
Morphing Tree Drawings
in a Small 3D Grid

Aleksandra Istomina(B), Elena Arseneva, and Rahul Gangopadhyay

Saint-Petersburg University, Saint Petersburg, Russia
st062510@student.spbu.ru, e.arseneva@spbu.ru, rahulg@iiitd.ac.in

Abstract. We study crossing-free grid morphs for planar tree drawings
using the third dimension. A morph consists of morphing steps, where
vertices move simultaneously along straight-line trajectories at constant
speeds. There is a crossing-free morph between two drawings of an n-
vertex planar graph G with O(n) morphing steps, and using the third
dimension the number of steps can be reduced to O(log n) for an n-
vertex tree [Arseneva et al. 2019]. However, these morphs do not bound
one practical parameter, the resolution. Can the number of steps be
reduced substantially by using the third dimension while keeping the
resolution bounded throughout the morph? We present a 3D crossing-
free morph between two planar grid drawings of an n-vertex tree in
O(

√
n log n) morphing steps. Each intermediate drawing lies in a 3D

grid of polynomial volume.

Keywords: morphing grid drawings · bounded resolution · 3D
morphing

1 Introduction

Given an n-vertex graph G, a morph between two drawings (i.e., embeddings in
R

d) of G is a continuous transformation from one drawing to the other through a
family of intermediate drawings. One is interested in well-behaved morphs, i.e.,
those that preserve essential properties of the drawing at any moment. Usually,
this property is that the drawing is crossing-free; such morphs are called crossing-
free morphs. This concept finds applications in multiple domains: animation,
modeling, and computer graphics, etc. A drawing of G is a straight-line drawing
if it maps each vertex of G to a point in R

d and each edge of G to the line
segment whose endpoints correspond to the endpoints of this edge. In this work,
we focus on the case of drawings in the Euclidean plane (d = 2) and 3D drawings
(d = 3); a non-crossing drawing of a graph in R

2 is called planar.
There is an interest in studying crossing-free morphs of straight-line drawings,

where vertex trajectories are simple, in particular, linear morphs. A linear morph
transforms one straight-line drawing Γ of a graph G to another such drawing
Γ ′ through a sequence of straight-line drawings; each morphing steps or step
is a linear interpolation between two consecutive drawings in that sequence.
c© Springer Nature Switzerland AG 2022
P. Mutzel et al. (Eds.): WALCOM 2022, LNCS 13174, pp. 85–96, 2022.
https://doi.org/10.1007/978-3-030-96731-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96731-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-96731-4_8

86 A. Istomina et al.

That is, during each morphing step each vertex of G moves along a straight-line
segment at a constant speed. A linear morph is said to be unidirectional if all
vertices move along parallel lines in the same direction. Alamdari et al. [1] showed
that for any two topologically equivalent planar drawings of a graph G, there
is a linear 2D morph that transforms one drawing to the other in Θ(n) steps.
This bound is asymptotically optimal in the worst case even when the graph
G is a path. A natural further question is how the situation changes when we
involve the third dimension. For general 3D graph drawings the problem seems
challenging since it is tightly connected to unknot recognition problem. If both
the initial and the final drawing are planar and the given graph is a tree, then
O(log n) steps suffice [2]. In both algorithmic results [1,2], the intermediate steps
use infinitesimal or very small distances, as compared to distances in the input
drawings. This may blow up the space requirements and affect the aesthetical
aspect. This raises a demand for morphing algorithms that operate on a small
grid, i.e., of size that is polynomial in the size of the graph and parameters of
the input drawings. All the intermediate drawings are then restricted to be grid
drawings, where vertices map to vertices of the grid. Two crucial parameters
of a straight-line grid drawing are: the area (or volume for the 3D case) of the
required grid, and the resolution, that is the ratio between the maximum edge
length and the minimum edge-edge distance. If the grid area (or volume) is
polynomially bounded, then so is the resolution [3].

Very recently Barrera-Cruz et al. [3] gave an algorithm that linearly morphs
between two planar straight-line grid drawings Γ and Γ ′ of an n-vertex rooted
tree in O(n) steps while each intermediate drawing is also a planar straight-line
drawing in a bounded grid. In particular, the maximum grid length and width
are respectively O(D3n · L) and O(D3n · W), where L = max{l(Γ), l(Γ ′)},
W = max{w(Γ), w(Γ ′)} and D = max{L,W}, l(Γ) and w(Γ) are the length
and the width of the drawing Γ respectively. Note that D is Ω(

√
n).

