainder of this paper is organized as follows. Section 2 overviews
related work. Section 3 describes the proposed method. Section 4 summarizes
results of evaluations. Finally, Sect. 5 concludes the paper with future work.

2 Related Work

The design of scalable Cloud Gaming Platform (CGP) has been a main concern
in realizing an efficient handling of requests issued by a huge number of game
players in real-time. Many existing works on CGP explore an effective way of
assigning tasks to virtual machines (VMs) and assigning resources to each VM
[3,5,8–10,12,18–20]. Avino et al. [1] measured the amount of CPU utilizations by
Docker containers while executing the game server of a multiplayer game, to eval-
uate the suitability of container architecture for Multi-access Edge Computing.
In the experiments, they used Minecraft Pocket Edition2 (version 0.10.5) as the
container of game server and employed an emulator called Genymotion3, which
emulates an Android client, to test the behavior of mobile clients. In addition,
to realize a rigorous verification, they installed FRep4 of Android application on
each emulator. The evaluation results show that for game services, the overhead
due to Docker increases as the number of servers increases.

Messaoudi et al. [13] evaluated the performance of Unity 3D, which is one of
the most popular game engines, in MEC environments. Their main question was
whether the computation of the game engine can be properly offloaded to edge
servers, and they considered this question by dividing the game engine into several
modules. The conclusion of the paper can be summarized as follows: 1) there is a
high correlation between CPU and GPU consumptions, and in many cases GPU
was the main cause of performance limitation; 2) the frame rates of device-friendly
games were generally higher than 60 fps; 3) some modules related to rendering were
mostly in standby mode, and the CPU consumption associated with those modules
was not significant; and 4) in many games, the rendering process accounted for
70% of the CPU load, but in a certain class of games with complex scripts, the
non-graphical components accounted for most of the CPU utilization.

Messaoudi proposed a game system called Offload 3D FPS [14] based on the
Unity 3D. A scene in the game system is a projection of dynamic foreground onto a
static background or a static layout, and it classifies game objects (GOs) processed
by the game engine into several types.Different types ofGOs are placed in the game
world and controlled by modules in different manners, so that the game player

2 MinecraftPocketEdition. http://www.pocketmine.net/.
3 Genymotion. https://www.genymotion.com.
4 FRep. http://strai.x0.com/frep/.
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explores the virtual world through interactions with them. Offload 3D FPS tries
to offload modules controlling GOs to meet the performance requirements.

Gaming Anywhere [6] is an open source cloud gaming platform developed by
a group in Taiwan. It runs on several platforms including Windows and macOS,
and can be easily customized by replacing several components with others. This
architecture has two basic flows called data flow and control flow. The data flow
is used to stream audio-video (A/V) frames from the server to clients, whereas
the control flow is used to send user actions from clients to the server. In this
system, every game selected by the users runs on the game server, and agents of
the users run along with the selected game on the same server. The agent can be
a standalone process or a module (in the form of a shared object or DLL) injected
into the selected game depending on the game type and implementation. Since
the server of Gaming Anywhere delivers encoded A/V frames using standard
RTSP and RTP protocols, clients can watch the game play by simply accessing
the corresponding URL using a standard VLC-enabled multimedia player.

A fog-based architecture proposed by Kannan et al. [7] uses Gaming Any-
where as the underlying platform. In this architecture, the game server is realized
as a Docker container, and is created from the source code of Gaming Anywhere
and other necessary packages and libraries, More specifically, after selecting the
target of task offload, it deploys the docker container created from a docker
image to the selected fog node. The deployed container acts as a dedicated game
server which contains necessary game resources such as video/audio encoders,
decoders, and realtime streaming capabilities.

Simiscuka et al. [16] proposed a social VR-IoT (Virtual Reality Internet of
Things) environment in which IoT devices are shared and controlled on a virtual
platform. This environment includes a synchronization scheme called VRITESS
(VR-IoT Environment Synchronization Scheme) which allows VR headsets to be
used to control real-world IoT objects. VRITESS updates real objects according
to instructions given in the virtual world, and vice versa. Results of experi-
ments show that the local network testbed exhibits lower latency than the cloud
testbed, and experiments conducted on communication protocols implemented
in the cloud testbed indicate that MQTT protocol has lower latency and less
data traffic than REST-based protocols.

3 Prototype System

3.1 Overview

In this section, we describe an overview of the prototype system which uses
Docker containers the virtual environment for executing physics operations, and
PhysX as the physics operation simulator. We also use glut to visualize the
results of physics operations, and WebSocketpp for the communication between
(virtual) machines.

The prototype system consists of one server application and one or more
client applications. See Fig. 1 for illustration. Each application is assigned a spe-
cific machine, where each client is not executed directly on the physical machine
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Fig. 1. Prototype system consisting of server and client applications.

but on a Docker container (this configuration is intended to allow for live migra-
tion of clients depending on the change of the load of physical machines). The
program is written as a console application in C++, and the server application
and the client application have the same structure as a program. Thus, when
the application starts on a machine, we need to select the execution mode, i.e.,
whether to run as a server or a client, in addition to the URI of WebSocket
connection. If it is invoked as a server application, it immediately builds the
PhysX Scene corresponding to the entire virtual space and starts the glut ren-
dering of the space, and if it is invoked as a client application, it transits to the
waiting state to accept requests from the server. It then builds the PhysX Scene
corresponding to an assigned subspace according to instructions received from
the server application.

3.2 Partitioning into Subspaces and Assigning to Clients

In the proposed method, a large-scale virtual space is divided into several sub-
spaces to reduce the machine load in physics simulation. In the following expla-
nation, the number of clients and the number of subspaces are both fixed to two,
and clients and subspaces are distinguished with name A or B. In the prototype
system, the server is responsible for the entire space, and each client is respon-
sible for each subspace. The partitioning of the whole space into subspaces is
realized by using the coordinates in the PhysX Scene, e.g., whether or not the
value of x-coordinate exceeds 0. It is also possible to change the boundary of the
partition according to the load of the clients.

A client conducts the processing of an assigned subspace, which means the
physics simulation of objects whose coordinates are contained in the subspace. In
order to properly conduct such a subspace processing, the server should designate
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Table 1. Network commands.

Command Data Explanation

Init None Initialization of PhysX Scene

Object O-data Update of PhysX Objects

Input Input keydata Process the input keydata

Return None Return O-data to the server

the information on the subspace in a rigid manner, and should send it to the
client in a reliable and timely manner. In other words, we should determine the
way of representing the subspace information and the way of transferring the
represented information. In the prototype system, we introduce a specific data
format called O-data (object data) for the former, and for the latter, we use
WebSocket to send network commands written as a text data (see Table 1
for illustration). In summary, the allocation (and updates) of a subspace to a
client is realized in the following two steps: 1) the server creates an O-data for
each subspace and packs it into a network command; and 2) the server sends
a created network command to each client through WebSocket. The result of
physics operations is collected to the server by returning another O-data to the
server from the client.

3.3 Distributed Simulation of the Virtual Space

After assigning a subspace to a client, a physics simulation using PhysX is actu-
ally conducted on each client, which is almost the same as when the entire space
is simulated on a single machine. The server, on the other hand, does not con-
duct such a physics simulation, but only maintains the position and angle of the
PhysX Objectin the entire virtual space (note that to generate the game view,
the rendering of the virtual space should also be conducted by glut, while it
could be turned off).

Before starting the physics simulation, each client receives O-data from the
server through network commands to reflect objects in the assigned subspace to
the scene. Since the O-data contains all objects which should exist in that scene
in a mixed manner, so that some objects in the O-data already exist in the scene
and others do not, we should conduct the matching of object IDs, in such a way
that if an object with the same ID already exists in the scene, the information
on the object should be updated with the O-data, and otherwise, we should add
a new object to the scene. Such an addition of objects can be done while running
the physics simulation. However, if the added object intersects with an existing
object, it would lead the physics simulation to a wrong result. Thus, to avoid
such an intersect, the prototype system takes an approach such that when a new
object is added to the scene, it is added at a position which is slightly higher
than the position designated in the O-data, which is based on an intuition such
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Fig. 2. Virtual space to be simulated.

Table 2. Specifications of machines.

Name CPU RAM GPU

Host Intel Core i3-7100 8 GB NA

Client A Intel Core i7-7700 16 GB GeForce GTX 1070 Ti

Client B Intel Core i7-7700K 16 GB GeForce GTX 1080

that objects being simulated are less likely to be in a high position due to the
effect of gravity.

4 Evaluation

4.1 Setup

To evaluate the performance of the proposed method, we conducted experiments
using the prototype system. In the experiments, we use one host machine and
two client machines, which are referred to as Host, Client A, and Client B,
respectively. The specifications of those machines are summarized in Table 2. In
the experiments, we conducted simulations of a virtual space (i.e., PhysX Scene)
illustrated in Fig. 2, which consists of two subspaces isolated by a big green wall
and several small walls enclosing a large number of PhysX Objects. When it is
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(a) Without GPU. (b) With GPU.

Fig. 3. Scatter plot of the execution time of physics simulation conducted on Client A.

(a) Without GPU. (b) With GPU.

Fig. 4. Average execution time of physics simulation conducted on Client A.
(Color figure online)

simulated with two clients, the subspace in front of the green wall is assigned
to Client A, the other subspace is assigned to Client B, and during the simu-
lation, one of enclosing walls in each subspace moves left and right to stir up
PhysX Objects inside, to intentionally cause collisions of objects so as to keep
the load for the physics simulation sufficiently high.

In the following, to clarify the effect of GPU and Docker virtualization in the
physics simulation, we also evaluate the performance without GPU and when
the application is directly executed on the target machine without Docker. In
addition, to clarify the effect of decentralization, we evaluate the performance on
a single machine, which is indicated as “local” in the figures of the experimental
results.

4.2 Effect of Decentralization for Reducing the Simulation Time

At first, we evaluate the effect of decentralization in terms of the reduction of the
simulation time. Figure 3 summarizes the distribution of the simulation time per
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Fig. 5. The number of frame updates per second (fps) observed by the host.

frame conducted by Client A for each number of objects, where we evaluated 150
frames for a fixed number of objects. The simulation time was measured with a
C++ library called chrono, and we did not conduct rendering since our objective
is to evaluate the performance of the physics simulation. For reference, this figure
includes the results without distributed processing (i.e., local) and with Docker
(i.e., docker). The difference between figures (a) and (b) is whether GPU is used
or not. From these results, it can be seen that the simulation time of most frames
is within the target time of 20 ms with the decentralization, while it is often not
within 20 ms when the simulation is conducted on a single machine (i.e., local).
Figure 4 shows the average simulation time for each number of objects. From
this figure, we can observe that the average simulation time increases almost in
proportion to the number of objects, indicating a reduction in the simulation
time due to decentralization and an increase in the simulation time due to the
use of Docker. In addition, we can find that the use of GPU certainly reduces
the average simulation time. Note that in this figure, the target time of 20 ms
(corresponding to 100 fps) is indicated by a horizontal blue dashed line.

To properly evaluate the effect of decentralization in a consecutive task such
as real-time physics simulation, it is not enough to look at the average simulation
time per frame, but it is also necessary to evaluate the number of frames to be
processed per fixed time including the time required for communicating with
the host; i.e., the throughput. To this end, we count the number of updates
per second, where the timing of update is when the reflection of O-data to the
host is completed. The results are shown in Fig. 5. This figure summarizes the
number of frame updates per second (fps) which are measured 60 times for a
fixed number of objects, where (a) shows the scatter plot of fps values and (b)
is the average fps value for each number of objects. From these figures, it can be
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(a) Time for reflection (b) Time for creation.

Fig. 6. Average processing time for O-data.

found that the fps value is more stable in the case with single machine than in
the case with distributed processing. In particular, in the distributed processing,
the variation of fps values increases with the increase in the number of objects.
The reason for this phenomena will be discussed later.

4.3 Overhead of Decentralization

Finally, to evaluate the overhead associated with the decentralization, we mea-
sured the time required for creating/reflecting O-data, respectively. The former
is the time required to create O-data on Client A, and the latter is the time
required to reflect O-data received from Client A on the host. Note that since
a half of objects are processed on Client A in our setup, the number of objects
to be reflected is half of the number of objects present on the host. The average
time for reflecting O-data is shown in Fig. 6(a), which includes the results with
Docker and GPU for comparison. In all cases, the time required to reflect O-data
is proportional to the number of objects; e.g., when there are 10000 objects, the
average time required to reflect O-data is about 12 ms.

Figure 6(b) shows the average time taken to create O-data on Client A. From
this figure, we can see that the creation time is the shortest when Docker is
used, followed by GPU without Docker. For example, the creation time for 8000
objects is about 13 ms when Docker is used, although it takes about 20 ms in
other cases, which equals to the time length for one frame. This indicates that
although the physics simulation itself becomes faster as the number of objects
allocated to the client decreases, our current implementation could not achieve
sufficient throughput due to the bottleneck of returning the simulation results
to the host, which is a reason of the badness of the proposed method illustrated
in the last subsection.
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5 Concluding Remarks

This paper proposes a distributed processing method for the physics simulation
of a large virtual space. By using PhysX as a physics simulator and Docker con-
tainers as a virtual machine environment, we realized a prototype system which
does not depend on specific platforms. As a result of experiments conducted
using the prototype system, it is confirmed that although the distributed pro-
cessing certainly reduces the load of the physics simulation, the aggregation of
the simulation results to the host becomes a bottleneck so that the host could
not maintain a sufficiently high frame rate such as 100 fps.

Our future work includes the optimization of the creation and reflection of
O-data, investigation of methods for dealing with cases in which the subspace is
not explicitly separated and objects come and go across boundaries, and auto-
matic scaling due to increases or decreases in the load. We plan to use orchestra-
tion tools such as Kubertenes for dynamic partitioning of tasks and migration
between physical computers.
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Abstract. Prompted by the remarkable progress in mobile communica-
tion technologies, more and more users are starting to execute their work-
flow applications on the mobile edge computing environment. Scheduling
multiple parallel workflows on a non-dedicated edge server is a great chal-
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an approach based on Deep Reinforcement Learning (DRL) to schedule
multiple workflows on an edge server with multiple heterogeneous CPUs
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1 Introduction
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cation has become an extensive data application, requiring large-scale infras-
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resources has become an urgent problem to be solved. Previous studies usu-
ally schedule the scientific workflow generated by the application to the cloud
computing platform with powerful computing resources [1]. However, the cloud
computing platform is too far away from users. It will increase communication
costs and energy consumption, obviously fatal to some applications requiring
low latency. Therefore, edge computing can solve this problem as a comple-
mentary computing platform between mobile devices and remote cloud. In this
distributed architecture, the large-scale services initially handled by the central
node are cut into smaller parts and distributed to the edge nodes closer to users
for processing, which significantly reduces the delay and energy consumption.
Existing studies usually focus on offloading single or multiple workflows on the
edge server [2], and there is little literature on multiple workflows scheduling on
the non-dedicated edge server. In this paper, we propose a multiple workflows
scheduling algorithm based on DRL to assign workflow tasks to appropriate
CPUs on the non-dedicated edge server to reduce the violation rate of service
level agreement of workflows and improve the QoS of the edge server. The con-
tributions of this paper are as follows:

– We investigate the scheduling problem of multiple workflows on the non-
dedicated edge server with multiple heterogeneous CPUs to minimize the
violation rate of service level agreement of workflows.

– We formulate the scheduling problem into a constrained optimization model
and propose a novel PRDDQN algorithm based on DRL to solve the problem.
The proposed PRDDQN utilizes a new sample storage structure to optimize
the sampling process.

– We evaluate the effectiveness of our approach by simulation experiments con-
ducted on real-world scientific workflows. The results show that, compared
with other alternatives, our approach has better performance.

The rest of this paper is organized as follows. The related works are sum-
marized in Sect. 2. Section 3 describes the models and problem formulation.
Section 4 describes the proposed PRDDQN algorithm in detail. The experimen-
tal results are presented in Sect. 5. Finally, and the conclusion is drawn in Sect. 6.

2 Related Work

As we all know, the workflow scheduling problem is an NP-hard problem [3], so
it is difficult to find an optimal solution for the problem. Typically there are two
kinds of methods to solve this problem: heuristic algorithm and meta-heuristic
algorithm. For heuristic algorithm, Yuan et al. [4] proposed a DBL algorithm
with deadline constraints. The algorithm divides the nodes of the same layer into
the same group from the bottom to the top based on the deep reverse layering of
nodes and then uses the reverse layering to transform the deadline of workflow
into the time interval of activity to optimize the cost locally. In addition, there
are many heuristic algorithms to optimize different objectives, such as accuracy,
reliability, etc [5–8]. For the meta-heuristic algorithm, Gao et al. [9] proposed a
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new Pareto-based multi-objective workflow scheduling algorithm HGAABC. It
combines the development capability in ABC [10] with the exploration capability
in GA [11] and maps each task to the instance series of the corresponding virtual
machine type according to the pay-per-use pricing model to reduce the cost of
the virtual machine and make-span of workflow. Rizvi et al. [12] proposed a
scheduling method HBDCWS, which minimizes the scheduling time and cost of
the workflow by allocating budget and deadline for workflow in advance. Unlike
these studies, we proposed an approach based on DRL to schedule multiple
workflows to minimize the violation rate of service level agreement of workflows.

Some literature has recently studied how to use machine learning algorithms
to schedule workflow applications in a cloud computing environment. Tong et al.
[13] proposed a new artificial intelligence algorithm - deep Q-learning schedul-
ing algorithm, which combines the advantages of Q-learning algorithm and deep
neural network, the target is to minimize the make-span of the workflow and
maximize load balancing. Dong et al. [14] developed an Actor-Critic algorithm
and designed a new P-Network model to predict the queuing order of tasks and
reduce the average execution time in the workflow. Wang et al. [15] proposed a
multi-agent DQN algorithm in which the optimized target cost and total execu-
tion time of the workflow are regarded as a Markov game between two agents,
the Nash equilibrium of two optimization objectives is obtained finally. Different
from these studies, we focus on the scheduling problem of multiple workflows on
non-dedicated edge severs.

3 Problem Modeling

3.1 System Model

Assuming there are many users in a particular area, and there is a base sta-
tion with a non-dedicated edge server in this geographic area. In this paper,
we consider a non-dedicated edge server with multiple heterogeneous proces-
sor resources represented by CPUS = {CPU1, CPU2, . . . , CPUl}. This non-
dedicated edge server includes a workflow scheduler. At different times, these
users can submit tasks associated with the workflow to the workflow scheduler by
cellular mobile network or WIFI. Next, workflows are sent to the proposed PRD-
DQN algorithm, which is used to find the optimal placement for each workflow
task. Finally, the results are collected and then returned to the corresponding
user. Figure 1 shows the proposed system architecture in this paper.

3.2 Workflow Model

We utilize WF = {wf1, wf2, . . . , wfm} to denote a system that is composed of
multiple scientific workflows. A scientific workflow which submitted by a user
can be represented as a Directed Acyclic Graph (DAG) G = (T,D), where
T = {tm,0, tm,1, ..., tm,n} is a set of different tasks of the workflow m represented
by vertices and D = {dm,i,j |tm,i, tm,j ∈ T} is a set of dependencies between
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Fig. 1. System architecture.

tasks tm,i and tm,j represented by directed edges. A dependency dm,i,j indicates
a constraint between tasks tm,i and tm,j , which means that task tm,j can start
to execute only after task tm,i completed its execution on the corresponding
CPU and transferred all data to task tm,j . Therefore, task tm,i can be called the
predecessor of task tm,j , and task tm,j is called the successor of task tm,i. A task
without any predecessor, we call it the entry task tentry. Similarly, we call the
task exit task texit which has no successor. For a task tm,i, it may have multiple
predecessors or successors, defined as pr(tm,i) and su(tm,i). We can think that
task tm,i is ready only when all the predecessors of task tm,i have been completed.
In addition, each edge dm,i,j has a weight, representing the data transferred from
task tm,i to task tm,j . However, its transmission time is too short, so that it can
be ignored in this paper. Each task tm,i has its length, also called workload,
which can be expressed as LDm,i. When each user submits a workflow, they
specify a deadline for the workflow to be represented as Deadlinem, and the
edge server must observe. Otherwise, it will cause the violation of the service
level agreement of workflow, which will reduce the QoS of the edge server.

3.3 Scheduling Model

The completion time of each workflow is called make-span, denoted by MSm.
Because texit is the last task in the workflow to be executed, make-span is equiv-
alent to the completion time of texit. MSm can be calculated as

MSm = CTm,texit,k (1)

where CTm,texit,k is the completion time of the last task in the workflow.
A task can only be scheduled to one CPU, and the CPU release its resources

until the completion of this task. When task tm,i is scheduled to the cpuk, its
run-time can be calculated as

RTm,i,k =
LDm,i

PPk
(2)

where PPk represents the processing performance of cpuk in terms of Million
Instruction Per Second (MIPS). The earliest start time of task tm,i can be cal-
culated as
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STm,i,k =

⎧
⎪⎪⎨

⎪⎪⎩

0, if tm,i = tentry

max( max
tm̂,q∈SC(k)

CTm̂,q,k, max
tm,p∈pr(tm,i)

CTm,p,k̂),

otherwise

(3)

where SC(k) represents a collection of all tasks scheduled on cpuk. CTm̂,q,k is
the completion time of task tm̂,q on cpuk and CTm,p,k̂ is the completion time
of the direct precursor task of task tm,i. Therefore, the completion time of task
tm,i CTm,i,k can be calculated as

CTm,i,k = STm,i,k + RTm,i,k (4)

Our target is to schedule multiple workflows to appropriate CPUs to minimize
the violation rate of service level agreement of workflows. That is to say, make
every workflow complete before its deadline as much as possible. Therefore, the
scheduling problem can be formulated as

Minimize V SLA =
∑

m∈WF

Vm

SIZE(WF ) (5)

Subject to

SIZE(CPU)∑

k=1

SIZE(TQ)∑

s=1

xm,i,s,k = 1

∀m ∈ WF,∀i ∈ Tm

(6)

SIZE(WF )∑

m=1

SIZE(Tm)∑

i=1

xm,i,s,k = 1

∀k ∈ CPU,∀s ∈ TQ

(7)

STm,i,k ≥ max
tm,p∈pr(tm,i)

STm,p,k̂ + RTm,p,k̂ (8)

STm,i,k + RTm,i,k ≤ min
tm,q∈su(tm,i)

STm,q,k̂ (9)

xm,i,s,k ∈ {0, 1} (10)

Constraints (10) define the value ranges of decision variables xm,i,s,k, where
xm,i,s,k represents whether the ith task of workflow m is assigned to the sth
location in waiting queue of CPUk. Tm represents the set of all tasks of workflow
m, CPU represents the set of processors, WF represents the workflow set to be
scheduled, and TQ represents the queue of the task queue. The constraint (6)
ensures that each task can only appear in the task queue once. The constraint (7)
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ensures that each position in the task queue can only be occupied by one task.
Constraints (8) and (9) are constraints on the dependencies between tasks in the
workflow. In (5), V SLA represents the violation rate of service level agreements
for all scheduled workflows, Vm represents whether the workflow m violates the
service level agreement, and the value of Vm can be calculated in the following
way: when the total execution time of wfm exceeds the Deadlinem, Vm is 1;
otherwise, Vm is 0.

4 The Prioritized Replay Double DQN Algorithm

Multiple workflows scheduling problem is an NP-hard problem, so we propose an
algorithm PRDDQN based on DRL to find the approximate optimal solution.

4.1 Algorithm Theory

The parameter updating method of neural network of traditional DQN algorithm
may lead to an overestimation problem in which Q-value is super significant.
Therefore, we introduce another neural network to eliminate the influence of
some maximum errors.

Q(St, At) ← Rt+1 + γQ(St+1,max
a

Q(St+1, a;ω), ω−) (11)

In addition, the PRDDQN algorithm uses an experience replay mechanism. In
the process of interaction between the agent and environment, the data obtained
by the agent will be put into replay memory. When the parameters of the neural
network need to be updated, mini-batch sampling data will be taken from replay
memory to train the neural network. Similar to the PRDDQN algorithm, the
DQN algorithm also uses an experience replay mechanism, but its sampling
method is random sampling. It has an apparent defect: some random samples
have little effect on the training of the neural network; therefore, there is no
need to extract such samples. In order to solve this shortcoming, the proposed
PRDDQN algorithm uses a new storage structure called sumtree, which is a
binary tree structure. Each leaf node of sumtree stores the priority P of each
sample, and each non-leaf node has only two branches. The value of this node
is the sum of the two branches, so the top node of sumtree is the sum of all P
of leaf nodes. When sampling, we divide the sum of P at the top node by the
number of samples to be sampled into several intervals and then randomly select
a number in each interval. According to the number, we find the sample for this
sampling. Through sumtree, the PRDDQN algorithm can sample the data that
are really worth learning.

4.2 Algorithm Framework

The pseudo-code of the PRDDQN algorithm is presented in Algorithm 1. The
main steps of the algorithm are as follows: firstly, initializing the variables and
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Algorithm 1: Framework of PRDDQN algorithm
Input: budget T , mini-batch m, decay factor γ, exploration rate ε, replay

interval I and replay capacity N , exponents α and β, the number of leaf
nodes of sumtree R, Q target network parameter update frequency C

Output: scheduling scheme A
1 Initialize action-value function Q with random weights ω, initialize target

action-value function Q̂ with random weights ω− = ω;
2 Initialize structure of sumtree, initialize the priority Pj of R leaf nodes of

sumtree is 1;
3 Initialize the agent and environment, including workflows and CPUs;
4 for t=1 to T do
5 The agent observes current state St, obtains its eigenvector φt;
6 With probability ε select a random action at, otherwise select

at = arg max
a

Q(φ(St), a; ω);

7 The agent take action at and get reward rt according to (12) and get
whether it is in the termination state finalt;

8 St=St+1;
9 Store transition (φt, at, rt, γt, finalt, φt+1) in sumtree with maximal

priority Pt = max
i<t

Pi;

10 if t mod I=0 then
11 for j=1 to m do
12 Take samples (φj , aj , rj , γj , finalj , φj+1) from sumtree based on

probability P (j) =
P α

j∑
i P α

j
;

13 Compute importance-sampling weight ωj = (N × P (j))−β ÷ max
i

ωi;

14 Set yj =

⎧
⎪⎪⎨

⎪⎪⎩

rj , if finalj = true

rj + γj ∗ Q(φj , arg max
a

′
Q(φj , a; ω), ω−)

if finalj = false

;

15 Perform a gradient descent step on 1
m

∑m
j=1 ωj(yj − Q(φj , aj ; ω))2

with respect to the network parameters ω;
16 Compute TD-error δj = yj − Q(φj , aj ; ω);
17 Update transition priorityPj = |δj |;
18 end

19 Every C steps reset Q̂ = Q

20 end
21 if all the tasks have been scheduled then
22 break;
23 else
24 Return to step (6)
25 end

26 end

27 end
28 Return the collection of actions A;
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the experience replay memory sumtree. Then the sample is sampled from replay
memory according to the sampling probability. The TD-error of all samples
is updated by calculating the target Q value and the loss function. Finally,
after reaching a certain number of training times, the Q network parameters
are synchronized to the target Q network. In summary, the most significant
difference between PRDDQN and the traditional DQN algorithm is to add a
priority to the stored samples. The larger the priority value of the sample, the
more climbing space for improvement of the prediction accuracy of the sample,
which means the more the sample needs to be learned. At the same time, the
parameter update method of the Q target network is improved to reduce the
error caused by the overestimation of the Q-value.

5 Experiments, Results and Discussion

This section introduces the experimental settings and then evaluates our pro-
posed algorithm compared with several representative algorithms. Finally, the
experimental results are analyzed and discussed.

5.1 Experiments Setup

In order to verify the effectiveness of our approach, we build a simulation plat-
form to simulate the non-dedicated edge server environment. The edge server is
equipped with seven heterogeneous CPUs, as shown in Table 1. The platform is
developed in Python 2.0 language and compiled with Python compiler Pycharm.
In our experiments, we utilized five types of workflows from the Pegasus project.

Table 1. Processing performance of CPUs

CPU Processing performance (MIPS)

CPU 1 5.66

CPU 2 8

CPU 3 1

CPU 4 2.83

CPU 5 2.45

CPU 6 4

CPU 7 0.07

The performance of the proposed PRDDQN algorithm is compared to that
of a HBDCWS algorithm proposed in [12], a DBL algorithm proposed in [4] and
a DQN algorithm proposed in [15]. DQN algorithm and PRDDQN algorithm
are both DRL-based algorithms, so their neural networks need to be trained.
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This paper uses a three-layer, fully connected neural network structure to con-
struct the estimated Q value network and the target Q value network. The input
is a vector that length is 8. The size of the network hidden layer is 20 and 7,
respectively. The former layer uses the Relu activation function, and the latter
layer uses the linear activation function. The reward function is set as follows:

r = 1 − Vi − Vb

Vw − Vb
(12)

where Vb is the number of workflows violating the service level agreement
obtained by scheduling all workflows to the CPU with the best performance, and
Vw is the number of workflows violating the service level agreement obtained by
scheduling all workflows to the CPU with the worst performance.

5.2 Results and Discussion

Firstly, we analyze the effect of the new storage structure used by the PRDDQN
algorithm during the neural network training. In this experiment, the number
of tasks for Cybershake workflow, Sipht workflow, Inspiral workflow, Montage
workflow, and Epigenomics workflow is set to 30, 29, 30, 25, and 24. The rewards
obtained by the DQN algorithm and PRDDQN algorithm after the training are
expressed in Fig. 2.
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As seen in Fig. 2, after more than 500 steps of training, the reward value of
both algorithms finally stabilized to about 110, but the reward value curve of
the DQN algorithm fluctuated wildly and could not converge stably until the
end. In the beginning, the reward value obtained by the PRDDQN algorithm
was relatively small, but it has increased significantly after training to about
40 steps, which indicates that the PRDDQN algorithm has been adjusting the
priority of samples through training in the early step. The priority of samples
has almost been adjusted in about 40 steps, and then only accurate, valuable
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data are extracted during sampling, so the reward obtained will be significantly
improved; the DQN algorithm always adopts the method of random sampling,
which is disturbed by useless sampling data, so it fluctuates wildly. In a word, the
PRDDQN algorithm gets rewards faster and more stable. The curve of service
level agreement violation rate of workflows based on PRDDQN is shown in Fig. 3.

Next, we compare the CPU utilization of four algorithms under five types of
workflows with 138 tasks. The Gantt chart of scheduling results are displayed in
Fig. 4.
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Fig. 4. Gantt chart of four scheduling algorithms.

From Fig. 4, we can see that the tasks scheduled by the DBL algorithm and
HBDCWS algorithm are relatively scattered, and almost every CPU has a long
idle time. Although the tasks scheduled by the DQN algorithm are relatively
centralized, CPUs still have a long idle time. In contrast, the tasks scheduled by
the PRDDQN algorithm are not only concentrated but also almost have no idle
time once CPUs start running, which significantly increases the utilization of
CPU resources. Moreover, compared with HBDCWS and DBL algorithms, the
DQN algorithm and PRDDQN algorithm will no longer schedule tasks on CPU
7 after training for specific steps; this is because the processing performance of
CPU 7 is relatively poor. Once a task is scheduled to this CPU, the waiting time
of other tasks will increase significantly, which will affect the overall scheduling
time; it can be verified by the scheduling time of DBL and HBDCWS algorithms.

Finally, we compare the violation rate of service level agreement of four algo-
rithms under the different scales of workflows. In this experiment, five workflows
have four sizes: 138, 497, 995, and 2069 tasks. Figure 5 shows the comparison of
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Fig. 5. The violation rate of service level agreement under different scale of workflows.

the violation rate of the service level agreement of four scheduling algorithms
with the different number of tasks.

It can be seen that with the increase of the number of tasks, the violation
rates of the four algorithms are increasing. When the number of tasks is small,
there is little difference in the violation rates of the four algorithms. However,
when the number of tasks gradually increases, the violation rates of the DBL
algorithm and HBDCWS algorithm increase sharply, while the violation rates
of the DQN algorithm and PRDDQN algorithm are also increasing, but they
are far less than the other two algorithms. Especially when the number of tasks
is 2069, the violation rate of the PRDDQN algorithm is only half of that of
the DBL algorithm. The DQN algorithm has too many samples in the replay
memory, so the training effect is not good, increasing the violation rate. However,
due to the size limitation of the experience replay memory, its violation rate will
not increase too much. The PRDDQN algorithm can select functional samples
for training, so with the increase of the number of tasks, the violation rate of
the PRDDQN algorithm will not increase significantly; it also shows that our
algorithm has better performance in reducing the violation rate of workflows.

6 Conclusion

In this paper, we propose a DRL algorithm PRDDQN to solve multiple work-
flows scheduling problems. Because the research target of this paper is only the
violation rate of service level agreement of workflows, we intend not to be lim-
ited to single objective scheduling in future research and consider other factors
to improve the QoS of the non-dedicated edge server such as security of work-
flows. Moreover, policy iteration based methods such as DDPG or A3C will also
be considered to solve the multiple workflows scheduling problems.
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Abstract. Driven in part of the rapid growth of consortium blockchain
applications, blockchain interoperability becomes extremely essential to
exchange transactional data among decentralized applications. To ensure
the data integrity of transactions, the state-of-the-art studies of the
blockchain interoperability apply data locks, which however severely
decrease system efficiency. To boost interoperability performance, this
paper proposes a novel approach based on multi-version concurrency
control to parallelize interoperable transactions, which aims high transac-
tion processing throughput while ensuring data integrity. The experimen-
tal evaluation with the Smallbank benchmark shows that the proposed
method achieves up to 4x performance increase (in terms of processed
transactions per second, TPS) compared with the existing methods, and
moreover, it decreases the average latency with 58%.

Keywords: Blockchain interoperability · MVCC · Data parallel ·
Transaction integrity

1 Introduction

With the advent of Bitcoin [1], blockchain technology has been used in many
fields such as finance [20], health [11], supply chain [18], and government
affairs [21] due to its features of decentralization, immutability, and traceability
for building low cost and high security trust among multiparties [12]. Consor-
tium blockchains (e.g., Hyperledger Fabric [10]), superior in performance and
consortium management, are widely applied as the underlying platforms for var-
ious decentralized applications. The development of consortium blockchains calls
for the demand of transaction exchanges among the decentralized applications,
which is the blockchain interoperability [6,22,23,25].

Many studies have been proposed on the realization of blockchain interoper-
ability, such as Notary [22], Sidechains/Relays [23,24], and Hash-locking [25,26].
The focus of these methods is mainly on how to build trust between blockchains.
Besides, based on the solutions above, data locks are usually applied to ensure the
data integrity of blockchain interoperability [8,9]. Since consortium blockchain
c© Springer Nature Switzerland AG 2022
H. Shen et al. (Eds.): PDCAT 2021, LNCS 13148, pp. 273–285, 2022.
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systems do not directly provide locking interfaces, data locks are implemented
with smart contracts, called contract locks. One flaw of contract locks is that users
need to ensure the data integrity of blockchain interoperability by themselves [8,9].
Interoperable parties need to lock transactional data according to a consistent
paradigm, which is agreed by all smart contracts. Otherwise, other transactions
can access these data directly by their paradigm on another contract, failing the
lock. Additionally, since contract locks are entirely implemented by users, the data
integrity of the interoperability would be easily destroyed by a single mistake.
Therefore, the traditional methods are challenged, which cannot guarantee data
integrity via the system automatically but relying on the manual control of users.

Another challenge of contract locks is the performance. Due to the blocks of
read and write caused by data locks, this kind of the methods severely decreases
interoperability performance [30]. Unlike the performance of blockchains having
received much attention [13–17], few are on boosting the interoperability per-
formance. Thus transaction exchanges among blockchain applications are essen-
tial in practice. Boosting the interoperability performance while ensuring data
integrity has therefore become a critical issue.

To tackle these challenges, we propose an approach based on Multi-Version
Concurrency Control (MVCC) [27], which is a lockless scheme that aims to
reduce read and write blocks. Our MVCC-based approach parallelizes the inter-
operability of consortium blockchain while ensuring data integrity through the
system automatically. In summary, this paper has the following contribution:

1. To propose a novel MVCC approach for interoperability. In order to ensure
transaction integrity and parallel interoperability, we optimize the underly-
ing storage, reconstruct the PutState and GetState methods of consortium
blockchains, and introduce the corresponding interoperable transaction inter-
faces.

2. To implement the proposed approach on Hyperledger Fabric and present
transaction integrity analysis to prove its effectiveness.

3. To provide experimental evaluation that shows that the proposed method
achieves up to 4x performance increase compared with the existing methods,
and moreover, it decreases the average latency with 58%.

2 Background

2.1 Hyperledger Fabric

Hyperledger Fabric (HLF) [10], an open-source project under the Linux Founda-
tion, is an enterprise-level consortium blockchain platform. A shared, distributed
state called world state, is updated constantly through the submission of trans-
actions on HLF. The world state is maintained as a versioned key-value store on
HLF currently supports LevelDB [3] and CouchDB [4]. A transaction containing
multiple operations defined in a smart contract(chaincode in Fabric) will be con-
sidered a successful submission after execution and validation. In the validation
phase, one node compares the version of each key-value read in the execution
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phase with the version in the current world state, and then judges whether
it is consistent. If they are all consistent, each key updated by the transaction
would be synchronized to the world state and can be read by other transactions.
Otherwise, the transaction fails, and the changes would not be applied. The dis-
tributed ledger maintains the complete history of all the transactions (successful
and failed) in the network, which are grouped into blocks.

Fig. 1. The interoperable transaction processing

Through the mechanism above, the data integrity of a single blockchain trans-
action can be guaranteed because all changes are simultaneously submitted. How-
ever, in the interoperability scenario, an interoperable transaction is composed of
multiple transactions spanning blocks on the two related blockchains as shown in
Fig. 1. Temporary data submitted earlier may be accessed by other transactions
without data locks, leading to the destruction of transaction integrity.

2.2 Related Work

The research studies on blockchain interoperability can be categorized
into Notary, Sidechains/Relays, and Hash-locking [6,22–26]. The notary
scheme [22] uses a centralized organization to replace the technical trust guar-
antee, that is, by selecting a trusted third party as an intermediary. Differently,
sidechains/relays do not rely on third parties to verify the correctness of the
transactions [23,24]. Instead, one blockchain reads and verifies data from another
by itself. Hash-locking [25,26], which is limited to asset swap scenarios, is based
on smart contracts. The atomicity of transactions is ensured by cleverly combin-
ing time locks and hash locks. These studies only consider building trust between
blockchains but overlook the data integrity of blockchain interoperability.

Based on the solutions above, contract locks [8,9], implementing data locks on
smart contracts, are usually applied to guarantee the data integrity of blockchain
interoperability. However, this kind of guarantee relies on the manual control of
users. Additionally, the read-write blocking caused by data locks greatly reduces
performance.

Multi-Version Concurrency Control (MVCC) [27] is also relevant to this
work. It is a concurrency control scheme that can be implemented without
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locks [28,30,33]. MVCC aims to solve the starvation of reading and writing
operations caused by read-write locks. It is used in some of the most widely
deployed disk-oriented DBMSs today, including Oracle (since 1984 [5]), Postgres
(since 1985 [7]), and MySQL InnoDB engine (since 2001). In MVCC, each item
of data retains multiple version copies. And each transaction can see a snap-
shot of the database to operate on its visible data version at a specific moment.
Other transactions cannot see any changes in the transaction before the trans-
action is completed. HLF has adopted MVCC, providing the latest version of
the world state comparison, but it only takes effect in a single blockchain sce-
nario. In other words, a transaction can read the latest version of a state, even if
the interoperable transaction to update it has not yet been submitted, thereby
destroying the integrity.

3 Problem Statement

Our problem is defined over two blockchains, BlockchainA and BlockchainB .
Table 1 lists the notations used throughout the paper.

Table 1. The summary of notations

Notation Definition

ti Block submission time, having ti > tj if i > j

ki A state key
vj The transaction state version, vj is a newer version than vj−1

tsid Transaction serial ID
tn The transaction that updates the current state, n is its tsid

ski
vj ,tn The leaf node of MVM-DAG

MVM-DAG The Multi-Version Merkle Directed Acyclic Graph we proposed
active list The active transaction list while the snapshot is generated
WS The write set of transaction
Pw The probability of write operations

Definition 1 (Cross-chain Transaction). A complete interoperable transac-
tion on one blockchain side is denoted by a cross-chain transaction.

A cross-chain transaction is composed of multiple sub-transactions to inter-
act with the other blockchain. The following transaction operation interfaces
need to be implemented:

– BeginTx starts a cross-chain transaction on one blockchain.
– ContinueTx continues the cross-chain transaction after the execution of the

other blockchain.
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– CommitTx commits all operations of a cross-chain transaction.
– RollbackTx rolls back all operations of the cross-chain transaction.

As shown in Fig. 1, blockchain submits only the validated transactions in a
block at ti while applying operations to world state. Thus, for a cross-chain
transaction that operates across blocks, the temporary data generated by the sub-
transactions before the final submission should be invisible to other transactions.
Otherwise the integrity would be destroyed as shown in Example 1.

Example 1. In an interoperable transaction, the account on blockchain A first
deducts the transfer amount, and then blockchain B should increase the corre-
sponding account balance. If the execution on B fails, the A system must roll
back. At the same time, there is another contract on A to grant a subsidy based
on the account balance. The contract is executed after A deducts the money, and
the corresponding account receives the subsidy. Then A rolls back that account
due to the transaction execution failure on the B system. Thus, the account can
obtain subsidies through system loopholes.

It is the dirty read on invisible temporal data that cause the problem in
Example 1. Contract locks tackle that by blocking invisible versions of data via
data locks. However, it also decreases the efficiency as Example 2.

Fig. 2. A read-write blocking case

Example 2. Figure 2 illustrates two cross-chain transactions on an identical
blockchain. Tx1 writes(puts) the state of kB(KeyB) first, and reads(gets) the
state of kA(KeyA). Then Tx2 writes the state of kA. Meanwhile, related trans-
actions involving kA(kB) include Txi, ..., Txj(Txm, ..., Txn).
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In the contract lock scheme, Tx1 cannot read the state of kA until t3 because
Tx2 holds a lock on kA in advance. Finally, Tx1 completes the read of kA after
Tx2 is submitted, submits at t5. Since Tx1 writes kB and holds a lock on it,
Txm, ..., Txn, can all be blocked due to the inability to access kB . Moreover,
Txm, ..., Txn can block more transactions shortly afterward, dragging down
overall performance. On the contrary, in MVCC, Tx1 can read the state of kA
without blocking. Therefore, it would not block other data-related transactions.

We aim to find a MVCC approach for the blockchain interoperability satis-
fying: (1) integrity ensured: each transaction obtains its visible version and
blocks the invisible version; (2) data locks removed: to achieve good perfor-
mance via reducing read-write blocking caused by data locks.

4 Multi-version Merkle Directed Acyclic Graph

The original MVCC on HLF only supports the latest version match while not
making full use of the historical data of the blockchain, as discussed in Sect. 2.
That inspired us to utilize these data to realize the traceability of the state ver-
sions. Thus, we transform the Merkle Tree into a Multi-Version Merkle Directed
Acyclic Graph (MVM-DAG) to store and trace these versions of data.

Fig. 3. Multi-Version Merkle Directed Acyclic Graph, MVM-DAG

Figure 3 is a MVM-DAG example. Each block in the blockchain contains
a Merkle tree keeping the historical state data. Each leaf has a pointer to its
previous state to effectively support state traceability. The leaf can be expressed
as ski

vj ,tn = {value, point(ski
vj−1,tm

)}.
A transaction can access its visible versions of states according to tsid via the

structure proposed above. Thus, the system effectively avoids the accumulation
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of reading requests caused by write locks. Since it is hard to keep a uniform
transaction number between blockchains, the ID of a cross-chain transaction is
determined by its first transaction on a chain. For example, tx2 is a cross-chain
transaction with tsid t2 determined by BeginTx. During its execution, k1 is
updated to v2 and v3, which are temporary data until the block n is submitted.
Note that they are not visible or accessible to other transactions.

5 Algorithms

We implement MVCC to parallelize interoperability by MVM-DAG. We re-
implement the PutState and GetState for HLF, making each transaction oper-
ates on its visible versions of states, blocking invisible ones. Further, we provide
cross-chain transactions with specific operation interfaces.

5.1 Operations on States

Each transaction, in the beginning, generates a snapshot, which is used for
subsequent version matching of its operating state. Such snapshot includes tsid
of the transaction, active list, and the write set (WS), which supports rollback.
Accordingly, we re-implement PutState and GetState as Algorithm 1.

Algorithm 1. Operations on States

1: procedure GetState(TC, k) � TC, Transaction Context
2: RV ← TC.Get(“snapshot”) � k, key of state s
3: if s.version > RV.active list.max id then � max id, the max tsid
4: while s.version > RV.active list.max id do
5: s ← s.roll ptr
6: end while
7: end if
8: if s.version < RV.active list.min id then
9: return s.value

10: end if
11: if s.version = RV.ts id then
12: return s.value
13: end if
14: if s.version ∈ RV.active list.tx list then
15: return s.roll ptr.value
16: else return s.value
17: end if
18: end procedure
19: procedure PutState(SD, TC, k, v, WS) � SD, State Database
20: s ← SD.Get(k) � WS, Write Set
21: new s ← state{} � new s, the new state to be written
22: RV ← TC.Get(“snapshot”)
23: new s.version ← RV.tsid
24: new s.value ← v
25: new s.rollptr ← s
26: WS.Append(new s)
27: end procedure
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GetState is to return the visible state version to the caller transaction. As Algo-
rithm 1, we get the state s with its latest version from the world state. If
s.version > active list.max id, it means that other transactions have updated
this state after snapshot generation. This version should be invisible for the caller
transaction. Execute the same process to judge its previous version via pointer
roll ptr until s.version <= active list.max id. Next, supposing s.version <
active list.min id, it indicates that the transaction updating this state has been
submitted. Thus, this version state is visible and can be returned. Then, if
s.version = RV.tsid, the transaction updating this state is the caller itself.
This version state is visible and can be returned. Last, if s.version is in
active list.tx list, it means that the transaction updating this state has not
been committed. This version state is invisible. Execute the same process to
judge its previous version via pointer roll ptr. Otherwise, s.version is not in
active list.tx list, it turns out the transaction updating this state is committed.
This version state is visible and can be returned.

PutState is to put a new version state to the world state while the state
is writable. As Algorithm 1, we get state s with its latest version from the
world state. If the state does not exist, create a new state object directly,
including the updated value and version. If the state exists, judge whether
the transaction updating this state has been committed as GetState does. The
state cannot be updated if that transaction has not been committed. If not, a
new state object is created, including the updated value and a pointer roll ptr
to the current state object, and the state is updated.

5.2 Interoperable Transaction Operation Interfaces

Algorithm 2. Interoperable Transaction Operation Interfaces

1: procedure BeginTx(AL, TSN, TC) � AL, Active tx List
2: tsid ← GenerateTsid(TSN) � TSN Transaction Serial Number
3: AL.tx list.Append(tsid) � TC, Transaction Context
4: RVtsid ← Createsnapshot(AL, tsid)
5: TC.Put(“snapshot”, RV )
6: end procedure
7: procedure ContinueTx(tid, TC) � tid, tsid of the previous phase
8: tsid ← GetCCTxid(tid)
9: RV ← GetRV Byid(tsid)

10: TC.Put(“snapshot”, RV )
11: end procedure
12: procedure CommitTx(tid)
13: tsid ← GetCCTxid(tid)
14: AL.tx list.Remove(tsid)
15: end procedure
16: procedure RollbackTx(tid)
17: tsid ← GetCCTxid(tid)
18: RV ← GetRV Byid(tsid)
19: WS ← [] � WS, Write Set
20: for s ∈ RV.write set do
21: while s.version == RV.tsid do
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22: s ← s.roll ptr
23: end while
24: new s ← state{value : s.value, roll ptr : s, version : RV.tsid}
25: WS.Append(new s)
26: end for
27: return WS
28: end procedure

For a cross-chain transaction, the specific operation interfaces of each stage
are as Algorithm 2. BeginTx generates the tsid and adds it to the list of cur-
rently active transactions, according to the block and location of the transac-
tion. Then it generates a snapshot and stores it in the transaction context.
ContinueTx inherits the tsid and snapshot of the cross-chain transaction, con-
tinuing the remaining operations. CommitTx inherits the tsid and snapshot of
the cross-chain transaction, commits all updated states, and removes the trans-
action from the active transaction list of the system. RollbackTx inherits the
tsid and snapshot of the cross-chain transaction, rolls back all updated states.
The specific operation is to read the write set from the snapshot, obtain all
versions of states before being changed by the cross-chain transaction, update
states using the previous versions, and remove it from the active transaction list.

6 Evaluation

Setup: We implemented the approach on two independent blockchains. Each
includes two organizations and three ordering nodes, and each organization
includes two nodes. All nodes are built on the configuration in Table 2. Since
the approach only focuses on the effectiveness and performance of interoperabil-
ity, the experiments are on the Notary, skipping the identity verification step.

Table 2. Experiment environment

Configuration

Operating system Ubuntu 16.04 LTS
Platform HLF 2.2
CPU Intel(R) Xeon(R) CPU E5-2630v4 @ 2.20 GHz
Memory 24G
Network bandwidth 1 Gbit/s
Consensus Raft

SmallBank [32] is used as the experimental data that simulates a typical asset
transfer scenario. The data set provides six types of transactions for manipulat-
ing these data, including five updates and one query. In one run, we repeatedly
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Table 3. Isolation of concurrency control methods

Methods Dirty read Fuzzy read Phantom read

Write lock V V V
Read check � V V
Read-write lock � � V
MVCC � � �

trigger these six types of transactions randomly. One of the five update trans-
actions is selected with the probability Pw, and the read-only transaction is
selected with 1−Pw. In each transaction, the account to be accessed is selected
according to the Zipfian distribution. The value of s determines the skewness of
accounts access, the conflict probability of transactions. The accessing is evenly
distributed when s = 0.

Based on the experimental data of SmallBank, this experiment compares the
contract locks and MVCC scheme. We provide several implementation schemes
for contract locks, including Write Lock, Read Check, and Read-Write Lock
for the integrity analysis.

Integrity Analysis: Ensuring the transaction integrity is to ensure the
atomicity, consistency, isolation, and durability (ACID) characteristic of the
transaction [31].

– atomicity: All methods in Table 3 can ensure that the data updated during
the transaction execution is locked. After the execution, the blockchain system
decides to commit the update or roll back the data state. Therefore, they all
can ensure the atomicity of the transaction.

– consistency: The blockchain system can ensure data consistency after the
transaction execution. First, a transaction would not be tampered with once
submitted, so the content is consistent. At the same time, by comparing the
Merkle root, which is stored in the header of each block, it can be ensured
that the database state after each node executes the block is consistent.

– isolation: Transaction isolation mainly refers to solving several data reading
problems, including dirty read, unrepeatable read, and phantom read. Table 3
lists the ability above of the MVCC and several data lock methods. The
method we proposed can deal with all the problems above.

– durability: The blockchain system can ensure that the data can not be tam-
pered with once it is submitted. At the same time, in the case of accidental
data loss, it also provides disaster recovery capabilities.
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Findings: We implement a read-write lock as a contract lock at the chaincode
layer of HLF. A lock check must be performed once data is read or written. We
evaluate the interoperability performance using SmallBank. Figures 4 and 5 show
the changes in transaction throughput and latency, respectively, under different
Pw and s.

Fig. 4. Transaction throughput of MVCC and contract lock methods

The value of s determines the conflict probability of transactions. As s
rises, resource competition intensifies, leading to more conflicts, and transaction
throughput drops rapidly. Pw determines the number of read-only transactions.

In the Pw = 5%, Pw = 50%, and Pw = 95% three cases, MVCC performs
better than Contract Lock. In MVCC, read operations would not block write
operations because of no data locks. Thus, the optimization of MVCC is mainly
in the read operation. So, when Pw =5%, the performance is equivalent. However,
when Pw =50% and s > 0.4, the throughput can reach 1.5x Contract Lock.
Additionally, when Pw =95%, the performance improvement is significant. When
s > 0.6, the throughput can reach 4x, and the delay is 42% of the other one.

Fig. 5. Transaction latency of MVCC and contract lock methods
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7 Conclusion

This paper overviewed the challenges of contract locks for data integrity and per-
formance. To solve the issues of the existing methods, we proposed a MVCC app-
roach for blockchain interoperability and implemented it on HLF. Experiments
with data integrity analysis demonstrated the effectiveness and efficiency of the
proposed approach. The findings show that the proposed approach achieved up to
4x performance increase compared with the existing methods, and decreased the
average latency with 58%.
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Abstract. As blockchain is widely applied, various decentralized appli-
cations would inevitably encounter data migration problems, for reasons,
such as the multilevel blockchain scenarios, the exhaustion of blockchain
disk space and the swap of the rapidly evolving blockchain engines. In
order to proceed the applications smoothly, it is necessary to migrate
original blockchain data to a new blockchain instance, which is the
cross-blockchain data migration. However, ensuring the reliability of data
provenance and the data consistency, and balancing migration efficiency
and historical state granularity, introduce unique challenges over cross-
blockchain data migration. This paper proposes an effective and reliable
cross-blockchain data migration approach to coping with these chal-
lenges. To ensure the reliability, a collective mechanism of controlling,
executing and storing procedures is proposed to assort migration trans-
actions between blockchains. Furthermore, we propose two migration
schemes in order to adapt decentralized application scenarios. Exten-
sive experiments are conducted to demonstrate the effectiveness of the
proposed approach.

Keywords: Blockchain · Data migration · Cross-blockchain ·
Distributed transactions · Decentralized applications

1 Introduction

Since 2008, the Blockchain technology introduced by Satoshi Nakamoto in “Bit-
coin: A Peer-to-Peer Electronic Cash System” [1] has been paid enormous atten-
tion due to the growing demands of decentralized applications for trust pur-
pose. The emergence of Ethereum [2] enables blockchain applicable in wide
fields because of the leverage of smart contract. Meanwhile, a line of blockchain
engines and platforms are proposed in order to satisfy particular features. With
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the fast development of blockchain, we have witnessed the technology being
broadly used in the applications of product tracing, privacy protection, supply
chain, finance, health, and decentralized file storage [3,4]. The increasing volume
of blockchain-based applications shows that people are recently keen to set up
blockchain systems, which presents a underlying requirement of cross-blockchain
data migration due to the limitation of blockchain data storage, the scenarios
of multi-level blockchains, and the swap need of the rapidly evolving blockchain
engines [5].

With the changes in technology, policy and market circumstances, blockchain
applications have encountered a series of new problems. For instance, the dis-
tributed consistent storage of blockchain raises huge consumption of space and
blockchain services suffer considerable pressure from the unprecedented growth
of decentralized transactions [6]. On the other hand, to ensure the competi-
tiveness and safety of blockchain-based applications, we often need to replace
underlying blockchain engines to adapt new application requirements, e.g., the
latest version of Hyperledger Fabric. Hereby, cross-blockchain data migration is
necessary to copy the data from the original blockchain to a new instance. How-
ever, how to ensure the reliability, data consistency while realizing the efficiency
of the migration remains challenging to the traditional data migration methods
in centralized systems [7].

Thus, the paper proposes an effective and reliable cross-blockchain data
migration approach. A collective mechanism of contrailing, executing and storing
procedures is proposed with the following three procedures to assort the migra-
tion transactions. In general, a controlling procedure provides services for cross-
blockchain data migration including registration of blockchain that requires data
migration. An executing procedure provides solo and aggregate migration meth-
ods in the process of cross-blockchain data migration. The storing procedure is
used to store configuration files and data migration records. This approach with
the three modules can effectively implement cross-blockchain data migration,
and the experiments show the effectiveness and reliability.

The rest of this paper is organized as follows. Section 2 discusses the related
work of data migration. Section 3 presents the proposed approach with the col-
lective mechanism design and its three main modules. The detailed experiments
and the application usage of the proposed methods are discussed in Sect. 4.
Section 5 concludes the paper.

2 Related Work

We classify the literature into the data migration in the traditional centralized
systems and the blockchain decentralized systems [8,11,14], respectively.

In the traditional centralized systems, Research on data migration is carried
out on moving data stored on devices in a network from one configuration to
another. For instance, Haller [10] mentioned the importance of data migration
to maintain system competitiveness and proposed a general migration architec-
ture. Sujit Biswas et al. [11] proposed a blockchain data migration method for the
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medical field, which supports the migration of medical records from traditional
databases to the blockchain. These methods are based on traditional databases,
and they do not consider the complexity of data structures of distributed appli-
cations in the migration methods. These methods are thus hard to be directly
adapted to the cross-blockchain migration problem.

In blockchain decentralized systems, a limited number of methods have been
proposed for data migration due to the short research history of blockchain.
However, few study realized the importance of the cross-blockchain data man-
agement, e.g., blockchain interoperability and data migration. For the blockchain
interoperability, Wang H et.al. [9] introduced a blockchain router that empow-
ers blockchains to connect and communicate cross chains, and Herlihy M et al.
[14] introduced several commonly used cross-chain transaction methods. They
described novel safety and liveness properties, along with two alternative pro-
tocols for implementing cross-chain deals in a system of independent blockchain
ledgers. These methods are able to support interoperation between blockchains,
but they cannot be directly applied for cross-blockchain data migration because
of the lack of consideration on historical data status, consistency and thoughput.
For the cross-blockchain data migration, VeChain [12] introduced a method of
swapping original tokens and newly-issued tokens, and Bandara et al. [13] intro-
duced a set of blockchain migration scenarios and data fidelity levels and then
identified several patterns to achieve those migration scenarios under varying
data fidelity levels. These methods are designed for particular systems and they
are lack of generalization for effective cross-blockchain data migration.

3 The Proposed Migration Approach

Our purpose is to conduct effective and reliable cross-blockchain data migra-
tion when various decentralized applications encounter data migration problems.
To achieve this goal, the approach provides a collective mechanism of control-
ling, executing and storing procedures to assort migration transactions between
blockchains. Blockchain information needs to be recorded before migration for
ensuring that the data source and migration process are reliable. Two migration
schemes are proposed to adapt decentralized application scenarios. Furthermore,
we apply configuration parameters, migration records, and other information to
support recovery after migration interruption. Table 1 lists the notations used
throughout the paper.

Table 1. The summary of notations

Notation Definition

namefrom, nameto User-defined chain names during registration

solo, aggr Solo and aggregate migration mode.

CFG Configuration parameter, logfile path etc.

timeout Timeout threshold of migration event

blockout Threshold of traversed blocks in a migration event

routineMax Maximum number of coroutines during migration event
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Figure 1 overviews the proposed cross-blockchain data migration approach.
The approach with a collective mechanism of controlling, executing and stor-
ing procedures provides custom parameter configuration to support personalized
migration for various application scenarios. The architecture ensures the reliabil-
ity of data sources and the consistency of transactions while balancing migration
efficiency and historical state granularity.

Fig. 1. The cross-blockchain data migration method architecture

3.1 Preparing for the Migration

Before data migration, blockchain information needs to be registered to ensure
that data sources are trusted. In order to ensure data source reliability, consis-
tency and invariance of migration transactions, two to three steps are necessary
to implement data migration: registering a blockchain, viewing a registered list
(optional), and executing the migration. Registration means recording infor-
mation about the source and target blockchain before migration, including the
user-defined name (blockchain name), channel (channel name), type (Blockchain
Type), config (configuration file path) and certs (Certificate file path). Viewing
registered list is to query the list of successfully registered blockchains. Execut-
ing migration selects the migration mode and operating parameters in terms of
the configuration of input to migrate data from the namefrom to the nameto.

3.2 Cross-Chain Data Migration Process

In a specific migration, the cost, migration duration, and data consistency need
to be considered. In order to balance efficiency and historical status granularity,
the data migration approach we proposed supports two execution modes: solo
and aggr.
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Figure 2 shows the solo solo and aggregation aggr migration mode . N repre-
sents the number of transactions in the block, and M represents the number of
key-value pairs (K-V) included in the block. In the solo mode, information of each
transaction on the source chain can be written into the replication chain sepa-
rately. In the aggregation mode, X represents the number of blocks aggregated
at a time. M represents the number of K-V pairs remaining after the repeated
K-V pairs are removed from the transaction set in X blocks. This mode supports
the deduplication of the read-write set of X blocks on the source chain and then
aggregates them into a transaction to be written to the target new blockchain
instance.

Fig. 2. The schematic of solo pattern

Algorithm 1 shows the execution of cross-blockchain data migration.

Algorithm 1. cross-blockchain Data Migration

Require: namefrom, nameto
1: chainfrom, chainto ← init(namefrom, nameto)
2: hpoint ← getBreakpoint(namefrom, nameto)
3: hend ← chainfrom.GetBlockHeight()
4: CFG ← GetConfig()
5: if mode == solo then
6: for hpoint → hend do
7: block ← chainfrom.GetBlock(hpoint)
8: TX ← unmarshal(block)
9: for i = 1 → i = len(TX) do

10: chainto.InputTX(txi)
11: end for
12: hpoint + +
13: end for
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14: else if mode == aggr then
15: for hpoint → hend do
16: while MEETCONDITION do
17: � The number of blocks obtained reaches blockout or the time it takes to

execute reaches timeout
18: block ← chainfrom.GetBlock(hpoint)
19: TX ← unmarshal(block), TXset ← append(TX)
20: hpoint + +
21: end while
22: tx ← aggrTX(TXset)
23: chainto.InputTX(tx)
24: end for
25: end if

In this approach, we first initialize blockchain that needs data migration to
ensure the reliability of the data source, then get the starting and ending block
height of the source blockchain for data migration by using getBreakpoint and
GetBlockHeight functions. If the migration mode is solo in the CFG, execut-
ing procedure would unmarshal the blocks of the source blockchain to obtain
transactions and ordinally write them into the target blockchain. Elsewhen the
migration mode is aggr, executing procedure would traverse blocks in the source
blockchain until the number of blocks obtained reaches blockout or the time it
takes to execute reaches timeout, then the algorithm removes duplicate keys
from transaction set TX and aggregates them into a transaction. Finally, it
writes the transaction to the target blockchain and repeats the process until the
cross-blockchain data migration is completed.

To support the complete execution of the data migration process and the
function of resuming broken migration. The configuration and data migration
record should be stored. The configuration contains parameters such as work-
ing mode, logpath, and running parameters including timeout, blockout, and
routineMax in the aggregation mode.

4 Experimental Results

To verify the effectiveness of the cross-blockchain data migration method and
test the effect of different configuration parameters on the migration results,
sets of experiments are carried out: comparative experiments of the solo and the
aggregation migration mode, and parameter studies of the approach.

4.1 Comparison Study of solo and aggr

A dataset including 1000 transactions is used to perform five groups of cross-
blockchain data migration tests based on the solo and aggregate mode, where
configuration of aggregate is: timeout = 50, blockout = 50, and routineMax =
50.
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Table 2. Data migration tests for the solo model and the aggr model

Sequence Solo migration mode Aggregate migration mode

Migration result Time Migration result Time

1 ��Full � Part � Failure 2017 s ��Full � Part � Failure 13 s

2 ��Full � Part � Failure 2070 s ��Full � Part � Failure 13 s

3 ��Full � Part � Failure 2053 s ��Full � Part � Failure 10 s

4 ��Full � Part � Failure 2032 s ��Full � Part � Failure 7 s

5 ��Full � Part � Failure 2049 s ��Full � Part � Failure 13 s

As Table 2 shows, both the solo and aggregate modes effectively complete
full-blockchain data migration. The average migration duration in solo is 2044 s,
while aggregate is 11 s. Both modes ensure that the world states of the target
blockchain and the source chain are entirely consistent. The solo mode addi-
tionally ensures that the historical states of the target and source chain are
consistent.

Fig. 3. Comparison of storage consumption and migration duration

Figure 3 shows the storage consumption of the source and target blockchain
in the two migration modes. The storage consumption of the target blockchain
in solo is slightly higher than that of the source blockchain because more block
header data is contained. However, in aggregation, the storage consumption of
the target blockchain is much lower due to the fewer transactions and blocks.
The advantage of the solo mode is that it can simultaneously make the world
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state and historical state of the target new blockchain completely consistent
with the source blockchain. Furthermore, the aggregation mode achieves higher
efficiency but less storage consumption.

4.2 Configuration Parameter Study for Aggregation

The timeout is fixed to 10 s, and 9 sets of data migration experiments are
performed using the data set containing 100,000 transactions.

Each set of experiments successfully completes the total amount of data
migration. The migration efficiency is shown in the upper right corner of Fig. 3.
On the one hand, the migration duration decreases as routineMax increases.
On the other hand, when blockout is small, the migration duration decreases as
the number of aggregation blocks increases. When blockout is large, the block
processing time is greater than the transaction submission time. The migration
duration will increase as the number of aggregation blocks increases.

Then we test the comparison of migration duration while blockout and
timeout is different, routineMax is fixed to 50. The migration efficiency is shown
in the lower right corner of Fig. 3. Since the production of the last block during
migration often fails to meet the “maximum number of transactions” condition,
it is necessary to wait for the timeout to meet the timeout condition to produce
blocks, and the migration duration will increase with the increase of timeout.

5 Conclusion

In this paper, we proposed an effective and reliable approach to coping with
scenarios where historical data on a blockchain needs to be migrated to a new
blockchain engine. A collective mechanism with various methods were presented
in order to achieve the reliability of the migration process. In addition, we dis-
cussed two migration methods, the solo and aggr modes, and analyzed the pros
and cons of them. We demonstrated the effectiveness of the proposed method
given extensive experiments under different configuration parameters.
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Abstract. The Uncapacitated Facility Location Problem with Origin
and Destination (FLPWOD) is an extension of the Uncapacitated Facil-
ity Location Problem (UFLP), where each unit of demand has its own
origin and destination, and must be shipped from its origin via a location
at which a transit station is built, to its destination. As in the UFLP,
facilities can be opened at any of the predefined locations with given
fixed costs. In classical location models, the clients have to be assigned
to the open facilities, and the assignment cost is the distance between
a client and an open facility. In the FLPWOD, the demands with ori-
gins and destinations have to be assigned to the open facilities, and the
assignment cost is the length of a tour form the origin to the destina-
tion through an open facility. LP-rounding approximation algorithm is
developed with the first constant approximation ratio 4.

Keywords: Facility location · Origin and destination · LP-rounding ·
Approximation algorithm

1 Introduction

The Uncapacitated Facility Location Problem with Origin and Destination
(FLPWOD)is an extension of the Uncapacitated Facility Location Problem
(UFLP), which has been extensively investigated in the field of combinatorial
optimization over the past three decades [2,5,9]. The UFLP consists of locating
uncapacitated facilities among a set of candidate sites and of allocating clients
to open facilities in such a way that the sum of location and allocation costs is
minimized. More precise, in the UFLP, the inputs are a facility set F , a client
set C, a nonnegative facility opening cost for every facility in F , and a non-
negative service cost for connecting each pair of a facility in F and a client
in C. The connection cost is often assumed to be metric. The objective is to
open (locate) some facilities in F , and connect (allocate) each client in C to one
of the open facilities, in such a way that the sum of opening and connection
costs is minimized. In this model, each client is serviced separately. However,
in several applications, visits to clients may be combined, such as in the bike
sharing systems (see, e.g. [12,14,16]). The FLPWOD corresponds to the case
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where depots must be located and two clients can be serviced together from
a given depot. Such applications arise naturally in container transportation, in
petroleum delivery, and in bulk garbage collection.

1.1 Related Work

We briefly review here the studies related to the facility location problem.
Shmoys et al. [13] developed the first constant factor approximation algorithm for
the metric uncapacitated facility location problem. They used the LP-rounding
technique to obtain the approximate ratio 3.16. The ratio was improved later
by Chudak and Shmoys [3] who provided a randomized rounding based 1.736-
approximation algorithm. Currently, Li [7] gives the best approximation ratio
of 1.488. On the hardness side, Guha and Khuller [4] presents that it is hard
to approximate uncapacitated facility location problem within a factor of 1.463.
For the capacitated version, An et al. [1] consider the metric capacitated facil-
ity location problem, and present a constant factor approximation algorithm
based on LP-rounding. Furthermore, the (randomized) LP-rounding techniques
have been successfully used to design several algorithms for the facility location
problem and its variants (see [8,10,15] and reference therein). Nezhad et al. [11]
investigated the facility location problem with point and area destinations in
fuzzy environment.

1.2 Our Contribution

The main contributions of this paper are summarized as follows.

– We firstly introduce the FLPWOD which generalizes the classic facility loca-
tion problem.

– We present LP-rounding approximation algorithm with the ratio 4.
– Our algorithm obtain the first constant approximation ratio for the FLP-
WOD.

1.3 Organization

The remainder of this paper is organized as follows. We state the FLPWOD,
give its model and algorithm in Sect. 2, and theoretical analysis are conducted to
show how the LP-rounding approximation algorithm dealing with the FLPWOD
problem. Section 3 is devoted to conclusions and future works.

2 Uncapacitated Facility Location Problem with Origin
And Destination

2.1 Problem Statement

Consider a set of locations N = {1, . . . , n}, the travel costs between them, cst ≥
0, s, t = 1, . . . , n, are assumed symmetric and satisfy the triangle inequality.
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There is a facility set F ⊆ N , and a origin and destination demand pair set
D = {(i, j) : i, j ∈ N}. In the uncapacitated facility location problem with
origin and destination (FLPWOD), we should select some facilities to open,
and assign each demand pair to exactly one open facility; for each demand pair
(i, j) ∈ D, there is a positive integral demand dij that must be shipped to its
assigned facility. For each location k ∈ F , the non-negative cost of opening a
facility at k is fk. The cost of assigning demand pair (i, j) to an open facility at
k is cijk = cik + ckj per unit of demand shipped. The objective of the FLPWOD
is to minimize the sum of the fixed facility location costs and of the assignment
costs. The general solution structure of the FLPWOD addressed in this study is
represented in Fig. 1.

Fig. 1. Solution structure of the FLPWOD.

We introduce the following two decision variables: yk and xijk. If a facility
is open at location k, yk = 1, if not, yk = 0; and if the origin and destination
demand pair (i, j) is assigned to facility k, xijk = 1, if not, xijk = 0. The model
is as follows.

min
∑

k∈F

fkyk +
∑

(i,j)∈D

∑

k∈F

dijcijkxijk

s. t.
∑

k∈F

xijk = 1, ∀(i, j) ∈ D, (1)

xijk ≤ yk, ∀(i, j) ∈ D, k ∈ F,

xijk, yk ∈ {0, 1}, ∀ (i, j) ∈ D, k ∈ F.

The first constraint guarantees that any origin and destination demand pair
(i, j) ∈ D should be assigned to only one transit station k ∈ F . The second
constraints indicate that if the demand pair (i, j) ∈ D is assigned to the transit
station k ∈ F , then the facility k must be open.

Relax the 0 − 1 constraints of the above integer program (1), we have the
following linear relaxation program.
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min
∑

k∈F

fkyk +
∑

(i,j)∈D

∑

k∈F

dijcijkxijk

s. t.
∑

k∈F

xijk = 1, ∀(i, j) ∈ D, (2)

xijk ≤ yk, ∀(i, j) ∈ D, k ∈ F,

xijk, yk ≥ 0, ∀ (i, j) ∈ D, k ∈ F.

2.2 Algorithm

Our algorithm is a slight adaptation of the approximation algorithm for the
uncapacitated facility location problem by Shmoys et al. [13], where we think of
the origin destination pair as an imaginary client in the facility location problem.
The major contribution of this paper is to show that the LP-rounding algorithm
of Shmoys et al. [13] can be easily adapted to solve the FLPWOD. We present
the following definition used in our algorithm.

Definition 1. For each demand pair (i, j) ∈ D, given gij. A feasible solution
(x, y) to the linear program (2) is said to be g-close, if it satisfies the property

xijk > 0 ⇒ cijk ≤ gij .

We can see from the above definition that if a fractional solution to the linear
program (2) is g-close, then whenever a demand (i, j) is fractionally assigned to
a (partially opened) facility k, the cost cijk associated with that assignment
is not too big. In our algorithm, based on solving the linear relaxation of the
integer program (1), we apply the filtering and rounding technique to obtain a
new g-close fractional solution. We then show how to round the g-close fractional
solution to a 3g-close integer solution.

We now give the details of the rounding algorithm.

Algorithm 1. We run the following steps.

Step 1. Solve the linear program (2). Denote the feasible fractional solution by
(x, y).

Step 2. (Filtering and rounding) Let α be a fixed value in the interval (0, 1).
For each demand pair (i, j) ∈ D, we sort the connection costs cijk over all
facilities k ∈ F , in nondecreasing order; add the associated values xijk in
this order, note k∗ to be the first facility for which this running sum is at
least α, we set cij(α) = cijk∗ . For each demand pair (i, j) ∈ D, let αij =∑

k∈F :cijk≤cij(α) xijk. We then round the fractional solution (x, y) to obtain
(x̄, ȳ) as follows. For each demand pair (i, j) ∈ D, and each facility k ∈ F ,
we set

x̄ijk =
{

xijk/αij , if cijk ≤ cij(α),
0, otherwise,

ȳk = min{1, yk/α}.

For each demand pair (i, j) ∈ D, let gij = cij(α), then (x̄, ȳ) is a g-close
solution.
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Step 3. (Clustering and rounding)
Step 3.1 (Construct clustering) The algorithm maintains a feasible fractional

solution (x̂, ŷ); initially, we set (x̂, ŷ) = (x̄, ȳ). Let Dc denote the set of
demand pairs that are selected as the center of the cluster, U denote the
set of demand pairs that have not been cluster. At the beginning of the
algorithm, set Dc := ∅, C := ∅, U := D.
Consider each demand pair (i, j) ∈ U , for the given values gij, find
(ic, jc) := argmin(i,j)∈U gij. If there are more than one (i, j) ∈ U , such
that gij is the smallest, then (ic, jc) is one of them. Let F (ic,jc) := {k ∈
F : x̂icjck > 0}. S(ic,jc) := {(i, j) : ∃k ∈ F (ic,jc), x̂ijk > 0}. Denote
the cluster centered at (ic, jc) as C(ic,jc) := F (ic,jc) ∪ S(ic,jc). Update
Dc := Dc ∪ {(ic, jc)}, C := C ∪ {C(ic,jc)}, U := U − S(ic,jc).
Iterate over the above clustering process, until U = ∅. Go to Step 3.2.

Step 3.2 (Rounding)
For each demand pair (ic, jc) ∈ Dc, denote kc := argmink∈F (ic,jc) fk,
open kc, assign the demand pairs in S(ic,jc) to the facility kc. We have

ŷk =
{
1, k = kc,
0, k ∈ F (ic,jc) − {kc},

x̂ijk =
{
1, (i, j) ∈ S(ic,jc), k = kc,
0, (i, j) ∈ S(ic,jc), k �= kc.

So far we obtain a 3g-close solution (x̂, ŷ) (See the proof of Lemma 3).

The fractional solution obtained by Step 2 denoted by (x̄, ȳ) is feasible. By
the definition of x̄, we have

∑

k∈F

x̄ijk =
∑

k∈F :cijk≤cij(α)

(xijk/αij) +
∑

k∈F :cijk>cij(α)

0

=
∑

k∈F :cijk≤cij(α)

xijk/
∑

k∈F :cijk≤cij(α)

xijk

= 1.

Thus the first condition of program (2) hold. Furthermore, x̄ijk ≤ 1. Since (x, y)
is feasible, we have xijk ≤ yk. If cijk ≤ cij(α), x̄ijk = xijk/αij ≤ yk/αij . By
the definition of cij(α), we have αij ≥ α. So yk/αij ≤ yk/α. Thus x̄ijk ≤ ȳk. If
cijk > cij(α), x̄ijk = 0 ≤ ȳk. The second condition of program (2) hold as well.
The feasibility of the solution (x̂, ŷ) is clearly visible. The algorithm only assigns
demand (i, j) ∈ D to an opened facility, and when we set any variable ŷk to 0,
we also set each variable x̂ijk to 0.

2.3 Analysis

We present the following lemma which is important in analyzing the assignment
cost.

Lemma 1. For each demand pair (i, j) ∈ D, cij(α) ≤ 1
1−α

∑
k∈F

cijkxijk.
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Proof. Let K = {k : cijk ≥ cij(α)}, then by the definition of cij(α), we have∑
k∈F−K xijk < α, which together with the fact that

∑
k∈F xijk = 1, imply that∑

k∈K xijk ≥ 1−α. Hence,
∑

k∈F cijkxijk ≥ ∑
k∈K cijkxijk ≥ (1−α)cij(α), i.e.,

cij(α) ≤ 1
1−α

∑
k∈F

cijkxijk. �

We now analyze the approximation factor of Algorithm 1, i.e., analyze the rela-
tionship between the cost of the solution obtained from Algorithm 1 and the
cost of the optimal solution denoted by OPT . In order to bound the total cost
of the solution (x̂, ŷ), we provide the following lemmas to bound the facility cost
and the assignment cost respectively.

Lemma 2. The facility cost of the feasible integer solution (x̂, ŷ) is no more
than 1

α times of the facility cost of the feasible fractional solution (x, y), i.e.,

∑

k∈F

fkŷk ≤ 1
α

∑

k∈F

fkyk.

Proof. By step 3.2 in Algorithm 1, fkc = min
k∈F (ic,jc)

fk. Since the minimum of a

set of numbers is never more than their weighted average, and
∑

k∈F (ic,jc)

x̄ijk = 1,

we obtain fkc ≤ ∑
k∈F (ic,jc)

fkx̄ijk. We have present at the end of Subsect. 2.2 that

x̄ijk ≤ ȳk, so fkc ≤ ∑
k∈F (ic,jc)

fkȳk. This inequality implies that the facility cost of

ŷ never increases throughout the execution of the algorithm, hence
∑

k∈F

fkŷk ≤
∑

k∈F

fkȳk. By the definition of ȳ, we know that ȳk ≤ 1
αyk. Finally, we obtain that

∑
k∈F

fkŷk ≤ 1
α

∑
k∈F

fkyk. �

Lemma 3. The assignment cost of the feasible integer solution (x̂, ŷ) is no more
than 3

1−α times of the assignment cost of the feasible fractional solution (x, y),
i.e., ∑

k∈F

∑

(i,j)∈D

dijcijkx̂ijk ≤ 3
1 − α

∑

k∈F

∑

(i,j)∈D

dijcijkxijk.

Proof. Consider the demand pair in the cluster C(ic,jc). According to Step 3 in
Algorithm 1, there are the following case.

Case 1. If (i, j) = (ic, jc), then cijkc = cicjckc ≤ gicjc .
Case 2. If (i, j) �= (ic, jc), then there must exist k ∈ F (ic,jc) such that x̂ijk >

0. We have cijk ≤ gij . If k = kc, then cijkc ≤ gij . If k �= kc, then x̂icjck > 0. We
have cicjck ≤ gicjc . By the triangle inequality, we have the following inequalities.

