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Preface

WALCOM 2022, the 16th International Conference and Workshops on Algorithms and
Computation,was held duringMarch 24-26, 2022 at theUniversitas Jember, Jember, East
Java, Indonesia. The workshop covered diverse areas of algorithms and computation,
namely, approximation algorithms, computational complexity, computational geome-
try, graph algorithms, graph drawing, visualization, online algorithms, parameterized
complexity and property testing. The quality of the workshop was ensured by a Pro-
gram Committee comprising 32 researchers of international reputation from Australia,
Bangladesh, Canada, China, Czech Republic, France, Germany, Hong Kong, India,
Indonesia, Italy, Japan, the Netherlands, Norway, Singapore, Taiwan and USA.

This proceedings volume contains 30 contributed papers and three invited papers
presented at WALCOM 2022. The Program Committee thoroughly reviewed each of
the 89 submissions from 29 countries and accepted 30 of them for presentation at
the conference after elaborate discussions on 286 review reports prepared by Program
Committee members together with 103 external reviewers. Among the highest
scored contributed papers, the Program Committee selected the paper “Parameterized
Complexity of Immunization in the Threshold Model” as the best paper and the paper
“Reverse Shortest PathProblem inWeightedUnit-DiskGraphs” as the best student paper.
The image of the workshop was highly enhanced by the three invited talks of eminent
and well-known researchers Prof. Hans L. Bodlaender of Utrecht University and Tech-
nical University Eindhoven, The Netherlands, Prof. Tiziana Calamoneri of University
of Rome “Sapienza”, Italy and Prof. Takehiro Ito of Tohoku University, Japan.

As editors of this proceedings, we would like to thank all the authors who submitted
their papers to WALCOM 2022. We also thank the members of the Program Com-
mittee and external reviewers for their hard work in reviewing the manuscripts. Our
sincere appreciation goes to the invited speakers for delivering wonderful talks from
which researchers of this field have been benefited immensely. We acknowledge the
continuous encouragements of the advisory board members Prof. M. Kaykobad, Prof.
TakaoNishizeki and Prof. C. PanduRangan. The Steering Committeemembers ofWAL-
COM always supported us with their valuable suggestions. We sincerely thank the hon-
orable rector of Universitas Jember Dr. Ir. Iwan Taruna for his all around support for
organizing WALCOM 2022. We sincerely thank the Organizing Committee led by Prof.
Slamin, Prof. Antonius C. Prihandoko and Prof. Dafik for their excellent services that
made the workshop a grand success.

We would like to thank Springer for publishing this proceedings in their prestigious
LNCS series and also for supporting the best paper award and the best student paper
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award. Finally, we acknowledge the EasyChair conference management system for
providing a beautiful platform for conference administration.

March 2022 Petra Mutzel
Md. Saidur Rahman

Slamin
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A Tribute to Professor Takao Nishizeki

With great sorrow we are sharing the sad news that one of the advisory board mem-
bers of WALCOM and a founding steering committee member of WALCOM Prof. Dr.
Takao Nishizeki, Professor Emeritus at Tohoku University, passed away on January 30,
2022. Prof. Nishizeki was born in 1947 in Fukushima, and was a student at Tohoku
University, earning a bachelor’s, a master’s and a doctorate degree in 1969, 1971 and
1974 respectively. He continued at Tohoku University as a faculty member, and became
a full professor there in 1988. He retired in 2010, becoming a Professor Emeritus at
Tohoku University.

Professor Nishizeki established himself as a world leader in computer science, in
particular, algorithms for planar graphs, edge coloring, network flows, very large-scale
integration (VLSI) routing, graph drawing and cryptography. He is the co-author of two
books “Planar Graphs: Theory and Algorithms” and “Planar Graph Drawing”. Both
books are considered as the most valuable pioneering work on planar graphs and planar
graph drawings and have been widely distributed over the world. Professor Nishizeki
served in the editorial boards of Algorithmica, Journal of Combinatorial Optimization,
Discrete Mathematics and Theoretical Computer Science, Journal of Information Pro-
cessing, Journal of Graph Algorithms and Applications, Transactions of IEICEJ, and
Journal of IEICJ. In 1996, he became a life fellow of the IEEE “for contributions to
graph algorithms with applications to physical design of electronic systems.” In 1996 he
was selected as a fellow of the Association for Computing Machinery “for contributions
to the design and analysis of efficient algorithms for planar graphs, network flows and
VLSI routing”. Prof. Nishizeki was also a foreign fellow of the Bangladesh Academy of
Sciences and contributed significantly to the computer science education and research
in Bangladesh. For his great achievements in computer science, Professor Nishizeki was
awarded the ICFBest Research Award by the International Communications Foundation
in 2006. He received the prestigious Information Science Promotion Award by Funai
Foundation for Information Technology in 2003 and the TELECOMTechnology Award
by the Telecommunication Advancement Foundation in 1998.

As the most active and renowned computer scientist in Asia, Professor Nishizeki
also made a great contribution to build a community of computer science in the Asia
and Pacific region. In 1990 he founded the International Symposium on Algorithms and
Computation (ISAAC) for the purpose of expanding the research community among
the Asian and Pacific countries. He was a founding steering committee member of
Graph Drawing (GD) and the International Conference and Workshops on Algorithms
and Computation (WALCOM). It is worth mentioning that WALCOM was started to
celebrate the 60th birthday of Professor Takao Nishizeki on February 12, 2007.

Professor Nishizeki was very popular among his students for his innovative teaching
methodology. He awarded 28 PhD degrees and many of his students have established
themselves in academia and industry. Professor Nishizeki is no longer with us, but his
values, teachings and research contributions will survive years after years for the benefit
of mankind.
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Some Problems Related to the Space
of Optimal Tree Reconciliations

(Invited Talk)

Tiziana Calamoneri1(B) and Blerina Sinaimeri2,3

1 Sapienza University of Rome, Rome, Italy
calamo@di.uniroma1.it

2 LUISS University, Rome, Italy
bsinaimeri@luiss.it

3 Erable, INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France

Abstract. Tree reconciliation is a general framework for investigating
the evolution of strongly dependent systems as hosts and parasites or
genes and species, based on their phylogenetic information. Indeed, infor-
mally speaking, it reconciles any differences between two phylogenetic
trees by means of biological events. Tree reconciliation is usually com-
puted according to the parsimony principle, that is, to each evolutionary
event a cost is assigned and the goal is to find tree reconciliations of min-
imum total cost. Unfortunately, the number of optimal reconciliations is
usually huge and many biological applications require to enumerate and
to examine all of them, so it is necessary to handle them.

In this paper we list some problems connected with the management
of such a big space of tree reconciliations and, for each of them, discuss
some known solutions.

Keywords: Tree Reconciliation · Enumeration Algorithms ·
Visualization Algorithms · Clustering

1 Introduction

Tree reconciliation is a general framework for investigating the co-evolution of
related biological systems as for example hosts and their parasites [9], genes and
their corresponding species [15], organisms and their living areas (biogeography)
[4], or species and their geological history [27]. The similarity between all these
classes of problems was pointed out since 1994 [25,26] and in this paper we will
use the terminology of host/parasite context.

Given two phylogenetic trees for two sets of organisms, hosts and parasites,
denoted by H and P respectively, together with a mapping φ of the leaves of
P to the leaves of H (φ represents the nowadays infections), a reconciliation is

Supported by Sapienza University of Rome, projects “Comparative Analysis of Phylo-
genies” (no. RM1181642702045E), “A deep study of phylogenetic tree reconciliations”
(no. RM11916B462574AD) and “Measuring the similarity of biological and medical
structures through graph isomorphism” (no. RM120172A3F313FE).

c© Springer Nature Switzerland AG 2022
P. Mutzel et al. (Eds.): WALCOM 2022, LNCS 13174, pp. 3–14, 2022.
https://doi.org/10.1007/978-3-030-96731-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96731-4_1&domain=pdf
http://orcid.org/0000-0002-4099-1836
http://orcid.org/0000-0002-9797-7592
https://doi.org/10.1007/978-3-030-96731-4_1
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a mapping ρ of the internal vertices of P to the vertices of H which extends φ
under some constraints.

Informally, it attempts to reconcile any differences between the phylogenetic
histories of the parasite with that of their hosts and explaining each diversifica-
tion with a possible evolutionary event.

Tree reconciliations are generally computed according to the parsimony prin-
ciple, that is, to each evolutionary event is assigned a cost and the goal is to find
a reconciliation of minimum total cost. The resulting optimization problem is
denoted as the reconciliation problem.

Given a cost for each evolutionary event, for many data sets there may be a
huge number (possibly exponential in the dimension of the trees) of optimal rec-
onciliations. Each one of them could represent a different biological scenario and
thus without further information, any biological interpretation of the underlying
co-evolution would require all optimal solutions to be enumerated and examined,
which is often unfeasible in practice.

In this paper we survey some problems connected with the management of
such a huge space of tree reconciliations; more in detail, we will describe the
problems of enumerating all reconciliations, of visualizing them and of reducing
the number of those to be examined.

2 Definitions and Notations

Given a tree T , we denote its vertex, edge and leaf sets by V (T ), E(T ) and L(T ),
respectively. If T is rooted, its root is denoted by r(T ), and the subtree in T rooted
at v by T (v). For any v, w ∈ V (T ), P (v, w) is the set of vertices on the unique
path connecting v to w, and their distance is defined as dT (v, w) = |P (v, w)| − 1.

The rooting of T induces a partial order on the vertices of V (T ): w is an
ancestor (descendant, respectively) of v if w is a vertex on the path between
r(T ) and v (v is on the path between r(T ) and w); in both cases, v and w are
called comparable, otherwise they are incomparable.

The lowest common ancestor of two vertices v, w ∈ V (T ), denoted lca (v, w),
is the (unique) least common vertex of the two paths leading from v and w up to
r(T ).

A phylogenetic tree T is a leaf-labelled rooted full binary (i.e., all of its internal
vertices have exactly two children) tree that models the evolution of a set of taxa
(placed at the leaves) from their most recent common ancestor (placed at the root).
Let H and P be the phylogenetic trees for the host and parasite species, respec-
tively. Function φ (defined from the leaves of P to the leaves of H) indicates the
association between currently living host and parasite species.

A reconciliation ρ is a function from the set of vertices of P to the set of
vertices of H that extends the mapping φ of the leaves under some constraints.
Note that each internal vertex of P can be associated to an event among: cospe-
ciation (when both the parasite and the host speciate), duplication (when the
parasite speciates but not the host) and host switch (when the parasite speciates
and one of its children is associated to an incomparable host), while each arc



Some Problems Related to the Space of Optimal Tree Reconciliations 5

(u, v) of P is associated to a certain number of loss events l(u,v) ≥ 0 that is equal
to the length of pathH(ρ(u), ρ(v)) if u is an ancestor of v. It is therefore possible
to associate to each reconciliation ρ a vector Eρ = 〈ec, ed, es, el〉, called event
vector, where ec, ed, es and el denote the number of cospeciations, duplications,
host switches and losses, respectively, that are identified by ρ.

Given a vector C = 〈cc, cd, cs, cl〉 of real values that correspond to the cost
of each type of event, the most parsimonious (or optimal) reconciliations are the
ones that minimize the total cost, i.e. that minimize cost(ρ) =

∑
i∈{c,d,s,l} ei ci.

Note that it is usual to assume cc < cd and cl > 0; in the following we adopt
these assumptions.

Finally, in our framework we assume the host tree is undated (i.e. a total order
of the internal vertices is not known). This because dating a phylogenetic tree is
usually a hard task and often unreliable. Working with undated trees increases the
difficulty of the reconciliation problem as sometimes the inferred host switches may
induce contradictory time constraints on the internal vertices of the host. Thus,
finding an optimal time-consistent reconciliation is NP-hard [24,34].

Nevertheless, it is possible to detect in polynomial time, whether a given
tree reconciliation is time-consistent or not. Concerning the definition and the
checking of time-consistency we refer the reader to [33].

3 Enumerating Reconciliations

It is well-known that finding an optimal time-consistent reconciliation is NP-hard
(see for example [24,34]). However, if the time-consistent constraint is dropped,
the problem can be solved efficiently in polynomial time using a dynamic pro-
gramming algorithm [21,34]. It has been observed in practice that often there
exists a time-consistent reconciliation of optimal cost. This lead to the design
of efficient enumeration algorithms for the reconciliation problem. However, the
main reason why one wants to enumerate all the optimal solutions is because
–even if we guarantee the time-consistency– different optimal reconciliations can
exist. Though these reconciliations are all optimal and hence have all the same
(minimum) total cost, they can be quite different in terms of the mapping func-
tion or even of the number of events. For example in Fig. 5 a-b we present
two reconciliations with the same events (and the same total cost) but which
correspond to very different mappings and thus to two different biological sce-
narios. To this purpose, most of the software proposed in the literature do not
rely on only one optimal solution but enumerate (i.e. list) all of them (see
e.g. [11,18,20,29,33,36]). The general enumeration algorithm underlying these
tools employs a fairy simple approach. It is based on the dynamic programming
(DP) technique for computing a single optimal solution (see e.g. [11,21,33,34])
with some additional information useful for an exhaustive traceback stored in a
matrix. The dynamic programming matrix has size O(|V (P )|×|V (H)|); each cell
labeled by a parasite/host association (p : h) contains the information needed
for the reconstruction of all reconciliations of minimum cost between the subtree
of P rooted at vertex p and the host tree, such that p is mapped to h. Once
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the matrix has been filled, the optimal solution can be found in the last row
of the matrix in correspondence of the mapping of the root of P . It is possible
then, starting from the root of P and using the backtrack arcs to traverse in
a depth-first search manner the matrix and getting thus all the optimal solu-
tions. It is not difficult to see that this algorithm takes O(|V (H)|2|V (P )|) time
to fill the matrix and then only O(|V (P )|) to output each subsequent optimal
reconciliation. Therefore, there is an algorithm with a O(|V (P )||V (H)|2) time
pre-processing step and O(|V (P )|) time delay for enumerating the optimal rec-
onciliations (see [11,36]).

In various applications one is interested not only in optimal solutions but also
in sub-optimal ones, that is, those having a cost strictly larger than the minimum.
In the context of reconciliations, for a given input, one can hypothetically consider
all the possible reconciliations in an increasing order based on their costs (the
ordering between solutions having the same cost is arbitrary). Given an integer
K, the goal is to output the first K reconciliations in this order. If K is larger
than the number of optimal reconciliations, then the output should contain all
optimal reconciliations and also a number of sub-optimal ones. To the best of
our knowledge, [36] is the only paper that handles sub-optimal reconciliations,
and is based on an algorithm that is a non trivial extension of the dynamic
programming algorithm for listing all optimal reconciliations.

A variation of the problem involves restricting the reconciliations to have all
host-switches bounded by some fixed distance k. The distance of a host-switch
is defined as the distance in the host tree of the species involved in the switch
of a parasite from one host to another. The biological motivation behind this
constraint is that it may be related to the ability of the parasite to invade “very
different” species. Such constraint has already been included in the parsimonious
framework developed in [11] by requiring that host switches be allowed to happen
only between “closely” related species, i.e. species that are within some fixed
distance in the host tree. To the best of our knowledge, [7] is the only paper that
considers this problem for low values of k (k = 2).

Open Problems. First, it is still open whether an optimal reconciliation where
the distance of the host-switches is bounded by k (k is not part of the input) can
be computed in polynomial time. In another direction, it is possible to analyse
whether an optimal time-consistent reconciliation can be found in polynomial
time for some particular topologies of trees. Some preliminary results on this
problem can be found in [6].

4 Visualizing Reconciliations

Producing readable and compact representations of trees has a long tradition in
the graph drawing research field. Besides the standard vertex-link diagrams (e.g.
layered trees, radial trees, hv-drawings, etc.), trees can be visualized via the so-
called space-filling metaphors (e.g. circular and rectangular treemaps, sunbursts,
icicles, sunrays, icerays, etc.) [30].
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It is crucial for biologists to unambiguously and effectively visualize tree
reconciliations, in order to study and compare them quickly. So, in the literature,
there are a number of papers and tools going in this direction. We classify into
three families, schematically represented in Fig. 1, the representation conventions
commonly adopted.

The simplest strategy represents the two trees by adopting the traditional
vertex-link metaphor, where the vertices of P are drawn close to the vertices of H
they are associated to through the reconciliation (see Fig. 1(a)). The advantage
of this strategy lays in its simplicity. However, the drawing tends to become
cluttered and with a high number of crossings.

)c()b()a(

Fig. 1. Three visualization strategies for representing reconciliations.

Figure 2(a) shows an example of a straight-line representation obtained with
CoRe-PA [38], adopting this strategy, while Fig. 2(b) shows a rightward orthog-
onal representation of a reconciliation obtained with Jane 4 [19].

Fig. 2. (a) Reconciliation of Seabirds-Chewing Lice co-evolution trees visualized
with CoRe-PA [38]. (b) Reconciliation of Gymnosporangium-Malus pathosystem co-
evolution trees visualized with Jane 4 [19] (picture from [39]).

An alternative strategy consists in representing H as a background shape,
such that its vertices are shaded disks and its arcs are pipes, while P is contained
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(a) (b)

Fig. 3. (a) An example of co-phylogenetic tree drawn by CophyTrees, the viewer asso-
ciated with [11]. (b) Reconciliation of Major Histocompatibility Complex class I in
Gorilla, Orangutan-Tamarin visualized with Primetv [32] (picture from [32]).

(a) (b)

Fig. 4. (a) An icicle. (b) The representation adopted for trees H and P .

in H and drawn in the traditional vertex-link style (see Fig. 1(b)). Figure 3(a)
shows a representation of a reconciliation obtained with CophyTrees, the viewer
associated with [11]. The representation is particularly effective, as it is unam-
biguous and crossings between the two trees are strongly reduced, but it is still
cluttered when a parasite subtree has to be squeezed inside the reduced area of
a host vertex.

Finally, some visualization tools adopt the strategy of keeping the contain-
ment metaphor while only drawing thick arcs of H and omitting host vertices
(see Fig. 1(c)). This produces a vertex-link drawing of the parasite tree inside
the pipes representing the host tree. This strategy is used, for example, by the
reconciliation viewer SylvX [10] or by Primetv [32] (see Fig. 3(b)). This strat-
egy, effective when there is uncertainty in the association of parasites to hosts,
becomes unclear in other situations.

Inspired by recent proposals of adopting space-filling techniques to represent
biological networks [35], and with the aim of overcoming the limitations of exist-
ing visualization strategies, in [8] a new hybrid metaphor for the representation
of reconciliations is introduced. A space-filling approach is used to represent H,
while tree P maintains the traditional vertex-link representation. The reconcili-
ation is unambiguously conveyed by placing parasite vertices inside the regions
associated with the hosts they are mapped to.
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More specifically, the representation of tree H is a variant of a representation
known in the literature with the name of icicle. An icicle is a space-filling represen-
tation of hierarchical information in which vertices are represented by rectangles
and arcs are represented by the contact of rectangles, such that the bottom side of
the rectangle representing a vertex touches the top sides of the rectangles repre-
senting its children (see Fig. 4(a)). In this model, in order to contain parasite sub-
trees of different depths, rectangles of different height are allowed. Also, all leaves
of H (i.e. present-day hosts) are forced to share the same bottom line that intu-
itively represents current time. This is the first representation guaranteeing the
downwardness of P when time-consistent reconciliations are considered.

In the same paper [8], the problem of minimizing the number of crossings in
the representation is addressed, proving that it is NP-complete; moreover, a char-
acterization of reconciliations that can be planarly drawn is given, so putting, for
the first time, in relation properties of the reconciliation and of its visualization.

Open Problems. A tanglegram drawing consists of a pair of plane trees whose
leaves are connected by straight-line edges and they are very studied (e.g.
in [1,5,23,31]). It is known that finding a tanglegram drawing with the min-
imum number of crossings is NP-hard; we would like to adapt heuristics for the
reduction of the crossings of tanglegram drawings, such as those in [3,23,31], to
our problem of clearly visualizing reconciliations.

Moreover, there are some situations in which the taxa are associated with
some further information (such as, for example, the geographical zone where
they live [2]). It would be interesting to be able to visualizing also this additional
information inside the drawing; an idea could be to use colors, and in this case
a drawing requirement could be to put close vertices associated to the same
geographical zone.

5 Reducing the Number of Reconciliations

As already mentioned, the number of optimal solutions can be exponential in the
size of the trees and hence, in many real cases, the current cophylogeny model may
lead to a number of optimal solutions that is unrealistically large [11,12,36,37],
making it practically impossible to analyze each one of them separately. To address
this issue, different directions have been proposed in the literature. Some of them
involve clustering and random sampling of the space of optimal solutions. However,
as the optimal reconciliation space can be both large and heterogeneous [14], this
does not guarantee that important information is not lost.

Here we focus on two main approaches: the first one involves the definition of
a similarity/distance measure defined on the set of optimal reconciliations. Then
the problem would be to find a subset of reconciliations that is representative of
the whole set. More formally, we want to find a subset of optimal reconciliations
S, such that each of the optimal reconciliations is at distance at most d from
at least one of the reconciliations in S. Many methods have been designed in
this direction, as computing in polynomial time the pairwise distance among the
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optimal reconciliations [28] or finding a single reconciliation (e.g. a “median”
reconciliation) to represent the whole space of optimal ones [13,17,22]. However,
the results presented in [13,14,16,28] show that the space can be very diverse
and making inferences from a single reconciliation might lead to conclusions that
can be contradicted by other optimal reconciliations.

Another direction is to define equivalence classes for grouping the reconcilia-
tions that may be considered biologically equivalent. Once this notion of equiva-
lence is defined, we could group the optimal solutions in equivalence classes and
output a single solution for each class. Intuitively, this would allow to generate
solutions that are sufficiently different and would provide a first information on
the space of optimal solutions.

For example one notion of equivalence is based on the comparison of the
number of each one of the four events (cospeciation, duplication, loss and host
switch): two reconciliations are considered equivalent, and hence put in a same
class, if they have the same number of each event, i.e. if they have the same
event vector. Notice that, while the number of optimal solutions can be expo-
nential, the number of event vectors is bounded by O(|H||P |3) and hence can
be enumerated efficiently in polynomial time [36,37]. The set of the event-vector
classes provides already a first information about the co-evolutionary history
of the hosts and their parasites. Indeed, a high number of cospeciations may
indicate that hosts and parasites evolved together, while a high number of host-
switches may indicate that the parasites are able to infect different host species.
However, as shown in Fig. 5, two reconciliations may have the same event vector
and still be very different from a biological point of view.

Fig. 5. a. and b. Two reconciliations with the same event vector that nevertheless
are rather different. The grey tubes represent the host tree, while the black (plain or
dotted) lines inside the tubes represent the parasite tree. The roots of the parasite trees
are double lined to facilitate their recognition (picture from [12]).

Some more interesting notions of equivalence were first considered in [12].
One of the equivalences defined by the authors was inspired by the following
theoretical result: once the set of vertices of P that are associated to switches is
fixed, an optimal reconciliation can be easily identified using the least common
ancestor mapping. Hence, the authors consider two reconciliations ρ, ρ′ as equiv-
alent if for each vertex v ∈ V (P ) which is not associated to a host-switch, we
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have ρ(v) = ρ(v′) and for each host switch edge (u, v) in the parasite tree, map
u on a different vertex of H lying on the path between the vertices reconciled
with the parent of u and with the sibling of v. The latter is called a sliding path
to highlight the idea that u can be moved anywhere inside this path without
modifying the cost of the reconciliation. The partition of reconciliations induced
by this equivalence relation is finer than the partition induced by the event vec-
tor, since two reconciliations that are equivalent w.r.t. it are surely equivalent
w.r.t. to the event vector partition, but the opposite is not true, and this is in
agreement with the fact that two reconciliations with the same event vector can
be very different: in such a case, this equivalence distinguishes them.

However, the method presented in [12] requires first the listing (i.e. the enu-
meration) of all the optimal solutions and then clustering them according to the
equivalence notion. This represents a difficulty as when the number of reconcil-
iations is too large, for example, > 1042 [12,36,37], listing all the solutions is
not feasible. Hence, the ultimate goal would be to extract as much information
as possible about the space of optimal reconciliations, without considering all of
the elements of this space. This has been solved recently in [37] where for three
different notions of equivalence, a polynomial delay algorithm has been proposed
in order to enumerate only one representative for equivalence class. The authors
consider three different equivalence relations; one of them is the event-partition
equivalence: two reconciliations are event-partition equivalent if, for each inter-
nal vertex in the parasite tree, the event (cospeciation, duplication, host-switch)
assigned by each of the two reconciliations is the same. Notice that the difference
with the event-vector equivalence is that in the event-partition equivalence the
interest is not only in the number of the events but also in where these events
have taken place in the parasite tree.

Open Problems. First it would be interesting to explore the connections between
the equivalences defined in [12] and the ones defined in [37] and determine
whether there exist polynomial delay algorithms enumerating the representative
reconciliations of the equivalence classes defined in [12]. More generally, it would
be interesting to define other (biologically meaningful) notions of equivalence for
which such algorithms exist.
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Abstract. In this short survey, a number of old and new notions from
parameterized complexity are discussed. We start with looking at the
W -hierarchy, including the classes W [1], W [2], W [P ]. Then, a recent
development where problems are shown to be complete for simultane-
ously non-deterministic time of the form f(k)nc and space of the form
f(k) log n, is discussed. Some consequences and other notions are briefly
explored.

Keywords: Parameterized complexity · W -hierarchy · XP · XNLP

1 Introduction

The study of parameterized algorithms and complexity starts at the insight that
many computationally hard problems become easier when a parameter of the
input can be assumed small. Suppose we are to solve a facility location problem,
e.g., we have to place as few as possible fire stations in a city, such that each
house in the city is at most a 15 min drive away from a fire station. It is not
hard to observe that this is an NP-hard problem. However, if we know that we
have only funds available for three fire stations, then an exhaustive search for all
possible combinations of at most three locations gives a tractable (polynomial
time) algorithm to solve the problem.

In the theory of parameterized algorithms and complexity, we look at param-
eterized problems; i.e., we identify some aspect of the input as the parameter.
Then we ask: when this parameter is a constant, is there a polynomial time
algorithm. And if so, does the degree of the polynomial depend on the param-
eter. The theory started with work by Fellows and Langston at the late 1980s
(e.g., [21,22], with some central notions first identified by Abrahamson et al.
in 1989 [2], and much foundational work done in the 1990s by Downey and
Fellows (e.g., [14–16] and [17].)

Throughout this paper, we view a parameterized problem as a subset of
Σ∗ ×N, with Σ some finite alphabet. We are interested in the algorithmic com-
plexity of parameterized problems for which its ‘classic’ variant (i.e., where the
parameter is just part of the input) is intractable, e.g., NP-hard. Many parame-
terized problems fall in one of the following three categories (in order of increas-
ing desirability):
c© Springer Nature Switzerland AG 2022
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– There is a value of the parameter for which the problem is NP-hard. E.g., if we
consider Graph Colouring where the number of colours is the parameter,
then this problem is NP-hard with the parameter (number of colours) equal
to 3 [27]. Parameterized problems which are NP-hard for some fixed value of
the parameter are called para-NP-hard.

– There is an algorithm that solves the problem for inputs of the form (x, k) in
O(nf(k)) time, where n = |x| is the size of the input, k the parameter, and
f a (computable) function. The class of problems with such an algorithm is
called XP.

– There is an algorithm that solves the problem for inputs of the form (x, k)
in O(f(k)nc) time, with again n = |x| the size of the input, k the parameter,
f a computable function, and c a constant. Problems of this type are called
fixed parameter tractable, and the class of such problems is called FPT.

One can distinguish different flavours of FPT (and XP), namely non-uniform
(for each value of k, there is an algorithm of the stated running time), uniform
(there is one algorithm working for all values of k, but we do not require that
f is computable), and strongly uniform (as above: we have one algorithm for
all values of k, and f is computable). Examples of non-uniform fixed parameter
tractability can be obtained with help of well quasi orderings: if we have a graph
parameter h which cannot increase by taking a minor of a graph, then from
Robertson-Seymour graph theory, we obtain a non-constructive proof tells us
that for each k, there is an O(n2) algorithm that decides for a given graph
if h(G) ≤ k. (See e.g., [13, Section 6.3] with [29].) But, we may not be able
to construct the algorithms and thus only know that for each k there exists a
(separate) algorithm. See the discussion in [17, Chapter 19]. In the remainder,
we only look at strongly uniform cases.

NP-completeness theory tells us when a problem is para-NP-hard. Assuming
P�=NP, para-NP-hard problems do not belong to XP (or FPT). Thus an NP-
hardness result for a specific value of a parameter gives evidence that the problem
at hand is not likely to belong to XP. To give similar evidence to tell for studied
problems that they are not fixed parameter tractable, a number of complexity
classes have been introduced, all which are assumed to be not a subset of or equal
to FPT. Thus, hardness of a problem for such a class tells that it is unlikely that
the problem belongs to FPT.

For a few problems, an unconditional proof that they do not belong to XP
is known. Diagonalisation gives that FPT is a proper subset of XP [17, Proposi-
tion 27.1.1]. A few problems (formulated in terms of games) are known to be XP-
complete [3,4], and thus, these cannot belong to FPT. (See also [18, Chapter 27].)

This short (and incomplete) survey reviews a number of classes of problems
assumed not to be fixed parameter tractable, with some classic results from the
field, and some recent developments. The theory in this field is rich (much richer
than this survey can show); the focus in this short survey is on classes that con-
tain complete problems that are studied in combinatorial optimisation algorithms.
Much information can also be found in a number of excellent text books that on
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parameterized algorithms and complexity [13,17,18,24,31] and on the topic of ker-
nelization (a subtopic in the field, not discussed in this survey) [26].

2 Reductions

Hardness and completeness for classes is as usual defined with help of reductions
between problems.

A parameterized reduction from parameterized problem Q to parameterized
problem R is an algorithm A that maps inputs for Q to inputs for R, such that
(x, k) ∈ Q ⇔ A((x, k)) ∈ R, A uses time f(k)nc for a computable function f and
constant c, and if A(x, k) = (x′, k′), then k′ ≤ g(k) for a computable function g.

We also look at parameterized logspace reductions (or pl-reductions), where we
additionally require that the space used by the reduction algorithm is O(h(k) +
log n). Different types of reductions also are used in the field of parameterized
complexity, but these will not be discussed here.

3 The W -hierarchy

Downey and Fellows (see e.g. [17]) have introduced the W -hierarchy: a hierarchy
of complexity classes of parameterized problems. The hierarchy contains a class
W [i] for each positive integer i, the class W [SAT ], and the class W [P ]. Together
with FPT and XP, we have the following inclusions.

FPT ⊆ W [1] ⊆ W [2] ⊆ W [3] · · · ⊆ W [SAT ] ⊆ W [P ] ⊆ XP

It is conjectured [17, Chapter 12] that each inclusion is proper. In particular,
when FPT = W [1], then the Exponential Time Hypothesis would not hold [10].

W [i] is defined with help of combinatorial circuits. Consider a circuit, with
n Boolean input gates, and one output node. Take some fixed constant c. (The
choice of c does not matter for the results, e.g., we can set c = 2.) The weft of
the circuit is the maximum number of internal nodes with indegree more than
c on a path from an input gate to the output node. Now, W [i] is defined as
the parameterized problems with a parameterized reduction to the problem to
decide for a given circuit, if we can set k input gates to true and all other input
gates to false, such that the circuit outputs true. (k is the parameter of the
problem.)

An alternative definition, that can be of help to prove W [i]-hardness, is in
terms of Boolean formulas. Consider a formula on n Boolean variables. We say
the formula is i-normalised, if its is the conjunction of the disjunction of the con-
junction of . . . of literals, with i alternations between conjunction and disjunc-
tion. W [i] can also be defined as the problems with a parameterized reduction to
the problem to decide if a given i-normalised formula can be satisfied by setting
exactly k variables to true, and all others to false. Again, k is the parameter.
(Equivalently, we can ask to set at most k variables to true.)
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For i = 1, we obtain the W [1]-complete problem, for each fixed integer q,
Weighted q-CNF Satisfiability. Given is a Boolean formula in Conjunctive
Normal Form, with each clause having at most q literals, and we ask if we can
satisfy it by setting exactly k (the parameter) variables to true.

Important examples of complete problems are Clique and Independent

Set, who are W [1]-complete, and Dominating Set, which is W [2]-complete.
As we assume that the hierarchy is proper, this implies that it is unlikely

that Clique, Independent Set, and Dominating Set are in FPT.
Intuition why Clique and Independent Set are in W [1], while Domi-

nating Set is not, is the following. We can take an input gate (or a Boolean
variable) for each vertex of the graph, which is true iff the vertex is in the solu-
tion set. To verify that this set forms a independent set, we need to perform a
polynomial number of tests (one for each pair of nonadjacent vertices), where
each such test looks at two variables (checking that at least one of these is
false)—this corresponds to a circuit of weft one. (The same type of argument
works for Clique.) To verify that we have a dominating set, we need to perform
a polynomial number of tests (one for each vertex), but each of these tests can
involve a large number of variables (we check that the vertex is dominated, thus
need to look at the variables of the vertex and its neighbours)—this corresponds
to a circuit of weft two.

W [SAT ] is defined in the same manner as the classes W [i], but now we can
use any Boolean formula of polynomial size, and W [P ] is defined with combina-
torial circuits of polynomial size (without weft restrictions).

In the parameterized algorithms and complexity literature, a large number
of problems from various applications have been shown to be hard or complete
for classes in the W -hierarchy. In particular, the classes W [1] and W [2] play an
important role.

4 Logarithmic Space

4.1 The Story of Bandwidth

There are several problems that are shown to be hard for W [1], for W [2], or for
all classes W [i] for all integers i ∈ N, but which are not known to be member of
W [P ], i.e., we do not know whether they belong to a class in the W -hierarchy.

As a central example, we look at the Bandwidth problem. Given here is
an undirected graph G = (V,E), and the integer parameter k, and we want to
decide if there is a bijective function f : V → {1, . . . , |V |}, such that for all edges
{v, w} ∈ E, |f(v)−f(w)| ≤ k. Bandwidth is a long studied problem—amongst
others, because it is equivalent to asking for a symmetric matrix whether we can
permute rows and columns simultaneously, such that all non-zero elements are
at a band of width k around the main diagonal.

Already in 1980, Saxe [34] showed that Bandwidth can be solved in O(nk+1)
time, thus belongs to XP; this was later improved to O(nk) by Gurari and
Sudborough [28]. In 1994, Bodlaender et al. [7] claimed that Bandwidth was
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hard for all classes W [i], i ∈ N, but it took till 2020 till a proof of this fact was
written down [5]. In 2014, Dregi and Lokshtanov [19] showed that Bandwidth

is W[1]-hard for trees of pathwidth at most two.
Each of these results showed hardness for classes in the W -hierarchy, but

membership. This gives the question: is Bandwidth member of a class in the
W -hierarchy, and can we find a class for which this problem is complete? The
same question can be asked for many other problems, that are known to be hard
for W [1], but not known to reside in the W -hierarchy.

In the midst of the 1990s, Hallett gave an argument why it is unlikely that
Bandwidth belongs to W [P ]; the argument is discussed in [23]. The argument is
as follows: certificates for problems in W [P ] have size O(k log n): we use log n bits
for each of the k input gates that is true to give its index. However, one expects
that Bandwidth cannot have such small certificates; for instance, we can have
a graph with many connected components; one would expect to need certifi-
cates of size at least (but probably much larger than) the number of connected
components. The argument resembles the later development of compositionality
arguments for showing lower bounds for kernels [6].

So, if Bandwidth is not (likely) in W [P ], where is it?
We can go back to the first dynamic programming algorithm by Saxe [34]

for Bandwidth. In this algorithm, we build n tables: each table entry of the
i table gives ‘essential information’ of an ordering f of a set S with i vertices.
The essential information gives all that is needed to remember of f and S to
later determine if there is an ordering of V that starts with f , and then gives the
vertices in V \S in some order. A simpler (slower) algorithm is obtained by taking
as essential information the last 2k vertices of S with their order. One can turn
this dynamic programming algorithm into a non-deterministic algorithm, where
we do not store all elements of a table, but just guess one entry. We then have
the following, non-deterministic algorithm for Bandwidth: repeatedly guess the
next vertex in the order, and keep in memory the last 2k vertices. (We need to
check that we never guess a vertex that is already ordered, but this verification
can be done with a dfs search with help of the 2k stored vertices; we leave the
details as a simple puzzle for the reader.)

What we now have is a non-deterministic algorithm for Bandwidth;
the algorithm uses polynomial time, n non-deterministic guesses of a vertex,
O(k log n) memory (as we remember O(k) vertices with order).

In 2015, Elberfeld et al. [20] introduced a number of different classes of
parameterized problems, including several subclasses of FPT and of XP, char-
acterising the use of time, space, size of kernels, and more. One of these sub-
classes is the class, which we call here XNLP (and was called N [fpoly, flog]
in [20]). XNLP is the class of parameterized problems that can be recognized
by a non-deterministic algorithm that simultaneously use O(f(k)nc) time and
O(f(k) log n) memory, with f a computable function, and c a constant.

The non-deterministic algorithm for Bandwidth sketched above shows
that it belongs to this class XNLP. Interestingly, it is possible to show that
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Bandwidth is XNLP-complete [8]. For XNLP-completeness, we need to use
parameterized logspace reductions.

4.2 XNLP-complete Problems

To show that problems are XNLP-hard, we use parameterized logspace reduc-
tions from known XNLP-hard problems. Recently, several problems have been
shown to be XNLP-complete [8,20]. Several need a chain of reductions. Useful
intermediate XNLP-complete problems are, amongst others:

– Timed Accepting Non-deterministic Linear Cellular Automaton

[20]. We have a linear cellular automaton: a row of k cells, each having at
each time step a value (state) from an alphabet (which can be of linear size,
so we use O(log n) bits to denote an element from the alphabet). At each
time step, each cell receives a value, non-deterministically depending on its
value at that of the neighbouring cell(s). One state is said to be accepting,
and the question is whether there exists a run where after t (given in unary)
time steps, a cell has the accepting state. k is the parameter.

– Chained Weighted CNF-Satisfiability [8]. We have n sets of Boolean
variables X1, . . . , Xn, each of size r, and a Boolean formula in Conjunctive
Normal Form F , and a parameter k. The question is to set of each set Xi

exactly k variables to true, and all others to false, such that the following
formula is satisfied:

∧1≤i<nF (Xi,Xi+1)

Several special cases are also shown to be XNLP-complete in [8]. The hardness
proof is of a similar vein as the Cooks proof of the NP-hardness of Satisfi-
ability [12]: the logic formula describes the working of the automaton.

– Chained Clique [8]. Given is a graph G = (V,E), where V is partitioned
into n subsets V1, . . . , Vn, and the parameter k ∈ N. Question is whether we
can choose from each set Vi a subset Si ⊆ Vi of k vertices, such that for each
pair of successive sets, Si ∪ Si+1 (1 ≤ i < n) forms a clique of size 2k.

– Accepting NNCC Machine [8]. The XNLP-completeness of the problem
whether the following non-deterministic machine has an accepting run has
been proven to be a very helpful tool to show several problems XNLP-hard.
The machine has k integer counters, which start at 0. At each time step,
all counters can be increased non-deterministically to an integer that is at
most n. There is a series of tests: each test looks at two counters, and has
two integers from [0, n]. If the first counter equals the first of these integers,
and the second counter equals the second integer, then the machine halts and
rejects. If all tests succeed, the machine accepts.

From the XNLP-hardness of Accepting NNCC Machine, we can (with one
intermediate step) obtain the XNLP-hardness of Bandwidth, but also XNLP-
hardness of Scheduling with Precedence Constraints, parameterized by
the number of machines and thickness. Other XNLP-complete problems include
Longest Common Subsequence [20], List Colouring with the pathwidth
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of the graph as parameter [8], and Independent Set and Dominating Set

on graphs of pathwidth k log n, where again k is the parameter.
XNLP-completeness has two interesting consequences. First, it implies hard-

ness for all classes W [i] for all i ∈ N. Interestingly, often the XNLP-hardness
proofs are easier than the earlier proofs of W [i]-hardness for all i. Second, a con-
jecture of Pilipczuk and Wrochna [32] for Longest Common Subsequence

implies the same conjecture for all XNLP-hard problems.

Conjecture 1 (Pilipczuk and Wrochna [32]). Suppose parameterized problem Q

is XNLP-hard. Then Q has no algorithm that runs in nf(k) time and f(k)nc

space, for a computable function f and constant c, with k the parameter, and n
the total input size.

XNLP is a subset of XP (instead of making non-deterministic guesses, we
tabulate all reachable states of the memory), but from Conjecture 1, we obtain
that it is unlikely that an XNLP-complete problem has an XP algorithm that
uses little space (‘fpt space’).

4.3 Other Classes with Logarithmic Space and Reconfiguration

Well known in classic complexity theory are the classes L and NL: problems solv-
able in logarithmic spacew with a deterministic, respectively non-deterministic
algorithm. An interesting class is SL (with the S an abbreviation of ‘symmetric’),
which allows to ‘reverse’ computations. Reingold [33] showed that L=SL, which
is used in a result discussed below.

The parameterized counterparts of L and NL are respectively XL (parameter-
ized problems solvable in f(k) log n space), and XNL (parameterized problems
solvable with a non-deterministic algorithm in f(k) log n space). See e.g., [11].

Recently, Bodlaender et al. [9] explored the complexity of Independent Set

and Dominating Set reconfiguration. Given are two sets S1 and S2, which
are both independent sets of G (or, respectively, both dominating sets). We
want to change S1 into S2 in a number of moves, where each move changes
one vertex of the set to another one, while each intermediate set still must be an
independent (or dominating) set. We look at the problem if such a move sequence
exists, or such a move sequence with t moves exists. The sizes |S1| = |S2| are
the parameter of the problem. The complexities of these questions depend on
whether t is not given, a second parameter1, given in unary, or given in binary.
Table 1 summarises the different results. The XL-completeness for the case where
there is no bound on the number of moves uses an interesting argument, with
the following intuition: when we can use arbitrary many moves, we can always
reverse any move. That corresponds (via the reductions) to a computation on a
symmetric Turing Machine, which yields XSL-completeness, where XSL is the
parameterized counterpart of SL. But, by Reingolds result [33], SL = L, which
implies XSL = XL, thus the problems without a bound on the number of moves
are XL-complete.
1 Formally, instead of giving a problem two parameters, we can take the sum of these

two values as parameter.
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Table 1. Complexity of reconfiguration problems, with set sizes as (one of the) param-
eter(s)

Nb of steps Independent Set Dominating Set References

parameter W [1]-complete W [2]-complete [9,30]

unary XNLP-complete XNLP-complete [8]

binary XNL-complete XNL-complete [9]

not bounded XL-complete XL-complete [9]

5 Other Classes of Hard Parameterized Problems

There are a several other important classes of parameterized problems, which
are assumed not to be fixed parameter tractable. The following brief overview
mentions just a few of these, and is far from complete.

The A-hierarchy. Flum and Grohe [25] introduced the A-hierarchy: parameter-
ized equivalences of the classes in the polynomial time hierarchy. The hierarchy
contains classes A[1], A[2], . . . While A[1] = W [1], classes higher in the hierar-
chy contain their W-counterparts as (likely proper) subsets. We will not give
the formal definitions here; intuitively, each level in the A-hierarchy adds one
alternation between universal and existential quantification.

One such alternation can be seen in the Clique Dominating Set problem.
Given is an undirected graph G = (V,E), and integers k and �, which both are
parameters of the problem. (Or, more precisely, we take k + � as parameter.)
The question is if there is a set S of k vertices that dominates all cliques with �
vertices. (I.e., for every clique C of size �, C contains a vertex that is in S or has
a neighbour in S.) Clique Dominating Set is an example of an A[2]-complete
problem [25, Theorem 8.20].

The AW-hierarchy. Alternation is also a key element in the classes defined in the
AW-hierarchy [1], see also [17, Chapter 14]. The classes can be defined with help
of weighted variants of Quantified Boolean Formulas. Several complete
problems for these classes are defined in terms of combinatorial games, where
the problem is whether there is a winning strategy for the first player in a given
position in at most k moves, where this number of moves k is taken as parameter.

Counting Problems. Let us now consider counting problems, i.e., we want to
determine the number of solutions to a problem. In classic complexity the-
ory, many complexity classes have counting variants, with #P (the class which
map the input to the number of accepting paths of a non-deterministic Turing
Machine) of central importance. Typical #P -complete problems are: given a
Boolean formula, how many satisfying truth assignments does it have; given a
graph, how many Hamiltonian circuits does it have? Flum and Grohe [24] intro-
duced parameterized classes for counting problems, including counting variants
of the classes in the W -hierarchy.
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An interesting example of a #W [1]-complete problem is that of counting the
number of paths of length k in a given graph G; k is again the parameter [24].
In contrast, deciding if there is at least one path of length k is fixed parameter
tractable. The difference between the complexity of deciding and counting can
here be explained by the fact that negative inputs (graphs that do not have a
path of length k) have a special structure (e.g., they have treewidth at most k),
and such structure can be exploited algorithmically. In contrast, when counting
we cannot make assumptions on the graph’s structure.

6 Conclusions

In the study of parameterized algorithms, many parameterized problems are
known to be hard for a complexity class that is assumed not to be a subset of
FPT, and thus, are believed not to be in FPT. For a subset of these problems,
completeness for a parameterized class is known. Still, there are many problems
where only hardness for some class has been proved, but membership in that
class is not known, and sometimes not expected.

Thus, the situation is much less clear than in classic NP-completeness the-
ory. There, for many problems, both NP-hardness and membership in NP is
known. The parameterized counterparts of those problems often reside in dif-
ferent classes, and their precise complexity in the hierarchies has often not yet
been established. To gain more understanding and give precise characterisations
of the parameterized complexity of well known combinatorial problems gives a
large number of intriguing open problems. The discussion on XNLP shows that
such results can have wider consequences, e.g., give more information on the use
of additional resources like memory by the algorithms.
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Abstract. Combinatorial reconfiguration arises when we wish to find
a step-by-step transformation on the solution space formed by feasible
solutions of an instance of a search problem. Many reconfiguration prob-
lems have been shown PSPACE-complete, while several algorithmic tech-
niques have been developed. In this talk, I will give a broad introduction
of combinatorial reconfiguration.

1 Introduction

Combinatorial reconfiguration [11,14,18] studies the reachability/connectivity of
the solution space formed by feasible solutions of an instance of a search prob-
lem. A familiar example of combinatorial reconfiguration appears in puzzles. In
the 15-puzzle, the tiles with numbers from 1 to 15 are given on a board, and a
tile can be slid to an empty spot. The goal is to rearrange the tiles to their target
positions. (See Fig. 1.) In the 15-puzzle, the number of possible board configu-
rations is 16! (approximately ten trillion). This means that the solution space
of the 15-puzzle consists of approximately ten trillion board configurations, and
we are asked to find a step-by-step transformation (namely, a sliding procedure)
on the solution space from the initial board configuration to the target one.

The complexity status of the (n2 − 1)-puzzle shows interesting behavior,
where the (n2 − 1)-puzzle is a generalization of the 15-puzzle such that the
tiles are numbered from 1 to n2 − 1. Given two board configurations of the
(n2 − 1)-puzzle, it can be checked in polynomial time whether or not they are
reachable each other (see [1] for example). On the other hand, it is NP-hard to
minimize the number of tile slides during a transformation between two given
board configurations [8,19].

Fig. 1. Example of the 15-puzzle.
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Fig. 2. Solution space for a SAT formula φ(x, y, z) = (x ∨ ȳ) ∧ (x̄ ∨ y ∨ z) ∧ (ȳ ∨ z̄),
where two truth assignments are adjacent if their Hamming distance is one.

1.1 Framework and Algorithmic Challenge

In general, reconfiguration problems can be defined as follows: For a search prob-
lem P, we introduce a reconfiguration rule A on the set of feasible solutions which
defines whether or not two feasible solutions of an instance I of P are “adjacent.”
Then, the solution space for I under A is a graph whose node set is the set of all
feasible solutions of I and there is an edge joining two nodes if and only if their
corresponding solutions are adjacent under A. (See Fig. 2 for example.) We note
that the solution space is not given explicitly in reconfiguration problems, but
is given implicitly as an instance I of the underlying problem P.

On such a solution space, several natural questions can arise. In the reach-
ability variant, we are given two nodes of the solution space, and the goal is to
determine whether or not there is a path between the two nodes in the solution
space. In the shortest variant, the goal is to compute the shortest length of a
path between two given nodes in the solution space. Note that the reachability
and shortest variants do not ask for an actual path as an output; the reachability
variant is a decision problem asking for the existence of a path in the solution
space, and the shortest variant outputs simply a shortest length (integer). In the
connectivity variant, the goal is to determine whether or not the solution space
is a connected graph.

In this decade, many reconfiguration problems have been studied from the
algorithmic viewpoints, and clarified their complexity status. In particular,
reachability variants have been studied intensively for many central combina-
torial problems, such as satisfiability, independent set and coloring,
and have been shown PSPACE-complete in general. (See, e.g., [11,14,18].) The
PSPACE-hardness implies that, unless NP = PSPACE, there exists an instance
in the reachability variant which requires a super-polynomial length even in a
shortest path in the solution space; in other words, the diameter of the solution
space has a super-polynomial length. Thus, the main challenge for solving recon-
figuration problems efficiently is to develop smart search methods which need
not construct the solution space directly.

1.2 Motivation

The study of reconfiguration problems has motivation from a variety of fields
such as puzzles, discrete geometry, and statistical physics. Conversely, there are
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Fig. 3. A sequence 〈I0, I1, . . . , I5〉 of independent sets in the same graph under TJ rule,
where the vertices in independent sets are depicted by large black circles (tokens).

some examples such that the algorithmic research of reconfiguration problems
gives a new proof to a known result. (For example, see the proof of Theorem 19
in [6].)

Combinatorial reconfiguration also appears in industry. In particular, appli-
cations to “24/7 systems” such as power distribution systems are prominent. A
power distribution network is designed as supplying electricity via multiple num-
bers of routes, so as to reduce the blackout duration when failure happens. For
example, the Japan standard benchmark model of power distribution networks
has approximately 1058 alternatives for the choice of network configurations [13].
Even the computation of a single optimal network configuration among them is
quite difficult. Furthermore, even if we may compute a single optimal network
configuration, we encounter another issue that is characteristic of 24/7 systems.
Namely, upon a switching procedure to reconfigure the current configuration to
the optimal one, we may not allow any power failure during the process.

2 Independent Set Reconfiguration

In this decade, various reconfiguration problems have been studied for many
central combinatorial problems especially on graphs [11,14,18]. As an example,
we here explain the reachability variant for independent sets, which is one of the
most well-studied reconfiguration problems.

2.1 Three Reconfiguration Rules

Recall that an independent set of a graph G is a vertex subset of G in which
no two vertices are adjacent, and imagine that a token (coin) is placed on each
vertex in the independent set. (Figure 3 depicts six different independent sets in
the same graph.) For independent sets, the following three reconfiguration rules
have been studied, which are now considered as the most basic reconfiguration
rules on graphs.
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• Token Jumping (TJ rule): We can move a single token to any vertex if it
results in an independent set. Formally, two independent sets I and I ′ of G
are adjacent if |I \ I ′| = |I ′ \ I| = 1.

• Token Sliding (TS rule): We can slide a single token along an edge of a graph
if it results in an independent set. Formally, two independent sets I and I ′ of
G are adjacent if I \ I ′ = {v} and I ′ \ I = {w} for an edge vw of G.

• Token Addition and Removal (TAR rule): We can either add or remove a
single token at a time if it results in an independent set of cardinality at least
a given threshold.

For example, Fig. 3 shows a sequence of independent sets (i.e., a path in the
solution space) under TJ rule. I3 and I4 are adjacent only under TJ rule, but
the other two consecutive independent sets in the sequence are adjacent also
under TS rule. However, there is no path between I0 and I5 in the solution space
under TS rule. Thus, Fig. 3 is a yes-instance under TJ rule, but is a no-instance
under TS rule. In this way, the existence of a desired path depends deeply on
the reconfiguration rules. Kamiński et al. [15] showed that TJ and TAR rules are
essentially the same, and hence we consider only TJ and TS rules below.

2.2 Complexity Status

The reachability variant for independent sets under TS rule was originally intro-
duced by Hearn and Demaine [9,10] as a one-player game. They proved that
independent set reachability under TS rule is PSPACE-complete for pla-
nar graphs, by a reduction from the problem nondeterministic constraint

logic. We note in passing that nondeterministic constraint logic plays a
very important role in combinatorial reconfiguration, because several PSPACE-
hardness of reconfiguration problems have been proved using reductions from
this problem.

The complexity status of independent set reachability has been ana-
lyzed very precisely, in terms of graph classes and graph width parameters.

Surprisingly, Wrochna [20] proved that the problem is PSPACE-complete
under both TJ and TS rules even for graphs with bounded bandwidth. Note that
the bandwidth of a graph gives an upper bound on the pathwidth and treewidth
of the graph. van der Zanden [21] proved that the problem remains PSPACE-
complete under both TJ and TS rules even for planar graphs of maximum degree
three and bounded bandwidth. On the other hand, Belmonte et al. [2] proved
that the problem is fixed-parameter tractable under both TJ and TS rules when
parameterized by the modular-width of graphs.

We then summarize the complexity status of the problem from the view-
point of graph classes. (See Fig. 4.) The problem is PSPACE-complete under
both TJ and TS rules for planar graphs [9,10], and for perfect graphs [15]. The
problem under TJ rule is NP-complete (surprisingly, it belongs to NP) for bipar-
tite graphs [16], while it can be solved in polynomial time for even-hole-free
graphs [15], for cographs [5], and for cactus graphs [17]. Under TS rule, the
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Fig. 4. Complexity status of independent set reachability under TJ and TS rules,
where each arrow represents the inclusion relationship between graph classes: A → B
indicates that the graph class B is properly included in the graph class A. Thick dotted
lines indicate complexity boundaries under TJ rule, and the dash-dotted line indicates
the boundary under TS rule.

problem remains PSPACE-complete for bipartite graphs [16] and even for split
graphs [3], while it can be solved in polynomial time for cographs [15], for interval
graphs [4,7], and for cactus graphs [12].

Acknowledgments. The author thanks Ryuhei Uehara and Yota Otachi for their
helpful suggestions. This work is partially supported by JSPS KAKENHI Grant Num-
bers JP18H04091, JP19K11814 and JP20H05793, Japan.
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Abstract. We study the problem of checking the existence of a step-
by-step transformation of d-regular induced subgraphs in a graph, where
d ≥ 0 and each step in the transformation must follow a fixed reconfig-
uration rule. Our problem for d = 0 is equivalent to Independent Set

Reconfiguration, which is one of the most well-studied reconfiguration
problems. In this paper, we systematically investigate the complexity of
the problem, in particular, on chordal graphs and bipartite graphs. Our
results give interesting contrasts to known ones for Independent Set

Reconfiguration.