Let Γ and Γ ′ be two planar straight-line drawings of an n-vertex tree T .
Throughout this paper, a morph M = 〈Γ1, Γ2, . . . , Γk〉 of T is a sequence of 3D
straight-line drawings of T such that Γ1 = Γ, Γk = Γ ′ are the initial and the
final drawings, and each 〈Γi, Γi+1〉 is a linear morph. Here we study the problem
of morphing one straight-line grid drawing Γ to another such drawing Γ ′ in
sublinear number of steps using the third dimension such that the resolutions of
the intermediate drawings are bounded. We morph the initial planar drawing of
tree T to its 3D canonical drawing C(T) and then analogously morph C(T) to the
final planar drawing. Effectively we solve the same problem as in [2], but with the
additional restriction that all drawings throughout the algorithm lie in a small
grid. We give an algorithm that requires O(

√
n log n) steps. All the intermediate

drawings require a 3D grid of length O(d3(Γ) · log n), width O(d3(Γ) · log n)
and height O(n), where d(Γ) = max(d(Γ), d(Γ ′)). During the procedure, we use
some known techniques, e.g., canonical drawing [2] and “Pinwheel” rotation [3]
combined with several new ideas.

In Sect. 2, we introduce the definitions that are used in the paper. After
introducing the necessary definitions and preliminaries in Sect. 2, we describe
the tools that are the building blocks of our algorithm: stretching, mapping
around the pole, rotating and shrinking subtrees (See Sect. 3). In Sect. 4, we

Morphing Tree Drawings in a Small 3D Grid 87

introduce a technique of lifting paths such that the vertices on the path along
with their subtrees go to the respective canonical positions and the drawing
remains crossing-free. The morphing algorithm in Sect. 4 splits the given tree
into disjoint paths that are lifted one by one in specific order. Since lifting each
path takes constant number of steps, in the worst case this algorithm takes O(n)
steps to lift a tree. In Sect. 5, we show how to lift a set of edges of the given tree
simultaneously. This is used in the second morphing algorithm, that lifts the tree
by lifting disjoint sets of its edges one after another. This algorithm takes O(h)
steps to lift a tree of height h. We then combine two algorithms in Sect. 6 to
produce the final algorithm that uses o(n) morphing steps. It first lifts all paths
of T of length at most

√
n using the algorithm of Sect. 5. Since the total number

of remaining paths is less than
√

n, we lift them one after another by using the
algorithm of Sect. 4. The full version1 of the paper contains detailed proofs and
descriptions which are omitted here due to space constraints.

2 Preliminaries and Definitions

Tree Drawings. For a rooted tree T , let r(T) be its root, and T (v) be the
subtree of T rooted at a vertex v of T . Let E(T), V (T) and |T | denote respec-
tively, the set of edges, the set of vertices, and the number of vertices of T . In a
straight-line drawing of T , each vertex is mapped to a point in R

d and each edge
is mapped to a straight-line segment connecting its end-points. A 3D- (respec-
tively, a 2D-) grid drawing of T is a straight-line drawing where each vertex is
mapped to a point with integer coordinates in R

3 (respectively, R2). A drawing
of T is said to be crossing-free if images of no two edges intersect except, pos-
sibly, at common end-points. A crossing-free 2D-grid drawing is called a planar
grid drawing. For a crossing-free drawing Γ , let B(Γ (v), r) denote the open disc
of radius r in the horizontal plane centered at the image Γ (v) of v. By the pro-
jection, denoted by pr(), we mean the vertical projection to the horizontal plane
passing through the origin. Let l(Γ), w(Γ) and h(Γ) respectively denote the
length, width and height of the 3D drawing Γ of T , i.e., the maximum absolute
difference between the x-, y- and z-coordinates of vertices in Γ . Let d(Γ) denote
the diameter of Γ , defined as the ceiling of the maximum pairwise (Euclidean)
distance between its vertices. Note that d(Γ) estimates the space required by
Γ since M ≤ d(Γ) ≤ √

3M , where M = max(l(Γ), w(Γ), h(Γ)). Let distΓ (v, e)
(resp., distΓ (v, u)) be the distance between Γ (v) and Γ (e) (resp., between Γ (v)
and Γ (u)), where u, v are vertices of T and e is an edge of T . For a grid drawing
Γ , we define the resolution of Γ as the ratio of the distances between the farthest
and closest pairs of geometric objects of Γ (images of tree vertices and edges).