When i �= ic, j �= jc,

cijkc = cikc + ckcj ≤ cik + cick + cickc + ckj + ckjc + ckcjc

= cijk + cicjck + cicjckc ≤ gij + 2gicjc ≤ 3gij .
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When i = ic, j �= jc,

cijkc = cicjkc = cickc + ckcj ≤ cickc + ckj + ckjc + ckcjc ≤ cicjckc + cijk

+ cicjck ≤ gij + 2gicjc ≤ 3gij .

When i �= ic, j = jc,

cijkc = cijckc = cikc + ckcjc ≤ cikc + cick + cickc + ckcjc ≤ cijk + cicjck

+ cicjckc ≤ gij + 2gicjc ≤ 3gij .

Since for each demand pair (i, j) ∈ D, gij = cij(α), and by Lemma 1, cij(α) ≤
1

1−α

∑
k∈F

cijkxijk, we obtain that cijkc ≤ 3
1−α

∑
k∈F

cijkxijk. Add all the demand

pairs in the cluster C, we obtain

∑

k∈F

∑

(i,j)∈D

dijcijkx̂ijk ≤ 3
1 − α

∑

k∈F

∑

(i,j)∈D

dijcijkxijk.

�
Theorem 4. The total cost of the feasible integer solution (x̂, ŷ) is no more than
4 times of the OPT , i.e.,

∑

k∈F

fkŷk +
∑

k∈F

∑

(i,j)∈D

dijcijkx̂ijk ≤ 4OPT.

Proof. By Lemma 2 and Lemma 3, we have that
∑

k∈F

fkŷk +
∑

k∈F

∑

(i,j)∈D

dijcijkx̂ijk

≤ 1
α

∑

k∈F

fkyk +
3

1 − α

∑

k∈F

∑

(i,j)∈D

dijcijkxijk

≤ max{ 1
α

,
3

1 − α
}(

∑

k∈F

fkyk +
∑

k∈F

∑

(i,j)∈D

dijcijkxijk)

≤ max{ 1
α

,
3

1 − α
}OPT.

Set α = 1/4, we obtain the theorem. �

3 Conclusion

In this paper, we introduce the uncapacitated facility location problem with
origin and destination, where each unit of demand has its own origin and des-
tination, and must be shipped from its origin via a location at which a transit
station is built, to its destination. An LP-rounding approximation algorithm
is developed with the ratio 4, which is a good reference for other methods to
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improve the approximation ratio. And for further research in the future, one can
present experiment and analysis about the algorithm. There are several other
directions for future research, such as considering the capacitated facility loca-
tion problem with origin and destination, the k-level facility location problem
with origin and destination.
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Abstract. Deploying a workflow engine as a service on a container cloud envi-
ronment can improve its service quality and reliability, but auto-scaling of the
elastic cloud workflow service doesn’t attract much study attention. Current auto-
scaling algorithms oriented to common microservices consider little about the
characteristics of a long time and high cost of starting up workflow service, which
can easily cause problems such as untimely scaling and excessive scaling. Given
this, based on reinforcement learning and semi-Markov decision process (SMDP)
modeling, an auto-scaling algorithm for elastic cloudworkflowengine is proposed,
which enables the cloudworkflow service to scale in time, appropriately allocating
resources and ensuring service availability. Simulation comparison experiments
show that the algorithm automatically scales instances in advance and adapts to
changes in traffic through the reinforcement learning SMDP strategy, so that it
reduces the violation rate in Service Level Agreements (SLA), and improves the
availability of the cloud workflow service.

Keywords: Workflow · Cloud computing · Auto scaling · Reinforcement
learning

1 Introduction

With the increase of globalization, business process management (BPM) is expected to
help modern enterprises be both competitively agile and cost-efficient. And due to the
development of cloud computing, BPM is located as a service that offers a dedicated
business process in a cloud-based manner, so-called BPM as a service (BPMaaS) [1].
Current researches on cloud workflow services focus on the application and architecture
design of cloudworkflow services to improve the efficiency of the cloud environment but
pay little attention to the elasticity of cloud workflow services [2]. To improve the elas-
ticity of BPMaaS, it is significant to auto-scale the cloud workflow engine services, one
of the cores of BPMaaS. However, compared with the general cloud services, the cloud
workflow engine service has a larger granularity, takes longer to start, and consumes
more resources [3], and auto-scaling such a service has to face more challenges.

Considering the stochasticity and uncertainty in the cloud environment, solutions
based on Reinforcement Learning (RL) are purposed to solve the auto-scaling prob-
lems [4]. The auto-scaling problems are usually modeled as Markov decision processes
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(MDP) problems. In cloud auto-scaling problems, the RL agent learns how to allocate
appropriate resources in a pay-per-use manner. However, due to the characteristics of
cloud workflow services, the observation of rewards and states is not as intuitive as
ordinary microservices and it is necessary to auto-scale the BPMS proactively. Apply-
ing ordinary RL methods will cause untimely scaling, over-allocation of resources, and
oscillation.

In addressing these challenges, this paper purposes an automatic scaling algorithm
for elastic cloud workflow services based on load prediction and reinforcement learning
considering the features of cloud workflow service scaling. The algorithm models the
automatic scaling problemof cloudworkflow services as SMDPand combines reinforce-
ment learning and load prediction algorithms to perform automatic scaling operations on
cloud workflow services. And it can auto-scale the services in advance with the changes
in traffic load and allocate resources rationally so that it can provide stable service.

2 Problem Description

This section will analyze the auto-scaling problem of cloud workflow services from the
perspectives of auto-scaling and reinforcement learning.

The auto-scaling problems for cloud applications are commonly abstracted as a
MAPE (Monitoring, Analysis, Planning, and Execution) control loop [5]. And because
of the longtime startup and the high resource consumption, the cloud workflow engine
service should be scaled proactively. And oscillation should be prevented as it results in
resource wastage and more SLA violations.

Fig. 1. MDP interaction process between an agent and the environment.

SMDP has proven to be a successful approach to help make the best decisions
in the stochastic environment and it is feasible to model the auto-scaling problem of
cloud workflow engines as an SMDP problem [6]. We apply reinforcement learning
to the automatic scaling problem of cloud workflow services. We will describe the
problem modeling as an SMDP, as is depicted in Fig. 1. An SMDP is defined as a
5-tuple (S,ψ,P.(·, ·),R.(·, ·), γ ), where:

S represents the environmental state space. The indicators of the last several time
intervals are combined as a state.

� represents the decision sequence space. A decision sequence comprises a scale
action and the number of time intervals it stays (i.e. 〈+1, 0, 0, 0〉).

Pa
(
s, s′

)
represents the probability that action a in state s at time t will lead to state

s′ at time t + 1.
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Ra
(
s, s′

)
represents the (expected) immediate reward received after transitioning

from state s to state s′ due to action a.
γ is the discount factor. It represents the difference in importance between future and

immediate rewards.
The auto-scaling problem of cloud workflow engine services is complex, requiring

more monitoring indicators to achieve more precise control. And the state-action space
in such problems is relatively large. It costs a lot of resources to maintain such a space.
Also, it may cause oscillation because of its explore policies and frequent actions.

3 RL-Based Auto-scaling Algorithm for Elastic Cloud Workflow
Service

The objective of the proposed algorithm is to auto-scale the cloud workflow engine
service to attain maximum resource utilization, minimal response time, and maximum
throughput. The system architecture and the algorithm are introduced in this section.

3.1 System Design

The proposed algorithm is implemented on Kubernetes, an open-source system for the
management of containerized applications [7]. And the architecture and its compo-
nents are presented in Fig. 2. The major components of the architecture are explained
subsequently.

Kubernetes

Gateway

Runtime Bundle

Workflow
engine

Monitor Workload

Resource Utilization

Autoscaler

observation

REST API ServerScale API

Execute

Workflow
engine

Workflow
engine

Connector

Notification
Service

Query Service

Audit Service

Fig. 2. System architecture for auto-scaling cloud workflow engine services.

Monitor. The systemcollects indicators such as the amount ofworkload to be processed,
resource utilization, and the number of database interactions, and uses the indicators as
observations to be processed by the RL agent.



306 J. Lu et al.

Autoscaler. The system calculates the best scaling action based on the performance,
utilization, and load information sent by the monitor.

The overview of the proposed system is stated as follows: The autoscaler takes
scale action of the cloud workflow engine containers through the interface provided
by the Kubernetes cluster, and the scaling action will be adopted at regular intervals.
The indicator monitor obtains workload, resource utilization, and other performance
indicators from Kubernetes and the cloud workflow engine container, and submits these
performance indicators to the autoscaler for calculation and processing. The autoscaler
obtains the feedback indicator from the indicator monitor at the next time point after
the operation is performed, and performs the reward calculation of the previous state
and the state of the next state. The autoscaler uses the SARSA algorithm to learn the
auto-scaling strategy, which can predict future reward estimates from the current state.

3.2 Algorithm Design

In the SMDP problem, the optimal Q-function satisfies Eq. 1.

Q∗(s, a) =
∑

s′∈χ

Pa
(
s, s′

) ∫ ∞

0

∫ t

0
e−βτdsdFss′(t|a)

+
∑

y∈X
Pa

(
s, s′

) ∫ ∞

0
e−βτ max

a′∈A
Q∗(s′, a′)dFss′(t|a) (1)

Here, Fss′ (·|a) represents the distribution that the time until the transition from s to s′
occurs. Equation 1 leads SARSA for SMDP to update the function Q(·, ·) as expressed
in Eq. 2.

Q′(St, ψt) ← Q(St, ψt) + α
[
1−e−βτ

β
rt + e−βτQ(St+1, ψt+1) − Q(St, ψt)

]
(2)

Here, 1−e−βτ

β
rt is cumulative reward and e−βτ is the discount factor that means the

difference in importance between future and immediate rewards. The proposed algorithm
is described in Algorithm 1.
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We combine the indicators that the monitor gains, i.e. CPU utilization and workload,
into a state s. Then we take state s in the past τ time intervals as the state of RL S, as
described in Eq. 3.

S = 〈s0, a0, s1, a1, . . . , sτ−1, aτ−1, sτ 〉 (3)

Inspired by Deep RL, we use a neural network approximation function to estimate
Q-value.We combine the ε-greedy policy and time series forecasting algorithm, propose
an ε-workload-predict method, as is described in Algorithm 2.

For rewards, we set penalties for SLA violation and rewards for saving resources, as
the first part of the reward function in Eq. 4.

r = 1−e−ρ
tres

RTTH

1−σ
− θ Δins (4)

Autoscaler calculates the reward and receives the next state S′. Then it takes the
action sequence ψ′ through the neural network and ε-workload-prediction and updates
the Q value through Eq. 2.

4 Experiment

To evaluate the performance of RL-based autoscaling algorithm for cloud workflow
engine service, the design of the experiment is introduced in this section, and then the
experimental results are given and analyzed.

4.1 Experiment Design

To study the advantages and disadvantages of the proposed algorithm, the experiment
separately tested and compared the performance of static threshold algorithm, SARSA
algorithm modeled as MDP, and proposed algorithm in auto-scaling of runtime bundle
containers of Activiti Cloud. The environment of this experiment is a Kubernetes cluster
deployed on 3 local servers. Each server is configured with Intel(R) Xeon(R) CPU E5-
2609 v3 @ 1.90 GHz, 32 GB memory. The official reference version of Activiti Cloud
was deployed in the experiment, which offers a set of cloud-native building blocks
designed to run on distributed infrastructures [8].
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Fig. 3. A process definition for ranking movies.

Activiti Cloud separates the creation of the process definition, and parses it out,
and stores it in the database when deploying the cloud workflow engine. And it takes
a similar time to process different requests of creating processes of various definitions.
The process definition used in the experiment is as shown in Fig. 3. We send different
types of requests such as creating processes and finishing tasks to test the elasticity of
the system.
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1 11 21 31 41 51 61 71 81 91 101111121131

Traffic diagram

Fig. 4. 1998 World Cup Web Site Access traffic diagram.

To simulate the actual traffic more realistically, this article uses part of the access
traffic of the 1998 World Cup as the data set of the access traffic, as is shown in Fig. 4.
For convenience, we intercept the part of the diagram from June 1st to June 4th.

4.2 Experiment Result

This section evaluates the static threshold algorithm, the SARSA algorithm, and the
algorithm in this article from the aspects of CPU utilization, resource usage, and SLA
violation rate. SLA violation stipulates that response time exceeds 1s.

As is depicted in Fig. 5(a), the static threshold algorithm is unable to handle traffic
peaks in time. MDP-based SARSA algorithm would cause oscillation. The proposed
algorithm can automatically scale cloud workflow engine service in time with changes
in traffic andmitigate oscillation. And Fig. 5(b) and Table 1 show that the static threshold
algorithm is unable to cope with changes in traffic, resulting in high response time and
SLA violation rate. MDP-based SARSA can scale in time with load changes to a certain
extent. But due to the oscillation it causes, its average response time is also high. The
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proposed algorithm can scale cloud workflow engine service in time and SLA violation
rate and average response time are reduced.
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Fig. 5. (a) Pod supply comparisons with Static threshold, SARSA-MDP algorithm. (b) Response
time comparisons.

Table 1. Comparison of SLA violation rate, average response time, and average pod supply.

Algorithm SLA violation rate/% Average response time/ms Average pod supply

Static threshold 45 3443 3.01

MDP-based SARSA 28 1534 3.70

Proposed 17 937 4.01

As is depicted in the above figures and tables, compared with the other algorithms,
the proposed algorithm can scale cloud workflow engine service in time. It reduces the
SLA violation rate and improves the availability of cloud workflow engine services.
And the proposed algorithm allocates a little more resources, but the SLA violation rate
reduces by 39% and the average response time reduces by 39%.

5 Conclusion

To improve the elasticity of cloud workflow engine service, allocate resources appro-
priately and achieve high availability, we design a cloud workflow engine auto-scaling
algorithmbased on reinforcement learning considering the characteristics of cloudwork-
flow engine service. We model the auto-scaling problem of cloud workflow engine ser-
vice as an SMDP problem, use ε-workload-predict policy for strategy exploration, and
use SMDP-based SARSA algorithm to learn appropriate scaling policy. As is shown in
experiments, the proposed algorithm can scale cloud workflow engine service automat-
ically with changes in traffic load. It reduces the SLA violation rate and improves the
availability of cloud workflow engine services.
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Although the proposed algorithm can solve the elasticity problem of cloud workflow
engine service to a certain extent, there are still some improvements in the research of the
thesis. Firstly, the convergence speed of reinforcement learning is relatively slow, and it
may be difficult to cope with sudden changes in traffic load in practical applications. To
ensure the high availability of cloud workflow engine service, methods such as parallel
learning can be used to speed up the convergence. Secondly, due to the cache mechanism
of cloud workflow engine service, CPU and other resource utilization in the initial stage
are relatively high. How to effectively start a cloud workflow engine in advance is also
a future research direction. Last but not the least, we choose Activiti Cloud as a cloud
workflow engine service for experiments and it is still to be verified and tested to improve
on auto-scaling of other workflow engines.
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Abstract. Aiming at the optimization problem in the stage of simultaneous wire-
less information and power transfer (SWITP), an optimal energy efficiency strat-
egy of millimeter-wave cooperative communication small cell based on SWITP
was proposed to maximize the link energy efficiency, in which the receiver of user
equipment devices worked in the power splitting mode. Under the constraints
of minimum link transmission rate and minimum energy harvested, the strategy
maximized the link energy efficiency of the system by jointly optimizing the trans-
mitting power control and the power splitting factor. Since the original problem
is a non-convex fractional programming problem and the NP-hard, the strategy
transformed the original problem into a tractable convex optimization problem
which is easy to solve by Dinkelbach method, and then Lagrange dual method
was used to solve the problem. Finally, a cross-iteration algorithm was designed
to get the optimal solution. Simulation results show that the proposed strategy
is more effective and superior than the traditional power control method and the
maximum transmit power method.

Keywords: Millimeter-wave cooperative communication · Simultaneous
wireless information and power transfer (SWITP) · Energy harvesting · Energy
efficiency · Spectral efficiency · Power beacon

1 Introduction

The 5G wireless communications has brought new challenges to traditional energy-
constrained wireless networks. Energy harvesting (EH) technology can harvest energy
from the radio frequency (RF) and use it for subsequent wireless communication, which
can prolong the lifetime of equipment and improve the performance of wireless network.
The simultaneous wireless information and power transfer (SWITP) is an effective way
to solve the problem of energy limitation in wireless communication networks, and
can realize information transmission and energy harvesting at the same time [1]. The
device-to-device (D2D) technology is a direct communication model between two peer-
to-peer user nodes, which can reduce the resource consumption and delay of access and
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backhaul network, alleviate the data pressure of the core network of the communication
system, and improve the spectrum utilization and system capacity. The millimeter-wave
(mmWave) band mainly includes 30–300 Ghz, and it has rich spectrum resources, high
transmission rate and few interference sources. Obviously, the application of D2D and
mm Wave can improve the performance of wireless network by improving spectrum
efficiency and system throughput.

The Energy harvesting (EH) of RF signal can provide continuous and stable energy
for mobile devices, so as to ensure D2D sustainable communication. Therefore, the
application of SWITP technology to D2D communication is a potential solution. [2] and
[3] studied a D2D network with wireless power and information transmission (WPIT)
function. Based on SWIPT, [4] proposed a D2D communication EH heterogeneous
cellular network. [5] presented a novel D2D-aware caching policy for high-rate D2Dmm
Wave communication. [6] proposed an energy-efficientmulticast scheduling scheme that
can utilize D2D communications. [7] solved the average energy efficiency of EH-based
D2D communication heterogeneous networks.

In 5Gnetwork, the deployment of ultra dense cells can greatly reduce the propagation
loss of wireless energy transmission (WET). [8] focused on the design and optimization
of SWITP network with 5G new frequency. [9] proposed a low-powermulti-antennamm
Wave receiver architecture. [10] implemented SWITP in mm Wave network by power
splitting (PS) method. [11] designed a wireless Ad-hoc network with power beacon
(PB) aided mmWave. [12] studied the feasibility of using mmWave for WET in a large-
scale network composed of PB and energy collector. [13] used non-orthogonal multiple
access (NOMA) to improve spectral efficiency in mm Wave massive multiple-input
multiple-output (MIMO) systems.

Most of the existing researches on energy harvesting technology using mm Wave
only consider harvesting mmWave energy from RF signal energy sources (such as base
station, AP and PB), and does not consider the case of SWITP based on the receiving end.
However, in D2D communication, the transmitter and receiver are a paired device pair,
which should not be considered separately. Moreover, the deployment of multi antenna
system also means greater energy consumption. Aiming at the green communication
demand, this paper apples energy harvesting technology in D2D and mmWave commu-
nication, establishes a new small cell network model of user equipment devices (UEs)
and mm Wave cooperative communication for high-low frequency hybrid networking,
and proposes an optimal energy efficiency strategy based onmmWave cooperative com-
munication small cell under SWIPT to maximize the link energy efficiency. Finally, the
feasibility and effectiveness of the proposed scheme are illustrated by simulation and
comparison experiments.

2 System Model

2.1 Network Model

Consider the cellular cell of 5G high and low frequency hybrid network as shown in
Fig. 1. Within the base station (BS), there are multiple mm Wave small cells suitable
for transmission using mm Wave technology. BS works in the Sub-6 GHz spectrum
range and provides additional signal services for other mm wave small cells. Since the
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mm Wave cell uses mm Wave communication and works in different frequency bands
with the macro cell, the interference between the macro cell and the mm Wave cell
can be avoided. In addition, because mm Wave has the characteristics of directional
transmission, high path loss and sensitivity to blocking, the interference between mm
Wave cells and the interference between indoor and outdoor mm Wave cells can be
almost ignored.

Fig. 1. 5G high-low frequency hybrid networking cellular cell

Assuming that the UEs in the mm Wave cell work in the WPCN mode, the system
working time slot is shown in Fig. 2. In aWPCN cycle, all UEs in a small cell first obtain
energy from the RF signal radiated by PB through energy harvesting technology, and
then use SWIPT to realize simultaneous transmission of energy and information in the
downlink phase.

WPCN    cycle

PB→UE energy harvesting 
phase SWITP phase

Fig. 2. Structure of full-duplex relay

2.2 System Model

In the SWITP phase, the mm Wave small cell system model is shown in Fig. 3.
In Fig. 3, K pairs of energy limited transmitters (TX) and receivers (RX) are repre-

sented by �TX = {1, 2, · · · , K} and �RX = {1, 2, · · · , K} respectively. In consideration
of computing power and resource saving, it is assumed that all energy limited devices
are equipped with a single antenna. Assuming that each RX adopts SWITP technology.
From the mm Wave signal transmitted by the corresponding TX, each RX harvests a



314 T. Li and M. Lu

Fig. 3. Illustration of the UE paired system model

certain amount of energy from the received signal through the power splitting method.
The signal received by the i-th RX can be expressed as:

yi = h(i,i)L(
√
r(i,i) · xi +

∑

j∈�,j �=i

h(j,i)L(
√
r(j,i) · xj + nA (1)

Where, h(i,i) denotes the quasi-static fading of the i-th channel link, andL(r(i,i)1/2) denotes
the path loss factor; xi is the mark of the signal transmitted from TXi. The second part
of the formula represents the common channel interference caused by other TX to RXi

except TXi·nA ∼ CN (0, σ 2
A

)
denotes the additive white Gaussian noise produced by the

antenna in the RF signal receiving stage, and its variance is σ 2
A and the mean value is 0.

Assuming that the PS structure is shown in Fig. 4 and each RX divides the received
signal into two power streams by PS method, the power stream of information decoding
at RXi is as follows:

yIDi = √
ρi · yi + n0 = √

ρi ·
⎛

⎝h(i,i)L(
√
r(i,i) · xi +

∑

j∈�,j �=i

h(j,i)L(
√
r(j,i) · xj + nA

⎞

⎠+ n0 (2)

Where, 0 < ρi < 1 represents the power split ratio and n0 ∼ CN (0, σ 2
0

)
denotes the

additivewhite Gaussian noise produced by information decoding circuit, and its variance
is σ 2

0 and the mean value is 0.

Fig. 4. The RX structure of power splitter
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The signal-to-noise ratio of RXi is

SINRi = ρiPi
∣∣h(i,i)

∣∣2L(r(i,i))

ρi

(
∑

j∈�TX,j �=i
Pj
∣∣h(j,i)

∣∣2L(r(j,i)) + σ 2
A

)
+ σ 2

0

(3)

Where,Pi denotes the transmission power of TXi, andPj denotes the transmission power
of other TX with common channel interference. According to Shannon theory, the unit
bandwidth throughput of i-th pair of UEs can be expressed as:

Ri = log2(1 + SINRi) = log2

⎛

⎜⎜⎜⎜⎝
1 + ρiPi|h(i,i)|2L(r(i,i))

ρi

(
∑

j∈�TX ,j �=i
Pj|h(j,i)|2L(r(j,i)) + σ 2

A

)
+ σ 2

0

⎞

⎟⎟⎟⎟⎠

(4)

Similarly, the power flow for energy harvesting can be expressed as:

yEHi = √
1−ρi · yi = √

1−ρi ·
⎛

⎝h(i,i)L(
√
r(i,i) · xi +

∑

j∈�,j �=i

h(j,i)L(
√
r(j,i) · xj + nA

⎞

⎠

(5)

Since the energy carried by the noise nA and n0 is too small to activate the energy
collection circuit, it can be ignored. Therefore, the energy harvested at RXi is:

Ei = (1 − ρi)η

⎛

⎝Pi
∣∣h(i,i)

∣∣2L(r(i,i)) +
∑

j∈�TX,j �=i

Pj
∣∣h(j,i)

∣∣2L(r(j,i))

⎞

⎠ (6)

According to the linear power consumptionmodel [14], the total power consumption
of the i-th pair of UEs is:

Ptot
i = ξPi + 2Pcir (7)

Where, ξ ∈ [1,∞) denotes the efficiency of power amplifier, and Pcir is the static circuit
power consumed by the filter, digital to analog converter and other modules.

The energy efficiency on the i-th pair of UEs is defined as:

EEi = Ri

Ptot
i

(8)

3 Problem Description and Solution Strategy

Under the joint constraints ofminimum rate andminimumenergy harvesting, the strategy
proposed in this paper takes the energy efficiency of all UEs as the optimization goal,
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and optimizes the transmission power control and power shunt factor to transmit more
bits per unit power. Therefore, the mathematical model of the optimization problem P1
can be expressed as follows:

max
Pi,ρi

∑
i∈K

EEi

s.t. C1: Ei ≥ Emin, ∀i ∈ K
C2: Pi ≤ Pmax, ∀i ∈ K
C3: 0 < ρi < 1, ∀i ∈ K
C4: Ri ≥ Rth, ∀i ∈ K

(9)

Where, K = {1, . . . , k} is the set index of UE pair; Emin is the minimum EH constraint
on RX; Pmax denotes the maximum allowable transmission power on TX; Rth denotes
the minimum rate threshold on UE link.

In order to express the solution process of the optimal value conveniently, let NA

= σ 2
A , N0 = σ 2

0 , gi,i = |h(i,i)|2L(r(i,i)), Ij,i = ∑
j∈�TX,j �=i

Pj
∣∣h(j,i)

∣∣2L(r(j,i)). Then, P1 can be

rewritten as

max
Pi,ρi

∑
i∈K

log2

(
1+ ρiPigi,i

ρi(Ij,i+NA)+N0

)

ξPi+2Pcir

s.t. C1: (1 − ρi)η
(
Pigi,i + Ij,i

) ≥ Emin, ∀i ∈ K
C2: Pi ≤ Pmax, ∀i ∈ K
C3: 0 < ρi < 1, ∀i ∈ K
C4: log2

(
1 + ρiPigi,i

ρi(Ij,i+NA)+N0

)
≥ Rth, ∀i ∈ K

(10)

Obviously, the optimization problem P2 is a nonlinear planning problem, and is
difficult to find an accurate solution. According to Dinkelbach method, this problem can
be transformed into an equivalent convex subtraction problem.

Assuming q*ee is the optimal value of the problem, it is defined as follows:

q∗
ee = max

Pi,ρi

∑

i∈K

log2
(
1 + ρ∗

i P
∗
i gi,i

ρ∗
i (Ij,i+NA)+N0

)

ξP∗
i + 2Pcir

(12)

Where, Pi
* and ρi

* are the optimal transmission power and power split ratio when the
energy efficiency of the i-th pair of UEs reaches the optimal value.method, the equivalent
subtractive objective function can be obtained by Dinkelbach method. Therefore, the
original optimization problem P2 can be rewritten as:

max
Pi,ρi

∑
i∈K

{
log2

(
1 + ρiPigi,i

ρi(Ij,i+NA)+N0

)
− qee(ξPi + 2Pcir)

}

s.t. C1: (1 − ρi)η
(
Pigi,i + Ij,i

) ≥ Emin, ∀i ∈ K
C2: Pi ≤ Pmax, ∀i ∈ K
C3: 0 < ρi < 1, ∀i ∈ K
C4: log2

(
1 + ρiPigi,i

ρi(Ij,i+NA)+N0

)
≥ Rth, ∀i ∈ K

(13)
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The rewritten problem P2 is a convex optimization problem, which can be solved by
common convex optimization methods (such as Lagrange dual method). The Lagrange
function of Eq. (13) is

L(Pi, ρi, λ1,i, λ2,i, λ3,i, λ4,i)

=
∑

i∈K

(
log2

(
1 + ρiPigi,i

ρi
(
Ij,i + NA

)+ N0

)
− qee(ξPi + 2Pcir)

)

+
∑

i∈K
λ1,i

(
(1 − ρi)η

(
Pigi,i + Ij,i

)− Emin
)

+
∑

i∈K
λ2,i(Pi − Pmax)+

∑

i∈K
λ3,i(ρi − 1)

+
∑

i∈K
λ4,i

(
log2

(
1 + ρiPigi,i

ρi
(
Ij,i + NA

)+ N0

)
− Rth

)

(14)

Where, {λ1, λ2, λ3, λ4} ≥ 0 respectively represent the Lagrange multipliers of C1–C4,
and the dual function of Lagrange function (14) is:

min
λ1,i,λ2,i,λ3,i,λ4,i

max
Pi,ρi

L(Pi, ρi, λ1,i, λ2,i, λ3,i, λ4,i) (15)

The Pi and ρi can be obtained by Karush Kuhn Tucker (KKT) condition:

Pi =
(

(1 + λ4,i) log2 e

(qeeξ + λ2,i − λ1,i(1 − ρi)ηgi,i)
− N0 + ρi(Ij,i + NA)

ρigi,i

)+
(16)

ρi =

⎧
⎪⎪⎨

⎪⎪⎩

−N0(2A0 + Pigi,i)

2A0(A0 + Pigi,i)
+

√
N0Pigi,i

(
N0Pigi,i + 4A0(A0+Pigi,i)(1+λ4,i) log2 e

λ1,iη(Pigi,i+Ij,i)+λ3,i

)

2A0(A0 + Pigi,i)

⎫
⎪⎪⎬

⎪⎪⎭

+

(17)

Where, A0 = I j,i + NA, {x}+ = max{1, x}. The Lagrange multipliers λ1,i, λ2,i, λ3,i and
λ4,i can be updated iteratively by gradient descent method. That is

λ1,i = [
λ1,i − α

(
(1 − ρi)η

(
Pigi,i + Ij,i

)− Emin
)]+

, ∀i ∈ K (18)

λ2,i = [
λ2,i − α(Pi − Pmax)

]+
, ∀i ∈ K (19)

λ3,i = [
λ3,i − α(ρi − 1)

]+
, ∀i ∈ K (20)

λ4,i =
{

λ4,i − α

[
log2

(
1 + ρiPigi,i

ρi
(
Ij,i + NA

)+ N0

)
− Rth

]}+
, ∀i ∈ K (21)

Where, α is the step size to ensure convergence.
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According to the above analysis, a cross iterative algorithm to solve the overall
optimization problem is described as follows:

4 Experimental Results and Analysis

4.1 Experimental Environment and Parameter Setting

In order to illustrate the feasibility and effectiveness of our strategy, this section will
evaluate, analyze and verify the proposed strategy through simulation experiments. The
parameters of simulation experiments are set by mmwave channel and power consump-
tion model mentioned in [7] and [16].The experimental parameters are set as follows:
maximum transmit power of TX Pmax = 23 dBm, energy conversion efficiency η =
0.7, circuit static power consumption Pcir = 50 mW, path loss factor αL = 2, αN = 4,
amplifier efficiency ζ = 1/0.38, Gaussian white noise power N0 = −70 dBm, NA = −
100 dBm, minimum collected energy threshold Emin = −14 dBm, throughput threshold
Rth = 5bit/s/H.

In the simulation scenario, TX-RX links are randomly deployed in an area. The
distances between each expected TX-RX link and interference link are 40 m and 80 m
respectively. In the following comparative experimental analysis, each simulation exper-
imental value is the average value of the experimental data generated after 100 times of
independent execution of the algorithm.
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4.2 Performance Analysis and Comparison of Algorithms

In order to compare and analyze the performance of the proposed strategy, we take
the traditional transmission power control algorithm as the comparison algorithm. The
traditional transmit power control algorithm with the most energy efficiency does not
consider the dynamic joint optimization of the PS of SWITP technology. Therefore,
referring to the comparison method in [7], we designed the power control algorithm of
equally divided PS of SWITP (PC-E scheme) to compare with our strategy.

The first experiment is to analyze the relationship between the maximum transmis-
sion power threshold and energy efficiency. In the experiment, the threshold Pmax is set
to 50 mW, 100 mW, 150 mW, 200 mW and 250 mW respectively. The experimental
comparison results are shown in Fig. 5. With the increase of Pmax , the energy efficiency
of the links of the two schemes also increases. This is because within an appropriate
range, with the increase of the Pmax , the allowable transmission power on TX becomes
larger and larger, which increases the transmission throughput and improves the link
energy efficiency. However, when Pmax reaches 200 mW, although the increase of TX
transmission power can bring greater throughput, the energy consumption of the link
also increases, resulting in a downward trend of link energy efficiency with the increase.
Therefore, it is very important to select an appropriate maximum transmission power
threshold. From the simulation results, to obtain better performance, the setting of AA
needs to consider the trade-off between throughput and energy consumption. In the later
simulation experiment, Pmax is set to 200 mW.

Fig. 5. Illustration of the impact of the maximum transmission power

The second experiment is to compare and analyze the impact of the minimum energy
collection threshold on energy efficiency. In the experiment, the thresholdEmin is set to−
20 dBm, −18 dBm, −16 dBm, −14 dBm and −12 dBm respectively. The experimental
results are shown in Fig. 6. The experimental results show that the link energy efficiency
decreases with the increase of the minimum energy collection threshold. This is because
according to the first law of thermodynamics, when the signal power transmitted on TX
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remains unchanged, if the energy collection power becomes larger, the power used for
information transmission becomes smaller, resulting in smaller throughput.

From the experimental comparison results of Fig. 5 and Fig. 6, it can be seen
that our strategy are better than the traditional power control scheme in energy effi-
ciency performance. In order to further verify the effectiveness of our scheme, the third
and fourth experiments draw on the comparison method of [17] and add a benchmark
scheme of dynamic PS with maximum transmission power (expressed by PS-max) as
the comparison scheme.

Fig. 6. Illustration of the impact of the energy harvesting threshold

The third experiment is to compare the effects of different TX-RX link distances on
link energy efficiency under the three schemes. The experimental results are shown in
Fig. 7. It can be seen from the experimental comparison results that the energy efficiency
of the three schemesdecreases graduallywith the increase ofTX-RX linkdistance.This is
because the path loss betweenTX-RX increaseswith the increase of the distance between
them, and the channel gain decreases, resulting in the decrease of energy efficiency.
However, from the comparison results of three experiments, the performance of the
scheme in this paper is still better than the other two comparison schemes. This is because
the dynamic optimization scheme using joint transmit power and power diversion factor
can obtain an optimal swipt power diversion factor, so as to achieve the optimal trade-off
between link throughput and energy consumption.

The fourth experiment is to compare and analyze the influence of interference link
distance on energy efficiency. In the experiment, the distances of interference links
are 60 m, 70 m, 80 m, 90 m and 100 m respectively. The experimental results are
shown in Fig. 8. It can be seen from the experimental comparison results that the energy
efficiency of the three schemes is improved with the increase of the interference link
distance. This is because with the increase of interference link distance, the SINR of
TX-RX link increases, and the link throughput also increases according to Shannon’s
theorem.Therefore,when the link energy consumption is fixed, themore bits transmitted,
the greater the link energy efficiency. Under the same interference link distance, the
performance of our scheme is better than the other two comparison schemes. This is
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Fig. 7. Illustration of the impact of the distance of TX-RX

Fig. 8. Illustration of the impact of the distance of the interference link

because the our scheme can better meet the balance of link throughput and energy
consumption, so as to maximize energy efficiency.

5 Conclusions

This paper studies the energy efficiency optimization of mmWave cooperative small cell
under SWITP. Firstly, the systemmodel of energy-limited UE pairing in mmWave small
cell is constructed, and a SWITP-based optimal energy efficiency strategy of mmWave
cooperative communication small cell is proposed tomaximize the link energy efficiency.
In order to achieve the goal of green communication, under the joint constraints of
minimum link transmission rate andminimumenergy harvesting, the strategymaximizes
the energy efficiency of the system link by optimizing the transmission power control and
power diversion factor. As the original problem is a nonconvex fractional programming
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problem, the strategy uses Dinkelbach method to transform the objective function into
a convex optimization problem, and then uses Lagrange dual method to solve it. The
simulation results show that the proposed strategy is better than the traditional power
controlmethod andmaximum transmit powermethod in optimizing the energy efficiency
performance of the system.
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Abstract. Serverless computing recently emerged as a new run-time
paradigm to disentangle the client from the burden of provisioning phys-
ical computing resources, leaving such difficulty on the service provider’s
side. However, an unsolved problem in such an environment is how to
cope with the challenges of executing several co-running applications
while fulfilling the requested Quality of Service (QoS) level requested by
all application owners. In practice, developing an efficient mechanism to
reach the requested performance level (such as p-99 latency and through-
put) is limited to the awareness (resource availability, performance inter-
ference among consolidation workloads, etc.) of the controller about the
dynamics of the underlying platforms. In this paper, we develop an adap-
tive feedback controller for coping with the buffer instability of serverless
platforms when several collocated applications are run in a shared envi-
ronment. The goal is to support a low-latency execution by managing the
arrival event rate of each application when shared resource contention
causes a significant throughput degradation among workloads with dif-
ferent priorities. The key component of the proposed architecture is a
continues management of server-side internal buffers for each applica-
tion to provide a low-latency feedback control mechanism based on the
requested QoS level of each application (e.g., buffer information) and the
worker nodes throughput. The empirical results confirm the response sta-
bility for high priority workloads when a dynamic condition is caused by
low priority applications. We evaluate the performance of the proposed
solution with respect to the response time and the QoS violation rate
for high priority applications in a serverless platform with four worker
nodes set up in our in-house virtualized cluster. We compare the pro-
posed architecture against the default resource management policy in
Apache OpenWhisk which is extensively used in commercial serverless
platforms. The results show that our approach achieves a very low over-
head (less than 0.7%) while it can improve the p-99 latency of high pri-
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ority applications by 64%, on average, in the presence of dynamic high
traffic conditions.

Keywords: Dynamic controller of computer systems · Serverless
computing · Virtualized platforms · Quality of Service (QoS)

1 Introduction

Serverless computing, also known as function-as-a-service (FaaS) or lambda ser-
vices, has increasingly become popular in recent years due to their unique flexibil-
ity of paying per usage business model. The new paradigm enables the business
owners to design and develop complex data-intensive applications by breaking it
into more manageable functional units. The FaaS paradigm can also be exploited
to execute a wide range of applications including, but not limited to, web ser-
vices, information exchange systems, machine learning, data mining, and image
and text processing [1–4].

Adaptive micro-service computing in the form of event streaming is the cur-
rent trend of the FaaS (serverless) paradigm. However, extensive empirical eval-
uations have revealed that the resource management policies adapted by almost
all commercial products can lead to long delays in the internal buffers of high
priority applications (hence a degraded performance), particularly when a sig-
nificant contention among consolidated workloads occurs across a shared envi-
ronment (e.g., see [3,5–7]). When the buffering of unprocessed events becomes
higher than a predefined threshold, the FaaS platform suffers from a high latency
delay, and therefore a degraded performance perceived by the application end-
users [4,8,9].

Based on our observations using several real workload bench-markings, the
following inefficiencies are deemed as the main limiting factors for a proper
deployment of a low-latency computation. First, the lack of a congestion control
mechanism to stabilize the throughput of the underlying hardware can lead to
a high level of instability in the latency of computation for some (if not all)
applications that share a physical machine. Second, open-loop mechanisms –
currently employed by almost all commercial products– introduce a significant
delay and fluctuated utilization level of computing resources, particularly when
there is an abrupt change in the arrival rate of some applications. Third, an
inaccurate estimation of arrival rate or the degraded performance among collo-
cated applications (usually due to a random disturbance of the input variables)
can significantly degrade the level of performance isolation among consolidated
workloads inside a working node, and therefore leads to a critical level of QoS
violation incidents for high priority applications. In such contexts, it is vital to
improve the operational efficiency of the underlying platform to respond to the
application requests as requested by application owners. In practical scenarios,
a feedback controller can be effectively employed by the service provider to pro-
vision the right amount of computing resources to each serverless application
during the run-time.
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Most existing FaaS/serverless platforms are unaware of the time-line target
value and the quality of service (QoS) requirements perceived by end-users. In
fact, such platforms merely aim to enhance the average or a specific percentile
of the query response time or the average resource utilization of the underlying
devices. As a result, the transit delay in the response time of each applica-
tion, which is usually caused by the waiting time in the internal buffer of each
functional unit, may significantly exceed a desired threshold value set by an
application owner (i.e., a QoS violation incident occurs). Supporting the desired
QoS enforcement level is challenging, since real-time events may arrive in a burst
manner at any arbitrary rate (e.g., due to a varying market demand or traffic sta-
tus for a data science application in a financial context). Furthermore, the degree
of shared resource contention among consolidated workloads may change over
the course of their execution; this makes the problem of allocating computing
resources to guarantee the QoS requirements even more challenging. To address
such barriers, the main aim of this research work is to design a “feedback control”
mechanism to support applications’ QoS enforcement levels in FaaS platforms.
Most of the existing open-source FaaS platforms, such as Dask [10] and Apache
OpenWhisk [11], only aim to support fast processing of event-driven applica-
tions on-the-fly; they usually update the results of running processing units in a
timely fashion, once the corresponding events are triggered within a predefined
interval.

In this paper, we consider soft real-time serverless applications (such as those
found in the finance sector) in which a processing delay may degrade the level
of QoS achievement from end-users’ perspectives, but may yield loss of revenue
for the service provider. If enough information about the worst-case execution
time (WCET) or worst-case resource requirement (WCRR) of each submitted
application is available, then the results of classic schedulability theory can be
properly employed to decide if a given deadline constraint can be fulfilled or
not. In such a case, a priority-based or a deadline-based scheduling policy can
be used to provide an implementation to guarantee the timing constraint during
the course of execution. Because in most practical cases, such information about
the worst-case values cannot be derived in the compile time, the platform may
encounter under utilization of computing resources. Our aim, in this paper, is
to control the level of delay in the internal buffer of each functional unit to
be lower than a specific threshold (even in the presence of burst traffic), while
the resource requirement of each submitted task is unknown in prior and may
vary during the execution time (i.e., due to changes in the external load of each
functional unit).

The rest of this paper is organized as follows. Section 2 highlights the main
challenges associated with fulfilling the timing constraints of application tasks
in FaaS platforms with shared resources when there is uncertainty in the actual
resource consumption and the execution time of each functional unit. Section 3
presents the details of our proposed feedback control scheme. The performance
of the predictive model controlling scheme is evaluated in Sect. 4. Finally, Sect. 5
concludes our work.
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2 Problem Statement

In this section, the overall structure of the target platform and its execution
plan is presented. We discuss the performance optimization challenge in a FaaS
platform as a resource allocation problem that needs to be adjusted dynamically
in response to external events, while meeting quality of service (QoS) constraints.
We also give a high-level description of the proposed feedback control approach
for supporting the desired QoS performance of each submitted application.

2.1 FaaS Platform and Application Structure

An overall architecture of FaaS platforms can be described as follows. The FaaS
paradigm enables application developers to represent the software architecture of
a complex application by breaking it down into manageable functional units (FU)
[12]. Each functional unit responds to a series of events that might be triggered by
external or internal event sources. We assume that the underlying platform runs
a set of event-driven CPU-intensive applications, denoted by Λ = {A1, A2 · · · }.
Each serverless application, Aj , can be modeled as a set of FUs, denoted by
ΛA = {F1, F2 · · · }; each FU might be triggered by a set of predefined events.
The set of all event sources that a particular Fj needs to trigger is shown by
EFj

= {e1, e2 · · · }. The main responsibility of a FaaS platform is to invoke the
corresponding FUs once triggering event occur [13]. The service provider can also
select to pack and execute several FUs, that possibly might belong to different
QoS classes, into a single physical machine. We further assume that there are m
physical machine that the controller can decide to deploy a copy of a FU to be
executed in the next controlling interval.

2.2 Quality of Service Semantic

In this paper, we assume that the service provide of a FaaS platform can spec-
ify a certain number of level of service agreements (SLA) as quality of service
(QoS) classes, where each QoS class identifies a commitment between the service
provider and application owners as an agreed run-time performance target. In
most event-driven applications, the response time of service after the correspond-
ing event is triggered can be considered as the main performance metric for a
QoS class. The SLA target for such a metric is usually represented as the 99th
percentile of application response time. We assume that the SLA contract defines
exactly q different QoS classes, shown by {Q1 · · · Qq} from which an application
owner can choose the requested performance target and get billed accordingly.
Each QoS class Qj stipulates two values of < R∗

j ,Pj,Δt >, where R∗
j denotes

an upper bound for the attained response time to be fulfilled by the service
provider during the course of execution, and Pj,Δt represents an upper-bound
for the percentage of QoS violation that is accepted by the end-user within an
interval of length Δt (such semantic is similarly defined and used by authors in
[14]).
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One of the key challenges in guaranteeing absolute service delay in a FaaS
platform is to find a resource allocation solution to achieve the desired delay for
submitted applications belonging to different QoS classes, even in the presence
of varying load conditions that are unknown in priori [15]. Another challenge
in the context of resource management problem is how to bridge the levels of
abstraction (such as functional units, delay, internal buffer, stability conditions,
and the arrival rate) to formulate and solve an optimal control problem. The
main contribution of this paper is that we formulate and solve such resource
management problems in a dynamic environment by employing the design prin-
ciples of control theory. Using a feedback loop, it can provide the aforementioned
delay guarantee for a FaaS platform with multiple QoS levels when the underly-
ing system exhibits dynamic behavior. Furthermore, we employed the result of
queuing theory to predict the the statistical properties of the internal buffers of
each software component.

3 Design Approach

In this section, we formally introduce the steps to design a feedback controller
to support the desired QoS enforcement bounds in the presence of dynamic
workload in a serverless platform.

3.1 Main Components

The architecture of the proposed feedback controller can be described as follows.
It consists of a rate estimator to predict the future rate of arrival events for each
FU, a system model to represent the behavior of complex dynamical systems
(here to estimate the length of unprocessed events in the internal buffer of each
FU), an optimization component, and a target FaaS platform that consists of
serverless working nodes to execute the submitted scripts (Fig. 1).

Fig. 1. An overall structure of the proposed feedback controller running across a
FaaS/serverless platform with multiple worker nodes

The feedback controller is designed based on the principles of model predic-
tive control (MPC) theory that is used to control the underlying system com-
ponents while satisfying a set of predefined performance constraints. It relies
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on dynamic system models that is obtained by system identification techniques
based on empirical results. One of the biggest advantages of using MPC in nonlin-
ear systems is that it produces a robust near-optimal solution against erroneous
values in the prediction or system models. Such a robustness is achieved by opti-
mizing the target system variables over a finite time-horizon, while keeping the
future system states into account [16]. The controller only applies one step of
the control action, and then repeatedly optimizes the entire process in the next
interval by considering the current and future states of the involving compo-
nents. The actuator employs the Linux’s built-in control groups, cgroup. It is a
resource allocation mechanism that limits the amount of resources available to
each FU in the next controlling interval.

3.2 Monitoring and System Model

The monitor component is invoked at each sampling interval τ to compute the
average arrival rate, the number of unprocessed events in the internal buffer of
each FU, and their service time during the last sampling period. Such information
is used by the optimizer to estimate the arrival rate for each FU, and to compute
the new process budget in the forthcoming interval. We employ a classical auto-
regressive moving average (ARMA) model to predict the arrival rate of incoming
events to each FU, denoted by λj,τ as a linear function of the past observations
and the forecast errors at prior H intervals. The ARMA model with parameters
K, φ and θ can be formally defined as follows.

λj,τ = Kj +
H∑

h=1

φj,τ−hλj,τ−h +
H∑

h=1

θj,τ−hεj,τ−h (1)

Here, εt is an uncorrelated innovation process with mean zero representing
the past errors, λj,τ−h are the past observations of arrival rate [17], and H ≥ 1
is the order of the ARMA predictor. A higher order ARMA model is more accu-
rate, while it requires more complex computation as the number of submitted
applications in a given host.

To design an effective feedback control system, it is essential to predict the
system performance dynamics when the incoming workload changes. We devel-
oped a simple model to capture the relation between the “queue size” and the
“delay” perceived by each service. Such a model can be used by the optimizer
module to bound the number of unprocessed events in the internal buffer of each
application. We employed the Allen-Cunneen formula of G/G/N queue [18] to
estimate the average response time experienced by each event right before its
processing by the corresponding FU, as stated below.

Wm =
Pcb,m

μm(1 − ρ)

(
C2s + C2d

2

)
(2)

Here, Wm represents the waiting time experienced by each unprocessed event
when both the arrival and the service time follows a general distribution; m is the
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number of concurrently running instance of the corresponding FU; ρ represents
the monitored utilization of the computing resource; Cd and Cs represent the
coefficient of variation for inter-arrival and the service time, respectively; and
Pcb,m represents the probability that all m instances are fully utilized and no
more events can be processed at this interval.

3.3 Optimizer

Once a new FaaS script is submitted, the optimizer component decides a working
node to run the submitted script. The optimizer calculates the amount of per-
formance degradation to be experienced by previously allocated applications in
such a host, and then chooses the one that minimizes such degradation among all
possible allocation decisions. It also ensures that the total capacity of processors
does not exceed the computing requests in any working node.

At each sampling interval τ , the controller compares the sampled delay of
submitted applications, denoted by yj,τ , to the desired absolute delay of the
corresponding QoS class, denoted by R∗

j . Based on the error value, denoted by
(ej,τ = |R∗

j −yj,τ |), the optimizer computes the computing budget (i.e., the CPU
share) to be allocated to each Fj . Such value is used by the progressive actuator
to (re)allocate the process budget of each running process in the target host.

Although the main goal of the optimizer is to reach the desired response
time for applications in different QoS classes, the controller must provide a
robust solution, too. That is, it should be able to effectively handle changes
in the incoming workload, as the arrival traffic rate of each application is usually
unknown and could change over time. Because of such robustness requirement,
we selected the model predictive control approach to determine the appropri-
ate values for the amount of CPU-shares for each FU. In particular, the MPC
optimization module performs a series of actions at every controlling interval,
denoted by τ ∈ {T1, T1 + ΔT · · · }, which are highlighted as follows.

– The monitoring module gathers a sample of non-processed events in the inter-
nal buffer for every FU to estimate an upper-bound for the queuing delay of
each application within the next controlling intervals.

– The optimizer calculates the required processor share to be allocated to every
Fj such that its response time in the future Tref intervals brings the perfor-
mance error of the output response, ej,τ+Tref

, to zero.
– In case the entire computing resource demand exceeds the available capacity

of such resources, the optimizer performs a cost-benefit analysis (CBA) to
determine the near optimal allocation of computing resources to minimize
the rate of QoS violation incidents across the entire platform.

– Once the optimizer resolves a possible allocation of processing capacity to each
FU, the progressive actuator applies one step of the updating action to the
current CPU share of FUs by considering the the response speed factor (Tref ).
Having a value greater than one for Tref guarantees a robust performance
output even in the presence of errors in the workload prediction or the system
performance model.
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– Finally, in the next controlling interval, the entire cycle of monitoring (as a
feedback loop), modeling, and optimization is repeated.

3.4 Cost-Benefit Analysis (CBA)

To optimally exploit the cost-effectiveness of available computing resources, we
develop a model to promptly adjust the resource allocation in response to fluc-
tuating workloads, based on the estimation of total demand, queuing delay, and
the projected QoS violation rate of each application. Such a process is able to
allocate more computing resources prior to the occurrence of a high volume or
high resource-demanding workload. In a virtualized environment, however, the
computing resources can be dynamically provisioned and managed by leveraging
the estimation of resources requested by different QoS classes in the forthcoming
intervals (e.g., by exploring characteristics of the traffic patterns of each applica-
tion using Eq. (1)). We developed a simple CBA method to significantly reduce
the operational costs without compromising the level of quality of service. Such
factors are impacted by how a serverless platform manages available comput-
ing resources in presence of high incoming traffic, and therefore having a set
of appropriate tools to optimize such a process is an important differentiator.
In the following section, we present the proposed mechanism by modeling the
resource allocation burden as a profit maximization problem. We also developed
a dynamic programming method to find solutions in reasonable amounts of time.

We use notation CΣ
τ to denote the sum of requested CPU cap demanded by

all submitted applications at interval τ . In the same manner, we use notation Cj,τ

to denote the processing demand requested by a specific FU Fj at τ . Moreover,
let U∗ denote the maximum processing capacity available in the entire FaaS
platform (which depends on the number of working host). Our assumption to
employ the CBA during the given interval is that Cτ ≥ U∗. The CBA is stated as
a reward function, denoted by R, to be maximized when only a partial fulfillment
of requested resource capacity of FU Fj is possible. The reward function is
formulated as follows.

Rj,τ (r) = (Cj,τ − rj,τ ) × Iqj
(3)

Here, rj,τ is the partial fulfillment of Fj resource request. In Eq. (3), nota-
tion Iqj

denotes a constant factor represent the importance of Fj compared to
other FUs that might belong to different QoS classes. The objective function to
maximize the total contribution received by the service provider is formulated
as follows.

max
r,τ

∑

Fj∈λ

Rj,τ (r) (4)

subject to the obvious constraints of resource availability at any given time. We
developed a dynamic programming approach to find a near-optimal solution for
the above-mentioned optimization problem. In particular, we only allowed the
values of partial resource allocation to be taken from a certain bracket, that is
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rj,τ ∈ D = {5%, 10%, · · · , 100%} × U∗
m in every working machine m. Then we

can develop the Bellman equation of sub-optimization problem as follows.

Vω(Rω) = max
0≤rω≤Rω

Vω+1(Rω − rω) + Rj,τ (rω) (5)

where Vω(.) denotes the optimal reward of allocating Rω resources among all
not-yet-allocated FUs.

4 Performance Evaluation

To evaluate the performance of the proposed controlling mechanism, we imple-
ment the proposed solution as a proxy tier into the latest version of Apache Open-
Whisk (version 20.11) running in our in-house cluster consisting four nodes, each
equipped with an Intel i7-7700 CPU with 8 cores, and 64 GB main memory.
The proposed approach is evaluated against the default policy of Open-Whisk.
The application test cases are chosen from a set of functional workloads from
Cloud-Suite [19] in the category of web services (WS). We conducted experiments
with different load traffic patterns by varying the number of HTTP requests per
second, and the probability distribution that the incoming traffic is drawn from
(i.e., Poisson and Weibull distributions). The average number of triggered events
per FU varies in the range of λj ∈ [1000, 5000] requests per minute.

Each class is defined by a set-point value for the 99-th percentile response
time over a period of one second. Our configuration for the set-point values
for each QoS class merely allows the available capacity of computing resources
to fulfill the response time of highest priority application requests (Q1). By
continues monitoring of the actual response time of applications in each QoS
class, we can evaluate the ability of the controller to identify the total amount
of QoS violation rates due to the dynamic workload incurred by low priority
applications.

4.1 Result Summary

Plots in Fig. 2 show the rate of QoS violation incidents for applications in dif-
ferent priority classes as we increase the total number of applications from 64
to 512. This performance metric reflects how well the proposed controller can
satisfy the requested service level agreement compared to the results obtained
by applying the default policy of Open-Whisk. Result shows that the default
policy evenly allocates the computing capacity in a round-robin fashion, that
in turn, causes a significant QoS violation rate for applications in high priority
classes (Q1 and Q2). By contrast, our proposed controller can dynamically iden-
tify and prevent a high violation rate for Q1 and Q2 applications. On average,
the enhancement of QoS violation rate for Q1 and Q2 applications using the
proposed controller is 64% and 51%, respectively.

Plots in Fig. 3 show the attained processor utilization of FUs belonging to
different QoS classes as the total number of applications in each QoS class is
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Fig. 2. The QoS violation rate experienced by applications in different QoS classes. The
target response time of each QoS class is set to a value such that the available resources
can only satisfy the demands from high priority applications. The total number of
submitted applications varies from 64 to 512.

Fig. 3. Aggregated processor utilization of applications belonging to different QoS
classes as the number of applications in each QoS classes increases.

increased. Results confirm that the aggregated processor utilization for applica-
tions in Q1 and Q2 are significantly enhanced by applying the proposed feedback
controller compared to the results of default policy in Open-Whisk. The normal-
ized value of such improvements is 36% and 24% for Q1 and Q2 applications,
respectively. The reason for such improvements is that the proposed controller
uses the CBA to allocate higher amount of available processor capacity to Q1

and Q2 FUs, while preventing a host to perform near its saturation point. Results
also confirm that the utilized processor capacities are mostly consumed to effec-
tively fulfill the target performance of high priority applications. Improving such
a parameter can significantly enhance the service provider revenue by decreasing
the wasted utilization of computing resources, as well as improving the end-users
satisfaction level.

4.2 Computational Overhead

We measure the overhead time incurred by performing different steps of mon-
itoring, predicting and solving the optimization problem using dynamic pro-
gramming approach. Table 1 lists such an overhead when the total number of
applications reaches to N = 512. Results shows that the fraction of such over-
head remains below 0.7% of the controlling interval length (1 s).
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Table 1. Computational overhead when total number of applications increases.

N Overhead [Sec.]

64 0.07

128 0.17

512 0.68

5 Conclusion

Serverless technology is a recent computing paradigm that allows developers
for enjoying automatic scaling and high availability for running scripts without
the burden of infrastructure management. Developing a QoS aware resource
allocation mechanism for serverless computing platform has drawn significant
attention in recent years. In this paper, we developed a QoS-aware resource
controller that can guarantee the response time of event-driven applications,
while mitigating the performance isolation problem experienced by high priority
applications in a platform with shared resources. The experimental results using
an in-house Open-Whisk cluster with four nodes confirm the effectiveness of the
proposed solution when coping with modern workloads inspired by web services
applications. In particular, the proposed solution can reduce the overall QoS
violation rate for high priority applications by 64% on average.
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Abstract. An accurate and efficient blood flow simulation in patient-
specific arteries is instructive for the diagnose and treatment of var-
ious vascular diseases, which is, however, computationally challenging
because of the complicated geometry of the artery and the turbulence
in the blood flow. In this work, we introduce a parallel scalable two-
level additive Schwarz method for fast solving the Navier-Stokes equa-
tions in a patient-specific full-size aorta with aneurysms. Distributions of
the hemodynamics, such as the pressure, velocity, and wall shear stress,
are presented and analyzed. The algorithm is studied with a focus on
its robustness against different values of model parameters and paral-
lel scalability. The results show that the proposed method is robust to
solve large and complicated simulation problems with over 25 million
unstructured elements using over 5000 processors on a supercomputer.

Keywords: Aortic aneurysm · Blood flow simulation · Parallel
computing · Newton-Krylov-Schwarz · Two-level additive Schwarz
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1 Introduction

Blood flow simulation has been used to investigate the hemodynamics of vascular
diseases, such as stenosis, dissection, and aneurysm. However, an accurate and
efficient description of the flow field is computationally challenging due to the
complexity of the geometry and the large scale of the problem, which requires
the development of robust and efficient parallel numerical methods [16].
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The Newton-Krylov method is a powerful method for solving nonlinear sys-
tems, which adopts a Newton-type method for handling the nonlinear equations
and a Krylov subspace method for solving the linear system at each Newton step
to get the Newton search direction. However, the Krylov method, whose conver-
gence rate is dependent on the condition number of the matrix, always fails to
converge or converges very slow for large or complicated problems as considered
in this paper. One efficient method to accelerate the Krylov subspace method is
the preconditioner. That is to design a preconditioner to reduce the condition
number of the matrix before applying the Krylov subspace method. Many pre-
condition techniques have been studied for the blood flow simulations, such as
the dual threshold incomplete LU factorization and the incomplete block-LU fac-
torization [2]. A Newton-Krylov method preconditioned with additive Schwarz
methods, which is called Newton-Krylov-Schwarz (NKS), is studied recently for
the blood flow simulation in the cerebral artery [9] and abdominal aorta [12].

The performance of the NKS method depends largely on the effect of the
preconditioner, especially when using a large number of processor cores. In this
work, we introduce a two-level Schwarz preconditioner for the NKS method
and simulate the blood flow of a full-size aorta with aneurysms. The two-level
Schwarz preconditioner has been applied in solving many problems, such as the
fluid-structure interaction [6], the multigroup neutron diffusion [7], the elastic
crack analysis [4] and the porous media [8]. Most of these works adopt a pair of
nested meshes since the interpolation and restriction matrices between the coarse
and fine meshes can be easily obtained. However, the nested meshes are difficult
to generate, especially for a computational domain with complex structures [3].
Therefore, we consider the non-nested meshes, where the coarse and fine meshes
are independently generated and the interpolation is achieved by using the radial
basis function. This method has been used to solve the linear system [1], the
Poisson equation [13], the coupled PDE system [15] and so on.

In our previous work, the two-level overlapping Schwarz algorithm has been
used to simulate the blood flow in a cerebral artery with stenoses and achieves a
good strong scalability [3]. In this work, we use it to simulate the blood flow in
a full-size aorta with aneurysms and further study the performance of the algo-
rithm. Especially, the performance of the algorithm is comprehensively studied
by testing the strong and weak scalability, and investigating the influence of
subdomain overlapping size, and the level of fill-ins of the incomplete factoriza-
tion that is used as the subdomain solver. We also report the robustness of the
algorithm against different values of the model parameters, such as the viscosity,
resistance, and compliance, which may be different among various diseases.

The rest of this paper is organized as follows. In Sect. 2, we introduce the 3D
artery geometry and the mesh that used in the simulation, and followed by a
detailed introduction of the two-level NKS method. In Sect. 3, we present some
results of the hemodynamics of the aneurysmal aorta and study the numerical
performance of the algorithm with respect to its robustness and scalability. Some
concluding remarks are drawn in Sect. 4.
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2 Methodology

2.1 Image Segmentation and Mesh Generation

As shown in Fig. 1, the geometry of a full-size aorta, from the ascending aorta to
the iliac arteries, is reconstructed from the CT image by using the software Mim-
ics (Materialise, Leuven, Belgium). The geometry has 1 inlet at the ascending
aorta and 13 outlets at the major branch vessels, including the common carotid
artery, the brachiocephalic artery, the left subclavian artery, the common hepatic
artery, the splenic artery, the superior mesenteric artery, the left and right renal
arteries, and the left and right common iliac arteries. There are three aneurysms
located in the aortic arch and the right and left common iliac arteries, marked
as dashed squares 1, 2, and 3 in the left of Fig. 1, respectively.

A coarse mesh of 68,506 and a fine mesh of 13,902,281 tetrahedral elements
are generated independently to cover the geometry by using a commercial soft-
ware ICEM (ANSYS, Canonsburg, Pennsylvania), as shown in the enlarged views
in the right of Fig. 1. It can be seen that the size of the elements in the coarse
mesh (red) is larger than that in the fine mesh (blue) and the nodal points are
not nested since they are independently generated. The mesh is critical to the
accuracy of the numerical results, and its generation includes the following main
steps: (1) import the geometry into ICEM and create parts for the wall, the
inlet, and the outlets to assign different boundary conditions; (2) set a global
mesh size for the overall meshing and adjust local mesh size for different parts;
and (3) create an unstructured mesh of tetrahedral elements to cover the whole
domain and export it after a check of the mesh quality. The mesh is partitioned
into non-overlapping subdomains by ParMETIS, which ensures the number of
elements in each processor is roughly balanced.

Fig. 1. The geometry, meshes and boundary conditions of the aorta with major branch
vessels and aneurysms. (Color figure online)
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2.2 Governing Equation and Boundary Conditions

The blood flow is considered as an incompressible Newtonian fluid and governed
by the following Navier-Stokes equations [11],{

ρ
(∂u

∂t
+ (u · ∇)u

)
+ ∇p − μΔu = 0 in Ω × (0, T ],

∇ · u = 0 in Ω × (0, T ],
(1)

where ρ and μ are the density and the dynamic viscosity of the blood, u and p
are the velocity vector and the pressure to be solved, respectively.

The Dirichlet and non-slip boundary conditions are imposed on the inlet ΓI

and wall ΓW as follows, {
u = vI , on ΓI × (0, T ],
u = 0, on ΓW × (0, T ],

where vI is a pulsatile velocity waveform obtained from the patient-specific
clinical measurement in the ascending aorta, as shown in Fig. 1.

A three-element Windkessel model is applied at each outlet to account for
the impact of the downstream vasculature, which is governed by the following
equation [5],

Pi(t) + R′
iCi

dPi(t)
dt

= (Ri + R′
i)Qi(t) + P b

i (t) + RiR
′
iCi

dQi(t)
dt

,

where Ri, R′
i, Ci, Pi(t) and Qi(t) are the resistances, the compliance, the pressure

and the flow rate at the ith outlet respectively, as shown in Fig. 1. P b
i (t) is the

pressure at the downstream vasculature. As given in [3], the analytic solution of
this equation is

Pi(t) = RiQi(t) +
(
Pi(0) − RiQi(0)

)
e−t/τi +

∫ t

0

e−(t − s)/τ

Ci
Qi(s)ds,

where τi = R′
iCi; Pi(0) and Qi(0) are the initial pressure and flow rate at the

ith outlet. Here, the distal pressure P b
i (t) is assumed to be 0.

During the calculation, a total resistance RT and total compliance CT will
be introduced, whose values are manually adjusted so that the obtained diastolic
and systolic pressures at the inlet match the clinically measured values. Then,
RT and CT are split to each outlet for the values of Ri and Ci by the radius of
the vessels.

2.3 Newton-Krylov-Schwarz Method with a Two-Level
Preconditioner

For the full discretization of Eq. (1), we adopt a stabilized P1-P1 finite element
method in space and an implicit backward Euler method in time [3]. After the
discretization, we obtain a large, sparse, and nonlinear algebraic system at each
time step, which is denoted as
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F(χ) = 0, (2)

where χ includes all the velocity and pressure at each mesh point.
To solve Eq. (2), the NKS method is adopted, which updates the solution

through the following iterative method

χk+1 = χk + τkSk,

where τk is a step length calculated from a line search method and Sk is the
Newton correction obtained by inexactly solving the Jacobian system at each
Newton step in the sense

‖ JkM−1
k MkSk + F(χk) ‖< εlF(χk),

where εl is a given relative tolerance to control the “exactness” of the solution
of the Jacobian system and Mk is a two-level Schwarz preconditioner defined as

M−1 = Ih
HB−1

c (Ih
H)T +

Np∑
l=1

(R0
l )

T B−1
l Rδ

l

(
I − JkIh

HB−1
c (Ih

H)T
)
.

where Ih
H is an interpolation operator from the coarse mesh to the fine mesh. B−1

l

is a fine-level subdomain preconditioner for the Jacobian matrix Jk. B−1
c is a

coarse-level preconditioner for the inverse of the coarse-level Jacobian matrix. Np

is the number of subdomains, which also equals the number of processors used in
parallel computing. δ is the overlapping size extended from the nonoverlapping
subdomains Ωl (l = 1, 2, . . . , Np) to the overlapping subdomains Ωδ

l . R0
l and Rδ

l

are the restriction operators that map the global vectors in Ω to those in Ωl and
Ωδ

l respectively. Notably, it is difficult to directly solve the problem on the fine
mesh, but much easier on the coarse mesh, which can then be interpolated to
the fine mesh by using a radial interpolation basis function, as described in [3].

3 Results and Discussion

In this section, we will present some numerical results of the hemodynamics in
a full-size patient-specific aorta with a focus on the performance of the pro-
posed algorithm, carried out on the Tianhe 2A supercomputer at the National
Supercomputer Center in Guangzhou, China.

3.1 Simulation Results and Discussion

For the simulation, the values of the total resistance RT and total compliance
are chosen as 1012.27 dyn · s/cm5 and 1.026146 × 10−2 cm5/dyn, with which,
the simulated pressure matches with the patient’s pressure. Figure 2 shows the
spatial distributions of the pressure, streamline of the velocity, and wall shear
stress (WSS) in the aorta during a systolic period. It can be seen that the pressure
gradually decreases along the artery from the proximal to the distal ends, and
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the range of the pressure matches with that reported in [10]. The streamline
of the velocity shows that physiologically reasonable values of the velocity are
obtained with relatively lower velocity in the aneurysmal region compared to
other regions. Some secondary flows are developed at the aneurysmal regions 1
and 2 that are marked in Fig. 1. Similar results are reported in [17].

The distribution of the WSS shows that relatively lower WSS can be observed
in the aneurysm compared to the other regions, as has been shown in [12]. It
is reported that the WSS shifts to a low level during the growing period of
the aneurysm, and the rupture usually occurs at these sites [19]. The features
of the hemodynamics in the aneurysmal regions should consequently have an
impact on the aneurysm development and rupture, which should be studied
more extensively.

Fig. 2. Spatial distributions of the pressure, streamline of the velocity and WSS at the
period of systole

3.2 Robustness and Scalability

In this subsection, we show the robustness and parallel scalability of the proposed
NKS method for the simulation of the hemodynamics in the whole aorta. The
algorithm has several important parameters, such as the time-step size Δt, the
viscosity μ, the overlapping size δ, the ILU fill-in level, and the resistance and
compliance, which affect the performance of the method.

For all the numerical tests in this subsection, the stopping criteria for the
linear and nonlinear solvers are set to be 10−6 (relative error). In all tables,
“Newton”, “GMRES”, and “Time (s)” refer to the average number of Newton
iterations per time step, the average number of GMRES iterations per Newton
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iteration, and the average compute time in seconds per time step, respectively. In
the two-level method, the coarse-level problem is solved by the GMRES method
preconditioned with a one-level Schwarz preconditioner and we use the maximum
number of iterations (“Coarse Its”) as the stopping condition for the coarse-level
GMRES. For each test, we only change one parameter to see the performance of
the algorithm. In the two-level method, we use a mesh with 6.85 × 104 elements
as the coarse mesh, and all the tests are carried out on two meshes (mesh1 with
3.26 × 106 elements and mesh2 with 1.39 × 107 elements) for comparison.

Table 1 shows the influence of the time-step size Δt on the performance of the
algorithm, and four time-step sizes 5 × 10−4, 1 × 10−3, 2 × 10−3 and 4 × 10−3 are
tested. All tests are performed on two different meshes, namely the mesh1 with
3.26×106 elements and the mesh2 with 1.39×107 elements. Results show that, in
general, with the increase of the time-step size, the number of Newton and GMRES
iterations and the compute time increase, which means that the solver becomes
more difficult to converge. For example, when the time-step size increases to 4 ×
10−3, the GMRES iterations are almost tripled for the coarse mesh case (mesh1)
and diverge for the fine mesh case (mesh2). The main reason is that the initial guess
of Newton’s method becomes too far from the exact solution for the large time-step
size case, which slows down the convergence or even diverges. Table 1 also shows
that the fine mesh case is more difficult to solve than the coarse mesh case, and
at the same time, our algorithm shows good robustness with respect to the mesh
refinement since both the linear and nonlinear iterations increase a little bit after
a threefold increase in the problem size, which shows that the proposed algorithm
has the potential to solve even larger problems. In the rest of the paper, we use
1 × 10−3 as the default time-step size.

Table 1. The impact of the time-step size Δt on the performance of the solver. The
mesh1 and mesh2 are carried out with 120 and 480 processors (same setups are used
for the rest test cases), respectively. Here NC means “Not Converge”.

Mesh1: 3.26 × 106 Mesh2: 1.39 × 107

Δt Newton GMRES Time(s) Newton GMRES Time(s)

5 × 10−4 2.20 5.09 21.67 2.60 7.92 28.26

1 × 10−3 2.30 5.23 22.65 2.40 6.13 25.42

2 × 10−3 3.10 6.48 30.29 3.20 8.00 34.91

4 × 10−3 3.10 17.31 34.92 NC – –

In Table 2, we show the impact of the accuracy of the coarse-level solution on
the performance of the proposed two-level method. The accuracy of the coarse
problem is controlled by “Coarse Its”, where larger “Coarse Its” corresponds to a
more accurate coarse-level solution. From the results, we see that with the increase
of the “Coarse Its”, the number of Newton iterations doesn’t change, and the num-
ber of GMRES iterations decreases, which means that the two-level preconditioner
becomes stronger with the increase of “Coarse Its”. But at the same time, the time
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spent on the coarse-level will increase when “Coarse Its” increases, which makes
the total compute time increase if “Coarse Its” reaches a certain value. Therefore,
the optimal choice of “Coarse Its” is 40 in terms of computing time for this test
case and we will use 40 as the default value for “Coarse its” for all the rest tests.

Table 2. The impact of the stopping condition for the coarse-level GMRES on the
performance of the solver

Mesh1: 3.26 × 106 Mesh2: 1.39 × 107

Coarse Its Newton GMRES Time(s) Newton GMRES Time(s)

30 2.30 6.37 22.91 2.40 6.13 25.50

40 2.30 5.23 22.65 2.40 6.13 25.42

50 2.30 5.20 22.70 2.40 6.13 25.44

60 2.30 5.09 22.73 2.40 6.13 25.60

The viscosity μ is an important parameter in blood flow simulation. Table 3
shows that the two-level method performs a robust convergence for a wide range
of μ. We observe that as the viscosity increases, the number of Newton iteration
gradually stabilizes at a constant, the number of GMRES iteration shows a small
variation, and the computation time gradually stabilizes. Moreover, the effect of
the viscosity μ is similar for both meshes, which indicates that the proposed
algorithm is robust with respect to the viscosity.

Table 3. The impact of the viscosity μ on the performance of the solver

Mesh1: 3.26 × 106 Mesh2: 1.39 × 107

μ Newton GMRES Time(s) Newton GMRES Time(s)

0.01 2.85 5.89 27.69 2.50 6.68 26.87

0.04 2.35 5.26 23.03 2.40 6.42 25.76

0.07 2.25 5.36 22.12 2.40 6.54 26.29

0.10 2.25 5.20 22.11 2.40 6.86 26.42

In Table 4, the two-level preconditioner also shows a robust performance to
the resistance R and the compliance C. The total resistance R and the total
compliance C are critical parameters for the Windkessel model, which are gen-
erally determined by the clinical conditions of the patient. The results show
that the number of Newton and GMRES iterations are almost stable with small
variations leading to a slight fluctuation of the computation time. Overall, the
proposed algorithm is robust to both the resistance R and the compliance C.

For the two-level Schwarz preconditioner, the fill-in level of the incomplete
LU (ILU) [14] is another parameter to affect the performance of the algorithm,
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Table 4. The impact of the resistance R and compliance C on the performance of the
solver

Mesh1: 3.26 × 106 Mesh2: 1.39 × 107

R(dyn · s/cm5) Newton GMRES Time(s) Newton GMRES Time(s)

5.06 × 102 2.45 5.33 23.90 2.40 6.51 25.69

1.012 × 103 2.30 5.23 22.65 2.40 6.13 25.42

2.024 × 103 2.30 5.76 22.69 2.40 7.04 26.13

C(cm5/dyn) Newton GMRES Time(s) Newton GMRES Time(s)

5.131 × 10−3 2.35 5.36 23.14 2.40 6.29 25.54

1.026 × 10−2 2.30 5.23 22.65 2.40 6.13 25.42

2.052 × 10−2 2.35 5.23 23.02 2.40 6.04 25.47

which is tested and summarized in Table 5. Np is the number of processors used
for solving the problem. We use different levels of fill-in with different subdomain
solvers to test the robustness of the proposed algorithm. We fix the overlapping
size at 2, the coarse ILU level at 1, and test on the meshes with 1.39 × 107 and
2.60 × 107 elements. We conclude that the algorithm is stable as the fill-in level
of ILU increases. The results show that the numbers of Newton and GMRES
iterations are almost stable and the compute time increases with the increase
of the fill-in levels. This means that we can use very small fill-in levels in our
simulation, which is unlike the one-level method that usually needs large fill-in
levels.

Table 5. The effect of the ILU fill-in levels on the performance of the algorithm

Mesh1: 1.39 × 107 Mesh2: 2.60 × 107

Subsolve Np Newton GMRES Time(s) Np Newton GMRES Time(s)

ILU(0) 720 2.40 6.38 17.54 1440 2.50 8.28 19.29

ILU(1) 720 2.40 5.67 18.04 1440 2.50 8.88 20.34

ILU(2) 720 2.40 5.75 19.89 1440 2.50 8.76 23.42

ILU(3) 720 2.40 6.58 23.90 1440 2.60 8.77 27.54

Table 6 studies the impact of the subdomain overlapping size on the proposed
algorithm. The overlapping size is used to control the amount of information
exchanged between subdomains. For the one-level method, with the increase of
the number of subdomains (equal to the number of processors for the parallel
computing), the preconditioner becomes weaker and therefore usually needs a
large overlapping size as reported in [6]. For the proposed two-level method, the
results show that the numbers of Newton and GMRES methods are not sensitive
to the overlapping size, which means that we can use a very small overlapping
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size in the simulation. Overlapping always means repeat works. Therefore, in the
design of the parallel algorithm, we hope to use small overlapping to save time.
The theory of the two-level domain decomposition method also suggests that
the convergence rate is independent of the overlapping size which is consistent
with our results [18].

Table 6. The effect of the overlapping size δ on the performance of the solver

Mesh1: 1.39 × 107 Mesh2: 2.60 × 107

Overlap(δ) Np Newton GMRES Time(s) Np Newton GMRES Time(s)

0 720 2.40 7.67 18.27 1440 2.20 12.27 18.90

1 720 2.40 7.08 18.39 1440 2.20 10.71 17.88

2 720 2.40 6.58 18.38 1440 2.20 9.24 17.56

3 720 2.40 6.17 18.49 1440 2.20 9.86 18.96

To understand the parallel scalability of the two-level preconditioner, we test
the weak scalability and strong scalability of the algorithm. For the weak scalabil-
ity, the number of linear iterations and the computing time should theoretically
stabilize at a constant when the number of processor cores and the problem size
increase at the same rate to keep the same subproblem size for each processor.
Results are shown in Table 7. Four meshes with 3.26×106, 6.70×106, 1.39×107

and 2.60×107 elements, are used in the tests, and they are solved with 180, 360,
720, and 1440 processor cores, respectively. The results in Table 7 show that the
numbers of Newton and GMRES iterations stay close to a constant when the
number of mesh elements and the number of processor cores increases propor-
tionally, and the computing time per time step does not change a lot. Our results
indicate that the proposed algorithm is weakly scalable.

Table 7. The weak scalability results tested on four different meshes

Mesh Np Newton GMRES Time(s)

3.26 × 106 180 2.35 5.28 16.11

6.70 × 106 360 2.30 7.42 17.60

1.39 × 107 720 2.20 5.86 16.21

2.60 × 107 1440 2.25 7.09 17.53

For the strong scalability, we only test two meshes with 1.39 × 107 and
2.60×107 elements. The results of the strong scalability in Table 8 show that the
number of Newton iterations remains almost constant for both meshes as the
number of processors increases and the number of GMRES iterations increases
slowly at first and then fast when the number of processors reaches 2880. For
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the coarse mesh, when the number of processors increases from 360 to 2880, the
increase in the number of GMRES iterations is slow, and the rate of comput-
ing time reduction is relatively uniform. For the fine mesh, when the number of
the processor increases from 2880 to 5760, the number of GMRES increases by 4
times, which results in a quick drop in the parallel efficiency. The main reason for
the low efficiency is that the problem size is too small for 5760 processors, which
makes the ratio of the computing time and the communication time between
processors too small. Communication is the main bottleneck for achieving high
parallel efficiency. One way to increase the parallel efficiency is to increase the
problem size.