Keywords: Combinatorial reconfiguration · Regular induced
subgraph · Computational complexity

1 Introduction

Combinatorial reconfiguration [9,10,16] studies the reachability in the solution
space formed by feasible solutions of an instance of a search problem. In a recon-
figuration problem, we are given two feasible solutions of a search problem and
are asked to determine whether we can modify one to the other by repeatedly
applying a prescribed reconfiguration rule while keeping the feasibility. Such
problems arise in many applications and studying them is important also for
understanding the underlying problems deeper (see the surveys [9,16] and the
references therein) (Fig. 1).
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Fig. 1. Example of a TJ-sequence for d = 1, where each vertex in a d-regular set Ui is
colored with black. Under TS, only U2 ↔ U3 holds.

1.1 Our Problems

In this paper, we take d-regular induced subgraphs in a graph as feasible solutions
of the solution space. Recall that a graph is d-regular if every vertex in the
graph is of degree d. By the choice of d, we can represent some well-known
graph properties: d = 0 corresponds to an independent set of a graph G, and
d = 1 corresponds to an induced matching of G. If we require d-regular induced
subgraphs to be connected, then d = 2 corresponds to an induced cycle of G.

We then define two reconfiguration rules on the d-regular induced subgraphs.
Since we consider only induced subgraphs of a graph G, each feasible solution
can be represented by a vertex subset U of G. We denote by G[U ] the subgraph
of G induced by U . We say that a vertex subset U of a graph G is a d-regular
set of G if G[U ] is d-regular. Then, there are two well-studied reconfiguration
rules [13], called Token Jumping rule (TJ rule for short) and Token Sliding rule
(TS rule for short).1 Let U and U ′ be two d-regular sets of G. Then, we write

• U ↔ U ′ under TJ if |U \ U ′| = |U ′ \ U | = 1; and
• U ↔ U ′ under TS if U \ U ′ = {v}, U ′ \ U = {w}, and vw ∈ E(G).

A sequence 〈U0, U1, . . . , U�〉 of d-regular sets of G is called a reconfiguration
sequence under TJ (or TS) between two d-regular sets U0 and U� if Ui−1 ↔ Ui

holds under TJ (resp., TS) for all i ∈ {1, 2, . . . , �}. A reconfiguration sequence
under TJ (or TS) is simply called a TJ-sequence (resp., TS-sequence). Note that
all d-regular sets in the sequence have the same cardinality.

We now define the problem for a rule R ∈ {TJ,TS}, as follows:

d-Regular Induced Subgraph Reconfiguration under R (abbre-
viated as RISRd)

Input: A graph G and d-regular sets U s and U t of G.
Question: Is there an R-sequence between U s and U t?

A d-regular set U of G is connected if G[U ] is connected. We also consider the
following special case of RISRd, which only allows connected sets as the initial
and target d-regular sets:

1 There is another well-studied rule, Token Addition and Removal (TAR) [13]. We are
not going to consider this rule as it cannot keep d-regularity unless d = 0.
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Connected d-Regular Induced Subgraph Reconfiguration

under R (abbreviated as CRISRd)
Input: A graph G and connected d-regular sets U s and U t of G.

Question: Is there an R-sequence between U s and U t?

Although CRISRd does not explicitly ask intermediate d-regular sets to be con-
nected, it is actually forced by the d-regularity and connectivity of the initial set
(see Sect. 2).

1.2 Known and Related Results

Hanaka et al. [8] introduced Subgraph Reconfiguration, which unifies sev-
eral reconfiguration problems where feasible solutions are defined as (induced
or non-induced) subgraphs in a graph satisfying a specific property. They con-
sidered several graph properties for defining feasible solutions, and one of their
results shows that CRISR2 is PSPACE-complete under TS and TJ.

As related work, Ito et al. [12] introduced Clique Reconfiguration, which
can be seen as a special case of d-regular induced subgraphs. The problem is solv-
able in polynomial time on even-hole-free graphs (and hence on chordal graphs)
under TJ and TS [12]. Mühlenthaler [15] proved that Subgraph Reconfigu-

ration is solvable in polynomial time when (not necessarily induced) regular
graphs are taken as feasible solutions. His result can be generalized to degree-
constrained subgraphs where each vertex has lower and upper bounds for its
degree.

Independent Set Reconfiguration, equivalent to RISR0, is one of
the most well-studied reconfiguration problems. RISR0 under TJ is PSPACE-
complete on perfect graphs [13], and is NP-complete on bipartite graphs [14],
whereas it is solvable in polynomial time on even-hole-free graphs [13], claw-free
graphs [6], and cographs [5]. On the other hand, RISR0 under TS is PSPACE-
complete on bipartite graphs [14], and on split graphs [3].

These precise complexity analyses of RISR0 show interesting contrast with
respect to the reconfiguration rules TS and TJ. (See Table 1.) On chordal
graphs, tractability of RISR0 depends on the choice of reconfiguration rules. On
bipartite graphs, the complexity of RISR0 shows arguably the most surprising
behavior depending on the reconfiguration rules. Lokshtanov and Mouawad [14]
showed that, on bipartite graphs, RISR0 is PSPACE-complete under TS but
NP-complete under TJ [14]. That is, RISR0 is intractable under both rules but
in different senses.

1.3 Our Contribution

In this paper, we investigate the complexity of RISRd and CRISRd systemati-
cally. In particular, we focus on chordal graphs and bipartite graphs, where the
complexity of RISR0 (i.e., Independent Set Reconfiguration) is known to
show interesting behavior depending on the reconfiguration rules. Our results
are summarized in Table 1 together with known results for RISR0.
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Table 1. Summary of the results.

RISRd CRISRd (d ≥ 2)

TS TJ TS TJ

constant

bandwidth
PSPACE-c [Corollary 5]

PSPACE-c

[Theorem 9]

chordal

d = 0: PSPACE-c [3]

d ≥ 1: PSPACE-c

[Theorem 4]

d = 0: P [13]

d ≥ 1: PSPACE-c

[Theorem 4]

P [12]

bipartite
d = 0: PSPACE-c [14]

d ≥ 1: P [Observation 7]

d = 0: NP-c [14]

d ≥ 1: PSPACE-c

[Theorem 10]

P [Observation 7]
PSPACE-c

[Theorem 8]

We note that our results for d ≥ 1 give interesting contrasts to known ones
for d = 0. On chordal graphs, both TS and TJ rules have the same complexity for
d ≥ 1, whereas they are different for d = 0. On bipartite graphs, the complexity
of RISRd for d ≥ 1 shows a kind of reverse phenomenon from d = 0: the problem
becomes easier (indeed, becomes a trivial case as in Observation 7) under TS,
but becomes harder under TJ.

Due to the space limitation, the proofs of the statements marked with � are
deferred to the full version [7].

2 Preliminaries

In this paper, we only consider simple and undirected graphs. Let G = (V,E)
be a graph. We sometimes denote by V (G) and E(G) the vertex and edge sets
of G, respectively. For a vertex subset U of G, we denote by G[U ] the subgraph
of G induced by U . We say that U is connected if G[U ] is connected.

In the introduction, we have defined the problems RISRd and CRISRd under
R for a rule R ∈ {TJ,TS}. We denote by 〈G,U s, U t〉 an instance of these prob-
lems. Since the problems clearly belong to PSPACE, we will only show PSPACE-
hardness for proving PSPACE-completeness.

Note that although CRISRd only asks the input sets U s and U t to be con-
nected, it is actually required that all sets in a reconfiguration sequence are
connected by Lemma 1 below.

Lemma 1 (�). Let U and U ′ be d-regular sets of a graph G. If U ↔ U ′ under
TJ or TS, then G[U ] and G[U ′] are isomorphic.

For a positive integer k, we define [k] = {d ∈ Z | 1 ≤ d ≤ k}. For an n-vertex
graph G = (V,E), the width of a bijection π : V → [n] is max{u,v}∈E |π(u) −
π(v)|. The bandwidth of G is the minimum width over all bijections π : V → [n].
The graphs of constant bandwidth are quite restricted in the sense that the
bandwidth of a graph is an upper bound of pathwidth (and of treewidth) [17].
For example, a path has bandwidth 1 and a cycle has bandwidth 2.

For a positive integer t, a graph H is a t-sketch of a graph G if there exists
a mapping f : V (G) → V (H) such that |f−1(v)| ≤ t for every v ∈ V (H) and
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{u, v} ∈ E(G) implies either f(u) = f(v) or {f(u), f(v)} ∈ E(H). The following
lemma is useful for bounding the bandwidth of a graph.

Lemma 2 (�). Let H be a graph of bandwidth at most b. If H is a t-sketch of
G, then the bandwidth of G is at most t(b + 1).

3 Complexity of RISR and CRISR

In this section, we show that RISR and CRISR are intractable on the classes
of chordal graphs, bipartite graphs, and graphs of bounded bandwidth. We also
observe that some cases are tractable.

Observe that a connected 0-regular graph is a single vertex and a connected 1-
regular graph is a single edge. This implies that, for d ≤ 1, CRISRd is polynomial-
time solvable under TJ and TS. Hence, we only consider the case of d ≥ 2 for
CRISRd. On the other hand, we cannot put such an assumption for the more
general problem RISRd as RISR0 is PSPACE-complete under TJ and TS [13].

3.1 Chordal Graphs

For chordal graphs, let us first consider CRISRd, which is actually easy. Since
every connected regular induced subgraph in a chordal graph is a complete
graph [1], CRISRd on chordal graphs can be solved by using a linear-time algo-
rithm for Clique Reconfiguration on chordal graphs [12]. Also, we can use
the same algorithm for the general RISRd with d ≥ 1 on split graphs since a
split graph can have at most one nontrivial connected component.

Observation 3. CRISRd with d ≥ 0 on chordal graphs and RISRd with d ≥ 1
on split graphs can be solved in linear time.

Now let us turn our attention to the general problem RISRd on chordal
graphs. When d = 0, the complexity depends on the reconfiguration rules. On
chordal graphs, RISR0 is PSPACE-complete under TS [3], while it is trivially
polynomial-time solvable under TJ as it does not have a no-instance [13]. For
d ≥ 1, we show that the problem is PSPACE-complete under both rules.

Theorem 4. For every constant d ≥ 1, RISRd is PSPACE-complete on chordal
graphs under TJ and TS.

Proof. We give a polynomial-time reduction from Independent Set Recon-

figuration on chordal graphs under TS. Let 〈H, I, I ′〉 be an instance of Inde-
pendent Set Reconfiguration under TS on chordal graphs. From this
instance, we construct an instance 〈G,U s, U t〉 of RISRd under TJ and TS on
chordal graphs as follows. For each v ∈ V (H), we take a set Xv of d+1 vertices.
We set V (G) =

⋃
v∈V (H) Xv. Each Xv is a clique in G. We add all possible edges

between Xu and Xv if {u, v} ∈ E(H). We set U s =
⋃

v∈I Xv and U t =
⋃

v∈I′ Xv.
This reduction can be seen as repeated additions of true twin vertices,2 which
do not break the chordality, and thus G is chordal.
2 Two vertices u, v are true twins if N [u] = N [v].
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We now show that 〈H, I, I ′〉 is a yes-instance of Independent Set Recon-

figuration under TS if and only if 〈G,U s, U t〉 is a yes-instance of RISRd under
TJ and TS.

To prove the only-if direction, we assume that there exists a TS-sequence
〈I0, . . . , I�〉 between I and I ′. For each i with 0 ≤ i ≤ �, we set Ri =

⋃
v∈Ii

Xv.
Observe that each Ri is a d-regular set, R0 = U s, and R� = U t. Hence, it suffices
to show that there is a TS-sequence (and thus a TJ-sequence as well) from Ri

to Ri+1 for all 1 ≤ i ≤ � − 1. Let Ii \ Ii+1 = {p} and Ii+1 \ Ii = {q}, and
thus Ri \ Ri+1 = Xp and Ri+1 \ Ri = Xq. Let Xp = {ph | 1 ≤ h ≤ d + 1} and
Xq = {qh | 1 ≤ h ≤ d + 1}. We set T 0 = Ri, and for each j with 1 ≤ j ≤ d + 1,
we define T j = T j−1 \{pj}∪{qj}. Observe that each T j is d-regular and T d+1 =
Ri+1. We can see that the exchanged vertices pj and qj are adjacent in G since
p and q are adjacent in H. This implies that 〈T 0, . . . , T d+1〉 is a TS-sequence
between Ri and Ri+1.

To show the if direction, we first show that the existence of a TJ-sequence
between U s and U t implies the existences of a TS-sequence between them as well.
This allows us to start the proof of this direction with the stronger assumption
of having a TS-sequence.

Let 〈R0, . . . , R�〉 be a TJ-sequence between U s and U t. For each i ∈ [�], we
show that there is a TS-sequence between Ri−1 and Ri. Let {u} = Ri−1 \ Ri

and {v} = Ri \ Ri−1. If {u, v} ∈ E(G), then Ri−1 ↔ Ri under TS. Assume that
{u, v} /∈ E(G). Let w ∈ Ri−1 ∩ Ri be a common neighbor of u and v. Such a
vertex exists since d ≥ 1. Let z be the vertex of H such that w ∈ Xz. Observe
that u, v /∈ Xz as {u, v} /∈ E(G). Now Xz �⊆ Ri−1∩Ri (= Ri−1 \{u}) holds since
otherwise u has at least |Xz| = d + 1 neighbors in G[Ri−1] as Xz is a set of true
twins. Since u, v /∈ Xz, it holds that Xz �⊆ Ri−1 ∪ Ri. Thus there exists w′ ∈ Xz

that does not belong to Ri−1 ∪Ri. We claim that Ri−1 ↔ (Ri−1 \ {u}∪{w′}) =
(Ri−1 \{v}∪{w′}) ↔ Ri under TS. We only need to show that the intermediate
set Ri−1 \ {u} ∪ {w′} is d-regular. By Lemma 1 and the definition of Ri−1, each
connected component in G[Ri−1] is a (d + 1)-clique. Let C be the (d + 1)-clique
G[Ri−1] that includes u and w. Since w and w′ are true twins, the (d + 1)-
clique C \ {u} ∪ {w′} is a connected component of G[Ri−1 \ {u} ∪ {w′}]. Thus,
Ri−1 \ {u} ∪ {w′} is d-regular.

Now assume that there is a TS-sequence 〈R0, R1, . . . , R�〉 between U s and
U t. From this sequence, we construct a sequence 〈S0, S1, . . . , S�〉 of independent
sets in G as follows. Recall that R0 =

⋃
v∈I0

Xv. To construct S0, we pick one
arbitrary vertex from Xv for each v ∈ I0. That is, S0 is a set such that |S0| = |I|
and |S0 ∩ Xv| = 1 for each v ∈ I0. For 0 ≤ i ≤ � − 1, we define

Si+1 =

{
Si Si ⊆ Ri+1,

Si \ {u} ∪ {v} Ri \ Ri+1 = {u} ⊆ Si, Ri+1 \ Ri = {v}.

Intuitively, S0 ⊆ R0 can be seen as the set of representatives of all Xv contained
in R0. For i ≥ 1, the set Si ⊆ Ri traces the tokens started on the representatives
chosen to S0. Each Si is an independent set of G with size |I|. For 0 ≤ i ≤ �, we
now construct Ii by projecting the vertices in Si onto V (H); that is, we define
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Ii = {v ∈ V (H) | Xv ∩ Si �= ∅}.

Since each Si is an independent set, each Ii is an independent set too. Assume
that Ii �= Ii+1 for some i, Ii \ Ii+1 = {u}, and Ii+1 \ Ii = {v}. Then, Si �= Si+1

holds. In particular, Si \ Si+1 ⊆ Xu and Si+1 \ Si ⊆ Xv. By the definition of the
sequence 〈S0, . . . , S�〉, this further implies that Ri �= Ri+1, Ri \ Ri+1 ⊆ Xu, and
Ri+1 \ Ri ⊆ Xv. Since 〈R0, . . . , R�〉 is a TS-sequence in G, the vertices u and v
are adjacent in H by the definition of G. Hence, Ii ↔ Ii+1 under TS. Therefore,
by skipping the sets Ii with Ii = Ii+1 in 〈I0, . . . , I�〉, we have a TS-sequence from
I to I ′. ��

We can use the same reduction in the proof of Theorem 4 from the same
problem but on a different graph class to show the PSPACE-completeness on
graphs of bounded bandwidth.

Corollary 5. For every constant d ≥ 0, there is a constant bd depending only on
d such that RISRd is PSPACE-complete under TJ and TS on graphs of bandwidth
at most bd.

Proof. Wrochna [18] showed that there exists a constant b0 such that RISR0 is
PSPACE-complete under TJ and TS on graphs of bandwidth at most b0. Let H
be a graph of bandwidth at most b0. By applying the reduction in the proof of
Theorem 4 to H, we obtain a graph G of bandwidth at most bd := (d+1)(b0+1).
This upper bound of the bandwidth follows from the observation that H is a
(d + 1)-sketch of G and by Lemma 2. ��

Similarly, we can show the W[1]-hardness of RISRd under TJ and TS param-
eterized by the natural parameter |U s|, which is often called as the solution size.
For d = 1, the W[1]-hardness is known under both TJ [11] and TS [2]. For an
instance of RISR0 under TS parameterized by the solution size k, we apply the
reduction in the proof of Theorem 4. The obtained equivalent instance of RISRd

under TJ and TS has solution size k(d + 1), and thus the following holds.

Corollary 6. For every constant d ≥ 0, RISRd is W[1]-hard parameterized by
the solution size under TJ and TS.

3.2 Bipartite Graphs

As mentioned in Introduction, on bipartite graphs, RISR0 is PSPACE-complete
under TS but NP-complete under TJ [14]. That is, RISR0 is intractable under
both rules but in different senses. In this section, we study the complexity of
RISRd on bipartite graphs for d ≥ 1 and show a kind of reverse phenomenon:
the problem becomes trivial with TS but harder with TJ.

First we observe the triviality under TS. Observe that if U ↔ U ′ under TS,
then there exist adjacent vertices u ∈ U \ U ′ and v ∈ U ′ \ U such that u and v
have a common neighbor w ∈ U ∩ U ′ as d ≥ 1. Thus the graph contains a tri-
angle formed by u, v, w. Therefore, in triangle-free graphs (and thus in bipartite
graphs), no nontrivial TS-sequence exists.
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Fig. 2. Reduction from SPR to CRISR2 on bipartite graphs.

Observation 7. For every d ≥ 1, RISRd under TS on triangle-free graphs is
polynomial-time solvable.

Under the TJ rule, we first show that the restricted version CRISRd for d ≥ 2
is already PSPACE-complete on bipartite graphs. It is known that CRISR2 is
PSPACE-complete on general graphs [8]. Our proof for d = 2 basically follows
their reduction from Shortest Path Reconfiguration (SPR, for short) to
CRISR2 on general graphs. We start with a reduction for the case of d = 2 that
has some additional properties and then increase d by using the properties.

An instance of SPR consists of a graph H and the vertex sets P and P ′ of two
shortest x–y paths in H. SPR asks whether there is a sequence 〈P0, P1, . . . , Pq〉
such that P0 = P , Pq = P ′, each Pi is the vertex set of a shortest x–y path, and
|Pi \ Pi−1| = |Pi−1 \ Pi| = 1 for 1 ≤ i ≤ q. Observe that in polynomial time,
we can remove all vertices and edges that are not on any shortest x–y path.
Hence, we can assume that the vertex set of H is partitioned into independent
sets D1,D2, . . . , Dr such that D1 = {x}, Dr = {y}, and each Di is the set of
vertices of distance i − 1 from x (see Fig. 2). Bonsma [4] showed that SPR is
PSPACE-complete.

Theorem 8. For every constant d ≥ 2, CRISRd is PSPACE-complete on bipar-
tite graphs under TJ.

Proof. Let 〈H,P, P ′〉 be an instance of SPR with the partition D1,D2, . . . , Dr

of the vertex set defined as above. We assume that all sets Di are independent
sets. Let L be the smallest multiple of 2d larger than or equal to max{r, 6}. To
the graph H, we add L − r vertices vr+1, . . . , vL and L − r + 1 edges {y, vr+1},
{vL, x}, and {vi, vi+1} for r + 1 ≤ i ≤ L − 1. We set S = P ∪ {vr+1, . . . , vL} and
S′ = P ′ ∪ {vr+1, . . . , vL}. For 1 ≤ i ≤ r, we set Vi = Di, and for r + 1 ≤ i ≤ L,
we set Vi = {vi}. We call the graph constructed H ′. See Fig. 2.

The construction is done if d = 2. For the cases of d ≥ 3, we need some addi-
tional parts to increase the degree. For each i with 1 ≤ i ≤ L/(2d), we attach the
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Fig. 3. Increasing the degree from 2 to d.

gadget in Fig. 3 to the consecutive 2d sets V2d(i−1)+1, V2d(i−1)+2, . . . , V2di. That
is, we add two size-(d−2) independent sets Ai and Bi, and add all possible edges
between Ai and V2d(i−1)+(2j−1) for 1 ≤ j ≤ d and between Bi and V2d(i−1)+(2j)

for 1 ≤ j ≤ d. We call the resultant bipartite graph G. Let I denote the set of
vertices added, i.e., I =

⋃
1≤i≤L/(2d)(Ai∪Bi). We set U s = S∪I and U t = S′∪I.

Clearly, U s and U t are connected d-regular sets of G.
We now show that 〈G,U s, U t〉 is a yes-instance of CRISRd if and only if

〈H,P, P ′〉 is a yes-instance of SPR.
To show the if direction, assume that there is a reconfiguration sequence

〈P0, . . . , Pq〉 between P and P ′. For 0 ≤ i ≤ q, we set Ui = Pi∪{vr+1, . . . , vL}∪I.
Observe that Ui is a connected d-regular set: Pi ∪{vr+1, . . . , vL} induces a cycle,
each vertex in the cycle has d − 2 neighbors in I, and each vertex in I has d
neighbors in the cycle. Since Pi \ Pi−1 = Ui \ Ui−1 and Pi−1 \ Pi = Ui−1 \ Ui for
1 ≤ i ≤ q, 〈U0, . . . , Uq〉 is a TJ-sequence between U s and U t.

To show the only-if direction, assume that there is a TJ-sequence 〈U0, . . . , Uq〉
between U s and U t. We first show the following fact.

Claim. I ⊆ Ui for each i and |Ui ∩ Vj | = 1 for each i and j.

Proof of Claim. The claim is true for U0 = U s. Assume that the claim holds for
some i with 0 ≤ i < q. Let Ui\Ui+1 = {u} and Ui+1\Ui = {v}. Suppose that u ∈
I. The d neighbors of u in G[Ui] belong to d different sets Vp, Vp+2, . . . , Vp+2d−2

for some p. Since v has the same neighborhood in G[Ui+1], it has to belong to I
as well. This contradicts the assumption that v /∈ Ui and I ⊆ Ui. Thus u belongs
to some Vj . In G[Ui], u has neighbors in I, Vj−1, and Vj+1 (where V0 = VL and
VL+1 = V1). Since L ≥ 6, v has to belong to Vj . Thus the claim holds. �

By the claim above, each Ui includes the vertices vr+1, . . . , vL. Let Pi =
Ui \ (I ∪ {vr+1, . . . , vL}). For 2 ≤ j ≤ r − 1, the unique vertex in Pi ∩ Vj has
exactly two neighbors in H[Pi]; one in Vj−1 and the other in Vj+1. That is, Pi is a
shortest x–y path in H. Therefore, 〈P0, P1, . . . , Pq〉 is a reconfiguration sequence
from P to P ′. ��
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By slightly modifying the proof of Theorem 8, we can show the PSPACE-
hardness of CRISRd under TS on graphs of bounded bandwidth.

Theorem 9. For every constant d ≥ 2, there is a constant bd depending only
on d such that CRISRd is PSPACE-complete under TJ and TS on graphs of
bandwidth at most bd.

Proof. From an instance 〈H,P, P ′〉 of SPR, we construct an instance 〈G,U s, U t〉
of CRISRd as in Theorem 8. Now we add all possible edges in each Vi and call
the resultant graph G′. This does not affect the correctness of the arguments in
the proof of Theorem 8. At each step, we still have to remove a vertex and add
one from the same set Vi. Since we add all possible edges in each Vi, the vertices
involved in this step are adjacent. That is, a TJ-sequence between U s and U t in
G is a TS-sequence between U s and U t in G′, and vice versa.

Now we prove the claim on the bandwidth. Wrochna [18] showed that there
is a constant b such that SPR is PSPACE-complete even if each Di has size at
most b. Let us start the reduction in the proof of Theorem 8 with this restricted
version. Let Wi = Ai ∪ Bi ∪ ⋃

1≤j≤2d V2d(i−1)+j for each i. We can see that
|Wi| ≤ 2db+2(d−2) and that each edge is either in Wi for some i or connecting
Wi and Wi+1, where WL+1 = W1. This implies that a cycle is a (2db+2(d−2))-
sketch of G, and thus G has bandwidth at most bd := 2(2db + 2(d − 2)) by
Lemma 2. ��

Fig. 4. Simulating a token sliding by two token jumps.

Now we turn our attention back to bipartite graphs and complete the map
of complexity of RISRd.

Theorem 10. For every constant d ≥ 1, RISRd is PSPACE-complete on bipar-
tite graphs under TJ.

Proof. By Theorem 8, it suffices to show that RISR1 on bipartite graphs is
PSPACE-complete under TJ.

We prove by a reduction from RISR0 on bipartite graphs under TS, which is
PSPACE-complete [14]. Let 〈H,S, T 〉 be an instance of RISR0 under TS, where
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H is bipartite. We obtain a graph G from H by attaching a pendant vertex
v′ to each vertex v of H. Formally, we set V (G) = V (H) ∪ {v′ | v ∈ V (H)}
and E(G) = E(H) ∪ {{v, v′} | v ∈ V (H)}. We set U s = S ∪ {v′ | v ∈ S} and
U t = T ∪{v′ | v ∈ T}. This completes the construction. Note that U s and U t are
1-regular sets of G. We show that 〈G,U s, U t〉 is a yes-instance of RISR1 under
TJ if and only if 〈H,S, T 〉 is a yes-instance of RISR0 under TS.

To show the if direction, assume that 〈S0, . . . , S�〉 is a TS-sequence from
S to T . For each i with 0 ≤ i < �, we set U2i = Si ∪ {v′ | v ∈ Si} and
U2i+1 = U2i \ {p′} ∪ {q}, where Si \ Si+1 = {p} and Si+1 \ Si = {q}. That is,
when Si+1 is obtained from Si by sliding a token from p to a neighbor q, we
obtain U2i+2 from U2i by first jumping the token from p′ to q (we obtain U2i+1),
and then the other token from p to q′. See Fig. 4. Since p, q are adjacent in H,
the sets U2i, U2i+1, and U2i+2 are 1-regular in G. Therefore, 〈U0, . . . , U2�〉 is a
TJ-sequence from U0 = U s and U2� = U t.

To show the only-if direction, assume that 〈U0, . . . , U�〉 is a TJ-sequence from
U s to U t. Let (A,B) be a partition of V (H) into independent sets of H. From
each Ui, we define

Ri = {v ∈ V (H) | {v, v′} ⊆ Ui} ∪ {u ∈ A | {u, v} ⊆ Ui, {u, v} ∈ E(H)}.

That is, Ri is obtained by projecting Ui onto V (H) and then further replacing
two adjacent vertices in Ui ∩ V (H) with the one in A. Clearly, each Ri is an
independent set of H with size |Ui|/2 = |S|. In particular, R0 = S and R� = T .
Hence, it suffices to show that there is a TS-sequence from Ri to Ri+1 for 0 ≤ i <
�. By the definition of Ri, the size of the symmetric difference of Ri and Ri+1 is
at most two. Assume that Ri �= Ri+1 and that u ∈ Ri \ Ri+1 and v ∈ Ri+1 \ Ri

are not adjacent, since otherwise we are done. Now there must be a common
neighbor w /∈ Ri ∪ Ri+1 of u and v such that Ri \ {u} ∪ {w} = Ri+1 \ {v} ∪ {w}
is an independent set. That is, 〈Ri, Ri \ {u} ∪ {w}, Ri+1〉 is a TS-sequence. ��

4 Conclusion

In this paper, we have investigated the computational complexity of d-
Regular Induced Subgraph Reconfiguration (RISRd) and Connected

d-Regular Induced Subgraph Reconfiguration (CRISRd). We have
shown that RISRd is PSPACE-complete for any fixed d ≥ 1 even on chordal
graphs and on bipartite graphs under two well-studied reconfiguration rules,
Token Jumping and Token Sliding, except for some trivial cases. The results
give interesting contrasts to known results for d = 0, namely Independent Set

Reconfiguration. On chordal graphs, the two reconfiguration rules do not
make a difference in the complexity of RISRd for d ≥ 1, whereas they do make a
significant difference for d = 0, and on bipartite graphs, the complexity for d ≥ 1
shows a reverse phenomenon from d = 0. For any fixed d ≥ 2, CRISRd on bipar-
tite graphs is PSPACE-complete under Token Sliding rule and polynomial-time
solvable under Token Jumping rule.
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Abstract. Consider an agent traversing a graph of “gadgets”, each with
local state that changes with each traversal by the agent. Prior work has
studied the computational complexity of deciding whether the agent can
reach a target location given a graph containing many copies of a given
type of gadget. This paper introduces new goals and studies examples
where the computational complexity of these problems are the same or
differ from the original relocation goal. For several classes of gadgets—
DAG gadgets, one-state gadgets, and reversible deterministic gadgets—
we give a partial characterization of their complexity when the goal is
to traverse every gadget at least once. We also study the complexity of
reconfiguration, where the goal is to bring the entire system of gadgets
to a specified state. We give examples where reconfiguration is a strictly
harder problem than relocating the agent, and also examples where relo-
cation is strictly harder. We also give a partial characterization of the
complexity of reconfiguration with reversible deterministic gadgets.

1 Introduction

The motion-planning-through-gadgets framework , introduced in [3] and
further developed in [4], captures a broad range of combinatorial motion-
planning problems. It also serves as a powerful tool for proving hardness of
games and puzzles that involve an agent moving in and interacting with an
environment where the goal is to reach a specified location. Prior work [4]
fully characterizes the complexity of 1-player motion planning with two natural
classes of gadgets: DAG k-tunnel gadgets, which naturally lead to bounded
games, and reversible deterministic k-tunnel gadgets, which naturally lead
to unbounded games. Section 2 reviews these and other important definitions.
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All of the prior work considers reachability , where the decision problem is
whether the agent can reach the target location.1 In this paper, we begin extending
the gadget model to victory conditions other than reaching a target location. In
particular we examine the complexity of reconfiguring a system of gadgets and of
visiting every single gadget. These extensions seem natural and interesting, but
are also motivated by the fact that this model has been used to show hardness of
reconfiguration problems and problems with Hamiltonian Path like constraints.

We consider the universal traversal problem of whether the agent can visit
every gadget. In Sect. 3, we characterize the complexity of this problem for three
classes of k-tunnel gadgets: DAG gadgets, one-state gadgets, and reversible deter-
ministic gadgets. Of particular note is that universal traversal can be harder than
reachability for the same gadget. In particular, there are DAG k-tunnel gadgets
for which reachability is in P but universal traversal is NP-complete. Additionally,
reachability for one-state gadgets is always in NL, but universal traversal can be
NP-complete.

In Sect. 4 we consider the reconfiguration problem of whether the agent can
cause the entire system of gadgets to reach a target configuration. We exhibit
a gadget with non-interacting tunnels for which reconfiguration is PSPACE-
complete, but reachability is in P. We also show that for reversible gadgets,
reconfiguration is at least as hard as reachability. In contrast, we exhibit a nonre-
versible gadget for which the reconfiguration is contained in P while reachability
is NP-complete. The gadgets framework has already been used to prove com-
plexity results about reconfiguration problems related to swarm [2] and modular
robotics [1], so understanding reconfiguration in the gadgets model may provide
an easier and more powerful base for such applications.

2 Gadget Model

We now define the gadget model of motion planning, introduced in [3].
A gadget consists of a finite number of locations (entrances/exits) and a

finite number of states. Each state S of the gadget defines a labeled directed
graph on the locations, where a directed edge (a, b) with label S′ means that
an agent can enter the gadget at location a and exit at location b, changing
the state of the gadget from S to S′. Each of these arcs is called a transition .
Sometimes we will discuss a traversal from some location a to location b which
refers to any possible transition from a to b in state s. Different states in a gadget
can have different transitions while having the same traversability, because the
transitions in those different states go from the same entrances to the same
exits. Equivalently, a gadget is specified by its transition graph , a directed
graph whose vertices are state/location pairs, where a directed edge from (S, a)
to (S′, b) represents that the agent can traverse the gadget from a to b if it is

1 Assembly and motion planning literature often use the term reachability to refer to
whether an agent can reach a target location. However, reconfiguration literature uses
the term to refer to whether a target location in the configuration space is reachable
from another. This would be equivalent to our reconfiguration problem which also
specifies a target location for the agent.
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in state S, and that such traversal will change the gadget’s state to S′. Gadgets
are local in the sense that traversing a gadget does not change the state of any
other gadgets. An example can be seen in Fig. 1.

Fig. 1. A diagram describing the lock-
ing 2-toggle gadget. Each box repre-
sents the gadget in a different state,
in this case labeled with the numbers
1, 2, 3. Arrows represent transitions in
the gadget and are labeled with the
states to which those transition take
the gadget. In the top state 3, the agent
can traverse either tunnel going down,
which blocks off the other tunnel until
the agent reverses that traversal. Dot-
ted lines help visualize the associated
transitions between states.

A system of gadgets consists of gad-
gets, the initial state of each gadget, and
an undirected connection graph on the
gadgets’ locations. If two locations a and b
of two gadgets (possibly the same gadget)
are connected by a path in the connection
graph, then an agent can traverse freely
between a and b along the connection
graph. The configuration of a system of
gadgets is that system of gadgets along
with a state for each of the gadgets in
the system. (Equivalently, we can think of
locations a and b as being identified, effec-
tively contracting connected components
of the connection graph.) These are all the
ways that the agent can move: exterior to
gadgets using the connection graph, and
traversing gadgets according to their cur-
rent states. An agent’s path is a sequence
of valid transitions through gadgets and
moves in the connection graph.

Definition 1. For a finite set of gadgets
F , reachability for F is the following
decision problem. Given a system of gad-
gets consisting of n copies of gadgets in F , and a starting location and a win
location in that system of gadgets, is there a path the agent can take from the
starting location to the win location?

We will consider several specific classes of gadgets.
A k-tunnel gadget has 2k locations, which are partitioned into k pairs called

tunnels, such that every transition is between two locations in the same tunnel.
The state-transition graph of a gadget is the directed graph which has a

vertex for each state, and an edge S → S′ for each transition from state S to S′.
A DAG gadget is a gadget whose state-transition graph is acyclic. DAG gadgets
naturally lead to problems with a polynomially bounded number of transitions,
since each gadget can be traversed a bounded number of times. The complexity
of the reachability problem for DAG k-tunnel gadgets, as well as the 2-player
and team games, is characterized in [4].

A gadget is deterministic if every traversal goes to only one state and every
location has at most 1 traversal from it. More precisely, its transition graph has
maximum out-degree 1.

A gadget is reversible if every transition can be reversed. More precisely,
its transition graph is undirected.
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Reversible deterministic gadgets are gadgets whose transition graphs are par-
tial matchings, and they naturally lead to unbounded problems. Prior work [4]
characterizes the complexity of reachability for reversible deterministic k-tunnel
gadgets and partially characterizes the complexity of 2-player and team games.

A k-tunnel gadget has a distant opening if there is a transition in some
state across a tunnel which opens a different tunnel. A tunnel is opened if a
transition has taken it from a state where the tunnel did not have traversability
in some direction to a state where it is now traversable.

In Sect. 3.2, we consider one-state , k-tunnel gadgets. A transition in a gad-
get with only one state does not change the state, so the legal traversals never
change.

3 Universal Traversal

In this section, we consider whether an agent in a system of gadgets can make a
traversal across every gadget, called the universal traversal problem.

Definition 2. For a finite set of gadgets F , universal traversal for F is the
following decision problem. Given a system of gadgets consisting of n copies of
gadgets in F , and a starting location and a win location in that system of gadgets
is there a path the agent can take from the starting location which makes at least
one traversal in every gadget?

We provide a full characterization for the complexity of this problem for
three classes of gadgets. In Sect. 3.1, we characterize DAG k-tunnel gadgets.
Universal traversal is NP-hard for some DAG gadgets where reachability is in P.
This is somewhat similar to the distinction between finding paths and finding
Hamiltonian paths. In Sect. 3.2, we further emphasize this difference by charac-
terizing one-state k-tunnel gadgets. Reachability is always in NL for one-state
gadgets, but we find that universal traversal is often NP-complete. Finally, in
the full version of the paper we consider the unbounded case by characterizing
universal traversal for reversible deterministic k-tunnel gadgets. In this case, the
dichotomy is the same as for reachability.

3.1 DAG Gadgets

In this subsection, we consider universal traversal for k-tunnel DAG gadgets and
show this problem is NP-hard for any DAG gadget which has and actually uses
at least 2 tunnels, in the sense defined below. For some simple 1-tunnel DAG
gadgets, universal traversal is analogous to finding Eulerian paths and is thus in
P; however, more complex 1-tunnel gadgets can not easily be converted to an
Eulerian path problem. For example the 1-toggle which switches direction after
each transition or a gadget which can be traversed at most twice. We leave the
case of 1-tunnel DAG gadgets open.

Open Problem 1. Is universal traversal with any 1-tunnel DAG gadget in P?
Are there 1-tunnel DAG gadgets for which universal traversal is NP-complete?
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Fig. 2. A 2-tunnel DAG gadget which
is not true 2-tunnel.

Some k-tunnel DAG gadgets with k >
1 act like 1-tunnel gadgets in that it is
never possible to make use of multiple
tunnels. A simple example is shown in
Fig. 2. We formalize this notion in the fol-
lowing definition.

Definition 3. A state of a k-tunnel gad-
get is true 2-tunnel if there are at least two tunnels, each of which is traversable
in some state reachable (through any number of transitions) from that state. A
gadget is true 2-tunnel if it is a k-tunnel gadget and has a true 2-tunnel state.

Note that a k-tunnel gadget does not need multiple tunnels traversable in the
same state to be true 2-tunnel: perhaps traversing the single traversable tunnel
opens another tunnel. To justify this definition, we prove the following result.

Theorem 1. Let G be a k-tunnel which is not true 2-tunnel. Then there is a
1-tunnel gadget G′ and a bijection between states of G to states of G′ such that
replacing each copy of G in a system of gadgets with a copy of G′ in the corre-
sponding state gives an equivalent system of gadgets with respect to reachability
and universal traversal.

We will use the fact that every nontrivial DAG gadget simulates either a
directed or an undirected single-use path, since we can take a final nontrivial
state of the gadget [4]. The rest of this subsection is devoted to proving NP-
completeness for universal traversal for true 2-tunnel DAG gadgets.

Theorem 2. Universal traversal with any true 2-tunnel DAG gadget is NP-
complete.

To prove Theorem 2, we will focus on a final true 2-tunnel state of a DAG
gadget, and only use the two tunnels which make this state true 2-tunnel. A final
true 2-tunnel state is a true 2-tunnel state from which no other true 2-tunnel
state can be reached. Such a state exists because the state-graph is a DAG.
After making a traversal in this state, any resulting state is not true 2-tunnel,
so only one of the two tunnels can be traversed in the future. If the gadget is
nondeterministic, the agent may be able to choose which of the two tunnels this
is. We consider several cases for the form of the last true 2-tunnel state, and
show NP-hardness for each one. Most proofs are left to the full version of the
paper.

The first case we consider is when the final true 2-tunnel state being consid-
ered has a distant opening.

Lemma 1. Let G be a true 2-tunnel gadget and let S be a final true 2-tunnel
state of G. If there exists a transition from S across one tunnel which opens a
traversal across another tunnel, then universal traversal for G is NP-hard.
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Fig. 3. Two cases for the form of the
gadget in Lemma 1, assuming travers-
ing the top tunnel to the right opens
the bottom tunnel to the right. In (a)
the bottom tunnel is not traversable
to the left in state S and in (b) it
is. Unfilled arrows are traversals that
may or may not exist depending on the
gadget. Unlabled transitions may be to
arbitrary states not specified here.

proof. We will only use the two tunnels
involved in the opening transition from S
to S′ where S′ has some traversal which
was not possible in S. Suppose traversing
the top tunnel from left to right allows
the agent to open the left-to-right traver-
sal on the bottom tunnel. Then state S
has one of the two forms shown in Fig. 3,
depending on whether the bottom tun-
nel can be traversed right to left in S. In
either case, the top tunnel may or may
not be traversable from right to left in S.
Since S is a final true 2-tunnel state, only
the bottom tunnel is traversable in S′.

To show NP-hardness of universal
traversal with true 2-tunnel gadget G, we
reduce from reachability for G. Since the
gadget has a distant opening, reachability
is NP-complete [4]. We modify the system
of gadgets in an instance of the reachabil-
ity problem by adding a construction to
each gadget which allows the agent to go back and make a traversal in it after
reaching the win location. If the agent can reach the win location, it can then
use any gadgets it did not already use, and if it cannot reach the win location,
it cannot use the gadgets in this construction.

The construction is slightly different depending on whether the bottom tunnel
can be traversed from right to left in state S. We use the construction in either
Fig. 4 or Fig. 5. In either case, the agent cannot use the newly added gadgets
until it first reaches the win location. Once it reaches the win location, it can

Fig. 4. The construction to allow the
agent to use a gadget after reaching the
win location (the star), when the bot-
tom tunnel isn’t traversable in state S
(the case of Fig. 3a).

Fig. 5. The construction to allow the
agent to use a gadget after reaching the
win location (the star), when the bot-
tom tunnel is traversable from right to
left in state S (the case of Fig. 3b).
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open tunnels in the added gadgets, traverse the (top) gadget the construction is
attached to, and return. If the agent already used the gadget this is attached to,
it can instead use a traversal in each added gadget without visiting that gadget.
So it is possible to make a traversal in every gadget if and only if the original
reachability problem is solvable. �

Now we will assume the final true 2-tunnel state has no distant opening.
If only one tunnel is traversable in this state, then it cannot be true 2-tunnel
because the other tunnel will never become traversable. So both tunnels are
traversable, and after making any traversal, there is only one tunnel which will
ever be traversable. With no distant opening, we first consider the case where
at least one of the tunnels is directed in the final true 2-tunnel state.

Lemma 2. Let G be a true 2-tunnel gadget and let S be a final true 2-tunnel
state of G. Suppose no transition from S across one tunnel opens a traversal
across the other tunnel. If, in S, some tunnel can be traversed in one direction
but not in the other, then universal traversal for G is NP-hard.

The remaining case is when, in the final true 2-tunnel state, there is no distant
opening and all tunnels are undirected. We branch into two cases one last time,
based on whether traversing one tunnel requires closing the other tunnel. These
can be found in the full version of the paper.

Open Problem 2. Is universal traversal restricted to planar systems of gadgets
NP-hard for all true 2-tunnel DAG gadgets?

3.2 One-State Gadgets

In this subsection, we consider universal traversal for k-tunnel gadgets with only
one state. The reachability problem is clearly in NL for such gadgets, but we
will see that universal traversal is often NP-complete.

A one-state k-tunnel gadget consists of directed and undirected tunnels, and
is determined by the number of each type; we assume there is no untraversable
tunnel since such a tunnel can be removed without affecting the problem. We
fully characterize the complexity of universal traversal for such gadgets. We only
prove a key lemma here, the rest can be found in the full version of the paper.

Theorem 3. Let G be a one-state k-tunnel gadget. If G has no directed tunnels,
then universal traversal for G is in L. Otherwise, if k ≤ 2 universal traversal for
G is NL-complete and if k ≥ 3 universal traversal for G is NP-complete.

Lemma 3. Universal traversal with any one-state k-tunnel gadget is in NL if
k ≤ 2.

Proof. We provide an algorithm which runs in nondeterministic logarithmic
space with an oracle for reachability in directed graphs. This shows that the
universal traversal problem is in NLNL. The algorithm can be adapted to run in
NL by first using the oracle to convert the problem to an instance of 2SAT. It
then solves this instance, since 2SAT is in NL.
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The 2SAT formula has a variable for each tunnel in the system of gadgets; a
satisfying assignment will provide a set of tunnels we can traverse to solve the
universal traversal problem. For each gadget with tunnels x1 and x2, we have
a clause x1 ∨ x2 (if the gadget has only one tunnel, x1 = x2). For each pair of
distinct tunnels x and y, we query the reachability oracle to determine whether
there is a path from the exit of x to the entrance of y or from the exit of y to the
entrance of x (if x or y is undirected, we can use either location as the entrance
or exit). If there is no path in either direction, we have a clause ¬x ∨ ¬y.

We prove that this algorithm works, and then adapt it to an LNL algorithm
which is known to equal NL [6]. Suppose the universal traversal problem is
solvable, and consider the assignment which contains the tunnels which are used
in the solution. Since the solution must use a tunnel in every gadget, each clause
x1∨x2 is satisfied. If the solution uses both tunnels x and y, there must be a path
in some direction between x and y, namely the path the agent takes between
the two tunnels. For each clause ¬x ∨ ¬y in the formula, there is no such path,
so the solution does not use both tunnels x and y, so the clause is satisfied.

Now suppose the 2SAT formula is satisfiable, and consider the set T of tunnels
corresponding to true variables in a satisfying assignment. Because of the clauses
x1 ∨ x2, T must contain a tunnel in each gadget. We define a relation → on T
where x → y if there is a path from the exit of x to the entrance of y. As
suggested by the notation, this relation is transitive: if x → y → z, there is a
path from the exit of x to the entrance of y, across y, and then to the entrance
of z, so x → z. Since each clause ¬x ∨ ¬y is satisfied, for any distinct x, y ∈ T
we have x → y or y → x. That is, → is a strict total pre-order.

Then there must be a (strict) total order ≺ on T such that x ≺ y =⇒ x → y:
define another relation ∼ where x ∼ y if x = y or both x → y and y → x. Then
∼ is clearly an equivalence relation, and → is a total order on T/ ∼. We can
construct ≺ by putting the equivalence classes under ∼ in order according to →,
and arbitrarily ordering the elements of each equivalence class.

This now shows that there exists a set of locations from which a universal
traversal is possible. The last step is to nondeterministically check that the start
location of the agent has no strict predecessor in the preorder. This can be
done by checking that the starting location is in the same equivalence class as
the minimal element in our chosen total ordering. The agent can traverse the
tunnels in T in the order described by ≺. This is a solution to the universal
traversal problem.

We run the algorithm in nondeterministic logarithmic space as follows. Begin
with an NL algorithm that solves 2SAT, and assume the input is given in a format
where we can check whether a clause a∨ b is in the formula by checking a single
bit for literals a and b. For example, the input can be given as a matrix with a
row and column for each literal. We run this nondeterministic 2SAT algorithm,
except that whenever we would read a bit of the input, we perform a procedure
to determine whether that clause is in the formula.

Suppose the algorithm to solve universal traversal wants to know whether
a ∨ b is in the formula. If a and b are both positive literals, we simply check
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whether they correspond to tunnels in the same gadget. If a and b have different
signs, the clause is not in the formula. The interesting case is when a = ¬x and
b = ¬y for tunnels x and y, where we need to determine whether there is a path
from the exit of x to the entrance of y or vice-versa.

In this case, we nondeterministically guess whether the clause exists, and
then check whether the guess was correct. If we guess it does exist, we run a
coNL algorithm to verify that there is no path from the exit of x to the entrance
of y or vice versa; this can be converted to an NL algorithm. If the verification
succeeds, we proceed; if it fails, we halt and reject. Similarly, if we guess the
clause does not exist, we run an NL algorithm to verify that there is such a
path, proceeding on success and rejecting on failure.

Consider the computation branches which have not rejected after this process.
If the clause exists, the branch which attempted to verify it does not exist has
entirely rejected, and the branch which attempted to verify it does exist has
succeeded in at least one branch. So there is at least one continuing branch, and
every such branch believes that the clause exists. Similarly if the clause does not
exist, we end up with only branches which guessed that it does not exist. 
�

4 Gadget Reconfiguration

In this section we study the question of whether an agent has a series of
moves after which the system of gadgets will be in some target configura-
tion. In Sect. 4.1 we show that for reversible deterministic gadgets the recon-
figuration problem is always PSPACE-complete if the reachability problem
is PSPACE-complete. Section 4.2 shows some methods for constructing new
PSPACE-complete gadgets from known ones and shows the reconfiguration prob-
lem can be PSPACE-complete even when a gadget does not change traversability.
Finally, in Sect. 4.3, we show an interesting connection between reconfiguration
problems and bounded reachability problems, expanding the classes of gadgets
known to be in NP. We also exhibit, a gadget for which the reachability question
is NP-complete but the reconfiguration question is in P.

Definition 4. For a finite set of gadgets F , reconfiguration for F is the
following decision problem. Given a system of gadgets consisting of n copies of
gadgets in F , a target configuration for that system of gadgets, and a starting
location is there a path the agent can take from the starting location which makes
the configuration of the system of gadgets equal to the target configuration?

4.1 Reconfiguring Reversible Gadgets

Theorem 4. For any set of reversible gadgets containing at least one gadget
which is able to change state, there is a polynomial-time reduction from reacha-
bility with those gadgets to reconfiguration with those gadgets.

Proof. We use the same technique as used to show that reconfiguration Nonde-
terministic Constraint Logic is PSPACE-complete [5]. We are given an instance
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of the reachability problem, which is a network of gadgets with a target location.
At the target location, add a loop with a single gadget which permits a traversal
which changes its state. For the reconfiguration problem, we set the target states
of all but the newly added gadget to be the same as the initial states, and we set
the target state of the added gadget to be one reachable by making a traversal in
the loop. If the reachability problem is solvable, the reconfiguration problem can
be solved by navigating to the target location, traversing the loop through the
added gadget, and taking the inverse transitions of the path taken to the target
location to restore all other gadgets to the initial state. If the reconfiguration
problem is solvable, its solution must involve visiting the added gadget, so the
reachability problem is solvable. 
�

4.2 Verified Gadgets and Shadow Gadgets

In this section we will discuss a technique for generating gadgets for which the
reconfiguration and reachability problems are computationally hard. The main
idea is constructing a gadget which behaves well when used like a gadget with
a known hardness reduction, but might also have other transitions which are
allowed but put the gadget into some undesirable state.

First, we will pick some base gadget which we want to modify. Next we will
add additional shadow states to the gadget and additional transitions with the
restriction that all newly added transitions must take the gadget to a shadow
state. We call such a construction a shadow gadget of the base gadget. This
has the nice property that if the agent takes any transition not be allowed in
the base gadget, then the gadget will always stay in a shadow state after that
transition.

Theorem 5. Reconfiguration with a shadow gadget is at least as hard as recon-
figuration with the base gadget.

Corollary 1. There is a gadget which never changes its traversability but with
which reconfiguration is PSPACE-complete.

Figure 6 contains a diagram of the 2-toggle which is PSPACE-complete for
reachability [3] and an example of a shadow 2-toggle which is PSPACE-complete
for reconfiguration and is a gadget which never changes traversability (if there
is a transition from some location a to another location b in any state, there
must be a transition from a to b in every state). In fact all tunnels are always
traversable in both directions. Finally, the figure shows a verified 2-toggle which
is PSPACE-complete for reachability and a construction we will discuss next.

A verified gadget is a shadow gadget with some additional structure. From
a shadow gadget we add two more locations, the verifying locations to the
gadget. We may also add verified states which can only be reached by tran-
sitions from the added locations while the gadget is in normal states. We now
add transitions among the verifying locations such that these locations can be
connected in a series, there is always a traversal from the first to the last location
if the gadget is in a normal state, and there is no such traversal if the gadget is
in a shadow state. We call this added traversal the verification traversal .
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Fig. 6. Examples of a PSPACE-complete gadget and constructions of a shadow gadget
and verified gadget based on it.

Theorem 6. Reachability with a verified gadget is at least as hard as reachability
with the base gadget.

4.3 Reconfiguration and DAG-like Gadgets

In [4] we study DAG gadgets as a naturally bounded class of gadgets. We now
consider a generalized class of gadgets and describe cases in which the reacha-
bility question remains in NP.

For a finite family of gadgets F , we call a gadget F-DAG-like if its state
graph can be decomposed into disjoint subgraphs for which those subgraphs are
gadgets in F and the transitions between these subgraphs are acyclic. We call
the transitions between the subgraphs F-DAG-like transitions.

With this notion, one may wonder what gadgets can be used in an F -DAG-
like gadget and have the resulting reconfiguration or rechability problem with
that gadget still be in NP. We then show that if F is a family of gadgets for which
the reconfiguration problem is in NP, then the reconfiguration and reachability
problems for F and for F -DAG-like gadgets are also in NP. We call a finite
set of gadgets NPReDAG if they are all F -DAG-like for some fixed family F
for which the reconfiguration problem is in NP. Proofs can be found in the full
version of the paper.

Theorem 7. Reconfiguration with any NPReDAG set of gadgets is in NP.

Theorem 8. If reconfiguration with some set of gadgets is in NP, than reacha-
bility is also in NP.

4.4 Reconfiguration Can Be Easier

In this section we introduce the Labeled Two-Tunnel Single-Use gadget for
which the reachability question is harder than the reconfiguration problem. The
Labeled Two-Tunnel Single-Use gadget is a DAG gadget where going through
either tunnel closes both of them; however, the states are distinguished based
on which tunnel was traversed. This is a DAG gadget with a forced distant door
closing, so it is NP-complete by Theorem 22 in [4]. We give a polynomial time
algorithm for the reconfiguration problem in the full version of the paper.
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Theorem 9. Reconfiguration with the Labeled Two-Tunnel Single-Use gadget is
in P.

Open Problem 3. Is there a gadget which has different traversability in each
state, and reachability with the gadget is NP-complete, but reconfiguration with
the gadget problem is in P?

4.5 Reconfiguration with 1-tunnel

Just as with universal traversal, moving to reconfiguration can also be NP-hard
with 1-tunnel gadgets. As an example we show that reconfiguration with a diode
and a single-use gadget is NP-complete. A diode is a 1-state gadget which only
allows traversals from location A to location B. A single-use gadget is a two
state gadget in which state 1 allows a traversal between locations A and B
which changes the gadget to state 2. State 2 has no traversals. The reduction is
from Hamiltonian path.

Theorem 10. Reconfiguration with the diode and the single-use gadget is NP-
complete.

Open Problem 4. For what classes of 1-tunnel gadgets is reconfiguration NP-
complete? What about PSPACE-complete?

Acknowledgments. This work grew out of an open problem session and a final
project from MIT class on Algorithmic Lower Bounds: Fun with Hardness Proofs
(6.892) from Spring 2019.
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Abstract. We give a complete structure theorem for 1-complex s, t
Hamiltonian paths in rectangular grid graphs. We use the structure the-
orem to design an algorithm to reconfigure one such path into any other
in linear time, making a linear number of switch operations in grid cells.

