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Abstract. This article presents an exact approach for solving the prob-
lem of locating electric vehicle charging stations in a city, whose goal is
upon minimizing the distance citizens must span to charge their vehicles.
Mixed integer programming formulations are presented for two variants
of the problem: relaxed (i.e., without considering electrical constraints
for the infrastructure) and full versions. The experimental evaluation is
performed over a real-world case study defined in Málaga, Spain. Results
show that the proposed approach can deal with the large number of vari-
ables (i.e., millions) of the problem, computing optimal solutions for all
problem instances and variants addressed. The improvements in solu-
tions quality over a previous metaheuristic approach applied to the same
problem and application case are notorious.

Keywords: Electric vehicles · Infrastructure location · Sustainable
mobility · Smart cities · Combinatorial optimization

1 Introduction

Sustainability has become a priority goal for society. Agreements and conven-
tions, such as the Sustainable Development Goals, are shifting societies towards
green-conscious ones. An important change is being experienced in road mobility
because vehicles are shifting from inefficient combustion engines to more sustain-
able ones (i.e., hybrid or electric engines). Cars, scooters, and electric motorcycles
are novel ways preferred by newer generations to move along the cities. Thus,
electric vehicles (EV) have a great boom and socioeconomic impact [11].

Electric cars allow citizens to reduce gas emissions, if the electricity used to
charge the cars is obtained from green sources. The number of kilometers that an
electric car can drive without stopping is a decisive factor when deciding to opt for
an electric car. Maximum kilometers would not be such a pressing problem if there
were a good network of charging stations. Cities have not yet adapted to this new
trend in transportation. Even though there are many plans to deploy networks of
charging points for electric vehicles in the main cities of the world [9].
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The selection of locations for these charging points has been studied by the
Electric Vehicle Charging Stations Locations (EV-CSL) problem. The problem
proposes determining the location of electric vehicle charging stations to optimize
a quality of service metric, i.e., minimizing the sum of distances that citizens
must walk to charge their vehicles. Our previous research addressed EV-CSL
over a real scenario defined in Málaga city (Spain) [7]. A realistic instance was
defined taking into account real information about the roads, the limitations of
the power grid, and the location of the tentative charging point users. In turn,
two metaheuristics were proposed to solve the problem.

This article present a new version of the EV-CSL problem model, to better
capture realistic features in terms of energy supply constraints. In turn, an exact
method based on ILP is applied to solve the problem. The main contributions of
the research reported in this article include: i) Providing a new improved math-
ematical formulation of EV-CSL; ii) Proposing a new exact approach to address
EV-CSL based on ILP; iii) Designing new realistic instances and variations of
the problem to evaluate the proposed approach; iv) Reporting a comparison
among the solutions provided in previous research and the results computed
by our approach; v) Discussing the different solutions obtained in terms of the
quality of service and the distribution of the charging points.

The article is organized as follows. Next section introduces the optimization
problem addressed in this research and its mathematical formulation. Section 4
describes the main details of the proposed optimization approach. The exper-
imental evaluation is reported in Sect. 5, including discussion of the obtained
results and their applicability in the real case study in Málaga. Finally, Sect. 6
presents the conclusions and formulates the main lines for future work.

2 Infrastructure Location for Electric Vehicles Charging

The mathematical formulation of the EV-CSL problem is defined attending to
the elements and considerations described in the following subsections.

2.1 Problem Data

An instance of the EV-CSL problem is determined by the following data:

– The set of potential charging points S = {s1, s2, . . . , sM} comprises those
physical locations considered suitable for installing recharging infrastructure.
The formulation makes no distinction between points, other than its location
and the set of power stations within the distribution grid capable of feeding
each point. Particularly, no difference is considered regarding the number of
customers that can be served in parallel at any given point.

– The maximum number of charging points to be deployed all over the city, Ms.
For the optimization problem to be realistic, it is assumed that Ms << M .