We define the speed up and the parallel efficiency as speedup = tm/tn and
efficiency = (tm ×Npm)/(tn ×Npn), where tm and tn are the average computing
time per time step under the usage of Npm and Npn processor cores, and Npm ≤
Npn. The parallel efficiency of the two-level algorithm is 45% when the number
of processor cores reaches 2880 for the coarse mesh with 1.39 × 107 elements,
and 35% when processor cores reaches 5760 for the fine mesh with 2.60 × 107

elements. Overall, the proposed algorithm is robust and scalable for the solution
of large-scale problems.

Table 8. Strong scalability results tested on two different meshes

Mesh Np Newton GMRES Time(s) Speedup Ideal Efficiency

1.39 × 107 360 2.40 5.54 42.35 1.00 1.00 100%

720 2.40 6.63 24.45 1.73 2.00 87%

1440 2.40 9.13 15.87 2.67 4.00 67%

2880 2.30 17.09 11.69 3.62 8.00 45%

2.60 × 107 720 2.50 8.16 55.60 1.00 1.00 100%

1440 2.60 10.50 36.60 1.52 2.00 76%

2880 2.40 22.13 22.67 2.45 4.00 61%

5760 2.40 80.54 20.18 2.76 8.00 35%

4 Conclusion

In this work, a parallel NKS algorithm with a two-level preconditioner is used
to simulate the blood flow in a full-size aorta with aneurysms. A large nonlin-
ear system is obtained from the discretization of the Navier-Stokes equations
by using a stabilized finite element method in space and an implicit backward
Euler method in time. The system is then solved by the NKS algorithm with a
two-level Schwarz preconditioner, which is constructed by a radial interpolation
basis function between the non-nested meshes. Numerical tests show that the
algorithm is robust to the viscosity, the overlapping size, and the fill-in level and
demonstrate good strong and weak scalability with up to 5000 processor cores.
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Abstract. Data locality is a key factor influencing the performance of
Spark systems. As the execution container of tasks, the executors started
on which nodes can directly affect the locality level achieved by the tasks.
This paper tries to improve the data locality by executor allocation in
reduce stage for Spark framework. Firstly, we calculate the network dis-
tance matrix of executors and formulate an optimal executor allocation
problem to minimize the total communication distance. Then, an approx-
imation algorithm is proposed and the approximate factor is proved to
be 2. Finally, we evaluate the performance of our algorithm in a practical
Spark cluster by using several representative benchmarks: sort, pageR-
ank and LDA. Experimental results show that the proposed algorithm
can help to improve the data locality and application/job performance
obviously.

Keywords: Communication distance · Data locality · Executor
allocation · Spark

1 Introduction

Apache Spark becomes the popular parallel computing framework for massive
data processing. A typical Spark application contains one or more jobs, and a
job usually consists of many stages. Since these stages are executed sequentially,
the intermediate output of the former stage is used as the input of the later
stage. When the tasks of a stage run in parallel on different nodes, the data
communication is required during the job execution. In the map (i.e., shuffleMap)
stage, each task reads a data block to process and outputs the intermediate data
to local disks. In the reduce (i.e., result) stage, each task fetches part of the
intermediate data from all the previous tasks for processing. This is a many-
to-many communication mode. The resulting large amount of network traffic in
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these two stages can extend execution time and congest the cluster network,
thereby hindering the system [1].

For improving performance, data locality is a key factor considered by the
task scheduling of Spark stages [2]. The task scheduling determines the executor
on which node the task runs and the data locality refers to scheduling computa-
tion/task close to data. In particular, in the map stage, the task scheduler uses
the delay scheduling algorithm [3] that assigns the map task to the node which
stores the data block, thus to avoid copying data remotely. In the reduce stage,
the task scheduler assigns the reduce task to one of the nodes that holds more
intermediate data to the task, thus to minimize the data transmission volume.

However, as the execution container of tasks, the executors can limit the
nodes available for the task scheduling, which affects the locality level achieved
by the tasks. On the one hand, if the executor is not started on the node in which
a data block is located in the map stage, the map task is almost impossible to
retrieve data locally. On the other hand, if the executors are started on the node
away from each other in the reduce stage, the reducer has to span a long network
distances to get data. In the Spark framework, spreadOut and noSpreadOut are
two algorithms provided to decide the executors start up. Unfortunately, none
of them fully consider the locality factor.

In this paper, we improve the data locality of tasks from the view of executor
allocation considering the reduce stage for Spark applications. As the number
of reduce stages in general is much greater than that of map stages, the reduce
stage has an important impact on the entire application/job performance. The
main contributions of this paper are summarized as below.

• We calculate the network distance matrix of executors, and formulate an
executor allocation problem to minimize the total communication distance.
This problem proved to be an NP-Hard problem.

• We propose an optimal executor allocation approximation algorithm, and
prove that the approximate factor of the algorithm is 2.

• We implement our algorithm in Spark-3.0.1 and evaluate its performance on
representative benchmarks. The experiment results explain that the proposed
algorithm can decrease the task execution time for better data locality.

The rest of this paper is organized as follows. Section 2 reviews related
research. Section 3 presents the proposed executor allocation algorithm. Experi-
ments and performance evaluation are given in Sect. 4. Section 5 concludes this
paper.

2 Related Work

A lot of research has been done to optimize the cross-node/rack data commu-
nication problem in MapReduce-type frameworks, which can be categorized as
follows:

Task Scheduling. In the design of MapReduce, Dean et al. [4] took the locality
of map tasks into account to save bandwidth consumption. The priority of tasks
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scheduled to nodes is classified into three levels: node-local, i.e., the task and its
data block are on the same node; rack-local, i.e., the task and its data block are
on different nodes but on the same rack; and off-rack, i.e., the task and its data
block are on different racks but on a cluster. Further, using the time-for-space
strategy, Zaharia et al. [3] proposed the delay scheduling algorithm. If there is no
task can obtain data locally on the request node, it will wait for a small amount
of time and in the hope of obtaining better locality from subsequent nodes. In
a cluster that quickly releases resources, the delay scheduling could achieve a
higher proportion of node-local tasks while preserving fairness.

Besides the map stage, the data locality for reducers also affects the job
performance. Tang et al. [5] presented a minimum transmission cost reduce task
scheduler (MTCRS). It decides the appropriate launching locations for reduce
tasks according to the waiting time of each reduce task and the transmission
cost set, which is computed by the sizes and the locations of intermediate data
partitions.

Data Pre-fetching. From another angle, Sun et al. [6] designed a high perfor-
mance scheduling optimizer (HPSO), a prefetching service based task scheduler
to improve data locality for MapReduce jobs. Their idea is to predict the most
appropriate nodes to which future map tasks should be assigned and then pre-
load the input data to memory without any delaying on running normal tasks.
Nevertheless, the method may incur additional overhead and could not help to
alleviate the network traffic of cluster.

As our early work [7], we optimized the task locality in the map stage by
the executor allocation in Spark framework. In this paper, we focuses on the
executor allocation in the reduce stage, with the purpose of providing tasks with
the possibility of better locality when scheduling the reduce tasks.

3 Executor Allocation Algorithm

This section first formulates the optimal executor allocation problem, and then
presents the approximation algorithm for the problem.

3.1 Optimal Executor Allocation Problem

When a Spark application is submitted to the cluster and to be executed, the
master registers with the resource manager and applies for the resources to start
a group of executors. An executor is the container of executing tasks, which
actually is a collection of computing resources (i.e., cpu and memory). A task
can be scheduled to run on a node requiring to have idle executors.

In the initial state of allocating executor for an application, some particular
data structures are defined as follows:

(1) E: A set of executors allowed to be started on the nodes, the number is m.
The element eli represents the ith executor that can be started on the lth

node if marked. In the Spark system, the number of executors allowed to
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start on each node can be calculated based on the free resources of the node,
formalized as:

exe numi = min{[
free cpui

cpu conf
], [

free memoryi
memory conf

]}, (1)

where exe numi indicates the number of executors allowed to be started
on node Ni, and cpu conf and memory conf are the CPUs and memory
capacity configured by the executor respectively.

(2) D: A matrix of m × m represents the communication distance between two
executors of E, represented as:

D =

⎡
⎢⎢⎢⎣

d00 d01 . . . d0(m−1)

d10 d11 . . . d1(m−1)

...
...

. . .
...

d(m−1)0 d(m−1)1 . . . d(m−1)(m−1)

⎤
⎥⎥⎥⎦ ,

where dij represents the communication distance between executor ei and ej .
The communication distance depends on the network latency and bandwidth.

To capture the data locality, we divide the proximity level (PL) of two executors
into three levels: (1) two executors are on the same node, then PL is equal to 0;
(2) two executors are on different nodes of the same rack, then PL is equal to
1; (3) two executors are on different nodes of different racks, then PL is equal
to 2. Then the distance dij can be further calculated as:

dij =

⎧
⎪⎪⎨
⎪⎪⎩

0, if PL = 0
2 ×

(
1

bandNS
+ latencyNS

)
, if PL = 1

2 ×
(

1
bandNS

+ latencyNS

)
+ 2 ×

(
1

bandSS
+ latencySS

)
, if PL = 2

,

(2)
where bandNS is the network bandwidth from node to switch, bandSS is the
network bandwidth from switch to switch, latencyNS is the network delay from
node to switch, and latencySS is the network delay from switch to switch.

In this model, our purpose is to start the required executors on nodes close to
each other. Assuming that the number of executors required by the application
is k, so the optimal executor allocation problem can be described as selecting
a subset E

′ ∈ E to minimize the total communication distance between two
executors. This problem can be formalized as follows by using Integer Program-
ming:

min

m−1∑
i=0

m−1∑
j=0

dij × (xi × xj),

subject to

m−1∑
i=0

xi = k, xi ∈ {0, 1}, 0 ≤ i < m − 1, (3)

where xi is a binary variable, whose value is 1 means that the executor ei is
selected, and value is 0 means that the executor is not selected.
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Theorem 1. The optimal executor allocation problem (abbreviated as the OEA
problem) is NP-Hard.

Proof. The k-clique problem in graph theory can be shown to reducible to the
OEA problem. That is, for any instance of the k-clique, an instance of OEA can
be created in polynomial time such that solving the instance of OEA solves the
instance of k-clique as well. According to the NP completeness of the k-clique
problem, the OEA problem can be proved to be NP-Hard [8].

3.2 Approximation Algorithm

Algorithm 1 describes the approximation algorithm for the optimal executor
allocation problem. Firstly, the algorithm selects k nearest executors (including
ej itself) for each executor ei. For executor ei, the set of its k nearest executors
is represented as S(ei), and the sum of communication distances from executor
ei to other k−1 executors is calculated and represented as C(ei). Then, find the
smallest C(ev) among all executors, and assign the executor set S(ev) to MinSet.
Thirdly, calculate the total communication distance between two executors of
MinSet and represent it as MinCost. Finally, return to MinSet.

Algorithm 1: Approximation Algorithm
Input:

The set of executors allowed to start: E;
The communication distance matrix: D;
The number of executors required: k;

Output:
The executors selected to start.

1 begin
2 for each executor ei of E, find k executors nearest (including ei itself) to ei,

represented as S(ei);
3 calculate the sum of communication distances from executor ei to other

k − 1 executors:
4 C(ei) =

∑
ej∈S(ei)

dij ;

5 find the smallest C(ev) and the executor set is represented as MinSet;
6 calculate the total communication distances between executors of MinSet,

represented as MinCost;
7 return MinSet.

8 end

The algorithm takes O(m) time to find the nearest k executors by using the
optimal algorithm. For m executors, the time it takes is m×O(m). Therefore, the
time complexity of Algorithm 1 is O(m2), where m is the number of executors
allowed to start.

Theorem 2. The approximate factor of the approximation algorithm to the
optimal executor allocation problem is 2.
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Proof. The solution of the approximation algorithm for the optimal executor
allocation is MinSet, and the sum of the communication distances between
executors is MinCost. Let MinSet∗ be the optimal solution, and the sum of the
communication distances between executors of MinSet∗ is MinCost∗. Then for
MinCost∗, there is:

MinCost∗ =
1

2

∑

ei∈MinSet∗

∑

ej∈MinSet∗
dij ≤ 1

2

∑

ei∈MinSet∗

∑

ej∈MinSet

dij

=
1

2

∑

ei∈MinSet∗
C(ei) ≥ 1

2

∑

ei∈MinSet∗
MinCost =

k

2
× MinCost.

(4)

For MinCost, there is:

MinCost =
1
2

∑
ei∈MinSet

∑
ej∈MinSet

dij . (5)

Let Cev gets the minimum total communication distances MinCost. According
to the triangular inequality [9], there is:

∑

ei∈MinSet

∑

ej∈MinSet

dij ≤
∑

ei∈MinSet

∑

ej∈MinSet

(div + dvj)

=
∑

ei∈MinSet

∑

ej∈MinSet

div +
∑

ei∈MinSet

∑

ej∈MinSet

dvj

=
∑

ei∈MinSet

⎛

⎝
∑

ej∈MinSet

dvi

⎞

⎠ +
∑

ei∈MinSet

⎛

⎝
∑

ej∈MinSet

djv

⎞

⎠

= k ×
⎛

⎝
∑

ei∈MinSet

div

⎞

⎠ + k ×
⎛

⎝
∑

ej∈MinSet

djv

⎞

⎠

= k × MinCost + k × MinCost. (6)

Therefore, for MinCost, there is:

1
2

× 2k × MinCost = k × MinCost. (7)

The approximate factor of our solution MinSet is:

σ =
MinCost

MinCost∗
=

k × MinCost
k
2 × MinCost

= 2. (8)

Therefore, the approximation algorithm for the optimal executor allocation prob-
lem is a 2-approximate algorithm.
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4 Experimental Evaluation

We evaluate the performance in a data center with the KVM technology used to
build virtual machines. Each VM is equipped with 4 virtual cores, 8 GB RAM
and 64GB disk space. We then deploy the Spark-3.0.1 cluster in the data center
that contains 18 nodes (each server starts 2 VMs).

4.1 Performance

(1) Micro-benchmark

Sort is a frequently used application with the function of making data objects in
order. The experiment uses 30GB data set of Wikipedia entries as input data.
This application contains a job with two stages: map stage and reduce stage,
each stage has 80 tasks. To evaluate the performance under different numbers of
executors, the required number of executors is set to 30, 40, and 50 respectively
in the procedure.

Figure 1(a) reveals the performance comparison of the three executor allo-
cation methods, where the proposed approximation algorithm is marked as
OTCD. It illustrates that the job execution time of OTCD lower than spreadOut,
noSpreadOut. In particular, when the required number of executors is 50 (i.e.,
Executor 50), compared with other two methods, OTCD decreases the execution
time by 32.8% and 24.5%, respectively.

Figure 1(b) shows the comparison of the reduce stage time under different
methods. In this stage, the reduce tasks take a lot of time to obtain the inter-
mediate data from previous tasks. Because the reduce stage is considered in our
optimization of data locality through executor allocation, it can be seen that
comparing Fig. 1(a), OTCD has a significant performance improvement in the
reduce stage. In particular, when the required number of executors is 40 (i.e.,
Executor 40), by comparison with spreadOut and noSpreadOut, OTCD reduces
the execution time by 37.1% and 28.2% respectively.
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(2) Macro-benchmark

To evaluate the performance under more complex applications, we select two
popular machine learning algorithms pageRank and LDA from the Spark exam-
ples for testing. Since these two applications contain one or more jobs, in which
a job usually contains a lot of stages, the application execution time is used.

PageRank is a widely recognized iterative algorithm for ranking web pages
according to their importance. The experiment uses 10GB data set of WT10g
as input data, and set the parameter numIterations to 10 in the procedure. In
the application execution, it consists of 1 job and 13 stages.

From the experimental result of Fig. 2(a), it can be seen that compared with
spreadOut and noSpreadOut, OTCD has the shortest application execution time.
In particular, when the number of executors required is 40 (i.e., Executor 40),
OTCD reduces the application time by 41.2% and 24.6% respectively.

LDA is a document generation model in natural language processing, which
identifies the hidden subjects in a large-scale documents. The experiment runs
on 20GB arXiv Bulk Data data set and the procedure sets the parameter
maxIterations to 20. This application is concretely executed as 26 jobs and
90 stages totally.

The experimental results illustrate that OTCD has a greater performance
advantage than other two methods, as shown in Fig. 2(b). In particular, when
the number of executors required is 50 (i.e., Executor 50), OTCD decreases the
application time by 72.7% and 43.2% compared with spreadOut and noSpread-
Out, respectively. As we can see for the application with many jobs and stages,
optimizing the data locality by executor allocation in multiple reduce stages can
bring a more substantial performance improvement.
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Fig. 2. Performance comparison under macro-benchmark.

5 Conclusion

This paper has optimized the data locality by executor allocation for Spark
framework. We propose an optimal executor allocation approximation algorithm,
and the experimental results show that it can improve the data locality for lower
data communication. As our future work, we intend to consider the input data
distribution of each stage in the executor allocation.
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Abstract. Energy consumption and peak temperatures on MPSoCs are
growing exponentially as transistor density increases, rendering systems
unstable. Thus, in modern real-time systems, fault-tolerance is an essen-
tial design feature. This paper proposes TEFRED, a heuristic schedul-
ing strategy that addresses the problem of controlling energy and peak
temperature levels simultaneously on systems with two types of cores
while remaining resistant to transient faults. Our experimental results
demonstrate that TEFRED can save considerable energy and lower core
peak temperatures compared to a state-of-the-art energy-efficient fault-
tolerant scheduler.

Keywords: Heterogeneous · Fault-tolerant · Temperature · Energy

1 Introduction

Real-time systems are widely employed in high-risk sectors such as automobiles,
aviation, and even medicine. The applications executing in such systems tend to
have high demand, which led to the deployment of such systems from single to
multicore platforms a decade ago. In homogenous multicore platforms, general-
purpose cores cannot deliver the degree of efficacy afforded by heterogeneous
multicore platforms. This is because heterogeneous architectures are made up of
various types of cores, each of which is suited for a particular set of activities. Due
to this reason, every task will need a different duration to finish on other cores.
Hence, the preparation of task schedules is more challenging on heterogeneous
multicore platforms.

As real-time systems are prone to failure, fault-tolerance is essential for such
systems. Faults can be permanent, transient, or intermittent. We focus on tran-
sient faults in this paper, which have risen exponentially over time as transis-
tor density, frequency, temperature, and other factors have increased. Standby-
sparing is a commonly used technique for fault-tolerance. Each task has two
copies: the primary copy runs on the primary core, while the backup copy runs
only if the first copy fails (as determined by an acceptance test).
c© Springer Nature Switzerland AG 2022
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The power density of MPSoCs has increased dramatically as the level of amal-
gamation on the chips has increased. In [14], the authors presented an energy
cognizant scheduling strategy for tasks given as Directed Acyclic Graphs (DAGs)
on a heterogeneous platform with two types of cores that can handle at most one
transient fault per task and one permanent processor fault at the same time. The
authors have suggested work for energy management and fault-tolerance while
preserving service-level in mixed-criticality multicore systems in [15]. They uti-
lized the task replication technique to handle failures and a variety of execution
modes to keep the service quality high. In [4], the system chooses temporal
redundancy and/or spatial redundancy approaches to achieve their aim. The
slacks in task execution times are used to reduce energy usage. The rise in
power density of SoCs is closely connected to their rising temperatures, which
plays a crucial role in degrading the regular operation of these systems, render-
ing them unreliable. Interconnect latency rises by roughly 5% for every 10 ◦C
increase in temperature, while MOS-current driving capability drops by around
4% [13]. Due to timing breaches, this results in transient faults. The authors
presented a MILP framework for separate scheduling activities on a heteroge-
neous platform in [18]. A MILP solver requires an exponential amount of time
to solve problems with more granularity. As a result, they devised a two-stage
heuristic that included task allocation to clusters and task replication, followed
by task assignment to cores and frequency selection while preserving reliability
and temperature restrictions. In [8], the authors looked at the power consump-
tion of tasks on a heterogeneous platform, as well as the removal or decrease of
waiting times for tasks that shared the same successor task. In [16], two heuris-
tic techniques were devised: the leakage-aware workload stabilizing strategy and
the temperature management strategy. They employed the variable-sized bin
packing approach for task partitioning to ensure adequate resource usage under
energy and temperature restrictions.

Although numerous studies address the challenge of energy-efficient schedul-
ing for fault-tolerant real-time systems on homogeneous multicore architec-
ture, just a few use heterogeneous multicore architecture. Furthermore, no pre-
vious research has combined thermal control and energy efficiency for fault-
tolerant real-time systems. Hence, we propose a heuristic-based scheduler named
TEFRED, which performs thermal and power management in fault-tolerant
heterogeneous multicore platforms with two types of cores. As we would like
to think, the proposed strategy fits precisely to the platforms that have cores
with different micro-architectures but have identical ISA, like Helio X20 R© or
big.LITTLE R©.

2 Specifications

System Model: We have contemplated a set of n periodic tasks Γ =
{τ1, τ2, . . . , τn} to be scheduled on a heterogeneous processing platform Π which
uses two types of cores: {ΠLP for power efficiency, and ΠHP } for performance.
Each of the core type comprises of r cores, where jth core of type Πm is
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denoted as Πm
j . It may be noted that we already have such processing plat-

forms in market. Each occurrence of a periodic task τi is associated with a tuple
< execLP

i , execHP
i > (execution requirements on respective core types at max-

imum frequency), deadline/period di, a tuple < tssLP
i , tssHP

i > (steady-state
temperatures on respective core types), a tuple < uLP

i , uHP
i > (utilization w.r.t.

LP and HP cores). The steady-state temperature of a task on a core is defined as
the maximum temperature attained by the core when the same task is run on it
for an infinitely long time, possibly with multiple instances. We assume implicit
task deadlines. Every task set is characterized by a parameter called Utilization
Factor (UF), which gives a measure of resource utilization corresponding to the
given task set.

Power Model: We have used the analytical core energy model given in [10].
For our system, the dynamic power consumption P ∝ fv2; where f is the oper-
ating frequency and v is the supply voltage. Again, the supply voltage is lin-
early proportional to the operating frequency. Hence, P = cf3; where c is the
constant of proportionality. For efficient power management, we have employed
Dynamic Power Management (DPM). This energy-saving mechanism minimizes
static power consumption by switching the core to sleep mode when it is idle.

Thermal and Fault Model: The thermal model used in our work is based
on [12]. For an interval [t0, te] in which τi is executing on the core Πm

j , if the
core temperature is Γ0 at time t0, the temperature Γe at the end of the interval
at time te is given by: Γm

e = tss
Πm

j

i + (Γ0 − tss
Πm

j

i )e−B(te−t0), where B is a
constant depending upon power consumption in the system.

We have used the standby-sparing system, where each task has two copies,
primary and backup. The primary copy of a task is scheduled on the LP core,
while the backup copy is scheduled on the HP cores. Whenever a primary copy
completes its execution, acceptance or sanity tests [6] is done to check if any
transient fault occurred. If yes, then the backup copy is executed on the HP
core. Otherwise, the backup copy is deallocated from the HP core. This system
works on the assumption that each task can undergo fault at most once, and
there can be at most q transient faults per frame, where a frame is a group of
time-slots into which the execution in a system can be divided.

Algorithm 1: TEFRED

Input: Set of tasks Γ , Set of cores Π, Number of transient faults q
Output: Energy and Temperature aware Fault-Tolerant Schedule

1 Let {τ1, τ2, . . . , τn} be set of ready tasks

2 Compute average steady-state temperature, tssavg =
∑n

i=1(tss
LP
i )/n

3 while true do

4 Using deadline-partitioning, compute next frame (say kth) Rk

5 Compute shares required by each task on LP and HP cores at Rk

6 coreLP=ASSIGN-TO-LP-CORES (Γ , tssavg)

7 coreHP=ASSIGN-TO-HP-CORES (Γ )
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3 Proposed Scheduling Scheme

TEFRED works in three phases to prepare a schedule for a set of real-time
periodic tasks Γ on a heterogeneous platform Π comprising of two types of cores.
In the first phase, it uses deadline partitioning to compute the set of frames [11].
The second phase assigns tasks to the power-efficient cores while controlling
the excessive rise in its peak temperature using an efficient temperature-aware
heuristic. The third phase creates a heuristic schedule for tasks in the backup
cores by slot reservation for possible transient faults.

TEFRED (Algorithm 1): It starts by computing the next frame using a
mechanism called deadline partitioning [11]. Then within the ensuing frame, it
computes the shares of each task τi on both LP and HP cores using the following
equation: shrm

i = �um
i × |Rk|�, where m is one of {HP , LP}, um

i = execm
i /di

and |Rk| denotes the size of the ensuing frame Rk. It calls Algorithm 2 to get
the task schedule on the power-efficient cores. Finally, it calls Algorithm 3 to get
the reserved slots in case of faults.

Algorithm 2: ASSIGN-TO-LP-CORES

Input: Set of tasks Γ , tssLP
avg

Output: Task schedule on LP core (coreLP )
1 Set Lhot = ∅ , Lcool = ∅ and coreLP = ∅
2 for each task Γi do
3 if (tssLP

i > tssLP
avg) then Add Γi to Lhot

4 else Add Γi to Lhot sorted in non-increasing order of tssLP
i

5 while Lhot �= φ and Lcool �= φ do
6 Extract task Γi from the front of Lhot and add it to the end of coreLP

7 Extract task Γi from the front of Lcool and add it to the end of coreLP

8 if (Lhot = φ) then Add all tasks from front of Lcool to the end of coreLP

9 else Add all tasks from front of Lhot to the end of coreLP

10 Schedule coreLP onto LP cores using McNaughtons’s wrap around rule

ASSIGN-TO-LP-CORES (Algorithm 2): Firstly, it initializes empty lists
Lhot, Lcool and coreLP . Consider each task τi in the task set Γ and assign it
either to Lhot or Lcool on the basis of the thumb rule that if its steady-state
temperature (tssLP

i ) is greater than the average steady-state temperature of the
task set (tssavg), then assign it to the hot list Lhot, else assign it to the cool
list Lcool. The hot list must contain tasks in the non-increasing order of tssLP

i ,
and the cool list must contain tasks in the non-decreasing order of tssLP

i . Once
these two lists are formed, extract the hottest task and the coolest task from the
hot list and cool list alternatively and assign them to the third list coreLP . At
last, McNaughtons’s wrap-around rule [9] is applied on coreLP to schedule the
tasks on available LP cores. McNaughton’s wrap-around rule helps to prepare
an optimal schedule for tasks on a homogeneous multicore platform. Since we
are assigning primary copies of tasks on the same core type, i.e., LP , we have
used the wrap-around rule to prepare the final schedule.
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ASSIGN-TO-HP-CORES (Algorithm 3): In the considered platform, there
are equal number of LP and HP cores, which makes the platform suitable for
backup-overloading [5] technique. Since for each task, we have two shares, i.e.,
on LP cores and HP cores in a frame, when a task has been allotted to the core
ΠLP

j for a certain time interval, the exact proportionate workload for the task
has to be allotted on the corresponding ΠHP

j . For each core, ΠHP
j in ΠHP , the

algorithm creates a list eList of all tasks in non-increasing order of their shares
on the core ΠHP

j . Then it finds the sum of the first q shares from eList and
calls this sum backup slots. Finally, it assigns this contiguous series of slots as
late as possible in the current frame to cancel their execution on the HP core
if the corresponding primary copies are successfully executed on the LP core.
The algorithm overlaps q tasks in the backup slots, thus following the non-work-
conserving strategy of backup overloading. Since we have reserved backup slots
equivalent to the sum of q tasks having the highest shares, the HP core will
utilize all of these slots only in the worst case. In most cases, some slots in these
backup slots will remain idle when the corresponding tasks in the LP core have
been successfully executed.

Algorithm 3: ASSIGN-TO-HP-CORES

Input: Set of tasks Γ , Number of transient faults q
Output: Reserved slot schedule on HP core

1 for j = 1 : r in ΠHP do
2 Create list eList of all tasks in non-increasing order of their share on ΠHP

j .
3 Initialize backup slots = 0
4 for i = 1 : q in eList do
5 backup slots = backup slots + execHP

i

6 Reserve backup slots number of slots as late in the frame as possible

7 return reserved slot schedule on HP core

4 Experimental Set Up and Results

We have implemented the TEFRED algorithm and compared it against the
following two algorithms based on homogeneous multicore platforms: i. A homo-
geneous version of TEFRED named TEFRED-HM, and ii. An energy-efficient
fault-tolerant scheduler named FEED-O [1]. We will use TEFRED-HET to refer
to our proposed strategy for heterogeneous platforms from now onwards. To the
best of our knowledge, no work focusing on fault-tolerance coupled with tem-
perature and energy management has been done yet. As temperature is also an
essential aspect of our work, we have compared the performance of TEFRED-
HET against TEFRED-HM, which focuses on fault-tolerance, energy, and tem-
perature; and FEED-O, which focuses on fault-tolerance and energy.
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Table 1. Task specifications for benchmark programs

Program Execution Steady state Program Execution Steady state

requirement temperature requirement temperature

(in ms) (in ◦C) (in ms) (in ◦C)

Bodytrack 3824 85 Canneal 1007 80

Dedup 6455 91 Fluidanimate 4090 81

Freqmine 11082 84 Stream 6156 68

Swaptions 4535 76 Blackscholes 1203 85

All our simulations have been run for a total execution time of 100000 time
slots with task sets having pre-specified utilization factors or system workload.
For each set of input parameters, the average of the 50 simulations has been
considered the outcome. The PARSEC [2] benchmark suite (with a large input
set) has been used by us to substantiate efficiencies of the algorithms over dif-
ferent real-life scenarios that may arise Table 1. For all the experiments, we have
taken n = 20 by selecting tasks from the 8 benchmark applications (with some
tasks repeated in the set to form the taskset of size 20). We received periodic
performance traces from Gem5 [3] simulator for an 8-core based heterogeneous
chip-multiprocessor (considering 32 nm CMOS technology), where each of the
faster 4 Out-of-Order cores can operate at a frequency of 3.0 GHz, and each of
the 4 smaller In-Order cores can have a frequency of 1.8 GHz. We have used
DPM for efficient energy consumption. Note that, for each of our cores (both
in-order and out-of-order), we have considered Alpha 21364 ISA. For complete
periodic performance-power-thermal analysis, we integrated gem5 [3], McPAT-
monolithic [7], and HotSpot 6.0 [17] simulators are adopted.
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Fig. 1. Effect on energy consumption

Experimental Results: We have performed a set of extensive simulation-based
experiments to gauge the efficiency of the algorithms.
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Experiment 1 : We varied UF from 0.4 to 1.0, and the number of transient faults
to be handled by the system per frame was fixed at 10. Figure 1a shows that
with the increase in UF, ECon values increase. It is because with the increase
in UF (based on only the primary cores), the idle time of the HP cores with
DPM capability decrease, which leads to higher energy consumption. However,
TEFRED-HET can outperform TEFRED-HM and FEED-O because the latter
algorithms are oblivious to the heterogeneity of the cores and choose the cores for
backup-overloading randomly. In contrast, TEFRED-HET compensates ECon
by assigning all tasks to the LP cores. It can be observed from Fig. 1a that
the values of ECon vary from 0.26 to 0.31, 0.44 to 0.53, and 0.49 to 0.58 for
TEFRED-HET, FEED-O, and TEFRED-HM with the variation in UF values,
respectively.

Experiment 2 : We varied the number of faults q from 1 to 10 at UF = 0.6. It
can be observed from Fig. 1b that q is directly proportional to ECon because the
number of backup slots on the backup cores increase with q. Also, each failed task
running on a HP core requires higher energy consumption than the same on LP
core. Hence, the ECon values are quite lesser for TEFRED-HET as compared
to TEFRED-HM and FEED-O. It can be observed from Fig. 1b that the values
of ECon vary from 0.3 to 0.35, 0.48 to 0.54, and 0.53 to 0.61 for TEFRED-HET,
FEED-O, and TEFRED-HM with the variation in q values, respectively.
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Fig. 2. Effect on temperature of cores

Experiment 3 : In this experiment, we have used the settings of Experiment
1. From Fig. 2, we observe that the PTC values of primary and backup cores
increase with UF. It is because as the workload of the core increases with an
increase in UF, the core gets lesser time to cool down and hence showcases higher
peak temperatures. The temperature-aware heuristic strategy in TEFRED-HET
and TEFRED-HM achieves efficient PTC values because they schedule hot and
cool tasks alternatively. However, task-to-core assignments are more efficient in
TEFRED-HET with respect to TEFRED-HM. As TEFRED-HM also chooses
random cores for task-assignment, it leads to lesser efficient scheduling and higher
temperature on cores.
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5 Conclusion

In this paper, we propose a fault-tolerant heuristic scheduling mechanism,
TEFRED-HET, which successfully schedules tasks meeting their implicit
deadlines. It outperforms TEFRED-HM which is a homogeneous version of
TEFRED-HET and a state-of-the-art fault-tolerant energy-aware scheduler for
homogeneous platforms named FEED-O. The proposed algorithm adopts the
DPM technique for minimization of static energy consumption and reserves
only necessary backup slots for a known number of maximum possible transient
faults. TEFRED-HET also utilizes the difference in steady-state temperatures
of the tasks to achieve the remarkable reduction in peak temperatures of the
system.
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Abstract. Recommender systems play an important role in helping users
discover items of interest from a large resource collection in various online
services. Although deep graph neural network-based collaborative filter-
ing methods have achieved promising performance in recommender sys-
tems, they are still some weaknesses. Firstly, existing graph neural net-
work methods only take user-item interactions into account neglecting
direct user-user interactions which can be obtained from social networks.
Secondly, they treat the observed data uniformly without considering
fine-grained differences in importance or relevance in the user-item inter-
actions. In this paper, we propose a novel graph neural network social
graph attentive aggregation (SGA) which is suitable for parallel train-
ing to boost efficiency which is the common bottleneck for neural network
deployed machine learning models. This model obtains user-user collabo-
rative information from social networks and utilizes self-attention mecha-
nism to model the differentiation of importance in the user-item interac-
tions. We conduct experiments on two real-world datasets and the results
demonstrate that our method is effective and can be trained in parallel
efficiently.

Keywords: Recommendation system · Social recommendation ·
Graph neural network · Parallel computing

1 Introduction

Recommender systems have been studied to resolve the issue of information
overload in various fields during the past decades, such as products-to-customer
recommendation in e-commerce platforms and people-to-people recommendation
in social networks, etc. Collaborative filtering (CF), which assumes that two users
with similar behaviors may show similar interests in items, is a class of widely-
used personalized recommender systems based on the user-item interaction data
such as purchases and clicks.

Thanks to the strong capability of Graph Neural Networks (GNNs) [5] in
representing graph data, there is an increasing number of studies utilizing GNNs
[8,23,25] to learn representations in CF, yielding promising performance gains.
Our model is mainly based on Neural Graph Collaborative Filtering (NGCF)
[23] which regards user-item interactions as a bipartite graph structure and use
graph aggregation techniques to capture collaborative information.
c© Springer Nature Switzerland AG 2022
H. Shen et al. (Eds.): PDCAT 2021, LNCS 13148, pp. 369–382, 2022.
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Despite the effectiveness of NGCF, we argue that traditional CF models often
suffer from the sparsity problem [1] so as NGCF. For example, users usually give
feedbacks on a very small proportion of items with the same preference intensity
level. And thus there’s no sufficient data to build the models. An easy way to
solve this problem is to take into consideration more information.

Besides user-item interactions, social recommender system take social rela-
tions among users (user-user interactions) into account to model user’ prefer-
ences. As shown in social theories, people are easily influenced by their friends
in the same social community. And thus people in social neighbors tend to have
similar preference [2,7,8] We notice that considering direct user-user interaction
in CF obtained from social relation among users can bring a great amount of
semantic information and collaborative information in the recommender system.

Fig. 1. An example of the proposed graph model and the high-order connectivity with
social information

The graph structure with direct user-user interaction information is illus-
trated in Fig. 1. The user to be analyzed in this recommender system is u1 that
is highlighted with double circle in the left sub-figure. The right sub-figure shows
the hierarchical structure expanded from u1 where l is the distance of the node
to u1. In the right sub-figure, the collaborative information is related to the dis-
tance of node. For example the distance between u1 and i1 is 1 (u1 → i1) while
the distance between u1 and i4 is 2 (u1 → u3 → i4), thus we can assume that
u1 is more likely to choose i1 than i4. And the distance between u1 and u3 is
less than the distance between u1 and u2, which indicates that the preferences
of u1 is more similar to u3 than u2. From the right sub-figure, we can easily
notice that without considering the social relation information, a large amount
of collaborative information will be lost (only nodes framed with purple dotted
lines will be left in Fig. 1). We believe that the introduction of social relations
among users brings more expressive power to the model.

Unlike many GNN based social recommendations utilizing complex neural
model, we use a simple yet effective way to model the interaction by encoding
both items and users in the same vector space. And we also verify through
experiment that our model can be easily trained in parallel.
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Moreover, we argued that it’s unreasonable to make the assumption that the
weights of interacted items are same. For example, more attention should be
paid to the baby products than the other products when someone has bought
a diapers, as there might be a newly born baby in his family. Self-attention
mechanisms [21] which is able to assign learnable importances for neighbors
during embedding aggregation.

To summarize, the main contributions of this paper include:

– We show that social relation is important to be considered in Graph Neu-
ral Network for CF and propose a novel graph neural network with graph
aggregation techniques.

– We propose a new GNN layer of social graph attentive aggregation (SGA)
with self-attention mechanism to capture fine-grained modeling of user-item
interaction and user-user interaction.

– We demonstrate that our model can obtain promising result on various real-
world datasets and be efficiently trained in parallel.

2 Related Work

In this section, we mainly take a view of existing work on Graph-based CF (i.e.
social recommendation and attention mechanism).

2.1 Graph-Based CF

This line of studies often regard users and items as nodes and interactions
between them as the edges and thus build the bipartite user-item interaction
graph. Then a variety of graph-based methods are used to get the embeddings
of users and items. With the embedding information, we can utilize interaction
modeling methods to reconstruct the historical interactions or predict the future
interactions.

Owing to the popularity of GNNs nowadays, a great number of studies on
graph-based recommender system has been proposed. GC-MC [3] may be the
first research with GNNs. It utilizes a GAE [15] framework with GCN as encoder
and bilinear decoder for the matrix completion task which regards the recom-
mendation task as a link prediction problem in bipartite graphs. However, it
mainly focuses on user ratings predicting task which requires ratings as side-
information. And it’s very time-consuming and thus not suitable for using in
CF with large-scale datasets. The closest work to ours is NGCF done by Wang
et al. [23]. The NGCF model use GCN to obtain high-order collaborative infor-
mation in the user-item bipartite graph. However, as we discuss above, it neglect
the social relation among users which contain a lot of collaborative information.
Moreover, attention mechanism and the order information of user-item interac-
tions could be considered to improve model expression.
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2.2 Social Recommendation

Thanks to the popularity of social platforms, the exploitation of social relation
information has drawn a lot of attention of reseachers. Considering user-user
interaction, social recommendation tend to be a promising method to alleviate
the data sparsity issue which often occurs in the former CF model. The general
idea of social recommendation is that similar users would have similar preferences
and thus have similar latent embeddings. Early proposed models are mainly
based on matrix factorization. SR2 [17] obtains social embedding by regularizing
latent user factors to force the connected user in social relation graph close
to each other. SBPR [27] is based on BP [20] that considers social pair-wise
information and it tends to assign higher ratings to the items that his friends
may prefer. There are also some studies to consider other side-information in
social network to construct the model. For example, TrustSVD [9], ContextMF
[13], PTPMF [24] consider trust influence, social context and the strength of
social ties, respectively. However, all the models discussed above were only based
on shallow models which only considerate one-hop relations in social network.
Instead of only considering the direct social relation of the users, our model differs
from these works in using GNN to capturing the high-order social information.

2.3 Attention

To enable fine-grained modeling of user-item interactions and user-user inter-
actions, our model relies on the neural attention mechanism, which have been
widely applied in the domains of natural language processing [21] and com-
puter vision [19]. For recommender systems, several studies attempt to employ
attention-based memory networks to capture complex and fine-grained user-item
interactions in CF [6]. Additional side information such as texts [29] and hetero-
geneous relations [28] can also be integrated into the memory network. However,
they only still center around user-item interactions. In contrast, our model also
considers direct user-user interactions which captures fine-grained high-order
contexts. And the methods above mostly considerate one-hop semantic informa-
tion only while our layerwise aggregation model can capture multi-hop semantic
information.

3 Methodology

In this section, we will introduce our social graph attentive aggregation (SGA)
model for social recommendation via graph attentive aggregation in detail. An
overview of the proposed framework is demonstrated in Fig. 2. It consists of three
components: (1) pre-trained embedding layer, which parameterizes each user and
item into low-dimension dense vector preserving their interaction information.
(2) multiple graph aggregation layers, which can aggregate both social relations
among users and interactions between users and items. (3) preference prediction,
which integrate the user and item embedding and output their proximity score
to make proper recommendation.
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3.1 Pre-trained Embedding Layer

Many neural-based recommendation systems based on collaborative filtering
parameterize each user and item into latent embeddings [11,12,20]. In these
models, users and items are represented by dense low-dimension vectors that
encode items similarity and user preferences. By learning the representation of
users and items in advance, we can use simple operations to get the preference
score. The interaction matrix is usually used to train the embeddings, which is a
0,1 matrix R where Rij indicates the ith user is related to the jth item, i.e., user
has some interaction with the item. Since we refine the embeddings by aggregat-
ing information from user-item interaction graph and user social user graph, it’s
useful to utilize the embeddings of users and items trained by previous methods
that have been proved efficient and effective to get better performance. In our
experiments we use the initial interaction matrix as the pre-trained embeddings.

Fig. 2. Multiple SGA layers Fig. 3. A single SGA layer

3.2 Graph Attentive Aggregation Layer

We will start by introducing the building blocks of a single graph attentive aggre-
gation layer (Fig. 3), as the single layer is utilized throughout the framework and
model how information flows and aggregates in social recommendation graph.
The ultimate model can therefore be built by stacking multiple graph attentive
aggregation layer followed by a point-wise non-linearity, through which we can
explore high-order interactions among users and items.
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First-Order Aggregation. In graph theory, the connected nodes in graph are
likely to share the same property [14]. By incorporating and aggregating node
features in learning algorithm, graph neural network could explicitly learn the
topological structure of each nodes’ neighborhood (the first-order proximity) as
well as the distribution of node features in the neighborhood [10]. Traditionally,
many previous graph aggregation based recommender systems treat data as
bipartite graph [23]. The user preferences can be inferred by interacted items, and
the collaborative similarity of items is measured by the users who consume them.
From a graph aggregation prospective, user’s embedding could only propagate
to items, vice versa.

However, intuitively the social relations can influence users’ behaviors. Some
people may choose some items they’ve never bought before after friends’
strong recommendation, which motivates the consideration of feature aggrega-
tion among users when we describe users in a graph aggregation way. We build
upon this basis to perform graph aggregation operation on each connected users
and user-item interactions. In a composite graph including user social relations
and user-item interactions, we can simultaneously encode each node’s first-order
proximity with different types of node, i.e. user and item, into single latent space
by aggregating the neighborhood information without distinction. Specifically,
in each layer all user nodes will be updated by their adjacent nodes including
user and items nodes, while all item nodes are updated by connected user nodes
as there no relations among item nodes.

Message Construction. For a connected node pair (u, v) in the social recom-
mendation graph, we define the message from node v to u as:

M(u,v) = f(eu, ev), (1)

where M ∈ RN×N×d is the message embedding matrix for each pair (u, v), and
f(·) is the message encoding function, which takes two embeddings, eu and ev, as
inputs and outputs a embedding of the same dimension. It can be implemented
by simple element-wise multiplication or Multi Layer Perceptron (MLP) or any
other transformation. Here our implementation of f(·) is the same as the model
in [23]:

M(u,v) =
1

√|Nu| |Nv|
(
W1ev + W2 (eu � ev)

)
, u �= v, (2)

where W1,W2 ∈ R
d′×d are two trainable linear transformations that are used

to extract features for later aggregation. The term ev � ev is used to encode the
interaction on each dimension, where � denotes the element-wise product. This
term is more expressive to encode node pair affinity, followed by a fully connected
layer. The term W1ev could retain the initial information from neighborhoods,
acting like skip-connection [11] to some extents. It can improve model’s capacity
while avoiding the twisting of data, thus promote the generalization performance
of the model.

After the joint transformation for pair (u, v), we use the graph Laplacian
normalization factor 1/

√|Nu| |Nv| to normalize the messages, where |Nu| and
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|Nv| denotes the number of first-order neighbors of the node u and v, respectively.
Without this Laplacian normalizing factor, the high-degree nodes will receive
superabundant messages in the graph aggregation process, which breaks the
balance of message aggregation and reduce the utility of the model.

Self-attention Layer. Self-attention is a special case of attention mechanism
and has been successfully applied in graph-structure data to assign different
importances to the neighborhoods of each node [22]. In the social recommenda-
tion graph, the self-attention layer is used to capture user’s global dependencies
on users in social relations and on items in interactions graph without regard to
their distances by applying multiple aggregation.

For each node u, a shared self-attention operation f : Rd × R
d → R is per-

formed on all the message embeddings M(u,v) where v ∈ N (u), and outputs
the attention coefficients that indicate the importance of the messages from
its neighborhoods. Specifically, we first apply a shared linear transformation
parametrized by a weight matrix Wa ∈ R

d×d to the message embeddings.

c(u,v) = f(M(u,u)Wa,M(u,v)Wa). (3)

Note that we take the self-connection of u into consideration, which can be
calculated by the first term in Eq. (2), as the weight matrix W1 is enough to
represent the self-connection aggregation.

M(u,u) = W1eu. (4)

As we model the graph aggregation process layerwise and high-oder global
dependencies could be computed by stacking aggregation layer, it’s neither effec-
tive nor efficient to compute the messages and attention coefficients of all nodes
with attention mechanism. Therefore, we use masked attention to preserve the
first order graph structure—only compute c(u,v) where v is u’ first order neigh-
bors.

In our experiments, the attention operation f is a simple feedforward neural
network with a non-linearity activation LeakyReLU that takes the concatenation
of two embeddings as inputs and outputs a single score, followed by the softmax
function to nomalize the masked attention coefficients.

c(u,v) = Softmax
(
LeakeyReLU

(
(MuuWa) (MuvWa)

T
))

. (5)

Message Aggregation. Next we will introduce how to refine u’s embedding
by aggregating the messages from u’s first-order neighbors. To formally describe
u’s representation e

(l+1)
u after the (l + 1)th aggregations, we use the following

function as:

e(l+1)
u = σ

(
Wagg · fagg

(
M(l), u,N (u) , c

)
+ b

)
, (6)

where M(l) denotes the message matrix in the lth aggregation, N and c denotes
the set of u’s neighbors and attention coefficient matrix for each connected pair,
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respectively. After the aggregation, we apply a single layer network parame-
terized by the weight Wagg and the bias b, followed by non-linear activation
function σ(·), e.g. LeakyReLU [18].

We implemented the aggregator as weighted sum pooling with self-
connection, i.e.

fagg

(
M(l), u,N (u) , c

)
= m(u,u) +

∑

v∈Nu,v �=u

c(u,v)m(u,v). (7)

As stated previously, we take the self-connection for each node’s aggrega-
tion that acts like skip-connection to retain the information of original features.
Through the attentive aggregation, we can refines a user’s (or an item’s) embed-
ding by considering both connected users and connected items, explicitly exploit-
ing both the social relations and user-item dependencies.

3.3 Preference Prediction

After stacking L aggregation layers according to the complexity of the data, we
obtain multiple representations for node u, namely {e(1)u , e(2)u , · · · , e(L)

u }. Each
representation captures the dependencies between u and its direct neighborhoods
(i.e. social influences among users and user preferences for items).

In order to promote the model performance, we apply skip connections to
concatenate the multiple representations for each node. Finally, a shared fully-
connected layer is used in case of sparsity and the curse of dimensionality. As
such, we not only enrich the pre-trained embeddings with several aggregation
layers but also allow controlling the aggregation level by changing L, thus could
promote the generalization performance regardless of graph complexity. Typi-
cally, we use the average degree of nodes in the social recommendation graph as
the reference for selecting L.

Next we will build our recommender system to learn the model parameters.
With the representations of all users and items, we can conduct the simple
inner product to estimate the user’s preference for the target item. For the loss
function, we choose the pairwise BPR loss [20] to optimize the model:

Loss =
∑

(u,i,j)∈(O)

− ln σ(ŷui − ŷuj) + λ ||Θ||22 (8)

where O = {(u, i, j)|(u, i) ∈ A+, (u, j) ∈ A−} denotes the pairwise training data
while ŷui denotes user u’s preference for item i, A+ is the set of connected pairs
in the composite social recommendation graph, A− indicates the pair without
connection that is usually obtained by sampling. λ ||Θ||22 is the L2 regularization
term to control the capacity of the model.

4 Experiment

In this section, we detail our experimental setup. We describe the experimental
datasets in Sect. 4.1. Baselines and evaluation metrics are given in Sect. 4.2 and
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Sect. 4.3, respectively. Training and parameter settings are in Sect. 4.4. Finally,
we report our experimental results by comparing the overallperformance and
efficiency of the proposed model and the baseline models in Sect. 4.5.

4.1 Dataset

We conduct experiments on the two real-world datasets: Last.FM and Gowalla,
the detail information of which are described as follows.

– Last.fm [4]: It contains music artist listening records of 2K users from
Last.fm online music systems1. The artists are viewed as items in this dataset.
In order to ensure the dataset quality, we use the 10-core setting, i.e., only
retaining users and items with at least ten interactions.

– Gowalla [16]: It is a location-based social network datasets where users can
share their locations by checking-in. In this dataset, we treat locations as items
and predict the user-location interaction. We use the datasets published by
wang et al. [23] in our experiments.

4.2 Baselines

To demonstrate the effectiveness of the proposed model, we compare our model
with the following baseline methods.

– MF [20]: It is a matrix factorization methods based on the implict feedback of
user-item interactions. The method is optimized with Bayesian personalized
ranking(BPR) loss, which can be viewed as a maximum posterior estimator
derived from the Bayesian formulation of the problem.

– GC-MC [3]: It is a collaborative filtering method based on Graph convolution
network [14]. The method views the user-item interactions as a bipartite graph
and use a graph auto-encoder framework to learn the representations of users
and items.

– HOP-Rec [26]: It is a unified method of factorization and graph models that
captures high-order information within a user-item interaction matrix. The
high-order information is obtained with random walks on the graph and is
used to enrich the user-item interaction data.

– NGCF [23]: It is a graph-based collaborative filtering methods that learns
embeddings of users and items by leveraging high-order connectivities in the
user-item interaction bipartite graph.

4.3 Evaluation Metrics

To evaluate the performance of the proposed model, we adopt precision@k,
recall@k and ndcg@k as evaluation metrics which are detailed as follows:

1 http://www.lastfm.com/.

http://www.lastfm.com/
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Precision@k is the fraction of top-k retrieved items that are relevant to user’s
preference, i.e., items appearing in the test set of the user. It can be calculated
by:

Precision@K =
d

k
, (9)

where d is the number of relevant items in the top-k retrieved items.
Recall@k is the fraction of items that are relevant to user’s preference that

are successfully retrieved in top-k results, which can be calculated by:

Recall@K =
d

n
, (10)

where n is the total number of relevant items of the user.
Ndcg@k is a widely used measure in retrieval task performance evaluation.

The main idea is that highly relevant items should appear earlier in the retrieved
results, i.e., lower ranks. It assign each items a graded relevance and penalize
high relevant items appearing latter in the retrieved results. The range of ndcg@k
is [0, 1] with higher value representing better performance.

In our experiment we set k = 20 and report the average metrics for all users
in the test set.

4.4 Parameter Settings

In our experiments, the number of hidden layers is set to 3 with the number of
hidden units in each layer set to 64 and we fix the size of embeddings of users
and items to 64 as well. The model is implemented using tensorflow.

4.5 Experiment Results

We compare performance of different methods by performing item retrieval task,
whose goal is to retrieval the most relevant items given a user. Specifically,
given a user, we calculate the relevance scores with items that do not appear in
the training set of the user and rank them accordingly. Then we calculate the
evaluation metrics described in Sect. 4.3.

Table 1. Overall performance (k = 20).

Method Last.fm Gowalla

Precision Recall ndcg Precision Recall ndcg

MF 0.0492 0.2265 0.2598 0.3987 0.1291 0.1878

GC-MC 0.0531 0.2368 0.2577 0.0431 0.1395 0.1960

HOP-Rec 0.0587 0.2401 0.2601 0.0512 0.1399 0.2128

NGCF 0.0668 0.2457 0.2687 0.0478 0.1547 0.2237

Ours 0.0712 0.2497 0.2723 0.0489 0.1601 0.2294
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The overall performance of the proposed model and the baselines are given
in Table 1, from which we obtain the following results:

– Compared with MF, GC-MC, which treats the user-item interactions as bipar-
tite graph and aggregates feature of neighbors to lean embeddings of users and
items, achieves better results. HOP-Rec and NGCF, which considers higher
order interactions between entities, also gets better performance. The result
indicates that the complex relations between users and items can be better
captured by aggregating features of higher order neighbors.

– The proposed model achieved best performance on Last.fm dataset and has
the best performance in terms of recall@k and ndcg@k on Gowalla dataset.
The results indicate the effectiveness of the proposed attentive layer. This can
be explained that our proposed model is not only able to capture high order
relations of entities, but also capture the relative importance of the neighbors
with the attention mechanism.

4.6 Parallel Efficiency Evaluation

To evaluate the parallel efficiency of the proposed model, we compare our model
with our baseline model MGCF and GraphRec [8] which also take social relation
into account. We utilize KaHip as our choice of graph partitioning method and
launch the experiment on 1 machine with 8 Nvidia GTX 2080Tis. We set the
parameter as Sect. 4.3 and evaluate the speedup-ratio on the datasets proposed
in Sect. 4.1. The result is shown in Fig. 4.
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Fig. 4. The Speedup ratio with different GPUs used.

In Last.fm dataset, social edges are limited, so all three models perform sim-
ilarly. However, when the number of social relations increase in Gowalla datase,
the speedup ratio of GraphRec drops sharply. It proves that our SGA model
achieve better performance than other GNN-based social recommendation model
while maintaining similar parallel efficiency with the model without considering
social relations.
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5 Conclusion and Future Work

In this paper, we proposed a social graph attentive aggregation (SGA) network
for social recommendation. Our model combines the strength of NGCF for lever-
aging high-order collaborative information from user-item bipartite graph and
the social networks for utilizing direct user-user interaction information to alle-
viate the data sparsity issue. Moreover, we also utilized attention mechanism to
enable fine-grained modeling. The experimental results showed that our model
is effective and suitable for parallel training for efficiency speed up.

For future work, we will take more side information other than social networks
into consideration. For example, if two itemswere put in the same shopping cart, we
can assume that these two items are related and can be modeled as an edge in user-
item graphs to further alleviate the sparsity problem. Moreover, we will explore
effective parallelization strategies to further boost the efficiency of our model.
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Abstract. The current trend of using artificial neural networks to solve
computationally intensive problems is omnipresent. In this scope, DeepQ
learning is a common choice for agent-based problems. DeepQ combines
the concept of Q-Learning with (deep) neural networks to learn different
Q-values/matrices based on environmental conditions. Unfortunately,
DeepQ learning requires hundreds of thousands of iterations/Q-samples
that must be generated and learned for large-scale problems. Gathering
data sets for such challenging tasks is extremely time consuming and
requires large data-storage containers. Consequently, a common solution
is the automatic generation of input samples for agent-based DeepQ net-
works. However, a usual workflow is to create the samples separately from
the training process in either a (set of) pre-processing step(s) or inter-
leaved with the training process. This requires the input Q-samples to be
materialized in order to be fed into the training step of the attached neu-
ral network. In this paper, we propose a new GPU-focussed method for
on-the-fly generation of training samples tightly coupled with the train-
ing process itself. This allows us to skip the materialization process of
all samples (e.g. avoid dumping them disk), as they are (re)constructed
when needed. Our method significantly outperforms usual workflows that
generate the input samples on the CPU in terms of runtime performance
and memory/storage consumption.

Keywords: Massively-parallel processing · Neural networks ·
Q-learning · Graphics processing units · GPUs · State construction

1 Introduction

Neural network and DeepQ learning become more and more prominent [19]. Due
to advancements in parallel GPU-based processing over the past years, applying
DeepQ learning to large-scale problems becomes feasible. However, a severe limi-
tation is always the dataset processing in general. Either researches have to deal
with large binary-based datasets in data storages or they favor automatic sam-
ple generation. Although even combinations of both approaches are also common
choices, we focus on purely automatic generation of training samples in this paper.

This work has been developed in the project APPaM (01IW20006), which is partly
funded by the German ministry of education and research (BMBF).
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In this context, we have to randomly generate a large number of states used
for training. A state thereby contains all environment information in which the
agent(s) live(s) in. It also includes the exact state of all agents in order to rep-
resent them as precise as necessary for the overall problem domain description.
Given a set of generated states, a single Q-matrix is trained for each of them.
After training these matrices, they act as desired outputs for an attached neural
network. The inputs of this network are then given by the different states. This
allows for learning computational rules to infer Q-based decisions on environ-
mental conditions defined by the input states.

Since these states must be generated prior to learning, a common choice is
the generation on the CPU side. This allows to conveniently model the state-
generation code in an arbitrary programming language. It is often possible to
use straight-forward parallelization principles on the CPU-side to improve perfor-
mance of the state-generation logic. Although this seems to be a perfect choice
at first sight, large-scale problems require hundreds of thousands of states to
achieve high learning accuracy. This often causes scalability issues on the CPU
side and/or storage problems when saving all generated samples to a storage
device for learning.

In this paper, we propose a new high-level method and a set of GPU-driven
algorithms to accelerate DeepQ learning. In particular, our approach enables
automatic (re-)generation of states on GPU devices without any further CPU
intervention. This helps to significantly outperform CPU-based sample genera-
tion on the one hand and to reduce the required memory consumption in already
GPU-specialized learning pipelines on the other hand.

2 Related Work

As outlined in the introduction, DeepQ learning is a state-of-the-art of often-
chosen method. For this reason, it also a well-researched topic in general covered
by hundreds of applications. Although it is widely applied, the usual way to
train these networks is by generating sample input states on the CPU [19]. For
example, Mnih et al. [18,19] evaluated different games using CPU-created sam-
ples. Also, papers reasoning about improving precision and convergences mainly
take CPU-generated samples into account [3,6,22]. In contrast to these mainly
CPU-driven methods in terms of state generation, the work by Liang et al. [14]
takes GPU-acceleration into account. In this paper, like in many others [17],
CPU-evolved samples are passed to the GPUs for performing multiple training
epochs [23]. To overcome runtime and memory limitations of these approaches
we generate samples on-the-fly on the GPUs which also improves training per-
formance.

Recent work has shown significant performance improvements when using
GPUs in the context of massively parallel simulations. A well known example
is the work by Groß et al. [4,5] accelerating parallel neighborhood lookups in
large-scale 3D particle simulations (e.g. general [12] and fluid simulations [11]).
However, GPU acceleration is not particularly limited to particles in general.
There have been great advancements in the domain of purely GPU-optimized
simulation methods for arbitrary domains [7,9]. This makes GPUs more appli-
cable to general purpose simulations targeting many parallel states.
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A prominent optimization technique to leverage the parallel performance of
GPUs, is the use of proper memory-access patterns [1,13,21]. This task becomes
particularly challenging in our domain while processing multiple states in paral-
lel. Previous work by Köster et al. [10] evaluates various possibilities to design
suitable data-structure layouts in this context. We follow their advises and use
the same techniques to realize all of our memory-access patterns.

Most similar to our approach in terms of tracking states, is the work by
Köster et al. [8]. The authors target the setting in which is it often beneficial to
not remember states by storing them but to efficiently reconstruct them when
needed. Our new method is based on the same principle but with a different
purpose, which requires major adjustments of this approach to be used in our
domain. In terms of parallel learning, our method borrows architectural concepts
from the one by Amin et al. [2]. In contrast to their approach, our algorithms
focus on multiple network adjustments using many states per GPU. However,
we also perform parallel feed-forward steps while adjusting the matrix and bias
weights using parallel reductions.

3 MACSQ

Fig. 1. A single update step of our processing pipeline. First, we need a given domain
description (step 1). Afterwards, we instantiate different states by iteratively sampling
for valid solutions (green, step 2). The actual Q-matrices for each state are maintained
in shared memory (blue, step 2) which are also iteratively built. Next, we feed the state
description and their Q-matrices into the same neural network in parallel, which we
want to train (yellow, step 3). Finally, we perform a parallel reduction of all matrix
weights and bias vectors (step 4) in order to realize the network updates (step 5).
(Color figure online)

As outlined in the introduction, we focus on the automatic generation of states
on the GPU. For this purpose, we leverage the high-level architectural design
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of state reconstruction by Köster et al. [8] (see Sect. 2). The main idea in this
scope is to avoid storing states in memory/on a storage device, if they are not
needed for the current operation. However, this implies that they have to be
re-computed (reconstructed) later on in order to use them again. Figure 1 shows
a single step of our approach while taking the nature of GPUs into account.

We assume a given domain description (model) that can be imperatively
executed in the context of multiple states on a GPU (see also Sect. 4). This
description is then used to spawn multiple states that are created using a random-
number generator (RNG). Thereby, the RNG is maintained and managed in the
background without being tied to the domain description. This gives us the abil-
ity to reconstruct the same states by using previously stored RNG-states, which
will be recovered for reconstruction. In order to improve performance, we main-
tain all Q-matrices for each state in shared memory. This significantly reduces
the number of expensive global-memory accesses, since Q learning requires many
updates to the Q-matrix values.

Fig. 2. Traditional processing approach (1): Each state is processed by a single thread
group on the GPU. Our concept inspired by [10] (2): Each state is processed by a single
warp. Since a thread group contains multiple warps in our case, we process multiple
states per thread group.

To ensure scalability, while keeping the overhead for the GPU warp sched-
ulers as low as possible, we spawn many large thread groups covering as much
as threads as possible on each GPU device (see also Sect. 5). Within each group,
we use a single warp per state, rather than using the whole group to process a
single state (see Fig. 2). This approach has already been successfully used in pre-
vious work [10] to handle thousands of states efficiently in parallel. The concept
is suitable for small-scale (in terms of a few number of agents and environment
properties that must be tracked), as well as large-scale, domain descriptions. In
the case of small-scale descriptions, many parallel threads working on a single
state can easily become idle. This causes loss of occupancy, and thus, often signif-
icant performance bottlenecks. In contrast to this problem, large-scale domain
descriptions would require many threads to improve the overall throughput.
However, these domains usually require more samples in general, which implies
more threads working on the different states at the same time. Using the method
presented here, ensures scalability in the context of small-scale and large-scale
problems by using a compromise in the number of threads per state.

Algorithm 1 shows our GPU-friendly state-initialization algorithm that is
applied to each state. As mentioned above, we assign a single warp per state. Con-
sequently, we have to compute a globally unique state index per warp first. Note
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that the algorithm contains a divergent branch as one of its first instructions: If the
currently computed warp-wide state index exceeds the current number of states,
all threads in this warp leave the current group. This case occurs in the presence
of a number of states that is not dividable by the total number of warps in all
thread groups. Note further, that this is a not a performance issue. If all threads
in a warp leave the thread group, the warp dispatcher can activate another warp,
which implicitly realizes the concept of thread compaction on a warp level [10].

Algorithm 1: High-Level State-Initialization Algorithm
/* Compute the state index for each warp in each group */

1 stateIdx := gridIdx · groupDim
warpSize + warpIdx;

2 if stateIdx ¿= numStates then
3 return;
4 end
5 random := LoadRNG(stateIdx);
6 validInitialization := 0;
7 while validInitialization �= 1 do
8 initialized := DomainDescription.InitState(stateIdx, random);
9 validInitialization := Warp.AllReduceAdd(initialized);

10 end
11 StoreRNG(stateIdx, random);

From an algorithmic point of view, we use an RNG-based iterative initial-
ization approach: We use the current domain description to perform a parallel
initialization using all threads of a single warp (referred to as lanes, lines 7–
10). Each thread invocation returns a lane-local result whether the initialization
has been valid, in terms of domain-specific constraints. After each initialization
attempt, we perform a warp-wide reduction to verify that all lanes have returned
a successful initialization result. This process is repeated until a single attempt
has been successful iote that the domain-description implementation needs to
take care of initializing all state-dependent properties/agent states using the
lanes of a single warp.

Our main algorithm to compute all Q-matrices is presented in Algorithm 2.
In analogy to Algorithm 1, we have to query and verify the current state index
of each warp. Next, we allocate a sufficient amount of shared memory per thread
group to store all Q-matrices for each state (each warp, line 5). Each warp com-
putes its unique sub-view into shared-memory in order to address the associated
Q-matrix elements (line 6). Afterwards, each warp initializing its Q-matrix by
either loading pre-training Q-values, or zeroing them (in the case of a new train-
ing process, line 7).

The following lines of the algorithm use a GetFromFirstLane function. Its
purpose is to execute the passed function invocation in the first lane of each warp
only. All other lanes do not perform an operation while the function invocation
is evaluated. Subsequently, all lanes participate in a divergent-free warp-shuffle
operation in which each lane gets the value from the first lane. Using this effi-
cient approach, allows us to broadcast the single result value from the function
invocation to all other threads in the warp.
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Algorithm 2: Massively-Parallel Q-Determination Algorithm
/* Compute the state index for each warp in each group */

1 stateIdx := gridIdx · groupDim
warpSize + warpIdx;

2 if stateIdx ¿= numStates then
3 return;
4 end

/* Initialize the Q-matrix for all active warps in this group */

5 sharedQ := SharedMemory
[
qDim.X · qDim.Y · groupDim

warpSize

]
;

6 qViewPerState := SubView(sharedQ, qDim.X · qDim.Y · warpIdx);
7 LoadOrInitQView(stateIdx, qViewPerState);
8 random := LoadRNG(stateIdx);

/* Build or update the Q-matrix */
9 numSourcePossibilities := GetFromFirstLane(

10 DomainDescription.GetNumSourcePossibilities(stateIdx, random));
/* Perform the specified number of Q-tries */

11 for i := 1 to #Q-S do
/* Determine the current source possibility for all threads in

this warp */
12 source := GetFromFirstLane(
13 NextRandom(random 0, numSourcePossibilities));

/* Get a target possibility for this thread (if any) */
14 (hasTarget, target) := DomainDescription.TryGetTarget(
15 stateIdx, source, random);

/* Determine the reward for this thread (if any) */
16 (hasReward, reward) := DomainDescription.TryGetReward(
17 stateIdx, source, hasTarget, target);

/* Get the Q-matrix data */
18 currentQ := qViewPerState[source, target];
19 nextQ := qViewPerState[source, SelectQTarget(target)];

/* Compute the updated Q-value using α and γ */
20 newQ = UpdateQ(reward, currentQ, nextQ);

/* Wait for all threads and propagate changes */
21 Warp.Barrier;

/* Update the Q-matrix after reading all data */
22 if hasReward then
23 qViewPerState[source, target] := newQ;
24 end

/* Wait for all threads and propagate changes */
25 Warp.Barrier;

26 end
/* Store the state of the current RNG */

27 StoreRNG(stateIdx, random);
/* Export Q-matrix values to the neural network input */

28 ExportToNeuralNetworkOutput(stateIdx, qViewPerState);

The primary idea here is to perform (at least) a specified number of Q-
samples per state (#Q-S, lines 11–26, see also Sect. 5). At least here refers to
the fact that each lane in a warp gets the same Q-source value (lines 12–13)
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for sampling in each iteration, which can result in a number of warpSize·#Q-S
samples in sum. Then, all lanes try to determine a valid Q-target value within
the Q-dimensions according to the domain-specific constraints (lines 14–15). As
this operation can fail for each target possibility, this function returns a tuple
consisting of a success value hasTarget and the actual Q-target reference target
(if any). A prerequisite at this point is the fact that the domain-description logic
has to ensure that different lanes will be assigned to different targets. Otherwise,
this results in race conditions during Q-matrix updates later on. Although this
might sound quite sophisticated to achieve in general, it turns out to be straight
forward in most cases in practice based on our experience. A common use case
is to select between different target values in a certain range. By subdividing
this range into several sections based on the warp size, the different target-value
intervals can be directly assigned to the different lanes.

The remaining steps are to determine the reward (lines 16–17) and to perform
the computation of the newQ value based on current α and γ settings (lines 18–
20). Before issuing any Q-matrix value updates, we have to wait for all lanes in
the warp. This is important since the computation of the newQ values involves
reading data from the current Q-matrix. Removing this barrier would lead to
read-write race conditions. If a reward could be determined for the current lane
in lines 16–17, the newQ value can be updated in shared memory. Note that
we also need an additional barrier after the Q-matrix updates to avoid reading
outdated information in the next iteration. Finally, we store the current (state-
dependent) RNG state and export the Q-matrix for each state from shared
memory to a location a global memory for training purposes.

4 Implementation Details

We have used C# in combination with the ILGPU-compiler1 to implement our
system. ILGPU is used to compile parts of our application written in managed
code to executable GPU code that can be run on our NVIDIA GPUs. Note
we perform all memory allocations prior to launching any GPU kernel in order
to avoid unnecessary latencies and blocking operations. Furthermore, we com-
pletely avoid using floating-point-based atomic operations to have deterministic
and reproducible results [20] in the context of reduction operations. However,
given different group sizes targeting different GPUs [1,15,20,21], the results may
still vary. This is not an issue in general, as a fixed group size using our imple-
mentation on a particular GPU architecture (e.g. NVIDIA Ampere [21]) always
yields the same results. Furthermore, we use an Xorshift-based random-number
generator to compute new random numbers on-the-fly on the GPU [16].

5 Evaluation

The whole evaluation section is based on a simple, yet challenging, agent-based
simulation/optimization problem (see Fig. 3). It is build around an assignment
problem from the field of manufacturing, which requires different agents to be
assigned to different working stations. The agents can move between the stations

1 www.ilgpu.net.

www.ilgpu.net
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by taking a pre-defined movement-time-matrix into account. Thereby, the overall
purpose is to assemble products that have to pass all stations in order to be com-
pleted. If a product reaches a station, a single work step needs to be performed
on the product using an agent (if any). After completing a single work step, the
product is passed to the next station (until it reaches the final station). Note that
only a single agent can be assigned to a station at a time; although multiple agents
might stand in front of the station. Moreover, only a single product is allowed to
be on a station at any point in time.

Fig. 3. A sample production line with 10 stations (black lines), 5 products (purple)
and 4 agents (in front of their stations, green). Agents can move freely between the
stations. (Color figure online)

In order to evaluate different computational workloads and simulate multi-
ple use cases, we have to differentiate between scenarios and states. A scenario
refers to a given number of stations and agents, whereas a single state lives
within its parent scenario definition and contains an actual description of all
product/station/agent states. Based on this differentiation, Fig. 3 shows a sam-
ple state within a scenario of 10 stations and 4 agents.

Changing a scenario configuration, also influences the size of the hidden lay-
ers used for implementing the assignment logic2. Table 1 presents the evaluated
scenario configurations, as well as their neural network settings. Note that we do
not use any convolutional networks for these simple scenarios while taking com-
mon pitfalls into account [3]. These configurations have been selected because
they refer to existing use cases from reality. Note that these configurations do
not contain any products since product placement and agent assignment remain
state dependent rather than scenario dependent.

Table 1. The used evaluation scenarios (1–3) with different station and agent setups.
The Q-dimension is always equal to the squared number of stations in all cases. Note
that the neural network configuration is chosen in a way that the input dimension (size
of the input layer) is equal to the number of stations + agents. The output dimension
(size of the output layer) is equal to the corresponding Q-dimension (as we learn whole
Q-matrices) and the size of the hidden layer (like the number of samples) has been
determined using an offline auto-tuning process. #Q-S refers to the number of samples
to compute the Q-matrix in each state and #N-S refers to the total number of training
states.

Scenario #Stations #Agents Q-Dimension #Q-S Network #N-S

1 10 4 10× 10 20K 14× 64× 100 192K

2 12 4 12× 12 28K 16× 72× 144 512K

3 16 6 16× 16 50K 24× 128× 256 1792K

2 For the sake of simplicity, we use a single hidden layer for all evaluation scenarios.
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Table 2. Thread group configurations for the used GPUs, their number of states per
thread group and the number of dispatched states in parallel. Note that this number
is twice as large compared to the maximum number of parallel states per GPU to
maximize occupancy.

GTX 1080 Ti RTX 3090

Group size 1024 768

States per group 32 24

#Parallel states 28 × 2 × 32 = 1792 82 × 2 × 24 = 3936

#Dispatched states 1792 × 2 = 3584 3936 × 2 = 7872

We use two different GPUs from NVIDIA, a GTX 1080 Ti and an RTX
3090, and compare these results to a pure profiling-tuned C#-based sample-
generation engine running an AMD Ryzen 3950X. As discussed in Sect. 3, we
process multiple states per GPU thread group. Table 2 depicts the used group
sizes in order to achieve maximum occupancy on our evaluation GPUs. Note
that the number of dispatched states in parallel is also referred to as the batch
size (BS) in the remainder of this section.

As presented in the introduction, a common approach is to generate all sam-
ples used for learning on the CPU to the actual training step. Table 3 shows
runtime measurements for our three evaluation scenarios (see Table 1) using a
purely CPU-based state-generation step. As expected, the runtime grows signif-
icantly with the complexity of the scenario. However, the runtime is primarily
dominated by the number of samples #N-S and not by the required number
of Q-learning samples #Q-S. This is due to the fact, that the Q-matrices are
maintained in the L1/L2 caches.

Table 3. Runtime in seconds for generating all samples (#N-S) on our evaluation CPU
for learning purposes.

Scenario #N-S Ryzen 3950X (16 Cores, 32 Threads)

1 192K 48.75 s

2 512K 160.37 s

3 1792K 1,717.51 s

Using our purely-GPU-based method, results in considerable runtime
improvements (see Table 4). Since we make excessive use of the L1 caches to
maintain our Q-matrices (in shared memory), the overall runtime is primarily
dominated by the number of training samples #N-S (similar to the CPU ver-
sion). However, in this evaluation table we differentiate between two types A
and B. In the first case (type A), we generate a single batch (achieving maxi-
mum occupancy on the device) only. Type B covers the case in which we have
to generate all states on the GPU.
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Table 4. Runtime measurements in seconds on the evaluation GPUs. Type A: gener-
ation of a single batch only (BS, see also Table 2). Type B: iterative generation of all
states #N-S in GPU memory.

Scenario Type GTX 1080 Ti σ BS RTX 3090 σ BS

1 A 0.005 s 0 3584 0.004 s 0 7872

∗ B 2.911 s 0.032 – 1.172 s 0.053 –

2 A 0.080 s 0 3584 0.007 s 0 7872

∗ B 11.906 s 0.206 – 4.831 s 0.024 –

3 A 0.516 s 0.024 3584 0.349 s 0.015 7872

∗ B 261.832 s 0.563 – 85.386 s 0.451 –

Comparing the runtime of our GPU-based method with the CPU implemen-
tation reveals speedups from 6.5× to 16.75× on the GTX 1080 Ti and from
20× to 41× on the RTX 3090. Note that speedup decreases the more samples
are generated at once in these simple evaluation scenarios. This is due to the
fact that the maximum occupancy has already been reached using our computed
batch sizes. Note that the speedup will not decrease any further since the par-
allel processing capabilities ouf our GPU devices beat our CPU by orders of
magnitude. This is particularly helpful when dealing with larger scenarios and
problem domains yielding even higher speedup factors. If the actual network-
training step is performed on the GPU, the CPU samples need to be copied to
the GPU devices. Moreover, if all training samples do not fit into global GPU
memory, we need to “page-in” and “page-out” subsets of them. This makes the
CPU-version even slower.

Consider the total memory consumption of our states (including their Q-
matrices) shown in Table 5. Since our new approach is also capable of recon-
structing “old” (already seen) states, it is possible to limit the number of states
that must be held in memory at any point in time. Limiting this number to
be equal to the batch size, allows us to reduce the memory consumption on
our benchmarks by factors of 53× up to 500× (see Table 5). Although this is not
required given our simple evaluation scenarios (as all samples fit into main mem-
ory), this still shows great improvement possibilities in large-scale applications.

Table 5. The memory consumption of a single state in bytes. The GPU columns
present the total memory consumption in MB when processing a batch-size number of
states in parallel. The right-most column (All States) depicts the memory consumption
in MB when materializing all training states #N-S in memory. ote that a single entry
in the Q-matrix is implemented using a 32-bit float.

Scenario State size GTX 1080 Ti RTX 3090 All states

1 414 B 1.42 MB 3.11 MB 75.81 MB

2 592 B 2.02 MB 4.44 MB 289.06 MB

3 1046 B 3.57 MB 7.85 MB 1787.60 MB
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A common strategy is using a certain number of samples per training epoch,
which can be regenerated on-the-fly, as discussed above (see Table 6). However,
this imposes an additional runtime overhead. On our benchmarks, the measured
slowdown of regenerating samples (type A), rather than maintaining all of them
in main memory (type B), lies between 4× and 5×. We do not believe that
this is a severe limitation as “paging-in” and “paging-out” states in large-scale
applications will result in even larger overheads.

Table 6. Neural-network training setups using multiple epochs. A given number of
randomly chosen samples (out of the set of all training samples #N-S) is used per
epoch. Type A: using on-the-fly state reconstruction with the help of multiples of the
batch size. Type B: generating all states on the GPU prior to the training step.

Scenario Epochs #Samples Type GTX 1080 Ti RTX 3090

1 900 960 A 12.8 s 4.9 s

∗ ∗ ∗ B 2.9 s 1.2 s

2 1000 2560 A 57.6 s 22.9 s

∗ ∗ 0 B 11.9 s 4.8 s

3 1500 6000 A 1,296.7 s 399.4 s

∗ ∗ 0 B 261.8 s 85.4 s

6 Conclusion

In this paper, we presented a new approach to on-the-fly sample generation
and training for agent-based DeepQ networks. It is entirely GPU based and
does not require a CPU interop, which makes it a great choice for asynchronous
processing.

The evaluation sections describes the significant speedups and memory size
reduction using our method. Compared to CPU-based sample generation, our
GPU-designed algorithms help to achieve runtime improvements by 6.5× (on an
older GPU architecture) and up to 41× on a recent GPU device using our simple
evaluation scenarios. Larger-scale real-world scenarios will yield substantially
higher improvements. It is also possible to trade runtime performance against
memory consumption. Accepting a slowdown of up to 5× on the one hand, we
are able to reduce the memory consumption by up to 500× on the other hand.
We argue to trade the memory consumption for the runtime performance, since
large-scale applications require billions of samples that have to paged-in and out
of GPU memory. This causes even worse runtime slowdowns.