1 Introduction

Let G be an m × n rectangular grid graph, which is an induced, embedded
subgraph of the infinite integer grid and has m rows and n columns in an (m −
1) × (n − 1) rectangle RG. Let s and t be the top left and bottom right corners
of RG. We define a class of s, t Hamiltonian paths (s and t are the endpoints of
the Hamiltonian path) that we call 1-complex paths. A 1-complex path is an s, t
Hamiltonian path of G, where each vertex of G can be connected to a node on
one of the sides E ,W,N ,S of RG by a straight line segment on the path, as in
Fig. 1(a). We reconfigure such paths using switches in 1×1 grid cells. Let RG be
covered by an s, t path and 0 or more disjoint cycles (e.g., initially RG is covered
by an s, t Hamiltonian path). If a cell has two parallel grid edges that belong to
the cover and two parallel grid edges that do not, then a switch exchanges the

Fig. 1. (a) Two 1-complex s, t Hamiltonian paths P1 and P2. Sides of RG are N ,S,W, E .
(b) A sequence of switches (shown by red dots) taking P1 to P2. (Color figure online)
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edges in that cell that belong to the cover for the two edges not in the cover (see
Fig. 1(b)). A switch produces a new cover comprising an s, t path and 0 or more
disjoint cycles. Whether a cell may be switched depends on the cover.

The question we ask is this: given any two 1-complex paths of G, can one of
them be reconfigured to the other with only O(|G|) switches in grid cells, and if
so, can the sequence of switches to be performed be computed efficiently?

As shown in Fig. 2, a “cross-separator” (i.e., a subpath ηi joining nodes on
opposite sides of RG) may have many forms, depending on whether and where
this subpath has bends. In previous work [9] we introduced a special case of
1-complex s, t Hamiltonian paths we called “simple”. By definition, a simple s, t
path has only straight cross-separators, so none of the subpaths in Fig. 2 that
contain bent cross-separators can occur in simple paths.

A key contribution of this work is a complete structure theorem for 1-complex
paths, building on the work in [9] for the special case of simple paths. Using our
structure theorem for 1-complex paths, we achieve a linear time algorithm for
reconfiguration of 1-complex s, t Hamiltonian paths Ps,t. Roughly, our algorithm
uses the structure of a Ps,t to define smaller sub-rectangles within RG. Path Ps,t

determines s′, t′ Hamiltonian paths p′
s′,t′ within each sub-rectangle. We define the

sub-rectangles so that our structure theorem as well as our new reconfiguration
tools (Sect. 4) apply to each path p′

s′,t′ . See Fig. 2 and Sect. 5.

Fig. 2. The structure of the s, t path is used to break G into sub-rectangles.

The existence problem for Hamiltonian paths in rectangular grids [5] and
non-rectangular grids [2,7] has long been studied, as well as enumeration [6] and
generating functions [1] for such paths. In recent years, reconfiguration problems
for Hamiltonian cycles [10,11,13] and for Hamiltonian paths [9] have attracted
attention. Here we advance knowledge on structure and reconfiguration of Hamil-
tonian paths, motivated by the many applications of both Hamiltonian cycles
and Hamiltonian paths in grid graphs (see e.g. [3,4,8,12]).

Our contributions:

(1) a complete structure for 1-complex s, t Hamiltonian paths (Sect. 3);
(2) two powerful new reconfiguration tools that find cells to switch and then

sequence the switches to create straight path segments (Sect. 4); and
(3) an algorithm to reconfigure any 1-complex Hamiltonian path to any other

such path in O(|G|) time, making O(|G|) switches in 1 × 1 grid cells, where
|G| is the size of the grid graph G (Sects. 5 and 6).



Hamiltonian Paths in Grid Graphs 61

2 Preliminaries

We define terminology and an assumption used throughout the paper. These
have previously been defined in [9], but we repeat them here for completeness.

Assumption. G is an m × n grid graph, where m,n ≥ 4, and α and β are
the bottom left and top right corner vertices of G. Without loss, we assume the
input 1-complex path Ps,t visits α before β. The target 1-complex path for the
reconfiguration as well as intermediate configurations may visit β before α.

A vertex of G with coordinates (x, y) is denoted by vx,y, where 0 ≤ x ≤ n−1
and 0 ≤ y ≤ m − 1. The top left corner vertex s of G is (0, 0); the positive
x-direction is rightward and the positive y-direction is downward. We use the
terms node and vertex interchangeably.

Column x of G is the shortest path of G between vx,0 and vx,m−1, and Row
y is the shortest path between v0,y and vn−1,y. We call Columns 0 and n − 1
the west (W) and east (E) boundaries of G (i.e., sides of RG), respectively, and
Rows 0 and m − 1 the north (N ) and south (S) boundaries (sides).

Throughout this paper, a 1-complex path means a 1-complex s, t Hamiltonian
path P of G; P visits each node of G exactly once and uses only edges in G. We
denote by Pu,v the directed subpath of P from u to v. Straight subpaths of P
are called segments, denoted seg[u, v], where u and v are the segment endpoints.

Cookies and Separators. Every internal node v of G lies on an internal subpath
of P , namely the subpath joining the first boundary vertices vs and vt met when
travelling along P from v toward s and toward t, respectively. Such an internal
subpath is called a cookie if vs and vt lie on the same boundary, a corner separator
if they lie on adjacent boundaries, and a cross-separator if they lie on opposite
boundaries. Because P is 1-complex, a cross-separator can either be bent and
have two adjacent bends, or it can be straight.

A cookie c has one of four types, N , S, E , and W, depending on the boundary
where c has its base. A cookie consists of three segments of P . The common length
of the two parallel segments of c measures the size of c.

We say a corner separator cuts off a corner of G. Traveling along Ps,t, we
denote the i-th corner separator cutting off s by μi, where 0 ≤ i ≤ j. We denote
its internal bend by b(μi), and its endpoints by s(μi) and t(μi), where s(μi) is
the first endpoint met. We use similar notation for the i-th corner separator νi

cutting off t. A corner separator that has one of its endpoints connected to s or
t by a segment of P is called a corner cookie. P can have at most two corner
cookies, one at either end.

Similar to the corner separators, we denote the i-th cross-separator met along
Ps,t by ηi, and its endpoints by s(ηi) and t(ηi), where s(ηi) is the first endpoint
met. If ηi is bent, then b(ηi) denotes the first bend met. In total, we have j corner
separators μi cutting off s, and k cross-separators ηi, and � corner separators νi

cutting off t.

Runs of Cookies. A run of cookies is a subpath of P consisting of cookies
of the same type, spaced one unit apart and joined by the single boundary
edges between them, possibly extended at either end by an edge joining a cookie
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endpoint to an adjacent boundary vertex. A run of cookies is denoted Run[u, v],
where u and v belong to the same boundary and delimit the range of boundary
vertices covered; Run[u, v] may consist of a single boundary edge (u, v).

To describe the path structure, we define three types of runs, depend-
ing on the cookie sizes along the run: the sizes may remain the same, or be
non-increasing (denoted Run≥[u, v]) or non-decreasing (Run≤[u, v]). Runs are
assumed to have cookies of the same size unless specified otherwise.

Canonical Paths. A canonical path P is a 1-complex path with no bends at
internal vertices. If m is odd, P can be type E-W, filling rows of G one by one;
if n is odd, P can be of type N -S, filling columns. There are no other types.

Observation 1. [9] For P to be Hamiltonian, the subpath Ps,α of Ps,t must
cover all the W vertices, no corner separators can cut off α or β, and Ps,t must
visit β before visiting any other E vertices. It follows that the corner separators
μi cutting off s must occur in Ps,t before α, and that the corner separators νi

cutting off t occur in Ps,t after β. Furthermore, all cross-separators ηi occur on
Ps,t between α and β, and the number k ≥ 1 of them must be odd. ��

3 Structure of 1-Complex Path P of G

We regard P in its directed form Ps,t as composed of an initial subpath Ps,s(η1),
followed by a middle subpath Ps(η1),t(ηk), and a final subpath Pt(ηk),t. By revers-
ing the edge directions, the final subpath of Ps,t can be viewed as the initial
subpath of the path Pt,s from t to s. The grid G can be rotated by π to place t
in the upper left corner and s in the lower right corner. Thus, apart from changes
in notation, the structural possibilities for the final and initial subpaths of Ps,t

are the same, and we do not discuss the final subpath further.
We present a series of observations whose straightforward proofs may require

some reflection. They lead to a structure theorem at the end of this section.

Initial Subpath. The structure of the initial subpath depends on the form of
the first cross-separator η1 of Ps,t. As η1 may be bent or straight, there are five
possible forms for it (in Fig. 3(a), see forms A, B, D, F, and G). We discuss and
give the structure of the initial subpath for each of these five forms.

In the observations below, w is the vertex on N just one column west of
t(η1), and a′ is the vertex on S in the same column as w when η1 has form G,
and one column west of s(η1) otherwise. The vertex v0,2 is denoted by a.

Separator η1 has form B or G. The initial subpath has the same structure
as the initial subpath of a simple s, t path described in [9].

Observation 2 (η1 form B or G). (a) If t(η1) is in Column 1 next to s on the
N boundary, then the initial subpath consists of two boundary segments seg[s, α]
and seg[α, s(η1)] on the W and S boundaries, respectively; see Fig. 3(b).

(b) If j = 0 and x(t(η1)) > 1, Ps,s(η1) must have a corner cookie containing s
and w, then next either seg[a, α] Run[α, a′], or Run[a, α] seg[α, a′], or Run≥[a, α]
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Fig. 3. (a) Seven forms for S to N cross-separators; η1 cannot have forms E or C as
any S cookie preceeding η1 must be included in the initial subpath, not the middle
subpath. Path P must contain the boundary segments shown. (b) Degenerate cases for
different forms of η1. (c) N to S forms for cross-separators.

seg[α, u] Run≤[u, a′], where u is at least two units from α on S or Run≥[a, u′]
seg[u′, α] Run≤[α, a′], where u′ is at least two units from α on W; then ending
with seg[a′, s(η1)].

(c) If j ≥ 1, then Ps,t(μj)= Run[s, s(μ1)] μ1 Run[t(μ1), s(μ2)] μ2 . . . μi

Run[t(μi), s(μi+1)] μi+1 . . . μj−1 Run[t(μj−1), s(μj)] μj . Since μj ends at t(μj)
on W, s(μ1) must lie on N for j odd and on W for j ≥ 1 even. Path Pt(μj),s(η1)

either has the structure of Pa,s(η1) in (b), or as shown in Fig. 3(b), consists of
edge (t(μj), α) followed by seg[α, s(η1)]. ��

Separator η1 has form D. The node below w must be a bend (else P cannot
visit all the vertices in the column of t(η1)); this bend must connect to W forming
a corner cookie. Thus j = 0.

Observation 3 (η1 form D). (a) If x(t(η1)) = 1, Ps,s(η1) = seg[s, a] Run[a, α]
seg[α, s(η1)], where the W cookies have unit size. See Fig. 3(b). (b) Otherwise,
Ps,s(η1) consists of a corner cookie containing s and w, followed by Pa,s(η1) with
the structure given in Observation 2(b). ��

Separator η1 has form A or F . We define two rectangular regions of G covered
by the initial subpath, and use them in designing our algorithm in Sects. 5 and 6.
Let w′ denote the vertex on the W boundary in Row y(b(η1)) for form F , and
in Row y(b(η1)) − 1 for form A. Let w′′ be the vertex on the W boundary one
row below w′. We denote by Rs the rectangular region of G that is delimited by
Columns 0 and x(w) and Rows 0 and y(w′); the rectangular region delimited by
Columns 0 and x(a′) and Rows y(w′′) and m − 1 is denoted Rα.

Observation 4 (η1 form A or F ). (a) If t(η1) is in Column 1, η1 has form
F , and the initial subpath is (Rs = seg[s, w′])seg[w′, w′′](Rα = Run[w′′, α],
seg[α, a′]) seg[a′, s(η1)]. If s(η1) is in Column 1, η1 has form A, and the
initial subpath is (Rs = Run[s, w′])seg[w′, w′′](Rα = seg[w′′, α], seg[α, a′])
seg[a′, s(η1)]. In both cases, the run contains unit size W cookies. See Fig. 3(b).
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(b) Otherwise, if j = 0, then Ps,w′ contains a run of W cookies Run[s, w′]
of size x(w). If j ≥ 1, then Ps,w′= Run[s, s(μ1)] μ1 Run[t(μ1), s(μ2)] μ2

. . . μi Run[t(μi), s(μi+1)] μi+1 . . . μj−1 Run[t(μj−1), s(μj)] μj , followed by
Run[t(μj), w′] if w′ and t(μj) do not coincide. Pw′′,s(η1) has the structure of
Pa,s(η1) in Observation 2(b). ��

We say Rs is W compatible if it contains an even number of rows, and Rα is
W compatible if it contains an odd number of rows. The next lemma is used to
prove correctness of an algorithm in Sect. 5.

Lemma 1. When η1 has form A or F : (a) Rs is W compatible iff any N cookie
in Rs has even size; Rα is W compatible iff any S cookie in Rα has even size.
(b) At least one of Rs and Rα must be W compatible.

Middle Subpath. The middle subpath Ps(η1),t(ηk) by definition contains all the
cross-separators. Since P is 1-complex, each internal grid point of G is connected
to a boundary by a segment of P . Hence cross-separators are either straight, or
bent toward E or W by one unit from their start nodes s(ηi). Figure 3(a) and (c)
contain the exhaustive list of S to N and N to S cross separators, respectively.

Observation 5 (constraints on ηi, ηi+1). (a) x(t(ηi)) = x(s(ηi))±1 for bent
ηi, and x(t(ηi)) = x(s(ηi)) for straight ηi.
(b) x(t(ηi+1)) = 1 + x(s(ηi)) because the roundtrip made by Ps(ηi),t(ηi+1) must
cover all grid points between ηi and ηi+1.
(c) By (a) and (b), nodes s(ηi+1) and t(ηi) are 1, 2, or 3 units apart (i < k).
Node s(ηi+1) lies to the right of t(ηi), and when the nodes are 3 apart, P must
have one cookie between them to cover the intervening points on the boundary.

��
To describe the middle subpath structure, we introduce four special cases

E, D, C, and G for form F and four special cases L, I, N , and J for form H;
see Fig. 3. Note that forms H and F both have two vertical segments of length
at least two. Forms E and C describe the scenario that an S cookie occurs
between ηi−1 and ηi. Like form F , forms D and G turn to the left (toward W)
at the first bend, but unlike F , their internal bends occur one unit from the N
or S boundary. The four special cases L, I, N , and J for form H are described
similarly. Which forms can appear consecutively is determined by Observation 5.

Theorem 1 (1-complex Path Structure). Let Ps,t be a 1-complex path with
k cross-separators and j and � corner separators cutting off s and t, respectively.
initial subpath [Ps,s(η1)] Its structure is given by Observations 2–4.
middle subpath [Ps(η1),t(ηk)] Its structure is given by Observation 5 and the
text following the observation.
final subpath [Pt(ηk),t] As Pt,t(ηk) is the initial subpath of Pt,s (the reverse of
Ps,t), the forms for the final and the initial subpaths are the same.



Hamiltonian Paths in Grid Graphs 65

4 Zip Operation

In this section, we define a zip operation Z (zip for short) that applies a sequence
of switches to cells that appear on two sides of a line (row or column) of G. The
cells must be switchable, as described in Sect. 1. The line, called a zipline and
denoted lq1,q2

z (the superscript may be omitted for short), is directed from node
q1 to node q2 where q1 and q2 are not corners of RG.

As mentioned in Sect. 1, a cycle-path cover P of G is a set of cycles and paths
that collectively cover all the vertices of G.

The zone RZ of a zip is a rectangle determined by the zipline lq1q2
z and the

two adjacent and parallel grid lines la = [a1, a2] and lb = [b1, b2], where a1 and
b1 are adjacent to q1 on a boundary of G and a2 and b2 are adjacent to q2 on
the opposite boundary. Thus the corners of RZ are a1, a2, b1, b2. We call the
subgraph of G induced by la and lz the main track tr of the zip, and the subgraph
with sides lz and lb the side track tr′.

To describe the structure of a Hamiltonian path P inside the zone RZ of a
zip, we define the notion of a local cookie. See Fig. 4.

Definition 1 (local cookie). Let f ′ be a switchable cell for P in the side
track tr′ of the zone RZ of a zipline lz, such that the two sides (a, d) and (b, c)
of f ′ that belong to P are perpendicular to lz and lb, and the other two sides
(a, b) and (d, c) lie in lz and lb, respectively. Let C be a cycle of grid edges in tr
such that (a, b) belongs to C and is the only edge of C not in P . Then the edges
(a, d) and (b, c) of f ′ together with the edges of C except for (a, b) determine
a subpath of P called a local cookie with base (d, c) on lb. Depending on its
shape, a local cookie has one of four types: I, T , q1-facing and q2-facing. For
example, C and f ′

2 in Fig. 4 make a type T local cookie.

Fig. 4. (a) The types of local cookies. (b) Zip Z turns la and lz into segments. Left:
RZ (in grey) before zip Z. Dotted edges do not belong to P . Track tr is covered locally.
Cells in Str and Str′ are labeled fi and f ′

i . Right: The big dots mark the switched cells
after the zip. On lb, only edges of P in the f ′

is are shown.
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The goal of a zip operation is to create a new s, t Hamiltonian path P ′ that
contains all of la and lz as two segments in P ′ and joins them with a boundary
edge of tr in P ′. These two segments and the boundary edge that connects them
can be viewed as a round trip from one boundary to the opposite boundary and
back. This goal motivates the following definition.

Definition 2. The main track tr is locally covered by P provided (i) P contains
edge (a1, q1) or else contains a regular cookie whose base is the edge (a1, q1)–
either way, P contains the edge (q1, b1), and (ii) P covers the remaining nodes
of tr with local cookies with base in lb (e.g., Fig. 4 (Left)).

Note that here, either a1 has degree 1 on path P and lies at a corner of RG, or
else a1 is incident to a boundary edge that belongs to P but lies outside tr.

Definition 3. The zone RZ of a zip Z is zippable provided the main track tr is
locally covered by P (See Fig. 4 (Left)).

Observation 6 (Special switchable cells). (a) By Definition 1, each grid cell
f ′ of tr′ that contains the base of a local cookie of RZ is switchable. Switching
any such f ′ creates a cycle-path cover P = {P ′, C} of G where cycle C lies in tr.
(b) Each grid cell f in the main track tr of a zippable zone RZ that does not lie
inside a local cookie is switchable for P .

We now define two special sets of switchable cells Str in tr and Str′ in tr′ for
a zippable zone RZ and tell how we index the cells.

The set Str consists of the following cells of tr: any cell that has one side in
each of two distinct local cookies; any cell that has a1q1 as a side where (a1, q1)
belongs to P , and has its parallel side in a local cookie; and any cell that has as
one side the end of a cookie lying in tr with base a1, q1, and has for a parallel
side an edge in a local cookie. We index the cells of Str f1 . . . in their order of
occurrence from the q1 end to the q2 end of tr. We define the set Str′ to be all the
cells in tr′ that have a side on lb that is the base of a local cookie. We index the
cells of Str′ f ′

1 . . . in order of their occurrence in tr′. We note that |Str| = |Str′ |.
We index each local cookie according to the cell f ′

i it encloses.

Definition 4 (Zip for zippable RZ). Let lq1,q2
z be a zipline of G whose zone

RZ is zippable, and let Str and Str′ be the special sets of switchable cells in the
two tracks tr and tr′ of RZ . The zip operation Z = zip(G, P, lq1,q2

z , tr) applies
switch to all the cells of Str and Str′ in the following order: f1, f

′
1, f2, f

′
2, . . ..

Note that the zip operation is only defined for a zippable zone RZ . Proofs of
correctness of our algorithms will show that the zips are done in zippable zones.

Observation 7. Let P ′ be the s, t path resulting from a zip Z on an s, t path
P of G, where the zone RZ is zippable. Then, the following hold: (1) Path P ′ is
Hamiltonian and differs from P only in the cells of Str and Str′ ; (2) P ′ contains
segments seg[a1, a2] on la and seg[q2, q1] on lz and the boundary edge (a2, q2)
joining their end points a2 and q2; (3) The boundary edge (q1, b1) is the only
edge of P ′ that joins seg[q2, q1] to lb; and (4) P ′ can be obtained from P in
O(max{m,n}) switches.
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In the next section, we will use path structure (Sect. 3) to show that doing
a zip leaves the next pair of tracks zippable. When this condition holds, we will
be able to apply a sequence of zips advancing the zipline by 2 units each time.
We refer to such a sequence of zips as a sweep. Sweeps can be done in any of the
four directions: up, down, left and right.

5 Reconfiguring 1-Complex Paths to Canonical Forms

We give an algorithm called 1ComplexToCanonical to reconfigure any 1-
complex s, t path P to a canonical path. In Sect. 6, we will use this algorithm to
design another algorithm to reconfigure between any two 1-complex paths.

We first define some terminology in order to describe the algorithm. A sub-
rectangle G

′ is an m × n′, n′ ≤ n, subgrid of G such that the subpath P ′ of P
covering the vertices of G′ is a Hamiltonian path between two corner vertices of
G

′; we call P ′ a sub-rectangular path. We use sub-rectangle and sub-rectangular
path interchangeably for the rest of the section.

We now give a brief overview of the algorithm. It first breaks G into sub-
rectangles using P and the Structure Theorem (Theorem 1), so that each sub-
rectangle G

′ contains an s′, t′ Hamiltonian path P ′
s′,t′ that can be reconfigured

to a canonical path of G′ using at most two sweeps in G
′. We then merge all the

canonical sub-rectangular paths into an s, t Hamiltonian path of G; and using
at most one sweep in G, we reconfigure it to a canonical path of G.

Breaking P into (extended) sub-rectangles. We break P into sub-
rectangles Gh, 1 ≤ h ≤ Q, by removing the following edges: all straight sep-
arators, and the edges on N and S preceding and following them; the edge
between Columns x and x + 1 on N or S, when the internal vertices of Col-
umn x are completely covered by a separator of form D or I, respectively, or
the internal vertices of Column x + 1 are completely covered by a separator of
form J or G. In the path in Fig. 2, removing the bold black edges will break the
path into the Q = 8 sub-rectangles in Fig. 5(a). We call G1 and GQ the terminal
sub-rectangles, and the others the middle sub-rectangles.

Let sh and th be the starting and ending points of the sub-rectangular path Ph

of Gh. If sh is on S, we flip Gh along S when h < Q. In case of GQ, we rotate it by
π about its center. If th is on N , we add a column to the east of Gh, 1 ≤ h ≤ Q, to
create the extended sub-rectangle G

′
h, then connect th to the bottom-right corner

t′h of G′
h through the new edges to get an sh, t′h Hamiltonian path of G′

h. From
now on, we use Gh to denote the final sub-rectangle obtained after the optional
flipping and/or extending steps. We now observe some properties of the middle
and terminal sub-rectangles, then describe Algorithm ReconfigSubRect, to
reconfigure a sub-rectangle to a canonical form.

Middle Sub-rectangles. As shown in Fig. 5, each middle sub-rectangle Gh,
1 < h < Q, must have a corner W cookie c of unit size. If an S cookie follows
c, then it must be followed by a separator of form D and then the dummy E
boundary. Otherwise, c is followed by a separator of form F , which is the start
of the middle subpath of Ph.
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Lemma 2. Let P ′ be a middle sub-rectangular path. Then any S cookie of P ′

has the same parity as m and any N cookie has even size.

Terminal Sub-rectangles. We limit our discussion of terminal sub-rectangles
to G1, since GQ has similar structure. If η1 of the 1-complex path P of G has
form B or G, then G1 contains only the initial subpath of P . Otherwise, G1

contains η1 of P as the first cross-separator of P1, where η1 must have either
form D, A or F . If η1 has form D, then it must also be the last separator, and
there are no corner separators or N cookies in G

′
s by Observation 3. We now

assume that η1 has either form A or F and thus can have cookies in the middle
subpath. We show that the size of those cookies depends on the W compatibility
of Rs and Rα.

Lemma 3. Let η1 of G1 have form A or F . (a) If Rs is W compatible, then any
N cookie in the middle subpath of G1 must have even size, and the size of all
S cookies have opposite parity as m. (b) Otherwise, any S cookie in the middle
subpath must have even size, and the sizes of the N cookies will have the opposite
parity of m.

Algorithm ReconfigSubRect. If Gh is a middle sub-rectangle, we apply a
SweepDown procedure, first placing the zipline on Row 1, and moving down two
rows after each zip until we reach the S boundary. If m is odd, we get an E −W
canonical path of Gh at this point. Otherwise, we will end up with unit size S
cookies after the sweep; therefore, we SweepLeft to grow the S cookies all the
way to the N boundary and obtain an N − S canonical path of Gh.

If G1 contains only the initial subpath of P , then we apply a SweepLeft, and
then a SweepDown if we end up with unit size W cookies in Column 1 after
the first sweep. Otherwise, depending on the W compatibility of η1, we either
SweepDown or SweepUp, and then we SweepLeft if we have unit size S or N
cookies, respectively, after the first sweep. We can prove the correctness of this
algorithm using the Structure Theorem (Theorem 1), and Lemmas 1–3.

Theorem 2. Algorithm ReconfigSubRect reconfigures a sub-rectangle Gh to
a canonical form in O(|Gh|) switch operations.

Merging the Canonical Sub-rectangles. For each Gh, if the E boundary
is a dummy column, and m is odd, we apply one vertical zip with the zipline
on Column n′ − 2 of Gh such that both Columns n − 2 and n − 1 become path
segments after the zip (Fig. 5(b)). We remove the dummy edges; flip the sub-
rectangle back, if it was flipped before; then add all the straight separators and
edges on the N and S boundaries that were removed, to get an s, t Hamiltonian
path P ′ of G. If P ′ is not a canonical path, it must have “comb” shaped subpaths
connected by straight separators as shown in Fig. 5(c). We then apply one more
SweepDown to obtain an E − W canonical path of G.

Theorem 3. Algorithm 1ComplexToCanonical reconfigures a 1-complex
s, t Hamiltonian path to a canonical Hamiltonian path of G in O(|G|) time using
O(|G|) switch operations.
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Fig. 5. (a) Extended sub-rectangles of the path in Fig. 2; (b) the canonical forms for
the sub-rectangles; (c) the canonical sub-rectangles merged.

6 Reconfiguring Between 1-Complex Paths

In this section, we give an algorithm called 1ComplexTo1Complex to recon-
figure between any two 1-complex s, t Hamiltonian paths P1 and P2 in O(|G|)
time. Our strategy is to use two canonical Hamiltonian paths P1 and P2 as inter-
mediate paths, where the two canonical paths may or may not be the same
based on the parity of m and n. The reconfiguration sequence is as follows: (a)
P1 to P1, (b) P1 to P2 if they are different, and finally (c) P2 to P2. Algorithm
1ComplexToCanonical suffices for Steps (a) and (c), since reconfiguring P2

to P2 is similar to reversing the steps of the reconfiguration of P2 to P2. Now,
we give an algorithm that we call CanonicalToCanonical to reconfigure one
canonical Hamiltonian path to the other.

Let P1 and P2 be the two input canonical paths of G to Algorithm Canon-

icalToCanonical. We check the first edge on each path. If the edge is on
the W boundary then the path is an N -S canonical path; otherwise, it is an
E-W canonical path. If P1 and P2 are the same path, then P1 is returned by
the algorithm. Otherwise, if P1 is N -S and P2 is E-W, we apply a SweepDown
procedure on P1 starting from Row 1 and ending on Row m−2. In the remaining
case, when P1 is E-W and P2 is N -S, we apply SweepLeft on P1 with the zipline
sweeping from Column 1 to Column n − 2. To conclude,

Theorem 4. Let P1 and P2 be two canonical paths of G. Then Algo-
rithm CanonicalToCanonical reconfigures P1 to P2 in O(|G|) time using
O(|G|) switches.
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Theorem 5. (Main algorithmic result). Let P1 and P2 be two 1-complex s, t
Hamiltonian paths of a grid graph G. Then Algorithm 1ComplexTo1Complex

reconfigures P1 to P2 with zips in O(|G|) time, using O(|G|) switches.

7 Conclusion

We established the structure of any 1-complex s, t Hamiltonian path in G. We
gave an O(|G|) algorithm to reconfigure any such path to another using switches.
It would be interesting to find an algorithm that keeps the s, t Hamiltonian paths
in the intermediate steps 1-complex. The reconfiguration problem remains open
for grid graphs with arbitrary boundary, and in d-dimension, d ≥ 3.
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Abstract. A generic rectangular layout (for short, layout) is a subdivi-
sion of an axis-aligned rectangle into axis-aligned rectangles, no four of
which have a point in common. Such layouts are used in data visualiza-
tion and in cartography. The contacts between the rectangles represent
semantic or geographic relations. A layout is weakly (strongly) aspect
ratio universal if any assignment of aspect ratios to rectangles can be
realized by a weakly (strongly) equivalent layout. We give a combinato-
rial characterization for weakly and strongly aspect ratio universal lay-
outs, respectively. Furthermore, we describe a quadratic-time algorithm
that decides whether a given graph G is the dual graph of a strongly
aspect ratio universal layout, and finds such a layout if one exists.

1 Introduction

A rectangular layout (a.k.a. mosaic floorplan or rectangulation) is a subdivision
of an axis-aligned rectangle into axis-aligned rectangle faces, it is generic if no
four faces have a point in common. In the dual graph G(L) of a layout L, the
nodes correspond to rectangular faces, and an edge corresponds to a pair of
rectangles whose common boundary contains a line segment [6,28,29].

Two generic layouts are strongly equivalent if they have isomorphic dual
graphs, and the corresponding line segments between rectangles have the same
orientation (horizontal or vertical); see Fig. 1 for examples. Two generic lay-
outs are weakly equivalent if there is a bijection between their horizontal and
vertical segments, resp., such that the contact graphs of the segments are iso-
morphic plane graphs. Strong equivalence implies weak equivalence [9]; however,
for example the brick layouts in Figs. 4a and 4b are weakly equivalent, but not
strongly equivalent. The closures of weak (resp., strong) equivalence classes under
the uniform norm extend to nongeneric layouts, and a nongeneric layout may
belong to the closures of multiple equivalence classes.

Rectangular layouts have been studied for more than 40 years, originally moti-
vated by VLSI design [21,23,34] and cartography [26], and more recently by data
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Fig. 1. (a–b) Two equivalent layouts. (c) Dual graph. (d) Another layout with the
same dual graph. The layout in (d) is sliceable, none of them is one-sided.

visualization [17]. The weak equivalence classes of layouts are in bijection with
Baxter permutations [1,27,35].

An (abstract) graph is called a proper graph if it is the dual of a generic layout.
Every proper graph is a near-triangulation (a plane graph where every bounded
face is a triangle, but the outer face need not be a triangle). But not every
near-triangulation is a proper graph [28,29]. Ungar [33] gave a combinatorial
characterization of proper graphs (see also [16,31]); and they can be recognized
in linear time [12,22,24,25].

In data visualization and cartography [17,26], the rectangles correspond to
entities (e.g., countries or geographic regions); adjacency between rectangles rep-
resents semantic or geographic relations, and the “shape” of a rectangle represent
data associated with the entity. It is often desirable to use equivalent layouts to
realize different statistics associated with the same entities. A generic layout L is
weakly (strongly) area universal if any area assignment to the rectangles can be
realized by a layout weakly (strongly) equivalent to L. Wimer et al. [34] showed
that every generic layout is weakly area universal (see also [9, Thm. 3]). Epp-
stein et al. [6] proved that a layout is strongly area universal if and only if it is
one-sided (defined below). However, no polynomial-time algorithm is known for
testing whether a given graph G is the dual of some area-universal layout.

In some applications, the aspect ratios (rather than the areas) of the rectan-
gles are specified. For example, in word clouds adapted to multiple languages,
the aspect ratio of (the bounding box of) each word depends on the particular
language. The aspect ratio of an axis-aligned rectangle r is height(r)/width(r).
A generic layout L is weakly (strongly) aspect ratio universal (ARU for short)
if any assignment of aspect ratios to the rectangles can be realized by a layout
weakly (strongly) equivalent to L.

Our Results. We characterize strongly and weakly aspect ratio universal layouts.

Theorem 1. A generic layout is weakly aspect ratio universal if and only if it
is sliceable.

Theorem 2. For a generic layout L, the following properties are equivalent:

(i) L is strongly aspect ratio universal;
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(ii) L is one-sided and sliceable;
(iii) the extended dual G∗(L) of L, admits a unique transversal structure.

The terms in Theorems 1–2 are defined below. It is not difficult to show that one-
sided sliceable layouts are strongly aspect ratio universal; and admit a unique
transversal structure. Proving the converses, however, is more involved.

Algorithmic Results. In some applications, the rectangular layout is not specified,
and we are only given the dual graph of a layout (i.e., a proper graph). This raises
the following problem: Given a proper graph G with n vertices, find a strongly
(resp., weakly) ARU layout L such that G � G(L) or report that none exists.
Using structural properties of one-sided sliceable layouts that we develop here,
we present an algorithm for recognizing the duals of strongly ARU layouts.

Theorem 3. We can decide in O(n2) time whether a given graph G with n
vertices is the dual of a one-sided sliceable layout.

Thomassen [31] gave a linear-time algorithm to recognize proper graphs if the
nodes corresponding to corner rectangles are specified, using combinatorial char-
acterizations of layouts [33]. Kant and He [13,15] described a linear-time algorithm
to test whether a given graph G∗ is the extended dual of a layout, using transver-
sal structures. Later, Rahman et al. [12,22,24,25] showed that proper graphs can
be recognized in linear time (without specifying the corners). However, a proper
graph may have exponentially many nonequivalent realizations, and prior algo-
rithms may not find a one-sided sliceable realization even if one exists. Currently,
no polynomial-time algorithm is known for recognizing the duals of sliceable lay-
outs [5,18,36] (i.e., weakly ARU layouts); or one-sided layouts [6].

Background and Terminology. A rectangular layout (for short, layout) is a recti-
linear graph in which each face is a rectangle, the outer face is also a rectangle,
and the vertex degree is at most 3. A sublayout of a layout L is a subgraph of L
which is a layout. A layout is irreducible if it does not contain any nontrivial
sublayout. A rectangular arrangement is a 2-connected subgraph of a layout in
which bounded faces are rectangles (the outer face need not be a rectangle).

One-Sided Layouts. A segment of a layout L is a path of collinear inner edges
of L. A segment of L that is not contained in any other segment is maximal. In
a one-sided layout, every maximal line segment s must be a side of at least one
rectangle R; in particular, any other segment orthogonal to s with an endpoint
in the interior of s lies in a halfplane bounded by s, and points away from R.

Sliceable Layouts. A maximal line segment subdividing a rectangle or a rectan-
gular union of rectangular faces is called a slice. A sliceable layout (a.k.a. slicing
floorplan or guillotine rectangulation) is one that can be obtained through recur-
sive subdivision with vertical or horizontal lines; see Fig. 1(d). The recursive sub-
division can be represented by a binary space partition tree (BSP-tree), which is a
binary tree where each vertex is associated with either a rectangle with a slice, or
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just a rectangle if it is a leaf [3]. For a nonleaf vertex, the two subrectangles on each
side of the slice are associated with the two children. The number of (equivalence
classes of) sliceable layouts with n rectangles is known to be the nth Schröder num-
ber [35]. One-sided sliceable layouts are in bijection with certain pattern-avoiding
permutations, closed formulas for their number has been given by Asinowski and
Mansour [2]; see also [20] and OEIS A078482 in the on-line encyclopedia of integer
sequences (https://oeis.org/) for further references.

A windmill in a layout is a set of four pairwise noncrossing maximal line
segments, called arms, which contain the sides of a central rectangle, and each
arm has an endpoint on the interior of another (e.g., the maximal segments
around r3 or r6 in Fig. 2 (a)). We orient each arm from the central rectangle to
the other endpoint. A windmill is either clockwise or counterclockwise. It is well
known that a layout is sliceable if and only if it does not contain a windmill [1].

Transversal Structure. The dual graph G(L) of a layout L encodes adjacency
between faces, but does not specify the relative positions between faces (above-
below or left-right). The transversal structure (a.k.a. regular edge-labelling) was
introduced by He [13,15] for the efficient recognition of proper graphs, and
later used extensively for counting and enumerating (equivalence classes of) lay-
outs [11]. The extended dual graph G∗(L) is the contact graph of the rectangular
faces and the four edges of the bounding box of L; it is a triangulation in an
outer 4-cycle without separating triangles; see Fig. 2.

Fig. 2. (a) A layout L bounded by e1, . . . , e4. (b) Extended dual graph G∗(L) with an
outer 4-cycle (e1, . . . , e4). (c) Transversal structure. (Color figure online)

A layout L is encoded by a transversal structure that comprises G∗(L) and
an orientation and bicoloring of the inner edges of G∗(L), where red (resp.,
blue) edges correspond to above-below (resp., left-to-right) relation between two
objects in contact. An (abstract) transversal structure is defined as a graph G∗,
which is a 4-connected triangulation of an outer 4-cycle (S,W,N,E), together
with a bicoloring and orientation of the inner edges of G∗ such that all the inner
edges incident to S, W , N , and E, respectively, are outgoing red, outgoing blue,
incoming red, and incoming blue; and at each inner vertex the counterclockwise
rotation of incident edges consists of four nonempty blocks of outgoing red,
outgoing blue, incoming red, and incoming blue edges; see Fig. 2(c).

https://oeis.org/
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Fig. 3. A flip of an empty (left) and a nonempty (right) alternating cycle.

Flips and Alternating 4-Cycles. It is known that transversal structures are in
bijection with the strong equivalence classes of generic layouts [8,11,15]. Fur-
thermore, a sequence of flip operations can transform any transversal structure
with n inner vertices into any other [7,11]. Each flip considers an alternating
4-cycle C, which comprises red and blue edges alternatingly, and changes the
color of every edge in the interior of C; see Fig. 3. If, in particular, there is no
vertex in the interior of C, then the flip changes the color of the inner diagonal
of C. Furthermore, every flip operation yields a valid transversal structure on
G∗(L), hence a new generic layout L′ that is strongly non-equivalent to L. We
can now establish a relation between geometric and combinatorial properties.

Lemma 1. A layout L is one-sided and sliceable if and only if G∗(L) admits a
unique transversal structure.

Proof. Assume that L is a layout where G∗(L) admits two or more transversal
structures. Consider a transversal structure of G∗(L). Since any two transversal
structures are connected by a sequence of flips, there exists an alternating 4-
cycle. Any alternating 4-cycle with no interior vertex corresponds to a segment
in L that is two-sided. Any alternating 4-cycle with interior vertices corresponds
to a windmill in L. Consequently, L is not one-sided or not sliceable.

Conversely, if L is not one-sided (resp., sliceable), then the transversal struc-
ture of G∗(L) contains an alternating 4-cycle with no interior vertex (resp., with
interior vertices). Consequently, we can perform a flip operation, and obtain
another transversal structure for G∗(L). ��

2 Aspect Ratio Universality

An aspect ratio assignment to a layout L is a function that maps a positive real
to each rectangle in L. An aspect ratio assignment to L is realizable if there exists
an equivalent layout L′ with the required aspect ratios (a realization). A layout
is aspect ratio universal (ARU ) if every aspect ratio assignment is realizable. In
this section, we characterize weakly and strongly ARU layouts (Theorems 1–2).
We start with an easy observation. (Omitted proofs are in the full paper [10].)

Lemma 2. Let L be a sliceable layout. If an aspect ratio assignment for L is
realizable, then there is a unique realization up to scaling and translation. Fur-
thermore, for every α > 0 there exists a realizable aspect ratio assignment for
which the bounding box of the realization has aspect ratio α.
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Corollary 1. If L is one-sided and sliceable, then it is strongly ARU.

Corollary 2. If L is sliceable, then it is weakly ARU.

2.1 Sliceable and One-Sided Layouts

Next we show that any sliceable layout that is strongly ARU must be one-sided.
We present two types of simple layouts that are not aspect ratio universal, and
then show that all other layouts that are not one-sided or not sliceable can be
reduced to these prototypes.

Fig. 4. Prototype layouts that are not aspect ratio universal: (a)–(d) brick layouts are
sliceable but not one-sided; (e)–(f) windmills are one-sided but not sliceable.

Lemma 3. The brick layouts in Figs. 4a–4d are not strongly ARU; the windmill
layouts in Figs. 4e–4f are neither strongly nor weakly ARU.

Proof. Suppose w.l.o.g. that a brick layout L0 in Fig. 4a is strongly ARU. Then
there exists a strongly equivalent layout L for the aspect ratio assignment
α(r2) = α(r3) = 1 and α(r1) = α(r4) = 2. Since width(r1) = width(r2) and
α(r1) = 2α(r2), then height(r1) = 2 height(r2), and the left horizontal slice is
below the median of r1∪r2. Similarly, width(r3) = width(r4) and α(r4) = 2α(r2)
imply that the right horizontal slice is above the median of r3∪r4. Consequently,
r1 and r4 are in contact, and L is not equivalent to L0, which is a contradiction.

Suppose w.l.o.g. that the windmill layout L1 in Fig. 4e is weakly ARU. Then
there exists a weakly equivalent layout L for the aspect ratio assignment α(c) =
α(r1) = α(r2) = α(r3) = α(r4) = 1. In particular, r1, . . . , r4 are squares; denote
their side lengths by si, for i = 1, . . . , 4. Note that one side of ri strictly contains
a side of ri−1 for i = 1, . . . , 4 (with arithmetic modulo 4). Consequently, s1 <
s2 < s3 < s4 < s1, which is a contradiction. ��
Lemma 4. If a layout is sliceable but not one-sided, then it is not strongly ARU.

Proof. To show that a layout is not strongly ARU, it is sufficient to show that
any of its sublayouts are not strongly ARU, because any nonrealizable aspect
ratio assignment for a sublayout can be expanded arbitrarily to an aspect ratio
assignment for the entire layout.
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Let L be a sliceable but not one-sided layout. We claim that L contains
a sublayout strongly equivalent to a layout in Figs. 4a–4d. Because L is not
one-sided, it contains a maximal line segment � which is not the side of any
rectangle. Because L is sliceable, every maximal line segment in it subdivides a
larger rectangle into two smaller rectangles. We may assume w.l.o.g. that � is
vertical. Because � is not the side of any rectangle, the rectangles on the left and
right of � must be subdivided horizontally in the recursion. Let �left and �right be
the first maximal horizontal line segments on the left and right of �, respectively.
Assume that they each subdivide a rectangle adjacent to � into r1 and r2 (on the
left) and r3 and r4 on the right. These rectangles comprise a layout equivalent
to the one in Figs. 4a–4d; but they may be further subdivided recursively. By
Lemma 3, there exists an aspect ratio assignment to L not realizable by a strongly
equivalent layout. ��

In the remainder of this section, we prove that if a layout is not sliceable, then
it contains a sublayout similar, in some sense, to a prototype in Figs. 4e–4f. In a
nutshell, our proof goes as follows: Consider an arbitrary windmill in a nonslica-
ble layout L. We subdivide the exterior of the windmill into four quadrants, by
extending the arms of the windmill into rays �1, . . . , �4 to the bounding box; see
Fig. 5. Each rectangle of L lies in a quadrant or in the union of two consecutive
quadrants. We assign aspect ratios to the rectangles based on which quadrant(s)
it lies in. If these aspect ratios can be realized by a layout L′ weakly equivalent
to L, then the rays �1, . . . , �4 will be “deformed” into x- or y-monotone paths
that subdivide L′ into the center of the windmill and four arrangements of rect-
angles, each incident to a unique corner of the bounding box. We assign the
aspect ratios for the rectangles in L′ so that these arrangements can play the
same role as rectangles r1, . . . , r4 in the prototype in Figs. 4e–4f. We continue
with the details.

Fig. 5. Rays �1, . . . , �4 deform into monotone paths in an equivalent layout.

We clarify what we mean by a “deformation” of a (horizontal) ray �.

Lemma 5. Let a ray � be the extension of a horizontal segment in a layout L
such that � does not contain any other segment and it intersects the rectangles
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r1, . . . , rk in this order. Suppose that in a weakly equivalent layout L′, the corre-
sponding rectangles r′

1, . . . , r
′
k are sliced by horizontal segments s1, . . . , sk. Then

there exists an x-monotone path comprised of horizontal edges s1, . . . , sk, and
vertical edges along vertical segment of the layout L′.

Proof. Assume w.l.o.g. that � points to the right. Since � does not contain any
other segment and it intersects the rectangles r1, . . . , rk in this order, then ri and
ri+1 are on opposite sides of a vertical segment for i = 1, . . . , k − 1. The same
holds for r′

i and r′
i+1 as L′ is weakly equivalent to L. In particular, the right

endpoint of si and the left endpoint of si+1 are on the same vertical segment in
L′, for all i = 1, . . . k − 1. ��

The next lemma allows us to bound the aspect ratio of the bounding box of
a rectangular arrangement in terms of the aspect ratios of individual rectangles.

Lemma 6. If every rectangle in a rectangular arrangement has aspect ratio αm,
where m is the number of rectangles in the arrangement, then the aspect ratio of
the bounding box of the arrangement is at least α and at most αm2.

Proof. Consider an arrangement A with m rectangles and a bounding box R.
Let w be the maximum width of a rectangle in A. Then, width(R) ≤ mw. A
rectangle of width w has height αmw, and so height(R) ≥ αmw. The aspect
ratio of R is height(R)/width(R) ≥ (αmw)/(mw) = α.

Similarly, let h be the maximum height of rectangle in A. Then height(R) ≤
mh. A rectangle of height h has width h

αm , and so width(R) ≥ h
αm . The aspect

ratio of R is height(R)/width(R) ≤ mh/( h
αm ) = αm2, as claimed. ��

We can now complete the characterization of aspect ratio universal layouts.

Lemma 7. If a layout L is not sliceable, it is not weakly ARU.

Proof. Let R be a nonslicable layout of n rectangles in a bounding box of L.
We may assume that L is irreducible, otherwise we can choose a minimal non-
sliceable sublayout L∗ from L, and replace each maximal sublayout of L∗ with
a rectangle to obtain an irreducible layout. By Lemma 2, a suitable aspect ratio
assignment to each sliceable sublayout of L∗ can generate any aspect ratio for
the replacement rectangle.

In particular, L thus contains no slices, as any slice would create two smaller
sublayouts. Every nonsliceable layout contains a windmill. Consider an arbitrary
windmill in L, assume w.l.o.g. that it is clockwise (cf. Fig. 4e). and let c be its
central rectangle. By extending the arms of the windmill into rays, �1, . . . , �4, we
subdivide R \ c into four quadrants, denoted by Q1, . . . , Q4 in counterclockwise
order starting with the top-right quadrant.

Note that at most one ray intersects the interior of a rectangle in L. Indeed,
any two points in two different rays, pi ∈ �i and pj ∈ �j , span an axis-parallel
rectangle that intersects the interior of c. Consequently, pi and pj cannot be in
the same rectangle in R \ c. It follows that every rectangle of L in R \ c lies in
one quadrant or in the union of two consecutive quadrants.
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We define an aspect ratio assignment α as follows: Let α(c) = 1. If r ⊆ Q1

or r ⊆ Q3, let α(r) = 6n; and if r ⊆ Q2 or r ⊆ Q4, let α(r) = (6n2)−1. For a
rectangle r split by a ray, we set α(r) = 6n+(6n2)−1 if r is split by a horizontal
ray �1 or �3; and α(r) = ((6n)−1 + (6n2))−1 if split by a vertical ray �2 or �4.

Suppose that a layout L′ weakly equivalent to L realizes α. Split every rect-
angle of aspect ratio 6n + (6n2)−1 in L′ horizontally into two rectangles of
aspect ratios 6n and (6n2)−1. Similarly, split every rectangle of aspect ratio
((6n)−1+(6n2))−1 vertically into two rectangles of aspect ratios 6n and (6n2)−1;
see Fig. 5b. By Lemma 5, there are four x- or y-monotone paths P1, . . . , P4 from
the four arms of the windwill to four distinct sides of the bounding box that
pass through the slitting segments. The paths P1, . . . , P4 subdivide the exterior
of the windmill into four arrangements of rectangles, A1, . . . , A4 that each con-
tain a unique corner of the bounding box. By construction, every rectangle in
A1 and A3 has aspect ratio 6n, and every rectangle in A2 and A4 has aspect
ratio (6n2)−1.

Let R1, . . . , R4 be the bounding boxes of A1, . . . , A4, respectively. By
Lemma 6, both R1 and R3 have aspect ratios at least 6, and both R2

and R4 have aspect ratios at most 1
6 . By construction, the arrangements

A1, . . . , A4 each contain an arm of the windmill. This implies that width(c) <
min{width(R1),width(R3)} and height(c) < min{height(R2),height(R4)}. Con-
sider the arrangement comprised of A1, c, and A3. It contains two oppo-
site corners of R, and so its bounding box is R. Furthermore, height(R) ≥
max{height(R1),height(R3)}, and

width(R) ≤ width(R1) + width(c) + width(R3) < 3 max{width(R1),width(R3)}

≤ 3 max
{

height(R1)
6

,
height(R3)

6

}
=

max{height(R1),height(R3)}
2

,

and so the aspect ratio of R is at least 2. Similarly, the bounding box of the
arrangement comprised of A2, c, and A3 is also R, and an analogous argument
implies that its aspect ratio must be at most 1

2 . We have shown that the aspect
ratio of R is at least 2 and at most 1

2 , a contradiction. Thus the aspect ratio
assignment α is not realizable, and so L is not weakly aspect ratio universal. ��

This completes the proof of both Theorems 1 and 2. Specifically, Corollary 2
and Lemma 7 imply Theorem 1. For Theorem 2, we need to show that properties
(i)–(iii) are equivalent: By Lemma 1, (ii) and (iii) are equivalent; Corollary 1
states that (ii) implies (i); and the converse follows from Lemmata 4 and 7.

2.2 Unique Transversal Structure

Subdividing a square into squares has fascinated humanity for ages [4,14,32].
For example, a perfect square tiling is a tiling with squares with distinct integer
side lengths. Schramm [30] (see also [19, Chap. 6]) proved that every near tri-
angulation with an outer 4-cycle is the extended dual of a (possibly degenerate
or nongeneric) subdivision of a rectangle into squares. The result generalizes to
rectangular faces of arbitrary aspect ratios (rather than squares):
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Theorem 4. (Schramm [30, Thm. 8.1]) Let T = (V,E) be near triangulation
with an outer 4-cycle, and α : V ∗ → R

+ a function on the set V ∗ of the inner
vertices of T . Then there exists a unique (but possibly degenerate or nongeneric)
layout L such that G∗(L) = T , and for every v ∈ V ∗, the aspect ratio of the
rectangle corresponding to v is α(v).

The caveat in Schramm’s result is that all rectangles in the interior of every
separating 3-cycle must degenerate to a point, and rectangles in the interior of
some of the separating 4-cycles may also degenerate to a point. We only use
the uniqueness claim under the assumption that a nondegenerate and generic
realization exists for a given aspect ratio assignment.

Lemma 8. If a layout L is strongly ARU, then its extended dual G∗(L) admits
a unique transversal structure.

Proof. Consider the extended dual graph T = G∗(L) of a strongly ARU layout
L. As noted above, T is a 4-connected inner triangulation of a 4-cycle. If T admits
two different transversal structures, then there are two strongly nonequivalent
layouts, L and L′, such that T = G∗(L) = G∗(L′), which in turn yield two aspect
ratio assignments, α and α′, on the inner vertices of T . By Theorem 4, the (non-
degenerate) layouts L and L′, that realize α and α′, are unique. Consequently,
neither of them can be strongly aspect ratio universal. ��

Lemma 8 readily shows that Theorem 2(i) implies Theorem 2(iii), and pro-
vides an alternative proof for the geometric arguments in Lemmata 4 and 7.

3 Recognizing Duals of Aspect Ratio Universal Layouts

We describe an algorithm that, for a given graph G, either finds a one-sided
sliceable layout L whose dual graph is G, or reports that no such layout exists.
We can decide in O(n) time whether a given graph is proper [12,22,24,25]. Every
proper graph is a connected plane graph in which all bounded faces are triangles.

Problem Formulation. The input of our recursive algorithm will be an instance
I = (G,C, P ), where G = (V,E) is a near-triangulation, C : V (G) → N0 is a
corner count, and P is a set of ordered pairs (u, v) of vertices on the outer face
of G. An instance I = (G,C, P ) is realizable if there exists a one-sided sliceable
layout L such that G is the dual graph of L, every vertex v ∈ V corresponds to
a rectangle in L incident to at least C(v) corners of L, and every pair (a, b) ∈ P
corresponds to a pair of rectangles in L incident to two ccw consecutive corners.
When we have no information about corners, then C(v) = 0 for all v ∈ V , and
P = ∅. In the full paper [10], we establish the following structural result.

Lemma 9. Assume that (G,C, P ) admits a realization L and |V (G)| ≥ 2. Then
G contains a vertex v with one of the following (mutually exclusive) properties.
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(I) Vertex v is a cut vertex in G. Then rv is bounded by two parallel sides of R
and by two parallel slices; and C(v) = 0.

(II) Rectangle rv is bounded by three sides of R and a slice; and 0 ≤ C(v) ≤ 2.

Based on property (II), a vertex v of G is a pivot if there exists a one-sided
sliceable layout L with G � G(L) in which rv is bounded three sides of R and
a slice. If we find a cut vertex or a pivot v in G, then at least one side of rv is
a slice, so we can remove v and recurse on the connected components of G − v.
We describe an analyze our algorithm for an instance I in the full paper [10].

4 Conclusions

We have shown that a layout L is weakly (strongly) ARU if and only if L is
sliceable (one-sided and sliceable); and we can decide in O(n2)-time whether
a given graph G on n vertices is the dual of a one-sided sliceable layout. An
immediate open problem is whether the runtime can be improved. Cut vertices
and 2-cuts play a crucial role in our algorithm. We can show (in Sect. 4 of the
full paper [10]) that the duals of one-sided sliceable layouts have vertex cuts of
size at most 3. Perhaps 3-cuts can be utilized to speed up our algorithm. Recall
that no polynomial-time algorithm is currently known for recognizing the duals
of sliceable layouts [5,18,36] and one-sided layouts [6]. It remains open to settle
the computational complexity of these problems.
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11. Fusy, É.: Transversal structures on triangulations: a combinatorial study and
straight-line drawings. Discrete Math. 309(7), 1870–1894 (2009)

https://doi.org/10.1007/978-3-540-77974-2_12
https://doi.org/10.1007/978-1-4614-0110-0_12
https://arxiv.org/abs/2112.03242


84 S. Felsner et al.

12. Hasan, M.M., Rahman, M.S., Karim, M.R.: Box-rectangular drawings of planar
graphs. J. Graph Algorithms Appl. 17(6), 629–646 (2013)

13. He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J.
Comput. 22(6), 1218–1226 (1993)

14. Henle, F.V., Henle, J.M.: Squaring the plane. Am. Math. Mon. 115(1), 3–12 (2008)
15. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its appli-

cations in graph drawing problems. Theor. Comput. Sci. 172(1–2), 175–193 (1997)
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Abstract. We study crossing-free grid morphs for planar tree drawings
using the third dimension. A morph consists of morphing steps, where
vertices move simultaneously along straight-line trajectories at constant
speeds. There is a crossing-free morph between two drawings of an n-
vertex planar graph G with O(n) morphing steps, and using the third
dimension the number of steps can be reduced to O(log n) for an n-
vertex tree [Arseneva et al. 2019]. However, these morphs do not bound
one practical parameter, the resolution. Can the number of steps be
reduced substantially by using the third dimension while keeping the
resolution bounded throughout the morph? We present a 3D crossing-
free morph between two planar grid drawings of an n-vertex tree in
O(

√
n log n) morphing steps. Each intermediate drawing lies in a 3D

grid of polynomial volume.