For any vertex v and edge e not incident to v in a crossing-free grid drawing
Γ of T , dist(v, e) ≥ 1

d(Γ) . In a 3D grid drawing Γ of T , the distance dist(e1, e2) ≥
1

2
√

3 (d(Γ))2
for a pair of non-adjacent edges e1, e2. This implies that 2D and

1 arXiv:2106.04289.

https://arxiv.org/abs/2106.04289

88 A. Istomina et al.

3D crossing-free grid drawings of T have polynomially bounded resolution. For a
point p = (px, py, pz), we denote by Y Zp,XZp,XYp planes x = px, y = py, z = pz

respectively. Analogously, XZ+
p (resp., XZ−

p) denotes the vertical half-plane
{(x, y, z) : y = py, x ≥ px(resp., x ≤ px)} and Y Z+

p (resp., Y Z−
p) the half-plane

{(x, y, z) : x = px, y ≥ py(resp., y ≤ py)}.

Path Decomposition. P of a tree T is a decomposition of its edges into a set of
edge-disjoint paths as follows. Choose some root-to-leaf path in T and store it in
the set P which is empty at the beginning. Remove the edges of this path from
T . It may disconnect the tree; recurse on the remaining connected components
while there are edges. In the end, P contains disjoint paths whose union is E(T).
The depth dpt(v) of a vertex v in T is the length of the path from r(T) to v.
Head of a path P , denoted as head(P), is the vertex x ∈ P with the minimum
depth in tree T . Let the internal vertices of path P be all vertices of P except
head(P). Any path decomposition P of T induces a linear order of the paths:
path P ′ succeeds P , i.e., P ′ � P , if and only if P ′ is deleted before P during the
construction of P. Note that the subtree of each internal vertex of a path P is a
subset of the union of the paths that precede P .

In the long-path decomposition [4] L(T), the path chosen in every iteration is
the longest root-to-leaf path (ties are broken arbitrarily). Let L = {L1, . . . , Lm} be
the ordered set of paths of a long-path decomposition of T . For i < j, |Li| ≤ |Lj |.

In the heavy-rooted-pathwidth decomposition H(T) (see, e.g., [2]), of a tree T ,
the root-to-leaf path chosen in every iteration maximizes the rooted pathwidth,
rpw(T).rpw(T) is defined recursively: for each leave v of T : rpw({v}) = 1;
for each internal vertex u and its children v1, . . . , vk we have rpw(T (u)) =
max(rpw(T (vi))), 1 ≤ i ≤ k if rpw(T (vi)) are not all equal, and rpw(T (u)) =
rpw(T (v1)) + 1 in the other case. It is known [5] that for a tree T with n ver-
tices rpw(T) = O(log n). Figure 1a and 1b show respectively the heavy-rooted-
pathwidth and the long-path decomposition of a tree where heavy paths and
long paths are shown in different colors.

Canonical 3D drawing C(T) of a tree T [2] is the crossing-free straight-line
3D drawing of T that maps each vertex v of T to its canonical position C(v)
determined by the heavy-rooted pathwidth decomposition. We later use the fact
that C(T) lies in XZ+

0 inside a bounding box of height |T | and width rpw(T).
For any vertex v of T , the relative canonical drawing CTv

of T (v) is the drawing
of T (v) obtained by cropping C(T) and translating the obtained drawing of T (v)
so that v is mapped to the origin. Since tree T never changes throughout our
algorithm, we refer to rpw(T) as to rpw.

3 Tools for Morphing Algorithms

We define stretching, mapping, rotation and shrinking of subtrees in this section.
Each of these are fundamental tools used in our algorithm.

Stretching with a Constant S1. Let the drawing Γ lie in the XY0 plane.
During stretching morph 〈Γ, Γ1〉 each coordinate of each vertex in Γ is multiplied
by a common positive integer constant S1 to obtain Γ1. Thereby, it is a linear
morph that “stretches” the vertices apart. Stretching morph is crossing-free.

Morphing Tree Drawings in a Small 3D Grid 89

Fig. 1. Canonical drawing of a tree with (a) heavy and (b) long paths, where paths
are colored with different colors, paths that consist of one edge are dashed. (c) The
mapping morph, half-planes α, β sharing a common pole through point (x′, y′) and
their vector of mapping. (d) The Shrinking morph when l = 4.