– The set C = {c1, c2, . . . , cN} comprises clusters of clients, grouped according
on their geographical proximity. For each cluster c ∈ C, the number uc of
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clients is known. Since clusters are pre-calculated so that their members are
not widely separated from each other, the average distance dcs between cluster
c clients and every potential charging point s ∈ S is known in advance, and
its variance is low regarding the average.

– There is a known bound Dc for the maximum distance that customers in
cluster c ∈ C are willing to walk to charge their vehicles. So, only points
s ∈ S where dcs ≤ Dc are considered to serve customers of the cluster c.

– E = {e1, e2, . . . , eT } is the set of power stations that might serve as source
to feed charging points. For every pair e ∈ E, s ∈ S, the reference distance
des over the power grid necessary to connect e with s is known in advance.
This correspondence imposes viability among connections because of electric
constraints, such as: tension drops, thermal or stability limits the grid must
comply with. A maximum extent De is assumed between each power station
e ∈ E and those points s ∈ S to be connected to it. Only those (e, s) pairs
where des ≤ De are considered.

– A power-stations to charging-points assignment cannot lead to configurations
that overload stations beyond their capacity. Every station e ∈ E has a
specific limit mpe to the number of charging points it can feed.

2.2 Design Premisses and Control Variables

A feasible deployment of charging points must comply with a simple set of rules:

1. Every cluster of clients c ∈ C must count an effective charging point s ∈ S
at a distance dcs of at most Dc.

2. Every charging point to be installed must be fed from a unique power station
e ∈ E, whose distance des is lower or equal to De.

3. The power-stations to charging-points assignment cannot press the number
of charging points to be served by any station e ∈ E beyond its limit mpe.

4. The objective to optimize accounts the accumulated distance between clients
and their nearest charging points available. Hence, though a cluster c ∈ C
could have more than one charging point within Dc range, only that at the
nearest distance is considered to account in the QoS.

5. The number of charging-points is bound to a total limit Ms, so the election
affects the whole and it must be globally coordinated.

6. Power limits at stations only concern with the number of charging points fed
from them, not with the associated number of customers.

The main control variables of the problem regard with the selection of charg-
ing points to be installed. However, the formulation includes additional variables
to capture other design concerns. The list of variables by kind is as follows:

– Boolean variables zs indicate whether some charging point s ∈ S is to be
installed or not, so they are as many as |S| = M .

– Boolean variable xcs is active if and only if those clients in the cluster c ∈ C
find their closest point of the charge at s ∈ S.
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Constraint dcs ≤ Dc must hold to comply with distance limits, what is
achieved by solely considering xcs variables where dcs ≤ Dc. Let CS ⊆ C ×S be
the a-priori computed set of distance viable clusters to charge-points assignments.
Observe that the number |CS| of xcs variables could be as high as M × N
(|S| = M , |C| = N) in the limit. The value depends of the maximum allowed
distance Dc, the higher the limit, the greater |CS|.

Variables described so far only concern with the physical placement of charg-
ing points. Electric grid constraints require additional variables:

– Boolean variables yes capture the fact that station e ∈ E supplies power to
charging point s ∈ S. Since the problem description also integrates distance
limits amid these connections, (e, s) assignments fulfilling des ≤ De are pre-
filtered, whose outcome is referred to as ES ⊆ E×S. The number |ES| of yes
variables could be as high as T × M (|E| = T , |S| = M) in the limit. Unlike
the previous CS set, the number |ES| is fixed among instances to solve, since
it is inherited by constraints coming from the power grid rather from some
ultimately adjustable service goal, such as Dc.