Keywords: morphing grid drawings · bounded resolution · 3D
morphing

1 Introduction

Given an n-vertex graph G, a morph between two drawings (i.e., embeddings in
R

d) of G is a continuous transformation from one drawing to the other through a
family of intermediate drawings. One is interested in well-behaved morphs, i.e.,
those that preserve essential properties of the drawing at any moment. Usually,
this property is that the drawing is crossing-free; such morphs are called crossing-
free morphs. This concept finds applications in multiple domains: animation,
modeling, and computer graphics, etc. A drawing of G is a straight-line drawing
if it maps each vertex of G to a point in R

d and each edge of G to the line
segment whose endpoints correspond to the endpoints of this edge. In this work,
we focus on the case of drawings in the Euclidean plane (d = 2) and 3D drawings
(d = 3); a non-crossing drawing of a graph in R

2 is called planar.
There is an interest in studying crossing-free morphs of straight-line drawings,

where vertex trajectories are simple, in particular, linear morphs. A linear morph
transforms one straight-line drawing Γ of a graph G to another such drawing
Γ ′ through a sequence of straight-line drawings; each morphing steps or step
is a linear interpolation between two consecutive drawings in that sequence.
c© Springer Nature Switzerland AG 2022
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That is, during each morphing step each vertex of G moves along a straight-line
segment at a constant speed. A linear morph is said to be unidirectional if all
vertices move along parallel lines in the same direction. Alamdari et al. [1] showed
that for any two topologically equivalent planar drawings of a graph G, there
is a linear 2D morph that transforms one drawing to the other in Θ(n) steps.
This bound is asymptotically optimal in the worst case even when the graph
G is a path. A natural further question is how the situation changes when we
involve the third dimension. For general 3D graph drawings the problem seems
challenging since it is tightly connected to unknot recognition problem. If both
the initial and the final drawing are planar and the given graph is a tree, then
O(log n) steps suffice [2]. In both algorithmic results [1,2], the intermediate steps
use infinitesimal or very small distances, as compared to distances in the input
drawings. This may blow up the space requirements and affect the aesthetical
aspect. This raises a demand for morphing algorithms that operate on a small
grid, i.e., of size that is polynomial in the size of the graph and parameters of
the input drawings. All the intermediate drawings are then restricted to be grid
drawings, where vertices map to vertices of the grid. Two crucial parameters
of a straight-line grid drawing are: the area (or volume for the 3D case) of the
required grid, and the resolution, that is the ratio between the maximum edge
length and the minimum edge-edge distance. If the grid area (or volume) is
polynomially bounded, then so is the resolution [3].

Very recently Barrera-Cruz et al. [3] gave an algorithm that linearly morphs
between two planar straight-line grid drawings Γ and Γ ′ of an n-vertex rooted
tree in O(n) steps while each intermediate drawing is also a planar straight-line
drawing in a bounded grid. In particular, the maximum grid length and width
are respectively O(D3n · L) and O(D3n · W ), where L = max{l(Γ ), l(Γ ′)},
W = max{w(Γ ), w(Γ ′)} and D = max{L,W}, l(Γ ) and w(Γ ) are the length
and the width of the drawing Γ respectively. Note that D is Ω(

√
n).

Let Γ and Γ ′ be two planar straight-line drawings of an n-vertex tree T .
Throughout this paper, a morph M = 〈Γ1, Γ2, . . . , Γk〉 of T is a sequence of 3D
straight-line drawings of T such that Γ1 = Γ, Γk = Γ ′ are the initial and the
final drawings, and each 〈Γi, Γi+1〉 is a linear morph. Here we study the problem
of morphing one straight-line grid drawing Γ to another such drawing Γ ′ in
sublinear number of steps using the third dimension such that the resolutions of
the intermediate drawings are bounded. We morph the initial planar drawing of
tree T to its 3D canonical drawing C(T ) and then analogously morph C(T ) to the
final planar drawing. Effectively we solve the same problem as in [2], but with the
additional restriction that all drawings throughout the algorithm lie in a small
grid. We give an algorithm that requires O(

√
n log n) steps. All the intermediate

drawings require a 3D grid of length O(d3(Γ ) · log n), width O(d3(Γ ) · log n)
and height O(n), where d(Γ ) = max(d(Γ ), d(Γ ′)). During the procedure, we use
some known techniques, e.g., canonical drawing [2] and “Pinwheel” rotation [3]
combined with several new ideas.

In Sect. 2, we introduce the definitions that are used in the paper. After
introducing the necessary definitions and preliminaries in Sect. 2, we describe
the tools that are the building blocks of our algorithm: stretching, mapping
around the pole, rotating and shrinking subtrees (See Sect. 3). In Sect. 4, we
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introduce a technique of lifting paths such that the vertices on the path along
with their subtrees go to the respective canonical positions and the drawing
remains crossing-free. The morphing algorithm in Sect. 4 splits the given tree
into disjoint paths that are lifted one by one in specific order. Since lifting each
path takes constant number of steps, in the worst case this algorithm takes O(n)
steps to lift a tree. In Sect. 5, we show how to lift a set of edges of the given tree
simultaneously. This is used in the second morphing algorithm, that lifts the tree
by lifting disjoint sets of its edges one after another. This algorithm takes O(h)
steps to lift a tree of height h. We then combine two algorithms in Sect. 6 to
produce the final algorithm that uses o(n) morphing steps. It first lifts all paths
of T of length at most

√
n using the algorithm of Sect. 5. Since the total number

of remaining paths is less than
√

n, we lift them one after another by using the
algorithm of Sect. 4. The full version1 of the paper contains detailed proofs and
descriptions which are omitted here due to space constraints.

2 Preliminaries and Definitions

Tree Drawings. For a rooted tree T , let r(T ) be its root, and T (v) be the
subtree of T rooted at a vertex v of T . Let E(T ), V (T ) and |T | denote respec-
tively, the set of edges, the set of vertices, and the number of vertices of T . In a
straight-line drawing of T , each vertex is mapped to a point in R

d and each edge
is mapped to a straight-line segment connecting its end-points. A 3D- (respec-
tively, a 2D-) grid drawing of T is a straight-line drawing where each vertex is
mapped to a point with integer coordinates in R

3 (respectively, R2). A drawing
of T is said to be crossing-free if images of no two edges intersect except, pos-
sibly, at common end-points. A crossing-free 2D-grid drawing is called a planar
grid drawing. For a crossing-free drawing Γ , let B(Γ (v), r) denote the open disc
of radius r in the horizontal plane centered at the image Γ (v) of v. By the pro-
jection, denoted by pr(), we mean the vertical projection to the horizontal plane
passing through the origin. Let l(Γ ), w(Γ ) and h(Γ ) respectively denote the
length, width and height of the 3D drawing Γ of T , i.e., the maximum absolute
difference between the x-, y- and z-coordinates of vertices in Γ . Let d(Γ ) denote
the diameter of Γ , defined as the ceiling of the maximum pairwise (Euclidean)
distance between its vertices. Note that d(Γ ) estimates the space required by
Γ since M ≤ d(Γ ) ≤ √

3M , where M = max(l(Γ ), w(Γ ), h(Γ )). Let distΓ (v, e)
(resp., distΓ (v, u)) be the distance between Γ (v) and Γ (e) (resp., between Γ (v)
and Γ (u)), where u, v are vertices of T and e is an edge of T . For a grid drawing
Γ , we define the resolution of Γ as the ratio of the distances between the farthest
and closest pairs of geometric objects of Γ (images of tree vertices and edges).

For any vertex v and edge e not incident to v in a crossing-free grid drawing
Γ of T , dist(v, e) ≥ 1

d(Γ ) . In a 3D grid drawing Γ of T , the distance dist(e1, e2) ≥
1

2
√

3 (d(Γ ))2
for a pair of non-adjacent edges e1, e2. This implies that 2D and

1 arXiv:2106.04289.

https://arxiv.org/abs/2106.04289
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3D crossing-free grid drawings of T have polynomially bounded resolution. For a
point p = (px, py, pz), we denote by Y Zp,XZp,XYp planes x = px, y = py, z = pz

respectively. Analogously, XZ+
p (resp., XZ−

p ) denotes the vertical half-plane
{(x, y, z) : y = py, x ≥ px(resp., x ≤ px)} and Y Z+

p (resp., Y Z−
p ) the half-plane

{(x, y, z) : x = px, y ≥ py(resp., y ≤ py)}.

Path Decomposition. P of a tree T is a decomposition of its edges into a set of
edge-disjoint paths as follows. Choose some root-to-leaf path in T and store it in
the set P which is empty at the beginning. Remove the edges of this path from
T . It may disconnect the tree; recurse on the remaining connected components
while there are edges. In the end, P contains disjoint paths whose union is E(T ).
The depth dpt(v) of a vertex v in T is the length of the path from r(T ) to v.
Head of a path P , denoted as head(P ), is the vertex x ∈ P with the minimum
depth in tree T . Let the internal vertices of path P be all vertices of P except
head(P ). Any path decomposition P of T induces a linear order of the paths:
path P ′ succeeds P , i.e., P ′ � P , if and only if P ′ is deleted before P during the
construction of P. Note that the subtree of each internal vertex of a path P is a
subset of the union of the paths that precede P .

In the long-path decomposition [4] L(T ), the path chosen in every iteration is
the longest root-to-leaf path (ties are broken arbitrarily). Let L = {L1, . . . , Lm} be
the ordered set of paths of a long-path decomposition of T . For i < j, |Li| ≤ |Lj |.

In the heavy-rooted-pathwidth decomposition H(T ) (see, e.g., [2]), of a tree T ,
the root-to-leaf path chosen in every iteration maximizes the rooted pathwidth,
rpw(T ).rpw(T ) is defined recursively: for each leave v of T : rpw({v}) = 1;
for each internal vertex u and its children v1, . . . , vk we have rpw(T (u)) =
max(rpw(T (vi))), 1 ≤ i ≤ k if rpw(T (vi)) are not all equal, and rpw(T (u)) =
rpw(T (v1)) + 1 in the other case. It is known [5] that for a tree T with n ver-
tices rpw(T ) = O(log n). Figure 1a and 1b show respectively the heavy-rooted-
pathwidth and the long-path decomposition of a tree where heavy paths and
long paths are shown in different colors.

Canonical 3D drawing C(T ) of a tree T [2] is the crossing-free straight-line
3D drawing of T that maps each vertex v of T to its canonical position C(v)
determined by the heavy-rooted pathwidth decomposition. We later use the fact
that C(T ) lies in XZ+

0 inside a bounding box of height |T | and width rpw(T ).
For any vertex v of T , the relative canonical drawing CTv

of T (v) is the drawing
of T (v) obtained by cropping C(T ) and translating the obtained drawing of T (v)
so that v is mapped to the origin. Since tree T never changes throughout our
algorithm, we refer to rpw(T ) as to rpw.

3 Tools for Morphing Algorithms

We define stretching, mapping, rotation and shrinking of subtrees in this section.
Each of these are fundamental tools used in our algorithm.

Stretching with a Constant S1. Let the drawing Γ lie in the XY0 plane.
During stretching morph 〈Γ, Γ1〉 each coordinate of each vertex in Γ is multiplied
by a common positive integer constant S1 to obtain Γ1. Thereby, it is a linear
morph that “stretches” the vertices apart. Stretching morph is crossing-free.
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Fig. 1. Canonical drawing of a tree with (a) heavy and (b) long paths, where paths
are colored with different colors, paths that consist of one edge are dashed. (c) The
mapping morph, half-planes α, β sharing a common pole through point (x′, y′) and
their vector of mapping. (d) The Shrinking morph when l = 4.

Lemma 1. For any pair vi, vj of vertices disks B(Γ1(vi), S1
2 ) and B(Γ1(vj), S1

2 )
do not cross in the XY0 plane. For a vertex vi disk B(Γ1(vi), S1

2·d(Γ ) ) does not
enclose any other vertices or any part of edges non-incident to vi in Γ1. For
every vertex v and every edge e = (v, u) in Γ1 there is lattice point z such that
z ∈ e and z ∈ B(Γ1(vi), d(Γ )).

Mapping Around a Pole. Let the pole through (x′, y′) be the vertical line
in 3D through a point (x′, y′, 0). Let α, β be vertical half-planes containing the
pole l through a point with integer coordinates. Suppose ∠(α, β) /∈ {0, π} and
α, β contain infinitely many points with integer coordinates. Mapping around
the pole l is a morphing step to obtain a drawing Γ ′ which lies in β from Γ
which lies in α. Each vertex moves along a horizontal vector between α and β.
The direction of this vector is common for all vertices of Γ and is defined by α
and β. Let us fix a horizontal plane h passing through the point (0, 0, b) where b
is an integer. Let pα, pβ be points that lie on h ∩ α and h ∩ β, respectively; such
that dist(l, pα) = dα and dist(l, pβ) = dβ be the minimum non-zero distances
from the l to the integer points lying in h ∩ α and h ∩ β. The vector of mapping
u is defined as pβ−pα

|pβ−pα| . Mapping is an unidirectional morph since all vertices of
Γ move along the vectors parallel to the vector of mapping till they reach the
half-plane β, see Fig. 1c. Since mapping is comprised of rotation and stretching
in horizontal direction, it is a crossing- free morph that preserves grid drawings.
Throughout the paper, we denote by rotation a mapping when α, β are half-
planes of planes parallel to XZ0, Y Z0 respectively or vice-versa. Similarly, we
define mapping around horizontal pole, i.e., a pole parallel to the X-axis.

Rotating Horizontal Plane. Let Γ0(T (v)) be the canonical drawing of
a subtree T (v) on the horizontal plane XYv obtained by rotating the rel-
ative canonical drawing CTv

around the horizontal pole through v. Let
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Γ1(T (v)), Γ2(T (v)), Γ3(T (v)) be the drawings obtained from Γ0(T (v)) by rotat-
ing the horizontal plane around the point Γ (v) by the angles π

2 , π, 3π
2 , respec-

tively. In the Appendix we show that the drawing Γi(T (v)) can be obtained from
the drawing Γi−1(T (v)) in one morphing step—rotating step—using a lemma
from [3].

Shrinking Lifted Subtrees. Let v be a vertex of T . Assume that the image
Γ (T (v)) of subtree T (v) is CTv

, in particular, it lies in h = XZ+
v . Let C =

{v1, . . . , vl} be sequence of children of v, ordered according to their z-coordinates
in CTv

. Let C′ = {vi1 , . . . , vik
} be subsequence of C. Let us consider the new

subtree T ′(v) which is obtained by deleting the vertices in C \ C′ and their
subtrees from T (v). Note that, for each j with 1 ≤ j ≤ k, T ′(vij

) still lies inside
a box of height |T (vij

)| and width rpw(T (vij
)) on h. We define the shrink subtree

procedure on T ′
v as follows. We move each vertex vij

along with their subtrees
from CTv

(vij
) to (CTv

(vij
)x, CTv

(vij
)y, CT ′

v
(vj)z). Let us denote the shrunk subtree

by C′
T ′

v
. The height of the shrunk subtree C′

T ′
v

is equal to the number of vertices
in T ′(v). Also, note that shrinking is a crossing-free unidirectional morph.

4 Morphing Through Lifting Paths

Let T be an n-vertex tree and P be a path decomposition of T into k paths.
In this section, we describe an algorithm that morphs a plane drawing Γ = Γ0

in XY0 plane of tree T to the canonical 3D drawing Γ ′ = C(T ) of T in O(k)
steps. It lifts the paths of P one by one applying procedure Lift(). Note that the
final positions for the vertices in C(T ) are independent of P. Also, a morph from
C(T ) to Γ ′ can be obtained by applying the morph from Γ ′ to C(T ) backwards.
At all times during the algorithm, the following invariant holds: a path Pi ∈ P
is lifted only after all the children of the internal vertices of Pi are lifted. After
the execution of Lift(Pi), path Pi moves to its canonical position with respect
to head(Pi), see Fig. 2 and 3.

Step 0: Preprocessing. This step is a single stretching morph 〈Γ, Γ1〉 with
S1 = 2 · (rpw + d(Γ )). Note that stretching is a crossing-free morph.

Lift(path) Procedure
Let Pi = (v0, v1, . . . , vm) be the first path in P that has not been processed yet
and Γt be the current drawing of T . We lift the path Pi. For any vertex v let lifted
subtree T ′(v) be the portion of subtree T (v) that has been lifted after execution
of Lift(Pj) for some j < i. Let the processing vertices be the internal vertices of
Pi along with the vertices of their lifted subtrees. The subtrees of all internal
vertices vj in Pi are already lifted due to the ordering among the paths. Suppose
the lifted subtrees are in the canonical position with respect to the roots, the
maximum height of vertices in an intermediate drawing Γt is strictly less than n
and the difference of width between a lifted vertex and its root is at most rpw.
We provide a brief overview of the Lift() procedure in the following.

The procedure Lift(Pi) consists of 13 steps and results in moving vertices of
path Pi along with their lifted subtrees to their canonical positions with respect
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Fig. 2. (a) Drawing Γt in the beginning of the procedure Lift(Pi), bounding boxes for
lifted subtrees are violet, Pi consists of green edges. Directions of movement of the
vertices are shown with red arrows. (b) Step 1, (c) Step 2 and (d) Steps 3–4 of
Lift(). (Color figure online)

to the head of Pi, i.e.,vertex v0. Since the height of any lifted vertex is strictly
less than n and the difference of width between a lifted vertex and its root is at
most rpw, preprocessing Step 0 and Lemma 1 guarantee that the already lifted
subtrees lie in the disjoint right circular cylinders of radius rpw and height n.

Step 1: For every internal vertex vj of the path Pi, its lifted subtree T ′(vj)
morphs into the shrunk lifted subtree, see Sect. 3. All subtrees are shrunk simul-
taneously in one morphing step. This step is needed to ensure that the maximum
height of a vertex does not exceed 2n during the Lift() procedure. It is a crossing-
free morph since the subtrees move in mutually disjoint cylinders.

Step 2: It consists of steps 〈Γt, Γt+1〉, 〈Γt+1, Γt+2〉. For 0 ≤ j < m − 1, if
projection pr(T ′(vj)) overlaps with pr((vj , vj+1)), we rotate twice the drawing
of T ′(vj) around the vertical pole through Γt(vj). Since every lifted subtree
T ′(vj) lies in XZ+

vj
, after this step all lifted subtrees lie in XZ+

vj
or XZ−

vj
. It

is a crossing-free morph since the rotations of subtrees happen inside mutually
disjoint cylinders.

Step 3: In the morphing step 〈Γt+2, Γt+3〉, each internal vertex vj , j ≥ 1 of
path Pi moves vertically to the height defined recursively as follows: for v1:
Γt+3(v1)z = n; for vj , j > 1: Γt+3(vj)z = Γt+3(vj−1)z + |T ′(vj−1)|. Note that
|T ′(vj)|, a number of vertices in T ′(vj), is equal to the height of this shrinked
lifted subtree. This step is crossing free since the projections of different subtrees
and the path edges to the XY0 plane does not change during the morph. After
this step the vertices of Pi are in the same vertical order as in the canonical
drawing C(T ).

Step 4: The lifted subtree of each internal vertex of Pi is rotated to lie in a
horizontal plane passing through the corresponding vertex. This step places all
T ′(vj) in disjoint horizontal planes. The direction of rotation is chosen in such
a way that T ′(vj) does not cross with an edge (vj , vj+1).

Steps 5 and 6: In Step 5 (〈Γt+4, Γt+5〉), each vertex vj(j ≥ 2) of the path Pi

moves together with its subtree T ′(vj) along the vector ((v1x
− vjx

) + C(vj)x −
C(v1)x, v1y

−vjy
, 0), where v1x

denotes x-coordinate of vertex v1 in drawing Γt+4.
In Step 6 (〈Γt+5, Γt+6〉), every vertex vj , j ≥ 2 of the path Pi moves together with
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Fig. 3. Yellow plane is a vertical plane. (a) Steps 5–6, (b) Steps 7–8, (c) Step 9 and
(d) Steps 10–13 (Steps 11, 13 do not make any changes in this example) of Lift().
(Color figure online)

its subtree T ′(vj) along the same vertical vector (0, 0, (v1z
−vjz

)+C(vj)z−C(v1)z),
where v1z

means z-coordinate of vertex v1 in drawing Γt+5. Steps 5 and 6 move
v2, . . . , vm to their canonical positions with respect to the vertex v1

Steps 7, 8 and 9: Step 7, i.e., 〈Γt+6, Γt+7〉, 〈Γt+7, Γt+8〉, turns every lifted
subtree T ′(vj) of internal vertices of Pi to lie in positive x-direction with respect
to vj . Step 8, i.e., 〈Γt+8, Γt+9〉, morphs lifted subtrees of internal vertices of Pi in
the horizontal planes from shrunk to the canonical size. In Step 9 (〈Γt+9, Γt+10〉)
all lifted subtrees T ′(vj) of the internal vertices of Pi rotate around horizontal
axes (x, vjy

, vjz
), x ∈ R to lie in vertical plane in positive direction such that the

subtree T (v1) is in the canonical position with respect to v1.

Step 10: In the morphing step 〈Γt+10, Γt+11〉, every internal vertex vj of the path
with its subtree T ′(vj) moves horizontally in the direction (v0x

−v1x
, v0y

−v1y
, 0).

If in C(T ) the edge (v0, v1) is vertical, vertex v1 moves along this vector to get
x, y-coordinates equal to (v0x

, v0y
). Otherwise, vertex v1 moves along this vector

as long as possible to get integer x and y coordinates not equal to (v0x
, v0y

). Step
10 ensures that Steps 11–13 move vertices only inside right circular cylinder of
radius rpw + d(Γ ) and height 2n around v0. During Steps 11–13 the processed
part of the tree does not intersect with the unprocessed part since the above
mentioned cylinders are disjoint for the vertices that are lying in XY0.

Steps 11, 12 and 13: These steps differ depending on whether or not we have
rotated T ′(v0) during Step 2. In one case T ′(v0) is in x-positive direction from
v0 and in the other T (v1) is in x-positive direction from v0. Steps 11 and 13
make two rotations of the needed part of the tree to correct it’s x, y-coordinates.
Also, we need to move v1 and its subtree to the canonical height with respect
to v0. In Step 12, we make the z-coordinate correction of T (v1). The steps are
ordered in such a way that no intersections happen during their execution. Step
13 concludes the procedure Lift(Pi) by placing all processing vertices into their
canonical positions with respect to v0.
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In the end of these morphing steps, we observe that all the internal vertices of
Pi along with their subtrees are placed in the canonical position with respect to
v0. The lifted subtrees that were in the relative canonical position at the begin-
ning of Lift(Pi), still maintain their positions. For any path Pk, such that k > i,
its vertices still lie on the XY0 plane and their positions do not change during
these steps. We keep on lifting up paths until we obtain the canonical drawing
of T . The following theorem summarises what we achieved in this section.

Theorem 1. For every two planar straight-line grid drawings Γ, Γ ′ of tree T
with n vertices there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . , Γl = Γ ′〉
that takes O(k) steps where k is number of paths in some path decomposition of
tree T . In this morph, every intermediate drawing Γi, 1 ≤ i ≤ l is a straight-line
3D grid drawing lying in a grid of size O(d2 × d2 × n), where d is maximum of
the diameters of the given drawings.

5 Morphing Through Lifting Edges

In this section, we describe another algorithm that morphs a planar drawing Γ
of tree T to the canonical drawing C(T ) of T . This time one iteration of our
algorithm lifts simultaneously a set of edges with at most one edge of each path
of a selected path decomposition. Let Γ = Γ0 be a planar drawing of T .

Step 0: Preprocessing. This step 〈Γ, Γ1〉 is a stretching morph with S1 =
2 · rpw · d(Γ ) · (4 · d(Γ ) + 1). It is a crossing-free morph.

Lift(edges) procedure
For edge e of T , let st(e) (respectively, end(e)) be the vertex of e with smallest
(respectively, largest) depth. Let K = {K1, . . . ,Km} be the partition of edges
of T into disjoint sets such that e ∈ Ki if and only if dpt(st(e)) = m − i, where
m denotes the depth of T . We lift up sets Ki from K from i = 1 to i = m by
executing Lift(Ki) (Steps 1–5, see Fig. 4 and 5). Let Γt be the drawing of T
before lifting set Ki. Let lifted subtree T ′(vj) be the portion of subtree T (vj)
lifted by the execution of Lift(Kj) where j < i. Suppose the drawing of T ′(v)
in Γt is the canonical drawing of T ′(v) with respect to v; and the vertices that
are incident to some non-processed edges lie in XY0 plane.

Lemma 2. For every edge e = (v, u) with st(e) = v in Γ1 there is a lat-
tice point ze ∈ e such that B(Γ1(ze), rpw · d(Γ )) ⊂ B(Γ1(v), rpw · d(Γ ) ·
(4 · d(Γ ) + 1)). For distinct pair of edges e1, e2 ∈ Ki∀i = 1, . . . , m disks
B(Γ1(ze1), rpw) and B(Γ1(ze2), rpw) are disjoint. Also, for distinct pair of edges
e1, e2 ∈ Ki∀i = 1, . . . ,m regions Fe1 ,Fe2 are disjoint, where Fe = {x ∈ XY0 :
distΓ1(x, (ze, u)) ≤ rpw}.

Step 1: Shrink. In the step 〈Γt, Γt+1〉, for every edge e ∈ Ki we move vertex
end(e) along with its lifted subtree towards st(e) until end(e) reaches point ze.

Step 2: Go up. In morphing step 〈Γt+1, Γt+2〉, we move end(e) with T ′(end(e))
along the vector (0, 0, C(end(e))z − C(st(e))z) for all e ∈ Ki.
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Fig. 4. (a) Drawing Γt in the beginning of the procedure Lift(Ki), bounding boxes
for lifted subtrees are violet, Ki consists of green edges. (b) Step 1 and (c) Step 2 of
Lift().

Fig. 5. (a) Step 3; (b) Step 4; (c) Step 5, consists of two morphing steps.

Step 3: Mapping. Morphing step 〈Γt+2, Γt+3〉 is a mapping morph, see Sect. 3.
For every lifted subtree T ′(vj), where vj = end(e), e ∈ Ki, we define the half-
planes of the mapping morph as follows: half-plane α is XZ+

vj
, half-plane β is

part of the vertical plane containing the edge e in such direction that e /∈ β, the
common vertical pole of α and β is a pole through vj . All mapping steps are
done simultaneously for all subtrees of end vertices of the edges of Ki.

Step 4: Shrink more. The morphing step 〈Γt+3, Γt+4〉 is a horizontal morph.
For each vj = end(e), e ∈ Ki we define a horizontal vector of movement

as follows. If e is a vertical edges in canonical drawing then this vector is
(Γt+3(st(e))x −Γt+3(end(e))x, Γt+3(st(e))y −Γt+3(end(e))y, 0), in this case sub-
tree T ′(end(e)) is moving towards vertical pole through st(e) until the image of
the edge e becomes vertical. If e is not a vertical edge in canonical drawing, then
C(end(e))x − C(st(e))x = 1 and we move the whole subtree T ′(end(e)) towards
the pole through Γt+3(st(e)) until end(e) reaches the last point with integer
coordinates before (Γt+3(st(e))x, Γt+3(st(e))y, Γt+3(end(e))z).

Step 5: Collide planes. During the following steps 〈Γt+4, Γt+5〉, . . . ,
〈Γt+5+log k, Γt+5+log k+1〉 we iteratively divide half-planes that contain
T ′(end(e)), e ∈ Ki around each vertex st(e), e ∈ Ki in pairs which are formed of
neighboring half-planes in clockwise order around the pole through st(e). If in
some iteration there are odd number of planes around some pole, the plane with-
out pair does not move in this iteration. In every iteration we map the drawing
of one plane in the pair to another simultaneously in all pairs. As around each
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vertex we can have at most k = Δ(T ) number of half-planes, we need at most
O(log k) number of mapping steps to collide all planes in one and to rotate the
resulting image to XZ+

st(e)

We perform Lift() for each Ki ∈ K till we obtain the canonical drawing of
T . The following theorem summarises the result of this section.

Theorem 2. For every two planar straight-line grid drawings Γ, Γ ′ of an n-
vertex tree T , there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . , Γk = Γ ′〉
that takes O(dpt(T ) · log Δ(T )) steps and O(d3 · log n × d3 · log n × n) space such
that every intermediate drawing Γi, 0 ≤ i ≤ k is a straight-line 3D grid drawing,
where d is maximum of the diameters of the given drawings. In the worst case
the algorithm can take O(dpt(T ) · log n) steps since the maximum degree of T
can be O(n).

6 Trade-off

Recall that L(T ) is the set of paths induced by the long-path decomposition, see
Sect. 2. Let Long(T ) be a set of paths from L(T ), consisting of the paths whose
length is at least

√
n, i.e. Long(T ) = {Li ∈ L(T ) : |Li| ≥ √

n}, let the order in
Long(T ) be induced from the order in L(T ). We denote by Short(T ) a set of
trees that are left after deleting from T edges of Long(T ).

Lemma 3. |Long(T )| ≤ √
n and for every tree Ti in Short(T ) depth of Ti is at

most �√n.
We divide edges in Short(T ) into disjoint sets Sh1, . . . Sh�√

n�. An edge
(vi, vj) in tree Tk lies in the set Shl if and only if max(dpt(vi), dpt(vj)) =
�√n− l +1, where dpt(v) is the depth of vertex v in the corresponding tree Tk.
Since the maximum depth of any tree Tk is at most

√
n, Sh1, . . . Sh�√

n� contain
all the edges of these subtrees.

Trade-off Algorithm: In the beginning we perform a stretching step with
S1 = 2 · rpw · d(Γ ) · (4 · d(Γ ) + 1) as mentioned in Sect. 5. S1 is big enough to
perform Lift() procedure mentioned in Sect. 4. Then, we lift edges from sets Sh1

to Sh�√
n� by Lift(Shi) procedure. It takes O(

√
n · log Δ(T )) steps in total by

Theorem 2. After that, we lift paths in Long(T ) in the order induced by the
path decomposition. As |Long(T )| ≤ √

n and each Lift() procedure consists of a
constant number of morphing steps, this step takes O(

√
n) steps.

Theorem 3. For every two planar straight-line grid drawings Γ, Γ ′ of tree T
with n vertices there exists a crossing-free 3D-morph M = 〈Γ = Γ0, . . . , Γl =
Γ ′〉 that takes O(

√
n · log Δ(T )) steps (O(

√
n · log n) in the worst case) and

O(d3 ·log n×d3 ·log n×n) space to perform, where d is maximum of the diameters
of the given drawings. In this morph every intermediate drawing Γi, 1 ≤ i ≤ l
is a straight-line 3D grid drawing. It is possible to morph between Γ, Γ ′ using
O(

√
n) steps if maximum degree of T is a constant.
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7 Conclusion

In this paper, we presented an algorithm that morphs between two planar grid
drawings of an n-vertex tree T in O(

√
n log n) steps such that all intermedi-

ate drawings are crossing-free 3D grid drawings and lie inside a polynomially
bounded 3D-grid. Arseneva et al. [2] proved that O(log n) steps are enough to
morph between two planar grid drawings of an n-vertex tree T where intermedi-
ate drawings are allowed to lie in R

3 but they did not guarantee that intermediate
drawings have polynomially bounded resolution. Several problems are left open
in this area of research. We mention some of them here. It is interesting to prove
a lower bound on the number of morphing steps if intermediate drawings are
allowed to lie in R

3 (with or without the additional constraint of polynomi-
ally bounded resolution). Another intriguing question is if it possible to morph
between two planar grid drawings in o(n) number of steps for a richer class of
graphs (e.g. outer-planar graphs) than trees if we are allowed to use the third
dimension.
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Abstract. Let M be a two-dimensional table with each cell weighted by
a nonzero positive number. A StreamTable visualization of M represents
the columns as non-overlapping vertical streams and the rows as hori-
zontal stripes such that the intersection between a stream and a stripe
is a rectangle with area equal to the weight of the corresponding cell.
To avoid large wiggle of the streams, it is desirable to keep the consecu-
tive cells in a stream to be adjacent. Let B be the smallest axis-aligned
bounding box containing the StreamTable. Then the difference between
the area of B and the sum of the weights is referred to as the excess area.
We attempt to optimize various StreamTable aesthetics (e.g., minimizing
excess area, or maximizing cell adjacencies in streams).

– If the row permutation is fixed and the row heights are given, then
we give an O(rc)-time algorithm to optimizes these aesthetics, where
r and c are the number of rows and columns, respectively.

– If the row permutation is fixed but the row heights can be chosen,
then we discuss a technique to compute an aesthetic (but not neces-
sarily optimal) StreamTable by solving a quadratically-constrained
quadratic program, followed by iterative improvements. If the row
heights are restricted to be integers, then we prove the problem to
be NP-hard.

– If the row permutations can be chosen, then we show that it is NP-
hard to find a row permutation that optimizes the area or adjacency
aesthetics.

Keywords: Geometric Algorithms · Table Cartogram · Streamgraphs

1 Introduction

Proportional area charts and cartographic visualizations commonly represent
data values as geometric objects. Table cartogram [8] is a brilliant way to visual-
ize tables as cartograms, where each table cell is mapped to a convex quadrilat-
eral with area equal to the cell’s weight. Furthermore, the visualization preserves
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Fig. 1. (a) A streamgraph. (b) A table T . (c) A StreamTable for T . (d) A StreamTable
visualization with smooth streams. (e) A table cartogram for T .

cell adjacencies and the quadrilaterals are packed together in a rectangle with no
empty space in between (e.g., see Fig. 1(e)). However, since the cells in a table
cartogram are represented with convex quadrilaterals, it may sometimes become
difficult to follow the rows and columns [12]. This motivated us to look for a
solution, where each row is represented with a horizontal stripe (i.e., a region
bounded by two horizontal lines) and the cells in each row are represented with
axis aligned rectangles inside the corresponding stripe.

Streamgraphs are examples where the columns can be thought of as vertical
stripes. Given a set of variables, a streamgraph visualizes how their values change
over time by representing each variable with a flowing river-like stream (e.g., an
x-monotone polygon). The width of the stream at a timestamp is determined by
the value of the variable at that time. Figure 1(a) illustrates a streamgraph with
five variables. Streamgraphs are often used to create infographics of temporal
data [4], e.g., box office revenues for movies [2], various statistics or demographics
of a population over time [13], etc.

In this paper, we introduce StreamTable that extends this idea of a stream-
graph to visualize tables or spreadsheets. We now formally define a StreamTable.

1.1 StreamTable

Let T be an r × c table with r rows and c columns, where each cell is weighted
by a nonzero positive number. A StreamTable visualization of T is a partition of
an axis-aligned rectangle R into r consecutive horizontal stripes that represent
the rows of T , where each stripe is further divided into rectangles to represent
the cells of its corresponding row. A column q of T is thus represented by a
sequence of rectangles corresponding to the cells of q. By a stream we refer to
such a sequence of rectangles that represents a column of T . Furthermore, a
StreamTable must satisfy the following properties.

P1. The left side of the leftmost stream (resp., the right side of the rightmost
stream) must be aligned to the left side (resp., right side) of R.

P2. For each cell of T , the area of its corresponding rectangle in the StreamTable
must be equal to the cell’s weight.

Property P1 ensures an aesthetic alignment with the row labels and provides
a sense of total visualization area. Property P2 provides an area proportional
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Fig. 2. (a) A table. (b) A StreamTable with no excess area and 2 splits. (c) A
StreamTable with non-uniform row heights, non-zero excess area, but no split. (d)
A StreamTable with no excess area and 1 split (obtained by reordering rows).

representation of the table cells. Figure 1(b) illustrates a table and Fig. 1(c) illus-
trates a corresponding StreamTable. The stripes (rows) are shown in dotted lines
and the partition of the stripes are shown in dashed lines. Figure 1(d) illustrates
an aesthetic visualization of the streams after smoothing the corners.

Note that a StreamTable may contain rectangular regions that do not corre-
spond to any cell. We refer to such regions as empty regions and the sum of the
area of all empty regions as the excess area. While computing a StreamTable,
a natural optimization criterion is to minimize this excess area. However, mini-
mizing excess area may sometimes result into disconnected streams. Figure 2(b)
illustrates a StreamTable with zero excess area, where the consecutive rectan-
gles for column c2 are not adjacent (i.e., no two consecutive rectangles of c2
share a common boundary point). If a pair of cells are consecutive in a col-
umn but the corresponding rectangles are nonadjacent in the stream, then they
split the stream. To maintain the stream connectedness, it is desirable to mini-
mize the number of such splits. As illustrated in Fig. 2(c)–(d), one may choose
non-uniform row heights or reorder the rows to optimize the aesthetics. Such
reordering operations also appear in matrix reordering problems [14] where the
goal is to reveal clusters in matrix data. StreamTable computation also relates to
floorplanning [5,16] and area-universal rectangular layout problems [3,6], where
the horizontal adjacencies are not mandatory but vertical adjacencies must be
preserved.

1.2 Our Contribution

We explore StreamTable from a theoretical perspective and consider the follow-
ing two problems.

Problem 1 (StreamTable with no Split, Minimum Excess Area,
and Fixed Row Ordering). Given an r × c table T , can we compute a
StreamTable for T in polynomial time with no split and minimum excess area?
Note that in this problem, the StreamTable must respect the row ordering of
T .
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If the row heights are restricted to be integers, then we show the problem to
be NP-hard. In general, the problem can be modeled leveraging a quadratically-
constrained quadratic program, and a solution computed by non-linear program-
ming solver may be iteratively improved by adjusting the row heights. However,
this only provides a heuristic solution. While Problem 1 remains open, if the input
additionally specifies a set {h1, . . . , hr} of nonzero positive numbers to be chosen
as row heights, then we can compute a StreamTable with minimum excess area in
O(rc) time. Since choosing a fixed row height helps to obtain a fast algorithm and
to compare the cell areas more accurately, we examined whether one can leverage
the row ordering to further improve the StreamTable aesthetics.

Problem 2 (Row-Permutable StreamTable with Uniform Row
Heights). Given a table T and a non-zero positive number δ > 0, can we
compute a StreamTable in polynomial time by setting δ as the row height,
and minimizing the excess area (or, the number of splits)? Note that in this
problem, the row ordering can be chosen.

We show that Problem 2 is NP-hard, i.e., we show that computing a
StreamTable with no excess area and minimum number of split is NP-hard and
similarly, computing a StreamTable with no split and minimum excess area is
NP-hard.

2 No Split, Minimum Excess Area, Fixed Row Ordering

In this section we compute StreamTables by respecting the given row ordering
of the input table. We first explore the case when the row heights are given, and
then the case when the row heights can be chosen.

2.1 Fixed Row Heights

Let T be an r× c table and let {h1, . . . , hr} be a set of nonzero positive numbers
to be chosen as row heights. We now introduce some notation for the rectangles
and streams in the StreamTable. Let wi,j be the weight for the (i, j)th entry of
T , where 1 ≤ i ≤ r and 1 ≤ j ≤ c, and let Ri,j be the rectangle with height hi

and width (wi,j/hi,j). Let ai,j and bi,j be the x-coordinates of the left and right
side Ri,j . We now show that a StreamTable R for T with no split and minimum
excess area can be constructed using a greedy algorithm G, as follows:

Step 1. Draw the rectangles Ri,1 (first column) such that they are left
aligned.
Step 2. For each j < c, draw the jth stream by minimizing the sum of
x-coordinates ai,j , but ensuring that the stream remains connected.
Step 3. Draw the rectangles Ri,c of the last column by minimizing the maxi-
mum x-coordinate over bi,c, but ensuring that the rectangles are right aligned.

For every column j, let A(R, j) be the orthogonal polygonal chain determined
by the left side of Ri,j . Similarly, we define (resp., B(R, j)) for the right side of
Ri,j . We now have the following lemma.
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Lemma 1. G computes a no-split StreamTable R with minimum excess area.

Proof. We employ an induction on the number of columns. For an r × c table T
with c = 2, it is straightforward to verify the lemma. We now assume that the
lemma holds for every table with j columns where 1 ≤ j < c. Consider now a
table with c columns and let R∗ be an optimal StreamTable with no split and
minimum excess area.

We first show that the first two streams of R∗ can be replaced with the cor-
responding streams of R. To observe this first note that the stream for the first
column must be drawn left-aligned, and since the rectangle heights are given,
the right side of the streams B(R, 1) must coincide with B(R∗, 1). Consider now
the left sides of the second streams. If A(R, 2) does not coincide with A(R∗, 2),
then there must be non-zero area between them. Let A be an orthogonal polyg-
onal chain constructed by taking the left envelope of these two chains. In other
words, for each row, we choose the part of the chain that have the minimum
x-coordinate. Since the streams for R and R∗ are connected, the stream deter-
mined by A must be connected. Since the sum of x-coordinates is smaller for A,
the polygonal chain A(R, 2) must coincide with A. Thus the right side of the
stream, i.e., the polygonal chain B(R, 2), must remain to the left of B(R∗, 2).

We can now construct an r × (c−1) table T ′ by treating the polygonal chain
B(R, 2) as B(R, 1). By induction, G provides a StreamTable R′ with no split and
minimum excess area. We now obtain the StreamTable R by replacing the first
stream with the two streams that we constructed using the greedy approach. ��
We now have the following theorem whose proof is included in the full version [7].

Theorem 1. Given an r × c table T and a height for each row, a StreamTable
R for T with no split and minimum excess area can be computed in O(rc) time
such that R respects the row ordering of T .

We now consider the case when a set {h1, . . . , hr} of row heights are given
as an input. Here we show how to formulate a system of linear equations to
compute a StreamTable for T with no split and minimum excess area such that
the height of the ith row is set to hi, where 1 ≤ i ≤ r. This will be useful for the
subsequent section. Let di,j be a variable to model the adjacency between Ri,j

and Ri+1,j , where 1 ≤ i ≤ r − 1 and 1 ≤ j ≤ c. We minimize the excess area:
r∑

j=1

c−1∑

k=1

hj(aj,k+1 − bj,k), subject to the following constraints.

1. aj,1 = aj+1,1 and bj,c = bj+1,c, where j = 1, . . . , r − 1. This ensures
StreamTable property P1.

2. bj,k − aj,k = (wj,k/hj), where j = 1, . . . , r and k = 1, . . . , c. This ensures
property P2.

3. aj,k ≤ dj,k ≤ bj,k and aj+1,k ≤ dj,k ≤ bj+1,k, where 1 ≤ j ≤ r − 1 and
1 ≤ k ≤ c. This ensures that there is no split in the streams.

Since h1, . . . , hr are fixed, the above system with the constraint that the variables
must be non-negative can be modeled as a linear program, e.g., see Fig. 3 (left),
but that would take at least a quadratic time in the number of table cells.
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Fig. 3. StreamTables of a Winter Olympics dataset (left) using a linear program with
row height proportional to the row sum, and (right) using Gurobi with a fixed total
height and with corner smoothing.

2.2 Variable Row Heights

We model this case by treating h1, . . . , hj as variables. Hence the objective and
constraint functions yield a quadratically-constrained quadratic program. Note
that scaling down the height of a StreamTable by some δ ∈ (0, 1] and scaling up
the width by 1/δ do not change the excess area. Therefore, a non-linear program
solver may end up generating a final StreamTable with bad aspect ratio. Hence
we suggest to add another constraint: h1 + . . .+hk = H, where H is the desired
height of the visualization. Figure 3 (right) shows an example (not necessarily
optimal) solution computed using a non-linear program solver Gurobi [11].

Local Improvement: We now show how a non-optimal StreamTable may
be improved further by examining each empty cell individually, while deciding
whether that cell can be removed by shrinking the height of the corresponding
row. By Ei,j we denote the empty rectangle between the rectangles Ri,j and
Ri,j+1. We first refer the reader to Fig. 4(a)–(b). Assume that we want to decide
whether the empty cell Ei,j(= E2,4) can be removed by scaling down the height
of the second row. The idea is to grow the rectangles to the left (resp., right) of
Ei,j towards the right (resp., left) respecting the adjacencies and area.

Now consider a rectangle Ri,k(= R2,2) before Ei,k(= E2,4). Let Gi,k be the
rectangle determined by the ith row with left and right sides coinciding with
the left and right sides of Ri,1 and Ri,k, respectively. Figure 4(a) shows G2,2 in
a falling pattern. Let �i,k be the length of Gi,k. Let Ai,k is the initial area of
Gi,k, and our goal is to keep this area fixed as we scale down the height of the
ith row. The height of Gi,k is defined by f(�i,k) = Ai,k/�i,k. Since the rectangles
of the (i − 1)th and (i + 1)th rows do not move, f(�i,k) does not split the
(k + 1)th stream as long as �i,k is upper bounded by the right sides of Ri−1,k+1

and Ri+1,k+1. Figure 4(c) plots these functions, where Hc is the current height
of the second row. The height function for G2,2 is drawn in thick purple in the
interval [�2,2,min{q1,3, q3,3}], where q1,3 and q3,3 are the right sides of R1,3 and
R3,3, respectively.
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Fig. 4. (a) A StreamTable with width Wc and height Hc. (b) Removal of the empty
rectangle E2,4 (c)–(d) Illustration for computing the new height Hn of the second row.

We construct such functions also for all the empty rectangles Ei,k, where
1 ≤ k < j. These are labelled with ei,k. Finally, we construct these functions
symmetrically for the rectangles that appears after Ei,j . We then find a height
Hn by determining the common interval L where all these functions are valid
individually (Fig. 4(c)), and then determining the first intersection (if any) in
this interval, as illustrated in Fig. 4(d). If no such intersection point exists, then
we can shrink the row by an amount equal to the length of the interval L.

We iterate over the empty rectangles as long as we can find an empty rect-
angle to improve the solution, or to a maximum number of iterations. However,
this only provides a heuristic algorithm, and thus Problem 1 remains open.

If the cells are allowed to have an area larger than their corresponding
weights, then the problem can be modelled using a geometric programming (e.g.,
see the full version [7]). Furthermore, if the row heights are restricted to be pos-
itive integers, then we prove the problem to be NP-hard.

Theorem 2. Given a table T and a positive integer H, it is NP-hard to compute
a minimum-area no-split StreamTable of height H with row heights as integers
respecting the row ordering of T .

Proof. We reduce the NP-hard problem clique [10], where the input is a graph
G and a positive integer k and the goal is to find a set of k vertices that are
pairwise adjacent. The problem remains NP-hard even when 1 < k < n. Given
an instance G of the clique problem with n vertices and m edges, we construct
a table T with n rows and m columns as follows.

1. For each edge e ∈ EG, we create a column called an edge column, and label
it by e (e.g., see Fig. 5(top)).
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Fig. 5. Illustration for the proof of Theorem 2. Given a clique {b, e, d}, one can con-
struct a StremTable with

(
3
2

)
edge columns of width 4, where the remaining edge

columns are of width 6. The line columns are shown in thick vertical lines.

2. We insert an additional column at the left and right sides of the table and
also between every pair of adjacent columns. We refer to these columns as
line columns. Each cell of a line column has a weight of ε = 1

n(m+1) .
3. For each vertex v ∈ VG, we create a row and assign it the label v. For each

edge column, we assign each cell a weight 6.
4. We now partition each cell Tv,e into two cells (Fig. 5), as follows.

(a) If vertex v is an end point of edge e, then the weight of the left and right
cells are 2 and 4, respectively. We refer to these as a (2, 4)-group.

(b) Otherwise, the weight of the left and right cells are 2 and 2, respectively.
We refer to these as a (2, 2)-group.

It now suffices to show that G admits a clique of size k if and only if there
exists a no-split StreamTable of height H = (n + k) and width at most (6m −
2
(
k
2

)
) + (m + 1)ε, where the row heights are integers (e.g., see Fig. 5(bottom)).

We include the details in the full version [7]. ��

3 Uniform Row Heights and Variable Row Ordering

In this section we consider the case when each row of the StreamTable must
have the same height and the row permutations can be chosen. We prove that
it is NP-hard to find a row permutation that minimizes the area (Sect. 3.1) or
number of splits (Sect. 3.2).

3.1 No Split and Minimum Excess Area

We now show that computing StreamTables with no split while minimizing the
excess area by reordering the rows is NP-hard. We reduce the NP-complete prob-
lem betweenness [15], where the input is a set of ordered triples of elements, and
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the problem is to decide whether there exists a total order σ of these elements,
with the property that for each given triple, the middle element in the triple
appears somewhere in σ between the other two elements.

Theorem 3. Given a table T and a non-zero positive number δ > 0, it is NP-
hard to compute a StreamTable with no split and minimum excess area, where
each row is of height δ and the ordering of the rows can be chosen.

Proof. Let S be a set of c integer triples (an instance of betweenness) over r
elements (integers), where r, c ≥ 5. We now construct an r × (4c + 1) table T
(Fig. 6(a)), as follows:

1. For every triple t ∈ S, we make a column (labelled with t). We refer to these
columns as triple columns. Each of these columns will later be split into three
more columns. For every element e, we create a row (labelled with e). Assume
that each cell of a triple column has a weight of w(= 15).

2. We insert an additional column at the left and right sides of the table and
also between every pair of adjacent triple columns. We refer to these columns
as line columns. Each cell of a line column has a weight of ε = 1

r(c+1) .
3. For every triple t and row i, we further partition the cell (t, i) into three cells

and distribute the weight w among them, as follows:
4a. If i is the left element of t, then the weight of the left, middle and right

cells are 2w
3 , w

6 and w
6 , respectively.

4b. If i is the right element of t, then the weight of the left, middle and right
cells are w

6 , w
6 and 2w

3 , respectively.
4c. If i is the centre element of t, then the weight of the left, middle and right

cells are w
6 , 2w

3 and w
6 , respectively.

4d. Finally, if i does not belong to t, then the weight of the left, middle and
right cells are 5w

12 , w
6 and 5w

12 , respectively.

We set δ to be 1. It now suffices to show that the betweenness instance S
admits a total order σ, if and only if there exists a StreamTable with no split
and at most rcw

12 excess area, where each row is of height δ.
First assume that S admits a total order σ. We draw the rectangles of each

line column on top of each other (vertically aligned) and allocate a width of
(w + w

12 ) for the triple columns. Since we order the rows by σ, a pair of rows
that satisfy conditions (4a) and (4b) for a triple t must have a row k satisfying
condition (4c) for t. Therefore, we can complete the drawing of the rectangles
of the three streams within the allocated width without any split. Figure 6(b)
illustrates a schematic representation of the rows for this scenario. Since δ = 1,
the excess area is at most rcw

12 in total. Figure 7 illustrates a StreamTable for the
table from Fig. 6(a).

We now show that if there is a StreamTable for T with at most rcw
12 excess

area, then the corresponding row ordering will yield the total order for the
betweenness instance. Any three streams corresponding to a triple t must have
exactly one (4a), one (4b) and one (4c) conditions. Suppose for a contradic-
tion that for some triple t, the condition (4c) does not appear between con-
ditions (4a) and (4b) (Fig. 6(c)). Then these streams would require a width
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Fig. 6. (a) A table T obtained from a set of triples {(2, 1, 3), (3, 4, 5),
(1, 4, 5), (2, 4, 1), (5, 2, 3)}. Here the thick black lines represent the line columns. (b)–(c)
Illustration for the required width for different row orderings.

Fig. 7. A StreamTable for T , where σ = {3, 1, 4, 2, 5}.

of at least (w + w
6 ), i.e., the longest intervals in (4a) and (4b) cannot come

any closer maintaining connectivity of the middle stream. Let t′ be a triple
that appears immediately after t. Since the stream (line column) between t
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and t′ is very narrow, they cannot share a width of more than rε. By con-
struction, for each triple, we have three streams and they require a width of
at least (w + w

12 ). Hence the total width of the visualization must be at least(
w + w

6

)
+(c−1)

(
w + w

12

)−r(c+1)ε = cw+ cw
12 + w

12−r(c+1)ε = cw+ cw
12 + w

12−1..
Since ε = 1

r(c+1) , the sum of the weights of T is (rcw+r(c+1)ε) = (rcw+1). Since
r ≥ 5 and w = 15, we have an excess area of larger than rcw

12 + rw
12 − r −1 > rcw

12 .
��

3.2 No Excess Area and Minimum Number of Splits

We now show that computing StreamTables with no excess area while minimizing
the number of splits by reordering the rows is NP-hard. We reduce the NP-
complete problem Hamiltonian path in a cubic graph [9], where the input is a
graph G with n vertices and m edges such that every vertex is of degree 3,
and the problem is to decide whether there exists a total order of the vertices
that determines a Hamiltonian path in G. A proof for the following theorem is
included in the full version [7].

Theorem 4. Given a table T and a non-zero positive number δ > 0, it is NP-
hard to compute a StreamTable with zero excess area and minimum number of
splits, where each row is of height δ and the ordering of the rows can be chosen.

4 Conclusion

In this paper we have introduced StreamTable, which is an area proportional
visualization inspired by streamgraphs. We formulated algorithmic problems
that need to be tackled to produce aesthetic StreamTables and examined two
aesthetic criteria – excess area and number of splits.

We have showed that if row heights and row ordering are given, then a
StreamTable with no split and minimum area can be computed via a linear pro-
gram. However, the case when the row ordering is given but the row heights
can be chosen needs further investigation. We only provided a quadratically-
constrained quadratic program to model the problem and an NP-hardness proof
when the row heights are constrained to be integers. However the original ques-
tion remains open.

Open Problem 1: Given a table T and a positive integer H, does there exist
a polynomial-time algorithm to compute a minimum-area no-split StreamTable
of height H that respects the row ordering of T?

We also showed that if the row ordering can be chosen, then the problem
of finding a minimum-area or a minimum-split StreamTable is NP-hard. In this
setting, it would be interesting to find algorithms for computing zero-excess-area
(resp., no split) StreamTables with good approximation on the number of splits
(resp., excess area).
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Open Problem 2: Design polynomial-time algorithms to find good approxi-
mation for StreamTable aesthetics (excess area or number of splits) in both the
fixed and variable row ordering settings.

Recently a framework for ∃R-completeness of packing problems has been
proposed in [1]. It would be interesting to investigate ∃R-completeness in this
context, where the rows need to be packed inside a rectangle maintaining column
adjacencies.