Lemma 1. For any pair vi, vj of vertices disks B(Γ1(vi), S1
2) and B(Γ1(vj), S1

2)
do not cross in the XY0 plane. For a vertex vi disk B(Γ1(vi), S1

2·d(Γ)) does not
enclose any other vertices or any part of edges non-incident to vi in Γ1. For
every vertex v and every edge e = (v, u) in Γ1 there is lattice point z such that
z ∈ e and z ∈ B(Γ1(vi), d(Γ)).

Mapping Around a Pole. Let the pole through (x′, y′) be the vertical line
in 3D through a point (x′, y′, 0). Let α, β be vertical half-planes containing the
pole l through a point with integer coordinates. Suppose ∠(α, β) /∈ {0, π} and
α, β contain infinitely many points with integer coordinates. Mapping around
the pole l is a morphing step to obtain a drawing Γ ′ which lies in β from Γ
which lies in α. Each vertex moves along a horizontal vector between α and β.
The direction of this vector is common for all vertices of Γ and is defined by α
and β. Let us fix a horizontal plane h passing through the point (0, 0, b) where b
is an integer. Let pα, pβ be points that lie on h ∩ α and h ∩ β, respectively; such
that dist(l, pα) = dα and dist(l, pβ) = dβ be the minimum non-zero distances
from the l to the integer points lying in h ∩ α and h ∩ β. The vector of mapping
u is defined as pβ−pα

|pβ−pα| . Mapping is an unidirectional morph since all vertices of
Γ move along the vectors parallel to the vector of mapping till they reach the
half-plane β, see Fig. 1c. Since mapping is comprised of rotation and stretching
in horizontal direction, it is a crossing- free morph that preserves grid drawings.
Throughout the paper, we denote by rotation a mapping when α, β are half-
planes of planes parallel to XZ0, Y Z0 respectively or vice-versa. Similarly, we
define mapping around horizontal pole, i.e., a pole parallel to the X-axis.

Rotating Horizontal Plane. Let Γ0(T (v)) be the canonical drawing of
a subtree T (v) on the horizontal plane XYv obtained by rotating the rel-
ative canonical drawing CTv

around the horizontal pole through v. Let

90 A. Istomina et al.

Γ1(T (v)), Γ2(T (v)), Γ3(T (v)) be the drawings obtained from Γ0(T (v)) by rotat-
ing the horizontal plane around the point Γ (v) by the angles π

2 , π, 3π
2 , respec-

tively. In the Appendix we show that the drawing Γi(T (v)) can be obtained from
the drawing Γi−1(T (v)) in one morphing step—rotating step—using a lemma
from [3].

Shrinking Lifted Subtrees. Let v be a vertex of T . Assume that the image
Γ (T (v)) of subtree T (v) is CTv

, in particular, it lies in h = XZ+
v . Let C =

{v1, . . . , vl} be sequence of children of v, ordered according to their z-coordinates
in CTv

. Let C′ = {vi1 , . . . , vik
} be subsequence of C. Let us consider the new

subtree T ′(v) which is obtained by deleting the vertices in C \ C′ and their
subtrees from T (v). Note that, for each j with 1 ≤ j ≤ k, T ′(vij

) still lies inside
a box of height |T (vij

)| and width rpw(T (vij
)) on h. We define the shrink subtree

procedure on T ′
v as follows. We move each vertex vij

along with their subtrees
from CTv

(vij
) to (CTv

(vij
)x, CTv

(vij
)y, CT ′

v
(vj)z). Let us denote the shrunk subtree

by C′
T ′

v
. The height of the shrunk subtree C′

T ′
v

is equal to the number of vertices
in T ′(v). Also, note that shrinking is a crossing-free unidirectional morph.

4 Morphing Through Lifting Paths

Let T be an n-vertex tree and P be a path decomposition of T into k paths.
In this section, we describe an algorithm that morphs a plane drawing Γ = Γ0

in XY0 plane of tree T to the canonical 3D drawing Γ ′ = C(T) of T in O(k)
steps. It lifts the paths of P one by one applying procedure Lift(). Note that the
final positions for the vertices in C(T) are independent of P. Also, a morph from
C(T) to Γ ′ can be obtained by applying the morph from Γ ′ to C(T) backwards.
At all times during the algorithm, the following invariant holds: a path Pi ∈ P
is lifted only after all the children of the internal vertices of Pi are lifted. After
the execution of Lift(Pi), path Pi moves to its canonical position with respect
to head(Pi), see Fig. 2 and 3.

Step 0: Preprocessing. This step is a single stretching morph 〈Γ, Γ1〉 with
S1 = 2 · (rpw + d(Γ)). Note that stretching is a crossing-free morph.