Analyzing further scenarios in detail will reveal even more optimization
potential. Hence, we would like to improve our method to take additional
domain-dependent factors into account.

Acknowledgment. The authors would like to thank Nurten Öksüz for her suggestions
and feedback regarding our paper.
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5. Groß, J., Köster, M., Krüger, A.: CLAWS : Computational load balancing for
accelerated neighbor processing on GPUs using warp scheduling. In: Proceedings
of the Conference on Computer Graphics and Visual Computing (CGCV-2020).
The Eurographics Association (2020)

6. Hasselt, H.V., Guez, A., Silver, D.: Deep reinforcement learning with double Q-
learning. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelli-
gence. AAAI Press (2016)
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Abstract. This paper explores the combination of model-based meth-
ods and multi-agent reinforcement learning (MARL) for more effi-
cient coordination among multiple agents. A decentralized model-based
MARL method, Policy Optimization with Dynamic Dependence Model-
ing (POD2M), is proposed to dynamically determine the importance of
other agents’ information during the model building process. In POD2M,
the agents adapt their mutual dependence during building their own
dynamic models in order to make a trade-off between an individual-
learning process and a coordinated-learning process. Once the dynamic
models have been built, the policies are then trained based on one-step
model predictive rollouts. Empirical experiments on both cooperative
and competitive scenarios indicate that our method can achieve higher
sample efficiency against the compared model-free MARL algorithms,
and outperforms the centralized method in large domains.

Keywords: Multi-agent reinforcement learning · Model-based policy
optimization · Dynamic dependence

1 Introduction

Reinforcement learning (RL) has made exciting progress in a variety of domains,
such as Atari games [1], Go [2] and recently Android System [3]. RL algorithms
can be divided into two categories: model-based methods and model-free meth-
ods. Model-based methods build a predictive dynamic model of the true envi-
ronment such that the agent can learn the policy with the simulation samples
to reduce the sample complexity [4]. In contrast, model-free methods learn the
policies directly from the experience data. While model-free methods have been
proved as a general solution for learning complex tasks [5–8], these algorithms
suffer from the cost of sample efficiency. Especially in some scenarios such as med-
ical and military fields, collecting enough experience data to train a model-free
RL agent can be very difficult. In contrast, model-based methods can guarantee
high sample efficiency of learning. However, the accuracy of model estimation
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acts as an essential bottleneck to policy quality, generally resulting in inferior
performance of model-based methods compared to their model-free counterparts.
Recently, several studies have proposed various model-based methods [9–11] that
can achieve higher sample efficiency and similar asymptotic performance com-
pared to model-free RL methods in single agent learning environments.

In contrast to single-agent RL, Multi-agent RL (MARL) has been exten-
sively applied to various scenarios including multi-robot systems [12,13], real-
time strategic games [14,15] and autonomous driving [16,17]. The main challenge
of MARL is that an agent is required to interact with other agents and the envi-
ronment feedback depends on the joint actions of all the agents. The coexistence
of other agents and the concurrent update of multiple agents’ policies cause the
non-stationarity issue from the perspective of each learning agent. This issue is
further exaggerated in model-based MARL, where agents not only need to reason
about other agents’ behaviors in a dynamic environment, but also need to build
a model that is able to correctly capture the transition of this environment. An
intuitive solution [18] is to build a centralized dynamic model to approximate the
transition process with the inputs of all the agents’ observations. However, this
kind of centralized method may lead to poor performance in complex problems
due to the exponential increase of complexity in the number of agents.

This paper focuses on how to learn a decentralized dynamic model for each
agent to approximate the transition process with the information of others only
when it is necessary. In multi-agent systems, the mutual dependence among
the agents and necessity of coordination can dynamically change over time. For
example, at a certain time-step, the multi-agent system can be in a loosely
coupled state [19], in which an agent has weak dependence with others for
coordination, so that it is enough to use its own information to build its local
dynamic model. In order to consider the dynamic mutual dependence of agents
when building their local dynamic models, we propose a novel model-based
MARL method called Policy Optimization with Dynamic Dependence Modeling
(POD2M), in which each agent’s policy is optimized by using simulation experi-
ences from its local dynamic model that dynamically incorporates other agents’
information during the model estimation process. The main feature of our pro-
posed method is to dynamically adapt mutual independence during building
their local dynamic models so that the agents can make a trade-off between an
individual-agent learning process and a coordinated learning process. Moreover,
when considering the information of others in the coordinated process, the input
dimension of our method increases linearly with the number of the agents, which
addresses the exponential complexity issue in the centralized approach. We val-
idate our method in both cooperative scenarios and competitive scenarios using
the particle environment [20]. The results reveal that our method can converge
efficiently and derive higher sample efficiency than model-free algorithms. The
final asymptotic performance shows that our method can achieve a comparable
result against the centralized model-based MARL method in small-scale domains
and much better performance in larger domains.
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The rest of the paper is organized as follows. Section 2 discusses the related
work, followed by a background introduction of RL and model-based learning
in Sect. 3. Section 4 provides a detailed description of our method and Sect. 5
reports experimental studies. At last, Sect. 6 concludes the paper.

2 Related Work

Model-based RL has two main challenges: model building and model using. For
model building, the most common methods [21,22] include building determinis-
tic models or probabilistic models. It depends on whether the transition of state
is determined in the specific application environment. For model using, the agent
policy can be learned by exploiting the model prediction experiences. The typi-
cal Dyna-Q algorithm [23] provides a model-based training framework with both
model-predicted and environment-returned experiences. Shooting methods [24]
utilize the model to predict the state transition process with fixed step size and
compute the accumulated reward during the predicted steps to help select the
action. Methods based on model-based value function expansion [25] and policy
search with back-propagation through paths [26] integrate both model-free and
model-based processes into the policy optimization. The previous work of the-
oretical analysis [4] provided a monotonic improvement guarantee by enforcing
a distance constraint between the learning policy and the data collecting pol-
icy. On this foundation, subsequent work [27,28] makes a deduction to derive a
return discrepancy bound with the branched rollout and constructs a policy opti-
mization framework based on the experiences generated by the dynamic model.
Other algorithms learn the dynamic model in the latent space, such as Dreamer
[10], which constructs a close-loop training scheme and verifies that the learned
model can predict the transition states accurately in a long period of rollouts.
MuZero [11] extends the model-based methods with monte-carlo tree search and
derives an end-to-end strategy to update the set of networks.

In terms of MARL, the framework of centralized training with decentralized
execution (CTDE) is commonly used as the basis of the coordination among
multiple agents. Decentralized policies are learned in a centralized manner so
that they can share information such as parameters without restriction during
training. Algorithms based on CTDE [20] use a centralized value function by
considering all the agents as a single one to solve the non-stationary problem
during the training process. Although CTDE algorithms can solve many multi-
agent problems, they must search in the joint observation-action space which
grows exponentially with the number of agents. On this foundation, a method
[29] with attention mechanism is applied to solve the credit-assignment chal-
lenges and further improves the performance of CTDE framework. In addition
to CTDE, another typical type of decentralized training algorithms [30] decom-
poses the centralized value function to a number of respective value functions
and guarantees a positive growth of total returns but they are also constrained
by the number of agents. Some other algorithms [31] utilize the reward shap-
ing mechanism to promote coordination and distribute each agent an intrinsic
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reward representing their individual goal. This kind of reward shaping methods
requires a total state to train the intrinsic reward distributor which is impossible
for some application scenarios. Last but not the least, the role-based algorithms
[32] believe that each agent performs different roles and the action space can be
segmented according to the role, which is not always feasible in some multi-agent
cases.

For the model-based MARL problem, there is relatively limited work in the
literature to our knowledge. A common solution is to build a centralized pre-
diction dynamic model [18,33] to deal with the non-stationary problem. The
method of centralized model predict the transition process considering all the
agents and each agent trains the policy based on the CTDE framework. Obvi-
ously, the centralized model encounters the dimension explosion problem with
the growth of the number of agents. Some decentralized methods, e.g., [34], pro-
vide a general framework and return discrepancy bounds of model-based MARL.
However, these methods require each agent to model its opponents or partners
and precisely predict their actions which may cost tremendous computation con-
sumption.

3 Preliminaries

In this section, we first introduce the MARL problems, and then the traditional
methods of model-based RL including the model building and the model training
therein.

3.1 MARL

We consider the framework of Markov Games, which is a multi-agent extension
of Markov Decision Processes (MDP). S is the state space in the games. Ai is
the action space of agent i ∈ 1, ..., n and A =

∏n
i=1 Ai is the joint action space.

Ri : S × A → R is the reward function of agent i. In cooperative scenarios,
each agent i observe a reward r = R(s,a) shared by all agents. T : S × A → S
defines the probability distribution over possible next states. γ ∈ [0, 1] is the
discount factor. At each time step, agent i receives a partially observable variant
oi which contains partial information from the global state S. Agent i uses
its policy πi(ai

t|oi
t) to demonstrate the probability of taking action ai

t at the
observation oi

t at time step t. The agents aim to find the optimal policy πi
∗ that

maximizes their expected discounted returns denoted by the objective function
as η : πi

∗ = arg max
πi

η
[
πi

]
= Ea1∼π1,...,an∼πn,s∼T

[∑∞
t=0 γtr

i
t

(
st, a

1
t , ..., a

n
t

)]
.

Policy gradient methods [23] aims to estimate the gradient of an agent’s
expected returns with respect to the parameter θ of policy πθ. This gradient of
the objective function is given as follows:

∇θJ (πθ) = ∇θ log (πθ (at|st))
∞∑

t′=t

γt′−trt′ (st′ , at′) . (1)
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The term
∑∞

t′=t γt′−trt′ (st′ , at′) can lead to high variance. To this end,
the Actor-Critic (AC) [35] framework uses a critic Q-function Qφ(st, at) =

E

[∑∞
t′=t γt′−trt′ (st′ , at′)

]
to approximate the expected discounted returns. The

approximated Q-function with respect to parameter φ is learned by minimizing
the regression loss as follows:

LQ(φ) = E(s,a,r,s′)∼Dδφ (s, a, s′)

δφ (s, a, s′) =
(
r(s, a) + γEa′∼π(s′)

[
Qφ(s′, a′)

]
− Qφ(s, a)

)2

,
(2)

where δφ is the TD-error, Qφ is the target Q-function that is updated with
several intervals and D is the replay buffer storing the past experiences. Once a
critic is updated by minimizing the TD-error, the actor πθ can be improved by
maximizing the action-value function for actions produced by the policy.

3.2 Model-Based RL

Model-based RL learns a forward dynamic model to approximate the true
transition function S × A → S and reward function S × A → R of the
environment. The dynamic model is trained on the true environment dataset
Denv = {(st, at, st+1, rt, dt)}N

t=0, where rt is the sampled reward and dt is the
termination indicator denoting the end of the episode.

There are two methods to build the learned dynamic model: deterministic
methods and probabilistic methods. For deterministic models, the standard way
is to train the model to minimize the Mean Squared Error (MSE) between the
predictive states and the true states as follows:

LMSE =
N∑

t=1

‖p̂ (st, at) − st+1‖22 , (3)

where p̂(st, at) is the deterministic next state predicted by the dynamic model
with the inputs of current state and current action.

For probabilistic models, Gaussian probabilistic method is commonly used
to predict a distribution over next states: ŝt+1 ∼ N (μ(st, at), σ(st, at)) and
optimizes the Negative Log Likelihood (NLL) by:

LNLL =
N∑

t=1

[
μ(st, at) − sT

t+1σ
−1(st, at)[μ(st, at) − st+1] + log detσ(st, at)

]
. (4)

In order to consider uncertainty over model predictions, model-based RL meth-
ods usually use the ensembles of learned models [36] rather than a single model.
Each model p̂j in the ensemble is trained on its own copy of the dataset Dj

env

independently. The final prediction for an ensemble of M models is then given
by:

ŝt+1 =
1
M

M∑

j=1

p̂j(st, at). (5)
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In the following sections, we denote the model ensemble for agent i as p̂i for
simplicity.

4 The POD2M Method

We propose a model-based MARL method named Policy Optimization with
Dynamic Dependence Modeling (POD2M). POD2M has two key components
including the model-based policy optimization and the dynamic dependence
modeling among multiple agents. In POD2M, each agent learns a dynamic model
and uses the data collected from the model rollouts to learn a policy. The overall
framework of our proposed POD2M method, including the structure of the critic
network, the computation graph of the policy optimization and the prediction
process of the dynamic model, is given in Fig. 1.

Fig. 1. The overall framework of our proposed method. The computation graph of the
model-based TD-error is placed in the middle. The critic network, as shown in the left,
uses the attention mechanism to adapt the dynamic dependence of other agents. In
order to optimize the policy, the dynamic model is used to derive the values of target
Q-function. Note that the attention module in critic network is shared with dynamic
model during the process of policy optimization since they both need to consider the
information of other agents.

4.1 Model-Based Policy Optimization

Policy optimization with dynamic models learns an accurate critic Q-function
Qφi with parameter φi for each agent. Denoting the policy of agent i as
πθi with parameter θi and the transition function of the true environment
as p

(
oi

t+1|oi
t, a

i
t

)
, the traditional TD-learning can be seen as an optimization

problem:
arg min

φi

E oi
t∼D

oi
t+1∼p(oi

t+1|oi
t,π

i
θ(o

i
t))

[
δφi(oi

t, πθi(oi
t), o

i
t+1)

]
. (6)
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Computing the gradient of TD-error δφi requires considering the effect of action
ai

t = πθi(oi
t) on the transition to the subsequent state oi

t+1, and this equals
to back-propagating through the true environment dynamics p

(
oi

t+1|oi
t, a

i
t

)
. In

POD2M, agent i learns a decentralized model p̂i
(
ôi

t+1|oi
t, a

i
t

)
to approximate its

own state transitions and uses the learned model to derive predicted rollouts.
In Eq. (2), the approximate Q-function of subsequent state oi

t+1 is used to
optimize the critic network. In order to incorporate the model estimations, we
take advantage of the dynamic model to make one-step predictions and sample
ôi

t+1 from p̂i
(
·|oi

t, πθi(oi
t)

)
, leading to the following model-based TD-error:

δ̂φi(oi
t, πθi(oi

t), ô
i
t+1) =

[
r(oi

t, a
i
t) + γQ

φ
i

(
ôi

t+1, πθi(ôi
t+1)

)
− Qφi(oi

t, a
i
t)

]2
. (7)

In this one-step policy optimization method, the agents only need to learn the
transition model rather than reward model or opponents’ policy models. How-
ever, some commonly used model-based RL methods [27,28,37] require not only
predicted transition function but also predicted reward function and opponents’
polices. These methods may take compound bias into policy optimization, poten-
tially resulting in bad performance and high variance.

4.2 Dynamic Dependence Modeling

There are many ways for an agent to take the information of other agents into
consideration, such as communication [38], social influence [39], and opponents
modeling [40]. Dynamically assigning importance weights to other agents enables
each agent to selectively consider the information of other agents. We apply the
attention mechanism [41] in our method for dynamic dependence modeling and
thus efficient critic learning. Taking agent i’s observation oi, action ai and the
information of other agents (o−i, a−i) as input, the critic Q-function can be
written as follows:

Qφi(oi, ai, o−i, a−i) = Qφi(ei(oi, ai), xi)

xi =
∑

j �=i

αjvj , (8)

where ei is a one-layer MLP embedding function, xi is the contribution from
other agents, vj is agent j’s values, and αj is the attention weight of agent j.
Since the attention mechanism requires the same embedding space among selec-
tors, keys and values, the embedding function ei is used to map (oi, ai) to the
same dimension with xi, i.e., the weighted sum of other agents’ values. The atten-
tion weight αj is derived by comparing embedding ej with ei and mapping the

similarity value between the two embeddings into a softmax: softmax

(
WqW T

k√
dWk

)

[41], where Wq transforms ei into a “query” and Wk transforms ej into a “key”.
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Multiple attention heads are used in our experiments, and each head maintains
a separate tuple of parameters (Wk,Wq, V ). The vector xi is then constructed
simply by concatenating the contribution from others.

The learning of the dynamic models utilizes the same attention component
in the critic learning. In this way, each agent is able to selectively take other
agents’ information into account when predicting its own state transition. The
dynamic model for agent i can be written as:

ôi
t+1 = p̂i(·|ei(oi

t, a
i
t), x

i
t). (9)

The counterfactual advantage trick [42] defined below is employed to solve
the credit assignment problem:

Ai = Qφi(o, (ai, a−i)) − Ea′∼AiQφi(o, (a′, a−i)), (10)

where o is the concatenated observations of all the agents, a−i is the joint action
of all the agents except agent i and a′ is every possible action that agent i can
take. The gradient of the objective function in Eq. (1) then can be given by:
∇θiJ (πθi) = ∇θi log

(
πθi

(
ai|oi

))
Ai.

Algorithm 1 . Policy Optimization with Dynamic Dependence Modeling
(POD2M)
Initialize: policy πθi , Q-function Qφi , dynamic model p̂i, ,target policy π

θ
i , target

Q-function Q
φ

i , environment buffer Denv

1: for each episode do
2: for m trajectories do

3: Collect transitions
(
oi, ai, o′i, ri

)
acting according to the policy πθi

4: Denv ←− Denv ∪
(
oi, ai, o′i, ri

)

5: end for
6: for model training steps do
7: Train model p̂i on Denv

8: end for
9: for policy optimization steps do

10: Extract local information
(
oi, ai, ri

) ∼ Denv

11: Compute the encoding representation e(oi, ai) and weighted sum xi of other
agents

12: ŷ ←− r
(
oi, ai

)
+ γQ

φ
i(ei(ôi, π

θ
i(ôi)), x̂i) where ôi ∼ p̂i

(·|oi, ai
)

13: δ̂φi(oi, πθi(oi), ôi) ←− (
ŷ − Qφi(ei(oi, πθi(oi), xi))

)2
14: φi ←− φi − αQ∇φi δ̂φi

15: φ
i ←− τφi + (1 − τ)φ

i

16: if t mod d=0 then
17: θi ←− θi + απ∇θi log

(
πθi(ai|oi)

)
Ai(oi, ai)

18: θ
i ←− τφi + (1 − τ)θ

i

19: end if
20: end for
21: end for
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The overall algorithm of our proposed POD2M method is present in Algo-
rithm 1. For simplicity, the algorithm is described in the perspective of agent
i and we use oi to represent the current local observation and ôi to represent
the model predicted subsequent observation. For the interaction with the true
environment (line 2 to 5), the sampled trajectories are used to train the dynamic
model and policy optimization. The training method of the dynamic model (line
6 to 8) for agent i can be written as

Lmodel =
N∑

t=1

∥
∥p̂i

(
ei(oi

t, a
i
t), x

i
t

)
− oi

t+1

∥
∥2

2
. (11)

RL agent use both true trajectories and predicted rollouts to update its critic
and policy networks (line 9 to 19).

5 Experiments

5.1 Setup

We evaluate our method in the two-dimensional Multi-agent Particle Environ-
ment (MPE) [20] that consists of X agents and Y landmarks. There are multi-
ple environments including cooperative scenarios (all agents maximize a shared
return) and competitive scenarios (agents have conflicting aims) in MPE. The
agents have continuous observation spaces (information including the location
and speed) and discrete action spaces (move up, down, left, right and stay). Here
we focus on three scenarios, i.e., the Spread, Tag and Adversary as introduced
in Fig. 2.

We first introduce the model-based policy optimization method in multi-
agent systems with centralized dynamic model, denoted as Policy Optimization
with Centralized Modeling (POCM). We regard POCM as an essential method
to compare to our proposed POD2M. The main idea of POCM method is to
consider the multiple agents as a single agent. The multi-agent systems have
only one single dynamic model to approximate the transition function of the
true environment. Since this model serves for all the agents and performs a
centralized role in the system, it can be considered as a centralized model and
formulated as follows:

(
ô1t+1, ..., ô

n
t+1

)
= p̂

(
o1t , a

1
t , ..., o

n
t , an

t

)
. (12)

The centralized model for the multi-agent systems can be constructed by consid-
ering the local observations of all the agents as the input, and the concatenation
of all the predicted local observations as the output. In competitive scenarios,
the single opponent agent uses the model-based deterministic policy gradient
method [37] to update its policy.

An ensemble of 8 neural networks of 3 hidden layers with 256 neurons is used
for the dynamic models that learn the transition between the current and next
states for agent i as ôi

t+1 = oi
t + p̂(oi

t, a
i
t). We employ multi-layer perceptrons for
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the actor (3 layers, 64 neurons for each agent) and the critic (3 layers, 128 neurons
for each agent). All the neural networks are trained with Adam optimizer with
learning rate of 0.001 and weight decay of 0.0001. As we describe in the section
of our method, we employ the attention component for both critic networks and
dynamic models with 4 attention heads and respective “quer”,“key” and “value”
parameters. We use the same dimension of inputs between critic networks and the
attention component by utilizing the state embedding function ei(oi

t) and state-
action embedding function ei(oi

t, a
i
t), which are used to encode the information

for the attention component, with 1 layer and 128 neurons. We employ a delay in
the policy updates d of 2 and a soft-update ratio τ of 0.01 for target networks. We
employ a discounted factor γ of 0.95. Moreover, we employ categorical sampling
for action selections and set norm gradient clipping to 10 by default for all the
experiments.

(a) Spread (b) Tag (c) Adversary

Fig. 2. (a) Spread: a cooperative scenario including 3 agents and 3 landmarks and
these agents should learn to reach the landmarks respectively while avoiding collisions
and repeated overlays. (b) Tag: a competitive scenario including 3 good agents (red), 1
opponent (green) and random obstacles (grey). The good agents learn to cooperate to
pursue and capture their opponent while the opponent agent, possessing faster speed,
learns to avoid being caught by the good agents. (c) Adversary: a competitive scenario
including 2 good agents (blue), 1 opponent agent (red), 1 goal landmark (green) and 1
fake landmark (grey). The opponent agent can only observe the position of good agents
and aim to find out the good landmark to overlay while the 2 good agents learn to
confuse their opponent and reach the goal landmarks respectively. (Color figure online)

5.2 Results

Cooperative Scenario. To make a full comparison between POD2M and
model-free methods, Value-Decomposition Networks (VDN) [30], Multi-Actor-
Attention-Critic (MAAC) [29] and Counterfactual Multi-Agent (COMA) [42]
are implemented in the fully cooperative scenario, i.e. Spread, though they are
originally applied to the SMAC [43] tasks. As shown in Fig. 3, in the Spread
domain, the average reward achieves nearly −5.5 when all the agents are able
to reach their landmarks respectively. In contrast to traditional model-free algo-
rithms, the convergence of model-based methods are much faster. This reveals
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that POD2M can achieve higher sample efficiency than model-free MARL meth-
ods. The centralized method POCM can also achieve high learning performance
in this domain due to its relatively small scale and thus accurate estimation of
the centralized model.

Fig. 3. The reward curve of POD2M against traditional model-free MARL algorithms
and POCM method in the cooperative scenario for 7500 episodes.

Competitive Scenarios. Tag is a competitive scenario where three good agents
learn their own policies and get the rewards respectively instead of a shared
return. Hence, it is hard to use the rewards of the three good agents to represent
the performance of the method in this scenario. We evaluate the coordinated
behaviors of the three good agents by the learning curve of the opponent agent
pursued and chased by the good agents. The Adversary domain is also a com-
petitive scenario that two good agents receive their rewards respectively. Since
the goals of the two agents is relatively unified, we use the sum of their rewards
to assess the learning results of this scenario. In these competitive scenarios, the
dynamic models for the good agents are constructed by considering the whole
agents’ information including the information of their opponent. The opponent
agent uses its own information to build the dynamic model and utilizes the same
policy optimization method as the good agents.
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(a) Tag (b) Adversary

Fig. 4. (a) The reward curve of the opponent agent pursed by the good agents. The less
reward the opponent agent receives, the better learning performance the good agents
have achieved. (b) The average return of the 2 cooperative agents. Higher rewards
indicate better learning performance.

Note that in the Tag and Adversary scenarios, we only compare POD2M
with POCM and Multi-Agent Deep Deterministic Policy Gradient (MADDPG)
[20]. The methods mentioned in Spread, such as COMA, VDN and MAAC, are
tested in the fully cooperative SMAC tasks and thus not suitable for competitive
scenarios. POCM method constructs a centralized model for all the agents in
the environment to approximate the transition function. In other words, the
centralized model includes the information of both the good agents and opponent
agent.

In Fig. 4 (a), we can see that the reward of the opponent agent shows an
upward trend in the early stage, because the opponent agent learns to avoid
being caught. After a few episodes, the good agents have learned the coordinated
behaviors to purse and capture their opponent so that the reward of the opponent
falls. However, the good agents using the POD2M method can learn more quickly
to capture the opponent agent, compared to the MADDPG and POCM methods.
In Fig. 4 (b), POD2M still performs best among the three methods. It is a bit
surprising to observe that, in this domain, the performance of POCM is rather
poor, suggesting the limits of building centralized model in competitive domains.

Larger Scale Scenario. POD2M takes the mutual dependence of other agents
into consideration by using the soft limits instead of the total inputs of local
observations and actions. We extend the POD2M method to a larger scale
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domain to evaluate its scalability. We employ Spread with 6 cooperative agents
and 6 landmarks compared to the 3 particles scenario mentioned above.

From Fig. 5, we can see that POD2M can still keep high sample efficiency and
achieve a steady asymptotic performance. The model-free algorithms combine
the information of all the agents as the inputs of their critic Q-functions. Due to
the exponential growth of the dimension, the expression capacity decreases sig-
nificantly, which makes policy learning difficult. Unlike in the small scale domain
in Fig. 3, where POCM performs similarly with POD2M, in this relatively larger
domain, POCM cannot converge to the same level of POD2M, since POCM uses
the combination of local observations and actions to estimate the joint model
and thus encounters the same scalability problem as the model-free methods.

Fig. 5. The larger scale performances among model-based and model-free algorithms

6 Conclusion

In this paper, we investigated model-based MARL problems and designed a
method utilizing the dynamic dependence among agents and model-based policy
optimization for more efficient model estimation and policy learning. In multi-
agent systems, the agents need to dynamically adapt their dependence when
building their own dynamic models in order to make a trade-off between the
individual-agent learning process and the coordinated learning process. We val-
idate our method in both cooperative scenarios and competitive scenarios using
the particle environment. The results reveal that our method can converge effi-
ciently and derive higher sample efficiency than the model-free algorithms. The
final asymptotic performance shows that our method can achieve a comparable
result against the centralized model-based MARL method in small-scale domains
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and much better performance in larger domains. In the future, we plan to pro-
vide theoretical analysis of our proposed method, and evaluate it in other more
complex domains.

Acknowledgement. This work is supported by the National Natural Science Foun-
dation of China under Grant 62076259.
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Abstract. Movited by the modern phenomenon of distributed data collected by
edge devices at scale, federated learning can use the large amounts of training
data from diverse users for better representation and generalization. To improve
flexibility and scalability, we propose a new federated optimization algorithm,
named as Multi-index federated aggregation algorithm based on trusted verfi-
cation(TVFedmul). TVFedmul is optimized based on Fedavg algorithm, which
overcomes a series of problems caused by the original aggregation algorithm,
which only takes the single index of data quantity as a reference factor to mea-
sure the aggregation weight of each client. The improved aggregation algorithm is
based onmulti-indexmeasurement, which can reflect the comprehensive ability of
clients more comprehensively, so as to make overall judgment. Further, we intro-
duces hyperparameter α, which can be changed to determine the importance of the
indexes. Finally, via extensive experimentation, the efficiency and effectiveness
of the proposed algorithm is verified.

Keywords: Federated learning · Aggregation algorithm · Distributed learning

1 Introduction

With the growing prevalence of edge devices, designing communication-efficient tech-
niques for learning using client data is an increasingly important area in distributed
machine learning. AI-based solutions rely intrinsically on appropriate algorithms, but
even more so on large training datasets [1]. Federated learning has emerged as an impor-
tant paradigm in modern large-scale machine learning [2]. In federated learning, the
training data remains distributed over a large number of clients [3]. Data is typically
generated at different scenarios, which can lead to significant differences in the distri-
bution of data across data partitions [4]. A federated learning system is often composed
of servers and clients, with an architecture that is similar to parameter servers [5]. The
main objective of federated learning is to fit a model to data generated from network
devices without continuous transfer of the massive amount of collected data from edge
of the network to back-end servers for processing [6, 7].

Federated averaging (Fedavg) [8] has emerged due to its simplicity and low com-
munication cost. In each iteration, the algorithm selects a number of clients with a ratio
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of ρ, and performs the stochastic gradient decent and loss function on the local private
data. The key challenges for Fedavg are 1) The update mode of Fedavg with reference
to single data quantity may cause clients to overstate the quantity of data in order to
make their local model occupy a large proportion in aggregation. 2) Fedavg increases
the insecurity of the system. 3) In the training process, the noise data will downgrade
the model. On the contrary, if the dataset with small data amount is of good quality and
more representative [9, 10], it also makes its own contribution to the model. 4) When the
data is heterogeneous (non-iid), fedavg may result in unstable and slow convergence.

To address the above, in this study, we propose a new algorithm TVFedmul. The
contributions of our work can be summarized as follows.

1) TVFedmul take the data quantity, as well as data quality, into the contribution to
federal learning model.

2) TVFedmul increases the security and fairness of the federated system to a certain
extent.

3) TVFedmul make the federated system more flexible and scalable.
4) The customized federated learning is realized and the practicability of the algorithm

is improved.

2 Related Work

Recently we have witnessed significant progress in developing novel methods that
address different challenges in federated learning. Zhang et al. [11] proposed an asyn-
chronous approachwith “soft” averaging,which only consider the data center setting, and
do not consider datasets that are unbalanced and non-iid, properties that are essential to
the federated learning setting. Chen et al. [12] proposed FedSA, a novel federated learn-
ing algorithm that accelerates convergence and resists performance degradation caused
by non-iid data and staleness. Despite the attention on performance degradation with
non-iid data in recent works [13], none of them provide the theoretical guarantees. Zhou
et al. [14] proposed methods that dynamically change learning rates, including learning
rate decay and adaptive learning rates. Xie et al. [15] proposed an algorithm that uses
a mixed hyperparameter to balance the robustness-efficiency trade-offs. However, this
method, in general, only evaluate equally sized local data, thus failed to generalize into
more practical situations where most real-world data are different in size. Alireza Fallah
et al. [16] considered the heterogeneous case in federated learning, and studied a person-
alized variant of the classic federated learning formulation in which the goal is to find
a proper initialization model for the users that can be quickly adapted to the local data
of each user after the training phase. Li et al. [17] proposed a q-FFL, a novel optimiza-
tion objective inspired by fair resource allocation in wireless networks that encourages
fairer accuracy distributions across devices in federated learning. However, none of the
federated learning algorithms studied the effect of the quality of the privacy data owned
by the clients.
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3 TVFedmul

3.1 Weight Calculation

Data Quantity Proportion
We denote data quantity ratio as Q1, which is fixed during each round of aggregation
because the number of data of each client is determined.

Assume that there are k clients, each client i ∈ [1, k] has its own local private dataDi

containing nk data samples.
∑k

i=1 nk represents the total number of data owned by each
client, denoted as n. Then the data quantity ratio Qi

1 of client i is calculated as follows
Eq. (1).

Qi
1 = ni

n
, i ∈ (1, 2 · · · k) (1)

Data Quality Proportion
We denote data quality ratio as Q2. In federated learning, the update effect is the most
intuitive reflection of the data quality. Therefore, the TVFedmul algorithm introduces
verification nodes to verify the model update effect of each client.

The verification node can obtain the model update information of each client. There-
fore, the verification node should be an honest node with high comprehensive capability.
In TVFedmul, the honesty and comprehensive ability of each client are measured by
their performance on the public data set. The verification nodes of this round are selected
from the first λ clients with the highest model verification scores in the previous round.
The clients selected as the verification node of this round will not participate in the train-
ing of this round, but will validate and score the updated model from other clients with
their local data set. It can be seen that the verification nodes change dynamically in each
round, and so does the public data set, which increases the generalization ability of the
model to a certain extent. To prevent clients with high-quality data from being selected
as validation nodes that do not participate in model updates, thus breaking the overall
model iteration efficiency, the first λ nodes in the even number position are selected as
the verification nodes according to the score from high to low.

Assume that there are k clients, m verification nodes. Sij represents the test accuracy
of the model update for the ith client on the jth verification node. Then the final score Si
is calculated as follows:

Si = 1

m

∑m

j=1
Sij (2)

where
∑k

i=1 Si represents the total score of each client, as S. Then the ratio of data
quality to Qi

2 is calculated as follows:

Qi
2 = Si

S
, i ∈ (1, 2 · · · k) (3)
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3.2 Aggregation

The objective function is min
ω∈Rd

f (ω), Then the f (ω) is calculated as follows:

f (ω)
def= 1

n

n∑

i=1

fi(ω) (4)

fi(ω) = L(xi, yi;ω) (5)

where L(xi, yi;ω) represents the result of the loss of sample (xi, yi) as predicted on the
given parameter ω.

Assume Dk is the data set owned by the k-th client, nk represents the size of clients.
The average loss of the samples for client k is:

Fk(ω) = 1

nk

∑

i∈Pk
fi(ω) (6)

The gradient of the k client in the t iteration is gk = ∇Fk(ωt)gk , learning rate is η. Then
the calculation of local update for this round is as follows:

ωk
t+1 ← ωk

t − η∇Fk(ω
k) (7)

After each client completes the local update, the results are uploaded to the verification
nodes. Then they uploads to the aggregation server that calculates the update weight of
each client in the round and performs the aggregation.

The aggregation weight Qi
t of the client k in the round t is:

Qi
t = α

ni
n

+ (1 − α)
1

m

∑m
j=1 Sij

S
(8)

Here, α is a hyperparameter that can be changed according to the specific federated
learning task, used to adjust the two influencing factors.

The score of the local model on the public test set reflects the data quality of the
clients to some extent. Si

S is used as one of the reference factors together with nk
n to

determine the contribution of clients to the global model. Compared with the fedavg
algorithm, the integrated metrics make the evaluation of the clients more rigorous and
comprehensive, more conducive to the aggregate server to make a judgment as a whole.
In addition, because of many iterations, the local model of each client has a different
percentage Qi

2 for each round, as a result, the comprehensive weight of each client in
each round of model aggregation is different, and the variable weight truly reflects the
contribution of each client to the global model of updating.

The global parameter of round t aggregation is:

ωt+1 ←
k∑

k=1

Qk
t ω

k
t+1 (9)

where ωk
t+1 comes from Eq. (7).
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The total loss function of round t model is:

ft(ω) =
k∑

k=1

Qk
t Fk(ω) (10)

Where Fk(ω) comes from Eq. (6).

4 System Model

Figure 1 shows the architecture of TVFedmul algorithm. The algorithm consists of
distributed training stage, model verification stage and model aggregation stage.

Fig. 1. The architecture of TVFedmul

5 Experimental Validation

5.1 Datasets

In this section, we empirically evaluate the proposed algorithm in iid and non-iid. The
training set is partitioned onto n= 100 devices. We conduct experiments on benchmark:
MNIST (http://yann.lecun.com/exdb/mnist/). When it is used to non-iid, each client can
only own a part of the data sets of categories. First, the MNIST is sorted in descending
order with labels 0 to 9, and then the images are sliced to make the image labels in each
slice the same, that is, the same number. Divide it into 200 pieces, each containing 300
images. Distributed to 100 clients to simulate the private data owned by each client that
is assigned only two possible data sets: 600 images containing only one kind of label
and 300 images each containing two kinds of label. During the federal training, clients
do not share data with each other. They can only access the data assigned to them, and
can only access the numbers with two different labels, which well simulates the data
distribution in the non-iid.

http://yann.lecun.com/exdb/mnist/
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5.2 Experimental

Non-IID
In order to verify the influence of the proportion of clients, two algorithms were used
to conduct experiments. Among them, in Fedavg, a total of 200 rounds of training, ρ

were set at 0.1, 0.3, 0.5 and 0.7 respectively, as shown in Fig. 2. In TVFedmul, a total of
260 rounds of training, α were set at 0.5, ρ were set at 0.1, 0.3, 0.5, 0.7, respectively, as
shown in Fig. 3. It can be seen from the results that, the more clients participate in the
training, the faster convergence rate of the model, and the higher accuracy.

In order to verify the influence of the two factors in the TVFedmul, α were taken for
comparison experiment, the proportions of data quantity were 0.1, 0.3, 0.5, 0.7 and 0.9,
and the proportions of data quality were 0.9, 0.7, 0.5, 0.3 and 0.1. The experiment round
was 260. The results are shown in Fig. 4. It can be seen from the results that when α is
different, the convergence trend of themodel is almost the same, but the convergence rate
and the final accuracy are different. When α = 0.1, the convergence effect of the model
is the best, when α = 0.9, it is the worst, and with the increase of α, the convergence
effect of the model is better and better.

In order to further verify the effectiveness, two algorithms under the same experi-
mental conditions were compared, as shown in Fig. 5. Among them, the training rounds
are 240, ρ is 0.7, α is 0.1. It can be seen from the results that the model convergence
speed of the improved algorithm is faster, and the final model accuracy reaches 94.59%,
which is 2.53% higher than that of the Fedavg (92.06%). The Fig. 6. shows the loss of
training.

Fig. 2. Fedavg-noniid-ρ Fig. 3. TVFedmul-noniid-ρ Fig. 4. TVFedmul-noniid-α

Fig. 5. TVFedmul & Fedavg-noniid
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Fig. 6. The training loss of TVFedmul & Fedavg-noniid

IID
The same experiment is carried out in the iid.

Fig. 7. Fedavg-iid-ρ Fig. 8. TVFedmul-iid-ρ Fig. 9. TVFedmul-iid-α

Fig. 10. TVFedmul & Fedavg-iid

Fig. 11. The training loss of TVFedmul & Fedavg-iid

As shown in Fig. 7 and Fig. 8 different values of the parameters are verified by using
Fedavg algorithm and TVFedmul algorithm, which are 0.1, 0.5 and 0.9 respectively. The
experimental results are consistent, that is, the convergence rate and training accuracy
of the model are improved with the increase of the number of clients.
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As shown in Fig. 9, the convergence effect of the model with hyperparameters of
0.1, 0.5 and 0.9 is shown, again confirming that data quality has a greater impact on the
federated system, two factors should be considered in model aggregation. As shown in
Fig. 10, TVFedmul is superior to Fedavg in iid, and the training accuracy of the model
is improved from 98.1% to 98.69%. The Fig. 11. shows the loss of training.

6 Conclusion

In this work, we propose TVFedmul, which takes data quantity and data quality into
consideration that calculate the aggregation weight more rigorous and comprehensive,
speeds up the convergence rate and improves the accuracy of the global model. With
the introduction of the data quantity, the comprehensive weight of the clients is adjusted
according to the actual training effect, which improves the flexibility of the system. In
addition, the way of multi-index aggregation to some extent increases the cost of evil
node, and protects the fairness and security of the system. Finally, the introduction of
super-parameter realizes customized federated learning.

References

1. Warnat-Herresthal, S., Schultze, H., Shastry, K.L., et al.: Swarm Learning for decentralized
and confidential clinical machine learning. Nature 594(7862), 265–270 (2021)

2. Jenny, H., Mehryar, M., Theertha, S.A.: FedBoost: communication-efficient algorithms for
federated learning. In: International Conference onMachine Learning, pp. 3931–3941 (2020)

3. Karimireddy, S.P., Kale, S., Mohri, M., et al.: SCAFFOLD: stochastic controlled averaging
for on-device federated learning. ArXiv (2019)

4. Kevin, H., Amar, P., Onur, M., et al.: The Non-IID data quagmire of decentralized machine
learning. In: International Conference on Machine Learning, pp. 4337–4348 (2020)

5. Reisizadeh, A., Mokhtari, A., Hassani, H., et al.: FedPAQ: a communication-efficient feder-
ated learning method with periodic averaging and quantization. In: International Conference
on Artificial Intelligence and Statistics, vol. 108, pp. 2021–2030 (2020)

6. Lingjuan, L., Jiangshan, Y., Karthik, N., et al.: Towards fair and privacy-preserving federated
deep models. IEEE Trans. Parallel Distribut. Syst. 31, 2524–2541 (2020)

7. Acar, D.A., Zhao, Y., Navarro, R.M., et al.: Federated learning based on dynamic regulariza-
tion. In: International Conference on Learning Representations (2021)

8. McMahan, H.B., Moore, E., Ramage, D., et al.: Communication-efficient learning of deep
networks from decentralized data. In: International Conference on Artificial Intelligence and
Statistics, vol. 54, pp. 1273–1282 (2017)

9. Nishio, T., Yonetani, R.: Client selection for federated learning with heterogeneous resources
in mobile edge. In: IEEE International Conference on Communications, pp. 1–7 (2019)

10. Li, L., Xu, W., Chen, T., et al.: RSA: byzantine-robust stochastic aggregation methods for
distributed learning fron heterogeneous datasets. In: Proceeding of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 1544–1551 (2019)

11. Zhang, S.X., Choromanska, A., LeCun, Y.: Deep learning with elastic averaging SGD. In:
NIPS, vol. 28 (2015)

12. Chen, M., Mao, B.C., Ma, T.Y.: A staleness-aware asynchronous Federated Learning
algorithm with non-IID data. Fut. Generation Comput. Syst. 120, 1–12 (2021)



420 Z. Bao et al.

13. Li, X., Huang, K., Yang, W., et al.: On the convergence of FedAvg on Non-IID data. Arxiv
(2020)

14. Wei, D., Yi, Z., Nanqing, D., et al.: Toward understanding the impact of stalenessn in
distributed machine learning. In: International Conference on Learning Representations
(2019)

15. Xie, C., Koyejo, O., Guptal, I.: Asynchronous federated optimization. ArXiv (2019)
16. Fallah, A., Mokhtari, A., Ozdaglar, A.: Personalized federated learning: a meta-learning

approach. ArXiv (2020)
17. Li, T., Sanjabi, M., Smith, V.: Fair resource allocation in federated learning. ArXiv (2020)



Few-Shot Generative Learning by
Modeling Stereoscopic Priors

Yuehui Wang, Qing Wang, and Dongyu Zhang(B)

Sun Yat-sen University, Guangzhou, China
wangyh83@mail2.sysu.edu.cn, zhangdy27@mail.sysu.edu.cn

Abstract. Few-shot image generation, which aims to generate images
from only a few images for a new category, has attracted some research
interest in recent years. However, existing few-shot generation methods
only focus on 2D images, ignoring 3D information. In this work, we pro-
pose a few-shot generative network which leverages 3D priors to improve
the diversity and quality of generated images. Inspired by classic graphics
rendering pipelines, we unravel the image generation process into three
factors: shape, viewpoint and texture. This disentangled representation
enables us to make the most of both 3D and 2D information in few-shot
generation. To be specific, by changing the viewpoint and extracting tex-
tures from different real images, we can generate various new images even
in data-scarce settings. Extensive experiments show the effectiveness of
our method.

Keywords: Computer vision · Few-shot image generation ·
Generative adversarial network · Data augmentation

1 Introduction

The challenge of learning new concept from very few examples, often called few-
shot learning or low-shot learning, is a long-standing problem. Some recent works
[9,11] explore the ability of few-shot generation under specific circumstances. To
be more concrete, [11] proposes a meta-learning based method of generating
personalized talking head images. [9] presents a framework to learn a generative
model from a single natural image. However, they only focus on the information
brought by 2D image dataset, we consider to use 3D priors to guide image
generation.

In this paper, we explore image generation in few-shot settings and simulta-
neously care for 3D information: shape, viewpoint and texture. First, the shape
of the objects in the generated images depends on the category of our 2D image
dataset (e.g., car, chair and table). Second, by changing the viewpoint of the

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-030-96772-7 38.
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camera in the process of rendering 3D priors, we can get a variety of 2.5D sam-
ples (e.g., depth images). After that, we extract the texture of an arbitrarily
sampled image from the 2D image dataset. Finally, we recombine these three
factors, with our novel generative model Few-shot Generative Network with 3D
priors (FGN-3D), to generate new images.

Fig. 1. Qualitative results. When given a real 3D prior (with determined shape and
viewpoint) and a texture image, our model successfully apply the texture to the prior
and generate realistic images without mode collapse nor mode confusion.

The few-shot learning ability of our proposed method is obtained through
two stages: (a) meta-learning and (b) fine-tuning. Meta-learning is performed
on base classes where a large training set of 3D collections and corresponding
2D real images is available. In the course of meta-learning, our system simu-
lates few-shot learning tasks and learns to transform 2.5D samples (e.g., depth
images) into realistic RGB images. After that, we fine tune our models, with high-
capacity generator and discriminator pre-trained via meta-learning, on novel
classes where the training data is scarce. The proposed network quickly learns to
generate realistic images of novel classes, which are unseen during meta-learning,
after a few training steps. Note that during the whole training process, the 3D
priors and the 2D real images do not need to be from the same class, i.e., our
model is class-agnostic. Figure 1 shows some qualitative results produced by our
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model, where the desired texture is applied to the specified 3D prior, regardless
of their classes.

Summarizing the contributions of this paper, we:

– Propose a two-stage training model (FGN-3D) which introduces 3D priors
into image generation in few-shot scenarios.

– Demonstrate that our model produces the state-of-the-art results compared
to extended baselines while retaining good generalization performance.

Fig. 2. Overview of the proposed FGN-3D model. To generate image x̂, we first extract
k depth and mask pairs from a 3D prior (from modeling in meta-learning stage or
sampling in fine-tuning stage), after that we encode l augmented texture images into
Ztexture. Finally we recombine them and choose the one with the lowest feature match-
ing loss as the output.

2 Method

2.1 Architecture and Notation

First we’d like to introduce the necessary notations. Let I denote the 2D RGB
image space R

H×W×3, V the 3D prior space R
V ×V ×V and C = {0, . . . , L} the

discrete label space. Our training dataset S consists of 3D collections {vi}Ni
and real 2D RGB images {xj}Mj , i.e., S = {{vi}Ni , {xj}Mj }. Note that we use i
and j to accentuate no pair relationship between 3D and 2D data. For few-shot
learning, we separate the label space C into Cbase where large number of training
data are available and Cnovel which is underrepresented.
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Then we introduce the network architectures of different modules in the
framework. In the meta-learning stage of our approach, the proposed FGN-3D
framework is split into two parts: (a) 3D priors modeling part and (b) 2D image
generation part. Figure 2 shows an overview of the proposed FGN-3D framework.
Specifically, for 3D priors modeling part, two networks are trained:

– The 3D priors generator G3D takes a latent code zshape sampled from a
normal distribution, a class label y ∈ Cbase and outputs a 3D instance v̂, i.e.,
v̂ = G3D(zshape, y).

– The 3D priors discriminator D3D takes a 3D instance v, a class label y ∈
Cbase and outputs a single scalar r3D, i.e., r3D = D3D(v, y), which indicates
whether the input v is a real instance from class y.

For 2D image generation, three networks are trained:

– The texture embedder E maps a real image x into a vector ztexture, i.e.,
ztexture = E(Aug(x);φ). Here, Aug(·) represents data augmentation opera-
tions and φ is the model parameters. Note that E is designed to be class-
agnostic to leverage all training data and increase the diversity of generated
images.

– The image generator G2D takes a depth image xd, texture latent code ztexture
and outputs a synthesized image x̂, i.e., x̂ = G2D(xd, ztexture;ψ). Here xd

is obtained by employing a fully differentiable projection function p with a
specific viewpoint vp on a 3D prior v: xd = p(v, vp). Here, ψ denotes model
parameters that are learned in the meta-learning stage. In general, during
meta-learning, we aim to learn ψ such that G2D are able to maximize the
similarity between its outputs and the real image.

– The image discriminator D2D takes a 2D image x, a class label y ∈ Cbase and
outputs a single scalar r2D, i.e., r2D = D2D(x, y;ϕ). which indicates whether
the input x is a real image from class y.

For each training stage, we first train the two parts separately to ensure that
G3D is able to generate realistic 3D priors and that G2D is able to generate
corresponding RGB images given the depth map xd. After that we train them
jointly to improve the diversity and quality of the generated images.

2.2 Meta-Learning on Base Classes

3D Priors Modeling. We base our 3D priors generator G3D and discriminator
D3D on the 3D-GAN architecture proposed by [10]. However, vanilla 3D-GAN
suffers model collapse and unstable training process when extended to multi-
class generation setting. To address these problems, the Wasserstein distance [2]
and spectral normalization [6] are used. Besides, following the advice of [7], we
feed the conditional information y into the discriminator by projection instead
of concatenation. Specifically, the loss function of modeling 3D priors is:
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min
G3D

max
D3D

L3D = Ev[D3D(v, y)]

− Ezshapep
[D3D(G3D(zshape, y), y)]. (1)

2D Image Generation. The training process of 2D image generation part is
done by simulating episodes of K-shot learning. In each episode, we randomly
sample a 3D instance v̂ from G3D and a real image x from training dataset. Then,
K depth images {xd1, xd2, . . . , xdk} are obtained by changing the viewpoint in
the projection function p(v̂, vp). Additionally, we can also get K corresponding
image masks {xmask1, xmask2, . . . , xmask} with a simple threshold, which will
later be used to regularize the synthesized image. To increase the diversity of gen-
erated images, we produce L augmented real images: {x1, x2, . . . , xl} = Aug(x)
before feeding them into the texture embedder E.

Here we use CycleGAN-like [12] architecture. We employ two generators and
two discriminators: forward (from depth to real RGB) generator Gfw and dis-
criminator Dfw, backward (from real RGB to depth) generator Gbw and dis-
criminator Dbw. We train these four networks jointly with adversarial losses and
cycle-consistency losses. More formally, when training forward, the adversarial
loss is given by:

Lfw = Ex[log(Dfw(x))] + E(xd,{x1,...,xl})[log(1 − Dfw(x̂)], (2)

where
x̂ = Gfw(xd, E({x1, . . . , xl})). (3)

When training backward:

Lbw = Exd
[log(Dbw(xd))] + Ex[log(1 − Dbw(Gbw(x))]. (4)

Cycle-consistency losses are also used to enforce the bijective relationship
between the two domains in the forward and backward phase:

Lcyc
fw = Ex[‖Gfw(Gbw(x)) − x‖11], (5)

and

Lcyc
bw = E(xd,{x1,...,xl})[‖Gbw(x̂) − xd‖11]. (6)

Additionally the feature matching loss [4] is employed to make sure our gen-
erated x̂ share the same texture as the input real image x in general. Removing
the last layer from Dfw, we construct a feature extractor D′

fw which is then
used to extract features from x̂ and {x1, . . . , xl}:

LFM = E(x̂,{x1,...,xl})[‖D′
fw(x̂) −

∑

l

D′
fw(xl)
L

‖11]. (7)
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At this point, we write the full loss of the 2D image generation process as

L2D = Lfw + Lbw + Lcyc
fw + Lcyc

bw + λfmLFM , (8)

where λfm shows the weight of feature matching loss.

Full Model. Our full objective in this stage is as follows:

min
(G3D,Gfw,Gbw)

max
(Dfw,Dbw)

L3D + L2D. (9)

2.3 Fine-Tuning on Novel Classes

Once the meta-learning has finished, the forward generator Gfw is able to gen-
erate RGB image for novel class, which is unseen during meta-learning stage,
conditioned on the depth images projected from 3D priors. In this stage, the
fine-tuning loss of image generation is:

Lfinetune
2D = E[log(D2D(x))] + E[log(1 − D2D(x̂)], (10)

where
x̂ = G2D(p(v, vp), E({x1, . . . , xl})). (11)

The full objective in this stage is:

min
G2D

max
D2D

Lfinetune
2D + λfmLFM . (12)

3 Experiment

3.1 Experimental Setting

Baselines. We compare our method against five popular GAN variants:
DCGAN [8], LSGAN [5], WGAN-GP [2] and VON [13]. Since the vanilla base-
lines are class-specific, we extend them to support multi-class generation for fair
comparison. Detail extensions are as follows:

– 3D-free GAN variants: We simply extend them into conditional generation
based on class labels, i.e., c-DCGAN, c-LSGAN and c-WGAN-GP.

– extended-VON: We introduce multi-class generation setting (conditional 3D-
GAN) and texture extraction ability (texture encoder) into VON.

Note that they require much more training data than our method in the paper
they originally proposed.
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Fig. 3. Quantitative comparison between meta-VON and our method with T = 20 on
novel classes, where T represents the number of samples used for fine-tuning.

Datasets

– 3D collections: We use ShapeNet [1] models for 3D priors modeling. Specif-
ically, we choose the five largest classes (car, chair, airplane, sofa and rifle)
as our base classes Cbase. For each one of them, we limit the number of
CAD models to 500. The next five largest classes (table, lamp, vessel, bench,
speaker) are novel classes Cnovel, where there are at most 20 models for each
one of them.

– 2D images: There are 500 images for each class in Cbase, where cars and chairs
are all crawled from Google, for the rest three classes (airplane, sofa and rifle),
250 images are from Google and 250 are renderings from corresponding classes
in ShapeNet. Similar to 3D collections settings, each class in Cnovel holds 20
images at most.

Metrics. We calculate Fréchet Inception Distance (FID) [3] to evaluate distri-
bution matching between generated images and real images, lower FID values
mean better image quality and diversity.
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Table 1. Quantitative comparisons with FID, smaller numbers are better. Here ‘-’
represents severe model collapse. Note that even in base class, where other baselines
use all the training data and we use only part of them, our model also shows SOTA
performance.

Methods\Classes Car Chair Airplane Sofa Rifle Table Lamp Vessel Bench Speaker mFID ↓
c-DCGAN 153.2 245.0 258.8 201.5 186.5 – – – – – 209.0

c-LSGAN 175.6 235.4 224.6 177.6 137.3 – – – – – 190.1

c-WGAN-GP 143.1 174.1 217.6 156.9 110.9 – – – – – 160.5

extended-VON 81.3 58.8 96.1 58.9 89.8 219.7 240.5 223.3 281.3 266.6 161.6

FGN-3D (ours) 77.2 64.7 90.2 55.6 86.2 89.0 102.4 111.8 98.6 106.4 88.2

3.2 Main Results

We provide both quantitative and qualitative evaluation on baselines and our
model. Please refer to our supplementary material for more training details and
additional results.

Qualitative Evaluation. Figure 1 demonstrates some images generated by the
proposed model, when given a 3D prior and a texture image (regardless of their
classes). Note that our method applies texture information well without mode
collapse or mode confusion, which are often observed in other baselines. Figure 3
shows more examples on novel classes with T = 20, where T represents the
number of samples used in fine-tuning stage. Note that the diversity and quality
of generated images are both improved with our method.

Quantitative Evaluation. Table 1 reports quantitative results of our model
and all baselines on both base classes and novel classes. Averaged FID is reported
and our model (FGN-3D) outperforms all baselines both on base classes and
novel classes, obtaining state-of-the-art results (Table 2).

Table 2. Analysis on benefits of introducing two-stage training strategy and making
full use of 3D information for few-shot generation.

Methods\Classes Table Lamp Vessel Bench Speaker

meta-VON 93.4 105.0 133.3 144.9 106.9

meta-FGN-3D 95.5 118.9 115.1 102.3 116.8

full-FGN-3D 89.0 102.4 111.8 98.6 106.4

4 Conclusion

In this paper, we propose a two-stage model based on GANs (FGN-3D), which
introduces 3D priors into image generation in few-shot scenarios. Empirical evi-
dence has been provided that by fully utilizing 3D structure information, our
model outperforms all extended baselines fewer samples (20 at most) on novelty.
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Abstract. Big data clustering is a fundamental problem with a vast
number of applications. Due to the increasing size of data, interests in
clustering problems in distributed computation models have increased.
On the other hand, because important decision making is being auto-
mated with the help of algorithms, therefore, fairness in algorithms has
become an especially important research topic. In this work, we design
new distributed algorithms for the fair k-center problem with outliers.
Our main contributions are: (1) In the fair k-center problem with outliers
setting we give a 4-approximation ratio algorithm. (2) In the distributed
fair k-center problem with outliers setting we give a 18-approximation
ratio algorithm.

Keywords: Clustering problem · Approximate algorithm · Fair
k-center problem with outliers · Distributed fair k-center problem with
outliers

1 Introduction

Clustering problem is an important problem in the area of machine learning,
where we want to compute a small summary of the data. For example, if the
input data is enormous, we do not want to run our machine learning algorithm
on the whole input but on a small representative subset. How to select such a
representative summary is quite important. It is well known that if the input is
biased, then the machine learning algorithms trained on this data will exhibit
the same bias. This is a classic example of selection bias but as exhibited by
algorithms themselves. Currently used algorithms for data summarization have
been shown to be biased with respect to attributes such as gender, race, and
age (see, e.g., [24]), and this motivates the fair data summarization problem.
Recently, the fair k-center problem was shown to be useful in computing fair
summary [22]. In this paper, we study the distributed fair k-center clustering
with outliers on massive data in machine learning area. Our main results are
distributed algorithms for fair k-center problem with outliers.
c© Springer Nature Switzerland AG 2022
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Fair k-center models: we are given a set V of n points, the number of groups
be m, target summary size be k, and we want to select a summary S such that
S contains kj points belonging to group j, where k =

∑m
j=1 kj . And we want to

minimize maxi∈V d(i, S), where d denotes the distance function. For k-center,
there are simple greedy algorithms with an approximation ratio of 2 [16,19], and
getting better than 2-approximation is NP-hard [18]. The NP-hardness result
also applies to the more general fair k-center. The best algorithm known for fair
k-center is a 3-approximation algorithm that runs in time O(n2 · log n) [15]. For
fair k-center problems the latest result is Chiplunkar et al. [9] who give a 3-
approximation algorithm for the fair k-center problems and a 17-approximation
algorithm for the distributed fair k-center problems.

The k-center problem is popular for clustering datasets which are not subject
to noise since the objective is sensitive to error in the data because the worst
case (maximum) distance of a point to the centers is used for the objective. In
the case where data can be noisy [1–3], previous work has considered the k-
centers with outliers problem [4]. In this problem, the objective is the same, but
additionally one may discard a set of z points from the input. These z points are
the outliers and are ignored in the objective. Here, the best known algorithm is
a 3-approximation [4].

Once datasets become large, known algorithms for these two problems
become ineffective. Due to this, there have been several works on distributed
computing [5–8]. The work of [7] was the first to consider k-center clustering
in the distributed setting. Their work gave an O(1)-round O(1)-approximate
MapReduce algorithm.

As far as we know, there is no article that studies fair k-center problem with
outliers in a distributed or non-distributed setting. In addition, the problem with
outliers is far more difficult than the problem without outliers and more suitable
for practical applications, so we studied this problem and gave the corresponding
algorithm analysis.

1.1 Our Contribution

In this work, we consider a fair k-center problem with outliers and a distributed
fair k-center problem with outliers. We have given the corresponding constant
approximation ratio algorithms for the above two problems.

1.2 Organization

We first cover preliminary definitions and basic properties in Sect. 3. Then, the
algorithm and its analysis are proposed in Sect. 4. We give two main results for
different setting respectively. Finally, we conclude the paper in Sect. 5.

2 Related Work

Fair clustering has been studied under another notion of fairness, where each
cluster must be balanced with respect to all the groups (no over-or-under-
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representation of any group) [14], and this line of work also has received a lot of
attention in a short span of time [11–13,20,25].

The k-median clustering problem with fairness constraints was first consid-
ered by [17] and with more general matroid constraints was studied by [23]. The
work of Chen et al. [15] and Kale [21] also actually apply for matroid constraints.
There has been a lot of work done on fairness, and we refer the reader to the
overview in [22].

3 Preliminaries

In the fair k-center problem we are given a set V of n points, a distance function
d : V × V −→ R≥0, and an integer k. Each point belongs to one of m groups,
say {1, ...,m}. Let g : V → {1, ...,m} denote this group assignment function.
Further, for each group j, we are given a capacity kj . Let k =

∑m
j=1 kj . For

points i, j ∈ V , assume d(i, i) = 0, d(i, j) = d(j, i), and that the distances obey
the triangle inequality: for each triple i, j, l ∈ V , we have d(i, j)+d(j, l) ≥ d(i, l).
For a point i ∈ V and a set S ⊆ V , we use d(i, S) = minj∈S d(i, j) to define the
distance between a point and a set. For the convenience of proofs and narratives,
we use B(v, r, V ) = {u : u ∈ V, d(u, v) ≤ r} to denote the ball around a point v
with radius r. In the fair k-center problem, the goal is to choose a set of centers
with size k such that maxi∈V d(i, S) is minimized.

In the k-center problem with outliers, the goal is to choose a set S ⊆ V with
k points and a set Z of z points such that maxi∈V \Z d(i, S) is minimized. Note
that in this problem the algorithm simply needs to choose the center point set
S, because the z points to be deleted are the z points farthest from the center
point set S.

4 Problems and Algorithms

4.1 Fair k-center Problem with Outliers

First we introduce a widely used algorithm for the k-center problem with outliers
in this section. The k-center problem with outliers is more challenging than
the version without outliers because one has to also determine which points to
discard, which can drastically change which centers should be chosen. Intuitively,
the right algorithmic strategy is to choose centers such that there are many points
around then. This idea was formalized in the algorithm of Charikar er al. [4],
a well-known and influential algorithm for this problem in the single machine
setting.

Theorem 4.1 ([4]). Algorithm 1 is a 3-approximation algorithm for the k-
center problem with outliers, And the number of points deleted by the algorithm
is no more than | z |.
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Algorithm 1. Outliers (V, k, r, 3r)
1: set V , integer k, and radius r.
2: Step 1: V

′
= V , P = ∅

3: Step 2: While | P |≤ k do:

4: Step 3: For ∀v ∈ V
′

compute B(v, r, V
′
).

5: Step 4: Let vmax = argmaxv∈V
′ | B(v, r, V

′
) |.

6: Step 5: P ← P
⋃{vmax}.

7: Step 6: compute B(vmax, 3r, V
′
).

8: Step 7: V
′ ← V

′\B(vmax, 3r, V
′
).

9: Step 8: Output P .

Algorithm 1 summarizes the approach of Charikar er al. [4]. It takes as input the
set of points V , the desired number of centers k and a parameter r. The param-
eter r is a ‘guess’ of the optimal solution’s value. The algorithm’s performance
is best when r = OPT where OPT denotes the optimal k-center objective value
after discarding z points. The value of r can be determined by doing a binary
search on possible values of r between the minimum and maximum distances of
any two points.

For each point v ∈ V , the set B(v, r, V
′
) contains points with distance r

from v in V . The algorithm adds the points vmax to the solution set which
covers the largest number of points among all B(v, r, V

′
). The idea here is to

add points which have many points nearby. Then the algorithm removes all
points from the universe which are within distance 3r from vmax and continues
until k points are found. Further, it can be shown that when r = OPT , after
selecting the k centers, there are at most z outliers remaining in V

′
. Algorithm 1

is a 3-approximation algorithm, and easy to use and understand. Our algorithm
for the fair k-center problem with outliers is based on Algorithm 1. So we first
introduce this algorithm.

Next we introduce two algorithms GetReps() and HittingSet() to handle the
fair constrains in our problem. These two algorithms are the two sub-algorithms
in the paper [9], and they are used to deal with fairness constraints. GetReps()
takes as input a set V of points with radius r, a group assignment function g,
and a subset P ⊆ V . For each p ∈ P , initialize Np = p. GetReps() includes
in Np one point, from each group, which is within distance r from p whenever
such a point exists. Informally, if P is a good but infeasible set of centers, then
GetReps() finds representatives Np of the groups in the neighbor of each p ∈ P .
Thus with a loss at most r, we can construct a feasible solution from Np.

The algorithm HittingSet() finds a feasible solution from a collection of
sets of representatives. Algorithm HittingSet() takes as input a collection N =
(N1, ..., NK) of pairwise disjoint sets of points, group assignment function g, and
a vector k = (k1, ..., km) of capacities of the m groups. It returns a feasible set
S intersecting as many N ′

ps as possible. This reduces to finding a maximum
cardinality matching in an appropriately constructed bipartite graph.
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Algorithm 2. GetReps(V, g, P, r)
Input: Set V , group assignment function g, subset P ⊆ V , and radius r.
Step 1: Np = ∅
Step 2: for each p ∈ P do:
Step 3: Np ← p
Step 4: for each q ∈ V do:
Step 5: for each p ∈ P do:
Step 6: if d(p, q) ≤ r and Np does not contain a point from q’s group then:
Step 7: Np ← Np

⋃{q}
Step 8: Output {Np : p ∈ P}

The algorithm HittingSet() constructs the following bipartite graph. The
left side vertex set contains K vertices, where K is the number of the input
disjoint sets of points, and hence each of the vertices on the left side of the
graph corresponds to a Ni. The right side vertex set is A =

⋃m
j=1 Aj , where Aj

contains kj vertices for each group j. If Ni contains a point from group j, then its
vertex is connected to all of those in Aj . Each matching H in this bipartite graph
encodes a feasible subset S =

⋃K
i=1 Ni as follows. For each edge e = (Ni, a) ∈ H

where a ∈ Aj , add to S the point from Ni belonging to group j. Observe that
since | Aj |= kj and H is a matching, S contains at most kj points from group
j. Moreover, | S |= | H |, and hence, a maximum cardinality matching in the
bipartite graph encodes a set S intersecting as many of the Ni’s as possible.

Algorithm 3. HittingSet(N, g, k)
Input: Collection N = (N1, ..., NK) of pairwise disjoint sets of points, group assign-
ment function g, and vector k = (k1, ..., km) of capacities.
Step 1: Construct bipartite graph G = (N,A,E) as follows:
Step 2: A ← ⋃m

j=1 Aj where Aj is a set of kj vertices.
Step 3: for each Ni and each group j do:
Step 4: if ∃p ∈ Ni such that g(p) = j then:
Step 5: Connect Ni to all vertices in Aj .
Step 6: Find the maximum cardinality matching H of G.
Step 7: S ← ∅.
Step 8: for each edge (Ni, a) of H do:
Step 9: Let s be a point in Ni from group j, where a ∈ Aj .
Step 10: S ← S

⋃{s}.
Step 11: Output S.

Theorem 4.2 [9]. The runtime of Algorithm 3 is O(K2 · maxi | Ni |).
With the above algorithms, we are now ready to introduce our main algorithm

for the fair k-center problem with outliers. Algorithm 4 has three steps in total.
In the first step, we apply the algorithm Outliers (V, k, r, 3r) to get a set P of
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candidate points without outliers. In the second step, we use GetReps(V, g, P, r)
to get a relatively large set, which finds representatives Np of the groups in the
neighbor of each p ∈ P . In the third step, we use HittingSet({N(p) : p ∈ P}, g, k)
to get a solution S that satisfies the fairness constraint.

In the first step we can delete at most z points, and in the next two steps we
delete no more points. We guarantee that the outlier limit, and the third step
satisfies the fairness constraint. So finally Algorithm 4 gets a feasible solution to
the fair k-center problem with outliers. Next we will prove that the approxima-
tion ratio of Algorithm 4 is 4.

Algorithm 4. Fair k-center with outliers
Input: Set V , group assignment function g, vector k = (k1, ..., km) of capacities, and
radius r.
Step 1: P ← Outliers (V, k, r, 3r)
Step 2: {N(p) : p ∈ P} ← GetReps(V, g, P, r)
Step 3: S ← HittingSet({N(p) : p ∈ P}, g, k)

Theorem 4.3. Algorithm 4 is a 4-approximation algorithm for the fair k-center
problem with outliers.

4.2 Distributed Fair k-Center Problem with Outliers

In this section, we consider the distributed fair k-center problem with outliers
and give an algorithm for the problem. In the distributed fair k-center problem
with outliers, the data points of V are stored on T machines and the goal is to
choose a set S of k points and a set Z of z points such that maxi∈V \Z d(i, S) is
minimized.

We call the general distributed machines that store the initial data as the
primary machines, and the machine that finally processes the aggregated data
of all the primary machines is called the center machine.

In the primary machines, we use Algorithm 6, which contains a sub-algorithm
Algorithm 5 to process the initial data and sends the results to the center
machine. In the center machine, we use Algorithm 7, which contains a sub-
algorithm Algorithm 8 to solve the distributed fair k-center problem with out-
liers.

Theorem 4.4 ([10]). Algorithm 5 is a greedy 2-approximation algorithm for the
k-center problem.

Our algorithms are based on the simple greedy algorithm of Dyer et al. [10].
Which, at each step, chooses a point with maximum distance to the current
solution set and repeats k times.

The algorithm executed by each primary machine i is given by Algorithm 6,
which consists of two main steps. In the first step, the machine uses Algorithm 5
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Algorithm 5. Greedy(V, k)
Input: point set V , clustering number k, and distance function d.
Step 1: S = ∅
Step 2: Pick an arbitrary point i ∈ V .
Step 3: S ← i.
Step 4: while | S |< k do.
Step 5: choose j from V with the biggest d(j, S).
Step 6: S ← S ∪ j ,V − {j}.
Output: S.

Algorithm 6. Distributed Fair k-center with ourliers in each primary machine i
Input: point set Vi, 1 ≤ i ≤ T , clustering number k, and distance function d.
Step 1: Run Algorithm 5 Greedy(V, k + z + 1) on each primary machine i and output a set
of k + z points Pi ← {p1, ..., pk+z}.
Step 2: ri← min

j
′
:1≤j

′ ≤k+z
d(pj , pk+z+1)/2

Step 3: {L(p) : p ∈ Pi}← GetReps(Vi, g, Pi, 2ri)
Step 4: Li ← ∪p∈Pi

L(p)
Step 5: For each point p ∈ Pi, machine i set wp =| {v : v ∈ Vi, d(p, v) = d(Pi, v)} | +1
Output: (Pi, Li, wp).

to find (k+z+1) points. The first (k+z) points constitute the set Pi. The point
pk+z+1 is the farthest point from the set Pi, and it is at a distance 2r from Pi.
Thus every point in Vi is within distance 2r from the set Pi.

In the second step, for each point p ∈ Pi, the machine computes a set L(p)
of local representatives in the vicinity of p. Finally, the set Pi and the set Li ←
∪p∈Pi

L(p) is sent to the center machine. Since Li contains at most one point
from any group, it has at most m − 1 points other than p. Since | Pi |= k + z,
each machine sends at most (k + z)m points to the center machine.

The algorithm executed by the center machine is given by Algorithm 7. The
center machine receives messages (Pi, Li, wp) from the primary machines and
constructs a candidate center set P by Algorithm 8. For each point p ∈ P , the
center machine computes a set N(p) of its global representatives, all of which are
within distance 5r from p. Due to the separation between points in P , the sets
N(p) are pairwise disjoint. Finally, a feasible set S intersecting as many N(p)’s
as possible is found and returned.

Algorithm 7. Distributed Fair k-center with ourliers in center machine i

Input: point set P
′
= ∪l

i=1Pi, L = ∪l
i=1Li, clustering number k, and distance func-

tion d.
Step 1: P ← Distribute Outliers (P

′
, k, 5r, 11r)

Step 2: {N(p) : p ∈ P} ← GetReps(L, g, P, 5r)
Step 3: S ← HittingSet({N(p) : p ∈ P}, g, k)
Output: S.
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Algorithm 8. Distribute Outliers (V, k, 5r, 11r)
Input: Set V , integer k, and radius r.
Step 1: V

′
= V , P = ∅

Step 2: While | P |≤ k do:

Step 3: For ∀v ∈ V compute B(v, 5r, V
′
).

Step 4: Let vmax = argmaxv∈V

∑
v

′ ∈B(v,5r,V
′
) wv

′ .

Step 5: P ← P
⋃{vmax}.

Step 6: compute B(vmax, 11r, V
′
).

Step 7: V
′ ← V

′\B(vmax, 11r, V
′
).

Step 8: Output P .

Definition 4.1. Let p be an arbitrary point in V . Suppose p is processed by
machine i, that is, p ∈ Vi. Then cov(p) is an arbitrary local pivot in Pi within
distance 2ri from p.

Since the primary machines send only a small number of points to the center
machine, it is possible that the optimal solution set S∗ of the centers is lost in
this process. In the next lemma, we claim that the set of points received by the
center machine contains a good and feasible set of centers nevertheless.

Lemma 4.1. The set L = ∪l
i=1Li contains a feasible set, say B, whose cluster-

ing cost for P
′
= ∪l

i=1Pi is at most 5r.

The algorithm executed by the center machine is given by Algorithm 7. The
center machine constructs a subset P of P

′
returned by the distributed machine

such that points in P are pairwise separated by distance more than 11r. P is
called the set of global pivots. For each global pivot p ∈ P , the center machine
computes a set N(p) ⊆ L = ∪l

i=1Li of its global representatives, all of which are
within distance 5r from p. Due to the separation points in P , the set N(p) are
pairwise disjoint. Finally a feasible set S intersecting as many N(p)’s as possible
is found and returned (As before, it will be clear that S intersects all the N(p)’s)

Theorem 4.5. The center machine returns a feasible set whose clustering cost
is at most 18r.

In addition to the approximate ratio, we also need to prove the algorithm
satisfies the outlier constraint. The number of points deleted by the algorithm
will not exceed Z.

Let O1, O2, ..., Ok denote the clusters in the optimal solution. A cluster in
OPT is defined as a subset of the points in V , not including outliers identified
by OPT. Our goal is to show that when our algorithm chooses each center, the
set of points discarded from V

′
in Distribute Outliers() can be mapped to some

cluster in the optimal solution. At the end of Distribute Outliers(), there should
be at most z points in V

′
, which are the outliers in the optimal solution. Knowing

that we only discard points from V
′

close to centers we choose, this will imply
the approximation bound.
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For every point v ∈ V , which must fall into some Vi, we let c(v) denote
the closest point in Pi to v (i.e., c(v) is the closest intermediate cluster center
found by Greedy() to v). Consider the output of Distribute Outliers(), P =
{p1, p2, ..., pk}, ordered by how elements were added to P . We will say that an
optimal cluster Oi is marked at Distribute Outliers() iteration j if there is a
point u ∈ Oi such that c(u) /∈ V

′
just before pj is added to P . Essentially if

a cluster is marked, we can make no guarantee about covering it within some
radius of pj (which will then be discarded). We begin by noting that when pj is
added to P that the weight of the points removed from V

′
is at least as large as

the maximum number of points in an unmarked cluster in the optimal solution.

Lemma 4.2. When pj is added, then
∑

v′∈B(pj ,5r,V
′ ) wv′ ≥| Oi | for any marked

cluster Oi.

Given this result, the following lemma considers a point v that is in some clus-
ter Oi. If c(v) is within the ball B(pj , 5r, V

′
) for pj added to P , then intuitively,

this means that we cover all of the points in Oi with B(pj , 11r, V
′
). Another

way to say this is that after we remove the ball B(pj , 11r, V
′
), no points in Oi

contribute weight to any point in V
′
.

Lemma 4.3. Consider a pj to be added to P . Say that c(v) ∈ B(pj , 5r, V
′
)

for some point v ∈ Oi for some i. Then, for every point u ∈ Oi either c(u) ∈
B(pj , 11r, V

′
) or c(u) has already been removed from V

′
.

In the next lemma we are going to prove that the weight of the points in⋃
pi:1≤i≤k B(pi, 11r, V

′
) is at least as large as the number of points in

⋃
1≤i≤k Oi.

Further, we know that | ⋃
1≤i≤k Oi |= n − z since OPT has z outliers. Viewing

the points in B(pi, 11r, V
′
) as being assigned to pi in the algorithm’s solution

then this shows that the number of points covered is as least as large as the
number of points that the optimal solution covers. Hence, there cannot be more
than z points uncovered by our algorithm.

Lemma 4.4.
∑k

i=1

∑
u∈B(pi,11r,V

′ ) wu ≥ n − z

With the above lemma we proved the number of points deleted by the algo-
rithm will not exceed Z.

5 Conclusions

In this paper, we consider the fair k-center problem with outliers and the dis-
tributed fair k-center problem with outliers. We have given the corresponding
constant approximation ratio algorithms for the above two problems. For the
fair k-center problem with outliers we give a 4-approximation algorithm and for
the distributed fair k-center problem with outliers we give a 18-approximation
algorithm.
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Abstract. Residential HVAC system control has been focused on ther-
mal comfort and energy consumption. Due to the complexity of the
dynamic building thermal model, weather conditions and human activ-
ities, traditional methods such as rule-based control (RBC) and model
predictive control (MPC) are difficult to learn a strategy that can save
energy while satisfying occupants’ thermal comfort requirements. To
solve the above problem, we propose a method combining a thermal com-
fort prediction model and reinforcement learning to optimize residential
multi-zone HVAC control. In this paper, we first design a hybrid model of
Support Vector Regression and a Deep Neural Network (SVR-DNN) to
predict thermal comfort value, which is taken as a part of the state and
reward in reinforcement learning. Then we apply reinforcement learn-
ing algorithms (Q-learning, Deep Q-Network (DQN) and Deep Deter-
ministic Policy Gradient (DDPG)) to respectively generate an optimal
HVAC control strategy to maintain the stability of thermal comfort and
minimize energy consumption. The experimental results show that our
SVR-DNN model can improve thermal comfort prediction performance
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by 20.5% compared with the deep neural network (DNN); compared with
rule-based control, DDPG, DQN and Q-learning based on SVR-DNN can
reduce energy consumption by 11.89%, 8.41%, 6.51% and reduce thermal
comfort violation by 91.8%, 43.2%, 25.4%.

Keywords: Multi-zone HVAC control · Reinforcement learning ·
Energy conservation · Thermal comfort

1 Introduction

Building energy consumption accounts for about 40%–50% of global energy
consumption [1]. With the increasing urbanization, this inevitably leads to an
increase in building density and building energy consumption. And a large
part of building energy consumption comes from heating, ventilation and air-
conditioning (HVAC) systems. Usually, occupants’ thermal comfort in the indoor
environment depends largely on HVAC systems. Considering that people spend
80%–90% of their day indoors, engineers need to consider not only energy savings
but also improving the thermal comfort of the occupants’ environment. Typi-
cally, people prefer heating in winter and cooling in summer to improve their
thermal comfort. Therefore, it is really necessary to study energy-comfort-related
control strategies to balance energy consumption and thermal comfort.

Human thermal comfort is an elusive quantity, affected by many factors which
come from three main aspects: outdoor temperature and humidity, building envi-
ronment and human-related factors. Firstly, outdoor temperature and humidity
have a great impact on human comfort. For different outdoor temperature and
humidity, the human body’s response is different. Meanwhile, outdoor temper-
ature and humidity also affect the HVAC system. If the outdoor temperature
and humidity are appropriate, it is not necessary to turn on the HVAC system.
Secondly, the building environment includes building materials, structures and
internal heat sources. Different building materials and structures will affect tem-
perature in the building and the occupants’ thermal comfort. And the internal
heat source will also affect the thermal conditions of the building and the ther-
mal comfort of occupants. Thirdly, thermal comfort is subjective, so different
occupants may have different thermal comfort under the same circumstance.