References

1. Abrahamsen, M., Miltzow, T., Seiferth, N.: Framework for ER-completeness of
two-dimensional packing problems. In: Proceedings of the 61st IEEE Annual Sym-
posium on Foundations of Computer Science (FOCS), pp. 1014–1021. IEEE (2020)

2. Bartolomeo, M.D., Hu, Y.: There is more to streamgraphs than movies: better
aesthetics via ordering and lassoing. Comput. Graph. Forum 35(3), 341–350 (2016)

3. Buchin, K., Eppstein, D., Löffler, M., Nöllenburg, M., Silveira, R.I.: Adjacency-
preserving spatial treemaps. J. Comput. Geom. 7(1), 100–122 (2016)

4. Byron, L., Wattenberg, M.: Stacked graphs - geometry & aesthetics. IEEE Trans.
Vis. Comput. Graph. 14(6), 1245–1252 (2008)

5. Chen, T., Fan, M.K.H.: On convex formulation of the floorplan area minimization
problem. In: Sarrafzadeh, M. (ed.) Proceedings of the 1998 International Sympo-
sium on Physical Design (ISPD), pp. 124–128. ACM (1998)

6. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal and con-
strained rectangular layouts. SIAM J. Comput. 41(3), 537–564 (2012)

7. Espenant, J., Mondal, D.: StreamTable: an area proportional visualization for
tables with flowing streams. arXiv:2103.15037 (2021)

8. Evans, W.S., et al.: Table cartogram. Comput. Geom. 68, 174–185 (2018)
9. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem

is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)
10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory

of NP-Completeness. W. H. Freeman, San Francisco (1979)
11. Gurobi Optimization, L.: Gurobi optimizer reference manual (2020). https://

www.gurobi.com/wp-content/plugins/hd documentations/documentation/9.1/
refman.pdf

12. Hasan, M.R., Tasnim, D.M.J., Schneider, K.A.: Putting table cartograms into prac-
tice. In: Proceedings of the 16th International Symposium on Visual Computing
(ISVC), vol. 13017, pp. 91–102. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-90439-5 8

13. Havre, S., Hetzler, E.G., Whitney, P., Nowell, L.T.: ThemeRiver: visualizing the-
matic changes in large document collections. IEEE Trans. Vis. Comput. Graph.
8(1), 9–20 (2002)
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Abstract. The art gallery problem is to find a set of guards who
together can observe every point of the interior of a polygon P . We
study a chromatic variant of the problem, where each guard is assigned
one of k distinct colors. A chromatic guarding is said to be conflict-free
if at least one of the colors seen by every point in P is unique (i.e., each
point in P is seen by some guard whose color appears exactly once among
the guards visible to that point). In this paper, we consider vertex-to-
point guarding, where the guards are placed on vertices of P , and they
observe every point of the interior of P . The vertex-to-point conflict-free
chromatic art gallery problem is to find a colored-guard set such that
(i) guards are placed on P ’s vertices, and (ii) any point in P can see a
guard of a unique color among all the visible guards. In this paper, it
is shown that determining whether there exists a conflict-free chromatic
vertex-guard set for a polygon with holes is NP-hard when the number
of colors is k = 2.

1 Introduction

The art gallery problem is to determine the minimum number of guards who
can observe the interior of a gallery. Chvátal [3] proved that �n/3� guards are
always sufficient and sometimes necessary for observing the interior of an n-
vertex simple polygon. This �n/3�-bound is replaced by �n/4� if the instance is
restricted to a simple orthogonal polygon [8].

Another perspective to the art gallery problem is to study the complexity
of locating the minimum number of guards in a polygon. The NP-hardness and
APX-hardness of this problem were shown by Lee and Lin [12] and by Eiden-
benz et al. [4], respectively. Furthermore, Schuchardt and Hecker [16] proved
that this problem remains NP-hard even if we restrict our attention to simple
orthogonal polygons. Even guarding the vertices of a simple orthogonal polygon
was shown to be NP-hard [11].

In this paper, we consider vertex-to-point guarding, where the guards are
placed on vertices of a polygon P , and they observe every point inside P .
We study a chromatic version of the art gallery problem, where each guard
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(a) (b)

Fig. 1. (a) Conflict-free chromatic guarding. The dark gray area is seen by one red
guard and two blue guards, where red is the unique color among the three guards. Each
of the two light gray areas is seen by one red guard and one blue guard. (b) Strong
chromatic guarding. The dark gray area is seen by three guards having three different
colors. (Color figure online)

is assigned one of k distinct colors. There are two chromatic variants, which are
called conflict-free chromatic guarding and strong chromatic guarding [9] (see
Fig. 1). A chromatic guarding is said to be conflict-free if at least one of the
guards seen by every point in P has a unique color [1]. It is strong if no two
guards with the same color have overlapping visibility regions [5].

The vertex-to-point conflict-free chromatic art gallery problem is to find a
colored-guard set such that (i) guards are placed on P ’s vertices, and (ii) any
point inside P can see a guard of a unique color among all the visible guards.
In this paper, it is shown that determining whether there exists a conflict-free
chromatic vertex-guard set which together observe every point in a given polygon
with holes is NP-hard when the number of colors is k = 2.

The chromatic art gallery problem was motivated by the following applica-
tion [2,6]. Consider the problem of navigating a robot inside a polygon, where
the robot communicates with radio beacons. The robot must be able to commu-
nicate with a radio beacon of a unique frequency in order to prevent interference.
This motivates a chromatic version of the art gallery problem, where a guard
corresponds to a radio beacon, and colors correspond to different frequencies.

The computational complexity of the chromatic art gallery problem was
firstly investigated in [6]; the point-to-point strong chromatic art gallery problem
was shown to be NP-hard for general polygons with holes. Recently, the current
authors proved that the point-to-point strong chromatic art gallery problem with
r-visibility is NP-hard for orthogonal polygons with holes [10]. Here, two points
are said to be r-visible if the smallest axis-aligned rectangle containing them lies
entirely within the polygon.

Çağırıcı et al. studied the vertex-to-vertex conflict-free chromatic guarding
problem [2]; they proved the NP-hardness of the problem when the number of
colors is k = 2. However, they mentioned that their proof does not imply the
NP-hardness for the vertex-to-point case. Hence, the computational complexity
of the vertex-to-point conflict-free chromatic guarding problem remained open.
In the current paper, we solve this open problem.

Several results on the lower and upper bounds of the minimum number of
colors can be found in [1,5,9] for general and orthogonal polygons under standard
and orthogonal visibility conditions.
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Fig. 2. (a) A bowl-shaped gadget [2]. (b) A guard on p1 or p2 can see all the vertices
of {a1, a2, . . . , a9} ∪ {c1, c2, . . . , c9}. (c) If no guards are placed on vertices of {p1, p2},
then there exists no conflict-free 2-color guard-set. Thus, a guard must be placed on
at least one of p1 and p2 (see (b)). (d) is a simplified illustration of (a), where two
vertices p1 and p2 are called door vertices of the bowl.

2 Definitions and Results

The definitions of a polygon and a polygon with holes are mostly from [13,15]. A
polygon is defined by a finite set of segments such that every segment endpoint
is shared by exactly two segments and no subset of segments has the same
property. The segments and their endpoints are called the edges and vertices of
the polygon, respectively.

A polygon with holes is a polygonal domain defined by a polygon P enclosing
several other polygons H1,H2, . . . , Hh, the holes. None of the boundaries of P ,
H1,H2, . . . , Hh may intersect, and each of the holes is empty. P is said to bound
a multiply-connected region with h holes: the region of the plane interior to or
on the boundary of P , but exterior to or on the boundary of H1,H2, . . . , Hh.

Two points v and u in a polygon P are said to be visible (or v sees u) if
the line segment connecting them lies entirely within P . Here, the line segment
may contain points on the boundary of P , but it must not across any hole of the
polygon. An area is said to be observed by a point v if every point in the area is
visible from v.

An instance of the vertex-to-point conflict-free chromatic art gallery prob-
lem for polygons with holes is (P,H1,H2, . . . , Hh; k), where P is a polygon with
holes H1,H2, . . . , Hh, and k is the number of colors. The problem asks whether
there exists a conflict-free k-chromatic vertex-guard set which together observe
every point in the polygonal domain defined by (P,H1,H2, . . . , Hh). (Color figure
online)

Theorem 1. The vertex-to-point conflict-free chromatic art gallery problem for
polygons with holes is NP-hard when the number of colors is two.
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Fig. 3. (a) The green area surrounded by a 10-vertex chain from a1 to a2 is called a
pocket-gadget [2]. (b) A pair of red and blue guards on door vertices of bowls can see
the inside of the pocket in the conflict-free condition. (c) is an illegal 2-coloring. (d) is
a simplified illustration of (a). (Color figure online)

3 NP-Completeness

3.1 3SAT Problem

The definition of 3SAT is mostly from [7,14]. Let U = {x1, x2, . . . , xn} be a set
of Boolean variables. Boolean variables take on values 0 (false) and 1 (true). If
x is a variable in U , then x and x are literals over U . The value of x is 1 (true)
if and only if x is 0 (false). A clause over U is a set of literals over U , such as
{x1, x3, x4}. A clause is satisfied by a truth assignment if and only if at least
one of its members is true under that assignment.

An instance of Planar 3SAT is a collection C = {c1, c2, . . . , cm} of clauses
over U such that (i) |cj | = 3 for each cj ∈ C and (ii) the graph G = (V,E),
defined by V = U ∪C and E = {(xi, cj) | xi ∈ cj ∈ C or xi ∈ cj ∈ C}, is planar.
Planar 3SAT asks whether there exists some truth assignment for U that
simultaneously satisfies all the clauses in C.

If E is replaced with

E1 = E ∪ {(cj , cj+1) | 1 ≤ j ≤ m − 1},
then the problem is called Clause-Linked Planar 3SAT. This problem is
NP-complete, since Variable-Clause-Linked Planar 3SAT was shown to
be NP-complete in [14], where the edge set E2 is defined as

E2 = E ∪ {(xi, xi+1) | 1 ≤ i ≤ n − 1} ∪ {(xn, c1)}
∪{(cj , cj+1) | 1 ≤ j ≤ m − 1} ∪ {(cm, x1)}.

Note that Clause-Linked Planar 3SAT in this paper is defined by a chain
connecting c1, c2, . . . , cm of length m−1, while Variable-Clause-Linked Pla-

nar 3SAT in [14] is defined by a cycle of length m + n.
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Fig. 4. (a) Variable gadget. (b) Conflict-free guarding when xi = 0. (c) Conflict-free
guarding when xi = 1. (c) is obtained from (b) by switching red and blue guards.
(Color figure online)

For example, U = {x1, x2, x3, x4}, C = {c1, c2, c3}, and c1 = {x1, x2, x3},
c2 = {x1, x2, x4}, c3 = {x2, x3, x4} provide an instance of Clause-Linked

Planar 3SAT. For this instance, the answer is “yes,” since there is a truth
assignment (x1, x2, x3, x4) = (1, 1, 0, 1) satisfying all clauses.

3.2 Guard-Fix Gadgets

In this section, we explain a bowl -shaped gadget (see Fig. 2(a)) and a pocket
gadget (see Fig. 3(a)), introduced in [2].

A bowl -shaped gadget is a 20-vertex chain, which has the following two prop-
erties: (i) If a guard is placed on vertex p1 or p2 (see Fig. 2(b)), then it can see
all the vertices of {a1, a2, . . . , a9}∪{c1, c2, . . . , c9}. (ii) Suppose that no guard is
placed on p1 or p2 (see Fig. 2(c)). Then, in order to observe vertices a1, a2, . . . , a9,
both a red guard and a blue guard must be placed on two of the vertices in
{a1, a2, . . . , a9}. Similarly, both a red guard and a blue guard must be placed
on {c1, c2, . . . , c9}. Those four guards see vertices p1 and p2 simultaneously (see
Fig. 2(c)). From the properties (i) and (ii), one can see that, in any conflict-
free 2-coloring of a bowl-shaped gadget, there is a guard placed on p1 or p2 (or
both) (see Fig. 2(b)). In the following, we use a simplified illustration shown in
Fig. 2(d) as a bowl-shaped gadget. Vertices p1 and p2 are called door vertices of
the bowl. The distance between p1 and p2 is assumed to be so tiny that there is
no accidental visibility between a vertex inside the bowl and a vertex outside of
the bowl.

In Fig. 3(a), the green area surrounded by a 10-vertex chain from a1 to a2 is
called a pocket gadget. Vertices d1 and d2 can see all the 10 vertices of the pocket,
but neither a1 nor a2 does so. If a pair of red and blue guards are placed on
door vertices of bowls (see Fig. 3(b)), then they can see the inside of the pocket
in the conflict-free condition. On the other hand, Fig. 3(c) is an illegal 2-coloring
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Fig. 5. (a) Left-turn gadget when xi = 0. (b) Area s is observed by a red guard. (c) A
red guard and a pair of red and blue guards are placed on b5 and b6, b7, respectively.
(d) is a simplified illustration of a left-turn gadget. A left-turn gadget when xi = 1 is
obtained from (c) by switching red and blue guards. (Color figure online)

Fig. 6. (a) Right-turn gadget when xi = 0. (b) Simplified illustration.

because of the following reason. In order to guard the inside of the pocket in
the conflict-free condition, we need a single blue guard on the 10-vertex chain.
However, the 10-vertex chain contains no single vertex which can see every point
of the inside of the pocket. Figure 3(d) is a simplified illustration of Fig. 3(a).

3.3 Transformation from an Instance of Clause-Linked Planar

3SAT to a Polygon with Holes

We present a polynomial-time transformation from an arbitrary instance of
clause-linked planar 3SAT C to a polygon with holes such that C is satisfi-
able if and only if there is a conflict-free 2-chromatic vertex-guard set which
together observe every point in the polygon.
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Fig. 7. (a) Branching gadget when xi = 0. (b) is a simplified illustration.

Each variable xi ∈ {x1, x2, . . . , xn} is transformed into the variable gadget as
illustrated in Fig. 4. In the gadget, there are three bowl-shaped gadgets b1 and
b2, b3 and one pocket gadget. From the reasons given in Sect. 3.2, a pair of red
and blue guards must be placed on two of the door vertices of bowls b2, b3 (see
Figs. 4(b) and 4(c)). A door vertex of bowl b1 emits a beam of red or blue light
upward. A red and blue beams in Fig. 4 correspond to the assignment xi = 0
and xi = 1, respectively.

In Fig. 4(b), a dark gray area is observed by two red guards and one blue
guard, and a light gray area is observed by one red guard and one blue guard.
Note that Fig. 4(c) is obtained from Fig. 4(b) by switching red and blue guards.
In Figs. 5, 6, 7 and 8(a), we present figures only for xi = 0.

Figure 5 is a left-turn gadget. (a) Suppose that bowl b1 emits a beam of red
light (see Fig. 5(a)). Since the dark gray area is observed by two red guards and
one blue guard, area s must be observed by a red guard (see Fig. 5(b)). (b) Now,
area t is observed by a red guard of b4, and t is also seen by door vertices of b5
and b6, b7. (c) In order to satisfy the conflict-free condition, we must place a red
guard on b5 and a pair of red and blue guards on b6 and b7, respectively. (d) is
a simplified illustration of a left-turn gadget.

Figure 6 is a right-turn gadget. Bowl b8 emitting a red beam is used so that
a pair of bowls (see b9, b10) and a pocket are located on the left and right sides
of the beam, respectively. (Bowls b11 and b12 in Fig. 7(a) are used for the same
purpose.) Fig. 7 is a branching gadget. If bowl b1 emits a red beam, then b11 and
b12 also emit red beams.

Figure 8 is a NOR gadget. If xi1 = xi2 = 0 (see Fig. 8(a)), then the NOR
gadget will emit a blue beam (= value 1) upward. By switching red and blue
guards in Fig. 8(a), one can see that the NOR gadget outputs 0 if xi1 = xi2 = 1.
(Fig. 8(b) is explained later; the case xi1 �= xi2 will have to be treated carefully.)

A NOT gadget (see Fig. 9(a)) is obtained by connecting a branching gadget
and a NOR gadget. In the NOT gadget, the input is xi = 0 if and only if the
output is xi = 1. An OR gadget (see Fig. 9(b)) is obtained by connecting a NOR
gadget and a NOT gadget. Note that, if xi1 = xi2 = 0, the OR gadget outputs 0.
By switching red and blue guards, one can see that the OR gadget outputs 1 if
xi1 = xi2 = 1. (The case xi1 �= xi2 is explained later.)
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Fig. 8. NOR gadget. (a) If xi1 = xi2 = 0, this gadget outputs value 1 upward. By
switching red and blue guards, one can see that the gadget outputs 0 if xi1 = xi2 = 1.
(b) When xi1 �= xi2 , the gadget can output 0 (see the body text for details). (Color
figure online)

A clause gadget cj = {xi1 , xi2 , xi3} (see Fig. 10) contains three OR gadgets.
If xi1 = xi2 = xi3 = 0, the clause gadget outputs value cj = 0. By switching
red and blue guards, one can see that the clause gadget outputs cj = 1 if xi1 =
xi2 = xi3 = 1. (The remaining cases are explained in the next paragraph.)

Consider a NOR gadget when xi1 �= xi2 (see Fig. 8(b)). In this case, there
exists a conflict-free 2-chromatic guard set (see red and blue guards in Fig. 8(b))
so that the clause gadget emits a red beam (=value 0) upward. Namely, the
NOR gadget can output 0 when xi1 �= xi2 . Thus, in Fig. 9(b), the OR gadget
can output 1 when xi1 �= xi2 . Hence, in Fig. 10, a clause gadget can output cj = 1
if at least one of xi1 , xi2 , and xi3 is 1. In summary, if (xi1 , xi2 , xi3) = (0, 0, 0)
(resp. (1, 1, 1)) then the clause gadget must output cj = 0 (resp. cj = 1) (see the
previous paragraph), and if (xi1 , xi2 , xi3) /∈ {(0, 0, 0), (1, 1, 1)} then the clause
gadget can output cj = 1. (In Fig. 12, if (x1, x2, x3, x4) = (1, 1, 0, 1), there exists
a conflict-free 2-chromatic guard set so that all of c1, c2, and c3 output 1. Here,
(1, 1, 0, 1) satisfies the 3SAT instance given in the caption.)

Figure 11 is an XNOR gadget, which connects clause gadgets cj and cj+1 for
every j ∈ {0, 1, ...,m− 1} (see also Fig. 12). Figure 11(a) is an invalid placement
of red and blue guards, since we cannot place neither a red guard nor a blue
guard on a door vertex of bowl b13 in order to observe area uj . On the other
hand, if both clauses cj and cj+1 have value 1 (resp. value 0), then area uj can
be observed by a blue guard (resp. red guard) (see Figs. 11(b,c)).
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Fig. 9. (a) NOT gadget. The input is xi = 0 if and only if the output is xi = 1. (b) OR
gadget. If xi1 = xi2 = 0, the OR gadget outputs 0. By switching red and blue guards,
one can see that the OR gadget outputs 1 if xi1 = xi2 = 1. When xi1 �= xi2 , the OR
gadget can output 1 (see the body text for details). (Color figure online)

Figure 12 is a sketch of a polygon P with holes transformed from U =
{x1, x2, x3, x4} and C = {c1, c2, c3}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4},
and c3 = {x2, x3, x4}. In Fig. 12, c0 = {x0, x0, x0} is a dummy clause, where x0

is a dummy variable.

Lemma 1. The instance C of 3SAT is satisfiable if and only if there exists a
conflict-free 2-chromatic vertex-guard set for the polygon P with holes.

Proof. (⇒) Suppose that the instance C of 3SAT is satisfiable. In Fig. 12, clause
gadget c0 can emit a blue beam upward, since the dummy clause c0 = {x0, x0, x0}
is satisfied if the dummy variable x0 = 1. Then, area u0 can be observed by a
blue guard if c1 is satisfied. Suppose that c0 and c1 are satisfied. Then, area u1

can be observed by a blue guard if c2 is satisfied. By continuing this observation,
one can see that all areas u0, u1, . . . , um−1 can be observed by blue guards if all
of c1, c2, . . . , cm are satisfied.

(⇐) Suppose that the instance C of 3SAT is not satisfiable. Consider an
arbitrary assignment (b1, b2, . . . , bn) ∈ {0, 1}n for (x1, x2, . . . , xn). Since C is
not satisfiable, there exists at least one clause cj = {xh1 , xh2 , xh3} such that
xh1 = xh2 = xh3 = 0 when the assignment is (b1, b2, . . . , bn). Here, each of
xh1 , xh2 , and xh3 is a positive or negative literal. Furthermore, for the same
assignment (b1, b2, . . . , bn), there exists at least one clause ck = {xl1 , xl2 , xl3}
such that xl1 = xl2 = xl3 = 1 because of the following reason: Assume for
contradiction that there is no ck = {xl1 , xl2 , xl3} such that xl1 = xl2 = xl3 =
1. Then, every clause contains at least one literal x whose value is 0. Now,
consider the “inverted” assignment (b1, b2, . . . , bn). For the inverted assignment,
every clause contains at least one literal of value x = 1. This implies that C is
satisfiable, a contradiction.
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Fig. 10. Clause gadget cj = {xi1 , xi2 , xi3}. If xi1 = xi2 = xi3 = 0, then the clause
gadget outputs cj = 0. By switching red and blue guards, one can see that the clause
gadget outputs cj = 1 when xi1 = xi2 = xi3 = 1. On the other hand, if at least one of
xi1 , xi2 , and xi3 is 1, then the clause gadget can output cj = 1. (Color figure online)

Fig. 11. XNOR gadget. This gadget connects clause gadgets cj and cj+1. (a) is an
invalid placement of red and blue guards. (b,c) If clauses cj and cj+1 have value 1
(resp. value 0), then area uj can be observed by a blue guard (resp. red guard). (Color
figure online)

Therefore, in any unsatisfiable instance C of 3SAT, there are two clauses
cj = {xh1 , xh2 , xh3} and ck = {xl1 , xl2 , xl3} such that xh1 = xh2 = xh3 = 0 and
xl1 = xl2 = xl3 = 1 for every assignment (b1, b2, . . . , bn) ∈ {0, 1}n. If j < k, there
exists an integer j′ ∈ {j, j + 1, . . . , k − 1} such that the area uj′ is observed by
neither a blue guard nor a red guard (see Fig. 11(a)). The case k < j is similar.
This completes the proof of Lemma 1.
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Fig. 12. Sketch of a polygon with holes transformed from U = {x1, x2, x3, x4} and
C = {c1, c2, c3}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4}, and c3 = {x2, x3, x4}. In
this figure, c0 = {x0, x0, x0} is a dummy clause, where x0 is a dummy variable. The
polygon with holes constructed according to this figure can be guarded by red and blue
guards in the conflict-free condition. From the positions of red and blue guards, one
can see that (x1, x2, x3, x4) = (1, 1, 0, 1) satisfies all the clauses. (Color figure online)

4 Conclusion

In this paper, we studied a chromatic variant of the art gallery problem under
the conflict-free conditions. It was shown that the vertex-to-point conflict-free
chromatic art gallery problem for polygons with holes is NP-hard when the
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number of colors is two. Proving the NP-hardness of the problem under the
point-to-point condition remains an open problem.
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Abstract. Motivated by the k-center problem in location analysis, we
consider the polygon burning (PB) problem: Given a polygonal domain P
with h holes and n vertices, find a set S of k vertices of P that minimizes
the maximum geodesic distance from any point in P to its nearest vertex
in S. Alternatively, viewing each vertex in S as a site to start a fire, the
goal is to select S such that fires burning simultaneously and uniformly
from S, restricted to P , consume P entirely as quickly as possible. We
prove that PB is NP-hard when k is arbitrary. We show that the discrete
k-center of the vertices of P under the geodesic metric on P provides a
2-approximation for PB, resulting in an O(n2 logn + hkn logn)-time 3-
approximation algorithm for PB. Lastly, we define and characterize a new
type of polygon, the sliceable polygon. A sliceable polygon is a convex
polygon that contains no Voronoi vertex from the Voronoi diagram of its
vertices. We give a dynamic programming algorithm to solve PB exactly
on a sliceable polygon in O(kn2) time.

Keywords: k-center · Polygon covering · Voronoi diagram

1 Introduction

Given a set S of n points representing clients or demands, the k-center problem
asks to determine a collection C of k center points for placing facilities so as
to minimize the maximum distance from any demand to its nearest facility.
Geometrically speaking, the goal is to find the centers of k equal-radius balls
whose union covers S and whose common radius, the radius of the k-center,
is as small as possible. This paper assumes the discrete version of the k-center
problem where centers are selected from S.

The k-center problem is NP-hard when k is an arbitrary input parameter [11]
and NP-hard to approximate within a factor of 2 − ε for any ε > 0 [9]. However,
there exist several 2-approximation algorithms that hold in any metric space [6,
10]. Gonzalez, for one, gave a greedy approach: Select the first center from S
arbitrarily, and while |C| < k, repeatedly find the point in S whose minimum
distance to the chosen centers is maximized and add it to C.

In many real-world applications, demands are not restricted to a discrete set
but may be distributed throughout an area. Consider, for example, installing
charging stations in a warehouse so that the worst-case travel time of robots
to their nearest stations is minimal. In practice, regions of demand are often
c© Springer Nature Switzerland AG 2022
P. Mutzel et al. (Eds.): WALCOM 2022, LNCS 13174, pp. 123–134, 2022.
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modelled using polygonal domains. A polygonal domain P with h holes and n
vertices is a connected region whose boundary ∂P comprises n line segments
that form h + 1 simple closed polygonal chains. If P is without holes, then it is
a simple polygon. We define the geodesic distance d(s, t) between any two points
s, t ∈ P to be the Euclidean length of the shortest path connecting s and t that
is contained in P .

Given a polygonal domain P , the geodesic k-center problem on P asks to
find a set C of k points in P that minimizes the maximum geodesic distance
from any point in P to its closest point in C. We call C the k-center of P .
Asano and Toussaint [2] gave the first algorithm for computing the 1-center of
a simple polygon with n vertices; it runs in O(n4 log n) time. This result was
later improved by Pollack et al. [14] to O(n log n), and recently, Ahn et al. [1]
presented an optimal linear-time algorithm. Following these explorations, Oh
et al. [12] gave an O(n2 log2 n)-time algorithm for computing the 2-center of a
simple polygon. However, it appears that no results are known for k > 2 in the
case of simple polygons. Likewise, for polygons with one or more holes, results
are limited: only the 1-center problem has been solved with a running time of
O(n11 log n) [16].

In practice, facilities are often restricted to feasible locations. Hence, there
has been some interest in constrained versions of the geodesic k-center problem
on polygonal domains. Oh et al. [13] considered the problem of computing the 1-
center of a simple polygon constrained to a set of line segments or simple polygo-
nal regions in the polygon. Du and Xu [4] proposed a 1.8841-approximation algo-
rithm for computing the k-center of a convex polygon P with centers restricted
to the boundary of P .

In this paper, we consider a new variant of the geodesic k-center problem
that restricts facilities to the vertices of the given polygonal domain. Unlike the
original problem and the constrained versions above, our problem is a combina-
torial optimization problem: We draw centers from a finite set of points rather
than a region in the plane. Viewing each vertex as a potential site to start a fire,
we arrive at the following problem formulation we adopt in this paper.

Definition 1 (Polygon Burning). Given a polygonal domain P with h holes
and n vertices and an integer k ∈ [1, n], find a set S of k vertices of P such that
P is consumed as quickly as possible when burned simultaneously and uniformly
from S.

Section 2 is devoted to the background required for our study. In Sect. 3, we
prove that PB is NP-hard when k is part of the input. In Sect. 4, we show that
the k-center of the vertices of P under the geodesic metric on P provides a
2-approximation for PB on P . This result applying to Gonzalez’s greedy algo-
rithm leads to an O(n2 log n+hkn log n)-time 3-approximation algorithm for PB.
Finally, given the NP-hardness of PB in general, we shift our focus to restricted
instances. In Sect. 5, we consider convex polygons that contain no Voronoi ver-
tex from the Voronoi diagram of their vertices. We call such instances sliceable.
Their structure admits a natural ordering of separable subproblems, permitting
an exact O(kn2) algorithm using the dynamic programming technique.
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2 Preliminaries

Unless stated otherwise, the distance metric d we use on a polygonal domain P
is the geodesic metric on P . The diameter of P , diam(P ), is the largest distance
between any two points in P .

Let S = {s1, s2, . . . , sk} be a set of k points, called sites or burn sites, in
a region R. The Voronoi diagram VDR(S) of S is the subdivision of R into k
Voronoi regions, one per site si ∈ S, such that any point in the Voronoi region
of si is closer to si (using the geodesic metric on R) than to any other site in S.
We refer to VDR2(S) as VD(S).

Consider a polygonal domain P with vertices V = {v1, v2, . . . , vn}. Let S ⊆ V
be a selection of k burn sites. Each Voronoi region Pi in the Voronoi diagram
VDP (S) of S is the set of points in P burned by the fire from site si ∈ S.
We associate with each point p in Pi the time it burns, which is the distance
travelled by the fire from si to p. It follows that P burns in time tS(P ) =
maxsi∈S maxp∈Pi

d(si, p). As described in Definition 1, PB asks to find a set
S ⊆ V , |S| = k, that minimizes tS(P ). We let Sk(P ) denote such an optimizing
set and let OPTk(P ) be the minimum burning time of P .

A geodesic disk of radius r centered at a point p ∈ P is the set of points
in P at most geodesic distance r from p. By definition, the union of k geodesic
disks of radius OPTk(P ) centered at the sites in Sk(P ) contains P . Observe that
diam(P ) ≤ 2k ·OPTk(P ) since P cannot be covered by k geodesic disks of radius
OPTk(P ) otherwise. The time to burn P given any non-empty selection of burn
sites is at most diam(P ). Hence any non-empty selection of burn sites from V
gives a 2k-approximation for PB with k sites on P .

3 Hardness

In this section, we show that PB is NP-hard on polygonal domains. We reduce
from 4-Planar Vertex Cover (4VPC): Given a planar graph G with max-degree
four and an integer κ, does G contain a vertex cover (i.e., a set of vertices
C ⊆ V (G) such that every edge in G contains at least one vertex in C) of size
at most κ? This problem is known to be NP-hard [5].

Given an instance G,κ of 4PVC, we construct an equivalent instance of PB.
First we compute an orthogonal drawing Γ of G with O(n) bends on an integer
grid of O(n2) area (Fig. 1a) using an O(n)-time algorithm due to Tomassia and
Tollis [15]. Every edge uv ∈ E(G) is represented as a sequence of connected
line segments p1p2, p2p3, . . . , pi−1pi in Γ, denoted Γ(uv), where p1 = Γ(u) and
pi = Γ(v) correspond to the endpoints of uv and p2, . . . , pi−1 are bends in Γ(uv).
The length |Γ(uv)| of Γ(uv) is the sum of the lengths of its line segments.

Next we transform Γ into a constrained straight-line drawing Π of a subdivi-
sion H of G in two steps. First we add a vertex at every bend in Γ (Fig. 1b). Then
we replace each segment pjpj+1 (1 ≤ j < i) along Γ(uv) with either 3|pjpj+1| or
3|pjpj+1|+1 equal-length edges depending on the parity required to ensure that
the overall number �uv of segments along Γ(uv) is odd (Fig. 1c). Property 1 and 2
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Fig. 1. (a) A planar orthogonal grid drawing Γ of G, (b) a straight-line grid drawing
(step 1), and (c) the drawing Π of the subdivision H of G satisfying Property 1 and 2
(step 2).

follow from these steps. Property 2 is due to the fact that a double subdivision
of an edge in G increases the size of any vertex cover of G by one.

Property 1. For every uv ∈ E(H), 1
4 ≤ |Π(uv)| ≤ 1

3 .

Property 2. G has a vertex cover of size κ if and only if H has a vertex cover of
size K(G) := κ + 1

2

∑
uv∈E(�uv − 1).

Finally, we convert Π into a polygonal domain P (G) by thickening each line
segment in Π as follows. For every vertex v ∈ V (H), we replace Π(v) with a
set S(v) of four vertices at Π(v) + (−ε, ε), Π(v) + (ε, ε), Π(v) + (ε,−ε), and
Π(v) + (−ε,−ε), where ε < 1

120 is a fixed constant. Let R(uv) denote the convex
hull of S(u) ∪ S(v). We define P (G) to be the union of the collection of regions
R(uv) for all uv ∈ E(H).

It is straightforward to verify that the above transformation of an instance
G of 4PVC to an instance P (G) of PB runs in O(n) time. Furthermore, P (G)
has O(n) vertices, and the number of bits required in the binary representa-
tion of each vertex coordinate is bounded by a polynomial in n. It remains to
demonstrate that:

Lemma 1. G has a vertex cover of size at most κ if and only if P (G) can be
burned in time 1

3 + 3ε using K(G) sites.

Proof. It suffices to show that for any uv ∈ E(H), R(uv) can be burned in time
1
3 +3ε if and only if at least one vertex in S(u)∪S(v) is a burn site. The forward
direction follows from observing that 1

3+3ε is a loose upper bound on the burning
time of R(uv) given that a site is located in either S(u) or S(v) (Property 1).
For the reverse direction, suppose no vertices in S(u) or S(v) are selected. We
obtain a lower bound on the burning time of R(uv) by considering the scenario
where R(uv) is burned the quickest: First, for each vertex w ∈ H adjacent to
either u or v, let all vertices in S(w) be burn sites. Second, assume u and v have
as many adjacent edges as possible in E(H) to assist in burning R(uv). At most
one of these two adjacent vertices can have degree greater than two since at
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Fig. 2. A scenario where R(uv) is burned the quickest assuming that no sites (circled)
are selected from either S(u) or S(v). The two dashed lines are the only integer grid
lines in the figure.

most one is on the integer grid, and this vertex, say u, can have degree at most
four. The other vertex v can have degree two, but its adjacent edges must be
colinear in the drawing. Finally, suppose all these edges are as short as possible
in the drawing Π (14 by Property 1). We find that the burning time of R(uv),
if no vertex in S(u) or S(v) is a site, is bounded below by 3

8 − 2ε > 1
3 + 3ε (see

Fig. 2). The lemma then follows from Property 2. ��
As a result, we obtain:

Theorem 1. PB is NP-hard on polygonal domains.

4 Approximation by a k-Center

We present a straightforward 3-approximation algorithm for PB by considering
the k-center problem described in the introduction.

Theorem 2. The radius of a k-center of the vertices V of P , using the geodesic
metric on P , provides a 2-approximation of OPTk(P ).

Proof. Let C ⊆ V denote a k-center of V and let r denote its radius. Observe
two facts: First, OPTk(P ) ≥ r since P ⊇ V . Second, each point p ∈ P is within
OPTk(P ) of a vertex v of P , and v is at most r from some center c in C.
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Therefore, by the triangle inequality, d(p, c) ≤ OPTk(P ) + r ≤ 2OPTk(P ) as
desired. ��
Corollary 1. Applying Gonzalez’s greedy 2-approximation algorithm for finding
a k-center of V yields an O(n2 log n+hkn log n)-time 3-approximation algorithm
for PB on P that uses O(n2) space.

Proof. The 2-approximation algorithm provides an approximate k-center of V
whose radius r′ is at most 2r where r, as in the above proof, is the optimal
k-center radius. Following that proof, this yields a 3-approximation. The time
and space complexity are due to performing O(kn) geodesic distance queries on
P using an algorithm by Guo et al. [8]. Their algorithm builds a data structure
of size O(n2) in time O(n2 log n) to support O(h log n)-time geodesic distance
queries between any two points in P . Note, if P is simple, then a 3-approximation
for PB can be found in O(kn log n) time using O(n) space by the faster geodesic
distance queries of Guibas and Hershberger [7]. ��

5 Sliceable Polygons

Even for convex polygons, the choice of a burn site depends on many of the
choices of other burn sites since a site may have many Voronoi neighbors. To
obtain an efficient algorithm, we consider a family of polygons where the number
of such interactions between burn sites is small.

Definition 2. A sliceable polygon P is convex and contains no Voronoi vertex
from the Voronoi diagram VD(V ) of its vertices V .

Every Voronoi edge in VD(V ) that intersects P slices through P (Fig. 3). We
can solve PB on P using dynamic programming, as P admits a total ordering
of vertices with the property that if burn sites u, v, and w satisfy u < v < w,
then the region of P burned by u does not share a boundary with the region of
P burned by w (Lemma 2). We start with a simple example that indicates the
use of this property.

5.1 Polygons in One Dimension

Let P be a 1-dimensional polygon with n vertices v1, v2, . . . , vn ordered by x-
coordinate. Let P [i, j] be the segment of P from vi to vj . The minimum time to
burn P using k sites is

OPTk(P ) =

{
mini∈[n] max{d(v1, vi),Lnr(i, k − 1)} if k > 0
∞ otherwise,

where d(v1, vi) is the time to burn P [1, i] from site vi and Lnr(i, k) denotes the
minimum time to burn P [i, n] using k sites in addition to vi. If k > 0, then
Lnr(i, k) is achieved by choosing the next site vj (i < j ≤ n) to minimize the
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Fig. 3. A sliceable polygon P overlaid with the Voronoi diagram (dashed) of its vertices.
By Lemma 2, the region of P (shaded) burned by a site v separates the regions burned
by sites (circled) before v in the ordering from regions burned by sites after v, no matter
what those sites are. This holds for every v.

larger of two values: (i) the time d(vi, vj)/2 to burn P [i, j] and (ii) the minimum
time to burn P [j, n] knowing vj is a burn site with k −1 burn sites remaining. If
k = 0, no sites are allowed beyond vi, in which case the minimum time to burn
P [i, n], with vi as a burn site, is d(vi, vn).

Lnr(i, k) =

{
mini<j≤n max{d(vi, vj)/2,Lnr(j, k − 1)} if k > 0,

d(vi, vn) otherwise.

This recurrence relation relies only on the property that any burn site preceding
the burn site vi is farther from every point in P [i, j] than vi for j > i. We will
prove a similar property for sliceable polygons.

A dynamic programming algorithm follows directly from the recurrence.

Theorem 3. PB can be solved in O(kn2) time on a 1-dimension polygon with
n vertices.

Proof. (Sketch) Use dynamic programming. Two observations hold on each iter-
ation of the algorithm: (i) The choice of the following site vj is unaffected by
the sites selected before the current site vi, and (ii) we evaluate every possible
choice vj and take the best amongst them. The natural ordering of subproblems
implied by (i) combined with the virtue of an exhaustive search as noted in (ii)
allows us to successfully compute the solution to the original problem from the
solutions to the recursive subproblems.

The algorithm populates a table of size O(kn). To fill each entry, it computes
the minimum of O(n) previous entries. Therefore, the total running time is
O(kn2). ��
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5.2 Ordering

Lemma 2. The vertices of a sliceable polygon P can be ordered such that for
any burn sites u < v < w, the region of P burned from u does not share a
boundary with the region in P burned from w.

Proof. We first prove that (P1) each Voronoi region in VDP (V ) shares a bound-
ary with at most two other Voronoi regions. Then we show that (P2) the graph
joining two vertices if they share such a boundary is connected and thus forms
a path, which defines an ordering of vertices required by the lemma. (The path
can be directed in two ways, either of which defines such an ordering.)

For (P1), suppose for the sake of contradiction that vertex u of P forms
Voronoi edges in VD(V ) that cross P with three other vertices, say r, s, and t.
Since P is sliceable, the endpoints (Voronoi vertices) of these Voronoi edges lie
outside P .

Let P ′ be the convex hull of {u, r, s, t}. The Voronoi edge between u and r in
VD({u, r, s, t}) contains the corresponding Voronoi edge in VD(V ) since every
point that is closest to u and r among all vertices of V is still closest to u and r
among a subset of V . The same is true for the Voronoi edges between u and s and
between u and t. Thus, since all three of these Voronoi edges cross P in VD(V )
the corresponding edges in VD({u, r, s, t}) cross P and hence cross P ′ ⊆ P as
well. It follows that a sliceable polygon P with a vertex u that creates Voronoi
edges crossing P with three different vertices r, s, and t implies the existence of
a sliceable quadrilateral P ′ with the same property. To obtain a contradiction
and establish (P1), we will argue that no such quadrilateral exists.

Assume r, s, and t are labelled so that the circum-
centers c1 of �urs and c2 of �ust are the two Voronoi
vertices shared by these three Voronoi edges. Since the
boundary of the Voronoi region of u intersects P ′ in
three segments that do not contain c1 or c2, c1 lies on
the side of the line through rs opposite u and c2 lies
on the side of the line through st opposite of u. It fol-
lows that ∠rus and ∠sut are obtuse. Thus the interior
angle of P ′ at u is greater than π, contradicting the
convexity of P ′ (inset). This result establishes (P1).

For (P2), assume for a contradiction that the graph has more than one con-
nected component. Then no inter-component vertices form Voronoi boundaries
with each other in VDP (V ). It follows that the fires burning from separate con-
nected components never meet, and hence P cannot be burned entirely. This
contradiction establishes (P2). ��

5.3 Sliceability of Subsets

In this section, we study the sliceability of subsets of sliceable polygons. In
particular, we show that a sliceable polygon P contains no Voronoi vertex from
VD(S) for any subset S ⊆ V . While the existence of a dynamic programming
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algorithm does not require this result, it adds to our characterization of sliceable
polygons and allows us to define a simpler recurrence for PB on P that yields a
faster dynamic programming algorithm.

The Delaunay triangulation of a set S of sites, denoted DT(S), is the dual
graph of VD(S). It is a triangulation of S such that no circumcircle of any
triangle in DT(S) contains a site. The circumcenters of the triangles are the
vertices of VD(S).

Lemma 3. Let T be a triangulation of a convex polygon P . Suppose there exist
adjacent triangles pqr and prs in T that form a convex quadrilateral. If P con-
tains the circumcenter of �pqr and s is interior to the circumcircle of �pqr,
then P contains the circumcenter of �pqs or the circumcenter of �qrs, or both.

Proof. Assume the vertices of quadrilateral pqrs are labelled in counter-clockwise
order. By the conditions of the lemma, triangles pqs and qrs form the Delaunay
triangulation of quadrilateral pqrs. Orient P so that pq is aligned with the x-axis
with r and s lying above it (Fig. 4). Let f , g, and h denote the circumcenters of
�pqr, �pqs, and �qrs, respectively. Since r lies outside Cpqs above qs, Cpqs lies
below Cpqr, implying that g is below f . Similarly, since p lies outside Cqrs left
of qs, Cqrs lies right of Cpqr, which implies that h is right of f . To prove that
either g or h lies in P given that f is in P , consider two cases:

Case 1: Suppose h lies on or left of qr. Let m be the midpoint of qr. Since h
is right of f and both f and h lie on the bisector of q and r, h lies along fm.
Hence, by the convexity of P , h lies in P .

Case 2: Otherwise, h lies right of qr. Then ∠qsr > π
2 . We show that g must

lie on or above pq in this scenario. Assume for a contradiction that g lies below
pq. Then ∠psq > π

2 . This yields ∠psr = ∠psq + ∠qsr > π, which implies that P
is not convex. This contradiction establishes that g lies above pq. By the same
analysis provided in the previous case, we conclude that P contains g. ��

Fig. 4. Illustration of Case 1 (left) and Case 2 (right) of Lemma 3 with Cpqr (solid),
Cpqs and Cqrs (dotted), and VD({p, q, r, s}) (dashed).
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Lemma 4. Consider a triangulation T of a convex polygon P . If P contains the
circumcenter of a triangle in T , then it contains the circumcenter of a triangle
in the Delaunay triangulation DT(V ) of V .

Proof. Let pr be an edge in T incident to two triangles pqr and prs that form
a convex quadrilateral. We say pr is an illegal edge if s lies in Cpqr. A new
triangulation T ′ of P can be obtained from T by replacing pr with qs. This edge
flip operation creates �pqs and �qrs in place of �pqr and �prs. If pr is illegal,
then, by Lemma 3, P contains the circumcenter of �pqs or �qrs (or both) if
it contains the circumcenter of �pqr or �prs. More generally, assuming that
T ′ is obtained by flipping an illegal edge in T , P contains the circumcenter of
some triangle in T ′ if it contains the circumcenter of some triangle in T . We can
compute DT(V ) by flipping illegal edges in T until none exist [3]. Therefore, by
repeated application of Lemma 3, P contains the circumcenter of some triangle
in DT(V ) if it contains the circumcenter of some triangle in T . ��
Theorem 4. If a convex polygon P does not contain the circumcenter of any
triangle in DT(V ), then P does not contain the circumcenter of any triangle in
DT(S) for any S ⊆ V .

Proof. For completeness, we restate the theorem in terms of Voronoi diagrams.
If a convex polygon P does not contain any Voronoi vertex of VD(V ), then P
does not contain any Voronoi vertex of VD(S) for any S ⊆ V .

We provide a contrapositive proof. Suppose P contains the circumcenter of
�pqr in DT(S). Let T be any triangulation of P containing �pqr. Of course,
P contains the circumcenter of a triangle in T , implying that P contains the
circumcenter of a triangle in DT(V ) by Lemma 4. ��
Corollary 2. If P is sliceable, then the convex hull of S is sliceable for any
S ⊆ V .

Proof. Since P contains no Voronoi vertex of VD(S) for any S ⊆ V by Theo-
rem 4, neither does any subset of P , including the convex hull of S. ��

5.4 Dynamic Programming Algorithm

Let P be a sliceable polygon. The ordering of its vertices v1, v2, . . . , vn as defined
in Lemma 2 permits a dynamic programming algorithm similar to the one used
for 1-dimensional polygons that solves PB on P . Let Slb(i, k) denote the mini-
mum time to burn the subset of P from the bisector of vi−1vi onward given that
vi is a burn site and k sites remain to be chosen. It can be defined recursively as

Slb(i, k) =

{
mini<j≤n max{d(vj , pij), d(vj , qij),Slb(j, k − 1)} if k > 0,

d(vi, vn) otherwise,

where pij and qij represent the intersections of the bisector of vivj with ∂P . It
follows that the minimum time to burn P using k sites is

OPTk(P ) =

{
mini∈[n] max{d(v1, vi),Slb(i, k − 1)} if k > 0
∞ otherwise.
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Theorem 5. Using a dynamic programming algorithm, PB can be solved in
O(kn2) time on an n-vertex sliceable polygon.

Proof. (Sketch) We prove that the recurrence for Slb(i, k) is correct by showing
that the maximum distance from burn site vj to a point in the region Pj that is
burnt by vj is correctly calculated in Slb(i, k). Let vi be the burn site preceding
vj , and v� be the burn site following vj in the vertex ordering. The region Pj is
bounded by the perpendicular bisectors of segments vivj and vjv� which intersect
P in segments pijqij and pj�qj� respectively (Fig. 5). It suffices to show that the
time to burn Pj from vj is the larger of max{d(vj , pij), d(vj , qij)}, considered in
Slb(i, k), and max{d(vj , pj�), d(vj , qj�)}, considered in Slb(j, k − 1). If no site
precedes vj then the recurrence correctly, by Lemma 2, uses d(v1, vj) instead
of max{d(vj , pij), d(vj , qij)}. Likewise, if no site follows vj then the recurrence
correctly uses d(vj , vn) instead of max{d(vj , pj�), d(vj , qj�)}.

Since Pj is convex, the point in Pj farthest from site vj is some vertex of
Pj . We show that this vertex is in {pij , qij , pj�, qj�}. Suppose, for the sake of
contradiction, it is not and that there exists a vertex u of P in Pj such that the
circle C centered at vj through u contains Pj .

First, ∠vjuvi is acute since for Pj to lie inside C, both edges of Pj incident
to u must form acute angles with its radius vju. Hence, since P is convex, both
the edge uvi and the edge uv� form an acute angle with vju. Second, both vi and
v� lie outside the circle with diameter vju, otherwise u would be closer to vi or
v� than to vj and hence not be burned by vj . This implies that ∠uvivj is acute.
Finally, (i) if vi < u < vj in the vertex ordering then ∠vivju is acute, otherwise
the perpendicular bisector of uvj would not separate vi from vj which violates
the properties of the ordering. Similarly, (ii) if vj < u < v� then ∠vjv�u is acute.

Combining these three observations, we have in case (i) that �viuvj is acute
and in case (ii) that �vjuv� is acute, both of which contradict Corollary 2. ��

Fig. 5. Region Pj (shaded) induced by sites vi, vj , and v� (circled), overlaid with the
distances considered by algorithm (dotted).

6 Conclusion

In this paper, we proved PB to be NP-hard on general polygonal domains. Nev-
ertheless, the hardness for simple and convex polygons remains open. In addi-
tion, we gave an O(n2 log n+hkn log n)-time 3-approximation algorithm for PB.
Finally, we considered sliceable polygons on which we can obtain a dynamic
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programming solution for PB. Avenues for future research are to improve the
approximation algorithm, to expand the class of polygons solvable using dynamic
programming, and to resolve the complexity of PB on simple polygons.
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Abstract. Given a set P of n points in the plane, a unit-disk graph
Gr(P ) with respect to a parameter r is an undirected graph whose vertex
set is P such that an edge connects two points p, q ∈ P if the (Euclidean)
distance between p and q is at most r (the weight of the edge is 1 in the
unweighted case and is the distance between p and q in the weighted
case). Given a value λ > 0 and two points s and t of P , we consider the
following reverse shortest path problem: Compute the smallest r such
that the shortest path length between s and t in Gr(P ) is at most λ. In
this paper, we study the weighted case and present an O(n5/4 log5/2 n)
time algorithm. We also consider the L1 version of the problem where
the distance of two points is measured by the L1 metric; we solve the
problem in O(n log3 n) time for both the unweighted and weighted cases.

1 Introduction

Given a set P of n points in the plane and a parameter r, the unit-disk graph
Gr(P ) is an undirected graph whose vertex set is P such that an edge connects
two points p, q ∈ P if the (Euclidean) distance between p and q is at most r. The
weight of each edge of Gr(P ) is defined to be one in the unweighted case and
is defined to the distance between the two vertices of the edge in the weighted
case. Alternatively, Gr(P ) can be viewed as the intersection graph of the set of
congruous disks centered at the points of P with radii equal to r/2, i.e., two
vertices are connected if their disks intersect. The length of a path in Gr(P ) is
the sum of the weights of the edges of the path.

Computing shortest paths in unit-disk graphs with different distance metrics
and different weights assigning methods has been extensively studied, e.g., [5–
7,12,13,17,19,20]. Although a unit-disk graph may have Ω(n2) edges, geometric
properties allow to solve the single-source-shortest-path problem (SSSP) in sub-
quadratic time. Roditty and Segal [17] first proposed an algorithm of O(n4/3+ε)
time for unit-disk graphs for both unweighted and weighted cases, for any ε > 0.
Cabello and Jejčič [5] gave an algorithm of O(n log n) time for the unweighted
case. Using a dynamic data structure for bichromatic closest pairs [1], they also
solved the weighted case in O(n1+ε) time [5]. Chan and Skrepetos [6] gave an

This research was supported in part by NSF under Grant CCF-2005323.
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O(n) time algorithm for the unweighted case, assuming that all points of P
are presorted. Kaplan et al. [13] developed a new randomized result for the
dynamic bichromatic closest pair problem; applying the new result to the algo-
rithm of [5] leads to an O(n log12+o(1) n) expected time randomized algorithm
for the weighted case. Recently, Wang and Xue [19] proposed a new algorithm
that solves the weighted case in O(n log2 n) time.

The L1 version of the SSSP problem has also been studied, where the distance
of two points in the plane is measured under the L1 metric when defining Gr(P ).
Note that in the L1 version a “disk” is a diamond. The SSSP algorithms of [5,6]
for the L2 unweighted version can be easily adapted to the L1 unweighted version.
Wang and Zhao [20] recently solved the L1 weighted case in O(n log n) time. It is
known that Ω(n log n) is a lower bound for the SSSP problem in both L1 and L2

versions [5,20]. Hence, the SSSP problem in the L1 weighted/unweighted case
as well as in the L2 unweighted case has been solved optimally.

In this paper, we consider the following reverse shortest path (RSP) problem.
In addition to P , given a value λ > 0 and two points s, t ∈ P , the problem is
to find the smallest value r such that the distance between s and t in Gr(P ) is
at most λ. Throughout the paper, we let r∗ denote the optimal value r for the
problem. The goal is therefore to compute r∗.

Observe that r∗ must be equal to the distance of two points in P in any case
(i.e., L1, L2, weighted, unweighted). For the L2 unweighted case, Cabello and
Jejčič [5] mentioned a straightforward solution that can solve it in O(n4/3 log3 n)
time, by using the distance selection algorithm of Katz and Sharir [14] to perform
binary search on all interpoint distances of P ; Wang and Zhao [21] later gave two
algorithms with time complexities O(�λ� ·n log n) and O(n5/4 log7/4 n),1 respec-
tively, using the parametric search technique. The first algorithm is interesting
for small λ and the second algorithm uses the first one as a subroutine.

In this paper, we study the L2 weighted case of the RSP problem and present
an algorithm of O(n5/4 log5/2 n) time. We also consider the L1 version of the RSP
problem and solve it in O(n log3 n) time for both unweighted and weighted cases.

Recently, Katz and Sharir [15] proposed randomized algorithms of O(n6/5+ε)
expected time for the L2 RSP problem for both the unweighted and weighted
cases, for arbitrary small ε > 0.2

The RSP problem has been studied in the literature under various prob-
lem settings. Intuitively, the problem is to modify the graph (e.g., modify edge
weights) so that certain desired constraints related to shortest paths can be satis-
fied, e.g., [4,22]. As a motivation of our problem, consider the following scenario.
Suppose Gr(P ) represents a wireless sensor network in which each sensor is rep-
resented by a disk centered at a point in P and two sensors can communicate

1 The time complexity given in [21] is O(n5/4 log2 n), but can be easily improved
to O(n5/4 log7/4 n) by changing the threshold for defining large cells from n3/4 to
(n/ log n)3/4 in Sect. 4 [21].

2 It is not explicitly stated in [15] that the algorithm is randomized. A key subroutine
used in the algorithm is Theorem 1 [15], which is from [2] and is a randomized
algorithm (see Sect. 4 in [2]).
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with each other (e.g., directly transmit a message) if they are connected by an
edge in Gr(P ). The disk radius is proportional to the energy of the sensor. The
latency of transmitting a message between two neighboring sensors is propor-
tional to their distance. For two sensors s and t, we want to know the minimum
energy for all sensors so that the total latency of transmitting messages between
s and t is no more than a target value λ. It is not difficult to see that this is
equivalent to our RSP problem.

1.1 Our Approach

Our algorithm for the L2 weighted RSP problem follows the parametric search
scheme. Let dr(s, t) denote the distance from s to t in Gr(P ). Given any r, the
decision problem is to decide whether r∗ ≤ r. Observe that r∗ ≤ r holds if and
only if dr(s, t) ≤ λ. Hence, the shortest path algorithm of Wang and Xue [19]
(referred to the WX algorithm) can be used to solve the decision problem in
O(n log2 n) time. To compute r∗, since r∗ is equal to the distance of two points
of P , one could first compute all interpoint distances of points of P and then use
the WX algorithm to perform binary search among these distances to compute
r∗. Clearly, the algorithm takes Ω(n2) time. Alternatively, as mentioned in [5],
one can perform binary search by using the distance selection algorithm of Katz
and Sharir [14] (i.e., given any k with 1 ≤ k ≤ (

n
2

)
, the algorithm finds the

k-th smallest distance among all interpoint distances of P ) without explicitly
computing all these Ω(n2) distances. As the algorithm of Katz and Sharir [14]
runs in O(n4/3 log2 n), this approach can compute r∗ in O(n4/3 log3 n) time.