Lift(path) Procedure
Let Pi = (v0, v1, . . . , vm) be the first path in P that has not been processed yet
and Γt be the current drawing of T . We lift the path Pi. For any vertex v let lifted
subtree T ′(v) be the portion of subtree T (v) that has been lifted after execution
of Lift(Pj) for some j < i. Let the processing vertices be the internal vertices of
Pi along with the vertices of their lifted subtrees. The subtrees of all internal
vertices vj in Pi are already lifted due to the ordering among the paths. Suppose
the lifted subtrees are in the canonical position with respect to the roots, the
maximum height of vertices in an intermediate drawing Γt is strictly less than n
and the difference of width between a lifted vertex and its root is at most rpw.
We provide a brief overview of the Lift() procedure in the following.

The procedure Lift(Pi) consists of 13 steps and results in moving vertices of
path Pi along with their lifted subtrees to their canonical positions with respect

Morphing Tree Drawings in a Small 3D Grid 91

Fig. 2. (a) Drawing Γt in the beginning of the procedure Lift(Pi), bounding boxes for
lifted subtrees are violet, Pi consists of green edges. Directions of movement of the
vertices are shown with red arrows. (b) Step 1, (c) Step 2 and (d) Steps 3–4 of
Lift(). (Color figure online)

to the head of Pi, i.e.,vertex v0. Since the height of any lifted vertex is strictly
less than n and the difference of width between a lifted vertex and its root is at
most rpw, preprocessing Step 0 and Lemma 1 guarantee that the already lifted
subtrees lie in the disjoint right circular cylinders of radius rpw and height n.

Step 1: For every internal vertex vj of the path Pi, its lifted subtree T ′(vj)
morphs into the shrunk lifted subtree, see Sect. 3. All subtrees are shrunk simul-
taneously in one morphing step. This step is needed to ensure that the maximum
height of a vertex does not exceed 2n during the Lift() procedure. It is a crossing-
free morph since the subtrees move in mutually disjoint cylinders.

Step 2: It consists of steps 〈Γt, Γt+1〉, 〈Γt+1, Γt+2〉. For 0 ≤ j < m − 1, if
projection pr(T ′(vj)) overlaps with pr((vj , vj+1)), we rotate twice the drawing
of T ′(vj) around the vertical pole through Γt(vj). Since every lifted subtree
T ′(vj) lies in XZ+

vj
, after this step all lifted subtrees lie in XZ+

vj
or XZ−

vj
. It

is a crossing-free morph since the rotations of subtrees happen inside mutually
disjoint cylinders.

Step 3: In the morphing step 〈Γt+2, Γt+3〉, each internal vertex vj , j ≥ 1 of
path Pi moves vertically to the height defined recursively as follows: for v1:
Γt+3(v1)z = n; for vj , j > 1: Γt+3(vj)z = Γt+3(vj−1)z + |T ′(vj−1)|. Note that
|T ′(vj)|, a number of vertices in T ′(vj), is equal to the height of this shrinked
lifted subtree. This step is crossing free since the projections of different subtrees
and the path edges to the XY0 plane does not change during the morph. After
this step the vertices of Pi are in the same vertical order as in the canonical
drawing C(T).

Step 4: The lifted subtree of each internal vertex of Pi is rotated to lie in a
horizontal plane passing through the corresponding vertex. This step places all
T ′(vj) in disjoint horizontal planes. The direction of rotation is chosen in such
a way that T ′(vj) does not cross with an edge (vj , vj+1).

Steps 5 and 6: In Step 5 (〈Γt+4, Γt+5〉), each vertex vj(j ≥ 2) of the path Pi

moves together with its subtree T ′(vj) along the vector ((v1x
− vjx

) + C(vj)x −
C(v1)x, v1y

−vjy
, 0), where v1x

denotes x-coordinate of vertex v1 in drawing Γt+4.
In Step 6 (〈Γt+5, Γt+6〉), every vertex vj , j ≥ 2 of the path Pi moves together with

92 A. Istomina et al.

Fig. 3. Yellow plane is a vertical plane. (a) Steps 5–6, (b) Steps 7–8, (c) Step 9 and
(d) Steps 10–13 (Steps 11, 13 do not make any changes in this example) of Lift().
(Color figure online)

its subtree T ′(vj) along the same vertical vector (0, 0, (v1z
−vjz

)+C(vj)z−C(v1)z),
where v1z

means z-coordinate of vertex v1 in drawing Γt+5. Steps 5 and 6 move
v2, . . . , vm to their canonical positions with respect to the vertex v1