Equations (1a)–(1g) expresses the mixed integer programming (MIP) for EV-
CSL, i.e., finding the most efficient location for the electric vehicle charging
infrastructure, in terms of the sum of distances between clusters and charging
points.

min
xcs,yes,zs

∑

cs∈CS

ucdcs · xcs (1a)

subject to:
∑

cs∈CS

xcs = 1, ∀c ∈ C (1b)

zs ≥ xcs, ∀cs ∈ CS (1c)
∑

s∈S

zs ≤ Ms (1d)

∑

es∈ES

yes = zs, ∀s ∈ S (1e)

∑

es∈ES

yes ≤ mpe, ∀e ∈ E (1f)

xcs, yes ∈ {0, 1}, 0 ≤ zs ≤ 1 (1g)

The objective function (1a) directs the optimization towards the lowest per-
customer combined distance between clusters and charging points. Given that
the number of clients is fixed and it is assumed that they always recharge at the
closest point available, the sum in Eq. (1a) is indeed a metric for the Quality of
Service (QoS) of the infrastructure as presented earlier in this section.

Note that (1a) adds up to the distance that the whole of the customers should
travel to recharge their vehicles. Without any other constraint, that number



46 C. Risso et al.

could be as low as zero when every xcs = 0, which makes no sense, since no
charge point is provisioned in that case. To prevent that, (1b) forces every cluster
c to have one assigned station within Dc range, because CS only contains (c, s)
pairs where dcs ≤ Dc and there must be one and only one variable for which
xcs = 1. Whenever more than one station s is within Dc range, the optimization
itself will choose that closest to c. Therefore, (1a) and (1b) combined guarantee
that: i) every cluster c counts a charging point within Dc range; ii) each cluster is
optimally assigned for a given set of charging points; and iii) after consolidated,
that assignment achieves the lowest total distance for all clients combined.

Since installing a station accounts no cost, an optimal configuration would
assign every cluster to the nearest station possible, what most certainly leads
to configurations where the limit of stations Ms is exceeded. To prevent this
violation, (1c) and (1d) are incorporated. Equations (1c) simply make a station
s ∈ S to be installed whether any cluster c is going to use it, since a variable
xcs = 1 is enough to force zs = 1. Observe that although the integrality of zs
variables is intrinsic, it should not be explicitly imposed as it is with xcs ones,
which unlike zs variables are declared as boolean in (1g).

The problem with variables and constraints defined so far only concerns with
the physical placement of charging points, not with other limits imposed by the
electric grid. Since it has less constraints, this subproblem clearly is a relaxation
of the complete one, and its optimal solutions represent lower bounds of EV-
CSL. Subtler is the fact that, since power station limits are set by the number
of charge points assigned to them, not by the number of users, solutions to the
previous relaxation might also be feasible in the complete problem, as long as
the Ms limit is low when compared with mpe values. This property is in fact
exploded during the experimental evaluation, Sect. 5.

Power stations limits are incorporated into the problem, to get to the full
version, as follows. Equations (1e) are equivalent to (1b), except that in this
case, the assignment of a charging point s ∈ S to a power-station e ∈ E within
De range (captured by variables in ES set) is triggered if and only if that point
is to be installed (i.e. only if zs = 1). Finally, Eqs. (1f) guarantee that no station
e ∈ E is assigned with a number of charging points higher than its limit mpe.

3 Related Work

The optimal location of electric vehicle charging stations has been a relevant
problem since the emergence of a renewed interest in electric transportation
infrastructures, in the early 21st century.

Frade et al. [10] applied a maximal covering model to maximize the demand
within a maximum desirable distance, assuming that coverage decays beyond
that threshold distance. A MIP model was proposed, including a penalty term
to prevent the installation of unnecessary supply points. The model was eval-
uated on four scenarios in Lisbon, Portugal, installing up to 324 supply points
in 43 charging stations in a higher-demand scenario. Accurate covered demand
results were computed, providing an acceptable level of service. Wagner et al. [17]



Optimized Location for Electric Vehicle Charging Infrastructure 47

proposed a business intelligence model for EV-CSL to maximize demand cover-
age, based on potential trip destinations of vehicle owners, defined using urban
data analysis [13]. An iterative method was proposed to find optimal locations
using penalties to define ranks for points of interest and a MILP model solved
in CPLEX. The proposed model achieved promising results on two case studies
from Amsterdam and Brussels. Chen et al. [5] proposed a MILP formulation for
locating charging stations minimizing the total walking distance according to
parking patterns estimated using real urban data. The model was evaluated on
a case study on 218 zones of Seattle, USA. Results achieved good accessibility:
locating 20 charging station the walking distance was 1.1 km (average) and 3 km
(maximum), whereas almost 80% of the demand was fulfilled.