We propose a more efficient parametric search algorithm, by “parameter-
izing” the decision algorithm, i.e., the WX algorithm. Like typical parametric
search, we run the decision algorithm with a parameter r ∈ (r1, r2] by simulat-
ing the decision algorithm on the unknown r∗. At each step, we call the decision
algorithm on certain “critical values” r to compare r and r∗, and the algorithm
will proceed accordingly based on the result of the comparison. The interval
(r1, r2] will also be shrunk after these comparisons but is guaranteed to contain
r∗ throughout the algorithm. The algorithm terminates once t is reached, at
which moment we can prove that r∗ is equal to r2 of the current interval (r1, r2].

For the L1 RSP problem, we use an approach similar to the distance selection
algorithm in [14]. As in the L2 case, the decision problem can be solved in
O(n log n) time by applying the SSSP algorithms for both the unweighted case
and the weighted case [5,6,20,21] (more precisely, for the unweighted case, the
decision problem can be solved in O(n) time after O(n log n) time preprocessing
for sorting the points of P [6]). Let Π denote the set of all pairwise distances of
all points of P . In light of the observation that r∗ is in Π, each iteration of our
algorithm computes an interval (aj , bj ] (initially, a0 = −∞ and b0 = ∞) such
that r∗ ∈ (aj , bj ] and the number of values of Π in (aj , bj ] is a constant fraction
of the number of values of Π in (aj−1, bj−1]. In this way, r∗ can be found within
O(log n) iterations. Each iteration will call the decision algorithm to perform
binary search on certain values. The total time of the algorithm is O(n log3 n).
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A by-product of our technique is an O(n log3 n) time algorithm that can
compute the k-th smallest L1 distance among all pairs of points of P , for any
given k with 1 ≤ k ≤ (

n
2

)
. As mentioned before, the L2 version of the problem

can be solved in O(n4/3 log2 n) time [14].

Outline. In the following, we tackle the L2 problem in Sects. 2. Due to the space
limit, many proofs and the discussion about the L1 problem are omitted but can
be found in the full paper of [21] (the two papers are merged).

2 The L2 RSP Problem

We follow the notation introduced in Sect. 1, e.g., P , Gr(P ), dr(s, t), r∗. Our goal
is to compute r∗. As we will parameterize the WX algorithm, we first review the
WX algorithm. For any two points p and q in the plane, let ‖p − q‖ denote the
Euclidean distance between them.

2.1 A Review of the WX Algorithm

Given P , r, and a source point s ∈ P , we consider the SSSP problem to compute
shortest paths from s to all points of P in the unit-disk graph Gr(P ). The WX
algorithm can solve the problem in O(n log2 n) time.

For any point p, denote by
⊙

p the disk centered at p with radius r.
The first step is to implicitly build a grid Ψr(P ) of square cells whose side

lengths are r/2. For simplicity of discussion, we assume that every point of P
lies in the interior of a cell of Ψr(P ). A patch of Ψr(P ) refers to a square area
consisting of 5 × 5 cells. For a point p ∈ P , we use �p to denote the cell of
Ψr(P ) containing p and use �p to denote the patch whose central cell is �p

(e.g., see Fig. 1). We refer to cells of �p \ �p as the neighboring cells of �p. As
the side length of each cell of Ψr(P ) is r/2, any two points of P in a single cell
of Ψr(P ) must be connected by an edge in Gr(P ). Moreover, if an edge connects
two points p and q in Gr(P ), then q must lie in �p and vice versa. For any
subset Q ⊆ P and a cell � (resp.,a patch �) of Ψr(P ), define Q� = Q∩� (resp.,
Q� = Q ∩ �). The step of implicitly building the grid actually computes the
subset P� for each cell � of Ψr(P ) that contains at least one point of P as well as
associate pointers to each point p ∈ P so that given any p ∈ P , the list of points
of P�p

(resp., P�p
) can be accessed immediately. Building Ψr(P ) implicitly as

above can be done in O(n log n) time and O(n) space [19].
The WX algorithm follows the basic idea of Dijkstra’s algorithm and com-

putes an array dist[·] for each point p ∈ P , where dist[p] will be equal to dr(s, p)
when the algorithm terminates. Different from Dijkstra’s shortest path algo-
rithm, which picks a single vertex in each iteration to update the shortest path
information of other adjacent vertices, the WX algorithm aims to update in
each iteration the shortest path information for all points within one single cell
of Ψr(P ) and pass on the shortest path information to vertices lying in the
neighboring cells.
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A key subroutine used in the WX algorithm is Update(U , V ), which updates
the shortest path information for a subset V ⊆ P of points by using the shortest
path information of another subset U ⊆ P of points. Specifically, the subroutine
finds, for each v ∈ V , qv = arg minu∈U∩⊙

v
{dist[u] + ‖u − v‖} and update

dist[v] = min{dist[v], dist[qv] + ‖qv − v‖}.
With the subroutine Update(U , V ), the WX algorithm works as follows.
Initially, we set dist[s] = 0, dist[p] = ∞ for all other points p ∈ P \ {s}, and

Q = P . Then we enter the main (while) loop. In each iteration, we find a point
z with minimum dist-value from Q, and then execute two update subroutines
Update(Q�z

, Q�z
) and Update(Q�z

, Q�z
). Next, points of Q�z

are removed
from Q, because it can be shown that dist[p] for all points p ∈ Q�z

have been
correctly computed [19]. The algorithm stops once Q becomes ∅. The efficiency
of the algorithm hinges on the implementation of the two update subroutines.
We give some details below, which are needed in our RSP algorithm as well.

The First Update. For the first update Update(Q�z
, Q�z

), the crucial step is
finding a point qv ∈ Q�z

∩⊙
v for each point v ∈ Q�z

such that dist[qv]+‖qv−v‖
is minimized. If we assign dist[q] as a weight to each point q ∈ Q�z

, then the
problem is equivalent to finding the additively-weighted nearest neighbor qv

from Q�z
∩ ⊙

v for each v ∈ Q�z
. To this end, Wang and Xue [19] proved a key

observation that any point q ∈ Q�z
that minimizes dist[q] + ‖q − v‖ must lie in⊙

v. This implies that for each point v ∈ Q�z
, its additively-weighted nearest

neighbor in Q�z
is also its additively-weighted nearest neighbor in Q�z

∩ ⊙
v.

As such, qv for all v ∈ Q�z
can be found by first building an additively-weighted

Voronoi Diagram on points of Q�z
[9] and then performing point locations for all

v ∈ Q�z
[8,16,18]. In this way, since

∑
zi

|P�zi
| = O(n), where zi refers to the

point z in the i-th iteration of the main loop, the first updates for all iterations
of the main loop can be done in O(n log n) time in total [19].

The Second Update. The second update Update(Q�z
, Q�z

) is more chal-
lenging because the above key observation no longer holds. Since Q�z

has O(1)
cells of Ψr(P ), it suffices to perform Update(Q�z

, Q�) for all cells � ∈ �z.
If � is �z, then Q�z

= Q�. Since the distance between any two points in �z

is at most r, we can easily implement Update(Q�z
, Q�) in O(|Q�z

| log |Q�z
|)

time, by first building a additively-weighted Voronoi diagram on points of Q�z

(each point q ∈ Q�z
is assigned a weight equal to dist[q]), and then using it to

find the additively-weighted nearest neighbor qv for each point v ∈ Q�z
.

If � is not �z, a useful property is that � and �z are separated by an
axis-parallel line. The WX algorithm implements Update(Q�z

, Q�) with the
following three steps. Let U = Q�z

and V = Q�.

1. Sort points of U as {u1, u2, ..., u|U |} such that dist[u1] ≤ dist[u2] ≤ ... ≤
dist[u|U |].

2. Compute |U | disjoint subsets {V1, ..., V|U |} with Vi = {v ∈ V | v ∈ ⊙
ui

and v /∈⊙
uj

for all 1 ≤ j < i}. Equivalently, for each point v ∈ V , v is in Viv , where
iv is the smallest index i (if exists) such that

⊙
ui

contains v.
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3. Initialize U ′ = ∅. Proceed with |U | iterations for i = |U |, |U | − 1, ..., 1 sequen-
tially and do the following in each iteration for i: (1) Add ui to U ′; (2) for
each point v ∈ Vi, compute qv = arg minu∈U ′{dist[u] + ‖u − v‖}; (3) update
dist[v] = min{dist[v], dist[qv] + ‖qv − v‖}.

By the definition of Vi, U ∩ ⊙
v ⊆ U ′ = {u|U |, u|U |−1, ..., ui} for each v ∈

Vi in the iteration for i of Step 3. Wang and Xue [19] proved that qv found
for each v ∈ Vi in Step 3 must lie in

⊙
v. They gave a method to implement

Step 2 in O(k log k) time by making use of the property that U and V are
separated by an axis-parallel line, where k = |U |+|V |. Step 3 can be considered as
an offline insertion-only additively-weighted nearest neighbor searching problem
and the WX algorithm solves the problem in O(k log2 k) time using the standard
logarithmic method [3], with k = |U | + |V |.

As such, the second updates for all iterations in the WX algorithm takes
O(n log2 n) time in total [19], which dominates the entire algorithm (other parts
of the algorithm together takes O(n log n) time).

2.2 The RSP Algorithm

We now tackle the RSP problem, i.e., computing r∗ for two points s, t ∈ P and
a value λ, by “parameterizing” the WX algorithm.

Recall that the decision problem is to decide whether r∗ ≤ r for a given r.
Notice that r∗ ≤ r holds if and only if dr(s, t) ≤ λ. The decision problem can be
solved in O(n log2 n) time by running the WX algorithm on r. In the following,
we refer to the WX algorithm as the decision algorithm. We say that r is a
feasible value if r∗ ≤ r and an infeasible value otherwise.

As discussed in Sect. 1, to find r∗, we run the decision algorithm with a
parameter r in an interval (r1, r2] by simulating the algorithm on the unknown
r∗. The interval always contains r∗ but will be shrunk during course of the
algorithm (for simplicity, when we say (r1, r2] is shrunk, this also include the
case that (r1, r2] does not change). Initially, we set r1 = 0 and r2 = ∞.

The first step is to build a grid for P . The goal is to shrink (r1, r2] so that
it contains r∗ and if r∗ �= r2 (and thus r∗ ∈ (r1, r2)), for any r ∈ (r1, r2),
the grid Ψr(P ) has the same combinatorial structure as Ψr∗(P ) in the following
sense: (1) Both grids have the same number of rows and columns; (2) for any
point p ∈ P , p lies in the i-th row and j-th column of Ψr(P ) if and only if p
lies in the i-th row and j-th column of Ψr∗(P ). This step is also needed in the
algorithm of [21] for solving the unweighted case of the RSP problem and an
O(n log n) time algorithm was given in [21] to achieve this by using the sorted
matrix searching technique [10,11] along with the linear-time decision algorithm
for the unweighted case [6] (more specifically, the decision algorithm is called
O(log n) times). Here in our weighted problem, we can apply exactly the same
algorithm except that we use our O(n log2 n) time decision algorithm instead
and the total time thus becomes O(n log3 n).
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Let (r1, r2] denote the interval after building the grid. We pick any r ∈ (r1, r2)
and call the WX algorithm on r to compute a grid Ψr(P ). Recall from Sect. 2.1
that by “computing Ψr(P )”, we mean to compute the following grid information:
P� for each cell � of Ψr(P ) that contains at least one point of P as well as the
associated information (e.g., for finding cells of P�p

). These information is the
same as that of Ψr∗(P ) if r∗ �= r2. Below, we will simply use Ψ(P ) to refer to the
grid information computed above, meaning that it does not change with respect
to r ∈ (r1, r2).

We use distr[·], Q(r), z(r) respectively to refer to dist[·], Q, z in the WX
algorithm running on a parameter r. We start with setting distr[s] = 0, distr[p] =
∞ for all p ∈ P \ {s}, and Q(r) = P .

Next we enter the main loop. As long as Q(r) �= ∅, each iteration finds a
point z(r) with the minimum distr-value from Q(r) and update distr-values for
points in Q(r)�z(r)

∪Q(r)�z(r)
. Points in Q(r)�z(r)

are then removed from Q(r).
Each iteration will shrink (r1, r2] such that the following algorithm invariant
is maintained: (r1, r2] contains r∗ and if r∗ �= r2, the following holds for all
r ∈ (r1, r2): z(r) = z(r∗), Q(r) = Q(r∗), and distr[p] = distr∗ [p] for all p ∈ P .

Consider an iteration of the main loop. We assume that the invariant holds
before the iteration on the interval (r1, r2], which is true before the first iteration.
In the following, we describe our algorithm for the iteration and we will show
that the invariant holds after the iteration. We assume that r∗ �= r2. According
to our invariant, for any r ∈ (r1, r2), we have z(r) = z(r∗), Q(r) = Q(r∗), and
distr[p] = distr∗ [p] for all p ∈ P .

We first find a point z(r) ∈ Q(r) with the minimum distr-value. Since the
invariant holds before the iteration, we have z(r) = arg minp∈Q(r) distr[p] =
arg minp∈Q(r∗) distr∗ [p] = z(r∗). If ties happen, we follow the same way as the
WX algorithm to break ties and ensure z(r) = z(r∗). Hence, no “parameteriza-
tion” is needed in this step, i.e., all involved values in the computation of this
step are independent of r.

Next, we perform the first update Update(Q(r)�z(r)
, Q(r)�z(r)

). This step
also does not need parameterization. Indeed, for each point p ∈ Q(r)�z(r)

, we
assign distr[p] to p as a weight, and then construct the additively-weighted
Voronoi diagram on Q(r)�z(r)

. For each point v ∈ Q(r)�z(r)
, we use the dia-

gram to find its additively-weighted nearest neighbor qv(r) ∈ Q(r)�z(r)
and

update distr[v] = min{distr[v], distr[qv(r)] + ‖qv(r) − v‖}. Since z(r) = z(r∗),
and Q(r) = Q(r∗), we have Q(r)�z(r)

= Q(r∗)�z(r∗)
and Q(r)�z(r)

= Q(r∗)�z(r∗)
.

Further, since distr[p] = distr∗ [p] for all p ∈ P , for each point v ∈ Q(r)�z(r)
,

qv(r) = qv(r∗) and each updated distr[v] in our algorithm is equal to the corre-
sponding updated distr∗ [v] in the same iteration of the WX algorithm running
on r∗. As such, the invariant still holds after the first update.

Implementing the second update Update(Q(r)�z(r)
, Q(r)�z(r)

) is more chal-
lenging and parameterization is necessary. It suffices to implement the updates
Update(Q(r)�z(r)

, Q(r)�) for all cells � ∈ �z(r).
If � is �z(r), then Q(r)�z(r)

= Q(r)�. In this case, again no parameterization is
needed. Since the distance between any two points in �z(r) is at most r, we can eas-
ily implement Update(Q(r)�z(r)

, Q(r)�) in O(|Q(r)�z(r)| log |Q(r)�z(r)|) time,
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by first building an additively-weighted Voronoi diagram on points of Q(r)�z(r)

(each point p ∈ Q(r)�z(r)
is assigned a weight equal to distr[p]), and then using it

to find the additively-weighted nearest neighbor qv(r) for each point v ∈ Q(r)�z
.

By an analysis similar to the above first update, the invariant still holds.
We now consider the case where � is not �z(r). In this case, � and �z(r)

are separated by an axis-parallel line �. Without loss of generality, we assume
that � is horizontal and �z(r) is below �. Since z(r) = z(r∗) and Q(r) = Q(r∗)
for all r ∈ (r1, r2), we let U = Q(r)�z(r)

and V = Q(r)�, meaning that both U
and V are independent of r ∈ (r1, r2). Recall that there are three steps in the
second update of the decision algorithm. Our algorithm needs to simulate all
three steps. As will be seen later, only the second step needs parameterization.

The first step is to sort points in U by their distr-values. Since distr[p] =
distr∗ [p] for all p ∈ P , the sorted list {u1, u2, ..., u|U |} of U obtained in our
algorithm is the same as that obtained in the decision algorithm running on r∗.

For any r, denote by
⊙

p(r) the disk centered at a point p with radius r.
The second step is to compute |U | disjoint subsets {V1(r), V2(r), ..., V|U |(r)}

of V such that Vi(r) = {v | iv(r) = i, v ∈ V }, where iv(r) is the smallest index
such that

⊙
uiv(r)

(r) contains point v. This step needs parameterization. We will
shrink the interval (r1, r2] so that it still contains r∗ and if r∗ �= r2, then for
any r ∈ (r1, r2), Vi(r) = Vi(r∗) holds for all 1 ≤ i ≤ |U | (it suffices to ensure
iv(r) = iv(r∗) for all v ∈ V ). Our algorithm relies on the following observation,
which is based on the definition of iv(r).

Observation 1. For any point v ∈ V , if
⊙

uj
(r) contains v with 1 ≤ j ≤ |U |,

then iv(r) ≤ j.

For a subset P ′ ⊆ P , let Fr(P ′) denote the union of the disks centered at
points of P ′ with radius r. We first solve a subproblem in the following lemma.

Lemma 1. Suppose (r1, r2] contains r∗ such that if r∗ �= r2, then for all r ∈
(r1, r2), distr[p] = distr∗ [p] for all points p ∈ P . For a subset U ′ ⊆ U and a
subset V ′ ⊆ V , in O(n log2 n · log(|U ′|+ |V ′|)) time we can shrink (r1, r2] so that
it still contains r∗ and if r∗ �= r2, then for all r ∈ (r1, r2), for any v ∈ V ′, v is
contained in Fr(U ′) if and only if v is contained in Fr∗(U ′).

Recall that we have an interval (r1, r2]. Our goal is to shrink it so that it still
contains r∗ and if r∗ �= r2, then for any r ∈ (r1, r2), Vi(r) = Vi(r∗) holds for all
1 ≤ i ≤ |U |. With Observation 1 and Lemma 1, we have the following lemma.

Lemma 2. We can shrink the interval (r1, r2] in O(n log4 n) time so that it still
contains r∗ and if r∗ �= r2, then for any r ∈ (r1, r2), Vi(r) = Vi(r∗) holds for all
1 ≤ i ≤ |U |.
Proof. To have Vi(r) = Vi(r∗) for all 1 ≤ i ≤ |U |, it suffices to ensure iv(r) =
iv(r∗) for all points v ∈ V . Let M = |U | and N = |V |. Note that M ≤ n and
N ≤ n.

As defined in the proof of Lemma 1, for any subset U ′ ⊆ U and any r, denote
by Ur(U ′) the upper envelope of the portions of

⊙
u(r) above � for all u ∈ U ′.
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Fig. 1. The red cell that contains
the point p is �p and the square
area bounded by blue segments is the
patch �p. All adjacent vertices of p
in Gr(P ) must lie in the grey region.
(Color figure online)

Fig. 2. Illustrating U1 and V1, where U1 =
{u1, u2, u3} and V1 = {v4, v5, v7}. The solid
arcs are on Ur∗(U1).

In light of Observation 1, we use the divide and conquer approach. Recall
that U = {u1, u2, . . . , uM}. Consider the following subproblem on (U, V ): shrink
(r1, r2] so that it still contains r∗ and if r∗ �= r2, then for any r ∈ (r1, r2), for
any v ∈ V , v is below Ur(U1) if and only if v is below Ur∗(U1), where U1 is
the first half of U , i.e., U1 = {u1, u2, ..., u� M

2 �}. The subproblem can be solved
in O(n log3 n) time by applying Lemma 1. Next, we pick any r ∈ (r1, r2) and
compute Ur(U1) and find the subset V1 of the points of V that are below Ur(U1)
(e.g., see Fig. 2). By Observation 1, for each point v ∈ V , iv(r) ≤ �M

2 � if v ∈ V1

and iv(r) > �M
2 � otherwise. By the above property of (r1, r2], for each point

v ∈ V , we also have iv(r∗) ≤ �M
2 � if v ∈ V1 and iv(r∗) > �M

2 � otherwise.
Next, we solve two subproblems recursively: one on (U1, V1) and the other

on (U \ U1, V \ V1). Both subproblems use (r1, r2] as their “input intervals”
and solving each subproblem will produce a shrunk “output interval” (r1, r2].
Consider a subproblem on (U ′, V ′) with U ′ ⊆ U and V ′ ⊆ V . If |U ′| = 1, then we
solve the problem “directly” (i.e., this is the base case) as follows. Assume that
r∗ �= r2 and let r be any value in (r1, r2). Let uj be the only point of U ′. If j < M ,
according to our algorithm and based on Observation 1, iv(r) = iv(r∗) = j holds
for all points v ∈ V ′. If j = M , however, for each point v ∈ V ′, it is possible that
v is not contained in

⊙
u(r∗) for any point u ∈ U , in which case v is not below

Ur∗(U) and thus is not below Ur∗(U ′). On the other hand, if v is below Ur∗(U ′),
then iv(r∗) = M . To solve the problem, we can simply apply Lemma 1 on U ′

and V ′, after which we obtain an interval (r1, r2]. Then, we pick any r ∈ (r1, r2)
and for any v ∈ V ′ with v contained in

⊙
uM

(r), iv(r) = iv(r∗) = M holds if
r∗ �= r2.

The above divide-and-conquer algorithm can be viewed as a binary tree struc-
ture T in which each node represents a subproblem. Clearly, the height of T is
O(log M) and T has Θ(M) nodes. If we solve each subproblem individually
by Lemma 1 as described above, then the algorithm would take Ω(Mn) time
because there are Ω(M) subproblems and solving each subproblem by Lemma 1
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takes Ω(n) time, which would result in an Ω(n2) time algorithm in the worst
case. To reduce the runtime, instead, we solve subproblems at the same level
of T simultaneously (or “in parallel”) by applying the algorithm of Lemma 1.
We can show that solving all subproblems in the same level of T can be done
in O(n log3 n) time. The details are given in our full paper. As T has O(log M)
levels, the total time of the overall algorithm is O(n log4 n). �

With Lemma 2, we obtain subsets {V1(r), V2(r), ..., V|U |(r)} and an interval
(r1, r2] containing r∗ such that if r∗ �= r2, for any r ∈ (r1, r2), Vi(r) = Vi(r∗)
holds for all 1 ≤ i ≤ |U |. Note that neither the array distr[·] nor Q(r) is modified
during the algorithm of Lemma 2. Hence, if r∗ �= r2, for all r ∈ (r1, r2], we
still have Q(r) = Q(r∗) and distr[p] = distr∗ [p] for all points p ∈ P . Thus,
our algorithm invariant still holds. This finishes the second step of the second
update.

The third step of the second update is to solve the offline insertion-only
additively-weighted nearest neighbor searching problem. This step does not
need parameterization. Similar to the first update, we pick any r ∈ (r1, r2)
and apply the WX algorithm directly. Indeed, the algorithm on r∗ only relies
on the following information: U and its sorted list by distr∗ [·] values and the
subsets V1(r∗), . . . , V|U |(r∗). Recall that if r∗ �= r2, then for all r ∈ (r1, r2),
distr[p] = distr∗ [p] for all p ∈ P , and Vi(r) = Vi(r∗) for all 1 ≤ i ≤ |U |. As such, if
we pick any r ∈ (r1, r2) and apply the WX algorithm directly, distr[v] = distr∗ [v]
holds for all points v ∈ V after this step. Therefore, as in the WX algorithm,
this step can be done in O(k log2 k) time, where k = |U | + |V |.

This finishes the second update of the algorithm. As discussed above, the
algorithm invariant holds for the interval (r1, r2].

The final step of the iteration is to remove points in Q(r)�z(r)
from Q(r).

Since if r∗ �= r2, for all r ∈ (r1, r2), Q(r) = Q(r∗), z(r) = z(r∗), and
Q(r)�z(r)

= Q(r∗)�z(r∗)
, Q(r) = Q(r∗) still holds after this point removal oper-

ation. Therefore, our algorithm invariant holds after the iteration.
In summary, each iteration of our algorithm takes O(n log4 n) time. If the

point t is contained in �z(r) (i.e., t is reached) in the current iteration, then we
terminate the algorithm. The following lemma shows that we can simply return
r2 as r∗.

Lemma 3. Suppose that t is contained in �z(r) in an iteration of our algorithm
and (r1, r2] is the interval after the iteration. Then r∗ = r2.

The algorithm may take Ω(n2) time because t may be reached in Ω(n) iter-
ations. A further improvement is discussed in the next subsection.

2.3 A Further Improvement

To further reduce the runtime of the algorithm, we borrow a technique from [21]
to partition the cells of the grid into large and small cells.

As before, we first compute the grid information Ψ(P ) and obtain an interval
(r1, r2]. Let C denote the set of all non-empty cells of Ψ(P ) (i.e., cells that contain
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at least one point of P ). For each cell C ∈ C, let N(C) denote the set of non-
empty neighboring cells of C in C and P (C) the set of points of P contained in
cell C. We have |N(C)| = O(1) and |C| = O(n). A cell C of C is a large cell if
it contains at least n3/4 log3/2 n points of P , i.e., |P (C)| ≥ n3/4 log3/2 n, and a
small cell otherwise. Clearly, C has at most n1/4/ log3/2 n large cells. For all pairs
of non-empty neighboring cells (C,C ′), with C ∈ C and C ′ ∈ N(C), (C,C ′) is a
small-cell pair if both C and C ′ are small cells, and a large-cell pair otherwise,
i.e., at least one cell is a large cell. Since N(C) = O(1) for each cell C ∈ C, there
are O(n1/4/ log3/2 n) large-cell pairs.

We first provide some intuition about our approach and then fresh out the
details. Notice that in each iteration of the main loop in our previous algorithm,
only the second step of the second update parameterizes the WX algorithm (i.e.,
the decision algorithm is called on certain critical values); in that step, we need
to process O(1) pairs of cells (C,C ′) with C ∈ C and C ′ ∈ N(C). No matter how
many points of P contained in the two cells, we need O(n log4 n) time to perform
the parametric search due to Lemma 2. To reduce the time, we preprocess all
small-cell pairs so that the algorithm only needs to perform the parametric search
for large-cell pairs. Since there are only O(n1/4/ log3/2 n) large-cell pairs, the
total time we spend on parametric search can be reduced to O(n5/4 log5/2 n).
For those small-cell pairs, the preprocessing provides sufficient information to
allow us to simply run the original WX algorithm without resorting to parametric
search. Specifically, before we enter the main loop of the algorithm (and after the
grid information Ψ(P ) is computed, along with an interval (r1, r2]), we preprocess
all small-cell pairs using the following lemma which is similar to [21].

Lemma 4. In O(n5/4 log5/2 n) time we can shrink the interval (r1, r2] so that
it still contains r∗ and if r∗ �= r2, then for any r ∈ (r1, r2), for any small-cell
pair (C,C ′) with C ∈ C and C ′ ∈ N(C), an edge connects a point p ∈ P (C) and
a point p′ ∈ P (C ′) in Gr(P ) if and only if an edge connects p and p′ in Gr∗(P ).

Let (r1, r2] denote the interval obtained after the preprocessing for all small-
cell pairs in Lemma 4. Lemma 4 essentially guarantees that if r∗ �= r2, then for
any r ∈ (r1, r2), the adjacency relation of points in any small-cell pair in Gr(P )
is the same as that in Gr∗(P ). Note that if (r1, r2] is shrunk so that it still
contains r∗, then the above property still holds for the shrunk interval. Based
on this property, combining with our previous algorithm, we have the following
theorem.

Theorem 1. The reverse shortest path problem for unit-disk graphs in the L2

weighted case can be solved in O(n5/4 log5/2 n) time.
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Abstract. In this paper, we investigate the complexity of the Maximum

Happy Set problem on subclasses of co-comparability graphs. For a
graph G and its vertex subset S, a vertex v ∈ S is happy if all v’s
neighbors in G are contained in S. Given a graph G and a non-negative
integer k, Maximum Happy Set is the problem of finding a vertex subset
S of G such that |S| = k and the number of happy vertices in S is
maximized. In this paper, we first show that Maximum Happy Set is
NP-hard even for co-bipartite graphs. We then give an algorithm for
n-vertex interval graphs whose running time is O(k2n2); this improves
the best known running time O(kn8) for interval graphs. We also design
an algorithm for n-vertex permutation graphs whose running time is
O(k3n2). These two algorithmic results provide a nice contrast to the
fact that Maximum Happy Set remains NP-hard for chordal graphs,
comparability graphs, and co-comparability graphs.

1 Introduction

Easley and Kleinberg [7] said that homophily is one of the most basic notions
governing the structure of social networks. Homophily is the principle that we
are likely to associate with people who are similar in characteristics, such as
their ages, their occupations and their interests. Motivated from homophily of
social networks, Zhang and Li [11] formulated two graph coloring problems, and
recently Asahiro et al. [1] introduced another formulation on graphs. In this
paper, we study the latter formulation, defined as follows.

For a graph G = (V,E) and a subset S ⊆ V , a vertex v ∈ S is happy if all
its neighbors in G are contained in S. Given an undirected graph G = (V,E)
and a non-negative integer k, Maximum Happy Set is the problem of finding
a subset S ⊆ V such that |S| = k and the number of happy vertices in S is
maximized. For example, the set S = {v1, v2, v6, v7} in Fig. 1(b) is an optimal
solution to Maximum Happy Set for the graph G in Fig. 1(a) and k = 4, where
only two vertices v1 and v7 are happy.

c© Springer Nature Switzerland AG 2022
P. Mutzel et al. (Eds.): WALCOM 2022, LNCS 13174, pp. 149–160, 2022.
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Fig. 1. (a) A graph G, and (b) an optimal solution S = {v1, v2, v6, v7} for G and k = 4,
where only v1 and v7 are happy vertices.

1.1 Known Results

Although Maximum Happy Set was proposed recently,1 it has been already
studied from various viewpoints such as polynomial-time solvability, approxima-
bility, and fixed-parameter tractability.

Polynomial-time solvability : Maximum Happy Set is NP-hard even for bipar-
tite graphs [2], cubic graphs [2], and split graphs [1]. On the other hand, the
problem is solvable in O(k2n) time for block graphs [2], and solvable in O(kn8)
time for interval graphs [2], where n is the number of vertices in a graph.

Approximability : Maximum Happy Set admits a polynomial-time approxima-
tion algorithm whose approximation ratio depends on the maximum degree of a
graph [2].

Fixed-parameter tractability : Maximum Happy Set is W [1]-hard when param-
eterized by k even on split graphs [1], and hence it is very unlikely that
the problem admits a fixed-parameter algorithm even when restricted to split
graphs and parameterized by k. On the other hand, the problem admits fixed-
parameter algorithms when parameterized by graph structural parameters such
as tree-width, clique-width, neighborhood diversity, and twin-cover number of a
graph [1].

1.2 Our Contributions

In this paper, we further investigate the polynomial-time solvability of Max-

imum Happy Set, by focusing on subclasses of co-comparability graphs. In
particular, we consider co-bipartite graphs, interval graphs, and permutation
graphs. See the relationship of graph classes illustrated in Fig. 2.

We first show that Maximum Happy Set is NP-hard even for co-bipartite
graphs. As far as we know, this is the first intractability result of Maximum

Happy Set on subclasses of co-comparability graphs. We thus need to focus on
other subclasses of co-comparability graphs, in order to seek polynomial-time
solvable cases, as below.
1 We note that the graph coloring problem introduced by Zhang and Li [11] is called a

similar name, Maximum Happy Vertices, but it is a different problem from ours.
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Fig. 2. Our results together with known ones for Maximum Happy Set on subclasses
of perfect graphs. Each arrow represents the inclusion relationship between graph
classes: A → B means that the graph class B is a subclass of the graph class A.

We then give a polynomial-time algorithm for interval graphs. Recall that
the polynomial-time solvability for interval graphs is already known [2]. However,
our algorithm runs in O(k2n2) time for n-vertex interval graphs, which improves
the best known running time O(kn8) [2].

We finally give an algorithm for n-vertex permutation graphs which runs in
O(k3n2) time. This is a new polynomial-time solvable case, and gives a nice
contrast to the known fact that Maximum Happy Set is NP-hard for com-
parability graphs. (See also Fig. 2.) We note that if k is a constant, then both
algorithms for interval graphs and permutation graphs run in O(n2) time. Proofs
for the claims marked with (∗) are omitted from this extended abstract.

Technical highlight: Both our polynomial-time algorithms for interval graphs and
permutation graphs employ basically the same technique, that is, a dynamic pro-
gramming approach based on graph representation models. Details and formal
definitions will be given later, but we here explain the key point. Given an n-
vertex graph G = (V,E), we define a subgraph Gi = (Vi, Ei) for each integer
i = 1, 2, . . . , n, depending on a representation model for G. Then, we wish to
compute a partial solution Si = S∗ ∩ Vi for each Gi, where S∗ is an optimal
solution of G. Note that Si is not always optimal for Gi, and hence it is not
enough to compute an optimal solution of Gi. The key of our algorithms is that
partial solutions Si of Gi can be characterized by only two vertices that are not
contained in S∗, when G is an interval graph or a permutation graph. In this
paper, we will prove only the correctness for interval graphs in Lemma 2 due
to page limitation. This efficient characterization of partial solutions leads to
improving the running time for interval graphs.
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1.3 Contrasts to Related Results

Our initial motivation was to develop a polynomial-time algorithm for Maxi-

mum Happy Set on co-comparability graphs, because it is known that several
classical problems are tractable for co-comparability graphs even if they are
NP-hard on perfect graphs. (See again Fig. 2.) Such examples include Minimum

Dominating Set [10], Hamiltonian Cycle [6], and Minimum Feedback

Vertex Set [4]. Our result of NP-hardness for co-comparability graphs gives
an interesting contrast to these complexity examples.

The Densest k-Subgraph problem [8], which has been studied for more
than two decades in the field of graph theory, can be seen as an edge vari-
ant of Maximum Happy Set: given an undirected graph G = (V,E) and
a non-negative integer k, the task of the problem is to find a vertex subset
S ⊆ V of size exactly k such that the number of edges whose both endpoints
are contained in S is maximized. Interestingly, the complexity of Densest k-
Subgraph remains open for interval graphs, permutation graphs, and planar
graphs. Although results on Maximum Happy Set cannot be converted directly
to Densest k-Subgraph, our complexity results in this paper may give new
insights to Densest k-Subgraph.

2 Preliminaries

Let G = (V,E) be a graph; we denote by V (G) and E(G) the vertex set and
the edge set of G, respectively. We assume that all graphs in this paper are
simple, undirected, and unweighted. For a vertex v of G, we denote by NG(v)
and NG[v] the open and closed neighborhood of v in G, respectively, that is,
NG(v) = {w ∈ V (G) : vw ∈ E(G)} and NG[v] = NG(v) ∪ {v}. For a vertex
subset V ′ ⊆ V , we denote by G − V ′ the subgraph of G obtained by deleting all
the vertices in V ′ and their incident edges. We shall often write G − v instead
of G − {v} for a vertex v ∈ V .

For a graph G = (V,E) and its vertex subset S ⊆ V , we say that a vertex
v ∈ V is happy with respect to S on G if NG[v] ⊆ S; otherwise v is unhappy
with respect to S on G. We denote by H(G;S) the set of happy vertices with
respect to S on G. We note that H(G; ∅) = ∅. Given a graph G = (V,E) and
a non-negative integer k, Maximum Happy Set is the problem of finding a
vertex subset S ⊆ V such that |S| = k and the size of H(G;S) is maximized.
For simplicity, our algorithms in this paper only compute the maximum value of
|H(G;S)|. However, one can easily modify the algorithms so that they find an
actual subset S in the same time complexity.

3 NP-hardness for Co-bipartite Graphs

A graph is co-bipartite if it is the complement of a bipartite graph. In other
words, a co-bipartite graph is a graph whose vertex set can be partitioned into
two cliques. In this section, we give the following hardness result.
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Theorem 1. Maximum Happy Set is NP-hard for co-bipartite graphs.

Proof. We give a polynomial-time reduction from Maximum Happy Set on
general graphs to Maximum Happy Set on co-bipartite graphs. Let (G, k)
be an instance of Maximum Happy Set on general graphs. We construct an
instance (G′, k′) of Maximum Happy Set on co-bipartite graphs from (G, k)
as follows. Let n = |V (G)| and V (G) = {v1, v2, . . . , vn}. The graph G′ consists
of disjoint two cliques whose vertex subsets are A = {a1, a2, . . . , an} and B =
{b1, b2, . . . , bn+k+1}. In addition, G′ has an edge aibj if and only if i = j or
vivj ∈ E(G) for each i, j ∈ {1, 2, . . . , n}. This completes the construction of G′.
Finally, we let k′ = n + k. Clearly, this reduction can be done in polynomial
time.

In the remainder of this proof, we show that for any integer � ≥ 0, there
exists a subset S ⊆ V (G) such that |S| = k and |H(G;S)| ≥ � if and only if
there exists a subset S′ ⊆ V (G′) such that |S′| = k′ and |H(G′;S′)| ≥ �.

We first prove the necessity. We assume that there exists a subset S ⊆ V (G)
such that |S| = k and |H(G;S)| ≥ �. Let S′ = {ai | i = 1, 2, . . . , n} ∪ {bj | vj ∈
S}. Clearly, |S′| = n + k = k′. In order to show that |H(G′;S′)| ≥ �, we will
show that for any happy vertex vi ∈ H(G;S), the corresponding vertex ai ∈ A
of G′ is also happy with respect to S′. Obviously, NG′ [ai] ∩ A ⊆ S′. Moreover,
since vi is happy with respect to S on G, any vertex vj ∈ NG[vi] is in S. By the
construction of S′, we have bj ∈ S′. Therefore, we have NG′ [ai] ⊆ S′, that is,
ai ∈ H(G′;S′). This implies that |H(G′;S′)| ≥ |H(G;S)| ≥ �.

Conversely, we prove the sufficiency. We assume that there exists a subset
S′ ⊆ V (G′) such that |S′| = k′ = n + k and |H(G′;S′)| ≥ �. Since |S′| = n + k
and B forms a clique of n+k +1 vertices, at least one vertex bj ∈ B is not in S′

and hence every vertex in B is unhappy with respect to S′. This means that any
happy vertex with respect to S′ on G′ is in A. In the remainder of this proof,
we assume that A ⊆ S′; otherwise |H(G′;S′)| = 0. In addition, if there exists a
vertex bj ∈ S′ for an integer j with n+1 ≤ j ≤ n+k+1, then we remove bj from
S′ and add a vertex bj′ /∈ S′ into S′ for an integer j′ with 0 ≤ j′ ≤ n. We denote
by S′′ a set obtained by repeating this operation until S′′ ∩{bn+1, . . . , bn+k+1} =
∅. Clearly, S′′ ∩ B ⊆ {b1, b2, . . . , bn}. Moreover, since no vertex in A is adjacent
to bj for an integer j with n + 1 ≤ j ≤ n + k + 1 from the construction of G′,
H(G′;S′) ⊆ H(G′;S′′) holds. Let S = {vj | j = 1, 2, . . . , n and bj ∈ S′′}. Note
that, since S′′ contains all vertices in A, S′′ contains exactly k vertices in B
and hence |S| = k. We now show that for any happy vertex ai ∈ H(G′;S′′),
the corresponding vertex vi ∈ V (G) is also happy with respect to S. Since ai

is happy, any vertex bj ∈ NG′ [ai] ∩ B is in S′′ and hence vj ∈ S. This implies
that NG[vi] ⊆ S. Therefore, |H(G;S)| ≥ |H(G′;S′′)| ≥ |H(G′;S′)| ≥ �. This
completes the proof. 
�

4 Polynomial-Time Algorithm for Interval Graphs

A graph G = (V,E) with vertices v1, v2, . . . , vn is called an interval graph if, for
some family I = {I1, I2, . . . , In} of intervals on the real line, there is a one-to-one
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correspondence between V and I such that vivj ∈ E if and only if Ii intersects
Ij for each i, j ∈ {1, 2, . . . , n}. Such a family I of intervals is called an interval
representation of G. In this section, we give a polynomial-time algorithm for
Maximum Happy Set on interval graphs.

Theorem 2. Given an n-vertex interval graph G and a non-negative integer k,
Maximum Happy Set is solvable in O(k2n2) time.

Before the detailed description of our algorithm, we give the following simple
but useful lemma.

Lemma 1. (∗). Let G = (V,E) be a graph and let V ′, S be subsets of V . Then,
it holds that H(G;S) \ V ′ ⊆ H(G − V ′;S \ V ′). Moreover, if V ′ ⊆ S, then it
holds that H(G;S) \ V ′ = H(G − V ′;S \ V ′).

Notice that Lemma 1 is applicable to general graphs as well as interval graphs.
To explain our algorithm, we need several assumptions and notations. Given

an interval graph G, an interval representation I of G can be constructed in linear
time [3,5,9]. Therefore, we may assume without loss of generality that an interval
graph G and its interval representation I are both given. In the remainder of
this section, we do not distinguish between vertices of G and intervals of I,
that is, we regard Ii as not only an interval of I but also a vertex of G. We
denote by left(Ii) and right(Ii) the left endpoint and the right endpoint of an
interval Ii ∈ I, respectively. It is easy to see that an interval representation I can
be transformed into another one without changing G so that distinct integers
between 1 and 2n are assigned to the endpoints left(Ii) and right(Ii) of every
interval Ii. Moreover, we assume that intervals of I are sorted in increasing
order of the right endpoints, that is, right(Ii) < right(Ij) for any integers i, j
such that 1 ≤ i < j ≤ n. We then add dummy intervals I0 and In+1 with
left(I0) = −1, right(I0) = 0, left(In+1) = 2n + 1 and right(In+1) = 2n + 2 into I.
Note that, the dummy intervals I0 and In+1 correspond to the isolated vertices
of G. The addition of I0 and In+1 is not essential for proving Theorem 2, but
this simplifies the description of our algorithm. In the remainder of this section,
we assume that G has I0 and In+1. Let Gi be the subgraph of G induced by a
vertex set Ii = {I0, I1, . . . , Ii}. We also define I+

i = NGi
[Ii] and I−

i = Ii \ I+
i .

We describe the idea of our algorithm. Let S∗ be a subset of V (G)\{I0, In+1}
such that S∗ maximizes |H(G;S∗)| among all subsets of V (G)\{I0, In+1} of size
k. Since I0 and In+1 are the isolated vertices on G, S∗ is also the optimal solution
of the original graph that has no dummy vertices I0 and In+1. In order to find S∗,
we wish to compute a partial solution Si = S∗ ∩V (Gi) for each i = 0, 1, . . . , n+1
by means of dynamic programming. Since G = Gn+1, we have S∗ = Sn+1. Notice
that a partial solution Si is not always optimal for Gi, because a happy vertex
Ii′ ∈ Ii with respect to Si on Gi may be unhappy with respect to S∗ on G. This
implies that it is not enough to find only an optimal solution of Gi. To correctly
compute Si, we guess integers r, u, k′ that satisfy the following three conditions
for S∗:

– the interval Ir has the smallest left endpoint among all intervals in V (G) \
(V (Gi) ∪ S∗);
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– the interval Iu has the largest right endpoint among all intervals in V (Gi)\S∗,
that is, Iu /∈ S∗ and Ii′ ∈ S∗ for every i′ with u < i′ ≤ i; and

– |Si| = k′.

We say that a quadruple (i, r, u, k′) is compatible with S∗ if i, r, u, k′ satisfy
the above three conditions. Clearly, if (i, r, u, k′) is compatible with S∗, then
0 ≤ u ≤ i < r ≤ n + 1 holds. For integers i and r, we denote by Gi,r the
subgraph of G induced by V (Gi) ∪ {Ir}. We then obtain the following lemma.

Lemma 2. Let S∗ be a subset of V (G) \ {I0, In+1} such that S∗ maximizes
|H(G;S∗)| among all subsets of V (G) \ {I0, In+1} of size k, and let Si = S∗ ∩
V (Gi) for an integer i with 0 ≤ i ≤ n. For integers r, u, k′ with 0 ≤ u ≤ i <
r ≤ n+1 and k′ ≤ k, suppose that a quadruple (i, r, u, k′) is compatible with S∗.
Then, Si maximizes |H(Gi,r;Si)| among all subsets Si ⊆ V (Gi,r) \ {I0, Ir, Iu}
of size k′ such that Ii′ ∈ Si for every i′ with u < i′ ≤ i.

Proof. Assume for a contradiction that there exists a subset S′
i ⊆ V (Gi,r) \

{I0, Ir, Iu} such that |H(Gi,r;Si)| < |H(Gi,r;S′
i)|, |S′| = k′ and Ii′ ∈ S′

i for
every i′ with u < i′ ≤ i. We let S� = (S∗ \ Si) ∪ S′

i and show that the following
three inequalities: (I) |H(G;S∗) ∩ V (Gi,r)| ≤ |H(Gi,r;Si)|; (II) |H(Gi,r;S′

i)| ≤
|H(G;S�)∩V (Gi,r)|; and (III) |H(G;S∗)\V (Gi,r)| ≤ |H(G;S�)\V (Gi,r)|. Since
|H(Gi,r;Si)| < |H(Gi,r;S′

i)|, we have |H(G;S∗)| from the inequalities (I)–(III)
as follows:

|H(G;S∗)| = |H(G;S∗) ∩ V (Gi,r)| + |H(G;S∗) \ V (Gi,r)|
≤ |H(Gi,r;Si)| + |H(G;S�) \ V (Gi,r)|
< |H(Gi,r;S′

i)| + |H(G;S�) \ V (Gi,r)|
≤ |H(G;S�) ∩ V (Gi,r)| + |H(G;S�) \ V (Gi,r)|
= |H(G;S�)|.

This contradicts the maximality of |H(G;S∗)|.
We first show the inequality (I). By setting V ′ = V (G) \V (Gi,r) and S = S∗

on Lemma 1, we have

H(G;S∗) ∩ V (Gi,r) = H(G;S∗) \ V ′

⊆ H(G − V ′;S∗ \ V ′)
= H(Gi,r;S∗ ∩ V (Gi,r)).

Since Si = S∗∩V (Gi) and Ir /∈ S∗, we have |H(G;S∗)∩V (Gi,r)| ≤ |H(Gi,r;S∗∩
V (Gi,r))| = |H(Gi,r;Si)|.

We next show the inequality (II). Suppose that I� ∈ H(Gi,r;S′
i) for an integer

� with 0 ≤ � ≤ i. Then, I� ∈ S′
i holds and I� is adjacent to none of vertices in

V (Gi,r) \ S′
i = V (Gi,r) \ (S� ∩ V (Gi)). In particular, since � ≤ i < r holds

and intervals of I are sorted in increasing order of the right endpoints, we have
right(I�) < left(Ir). For any integer �′ such that i < �′ ≤ n + 1 and I�′ /∈ S�, we
also have left(Ir) ≤ left(I�′) from the definition of Ir. Thus, right(I�) < left(I�′)
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holds and hence I� is also not adjacent to I�′ . As a conclusion, I� is adjacent to
none of vertices in V (G) \ S�, that is, I� ∈ H(G;S�) ∩ V (Gi,r). This means that
|H(Gi,r;S′

i)| ≤ |H(G;S�) ∩ V (Gi,r)|.
Finally, we show the inequality (III). Suppose that I� ∈ H(G;S∗) for an

integer � with i < � ≤ n + 1. Then, I� ∈ S∗ holds and I� is adjacent to
none of vertices in V (G) \ S∗. In particular, I� is not adjacent to Iu and hence
right(Iu) < left(I�). Recall that S� = (S∗ \ Si) ∪ S′

i and Si, S
′
i ⊆ V (Gi). We thus

have S∗ \ V (Gi) = S� \ V (Gi). This means that I� ∈ S� and I� is adjacent to
none of vertices in V (G) \ (V (Gi) ∪ S�). Moreover, for any integer �′ such that
I�′ ∈ V (Gi) \ S�, it follows from the definitions of Iu that right(I�′) ≤ right(Iu)
because Iu /∈ S′

i and hence Iu /∈ S�. Combined with right(Iu) < left(I�), we have
right(I�′) < left(I�), that is, I� is not adjacent to I�′ because �′ ≤ i < �. There-
fore, I� is adjacent to none of vertices in V (G)\S� and thus I� ∈ H(G;S�). Since
i < � ≤ n + 1, we conclude that |H(G;S∗) \ V (Gi,r)| ≤ |H(G;S�) \ V (Gi,r)|.
This completes the proof of Lemma 2. 
�

Lemma 2 suggests that, for the sake of computing Si for each i, it suffices to
guess integers r, u, k′ and compute S maximizes |H(Gi,r;S)| among all subsets
S ⊆ V (Gi,r) \ {I0, Ir, Iu} of size k′ such that Ii′ ∈ S for every i′ with u < i′ ≤ i.
In fact, to compute the size of S∗, our algorithm uses the following two main
functions fin(Gi,r; k′), fout(Gi,r; k′) and the subfunction f ′

in(Gi,r; j, k′), where
i, r, j, k′ are integers such that 0 ≤ i < r ≤ n + 1, 0 ≤ j ≤ min{k′, i} − 1 and
0 ≤ k′ ≤ k;

– fin(Gi,r; k′) returns the maximum of |H(Gi,r;S)| among all subsets S ⊆
V (Gi,r) \ {I0, Ir} such that Ii ∈ S and |S| = k′;

– fout(Gi,r; k′) returns the maximum of |H(Gi,r;S)| among all subsets S ⊆
V (Gi,r) \ {I0, Ii, Ir} such that |S| = k′; and

– f ′
in(Gi,r; j, k′) returns the maximum of |H(Gi,r;S)| among all subsets S ⊆

V (Gi,r) \ {I0, Ii−j−1, Ir} such that {Ii . . . , Ii−j} ⊆ S and |S| = k′.

We let fin(Gi,r; k′) = −∞, fout(Gi,r; k′) = −∞ and f ′
in(Gi,r; j, k′) = −∞ if there

exists no subset S that satisfies all the prescribed conditions for fin, fout and f ′
in,

respectively. We remark that fout(Gi,r; k′) corresponds to the case where u = i
and f ′

in(Gi,r; j, k′) corresponds to the case where u = i− j − 1 on Lemma 2. The
main function fin(Gi,r; k′) is used to improve the running time of our algorithm.
We also remark that the integer j must be less than k′ and i because j ≥ k′

violates |S| = k′ and j ≥ i violates I0 /∈ S. We will compute values fin(Gi,r; k′),
fout(Gi,r; k′) and f ′

in(Gi,r; j, k′) by means of dynamic programming. By taking
the maximum of fin(Gn,n+1; k) and fout(Gn,n+1; k), we obtain the maximum
size of H(G;S) such that S ⊆ V (G) \ {I0, In+1} and |S| = k.

The Computation of fin(Gi,r ; k′)
If i = 0, then we have fin(Gi,r; k′) = −∞ for any r and k′ because there is
no subset S ⊆ V (Gi,r) \ {I0, Ir} such that Ii ∈ S. Similarly, if k′ = 0, then
we have fin(Gi,r; k′) = −∞ for any i and r. Suppose that i > 0 and k′ > 0.
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We then compute fin(Gi,r; k′) from f ′
in(Gi,r; j, k′) under the assumption that

f ′
in(Gi,r; j, k′) has already been computed for each j with 0 ≤ j ≤ min{k′, i}−1.

Obviously, we have

fin(Gi,r; k′) = max
0≤j≤min{k′,i}−1

f ′
in(Gi,r; j, k′).

We explain how to compute f ′
in(Gi,r; j, k′) for each quadruple (i, r, j, k′). We

assume that the main function fout and the subfunction f ′
in have been already

computed in accordance with the lexicographical order of (i, r, j, k′). We consider
the two subcases: (I) j = 0 and (II) j > 0.

Case (I): j = 0
In this case, f ′

in(Gi,r; j, k′) returns the maximum of |H(Gi,r;S)| such that S ⊆
V (Gi,r) \ {I0, Ii−1, Ir}, Ii ∈ S and |S| = k′. From Lemma 1, it holds that
H(Gi,r;S) \ {Ii} = H(Gi−1,r;S \ {Ii}). We thus compute f ′

in(Gi,r; j, k′) from
fout(Gi−1,r; k′ − 1) by deciding whether the vertex Ii is happy with respect to
S on Gi,r. Clearly, if Ii is adjacent to the vertex Ii−1 or Ir, then Ii is unhappy.
Conversely, if Ii is adjacent to neither Ii−1 nor Ir, then Ii is the isolated vertex
on Gi,r from the assumption that the intervals of I are sorted in increasing order
of the right endpoints. Thus, Ii is happy and we have f ′

in(Gi,r; j, k′) in this case
as follows:

f ′
in(Gi,r; j, k′) ={
fout(Gi−1,r; k′ − 1) if IiIi−1 ∈ E(Gi,r) or IiIr ∈ E(Gi,r),
fout(Gi−1,r; k′ − 1) + 1 otherwise.

Case (II): j > 0

This case means that f ′
in(Gi,r; j, k′) returns the maximum of |H(Gi,r;S)| such

that S ⊆ V (Gi,r) \ {I0, Ii−j−1, Ir}, {Ii, . . . , Ii−j} ⊆ S and |S| = k′. In particu-
lar, Ii−1 ∈ S holds. We thus take a value f ′

in(Gi−1,r; j − 1, k′ − 1) to compute
f ′
in(Gi,r; j, k′). We then determine whether the vertex Ii is happy with respect

to S on Gi,r. If Ii is adjacent to Ii−j−1 or Ir on Gi,r, then Ii is unhappy because
Ii−j−1, Ir /∈ S. If Ii is adjacent to neither Ii−j−1 nor Ir on Gi,r, then Ii−j−1 ∈ I−

i .
This implies that I+

i ⊆ {Ii, . . . , Ii−j} ⊆ S and hence Ii is happy. Therefore, it
suffices to check whether Ii is adjacent to Ii−j−1 or Ir on Gi,r, and we have
f ′
in(Gi,r; j, k′) in this case as follows:

f ′
in(Gi,r; j, k′) ={
f ′
in(Gi−1,r; j − 1, k′ − 1) if IiIi−j−1 ∈ E(Gi,r) or IiIr ∈ E(Gi,r),

f ′
in(Gi−1,r; j − 1, k′ − 1) + 1 otherwise.

The Computation of fout(Gi,r ; k′)
Let S be a subset of V (Gi,r) \ {I0, Ii, Ir} such that S maximizes |H(Gi,r;S)|
among all subsets S ⊆ V (Gi,r) \ {I0, Ii, Ir} with |S| = k′. Then, all vertices
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in I+
i and Ir are unhappy with respect to S on Gi,r. However, some vertices

in I+
i \ {Ii} may be contained in S because they can be used to make vertices

in I−
i happy. We thus consider which vertices in I+

i \ {Ii} are contained in S.
In the naive way, we enumerate all subsets of I+

i \ {Ii} of size at most k′; it
takes superpolynomial time in general. The following lemma provides us that
the number of subsets of I+

i \ {Ii} to be enumerated is at most k′.