Steps 7, 8 and 9: Step 7, i.e., 〈Γt+6, Γt+7〉, 〈Γt+7, Γt+8〉, turns every lifted
subtree T ′(vj) of internal vertices of Pi to lie in positive x-direction with respect
to vj . Step 8, i.e., 〈Γt+8, Γt+9〉, morphs lifted subtrees of internal vertices of Pi in
the horizontal planes from shrunk to the canonical size. In Step 9 (〈Γt+9, Γt+10〉)
all lifted subtrees T ′(vj) of the internal vertices of Pi rotate around horizontal
axes (x, vjy

, vjz
), x ∈ R to lie in vertical plane in positive direction such that the

subtree T (v1) is in the canonical position with respect to v1.

Step 10: In the morphing step 〈Γt+10, Γt+11〉, every internal vertex vj of the path
with its subtree T ′(vj) moves horizontally in the direction (v0x

−v1x
, v0y

−v1y
, 0).

If in C(T) the edge (v0, v1) is vertical, vertex v1 moves along this vector to get
x, y-coordinates equal to (v0x

, v0y
). Otherwise, vertex v1 moves along this vector

as long as possible to get integer x and y coordinates not equal to (v0x
, v0y

). Step
10 ensures that Steps 11–13 move vertices only inside right circular cylinder of
radius rpw + d(Γ) and height 2n around v0. During Steps 11–13 the processed
part of the tree does not intersect with the unprocessed part since the above
mentioned cylinders are disjoint for the vertices that are lying in XY0.

Steps 11, 12 and 13: These steps differ depending on whether or not we have
rotated T ′(v0) during Step 2. In one case T ′(v0) is in x-positive direction from
v0 and in the other T (v1) is in x-positive direction from v0. Steps 11 and 13
make two rotations of the needed part of the tree to correct it’s x, y-coordinates.
Also, we need to move v1 and its subtree to the canonical height with respect
to v0. In Step 12, we make the z-coordinate correction of T (v1). The steps are
ordered in such a way that no intersections happen during their execution. Step
13 concludes the procedure Lift(Pi) by placing all processing vertices into their
canonical positions with respect to v0.

Morphing Tree Drawings in a Small 3D Grid 93

In the end of these morphing steps, we observe that all the internal vertices of
Pi along with their subtrees are placed in the canonical position with respect to
v0. The lifted subtrees that were in the relative canonical position at the begin-
ning of Lift(Pi), still maintain their positions. For any path Pk, such that k > i,
its vertices still lie on the XY0 plane and their positions do not change during
these steps. We keep on lifting up paths until we obtain the canonical drawing
of T . The following theorem summarises what we achieved in this section.

Theorem 1. For every two planar straight-line grid drawings Γ, Γ ′ of tree T
with n vertices there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . , Γl = Γ ′〉
that takes O(k) steps where k is number of paths in some path decomposition of
tree T . In this morph, every intermediate drawing Γi, 1 ≤ i ≤ l is a straight-line
3D grid drawing lying in a grid of size O(d2 × d2 × n), where d is maximum of
the diameters of the given drawings.

5 Morphing Through Lifting Edges

In this section, we describe another algorithm that morphs a planar drawing Γ
of tree T to the canonical drawing C(T) of T . This time one iteration of our
algorithm lifts simultaneously a set of edges with at most one edge of each path
of a selected path decomposition. Let Γ = Γ0 be a planar drawing of T .

Step 0: Preprocessing. This step 〈Γ, Γ1〉 is a stretching morph with S1 =
2 · rpw · d(Γ) · (4 · d(Γ) + 1). It is a crossing-free morph.

Lift(edges) procedure
For edge e of T , let st(e) (respectively, end(e)) be the vertex of e with smallest
(respectively, largest) depth. Let K = {K1, . . . ,Km} be the partition of edges
of T into disjoint sets such that e ∈ Ki if and only if dpt(st(e)) = m − i, where
m denotes the depth of T . We lift up sets Ki from K from i = 1 to i = m by
executing Lift(Ki) (Steps 1–5, see Fig. 4 and 5). Let Γt be the drawing of T
before lifting set Ki. Let lifted subtree T ′(vj) be the portion of subtree T (vj)
lifted by the execution of Lift(Kj) where j < i. Suppose the drawing of T ′(v)
in Γt is the canonical drawing of T ′(v) with respect to v; and the vertices that
are incident to some non-processed edges lie in XY0 plane.