Currently, rule-based control (RBC) is usually used in HVAC systems.
Because RBC is based on engineers’ experience, it can not learn knowledge
from historical data to save energy effectively or satisfy occupants’ thermal
comfort requirements. Model predictive control (MPC) [2], a model-based con-
trol method, usually solves HVAC control problems better than RBC. However,
MPC requires a large amount of historical data and real-time monitoring data
to establish an accurate model to save energy while meeting occupants’ thermal
comfort requirements. In the single-zone HVAC control problem, a low-order
model can be established for MPC to solve the control problem. However, in
the multi-zone HVAC control problem, it is necessary to consider not only the
indoor and outdoor heat exchange but also the heat exchange between zones,
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which makes the building thermal model more complex. It is difficult to estab-
lish an accurate model for MPC to solve the multi-zone HVAC control problem.
However, model-free control methods do not need to establish an accurate model
to optimize HVAC control. Nowadays, model-free optimal control methods based
on reinforcement learning (RL) show good adaptability and robustness in HVAC
control problems.

In this paper, our objective is to minimize energy consumption under the con-
dition of satisfying occupants’ thermal comfort requirements in HVAC systems.
We evaluate RBC and three RL algorithms: Q-learning for discrete control, Deep
Q-Network for discrete action space control, Deep Deterministic Policy Gradi-
ent for continuous control in a multi-zone residential HVAC model. The main
contributions of this paper are summarized as follows:

(1) We design a hybrid model based on Support Vector Regression (SVR) and a
Deep Neural Network (DNN), called SVR-DNN, for predicting thermal com-
fort value which is taken as a part of the state and reward in reinforcement
learning.

(2) The multi-zone residential HVAC problem, in which the heat exchange
between zones and the change of occupants’ number are considered, is for-
mulated as a reinforcement learning problem. See Appendix for detailed
formulation.

(3) We apply Q-learning, DQN and DDPG methods to optimize HVAC control
in a multi-zone residential HVAC model and compare the performance of
these three algorithms. We show that all three algorithms can reduce vio-
lation of thermal comfort and reduce energy consumption compared with
rule-based control in multi-zone HVAC control.

2 Related Work

RL has been greatly developed in recent years, and as a result, many researchers
have applied RL to deal with HVAC control problems. Qiu et al. [3] imple-
mented Q-learning and the model-based controller to respectively optimize build-
ing HVAC systems to save energy. In [4], deep reinforcement learning (DRL) is
applied to optimize the problem of the supply water temperature setpoint in
a heating system and the well-trained agent can save energy between 5% and
12 %. Achieving energy savings from optimizing HVAC control equates to cost
savings. Jiang et al. [5] proposed DQN with an action processor, saving close
to 6% of total cost with demand charges, while close to 8% without demand
charges.

Thermal comfort is the evaluation of people’s subjective satisfaction with
the environment. At present, many thermal comfort models have been proposed.
Fanger et al. [6] proposed the classic steady-state model, which is based on a heat
balance model. The model is designed by using Predicted Mean Vote-Predicted
Percentage Dissatisfied (PMV-PPD) to express people’s satisfaction with the
environment. With the development of machine learning (ML), researchers have
studied thermal comfort models based on ML algorithms. Zhou et al. [7] used the
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support vector machine (SVM) algorithm to develop a thermal comfort model
with self-learning and self-correction ability. In [8], a model based on the Back
Propagation (BP) neural network for individual thermal comfort was proposed.

At present, it is not only necessary to save energy for the HVAC system, but
also to maintain the thermal comfort of occupants. In [9], the authors applied
an MPC method to reduce energy consumption and keep the temperature in an
acceptable range. Zenger et al. [10] implemented SARSA algorithm to maintain
thermal comfort while saving energy. Du et al. [11] implemented DRL methods
to address the issue of 2-zone residential HVAC control strategies that allow for
the lower bound of the user comfort level (temperature) with energy savings but
they did not consider the change of occupants’ number and did not establish a
thermal comfort prediction model. In summary, RL methods have been applied
to HVAC control. Many papers discuss how to maintain thermal comfort while
energy saving. We take this opportunity to study how to save energy with the
emphasis on maintaining thermal comfort.

3 Theoretical Background

This section introduces the theoretical background of RL and DRL. We focus on
Q-learning, DQN and DDPG. RL is a kind of trial and error learning through
interaction with the environment. Its goal is to maximise a cumulative reward in
the environmental interaction. The problem of RL can be modeled as a Markov
Decision Process (MDP), which includes a quintuple 〈S,A, r, p1, p〉. MDP is
shown in Fig. 1.

Fig. 1. Model structure diagram of an MDP.

(1) S is the state space, st ∈ S indicates the state of the agent at time t.
(2) A is the action space, at ∈ A represents the action taken by the agent at

time t.
(3) r:S × A → R is the reward function.
(4) p1 is an initial state distribution with density p1(s1).
(5) p:S × S × A → [0, 1] is state transition probability distribution function

satisfying the Markov property p(st+1|s1, a1, . . . , st, at) = p(st+1|st, at), for
any trajectory s1, a1, . . . , sT , aT in state-action space.

A policy, denoted by π : S × A → [0, 1], is used to select actions in MDPs.
π(at|st) represents the probability of selecting at in st. The agent uses one policy
to interact with the environment to generate a trajectory of states, actions and
rewards, z1:T = st, at, r1, . . . , sT , aT , rT over S×A×R. The return Gt is the total
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discounted reward from time-step t onwards, Gt =
T∑

k=t

γk−tr(sk, ak), where γ ∈
[0, 1], which is a discounted factor, is used to weighten the impact of the future
reward on the return Gt. The value functions are defined as the expectation of
return Gt:V π(s) = E[Gt|St = s;π], Qπ(s, a) = E[Gt|St = s,At = a;π]. The
agent finds a policy to maximize the return Gt from the initial state, denoted
by the performance objective J(π) = E[G1|π].

4 Methodology

In this section, we introduce our new ideas for energy conservation while main-
taining thermal comfort well in residential buildings. Firstly, we design an SVR-
DNN model to predict the thermal comfort value. A five-zone and three-occupant
residential HVAC model [12] is used for simulation. The layout of the residen-
tial apartment is identified from multi-level residential buildings in Chongqing,
China. We use real-world weather data from [13]. Then, the multi-zone HVAC
control problem is formulated as an MDP, which can be processed by reinforce-
ment learning algorithms. The control interval of the RL agent is set to 60 min.
We implement RBC, Q-learning, DQN and DDPG(DQN and DDPG with two
replay buffers) to evaluate their performances in the multi-zone HVAC control
problem.

In the simulation environment of this paper, we transfer the indoor tempera-
ture and humidity data into the thermal comfort model to obtain the predicted
thermal comfort value. The predicted thermal comfort value is taken as a part of
the state and reward. And the reward is obtained through our designed reward
function. Through learning, the agent gives an appropriate temperature setpoint
to conserve energy while maintaining thermal comfort. The specific process is
shown in Fig. 2 below.

Fig. 2. Flowchart of multi-zone residential apartment simulation.
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4.1 Thermal Comfort Prediction

We train a SVR-DNN model to predict thermal comfort. The structure diagram
of SVR-DNN is shown in Fig. 3. The inputs of SVR-DNN are predicted value
of SVR, indoor temperature and indoor humidity. The output of SVR-DNN is
the predicted thermal comfort value. SVR-DNN has two hidden layers and one
output neural unit.

4.2 Problem Formulation

State Space. The state space includes outdoor temperature Tout(t), out-
door humidity Hout(t), thermal comfort MRoomk(t) and ideal thermal comfort
MRoomk−ideal(t) in three zones.

Action Space. The action space includes the temperature setpoints in three
zones. HVAC systems will take actions according to different demands. In DQN
and Q-learning, the action space is discrete, so we discretize the range of setpoints
with a step size of 0.5 ◦C.

Fig. 3. The structure of SVR-DNN for predicting thermal comfort. The inputs of SVR-
DNN are predicted value of SVR, indoor temperature and indoor humidity. The output
of SVR-DNN is the predicted thermal comfort value.

Reword Function. Because it is necessary to consider energy saving under
the condition of satisfying thermal comfort requirements, we define the reward
function as:

rt = −(β
∑

k

|MRoomk(t) − MRoomk−ideal(t)| +
∑

k

Qk
t )/153, k = 1, 3, 5, (1)

where Qk
t represents the energy consumption of Roomk at time t. Since thermal

comfort is the first consideration, multiply the first item by weight β to increase
its impact on the reward function.
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5 Experiments

5.1 SVR-DNN for Thermal Comfort Prediction

We select 899 samples under the same conditions in the ASHRAE [14], 80% for
training and 20% for testing. These samples are selected in summer and under
the condition of indoor air conditioning. We first train an SVR model. Then we
take the predicted value of SVR, indoor temperature and indoor humidity as
the input of the deep neural network. The occupants’ thermal comfort value at
time slot t as

Mt = ΨSV R−DNN (MSV Rt
, Tt,Ht). (2)

The prediction error is shown in Table 1 below.

Table 1. Prediction error.

Model DNN SVR XGBoost LinearRegression SVR-DNN

Prediction error(MSE) 0.329204 0.306900 0.336993 0.342541 0.261614

5.2 Performance of Q-Learning, DQN and DDPG

Convergence. In Fig. 4, the reward and thermal comfort violation of each
episode of Q-learning, DQN and DDPG are presented during training. In this
paper, we take May to September as an episode, a total of 50 training episodes.
From Fig. 4(a), we note that the reward of DQN and DDPG is lower than that
of Q-learning in the first few episodes. This is because both DQN and DDPG
need to store transitions in the early stage, and they have not learned. On the
contrary, Q-learning has begun to learn. At about 15 episodes, Q-learning tends
to converge, which is due to the discretization of state space and action space,
which greatly reduces the scope of exploration and converges quickly. However,

Fig. 4. Convergence.
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the reduction of exploration space will lead to insufficient exploration, resulting
in low reward. The reward of Q-learning is the lowest of the three RL methods.
The reward of DQN tends to converge after about 24 episodes. Due to the
discretization of action space and the incomplete exploration of action space
combination, the reward of DQN is lower than that of DDPG. Because DDPG
can deal with continuous control problems, it can explore enough space so that
it can find the optimal action to get higher reward. The reward of DDPG is the
highest of the three RL methods. We present the violation of thermal comfort
in each episode in Fig. 4(b). The violation of thermal comfort and reward have
the opposite trend. The lower the violation of thermal comfort, the higher the
reward, because we pay more attention to thermal comfort. The violation of
thermal comfort has the same convergence trend as reward. The violation of
Q-learning is the most, DQN is the second, and DDPG is the least. It can be
seen from Fig. 4(a) and Fig. 4(b) that DDPG method has greater advantages
in dealing with HVAC control problems. The learning effects of Q-learning and
DQN are not as good as DDPG.

Fig. 5. Indoor temperature on August 1.

Analysis and Comparison of Indoor Temperature, Thermal Comfort
and Energy Consumption. We take out the indoor temperature and ther-
mal comfort on August 1 for detailed description and analysis. From Fig. 5(a)
and Fig. 6, the indoor temperature and thermal comfort controlled by DDPG
method are more regular, and the thermal comfort deviates little from the ideal
thermal comfort we set. In Fig. 5(b), the temperature controlled by DQN is
lower than that controlled by DDPG most of the day, which increases energy
consumption. The performance of indoor temperature in Fig. 5(c) controlled by
Q-learning is worse than DQN and DDPG. This is because Q-learning can only
observe discrete space, and the knowledge learned is naturally less than DQN and
DDPG. In Fig. 6, the comparison of thermal comfort of three rooms on August 1
is presented. DDPG based on SVR-DNN can maintain thermal comfort best in
the three RL methods. DQN can only partially meet occupants’ thermal comfort
requirements. Q-learning can only satisfy a small part of thermal comfort require-
ments in a day, because it can only explore a limited space. We illustrate energy
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(a) Room1 (b) Room3 (c) Room5

Fig. 6. Thermal comfort on August 1

consumption and thermal comfort violation of different algorithms in Fig. 7(a).
DDPG is the best among the four algorithms and RBC is the worst. Com-
pared with RBC, DDPG, DQN and Q-learning based on SVR-DNN can reduce
energy consumption by 11.89%, 8.41%, 6.51% and reduce thermal comfort by
91.8%, 43.2%, 25.4%. Compared with DQN and Q-learning based on SVR-DNN,
DDPG based on SVR-DNN can reduce energy consumption by 3.80% and 5.76%
respectively. For the violation of thermal comfort, DDPG based on SVR-DNN
can reduce by 85.54% and 88.98% compared with DQN and Q-learning based
on SVR-DNN. Compared with Q-learning based on SVR-DNN, DQN based on
SVR-DNN can reduce energy consumption by 2.03% and thermal comfort by
23.84%. In Fig. 7(b) and Fig. 4(b), notice that too much or too little energy
consumption will lead to great violation of thermal comfort. What we need is
a method to learn the law of thermal comfort of occupants and reduce energy
consumption. DDPG can better learn the law of occupants’ thermal comfort and
save energy while maintaining thermal comfort. DDPG, DQN and Q-learning
can save energy and reduce violation of thermal comfort in the multi-zone HVAC
control compared with RBC.

Fig. 7. Energy consumption and thermal comfort violation.
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6 Conclusion

In this paper, we proposed a method combining a thermal comfort prediction
model and reinforcement learning to optimize residential multi-zone HVAC con-
trol. Firstly, we trained a hybrid model based on Support Vector Regression and
a Deep Neural Network to predict thermal comfort value and used reinforcement
learning algorithms to reduce energy consumption while maintaining occupants’
thermal comfort. A multi-zone residential HVAC model was used to evaluate
the performance of RL algorithms. The results show that our SVR-DNN model
can improve thermal comfort prediction performance by 20.5% compared with
the deep neural network(DNN); compared with rule-based control, DDPG, DQN
and Q-learning based on SVR-DNN can reduce energy consumption by 11.89%,
8.41%, 6.51% and reduce thermal comfort violation by 91.8%, 43.2%, 25.4%.

In future work, we consider multi-agent RL algorithms to solve the multi-zone
HVAC control problem. It is not limited to considering the strategic control of
cooling months, but also considering that a strategy can maintain the thermal
comfort of occupants and energy saving on a year-round basis. By the above
researches, RL agents will adapt to different environments and can be imple-
mented in the real world.

References
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Abstract. We study a problem of maximizing the sum of a suBmodular
and suPermodular (BP) function, denoted as maxS⊆V,|S|≤k G(S)+L(S),
where G(·) is non-negative monotonic and submodular, L(·) is monotonic
and supermodular. In this paper, we consider the K-cardinality con-
strained BP maximization under a streaming setting. Denote κ as the
supermodular curvature of L. Utilizing a distorted threshold-based tech-
nique, we present a first (1 − κ)/(2 − κ)-approximation semi-streaming
algorithm and then implement it by lazily guessing the optimum thresh-
old and yield a one pass, O(ε−1 log((2−κ)K/(1−κ)2)) memory complex-
ity, ((1 − κ)/(2 − κ) − O(ε))-approximation. We further study the BP
maximization with fairness constrains and develop a distorted greedy-
based algorithm, which gets a (1 − κ)/(2 − κ)-approximation for the
extended fair BP maximization.

Keywords: Submodular maximization · Stream model · Fairness ·
Approximation algorithms · Distorted threshold

1 Introduction

Submodularity plays an important role in developing algorithms for optimizing
the utility functions with the diminishing returns. Maximizing submodular util-
ity functions has been well-studied in the perspective of theoretical performance
guarantees and also has been applied in social computing [11], data summariza-
tion [1], network monitoring [3,12], and just to name a few.

In this work, we study a problem of suBmodular+suPermodular (BP) max-
imization, which is formally stated as

max
S⊆V,|S|≤K

G(S) + L(S) (1)
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where G and L are non-negative non-decreasing submodular and supermodu-
lar functions, respectively. Indeed, we present a first distorted threshold-based
semi-streaming algorithm and then implement it by lazily guessing the optimum
threshold. We further study a more general fair BP maximization and develop
a distorted fair greedy. The main results are listed as follows.

– We firstly present a distorted threshold-based algorithm, which achieves a
(1 − κ)/(2 − κ)-approximation, where κ is the supermodular curvature of L.

– We then implement our algorithm by lazily guessing the optimum
threshold. With an increasing memory of O

(
ε−1 log(2 − κ)K/(1 − κ)2

)
,

we develop a single pass full streaming algorithm, which obtains a
((1 − κ)/(2 − κ) − O(ε))-approximation.

– In last, we study a more general fair BP maximization. Utilizing a distorted
greedy-based technique, we provide a (1 − κ)/(2 − κ)-approximation in time
of O(nK).

1.1 Related Work

Streaming Submodular Maximization Algorithms. For the K-cardinality
constrained submodular maximization under streaming, there exists a natural
local search procedure [7], which initially keeps the first K elements, and if
the new visited element has a larger marginal value, then adds the new ele-
ment to the solution, meanwhile deletes the former retained element with the
maximum exchanged value. However, an example presented [1] implies that
the performance of the local search degrades arbitrarily with K. By setting a
novelty threshold lower bound, [4] introduce an improved algorithm with 0.25-
approximation with the memory complexity of O(K). An efficient threshold-
based streaming algorithm referred in [1], which attains a (0.5−ε)-approximation
with the memory complexity of O(ε−1K log K) that independent on the input
size of the stream. An improved threshold streaming algorithm is introduced
by [14], which segmentally instantiates threshold values and gets (0.5 + 10−14)-
approximation if the data are fed in a random order. If the data arrives in an
arbitrary order, there exists no streaming algorithm with (0.5+ε)-approximation
and memory complexity less than O(|V|/K) for any ε > 0 [14]. Kazemi et al.
[10] provide an improved streaming algorithm, which decreases the memory com-
plexity from O(K log K) to O(K) and keeps the other performance guarantees at
the same.

BP Maximization Algorithms. [2] introduce the constrained BP maximiza-
tion and study two types of constraints, both K-cardinality and p-matroid
system, respectively. They accordingly present greedy-based algorithms with
(1−e−(1−κL)κG )/κG-approximation and (1−κL)/(κG(1−κL)+p)-approximation,
where κG and κL individually represent the submodular curvature of G and
the supermodular curvature of L. [5] study the BP maximization under the
online setting. They provide a (1 − κG)(1 − κL)3/(2 − κL)2-competitive algo-
rithm for the K-cardinality constrained BP maximization and further develop a
(2−κL)/(3−κL)-competitive algorithm for the p-matroid system constrained BP
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maximization. [15] extend the BP maximization to integer lattice and present
a parameterized approximation algorithm with general submodular and super-
modular curvatures. Recently, [13] introduce bifactor approximations for the
constrained BP maximization based on distorted greedy strategy.

Organization. The rest of the paper is organized as follows. Section 2 gives
some preliminary notations. Section 3 studies the K-cardinality constrained BP
maximization under streaming in detail. Indeed, Sect. 3.1 provides a distorted
threshold-based algorithm. Section 3.2 presents a full distorted threshold-based
algorithm for the K-cardinality constrained BP maximization. Section 4 presents
a distorted greedy-based algorithm for the fair BP maximization. Finally, Sect. 5
gives a conclusion for our work.

2 Preliminaries

Denote V as an element ground set, a set function G : 2V → R+ V is submodular
if for any two subsets A,B ⊆ V, one has G(A) + G(B) ≥ G(A ∪ B) + G(A ∩ B).
The function G is non-negative if G(A) ≥ 0 for any A ⊆ V. Let G(u|A) =
G(A ∪ {u}) − G(A) be the marginal value of adding element u to set A. The
submodular function G is non-decreasing if G(u|A) ≥ 0. Another description of
submodular is presented as: G(u|S) ≥ G(u|T ),∀S ⊆ T ⊆ V, u /∈ V.

Conforti and Cornuéjols [6] introduce a parameter of (total) curvature of non-
negative submodular functions and provide a more tighter performance guaran-
tee for the K-cardinality constrained submodular maximization problem. We
now restate the total curvature of submodular functions.

Definition 1. [6] The curvature of a non-negative submodular function G is
defined as κG = 1 − minu∈V

G(u|V\{u})
G({u}) .

A set function L : 2V → R is supermodular if and only if L(u|S) ≤ L(u|T )
for any S ⊆ T ⊆ V. A complementary parameter of supermodular curvature is
introduced by [2] and we restate it below.

Definition 2. [2] The supermodular curvature of a non-negative monotone non-
decreasing supermodular function L is defined as κL = 1 − minu∈V

L(u)
L(u|V\{u}) .

So, a remark for characterizing the relation of the defined two curvatures can be
described as κG(A) = κG(V)−G(V\A) where G(V) − G(V \ A) represents the dual
of the non-negative monotone supermodular function G for any set A. Denote
κ = κL for clarity in our context.

Fair BP Maximization. In this model, assume there is a P-partition for the
elements and denote Pi as the ith part of the partition, i.e., V = ∪iPi. For any
part Pi, denote �i and ui as the fairness lower and upper bounds constraints,
respectively. The goal is to choose a subset S of size at most K satisfying |S∩Pi| ∈
[�i, ui] for any i, such that the sum of G(S) + L(S) is as large as possible. We
formally describe this problem as

max
S∈I

G(S) + L(S) (2)
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Algorithm 1. Distorted Thresholding Algorithm
Input: Stream V, integer K, functions G, L with supermodular curvature κ, α > 0.
1: Set τ ← 1

K · {H(κ) · (G(OPT ) + α · L(OPT ))}, H(κ) ← 1−κ
2−κ

, and S ← ∅.
2: while there is a revealed element u from stream V do
3: if |S| < K and G(u|S) + α · L({u}) ≥ τ then
4: S ← S ∪ {u}
5: end if
6: end while
7: return S

where I = {S ⊆ V : |S| ≤ K, |S ∩ Pi| ∈ [�i, ui] for all i}. Observe that our
fairness BP maximization can be reduced to the BP maximization if i = 1, ui =
K, and �i = 0. If removing the lower bound constraints, the above problem (2)
reduces to the BP maximization with a partition matroid.

In the paper, we emphasize the time complexity as the amount of oracle
queries.

3 Streaming BP Maximization

Note that the greedy algorithm selects an element with the maximum marginal
gain in every iteration for the centralized offline setting and guarantees that the
value of chosen set has a significant amount comparing to the optimum. However,
it is almost impossible to get the “best” elements, since all of them are revealed
on the fly. To deal with the streaming submodular maximization, researchers
develop an extended greedy strategy by introducing the threshold techniques.
The key idea behind these ideas is to instantiate proper threshold values based
on the optimum for the arriving elements.

We introduce a distorted threshold technique to the BP maximization and
derive a distorted threshold-based streaming algorithm. In our algorithm, denote
the distorted optimum threshold as τ = 1

K · {H(κ) · (G(OPT ) + α · L(OPT ))} .
The chosen of the parameters α,H(κ) are discussed in following section.

3.1 Distorted Threshold Algorithm

In this subsection, we present the distorted threshold algorithm, listed as Algo-
rithm1. Further, we discuss the main theoretical guarantees in detail.

The algorithm starts with an empty set, denoted by S = ∅. If |S| < K and
u is the visited element at the current time, we add the revealed element u
to S if the distorted marginal value no less than the distorted threshold, i.e.,
G(u|S) + α · L({u}) ≥ τ. The algorithm processes the next element until the
stream is finished or the size of set S equals to the cardinality upper bound K.

Our main result can be concluded as the following theorem and the proof is
deferred to our full version.
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Algorithm 2. Full-Distorted Thresholding Algorithm
Input: Stream V, integer K, functions G, L with supermodular curvature κ, parame-

ters α = 1 and H(κ) = 1−κ
2−κ

.
1: M0 ← 0
2: while there is a revealed element u from stream do
3: Mt ← max{Mt−1, H(κ) · (G(u) + α · L(u))}
4: Ot ←

{
(1 + ε)i|(1 + ε)i ∈

[
Mt

(1+ε)K , Mt
(1−κ)H(κ)

]}

5: delete threshold τ and sets Sτ with τ < Mt
(1+ε)K

6: for τ ∈ Ot do
7: if τ is a new instantiated threshold then
8: Sτ ← ∅
9: end if
10: if |Sτ | < K and G(u|Sτ ) + α · L({u}) ≥ τ then
11: Sτ ← Sτ ∪ {u}
12: end if
13: end for
14: end while
15: return S = argmaxτ f(Sτ ) + L(Sτ )

Theorem 1. For the BP maximization under streaming, Algorithm1 returns a
solution S, satisfying

G(S) + α · L(S)
G(OPT ) + α · L(OPT )

≥ 1 − κ

2 − κ
.

3.2 Full Distorted Threshold Algorithm

In former section, we assume a prior for the threshold value τ based on the
optimal value. Actually, we only can learn this value after the stream is finished.
So, we embark on removing the above assumption and constructing a relaxed
threshold interval following by the work of [1,9]. We claim that the approxi-
mation ratio does not lose too much and also the memory complexity does not
increase sharply. The main pseudo codes are summarized by Algorithm 2.

It follows that

max
u∈V

H(κ) · (G(u) + α · L(u)) ≤ H(κ) · (G(OPT ) + α · L(OPT ))

≤ K
1 − κ

· max
u∈V

H(κ) · (G(u) + α · L(u))

Consequently, if we have access to this maximum distorted singleton value
M = maxu∈V H(κ) · (G(u) + α · L(u)) in advance, then we would guess the
threshold value τ with the form of (1 + ε)i for some integer i among the
range of

[
M

(1+ε)K , M
1−κ

]
. Thus one can get a threshold τ̃ subject to Kτ̃ ≤
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Algorithm 3. Fair-Distorted-Greedy
Input: Element set V, integer K, functions G, L with supermodular curvature κ,

parameter α = 2
2−κ

.
1: S ← ∅
2: while |S| < K do
3: U ← {u ∈ V : S ∪ {u} is extendible}
4: S ← S + argmaxu∈U G(u|S) + α · L(u)
5: end while
6: return S

H(κ) · (G(OPT ) + α · L(OPT )) ≤ (1 + ε)Kτ̃ and the amount of guesses is
bounded by

log1+ε

(1 + ε)K · maxu∈V H(κ) · (G(u) + α · L(u))
(1 − κ) · maxu∈V H(κ) · (G(u) + α · L(u))

≤ O
(

1
ε

log
K

1 − κ

)
.

Actually, the value of maxu∈V H(κ) · (G(u) + α · L(u)) still can not be known
in advance. Let Mt = maxu∈V′ H(κ)·(G(u)+α·L(u)) be the maximum singleton
value at the time of t, where V ′ denotes the set of elements encountered at this
time. We can utilize the value of 1

(1+ε)K · maxu∈V′ H(κ) · (G(u) + α · L(u)) as the
lower bound of the threshold τ . Further, based on the value of single element seen
so far, we get a relaxed upper bound for the guessing process by the following
fact: If τ > 1

H(κ) · maxu∈V ′ H(κ) · (G(u) + α · L(u)), the elements of V ′ will
not be added to S. This implies that it suffices to explicitly maintain a copy of
Algorithm 1 for values of τ that are equal to (1 + ε)i for some integer i and fall
within the range

[
Mt

(1+ε)K , Mt

(1−κ)H(κ)

]
. The memory complexity can be bounded

log1+ε

1
(1−κ)H(κ) · maxu∈V ′ H(κ) · (G(u) + α · L(u))

1
(1+ε)K · maxu∈V ′ H(κ) · (G(u) + α · L(u))

≤ O
(

1
ε

log
K

(1 − κ)H(κ)

)
.

Now we conclude the results by the following theorem.

Theorem 2. For any ε > 0, with O
(

1
ε log (2−κ)K

(1−κ)2

)
memory complexity, Algo-

rithm2 makes one pass over the stream and gets a
(

1−κ
2−κ − O(ε)

)
-approximation

for the K-cardinality constrained BP submodular maximization.

4 Fairness in BP Maximization

In this section, we study the fair BP maximization and present a first fair dis-
torted greedy for this problem. Consider the elegant greedy, which picks elements
during the iterations with maximum marginal values by enumerating over the
ground set. One easily conclude that the fairness constraints may be not satisfied
when the global cardinality constraint is reached. To make sure the output of
the chosen process is feasible, Halabi et al. [8] introduce a concept of extendable
and we restate it here.
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Definition 3. [8] A set S is extendable if it is a subset S ⊆ S ′ of some feasible
solution set S ′ ∈ I.
Then it follows that a set S is extendable if and only if for any Pi, |S ∩ Pi| ≤ ui

and
∑

i max{|S ∩ Pi|, �i} ≤ K. Actually, the extendability of sets encourages us
to choose elements in a feasible manner.

Our fair distorted greedy starts with S = ∅ and selects at each iteration
element with maximum distorted marginal value from an extendable set U . We
define U = {u ∈ V : S ∪ {u} is extendable} and denote G(u|S) + α · L(u) as the
distorted marginal value of adding u to S. The algorithm returns the solution
set S after processing K iterations.

We conclude that there exists a mapping between the solution set returned
by the fair distorted greedy and the optimum.
Lemma 1. There exists a mapping between S = {u1, ..., uK} and OPT =
{o1, ..., oK} satisfying
– for any i, either ui and oi are partitioned into the same group
– or, P[ui] �= P[oi] where P[u] denotes the part of u belong to, then |S∩P[ui]| >

|OPT ∩ P[ui]| and |S ∩ P[oi]| < |OPT ∩ P[ui]|.
Following the above lemma, it concludes that S \ {ui} ∪ {oi} is feasible for

any i. The main result is concluded as the following theorem and the proof is
deferred to our full version.
Theorem 3. Denote α = 2

2−κ . Algorithm3 attains a 1−κ
2−κ -approximation for the

fair BP maximization.

5 Conclusions

In this paper, we firstly consider the K-cardinality constrained BP maximiza-
tion under streaming fashion. Utilizing a distorted threshold-based technique,
we develop a semi-streaming algorithm, which depends on a distorted opti-
mum. We then implement the above algorithm by guessing the optimum dis-
torted value and obtain a full streaming algorithm, which makes single pass over
the stream, uses O

(
1
ε log (2−κ)K

(1−κ)2

)
memory resource, and gets a

(
1−κ
2−κ − O(ε)

)
-

approximation for our BP maximization problem. Then we study a more general
fair BP maximization. and present a distorted greedy-based algorithm, which
performs a 1−κ

2−κ -approximation. This arouses a natural research question: “If
there exists a distorted threshold-based algorithm for the streaming fair BP
maximization?” We believe this is an interesting open problem which needs fur-
ther study.
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Nemhauser et al. [25] first considers the cardinality constraint in the submodular
maximization and propose a greedy algorithm achieving (1−1/e)-approximation.
Feige [10] prove that the (1− 1/e)-approximation is tight under the assumption
P = NP . For the non-submodular set function, Bian et al. [2] prove that the
standard greedy algorithm has a tight approximation ratio with cardinality con-
straint, based on the weak DR ratio introduced by Das et al. [8]. Many other
excellent results of non-submodular optimization refer to [1,3,11,14,16–24,29–
33,35,36].

In this paper, we are study streaming algorithms for maximization of a non-
submodular function with a cardinality constraint on the integer lattice.

1.1 Problem Definition

We assume that the elements in the ground set G = {e1, e2, · · · , en} arrive
one by one. Let s be a n-dimensional vector in N

G, and denote the component
of coordinate ei ∈ G of s as s(ei). We use 0 to denote the zero vector. χei

is the standard unit vector. For any S ⊆ G, we denote s(S) :=
∑

ei∈S s(ei).
c ∈ {N ∪{∞}}G is a box. f is defined on Dc = {s ∈ N

G : s ≤ c}, and f(0) = 0.
The problem is then described below

max
s≤c,s(G)≤k

f(s), (1)

where s(G) ≤ k is the cardinality constraint and

s(G) =
∑

e∈G

s(e).

1.2 Preliminaries

Let
(s ∧ t)(e) = min{s(e), t(e)}

and
(s ∨ t)(e) = max{s(e), t(e)}

for each element e ∈ G.
Fc is denoted to be the set of all non-negative monotone DR-submodular

functions.
Let s∗ be the optimal solution vector, OPT be the optimal value.

Definition 1. Suppose f ∈ Fc , the DR ratio γf (f) of f is the maximum scalar
that satisfies

γf (f)f(χe|t) ≤ f(χe|s)
for any e ∈ G, s, t ∈ Dc with s ≤ t and t+ χe ∈ Dc .
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Definition 2. Suppose f ∈ Fc , the weak DR ratio γw
f (f) of f is the maximum

scalar that satisfies

γw
f (f)(f(t) − f(s)) ≤

∑

e∈{t}\{s}
f(χe|s)

for all s, t ∈ Dc with s ≤ t.

In the following, we denote F
γf ,γw

f
c = {g ∈ Fc : γf (f) = γf , γw

f (f) = γw
f }.

2 The Streaming Algorithm

In this section, we propose a streaming algorithm to approximate the NMCC
which generalizes the DRSS algorithm in [33] on the integer lattice.

Algorithm 1. BinarySearch(f, s, c, ei, k, τ)

Input: f : NG → R
+, stream of data G, e ∈ G, s, c ∈ N

G, k ∈ N, τ ∈ R
+.

Output: α ∈ R
+.

1: αt ← min{c(e) − s(e), k − s(G)};

2: αs ← 1;

3: if f(αtχe|s)
αt

≥ τ , then

4: return αt.

5: end if

6: if f(χe|s) < τ , then

7: return 0

8: end if

9: while αt > αs + 1, do

10: ρ = �αt+αs
2

�
11: if f(ρχe|s) ≥ τ , then

12: αs = ρ,

13: else

14: αt = ρ.

15: end if

16: end while

17: return αt

Let si−1 be the output of the (i − 1)-th iteration and ei be the element at
the i-th iteration of Algorithm2, and αi is returned from Algorithm1.

Lemma 1. For the i-th iteration of Algorithm2 with si, it holds that

f(si) ≥ γfvsi(G)
2γf k

. (2)
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Algorithm 2. Streaming Algorithm

Input: f ∈ Fc , stream of data G, cardinality constraint k, ε ∈ (0, 1).

Output: a vector s ∈ N
G.

1: m ← max
e∈G

f(χe);

2: Vε = {(1 + ε)l|l ∈ N, β
1+ε

≤ (1 + ε)l ≤ km
γf

};

3: for v ∈ Vε, do

4: set sv ← 0

5: for i = 1, · · · , n, do

6: if sv(G) < k, then

7: α ← BinarySearch

(
f, sv, c, ei, k,

γf v/2
γf −f(sv)

k−sv(G)

)
;

8: sv ← sv + αχe;

9: Return sv

10: end if

11: end for

12: end for

13: return sv

Denote s̃ as the final output of Algorithm2. For any e ∈ {s∗} \ {s̃}, consider
the marginal gain of χe.

Lemma 2. If s̃(G) < k, we have

f(χe|s̃) <
v

2γf k
,

where e ∈ {s∗} \ {s̃}.
Theorem 1. For a given ε ∈ (0, 1), Algorithm2 is a two-pass min{(1 −
ε)γf/2γf , (1 − 1/γw

f 2γf )}-approximation algorithm for NMCC, with O(k
ε log k

ε )
memory complexity and O( log k

ε log log k
ε ) query times per element.
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Abstract. In this paper, we study the problem of imbalanced text classification
based on the pre-trained language models. We propose the Adaptable Focal Loss
(AFL) method to solve this problem. Firstly, we use the word embeddings from
the pre-trained models to construct the sentence level prior by the sum of the word
embeddings in the sentence. Then, we extend the Focal Loss, which is widely used
in the field of object detection, by replacing the task-special parameters with the
scaled-softmax of the distance between the fine-tuned embeddings and the prior
embeddings from the pre-trainedmodels. By removing the task-special parameters
in Focal Loss, not only can the parameters of arbitrary imbalanced proportion
distribution be adjusted automatically according to the task, but also the sentences
that are difficult to classify can be given a higher weight. Experimental results
show that our methods can easily combine with the common classifier models and
significantly improve their performances.

Keywords: Imbalanced text classification · Pre-trained models · Adaptive
training · Focal loss

1 Introduction

Text is the most common carrier of human beings to transmit information. With the
rapid development of Internet technology, the demand for information technology and
text processing has been increasing in recent years. Text classification [1–4], as one of the
core issues in Natural Language Processing (NLP), has been widely studied by scholars
and successfully applied to industry scenes. There are alreadymany deep-learning based
words on the text classification, which outperform the traditional methods, i.e., SVM
[5], LDA [6].

At present, most text classification models generally believe that there is no signif-
icant difference in the number of different text labels classified, which may make the
model’s accuracy in predicting some weak labels far lower than all data sets. In actual
scenes, the distribution of data labels will always be imbalanced to a certain extent. Even
in some cases, such as spam classification, the distribution of data may be extremely
imbalanced. In this case, if the positive-negative sample ratio is very high, the model
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only needs to predict all data as positive samples to achieve high classification accuracy.
But it is obviously unreasonable. This requires the classification model not only to have
a high classification accuracy for the whole data, but also to keep high classification
accuracy for each kind of data sample. We propose an adaptive objective function based
on a pre-trained language model to solve the problem of imbalanced text classification.

Recently, combining pre-trained languagemodels and fine-tunemodels have become
mainstream in many NLP task, i.e., text classification [7], text generation [8], etc. In this
paper, we assume that the pre-trained embeddings are trained in the whole real word
corpus for that all the pre-trained models are trained on enormous real world data. Li
et al. [9] come up with this idea creatively, which uses the pre-trained embeddings to
construct the topological order prior for each word. We extend this model and propose
a scaled-softmax function to construct the sentence level prior for each sentence based
on pre-trained word embeddings. We use the difference between the computed sentence
prior and the fine-tuned sentence embedding to calculate an adaptable parameter and use
the parameter to replace the task-specific parameter in Focal Loss. By removing the task-
special parameters in Focal Loss, our model can not only reweight the higher weights
to the disadvantage sentences, but higher weights to the sentences that are difficult to be
classified for arbitrary texture data sets.

The content structure of this article is as follows: Firstly, we introduce the related
knowledge of imbalanced learning and pre-training models. Secondly, we propose an
adaptive loss function that combines pre-training language models. Then, the perfor-
mance of our proposed new objective function is verified on multiple data sets. Finally,
we make a summary.

2 Related Work

2.1 Imbalanced Learning

Many tasks in the real world suffer from the extreme imbalance in different groups.
Imbalanced data distribution will have an adverse effect on the performance of the clas-
sification model [10]. At present, there are two traditional methods to solve the problem
of imbalanced classification, one is data level [11–13], the other is algorithm level [14–
16]. The data level methods use re-sampling to balance the size of different groups.
Specifically, the over-sampling technique increases the number of samples by repeat-
edly sampling a small number of samples or generating minority class samples. While
under-sampling technique divides the original data set into multiple small data sets with
relatively balanced sample distributions. The algorithm level methods aim to solve this
problem by using cost-sensitive objectives or adding cost-sensitive regularization. This
method is mainly to improve the model itself, so that the model pays more attention
to the minority samples. The mainstream method is to replace the original classifica-
tion loss function with the cost sensitive loss. In 2016, Shrivastava et al. [17] proposed
an online hard case mining (OHEM) algorithm. OHEM algorithm constructs training
examples with the highest-loss examples by its loss function, and filters out the diffi-
cult samples that have a greater impact on classification and detection for retraining.
Although the OHEM algorithm increases the weight of misclassified samples, it ignores
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samples which are easy to classify. In order to solve this problem, Lin et al. [18] pro-
posed a new Focal Loss, which expands OHEM by reweighing misclassification, simple
examples and difficult examples, and made the model pay more attention to the hard-
to-distinguish samples by reducing the weight of easy-to-classify samples in training.
The cost-sensitive function can be flexibly integrated into any classification algorithm,
without adjusting the data set and directly optimizing cost-sensitive objectives through
training. However, since the cost of misclassification is unknown and requires sufficient
prior knowledge to make an accurate estimate, most of the cost-sensitive objectives
need trade-off parameters related data set, which makes those methods rely too much
on parameters tuning. This also brings difficulties to the setting of the cost matrix, and
limits the application of cost-sensitive loss methods in any data sets. In this paper, we
propose an adaptive focus loss function as an objective function to adapt to arbitrary text
data sets without any re-sampling method.

2.2 Pre-trained Model

In the last few years, the pre-trained language models greatly promote the field of NLP,
which makes breakthroughs in many NLP tasks. The goal of the pre-trained language
model is to obtain general word vectors or initial model parameters based on large unsu-
pervised corpus training, which provides an effective method for large-scale parameter
learning of Deep Neural Network (DNN). The essence of pre-trained language model
idea is that the model parameters are no longer randomly initialized, but pre-trained by
some tasks, such as pre-training DNN on large data sets to obtain model parameters,
and then applying the obtained model parameters to various specific downstream tasks
to avoid training from scratch. The essence is to improve learning efficiency of differ-
ent tasks by using transfer learning. Generally speaking, the pre-trained language model
can be divided into two types: fine-tuning and feature-based methods. On the down-
stream tasks, we can easily fine-tune the specific parameters related to the task without
training the model from scratch; or directly use the pre-trained representation as the
initial representations or additional features. Given a sequence s = [x1, x2, . . . xl] of l
words, by using the pre-trained models, the embedding tensor of the sequence s can
be represented as es = [

ex1 , ex2 , . . . , exl
]
. Given a certain NLP task, suchlike text clas-

sification, the pre-trained model can be specialized by the module of the specific task
(like Long Short-Term Multi-Layer Perceptron), or the pre-training representation can
be used as the input of the model. Because all pre-training models are trained on the
extremely large amounts of data, especially the models based on fine-tuning in recent
years, the corpus used almost includes all common corpora, so we can approximately
regard the obtained pre-trained embeddings as the prior distribution in the whole corpus.

3 Method

We first briefly declare the notations used in this paper. For a certain corpus C =
{{s1 : y1}, . . . , {sl : yl}} of l sentences, where si is the i-th sentence and yi is the label of
it. Each sentence si = {

w1, · · · ,w|si |
}
consists of some words, and each word w ∈ V is

in the vocabulary V . For brevity, we consider the binary classification, and in this case,
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the class group G = {y|y ∈ {−1, 1}} consists of labels of sentences. In this paper, we
assume that the label y = −1 to be advantage class (easy to classify) and y = 1 to be
disadvantage class (hard to classify).

3.1 Focal Loss

The Focal Loss is first proposed in the field of object detection. In the field of object
detection, an image can be segmented into hundreds or thousands of candidate objects
consisting of foreground and background. However, there are only rare objects that are
targeted objects compared with others (e.g., 1:1000), which is an extremely imbalanced
classification task. In the terms of the Focal Loss, it can be seen as a cost-sensitive objec-
tive. The Focal Loss assigns different weights for each candidate of different types.The
Focal Loss extends the cross entropy (CE) loss:

CE(p, y) =
{− log(p) if y = 1,

− log(1 − p) otherwise.
(1)

where y ∈ {−1, 1} is the ground-truth label and p ∈ [0, 1] is the output probability of
the label y = 1, by using an additional notation pt :

pt =
{
p if y = 1,
1 − p otherwise.

(2)

the Eq. 1 can be simplified as: CE = −log(pt).
The Focal Loss extends the balanced cross entropy:

CE = −α log(pt) (3)

where the α is the trade-off parameter that balances cost of different types of misclas-
sification, which is always set large for disadvantaged classes and small for advantaged
classes. The Focal Loss extends the Eq. 3 by introducing an additional term: (1 − pt)γ

called modulating factor, the Focal Loss (FL) can be formulated as:

FL(pt) = −α(1 − log(pt))
γ log(pt) (4)

where the γ ∈ [0, 5] is the focusing parameter that controls the weight of misclassifica-
tion.

By introducing modulation factors (1 − pt)γ and trade-off parameters α, the focus
loss function can not only focus on the difficult samples, but also assign higher weights
to the weak samples. In other words, the focus loss solves the class imbalance problem
from two aspects: (1) by introducing the trade-off parameters α to adjust the weight of
majority class and minority class in the loss function to solve class imbalance problem;
(2) by introducing the modulation factors (1 − pt)γ to solve the problem of easy and
difficult samples.

In the process of applying the Focal Loss, it is necessary to build parameter sets for
different data sets, which constrains the applications of it. Inspired by the Focal Loss, we
propose the Adaptable Focal Loss, which use the sum of the word level prior obtained to
construct the sentence prior and replace the α by the scaled-softmax of learned sentence
representations and the constructed sentence prior.
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3.2 Adaptable Focal Loss

In order to minimize the tuning parameters of human intervention and adapt the sen-
tence level imbalanced text classification, we design a function to construct the prior of
sentence s:

es =
∑

w∈s
ew (5)

where the ew is the pre-trained embedding of word w. By using the Eq. 5, our model can
easily capture the prior distribution, or in other words, the mean value of the sentence
in the whole corpus.

For a task-specific fine-tune network �, the fine-tuned task-specific embedding of
a sentence s is represented as zs = Θ( z|es). In order to get the offsets of es and zs, we
use the scaled-softmax to calculate the distance of them and assign it to the focusing
parameter in Focal Loss:

γ = β ∗ softmax(D(es, zs)) (6)

where β is a scaling factor, which is set to equal to the length of γ in the Focal Loss
(i.e., β = 5) in the paper, andD is a distance function. The Kullback-Leibler Divergence
Distance can be expressed as:

DKL(es, zs) = KL(es, zs) (7)

Moreover, we set the trade-off parameter α as the inverse rating of the advantage
and disadvantage examples. Finally, Adaptable Focal Loss (AF Loss) is formulated as:

LAF =
{−(1 − α) ∗ (1 − p)γ ∗ log(p) if y = 1,

−α ∗ pγ ∗ log(1 − p) otherwise.
(8)

where the p = pφ(y|zs) is the output probability of the classification network φ for the
label y.

We find that Eq. 8 can adapt to the imbalance distribution and classification difficulty
distribution for arbitrary data sets through parameters α and γ , respectively.

The steps for training the Adaptable Focal Loss are as follows:

(1) First, the pre-training word vector ew of word w is obtained from the pre-training
language model or pre-training word vector. Because all pre-training models are
trained on a large amount of data, and the corpus used includes almost all public
corpora, the pre-training word vectors obtained can be used as a prior distribution
in the whole corpus approximately.

(2) According to Eq. 5, the prior sentence vector es is calculated from ew.
(3) The hidden vector zs is obtained by fine tuning network � training, zs = �(z|es).
(4) Calculate the distance between es and zs to obtain the adaptive modulation factor

parameter γ .
(5) Pass the hidden vector through the classification network � to obtain the output

probability of the label p, p = p�(y|zs). Up to now, the various parameters of the
modulation factor (1 − p)γ in the focus loss function have been set.
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(6) Use the gradient descent method to calculate the adaptive focus loss function Eq. 8
and optimize it.

(7) Judgewhether the termination condition is reached, and if the termination condition
is reached, it ends. If the termination condition is not reached, the next batch of
cycle will be entered.

4 Experiment and Analysis

4.1 Data Sets

Before describing the data sets, we first point out the way to construct the imbalanced
data sets. For each data set/corpusC, we resample the sentences by their labels andmake
the distribution of different types of labels conform to the Bernoulli distribution with the
parameter α, i.e., y ∼ B(|C|, α), where the α is equal to the trade-off parameter in the
Adaptable Focal Loss objective. We randomly choose 20% of the data set as the testing
set and the remaining 80% of the data set as the training set. In our experiments, we use
five real word data sets and the summary of the data sets are shown in Table 1.

Table 1. Statistics of the data set

Data sets Number of
classes

Average length Size Dictionary size

CR 2 20 1.8K 3K

TREC 6 10 5.4K 10K

SST 2 19 7.3K 16K

SUBJ 6 23 9.0K 21K

MR 2 20 9.5K 18K

4.2 Evaluation Criteria and Parameter Setting

Traditionally, the Mean Average Precision (MAP) is the main evaluation metric for the
classification task. However, for the imbalanced classification, theMAPmay cause some
issues. For instance, the MAP for the disadvantage examples may be very low, but the
MAP on the whole data sets is still at a high level. In this paper, we use the F1-measure
as the evaluation metrics of our experiments, which is based on confusion matrix.

In order to evaluate our proposed Adaptable Focal Loss method, we use 4 pre-
trained models for training, including AWD-LSTM, TextCNN, EIMo, and BERT. The
embedding dimension of the word is set to 128, and the learning rate is equal to 0.001.
The stretch of the sentence length is set to 64. The number of layers of the LSTM-based
model (AWD-LSTM) is set to 2, TextCNN is set to 3.We use BERT-Base (12 layers, 768
hidden units, 16 heads) as the BERT baseline. ELMo is provided with 2-layer BiLSTM.
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In order to compare the effects of different objective functions, the following four
objective functions are used for each baseline model: (1) Cross Entropy Loss (CEL); (2)
Focal Loss (FL); (3) Re-Sampling (RS), resampling each data set of the sample with a
probability inversely proportional to the number of samples in this class, so as to balance
the proportion of positive and negative samples; (4) Adaptable Focal Loss (AFL).

4.3 Experimental Analysis

To verify the effectiveness of our proposed goal, we apply sentence-level text classifica-
tion to five data setsmentioned in Sect. 4.1. Table 2 shows the results of text classification.
We find that our Adaptable Focal Loss model has achieved significant advantages over
all data sets in each classification network, especially for data sets with a shorter average
sentence length, which illustrates the superiority of our method. The main reason why
the performance of this model declines with the sentence length is that the prior error
is positively correlated with the sentence length. At the same time, we notice that AFL
using Kullback-Leibler Divergence Distance is less sensitive to sentence length, which
indicates that Kullback-Leibler Divergence Distance is more robust to the modeling of
prior distribution. Table 2 also shows the F1 value of various model under different dis-
tributions. Obviously, the F1 values of the Adaptable Focal Loss model are more stable
and higher, which indicates that our AFL can better adapt to imbalanced data sets.

In order to study the impact of the degree of imbalance on model performance, we
test two models (i.e., TextCNN, BERT) on SUBJ and SST datasets, and the imbalance
coefficient α varies within the range of [0.1, 25]. The results are shown in Fig. 1. Figure 1
proves that Adaptable Focal Loss objective function can maintain high performance in
both imbalance situations (i.e., positive sample advantage and negative sample advan-
tage). Especially in the extreme case of α = 0.1 or α = 25.6, our method still has a high
F1 value.

(a) SST data set (b) SUBJ data set

Fig. 1. The impact of data set imbalance on model performance.

5 Conclusion

In this paper, we propose an imbalanced text classification method with Adaptive Focus
Loss from the cost function level. In the pre-training model, we use word embedding to
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build a sentence-level prior by embedding the sum of words in sentences, and calculate
the offset of vectors and prior vectors after fine-tuning the current data set to replace
the task-related parameters in the focus loss function, which can not only automatically
adjust the parameters of arbitrary imbalanced distribution according to tasks, but also
give higher weight to sentences that are difficult to classify. The proposed AFL algo-
rithm shows excellent performance in many data sets and experimental environments.
Nevertheless, when the sentence length is long, the adaptive objective function will still
be plagued by performance degradation, which will be one of our future work directions.
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Abstract. In this paper, we propose a neural model to classify Roman
amphitheater images into six groups corresponding to their locations:
Rome, Eljem, Nı̂mes, Arles, Verona and Pula. The proposed neural struc-
ture makes essential use of convolutional neural networks for feature
extraction and images classification. To avoid overfitting, data augmen-
tation techniques have been deployed to expand the data set size by a
magnitude of 16. This method is applied on the augmented training set
and results show a substantial performance and high accuracy of 98.33%
compared to state-of-the-art methods.

Keywords: Convolutional neural network · Data augmentation ·
Landmarks classification · Monument recognition

1 Introduction

Recognizing landmarks is a useful yet challenging task. Landmarks are easily
recognizable and wellknown sites and buildings, such as monuments, tours, etc.
They are the focal part of people’s tours, due to their imposing physical, cultural
and historical features. The explosion of personal digital photography, together
with Internet, has led to the phenomenal growth of landmark photo sharing
in many websites like Picasa, Google Images, Pinterest and many other social
medias. With the extensive amount of landmark images in the Internet, land-
mark recognition becomes necessary, not only to visually recognize the presence
of certain landmarks in an image, but also contributes to a worldwide land-
marks indexing, in terms of geographical locations, popularity, historical perti-
nence, cultural values and social purposes. Besides, landmark recognition can be
remarkably useful for many vision and multimedia applications. In fact, catching
the visual features of landmarks provides clean landmark images for building vir-
tual tourism [1]. Apart from content understanding, landmarks recognition also
facilitates geolocation detection of images and videos. Moreover, organizing land-
marks by category facilitates an intuitive themed exploration and navigation of
landmarks in a local area. This would be relevant for a potential historical tour
guide recommendation and visualization system.
c© Springer Nature Switzerland AG 2022
H. Shen et al. (Eds.): PDCAT 2021, LNCS 13148, pp. 476–484, 2022.
https://doi.org/10.1007/978-3-030-96772-7_44

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96772-7_44&domain=pdf
http://orcid.org/0000-0002-1693-2203
https://doi.org/10.1007/978-3-030-96772-7_44


Roman Amphitheater Classification Using CNN and Data Augmentation 477

Unlike many existing landmark recognition and classification works, this
study particularly sheds the light on ancient Roman amphitheaters classifica-
tion. Roman amphitheaters are circular or oval in shape, and were used for
events such as gladiator combats, chariot races, animal slayings and executions.
Fragmentary remains of more than 230 Roman amphitheaters have been found
in widely scattered areas throughout the provinces of the Roman Empire [2].
In this work, we focus on the classification of 6 among them whose shapes are
still the best preserved and that did not fall into disrepair: the amphitheaters
built at Rome, El Jem, Nı̂mes, Arles, Verona and Pula. As stated, we consid-
ered these six amphitheaters as they are the least ruined among the 230 Roman
amphitheaters whose fragmentary remains were found. The second reason for
choosing these amphitheaters is that touristically they are the six most vis-
ited Roman amphitheaters and thus the most photographed. Images of other
amphitheaters are not as available as for these six. Besides, the most important
architectural features of Roman amphitheaters are multi-storied, arcaded facades
and were elaborately decorated with marble, stucco and statuary [2]. The main
challenge in these amphitheaters classification is the high similarity between the
six amphitheaters. On the other hand, having large data set is crucial for deep
learning [3] and the performance of deep networks is heavily reliant on big data.
It helps reduce or prevent overfitting when training a deep neural network [4].
The reality is that we usually are in a situation where no complete data set is
available or where it is impractical to collect data from a single source. Since
many application domain do not have access to big data, we can improve the
performance of a model by augmenting the existing data.

In this paper, we propose a Convolutional Neural Network (CNN) framework
for efficient ancient Roman amphitheater classification. The remainder of this
paper is organised as follows: Sect. 2 presents the created data set, its preprocess-
ing and the process of data augmentation. Section 3 describes the configuration
of the used CNN. Section 4 provides experiments and results.

2 The Roman Amphitheater Data Set and Data
Preprocessing

2.1 Data Set Collection and Preprocessing

The Roman amphitheater data set has been obtained after a three-months
preparation period. Data was collected from free online stock images (e.g.
images.google.com and images.baidu.com) and also from social media services
namely Pinterest and Facebook. In this work, we only include images from the
front view or side view. The reason is that side-viewed or front-viewed captures
have a narrow field of view that captures better the architectural features of
the landmark, which allows a more efficient learning performance and facilitates
the identification of the theater [5]. Finally, we obtain a data set of 1910 images
belonging to six classes. Each class name represents the city where the amphithe-
ater is located. Each object type has an optimal viewing angle depending on the

http://images.google.com
http://images.baidu.com
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training data. For instance, many images of cups are taken from the side while
many images of keyboards are taken from above [6]. In our case, a side view
would be the optimal viewing angle since it depicts better the intrinsicality of
each amphitheater. An above angle (e.g. taken by a drone) would give lookalike
snapshots of circular or oval shapes to all six amphitheaters. Besides, previous
research [6,7] showed that a network trained on normal camera images could be
used on images taken by a drone with satisfactory results. On the other hand,
a side view does not necessarily come from a fixed position and can naturally
tilt offering thus various viewing angles. For these reasons, we retrained the
model using images taken by hand-held camera, and this helped to improve the
accuracy of classification.

For data preprocessing, a four-step technique was used. First, we manually
clean the images by removing the background and replacing it with a plain black
one. Moreover, since color has no importance in the classification of our images,
we go for grayscale images to avoid false classification and complexities. Second,
we move the amphitheater to the center of the image. Third, each image is man-
ually cropped and resized to a 256 × 256 matrix. The image cropping is done
manually so we can only keep the pixels covering the landmark. Nevertheless,
numerous images contain occlusions that corrupt the structure of the amphithe-
ater such as tourists, a camel, a bike, a tree, a statue, etc. This is intended as
an additional challenge to the robustness of the network. Finally, each image is
manually labeled to one of the 6 amphitheater classes: Rome, El Jem, Nı̂mes,
Arles, Pula and Verona.

2.2 Data Augmentation

As stated and shown by Miki et al. [8], small number of training samples may
lead to overfitting. One solution is to augment their size by creating fake data
from the training set. Data augmentation implements a suite of techniques (e.g.
geometric transformation, color space augmentation, kernel filters, random crop-
ping, random erasing, etc.) that enhances the size and quality of training data
sets such that better deep learning models can be built based on them [3]. For the
Roman amphitheater data set, we equally and randomly divide the original data
set that consists of 1910 images into a training set (957 images) and a validation
set (953 images). Usually, the larger the validation set, the better. However, we
considered a minimum size of training set so that, once augmented, we obtain
at least a 16.000-sized training set to guarantee a more reliable training of data.
After we split the data set into a training set and a test set, we only augment
the training set. The validation set is used to estimate how our method works
on real world data; thus, it should only contain real world data. Adding aug-
mented data will not improve the accuracy of the validation. It will at best say
something about how well our model responds to the data augmentation, and
at worst ruin the validation results and interpretability. Considering the original
training set, fake examples were generated by 7 different ways. The first data
augmentation method is image rotation. We consider a rotation angle θ ranging
from −15◦ to 15◦ with a 5◦ step. Accordingly, this first augmentation method
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Table 1. Effect of data augmentation on the data set size

Amphitheater Size

Before augmentation After augmentation

Training set Test set Training set Test set

Rome 169 168 2873 168

El Jem 156 155 2652 155

Nı̂mes 155 154 2635 154

Arles 152 151 2584 151

Pula 165 165 2805 165

Verona 160 160 2720 160

Total 957 953 16269 953

allowed to create new samples of a size six times that of the original training
set. Second, we apply the gamma correction method on the original training
set [9] considering a 0.5 gamma value. The third augmentation method is noise
injection. The fourth method for augmentation is contrast enhancement using
histogram equalization [10]. The fifth data generation method is median filtering
[11]. The sixth data augmentation method is performed by randomly cropping
then rotating the image. Finally, five different optical distortions methods are
applied to each image of the training set. Therefore, applying all the mentioned
generation methods led to new samples of a size 16 times that of the original
training set. Table 1 shows training set size after augmentation.

3 CNN Structure and Used Framework

Among deep structures, CNN have gained success in detection and classifica-
tion. Compared to basic neural networks, CNNs have three major advantages:
sparse interaction, parameter sharing and equivariance [12]. Moreover, CNNs
have shown substantial gain over state-of-the-art classifiers such as linear regres-
sion, principal component analysis, SVM, linear discriminant approaches, etc. A
typical CNN will include a convolutional layer, a nonlinear activation layer and
a pooling layer. A characteristic that set apart the CNN from a regular neu-
ral network is taking into account the structure of the images while processing
them. A regular neural network converts the input in a one dimensional array
making the trained classifier less sensitive to positional changes [12]. The input
of our CNN consists of standard grayscale images of size 256 × 256 each. Since
the facade colors of the amphitheaters are pretty much the same, converting the
image to grayscale will not bias the classification performance. All the hyperpa-
rameters selected in this study are the ones followed and used in open published
literature [13,14]. The training algorithm was stochastic gradient descent with
momentum (SGDM). Stochastic refers to the minibatch method whose size is
set to 128. The initial learning rate is set to 0.001. The maximum of epochs is set
to 8. The final structure of our 17-layer deep neural network is given in Table 2.
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Table 2. CNN structure

Layer Function Filter No. of

filters

Stride Padding Weights Bias Activation

1 Image Input layer 256 × 256 × 1

2 Convolution + ReLU 3 × 3 16 [1 1] [0 0] 3 × 3 × 1 × 16 1 × 1 × 16 254 × 254 × 16

3 Pooling 2 × 2 [2 2] 127 × 127 × 16

4 Convolution + ReLU 3 × 3 32 [1 1] [0 0] 3 × 3 × 16 × 32 1 × 1 × 32 125 × 125 × 32

5 Pooling 2 × 2 [2 2] 63 × 63 × 32

6 Convolution + ReLU 3 × 3 64 [1 1] [0 0] 3 × 3 × 32 × 64 1 × 1 × 64 61 × 61 × 64

7 Pooling 2 × 2 [1 1] 60 × 60 × 64

8 Convolution + ReLU 3 × 3 128 [1 1] [0 0] 3 × 3 × 64 × 128 1 × 1 × 128 58 × 58 × 128

9 Pooling 2 × 2 [1 1] 57 × 57 × 128

10 Convolution + ReLU 3 × 3 64 [1 1] [0 0] 3 × 3 × 128 × 64 1 × 1 × 64 55 × 55 × 64

11 Pooling 2 × 2 [1 1] 54 × 54 × 64

12 Convolution + ReLU 3 × 3 32 [1 1] [0 0] 3 × 3 × 64 × 32 1 × 1 × 32 52 × 52 × 32

13 Pooling 2 × 2 [1 1] 51 × 51 × 32

14 Fully connected 32 × 83232 32 × 1 1 × 1 × 32

15 Fully connected 6 × 32 6 × 1 1 × 1 × 6

16 Softmax 1 × 1 × 6

17 Output 1 × 1 × 6

Fig. 1. Example of generated images for augmentation. (a): original cleaned image,
(b): noised image, (c): histogram equalized image, (d): median filtered image, (e): 0.5
gamma corrected image, (f): −15◦ rotated image, (g): −10◦ rotated image, (h): −5◦

rotated image, (i): 5◦ rotated image, (j): 10◦ rotated image, (k): 15◦ rotated image, (l):
randomly cropped and rotated image, (m): image after barrel distortion, (n): image
after left affine distortion, (o): image after right affine distortion, (p): image after
pincushion distortion, (q): image after sinusoidal distortion
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4 Experiments

4.1 Results of Data Augmentation

To give a preview of data augmentation, we consider an image of the Roman
Colosseum and show the different images generated from it based on the dif-
ferent data generation techniques outlined in Sect. 2.2. Figure 1 captures the 16
images (from (b) to (q)) generated from original image (a). Images are generated
by noise injection, histogram equalization, median filtering, gamma correction,
image rotation with a rotation angle θ ranging from −15◦ to 15◦ with a 5◦

step, random cropping and rotation then optical distortion using affine transfor-
mation, barrel, pincushion and sinusoidal distortions. As shown in Table 1, the
overall training set expands 16 times its original size. In particular, the size of
the training set increased from 957 to 16269 images. The goal of this boosted
expansion is to help the network to deeply learn more interesting and stable
features, and thus avoid overfitting.

4.2 Pooling Technique Comparison

To select the best pooling strategy, we compared the max-pooling and the
average-pooling techniques on the same network structure. The overall accuracy
of both pooling strategies is shown in Table 3. This result shows that max-pooling
gives 0.33% better accuracy than average-pooling. Even though the max-pooling
improvement is trivial, average-pooling is known for considering all elements in
the region, and hence down-weighting the strong activations. Given the archi-
tectural similarity between the six amphitheaters, we would rather pool feature
maps that highlight the most present features. Consequently, the max-pooling
is considered in all combined layers.

4.3 Optimal Structure of CNN

Given the importance of convolutional layer and pooling layer, the proposed
CNN contains six combined layers (convolutional layer + pooling layer) as shown
in Table 2. To find the optimal number of combined layers, we trained and tested
the same sets over 5 different numbers of combined layers. Results of the overall
accuracy are finally presented in Table 4. CNNs with 3, 4, 5, 6 and 7 com-
bined layers that led to overall accuracy of 96.18%, 97.57%, 98.15%, 98.33% and
97.32%, respectively. Therefore, 6 combined layers are selected for the proposed
network structure.
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Table 3. Pooling technique compari-
son

Pooling strategy Overall accuracy

Max-pooling 98.33%

Average-pooling 98.00%

Table 4. CNN structure perfor-
mance with different convolutional
layers

Number of
combined layers

Overall
accuracy

3 96.18%

4 97.57%

5 98.15%

6 (proposed) 98.33%

7 97.32%

4.4 Classification Performance

In deep learning, an epoch means a training overall sample. An iteration means
a training over 128 samples (minibatch size). For training, we set 8 epochs equal
to 8 × (16269/128) = 1016 iterations. After training the network on the aug-
mented data and tested it on the validation set, we achieved an overall accuracy
of 98.33%. To assess the classification performance, we compare the proposed
method with some popular state-of-the-art approaches: Principal Component
Analysis (PCA), Discriminant Analysis (DA) approaches (LDA [15], 2D-LDA
[16], SDA [17]), GLRAM [18], Robust GLRAM (RGLRAM) [19] and AlexNet [4].
We also trained the proposed neural structure on the original data set without
augmentation. Compared to the cited methods, the proposed 17-layer neural
structure performs the best with its 98.33% accuracy as depicted in Table 5.
This experiment shows that CNNs outperform by far DA-based method despite
the popularity of this latter for enhancing outer-class dissimilarity and inner-
class similarity. Generally, Discriminant Analysis approaches always outperform
PCA when modelling small data with well separated clusters [20]; however, their
downperformance as shown in Table 5 can be explained by the high similarity
between images from different classes given the matching architecture. From
Table 5, we can also conclude that data augmentation has a positive effect on
the classification performance. The reason for this is that variety of augmented
images allow the CNN to train without resisting to data variation. Subsequently,
the proposed data augmentation improved the recognition performance of our
model by over 2%.
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Table 5. CNN structure performance compared to Linear Discriminant approaches
and non-augmented data

Approach Overall accuracy

LDA 67.00%

RGLRAM 70.30%

SDA 72.00%

2D-LDA 83.90%

GLRAM 84.10%

PCA 93.00%

AlexNet 95.1%

CNN without augmentation 96.7%

CNN with augmentation (proposed) 98.33%

5 Conclusion

In this work, we developed a Roman amphitheater classification method based
on a 17-layer CNN with data augmentation. Experiments show that the proposed
CNN achieves a substantial classification performance of 98.33% outperforming
that of the state-of-the-art methods namely Discriminant Analysis, Principal
Component Analysis, GLRAM and the popular AlexNet. This study also high-
lights the positive impact that data augmentation has on the overall accuracy.
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Abstract. Product search has been receiving significant attention with
the development of e-commerce. Existing works recognize the importance
of personalization and focus on personalized product search. While these
works have confirmed that personalization can improve the performance
of product search, they all ignore the few-shot learning problems caused
by personalization. Under the few-shot setting, personalized methods
may suffer from the data-hungry issue. In this paper, we explore the
data-hungry issue in personalized product search. We find that data-
hungry issue exists under the few-shot setting caused by personalization,
and degrades the performance under the few-shot setting when the input
query consists of diverse intents. Furthermore, we illustrate that with
such a data-hungry issue, the returned search results tend to be close to
the products the user purchases most often, or the products the most
users purchase in the market given the same query. The result in the
further experiment confirms our conclusions.

Keywords: Data-hungry issue · Few-shot problem · Product search

1 Introduction

Due to the popularity of e-commerce, product search techniques [11] have
received significant attention. The goal of product search is to retrieve a ranked
list of products from a large number of products, in response to the user’s input
query. But only considering the content of the query is not sufficient. It has been
shown that user preference has a direct impact on the product search [11,13,14].
The returned ranked list of products is supposed to be not only relevant to the
input query, but also meet the user’s preference underlying their own search
records, which refer to personalized product search [2]. Based on this idea, the
search results are different among users because of their various preferences,
responding to the same input query.
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https://doi.org/10.1007/978-3-030-96772-7_45

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96772-7_45&domain=pdf
https://doi.org/10.1007/978-3-030-96772-7_45


486 B. Wu et al.

The existing methods [1,5] have confirmed that user preference extracted
from user’s search records can significantly improve the performance of product
search. However, they all ignore the sparsity of individual search records when
extracting user preference. In the real world, some users only have interacted with
the search engine few times so that the search records are scarce, which refers to
the few-shot learning problem [16]. Although the existing personalized methods
for product search have confirmed the success of the overall performance, it is
not clear whether personalization works well under the few-shot setting.

Data-hungry issue [12] is the common problem under the few-shot setting in
machine learning. It refers to the fact that the model has an awful performance
when there are little data, while it can achieve success with enough data. In
this paper, we explore the data-hungry issue in personalized product search.
Concretely, We aim to confirm whether the personalized methods suffer from
the data-hungry issue in product search, and further explore when and how the
data-hungry issue degrades the performance in product search.

Our contributions can be summarized as:

(1) Personalization causes the data-hungry issue under the few-shot setting.
Personalization can improve the performance of product search when users’
search records are redundant, but suffer from a degrading performance when
the search records are scarce.

(2) Data-hungry issue degrades the performance in product search when meet-
ing queries with diverse intents. When the intent of the query is less specific
and relevant to many products, personalization can not play its effectiveness
to help provide personalized services under the few-shot setting.

(3) Due to the data-hungry issue, the personalized methods tend to focus on
the products that the user purchases most often or the products that the
most users purchase in the market given the same query. It would lead to
the result that the returned ranked list of products can not meet the user’s
personalized demand.

2 Related Work

Product search [11] has been studied for many years, whose goal is to retrieve a
ranked list of products responding to the input query. In the early work [4,15],
they focused only on the relationships between queries and products, ignoring
the user personalized demand. Recently, an increasing number of works [1,2,8]
recognized the important role of personalization, and studied the problem of per-
sonalized product search. Different from the product search, personalized prod-
uct search aims to return a ranked list of products, which is not only relevant
to the input query but also meets the user’s preference behind her/his search
records. Based on this idea, there were many works proposed to extract the user
preference from the search records. Hierarchical Embedding Model (HEM) [2]
was firstly proposed to explicitly model the users based on their search records
to provide personalized services, and then some work considered using the spe-
cific mechanism to extract the user preference, such as RNN with attention
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mechanism [5] and the graph embedding [7,9]. Ai et al. [1] analyzed when and
how personalization improves the performance in product search and proposed a
zero-attention model to capture the user preference automatically. These existing
methods have confirmed that personalization can improve performance; however,
all of them have not taken into account the data-hungry issue under the few-
shot setting caused by personalization. In this paper, we focus on the few-shot
learning problem caused by personalization and explore the data-hungry issue
in personalized product search.

3 Preliminaries

3.1 Problem Definition

The task of product search aims to retrieve a ranked list of products from all
products I, given the query q input by a user u, and the search records S. The
returned products are ranked by the conditional probability p(i > i′|q, u, I,S),
indicating that user u may prefer product i to i′ given the query q. The task can
be defined mathematically as a mapping function f :

u, q, I,S f−→ p(i|q, u, I,S). (1)

3.2 Non-personalized and Personalized Product Search

There are many existing methods [1,2,15] for the product search, which can be
divided into two categories, non-personalized and personalized product search.
The difference between them is whether the user model is considered. We intro-
duce several state-of-the-state methods in the following.

For non-personalized product search p(i|q), Latent Semantic Entities (LSE)
[15] learns separate representations of queries and products, and the relationships
between them, which returns the results by:

p(i|q) =
exp(g(q) · i)

∑
i∈I exp(g(q) · i) , (2)

where q and i are the representations of query and product, respectively, and g
is the learnable mapping function between query and product.

Compared to the non-personalized methods, the core idea of the personalized
product search p(i|q, u) is to retrieve a ranked list of products, which are not
only relevant to the input query, but also meet the user’s interest behind her/his
search records. Extended from LSE, Hierarchical Embedding Model (HEM) [2]
jointly learns the representations of users, queries and products in the same
latent space and returns the result by:

p(i|q) =
exp((q + u) · i)

∑
i∈I exp((q + u) · i) , (3)
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where u, q and i are the learned representations of users, queries and prod-
ucts, respectively. Different from implicitly modeling users u in the HEM, the
Attention-based Embedding Model (AEM) [1] explicitly models the users with
an attention mechanism based on their current search records:

u =
∑

i∈Iu

exp(h(q, i))
∑

i′∈Iu
exp(h(q, i′))

· i, (4)

where h(q, i) is the attention function determining the attention weight of each
product i in user’s current search records to the input query q. To relax the
constraints of the attention mechanism, the Zero Attention Model is proposed
via introducing an zero vector in the attention mechanism when modeling users:

u =
∑

i∈Iu

exp(h(q, i))
exp(g(q,0)) +

∑
i′∈Iu

exp(h(q, i′))
· i. (5)

These personalized methods have confirmed that the personalized search services
can improve the overall performance of product search; however, the performance
under the few-shot setting can not be explored, which may suffer from the data-
hungry issue. In this paper, we explore the data-hungry issue under the few-shot
setting caused by personalization in product search.

4 Data-Hungry Issue

Personalized product search aims to provide personalized services for users based
on their queries and search records. Existing methods [1,2] aim to identify the
user’s preference from her/his search records. However, some users have inter-
acted with the search engine only a few times so that their search records are
scarce. Under such a few-shot scenario, it is difficult to capture the user’s pref-
erence. Existing methods have confirmed that modeling users can improve the
overall performance, but they do not take into account the performance with few
search records. In this section, we illustrate (1) whether the personalized prod-
uct search suffers from the data-hungry problem; (2) when the data-hungry issue
degrades the performance under the few-shot setting; (3) how the data-hungry
issue harms the performance of personalized product search.

4.1 Does Personalization Cause the Data-Hungry Issue?

Existing methods [1,2] have confirmed the benefit of personalization on the over-
all performance, but they can not take into account the performance under the
few-shot setting, where users have few search records to be identified their prefer-
ence. To evaluate the performance of the user with few search records, we divide
the users into ten groups according to the number of their search records, with
the balanced group sizes. Note that the ways of modeling users are different, and
therefore, the measure of AEM and ZAM is different from that of HEM. AEM
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(a) LSE and HEM (b) LSE, AEM and ZAM

Fig. 1. The performances (in terms of HR@20) by groups on Video Games dataset
according to the number of user’s search records. The dashed lines denote the
overall performances of models.

(a) LSE and HEM (b) LSE, AEM and ZAM

Fig. 2. The performances (in terms of HR@20) by groups on the 30% users with
the least search records of Video Games dataset according to the diversity of
query intents. The dashed lines denote the overall performances.

and ZAM only count the current search records instead of all search records,
because the user modeling is only on the current search records. We take all the
users’ search records to train the models and evaluate them on each group. The
results can be seen in Fig. 1.

When comparing the methods of non-personalized and personalized product
search, we can find that personalization can improve the overall performance
of models. However, the performance in each group is different. For HEM, it
outperforms the non-personalized methods (i.e., LSE) on the groups of users
with more search records, but there is no significant improvement on the groups
of users with few search records. For AEM and ZAM, while the performance
on each group is improved, the performance on the groups of users with few
search records is worse than the overall performance. In general, the personalized
methods outperform the non-personalized one on the overall result, but the
performance on the groups of users with few search records is not improved
significantly, which refers to the data-hungry issue.

4.2 When Does Data-Hungry Issue Degrade the Performance?

The analysis in the above section has illustrated that personalization can not
significantly improve the performances under the few-shot setting. However, it is
still unclear when the personalization does not work under the few-shot settings.
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Fig. 3. The performances (in terms of HR@20, MRR@20 and NDCG@20) by groups on
the 30% users with most search records of Video Games dataset according to
the diversity of query intents. The dashed lines denote the overall performances.

We take the users with few search records (occupying 30% of total) to find when
the data-hungry issue degrades the performance under the few-shot setting.

Following the previous work [1], the difficulty of providing search services
depends on the diversity of the query intent. We use the entropy of products
relevant to the query, Entropy(q), to denote the diversity of query intent:

Entropy(q) = −
∑

i∈Iq

p(i|q) log p(i|q) = −
∑

i∈Iq

|Sq,i|
|Sq| log(

|Sq,i|
|Sq| ), (6)

where Iq and Sq are the sets of products and search records relevant to the query
q, respectively, and the Sq,i is the set of search records related to the query q
and the product i.

Figure 2 shows the performances of each group. We find that the methods for
personalized product search can work and achieve the competitive performance
on the groups with low entropy, where the query intents are specific so that it is
easy to retrieve a ranked list of products to respond to the input query. However,
the performance degrades significantly when the query carries diverse intents.

For HEM, we can see that it can outperform the non-personalized method
(i.e., LSE) but not reach the overall performance, when the query carries diverse
intents. To further confirm the impact of the few-shot setting, we take the users
with enough search records for verification (also occupying 30% of total). The
groups are divided according to the entropy of the product relevant to the query
too and the results are shown in the same coordinate scale in Fig. 3. It illustrates
that the HEM can perform better with enough search records on the groups even
if the query carries diverse intents, compared to the performance under the few-
shot setting. It confirms that the data-hungry issue still exists even if HEM can
outperform the non-personalized methods under the few-shot setting.

The above analysis has demonstrated that the data-hungry issue degrades
the performance under the few-shot setting, especially when the query carries
diverse intents.

4.3 How Does Data-Hungry Issue Degrade the Performance?

In this section, we explore how the data-hungry issue degrades the performance.
The previous section shows that the personalized methods have different perfor-
mances on different purchase entropy of queries under the few-shot setting. But
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Table 1. The MRR@20 between LSE and HEM, measuring the ranked list of products,
whose targets are the two factors, respectively.

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

The purchase

frequency of

user

LSE .0010 .0022 .0034 .0031 .0064 .0063 .0076 .0073 .0052 .0050

HEM .3720 .3372 .3429 .3370 .3060 .2885 .2504 .2260 .1861 .1356

The purchase

frequency of

query

LSE .0077 .0081 .0084 .0096 .0102 .0101 .0118 .0104 .0109 .0095

HEM .0162 .0188 .0246 .0373 .0408 .0502 .0608 .0569 .0535 .0339

Table 2. The MRR@20 between LSE, AEM and ZAM, measuring the ranked list of
products, whose targets are the two factors, respectively.