Lemma 3. Let Gi,r be an interval graph and suppose that there exist intervals
Ix, Iy ∈ I+

i \ {Ii} such that left(Ix) < left(Iy) for integers x, y. Then, for any
subset S ⊆ V (Gi,r) such that Ii, Ix, Ir /∈ S and Iy ∈ S, it holds that H(Gi,r;S) ⊆
H(Gi,r;S ∪ {Ix} \ {Iy}).

Proof. Let Iz be an interval of Ii such that Iz ∈ H(Gi,r;S). To prove Lemma 3,
it suffices to show that Iz ∈ H(Gi,r;S ∪ {Ix} \ {Iy}). Clearly, Iz intersects
no interval in Ii ∪ {Ir} \ S. Thus, Iz ∈ I−

i , and right(Iz) < left(Iz′) holds
for any interval Iz′ ∈ I+

i ∪ {Ir} \ S from the assumption that the intervals of
Ii ∪ {Ir} are sorted in increasing order of the right endpoints. In particular, we
have right(Iz) < left(Ix) and hence right(Iz) < left(Iy) from the assumption in
Lemma 3. This implies that the vertex Iz is adjacent to none of the vertex Iy

and vertices in V (Gi) \ S, that is, Iz ∈ H(Gi,r;S ∪ {Ix} \ {Iy}). 
�
Suppose that |S∩I+

i | = p for an integer p. We note that p is not greater than
k′ and |I+

i |− 1 because p > k′ violates |S| = k′ and p > |I+
i |− 1 violates Ii /∈ S.

We denote by Ip
i the set produced by picking the first p intervals in increasing

order of the left endpoints of intervals in I+
i \ {Ii}, that is, left(Ix) < left(Iy) for

any Ix ∈ Ip
i and any Iy ∈ I+

i \(Ip
i ∪{Ii}). By applying Lemma 3 to S iteratively,

we can obtain a subset S′ ⊆ V (Gi,r) \ {I0, Ii, Ir} with |S′| = k′ such that
S′∩I+

i = Ip
i and H(Gi,r;S) ⊆ H(Gi,r;S′). From the maximality of |H(Gi,r;S)|,

S′ also maximizes |H(Gi,r;S′)| among all subsets of V (Gi,r) \ {I0, Ii, Ir} of size
k′. Thus, without enumerating all subsets of I+

i \ {Ii} of size at most k′, it
suffices to guess exactly p vertices in I+

i \ {Ii} are contained in S and assume
that S ∩ I+

i = Ip
i .

We next give another lemma that plays a central role in the computation of
fout(Gi,r; k′). Let i′ be an integer such that the interval Ii′ has the largest right
endpoint among all intervals in I−

i .

Lemma 4. Let S be a subset of V (Gi,r)\{Ii, Ir} and let S′ = S∩I+
i . In addition,

let r′ be an integer such that the interval Ir′ has the smallest left endpoint among
all intervals in I+

i ∪ {Ir} \ S′. Then, H(Gi,r;S) = H(Gi′,r′ ;S \ S′).

Proof. We first show that H(Gi,r;S) ⊆ H(Gi′,r′ ;S\S′). We set V ′ = (I+
i ∪{Ir})\

{Ir′}. Since Ii, Ir /∈ S, we have H(Gi,r;S) ∩ V ′ = ∅ and hence H(Gi,r;S) \ V ′ =
H(Gi,r;S). We also note that V (Gi,r) \ V ′ = V (Gi′,r′) and S \ V ′ = S \ S′

because S′ ⊆ I+
i and Ir′ /∈ S. From Lemma 1, we then have

H(Gi,r;S) = H(Gi,r;S) \ V ′ ⊆ H(Gi,r − V ′;S \ V ′) = H(Gi′,r′ ;S \ S′).

We next show that H(Gi′,r′ ;S \ S′) ⊆ H(Gi,r;S). Since the vertex Ir′ of
Gi′,r′ is not contained in S \ S′, we have right(Ix) < left(Ir′) for any integer
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x such that Ix ∈ H(Gi′,r′ ;S \ S′). In addition, for any integer y such that
Iy ∈ I+

i ∪ {Ir} \ S′, left(Ir′) ≤ left(Iy) holds from the definition of Ir′ . We
thus have right(Ix) < left(Iy), that is, Ix does not intersect Iy. This implies that
Ix ∈ H(Gi,r;S) if Ix ∈ H(Gi′,r′ ;S\S′), and hence H(Gi′,r′ ;S\S′) ⊆ H(Gi,r;S).
This completes the proof. 
�

We have prepared for computing fout(Gi,r; k′) for a triple (i, r, k′) of integers
such that 0 ≤ i < r ≤ n + 1 and 0 ≤ k′ ≤ k. If i = 0, the graph Gi,r consists of
the two isolated vertices I0 and Ir. Only S = ∅ satisfies the prescribed conditions
for fout(Gi,r; k′). Thus, for any integer r > 0, we have fout(Gi,r; k′) = 0 if k′ = 0;
otherwise fout(Gi,r; k′) = −∞.

Suppose that i > 0. Let S be a subset of V (Gi,r) \ {I0, Ii, Ir} such that S
maximizes |H(Gi,r;S)| among all subsets S ⊆ V (Gi,r)\{I0, Ii, Ir} with |S| = k′.
As mentioned above, if |S ∩I+

i | = p for an integer p with 0 ≤ p ≤ min{k′, |I+
i |−

1}, we can assume that S∩I+
i = Ip

i from Lemma 3. Let r′ be an integer such that
the interval Ir′ has the smallest left endpoint among intervals in I+

i ∪ {Ir} \ Ip
i .

For an optimal solution S∗ of G, if the quadruple (i, r, i, k′) is compatible with S∗,
then the quadruple (i′, r′, u, k′ − p) is also compatible with S∗ for some integer
u with 0 ≤ u ≤ i′. Therefore, by setting S′ = Ip

i on Lemma 4, we compute
fout(Gi,r; k′) as follows:

fout(Gi,r; k′) = max
0≤p≤min{k′,|I+

i |−1}
{fin(Gi′,r′ ; k′ − p), fout(Gi′,r′ ; k′ − p)}.

The total running time of our algorithm is O(k2n2), as claimed in Theorem 2.
The details are omitted due to page limitation.

5 Polynomial-Time Algorithm for Permutation Graphs

Let π = (π(1), π(2), . . . , π(n)) be a permutation of the integers from 1 to n. We
denote by π−1(i) the position of the number i in π. A graph G = (V,E) with
vertices v1, v2, . . . , vn is called a permutation graph if there exists a permutation
π between 1 and n such that for any two integers i and j, vivj ∈ E if and only if
(i−j)(π−1(i)−π−1(j)) < 0. We give a polynomial-time algorithm for Maximum

Happy Set on permutation graphs by the same algorithmic approach as interval
graphs.

Theorem 3 (∗). Given an n-vertex permutation graph G and a non-negative
integer k, Maximum Happy Set is solvable in O(k3n2) time.

6 Conclusion

In this paper, we studied the complexity of Maximum Happy Set on subclasses
of co-comparability graphs; co-bipartite graphs, interval graphs and permutation
graphs. Especially, our algorithm for interval graphs improved the best known
running time O(kn8). Our polynomial-time algorithms employ basically the same
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technique. We believe that the technique is applicable to Maximum Happy Set

on other graph classes.
The complexity of Maximum Happy Set has been studied for various graph

classes. However, the (in)tractability of Maximum Happy Set on planar graphs
remains open. We note that the complexity of the edge variant of Maximum

Happy Set is also unknown for planar graphs.
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Abstract. Planar graphs can be represented as intersection graphs of
different types of geometric objects in the plane, e.g., circles (Koebe,
1936), line segments (Chalopin & Gonçalves, SODA 2009), L-shapes
(Gonçalves et al., SODA 2018). For general graphs, however, even decid-
ing whether such representations exist is often NP-hard. We consider
apex graphs, i.e., graphs that can be made planar by removing one ver-
tex from them. We show, somewhat surprisingly, that deciding whether
geometric representations exist for apex graphs is NP-hard.

More precisely, we show that for every positive integer g, recognizing
every graph class G such that Pure-2-Dir ⊆ G ⊆ 1-String is NP-hard,
even if the inputs are apex graphs of girth at least g. Here, Pure-2-Dir

is the class of intersection graphs of axis-parallel line segments (where
intersections are allowed only between horizontal and vertical segments),
and 1-String is the class of intersection graphs of simple curves (where
two curves cross at most once) in the plane. This partially answers an
open question raised by Kratochv́ıl & Pergel (COCOON, 2007).

Most known NP-hardness reductions for these problems are from vari-
ants of 3-SAT. We reduce from the Planar Hamiltonian Path Com-

pletion problem, which uses the more intuitive notion of planarity. As
a result, our proof is much simpler and encapsulates several classes of
geometric graphs.

Keywords: Hamiltonian path · planar graph · apex graph · NP-hard ·
recognition problem · geometric intersection graph · VLSI design ·
1-STRING · PURE-2-DIR

1 Introduction

The recognition a graph class is the decision problem of determining whether
a given simple, undirected, unweighted graph belongs to the graph class.
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Recognition of graph classes is a fundamental problem in graph theory with a
wide range of applications. In particular, when the graph class relates to intersec-
tion patterns of geometric objects, the corresponding recognition problem finds
usage in disparate areas like VLSI design [13,14,41], map labelling [1], wireless
networks [32], and computational biology [48].

The study of graphs that arise out of intersection patterns of geometric
objects began with the celebrated circle packing theorem in 1936 [26] (also
see [2,45]), which states that all planar graphs can be expressed as intersection
graphs1 of touching disks2. Since then, there has been a long line of research on
finding representations of planar graphs using other types of geometric objects.
In his PhD thesis, Scheinerman [40] conjectured that all planar graphs can be
expressed as intersection graphs of line segments. After two decades of active
research, Scheinerman’s conjecture was finally proved in 2009 by Chalopin &
Gonçalves [9]. In fact, Schinerman’s conjecture has motivated researchers to
study representations of planar graphs using many different types of geometric
objects, mostly of them culminating in elegant results [10,15,19–22,24].

A similar line of research began when Benzer [4] initiated the study of string
graphs (intersection graphs of simple curves3 in the plane) over half a century
ago. Benzer’s motivation was to study the topology of genetic structures, and
the patterns that arise therein. Since then, many fascinating results have been
shown for string graphs, surveyed in the 2009 invited talk by János Pach [36]
titled, “Why are string graphs so beautiful?”

Another application of geometric intersection graphs is in the construction
of telecommunication networks, where the range of a broadcasting station is
modelled by a circular disk and two stations can communicate if their corre-
sponding disks overlap [17,33,37]. If the underlying network topology is known
beforehand and the objective is to determine the existence of a placement of
the broadcasting stations realizing the given topology, then the problem is boils
down to deciding whether a particular graph can be expressed as an intersection
graph of (unit) disks in the plane [7,8,25].

Geometric intersection graphs are also central to the field of VLSI design,
where each electronic component on the VLSI circuit-board can be modelled
as a geometric object in the plane [37]. The underlying circuitry (i.e., which
components are connected to and disjoint from which other components) [13]
is usually known beforehand. The challenge lies in placing the components on
the circuit-board in a way that respects this circuitry [14]. From a technical
standpoint, the circuitry can be modelled as a graph, and the circuit-board can

1 For a set of geometric objects C , its intersection graph, I(C ), has C as the vertex
set and two vertices are adjacent if and only if the corresponding geometric objects
intersect.

2 Formally, two closed disks are said to touch each other if they share exactly one
point.

3 Formally, a simple curve is a subset of the plane which is homeomorphic to the
interval [0, 1].
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be thought of as a plane surface. Again, this is a problem of checking if a graph
can be represented by certain types of geometric objects in the plane.

In the 1960s, Sinden [42] asked whether the recognition of string graphs
is decidable. Kratochv́ıl [27] took the first steps towards answering Sinden’s
question by showing that recognizing string graphs is NP-hard. In 2003, Schaefer,
Sedgwick & Štefankovič [39] showed that recognizing string graphs also lies in
NP, and is thus NP-complete.

For his NP-hardness proof, Kratochv́ıl [27] introduced a variant of 3-SAT
called Planar 3-Connected 3-SAT. In subsequent years, other researchers
also used variants of Planar 3-Connected 3-SAT to show NP-hardness of rec-
ognizing various geometric intersection graph classes [11,12,28,30,31,34]. Unfor-
tunately, the construction of the “variable gadgets” and “clause gadgets” used in
these reductions is often quite involved, which ends up making the proofs rather
complicated.

In this paper, we simplify and unify these earlier NP-hardness proofs by giv-
ing a single proof which holds for several graph classes. Furthermore, when the
input graphs are restricted to be planar, most of these graph classes can be
recognized in polynomial time. We ask, what if the input graphs are “almost pla-
nar”? In particular, we study the computational complexity of finding geometric
representations of apex graphs.

Definition 1 [43,46]. A graph is an apex graph if it contains a vertex whose
removal makes it planar.

As our main contribution, we show that recognizing various classes of geo-
metric intersection graphs remains NP-hard even when the input graphs are both
bipartite and apex (Theorem 1). This is slightly surprising, given the fact that
an apex graph is simply a planar graph with one additional vertex.

Our proof technique deviates significantly from that of Kratochv́ıl [27]
and other similar NP-hardness proofs that reduce from Planar 3-

Connected 3-SAT. We reduce from a different NP-hard problem called
Planar Hamiltonian Path Completion, which uses the more intuitive
notion of planarity, making our proof easier to understand.

Organisation of the Paper: In Sect. 2, we state our main result and its sig-
nificance. We describe our proof techniques in Sect. 3, and prove our main result
in Sect. 4.

2 Main Result

For our main result, we are particularly interested in two natural and well-studied
classes of geometric intersection graphs called Pure-2-Dir and 1-String.

Definition 2. Pure-2-Dir is the class of all graphs G, such that G is the inter-
section graph of axis-parallel line segments in the plane, where intersections are
allowed only between horizontal and vertical segments (Fig. 1 (Left)).
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Definition 3. 1-String is the class of all graphs G, such that G is the inter-
section graph of simple curves in the plane, where two intersecting curves share
exactly one point, at which they must cross each other (Fig. 1 (Right)).

Theorem 1 (Main Result). Let g be a fixed positive integer and G be a
graph class such that

Pure-2-Dir ⊆ G ⊆ 1-String.

Then it is NP-hard to decide whether an input graph belongs to G , even when
the input graphs are restricted to bipartite apex graphs of girth at least g.

We reduce from the NP-complete Planar Hamiltonian Path Comple-

tion problem [3], which in turn was inspired by another NP-complete problem
known as the Planar Hamiltonian Cycle Completion problem [47]. We
explain these decision problems and the main ideas behind our reduction in
Sect. 3.

2.1 Significance of the Main Result

An unfortunate consequence of our main result is that several known polynomial-
time algorithms for planar graphs cannot be extended to even mildly non-planar
graphs.

Fig. 1. A visual depiction of Theorem 1. Note that this figure is for representational
purposes only.

Let us state this more precisely. String is the class of intersection graphs
of simple curves in the plane. Kratochv́ıl & Pergel [31] asked if String can be
recognized in polynomial time when the inputs are restricted to graphs with large
girth. The above question was answered by Mustaţă & Pergel [34], where they
showed that recognizing String is NP-hard, even when the inputs are restricted
to graphs of arbitrarily large girth. However, the graphs they constructed were far
from planar. Since 1-String � String, Theorem 1 partially answers Kratochv́ıl
& Pergel’s [31] question for recognizing 1-String graphs when the inputs are
restricted to apex graphs of arbitrarily large girth.

Chalopin & Gonçalves [9] showed that every planar graph can be represented
as an intersection graph of line segments in polynomial time. By putting this
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graph class as G in Theorem 1, we obtain that a similar result cannot hold for
apex graphs unless P = NP.

Corollary 1. For every fixed positive integer g, recognizing intersection graphs
of line segments is NP-hard, even for bipartite apex graphs with girth at least g.

Gonçalves, Isenmann & Pennarun [21] showed that every planar graph can
be represented as an intersection graph of L-shapes in polynomial time. The
following corollary shows that a similar result cannot hold for apex graphs unless
P = NP.

Corollary 2. For every fixed positive integer g, recognizing intersection graphs
of L-shapes is NP-hard, even for bipartite apex graphs with girth at least g.

Our main result also has a connection to a graph invariant called boxicity.
The boxicity of a graph is the minimum integer d such that the graph can
be represented as an intersection graph of d-dimensional axis-parallel boxes.
Thomassen showed that the boxicity of every planar graph is at most three [44].
It is easy to check if the boxicity of a planar graph is one [6], but the complexity of
determining whether a planar graph has boxicity two or three is not yet known.
A result of Hartman, Newman & Ziv [24] states that the class of bipartite graphs
with boxicity two is precisely Pure-2-Dir. Combined with our main result, this
implies that deciding the boxicity of apex graphs is NP-hard.

Corollary 3. For every fixed positive integer g, recognizing graphs with boxicity
2 is NP-hard, even for bipartite apex graphs with girth at least g.

A graph is c-apex if it contains a set of c vertices whose removal makes it
planar. This is a natural generalization of apex graphs. Our main result implies
that no graph class G satisfying Pure-2-Dir ⊆ G ⊆ 1-String can be recognized
in nf(c) time, where f is a computable function depending only on c. This means
recognizing G is XP-hard, and thus not fixed-parameter tractable [16,35] for c-
apex graphs when parameterized by c.

Corollary 4. Let g be a fixed positive integer and G be a graph class such that

Pure-2-Dir ⊆ G ⊆ 1-String.

Then assuming P �= NP, there is no deterministic f(c) · nO(1)-time algorithm
that recognizes G (where f is a computable function depending only on c), even
for bipartite c-apex graphs with girth at least g.

Planar graphs are precisely the (K5,K3,3)-minor free graphs [38]. Interest-
ingly, the set of forbidden minors for apex graphs is not known, although it is
known that the set is finite [23]. It is easy to see that apex graphs are K6-minor
free, implying the following.
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Corollary 5. Let g be a fixed positive integer and G be a graph class such that

Pure-2-Dir ⊆ G ⊆ 1-String.

Then it is NP-hard to decide whether an input graph belongs to G , even for
bipartite K6-minor free graphs with girth at least g.

Finally, using techniques different from ours, Kratochv́ıl & Matoušek [29]
had shown that recognizing Pure-2-Dir is NP-hard, and so is the recognition
of line segment intersection graphs. Theorem 1 and Corollary 1 show that these
recognition problems remain NP-hard even if the inputs are restricted to bipartite
apex graphs of large girth.

3 Proof Techniques

Let us now describe the Planar Hamiltonian Path Completion prob-
lem [3]. A Hamiltonian path in a graph is a path that visits each vertex of the
graph exactly once.

Definition 4. Planar Hamiltonian Path Completion is the following
decision problem.
Input: A planar graph G.
Output: Yes, if G is a subgraph of a planar graph with a Hamiltonian path; no,
otherwise.

Theorem 2 (Auer & Gleißner [3]). Planar Hamiltonian Path Com-

pletion is NP-hard.

We will use Theorem 2 to show Theorem 1. Similar to Mustaţă & Pergel [34],
we show NP-hardness for graph classes “sandwiched” between two classes of
geometric intersection graphs. A more technical formulation of Theorem 1 is as
follows.

Theorem 3. For every planar graph G and positive integer g, there exists a
bipartite apex graph Gapex of girth at least g which can be obtained in polynomial
time from G, satisfying the following properties.

(a) If Gapex is in 1-String, then G is a yes-instance of Planar Hamiltonian

Path Completion.
(b) If G is a yes-instance of Planar Hamiltonian Path Completion, then

Gapex is in Pure-2-Dir.

Proof of Theorem 1 assuming Theorem 3. Let G be a graph class satisfy-
ing the condition Pure-2-Dir ⊆ G ⊆ 1-String, and let G be a planar
graph. If G is a yes-instance of Planar Hamiltonian Path Completion,
then using Theorem 3 (b), we obtain that Gapex ∈ Pure-2-Dir ⊆ G . And
if Gapex ∈ G ⊆ 1-String, then by Theorem 3 (a), G is a yes-instance of
Planar Hamiltonian Path Completion.
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Thus, Gapex ∈ G if and only if G is a yes-instance of Planar Hamiltonian

Path Completion. Since Planar Hamiltonian Path Completion is
NP-hard (Theorem 2) and Gapex can be obtained in polynomial time from G,
this implies that deciding whether the bipartite apex graph Gapex belongs to G
is NP-hard. �

Therefore, as Theorem 3 implies our main result (Theorem 1), the rest of
this paper is devoted to the proof of Theorem 3.

4 Proof of the Main Result

4.1 Construction of the Apex Graph

We begin our proof of Theorem 3 by describing the construction of Gapex. Let G
be a planar graph. Gapex is constructed in two steps.

G → Gk-div → Gapex.

Let g ≥ 6 be a positive integer constant, and k ≥ 3 be the minimum odd integer
greater or equal to g − 3. Let Gk-div be the full k-subdivision of G, i.e., Gk-div
is the graph obtained by replacing each edge of G by a path with k + 1 edges.
Figure 2 (a) denotes a graph G, and Fig. 2 (b) denotes the full 3-subdivision of G.
Formally, we replace each e = (x, y) ∈ E(G) by the path (x, u1

e, u
2
e, u

3
e, . . . , u

k
e , y).

V (Gk-div) = V (G) ∪ {u1
e, u

2
e, u

3
e, . . . , u

k
e | e ∈ E(G)};

E(Gk-div) = {xu1
e, u

1
eu

2
e, u

2
eu

3
e, . . . , u

k−1
e uk

e , u
k
ey | e = xy ∈ E(G)}.

We call the vertices of V (G) ⊆ V (Gk-div) as the original vertices of Gk-div and
the remaining vertices as the subdivision vertices of Gk-div. Finally, we construct
Gapex by adding a new vertex a to Gk-div and making it adjacent to all the original
vertices of Gk-div (Fig. 2 (c)). Formally, Gapex is defined as follows.

V (Gapex) = V (Gk-div) ∪ {a};
E(Gapex) = E(Gk-div) ∪ {av | v ∈ V (G)}.

Observation A. If G is planar, then Gapex is a bipartite apex graph of girth at
least g.

Proof. G is a planar graph and subdivision does not affect planarity, so Gk-div
is also planar, implying that Gapex is an apex graph. The vertex set of Gapex can
be expressed as the disjoint union of two sets A and B, where

A = {x | x ∈ V (G)} ∪ {ui
e | e ∈ E(G), i is even};

B = {a} ∪ {ui
e | e ∈ E(G), i is odd}.
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Fig. 2. (a) G, a yes-instance of Planar Hamiltonian Path Completion; (b) Gk-div
for k = 3; (c) Gapex; (d) left and right semi-disks representing the vertices of G; (e) C, a
Pure-2-Dir representation of Gapex. (See Subsect. 4.1 for detailed explanations of (a),
(b) and (c).)
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Note that A induces an independent set in Gapex, and so does B. Thus, Gapex is
a bipartite apex graph. As for the girth, note that every cycle in Gapex contains
at least k+2 vertices x, u1

e, u
2
e, u

3
e, . . . , u

k
e , y, for some e = (x, y) ∈ E(G). At least

one more vertex is needed to complete the cycle, implying that the girth of Gapex

is at least k + 3 ≥ g. �

It is easy to see that this entire construction of Gapex from G can be carried out
in polynomial time. In Subsect. 4.2, we will prove Theorem 3 (a). In Subsect. 4.3,
we will provide a sketch of the proof of Theorem 3 (b).

4.2 Proof of Theorem 3 (a)

In this section, we will show that if Gapex is in 1-String, then G is a yes-instance
of Planar Hamiltonian Path Completion. In other words, if Gapex has a
1-String representation, then G is a subgraph of a planar graph with a Hamil-
tonian path.

Fig. 3. (Above) A standard
representation of a planar
graph with n = 5 vertices and
m = 9 edges, where the ver-
tices are points and the edges
are strings. (Below) A pla-
narizable representation (Def-
inition 5) of the same graph,
where the vertices as well as
the edges are strings.

In our proofs, we will demonstrate the pla-
narity of our graphs by embedding them in the
plane. Typically, a planar graph is defined as a
graph whose vertices are points in the plane and
edges are strings connecting pairs of points such
that no two strings intersect (except possibly at
their end points). The same definition holds in
more generality, i.e., if the vertices are also allowed
to be strings (see Fig. 3). Let us now state this for-
mally.

Definition 5 (Planarizable representation of
a graph). A graph G on n vertices and m edges
is said to admit a planarizable representation if
there are two mutually disjoint sets of strings V
and E (with |V |= n and |E|= m) in the plane
such that

– the strings of V correspond to the vertices of
G, and those of E correspond to the edges of
G;

– no two strings of V intersect;
– no two strings of E intersect, except possibly

at their end points;
– apart from its two end points, a string of E

does not intersect any string of V ;
– for every vertex v and every edge e = (x, y) of
G, an end point of the string corresponding to
e intersects the string corresponding to v if and
only if v = x or v = y.

Figure 3 illustrates a planar graph and a planarizable representation of it.
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Lemma 4. A graph admits a planarizable representation if and only if it is
planar.

Lemma 4 may seem obvious. For completeness, we shall provide a formal
proof of it in the full version of this paper. We now use this lemma to prove
Theorem 3 (a).

Fig. 4. (Left) Gk-div (k = 3) for a planar graph G on n = 5 vertices. (Right) C, a
planarizable representation of Gapex. The thickest string denotes c(a), the apex vertex
of Gapex. The bold strings denote the original vertices of G. The thin dashed strings
denote c(u1

e), c(u
2
e) and c(u3

e).

Proof of Theorem 3(a). Given Gapex ∈ 1-String, we will show that the planar
graph G is a yes-instance of the Planar Hamiltonian Path Completion

problem. Let C be a 1-String representation of Gapex in the plane. It is helpful
to follow Fig. 4 while reading this proof. We will use C to construct a graph Gpl

with the following properties.

(a) Gpl is a supergraph of G on the same vertex set as G.
(b) Gpl is planar.
(c) Gpl has a Hamiltonian path.

Note that (a), (b), (c) together imply that G is a subgraph of a planar graph with
a Hamiltonian path (i.e., G is a yes-instance of Planar Hamiltonian Path

Completion). Let n = |V (G)| and assume that n ≥ 4. Along with our con-
struction of Gpl, we will also describe Draw(Gpl), a planarizable representation
(Definition 5) of Gpl in the plane.

In C, consider the strings corresponding to the n original vertices (the large
vertices in Fig. 4 (Left)) of G. Since the original vertices form an independent
set in Gapex, the bold strings are pairwise disjoint. We add these n strings to
Draw(Gpl), which correspond to the n vertices of Gpl.

Proof of (c): So far, Gpl has no edge. We will now add n − 1 edges to Gpl to
connect these vertices via a Hamiltonian path. Recall that all n original vertices
are adjacent to the apex vertex a in Gapex, implying that each of the n bold strings
intersects c(a) at exactly one point (as C is a 1-String representation). Starting
from one end point of c(a) and travelling along the curve c(a) until we reach its
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other end point, we encounter these n points one-by-one. Let (v1, v2, . . . , vn) be
the order in which they are encountered.

For each i ∈ [n], let pi be the point at which c(vi) intersects c(a). For each
i ∈ [n − 1], let si be the substring of c(a) between pi and pi+1. Add the strings
s1, s2, . . . , sn−1 as edges to Draw(Gpl), where si represents the edge between
vi and vi+1. Thus the edges corresponding to the n − 1 strings s1, s2, . . . , sn−1

constitute a Hamiltonian path (v1, v2, . . . , vn) in Gpl. This shows (c).

Proof of (a): To show (a), we need to add all the edges of G to Gpl (other than
those already added by the previous step), so that Gpl becomes a supergraph
of G. For each edge e = vivj ∈ E(G), there are k strings c(u1

e), c(u
2
e), . . . , c(u

k
e)

(corresponding to the subdivision vertices u1
e, u

2
e, . . . , u

k
e in Gapex) in C. Note that

for each t ∈ {1, 2, . . . , k}, the string c(ut
e) intersects exactly two other strings.

Let s(ut
e) be the substring of c(ut

e) between those two intersection points. Let
se be the string obtained by concatenating the k substrings thus obtained.

se �
k⋃

t=1

s(ut
e). (1)

If the edge e = vivj is not already present in Gpl, then add the string se to
Draw(Gpl), where se represents the edge between vi and vj (one end point
of se lies on c(vi) and the other on c(vj)). This completes the construction of
Draw(Gpl), and shows (a).

Proof of (b): To show (b), it is enough to show that Draw(Gpl) is a planarizable
representation of Gpl (Lemma 4). Note that there are three types of strings in
Draw(Gpl): (i) substrings of c(a), (ii) strings of the type se, for some e = vivj ∈
E(G), and (iii) n strings corresponding to the original vertices of G.

Two strings of type (i) are either disjoint or intersect at their end points,
since c(a) is non-self-intersecting. More precisely, for each i ∈ [n − 1], the point
pi+1 (the unique intersection point of si and si+1) lies on c(vi+1), which denotes
a vertex in Draw(Gpl). A string of type (ii) intersects exactly two strings, c(vi)
and c(vj), which denote vertices in Draw(Gpl). Finally, strings of type (iii) are
mutually disjoint. This shows (b).

4.3 Proof of Theorem 3 (b)

Let us elucidate the main idea behind our proof. We are given a plane drawing
of G in which its vertices are placed in a collinear fashion on a vertical line,
respecting their ordering on the Hamiltonian path (Fig. 2 (a)). Our construction,
in essence, modifies this plane drawing to obtain a Pure-2-Dir representation
of Gapex (Fig. 2 (e)).

The apex segment c(a) is placed on the vertical line. The vertices of the
original graph within Gapex are represented using horizontal segments (of appro-
priate length). The edges of G, which were strings in the plane drawing, are now
replaced by rectilinear piecewise linear curves where each individual orthogo-
nal segment represents a subdivided vertex of Gapex. If we were allowed a large
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(unbounded) number of rectilinear pieces for each edge, then this construction is
trivial, since every curve can be viewed as a series of infinitesimally small verti-
cal and horizontal segments. Our proof formally justifies that this can always be
done even when the number of allowed rectilinear pieces is a fixed odd integer
greater than or equal to three.

We achieve this through a slightly modified version of a folklore observation
concerning book embeddings of graphs [5]: if a graph is embedded in a book
and a, b, c, d are four vertices on the spine of the book arranged in the order
a < b < c < d, then (a, c) and (b, d) cannot both be edges on the same page of
the book. Also note that Fig. 2 (a) is for representational purposes only. Owing
to the observation above, our construction does not rely on the topology of the
strings representing the edges of G in Fig. 2 (a). We provide a detailed proof
of Theorem 3 (b) in the full version of this paper.
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Abstract. The L(p, q)-Edge-Labelling problem is the edge variant
of the well-known L(p, q)-Labelling problem. It is equivalent to the
L(p, q)-Labelling problem itself if we restrict the input of the lat-
ter problem to line graphs. So far, the complexity of L(p, q)-Edge-
Labelling was only partially classified in the literature. We complete
this study for all p, q ≥ 0 by showing that whenever (p, q) �= (0, 0), the
L(p, q)-Edge-Labelling problem is NP-complete. We do this by prov-
ing that for all p, q ≥ 0 except p = q = 0, there is an integer k so that
L(p, q)-Edge-k-Labelling is NP-complete.

1 Introduction

This paper studies a problem that falls under the distance-constrained labelling
framework. Given any fixed nonnegative integer values p and q, an L(p, q)-k-
labelling is an assignment of labels from {0, . . . , k − 1} to the vertices of a graph
such that adjacent vertices receive labels that differ by at least p, and vertices
connected by a path of length 2 receive labels that differ by at least q [5]. Some
authors instead define the latter condition as being vertices at distance 2 receive
labels which differ by at least q (e.g. [7]). These definitions are the same so long
as p ≥ q and much of the literature considers only this case (e.g. [11]). If q > p,
the definitions diverge. For example, in an L(1, 2)-labelling, the vertices of a
triangle K3 need labels {0, 1, 2} in the second definition but {0, 2, 4} in the first.
We use the first definition, in line with [5]. The decision problem of testing if
for a given integer k, a given graph G admits an L(p, q)-k-labelling is known as
L(p, q)-Labelling. If k is fixed, that is, not part of the input, we denote the
problem as L(p, q)-k-Labelling.

The L(p, q)-labelling problem has been heavily studied, both from the com-
binatorial and computational complexity perspectives. For a starting point, we
refer the reader to the comprehensive survey of Calamoneri [5].1 The L(1, 0)-
Labelling is the traditional Graph Colouring problem (COL), whereas
L(1, 1)-Labelling is known as (Proper) Injective Colouring [2,3,9] and
Distance 2 Colouring [13,16]. The latter problem is studied explicitly in many
papers (see [5]), just as is L(2, 1)-Labelling [8,11,12] (see also [5]). The L(p, q)-
labelling problem is also studied for special graph classes, see in particular [6]

1 See http://wwwusers.di.uniroma1.it/∼calamo/survey.html for later results.
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Table 1. Table of results.The fourth row follows from [14] (which proves the case
p = q = 1) and applying Lemma 1. The eighth row is obtained from a straightforward
generalization of the result in [12] for the case where p = 2 and q = 1. The fourth
column gives the minimal k for which we prove NP-completeness. In the second row
choose minimal n ≥ 4 so that (n − 3)p ≥ q.

Regime Reduction from Place in article k at least

p = 0 and q > 0 3-COL Sect. 3 3q

2 ≤ q/p NAE-3-SAT Appendix A (n − 1)p + q + 1

1 < q/p ≤ 2 NAE-3-SAT Sect. 4 5p + 1

q/p = 1 3-COL [14] 4p

2/3 < q/p ≤ 1 3-COL Sect. 5 3p + q + 1

q/p = 2/3 1-in-3-SAT Appendix B 4p

1/2 < q/p < 2/3 2-in-4-SAT Appendix C p + 4q + 1

0 < q/p ≤ 1/2 NAE-3-SAT Appendix D [12] 3p + 1

p > 0 and q = 0 3-COL Sect. 2 3p

for a complexity dichotomy for trees. Janczewski et al. [11] proved that if p > q,
then L(p, q)-Labelling is NP-complete for planar bipartite graphs.

We consider the edge version of the problem. The distance between two edges
e1 and e2 is the length of a shortest path that has e1 as its first edge and e2 as its
last edge minus 1 (we say that e1 and e2 are adjacent if they share an end-vertex
or equivalently, are of distance 1 from each other). The L(p, q)-Edge-Labelling
problem considers an assignment of the labels to the edges instead of the vertices,
and now the corresponding distance constraints are placed instead on the edges.
Owing to space constraints some proofs and cases are omitted. Please see the
full version of this article at [1]. In particular, references to the appendix are
intended for that version.

In [12], the complexity of L(2, 1)-Edge-k-Labelling is classified. It is in P
for k < 6 and is NP-complete for k ≥ 6. In [14], the complexity of L(1, 1)-Edge-
k-Labelling is classified. It is in P for k < 4 and is NP-complete for k ≥ 4.
In this paper we complete the classification of the complexity of L(p, q)-Edge-
k-Labelling in the sense that, for all p, q ≥ 0 except p = q = 0, we exhibit k
so we can show L(p, q)-Edge-k-Labelling is NP-complete. That is, we do not
exhibit the border for k where the problem transitions from P to NP-complete
(indeed, we do not even prove the existence of such a border). The authors of
[12] were looking for a more general result, similar to ours, but found the case
(p, q) = (2, 1) laborious enough to fill one paper [15]. In fact, their proof settles
for us all cases where p ≥ 2q. We now give our main result.

Theorem 1. For all p, q ≥ 0 except if p = q = 0, there exists an integer k so
that L(p, q)-Edge-k-Labelling is NP-complete.

The proof follows by case analysis as per Table 1, where the corresponding section
for each of the subresults is specified. We are able to reduce to the case that
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gcd(p, q) = 1, due to the forthcoming Lemma 1. We prove NP-hardness by
reduction from graph 3-colouring and several satisfiability variants. These latter
are known to be NP-hard from Schaefer’s classification [17]. Each section begins
with a theorem detailing the relevant NP-completeness. The case p = q = 0 is
trivial (never use more than one colour) and is therefore omitted. Our hard-
ness proofs involve gadgets that have certain common features, for example, the
vertex-variable gadgets are generally star-like. For one case, we have a computer-
assisted proof (as we will explain in detail).

By Theorem 1 we obtain a complete classification of L(p, q)-Edge-
Labelling.

Corollary 1. For all p, q ≥ 0 except p = q = 0, L(p, q)-Edge-Labelling is
NP-complete.

Note that L(p, q)-Edge-Labelling is equivalent to L(p, q)-Labelling for line
graphs (the line graph of a graph G has vertex set E(G) and two vertices e
and f in it are adjacent if and only if e and f are adjacent edges in G). Hence,
we obtain another dichotomy for L(p, q)-Labelling under input restrictions,
besides the ones for trees [6] and if p > q, (planar) bipartite graphs [11].

Corollary 2. For all p, q ≥ 0 except p = q = 0, L(p, q)-Labelling is NP-
complete for the class of line graphs.

2 Preliminaries

We use the terms colouring and labelling interchangeably. A special role will be
played by the extended n-star (especially for n = 4). This is a graph built from an
n-star K1,n by subdividing each edge (so it becomes a path of length 2). Instead
of referring to the problem as L(p, q)-Labelling (or L(h, k)-Labelling) we
will use L(a, b)-Labelling to free these other letters for alternative uses.

The following lemma is folklore and applies equally to the vertex- or edge-
labelling problem. Note that gcd(0, b) = b.

Lemma 1. Let gcd(a, b) = d > 1. Then the identity is a polynomial time reduc-
tion from L(a/d, b/d)-(Edge)-k-Labelling to L(a, b)-(Edge)-kd-Labelling.

This result and the known NP-completeness of Edge-3-Colouring [10] imply:

Corollary 3. For all a > 0, L(a, 0)-Edge-3a-Labelling is NP-complete.

3 Case a = 0 and b > 0

By Lemma 1 we only have to consider a = 0 and b = 1.

Theorem 2. The problem L(0, 1)-Edge-3-Labelling is NP-complete.
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Let us use colours {0, 1, 2}. Our NP-hardness proof involves a reduction from
3-COL but we retain the nomenclature of variable gadget and clause gadget
(instead of vertex gadget and edge gadget) in deference to the majority of our
other sections. Our variable gadget consists of a triangle attached on one of its
vertices to a leaf vertex of a star. Our clause gadget consists of a bull, each
of whose pendant edges (vertices of degree 1) has an additional pendant edge
added (that is, they are subdivided). This is equivalent to a triangle with a path
of length 2 added to each of two of the three vertices. We draw our variable
gadget in Fig. 1 and our clause gadget in Fig. 2.

Lemma 2. In any valid L(0, 1)-edge-3-labelling of the variable gadget, each of
the pendant edges must be coloured the same.

Proof. Each of the edges in the triangle must be coloured distinctly as there is
a path of length two from each to any other (by this we mean with a single
edge in between, though they are also adjacent). Suppose the triangle edge that
has two nodes of degree 2 in the variable gadget is coloured i. It is this colour
that must be used for all of the pendant edges. The remaining edge may be
coloured by anything from {0, 1, 2}\{i}. However, we will always choose the
option i − 1 mod 3. ��

Fig. 1. The variable gadget for Theorem 2.

Fig. 2. The clause gadget for Theorem 2 (left) drawn also together with its interface
with a variable gadget (right). The dashed line is an inner edge of the variable gadget.
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Lemma 3. In any valid L(0, 1)-edge-3-labelling of the clause gadget, the two
pendant edges must be coloured distinctly.

Proof. Each of the edges in the triangle must be coloured distinctly as there is
a path of length two from each to any other. Suppose the triangle edge that has
two nodes of degree 3 in the clause gadget is coloured (w.l.o.g.) 2. The remaining
edges in the triangle must be given 0 and 1, in some order. This then determines
the colours of the remaining edges and enforces that the two pendant edges
must be coloured distinctly. However, suppose we had started first by colouring
distinctly the pendant edges. We could then choose a colouring of the remaining
edges of the clause gadget so as to enforce the property that, if a pendant edge
is coloured i, then its neighbour (in the clause gadget) is coloured i + 1 mod 3.
This is the colouring we will always choose. ��

We are now ready to prove Theorem 2.

Proof (Proof of Theorem 2.). We reduce from 3-COL. Let G be an instance of
3-COL involving n vertices and m edges. Let us explain how to build an instance
G′ for L(0, 1)-Edge-3-Labelling. Each particular vertex may only appear in
at most m edges (its degree), so for each vertex we take a copy of the variable
gadget which has m pendant edges. For each edge of G we use a clause gadget
to unite an instance of these pendant edges from the corresponding two variable
gadgets. We use each pendant edge from a variable gadget in at most one clause
gadget. We identify the pendant edge of a variable gadget with a pendant edge
from a clause gadget so as to form a path from one to the other. We claim that G
is a yes-instance of 3-COL iff G′ is a yes-instance of L(0, 1)-Edge-3-Labelling.

(Forwards.) Take a proper 3-colouring of G and induce these colours on
the pendant edges of the corresponding variable gadgets. Distinct colours on
pendant edges can be consistently united in a clause gadget since we choose, for
a pendant edge coloured i: i − 1 mod 3 for its neighbour in the variable gadget,
and i + 1 mod 3 for its neighbour in the clause gadget.

(Backwards.) From a valid L(0, 1)-edge-3-labelling of G′, we infer a 3-
colouring of G by reading the pendant edge labels from the variable gadget
of the corresponding vertex. The consistent labelling of each vertex follows from
Lemma 2 and the fact that it is proper follows from Lemma 3. ��

4 Case 1 < b
a

≤ 2

In this section we prove the following result.

Theorem 3. If 1 < b
a ≤ 2, the problem L(a, b)-Edge-(5a + 1)-Labelling is

NP-complete.

We proceed by a reduction from (monotone) NAE-3-SAT. This case is relatively
simple as the variable gadget is built from a series of extended 4-stars chained
together, where each has a pendant 5-star to enforce some benign property. We
will use colours from the set {0, . . . , 5a}.
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Lemma 4. Let 1 < b
a ≤ 2. In any valid L(a, b)-edge-(5a + 1)-labelling of the

extended 4-star, if one pendant edge is coloured 0 then all pendant edges are
coloured in the interval {0, . . . , a}; and if one pendant edge is coloured 5a then
all pendant edge are coloured in the interval {4a, . . . , 5a}.
Proof. Suppose some pendant edge is coloured by 0 and another pendant is
coloured by l′ /∈ {0, . . . , a}. There are four inner edges of the star that are at
distance 1 or 2 from these, and one another. If l′ < 2a, then at least 2a labels
are ruled out, which does not leave enough possibilities for the inner edges to
be labelled in (at best) {2a + 1, . . . , 5a}. If l′ ≥ 2a, then it is not possible to
use labels for the inner edges that are all strictly above l′. It is also not possible
to use labels for the inner edges that are all strictly below l. In both cases, at
least 2a labels are ruled out. Thus the labels, read in ascending order, must
start no lower than a and have a jump of 2a at some point. It follows they are
one of: a, 3a, 4a, 5a; or a, 2a, 4a, 5a; or a, 2a, 3a, 5a. This implies that l′ is itself a
multiple of a (whichever one was omitted in the given sequence). But now, since
b > a, there must be a violation of a distance 2 constraint from l′. ��
We would like to chain extended 4-stars together to build our variable gadgets,
where the pendant edges represent variables (and enter into clause gadgets) and
we interpret one of the regimes {0, . . . , a} and {4a, . . . , 5a} as true, and the other
as false. However, the extended 4-star can be validly L(a, b)-edge-(5a+1)-labelled
in other ways that we did not yet consider. We can only use Lemma 4 if we can
force one pendant edge in each extended 4-star to be either 0 or 5a. Fortunately,
this is straightforward: take a 5-star and add a new edge to one of the edges of
the 5-star creating a path of length 2 from the centre of the star to the furthest
leaf. This new edge can only be coloured 0 or 5a. In Fig. 3 we show how to chain
together copies of the extended 4-star, together with pendant 5-star gadgets at
the bottom, to produce many copies of exactly one of the regimes {0, . . . , a} and
{4a, . . . , 5a}. Note that the manner in which we attach the pendant 5-star only
produces a valid L(a, b)-edge-(5a + 1)-labelling because 2a ≥ b (otherwise some
distance 2 constraints would fail). So long as precisely one pendant edge per
extended 4-star is used to encode a variable, then each encoding can realise all
labels within each of these regimes, and again this can be seen by considering
the pendant edges drawn top-most in Fig. 3, which can all be coloured anywhere
in {4a, . . . , 5a}. Let us recap, a variable gadget (to be used for a variable that
appears in an instance of NAE-3-SAT m times) is built from chaining together
m extended 4-stars, each with a pendant 5-star, exactly as is depicted in Fig. 3
for m = 3. The following is clear from our construction. The designation top is
with reference to the drawing in Fig. 3. In Fig. 3, the case drawn corresponds to
{4a, . . . , 5a}, where the case {0, . . . , a} is symmetric.

Lemma 5. Any valid L(a, b)-edge-(5a+1)-labelling of a variable gadget is such
that the top pendant edges are all coloured from precisely one of the sets {0, . . . , a}
and {4a, . . . , 5a}. Moreover, any colouring of the top pendant edges from one of
these sets is valid.
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Fig. 3. Three extended 4-stars chained together, each with a pendant 5-star below, to
form a variable gadget for Theorem 3. The pendant edges drawn on the top will be
involved in clauses gadget and each of these three edges can be coloured with anything
from {4a, . . . , 5a}. If the top pendant edge is coloured 5a it may be necessary that the
inner star edge below it is coloured not 3a but 2a (cf. Fig. 4). This is fine, the chaining
construction works when swapping 2a and 3a.

The clause gadget will be nothing more than a 3-star (a claw) which is formed
from a new vertex uniting three (top) pendant edges from their respective vari-
able gadgets. The following is clear.

Lemma 6. A clause gadget is in a valid L(a, b)-edge-(5a + 1)-labelling in the
case where two of its edges are coloured 0, a and the third 5a; or two of its edges
are coloured 4a, 5a and the third 0. If all three edges come from only one of the
regimes {0, . . . , a} and {4a, . . . , 5a}, it can not be in a valid L(a, b)-edge-(5a+1)-
labelling.

We are now ready to prove Theorem 3.

Proof (Proof of Theorem 3.). We reduce from (monotone) NAE-3-SAT. Let Φ be
an instance of NAE-3-SAT involving n occurrences of (not necessarily distinct)
variables and m clauses. Let us explain how to build an instance G for L(a, b)-
Edge-(5a + 1)-Labelling. Each particular variable may only appear at most
n times, so for each variable we take a copy of the variable gadget which is n
extended 4-stars, each with a pendant 5-star, chained together. Each particular
instance of the variable belongs to one of the free (top) pendant edges of the
variable gadget. For each clause of Φ we use a 3-star to unite an instance of these
free (top) pendant edges from the corresponding variable gadgets. Thus, we add
a single vertex for each clause, but no new edges (they already existed in the
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variable gadgets). We claim that Φ is a yes-instance of NAE-3-SAT if and only
if G is a yes-instance of L(a, b)-Edge-(5a + 1)-Labelling.

(Forwards.) Take a satisfying assignment for Φ. Let the range {0, . . . , a} rep-
resent true and the range {4a, . . . , 5a} represent false. This gives a valid labelling
of the inner edges in the extended 4-stars, as exemplified in Fig. 3. In each clause,
either there are two instances of true and one of false; or the converse. Let us
explain the case where the first two variable instances are true and the third is
false (the general case can easily be garnered from this). Colour the (top) pen-
dant edge associated with the first variable as 0, the second variable a and the
third variable 5a. Plainly these can be consistently united in a claw by the new
vertex that appeared in the clause gadget. We draw the situation in Fig. 4 to
demonstrate that this will not introduce problems at distance 2. Thus, we can
see this is a valid L(a, b)-edge-(5a + 1)-labelling of G.

(Backwards.) From a valid L(a, b)-edge-(5a + 1)-labelling of G, we infer an
assignment Φ by reading, in the variable gadget, the range {0, . . . , a} as true
and the range {4a, . . . , 5a} as false. The consistent valuation of each variable
follows from Lemma 5 and the fact that it is in fact not-all-equal follows from
Lemma 6. ��

Fig. 4. The clause gadget and its interface with the variable gadgets (where we
must consider distance 2 constraints). Both possible evaluations for not-all-equal are
depicted.

5 Case 2
3
< b

a
< 1

In this section we prove the following result.

Theorem 4. If 2
3 < b

a < 1, then the problem L(a, b)-Edge-(3a + b + 1)-
Labelling is NP-complete.

The regimes of the following lemma are drawn in Fig. 5.

Lemma 7. Let 1 < a
b < 3

2 . In an L(a, b)-edge-(3a + b + 1)-labelling c of the
extended 4-star, there are three regimes for the pendant edges. The first is
{b, . . . , a}, the second is {2a + b, . . . , 3a}, and the third is {a + b, . . . , 2a}.
Proof. In a valid L(a, b)-edge-(3a + b + 1)-labelling, we note c1 < c2 < c3 < c4
the colours of the 4 edges in the middle of the extended 4-star, and l1, l2, l3, l4
the colours of the pendant edges such that li is the colour of the pendant edge
connected to the edge of colour ci.
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Fig. 5. The regimes of Theorem 4.

Claim 1. For all i, c1 < li < c4.

We only have to prove one inequality, as the other one is obtained by sym-
metry. If li ≤ c1 (bearing in mind also b < a), we have:

3a + b ≥ c4 − li = (c1 − li) + (c2 − c1) + (c3 − c2) + (c4 − c3) ≥ 3a + b.

So (c1, c2, c3, c4) = (b, a+b, 2a+b, 3a+b), but a > b so there is no possible value
for l1, which is not possible. So c1 < li, and by symmetry li < c4.

Claim 2. There exists i ∈ {1, 2, 3} such that ci+1 − ci ≥ a + b.

We suppose the contrary. We have proved c1 < l2, l3 < c4. If l2 < c2, then
c2 − c1 = c2 − l2 + l2 − c1 ≥ a + b, impossible. If c2 < l2 < c3, then c3 − c2 =
c3 − l2 + l2 − c2 ≥ a + b, impossible. So c3 < l2 < c4. Symmetrically, we
obtain c1 < l3 < c2. So c1 < l3 < c2 < c3 < l2 < c4, and we get: c4 − c1 ≥
(l3 − c1) + (c2 − l3) + (c3 − c2) + (l2 − c3) + (c4 − l2) ≥ 4b + a > 3a + b, which is
not possible.

Now we are in a position to derive the lemma, with the three regimes coming
from the three possibilities of Claim 2. If i = 1, then the inner edges of the
star are 0, a + b, 2a + b, 3a + b and the pendant edges come from {b, . . . , a}. If
i = 2, then the inner edges of the star are 0, a, 2a + b, 3a + b and the pendant
edges come from {a + b, . . . , 2a}. If i = 3, then the inner edges of the star are
0, a, a + b, 3a + b and the pendant edges come from {2a + b, . . . , 3a}. ��

The variable gadget may be taken as a series of extended 4-stars chained
together. In the following, the “top” pendant edges refer to one of the two free
pendant edges in each extended 4-star (not involved in the chaining together).
The following is a simple consequence of Lemma 7 and is depicted in Fig. 6.

Lemma 8. Any valid L(a, b)-edge-(3a + b + 1)-labelling of a variable gadget is
such that the top pendant edges are all coloured from precisely one of the sets
{b, . . . , a}, {a + b, . . . , 2a} or {2a + b, . . . , 3a}. Moreover, any colouring of the
top pendant edges from one of these sets is valid.
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Fig. 6. Three extended 4-stars chained together, to form a variable gadget for
Theorem 4. The pendant edges drawn on the top will be involved in clauses gadget.
Suppose the top pendant edges are coloured b (as is drawn). In order to fulfill distance
2 constraints in the clause gadget, we may need the inner star vertices adjacent to them
to be coloured not always a + b (for example, if that pendant edge b is adjacent in a
clause gadget to another edge coloured a + b). This is fine, the chaining construction
works when swapping inner edges a + b and 3a + b wherever necessary.

The clause gadget will be nothing more than a 2-star (a path) which is formed
from a new vertex uniting two (top) pendant edges from their respective variable
gadgets. The following is clear.

Lemma 9. A clause gadget is in a valid L(a, b)-edge-(3a+b+1)-labelling in the
case where its edges are coloured distinctly. If they are coloured the same, then
it can not be in a valid L(a, b)-edge-(3a + b + 1)-labelling.

We are now ready to prove Theorem 4.

Proof (Proof of Theorem 4.). We reduce from 3-COL. Let G be an instance of
3-COL involving n vertices and m edges. Let us explain how to build an instance
G′ for L(a, b)-Edge-(3a + b + 1)-Labelling. Each particular vertex may only
appear in at most m edges (m is an upper ground on its degree), so for each
vertex we take a copy of the variable gadget which is m extended 4-stars chained
together. Each particular instance of the vertex belongs to one of the free (top)
pendant edges of the variable gadget. For each edge of G we use a 2-star to
unite an instance of these free (top) pendant edges from the corresponding two
variable gadgets. Thus, we add a single vertex for each edge of G, but no new
edges in G′ (they already existed in the variable gadgets). We claim that G
is a yes-instance of 3-COL if and only if G′ is a yes-instance of L(a, b)-Edge-
(3a + b + 1)-Labelling.

(Forwards.) Take a proper 3-colouring of G and induce these pendant edge
labels on the corresponding variable gadgets according to the three regimes of
Lemma 7. For example, map colours 1, 2, 3 to b, a + b, 2a + b. Plainly distinct
pendant edge labels can be consistently united in a 2-claw by the new vertex
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that appeared in the clause gadget. Thus, we can see this is a valid L(a, b)-edge-
(3a + b + 1)-labelling of G′.

(Backwards.) From a valid L(a, b)-edge-(3a+b+1)-labelling of G′, we infer a
3-colouring of G by reading the pendant edge labels from the variable gadget of
the corresponding vertex and mapping these to their corresponding regime. The
consistent valuation of each variable follows from Lemma 8 and the fact that it
is proper (not-all-equal) follows from Lemma 9. ��

6 Final Remarks

We give several directions for future work. First, determining the boundary for
k between P and NP-complete, in L(p, q)-Edge-k-Labelling, for all p, q is still
open except if (p, q) = (1, 1) and (p, q) = (2, 1). For (p, q) = (1, 1) it is known to
be 4 (it is in P for k < 4 and is NP-complete for k ≥ 4) [14]; and for (p, q) = (2, 1)
it is known to be 6 (it is in P for k < 6 and is NP-complete for k ≥ 6) [12].