Cavadas et al. [4] proposed a MIP model for EV-CSL to maximize the sat-
isfied demand subject to a maximum budget constraint, considering the activ-
ity patterns of travelers. A multi-period formulation was introduced to model
time intervals within a day. The model was evaluated in a small real scenario
in Coimbra, Portugal, with just nine stations and four charging points each,
to be installed on 129 candidate locations. Accurate solutions were computed,
improving over the real configuration of EV charging stations installed in the
city. Brandstätter et al. [2] proposed an ILP model for EV-CSL to maximize
economic benefits in a car-sharing system, considering stochastic demands. The
model was validated on medium-size synthetic scenarios and real world instances
from Vienna (up to 693 potential locations). For Vienna, the exact approach
was only able to solve instances for eight central districts of the city, whereas an
heuristic method was applied for larger problem instances. Solutions confirmed
the economic viability of implementing a electric car-sharing system.

Çalik and Fortz [3] proposed a MILP formulation for EV-CSL to maximize
the profit of a public one-way electric cars system. The model and two relaxations
were studied for 63 instances in New York, USA, with 85 potential locations for
installing non-identical charging stations. The impact of cost changes in the
number of stations was studied. Bian et al. [1] proposed a GIS-based approach
for EV-CSL to maximize the profit. GIS was applied to determine the probability
for users to charge their EV in different areas, using relevant traffic information.
The model was evaluated in a small case study in Väster̊as, Sweden, with 268
square zones. Two scenarios were studied, adding three and ten new charging
stations to 40 already installed in the city. When adding three stations, the best
option was selecting fast chargers in commercial areas, whereas slow chargers
installed in residential areas were better when including ten stations.

Lin et al. [12] proposed MILP model based on Geographic Information Sys-
tem (GIS) to optimally select the location and the size EVCS in urban scenarios.
The MILP model is defined to maximize the economical profits of installing new
charging stations, which are computed according to the charging demand based
on the traffic flow data, charging profiles, and city land-use classification. In order
to compute the charging demand, the authors generated an aggregated charg-
ing demand profile of the EVs based on the real-world travel data in National
Household Travel Survey and charging behaviors. These daily charging behav-
iors, for each charging type of location, are represented by 24 hourly charging
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demands. GIS is employed to calculate the charging demand in different loca-
tions by taking into account traffic flow and land-use classifications (e.g., resi-
dential with villa, residential with apartment, working, etc.). In this study, it is
assumed that a charging station will only serve the demands in specific given
area. In turn, there is defined an acceptable walking distance from the charging
station (parking lot) to the destination of the user. The researchers take into
account the costs of a new station (which could include fast and slow chargers).
Thus, the costs of a station consist of an aggregation of the economical costs
of the equipment, installation, rent, maintenance and operation, and electricity
consumption, which depend on the number and the type of chargers installed
chargers. The optimization problem objective (the economical profits of deploy-
ing the new stations) is computed by subtracting the costs of locating the new
charging station to the revenues of charging EVs. The proposed approach was
evaluated over an area of 67 km2 of Väster̊as, Sweden. Väster̊as had a popu-
lation of 119 372 people, there were 44 192 personal cars, and the city had 324
plug-in EVs charging stations. The authors defined 532 tentative charging sta-
tions. The experimental analyses evaluated only the proposed method over four
scenarios: installing three, five, ten, and 15 new charging stations. The results
show that the proposed approach was able to provide charging station locations
that provided competitive profits.