G0 G1 G2 G3 G4 G5 G6 G7 G8 G9

The purchase

frequency of

user

LSE .0009 .0016 .0022 .0018 .0041 .0044 .0038 .0040 .0042 .0030

AEM .0031 .0026 .0064 .0087 .0083 .0110 .0107 .0052 .0087 .0039

ZAM .0028 .0025 .0047 .0046 .0049 .0076 .0089 .0047 .0068 .0037

The purchase

frequency of

query

LSE .0077 .0080 .0084 .0096 .0101 .0100 .0117 .0104 .0109 .0095

AEM .0372 .0446 .0494 .0567 .0616 .0689 .0849 .0674 .0650 .0533

ZAM .0368 .0458 .0468 .0529 .0578 .0597 .0728 .0581 .0561 .0547

how the data-hungry issue leads to such results is not clear. We consider two
factors affecting the biased result with the lack of user preference:

The Frequency of Purchases of Users. The user preference is extracted
from the search records. If the records are scarce, the user preference tends to
be close to the products the user purchases most often and the latest. To verify
the influence of this factor, we count the frequency of purchases of each user in
two ways because of the different ways to extract the user information in HEM
and ZAM. The Preference of Market. Another potential factor is the market
preference p(i|q), which means that the search results tend to be close to the
product the most users purchase given the same query. To verify the influence
of this factor, we count the frequency of purchases given each query.

To recognize the influences of the above factors on the returned ranked list
of products, a simple method is to evaluate the returned result with the target
products deduced from the factors. We choose the highest frequency of prod-
ucts for each user and the highest frequency of products for each query as the
target products for these two factors, respectively. Specifically, we use the mean
reciprocal rank to show the relationship of the target products deduced from the
factors and the returned ranked list of products.

The results of LSE and HEM can be seen in Table 1. We can find that the
returned result has a close relationship with the product the user purchases
most often and the relationship is more closely under the few-shot settings.
It illustrates that the result returned by HEM is influenced by the frequency
of purchases of the user, and this influence is intensified under the few-shot
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setting. It is the reason why the HEM can not perform well for the user when
her/his search records are scarce, where the user preference can not be extracted
properly.

The results of LSE, AEM and ZAM are shown in Table 2. Compared to the
frequency of purchases of the user, the ranked list of products is influenced more
by the market preferences. The results of the AEM and ZAM tend to be close to
the products purchased by the most users in the market given the same query.
When the query carries less diverse intents, the market preference can meet the
user’s demand because of the specificity of the query. When the query carries
more diverse intents, the market preference only meets part of users’ demands.
It matches the results of AEM and ZAM shown in Fig. 2. In conclusion, the
search results are influenced by the purchase frequency of users or the market
preference under the few-shot setting, which leads to the data-hungry issue.

5 Experiment

In this section, we are interested in investing whether the data-hungry issue
generalizes to other datasets.

We take Amazon product dataset provided by [10] as our experimental
datasets, following the previous studies [1,2,12]. We extract four datasets (i.e.,
Video Games, Pet Supplies, Toys and Games and Beauty) for our experiments.
Note that the Video Games is used to analyze the data-hungry issue in detail
in the previous section. Following [1,2,12], we extract the query from the cat-
egories of products, as the query is not provided in the dataset because of the
data privacy.

To measure the return ranked list of products, we take into account a number
of widely used evaluation metrics, i.e., HR@k(Hit Ratio k) [3], MRR@k (Mean
Reciprocal Rank at k) [3] and NDCG@k (Normalized Discounted Cumulative
Gain at k) [6]. We set the depth of the evaluation metrics as 20, i.e., k = 20. In
this paper, we show the average results of the test data.

Table 3 and Table 4 shows the performance of non-personalized methods (i.e.,
LSE) and the personalized method (i.e., HEM, AEM and ZAM) on groups of
different number of search records on each experimental dataset. We find that
the performances of personalized methods degrade under the few-shot learning
in all datasets compared to the scenario with enough search records. It further
confirms that the data-hungry issue exists in the personalized product search.
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Table 3. The performances (i.e., HR@20, MRR@20 and NDCG@20) of LSE and HEM
on each datasets when users with few records (i.e., the 30% users with the fewest
records) and users with enough records (i.e., the 30% users with the most records).

Pet supplies Toys and games Beauty

HR MRR NDCG HR MRR NDCG HR MRR NDCG

LSE The least 30% .2186 .0253 .0651 .1403 .0167 .0421 .1344 .0172 .0415

The most 30% .1910 .0215 .0565 .1182 .0153 .0364 .1211 .0154 .0374

HEM The least 30% .3026 .0607 .1123 .1634 .0263 .0553 .1240 .0182 .0403

The most 30% .2969 .0680 .1172 .1758 .0387 .0658 .1834 .0368 .0681

Table 4. The performances (i.e., HR@20, MRR@20 and NDCG@20) of LSE, AEM and
ZAM on each datasets when users with few records (i.e., the 30% users with the fewest
records) and users with enough records (i.e., the 30% users with the most records).

Pet supplies Toys and games Beauty

HR MRR NDCG HR MRR NDCG HR MRR NDCG

LSE The least 30% .1986 .0203 .0551 .1312 .0156 .0372 .1230 .0163 .0389

The most 30% .1990 .0235 .0591 .1214 .0159 .0371 .1234 .0159 .0380

AEM The least 30% .3534 .0679 .1287 .1773 .0307 .0617 .1518 .0204 .0478

The most 30% .3761 .0739 .1386 .1997 .0344 .0694 .1738 .0235 .0549

ZAM The least 30% .3476 .0651 .1253 .2092 .0411 .0770 .1761 .0308 .0616

The most 30% .3863 .0762 .1426 .2337 .0425 .0833 .1872 .0358 .0681

6 Conclusion

In this paper, we focus on the data-hungry issue in personalized product search.
While previous works have confirmed that the user preference extracted from
the search records helps provide personalized services, they ignore the few-shot
learning problem caused by personalization. Under the few-shot setting, it may
suffer from the data-hungry issue. Therefore, We explore the data-hungry issue
in personalized product search. We find that the data-hungry exists under the
few-shot setting caused by personalization. The data-hungry issue degrades the
performance under the few-shot setting when the input query carries diverse
intents. With the data-hungry issue, the returned result tends to be close to the
products the user purchase most often or the most users purchase in the market
given the query. The further experimental results confirm the conclusions.
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Abstract. Recently super-resolution methods based on CNN have achieved
amazing success. However, the effects of these methods on real-world images
are not available. The main reason is that most of them use bicubic downsam-
pling by default to obtain degraded low-resolution images, while the degradation
process of real-world images is unknown. In our work, we argue that image degra-
dation and super-resolution are tightly coupled. In order to complete this cycle,
we propose a framework to jointly learn the degradation and super-resolution of
real-world images. At the same time, in order to stabilize learning and optimize
performance, we have combined a variety of image content losses. Our frame-
work can not only achieve real-world super-resolution, but also generate paired
unknown degraded datasets for other super-resolution methods. The experiments
on the NTIRE2020 real-world SR dataset show the effectiveness of our model.

Keywords: Super-resolution · Real-world images · Deep learning

1 Introduction

Image super-resolution mainly aims to convert low-quality images into clear images,
which is widely used in daily life. In recent years, due to the rise of convolutional neu-
ral network [1], the effect of image super-resolution has been significantly improved.
Most methods focus on designing the network structure to improve the performance
of specific datasets. Most of them are SISR (Single Image Super-Resolution) methods
[2,3,9,11,13,18,21], which is using bicubic operation for downsampling to construct
low/high-resolution training data pairs. While testing, the low-resolution images down-
sampled by bicubic kernel are fed into the network to get the generated results, then
comparing with the groundtruth to calculate PSNR, SSIM and other metrics.

It is easy to obtain training datasets in this way, however, natural images are usu-
ally affected by sensor noise, compression artifacts or other corruptions encountered in
applications. Only using the degradation representation of bicubic interpolation can not
simulate real-world low resolution images. These methods can’t work well on the natu-
ral data. Therefore, it is necessary to introduce an accurate degradation method to make
the generated low-resolution images have the same domain attributes as the original
images.

In our work, we propose a novel framework based on Generative Adversarial
Networks(GAN) [4,16] to overcome the challenges of real-world super-resolution
c© Springer Nature Switzerland AG 2022
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problems. By learning the degradation operation of real-world images, we avoid the
problem of conversion between the training and test distribution caused by bicublc
downsampling. Specifically, we train the degradation network from high-resolution
images to real-world low-resolution images, and put the generated low-resolution
images and real low-resolution images into the discriminator for discrimination. Thus,
the low-resolution images matching the real-world distribution are obtained, witch
enable us to learn the real-world super-resolution networks. At the same time, we also
use the obtained real-world paired data to train a super-resolution network to construct
the original high-resolution image.

In summary, our contributions are as follows:

– We proposed an unpaired super-resolution method to solve the super-resolution
problem of unknown degraded real-world low-resolution images.

– By jointly learning super-resolution and degradation, it can also simulate the degra-
dation of the real-world images, which can better provide the low/high-resolution
data pairs of the real world for other methods.

2 Related Work

Since the rise of convolutional neural network (CNN), super-resolution methods based
on deep learning have gradually entered people’s field of vision. They have achieved
strong performance in the task based on bicubic downsampled images. The pioneer-
ing work is completed by SRCNN [2], which used a three-layer network to learn the
low/high-resolution mapping for SISR task. In the early stage, the most representative
method is EDSR [13], which constructed a very deep and wide network by using resid-
ual structure and achieved outstanding performance. However, the methods above rely
too much on L1 or L2 loss. Although these loss functions are closely related to met-
rics such as PSNR, they can not retain natural image features, which usually results in
blurred textures. To improve the perceptual quality, SRGAN [11] introduced the adver-
sarial loss and the perception loss based on VGG [17] feature layer. Although the PSNR
is reduced, the image quality will be significantly improved. The enhanced version of
SRGAN, ESRGAN [18], is also one of the state-of-the-art perception oriented models.

Despite the success of the above SISR methods, they can’t get excellent test results
in real-world images. Because the bicubic downsampling operation eliminates most
high-frequency components, it significantly changes the natural features of the image,
such as noise, artifacts and other corruptions encountered, which is inconsistent with the
needs of the real world. Therefore, new solutions have been proposed to solve the prob-
lem of real-world data pair. CinCGAN [19] proposed a cycle-in-cycle network to learn
both degradation network and super-resolution network. Lugmayr et al. [14] transferred
and converted between the bicubic downsampled low-resolution image domain and the
real-world low-resolution image domain. Maeda et al. [15] introduced a correction net-
work to correct real-world images and then mapped them to the bicubic downsampled
low-resolution image domain. Different from these methods, we omit the process of
domain transfer and directly learn the degradation process from high-resolution images
to real-world low-resolution images.
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3 Proposed Method

In this work, we propose to jointly learn super-resolution and degradation within a uni-
fied disentangled image translation framework, as shown in Fig. 1. Inspired by Cycle-
GAN [22], we construct a cycle network, which includes two branches. The one is to
get low-resolution images YLR from the high-resolution images Y , through the degra-
dation network GDown, and then to get the high-resolution images YHR through the
super-resolution network GUp. The other one is the opposite. In order to get better
training results, we also introduce discriminator DLR and DHR, making the generated
results more like real-world images.

Fig. 1. The proposed training model architecture, where GUp is the super-resolution network,
GDown is the degradation network, and the DHR with the DLR is the discriminator. The joint
training helps to overcome the unpaired super-resolution problem and generate the real-world
degradation low-resolution images.

3.1 Loss Function

Adversarial Loss. We impose an adversarial constraint [4] on both generators GUp

and GDown. As an example, the adversarial loss for GUp and DHR can be expressed
as:

Ladv(GUp,DHR,X, Y ) = EY ∼PY
[logDHR(Y )]

+ EX∼PX
[log(1 − DHR(GUp(X)))]

(1)

which is tasked to differentiate between the generated GUp(X)and images drawn from
the input distribution PY . All the generated images will be put into the discriminator,
the total adversarial loss is as follows:

Ladv = Ladv(GUp,DHR,X, Y ) + Ladv(GUp,DHR, YLR, Y )
+ Ladv(GDown,DLR, Y,X) + Ladv(GDown,DLR,XHR,X)

(2)
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Cycle Consistency Loss. Benefiting from the closed-loop in our framework, we
employ two cycle-consistency losses [22] which self-supervise the super-resolution
and degradation sub-networks to preserve the content information. Thus we define the
cycle-consistency loss as:

LCycle = EX∼PX
[||GDown(GUp(X)) − X||1]

+ EY ∼PY
[||GUp(GDown(Y )) − Y ||1]

(3)

Bicubic Loss. In addition to the adversarial losses and the cycle-consistency losses, for
the low-resolution images generated by the degradation network, we also introduce the
bicubic loss to preserve color composition and avoid color variation:

Lbic = EX∼PX
[||GDown(GUp(X)) − Bic(GUp(X))||1]

+ EY ∼PY
[||GDown(Y ) − Bic(Y )||1]

(4)

where Bic is the bicubic downsampling operation.

Perceptual Loss. In our preliminary experiment, there are many artifacts in the gener-
ated high-resolution samples. In fact, the features extracted from the pre-trained deep
network contain rich semantic information, and their distances can be used as the judg-
ment of perceptual similarity. Therefore, we add perceptual loss [8] between the high-
resolution images and the corresponding original images:

Lper = ||φl(GUp(GDown(Y ))) − φl(Y )||22 (5)

where φl(x) is the features of the l-th layer of the pre-trained CNN. Here we use the
VGG-19 network pre-trained on ImageNet.

Full Objective. The full objective function is a weighted sum of all the loss functions:

Loss = λadvLadv + λcycleLcycle + λbicLbic + λperLper (6)

By imposing the full objective function, we alleviate the problem that paired low/high-
resolution images are not accessible. In our framework, each super-resolution and
degradation sub network is constrained by at least one unsupervised adversarial loss
and one self-supervised cycle-consistency loss to ensure the domain of output images
and preserve the content information.

3.2 Network Architecture

GUp We use the structure of DBPN [6] as the generator. Through alternating itera-
tive upsampling and downsampling units to back-propagate the projection error, it can
correct the reconstruction results in the network many times. The upsampling unit gen-
erates more high-resolution space features, while the downsampling unit projects these
features into low-resolution space. In this way, more high-resolution components can
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be retained and more depth features can be used effectively. We use the version of its
7-layer structure, whose structure of each layer includes two sub layer of upsampling
and downsampling.

GDown . Inspired by KernelGAN [5], we used a linear network without activation func-
tion to simulate the degradation process. The network is a 6-layer linear fully convo-
lutional network with strides of 1: the first three Convolution kernels are 7× 7, 5× 5,
3× 3, and the rest are 1× 1, which make a receptive field of 13× 13.

Discriminator. As for the discriminator of high-resolution images, we use five convo-
lution layers with 3× 3. The convolution layers, except for the first and the last layer,
are followed by LeakyReLU with batch normalization. Besides, we use a patch dis-
criminator [7,12], which has a fixed receptive field. That is, each output value of the
discriminator is only related to the patch of the locally fixed area. The patch loss will be
fed back to the generator to optimize the gradient of local details. The discriminator of
low-resolution images has the similar structure, but with a different stride in the initial
layers.

4 Experiments

In this section, We first discuss the setup and datasets employed in our experiments.
Next, we present comprehensive quantitative and qualitative evaluation of our approach.
Finally, we perform an ablation study to validate training model structure.

4.1 Dataset and Evaluation Metrics

We use the DIV2K realistic-mild set as our training data. The realistic-mild set is gener-
ated by degrading DIV2K, consisting of 800 images with 2K resolution that are diverse
in their content. It assumes that the degradation operators emulating the image acquisi-
tion process from a digital camera (such as blur kernel, decimation, downscaling strat-
egy) can be estimated through training pairs of low and high-resolution images. The
parameters of the degradation operators are fixed, while the randomly generated blur
kernels and their resulting pixel shifts vary from image to image. Our experiments are
performed with a scaling factor of ×4. We randomly slice the high-resolution images
into some 128× 128 patches, and the low-resolution images into some 32× 32 patches.
Thus we expand our training data to 32590 images. We train our model using the above
paired images but with “unpaired/unaligned” sampling.

For the case of the generated images, we use PSNR, SSIM and LPIPS as our evalua-
tion metrics. PSNR and SSIM are commonly-used evaluation metrics for image restora-
tion, which pay more attention to the fidelity of the image rather than visual quality. In
contrast, LPIPS is a learned metric for perceptual similarity between two images, which
uses a pre-trained network to extract image features, and then calculates the distance
between the two features. It is worth noting that the smaller the LPIPS is, the closer the
generated image is to the ground truth.
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4.2 Training Details

Our framework is implemented using the PyTorch with four Titan Xp GPUs. We use
the Adam optimizer [10] with β1 = 0.9, β2 = 0.99, and ε = 10−8 to train the genera-
tors and discriminators. We train our networks for more than 3 ∗ 105 iterations with the
batch size of 32. In each iteration, low-resolution patches of 32×32 and high-resolution
patches of corresponding size are extracted as inputs in an unaligned manner. We empir-
ically set the balance weight λadv, λcycle, λbic, λper as 0.1, 10, 10, 0.5.

Fig. 2. Qualitative results on “0802” in the validation set of the NTIRE2020 Real World SR
challenge Track 1 with scale factor×4 compared with EDSR and ESRGAN. The red area is
cropped from different results and enlarged for visual convenient. (Color figure online)

Fig. 3. Our degradation network result(b) to “0815” groundtruth with scale factor×4 compared
with bicubic downsampling(a). Our method can get more terrible low-resolution images similar
to real-world.

4.3 Result

Compared with some state-of-the-art approaches for SISR, we demonstrate effective-
ness of the proposed method. The results of perceptual image quality are shown in
Fig. 2. Table 1 shows the average PSNR, SSIM and LPIPS [20] values of NTIRE2020
validation set with the different methods. From it we can inform that we get superior
performance in all the metrics. We also show our degradation images in Fig. 3. Com-
pared with the bicubic downsampling method, the images generated by our method
have more complicated noise and artifacts, which is more like real-world images.
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Table 1. The result compared with other methods.

Methods PSNR SSIM LPIPS

Bicubic 25.49 0.670 0.49

ESRGAN 19.06 0.242 0.76

EDSR 25.31 0.638 0.58

ZSSR 25.13 0.626 0.61

Ours 26.85 0.73 0.42

4.4 Ablation Study

In this section, ablation study on our framework is conducted to evaluate the effective-
ness of losses and network structure.

Effectiveness of Loss Functions. Denoting Lper as the perceptual loss, while Lbic as
the bicubic loss, we investigate the effectiveness of the loss functions in Table 2. We
remain our framework fixed and remove one of the losses while other losses keep the
same. The performance drops demonstrate the benefits brought by the bicubic loss and
the perceptual loss.

Effectiveness of Network Structure. We also test the single super-resolution sub-
network. We remove the degradation sub-network, and remain the discriminator and
the relative loss we used. The Table 2 also shows the metrics result, which proves that
our total framework significantly improve the performance.

Table 2. The effectiveness of the loss functions and the network structure.

Methods PSNR SSIM LPIPS

Loss Without Lper 26.02 0.68 0.47

Without Lbic 25.59 0.66 0.46

Full loss 26.85 0.73 0.42

Network Single 24.74 0.533 0.54

Full model 26.85 0.73 0.42

5 Conclusion

In this paper, we propose a disentangled framework which jointly learns super-
resolution and degradation to deal with the real-world super-resolution problem. The
degradation sub network is trained to generate realistic training data pairs for our super-
resolution model, avoiding the artifacts caused by bicubic downsampling. We also intro-
duce the bicubic loss to avoid color variation and the perceptual loss to remove unre-
alistic artifacts. Ablation study on each component shows the effectiveness of different
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modules. Experiments on real-world test images show that our framework has excellent
performance, resulting in lower noise and better visual quality.
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Abstract. Direction-based methods have been widely used in palm-
print recognition methods. However, most existing palmprint direction
patterns-based methods need rich prior knowledge, and usually ignores
the relationships among different samples. Furthermore, how to make
the extracted features more discriminative is also a dilemma to improv-
ing the recognition performance. To solve these problems, we propose
to learn enhanced discriminative direction pattern in this study. We
first extract the complete and stable local direction patterns, where a
salient convolution average feature (EDL) is extracted from the palm-
print image. Afterwards, a linear regression learning model is introduced
to enhance the discriminant of EDL, such that the representation of the
direction pattern can be improved. Experimental results on 4 real-world
palmprint databases show that the proposed method can outperform the
other state-of-the-art related methods.

Keywords: Robust palmprint identification · Complete and stable
local direction feature · Discriminative projection learning

1 Introduction

In recent years, various biometrics technology, such as face, palmprint, voice and
gait, has been successfully applied in real-word. Especially, palmprint recognition
is a method of identification by palmprint features (visible or invisible to human
eyes). Palmprint recognition is stable and reliable. which has attracted the inter-
est of more and more researchers [1]. The existing palmprint recognition meth-
ods mainly include low-resolution palmprint, high-resolution palmprint, multi-
spectral palmprint and 3-D palmprint recognition [2]. In recent years, the most
commonly used method for palmprint recognition is low-resolution palmprint
recognition.

In general, it is necessary to extract the features of the palmprint before the
recognition of the palmprint, and it is important to preprocess the palmprint

This work is supported by the National Natural Science Foundation of China under
Grant No. 62106052.

c© Springer Nature Switzerland AG 2022
H. Shen et al. (Eds.): PDCAT 2021, LNCS 13148, pp. 504–511, 2022.
https://doi.org/10.1007/978-3-030-96772-7_47

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96772-7_47&domain=pdf
https://doi.org/10.1007/978-3-030-96772-7_47


Enhanced Discriminant Local Direction Pattern Learning 505

before extraction. The preprocessing of the palmprint is to extract the region of
interest (ROI). A variety of ROI methods have been proposed in the literature.
After ROI pretreatment, the next step is to extract features from palmprint.

In the past decades, a variety of palmprint feature representation methods
have been proposed in the literature for feature extraction. For example, Hui
et al. [3] proposed a deep hashing network to extract discriminative features;
Genovese et al. [4] based on Gabor responses and principal component analy-
sis (PCA) to extract features. We can easily see that, most existing palmprint
descriptors usually extracted features individually from each palmprint image,
then fused them based on an addition scheme. In addition, most of these lit-
eratures extract hand-crafted features, which are heuristic and require strong
prior knowledge. How to extract robust discriminant features from palmprint
images, deeply excavate the similarity between different images of the same per-
son, and simultaneously enlarge the difference between different images of the
same person is always a key and challenging problem.
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Fig. 1. The flow-chart of the proposed method. We first compute the convolution
average vector for each palmprint image. Then, we learn mapping functions, which
project EDL into EDLDP.

In this study, we propose an enhanced discriminant local directional pat-
tern for robust palmprint identification (EDLDP). Specifically, we first extract
features in 12 directions for each pixel of the palmprint image, and construct
a new directional information container. Then, we propose a palmprint recog-
nition method for joint enhancement to discriminate local directional patterns.
This method is more stable and robust. Figure 1 outlines the pipeline of the



506 S. Ma et al.

proposed method. Experimental results on the widely used PolyU multispectral
palmprint databases, IITD database and GPDS database clearly demonstrate
the effectiveness of the proposed method.

The main contributions of this paper can be briefly summarized as follows:

(1) We propose a novel and informative convolution average vector for discrim-
inant direction feature learning. EDL can more stably describe the charac-
teristics of multiple dominant directions and the averaging of directions.

(2) We propose a joint learning model for enhanced discriminant palmprint
direction feature encoding. In such manner, the representation of the orig-
inal direction feature can be improved to achieve a better identification
performance.

(3) We conduct extensive experiments on four real-world palmprint databases,
including two contactless palmprint databases and two contact-based
palmprint databases. Experimental results demonstrate that the proposed
method is superior to state-of-the-art palmprint descriptors.

The remainder of this paper is organized as follows. Section 2 briefly presents
a review for some related works. In Sect. 3, we introduce the proposed method.
Experimental results and some related analysis are given in Sect. 4. Section 5
concludes this study.

2 Related Work

In this section, we briefly reviews two related topics of this paper, including the
direction features of palmprint and discriminant regression feature Learning.

2.1 Direction Features of Palmprint

Plenty of lines in a palmprint carry rich direction features, which are insensitive
to illumination changes. There have been extensive methods that exploited the
direction features for palmprint recognition. Gabor filter can better characterize
the direction feature of palmprint [5]. A 2D-Gabor filter is the product of a
sinusoidal plane wave and a Gaussian nuclear function. The former is a tuning
function and the latter is a window function. It can be divided into the real part
and the imaginary part. In the study, the real part of Gabor filter is usually used
to obtain the direction characteristics of the palmprintand

2.2 Discriminant Regression Feature Learning

Discriminant Regression feature learning refers to learning some mapping func-
tions that can convert raw data into discriminative feature subspace. A vari-
ety of discriminative feature learning methods have been developed in recent
years, such as dictionary-learning , transfer-learning , metric-learning and deep-
learning, principal component analysis (PCA) and linear discriminant analysis
(LDA).
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Most existing learning-based methods learn palmprint regression features
from raw-pixels of palmprint images. In this work, we learn novel and discrim-
inative regression features from direction-based convolution for palmprint iden-
tification.

3 Proposed Methodology

In this section, we first introduce convolution average vector of palmprint. Then,
we propose a enhanced discriminant local direction pattern learning for robust
palmprint identification.

3.1 Convolution Average Vector

In general, we use a linear structure detector to extract the directional features
of the palmprint, However, the black lines of the palmprint image usually have
smaller gray values, the line-model of the Gabor template has larger values.
Thus, in real application, we usually subtract the gray values of a palmprint
image with 255 to obtain the “upside-down” palmprint image [7]. In practice, a
bank of Gabor filters with directions of θi = (i−1)π/Nθ is usually defined, where
Nθ is used as the direction number of Gabor functions, and i is the corresponding
direction index. To better characterize the direction of palmprint, in this paper
Nθ is empirically set to 12 [8], the 12 Gabor templates with the directions is
(i − 1)π/12(i = 1, 2, · · · , 12). The convolution between the Gabor functions and
palmprint image I is as follow:

ri(x, y) = G (θi) ∗ (255 − I(x, y)), (1)

where ∗ denotes the convolution operator. A bank of Gabor functions with differ-
ent directions can obtain a group of convolved results with the palmprint image.
We obtain the EDL of a pixel by calculating the convolution average between a
direction and the front neighboring direction as follow:

EDL = [(r1 + r2) /2, · · · , (rj + rj+1) /2, · · · , (r1 − rNθ
) /2] . (2)

EDL measures the convolution average between neighboring directions so
that it can more stably describe how direction-based convolution response
changes. Because the dimension of Gabor features increases sharply compared
with the dimension of the original image after EDL, so a discriminative elite-net
regularized Linear regression model (DENLR) is selected [9] to learn, the details
of DENLR are in the next section.

3.2 Discriminant Elastic-Net Learning

Define the observed image features as X = [x1, · · · , xn] ∈ �d×n, the target
matrix as Y = [y1, · · · , yn]T ∈ �n×c.
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By introducing the ε-dragging technique, DENLR model is used, its objective
function is formulated as

min
Z

ζ(Z) + λ1‖Z‖∗ +
λ2

2
‖Z‖2F , (3)

where ζ(Z) =
∥
∥XT Z − Ȳ

∥
∥
2

F
and Ȳ is the relaxed regression target matrix. To

obtain an optimal Ȳ , an elaborate strategy is devised as follows. Let E be a
constant matrix, and the i-th row and j-th column entry is defined as

Eij =

{

+1, if Yij = 1,

−1, if Yij = 0.
(4)

Then we have Ȳ = Y + E � M , where M ∈ �n×c
l is a learned nonnegative

matrix. Thus, the DENLR model (5) is rewritten as follows

min
Z,M

∥
∥XT Z − (Y + E � M)

∥
∥
2

F
+ λ1‖Z‖∗ +

λ2

2
‖Z‖2F ,

s.t. M ≥ 0.

(5)

Base on [9], we can equate (5) with (6)

min
Z,M,A,B

∥
∥XT Z − (Y + E � M)

∥
∥
2

F
+

λ1

2
(‖A‖2F + ‖B‖2F

)

+
λ2

2
‖Z‖2F ,

s.t. Z = AB,M ≥ 0.

(6)

4 Experiments

In this section, we evaluate the performance of our proposed methods on publicly
available databases, which conclude GPDS [10] databases, IITD database [11]
and PolyU multispectral palmprint database [12]. It is worth pointing out that
these databases are commonly used in Palmprint recognition and the existing
methods have achieved decent results. Thus, challenging recognition results are
convincing enough to verify the superiority of our methods.

4.1 Palmprint Databases

The GPDS database [10] contains 1000 samples collected by 100 volunteers. The
ROIs with the size of 32 × 32 used in this study were provide by [10]. The IITD
palmprint database [11] was captured using a contactless device, and there is no
limit to the palm when collecting the database. In this study, we use the ROIs
with the size of 32 × 32 from [11].

The PolyU multispectral palmprint database (M Green and M Blue) [12] col-
lected 12000 palmprint images from 500 volunteers under two different illumina-
tions, including green and blue spectra. In this study, the ROIs were extracted
from the original database using the method in [13] with the size of 32 × 32.
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Table 1. Accuracy (%) using different methods on contact-based databases (N = 4).

Method GPDS M Blue M Green IITD

Competitive 86.03 98.94 99.3 79.79

EBOCV 87.16 98.77 98.43 87.96

Ordinal 85.53 98.43 98.37 73.32

DOC 81.08 99.1 99.1 89.9

ResNet 50 93.91 62.2 67.61 95.57

AlexNet 90.5 92.21 74.27 88.18

EDLDP 100 99.85 99.80 99.74

4.2 Palmprint Identification

In this subsection, we evaluate the effectiveness of our method on palmprint iden-
tification. Palmprint identification is a one-against-many matching procedure to
determine the identity. In our experiments, we randomly selected four samples as
training samples. All methods were repeated ten times, several state-of-the-art
palmprint recognition and image classification methods were implemented to be
compared to the proposed method, including competitive code (Competitive) [4],
EBOCV [14], Orinal [15], DOC [16], ResNet 50 [17] and AlexNet [18]. Besides,
some popular deep learning-based methods including AlexNet and ResNet 50
were also implemented compared with the proposed method.

Table 1 illustrates the comparison results between our EDLDP and other
state-of-the-art algorithms on palmprint identification. For E-BOCV, six direc-
tions are extracted to be encoded. Specifically, the results of Competitive, E-
BOCV, Ordinal and DOC on the IITD, M Green, M Blue and GPDS databases
are referred from [5,19]. AlexNet and ResNet 50 are two deep convolutional
neural networks which have been pre-trained on the ImageNet database. In
this work, we conducted identification using the 1-NN (Nearest Neighborhood,
Euclidean distance) as the classifier to obtain the ARRs.

In order to further investigate the properties of the proposed method, the
classification performances versus the different values of regularization parame-
ters λ1 and λ2 are explicitly explored. To clearly show the results, we perform
experiments on four databases, i.e., the extended GPDS, IITD, M Green and
M Blue databases, to verify parameters sensitivity. Specifically, we tune the
value of both parameters from 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.
Figure 2 shows the classification results of EDLDP over variations of parame-
ters. In the parameter comparison experiment, after each parameter was set, the
experiment was repeated for 5 times and the experimental results were averaged.
From Fig. 2, we can observe that the performances of our models are not very
sensitive to the settings of λ1 and λ2.
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Fig. 2. Variations of EDLDP classification (%) versus the parameters λ1 and λ2 on
the (a) GPDS, (b) IITD, (c) M Green and (d) M Blue databases. (Color figure online)

5 Conclusion

In this paper, we have proposed an enhanced discriminant local directional pat-
tern for robust palmprint identification. Firstly, we have extracted the complete
and stable local direction patterns, where a salient convolution average feature
is extracted from the palmprint image. Afterwards, a linear regression learning
model has been introduced to enhance the discriminant of EDL, such that the
representation of the direction pattern has been improved. Experimental results
on four real-world palmprint databases have shown that the proposed method
outperforms the state-of-the-arts.
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Abstract. In this paper, we aim at the research of rank minimization to
find more accurate low-dimensional representations for multi-view sub-
space learning. The Schatten-p norm is utilized as the rank relaxation
function for subspace learning to enhance its ability to recover the low
rank matrices, and a multi-view subspace clustering algorithm via max-
imizing the original feature information is proposed under the assump-
tion that each view is derived from a latent representation. With the
Schatten-p norm, the proposed algorithm can improve the quality and
robustness of the latent representations. The effectiveness of our method
is validated through experiments on several benchmark datasets.

Keywords: Latent multi-view subspace clustering · Rank function ·
Schatten-p norm

1 Introduction

Clustering is a fundamental technique in many applications. When dealing with
high-dimensional data, subspace clustering shows its advantage by clustering
data points in a union of low-dimensional subspaces. In general, subspace cluster-
ing is applied on the learning of single view, which describes the data points from
only one aspect. However, its performance depends greatly on the quality of the
original features and is susceptible to noise and corruption. To improve cluster-
ing results for high-dimensional data, multiple views are utilized to gain a more
comprehensive understanding of a data point. Multiple views of a data point
include information derived from multiple sources of features, which describe a
data point from different several aspects. Compared to single view, multi-view
subspace clustering (MVSC) [3,21,22] is preferable for analyzing various types
of data since different views can complement each other to form more robust
and complete representations.
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Early methods in this direction mainly focused on the learning of two views
[1,4,6]. For example, the approach in [6] utilized a bipartite graph for connecting
two types of features and further performed a standard spectral clustering on it to
obtain the clustering result. However, the learning of two views is not sufficient
as more and more high-dimensional data are collected from multiple sources.
Hence, multi-view clustering has attracted a growing amount of attention among
researchers. According to different expressions of the similarity within views and
the consistency among views, we can divide multi-view clustering into three
categories: multi-view canonical correlation clustering [18], multi-view matrix
decomposition clustering [7,23] and multi-view subspace clustering [3,14,21].
Among them, multi-view subspace clustering (MVSC) is the most popular solu-
tion as it achieves the best results. MVSC methods usually generated a separate
subspace representation for each view and reconstructed the data points on the
original view directly. However, using each view alone is usually insufficient to
fully describe the data points, thus making the reconstruction by using only
one single view risky. In addition, various types of noises imposed to the data
will further increase the difficulty for performing clustering. Therefore, finding
a unified multiple view subspace representation matrix to simultaneously incor-
porate the difference and complementarity among all views became a challeng-
ing problem. More recently, the research on multi-view subspace clustering was
focused on performing subspace clustering based on latent representations. For
single-view setting, there were several methods, such as Latent Space Sparse Sub-
space Clustering (LS3C) [16] and Latent Low-Rank Representation (LatLRR)
[13] that were based on latent representation. For multi-view setting, some meth-
ods [8,19] explicitly learned a shared representation from multiple views under
the assumption that all views originate from the same latent representation and
jointly optimized it with a common subspace representation matrix. This could
essentially give a full picture of the data and reveal the latent structure shared
by different views. On this basis, unlike LS3C that directly performed dimen-
sionality reduction on the original single view data, [22] proposed to integrate
the latent representation learning and multi-view subspace clustering into a uni-
fied framework and utilize the complementarity among views to improve the
performance of subspace clustering. Nevertheless, when the singular value is too
large, the nuclear norm function as the relaxation of the rank function will lead
to suboptimal solution [9]. Moreover, the Schatten-p norm with a decomposable
formula is another option that’s commonly used as the rank relaxation function.
It is a more accurate approximation of the rank function.

In this paper, the Schatten-p norm is introduced to approximate the rank
function in latent multi-view subspace clustering. Our experimental results
demonstrate that our proposed method can effectively improve the performance
of subspace clustering.

2 The Schatten P-Norm Based Multi-view Low Rank
Representation Framework

Latent multi-view subspace clustering [22] uses the data points of latent rep-
resentation for performing clustering, which is mainly aimed at mining the
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Fig. 1. The input-output relationship of the Schatten-p norm.

complementarity among different views. This paper uses the Schatten-p norm to
replace the conventional nuclear norm in latent multi-view subspace clustering.
It is worth noting that the Schatten-p norm approaches to the rank function as
p approaches to 0, hence the better clustering results. Moreover, due to the com-
plementarity of the multi-view information, the latent multi-view representation
is able to describe the data more comprehensively than a single view, thereby
producing more promising clustering results.

2.1 Introduction to Schatten-P Norm

Consider applying the singular value decomposition on X ∈ Rm×n. Then, we
have X = Udiag(σi(X))V T , where σi(X) denotes the ith singular value. The
Schatten-p norm of X is defined as

‖X‖Sp
= (

min(m,n)∑

i=1

σp
i (X))

1
p . (1)

Therefore, the Schatten-p norm of a matrix X to the power p can be written as:

‖X‖pSp
=

min(m,n)∑

i=1

σp
i . (2)

Note that the Schatten-p norm includes the nuclear norm (p = 1) and the Frobe-
nius norm (p = 2). Figure 1 shows the input-output relationship of the Schatten-p
norm. When p → 0, the Schatten-p norm approximates the rank function.

2.2 Objective Function

The subspace clustering is guaranteed by imposing the constraints on the rea-
sonable latent representation and the subspace reconstruction, while the latent
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representation is guaranteed by the complementation of the multiple views and
improved by the subspace reconstruction. Considering the robustness to outliers
and the low rank property, we have:

min
(P,H,Z,Eh,Er)

‖Eh‖2,1 + λ1 ‖Er‖2,1 + λ2 ‖Z‖pSp

s.t. X = PH + Eh, H = HZ + Er and PPT = I.
(3)

where ‖·‖Sp
represents the Schatten-p norm, ‖·‖1,2 represents the l1,2 norm, X

represents the observations of different views, H represents the shared latent
representation, P represents the reconstruction models, Z is the reconstruction
coefficient matrix and E represents the error term. The columns of Eh and
Er, can further be concatenated together and optimized jointly. Then, the final
objective function becomes the following:

min
(P,H,Z,Eh,Er)

‖E‖2,1 + λ ‖Z‖pSp

s.t. X = PH + Eh, H = HZ + Er,

E = [Eh;Er] and PPT = I.

(4)

2.3 Model Optimization

Although the objective function is not convex for all variables P , H, Z, Eh,
and Er, the Augmented Lagrangian Multiplier (ALM) approach is an effective
method for solving the problem. It fixes other variables and leaves a single vari-
able for optimization at each sub-problem. Since it is difficult to solve Z directly,
the variable J is introduced and we let J = Z. The objective function can then
be transformed from (4) into the ALM form:

min
(P,H,Z,Eh,Er)

J(P,H,Z,Eh, Er, J) = ‖E‖2,1 + λ ‖J‖pSp

+ tr(Y T
1 (X − PH − Eh)) + tr(Y T

2 (H − HZ − Er)) + tr(Y T
3 (J − Z))

+
μ

2
(‖Y1 − X + PH + Eh‖2F + ‖Y2 − H + HZ + Er‖2F + ‖Y3 − J + Z‖2F )

s.t. PPT = I.

(5)

The update is shown in Algorithm 1.

3 Experiments

3.1 Datasets

To demonstrate the effectiveness of our proposed method, we used the follow-
ing five image datasets for our experiments. They are design patent dataset1,
ORL dataset [2], Coil-20 dataset [17], Extend Yale B dataset [10], and Yaleface
1 https://iplab.gpnu.edu.cn/info/1044/1608.htm.

https://iplab.gpnu.edu.cn/info/1044/1608.htm.
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Algorithm 1. Improved latent MVSC algorithm.
Input: X: Multi-view matrices:{X(1), · · · , X(V )}; λ: the hyper-parameter; H: the

latent representation; K: the dimension.
Initialization: P0 = I, Er,0 = 0, Eh,0 = 0, J0 = 0, Z0 = 0, Y1,0 = 0, Y2,0 = 0, Y3,0 =
0, H0 as a random matrix, k = 0, μ0 = 10−6, ρ = 1.1, ε = 10−4, and μ = 106

while not converged do
Update P through P = UZV T

Z and (Y T
1 − μ(Y1 − X + Eh)T )H = UZDZV T

Z ;

Update H through
PT Y1+Y T

2 (Z−I)

µ
− PT (Y1 − X + Eh) − (Y2 + Er)

T (Z − I) =

(H(Z − I)(Z − T )T + PTPH);

Update Z through Z = (HTH + I)−1(HT Y2+Y3
µ

+ (J − Y3 − HT (Y2 − H + Er)));

Update J through μJm,n + λp
∣
∣Jp−1

m,n

∣
∣ sgn(Jm,n) + Cm,n = 0.;

Update E through JE(E) = ‖E‖2,1 tr(Y T
1 (X − PH − Eh)) + tr(Y T

2 (H − HZ −
Er)) + µ

2
(‖Y1 − X + PH + Eh‖2

F + ‖Y2 − H + HZ + Er‖2
F );

Update Y1 ; Y2 and Y3 through Y1,k+1 = Y1,k + μk(Xk − PkHk − Eh,k), Y2,k+1 =
Y2,k + μk(Hk − HkZk − Er,k) and Y3,k+1 = Y3,k + μk(Jk − Zk) respectively

Update μ via μk+1 = min(ρμ, μ).
Check the convergence conditions:
‖X − PkHk − Eh,k‖∞ < ε, ‖Hk − HkZk − Er,k‖∞ < ε or ‖Jk − Zk‖∞ < ε;

end while

Construct the similarity matrix S =
|(Zv)T+Zv|

s
;

Calculate the Laplacian matrix L and obtain the eigen matrix F . Here, the columns
of F are the eigenvectors of L corresponding to the largest k eigenvalues of L. Finally,
the K means algorithm is used for performing the clustering.

Output: The multi-view representation Z

dataset [20]. The details of these five datasets can be found in the correspond-
ing references. Figure 2 shows some sample images of the these five datasets.
First, the color images are converted into grayscale images. Then, three features
are extracted, including the local binary (LBP) map [15], the local directional
gradient histogram (HoG) [5] and the Gabor filtered texture [5]. These three
features are employed because different features reflect different information of
the images. The multi-view training set used in our experiments is constructed
with these three features.

3.2 Experimental Results

In this section, we first analyzed the effect of different values of p on the clustering
results. In our experiments, we utilized the design patent dataset for validation
and repeated 30 times to obtain the average values of ACC (accuracy) and
NMI (normalized mutual information). Note that higher values indicate better
performance for both metrics. As can be seen in Fig. 3, the highest values for
NMI and ACC are achieved when the value of p is equal to 0.1. Therefore, in
the following experiments, we set p = 0.1.
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Fig. 2. Sample images of the datasets used in our experiments.

Fig. 3. Performance of clustering with different values of p.

To evaluate the clustering performance, we compared our method with some
typical algorithms based on single view and multiple views, including LRRBestSV

[12], DiMSC [3], FMR [11], LMSC [22], and LT MSC [21].
For evaluation metrics, we use NMI (normalized mutual information) and

ACC (accuracy), we run 30 times for each method and report the mean values
and standard deviations. Tables 1, 2, 3, 4 and 5 show the NIM and ACC measured
by various methods on the above five datasets, respectively. It can be seen that
our proposed method outperforms other methods on all five datasets, especially
on the design patent dataset and the Coil-20 dataset. The results show that
combining multiple views and using the Schatten-p norm as an approximation
of rank function minimization yields better and more stable results.
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Table 1. Performances comparison of clustering for design patent dataset.

Methods ACC NMI

LRRBestSV 0.8371 ± 0.0640 0.8104 ± 0.0249

DiMSC 0.7462 ± 0.0008 0.6597 ± 0.0008

FMR 0.7783 ± 0.0599 0.8407 ± 0.0261

LT MSC 0.7558 ± 0.0026 0.8712 ± 0.0009

LMSC 0.7568 ± 0.0073 0.8601 ± 0.0173

Sp LMSC 0.9094 ± 0.0500 0.8984 ± 0.0292

Table 2. Performances comparison of clustering for ORL dataset.

Methods ACC NMI

LRRBestSV 0.7362 ± 0.0226 0.8774 ± 0.0096

DiMSC 0.6684 ± 0.0216 0.8173 ± 0.0096

FMR 0.2580 ± 0.0145 0.5121 ± 0.012

LT MSC 0.7631 ± 0.0180 0.8948 ± 0.0069

LMSC 0.6408 ± 0.0266 0.8250 ± 0.0117

Sp LMSC 0.7894 ± 0.0240 0.9021 ± 0.0127

Table 3. Performances comparison of clustering for Coil-20 dataset.

Methods ACC NMI

LRRBestSV 0.8551 ± 0.0571 0.8758 ± 0.0424

DiMSC 0.6478 ± 0.0185 0.5860 ± 0.0117

FMR 0.7856 ± 0.0102 0.8354 ± 0.0150

LT MSC 0.8217 ± 0.0530 0.8844 ± 0.0302

LMSC 0.8829 ± 0.0415 0.9066 ± 0.0178

Sp LMSC 0.9692 ± 0.0025 0.9544 ± 0.0029

Table 4. Performances comparison of clustering for Extend Yale B dataset

Methods ACC NMI

LRRBestSV 0.5847 ± 0.0100 0.5959 ± 0.0053

DiMSC 0.4903± 0.0259 0.4723 ± 0.0197

FMR 0.5128 ± 0.0176 0.5311 ± 0.0145

LT MSC 0.5649 ± 0.0337 0.6018 ± 0.0159

LMSC 0.4258 ± 0.0363 0.4573 ± 0.1023

Sp LMSC 0.6257 ± 0.0119 0.6696 ± 0.0135
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Table 5. Performances comparison of clustering for Yaleface dataset.

Methods ACC NMI

LRRBestSV 0.6395 ± 0.0262 0.7005 ± 0.0095

DiMSC 0.6224 ± 0.0364 0.6875 ± 0.0226

FMR 0.6309 ± 0.0269 0.6889 ± 0.0208

LT MSC 0.5591 ± 0.0290 0.6529 ± 0.0146

LMSC 0.6432 ± 0.0196 0.7109 ± 0.0189

Sp LMSC 0.6644 ± 0.0263 0.7120 ± 0.0178

4 Conclusion

This paper proposed a MVSC algorithm via maximizing the original feature
information under the assumption that each view is derived from a latent rep-
resentation. By using the Schatten-p norm approach, it achieves the better
rank minimization compared with the conventional nuclear norm approach and
improves the quality of low-dimensional representations for subspace learning.
The effectiveness of our proposed method is demonstrated via comparing with
five classical algorithms on five datasets.
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Abstract. The advancement of technology in the modern era has accel-
erated the growth of Internet of things (IoT) resulting in an exponential
increase in the number of connected devices and the generated data. This
encouraged the development of paradigm fog computing, which facili-
tates data analysis and processing at the edge. Along with fog, cloud
co-exists to provide various services such as massive storage, processing
resources, etc. However, data storage and computation at multiple levels
raise the risk of data security. Ciphertext-policy attribute-based encryp-
tion (CP-ABE) is a well-known cryptographic technique for providing
fine-grained access control. Unfortunately, the existing CP-ABE schemes
do not support the functionality of attribute merging. Therefore, we pro-
pose a CP-ABE scheme named MOFIT that solves this long-standing
problem. Additionally, expensive encryption and decryption operations
are outsourced to fog nodes, which reduces the computation overhead
of resource-constrained IoT devices. Further, the task of attribute merg-
ing is also outsourced to the third party. The size of the secret key held
by the data user is constant and remains unaltered during any updates.
According to security and performance analysis, MOFIT is secure and
suitable for IoT applications.

Keywords: Access control · IoT · Fog · Cloud · Attribute merging

1 Introduction

Cloud computing has emerged as a potential paradigm in the IT sector as it facil-
itates flexible on demand resources. However, the widespread use and popular-
ity of IoT have imposed several challenges to the centralised cloud. As the num-
ber of IoT devices is increasing exponentially, sending all the large and frequent
data generated by them to the distant cloud severely affects network bandwidth.
In cases of latency-sensitive services like health monitoring, firefighting, etc., the
cloud-IoT architecture suffers from transmission delay between the user’s request
and the cloud’s response. Further, the IoT devices may not have a stable inter-
net connection to connect to the geographically dispersed cloud. Therefore, to
c© Springer Nature Switzerland AG 2022
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address the aforesaid issues, the paradigm Fog Computing [3] has been introduced,
which involves using the computing and storage capabilities of networking devices
such as switches, routers, etc. (known as fog nodes). These nodes are positioned
between the cloud and end-devices, and some cloud-based services can be moved
to the fog nodes, located near the end-users. Therefore, fog computing can be
viewed as an extension of cloud computing at the edge that bridges IoT devices
and the cloud, and enhances service quality. However, outsourcing the storage
and computation of sensitive data to third parties (fog nodes and cloud) increases
the risk of data security as such entities may access, disclose users’ privacy, and
even may share the data illegally. As a result, data security has become a primary
concern of data owners. A solution is to allow data owners to encrypt their data
before outsourcing. Traditional cryptosystems are not deemed adequate for this
purpose since they do not provide efficient access control over encrypted data [7].
Ciphertext-policy attribute-based encryption (CP-ABE) [2] is a recently devel-
oped cryptosystem which provides fine-grained access control over encrypted data.
In this cryptosystem, the encrypted data and the decryption keys are linked with
the attributes (age, gender, department, etc.). The data owner encrypts his data
using an attribute-based access policy, and any user having the decryption key of
attributes that satisfies the access policy can decrypt the ciphertext.

The problem with the CP-ABE scheme is that it involves computationally
expensive pairing and exponentiation operations, which restricts its usage for
resource-constrained IoT devices. Green et al. [4] presented a CP-ABE scheme
that outsources the decryption operations. In their scheme, a transformation
key is generated through which the proxy partly decrypts the ciphertext and for-
wards it to the user, which greatly reduces the computation overhead of the data
user. Similarly, the works [8,11,12] were proposed, which supports decryption
outsourcing. Additionally, Zuo et al. [12] supports fog computing environment.
But, for resource-constrained IoT devices, encryption also involves complex oper-
ations, which is challenging. Sarma et al. [9] presented a scheme that supports
both encryption and decryption outsourcing to the fog nodes, which lowers the
computation cost of the resource-constrained data owners and users. However,
it does not support attribute merging functionality. As a matter of fact, none of
the existing works support attribute merging.

The functionality of attribute merging is required when any existing attribute
of the system is merged with another attribute. For example, consider an engi-
neering college, which has IT and CSE departments. Suppose the college author-
ities want to merge the IT department with the CSE department. So, in this case,
the authority needs to update the attribute IT with the attribute CSE in the sys-
tem. This involves issuing keys related to attribute CSE to those users, who pre-
viously held attribute keys related to IT. Further, all the ciphertexts previously
encrypted with the attribute IT needs to be updated with the attribute CSE.
In CP-ABE systems, attribute merging is challenging as the same attributes
are held by numerous users and used in several ciphertexts but it is a desirable
feature for modern systems.

Contributions: In the following, we summarize the key contributions of MOFIT,
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– It supports merging of different attributes of the system i.e. attribute merging,
without disrupting the system. Additionally, the attribute merging task is
handled by the third party that remarkably lowers the overhead on the user
side.

– Considering the resource-limited nature of IoT devices, the complex oper-
ations involved during encryption and decryption are offloaded to the fog
nodes. All the attribute-related expensive operations are performed by the
fog nodes, leaving only a small and constant amount of computation for the
data owner and user. Further, the data user needs to store only a constant
size secret key, which remains unchanged even during any update.

– The conducted security and performance analysis shows that MOFIT is effi-
cient and secure for IoT devices.

To the best of our knowledge, the proposed scheme MOFIT is the only scheme
that supports the functionality of attribute merging.

Table 1. Notations

Notation Description

G,GT Multiplicative cyclic groups

` Access tree

U, |U| Attribute universe and number of attributes in U, respectively

S User’s attribute set

k Number of attributes held by the user

t Number of attributes in ` of ciphertext

ak, al Merging and merged attribute, respectively

m Number of merging attributes

TG, TGT Time for an exponentiation operation in G and GT , respectively

Ce Time for a bilinear pairing operation

2 Background

In this section, we discuss some fundamental definitions.

Access Tree [10]: An access tree ` is a way to express an access structure or
access policy. In `, the non-leaf node x is a threshold gate that may be an AND
or OR. For AND gate, dx = numx, and for OR gate, dx = 1, where dx and numx

denote the threshold value and the number of children of node x, respectively. In
`, each leaf node x denotes an attribute and for such node dx = 1. The attribute
associated to the leaf node x is denoted by att(x). Similarly, the parent and
index of node x are represented by parent(x) and index(x), respectively.
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Bilinear Pairing [5]: Let G and GT be two bilinear pairing groups, where G
is the source group with generator g, and GT is the target group. Let p be their
common order. The bilinear map e : G × G → GT has the following properties.

Bilinearity: e(ga
1 , gb

2) = e(g1, g2)ab, ∀g1, g2 ∈ G and a, b ∈ Zp.
Non-degeneracy: e(g, g) �=1.
Computable: ∀ g1, g2 ∈ G, e(g1, g2) must be computable.

Decisional Bilinear Diffie-Hellman Assumption (DBDH) [6]: For a com-
putationally efficient bilinear map e, where e : G × G → GT and g is the
generator of G, the challenger randomly selects the components a, b, s ∈ Zp and
R ∈ GT . The DBDH assumption thus says that the tuples (g, ga, gb, gs, R) and
(g, ga, gb, gs, e(g, g)abs) can not be differentiated with non-negligible advantage
by any probabilistic polynomial-time algorithm.

3 System Model

The entities of the proposed Cloud-Fog-IoT system MOFIT are shown in Fig. 1.

Key Authority (KA). In MOFIT, the Key Authority KA manages the sys-
tem, generates public parameters, and issues decryption keys to the legitimate
users. Further, during attribute merging, it updates the public parameters and
generates the update keys required to update the ciphertexts and attribute keys.

Cloud Service Provider (CSP). It provides numerous services to the end-
users that primarily involve data storage to reduce the storage overhead of
resource-limited data owners. Additionally, in MOFIT, when attributes are
merged, it updates the corresponding ciphertexts and user’s attribute keys.

Fog Node. It is an entity deployed close to the users. It partly encrypts
and decrypts the ciphertext, which reduces the computation overhead of the
user. Further, during attribute merging, the fog node generates the update keys
required to update the ciphertexts.

Data Owner. It is an entity who owns the file. Before outsourcing, the data
owner encrypts the file under an access policy of attributes to curtail the unau-
thorized access of the outsourced data.

Data User. It is an entity who wishes to access the file stored in the cloud.
In MOFIT, to decrypt a ciphertext, a user must possess adequate attributes
required to satisfy the access policy of the ciphertext.

Assumptions on Each Entity: The entity KA is fully trusted, as such it will
not collude with other entities. CSP and fog nodes are considered as honest
but curious entities i.e. they will carry out the responsibilities entrusted to them
honestly but may be curious to learn about the received data. Further, users may
not be honest and may attempt to collude with other users to get unauthorized
access to the outsourced data.
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Fig. 1. Proposed system: MOFIT

4 Proposed Scheme: MOFIT

MOFIT is comprised of four phases, which are discussed as follows,

1. Setup (σ) → (PP,MSK): In this phase, system setup is done by the key
authority KA. The KA takes security parameter σ as input, and chooses a
pairing group G with large prime order p. It selects generator g, bilinear map
e : G × G → GT , and computes e(g, g) ∈ GT . It also selects the elements
β, α ∈ Zp randomly, and computes h = gβ . Then, for each attribute aj ∈
U (1 ≤ j ≤ |U|), it randomly chooses tj ∈ Zp. Finally, it sets the master
secret key MSK and public parameter PP as follows,

MSK =
{
β, α, {tj |aj ∈ U}}

PP =
{
G, g, h, e(g, g)α, {PKj = gtj |aj ∈ U}}

2. Key Generation (PP,MSK,S) → (Usk): In this phase, decryption key of
a user uid is generated by the KA. At first, the KA authenticates the user
and allocates a set of attributes S to the legitimate user uid. Then, it chooses
a user-specific random number r ∈ Zp and also selects λ ∈ Zp randomly. It
generates the decryption key Usk, where Usk = {Usk1, Usk2} as follows,

Usk1 = {D = gα+βr},

Usk2 = {D′ = gβrhλ,D′′ = gλ,∀aj ∈ S : Dj = gβrt−1
j }

Finally, the KA sends Usk1 securely to the user uid, whereas attribute key Usk2

is sent to the cloud for storage. It may be noted that the secret key Usk1 stored
by the user uid is of constant size.

3. Encryption. In this phase, the plaintext of the data owner is encrypted. At
first, the owner partially encrypts the message M using Encrypt.Owner algo-
rithm and sends the partially encrypted ciphertext to the nearest fog node.
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Next, the fog node using Encrypt.Fog algorithm re-encrypts it to facilitate
data sharing and finally sends it to the cloud for storage. The detailed work-
ing of these algorithms are as follows,
• Encrypt.Owner (M,PP,`) → (CT1) : In this phase, the data owner par-
tially encrypts the message M . At first, it randomly chooses s ∈ Zp. It also
chooses an access structure `, partially encrypts the message M , and gener-
ates the partial ciphertext CT1 as follows,

CT1 =
{
`, C̃ = M.e(g, g, )αs, C ′ = gs, C ′′ = hs

}

The data owner sends CT1 for further encryption to the nearest fog node.
• Encrypt.Fog (PP,CT1) → (CT ) : On receiving CT1, the fog node selects
a polynomial qx of degree dx = kx − 1 for each node x ∈ `, where kx is the
threshold value for x. Further, it chooses s ∈ Zp randomly for root node R of
`, and sets qR(0) = s. In case of any other node x, it chooses a polynomial of
degree dx such that qx(0) = qparent(x)(index(x)). Additionally, it re-computes
the components C ′ and C ′′ of CT1 as C̃ ′ = gsgs and C̃ ′′ = hshs

}
, respectively.

It also computes the component
{
Cj = gtjqx(0),∀aj = att(x) ∈ X

}
, where X

is an attribute set related to the leaf nodes in `. Finally, it sets the final
ciphertext as CT and sends it to the cloud for storage.

CT =
{
`, C̃ = M.e(g, g, )αs, C ′ = gs, C̃ ′ = gsgs, C̃ ′′ = hshs,

{∀aj = att(x) ∈ X : Cj = gtjqx(0)}
}

4. Decryption. In this phase, ciphertext is decrypted and the plaintext is
retrieved. It comprises of algorithms Decrypt.Fog and Decrypt.User. At first,
the fog node using Decrypt.Fog algorithm partially decrypts the ciphertext
and then, the data user using Decrypt.User algorithm further decrypts the
partially decrypted ciphertext and accesses the message. The detailed work-
ing of these algorithms are as follows,
• Decrypt.Fog (PP,CT,Usk2) → B: On user’s request, the cloud pro-
vides the user’s attribute key Usk2 along with the ciphertext CT to the
fog node. At first, the fog node divides CT into CT ′ and CT

′′
, such that

CT ′ = {C̃ ′, C̃ ′′, {∀aj ∈ X : Cj}} and CT
′′

= {C̃, C ′}. Then, it executes a
recursive decryption algorithm Node.Decrypt(CT ′, Usk2, x), for all x ∈ ` as
follows,
(a) Consider aj = att(x), if x is a leaf node. For aj /∈ S, the function

Node.Decrypt (CT ′, Usk2, x) returns ⊥. Further, for att(x) ∈ S, it does
the following,

Node.Decrypt(CT ′, Usk2, x) = e(Dj , Cj) = e(gβrt−1
j , gtjqx(0))

= e(g, g)βrqx(0)

(b) For every node x, if x is a non-leaf node, the algorithm Node.Decrypt
(CT ′, Usk2, x) is executed. Additionally, Node.Decrypt(CT ′, Usk2, z) is
also called for all the child nodes of x, referred as z, and the output is
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stored in Fz. Let Sx represent a set of child nodes z, which is of size kx

and Fz �=⊥. If no such set exists then Fz =⊥, else Fx is computed as,

Fx =
∏

z∈Sx

F
Δj,S′

x
(0)

z =
∏

z∈Sx

e(g, g)rβqx(0))Δj,S′
x
(0) = e(g, g)rβqx(0)

where j = index(z), S′
x = {index(z) : z ∈ Sx}.

(c) Finally, if the attribute set satisfies the access policy `, Node.Decrypt
(CT ′, Usk2, z) calls root R of ` and stores the output as FR,

FR = Node.Decrypt(CT ′, Usk2, z) = e(g, g)rβqR(0) = e(g, g)βrs

(d) The fog node computes the component Ã. Further, using Ã and FR, it
generates the partially decrypted ciphertext B as follows,

Ã =
e(D

′
, C̃

′
)

e(D′′ , C̃ ′′)
=

e(grβhλ, gsgs)
e(gλ, hshs)

= e(g, g)rβ(s+s)

B =
Ã

FR
=

e(g, g)rβ(s+s)

e(g, g)rβs
= e(g, g)rβs

Finally, the fog node sends the partly decrypted ciphertext B to the
corresponding user uid, along with CT ′′.

• Decrypt.User(CT
′′
, B, Usk1) → M : The data user uid using it’s secret key

Usk1 decrypts the ciphertext and retrieves the message M as follows,

C̃ · B

e(C ′,D)
=

M · e(g, g)αse(g, g)βrs

e(gs, gα+βr)
= M

5. Attribute Merging. Suppose in an engineering college, the authorities want
to merge the IT department with the CSE department. Let the attributes
IT and CSE be denoted as ak and al, respectively. Therefore, in that case,
all the components related to attribute ak are required to be updated to
attribute al. The attributes ak and al may be called merging attribute and
merged attribute, respectively. It includes the following,
• PP.Update (PP, ak) → (PP ′) : In this phase, the KA updates the public
attribute key component of PP as follows,

PP ′ =
{

G, g, h, e(g, g)α,∀aj ∈ U : if aj �= ak, PKj = gtj

else remove PKk

}

• Ukey.Gen (MSK, ak, al) → (U ′
v, U ′′

v ) : The KA takes the master secret
key MSK components tk and tl of attribute ak and al, respectively, which
are generated during system setup and outputs update keys U ′

v and U ′′
v . It

generates the update key U ′
v for updating the attribute key of the user who

posses attribute ak in its attribute set S. Similarly, it generates U ′′
v to update

the ciphertexts possessing attribute ak in their access policy `.

U ′
v = tk/tl U ′′

v = tl/tk
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Then, it sends the update keys U ′
v and U ′′

v to the CSP.
• KeyGen.Update (Usk2, U

′
v) → (U ′

sk2) : In this phase, the attribute key Usk2

of the user who possess attribute ak in its attribute set S is updated using
update key U ′

v. The updated attribute key U ′
sk2 comprises of components

related to attribute al. The CSP updates the attribute key Usk2 as,

U ′
sk2 =

{
D′ = gβrhλ,D′′ = gλ,∀aj ∈ S : if aj �= ak, Dj = gβrt−1

j

else Dk→l = gβrt−1
k .U ′

v

}

• CT.Update (CT,U ′′
v ) → (CT ) : Using this algorithm, the CSP updates

those stored ciphertexts which possess attribute ak in their access policy `.
The ciphertext update mechanism varies in accordance with the structure of
the access policy ` of the ciphertext. Hence, the following three cases arise,
- Case 1: ` = (ak ∨ al).
When ` contains an OR gate between a merging attribute ak and merged
attribute al, the CSP updates the ciphertext as follows.

CT =

⎧
⎨

⎩

`, C̃ = M.e(g, g, )αs, C ′ = gs, C̃ ′ = gsgs, C̃ ′′ = hshs,
∀aj = att(x) ∈ X : if aj �= ak, Cj = gtjqx(0)

else remove Ck

⎫
⎬

⎭

- Case 2: ` = (ak ∨ aj) ∀ aj �= al.
When ` contains an OR gate between a merging attribute ak and any
attribute aj ∈ U except the merged attribute al, the fog node computes
Qx′ = qal

(0)

qak
(0) using qx(0) for x = {al, ak} used during Encrypt.Fog phase, and

sends it to the CSP. Next, the CSP taking Qx′ and the update key U ′′
v as

input, updates the ciphertext as,

CT =

⎧
⎨

⎩

`, C̃ = M.e(g, g, )αs, C ′ = gs, C̃ ′ = gsgs, C̃ ′′ = hshs,
∀aj = att(x) ∈ X : if aj �= ak, Cj = gtjqx(0)

else Ck→l = gtkqak
(0)Qx′ U ′′

v

}

⎫
⎬

⎭

- Case 3: ` = (ak ∧ aj) ∀ aj �= al.
When ` contains an AND gate between a merging attribute ak and any
attribute aj ∈ U except the merged attribute al, the ciphertext update mech-
anism is same as Case 2.

5 Security Proof

Through theorem 1, the Chosen-Plaintext Attack (CPA) security proof of
MOFIT is shown.

Theorem 1. If there is a probabilistic polynomial-time PPT adversary A who
can win MOFIT with a non-negligible advantage ε > 0, then the construction
of a PPT simulator B can be done, which can solve DBDH problem with ε

2
advantage.
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Proof. Let G and GT be bilinear groups, where g is the generator of G and p is
their common order. Also, let e be a mapping function such that e : G×G → GT .
In the security game, the challenger C selects s, a, b ∈ Zp randomly, chooses
ϑ ∈ {0, 1} and also chooses a random element R ∈ GT . Further, if ϑ = 0, it sets
Z = e(g, g)abs, else for ϑ = 1, it sets Z = R. Then, it sends the components
< g,A,B, S, Z >=< g, ga, gb, gs, Z > to the simulator B and requests to output
ϑ. Next, B acts as a challenger to respond to this challenge in the following game.

– Initialization. In this phase, the adversary A chooses an access structure A∗

in which it wishes to challenge and gives it to simulator B.
– Setup. In the setup phase, the following is done by the simulator B.

At first, B randomly selects α′ ∈ Zp and sets α = α′ + ab. Next, it calculates
u = e(g, g)α = e(g, g)α′ · e(g, g)ab, h = gβ = gb = B. Then, for all aj ∈ U, B
selects vj ∈ Zp randomly and calculates PKj = gbv−1

j = gtj for tj = bv−1
j

Finally, B gives the public parameter PP =
{
h, u, {PKj |∀aj ∈ U

}
to A.

– Phase 1. Adversary A issues an attribute set S to simulator B and queries
the secret keys. In fact, A can submit any random attribute set S, for
S ⊆ U and S � A∗ as many times as it wishes to B. Simulator B ran-
domly selects r′ ∈ Zp and sets r = r′ − a. Further, it generates Usk1 = {D =
gαgβr = g(α

′+ab)gb(r′−a) = gα′+br′
= gα′

.Br′} and Usk2 = {D′ = gβrhλ =
gβ(r′−a)hλ = B(r′−a)hλ,D′′ = gλ,∀aj ∈ S : Dj = gb−1vjrb = gt−1

j (r′−a)b =
Bt−1

j (r′−a)}. Then, B issues the keys Usk1 and Usk2 to A.
Additionally, whenever any attribute merging occurs, the newly added
attribute should be provided to A in such that a way that the new attribute
set should not satisfy A∗.

– Challenge. The adversary A selects two challenge messages m0 and m1,
which are of equal lengths and gives those to simulator B. Then, B randomly
selects s ∈ Zp. It also randomly selects ϑ ∈ {0, 1} and outputs CT ∗

1 , where
CT ∗

1 = {A∗, C̃ = mϑ.e(g, g)αs = mϑ.e(g, g)(α
′+ab)s = mϑZe(g, g)α′s, C ′ =

gs = S,C ′′ = hs = gβs = Bs. Again, it randomly chooses s ∈ Zp and outputs
CT ∗ = {A∗, C̃ = mϑZe(g, g)α′s, C ′ = S, C̃ ′ = gs · gs = S · gs, C̃ ′′ = hshs =
gβ(s+s) = B(s+s)}. At last, the ciphertext CT ∗ = {A∗, C̃, C ′, C̃ ′, C̃ ′′, Cj |
∀aj ∈ A∗} is sent to A.

– Phase 2. The Phase 1 is repeated.
– Guess. The adversary A generates his guess ϑ′ of ϑ and gives it to simula-

tor B. Therefore, in the aforesaid game, if ϑ′ = ϑ, then B outputs 0 to show
that Z = e(g, g)abs else, to guess Z = R, the simulator B outputs 1 .
Case 1: If Z = e(g, g)abs, it implies CT ∗ is an available ciphertext. Therefore,
A′s advantage is ε and thus, Pr[B(g, ga, gb, gs, Z = e(g, g)abs) = 0] = 1

2 + ε.
Case 2: If Z = R, it implies CT ∗ is random from A′s view and has no knowl-
edge about ϑ. Thus, Pr[B(g, ga, gb, gs, Z = R) = 0] = 1

2 ., in the DBDH secu-
rity game, the overall advantage of simulator B is 1

2 (Pr[B(g, ga, gb, gs, Z =
e(g, g)abs) = 0] + Pr[B(g, ga, gb, gs, Z = R) = 0]) − 1

2 = 1
2 ( 12 + ε + 1

2 ) − 1
2 = ε

2
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6 Performance Analysis

In this section, the performance of MOFIT is compared with the closely related
schemes [8,9,11,12].

Comparison of Functionalities: The functionalities of MOFIT are compared
to those of the works [8,9,11,12], as shown in Table 2. It can be seen that only
MOFIT provides the features: attribute merging, encryption and decryption
outsourcing, supports the fog computing environment, and is highly efficient1

at the same time.

Table 2. Functional analysis

Schemes Attribute
merging

Encryption
outsourcing

Decryption
outsourcing

High
efficiency

Fog
computing

[12] ✗ ✗ ✔ ✗ ✔

[8] ✗ ✗ ✔ ✗ ✗

[9] ✗ ✔ ✔ ✗ ✔

[11] ✗ ✗ ✔ ✗ ✗

MOFIT ✔ ✔ ✔ ✔ ✔

Comparison of Computational Cost: The time required to execute differ-
ent algorithms of MOFIT and the existing works [8,9,11,12] is shown through
Table 3 and the notations can be found in Table 1. Starting from the key gener-
ation, we can see that in all the schemes, the time required for key generation
grows in proportion to the number of attributes held by the user i.e. k. But, the
time required by MOFIT is significantly less than the scheme [9] and similar to
the schemes [8,11,12]. It can be noticed from the table that in schemes [8,11,12],
the encryption time on data owner rises in proportion to the number of attributes
linked to the access policy i.e. t. But, in MOFIT and the scheme [9], all such com-
plex operations are offloaded to fog nodes, which leaves only a small and constant
amount of computation for resource-limited data owners. Further, in compari-
son to scheme [9], MOFIT puts less encryption overhead on the data owner and
the fog node, which makes the overall encryption time of MOFIT efficient. Dur-
ing decryption, in MOFIT and the schemes [8,9,11,12] complex attribute related
operations are offloaded to a third party and the resource-limited data users need
to do only a small and constant amount of computation. It can be observed that
the decryption overhead on the data user in the schemes [11,12] and [8] is 2TGT

and TGT
, respectively, whereas in MOFIT and the scheme [9] it requires Ce

time, which is higher than the schemes [8,11,12] but computationally tolerant
by resource-limited data users. It can be noticed that the outsourced decryption
time of the schemes [9,11,12] is significantly higher than MOFIT, which makes

1 Key storage cost on data user is constant and expensive operations of encryption,
decryption, and attribute merging are offloaded to the third party.
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the overall decryption time of MOFIT efficient. Only MOFIT supports the func-
tionality of attribute merging. The attribute merging time varies in accordance
with the structure of access policy embedded in the ciphertext and as such three
cases are considered, represented by Case 1−3, which have been discussed in
Sect. 4. It can be observed from the table that the time required for attribute
merging in Case 1 is less than in Cases 2 and 3 as in the former case only key
update operation is required which takes mTG time, whereas in the other two
cases key update as well as ciphertext update operations are performed, which
takes 2mTG time.

Table 3. Computational cost comparison DO: Data owner, EE: External entity, DU:
Data user

Algorithms [11] [9] [8] [12] MOFIT

Key Generation (1 + k)TG (4 + 4k)TG (1 + k)TG (1 + k)TG (3 + k)TG

Encryption DO DO DO DO DO

(2 + t)TG + TGT
3TG + TGT

(1 + t)TG + TGT
(2 + t)TG + TGT

2TG + TGT

EE EE EE EE EE

– 2(1 + 2t)TG – (2 + t)TG

Decryption DU DU DU DU DU

2TGT
Ce TGT

2TGT
Ce

EE EE EE EE EE

(3 + 3t)Ce (2 + 3t)Ce (1 + t)Ce (3 + 3t)Ce (2 + t)Ce

Attribute Merging Case 1

– – – – mTG

Case 2

– – – – 2mTG

Case 3

– – – – 2mTG

Experimental Analysis: The performance of MOFIT is compared with two
recently published works ( Zuo et al. [12], Sarma et al. [9]), which support IoT-
fog-cloud framework like MOFIT, in this section. All the three schemes have
been implemented using Pairing-Based Cryptography library (PBC) [1] in a
commodity Laptop having Ubuntu 16.04 (64-bit) with an Intel Core i5 CPU
running at 2.40 GHz and 3 GB RAM. A super-singular curve y2 = x3+x of degree
2 with group order 160 bit and base field of 512 bits has been chosen. Figure 2
shows the time required to execute the algorithms Key generation, Encryption,
Decryption, and Attribute merging by varying the number of attributes. The
results are the average of 10 trials. Starting from the key generation phase, it
can be observed from Fig. 2(a) that the time required by MOFIT is significantly
less than Sarma et al. and almost similar to Zuo et al. Next, Fig. 2(b) shows the
encryption time on data owner. It can be noticed that in MOFIT and Sarma
et al., the encryption time on data owner is small and constant, whereas in Zuo
et al. it rises in proportion to the number of attributes in the access policy. This
is because, in MOFIT and Sarma et al., all the complex operations related to the
attributes are outsourced to the fog node, whereas in the case of Zuo et al., all
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Fig. 2. Experimental results

such computations are done by the data owner. Further, it can be noticed that
MOFIT incurs less encryption overhead on the data owner than Sarma et al. The
time required for decryption on the data user has been shown through Fig. 2(c).
In all the three schemes, as the complex decryption operations are outsourced to
the fog node, the time required to execute the decryption operation by the data
user is small and constant. The data user in MOFIT and Sarma et al. needs
to execute only a pairing operation requiring 0.00114s and in Zuo et al., two
exponentiation operations on GT is required which takes 0.00019 s, where it may
be noticed that both the values are computationally tolerant. Figures 2 (d) and
(e) show the outsourced encryption and decryption time, respectively on the fog
node. Only MOFIT and Sarma et al. support outsourced encryption and it can
be seen from Fig. 2 (d) that MOFIT requires significantly less time than Sarma
et al. Further, all the three schemes outsource decryption operation to the fog
node but it can be observed from Fig. 2 (e) that MOFIT requires considerably less
time than the other two schemes. Furthermore, only MOFIT supports attribute
merging. The time required by MOFIT during attribute merging has been shown
in Fig. 2 (f), where we have considered all the three cases, which have been
discussed in Sect. 4. It can be noticed that the attribute merging time rises in
proportion to the number of merging attributes. The time required for attribute
merging in Case 1 is less than in Cases 2 and 3, as in the former case only key
update operation is required whereas in the other two cases key update along
with ciphertext update operations are performed.
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7 Conclusion

To realize fine-grained data access control, an attribute-based data sharing
scheme named MOFIT has been proposed which addresses the issue of attribute
merging. It also supports outsourcing of expensive encryption and decryption
operations to fog nodes, leaving only a small and constant amount of compu-
tation to be performed locally on the user’s device. Additionally, the task of
attribute merging is also outsourced to the third party. The scheme is designed
in such a way that the resource-constrained data user needs to store only a con-
stant size key which remains unchanged throughout. Further, MOFIT is found
to be secure against Chosen-plaintext attack under DBDH assumption. From the
performance analysis, we can conclude that MOFIT can be efficiently employed
for data sharing in IoT applications.
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1 Introduction

Internet of Vehicles (IoV) is an open heterogeneous network composed of vehic-
ular Ad-Hoc Network (VANET) and Mobile Internet. The IoV network provides
a platform for vehicles to communicate and share data with their neighbors, e.g.,
time stamped location, traffic conditions and weather data, etc. It not only facili-
tates to establish secure and reliable intelligent transportation system (ITS), but
also provides vehicles extensive high-quality service. However, due to the high
mobility and variability of vehicular networks, it brings serious challenges to the
computing efficiency and privacy preserving of vehicles in IoV. There may be
some malicious nodes in the network, deliberately broadcasting false messages to
affect the decision-making and normal driving of other vehicles. Therefore, the
security of IoV network is directly related to the personal information security
and life safety.

Federated learning based data sharing process is a promising distributed
machine learning method for training a global model on decentralized data.
Federated learning addresses the privacy concerns to a large content that local
model training by all participants only use own data and share the model training
parameter to servers during the transmission process. This mechanism can not
only achieve efficient communication and improve the quality of IoV application,
but also reduce the risk of privacy leakage. Thus, federated learning achieves
vehicular intelligence by learning from distributed data in a privacy preserved
manner [1].

To combat the security issue, blockchain has become a promising technology
that can provide solutions towards the distributed security issues [2,3]. The
blockchain adopts decentralized storage and consensus mechanism to guarantee
data security. It also uses cryptographic methods to ensure that data cannot be
tampered or forged. With these advanced features, blockchain based federated
learning has attracted significant attention in secure data sharing process [4–7].

However, there remain several issues in applying federated learning to the real
world. Most existing federated learning paradigms allow all nodes participate in
training process. Due to difference of computing skills, biases or malicious tam-
pering, federated learning is vulnerable to adversarial manipulations by malicious
participants, which can negatively impact the learned model. For instance, mali-
cious participants can corrupt the global model via poisoning their local training
data (known as data poisoning attacks) or their local model updates sent to the
server (called local model poisoning attacks) [8]. To address the aforementioned
issues, we propose a novel Reputation based Blockchain-enabled Federated Learn-
ing (RepBFL) framework. We summarize our contributions below:

• We propose RepBFL framework to provides security and effective mechanism
for each vehicles in IoV while preventing unreliable nodes participating in
model training.

• RepBFL utilizes a reputation mechanism to iteratively evaluate the credibility
of all participant in IoV. Moreover, the reputation of each participant is not
only based on its own shared data, but also based on the evaluation computed
from other participating vehicles.
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• Experiments demonstrate that our proposed framework can effectively evalu-
ate the credibility of nodes and is robust against the malicious attacks while
maintaining competitive accuracy.

The remainder of this paper is organized as follows. We first give the overview
of related literature in Sect. 2 and problem setting in Sect. 3. Then, we develop
our proposed RepBFL framework to achieve secure data sharing in IoV in Sect. 4.
Next, we analyze the security of the proposed solution in Sect. 5. Finally, the
numerical results are provided in Sect. 6, and conclusions are made in Sect. 7.