Lemma 2. For every edge e = (v, u) with st(e) = v in Γ1 there is a lat-
tice point ze ∈ e such that B(Γ1(ze), rpw · d(Γ)) ⊂ B(Γ1(v), rpw · d(Γ) ·
(4 · d(Γ) + 1)). For distinct pair of edges e1, e2 ∈ Ki∀i = 1, . . . , m disks
B(Γ1(ze1), rpw) and B(Γ1(ze2), rpw) are disjoint. Also, for distinct pair of edges
e1, e2 ∈ Ki∀i = 1, . . . ,m regions Fe1 ,Fe2 are disjoint, where Fe = {x ∈ XY0 :
distΓ1(x, (ze, u)) ≤ rpw}.

Step 1: Shrink. In the step 〈Γt, Γt+1〉, for every edge e ∈ Ki we move vertex
end(e) along with its lifted subtree towards st(e) until end(e) reaches point ze.

Step 2: Go up. In morphing step 〈Γt+1, Γt+2〉, we move end(e) with T ′(end(e))
along the vector (0, 0, C(end(e))z − C(st(e))z) for all e ∈ Ki.

94 A. Istomina et al.

Fig. 4. (a) Drawing Γt in the beginning of the procedure Lift(Ki), bounding boxes
for lifted subtrees are violet, Ki consists of green edges. (b) Step 1 and (c) Step 2 of
Lift().

Fig. 5. (a) Step 3; (b) Step 4; (c) Step 5, consists of two morphing steps.

Step 3: Mapping. Morphing step 〈Γt+2, Γt+3〉 is a mapping morph, see Sect. 3.
For every lifted subtree T ′(vj), where vj = end(e), e ∈ Ki, we define the half-
planes of the mapping morph as follows: half-plane α is XZ+

vj
, half-plane β is

part of the vertical plane containing the edge e in such direction that e /∈ β, the
common vertical pole of α and β is a pole through vj . All mapping steps are
done simultaneously for all subtrees of end vertices of the edges of Ki.

Step 4: Shrink more. The morphing step 〈Γt+3, Γt+4〉 is a horizontal morph.
For each vj = end(e), e ∈ Ki we define a horizontal vector of movement

as follows. If e is a vertical edges in canonical drawing then this vector is
(Γt+3(st(e))x −Γt+3(end(e))x, Γt+3(st(e))y −Γt+3(end(e))y, 0), in this case sub-
tree T ′(end(e)) is moving towards vertical pole through st(e) until the image of
the edge e becomes vertical. If e is not a vertical edge in canonical drawing, then
C(end(e))x − C(st(e))x = 1 and we move the whole subtree T ′(end(e)) towards
the pole through Γt+3(st(e)) until end(e) reaches the last point with integer
coordinates before (Γt+3(st(e))x, Γt+3(st(e))y, Γt+3(end(e))z).

Step 5: Collide planes. During the following steps 〈Γt+4, Γt+5〉, . . . ,
〈Γt+5+log k, Γt+5+log k+1〉 we iteratively divide half-planes that contain
T ′(end(e)), e ∈ Ki around each vertex st(e), e ∈ Ki in pairs which are formed of
neighboring half-planes in clockwise order around the pole through st(e). If in
some iteration there are odd number of planes around some pole, the plane with-
out pair does not move in this iteration. In every iteration we map the drawing
of one plane in the pair to another simultaneously in all pairs. As around each

Morphing Tree Drawings in a Small 3D Grid 95

vertex we can have at most k = Δ(T) number of half-planes, we need at most
O(log k) number of mapping steps to collide all planes in one and to rotate the
resulting image to XZ+

st(e)

We perform Lift() for each Ki ∈ K till we obtain the canonical drawing of
T . The following theorem summarises the result of this section.

Theorem 2. For every two planar straight-line grid drawings Γ, Γ ′ of an n-
vertex tree T , there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . , Γk = Γ ′〉
that takes O(dpt(T) · log Δ(T)) steps and O(d3 · log n × d3 · log n × n) space such
that every intermediate drawing Γi, 0 ≤ i ≤ k is a straight-line 3D grid drawing,
where d is maximum of the diameters of the given drawings. In the worst case
the algorithm can take O(dpt(T) · log n) steps since the maximum degree of T
can be O(n).

6 Trade-off

Recall that L(T) is the set of paths induced by the long-path decomposition, see
Sect. 2. Let Long(T) be a set of paths from L(T), consisting of the paths whose
length is at least

√
n, i.e. Long(T) = {Li ∈ L(T) : |Li| ≥ √

n}, let the order in
Long(T) be induced from the order in L(T). We denote by Short(T) a set of
trees that are left after deleting from T edges of Long(T).