The EV-CSL problem and related variants have been also solved using meta-
heuristic approaches, due to the inherent complexity of specific variants using
complex formulations or even simulations for solution evaluation.

In this line of work, this article contributes with an exact solution to EV-
CSL, taking advantage of our expertise on location problems in the context
of smart cities, including roadside infrastructure for vehicular networks [14],
stations for public bicycles [6], bus stops [8], and waste bins [16], among other
relevant problems. Our research demonstrates that a simple MILP formulation
of EV-CSL can be solved with an exact method for medium-sized instances, and
we solve a real-life scenario modeling the current reality in the city of Málaga.

4 The Proposed Optimization Approach

This section elaborates upon the developments implemented to solve variants
of the EV-CSL. The previous approach to solve this problem relied on meta-
heuristics to find good-quality solutions for real-world instances [7]. Conversely,
this work presents how exact methods have proven to be successful to solve the
Mathematical Programming formulation for the previously studied instances, as
well as over many others of such size.

A couple of tools were used along the development process. The optimization
toolkit of MATLAB (release R2015a-8.5.0) was used in early stages of the work,
mainly to validate the general formulation over a manually crafted test-set with
relatively few variables. However, real-world instances solved in this article are
far beyond capabilities of these tools. The number of xcs variables could be as
high as M × N, which in some instances (e.g. Dc = 8000 m) reaches almost six
and a half million integer variables.
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To cope with the size of instances for the application case, IBM(R) ILOG(R)
CPLEX(R) Interactive Optimizer 12.6.3.0 was used as the optimization
tool. The total time to optimal required by this solver to find solution was
always below two hours. As we see later in this document, total times were
quite below that value in general. It is worth mentioning that by optimal we
mean: within the default GAP tolerance, which is set to the default value for the
MIP solver (i.e. 0.01%). The GAP corresponds to the relative difference between
the best integer solution found and the best upper bound estimated up to that
moment, namely (f(x) − bestBound)/f(x), where x is a feasible solution, f(x)
is its objective function value, and bestBound is the higher lowest bound found
for the optimum value. For the interface between the large instance data-sets
and the solver, we developed a C++ program to read data and convert them
to CPLEX LP-format. Afterwards, those LP files were launched in computing
resources of the National Supercomputing Center, Uruguay (Cluster-UY) [15].

5 Experimental Validation

This section reports the experimental evaluation of the proposed exact approach
for solving the EV-CSL problem over realistic instances in Málaga, Spain.

5.1 Methodology

The methodology applied in the experimental validation of the proposed exact
methods is described next.

Analysis. Three relevant analysis are developed. First, the relaxed problem
variant flexible (without including constraints defined by Eqs. (1e) and (1f)) is
evaluated for a set of realistic instances, varying the maximum number of charg-
ing points to be deployed, Ms. Then, for the relaxed problem variant, results
are compared with the corresponding previous EA applied to the problem [7].
Finally, the full (more realistic) problem variant, including the constraints that
model the supply of the electrical grid (defined by Eqs. (1e) and (1f)) is studied.

Metrics. Relevant metrics are considered in the evaluation of the computed
solutions. On the one hand, the objective function values account for the per-
customer combined distance between clusters and their nearest charging point.
On the other hand, other relevant QoS-related metrics are considered, such as
the average and maximum distance a customer must travel for charging. In turn,
the installation cost of the electric charging stations is also evaluated, accord-
ing to a simplified cost model developed for the analysis. The cost model is
based on real infrastructure installation costs (including the cost of the charger,
civil infrastructure works, electrical installation, signaling, security, and legaliza-
tion). A semi-rapid charger is considered, with a power of 22 kW and a cost of
10 500 e. In addition, the cost of the connection from the charging point to the
corresponding electrical substation is added.