2 Related Work

The concept of trusted data sharing has drawn much attention recently, as a
promising approach to address the issue of security and reliability in vehicular
data sharing process. Recently, federated learning has emerged for edge nodes
collaboratively training a shared model while keeping all the data on their own
devices [9]. However, multiple studies showed that the global model’s accuracy
can be significantly decreased by malicious clients [10,11]. Malicious clients can
substantially degrade the testing accuracy of a global model via carefully tamper-
ing their model updates sent to the server. The adversary will launch malicious
attacks to disturb the federated learning process, which causes the central server
and edge nodes are vulnerable to be comprised. To address these security chal-
lenges, previous work has explored the federated learning framework design or
attack defenses methods [12].

In order to deal with the security issues during the data sharing process,
blockchain technology has been widely studied in IoV to establish distributed
trust. One popular domain is using blockchain for trust management and data
sharing. Wang et al. [13] proposed a blockchain-enabled vehicular edge com-
puting (VEC) system for secure and efficient resource sharing, in which a per-
missioned blockchain architecture was introduced to incentivize parked vehicles
(PV) in an effective and safe way has great potential to join the vehicle net-
work to share its idle computing and network resources. Yang et al. [14] pro-
posed a decentralized trust management system for vehicle networks based on
blockchain technology. Vehicles can use Bayesian inference models to verify mes-
sages received from neighboring vehicles. All RSUs jointly maintain an updated,
reliable and consistent trust zone. Jiang et al. [15] researched how to extend the
blockchain technology to the application of the vehicle network, and proposed
a model for the outward transmission of blockchain data and Kang et al. [16]
proposed a reputation-based data sharing scheme to ensure high-quality data
sharing between vehicles.

Besides, it is crucial to guarantee privacy-preserving during the data shar-
ing process. Luo et al. [17] proposed a trust-based location privacy protection
scheme based on blockchain in VANET, in which a trust-based anonymous cloak-
ing region construction procedure was by introducing the proposed trust man-
agement method into distributed k-anonymity. Lu et al. [18] proposed an asyn-
chronous joint learning scheme for learning models from edge data, and Gai et al.
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[19] proposed a privacy-preserving approach solving the task allocation problem
in edge computing that utilizes blockchain’s characteristics. They also explored
the implementation of differential privacy technique in blockchain system, in
order to prevent information on blocks from data mining-based attacks.

However, most existing works still cannot guarantee the reliability of shared
data from each vehicle. As a result, the secure mechanism may be broken by
strong attacks, which is carefully craft the model updates sent from the malicious
clients to the server. It is necessary to improve existing blockchain and federated
learning algorithms towards secure data sharing in IoV, which can improve the
learning efficiency and guarantee the reliability of the shared data. In this case,
we propose a reputation based blockchain-enabled federated learning framework
for trusted data sharing process in IoV.

3 System Model

The RepBFL framework utilizes reputation mechanism to guarantee the quality
and reliability of data sharing process in IoV and implement the blockchain-
based federated learning method to learn the shared data. The RepBFL frame-
work is presented in Fig. 1, in which consists of reputation layer and learning
layer. For the learning layer, vehicles follow diverse driving route and contin-
uously collect environmental data in different regions to implement federated
learning process. In order to incentive more participating vehicles to share their
data and improve the security of the sharing and learning process, blockchain is
adopted for recording the shared data collected by the vehicles. In the reputation
layer, reputation mechanism is utilized to avoid the malicious vehicular nodes
and guarantee the reliability of the shared data. Furthermore, the reputation
value can be the fundamental basis of the node selection, which can select the
representative vehicular nodes to improve the learning efficiency.

Fig. 1. The architecture of RepBFL framework

There are three crucial components in IoV includes Trusted Authority (TA),
Road Side Units (RSU) and Vehicle. We provide a short summary for each role
as follows.
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TA. TA is the trusted security and the highest authority center in IoV, which
is responsible for registration, identity verification and global aggregation in
federated learning. After local training by RSUs, the TA collects current local
data model from the RSUs and perform the global aggregation.

RSU. RSUs are widely deployed on the roadside based on the variety of loca-
tions and communication ranges. It can not only ensure that the devices con-
stantly collect the real-time data shared by vehicles, but also make it possible
to train the federated learning model using the new shared data in time. More-
over, RSUs are responsible for calculating the reputation value of vehicles in
their area and selecting the high reputation vehicles as shared data within their
communication ranges, which can improve the efficiency of federated learning
and guarantee the reliability of shared data.

Vehicle. Vehicles are responsible for periodically collecting and broadcasting
the current position, direction, acceleration, road conditions, traffic incidents,
surrounding environmental data and other safety information, which make the
traffic management system and other vehicles have a better perception of the
traffic environment. There are multiple vehicular chains in each RSU area, in
which different chains can record vehicular shared data to guarantee the security
of data sharing process.

4 Reputation Model

Vehicles can share data and perform transactions through direct communication
in IoV. However, the openness of IoV network cannot avoid the nodes with
malicious behavior, which makes vehicles often do not know each other and lack
mutual trust. Therefore, it is necessary to design a secure and efficient method,
which can establish trusted mechanism for vehicles to share their data and avoid
unqualified data to affect the training efficiency and accuracy. In this paper, we
propose a reputation calculation mechanism for each vehicles in IoV to evaluate
the reliability of vehicles.

The reputation mechanism proposed in this paper is divided into two layers:
the first layer is the reward layer; the other layer is the penalty layer. In the
reward layer, it gives the vehicles reward based on the quality of shared data
and the evaluation of the other vehicles. Penalty layer is the punishment of
negative sharing process which will decrease the reputation.

Local Reputation. Local reputation is calculated based on the contribution
of shared data. In order to reflect the objectivity and accuracy, we consider the
following factors to calculate local reputation.
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Accuracy Contribution: Accuracy contribution (Ac) is the degree to which the
model accuracy is improved [5]. Assume that the loss of global model before and
after t-th slot of Vi are denoted as lt−1

i and lti respectively. When the loss of
global model reduces after the t-th round, lti < lt−1

i , it means the shared data is
useful. Then the Ac of Vi in t-th round is calculated as Eq. 1.

Act = log2

[
1 +

− (
lti − lt−1

i

)
lt−1
i

]
(1)

Sharing Frequency: Sharing frequency (Lf ) is the number of times that a vehic-
ular node communicates to share its own data in time window T . The higher
sharing frequency means the node has a positive attitude. In a period of time T ,
the more communications are made, the more scores will be earned correspond-
ingly.

Sharing Quantity: Sharing quantity (Lq) is the amount of data shared by a
vehicle in one time. It reflects the willingness of vehicular nodes to share data.
The more data shared, the more contribution the node made, so the reputation
will be correspondingly higher.

In addition, we use Ls
f and Ls

q to indicate the number of successful shar-
ing frequency and successful sharing quantity according to the Ac. When the
uploaded parameters is useful for the global model, Ac > 0, it means the shared
data is successful. We consider that all of vehicles have the same evaluation cri-
teria to calculate their local reputation. According the factors, we have the local
reputation Li as Eq. 2.

Li =
Ls
f · Ls

q

Lf · Lq
(2)

Global Reputation. Global reputation is calculated based on the evaluation
of other vehicles in the same communication area. It reflects the feedback given
by other nodes according to the quality of the data shared by the Vi. After
Vi performs data sharing process, other nodes will evaluate the quality of the
shared data and give their own evaluations in each round. The related factors
for different evaluation are as follows.

Feedback: Feedback (f) is the appreciation of other vehicle for Vi. The positive
interaction means that the vehicles believe that the shared data by Vi is useful
and true. fp is the number of positive feedback and fn is the number of negative
feedback. If Vi receives more positive feedback, it will increase the overall global
reputation. On the contrary, if Vi receives more negative feedback, it will decrease
the overall global reputation. One problem here is that we cannot know the
reliability of other vehicles. If there are colluding malicious nodes in system,
they will deliberately give more positive feedback to themselves. Therefore, we
introduce credibility factor (C) for evaluating the credibility of vehicles.
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fi =
fp

fp + fn
(3)

Credibility: C is the credibility of participating vehicular nodes. If the credibility
of a node is higher, the evaluation it gives is more trustworthy. In contrast,
the evaluation given by a node with low credibility is not credible. Thus, the
credibility of Vi is defined as:

Ce
i =

{
0.5, e = 0∑e

i=1 (1 − |Ge
i − Le

i |) , e > 0
(4)

where C is related to the current reputation and credibility of other evaluated
nodes in round e. Then the global reputation can be calculated as Eq. 5.

Gi =
∑e

k=1 fi ∗ Ci

e
(5)

Time Decay. In actual situation, the weight of reputation should be different
in each iteration. The recent data sharing process has a higher impact on the
reputation calculated. The weight of historical data sharing process will decrease
with time growth. When a new sharing process occurs, because the total number
has changed, we not only need to calculate the time decay factor of the new
process, but also need to update the time decay factor of the historical process.

t = Ti − t0 (6)

Ti =
t

(t +
∑e

i=1 ti)
(7)

where Ti is the current time, t0 is the initial time, with the t-th data sharing pro-
cess of Vi. According to the above factors, the reward layer Ri can be calculated
by Eq. 8.

Ri = (α ∗ Li + β ∗ Gi) · Ti (8)

Here, the parameter α represents the weight of local reputation and β represents
the weight of global reputation, where α + β = 1.

Penalty Reputation. It should notice that the penalty for the malicious data
sharing process should be larger than that for reward because the malicious
attack is more destructive. The punishment for giving a wrong sharing process
as positive should be larger than that for denying a correct one. The penalty
reputation has no attenuation factor, which will not decrease its value with the
increase of time. Therefore, the penalty value of Vi is calculated as Eq. 9.

Pi =
fn

fp + fn
(9)
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The reputation mechanism will determine whether a node is trusted node. If the
score is lower than threshold λ, it will be determined as an untrusted node and
the node will be isolated from the system. Then the final reputation value of Vi

in t-th round is calculated as Eq. 10.

Fi = γRi − δPi (10)

Here, the parameter γ represents the weight of reward layer and δ represents the
weight of penalty layer, where γ + δ = 1.

Based on the reputation mechanism, the reliability of all vehicles in IoV can
be evaluated. Then RSU can select the vehicles with high reputation to share
their data and join the FL process.

5 Security Analysis

In this section, we analyze the security guarantee of our RepBFL framework.
There are mainly two challenges for trusted data sharing in IoV: the reliability of
shared data and the training efficiency of global model. In the reliability of shared
data, the malicious vehicles may share wrong or redundant data to reduce the
availability of entire shared data. However, our RepBFL method has the penalty
mechanism which can decrease the reputation value of the malicious vehicles. If
the reputation value of vehicle is below the threshold, it will be isolated from
the system. In addition, we select the vehicles with high reputation for federated
learning. If a vehicle wants to participate the model training, it should have
high reputation by sharing more positive data, which can guarantee the quality
of shared data.

Moreover, malicious attackers may register a large number of new users to
join the network and cause collusion among nodes to affect the reputation of
framed nodes. However, the new participating nodes have low reputation in our
RepBFL. If a node wants to improve its reputation, it needs to share high-
quality data for a long time to improve its local reputation. At the same time,
the credibility factor can evaluate the assessed weights of different vehicular
nodes. Honest nodes with high reputation will have greater assessed credibility
and higher confidence for the evaluation of global reputation. In addition, the
credibility of a new node is also very low, and the collusion of malicious new
nodes cannot greatly improve or reduce the global reputation. Therefore, it will
not have great impact on the reputation mechanism.

6 Performance Evaluation

In this section, we evaluate the performance of our proposed RepBFL model
for data sharing in IoV. We first investigate the performance of shared data for
federated learning. Then we test the proposed reputation mechanism in vehicular
evaluation. Finally, we discuss the security performance of the reputation method
by using different number of malicious vehicular nodes.
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6.1 Experimental Setting

For the learning evaluation part, we conduct the evaluation on the MNIST
dataset. In order to simulate the actual situation, the dataset is first split into
20 shards with a randomly sharded equally-sized portion of the entire dataset
without overlap, and then the shards are assigned to 20 providers.

The data sharing task is to share the local data of each vehicular node to
RSU for federated learning. The Convolutional Neural Network (CNN) model is
adopted as local training model. We consider NRSU = 20 and each RSU has 10
vehicles in their own communication area. The honest vehicular node shares the
right data following a uniform distribution over 10 classes for the RSU trains
the local model, while each malicious vehicular node shares the dataset with
falsified data samples or add the noise on the raw data. As a result, these mali-
cious vehicular nodes will share low-quality data to decrease the model learning
accuracy.

When calculating reputation, we consider different number of compromised
vehicular node. Here, the compromised vehicle may intentionally generate falsi-
fied reputation opinions to misguide other vehicular reputation calculated. We
set the initial reputation value F of all vehicles to 0.5, and then establish our
RepBFL framework.

6.2 Numerical Results

Performance of Our Approach. We first evaluate the accuracy and loss of
the proposed scheme on the MNIST dataset with a various number of malicious
vehicles. In addition, to test the destructive of the malicious vehicles, we set
different number of malicious vehicles in the experiments. The malicious vehicles
will provide low-quality data for model training. The low-quality data derived
by disturbing the original parameters with random noise. The accuracy and loss
results are shown in Fig. 2.

Fig. 2. The accuracy of global model with various numbers of vehicles under reputation
and non-reputation
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We choose different numbers of malicious vehicles as the comparative group
with our proposed framework. The results show that FL is not capable of filter-
ing out malfunction or malicious attacks during the global model construction.
The global accuracy of the most basic FL, termed Vanilla FL, cannot achieve
good accuracy under the malicious attacks. We can see that the increase of mali-
cious nodes has a dramatically impact on performance. On the contrary, we can
observe that our approach will have good accuracy, which can prove the supe-
riority of our RepBFL framework. Furthermore, the learning accuracy of our
model is not sacrificed in different number of malicious vehicles. This effectively
proves that the RepBFL framework can improve the learning accuracy in IoV.
The results indicate that it is vital importance to optimize the selection of par-
ticipating nodes, which can guarantee the performance significantly. Therefore,
we verify our proposed reputation mechanism in the next part.

In summary, we can observe that the reputation mechanism can guarantee the
global accuracy with the increase of malicious vehicular nodes. The stable accu-
racy is due to our reputation mechanism can evaluate the reliability of vehicular
nodes for selecting the vehicles with high reputation to share their data, which
can guarantee the quality of the shared data. Meanwhile, the vehicular nodes
with low reputation can be isolated by our reputation mechanism.

Security of Reputation Mechanism. Then, the security performance of our
proposed RepBFL scheme is discussed.

(a) 1 malicious vehicle (b) 3 malicious vehicles

Fig. 3. Reputation value with various numbers of malicious vehicles

To analyze the effect of our proposed reputation mechanism, we compare and
analyze various numbers of malicious vehicles on the reputation value under a
fixed threshold λ = 0.2. From Fig. 3(a) and Fig. 3(b) we can see that, the increase
of malicious vehicles cannot degrade the reputation mechanism dramatically.The
reputation of normal vehicles can increase according to their shared data. The
reputation value of malicious vehicles will decrease and isolate until their value
below the reputation threshold. This mechanism can avoid the misleading by
compromised vehicles and attacks by malicious vehicles.
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Furthermore, a vehicle is not always trusted and reliable. The reputation
value is not always constant, it can change with different performance of their
data sharing process. Although a vehicle has high reputation, it will decrease if
the vehicle cannot share its data or share disturbing data. The honest vehicles
can increase their reputation value by continuously sharing high-quality data.
The malicious vehicles have low reputation value, and the reputation declines
dramatically.

In summary, these results confirm our expectations about the advantages
derived from the adoption of reputation mechanism for data sharing process in
IoV. The reason can be elucidated as that the RepBFL utilizes the reputation
mechanism to evaluate the reputation of all vehicles in IoV, which can reflect the
reliability of their shared data. The process can find the vehicles with high rep-
utation to share their data, consequently increasing the final learning accuracy.
These characteristics of reputation mechanism are suitable in traffic scenarios,
especially in IoV, where multiple vehicles and RSU can cooperate with each
other to provide more high-quality services.

7 Conclusion

In this paper, we proposed a novel reputation based blockchain-enabled federated
learning framework in IoV for secure data sharing process. In order to ensure the
reliability of data sharing process, we proposed a reputation mechanism, which
can evaluate the reliability of all vehicles in IoV. The vehicles with high reputa-
tion value can share their collected data to RSU for federated learning and each
node can maintain its own data. Furthermore, we conducted the security anal-
ysis and numerical performance evaluation. The results show that our proposed
reputation mechanism has great advantages in avoiding the malicious attacks,
which can guarantee the security and reliability of the data sharing process in
IoV.
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Abstract. Multimodal data for a certain target can often play a com-
plementary role in information integration, but the diversification of the
modal brings difficulties to the training of the model. Further, previous
differential privacy works are only performed on a single modality. To
tackle the problem, we choose deep representation learning to map differ-
ent modalities data into the same subspace. This method of fusing multi-
ple modalities uses low-rank decomposition based on Canonical Polyadic
(CP) decomposition to implicitly obtain a high-dimensional tensor rich
in mutual fusion information between multiple modalities, but explicitly
obtain a low-dimensional representation. The perturbation that satis-
fies differential privacy is then carried out in the dimensional subspace.
Experimental results show that it satisfies the data utility requirement
while remaining suited privacy guarantee.

Keywords: Differential privacy · Multimodal fusion · Representation
learning

1 Introduction

Humans perceive the world in diversified forms and types. Various modalities
data can give humans comprehensive information to make more correct judg-
ments. In recent years, the amount of multimodal data collected by expanding
devices has been extremely increasing, including sensory data such as voice, text,
images, and non-sensory data such as demographic data and other structured
data. Specifically, information about an individual is usually multimodal, such
as demographic data, CT image data and text description data for patients, text
comments, image information and demographic information for netizens in social
networks. It is natural and common to describe one target objects in different
modalities.

Single modality sometimes cannot make better judgments. For example,
when detecting human crying [1], vocal information is far more helpful than
video information. Study [14] have shown that multimodal data classifiers are
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often better than monomodal data classifiers. Therefore, the integration of mul-
tiple modal data can often make better decisions, which is more in line with the
way of human understanding the world.

Among various methods, multimodal fusion has attracted much attention
for its flexibility in fusing at different levels(feature level or decision level) and
capturing mutual information between modalities [1].

Recently, differential privacy has become the gold standard in the field of pri-
vacy protection. Based on random response and information theory, differential
privacy solves the problem of protecting personal privacy while allowing third-
party data collectors to analyze the common characteristics of data. Besides, it
provides measurable privacy protection rules. However, the diversity of modal-
ity results in various Differential Privacy mechanisms, which are difficult to be
unified under the same multimodal differential privacy framework. Although the
method based on gradient descent is suitable for various data types, its clipping
of gradient will lead to the unfairness of few sample learning [10]. What we are
exploring here is non-gradient method.

To tackle the problem, we propose a framework for multimodal deep learning
guaranteed by local differential privacy. Unlike federated learning which requires
a lot of communication cost, local differential privacy, especially the perturbed
fusion representation that meets given privacy budget, has extremely less com-
munication cost when the dimension is much smaller than the original multi-
modal data. Specifically, our contributions are as follows:

• To the best of our knowledge, we are the first to propose differential privacy
mechanism for the multimodal learning. We firstly train the various modalities
in the local setting to a common subspace, and get representations with rich
information using low rank fusion method based on Canonical Polyadic (CP)
decomposition, then perturb them with guarantee of differential privacy to
form protected representations, which can be aggregated by any third party.

• We propose a general framework to suit the fusion of various types of modal-
ities. The framework consists of Encoding module, Perturbation module and
Aggregation module. The machine learning models utilized in the Encoding
and Aggregation modules are replaceable to suit the requirement of specific
modality and learning tasks.

• Experimental results on various multimodal datasets show that data pro-
cessed by our privacy protection method remain high utility even in low pri-
vacy budget.

The reminder of this paper is organized as follows: Sect. 2 introduces pre-
liminary concepts about multimodal representation fusion, different privacy and
binary encoding methods. Section 3 presents our work in detail of three mod-
ule: encoding, perturbation and aggregation module. Section 4 describes used
datasets and experimental setup. In Sect. 5, experimental results are shown as
well as further discussion. Section 6 summarizes related works and Sect. 7 con-
cludes the paper.
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2 Preliminaries

2.1 Multimodal Representation Fusion

With the development of deep representation learning, we can map the data with
uneven spatial distribution into a dense subspace through constraints. Multi-
modal fusion can use the characteristics of representation learning to fuse differ-
ent modalities into the same subspace, and make good use of the complementary
information between different modalities in the process of fusion.

In the previous multimodal representation fusion methods, the representa-
tions of different modalities are trained respectively at first, then mathematical
operations such as max and min are carried out, and finally the representa-
tions are simply concatenated or fully connected to the next layer. In this way,
the internal information of the same modality can be learned, but the common
information among different modalities are ignored.

Recently, in Tensor Fusion Network (TFN) [19], different modalities represen-
tation are regarded as n-fold Cartesian space, e.g., 3D cube for three modalities,
then fused these modalities by outer product. Obviously, this method will bring
curse of dimensionality: the amount of calculation will increase exponentially
with the number of modalities. To solve that, a low rank fusion method based
on CP decomposition was proposed in [11] to calculate the fusion representation
without explicit calculation on outer product.

2.2 Differential Privacy

For two adjacent dataset D and D
′

where only one record differs, and all their
subset S, we says an algorithm M satisfies ε-differential privacy if:

Pr[M(D) ∈ S] ≤ eεPr[M(D
′
) ∈ S] (1)

we call ε the privacy budget which means the protection level of data. The
lower the budget, the better the protection, but usually the lower the data util-
ity. Based on this definition, Centralized Differential Privacy (CDP) and Local
Differential Privacy (LDP) frameworks are proposed according to whether the
aggregation server is trusted or not.

2.3 Binary Encoding Methods

Although LDP methods vary for different types of modalities, the data of var-
ious modalities can be encoded into binary vectors. Then perturbations can be
applied to these encoded vectors to avoid the problem of disunity.

Unary Encoding (UE). The unary encoding perturbs a binary vector B and
outputs B

′
as follows:

Pr[B
′
[i] = 1] =

{
p, if B[i] = 1
q, if B[i] = 0

(2)
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The unary encoding satisfies ε-LDP for

ε = ln
p(1 − q)
(1 − p)q

(3)

B is the vector after encoding. B
′
is the adjacent vector of B. Among different

choices for p and q, there are Symmetric Unary Encoding and Optimized Unary
Encoding algorithms [17].

Symmetric Unary Encoding (SUE). RAPPOR’s implementation [4]
chooses p = 0.75 and q = 0.25 such that p + q = 1, making the treatment
of 1 and 0 symmetric.

p =
eε/2

eε/2 + 1
, q =

1
eε/2 + 1

(4)

Changing one bit of the vector has the greatest impact on 2 bits difference
between the two vector, so the sensitivity is 2 here. In Eq. (4), ε/2 can be replaced
by ε/Δf .

Optimized Unary Encoding (OUE). When the relative number of either 0
or 1 in the binary vector is obviously large, we can use the ratio of unchanged
bits to flipped bits to allocate different privacy budgets respectively. For example,
when there are more 1s than 0s, we can allocate more privacy budgets to 1 to
maintain utility:

p

1 − p
= eε1 ,

1 − q

q
= eε2 , where ε = ε1 + ε2 (5)

Optimized Multiple Encoding (OME). Suppose the length of fusion rep-
resentation is r, then for OUE and SUE, the sensitivity Δf are both 2r because
they are binary vectors. When the representation value is real, we can extract
the vector into a binary matrix [12], that is, for �x = {x1, x2, ..., xr}, each xi

can be transformed into a length-l binary vector �xbi
to obtain a binary matrix

X = { �xb1 , �xb2 , .., �xbr
}. In this case, the sensitivity Δf is rl. The choices of p and

q are in Eq. (6) and Eq. (7).

p = Pr{1 → 1} =

⎧⎪⎨
⎪⎩

λ

1 + λ
, for i ∈ 2n

1
1 + λ3

, for i ∈ 2n + 1
(6)

q = Pr{0 → 1} =
1

1 + λe
ε
rl

(7)
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3 Our Framework

Our framework consists of three modules. Firstly, the encoding module takes
different modalities of data as input and outputs the fusion representation. The
fusion representation is obtained by low rank multimodal representation fusion,
as Fig. 1 shows. Secondly, the perturbation module transforms values of the
fusion representation into a binary matrix. For each vector extracted by one
value, since OME scales well even if the domain size d is large, we apply OME
mechanism given fixed privacy budget. Finally, the aggregation module trains
the perturbed binary matrix.

Fig. 1. The low rank multimodal fusion module, which uses different encoders for
corresponding modalities (here are three modalities) to gain pioneer representations,
then fuses them implicitly to a cube tensor by decomposing the fusion tensor weights
into CP decomposition forms but directly calculate with the pioneer representations.
This avoids exponentially increasing the amount of computation [11].

3.1 Encoding Module

Encoding module encodes original modalities data into one fusion representa-
tion. In the first step, original modalities data are encoded into corresponding
representations by sub-encoders. In the second step, the fusion representation
is obtained by these representations. An approach to gain the fusion represen-
tation is by outer product. As Eq. (8) shows, Zm means representation of the
m-th modality, dm is the representation size of each modality, and

⊗
is outer

product. However, this fusion by outer product is time-consuming. We utilize a
network architecture with weight W to transform Z into a vector zfusion, i.e.,
zfusion = W · Z.

The CP decomposition [8] decomposes an Nth-order tensor into a linear
combination of rank-1 tensors, as illustrated in Eq. (9). B is the N-th order
tensor of size I1×I2× ...×IN . b(1)

1 ◦b(2)
2 ◦ ...b(N)

r is outer product among vectors
b(i)
r from dimension i until rank R. We apply CP decomposition to the network
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weight W, and adopt the method in [11] to decompose W into matrix W(i)
m made

up of rank-1 vectors, i.e., W =
∑r

i=1

⊗M
m=1 W(i)

m .

Z =
M⊗

m=1

Zm, Zm ∈ R
dm (8)

B ∼=
R∑

r=1

λrb(1)
r ◦ b(2)

r ◦ ...b(N)
r , B ∈ R

I1×I2×...×IN (9)

zfusion = (
R∑

i=1

M⊗
m=1

W(i)
m ) · Z =

M∧
m=1

[
R∑

i=1

W(i)
m · Zm] (10)

According to [19], the fusion tensor Z created by outer product can be decom-
posed together with the weight in the network. As Eq. (10) shows,

⊗
is outer

product between matrices,
∧

means the element-wise product, · is the dot prod-
uct with the effect of tensor contractions, and finally a vector zfusion is obtained.
Thus we can gain the fusion representation zfusion without explicit calculation
of the tensors. This low rank trick remains efficiency and performance. Con-
cretely, this derivation reduces the computation complexity from O(dy

∏M
m=1 dm)

to O(dy · R · ∑M
m=1 dm), where dy is the size of vector zfusion.

3.2 Perturbation Module

After gaining the fusion representation zfusion, we adopt Optimized Multiple
Encoding (OME) to convert each zfusioni

to a binary vector with fixed length l,
then perturb each bit in the light of Eq. (6) and Eq. (7). We follow the intuition
that 0s and 1s happen at different ratios and each ratio owns its privacy budget,
as Eq. (5) shows. Further, the odds of 0 and 1 bits flipping should satisfy Eq. (6)
and Eq. (7). When the representation size and vector extracting size are fixed,
if randomization factor λ is constant, lower ε values and higher rl will result in
higher q value. The schematic diagram of perturbation is shown in Fig. 2.

Fig. 2. The perturbation module
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3.3 Aggregation Module

In the aggregation module, the untrusted third party can use its well-designed
network to analyze the data and train the model. Since the input is a low dimen-
sional embedding, it will lighten the burden of input. Each sample corresponds
to a label, so we can input more samples in a batch for faster training to achieve
memory utilization. Besides, the network structure can be flexible to adapt to
different privacy budget for specific problem requirement.

4 Experiments

4.1 Datasets

We perform our framework on three representative multimodal datasets includ-
ing the Multimodal Corpus of Sentiment Intensity (CMU-MOSI) [20], the Per-
suasive Opinion Multimedia (POM) [16] and Interactive Emotional Dyadic
Motion Capture Database (IEMOCAP) [3].

1. CMU-MOSI : The dataset is a collection of 2199 viewpoint video clips, includ-
ing audio, transcript and video information. Each opinion video is annotated
with sentiment in the range of [–3,3] from highly negative to highly positive.

2. POM : The datasets were obtained from a social multimedia website called
ExpoTV.com, including 1000 movie review videos with a half getting 5-star
rating and other half getting 1 or 2-star rating. These videos are annotated for
16 speaker sentimental traits which ranges from –3 to +3. Besides, verbatim
transcriptions are also included to make up this multimodal dataset.

3. IEMOCAP : The audio-visual dataset collects 12 h recording of 10 actors’
facial expressions, head and hand movements information together with word-
level text information and audio information. The actors performed selected
emotional scripts and improvised hypothetical scenes designed to trigger spe-
cific types of emotions (happiness, anger, sadness, frustration and neutral
state). The label our experiment carries on includes angry, sad, neutral and
happy.

In order to better test the generalization performance of the model, we divide
the dataset into training set, validation set and test set, use the training set to
train the data, find the model with the smallest error through the validation set,
and finally use the test set to test the performance. Since our goal is not to train
the model, but to obtain the representation output, we merge the training set
and validation set in the perturbation module and aggregation training module.

4.2 Experiment Details

For the regression task, we use L1 loss as the loss function. Finally we evaluate
its MAE, F1 score and the correlation coefficient between the output and the
label. For the classification task, we use log cross entropy as its loss function.

https://ExpoTV.com
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For different modalities, we use subnetwork as encoders, as illustrated in
Fig. 1. For video and audio information, we simply apply fully connected network.
For text information, we also apply a simple Long Short-Term Memory (LSTM)
network because here we focus on our framework instead of searching for network
structure. Before training the subnetwork, we preprocess the multimodal data
by aligning them at the word-level.

In the perturbation, we compare OME, OUE and SUE perturbation methods.
The most fundamental difference among them is the choice of p and q. As shown
in Table 1, we compare the changes of F1 score and accuracy with the increasing
privacy budget in different orders (include non-privacy results).

The aggregation module is made up of a three-layer fully connected network,
which can be replaced by other well-designed network. It is worth noting that
even such a simple network can restore the multimodal data with differential
privacy to the same accuracy as the cases where there is no perturbation module.

Fig. 3. The test results on MAE loss for models trained on dataset CMU-MOSI, where
the horizontal axis means privacy budget ε. The “origin” means non-perturbation by
differential privacy.



556 C. Cai et al.

Table 1. Performance under SUE, OUE and OME mechanisms in IEMOCAP dataset.

F1 score Accuracy

Origin ε = 1 ε = 10 ε = 100 ε = 1000 Origin ε = 1 ε = 10 ε = 100 ε = 1000

SUE Sad 0.8367 0.6916 0.7252 0.7979 0.8289 83.05% 69.19% 72.81% 79.21% 82.73%

Happy 0.8321 0.7662 0.7901 0.8201 0.8494 84.65% 78.57% 80.81% 84.97% 84.90%

Neutral 0.6779 0.5093 0.5504 0.6217 0.6354 68.02% 52.67% 56.50% 65.14% 64.71%

Angry 0.8650 0.6810 0.6958 0.8350 0.8309 86.25% 71.22% 71.00% 82.62% 82.09%

OUE Sad 0.8335 0.6708 0.6818 0.8012 0.8226 82.73% 66.95% 68.34% 80.06% 81.98%

Happy 0.8290 0.7715 0.7727 0.8266 0.8249 84.33% 79.64% 78.68% 83.80% 83.48%

Neutral 0.6795 0.5019 0.5037 0.6349 0.6194 68.23% 51.81% 52.35% 65.46% 63.65%

Angry 0.8719 0.6487 0.6714 0.8125 0.8255 86.89% 66.95% 69.08% 80.17% 81.56%

OME Sad 0.8382 0.8039 0.8088 0.8027 0.8238 83.37% 81.13% 80.60% 80.06% 82.09%

Happy 0.8369 0.8219 0.8385 0.8281 0.8281 85.29% 83.26% 84.75% 84.01% 84.01%

Neutral 0.6805 0.6353 0.6203 0.6271 0.6431 68.23% 65.88% 65.99% 64.50% 65.46%

Angry 0.8674 0.8049 0.8192 0.8192 0.8347 86.46% 82.52% 83.05% 80.81% 82.52%

5 Results and Discussion

We train multimodal fusion representations with differential privacy in EMO-
CAP dataset shown in Table 1. It is obviously to see both f1 score and accuracy
increase when more privacy budgets ε are given. Besides, the OME mechanism
remains stable under different ε and performs well even in tight budget. We
assume that part of the reason is rl acts as an actor of normalization for ε,
which allows ε to have a larger shift range while the accuracy is still high. The
other reason is it may play the role of regularization and avoid over fitting.

As shown in Fig. 3, our framework demonstrates the similar phenomenon in
CMU-MOSI dataset. Under all three mechanisms, the MAE loss have the same
trend of decreasing when ε increases.

In experiments on POM dataset employing OME, we can find accuracy gets
higher when larger ε is given, as Fig. 4 (a) shows. Compared with the other
two mechanisms, OME remains the highest accuracy as well as stability. In the
meantime, we can find few samples may influence the result like label 3 in both
Fig. 4 (a) and (b). We assume that the phenomenon is due to overfitting during
training process.

It is worth mentioning that the multimodal fusion representation based on
differential privacy itself ensures certain security on the neural network model.
When there is no data perturbation, the attacker may attack the neural net-
work alone, by inferring members by parameters, as well as inferring specific
modalities. The fusion of modalities greatly increases the difficulty of this type
of attacks. Once the attack is slightly biased, The diversity of modalities also
amplifies the noise.
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(a) OME on POM (b) OME, SUE and OUE on POM when ε =
100

Fig. 4. Experimental results on POM dataset. Figure (a) is OME on POM dataset
ranging from different privacy budgets ε. Figure (b) shows results of OME, OUE and
SUE on POM dataset when ε = 100. In the horizontal axis labels represent all sen-
timental labels in POM. In the vertical axis values represent multitask classification
accuracy.

6 Related Work

There have been many works on privacy protection for data of single modality,
but few works for multimodal data fusion. An extension of differential privacy
Edχ

- privacy was proposed in [6], at the text level of the bag of words, in which
the clues about the author’s style are deleted while keeping the text content as
unchanged as possible. Moreover, another new differential privacy mechanism
was proposed in [5] which defines the “m-neighborhood” notion to adapt to the
image data. Concretely, it allows to protect sensitive information under at most
m pixels.

Most previous works on multimodal fusion can be divided into three cate-
gories according to the level where the information is fused [1], i.e., early fusion
(fusion at the feature level) [7,18], late fusion (fusion at the decision level) [9,13]
and hybrid fusion (fusion at both level) [2,15]. The most universal technique
of late fusion is to use different models for different modalities, such as Hid-
den Markov Model for audio and Support Vector Machine for image [1]. Among
these works, linear weighted method is the most common one used to combine
different modalities. However, this method must be carefully designed and still
fails to capture nonlinear relationships.

Neural network was first used in [20] to connect the sub network layers of
different modalities to the same network layer, aiming to achieve simple mul-
timodal fusion. However, this fusion lacks the interaction information between
modalities. [19] used the outer product method to fuse the information of differ-
ent modalities, but the computational complexity is too high, and the amount of
computation increases exponentially with the number of modalities. On the basis
of this work, [11] used the low rank decomposition based on CP decomposition
to decompose the gradient weight, and implicitly calculated the low dimensional
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representation vector, and avoided the explicit calculation of high-dimensional
tensor, so as to reduce the computational complexity.

7 Conclusions

We propose a learning framework for multimodal fusion representation based
on differential privacy. The framework is designed for general purposes of multi-
modal fusion, and consists of encoding, perturbation, aggregation modules. The
machine learning models in the modules are replaceable to suit requirements
of various modalities and specific problem settings. Experiments on three most
popular multimodal datasets demonstrate the high performance on data utility
and privacy protection of the framework.
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Abstract. ECC2 is an public key encryption system based on elliptic
code. It can resist known attacks based on the special structures of alge-
braic geometric code. However, the computational overhead of decryp-
tion of ECC2 is unsatisfactory, because the list decoding algorithm occu-
pies a major part of the computational overhead of decryption of ECC2.
Therefore, we propose our module basis reduction interpolation of list
decoding for elliptic code to speed up the decryption of ECC2. The algo-
rithm we proposed is based on the theory of Gröbner basis of modules.
By implementing our proposed algorithm combined with ECC2, it shows
that the proposed algorithm performs better than the list decoding algo-
rithms used in ECC2.

Keywords: Code-based cryptography · Elliptic codes · List decoding ·
Gröbner Basis · ECC2

1 Introduction

List decoding is an efficient decoding algorithm with a long history. It was first
proposed by Eilas [6] in the 1950s. Sudan [12], in 1997, proposed a polynomial
time algorithm for some low rate Reed-Solomon (RS) codes. Later, Shokrol-
lahi and Wasserman [11] extended this algorithm from RS codes to algebraic
geometric (AG) codes. We denote this algorithm as SW list decoding. In 1999,
Guruswami and Sudan [7] optimized the previous list decoding algorithm and
improved the error-correcting capacity for RS codes and AG codes to n − √

nk.
We denote this algorithm as GS list decoding. Based on the Gröbner basis theory
and the Berlekamp-Massey-Sakata algorithm, Sahata [10] proposed fast interpo-
lation methods for the original and improved versions of list decoding of one-
point AG codes. Lee and O’Sullivan [9] proposed an interpolation algorithm of
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GS list decoding of RS code based on the theory of Gröbner bases of mod-
ules. Later, they proposed an interpolation algorithm of Hermitian codes using
Gröbner bases [8]. Beelen and Brander further reduced the complexity in finding
the interpolation polynomial for a class of AG codes [4]. Wan [13] proposed an
efficient list decoding algorithm of elliptic code.

In addition to extensive research in the academic field, list decoding for AG
codes is widely used in communication engineering. Besides, it plays an impor-
tant role in cryptography. For example, it can be used to solve ECDLP [15] and
to reduce the key sizes for McEliece cryptosystems [3]. Zhang, Zhang and Guan
proposed an encryption system ECC2 [16] based on elliptic code and proved
its security. ECC2 encryption system uses list decoding for AG codes which is
the key to resisting known attacks against AG codes. The authors selected GS
list decoding and SW list decoding in the decryption algorithm. However, both
algorithms are not efficient enough to put ECC2 in to practice, so we consider
using list decoding based on Gröbner basis theory in ECC2.

Unfortunately, the Gröbner basis algorithms mentioned above only focus on
codes generated by all points on a curve, since such codes perform best in the
communication field. This design will result in a special structure of the code,
which can lead to efficient attacks if they are used in ECC2. In more detail, ECC2

uses elliptic code with carefully chosen points on the curve in order to hide the
structure of the curve and the codes. As a consequence, all the above algorithms
based on Gröbner basis can not be applied in the decryption of ECC2.

Our Contributions: We extend the results of Wan [13] so that for the elliptic
code choosing n arbitrary points, list decoding based on the theory of Gröbner
bases of modules can work for the decryption of ECC2. Then, we analyse the
performance of our implementation which shows it performs better than the GS
and SW list decoding.

Organization: The rest of paper is organized as follows. In Section 2, we intro-
duce the preliminaries of elliptic code, list decoding algorithm and ECC2. In
Section 3, we present our improved module basis reduction algorithm. In Section
4, we implement ECC2 with different algorithms and show the performance of
them.

2 Preliminaries

2.1 Elliptic Code and List Decoding

Let Fq be a finite field of size q. Elliptic curves E over Fq are defined by a
nonsingular Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)

where coefficients of curves are a1, a2, a3, a4, a6 ∈ Fq. Let Fq(E) denotes the
function field defined over elliptic curve E . For any f ∈ Fq(E), the order of f
at a rational point P ∈ E is denoted by vP (f). Let f ∈ Fq(E) and f �= 0, then
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the function f can be associated with a principle divisor which is defined as
div(f) =

∑
P vP (f)P . Let G =

∑
P nP P be any divisor of degree k on E , where

nP ∈ Z/{0}. Let L(G) be a set of rational functions f ∈ Fq(E) such that L(G)
can be denoted by L(G) = {f | div(f) + G � 0, f ∈ Fq(E), f �= 0} ∪ {0}, where
� denotes that all the coefficients of a divisor are non-negative.

Let P1, P2, · · · , Pn ∈ Fq are n distinct affine points on E . Define D = P1 +
P2 + · · · + Pn be a divisor on E and define G = kO with k < n. For vector space
L(G), we can obtain that {φ0, φ1, · · · , φk−1} = {1, x, y, x2, xy, x3, x2y, · · · , xiyj |
j = {0, 1}, 2i+3j = k} is a pole basis of L(G). Let f ∈ L(G) denote the message
polynomial which can be taken in the form

f(x, y) = f0φ0 + f1φ1 + · · · + fk−1φk−1, (2)

where f0, f1, · · · , fk−1 denote the message. Then an [n, k] elliptic code is defined
as

C(D,G) = {(f(P1), · · · , f(Pn)) | f ∈ L(G)} ⊆ F
n
q . (3)

For [n, k, d] linear code, list decoding algorithm is a way to obtain all the code-
words within distance n − √

nk from a received word. Let r = (r1, r2, · · · , rn) ∈
F

n
q be a received word after channel corruption, then construct a set of n inter-

polation points which can be taken in the form P = {(P1, r1), · · · , (Pn, rn)}.
List decoding of elliptic code consists of two main steps: interpolation and root
finding. Interpolation step is to construct a minimal polynomial Q(x, y, z) which
interpolates the n interpolation points in P with a multiplicity m. Root find-
ing step is to find the z-roots of the interpolation polynomial Q(x, y, z) with
z = f ∈ L(G) and Q(x, y, f) = 0. One of the roots of Q(x, y, z) that satisfies
z ∈ L(G) is the message before coding.

2.2 ECC2

Take 1λ as security level, then the public key encryption system ECC2 based on
elliptic codes can be specified as follows:

– KeyGen(1λ)
1. Generate parameters param = (q, n, k, t).
2. Choose random elements a, b ∈ Fq, such that the elliptic curve E : y2 =

x3 + ax + b has p rational points, where p is prime.
3. Run ECGen [16] to generate the set R = {ri}n

i=1 and a point P . Then
generates the elliptic code C in form (3) with D =

∑n
i=1 riP, G = kO.

The generator matrix of C is denoted as G. Transform the matrix G to
the systematic form [I | Gpub] where I is identity matrix.

4. Output pk = Gpub and sk = (a, P,R).
– Encrypt(pk, m ∈ F

t
q)

1. Choose r1 ∈ F
k
q randomly. Choose random vector e ∈ F

n
q of weight t.

2. Set r2 = (ei1 , ei2 , · · · , eit
) ∈ F

t
q as the non-zero coordinates of e with the

original order, where eij
�= 0 and ij < ik for j < k.
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3. Calculate c1 = r1 · [I | Gpub] + e, and c2 = m + r2.
4. The cipher-text is c = c1 ‖ c2.

– Decrypt(sk, c)
1. Recover the elliptic curve parameter b by solving y2

P = x3
P + axP + b and

get E : y2 = x3+ax+b. Recover the divisors D =
∑n

i=1 riP and G = kO.
2. Calculate e = c1 − ListD(E ,D,G, c1, t), where ListD(E ,D,G, c1, t) is the

list decoding algorithm for elliptic code.
3. Set r2 = (ei1 , · · · , eit

), and finally get the message m = c2 − r2.

3 The Module Basis Reduction Interpolation of List
Decoding for Elliptic Code

Our module based reduction(MBR) interpolation consists of two procedures:
basis construction and module basis reduction. The basis construction step is
to construct a basis of Fq[x]-module which consists of all the polynomials that
satisfy the interpolation constraints. The module basis reduction step is to reduce
the basis above to a Gröbner basis of the module. Before presenting the basis
construction step, there are some preliminaries that should be known.

Let the elliptic curves E over Fq are defined by Weierstrass equation in the
form y2 = x3 + ax + b, where a, b ∈ Fq, 4a3 + 27b2 �= 0 ∈ Fq and q is prime.
Let Fq(E)[z] be a polynomial ring over algebraic function field Fq(E). Let the
monomial set of polynomial ring Fq(E)[z] be {xαyβzγ | 0 ≤ α, 0 ≤ β ≤ 1, 0 ≤ γ}.

Define the (1, k)-weighted degree of monomial φazγ ∈ Fq(E)[z] is
deg1,k(φazγ) = −v∞(φa) + kγ. Then we define the monomial order >k

on Fq(E)[z]. For two monomials xα1yβ1zγ1 , xα2yβ2zγ2 ∈ Fq(E)[z], we have
xα1yβ1zγ1 >k xα2yβ2zγ2 if deg1,k(xα1yβ1zγ1) > deg1,k(xα2yβ2zγ2) or if
deg1,k(xα1yβ1zγ1) = deg1,k(xα2yβ2zγ2) and γ1 > γ2. Define the z-degree of poly-
nomial f ∈ Fq(E)[z] is the degree of f in z over Fq(E), denoted as z-deg(f).

Given a polynomial Q ∈ Fq(E)[z], the (1, k)-weighted degree of Q is the
maximum (1, k)-weighted degree of monomial in Q with respect to the mono-
mial order >k. Given a polynomial Q ∈ Fq(E)[z], the leading term of Q is the
monomial appearing in Q which is the maxmium monomial with respect to the
order >k. The leading term of Q is denoted as lt(Q). The leading coefficient of
Q is the coefficient of lt(Q) and is denoted as lc(Q).

3.1 Basis Construction

Our basis construction firstly designs functions which interpolate n points of
elliptic curve E . For elliptic code C(D,G), it fixs n distinct points from elliptic
curve E . Define divisor Dη = P1+· · ·+Pn+(−(P1+· · ·+Pn))−(n+1)O. It holds
that divisor Dη is a principle divisor. Define divisors Dhi

= P1+· · ·+Pi−1+Pi+1+
· · ·+Pn +(−(P1 + · · ·+Pi−1 +Pi+1 + · · ·+Pn))−nO, where i = 1, · · · , n. Then
construct n functions h′

i ∈ Fq(E) that satisfy div(h′
i) = Dhi

and let hi = h′
i

h′
i(Pi)

.
Fix a positive integer m which is used to represent the multiplicity parameter of
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list decoding. Define hr =
∑n

i=1 rihi ∈ Fq(E). According to the definition of hi,
we have hr(Pi) = ri where i = 1, · · · , n. Define Ir,m an ideal of the polynomial
ring Fq(E)[z] and Ir,m = 〈z − hv, η〉m. Ideal Ir,m consists of all the polynomials
that interpolate all points in P with a multiplicity m.

Let l be a positive integer, which is the list size parameter of list decoding.
Define Fq(E)[z]l = {f ∈ Fq(E)[z] | z-deg(f) ≤ l}, then Fq(E)[z]l is a free module
over Fq(E) with a basis {1, z, · · · , zl}. Define Ir,m,l = Ir,m ∩ Fq(E)[z]l, it holds
that Ir,m,l is a submodule of Fq(E)[z] over Fq(E). By computing the Gröbner
basis of Ir,m,l, it can be efficient to find the minimal element of Ir,m with respect
to >k.

Proposition 1. Ir,m,l is a module over Fq(E), it has a set of generators con-
sisting of Gi, 0 ≤ i ≤ l, where

Gi =

{
(z − hr)iηm−i 0 ≤ i ≤ m,

zi−m(z − hr)m m < i ≤ l.
(4)

According to Proposition 1, a generator for Ir,m,l as a module over Fq[x] is
H = {yjGi | 0 ≤ i ≤ l, 0 ≤ j ≤ 1}.

Define a set S = {(γ, β) | 0 ≤ γ ≤ l, 0 ≤ β ≤ 1}, and define a function
ind : Fq(E)[z]l → S. Function ind takes a element f of Fq(E)[z]l as input. We
can obtain lt(f) from the input f . Assume lt(f) = aα,β,γxαyβzγ , then ind(f) =
(γ, β). Let Hi,j = yjGi, for 0 ≤ i ≤ l, 0 ≤ j ≤ 1, and let

Hi,j =
∑

(γ,β)∈S

hi,j,γ,βyβzγ ,

where hi,j,γ,β ∈ Fq[x]. Define the degree of f ′ ∈ Fq[x] to be the largest power of
monomial with the largest power of x in f ′, denoted by deg(f ′). Now we finish
the basis construction and get the basis H of Ir,m,l.

3.2 Module Basis Reduction

After basis construction of Ir,m,l, it’s time to reduce the basis H of the submodule
Ir,m,l over Fq(E) to a Gröbner basis which contains the interpolation polynomial
of list decoding.

The module basis reduction step is stated as Algorithm 1. The idea of Algo-
rithm 1 is to update the basis H until ind(Hi,j) = (i, j), ∀(i, j) ∈ S, so that
Hi,j , 0 ≤ i ≤ l, 0 ≤ j ≤ 1 is a Gröbner basis of Ir,m,l by Buchberger’s criterion
[5]. Algorithm 1 is also an optimized version of Buchberger’s algorithm and the
correctness proof of Algorithm 1 is similar to the proof of Algorithm G in [8].

After running Algorithm 1, the basis H satisfies ind(Hi,j) = (i, j), ∀(i, j) ∈
S. It means that we obtain the Gröbner basis of Ir,m,l, and we can get the
interpolation polynomial Q which satisfies the constraints of list decoding by
choosing the minimal polynomial of H with respect to >k. Finally, we use the
polynomial factorization algorithm proposed by Wu [14] to efficiently find the
z-roots of Q. One of the z-roots of Q is the message encoded by the elliptic code.



Efficient List Decoding Applied to ECC2 565

Algorithm 1: The Module Based Interpolation Algorithm
Input: The finite field Fq, an elliptic curve E , the code parameters n, k,

received codeword r, interpolation parameters m, l and the basis
H of Ir,m,l;

Output: The interpolation polynomial Q of list decoding
1 if ind(H0,0) �= (0, 0) and ind(H0,1) �= (0, 1) then
2 Swap H0,0 and H0,1;
3 end
4 for i = 1 to l do
5 while ind(Hi,0) �= (i, ∗) or ind(Hi,1) �= (i, ∗) or ind(Hi,0) = ind(Hi,1)

do
6 for j = 0 to 1 do
7 while ind(Hi,j) �= (i, ∗) do
8 Set s ← ind(Hi,j), assume s = (γ, β);
9 Set d ← deg(hi,j,γ,β) − deg(hγ,β,γ,β);

10 Set c ← lc(hi,j,γ,β)lc(hγ,β,γ,β)−1;
11 if d ≥ 0 then
12 Set Hi,j ← Hi,j − cxdHγ,β ;
13 else
14 Set T ← Hγ,β ;
15 Set Hγ,β ← Hi,j ;
16 Set Hi,j ← x−dHi,j − cT ;
17 end
18 end
19 end
20 while ind(Hi,0) = ind(Hi,1) do
21 Set s ← ind(Hi,0), assume s = (i, β);
22 if deg(hi,0,i,β) > deg(hi,1,i,β) then
23 Set signh ← 0 and signl ← 1;
24 else
25 Set signh ← 1 and signl ← 0;
26 end
27 Set d ← deg(hi,signh,i,β) − deg(hi,signl,i,β);
28 Set c ← lc(hi,signh,i,β)lc(hi,signl,i,β)−1;
29 Set Hi,signh

← Hi,signh
− cxdHi,signl

;
30 end
31 end
32 if ind(Hi,0) �= (i, 0) and ind(Hi,1) �= (i, 1) then
33 Swap Hi,0 and Hi,1;
34 end
35 end
36 return the smallest element in H with respect to >k.
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4 Performance

In this section, we use the MBR interpolation of list decoding on the decryption
of ECC2 and analyse the performance. Moreover, we compare the performance
of ECC2 with that of Classic McEliece [1] which is a round-3 submission to
NIST’s Post-Quantum Cryptography Standardization Project [2]. We find that
our MBR interpolation performs better in running time than SW list decoding
and our MBR interpolation performs better in key sizes than Classic McEliece.

According to [16], in order to keep security of the encryption system and
reduce the complexity of the MBR interpolation algorithm, we choose the appro-
priate parameters for ECC2 as in Table 1. Our MBR interpolation algorithm with
the parameters for ECC2 has the parameters which are multiplicity parameter
m = 3 and list size parameter l = 4 for 1λ = 2128 and 1λ = 2256.

After programming our MBR interpolation algorithm and reprogramming
the SW list decoding with OpenSSL, we get the computational cost and the key
sizes of them. Meanwhile, we show the performance of Classic McEliece as a
comparison.

Table 1. Computational time and key sizes of ECC2 and Classic McEliece. All com-
putational time is expressed in CPU cycles and all key sizes are expressed in bytes.
The time as well as key sizes of mceliece348864 and mceliece6688128 are from [1].

1λ Algorithm q n k t Average time PK size SK size

2128 ECC2.SW.Enc 134807 521 150 196 4411314 125212 1179

2128 ECC2.SW.Dec 134807 521 150 196 1333533835

2128 Our MBR.Enc 127079 410 205 106 3093021 89304 878

2128 Our MBR.Dec 127079 410 205 106 551506970

2128 Mceliece348864.Enc – 3488 2720 – 44350 261120 6492

2128 Mceliece348864.Dec – 3488 2720 – 134745

2256 ECC2.SW.Enc 561307 1031 322 364 9994042 570745 2585

2256 ECC2.SW.Dec 561307 1031 322 364 9669511992

2256 Our MBR.Enc 481001 770 385 204 7026536 352035 1836

2256 Our MBR.Dec 481001 770 385 204 1726689977

2256 Mceliece6688128.Enc – 6688 5024 – 151721 1044992 13932

2256 Mceliece6688128.Dec – 6688 5024 – 323957

Time. The program of our implementation is compiled with GCC 9.3.0. It is
run on a computer running on Windows10 with Intel Core i7-9700K @3.60 GHz
CPU and 32.00 GB RAM. Without loss of generality, we run our program 10000
times and give statistics on running time in Table 1.

According to Table 1, it is obvious that the MBR interpolation algorithm
performs better in decryption speed than ECC2.GS and ECC2.SW. Compared
with Classic McEliece, the computational cost of ECC2 with MBR interpolation
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is about 4000 times of that of Classic McEliece. Although there is still a big
gap compared with Classic McEliece, the running time of the encryption system
ECC2 shows that ECC2 could be applied in real life.

Space. Now we analyse the key sizes of ECC2. For Classic McEliece, the pub-
lic key sizes of mceliece348864 and mceliece6688128 are bigger than that of
ECC2. Table 1 reports the key sizes of ECC2 and Classic McEliece. Hence, our
MBR interpolation ECC2 system performs better in key sizes than ECC2.SW.
Although the running time of our MBR interpolation ECC2 is longer than that
of Classic McEliece, the key sizes of it are shorter than Classic McEliece.
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2001. LNCS, vol. 2227, pp. 172–181. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45624-4 18

11. Shokrollahi, M., Wasserman, H.: List decoding of algebraic-geometric codes. IEEE
Trans. Inf. Theor. 45(2), 432–437 (1999)

12. Sudan, M.: Decoding of reed-solomon codes beyond the error-correction bound. J.
Complex. 13(1), 180–193 (1997)

13. Wan, Y., Chen, L., Zhang, F.: Guruswami-Sudan decoding of elliptic codes through
module basis reduction. IEEE Trans. Inf. Theor. 67(11), 7197–7209 (2021)

14. Wu, X., Siegel, P.: Efficient root-finding algorithm with applications to list decoding
of algebraic-geometric codes. IEEE Trans. Inf. Theor. 47(6), 2579–2587 (2001)

15. Zhang F., Liu, S.: Solving ECDLP via list decoding. In: Steinfeld, R., Yuen, T.
(eds.) Provable Security. ProvSec 2019. Lecture Notes in Computer Science, vol.
11821, pp. 222–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
31919-9 13

16. Zhang, F., Zhang, Z., Guan, P.: ECC2: Error correcting code and elliptic curve
based cryptosystem. Inf. Sci. 526, 301–320 (2020)

https://classic.mceliece.org/index.html
https://classic.mceliece.org/index.html
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/b138611
https://doi.org/10.1007/3-540-45624-4_18
https://doi.org/10.1007/3-540-45624-4_18
https://doi.org/10.1007/978-3-030-31919-9_13
https://doi.org/10.1007/978-3-030-31919-9_13


Federated Data Integration
for Heterogeneous Partitions Based

on Differential Privacy

Jinghao Huang, Yingpeng Sang(B) , Chaoxin Cai, Weizheng Li,
and Maliang Zhang

School of Computer Science and Engineering, Sun Yat-sen University,
Guangzhou, China

sangyp@mail.sysu.edu.cn

Abstract. Federated learning has recently become a research hotspot
in distributed learning, and its purpose is to jointly train machine learn-
ing models on the premise of protecting privacy. However, there are some
problems with federated learning. Each machine learning algorithm must
be modified in order to complete the training. The data partitioning is
either horizontal or vertical, which is not flexible enough. In addition,
there are many rounds of communication during the training process, so
the training efficiency is low. In order to address these problems, we pro-
pose a generic federated integration method for multiple data sources.
The method can integrate data in arbitrary partitions, protect the pri-
vacy based on differential privacy, and reduce communication cost based
on singular value decomposition. After the data are modelled in this
method, they can be transferred to the center for purpose of federated
learning. Our method includes four algorithms. We give a theoretical
proof on the method’s satisfying of differential privacy. Finally, experi-
ments are conducted to demonstrate the performance of the method in
prediction accuracy and data compression.

Keywords: Differential privacy · Singular value decomposition ·
Federated data integration · Data partition

1 Introduction

With the advent of the data age, while we can mine value from big data, privacy
leaks also arise. People’s sensitive data such as identity information, social rela-
tions, health data, address, if not effectively protected, privacy will be abused,
which may have a serious impact on personal work and life.

The general mode in traditional federated learning [1] is that the data is
stored locally and the parameters are passed to the central server through local
training for aggregation, but this mode has two disadvantages. One is poor ver-
satility, and each algorithm has to undergo complicated transformations to meet
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local training requirements. The second is the time-consuming training of algo-
rithms, because the training iterations require network communication between
the central server and the data nodes. In addition, the model training is per-
formed on the data nodes with uneven computing power. It needs to wait for
each node to complete the training before the central server can aggregate. These
disadvantages can be avoided by applying differential privacy on the local data,
then one round of transferring of the local data to the central node.

In addition, the main paradigms of traditional federated learning include
vertical federated learning (each data owner provides all samples of a cer-
tain attribute) and horizontal federated learning (each data owner provides all
attributes of some samples) [1]. However, in practice, the data segmentation is
not perfect. One data owner may only have some attributes for some samples,
and thus the data partitioning among owners will be heterogeneous. For exam-
ple, the rapid proliferation of Internet of Things (IoT) calls for data mining and
learning securely and reliably in distributed systems [2]. However, IoT devices
can only collect part of the features data of some users, so cannot meet the needs
of federated learning for data partition.

Few existing methods can solve the problem that data owners hold data in a
heterogeneous way. This paper aims to propose a generic algorithm that allows
the samples and attributes of each data owner in the heterogeneous partitions to
be integrated to the central server under the premise of protecting privacy, and
to maximize the use of the owner’s data for machine learning tasks. We also pro-
vide client-level differential privacy protection on the owner’s data, before they
are transmitted to the central server, to minimize the risk of information leakage.
The main contributions of this paper are as follows. We propose a generic fed-
erated integration method on heterogeneous partitions, assuming that the cen-
tral server is untrustworthy. This method can integrate arbitrary data segments
across clients to construct the training set, without modifying the algorithms,
and the applicable type of learning tasks is not limited, including supervised
learning, semi-supervised learning, etc. We design four sub-algorithms for the
federated integration. The communication complexity of data transmission is
minimized and we also prove that the method obeys ε-differential privacy.

2 Related Work

Differential privacy is a common technique for privacy protection. [3,4] put for-
ward the concept of differential privacy. Differential privacy has flexible combina-
tion characteristics, the differential privacy mechanism can be used in combina-
tion [5]. In terms of differential privacy implementation mechanism, [3] proposed
an exponential mechanism, which was applied to continuous variable. [6] pro-
posed an exponential mechanism, which solved the problem that the Laplace
mechanism was only applicable to numerical variables, and the exponential
mechanism was applicable to categorical variable queries. Differential privacy
mechanisms have been applied to many machine learning algorithms and statis-
tical problems, including random forest classification algorithms [7], stochastic
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gradient descent algorithm [8], etc. [9] pointed out that local differential privacy
(LDP) broke the shackles of the trusted third party, and allowed users to perturb
their data locally, thus providing much stronger privacy protection.

Singular value decomposition is an important matrix decomposition, which
has important applications in signal processing [10], image compression [11], and
other fields. [12] introduced differential privacy into singular value decomposition
of the collaborative filtering task, but this method was only applicable to the
user-item evaluation matrix, but not to all types of matrices.

3 Our Method

The goal of our generic federated integration is to negotiate a matrix among the
heterogeneous data owned by the data holders. Before the data is sent to the
central server, we use differential privacy to protect the data and then transmit
it to the server to ensure the security of private information. Figure 1 introduces
related concepts. Assuming that there are k data holders, {H1, . . . , Hk}, they
hold part of the features of different samples, and then upload the data to the
central server after adding differential privacy to form a feature-label matrix D
for federated integration. The meaning of label is general, if it is a classification
problem, label is the classification value, if it is a regression problem, label is the
target value. Each blue box in Fig. 1 represents a data holder matrix Di owned
by a data holder. Each Di requires a user-ID vector ui and a feature-schema
vector fi to define the meaning of each element. fi is a list of feature names.
The Dis are heterogeneous means the user-ID and feature-schema vectors are
different among users. Even in a single data holder’s matrix Di, some elements
may be missing, so there are many block matrices Bij in the matrix Di.

Fig. 1. Related concepts

3.1 Multi-Party Feature-Label Matrix Negotiation Algorithm

Each data holder has different features and different samples, and this algorithm
aims to find a uniform feature-schema vector and user-ID vector on the central
server, and form the data source matrix DS, the elements of which are Hi (i =
1, . . . , k), specifying the source of each pair of feature and user-ID. A data holder
Hi’s ID-feature list Li is {[hash(ID1) : feat1, feat2, ...], [hash(ID2) : feat3, ...], ...}.
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By hashing the ID, Algorithm 1 ensures that other data holders and the cen-
tral server cannot know true IDs of the local samples, nor can the samples be
identified to specific entities through ID.

Algorithm 1. Multi-Party Feature-Label Matrix Negotiation
Input: ID-feature list Li, missing rate threshold T
Output: data source matrix DS, feature set F, sample set U

1: Each data holder sends his ID-feature list to the central server.
2: (Feature Negotiation) Central server performs statistics on the features sent by

the data holder. For each feature, if the missing rate is less than T , the feature is
included, and the feature set used for federated integration is denoted as F.

3: (Sample Negotiation) Central server performs statistics on each sample and cal-
culates the missing rate of the sample in F. If the missing rate is less than the
threshold T , the sample is included in the federated integration, and the sample
set used for federated integration is denoted as U.

4: Determine DS. If a value for a certain feature feati of some user IDj is missing
on all data holders, the central server will fill the missing value with the average of
feati values on all the other user-IDs. If more than two data holders have a value
at (IDj , feati), the central server must coordinate and specify which data holder’s
value will be preserved. The server can randomly designate a data holder, or select
the holder with a higher credibility.

Algorithm 2. Matrix Block Recognition
Input: data holder matrix Di with dimensions m × n
Output: block information list BILi

1: Convert Di to a 0-1 matrix, if the element at this position must be transmitted,
it is recorded as 1, otherwise it is recorded as 0.

2: Initialize an empty list visited, and an empty queue Q.
3: for i = 1 to m do
4: for j = 1 to n do
5: if (i, j) �∈ visited then
6: Put (i, j) into visited, put (i, j) and its 4-neighbor index Cij into Q, if

the element is not in visited and the value is 1.
7: else
8: continue
9: while Q is no empty do

10: Get an element (i′, j′) from Q head, let (i, j) = (i′, j′).
11: Update the connected domain range maxi, mini, maxj , minj .
12: Put (i, j) into visited, put (i, j) and its 4-neighbor index Cij into Q, if

the element is not in visited and the value is 1.
13: Get a connected domain Domp, where its scale is mp, np, its upper left

corner element index is xp, yp.
14: Put mp, np, xp, yp into block information list BILi.
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3.2 Matrix Block Recognition Algorithm

After executing Algorithm 1, the preserved features and user-IDs will be fed
back to the corresponding data holders. The data holder i can determine the
required user-ID vector ui and feature-schema vector fi, then decide his data
holder matrix Di, which should be transmitted to the central server. In Di,
part of the elements is missing, because a certain feature of a sample should
be uploaded by other data holders. We propose the Matrix Block Recognition
algorithm in order to find all block matrices in Di. Based on the idea of connected
domain recognition which checks the connectivity between matrix elements, our
algorithm finds matrix elements that are connected to each other. Suppose an
element index is (i, j), its 4-neighbor index list Cij is [(i − 1, j), (i + 1, j), (i, j −
1), (i, j + 1)]. A list visited will record the coordinates of the element after it is
accessed. A queue Q is used to find each connected domain. The algorithm can
be shown in Algorithm 2.

3.3 DP-based Singular Value Decomposition Algorithm

For each block matrix Bij obtained through Algorithm 2, we propose a differen-
tial privacy-based singular value decomposition algorithm (DP-SVD) so that the
data meets differential privacy before being transmitted to the central server. At
the same time, a low-rank approximation of SVD is performed for each block,
where some singular values are removed to achieve matrix compression, reducing
the amount of data transmission in each block. The precision is lost after the
matrix is recovered by the central server, but the introduced error also provides
privacy protection.

In Algorithm 3, according to the theorem in [3,6], if the feature is a categorical
variable, the exponential mechanism is used, and if the variable is a continuous
variable, the Laplace mechanism is used.

Algorithm 3. DP-SVD
Input: data holder matrix Di, the number of features ni, block information list BILi,

block matrix Bij , compression dimension rij , block scale threshold Tb, threshold of
block missing rate Tm, privacy budget εi
Output: approximate matrices list [(Um×r,Σr×r,Vn×r), ...]

1: for each feature of Di do
2: Add εi/ni - differential privacy to this feature, get matrix with noise D′

i and
B′

ij .

3: for each block matrix B′
ij , it scale is mij , nij do

4: if min(mij , nij) < Tb or the missing rate of B′
ij > Tm then

5: Transfer B′
ij to central server directly.

6: else
7: If the value is categorical variable, use label encoder to become a numerical

value. Use 0 to fill the missing value in B′
ij .

8: (Um×rij ,Σrij×rij ,Vn×rij ) ≈ SVD(B′
ij , rij), rij is compression dimension.

Transfer (Um×rij ,Σrij×rij ,Vn×rij ) to central server.
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3.4 Optimal Compression Dimension Model of SVD

Since the approximate SVD brings errors into the data, we should optimize
the compression dimension r in SVD. We consider two goals: the least error
of recovery and the least amount of transmission. Suppose the original matrix
(m×n) is M, the matrix after differential privacy is M′, and M′ is decomposed
by SVD. M′ after approximate recovery is R. We use error = ‖M′ −R‖F /(mn)
to represent error of recovery, where ‖·‖F means matrix Frobenius-norm. We use
scale = r(m+n+1) of Um×r,Σr×r,Vn×r to represent amount of transmission.
For each r, we can calculate scaler and errorr. Then we standardize scaler
and errorr respectively using Z-score, and get sScaler, sErrorr. The model is
minr w1 ∗ sScaler + w2 ∗ sErrorr, s.t. r ∈ [1,min(m,n)], r(m + n + 1) < mn.
w1, w2 are the weight of two parts. The optimal value roptimal of the objective
function can be obtained by traversing r under the restricted conditions.

3.5 Privacy Budget Allocation Strategy

Given a global privacy budget ε, in order to ensure data utility, the privacy
budget εi used by each data holder should be the largest. Our method satisfies
max1≤i≤n εi - DP. Therefore, we set εi = ε, (i = 1, . . . k). For each feature in Di,
set εij = εi/n, where n is the number of features. The sensitivity of feature j is
maxi dij − mini dij , where dij is an element of data holder matrix.

Algorithm 4. Generic Federated Integration Method
Input: privacy budget ε
Output: Feature-Label matrix D

1: Execute Multi-Party Feature-Label Matrix Negotiation Algorithm.
2: for each data holder do
3: Execute Matrix Block Recognition Algorithm in Di.
4: Execute DP-SVD Algorithm in Di, let εi = ε, rij = rij,optimal.
5: Transmit the data (added noise) to the central server.

6: The central server reconstructs feature-label matrix D, executes modeling in D.

Theorem 1. Our generic federated integration method satisfies ε-DP.

Proof. For each feature in Di. According to the sequential composition theorem
in [5], the privacy budget of Di is

∑n
j=1 εij = n ∗ (εi/n) = εi.

For all data holders, Di(i = 1, . . . , k) are disjoint subsets. According to
the parallel composition theorem in [5], the privacy budget of our method is
max1≤i≤k εi = max1≤i≤k ε = ε. Therefore, our method satisfies ε - DP.
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4 Experiments

We use the Breast Cancer Wisconsin Data Set [13] for integration. This data set
is a binary classification problem for judging whether breast lumps are benign or
not. This data set belongs to private data in the field of personal health and is
very suitable for demonstration of federated integration. The data set includes 32
features, including radius, area, texture, etc. ID is used to indicate the identity of
the patient. SVM, kNN, naive Bayes, back propagation neural network, random
forest, softmax regression are used as classifiers. The experimental parameters
are the privacy budget ε and the number of partitions. We segment the samples
and features to simulate multiple data holders.

The result of the experiments is shown in Fig. 2, the baseline means
the performance of the model when differential privacy is not added. Accu-
racy in the test set is used as a performance metric. Accuracy is defined as
numcorrect/numall.

Fig. 2. The result of Breast Cancer Wisconsin (Diagnostic) Data Set.

The results show that with the increase of ε, the accuracy of the model is
closer to the baseline models. While the algorithm in this paper protects privacy,
the performance of subsequent model learning is also guaranteed. The average
compression rate of DP-SVD is 44.94%. The results show that our method
compresses the amount of data that needs to be transmitted. Compression rate
means dividing the number of transmission matrix elements using compression
by the number of transmission matrix elements without SVD.
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5 Conclusion

In this paper, we propose a generic federated integration method, which avoids
the problems of federated learning that need to modify machine learning algo-
rithms, inflexible data partitioning, and low training efficiency. The method has
strong versatility, can process category features and continuous features simulta-
neously, and can be applied to different data mining tasks. Theoretical analysis
and experiments show that our algorithm performs well in privacy protection,
prediction accuracy, and data compression.
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Abstract. Medical healthcare currently plays a vital role for humans in
society. For each patient, personal health records are critical and sensitive
assets, so how to manage them effectively is becoming exciting research
to solve. Many types of research in managing and operating personal
health records have been introduced; however, dealing with patients’
data in emergency cases remains an uncertain issue. When emergencies
happen in reality, using a traditional access system is challenging for
patients to consent medical staff, i.e., nurses or doctors, to access their
data. Besides, there is no secured record management of patient’ data,
which reveals highly confidential personal information, such as what
happened, when, and who has access to such information. Thus, this
paper proposes a control and management system regarding emergency
access to protect the patients’ data called the Patient-Chain platform:
a patient-centred healthcare system, a Blockchain-based technology in
dealing with emergencies. The Patient-Chain system is built based on
permitted Blockchain Hyperledger Fabric, defines several rules and reg-
ulations by using smart contracts and time duration to deal with emer-
gencies. The patients also restrict the time to access the data in such
urgent cases-several algorithms representing how the system works are
also provided to make readers understand the proposed management
system.

Keywords: Emergency access · Blockchain · Hyperledger fabric ·
Privacy & security · Personal health record

1 Introduction

Human health is currently considered the most valuable asset, so all the latest
and most influential scientific and technical achievements are applied to the
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health care fields. In the industrial revolution 4.0, Blockchain and the Internet of
Things are emerging technologies being applied to the medical field to enhance
the ability to examine, treat, manage and monitor patients. The purpose of
applying these technologies is to allow continuous monitoring of the patient’s
health status anywhere in the world, especially for patients with underlying
diseases.

Patients are considered the center of medical examination and treatment ser-
vices, especially fee-based services, so their health data is becoming more and
more critical, and it is necessary to have a system to ensure data confiden-
tiality. There are many studies towards the confidentiality of patient’s health
parameters [1], but these studies have not focused on emergency emergencies.
For emergencies, patients will not actively decide who can access their medical
records, so that emergency treatment will be challenging. This shortage creates
a significant weakness when applying new technologies to the medical field.

Due to their sensitivity and privacy, systems typically allow patients to desig-
nate some of the doctors and nurses they treat and limit everyone else. However,
such pre-determining of access [2–6] would be the main limitation because, in
emergencies, it is not possible to ensure that designated doctors and nurses are
available when the patient needs emergency care.

To alleviate these problems, ensure secure access handling in emergencies,
and maintain a secure transaction log, we recommend a Patient-Chain frame-
work to leverage a distributed and immutable shared ledger called Blockchain
technology. Blockchain is a decentralized architecture that has an immutable
distributed ledger in which all transactions are recorded. In the Patient-Chain
system, there are five main types of user groups: patient, doctor, medical, nurse
and insurance agent.

2 Related Work

2.1 Emergency Access Control for Personal Healthcare Records

Zhang et al. [7] proposed an online system for polling to provide available access
for urgent control to a personal health record. For every emergency access
request, the system controls the right access based on the collected views of
the patient’s predefined emergency contact information and additional online
enrolled physicians. In another research published by Thummavet and Vasupon-
gayya [8], they proposed a framework to deal with personal health record data
in emergency cases. The main challenge in such emergency conditions is how
emergency staff and doctors obtain their patients’ data when they are incapable
of providing information. Another system that uses fingerprints of patients is
proposed in Guan et al. [9]. This system allows doctors to obtain quick access
permission of personal health records by using patients’ fingerprints. In this sys-
tem, patients’ fingerprints served as a permission key for the doctor to access
and obtain the necessary information. The server administers compared the pre-
sented data and the original data saved on the database.
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In the research of Rabieh et al. [10], a secure medical records access plan was
designed to provide emergency access for the patients using a cloud server. In
this case, an emergency center could decrypt a patient’s medical records without
exposing the secret key used to encrypt them with the guidance of the patients’
smartphone and the cloud server.

2.2 Blockchain-Based Technology Application in Health Care
System

Ichikawa et al. [11] developed a mHealth scheme for cognitive-behavioral treat-
ment for sleeplessness practicing a smartphone application. The volunteer’s data
information obtained by the application was saved in JSON format and for-
warded to the blockchain HF system. They confirmed the data update process
under circumstances where all the validating peers were working routinely.

An implementation that utilized smart contracts as mediators were proposed
by [12] to access electronic health records in a largescale information system. In
this paper, the problem of accessibility and data privacy issues in healthcare is
emphasized. The current version of the Ethereum platform is the base idea of
the suggested architecture, in which smart contracts play the core role in the
system.

MeDShare [13] was another efficient blockchain-based management system to
handle medical records. This system was implemented to use cloud repositories
that manage shared medical records and data among medical big data entities.
It guaranteed data provenance, security, auditing, and user verification via cryp-
tographic keys. The mechanism of MedShare is divided into four main layers,
including user, data query, data structuring and provenance, and an existing
database infrastructure layer.

In the research of Duong-Trung et al. [6,14], a patient-centric care system
was built based on a smart contract mechanism. It is also introduced in [15],
where the system consisted of five main parties: doctor, medical man, nurse,
insurance man, and patients; in which, patients were the heart of the system.

3 Patient-Chain System Architecture

In an emergency case, accessing personal health records can provide the neces-
sary medical treatment for patients. Nevertheless, when the patient is uncon-
scious, it is complicated for them to control access to their health record and
provide their information to doctor or nurse. Therefore, it requires an automatic
system control to manage the medical record and to be able to access or share
the health record data during the medication or post-treatment monitoring. Due
to the sensitivity of the data, it is compulsory to keep the data complete, securely
saved, and can be accessed only based on the patient’s approval quickly and expe-
diently. Hence, in this paper, we apply private Blockchain. Hyperledger Fabric
technology network to create a framework of a personal health record. By oper-
ating Permissioned blockchain technology, this paper provides emergency access
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to expedite the consent management and speed up PHR data fetch from the
PHR system. A smart contract is developed to enable patients to impose per-
mission access control policy [16,17] for their data efficiently and allow personal
health record data for sharing with emergency doctors during emergencies.

The patient-Chain system defines some permission access rules through
Hyperledger Fabric. In this paper framework, the medical staff, i.e., doctors
or nurses, can initiate an emergency request at the medical center, then send it
directly to the data management service center. This request is sent under the
restrictions of the patient’s rules through the framework. Personal health data
is saved via the blockchain network or, in other words, is kept in their health
record. There may be multiple accesses from different participants. Neverthe-
less, the authority is only given to staff who have granular access rights from
the database according to the permissions. The data requests are also updated
frequently by the blockchain network. Hence, the patients, after recovering, can
see who already accessed and took their data.

In our system, a smart contract plays an important role. All the transactions
are concerned with authorization, and data fetching from the ledger are executed
through smart contracts (a business, logic). The proposed framework operates
based on the smart contracts of the ledger, which makes the system protected,
effective, and auditable. Figure 1 shows the proposed Blockchain-based design
of the Patient-Chain system for emergency control in healthcare. This system
consists of five actors: patients, doctors, nurses, medical men, and insurance men.
The detailed explanation of the entities is as follows.

Fig. 1. Patient-Chain workflow

Figure 1 includes six main steps from the beginning, the User (i.e., medical
staff) send the requirement to collect the patient information in the emergen-
cies; eventually, the patient information is synced on the web/application. In
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the first step, the User, nurses or doctors, initiates an emergency request at the
medical center equipment, send it to the edge service for processing data. Then,
the second step checks the validity of the data sent from the requests to avoid
missing data when the User makes the request at the edge services. After check-
ing, the data will be sent to the compute module at the Application logic.
Next step, these modules conduct data format before storing into the system,
ID user is also collected to store to identify the person making the transaction;
in addition to the immutability of data, transparency is also a strong point of
the blockchain system when it allows identifying which User made a transaction
and when it was made. Then, in the fourth step, when an emergency request is
initiated, the system will send request information to the Transaction man-
ager for storage with the waiting state. At that time, Application logic also
sends an emergency case message to the patient with a preset timeout. If the
patient finds some problems (i.e., from the malicious user requests), they will
reject the request. Application Logic updates the request again with the reject
status. Conversely, if the system does not receive the message within the wait-
ing time, Application logic will update the request with approval status and
grant access to the patient’s database to the doctor and nurse. Finally, Trans-
action manager includes the API tasked with storing or querying data. When
an emergency request is sent, the Transaction manager will store emergency
information with a waiting status, which can be updated to change to reject or
approve depending on whether the patient has a response to the system or not.
In many cases, individuals may attempt to gain unauthorized access to patient
data, so the confirmation or denial of a patient’s emergency request is essential
in this model.