Lemma 3. |Long(T)| ≤ √
n and for every tree Ti in Short(T) depth of Ti is at

most �√n
.
We divide edges in Short(T) into disjoint sets Sh1, . . . Sh�√

n�. An edge
(vi, vj) in tree Tk lies in the set Shl if and only if max(dpt(vi), dpt(vj)) =
�√n
− l +1, where dpt(v) is the depth of vertex v in the corresponding tree Tk.
Since the maximum depth of any tree Tk is at most

√
n, Sh1, . . . Sh�√

n� contain
all the edges of these subtrees.

Trade-off Algorithm: In the beginning we perform a stretching step with
S1 = 2 · rpw · d(Γ) · (4 · d(Γ) + 1) as mentioned in Sect. 5. S1 is big enough to
perform Lift() procedure mentioned in Sect. 4. Then, we lift edges from sets Sh1

to Sh�√
n� by Lift(Shi) procedure. It takes O(

√
n · log Δ(T)) steps in total by

Theorem 2. After that, we lift paths in Long(T) in the order induced by the
path decomposition. As |Long(T)| ≤ √

n and each Lift() procedure consists of a
constant number of morphing steps, this step takes O(

√
n) steps.

Theorem 3. For every two planar straight-line grid drawings Γ, Γ ′ of tree T
with n vertices there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . , Γl =
Γ ′〉 that takes O(

√
n · log Δ(T)) steps (O(

√
n · log n) in the worst case) and

O(d3 ·log n×d3 ·log n×n) space to perform, where d is maximum of the diameters
of the given drawings. In this morph every intermediate drawing Γi, 1 ≤ i ≤ l
is a straight-line 3D grid drawing. It is possible to morph between Γ, Γ ′ using
O(

√
n) steps if maximum degree of T is a constant.

96 A. Istomina et al.

7 Conclusion

In this paper, we presented an algorithm that morphs between two planar grid
drawings of an n-vertex tree T in O(

√
n log n) steps such that all intermedi-

ate drawings are crossing-free 3D grid drawings and lie inside a polynomially
bounded 3D-grid. Arseneva et al. [2] proved that O(log n) steps are enough to
morph between two planar grid drawings of an n-vertex tree T where intermedi-
ate drawings are allowed to lie in R

3 but they did not guarantee that intermediate
drawings have polynomially bounded resolution. Several problems are left open
in this area of research. We mention some of them here. It is interesting to prove
a lower bound on the number of morphing steps if intermediate drawings are
allowed to lie in R

3 (with or without the additional constraint of polynomi-
ally bounded resolution). Another intriguing question is if it possible to morph
between two planar grid drawings in o(n) number of steps for a richer class of
graphs (e.g. outer-planar graphs) than trees if we are allowed to use the third
dimension.

Acknowledgements. Elena Arseneva was partially supported by the Foundation for
the Advancement of Theoretical Physics and Mathematics “BASIS”. Elena Arseneva
and Aleksandra Istomina were partially supported by RFBR, project 20-01-00488.
Rahul Gangopadhyay was supported by Ministry of Science and Higher Education of
the Russian Federation, agreement no. 075-15-2019-1619.

References

1. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput. 46(2),
824–852 (2017). https://doi.org/10.113716M1069171

2. Arseneva, E., et al.: Pole dancing: 3D morphs for tree drawings. J. Graph Algorithms
Appl. 23(3), 579–602 (2019)

3. Barrera-Cruz, F., et al.: How to morph a tree on a small grid. In: Friggstad, Z.,
Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp. 57–70.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9 5

4. Bender, M.A., Farach-Colton, M.: The level ancestor problem simplified. In: Rajs-
baum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 508–515. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-45995-2 44

5. Biedl, T.: Optimum-width upward drawings of trees. arXiv preprint
arXiv:1506.02096 (2015)

https://doi.org/10.113716M1069171
https://doi.org/10.1007/978-3-030-24766-9_5
https://doi.org/10.1007/3-540-45995-2_44
http://arxiv.org/abs/1506.02096

	Morphing Tree Drawings in a Small 3D Grid
	1 Introduction
	2 Preliminaries and Definitions
	3 Tools for Morphing Algorithms
	4 Morphing Through Lifting Paths
	5 Morphing Through Lifting Edges
	6 Trade-off
	7 Conclusion
	References