For the comparison with the previous EA for the problem, the GAP metric
is used to evaluate the differences in the computed objective function values.
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Problem Instances. Two set of instances are considered in the evaluation of
the proposed exact approach for EV-CSL:

– For the evaluation of the exact approach on both the relaxed and full versions,
a constant threshold distance of Dc = 2500 m is used, assumed as a reasonable
distance citizens are willing to travel to charge their electric vehicles. Setting
Dc fixes in turn the set of variables of the problem. The value of Ms varies
from 20 to 80. Whenever Eqs. (1e) and (1f) are dismissed from the full version
(Eqs. (1a)–(1g)), a relaxation is obtained, no matter what the dataset is.
However, along the sequence of problem instances previously introduced and
since Dc is fixed along them, as Ms increases, either version of the problem
is in turn a relaxation of the previous problem instance. This is because the
only difference between any instance and the following is on the right-hand
side of Eq. (1d), which is exactly one unit larger than the previous. Hence, as
Ms increases, the optimal objective can only decrease, and whatever solution
for any prior instance previously tackled could be used as an initial feasible
solution for the current, a property that whether used helps to improve the
performance of the solver.

– For the comparison with results computed using the previous EA, instances
reported in our previous work [7] are used. In these instances, both the values
of Ms and Dc vary simultaneously, so no nesting exists among problems.

Regarding geographical information, both sets of instances were built consid-
ering real data for the city of Málaga. A total number of Ms = 33.550 potential
locations for charging points are considered. In turn, 363 clusters and 14 elec-
tric substations are considered. Figure 1 presents the potential locations over the
map of Málaga (green dots) and the electric substation location (blue squares).

Fig. 1. Potential locations for charging stations in Málaga (Color figure online)
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Numerical Results. This section, discusses the results of the proposed exact
approach for EV-CSL on the relaxed version and compares them against the
results obtained by the previous EA [7]. Then, it presents the results provided
by the proposed exact approach on the full version of the problem.

Tables 1 and 3 reports the results for the relaxed and full versions of the
problem, Reported values are: the total distance between clusters and charging
points (fBEST), the economical cost of deploying that solution in euros (cost),
and the actual distance in meters between the clusters and the charging points
in terms of average (dAVG) and maximum (dMAX) for each Ms.

Table 1. Experimental results for the relaxed version of the problem.