4 Evaluation

4.1 Environment Setting

This section measures the response time and results of requests sent to and pro-
cessed by smart contracts. The measurements are performed on a computer with
Intel R© CoreTM i5-3340M CPU configuration @ 2.70 GHz × 4, 8 GB RAM. More-
over, the authors provide the sources codes for the proof of concept, instruction
of installation. Interesting readers might refer to our GitHub repository1.

4.2 The Four Scenarios

This paper test our proposed model with four scenarios in two characteristics,
i.e., the number of request result and the latency of request as following:

1. In the first scenario, we compare the requests’ results and the corresponding
latency with the emergency data initialization function. With the first 5 cases
corresponding to the number of requests from 1000 to 5000. With the subse-
quent 5 cases corresponding to the number of requests from 6000 to 10,000,
the number of successful requests.

1 https://github.com/Masquerade0127/emergency-blockchain

https://github.com/Masquerade0127/emergency-blockchain
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2. In this scenario, the article measures the patient’s data initialization function
and parallels the latency of this function; the number of workers is changed
with two workers. The first 5 request cases correspond to the number of
requests from 1000 to 5000, 2 workers for 5 cases then correspond to the
number of requests increasing from 6000 to 10,000.

3. In the third scenario, the study presents the results of the emergency data
query feature; the number of workers is now adjusted to 10 for all 10 data
query cases.

4. In this scenario, the study measures the results of the patient data query
feature; the number of workers used is 10 for 10 cases. In general, requests
are handled quite stably, with the number of successful requests being more
than 20,000 requests while the number of failed requests is only from 0 to 2
requests.

The result of these scenario is shown in Fig. 2.

Fig. 2. The results of #request success and # request failure and The latency
(max/min/average) of the requests to initiate emergency data of four scenarios

4.3 Future Work

For the deployment aspect, further works will be deployed in the practical envi-
ronment. We plan to set up Patient-Chain model in the IoHT (Internet of
Healthcare Things) platform. Specifically, the sensors, wearable devices collect
the health and fitness information and store in the medical data center. These
information can be exploited by the medical staff if necessary for the emergency
situations [18–20]. For the privacy aspect, we will exploit attribute-based access
control (ABAC) [3,4] to manage the authorization process of the SIP-MBA Plat-
form via the dynamic policy approach [16,17,21].
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5 Conclusion

The proposed system in this paper provides privacy protection and security pol-
icy to manage patients’ data in urgent situations. Technically, the system is
built based on Hyperledger Fabric and Smart Contract, a permissioned based
blockchain technology. The proposed framework deals with the problems of get-
ting access to a patient’s data when emergencies arise and considers the problems
of setting suitable rules for accessing the emergency control management of per-
sonal health records. The system is implemented through Hyperledger Fabric to
evaluate the efficiency of our framework. Our experimental results also confirm
that this system can ensure the privacy and security of sensitive patient data.
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Abstract. Image is an important information-bearing medium with many impor-
tant attributes. If the image data is released directly, personal privacy will be
compromised. This paper aims at how to use the method of differential privacy to
protect the privacy of image data and make the image data have high usability. In
this paper, a WIP method based on wavelet change is proposed. Firstly, wavelet
transform is used to compress the image. Then, noise is added to the main fea-
tures after transformation to obtain the published image satisfying the differential
privacy. It solves the problem of low usability of large images and the problem
that Fourier transform cannot deal with abrupt signal. Experimental results show
that compared with similar methods in the frequency domain, the denoised image
obtained by the proposed WIP method is more distinguishable and the informa-
tion entropy is closer to the original image. The accuracy is 10% higher than other
methods. Compared with other frequency-domain methods for image differential
privacy protection, the proposedWIP method has higher usability and robustness.

Keywords: Image processing · Differential privacy · Privacy protection · The
wavelet transform

1 Introduction

To solve the problem of the privacy protection of image data, Hill, Kamijo et al. proposed
to use pixelation [1], bluring [2] and P3 system [3] to process images. By using standard
image blurring techniques, such as pixelation and blurring, to obscure areas of interest,
including faces and text. However, thesemethods are ineffective in protecting privacy. [4]
uses homomorphic encryption algorithms to encrypt medical images and then send them
to the cloud without damaging confidentiality. [5] provides an effective and practical
privacy protection scale-invariant feature transform scheme for encrypted images. It can
achieve higher computational efficiency and perform correct feature key point detection,
accurate feature point description and imagematching. There are still some shortcomings
in these schemes. One is that the efficiency and security aspects of sharing data can be
challenging. And untrusted servers often calculate characteristics that reveal private
information. In addition, homomorphic encryption, garbled characters [6], or multiple
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independent servers [7] all potentially limit the feasibility of extracting complex features
and enabling time-critical applications.

Differential privacy [8] is a new privacy protection technology with rigorous mathe-
matical logic and scientific theoretical proof. In order to solve the above problems, this
technology can provide amore stringent method for protecting the privacy of image data.
Image data privacy protection methods have been relatively mature. However, there are
few studies using differential privacy methods.

2 Differential Privacy Protection for Image Publishing

Differential privacy involves perturbations of input or output values. It maps a definite
input to an uncertain output, to achieve the real data fuzzy, to ensure privacy protection.
[9] proposes a differential privacy publishing method that uses Fourier transform com-
pression to obtain the main information of image data and then adds Laplace noise. [10]
proposes a method that uses singular value decomposition (SVD) to extract the singular
values representing the main features of the image, and then adds disturbance to the
singular value matrix to achieve differential privacy protection. [11] proposes a sliding
window method to make image data one-dimensional. By including image features as
comprehensively as possible, dynamically allocating privacy budget and adding Laplace
noise, image usability and privacy are improved. There are few researches on differential
privacy protection that disturb the image itself. Generally, the image publishing methods
of differential privacy mainly focus on the image publishing of social network. [12–15]
design social network graph data publishing methods that satisfy differential privacy
based on image data attributes, privacy risk assessment based on ranking, uncertainty
perception and fairness mechanism, respectively.

Matrix A is a face graphics matrix. It is compressed and transformed based on fre-
quency domain technology to obtain thematrixB representing the feature information of
face image. Add noise disturbance to B, and then use inverse transformation to recover
A, and then get A′. Two kinds of errors are going to occur in the process of obtaining
A′. The first is the noise error LE(A′) caused by the addition of noise using the Laplace
mechanism. The second is the face image matrix A′ in the process of inverse transforma-
tion caused by the reconstruction error RE(A′). Then, the overall error of the published
face image A′ can be expressed as formula (1):

Error
(
A′) = RE

(
A′) + LE

(
A′) (1)

The usability of face image is improved by reducing the overall error of A′ of
published face image as much as possible.

2.1 Laplace’s Method

The differential privacy protection of LAP method is to directly use Laplace noise to
disturb the face image matrix and release the disturbed data. For A given face data image
A

′
m×n with the size m × n, according to the Laplace mechanism, to satisfy ε-differential

privacy, the LAP method adds Laplace noise to each value in the face image matrix of
A, which can be expressed as: a′

i = ai + Lap(�A/ε).
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According to the error calculation method in [9], the total error of LAP ErrorLAP
(
A′)

can be expressed as formula (2):

ErrorLAP
(
A′) = LE

(
A′) = E

( n∑

i=1
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Where,E is expectation,max
j

∑m
i=1

∣∣aij
∣∣ represents themaximum column norm of the

matrix, a
′
i represents the vector form of the matrix, and aij represents the matrix element

or image pixel.
The error generated by the LAP algorithmmainly comes from the noise error LE(A′)

of the Laplace mechanism. This noise error is proportional to the parameters m and n
and inversely proportional to the privacy parameter ε. At the same degree of privacy
protection, when the size of the image datam × n is larger, then the value of LE(A′) will
become too larger, making the face image usability of the whole algorithm reduced.

2.2 Fourier Transform Method

For the problem of the above LAP image differential privacy algorithm, the following
scheme is proposed in [9].

By adding noise to the Fourier coefficient of the face image after the Fourier trans-
form, the Laplace mechanism disturbance of the main information of the image can be
realized, so that the compression of the image can meet ε-difference privacy, and reduce
the noise error of LE(A′).

Meanwhile, the former k × k coefficients of Fourier transform are extracted in a
heuristic way to ensure that the image features are not damaged and the reconstruction
error RE(A′) is reduced as much as possible.

In order to improve the usability of Laplacemechanism, [9] proposed the FIPmethod
of differential privacy based on Fourier transform technology.

The steps of FIP algorithm are: Make a compression transformation by using Fourier
transform technology to face image matrix A which A is a face image matrix. Extract
the first k × k Fourier coefficients containing the feature information of the image and
add the noise disturbance.

The Fourier transform coefficient is denoted by vector: Fk = (F1,F2, . . . ,Fk). The
noise Fourier coefficient vector F̃k can be expressed as: F̃k = (F̃1, F̃2, . . . , F̃k), where
F̃i = Fi + lap(�1Fk/ε)(1 ≤ i ≤ k).

The total error value ErrorFIP
(
A′) of the FIP algorithm is mainly related to the

extracted Fourier coefficient and the privacy parameter ε. The smaller the value of k,
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the smaller the error LE(A′) caused by the Laplace noise. However, the value of the
resulting reconstruction error RE(A′) is larger. On the contrary, the larger the value of
k, the smaller the value of the resulting reconstruction error RE(A′). However, the error
LE(A′) caused by the Laplace noise is larger.

Fourier coefficient vector matrix Fk to a certain extent represents the features of
human face images. When the value of k is smaller, the feature information of the image
is less, and the usability of the face image will be reduced.

Fourier transform is complicated and difficult to deal with abrupt signal, while
wavelet transform has two special properties, oscillation and attenuation, which can
solve this problem well.

So, this paper proposes a differential privacy image data publishing algorithm based
on wavelet transform WIP (Wavelet Analysis Facial Image Publication).

3 The Method of WIP

The total error value of the FIP algorithm is related to the number of Fourier coefficients
extracted and the privacy parameter ε. When the value of k is smaller, the error noise
LE(A′) caused by the Laplace noise is smaller, but the value of the reconstruction error
RE(A′) is larger. On the contrary, the greater the value of k, the smaller the value of
the reconstruction error RE(A′), but the greater the error LE(A′) caused by the Laplace
noise.

Fourier coefficient vector matrix Fk to a certain extent represents the features of the
face image, when the k value of Fk is smaller, then, the image of the feature information
is less, the usability of the face image will be reduced.

WIP method will use the wavelet transform technology to compress the image,
and add noise disturbance to the low-frequency coefficient matrix containing the main
information to ensure that ε-differential privacy can be met and LE(A′) can be reduced.
Then use the primary wavelet transform to guaranteed the image features not to be
damaged as much as possible and the reconstruction error RE(A′) is reduced.

3.1 Algorithm Design

The FIP algorithm obtains the relatively evenly distributed in the Fourier coefficient
characteristic information through the way of Fourier transform. The neighborhood
matrix is obtained by extracting the former k× k Fourier transformcoefficients.Although
the noise error LE(A′) caused by the Laplace mechanism is reduced, most of the feature
information of the image is destroyed, thus reducing the usability of the image data.
The Fourier transform has the disadvantage that the characteristic information is evenly
divided into the coefficient matrix. Therefore, this paper adopts the wavelet transform
technology to compress the image.

In image processing, the main characteristics of the image data can be concentrated
on the low-frequency matrix after the wavelet transform of the image data. The detail
information, contour information and edge information of the image are concentrated on
the high frequency coefficient. Figure 1 describes the process of the wavelet transform
diagram. The face imagematrix is extracted fromwavelet coefficientmatrixCA,CH,CV,
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CD by wavelet transform. The low-frequency coefficient matrix CA is an approximate
image, which contains the main characteristic information of the original image. High-
frequency coefficient matrixCH,CV andCD are the details of the image. After multiple
wavelet transform,more low frequency coefficient approximation image can be obtained.

Fig. 1. The wavelet transform process

The WIP method proposed in this paper mainly uses the compression technology of
wavelet transform to compress the face image data. In order to obtain better usability,
it only uses the wavelet decomposition once. So, it retains some image detail. It then
disturbed the low-frequency coefficient matrix of wavelet transform by adding noise
conforming to Laplace mechanism, and then released after disturbance. The pseudocode
for the algorithm is shown in Algorithm 1 as following.

Algorithm 1:WIP

Input: Image matrix A, privacy parameter ε  
Output: Image matrix A' met ε-differential privacy protection
1)  c←DWT(A)    // Apply the wavelet transform A
2)  CA←(CA,CH,CV,CD)←c  // Take the low frequency coefficient matrix of the wavelet 

transform
3)  For r from 1 to m  
4)      For c from 1 to n 
5)          CA' (r,c) ←CA(r,c) + lap(ΔA/ε) 
6)       End for
7)  End for
8)  (CH,CV,CD) = 0  // Set the high frequency coefficients to zero
9)  C' ← (CA',CA,CH,CV,CD) 
10) A' ← IDWT(C')

The size of a face image matrix A is m × n. First, the face image matrix A is
transformed by two-dimensional discrete wavelet transform technology. Then, the low
frequency matrix CA containing the main information is extracted from the obtained
wavelet coefficient matrix C. Finally, the Laplace mechanism is used to add Laplace
noise to the coefficients in the low frequency coefficient matrix CA. Thus, the low
frequency coefficient matrix CA′ after noise is obtained, That is CA′(r,c) ← CA(r,c)
+ lap(ΔA/ε). For reconstruction, the high frequency coefficient matrix is filled with 0
and merged with the low frequency coefficient matrix. The noisy wavelet coefficient
matrix C′ is obtained. Finally, the image data A′ is reconstructed by IDWT technology
for publication.
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3.2 Algorithm Error Analysis

The method of measuring error in this paper is to calculate the expectation of mean
square error. According to step 2 of Algorithm 1, the WIP algorithm obtains the low-
frequency coefficient CA of the coefficient matrix, that is, the matrix of the first r × c
of the wavelet coefficient. Then, in step 7 to Step 9, set the high-frequency coefficient
matrixCH,CV andCD to zero. A newwavelet coefficient matrix is formed together with
the low frequency coefficient matrix CA. Then the IDWT function is used to reconstruct
the face image data A′ for publishing.

Since the wavelet coefficients of magnitude (m-r) × (n-c) are ignored, the
reconstruction error RE(A′) is generated, which can be expressed in formula (3):

RE
(
A′) = CH + CV + CD =

√∑m

i=k+1

∑n

j=k+1
C2
ij (3)

where r = m/2, c = n/2.
According to steps 3 to 5 of the Algorithm 1, the noise error of the WIP method

mainly comes from the noise added to the wavelet low-frequency coefficient matrix CA.
Therefore, according to the Laplace mechanism, the noise error LE(A′) can be calculated
by the method of the square root of expectation, then formula (4) is given:

LE
(
A′) = E

(√∑r

i=1

∑c

j=1
(�1CAij/ε)2

)
≤

∑c

i=1

2r(�1CA)2

ε2

=
√

2mn

(
�1CA

ε

)2

= √
2rc

∑r
i=1

∑c
j=1

∣∣CAij
∣∣

ε

(4)

According to formula (4) of total error calculation, the total error ErrorWIP
(
A′) of

algorithm 1 is composed of reconstruction error RE(A′) and noise error LE(A′), which
is expressed as formula (5):

ErrorWIP
(
A′) = E

(
RE

(
A′) + LE

(
A′)) ≤

∑m

i=r

∑n

j=c

∣∣Cij
∣∣ + √

2rc

∑r
i=1

∑c
j=1

∣
∣CAij

∣
∣

ε
(5)

In particular, when the image is n × n or the wavelet transform coefficients are
reduced to a square matrix of n × n, the noise error LE(A′) of Algorithm 1 is expressed
in the form of vector matrix as formula (6):

LE(A
′
) = E

(√∑n

i=k+1
|Fi−1|2

)
(6)

The reconstruction error RE(A′) of Algorithm 1 can be expressed in formula (7):

RE(A
′
) =

⎛

⎝

√
∑k

i=1
4(

�1Fk

ε
)

2
⎞

⎠ (7)
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Then the total error of Algorithm 1 can be expressed as formula (8):

ErrorWIP

(
A

′) = RE
(
A

′) + LE
(
A

′) =
⎛

⎝

√
∑k

i=1
4(

�1Fk

ε
)

2
⎞

⎠ +
(√∑n

i=k+1

∣
∣Fi−1

∣
∣2

)

=
√∑n

i=k+1
|Fi−1|2 +

√
2k�1Fk

ε
(8)

Where k = n/2.
It can be seen from formula (5) that the error value of Algorithm 1 depends on the

number of layers of wavelet transform. If you take multiple wavelet transforms, then r
and n will become smaller. That is, the value of k in formula (8) will be smaller, and
the error LE(A′) caused by Laplace noise will also be smaller. The value of the resulting
reconstruction error RE(A′) is larger. However, compared with the FIP method, the
neighbor coefficient matrix obtained contains more feature information of face image.
Setting the high-frequency coefficient matrix to zero can reduce the interference of
filtering to a certain extent, Then the proposed method in this paper obtain a certain
noise reduction effect.

4 Experiments and Analysis

4.1 Experimental Environment

This experiment is carried out under windows10 system. The programming language is
MATLAB. Themain databases used areYALEFaceDatabase (YALEUniversity) and its
expanded YALEB face database (YALEB), JAFFE face database (ATR) for expression
recognition (Japan), and ORL face database (Cambridge University). Some information
about the four face datasets can be seen in Table 1. (https://blog.51cto.com/shanyou/309
8359).

Table 1. Data sets information table

Data set name Data set size Number of people
included

Sample number per
person

Image size

YALE 150 15 10 195 × 231

JAFFE 200 10 20 256 × 256

ORL 400 40 10 92 × 112

YALEB 2280 38 60 168 × 192

The algorithm is verified by the usability of single image data and the accuracy of
face data classification and verification.

https://blog.51cto.com/shanyou/3098359
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4.2 Usability Analysis

In order to study the usability of the algorithm based on the frequency domain, the image
identifiability and the image information entropy generated by the three algorithms in
different data sets are compared to measure the usability of the three algorithms.

According to the method in [9], the image identifications are tested experimentally
on the gray scale face image of the classic image Lena, as shown in Fig. 2. In Fig. 3, the
noise distribution results of the three algorithms (LAP method [9], FIP method [9] and
WIP method) under Lean gray image are shown.

Fig. 2. Lena original image

In Fig. 3, the noise distribution results of the three algorithms (LAP method [9], FIP
method [9] and WIP method) under Lean gray image are shown.

(a) Adding noisy images 
under the LAP method

(b) Adding noisy images 
under the FIP method

(c) Adding noisy images 
under the WIP method

Fig. 3. Noise enhancement in three frequency-domain methods of lean image

As shown in Fig. 3, the images obtained by the WIP method are significantly
improved over those obtained by the LAP and FIP methods. The LAP algorithm can
hardly see Lena’s image. The FIP algorithm can see the outline of Lena more vaguely.
TheWIP algorithm can be clearly reserved for the image that sees Lena. So, it shows that
theWIP algorithmmakesmore information retention of Lena image feature information,
and the WIP algorithm is better in terms of recognition rate.

In order to further study the usability comparison of the three algorithms, we examine
the information entropy comparison results of the three algorithms under the Laplace
mechanismbymeans of image information entropy. In Fig. 4 (a) to (d), non-DP, LAP, FIP
and WIP algorithms without differential privacy are shown respectively in the classic
Lena image and three real face databases, as well as the comparison graph of image
information entropy when privacy parameter ε is 0.1, 0.5, 0.9 and 1.3.
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(a) Classic Lena image (b) YALE face database images

(c) JAFFE face database images (d) ORL face database images

Fig. 4. Comparison of information entropy in different cases of ε under five image data

From the comparison of information entropy from (a) to (e) in Fig. 4, it can be
seen that under the LAP method, the information entropy of images in all databases
increases with the increase of privacy parameter ε, and gradually approaches the non-
DP information entropy curve. The information entropy of FIP method in Lena image
andYALEdatabase is relatively stable and close to non-DP.However, in JAFFEdatabase,
ORL database and YALEB database, there is a rising trend from very low, and a big
gap with the non-DP information entropy curve. That’s because the JAFFE database,
ORL database and YALEB database have a lot of contrast, a lot of local changes in
lighting and posture, and the Fourier transform is less capable of dealing with that kind
of abrupt information. The WIP method presents a relatively stable trend in all data
sets, which is close to the non-DP image information entropy curve. This is because the
wavelet transformmakes up for the weakness of Fourier transform.When processing the
external environment image signal in the image, the face image features can be extracted
better, and the image information can be retained at a larger scale, and the robustness is
stronger.
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Therefore, it can be seen from Fig. 4 that the WIP method proposed in this paper
has higher usability and robustness than the LAP method and the FIP method.

4.3 Validity Analysis

In addition to analyzing the usability of the algorithm by comparing the recognition and
information entropy of the single noised image data, the validity of the algorithm needs
to be analyzed by the accuracy in face image classification and verification.

In order to verify the accuracy of the three algorithms in face image classification
and verification, the combined method of Support Vector Machine (SVM) and Principal
Components Analysis (PCA) was used for face image classification and verification.

(a) YALE face database images (b) JAFFE face database images

(c) ORL face database images (d) YALEB face database images

Fig. 5. The accuracy of four face databases with different ε values

The verification method adopts MATLAB platform, and takes 50% of each person’s
image sample in the face image database as training data and 50% as verification data.
Then, PCA method is used to reduce dimension and extract features of face image
matrix. Combined with the covariance matrix, the centralization matrix was used to
replace the original matrix to remove the correlation of face image matrix. Finally, the
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classification function of SVM was used to classify and verify the images with the
removal of correlation. The experimental results were evaluated by the accuracy of face
image classification and verification.

The experiment was based on four real face databases, and the value of privacy
parameters ε is set to 0.1, 0.3, 0.5 and 1.3, respectively. PCA + SVM method was
used to conduct the experiment and compare the three privacy protection methods with
Laplace mechanism. The experimental results are shown in Fig. 5.

As shown in Fig. 5, the accuracy of the three image differential privacy protection
methods in the four databases increases with the increase of privacy parameter ε. When
ε = 0.1, the accuracy of LAP method and FIP method is almost equal, and the accuracy
of WIP method is higher, which is almost twice that of LAP method and FIP method.
With the increase of ε, the gap between the three kinds of accuracy gradually becomes
obvious. The LAP method is growing slowly. When ε = 0.9, the difference between
FIP method and WIP method is the smallest. However, it is still not higher than WIP
method. When ε values are 0.5, 0.9 and 1.3, the accuracy of WIP method is about 5%
higher than FIP method, and 10% to 20% higher than LAP method. Therefore, the WIP
method is more efficient and usable than LAP algorithm and FIP algorithm.

5 Conclusion

Data distortion technology is easy to cause large area image distortion problem and the
security of the published image isweak.The encryption technology is highly complicated
and its actual use is easily limited. However, if anonymous publishingmethod is adopted,
once the attacker has acquired certain background knowledge, he can obtain access rights
and image data through background knowledge attack, resulting in privacy disclosure.
Therefore, based on the privacy protection technology of differential privacy, this paper
proposes the image data privacy protection method based on differential privacy from
the perspective of frequency domain.

In this paper, the WIP method based on wavelet transform is proposed to solve the
disadvantages of LAPmethod, such as poor usability and Fourier transform can not deal
with abrupt signal. It is proved by theory that the WIP method satisfies ε-differential
privacy. The experimental results of single image processing and face image verification
show that the WIP method has stronger robustness and usability than LAP method and
FIP method.

However, when the frequency domain method is used to compress and transform the
imagedata, the feature extractionof themain information is not accurate enoughwhen the
Laplace noise is added to the image data based on the operation in the frequency domain,
which makes the overall usability less than the image differential privacy protection
method under the algebraic method. Next, it may concern that try to use the tree structure
combined with wavelet transform to compress the face image, and then according to the
compression process and results of the reasonable use of Laplace mechanism.

Acknowledgment. This work is partially supported by the National Natural Science Foundation
of China (No. 61862007).
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Abstract. The traffic matrix (TM) is an important type of informa-
tion in network management, which is needed in network load balancing
and routing configuration. Due to technical and cost reasons, it is diffi-
cult to directly measure the matrix, but we can use prediction instead
of direct measurement. The Long Short-Term Memory(LSTM) model in
deep learning is very suitable for time series forecasting problems. How-
ever, due to the characteristics of deep learning, the data samples used
to train the network will leave their own traces on the final model, which
allows attackers to restore training samples through member inference
attacks, causing privacy leakage. This paper focuses on combining the
differential privacy mechanism with the LSTM model. In the gradient
descent stage of training, a well-controlled noise is added to protect the
final model. In the experiments, we verify the feasibility of the method
proposed in this paper on the data set Abilene.

Keywords: Traffic matrix prediction · Long short-term memory ·
Differential privacy

1 Introduction

Traffic matrix (TM) is used to represent the traffic of all nodes in a network in
a certain period of time and it has temporal attributes. Traffic matrix plays a
very important role in network load management and routing configuration [6].
An OD pair consist of the original and destination nodes, which can be a link
among routers [11]. Generally, routing configuration information and link traffic
are used to estimate the traffic matrix [8].

With the development of deep learning in recent years, many scholars began
to utilize depth neural network to predict traffic matrix. Because in a network, the
network traffic has self-similarity and long-range dependence, so the time series
model can be applied to predict the traffic matrix [10]. In [7], the deep belief net-
works (DBN) model was trained to predict and estimate the traffic matrix.

However, due to the characteristics of deep learning, the training data may
leave their own traces on the final model, which makes the model be attacked
c© Springer Nature Switzerland AG 2022
H. Shen et al. (Eds.): PDCAT 2021, LNCS 13148, pp. 596–603, 2022.
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by membership inference attack. Differential privacy [4] is one of state-of-the-art
privacy protection mechanism, which ensures that even if the adversary possesses
all the ancestors of sensitive data, they cannot infer any information about any
particular record with a high degree of confidence from the published learning
model. Motivated by this, we propose to apply differential privacy mechanism
in the training process of Long Short-Term Memory (LSTM) to ensure that the
published model will not cause privacy disclosure of training data.

In summary, the main contributions of this paper are as follows. We propose
an LSTM model combined with differential privacy mechanism, which is used
to predict the traffic matrix. The prediction accuracy and privacy protection of
the model are evaluated by adjusting the privacy budget. Through this work,
the released model will not be subject to member reasoning attacks and leakage
of training samples. For the OD pair whose prediction rate changes greatly after
adding noise, we also analyze the statistical characteristics of its original data
and give a conclusion.

2 Related Work

In [9], independently and identically distributed Poisson distribution was used
to model the time-varying characteristics of OD pairs. The traffic matrix prob-
lem can be transformed into using a neural network to train a predictor. Its
input is a series of previous traffic matrices, and its output is the traffic matrix
to be predicted at a certain time [3]. In recent years, many scholars have pro-
posed different time series models to solve this problem. [7] used the deep belief
network(DBN) model to predict and estimate the traffic matrix, and used the
principal components analysis (PCA) method as the control group. Experiments
showed that the DBN model has achieved good accuracy. In [5], the flow of OD
pair in a certain period was proved to be not only related to the earlier flow,
but also affected by other ODs on the flow. This phenomenon is called Inter-flow
correlations.

In [12], how to apply differential privacy in deep learning model was discussed,
which mainly has three directions. The first is to add noise to the original data
set, which can be regarded as data preprocessing. However, it is a great challenge
to operate on large dataset. The second direction is to add privacy protection
mechanism in training stage. [1] proposed an algorithm called DP-SGD. In the
process of gradient descent, the algorithm clips the gradient and then adds noise,
and can track the privacy consumption in the whole training process. The third
direction is to add privacy protection in the output layer.

3 Traffic Matrix Prediction Methods

In this section, we mainly introduce the traffic matrix prediction problem and
the application of differential privacy mechanism in deep learning.
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3.1 Traffic Matrix Prediction

We assume that there are N nodes in a network, then there are N ×N OD pairs
(all possible pairs of original and destination nodes). In a certain period of time,
the traffic from node i to node j is denoted as xi,j . A matrix with the size of
N × N is used to characterize the traffic size of all OD pairs in a certain time
period t. This matrix is called the traffic matrix and denoted as Xt.

The problem we are facing now is to train a predictor whose input is sequence
(Xt−k,Xt−k+1, . . . , Xt−1) and output is Xt. In order to predict the traffic size
of a specific OD pair in a certain period of time in the future, we use a set of
previous data as input and output as the result we need.

3.2 Long Short-Term Memory

Figure 1 shows the internal structure of the LSTM. Usually, the output ct is
based on the ct−1 transmitted from the previous state plus some values, while
ht is often very different under different nodes. The main internal structure of
LSTM consists of three gates:

– Input gate: this gate selectively remembers the input of this stage. It mainly
selects and memorizes the input xt.

it = σ(Wi · [ht−1, xt] + bi) (1)

ĉt = tanh(Wc · [ht−1, xt] + bc) (2)

– Forget gate: this gate determines how much of the upper state is retained.

ft = σ(Wf · [ht−1, xt] + bf ) (3)

– Output gate: this gate determines how much of the current state is output to
the subsequent network.

ot = σ(Wo · [ht−1, xt] + bo) (4)

ct = ft · ct−1 + it · ĉt (5)

ht = ot · tanh(ct) (6)

3.3 Differential Privacy With Deep Learning

In this section, we focus on the differential privacy mechanism and how to deploy
differential privacy on the deep learning model.
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Fig. 1. The structure of LSTM.

Definition Of Differential Privacy. Differential privacy provides a powerful
privacy guarantee for algorithms dealing with aggregated databases. It is defined
in the context of adjacent databases, which are different only in a single data
record.

The following is the mathematical definition of differential privacy: A ran-
domize mechanism M : D

R−→ with domain D and range R satisfies (ε, δ)-
differential privacy, if for any two adjacent inputs d, d

′ ∈ D and for any subset
of outputs S ⊆ R it holds that

Pr[M(d) ∈ S] ≤ eεPr[M(d
′
) ∈ S] + δ (7)

By adjusting the privacy budget parameter ε, the accuracy of the model and
the degree of privacy disclosure can be controlled.

Differentially Private SGD Algorithm. Following [12], our algorithm
mainly includes two steps. Firstly, the sensitivity of each sample is reduced by
clipping the gradient of the sample, and then noise is added to the gradient in
batches before uploading the parameters. Secondly, the privacy consumption of
the whole training is tracked by the composition theorem of differential privacy.
Algorithm 1 describes how to add noise to the gradient descent process.

L(θ) is the loss function of the whole model. In each step of SGD, we calculate
the gradient ∇θ L(θ, xi) of a batch of samples, then clip the l2 norm of each
gradient, compute the average, add noise, and finally update the parameters by
back propagation.

4 Experiments Results and Analysis

In this section, we will validate the accuracy of traffic matrix prediction on the
proposed model. Moreover, we will compare the changes in the practicability of
the prediction model after adding differential privacy. In this experiment, the
data set used is Abilene. The Abilene network [2] is mainly used for education
and research, which consists of 12 nodes and 54 undirected links. There are 144
OD pairs in this data set. Finally, we analyze the OD pairs whose prediction
rate changes greatly before and after adding noise, and discuss the reasons.



600 W. Li et al.

Algorithm 1. Differentially private SGD
Input: Examples x1, . . . , xN , loss function L(θ) = 1

N

∑
i L(θ, xi). Parameters : learn-

ing rate ηt, noise scale σ, group size L, gradient norm bound C.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Lt with sampling probability L/N
Compute gradient
For each i ∈ Lt,comupte gt(xi) ←− ∇θtL(θt, xi)
Clip gradient

gt(xi) ←− gt(xi)/max(1,
‖gt(xi)‖2

C
)

Add noise
g̃t ←− 1

L
(
∑

i gt(xi) + N(0, σ2C2I)
Descent
θt+1 ←− θt − ηtg̃t

end for
Output: θT and compute the overall privacy cost (ε, δ) using a privacy accounting

method.

4.1 Performance Metrics

In order to effectively evaluate our proposed method, we use Mean Absolute
Percentage Error (MAPE) as the evaluation index. The metric can be expressed
by the following formula:

MAPE =
100%

n

n∑

i=1

| ŷi − yi

yi
| (8)

where ŷi represents the predicted value, and yi represents the true value.

4.2 Results and Analysis

The cumulative distribution function (CDF) curve of MAPE results is plotted
for different input steps. In Fig. 2, k is used to represent the input step size,
which means that the previous k number values are used to predict the flow
value at the next moment. We can see that the LSTM network captures the
long-distance dependence of the OD pair well. In the LSTM without differential
privacy, more than 50% of the data has a MAPE lower than 50%, and in the
DP-LSTM network, more than 40% of the data has a MAPE lower than 50%. In
the 4 sets of experiments with different k, when k = 20, the model performs best.
In Table 1, it shows the drop rate of the model’s prediction rate after adding
noise at different input step lengths.
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Fig. 2. The MAPE result of different k

The degree of reduction in the usability of the model is related to the mag-
nitude of the added noise. Through Fig. 3, we observe that the amount of noise
added is negatively correlated with the prediction accuracy of the model. This
shows that we need to make a trade-off between protection level and prediction
accuracy.

Fig. 3. The MAPE result of different noise level on LSTM

In addition, we find that the prediction rate of some OD pairs did not drop
much after adding noise, while on some OD pairs it changed greatly after adding
noise. In Fig. 4(a), we plot the relationship between the MAPE metric of the
OD pair and the absolute difference of the model prediction rate after adding
differential privacy. Through the scatter plot, it can be found that the data
points are concentrated in the lower left corner of the graph, which shows that
when the LSTM model without DP performs better on some OD pairs, the
performance of the model will not drop too much after adding noise to these
pairs. However, when the model without DP performs poorly, the performance
of it will get even worse when noise is added. In addition, Fig. 4(b) demonstrates
the relationship between the decline in performance and the variance of OD-pair
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Table 1. Model prediction rate after add noise.

K MAPE decrease percentage

20 12.96%

30 22.52%

40 16.73%

50 19.96%

intra-flow values. The scatter plot shows that the smaller the variance of the OD
pair, the less likely the addition of noise will affect the model, but the statistical
feature of variance cannot fully explain the degree of influence of differential
privacy on the model.

Fig. 4. Impact of MAPE and standard deviations

5 Conclusions

The traffic matrix is an indispensable type of information in network manage-
ment, and the time series model can be used to predict the traffic matrix to be
used in the future. LSTM is a model that is very suitable for this type of problem
in deep learning. However, due to the inherent characteristics of deep learning, it
is vulnerable to attacks. This paper focuses on combining the differential privacy
mechanism with the LSTM model, so that the usability of the model is main-
tained while protecting the privacy of traffic data. In the experiments, it can be
concluded that after adding noise, the prediction accuracy of the model can be
compromised to a very low degree, and it can still be released as an excellent
predictor. Moreover, by analyzing the characteristics of the original data, we
discuss some reasons why some OD pairs behave abnormally after adding noise.
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Abstract. In the differential privacy interactive framework, data sets
need to be used to answer multiple queries. With the gradual consump-
tion of the privacy budget, the risk of privacy disclosure increases. There-
fore, it is essential to save and track the consumption of the privacy
budget, which should not exceed the limit given by the privacy budget.
Therefore, firstly, this paper optimizes the Gaussian mechanism to reduce
the query response time; Then a Continuous Query Differential Privacy
Mechanism (CQDPM) is designed to save the overhead of privacy budget
and improve the availability of data; Use the blockchain to record the
privacy budget to facilitate the query of the usage of the privacy bud-
get; Finally, a data integrity verification algorithm is proposed by using
blockchain. Experiments show that the proposed mechanism reduces the
query response time, effectively saves the privacy budget overhead under
the same privacy budget limit, and has higher data availability.

Keywords: Differential privacy · Gaussian mechanism · Blockchain

1 Introduction

More and more information is collected for publishing and analysis, which can
bring significant social benefits, such as providing better services, publishing offi-
cial statistics, providing data mining or machine learning tasks, but at the same
time, it will lead to the disclosure of personal privacy data. To solve the problem
of privacy disclosure in data publishing, Dwork et al. proposed differential pri-
vacy protection in 2006 [3]: differential privacy protection is a privacy protection
technology based on data distortion, and then add noise to distort sensitive data,
and the processed data can still maintain some statistical characteristics.

Differential privacy protection can be divided into the interactive framework
and the non-interactive framework [18]. In the non-interactive framework, the
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data owner publishes the disturbance results of all queries at one time or pub-
lishes a data set disturbed by noise, that is, the synthetic data set, for all possible
queries proposed by the user. The user can query the synthetic data set directly.
In the interactive framework, the user puts forward a query request to the data
owner, adds noise satisfying differential privacy to the real query results, obtains
the disturbing results, and returns the results to the user. In this process, the
data set is isolated from the user; the user cannot touch the whole data set to
achieve privacy protection.

In the traditional interactive framework, users will consume a certain amount
of privacy budget for every query, resulting in fewer queries supported by a
dataset and being vulnerable to repeated attacks [8]. To Solving these problems,
this paper proposes CQDPM , which stores the usage of privacy budget in the
blockchain network and records the disturbing results locally. When encounter-
ing the same type of query, the previous noise answer can be reused partially or
completely. Especially when encountering the same query as before, the frame-
work will directly return the previous results to the user to effectively resist
repeated attacks.

The main contributions of this paper are as follows:

1) This paper uses the Newton downhill method to iteratively calculate the
value and improve the Gaussian analysis mechanism (AGM) proposed by
Balle et al. [1]. Under the same precision, the query response time is reduced.

2) A differential privacy protection mechanism (CQDPM) for continuous query
is designed, which improves the availability of data compared with the algo-
rithm of Zhao et al. [17]. A data integrity verification algorithm is proposed
to ensure the security of records.

3) We conducted experiments using real data sets. Numerical results show that
our proposed algorithm reduces the query response time and effectively saves
the privacy overhead, and the data availability after disturbance is higher.

2 Related Work

2.1 Differential Privacy Interactive Framework

In the interactive publishing framework, Dwork et al. [5] first applied the Laplace
mechanism to the interactive framework, adding Laplace noise directly before
publishing the query results, but it can provide few queries. After that, Roth
et al. Proposed the median mechanism [12], which divides queries into “hard
query” and “easy query”. Among them, the query results of “easy query” can
be approximated by the “hard query” results, which can effectively improve the
query times under a sure accuracy. Hardt et al. Proposed the multiplicative
weight mechanism (PMW) [9], which is an iterative mechanism. Laplace noise
interference is applied to the query results, and the interference results are com-
pared with the previous query results. If the difference is less than the preset
threshold, the “approximate” result of the previous query is used to replace this
query, but the framework is only limited to counting queries. The accuracy and



606 H. Ouyang et al.

query times are improved to a certain extent. However, none of the above frame-
works can effectively prevent repeated attacks. Yang et al. [15] proposed reusing
noise response but did not quantify the proportion of noise reuse. Zhao et al.
Proposed blockchain-based reuse noise (BBRN) [17], which records the disturb-
ing results and the privacy budget in the distributed blockchain network. Due
to the tamper-proof characteristics of the blockchain, its data security is high,
but the query response time of the mechanism is exponentially correlated with
the number of queries.

Compared with the mechanism of Zhao et al., the CQDPM proposed in this
paper stores the disturbing results in the local server, which reduces the query
response time, but brings the risk of record tampering. Therefore, an integrity
verification algorithm is proposed to ensure the security of records. For the noise
disturbance mechanism, the Gaussian mechanism is optimized to reduce the
number of iterations. In the interactive framework, the privacy budget and other
parameters of each query customized by the user rather than added adaptively by
the algorithm, so it is essential to track the consumption of the privacy budget.
The mechanism records the privacy budget by using the blockchain to facilitate
the query of the usage of the privacy budget.

2.2 Gaussian Mechanism

Dwork et al. [3] proposed a Gaussian mechanism in 2006. Gaussian mechanism
achieves the purpose of differential privacy protection by adding noise obeying
Gaussian distribution to query results. Moreover, the privacy loss random vari-
ables constitute an independent Gaussian distribution, so the Gaussian mecha-
nism has a more straightforward analysis method. At present, some researches
on the Gaussian mechanism are worth learning from. When the Gaussian mech-
anism meets (ε, δ) − ADP, the value σ2006 is at least:σ2006 ≥ √

2 log 2/δ/ε, and
the global sensitivity is 1. Subsequently, Dwork et al. [6] optimized the satis-
faction conditions when meeting (ε, δ) − ADP in 2014: σ2014 ≥ √

2 log 1.25/δ/ε.
When Balle et al. [1] reanalyzed the Gaussian mechanism in 2018, they found
the limitations and suboptimal of Dwork et al. Therefore, they proposed the
analytical Gaussian mechanism (AGM). However, since σAGM has no closed
expression, In 2019, when Zhao et al. [16] sacrificed a small accuracy, σ2019

can be calculated directly by expression to simplify the calculation process.
Under the same conditions, the size relationship of their calculated values
is:σ2006 > σ2014 > σ2019 > σAGM .

3 Basic Knowledge

Table 1 defines the symbols used in this article.

3.1 Differential Privacy

Definition 1 (Differential Privacy [4]). A randomized function A(D) is (ε, δ) -
differentially private if for all pairs ofdatabases (D,D′) with dH (D,D′) = 1 and
all measurable subsets of outputs O:
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Table 1. Symbol summary

Symbol Describe

(ε, δ) Privacy parameters

F(·) Probability density function

Δ2Q Global sensitivity of query Q

σ2 Variance of Gaussian distribution

̂Qm(D) The result after the m-th query disturbance

r Reuse ratio

LM,D,D′(Y ) Privacy loss function

Φ(·) Standard Gaussian distribution function

N
(

0, σ2
)

Gaussian distribution with mean value of 0 and variance of σ2

H(·) Hash function

Qm(D) The m-th query results without noise

Φ(·)′ Derivative of standard Gaussian distribution function

P(A(D) ∈ O) ≤ eε
P (A (D′) ∈ O) + δ

Intuitively, (ε, 0)- differentially privacy ensures that for every run of algorithm A
the outputis almost equally likely to be observed on every neighboring database.
This condition isrelaxed by (ε, δ)- differentially privacy since it allows that given
a random output O from A(D), it may be possible to find a database D′ such
that O is more likely to beproduced on D′ that it is when the database is D.
In both cases the similarity is defined by the factor eε while the probability
ofdeviating from this similarity is δ.

Definition 2 (Global Sensitivity [14]). upposing f is a random query function
of a sequence, and f : D → Rd, D1 and D2 are two data sets with at most one
difference, the global sensitivity of f is shown as the following:

Δf = max
D1,D2

‖f (D1) − f (D2)‖1

In addition to global sensitivity, there are local sensitivity and smoothing sensi-
tivity. Refer to specific literature [11], which is not described here.

Definition 3 (Privacy loss function [7]). Consider running an algorithm M on
a pair of databases D,D′. The privacy loss function LM,D,D′(Y ) can be expressed
as the distance between two probabilities that M acts on adjacent data sets D
and D′ and outputs the same random variable Y . It is defined as follows:

LM,D,D′(Y ) = ln
(
FM(D)(Y )
FM(D′)(Y )

)

Where FM(D)(Y ) is the probability density function of the output random
variable Y = (D). if the Gaussian mechanism is selected to add noise, then
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LM,D,D′(Y ) ∼ N
(
Δ2f

2/2σ2,Δ2f
2/σ2

)
[13]. We can extend it to multiple ran-

dom mechanisms and set a set of random mechanisms M1,M2, · · · ,Mn. When
this set of mechanisms acts on adjacent data sets D and D′, the output result is
random variable Yi, represented by Yi = M(D). Then:

L(M1,M2,··· ,Mn),D,D′ (Y1, Y2, · · · , Yn) = ln
F (

⋂n
i=1 Yi = Mi(D))

F (
⋂n

i=1 Yi = Mi (D′))
.

4 Optimize AMG Variance Calculation Method

Lemma 1. Let the global sensitivity of M : R
|D| → Y be Δ2f , and for any

ε ≥ 0, 0 < δ < 1, the necessary and sufficient condition for M(D) = f(D) +
N

(
0, σ2

)
to satisfy (ε, δ) - differential privacy is:

Φ

(
Δ2f

2σ
− εσ

Δ2f

)
− eεΦ

(
−Δ2f

2σ
− εσ

Δ2f

)
≤ δ (1)

Lemma 1 is Theorem 8 in reference [1], where Φ(·) is the standard normal dis-
tribution. To satisfy the privacy guarantee of (ε, δ)-differential privacy, the noise
variance σ2 of formula (1) needs to be calculated.

Corollary 1. σ Solving Algorithm Set σ = αΔ2f/
√

2ε, where α > 0 takes
the formula in Lemma 1 (1):

Bε(α) = Φ
(
ε
(
1 − α2

)
/α

√
2ε

)
− eεΦ

(
−ε

(
1 + α2

)
/α

√
2ε

)
− δ (2)

Formula (1) The second item on the right −ε
(
1 + α2

)
/α

√
2ε ≤ 0, and the first

item on the right are divided into the following three cases:

1) ε
(
1 − α2

)
/α

√
2ε < 0, α > 1

Make u = α2/2+1/2α2 −1, then: B−
ε (u) = Φ(−√

εu)− eεΦ(−√
ε(u + 2))− δ

2) ε
(
1 − α2

)
/α

√
2ε > 0, α < 1

Make v = α2/2 + 1/2α2 − 1, then: B+
ε (v) = Φ(

√
εv) − eεΦ(−√

ε(v + 2)) − δ

3) ε
(
1 − α2

)
/α

√
2ε = 0, α = 1 :

B−
u (0) = B+

v (0) = Φ(0) − eεΦ(−√
2ε) − δ = δ(ε) − δ

From Corollary 1, we can see that limv→∞ B+
ε (v) = 1 − δ and limv→0 B+

ε (v) =
−δ,and B+

ε (v) monotonically increasing functions, so they have and only have one
root.According to the characteristics of B+

ε (v) function, we find that it satisfies
the convergence condition of Newton’s downhill method for finding roots (B−

ε (u)
homology). Therefore, Corollary 1 output satisfies the noise variance of (ε, δ) -
differential privacy, where ε > 0, 0 < δ < 1. Implemented by Algorithm 1.

Algorithm 1 uses the error function erf(x) = 2/
√

π
∫ x

0
e−t2dt to calculate the

Gaussian distribution, and Φ(x) = 1
2 + erf(x/

√
2)/2 can be obtained.
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5 Continuous Query Differential Privacy Mechanism

5.1 Blockchain

Since the advent of Bitcoin in 2008 [10], Blockchain technology has attracted
wide attention. Blockchain is a decentralized, shared account that uses crypto-
graphic techniques to guarantee that data on the chain cannot be tampered with
or forged [2]. This paper proposes a CQDPM for continuous queries. Because
the allocation of the privacy budget is not adaptive, it consumes the privacy
budget according to query requirements. Therefore, it is essential to control and
track the consumption of the privacy budget. Considering the characteristics
of Blockchain, this paper records the privacy budget and consumption in the
Blockchain network. This ensures that the privacy budget will not be tampered
with, and at the same time, it is easy to query the usage of the privacy budget.
Finally, due to the security of local records, relying on the Blockchain network, a
data integrity verification algorithm is proposed. The hash values of each record
from the local server are recorded in the Blockchain network separately. Whether
the integrity of the data is damaged or not, only the hash values of the data are
compared. The security of records in the local server is improved.

Algorithm 1: Newton iterative variance calculation algorithm
Input: Dataset D, Query Q, Sensitivity Δ2Q, Privacy parameters (ε, δ)
Output: Noise variance σ2

1 Computer δ0 = Φ(0) − eεΦ(−√
2ε)

2 if δ > δ0 then

3 funciton B+
ε (v) = Φ(

√
εv) − eεΦ(−√

ε(v + 2)) − δ

4 Computer B+
ε (v)′ = Φ(

√
εv)′ − eεΦ(−√

ε(v + 2))
5 while

(

B+
ε (v∗) < tol ) do

6 Computer u∗ = u − B−
ε (u)/B−

ε (u)′

7 end

8 end

9 Computer α =
√

1 − v∗/2 − √

v∗/2
10 else if δ < δ0 then

11 function B−
ε (u) = Φ(−√

εu) − eεΦ(−√

ε(u + 2)) − δ

12 Computer B−
ε (u)′ = Φ(−√

εu)′ − eεΦ(−√

ε(u + 2))′

13 while
(

B−
ε (u∗) < tol

)

do
14 u∗ = u − B−

ε (u)/B−
ε (u)′

15 end

16 end

17 Computer α =
√

1 − u∗/2 − √

u∗/2
18 else
19 α = 1
20 end

21 return σ2 =
(

αΔ2Q/
√

2ε
)2
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5.2 Noise Reuse in Differential Privacy

To answer how to reuse noise in continuous queries with different privacy guar-
antees, Zhao et al. Proposed a new method of reusing noise in Theorem 1 of doc-
ument [3] to minimize the ratio of privacy cost. In this paper, we give Lemma 2.

Lemma 2. Query Q1, Q2, · · · , Qm−1 has been answered before answering query
Qm. if Qm is a T-type query, Qj has the same query type as Qm, j ∈
(1, 2, · · · ,m − 1), at this time, you can reuse the noise that has answered Q̂j(D)
to answer Q̂m(D). Set the noise reuse rate r; 0 ≤ r ≤ 1, σ2

m−r2σ2
j > 0 is satisfied,

and Q̂j(D) − Qj(D) ∼ N
(
0, σ2

j

)
, then Q̂m(D):

Qm(D) + r
(
Q̂j(D) − Qj(D)

)
+ N

(
0, σ2

m − r2σ2
j

)
= Q̂m(D) (3)

where Q(D) represents the exact result of the query, Q̂(D) represents the result
after disturbance, and σ2 is the output of Algorithm 1. Now it is necessary to
determine the specific value of noise reuse rate r. According to the definition
of privacy loss function in the three sections of this paper, this paper gives
Corollary 2.

Corollary 2. Calculation of r. Because Qm and Qj are of the same type,
Qm(D) = Qj(D) and the global sensitivity is ΔQm = ΔQj , the following results
are obtained:

1. If you have answered Q1, Q2, · · · , Qm−1 before answering the same type
of query Qm, the privacy loss function L(Q̂,Q̂2,··· ,Q̂m),D,D′ (Yi) ∼ N

(
V

(D,

D′)/2, V (D,D′)
)
, and the privacy loss function L(Q̂1,Q̂2,··· ,Q̂m),D,D′ (Yi) ∼

N (U (D,D′) /2, U (D,D′)) after answering Qm. Of which:

U (D,D′) = V (D,D′) + {‖Qm(D) − Qm (D′)‖2}2 (1 − r)/σ2
m − r2σ2

j (4)

In particular, when m = 1,U (D,D′) = 0 + ΔQ2/σ2.
2. In order to minimize the total privacy cost, we regard the second term on the

right in formula (4) as a function of r, which can give the optimal ratio:

r =

⎧
⎪⎨

⎪⎩

1 σm ≥ σj and Qm ∈ T

(σm/σj)
2

σm < σj and Qm ∈ T

0 Qm /∈ T

(5)

Where T{} represents a collection of query types, according to the value
of noise reuse ratio given by inference 2, Algorithm 2 realizes the reuse noise
response. When reusing noise, the algorithm needs to compare the corresponding
data of the same query type, so it is necessary to record the privacy parameters,
query type, disturbance result and σ after each response to the query result.
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5.3 Local Data Integrity Verification

In order to prevent malicious modification of data, Algorithm 3 is proposed
based on the characteristics of the Hash function to verify whether the record is
modified.

Algorithm 2: Continuous Query Differential Privacy Mechanism
Input: Dataset D, Type of Qm: Q ∈ t,Variance σ2

m, parameters (εm, δm)

Output: Results after disturbance ̂Qm(D)

1 if Query type t of Qm met for the first time then

2 Computer εr = εr − εm

3 if εr ≥ 0 then

4 Computer ̂Qm(D) = Qm(D) + N
(

0, σ2
m

)

5 hm = H
(

̂Qm(D), t, εm, δm, σ2
m

)

6 Blockchain record hm, εr

7 return ̂Qm(D)

8 end

9 end

10 else

11 if σ2
m =

{

σ2
j | σ2

j ∈ t
}

then

12 return ̂Qj(D)

13 end

14 end

15 else σ2
m < min

{

σ2
j | σ2

j ∈ t
}

16 Computer
(

αΔ2Q/
√
2ε

)−2
= σ−2

m − σ−2
j

17 Computer εr = εr − εl

18 if εr ≥ 0 then

19 Let r =
(

σ2
m/σ2

j

)

20 Computer ̂Qm(D) = Qm(D) + r
(

̂Qj(D) − Qm(D)
)

+ N

(

0, σ2
m − rσ2

j

)

21 hm = H
(

̂Qm(D), t, εm, δm, σ2
m

)

22 Blockchain record hm, εr

23 return ̂Qm(D)

24 end

25 end

26 else σ2
m > max

{

σ2
j ∈ t | σ2

j < σ2
m

}

27 Computer ̂Qm(D) = ̂Qj(D) + N

(

0, σ2
m − σ2

j

)

28 hm = H
(

̂Qm(D), t, εm, δm, σ2
m

)

29 Blockchain record hm, εr

30 return ̂Qm(D)

31 end

Algorithm 3: Data integrity verification
Input: R[i]

Output: True or False

1 Computer: hi = H(R[i])

2 Compare:hi == hjofBlockchain
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6 Experimental Analysis

6.1 Experimental Environment

In this experiment, using the American community survey sample provided by
IPUMS (integrated public use microdata Series), we selected 10000 data from
17293 data in 2019. Each data includes four attributes: Total personal income,
Total family income, Age and Sex. Five types of query types are considered:
average individual income, average family income, the proportion of men, the
proportion of women, ≥ per capita income of 60 years old. The sensitivity of each
query is 10, 9.7, 0.0001, 0.0001, 10. For the privacy parameters of each query, εi

samples randomly from [0.1, 1], and δi samples randomly from
(
10−5, 10−4

)
.

6.2 Comparison of Time Efficiency of Algorithm 1

Algorithm 1 optimizes the calculation method of Gaussian mechanism variance,
uses the Newton downhill method to search for the optimal v∗, u∗ iteratively,
and theoretically shows that Algorithm 1 satisfies (ε, δ) - differential privacy. In
order to improve the response efficiency under the interactive framework, the
number of iterations and response time is compared with the AGM algorithm.

It can be seen from Fig. 1. a) and 1. b). Under the same accuracy, the number
of iterations after optimization is nearly 60% lower than the dichotomy used by
AGM, and the iteration time is about 50% lower. Among them, the red algorithm
is 1, and the black is the AGM algorithm.

(a) Number of iterations (b) Response time

Fig. 1. Comparison between Algorithm 1 and AGM algorithm (Color figure online)

6.3 Time Efficiency Comparison of CQDPM

An experiment is designed to verify the effectiveness of Algorithm 2 in saving
privacy budget. Under the same conditions, 40 above five types of query requests
are randomized. Compared with the traditional algorithm that does not reuse
noise disturbance, the two algorithms have less consumption of privacy budget.
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As shown from Fig. 2. a), Algorithm 2 significantly saves the privacy budget
and reduces the privacy budget consumption by about 62% compared with the
traditional algorithm. As the number of queries increase, the consumption of
the privacy budget tends to a specific value. Randomize 50 queries, compare the
absolute error of Algorithm 2 and BBNR algorithm, and the calculation formula
is:

∣∣∣Q̂m(D) − Qm(D)
∣∣∣. Verify the availability of Algorithm 2 on real data sets.

As can be seen from Fig. 2. b), Algorithm 2 improves the effectiveness of data
compared with the BBNR algorithm of Zhao et al. The comparison of absolute
error can also be considered the comparison of added noise.

(a) Cost of privacy budget (b) Absolute error

Fig. 2. Comparison between CQDPM and existing algorithms

Finally, we compare the response efficiency with the BBNR algorithm. Since
the time complexity of blockchain increases greatly with the increase of the
number of records, this paper records the query results in the local rather than
the distributed storage blockchain system. When responding to a new query, you
only need to compare it in the local record without requesting the blockchain
system, which reduces the query response time.

The experiment uses the truffle framework to compile and deploy the smart
contract, and deploys the smart contract to the Ropsten test network through
the services provided by infra. We randomly collected 100 bytes32 type data and
gradually recorded it into the smart contract.

In Fig. 3, the response time fluctuates obviously due to the blockchain net-
work. Nevertheless, the response time of the CQDPM has been improved greatly.
CQDPM is efficient for the response efficiency of interactive queries.
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(a) Comparison of query response time (b) Algorithm 3 response time

Fig. 3. Comparison of efficiency

7 Summary

This paper study the problem of “fast consumption of privacy budget in dif-
ferential privacy interactive query, resulting in a small number of queries”. The
noise reuse proposed by Zhao et al. Effectively solves this problem but brings
slow response speed. In an interactive query framework, the response speed of
the query is as essential as the number of queries that the data set can provide.
Therefore, this paper designs a CQDPM, which can reuse noise to improve the
number of queries and reduce the query response time significantly, and improve
data availability to a certain extent. At the same time, this paper analyzes the
shortcomings and limitations of the Gaussian mechanism and uses the Newton
downhill method to calculate the noise variance iteratively. From the experiment,
it can be seen that the iterative efficiency is improved by about 50%. Finally,
Algorithm 3 is proposed to verify the integrity of data in the local server. In
terms of security, there are also corresponding guarantees. Because the query
type is preset, the type is relatively fixed. In the future, the internal relationship
between query statements will be used to expand the types of query types and
further improve the practicability of the mechanism proposed in this paper.

Acknowledge. Thanks to the National Natural Science Foundation of China (NO.
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Abstract. With the rapid expansion of Internet of Things (IoT), Con-
strained Application Protocol (CoAP) is developed to enable those
devices with small memory, constrained computing power and limited
ability to communicate with other nodes in the network. Meanwhile,
group communication is very useful for managing and controlling a set
of homogeneous devices in many IoT scenarios. Thus, many scholars are
devoted to expanding CoAP to enable group communication. Further-
more, because CoAP is widely applicated in transportation, health care,
industrial and many other areas, the security and consistency of data is
of great importance. In this paper, we adopt Communicating Sequen-
tial Processes (CSP) to model group communication CoAP, and we use
model checker Process Analysis Toolkit (PAT) to verify six properties of
our model, including deadlock freedom, divergence freedom, data reach-
ability, data leakage, client faking and entity manager faking. The verifi-
cation results show that the original architecture has the security risk of
data leakage. So we enhance it by adding message authentication code
in the process. In the light of the new verification results, it can be found
that we succeed in eliminating the possibility of data leakage.

Keywords: Group communication · CoAP · CSP · Modeling ·
Verification

1 Introduction

The expansion of Internet of Things (IoT) market is changing the way people live
and work tremendously in many aspects, including transportation, healthcare,
industrial automation, etc. [1]. The Constrained Application Protocol (CoAP),
an application level protocol created by IETF group, aims to enable tiny devices
to utilize RESTful interactions. The basic communication model for CoAP is
based on the client-server model [2]. However, group communication can be
quite useful in practical scenarios of IoT, thus it has been recently supported
by CoAP. This can be implemented with IP multi-cast [3] or an observe-based
group communication scheme [4].

In the meantime, IoT devices generate, exchange and consume potentially
sensitive and safety-critical data [5]. Moreover, in the IoT ecosystem, users can
c© Springer Nature Switzerland AG 2022
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remotely access IoT devices by using application message brokers or middle-ware
technologies. These characters make IoT prone to cyber criminals [6]. Therefore,
security and integrity are rather important requirements. However, from those
existing works concerning security of group communication CoAP, we find that
they mainly take the approach of implementing the protocol, and analyzing the
security performance with data collected in experiments [7,8]. Experiment data
is prone to a variety of external factors. There may still exist potential security
issues in group communication CoAP.

In this paper, we adopt a formal method to verify the security of group com-
munication CoAP. We choose Communicating Sequential Processes (CSP) [9] to
model the architecture, which has the accuracy of mathematical proof. And we
use Process Analysis Toolkit (PAT) to verify six properties: deadlock freedom,
divergence freedom, data reachability, data leakage, client faking and entity man-
ager faking. The verification results show that data leakage is possible with the
presence of an intruder. On this basis, we introduce message authentication code
(MAC) [10] as an improvement and formalize a new model to address the prob-
lem. The new verification results indicate the improved model achieves higher
security. The works we have done in this paper is shown in Fig. 1.

Fig. 1. Works done in this paper.

This paper is organized as follows. Section 1 gives a brief introduction of
group communication CoAP and process algebra CSP. Section 3 illustrates
detailed modeling of group communication CoAP. In Section 4, we use PAT to
verify six properties of the original model and make improvements accordingly.
Finally, we draw a conclusion and give the future work in Section 5.

2 Background

In this section, we give a brief explanation of the architecture and message flow
of group communication CoAP. We also introduce the process algebra CSP.

2.1 Overall Architecture of Group Communication CoAP

In this paper, we adopt the observe-based group communication scheme. Under
this scheme, entities participating in communication include:
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– Entity: A set of resources is called an entity. One CoAP request is capable
of manipulating all resources in one entity.

– Entity Manager: It manages multiple entities. Theoretically, users can select
the Entity Manager based on the size and topology of the network.

– Resource Directory: It records detailed information of resources.

Furthermore, the security of CoAP depends on Datagram Transport Layer Secu-
rity (DTLS) binding [11] in the absence of built-in security mechanisms. There
are four security patterns: No-Sec, Pre-shared-Key (PSK), Raw-Public-
Key (RPK) and Certificate. In our architecture, we should ensure the security
of the content as well as reduce the cost of communication.

Thus, we make the following assumptions: the communication between client
and entity manager adopts Certificate pattern. RPK pattern is selected for
the communication between other nodes.

The RPK pattern we adopted is implemented with ECDHE [12] algorithm.
Based on those assumptions, we introduce a new entity, Certificate Author-
ity, to issue and manage digital certificates. The overall architecture of group
communication CoAP is shown in Fig. 2.

Fig. 2. Architecture of group communication CoAP.

2.2 Working Mechanism of Group Communication CoAP

Entity manager provides the client with three main functions: Entity Creation,
Entity Usage and Entity Manipulation.

– Entity Creation: The client interacts with the entity manager to create an
entity with designated resources. Figure 3 demonstrates the detailed process.
1. Resources in the network send their own profiles to the resource directory

and the resource directory returns an acknowledgement (ACK).
2. The client sends a resource query to the resource directory.
3. The resource directory sends back the information of existing qualified

resources to the client.
4. The client initiates a request to create an entity to the entity manager.

Payload includes specific resources, its own certificate, and expected oper-
ation on the return value.
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5. The entity manager forwards the certificate to the certificate authority
for verification and gets the verification result. If the result is valid, it
proceeds to the next step. Otherwise, it fails.

6. The entity manager verifies whether the resource is valid through the
resource directory. If the result is valid, it proceeds to the next step.
Otherwise, it fails. The verification here includes two aspects: all members
actually exist and provide expected functionality.

7. The entity manager integrates and stores the information of the group
of resources and assigns an URL to the freshly created entity. Then it
returns an ACK including the assigned URL together with the certificate
of itself back to the client.

8. The client forwards the certificate to the certification authority for veri-
fication as is described in step 5.

9. The client returns an ACK. The entity is created successfully and can
continue subsequent communications.

Fig. 3. Interactions among entities in entity creation phase.

– Entity Usage: User can manage all members in an entity by only one CoAP
request to the entity manager. Figure 4 illustrates this process.
1. The client sends a request to the entity manager to request the data of

Entity1.
2. The entity manager sends requests to all resources in Entity1 respectively.
3. The entity manager waits for the data returned, until the amount of data

meets the requirement.
4. The entity manager processes the collected data and returns it to the

user.
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Fig. 4. Interactions among entities in entity usage phase.

– Entity Modification: After creation of an entity, it is possible that client
wants to make some modifications, like adding new members. The process is
similar to entity creation. Therefore, we combine the two.

2.3 CSP

CSP is a process algebra proposed by C.A.R.Hoare. Since CSP’s introduction
in 1978, it has been improved and refined, and has evolved into an abstract
language that is highly mature and capable of describing message exchanges
among processes. Part of CSP syntax used in our model are described as follows.

P,Q :: = SKIP | STOP | a → P | c?x → P | c!v → P

| P � Q | P || Q | P � b � Q | P ;Q

– SKIP : The process terminates properly.
– STOP : The process reaches deadlock.
– a → P : After the execution of event a, process P is executed.
– c?x → P : The process accepts value from the channel c, assigns it to variable
x, and then starts executing process P .

– c!v → P : The process sends value v through the channel c, and then starts
executing process P .

– P�Q: It stands for general choice between the process P and process Q.
– P ||Q: Process P and process Q run in parallel.
– P � b � Q: If boolean expression b equals true, then process P is executed,

otherwise process Q is executed.
– P ;Q: After successful termination of process P , process Q is executed.

3 Modeling Group Communication CoAP

3.1 Sets, Messages and Channels

To facilitate the procedure of modeling, we first define the following sets. For
those entities participating in the communication, we have: Clients for clients.
EMs for entity managers. Sensors for constrained resources, including sensors
in the network, etc. RDs for resource directories. Entities for client-created
entities, which consist several constrained resources. CA for certificate authority.
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And we define UnconEntities denotes the set of clients and entity managers.
ConEntities denotes the set of resource directories and sensors.

Furthermore, all entities defined above have their own keys, clients and entity
managers have certificates, entities have their unique identifiers. So we define:
Cert for certificates, Content for data, Id for entities’ identifiers, State for the
two states true and false and Key for the set of public keys (kPUB), private
keys (kPRI) used in Certificate pattern and public key generated by the ECDHE
algorithm (kECDHE) used in RPK pattern. Based on the sets defined above, we
generalize the messages:

MSGcert = def{msgreqa.b.cert,msgrspa.b.state | a, b ∈ UnconEntities ∪ CA,

cert ∈ Cert, state ∈ State}
MSGack = def{msgacka.b.ack,msgackcc.d.ack.cert | a ∈ ConEntities ∪ CA,

b ∈ ConEntities ∪ UnconEntities, c, d ∈ UnconEntities,

cert ∈ Cert, ack ∈ State}
MSGdata = def{msgdreqa.b.cert.id,msgdrspa.b.cert.id.E(k, c),msgdreq1c.d,

msgdrsp1c.d.E(k, c) | a, b ∈ UnconEntities, c, d ∈ ConEntities,

k ∈ Key, c ∈ Content}

MSGcre = def{msgcrea.b.cert.E(k, c) | a, b ∈ UnconEntities, cert ∈ Cert,

k ∈ Key, c ∈ Content}
MSGrsc = def{msgrsca.b.E(k, c) | a, b ∈ ConEntities ∪ UnconEntities}

MSGcert includes messages used in the process of certificate verification. For
example, msgreqa.b.cert denotes that node a (possibly a client or an entity man-
ager), sends a certificate cert to node b (certificate authority), requesting valida-
tion of cert. Likewise, we have MSGack consisting acknowledgements, MSGrsc

representing any messages transferred to or from resource directory, MSGcre

including messages involved in the process of creating an entity and MSGdata

for messages involved in the process of using an entity.
Here, E(k,msg) indicates that the key k is used to encrypt msg. D(k−1, E(k,

msg)) states that the key k−1 is used to decrypt message msg which is encrypted
by the key k. It should be noted that msgdreq1c.d denotes that node c (entity
manager) sends requests to all members in node d (entity) respectively.

To model the communications between parties, we introduces two sets of
channels. COM PATH consists channels between legals nodes.

ComCCA, ComCRD, ComCEM, ComEMRD, ComEEM, ComSRD

While INTRUDER PATH consists channels being intruded.

FakeCEM, FakeEMC, InterceptCEM, InterceptEMC

FakeEEM, FakeEME, InterceptEEM, InterceptEME
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Com∗ stands for the channels for legal nodes to communicate. Fake∗ and
Intercept∗ denote the channels with existence of an intruder. The former implies
that the intruder can pretend to be a legal node to communicate with others,
while the latter implies that the intruder can intercept messages transferred
between legal nodes. Intuitively, ComCCA denotes the channel between Client
and Certificate Authority. The rest can be interpreted in the same manner.

3.2 Overall Modeling

We construct two models SystemC and SystemU , denoting the entity-
creating phase and the entity-using phase respectively. Combining SystemC
and SystemU we get the whole system without the existence of intruder, and
we name it System0. SY STEM represents the whole system considering the
presence of intruders.

SystemC = defS[|COM PATH|]RD[|COM PATH|]C[|COM PATH|]
EM [|COM PATH|]CA

SystemU = defC[|COM PATH|]EM [|COM PATH|]E
Syetem0 = defSystemC||SystemU

SY STEM = System0[|INTRUDER PATH|]Intruder

Here, we abbreviate clients as C, sensors as S, resource directories as RD,
entity managers as EM , certificate authorities as CA and entities as E. Then
we introduce the process above in detail.

3.3 Client Modeling

The client participates in communicating with the resource directory to look up
resources and the entity manager to manipulate the resources. We use general
choice � to split different scenarios of communication and formalize the model
of the client as below.

C = defECDHE key exchange → ComCRD!msgrscC.RD.E(kECDHE ,msg)

→ ComCRD?msgrscRD.C.E(kECDHE ,msg) → C

� ComCEM !msgcreC.EM.certC .E(kPUB ,msg)

→ ComCEM?msgackEM.C.certEM .E(kPUB ,msg)

→ ComCCA!msgreqC.CA.certEM

→ ComCCA?msgrspCA.C.certEM .verified

→ (success → C) � verified == true � (fail → C)

� ComCEM !msgdreqC.EM.certC .idE

→ ComCEM?msgdrspEM.C.certEM .idE .E(kPUB ,msg) → C

In the first part, we describe the behavior of looking up resource directory.
The client and the resource directory conduct an ECDHE key exchange. The
details of key generation and exchange belong to DTLS protocol, which is not
the focus of this paper, and it is simplified as an event ECDHE key exchange.
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After the exchange, the client gains a key KECDHE which is used in subsequent
communications. As we have described previously, the client sends a request to
the resource directory with payload message, which carries the information about
the target resource encrypted with KECDHE . Afterwards the resource directory
sends back responses with contents also encrypted with KECDHE .

In the second part, we describe the behavior of requesting to create a new
entity. The client and the entity manager use certificates to establish connections
through the Transport Layer Security (TLS) protocol. The exact procedure of
establishing connection is also not in the domain of this paper, so we assume that
the connection has been established beforehand in our model and a pair of public
key and private key have already been assigned to each party. The messages
transferred through the channel ComCEM is encrypted by the sender’s public
key, and it can only be decrypted by the receiver’s private key.

As to the third part, it’s quite similar to the first part, so we don’t go into
much detail here.

Above is the model established when there is no intruder. Moreover, we
need to take the presence of intruders into our considerations. According to our
assumptions, the intruder is capable of eavesdropping channels and faking mes-
sages. The relationship among client, entity manager and intruder is described
in Fig. 5. We simulate those behaviors by renaming as below.

C′ = defC[[ComCEM !{|ComCEM |} ← ComCEM !{|ComCEM |},
ComCEM !{|ComCEM |} ← InterceptCEM !{|ComCEM |},
ComCEM?{|ComCEM |} ← ComCEM?{|ComCEM |},
ComCEM?{|ComCEM |} ← FakeEMC?{|ComCEM |}]]

Symbol {|x|} denotes the set of messages which can be transmitted through
channel x. The first and second parts indicate that either the client sends a true
message to the entity manager through channel ComCEM or the message is
eavesdropped. The third and fourth parts indicate that either the client receives
a true message from the entity manager through channel ComCEM or the client
receives a false message produced by the intruder through channel FakeEMC.

Due to limitation of space, we leave out detailed modeling of other entities
except for the intruder.

Fig. 5. Channels with existence of intruder.
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3.4 Intruder Modeling

We assume the intruder can intercept legal channels, make a series of reasoning
through the existing message (such as encryption and decryption, but we do
not allow the intruder to guess the key) and fake new messages based on the
information above and sent to legal nodes. We first define a set Fact, which
includes all facts that can be obtained by intruder. Theoretically, the intruder
can obtain all nodes in the network, and get all certificates, public keys and
encrypted messages through channels.

Fact = defConstrainedEntities ∪ UnconstrainedEntities ∪ CA ∪ Cert ∪ Key

∪ {k, c | k ∈ Key, c ∈ Content} ∪ {E(k, c) | k ∈ Key, c ∈ Content}
Based on the facts, the intruder can make inferences as below. The first

inference signifies that if the intruder have the key k and the content c, then he
can get the texture of c encrypted by k. Likewise, the second one shows if the
intruder gets k−1, he can decrypt E(k, c) and get the plain-text of c. The last
one demonstrates that if the intruder can get fact f from set F , then he can
undoubtedly get f from a bigger set F ′.

{k, c} �→ E(k, c) {k−1, E(k, c)} �→ c F �→ f ∧ F ⊆ F ′ ⇒ F ′ �→ f

Next, we introduce a method info(msg), which represents that the intruder
can get fact f directly from intercepted message. For example, the intruder
intercepts a piece of message msgreqa.b.cert from channel, then he can know
that this is a message from node a to node b, and get the content c encrypted
by the key k. Then we define channel Deduce to describe the behaviors above.
We give the model of the intruder as below.

Intruder(F ) = def msg∈MSGIntercept.msg → Intruder(F ∪ Info(msg))

� msg∈MSG∩Info(msg)∈IFake.msg → Intruder(F )

� f∈Fact,f /∈F,F �→fInit{data leakage success = false} → Deduce.f.F

→ ((data leakage success = true →
Intruder(F ∪ f)) � (f == Data) � (Intruder(F )))

The first line indicates that the intruder can intercept messages from chan-
nel Intercept, obtain the content and store in set F. The second line shows
intruder’s ability to forge a message and send it through channel Fake. The rest
represents deductions through channel Deduce. In the process of constantly
collecting and reasoning, if the intruder can crack the encryption and obtain the
original data, it means the data is compromised. In addition, we define set IK
to denote facts originally obtained by the intruder.

IK = def{ConsEntities, UnconsEntities, CA, kPUB}
Finally, we finish the modeling of intruder:

Intruder = defIntruder(IK)
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4 Verification and Improvement

We conduct verification of the model through model checker PAT to verify six
properties, including deadlock freedom, divergence freedom, data reachability,
data leakage, client faking and entity manager faking. From the verification
results, we improve the origin model by introducing message authentication code
into it.

4.1 Verification

Property 1: Deadlock Freedom
Deadlock means the system is blocked and no further operation can be done.
PAT provides us with a primitive:

#assert System() deadlockfree;

Property 2: Divergence Freedom
Divergence refers to the state in which the system enters an infinite loop. We
also have a primitive:

#assert System() divergencefree;

Property 3: Data Reachability
CoAP should ensure that clients can successfully obtain the requested informa-
tion. Then we have:

#define Data Reachability data reachability success == true;

#assert CoAP reaches Data Reachability Success;

We define a state Data Reachability Success in which variable data reach
ability success is set to true. The assert statement is used to judge whether the
system can reach the state after execution.

Property 4: Data Leakage
If an intruder can decrypt the information obtained on the channel and get the
content of the information, then we face the problem of data leakage. We have:

#define Data Leakage Success data leakage success == true;

#assert CoAP reaches Data Leakage Success;

Property 5: Client Faking
Supposing the intruder successfully disguises itself as a user and communicates
with other entities, we run into the problem of client faking. We have:

#define Client Faking Success client faking success == true;

#assert CoAP reaches Client Faking Success;
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Property 6: Entity Manager Faking
If the intruder has the ability to pretend to be an entity manager and commu-
nicates with other entities, we encounter with the problem of entity manager
faking. We have:

#define EM Faking Success em faking success == true;

#assert CoAP reaches EM Faking Success;

4.2 Verification Results

According to verification results shown in Fig. 6, Deadlock Freedom, Diver-
gence Freedom and Data Reachability all passed validation. This means
our system will terminate normally and the client can get the requested data.
Client Faking and Entity Faking both failed validation. It signifies that the
intruder cannot disguise himself as a normal node in the network. However,
Data Leakage also passed validation, showing potential risk of leaking data.

Fig. 6. Verification results of the original model.

4.3 Attack and Improvements

Fig. 7. Possible trace of data leakage.

The counter example returned by PAT is presented in Fig. 7. In this case, the
intruder lies between entity and entity manager, conducting ECDHE algorithm
with both sides respectively, and gets two pairs of keys. Then, in the subsequent
communications, the intruder disguises himself as an entity manager, receives
the request sent by the user. Afterwards it sends the request to the target entity,
waits for the entity to return data, then disguises himself as an entity, and sends
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Fig. 8. Man-in-the-middle attack.

the data just received to the entity manager to deceive the entity manager. This
is actually a classic man-in-the-middle-attack [13], shown in Fig. 8.

We can take preventive measures against man-in-the-middle attack, that is,
enforcing an authentication mechanism. There are many means of authentication
mechanism. For example, certificate authentication is one of them, but certificate
authentication brings heavy resource consumption. According to our hypothesis,
the resources in the entity are limited and can not bear the additional cost
brought by the certificate. Therefore, we consider adding a more lightweight
authentication mechanism - message authentication code (MAC).

We introduce MAC into our model by adding an eventMAC authentication
to indicate that the two parties have conducted MAC signature exchange. This
prohibits the intruder from initiating ECDHE key exchange with both the entity
manager and the entity. For example,

E = defMAC authentication → ComEEM?msgdreq1EM.Eid →
ComEEM !msgdrsp1Eid.EM.A(mac,E(kECDHE ,msg)) → E

In our new model, although the intruder can obtain the encrypted and
hashed information, he cannot decrypt it. Because of the introduction of message
authentication code, in the process of ECDHE key exchange, intruders can no
longer fake entities and entity managers to establish links with the two parties,
implement man-in-the-middle attack, obtain two sets of keys, and then decrypt
the plain-text of the message. The verification results of our new model are
shown in Fig. 9.

Fig. 9. Verification results of the improved model.
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5 Conclusion and Future Work

In this paper, we have applied process algebra CSP to describe and model the
group communication CoAP protocol, and used the verification tool PAT to
verify the constructed model. The results show that the protocol has potential
security risk of data leakage. To solve the problem, we proposed an improved
method of using message authentication code, and verify the improved model
again. It can be found that the problem of data leakage will not occur again.
Considering that CoAP mainly works in LLN and the message may face packet
loss in transmission, probabilistic CSP [14] will be introduced in the future.
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