Ms fBEST Cost dAVG dMAX Ms fBEST Cost dAVG dMAX

20 515866608 3802015 1155.18 2497 51 246365755 8366825 777.61 2497

21 492189525 3913565 1139.56 2497 52 243013759 8486655 774.47 2497

22 470795972 4086410 1119.10 2497 53 239713988 8599355 763.06 2497

23 453698051 4296630 1062.30 2498 54 236423096 8604645 750.37 2492

24 437985284 4414850 1043.62 2498 55 233256211 8734480 739.11 2492

25 422884012 4704420 1013.72 2498 56 230153919 8838900 735.58 2492

26 408509548 4857025 998.26 2497 57 227101656 8911580 734.37 2492

27 394495141 4984790 978.34 2497 58 224085462 9037620 732.75 2492

28 382545839 5075295 960.75 2497 59 221071931 9164695 731.14 2492

29 370970640 5271485 942.30 2497 60 218127562 9367325 728.73 2492

30 361019674 5377515 931.24 2497 61 215241637 9436900 724.12 2492

31 351748722 5435935 922.01 2497 62 212386123 9498885 721.73 2492

32 344195535 5614875 916.74 2497 63 209542491 9601005 718.49 2492

33 337185494 5733670 910.92 2497 64 206798841 9665290 716.24 2492

34 330720516 5863620 906.91 2497 65 204076876 9873555 713.29 2492

35 324414266 6036350 898.78 2497 66 201380990 10037430 710.68 2492

36 318213955 6255310 880.72 2497 67 198701745 10148520 707.70 2492

37 312456675 6412285 864.77 2497 68 196042267 10657280 700.38 2492

38 306745623 6554770 858.26 2497 69 193486949 11233430 689.48 2492

39 301057871 6720830 853.57 2497 70 190941050 10886245 695.55 2492

40 295633585 7005800 840.68 2497 71 188385732 11462395 684.65 2492

41 290469709 7155415 830.72 2497 72 185844597 11668130 682.38 2492

42 285334212 7285825 822.28 2497 73 183382962 11842355 671.34 2492

43 280187531 7377250 817.70 2497 74 180841827 12048550 669.07 2492

44 275197190 7442455 811.21 2497 75 178437781 12159640 665.95 2492

45 270522493 7608515 806.30 2497 76 176095511 12220015 661.18 2492

46 265941206 7696490 804.07 2497 77 173834250 12423335 654.85 2486

47 261403566 7777335 801.43 2497 78 171624251 12515910 653.24 2486

48 257424493 7871750 800.53 2497 79 169445056 12624010 643.01 2486

49 253503768 7982150 794.28 2497 80 167282054 12693930 638.27 2486

50 249922088 8107385 784.61 2497
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Results in Table 1 show that as the number of charging points increases (Ms)
the combined distance between clusters and charging points (fBEST) decreases,
as expected. dMAX is slightly below 2500 m in all cases, so, optimal solutions
tend to assign some clusters very close to the distance threshold.
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Fig. 2. Distance and the economical cost on the relaxed variation. (Color figure online)

The reduction in the calculated fBEST values when increasing Ms implies that
citizens generally travel shorter distances to charge their cars. Values of dAVG

and dMAX in Table 1 show that the average distances decrease as the number of
charging points increases. However, not all citizens benefit when adding only one
charging point. For this reason, the maximum distance values do not improve
in the same way as the average (it is always close to threshold distance of Dc =
2500 m). This is illustrated in Fig. 3 that shows the distribution of the charging
points through the real map of Málaga for different values of Ms. Even though
the exact method distributes the charging points through the whole map as Ms

increases, there are areas of the city that are not targeted because they have
low population densities. This is mainly the objective to be optimized defined
in Sect. 2 is the combined distance (see Eq. (1a)) that takes into account the
population density of the clusters, and therefore, the method prioritizes the
areas of the city with higher population densities.

Regarding the economical cost of deploying the solutions, Fig. 2 illustrates
fBEST values, i.e., the combined distance, given the economical cost as blue
circles. This figure can be seen as a Pareto Front of an optimization problem
in which the combined distance and the economical costs are two objectives
to be minimized. Thus, the points close to the red row represent the solutions
with the best trade-off between these two objectives. The figure shows that for
solutions with fewer charging points (left side of the figure), a smaller economical
investment gets a higher improvement in the QoS metric than when there are
already a considerable number of stations (right side of the figure).

Even though the considered economical cost model takes into account the cost
of the infrastructure of the charging point and the cost of wiring the charging
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Fig. 3. Solutions computed by the proposed exact approach for the relaxed version of
the problem over map of Málaga for different Ms.

point the cost behaves as a linear monotonic function increasing with respect to
Ms because the cost of the infrastructure is significantly higher than the wiring
cost and contributes much more to the cost of the proposed solution.

Results computed by the exact method are compared against the previous
EA, for Ms = {10, 20, 30, 40, 50} [7]. Table 2 reports the mean GAP between the
exact solution and all computed solutions by the EA for the same Ms, and the
best GAP, regarding the best EA solution. According to results in Table 2, the
exact approach is better than the EA. The GAPs are always positive and they
increase as Ms increases, takes advantage of installing more charging points.

Table 2. GAP between the proposed exact approach and the EA.

Ms Dc (m) #variables Mean GAP Best GAP

10 8.000 6.298.967 1.90% 0.30%

20 7.000 5.394.820 6.63% 4.02%

30 6.500 4.932.345 10.72% 7.96%

40 6.000 4.453.698 13.91% 11.16%

50 5.000 3.482.353 17.74% 14.45%
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Exact solutions are the same for the full version and the relaxed version of
the problem for Ms from 20 to 59, because they fulfill the constraints. However,
solutions found for the greater of values of Ms get slightly higher fBEST, i.e., less
competitive QoS. This behavior is because when the number of charging points
in the instance does not exceed a given threshold (i.e., Ms < 60), the exact
approach is able to locate the charging points in any place (as in the relaxed
version of the problem), without exceeding power station limits. However, as
Ms grows the exact approach distributes in a different way the charging points,
because solutions for the relaxed version of the problem are not feasible (they do
not fulfill the power stations limit). Thus, the exact method in the full version
locates the charging points in the way they are close to the high population areas
but also the charging points are wired to different electric substations.

Table 3. Experimental results for the full version of the problem. Solutions when
Ms < 60 always match those reported in Table 1.

Ms fBEST Cost dAVG dMAX Ms fBEST Cost dAVG dMAX

60 218186006 9234270 726.53 2492 61 215329466 9441040 724.06 2492

62 212473952 9503025 721.67 2492 63 209630320 9605145 718.43 2492

64 206886670 9669430 716.18 2492 65 204164705 9878155 713.23 2492

66 201485460 9989245 710.24 2492 67 199062686 10149210 702.93 2492

68 196482690 10369665 696.94 2492 69 194149274 10388870 692.76 2492

70 191808940 10638765 690.08 2492 71 189547679 10842545 683.74 2486

72 187337680 10935120 682.14 2486 73 185174678 11005040 677.40 2486

74 183092960 11431690 671.67 2496 75 181210543 11561180 667.88 2496

76 179358901 11665255 665.65 2496 77 177549296 11855350 662.02 2496

78 175741776 11946085 660.05 2496 79 173953074 12183330 655.01 2496

80 172232296 12439895 649.31 2496

Figure 4 shows the solutions deployed through the city for Ms = 60 and
Ms = 80. These two solutions distribute more the charging points over the
city in comparison with the solutions computed for the flexible version of the
problem (which concentrate most of the charging points in the same Downtown
locations).

Figure 5 plots (fBEST) and economical cost results. Blue circles illustrate
identical solutions for both versions of the problem, while gray squares represent
different solutions. Whenever solutions in both versions do not match, that of
the full version must be higher since the other is its relaxation. Those differences
exist for 60 ≤ Ms ≤ 80 only, but they are relatively negligible, and in fact, it is
necessary to zoom into that range to notice any difference as is in Fig. 6.
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Fig. 4. Solutions computed by the exact approach for the full version of the problem
over map of Málaga for different Ms.
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Fig. 6. Solutions of both problem varia-
tions (60 ≤ Ms ≤ 80).

6 Conclusions and Future Work

Proposing efficient and effective networks of EV charging points has become a
must in modern urban areas to allow easy adoption of sustainable mobility based
on EVs. This article presented an exact optimization approach for solving a new
variant of the EV-CSL problem defined on a real city, Málaga. This new variant
is more realistic because it explicitly models the actual energy supply constraints
and it takes them into account to compute the solutions.

Results of the experimental evaluation on a set of real-world instances of
Málaga show that the proposed approach is competitive to address EV-CSL for
the constrained and the flexible versions of the problem. The exact optimization
approach based on ILP is able to automatically distribute the charging points
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along the city taking into account the real distribution of the tentative EV users,
while optimizing the QoS of the whole charging points network.

Besides, the proposed exact approach has shown being more competitive than
a GA proposed in previous research ta address EV-CSL. It is able to improve
the QoS by 17,74% in instances with 50 charging points.

The main lines for future work are related to improve the realism of the
model by considering general citizen’s mobility behavior, the location of points
of interest, and aspects related to the installation costs; to the definition of the
EV-CSL problem by taking into account other objectives rather than QoS, such
as installation costs; and to the definition of real instances over other cities.
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