A second open line of research concerns L(p, q)-Labelling for classes of
graphs that omit a single graph H as an induced subgraph (such graphs are
called H-free). A rich line of work in this vein includes [3], where it is noted, for
k ≥ 4, that L(1, 1)-k-Labelling is in P over H-free graphs, when H is a linear
forest; for all other H the problem remains NP-complete. If k is part of the input
and p = q = 1, the only remaining case is H = P1 + P4 [2]. Corollary 2 covers,
for every (p, q) �= (0, 0), the case where H contains an induced claw (as every
line graph is claw-free). For bipartite graphs, and thus for H-free graphs for all
H with an odd cycle, the result for L(p, q)-k-Labelling is known from [11], at
least in the case p > q.

As our final open problem, for d ≥ 1, the complexity of L(p, q)-Labelling on
graphs of diameter at most d has, so far, only been determined for a, b ∈ {1, 2} [4].
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3. Bok, J., Jedlic̆ková, N., Martin, B., Paulusma, D., Smith, S.: Acyclic, star and
injective colouring: a complexity picture for H-free graphs. In: Proceedings of ESA
2020, LIPIcs, vol. 173, pp. 22:1–22:22 (2020)

4. Brause, C., Golovach, P., Martin, B., Paulusma, D., Smith, S.: Acyclic, star, and
injective colouring: bounding the diameter. In: Kowalik, �L, et al. (eds.) WG 2021.
LNCS, vol. 12911, pp. 336–348. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-86838-3 26

5. Calamoneri, T.: The L(h, k)-labelling problem: an updated survey and annotated
bibliography. Comput. J. 54, 1344–1371 (2011)

https://arxiv.org/abs/2008.12226
https://doi.org/10.1007/978-3-030-79416-3_2
https://doi.org/10.1007/978-3-030-86838-3_26
https://doi.org/10.1007/978-3-030-86838-3_26


186 G. Berthe et al.

6. Fiala, J., Golovach, P.A., Kratochv́ıl, J.: Computational complexity of the dis-
tance constrained labeling problem for trees (Extended abstract). In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
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Abstract. We analyze the computational complexity of motion plan-
ning through local “input/output” gadgets with separate entrances and
exits, and a subset of allowed traversals from entrances to exits, each of
which changes the state of the gadget and thereby the allowed traver-
sals. We study such gadgets in the zero-, one-, and two-player settings, in
particular extending past motion-planning-through-gadgets work [3,4] to
zero-player games for the first time, by considering “branchless” connec-
tions between gadgets that route every gadget’s exit to a unique gadget’s
entrance. Our complexity results include containment in L, NL, P, NP,
and PSPACE; as well as hardness for NL, P, NP, and PSPACE. We
apply these results to show PSPACE-completeness for certain mechanics
in Factorio, [the Sequence], and a restricted version of Trainyard, improv-
ing the result of [1]. This work strengthens prior results on switching
graphs, ARRIVAL [5], and reachability switching games [6].

Keywords: gadgets · motion planning · hardness of games

1 Introduction

Imagine a train proceeding along a track within a railroad network. Tracks are
connected together by “switches”: upon reaching one, the switch chooses the
train’s next track deterministically based on the state of the switch and where
the train entered the switch; furthermore, the traversal changes the switch’s
state, affecting the next traversal. ARRIVAL [5] is one game of this type, where
every switch has a single input and two outputs, and alternates between sending
the train along the two outputs; the goal is to determine whether the train ever
reaches a specified destination. Even this seemingly simple game has unknown
complexity, but is known to be in NP ∩ coNP [5], so cannot be NP-hard unless
NP = coNP. More recent work shows a stronger result of containment in UP ∩
coUP as well as CLS [9], PLS [11], and UEOPL [7]. But what about other types
of switches?
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In this paper, we introduce a very general notion of “input/output gadgets”
that models the possible behaviors of a switch, and analyze the resulting com-
plexity of motion planning/prediction (does the train reach a desired destina-
tion?) while navigating a network of switches/gadgets. This framework gives us
an expressive set of problems with different complexity classes to use as the basis
for reductions for other problems of interest. For example, it is related to the
generalization of ARRIVAL in [6] which define Reachability Switching Games.
The paper further also describes how these Reachability Switching Games are
related to switching systems and Propp machines, both of independent interest.
In addition to ARRIVAL, our model captures other toy-train models, includ-
ing those in the video game Factorio or the puzzle game Trainyard. In some
cases, we obtain PSPACE-hardness, enabling building of a (polynomial-space)
computer out of a railway system with a single train. Intuitively, our model is
similar to a circuit model of computation, but where the state is stored in the
gates (gadgets) instead of the wires, and gates update only according to visits
by a single deterministically controlled agent (the train).

This work builds off of prior work on the computational complexity of agent-
based motion planning [3,4], extending it zero-player situations. An analogous
generalization of computational problems based on the number of players and
boundedness of moves can be found in Constraint Logic [10] which has served as
a basis for a large number of hardness proofs for reconfiguration problems, as well
as games and puzzles. However this line of work differs from Constraint Logic
because it involves the changes to the system being localized in a single agent,
whereas all edges in a constraint logic puzzle are available for any given move.
This is helpful in constructing hardness proofs where action is geographically
constrained. Further Constraint Logic is an inherently reversible system and
generalizing beyond that constraint can be helpful in hardness reductions.

Motion Planning Through Gadgets. Our model is a natural zero-player
adaptation of the motion-planning-through-gadgets framework developed in
[4] (after its introduction at FUN 2018 [3]), so we begin with a summary of that
framework. A gadget consists of a finite set L of locations (entrances/exits),
a finite set S of states, and for each state s ∈ S, a labeled directed graph Gs =
(L,Es) on the locations, where a directed edge (a, b) with label s′ means that an
agent can traverse the gadget by entering the gadget at location a and exiting at
location b while changing the state of the gadget to s′. In general, a location might
serve as the entrance for one traversal and the exit for another traversal; however,
we consider in this paper the special case where each location serves exclusively
as an entrance or an exit, but not both. Equivalently, a gadget is specified by
its transition graph , a directed graph whose vertices are state/location pairs
∈ S ×L, where a directed edge from (s, a) to (s′, b) represents that an agent can
traverse the gadget from a to b if it is in state s, and that such traversal changes
the gadget’s state to s′. We sometimes also consider the state-transition graph
of a gadget, which is the directed graph with a vertex for each state ∈ S and a
directed edge (s, s′) for each transition from (s, a) to (s′, b) for any a, b ∈ L.
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A system of gadgets consists of a set of gadgets, their initial states, and a
connection graph on the gadgets’ locations. If two locations a, b of two gadgets
(possibly the same gadget) are connected by a path in the connection graph, then
an agent can traverse freely between a and b (outside the gadgets). (Equivalently,
we can think of locations a and b as being identified.) Gadgets are local in the
sense that traversing a gadget does not change the state of any other gadgets.

In one-player motion planning , we are given the initial location of a
single agent in a system of gadgets, and the problem asks whether there is a
sequence of traversals that brings that agent to its goal location.

Past work [4] analyzed (and in many cases, characterized) the complexity of
these motion-planning problems for gadgets satisfying a few additional proper-
ties, specifically, gadgets that are “reversible deterministic k-tunnel” or that are
“DAG k-tunnel”, defined as follows:

– A gadget is k-tunnel if it has 2k locations and there is a perfect matching,
whose matching edges are called tunnels, such that the gadget only allows
traversals between endpoints of a tunnel.

– A gadget is deterministic if its transition graph has maximum out-degree
≤ 1, i.e., an agent entering the gadget at some location a in some state s can
exit at only one location b and in only one state s′.

– A gadget is reversible if its transition graph has the reverse of every edge,
i.e., every traversal could be immediately undone.

– A gadget is a DAG if it has an acyclic state-transition graph. Such gadgets
can necessarily be traversed only a bounded number of times (at most the
number of states).

Input/Output Gadgets and Zero-Player Motion Planning. We define a
gadget to be input/output if its locations can be partitioned into input loca-
tions (entrances) and output locations (exits) such that every traversal brings
an agent from an input location to an output location, and in every state, there
is at least one traversal from each input location. In particular, deterministic
input/output gadgets have exactly one traversal from each input location in
each state. Note that input/output gadgets cannot be reversible nor DAGs, so
prior characterizations [4] do not apply to this setting.

An input/output gadget is output-disjoint if, for each output location, all
of the transitions to it (including those from different states) are from the same
input location. This notion is still more general than k-tunnel: it allows a one-
to-many relation from a single input to multiple outputs.

With deterministic input/output gadgets, we can define a natural zero-
player motion-planning game as follows. A system of gadgets is branchless
if each connected component of the connection graph contains at most one input
location.1 Intuitively, if an agent finds itself in such a connected component, then
there is only one gadget location it can enter, uniquely defining how it should

1 Originally in [3] the gadget model was inherently branchless and non-deterministic,
1-state ‘branching hallway’ gadgets were used to connect multiple locations.
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Table 1. Five subunits for 2-state, output-disjoint, input/output gadgets. We consider
the 2-state gadgets to have the states Up and Down. Some subunits will set the state
to a specific value such as Up, while some others always change the state when they
are traversed.

Set-Up Line
A tunnel that can always be traversed in one direction
and sets the state of the gadget to a specific state.

Toggle Line
A tunnel that can always be traversed in one direction
and toggles the state with each crossing.

Switch
A three-location gadget with one input which transitions
to one of two outputs depending on the state, without
changing the state.

Set-Up Switch
A switch which also sets the state of the gadget to a
specific state.

Toggle Switch
A switch which also toggles the state of the gadget with
each crossing.

proceed. (If an agent finds itself in a connected component with no input loca-
tions, it is stuck in a dead-end and the game ends.) We can think of edges in
the connection graph as directed wires that point from output locations to the
input location in the same connected component. Note branchless systems can
still have multiple output locations in a connected component which functions
as a fan-in.

In a branchless system of deterministic input/output gadgets, there are never
any choices to make: in the connection graph, there is at most one reachable
input location, and when the agent enters an input location there is exactly
one transition it can make. Thus we define zero-player motion planning
with a set of deterministic input/output gadgets to be the one-player motion-
planning game restricted to branchless systems of gadgets. Lacking any agency,
the decision problem is equivalent to whether the agent ever reaches the goal
location while following the unique path available to it.

Classifying Output-Disjoint Deterministic 2-State Input/Output Gad-
gets. In this paper, we are primarily interested in output-disjoint deterministic
2-state input/output gadgets. In this section, we omit the adjectives and refer
to them simply as “gadgets”, and give a categorization of these gadgets, into
‘trivial,’ ‘bounded,’ and ‘unbounded’ gadgets. For each category, we will show
that every gadget in the category can simulate at least one of a finite set of
gadgets. The behavior of an input location to a gadget is described by how it
changes the state and which output location it sends the agent to in each state.
If the input location doesn’t change the state and always uses the same output
location, it can be ignored (the path can be ‘shortcut’ to skip that transition).
Otherwise, the input location corresponds to one of the following five nontrivial
subunits, and the gadget is a disjoint union of some of these subunits (which
interact by sharing state). These subunits are given in Table 1.
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The ARRIVAL problem [5] is equivalent to zero-player motion planning with
the toggle switch: we replace each vertex in their switch graph with a toggle
switch, or vice versa. We will use their terminology when referring to switch
graphs in the ARRIVAL paper; however, when referring to gadgets in our model,
a switch is a gadget (or part of a gadget) which does not change state when
crossed. More generally, zero-player motion planning with an arbitrary set of
deterministic single-input input/output gadgets (with gadgets specified as part
of the instance) is equivalent to explicit zero-player reachability switching games,
as defined in [6].

We call the states of any such two state gadget up and down , and assume
that each switch transitions to the top output in the up state and the bottom
output in the down state; because we are not concerned with planarity, this
assumption is fully general. There are two versions of the set line and set switch:
one to set the gadget to each state. For example, a gadget with a set-up line and
set-down switch is meaningfully different from a set-up line and set-up switch.
We draw the set-down line and switch as the reflections of the set-up version.
To represent the current state of a gadget, we make one of the lines in each
switch dashed, so that the next transition would be made along a solid line. We
categorize gadgets into three families:

1. Trivial gadgets have either no state change or no state-dependent behavior;
they are composed entirely of either switches or toggle and set lines. They are
equivalent to collections of simple tunnels, and zero-player motion planning
with them is in L by straightforwardly simulating the agent for a number of
steps equal to the number of locations.

2. Bounded gadgets have state-dependent behavior (i.e., some kind of switch)
and one-way state change, either only to the up state or only to the down
state. They naturally give rise to bounded games (a game in which the max-
imum number of turns is polynomially bounded before ending or repeating),
because each gadget can change its state at most once.

3. Unbounded gadgets have state-dependent behavior and can change state in
both directions. They naturally give rise to unbounded games.

We will find that the complexity of motion planning with a given gadget
also depends on whether the gadget is single-input , meaning it has only one
input location, or multiple nontrivial inputs. A non-trivial input must contain
at least one transition from it, and that transition must either change the state
of the gadget or must not exist in all states of the gadget. The only nontrivial
single-input gadgets are the set switch and the toggle switch, which are bounded
and unbounded, respectively. Recall Table 1 gives definitions for the pieces of
2-state input-output gadgets. The full version of the paper proves for all 2-state
input-output gadgets with multiple inputs, there is a system of those gadgets
with the same behavior as one of eight gadgets made of pairs of the subunits.

Lemma 1. Let G be an output-disjoint deterministic 2-state input/output gad-
get with multiple nontrivial inputs.
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Table 2. Summary of results for output-disjoint deterministic 2-state input/output
gadgets.

Trivial (No
state change
or on tunnels)

Bounded,
multiple
nontrivial
inputs

Unbounded, multiple
nontrivial inputs

Zero-player (Fully
Deterministic) (Sect. 2)

L P-complete PSPACE-complete

One-player (Sect. 1) NL-complete NP-complete PSPACE-complete

Table 3. Summary of results for single-input input/output gadgets. These results can
be found in the full version of the paper [2].

Contained in Hard for

Zero-player (Fully
Deterministic)

UP ∩ coUP [9] NL (cf. [6])

One-player NP (cf. [6]) NP (cf. [6])

Two-Player EXPTIME (cf. [6]) PSPACE (cf. [6])

– If G is bounded, then it simulates either a switch/set-up line or a set-up
switch/set-up line.

– If G is unbounded, then it simulates one of the following gadgets:
1. switch/toggle line,
2. switch/set-up line/set-down line,
3. set-up switch/toggle line,
4. set-up switch/set-down line,
5. toggle switch/toggle line, or
6. toggle switch/set-up line.

Our Results. Table 2 summarizes our results on output-disjoint deterministic
2-state input/output gadgets. While our main motivation was to analyze zero-
player motion planning, we also characterize the complexity of one-player motion
planning for contrast. A full version of this paper is available [2].

We also consider motion planning with single-input input/output gadgets
summarized in Table 3. This is a more immediate generalization of ARRIVAL
[5], and is equivalent to the reachability switching games studied in [6]. We
strengthen the results of [6] by showing that the containments in NP and EXP-
TIME still hold when we allow nondeterministic gadgets, and by showing hard-
ness with specific gadgets—the toggle switch for zero-player, and each of the
toggle switch and set switch for one- and two-player—instead of having gadgets
specified as part of the instance.



0/1/2-Player Motion Planning Through Input/Output Gadgets 193

In the full version of the paper, we apply this framework to prove PSPACE-
completeness of the mechanics in several video games: one-train colorless Train-
yard, the game [the Sequence], trains in Factorio, and transport belts in Fac-
torio are all PSPACE-complete. The first result improves a previous PSPACE-
completeness result for two-color Trainyard [1] by using a strict subset of game
features. Factorio in general is trivially PSPACE-complete, as players have
explicitly built computers using the circuit network; here we prove hardness
for the restricted problems with only train-related objects and only transport-
belt-related objects.

2 Zero Players

In this section, we consider unbounded gadgets with multiple inputs, which are
naturally PSPACE-complete. The full version of the paper considers unbounded
gadgets with only a single input and bounded gadgets with multiple inputs,
which are naturally P-complete.

We show that zero-player motion planning with any unbounded output-
disjoint deterministic 2-state input/output gadget which has multiple nontrivial
inputs is PSPACE-complete through a reduction from Quantified Boolean For-
mula (QBF), which is PSPACE-complete, to zero-player motion planning with
the switch/set-up line/set-down line, and by showing that every such gadget
simulates the switch/set-up line/set-down line.

Edge Duplicators. Many of our simulations involve building an edge duplicator
An edge duplicator is a construction which allows us to effectively make a copy
of a line from X to X ′ in a gadget. For example, we might want to take a
switch/toggle-line and build a three input gadget made of a switch and two
separate toggle-lines. Edge duplication is achieved by routing two inputs A and
B to X, and then sending the agent from X ′ to one of two exits A′ or B′

corresponding to the input used. The details of the construction of an edge
duplicator depend on the gadget used; see Fig. 1 for an example.

2.1 PSPACE-Hardness of the Switch/Set-Up Line/Set-Down Line

In this section, we show that zero-player motion planning with the switch/set-
up line/set-down line is PSPACE-hard through a reduction from QBF. The
switch/set-up line/set-down line is a 2-state input/output gadget with three
inputs: one sets the state to up, one sets it to down, and one sends the agent to
one of two outputs based on the current state.

Theorem 2. Zero-player motion planning with the switch/set-up line/set-down
line is PSPACE-hard.

A full proof can be found in the full version of the paper but a sketch is
provided here. We first build an edge duplicator, shown in Fig. 1. This allows
us to use gadgets with multiple set-up or set-down lines. Each quantifier gadget
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Fig. 1. An edge duplicator for the
switch/set-up line/set-down line. A
robot entering on the left sets the state
of the switch, goes across the dupli-
cated tunnel, and exits based on the
state it set the switch to.

Fig. 2. An edge duplicator for the tog-
gle switch/toggle switch. The tunnel on
the left is duplicated.

Fig. 3. The universal quantifier for
the switch/set-up line/set-down
line. An edge duplicator (Fig. 1) is
used to give the bottom gadget two
set-down lines.

Fig. 4. Three clauses of CNF evaluation
for the switch/set-up line/set-down line;
each clause is a row of three switches. The
switches are part of gadgets in the quanti-
fiers. We assume the top exit of each switch
corresponds to that literal being true.

has three inputs, called In, True-In, and False-In, and three outputs, called Out,
True-Out, and False-Out. The agent will always first arrive at In. This sets the
variable controlled by that quantifier to true, and the agent leaves at Out, which
sends it to the next quantifier gadget. The universal quantifier gadget is shown
in Fig. 3. The existential quantifier is identical except that True-Out and False-
Out are swapped, and True-In and False-In are swapped. Figure 4 shows how
the variables can be incorporated into a CNF formula.
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Fig. 5. A simulation of three toggle lines
and three toggle switches from gadgets
with one toggle switch and 5, 6, and 7 tog-
gle lines. The red tunnels are toggle lines
and the blue tunnels are toggle switches.
(Color figure online)

Fig. 6. A simulation of a switch/set-
up line/set-down line from the gadget
built in Fig. 5. The switch, set-up line,
and set-down line are red, green, and
blue, respectively. (Color figure online)

2.2 Other Gadgets Simulate the Switch/Set-Up Line/Set-Down
Line

In this section, we show that every unbounded output-disjoint deterministic
2-state input/output gadget with multiple nontrivial inputs can simulate the
switch/set-up/set-down. We only need to show that the five other gadgets from
Lemma 1 simulate the switch/set-up/set-down. It follows that zero-player motion
planning with any such gadget is PSPACE-complete, since we can replace each
gadget in a system of switch/set-up/set-down with a simulation of it. Some cases
are presented here, see the full version of the paper for the remaining cases.

Toggle Switch/Toggle Switch. We begin with the toggle switch/toggle switch,
which is not part of our basis of gadgets but will be a useful intermediate gadget. It
builds an edge duplicator, shown in Fig. 2. We can merge the two outputs of one of
the toggle switches to simulate a toggle switch/toggle line, and then duplicate the
toggle line to make a gadget with one toggle switch and any number of toggle lines.
By putting such gadgets in series, we can simulate a gadget with any number of
toggle lines and any number of toggle switches. Figure 5 shows this for three toggle
lines and three toggle switches, which is as large as we need. This simulated gadget
can finally simulate the switch/set-up line/set-down line, shown in Fig. 6.

Switch/Toggle Line. We first build an edge duplicator, shown in Fig. 7. We
can then duplicate the toggle line and put one copy in series with the switch,
constructing a toggle switch/toggle line.

Set-Up Switch/Toggle Line. We first build an edge duplicator, shown in Fig. 8.
We then simulate the switch/toggle line, shown in Fig. 9.

Toggle Switch/Set-Up Line. We simulate a set-up line/set-down switch using
the toggle switch/ set-up line, as shown in Fig. 10; this is equivalent to a set-up
switch/set-down line.
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Fig. 7. An edge duplicator for the switch/toggle line. The leftmost tunnel is duplicated.

Fig. 8. An edge duplicator for the set-
up switch/toggle line. The leftmost
tunnel is duplicated.

Fig. 9. A simulation of the switch/toggle
line using the set-up switch/toggle line.
Red is the switch and blue is the toggle
line. (Color figure online)

These simulations, together with Lemma 1, give the following theorem. The
details of these cases are given in the full version of the paper.

Theorem 3. Every unbounded output-disjoint deterministic 2-state input/output
gadget with multiple nontrivial inputs simulates the switch/set-up line/set-down
line.

Corollary 4. Let G be an unbounded output-disjoint deterministic 2-state
input/output gadget with multiple nontrivial inputs. Zero-player motion plan-
ning with G is PSPACE-complete.

Fig. 10. A simulation of a set-up line/set-down switch from the set-up line/toggle
switch. The state of the simulated gadget is the same as the state of the center gadget.
The red path corresponds to the set-up line. When it enters the set-down switch, the
robot goes along the blue lines if the state is down, the green lines if the state is up,
and the black lines in both cases. (Color figure online)
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3 Open Problems

One interesting problem left open by our paper and several before it [5,6,9] is
the complexity of zero-player motion planning with deterministic single-input
input/output gadgets, or equivalently ARRIVAL and zero-player reachability
switching games; this is known to be between NL-hard and NP ∩ coNP, which
is a large gap. We conjecture that many of these single input gadgets are P-
hard and we would be interested to see such a result. We also leave open the
complexity of two-player one-agent motion planning, or two-player reachability
switching games, which is between PSPACE-hard and EXPTIME.

Since input/output gadgets seem to be a natural and rich class of gad-
gets, one could expand our characterization of zero-player motion planning to
include input/output gadgets beyond the output-disjoint deterministic 2-state
ones. Another question is whether these gadgets remain hard in the planar case.

Finally, although we have only defined zero-player motion planning with
input/output gadgets (and the Trainyard gadget), many other classes of gadgets
could be explored in the zero-player model. This model begins to look a lot more
like a typical circuit or computing model with the unusual constraint that only a
single signal is ever propagating through the system. In particular, a reasonable
zero-player motion planning problem with reversible, deterministic gadgets (like
those studied in [3] and [4]) is similar to asynchronous ballistic reversible logic
[8] introduced to explore potential low-power computing architectures.
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Abstract. A Boolean function f : {0, 1}n → {0, 1} is k-linear if it
returns the sum (over the binary field F2) of k coordinates of the input.
In this paper, we study property testing of the classes k-Linear, the class
of all k-linear functions, and k-Linear∗, the class Yk

j“0j-Linear. We give a
non-adaptive distribution-free two-sided ε-tester for k-Linear that makes

O

(
k log k ` 1

ε

)

queries. This matches the lower bound known from the literature.
We then give a non-adaptive distribution-free one-sided ε-tester for k-

Linear∗ that makes the same number of queries and show that any non-
adaptive uniform-distribution one-sided ε-tester for k-Linear must make
at least Ω̃(k) log n`Ω(1/ε) queries. The latter bound, almost matches the
upper bound O(k log n ` 1/ε) known from the literature. We then show
that any adaptive uniform-distribution one-sided ε-tester for k-Linear
must make at least Ω̃(

√
k) log n ` Ω(1/ε) queries.

1 Inroduction

Property testing of Boolean function was first considered in the seminal works
of Blum, Luby and Rubinfeld [5] and Rubinfeld and Sudan [19] and has recently
become a very active research area. See for example works referenced in the
surveys and books [11,12,16,17].

A Boolean function f : {0, 1}n → {0, 1} is said to be linear if it returns the
sum (over the binary field F2) of some coordinates of the input, k-linear if it
returns the sum of k coordinates, and, k-linear∗ if it returns the sum of at most
k coordinates. The class Linear (resp. k-Linear and k-Linear∗) is the classes
of all linear functions (resp. all k-linear functions and Yk

i“0k-Linear). Those
classes has been of particular interest to the property testing community [3–
6,8–10,12,14,16–18,20].

1.1 The Model

Let f and g be two Boolean functions {0, 1}n → {0, 1} and let D be a distribution
on {0, 1}n. We say that f is ε-far from g with respect to (w.r.t.) D if PrD[f(x) “|
g(x)] ě ε and ε-close to g w.r.t. D if PrD[f(x) “| g(x)] ď ε.

In the uniform-distribution and distribution-free property testing model, we
consider the problem of testing a class of Boolean function C. In the distribution-
free testing model (resp. uniform-distribution testing model), the tester is a
c© Springer Nature Switzerland AG 2022
P. Mutzel et al. (Eds.): WALCOM 2022, LNCS 13174, pp. 201–212, 2022.
https://doi.org/10.1007/978-3-030-96731-4_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96731-4_17&domain=pdf
https://doi.org/10.1007/978-3-030-96731-4_17
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randomized algorithm that has access to a Boolean function f : {0, 1}n → {0, 1}
via a black-box oracle that returns f(x) when a string x is queried. The tester
also has access to unknown distribution D (resp. uniform distribution) via an
oracle that returns x P {0, 1}n chosen randomly according to the distribution D
(resp. according to the uniform distribution). A distribution-free tester, [13],
(resp. uniform-distribution tester) A for C is a tester that, given as input a
distance parameter ε and the above two oracles to a Boolean function f ,

1. if f P C then A accepts with probability at least 2/3.
2. if f is ε-far from every g P C w.r.t. D (resp. uniform distribution) then A

rejects with probability at least 2/3.

We will also call A an ε-tester for the class C or an algorithm for ε-testing
C. We say that A is one-sided if it always accepts when f P C; otherwise, it is
called two-sided tester. The query complexity of A is the maximum number of
queries A makes on any Boolean function f . If the query complexity is q then
we call the tester a q-query tester or a tester with query complexity q.

In the adaptive testing (uniform-distribution or distribution-free) the queries
can depend on the answers of the previous queries where in the non-adaptive
testing all the queries are fixed in advance by the tester.

In this paper we study testers for the classes k-Linear and k-Linear∗.

1.2 Prior Results

Blum et al. [5] gave an O(1/ε)-query non-adaptive uniform-distribution one-sided
ε-tester (called BLR tester) for Linear. Halevy and Kushilevitz, [14], used a self-
corrector (an algorithm that computes g(x) from a black box query to f that is
ε-close to g) to reduce distribution-free testability to uniform-distribution testa-
bility. This reduction gives an O(1/ε)-query non-adaptive distribution-free one-
sided ε-tester for Linear. The reduction can be applied to any subclass of Linear.
In particular, any q-query uniform-distribution ε-tester for k-Linear (k-Linear∗)
gives a O(q)-query distribution-free ε-tester.

It is well known that if there is a q1-query uniform-distribution ε-tester for
Linear and a q2-query uniform-distribution ε-tester for the class k-Junta1 then
there is an O(q1`q2)-query uniform-distribution O(ε)-tester for k-Linear∗. Since
k-Linear “ k-Linear∗\(k ´ 1)-Linear∗, if there is a q-query uniform-distribution
ε-tester for k-Linear∗ then there is an O(q)-query uniform-distribution two-sided
ε-tester for k-Linear. Therefore, all the results for testing k-Junta are also true
for k-Linear∗ and k-Linear in the uniform-distribution model.

For non-adaptive testers Fisher, et al. [9] gave the lower bound Ω(
√

k). Gol-
dreich [10], gave the lower bound Ω(k). In [4], Blais and Kane gave the lower
bound 2k ´ o(k). Then in [3], Blais et al. gave the lower bound Ω(k log k).
For adaptive testers, Goldreich [10], gave the lower bound Ω(

√
k). Then Blais et

al. [3] gave the lower bound Ω(k) and in [4], Blais and Kane gave the lower bound
k ´o(k). Then in [20], Saglam gave the lower bound Ω(k log k). This bound with
1 The class of boolean functions that depends on at most k coordinates.
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the trivial Ω(1/ε) lower bound gives the lower bound Ω(k log k ` 1/ε) for the
query complexity of any adaptive uniform-distribution (and distribution-free)
two-sided testers.

For upper bounds for uniform-distribution two-sided ε-testing k-Linear,
Fisher, et al. [9] gave the first adaptive tester that makes O(k2/ε) queries. In
[8], Buhrman et al. gave a non-adaptive tester that makes O(k log k) queries
for any constant ε. As is mentioned above, testing k-Linear can be done by
first testing if the function is k-Junta and then testing if it is Linear. There-
fore, using Blais [1,2] adaptive and non-adaptive testers for k-Junta we get
adaptive and non-adaptive uniform-distribution testers for k-Linear that makes
O(k log k ` k/ε) and Õ(k1.5/ε) queries, respectively.

For upper bounds for two-sided distribution-free testing k-Linear, as is
mentioned above, from Halevy et al. reduction in [14], an adaptive and non-
adaptive distribution-free ε-tester can be constructed from adaptive and non-
adaptive uniform-distribution ε-testers. This gives an adaptive and non-adaptive
distribution-free two-sided testers for k-Linear that makes O(k log k ` k/ε) and
Õ(k1.5/ε) queries, respectively.

1.3 Our Results

In this paper we prove

Theorem 1. For any ε > 0, there is a polynomial time non-adaptive distribution-
free one-sided ε-tester for k-Linear∗ that makes O(k log k ` 1/ε) queries.

By the 2-sided reduction from k-Linear to k-Linear∗, we get

Theorem 2. For any ε > 0, there is a polynomial time non-adaptive distribution-
free two-sided ε-tester for k-Linear that makes O(k log k ` 1/ε) queries.

This improves [8] by allowing ε to be general instead of a fixed constant,
improves [2] by making the tester non-adaptive and improving the k/ε depen-
dence to 1/ε.

For one-sided testers for k-Linear we prove

Theorem 3. Any non-adaptive uniform-distribution one-sided ε-tester for k-
Linear must make at least Ω̃(k) log n ` Ω(1/ε) queries.

This almost matches the upper bound O(k log n ` 1/ε) that follows from the
reduction of Goldreich et al. [13] and the non-adaptive deterministic exact learn-
ing algorithm of Hofmeister [15] that learns k-Linear with O(k log n) queries.

For adaptive testers we prove

Theorem 4. Any adaptive uniform-distribution one-sided ε-tester for k-Linear
must make at least Ω̃(

√
k) log n ` Ω(1/ε) queries.

2 Overview of the Testers and Lower Bounds

In this section we give overview of the techniques used for proving the results in
this paper.
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2.1 One-Sided Tester for k-Linear∗

The tester for k-Linear∗ first runs the tester BLR of Blum et al. [5] to test
if the function f is ε′-close to Linear w.r.t. the uniform distribution, where
ε′ “ Θ(1/(k log k)). BLR is one-sided tester and therefore, if f is k-linear then
BLR accepts with probability 1. If f is ε′-far from Linear w.r.t. the uniform
distribution then, with probability at least 2/3, BLR rejects. Therefore, if the
tester BLR accepts, we may assume that f is ε′-close to Linear w.r.t. the uniform
distribution. Let g P Linear be the function that is ε′-close to f . If f is k-linear∗

then f “ g. This is because ε′ < 1/8 and the distance2 between every two linear
functions is 1/2. BLR makes O(1/ε′) “ O(k log k) queries.

In the second stage, the tester tests if g (not f) is k-linear∗. Let us assume for
now that we can query g in every string. Since g PLinear, we need to distinguish
between functions in k-Linear∗ and functions in Linear\k-Linear∗. We do that
with two tests. We first test if g P 8k-Linear∗ and then test if it is in k-Linear∗

assuming that it is in 8k-Linear∗. In the first test, the tester “throws”, uniformly
at random, the variables of g into 16k bins and tests if there is more than k non-
empty bins. If g is k-linear∗ then the number of non-empty bins is always less
than k. If it is k′-linear for some k′ > 8k then with high probability (w.h.p.) the
number of non-empty bins is greater than k. Notice that if f is k-linear∗ then the
test always accepts and therefore it is one-sided. This tests makes O(k) queries
to g.

The second test is testing if g is in k-Linear∗ assuming that it is in 8k-
Linear∗. This is done by projecting the n coordinates of g into r “ O(k2)
coordinates3 uniformly at random4 and learning (finding exactly) the projected
function using the non-adaptive deterministic Hofmeister’s algorithm, [15], that
makes O(k log r) “ O(k log k) queries. Since g P 8k-Linear∗, w.h.p., the relevant
coordinates5 of the function are projected to different coordinates, and therefore,
w.h.p., the learning gives a linear function that has exactly the same number of
relevant coordinates as g. The tester accepts if the number of relevant coordi-
nates in the projected function is at most k. If g P k-Linear∗, then the projected
function is in k-Linear∗ with probability 1 and therefore this test is one-sided.
This test makes O(k log k) queries.

We assumed that we can query g. We now show how to query g in O(k log k)
strings so we can apply the above two tests. For this, the tester uses self-
corrector, [5]. To compute g(z), the self-corrector chooses a uniform random
string a P {0, 1}n and computes f(z ` a) ` f(a). Since f is O(1/(k log k))-close
to g w.r.t. the uniform distribution, we have that for any string z P {0, 1}n

and an a P {0, 1}n chosen uniformly at random, with probability at least
1´O(1/(k log k)), f(z`a)`f(a) “ g(z`a)`g(a) “ g(z). Therefore, w.h.p., the

2 w.r.t. the uniform distribution, i.e., Pr[f1 “| f2] where f1 and f2 are distinct linear
functions.

3 That is, defining a function f(xφ(1), . . . , xφ(n)) where φ : [n] → [r] is random uniform.
4 We may assume that k ď √

n. This is because the one-sided non-adaptive testing
in [13] asks O(k log n ` 1/ε) queries which is O(k log k ` 1/ε) queries for k >

√
n.

5 Coordinates that the function depends on.



An Optimal Tester for k-Linear 205

self-corrector computes correctly the values of g in O(k log k) strings. If f P k-
Linear then g “ f and f(z ` a) ` f(z) “ f(z) “ g(z), i.e., the self-corrector
gives the value of g with probability 1. This shows that the above two tests are
one-sided.

Now, if f is k-linear∗ then f “ g. If f is ε-far from every function in k-Linear∗

w.r.t. D then it is ε-far from g w.r.t. D.
In the final stage the tester tests whether f is equal to g or ε-far from g w.r.t.

D. Here again the tester uses self-corrector. It asks for a sample {(z(i), f(zi))|i P
[t]} according to the distribution D of size t “ O(1/ε) and tests if f(z(i)) “
f(z(i) ` a(i)) ` f(a(i)) for every i P [t], where a(i) are i.i.d. uniform random
strings. If f(z(i)) “ f(z(i) ` a(i)) ` f(a(i)) for all i then it accepts, otherwise,
it rejects. If f is k-linear then f(z(i)) “ f(z(i) ` a(i)) ` f(a(i)) for all i and the
tester accepts with probability 1. Now suppose f is ε-far from g w.r.t. D. Since
f is ε′-close to g w.r.t. the uniform distribution and ε′ ď 1/8 we have that, with
probability at least 7/8, f(z(i) `a(i))`f(a(i)) “ g(z(i) `a(i))`g(a(i)) “ g(z(i)).
Therefore, assuming the latter happens, then, with probability at least 1 ´ ε we
have f(z(i)) “| g(z(i)) “ f(z(i) ` a(i)) ` f(a(i)). Thus, w.h.p, there is i such that
f(z(i)) “| f(z(i) ` a(i)) ` f(a(i)) and the tester rejects. This stage is one-sided
and makes O(1/ε) queries.

2.2 Two-Sided Testers for k-Linear

As we mentioned in the introduction, the one-sided q-query uniform-distribution
ε-tester for k-Linear∗ gives a two-sided uniform-distribution O(q)-query ε-tester
for k-Linear. This is because, in the uniform distribution, the linear functions
are 1/2-far from each other and therefore, for any ε < 1/4, if f is ε-close to a
k-linear function g then it is (1/2 ´ ε)-far from (k ´ 1)-Linear∗. This is not true
for any distribution D, and therefore, cannot be applied here.

The algorithm in the previous subsection can be changed to a two-sided tester
for k-Linear as follows. The only part that should be changed is the test that
g is in k-Linear∗ assuming that it is in 8k-Linear∗. We replace it with a test
that g is in k-Linear assuming that it is in 8k-Linear∗. The tester rejects if the
number of relevant coordinates in the function that is learned is not equal to
k. This time the test is two-sided. The reason is that the projection to O(k2)
coordinates does not guarantee (with probability 1) that all the variables of f
are projected to different variables. Therefore, it may happen that f is k-linear
and the projection gives a (k ´ 1)-linear∗ function.

For the lower bound for one-sided testers see Subsect. 4.1.

3 The Testers for k-Linear∗ and k-Linear

In this section we give the non-adaptive distribution-free one-sided tester for
k-Linear∗ and the non-adaptive distribution-free two-sided tester for k-Linear.
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3.1 Notations

In this subsection, we give some notations that we use throughout the paper.
Denote [n] “ {1, 2, . . . , n}. For X Ă [n] we denote by {0, 1}X the set of all

binary strings of length |X| with coordinates indexed by i P X. For x P {0, 1}n

and X Ď [n] we write xX P {0, 1}X to denote the projection of x over coordinates
in X. We denote by 1X and 0X the all-one and all-zero strings in {0, 1}X ,
respectively. For a variable xi and a set X, we denote by (xi)X the string x′

over coordinates in X where for every j P X, x′
j “ xi. For X1,X2 Ď [n] where

X1 X X2 “ H and x P {0, 1}X1 , y P {0, 1}X2 we write x ◦ y to denote their
concatenation, i.e., the string in {0, 1}X1YX2 that agrees with x over coordinates
in X1 and agrees with y over coordinates in X2. For X Ď [n] we denote X “
[n]\X “ {x P [n]|x �P X}.

For example, if n “ 7, X1 “ {1, 3, 5}, X2 “ {2, 7}, y2 is a variable
and z “ (z1, z2, z3, z4, z5, z6, z7) P {0, 1}7 then (y2)X1 ◦ zX2 ◦ 0X1YX2

“
(y2, z2, y2, 0, y2, 0, z7).

3.2 The Tester

Consider the tester Test-Linear∗
k for k-Linear∗ in Fig. 1. The tester uses three

procedures. The first is Self-corrector that for an input x P {0, 1}n chooses a
uniform random z P {0, 1}n and returns f(x ` z) ` f(z). The procedure BLR
is a non-adaptive uniform-distribution one-sided ε-tester for Linear. BLR makes
c1/ε queries for some constant c1, [5]. The third procedure is Hofmeister’s
Algorithm (N,K), a deterministic non-adaptive algorithm that exactly learns
K-Linear∗ over N coordinates from black box queries. Hofmeister’s Algorithm
makes c2K log N queries for some constant c2, [15].

To test k-Linear we use the same tester but change step 11 to:
(11) If the output is not in k-Linear then reject

We call this tester Test-Lineark.

3.3 Correctness of the Tester

In this section we prove

Theorem 5. Test-Lineark is a non-adaptive distribution-free two-sided ε-
tester for k-Linear that makes O(k log k ` 1/ε) queries.

Theorem 6. Test-Linear∗
k is a non-adaptive distribution-free one-sided ε-

tester for k-Linear∗ that makes O(k log k ` 1/ε) queries.

Proof. Since there is no stage in the tester that uses the answers of the queries
asked in previous ones, the tester is non-adaptive.

In Stage 1 the tester makes O(1/ε′) “ O(k log k) queries. In stage 2.1, O(k)
queries. In stage 2.2, O(k log r) “ O(k log k) queries and in stage 3, O(1/ε)
queries. Therefore, the query complexity of the tester is O(k log k ` 1/ε).

We will assume that k ě 12. For k < 12, the non-adaptive tester of k-Junta
with the BLR tester and the self-corrector gives a non-adaptive testers that
makes O(1/ε) “ O(k log k ` 1/ε) queries.
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Fig. 1. An optimal two-sided tester for k-Linear.

Completeness: We first show the completeness for Test-Lineark that tests k-
Linear. Suppose f P k-Linear. Then for every x we have g(x) “ f(x`z)`f(z) “
f(x) ` f(z) ` f(z) “ f(x). Therefore, g “ f . In stage 1, BLR is one-sided
and therefore it does not reject. In stage 2.1, since X1, . . . , X16k are pairwise
disjoint, the number of functions g(xXi

◦ 0Xi
), i “ 1, 2, . . . , 16k, that are not

identically zero is at most k and therefore stage 2.1 does not reject. In stage
2.2, with probability at least 1 ´ (

k
2

)
/(256k2) ě 2/3, the relevant coordinates

of f fall into different Xi and then F “ g((y1)X1 ◦ (y2)X2 ◦ · · · ◦ (yr)Xr
) “

f((y1)X1 ◦ (y2)X2 ◦ · · · ◦ (yr)Xr
) is k-linear. Then, Hofmeister’s algorithm returns

a k-linear function. Therefore, with probability at least 2/3 the tester does not
reject. Stage 3 does not reject since f “ g.
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Now for the tester Test-Linear∗
k, in stage 2.2, with probability 1 the function

F is in k-Linear∗. In fact, if t relevant coordinates falls into the set Xi then the
coordinate i (that correspond to the variable yi) will be relevant in F if and only
if t is odd. Therefore, the tester does not reject.

Notice that Test-Linear∗
k is one-sided and Test-Lineark is two-sided.

Soundness: We prove the soundness for Test-Lineark. The same proof also
works for Test-Linear∗

k. Suppose f is ε-far from k-Linear w.r.t. the distribution
D. We have four cases

Case 1: f is ε′-far from Linear w.r.t. the uniform distribution.
Case 2: f is ε′-close to g PLinear and g is in Linear\8k-Linear∗.
Case 3: f is ε′-close to g PLinear and g is in 8k-Linear∗\k-Linear.
Case 4: f is ε′-close to g PLinear, g is in k-Linear and f is ε-far from k-Linear

w.r.t. D.

For Case 1, if f is ε′-far from Linear then, in stage 1, BLR rejects with
probability 2/3.

For Cases 2 and 3, since f is ε′-close to g, for any fixed x P {0, 1}n with
probability at least 1 ´ 2ε′ (over a uniform random z), f(x ` z) ` f(z) “ g(x `
z) ` g(z) “ g(x). Since stages 2.1 and 2.2 makes (16k ` c2k log r) queries (to
g), with probability at least 1 ´ (16k ` c2k log r)2ε′ ě 5/6, g(x) is computed
correctly for all the queries in stages 2.1 and 2.2.

For Case 2, consider stage 2.1 of the tester. If g is in Linear\8k-Linear∗

then g has more than 8k relevant coordinates. The probability that less than or
equal to 4k of X1, . . . , X16k contains relevant coordinates of g is at most (since
(
n
k

) ď (
en
k

)k)
(

16k

4k

)
1

48k
ď

(
e16k

4k

)4k 1
48k

ď 1
12

.

If Xi contains the relevant coordinates i1, . . . , i� then g(xXi
◦ 0Xi

) “ xi1 `
· · ·`xi�

and therefore, for a uniform random z P {0, 1}n, with probability at least
1/2, g(zXi

◦ 0Xi
) “ 1. Therefore, if at least 4k of X1, . . . , X16k contains relevant

coordinates then, by Chernoff bound, with probability at least 1 ´ e´k/4 ě
11/12, the counter “Count” is greater than k. Therefore, for Case 2, if g is in
Linear\8k-Linear∗ then, with probability at least 1 ´ (1/6 ` 1/12 ` 1/12) “ 2/3,
the tester rejects.

For Case 3, consider stage 2.2. If g is in 8k-Linear∗\k-Linear then g has at
most 8k relevant coordinates. Then with probability at least 1 ´ (

8k
2

)
/(256k2) ě

5/6, the relevant coordinates of g fall into different Xi and then Hofmeister’s
algorithm returns a linear function with the same number of relevant coordinates
as g. Therefore stage 2.2 rejects with probability at least 2/3.
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For Case 4, if g is in k-Linear and f is ε-far from k-Linear w.r.t. D, then f
is ε-far from g w.r.t. D. Then for uniform random z and x ∼ D,

PrD,z[f(x) “| g(x)] ě PrD,z[f(x) “| g(x)|g(x) “ f(x ` z) ` f(z)]
·PrD,z[g(x) “ f(x ` z) ` f(z)]

“ PrD[f(x) “| g(x)]Prz[g(x) “ f(x ` z) ` f(z)]
ě ε(1 ´ ε′) ě ε/2.

Therefore, with probability at most (1´ ε/2)t “ (1´ ε/2)4/ε ď 1/3, stage 3 does
not reject.

4 Lower Bound

In this section we prove

Theorem 7. Any non-adaptive uniform-distribution one-sided 1/8-tester for k-
Linear must make at least Ω̃(k log n) queries.

Theorem 8. Any adaptive uniform-distribution one-sided 1/8-tester for k-
Linear must make at least Ω̃(

√
k log n) queries.

4.1 Lower Bound for Non-Adaptive Testers

We first show the result for non-adaptive testers.
Suppose there is a non-adaptive uniform-distribution one-sided 1/8-tester

A(s, f) for k-Linear that makes q queries, where s is the random seed of the
tester and f is the function that is tested. The algorithm has access to f through
a black box queries.

Consider the set of linear functions C “ {g(0)}Y{g(�) “ xn ` · · ·`xn´�`1|� “
1, . . . , k ´ 1} Ď (k ´ 1)-Linear∗ where g(0) “ 0. Any k-linear function is 1/2-far
from every function in C w.r.t. the uniform distribution. Therefore, using the
tester A, with probability at least 2/3, A can distinguish between any k-linear
function and functions in C. We boost the success probability to 1 ´ 1/(2k) by
running A, log(2k)/ log 3 times, and accept if and only if all accept. We get a
tester A′ that asks O(q log k) queries and satisfies

1. If f P k-Linear then with probability 1, A′(s, f) accepts.
2. If f P C then, with probability at least 1 ´ 1/(2k), A′(s, f) rejects.

Therefore, the probability that for a uniform random s, A′(s, f) accepts for
some f P C is at most 1/2. Thus, there is a seed s0 such that A′(s0, f) rejects
for all f P C (and accept for all f P k-Linear). This implies that there exists a
deterministic non-adaptive algorithm B(“ A′(s0, ∗)) that makes q′ “ O(q log k)
queries such that

1. If f P k-Linear then B(f) accepts.
2. If f P C then B(f) rejects.
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Let a(i), i “ 1, . . . , q′ be the queries that B makes. Let M be a q′ × n binary
matrix that its i-th row is a(i). Let xf P {0, 1}n where xf

i “ 1 iff i is relevant
coordinate in f . Then the vector of answers to the queries of B(f) is Mxf . If
Mxf “ Mxg for some g P C, that is, the answers of the queries to f are the same
as the answers of the queries to g, then B(f) rejects. Therefore, for every f P k-
Linear and every g P C we have Mxf “| Mxg. Now since {xf |f P k´Linear} is
the set of all strings of weight k, the sum (over the field F2) of every k columns of
M is not equal to 0 (zero string) and not equal to the sum of the last � columns
of M , for all � “ 1, . . . , k´1. In particular, if Mi is the ith column of M , for every
i1, . . . , ik´� ď n´k`1, Mi1 `· · ·`Mik´�

`Mn´�`1`· · ·`Mn “| Mn´�`1`· · ·`Mn

and therefore Mi1 ` · · · ` Mik´�
“| 0. That is, the sum of every less or equal k

columns of the first n´k`1 columns of M is not equal to zero. We then show in
Lemma 2 that such matrix has at least q′ “ Ω(k log n) rows. This implies that
q “ Ω((k/ log k) log n).

Let π(n, k) be the minimum integer q such that there exists a q × n matrix
over F2 that the sum of any of its less than or equal k columns is not 0. We have
proved

Lemma 1. Any non-adaptive uniform-distribution one-sided 1/8-tester for k-
Linear must make at least Ω(π(n ´ k ` 1, k)/ log k) queries.

Now to show that Ω(π(n´k`1, k)/ log k) “ Ω(k log n) we prove the following
result. This lemma follows from Hamming’s bound in coding theory. We give the
proof for completeness

Lemma 2. (Hamming’s Bound) We have

π(n, k) ě log
� k

2 	∑

i“0

(
n

i

)
“ Ω(k log(n/k)).

Proof. Let M be a π(n, k) × n matrix over F2 that the sum of any of its less
than or equal k columns is not 0. Let m “ �k/2	 and S “ {Mi1 ` · · · ` Mit

| t ď
m and 1 ď i1 < · · · < it ď n} Ď {0, 1}π(n,k) be a multiset. The strings in S
are distinct because, if for the contrary, we have two strings in S that satisfies
Mi1 ` · · · ` Mit

“ Mj1 ` · · · ` Mjt′ then Mi1 ` · · · ` Mit
` Mj1 ` · · · ` Mjt′ “ 0

(equal columns are cancelled) and t` t′ ď k, which is a contradiction. Therefore,
2π(n,k) ě |S| “ ∑m

i“0

(
n
i

)
and π(n, k) ě log |S|.

4.2 Lower Bound for Adaptive Testers

For the lower bound for adaptive testers we take C “ {g(�)} for some � P
{0, 1, . . . , k ´ 1} and get an adaptive algorithm A that makes q queries and
satisfies

1. If f P k-Linear then with probability 1, A(s, f) accepts.
2. If f “ g(�) then, with probability at least 2/3, A(s, f) rejects.
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This implies that there exists a deterministic adaptive algorithm B “ A(s0, ∗)
that makes q queries such that

1. If f P k-Linear then B(f) accepts.
2. If f “ g(�) then B(f) rejects.

Then, by the same argument as in the case of non-adaptive tester, we get a q×n
matrix M that the sum of every k ´ � columns of the first n ´ � columns of M
is not zero. Let Π(n, k) be the minimum integer q such that there exists a q × n
matrix over F2 that the sum of any of its k columns is not 0. Then, we have
proved that

Lemma 3. Any adaptive uniform-distribution one-sided 1/8-tester for k-Linear
must make at least Ω(max1ď�ďk Π(n ´ k, �)) queries.

In the full paper, [7], we prove

Lemma 4. We have max1ď�ďk Π(n, �) “ Ω̃(
√

k log n).
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Abstract. Traditional online algorithms are designed to make decisions
online in the face of uncertainty to perform well in comparison with the
optimal offline algorithm for the worst-case inputs. On the other hand,
machine learning algorithms try to extrapolate the pattern from the past
inputs to predict the future and take decisions online on basis of the pre-
dictions to perform well for the average-case inputs. There have been
recent studies to augment traditional online algorithms with machine
learning oracles to get better performance for all the possible inputs. The
machine learning augmented online algorithms perform provably better
than the traditional online algorithms when the error of the machine
learning oracle is low for the worst-case inputs and all other average-
case inputs.

In this paper, we integrate the advantages of the traditional online
algorithms and the machine learning algorithms in the context of a novel
variant of the ski rental problem. Firstly, we propose the ski rental prob-
lem with a discount: in this problem, the rent of the ski, instead of
being fixed over time, varies as a function of time. Secondly, we discuss
the design and performance evaluation of the online algorithms with
machine learning advice to solve the ski rental problem with a discount.
Finally, we extend this study to the situation where multiple independent
machine learning advice is available. This algorithm design framework
motivates to redesign of several online algorithms by augmenting them
with one or more machine learning oracles to improve the performance.

Keywords: Ski rental problem · Online algorithm · ML advice

1 Introduction

The conventional online algorithms try to find a decision-making strategy that is
good for all possible situations. Hence, the goal of such an algorithm is to provide
a worst-case guarantee for every possible input. The usual way to understand
the effectiveness of an online algorithm is to compare its performance with the
optimal offline algorithm that is visionary and hence can see the future. Tradi-
tionally we define competitive ratio of an online algorithm as the ratio of the
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performance of the online algorithm to the same of the optimal offline algorithm
for the worst possible input [3,8].

Machine learning (ML) systems, on the contrary, are fundamentally different
and serve distinct purposes altogether [17,18]. ML systems learn from past sit-
uations and extrapolate patterns encountered in the past to predict the future.
They come with guarantees of expected generalization error : expected error
in the prediction of the ML model for input data that the model has not seen yet.
Hence, ML systems are “trained” to be good on the average-case inputs mini-
mizing the expected loss. The interest lies in optimizing the prediction for most
of the inputs at the expense of a few outliers. However, there is no theoretical
guarantee on how “bad” the predictions are for those few outliers. The machine
learning approach has another shortcoming: the expected generalization error
guarantees are valid only if the training and testing data belong to the same
probability distribution.

While machine learning approaches try to perform well for the average-case
inputs, the conventional online algorithms compete with the optimal offline
algorithm for the worst-case inputs. Online algorithms do not assume anything
about the input sequence and stay oblivious of the future inputs. While design-
ing the online algorithms, the objective is to retain the competitive ratio as
small as possible. Hence, the online algorithms become overly cautious about the
“bad” inputs where the algorithms would perform much worse than the opti-
mal offline algorithm. It leads us to a higher competitive ratio for supposedly
“easy” inputs—hence in a simulation of a satisfactorily reasonable real-world
input sequence, unsurprisingly, the conventional algorithms are likely to perform
worse on average than the ML algorithms. Average-case competitive analysis has
been used to evaluate and capture this performance drop of traditional online
algorithms [4,19].

Another recent line of work tends to improve the competitive ratio by
augmenting traditional online algorithms with supportive information from
machine-learned oracles. These algorithms found applications in several prob-
lems such as competitive paging [13], job scheduling problem [10,11,16], etc.
In 2017, Medina and Vassilvitskii [14] initiated the study on machine-learned
online algorithms and used them to find the expected price of bids for revenue
optimization. Lykouris and Vassilvitskii [13] extended the framework of design-
ing online algorithms with ML advice models and formulated two important
functional aspects of such systems: consistency and robustness. A consistent
system performs well when the ML predictions are fairly correct, and a robust
system refrains from performing exceedingly poorly as the predictions degrade.
They designed a competitive caching algorithm based on the prediction of the
ML model for the subsequent arrival time of an element as the elements come
online from the input sequence.

Ski Rental Problem. The classical ski rental problem [8], a canonical exam-
ple of the large class of online rent-or-buy problem , has been of interest in
this new avenue of research [1,5,10]. The rent-or-buy problem represents a sce-
nario where an online decision maker faces a situation where it has to optimize
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between two choices: one is to rent, with a small recurrent cost, another is to
buy, by paying up a comparatively large cost upfront with no expenditure there-
after. The uncertainty stems from the fact that the span of usage is unknown
in advance. For instance, in case of the ski rental problem, the skier is unaware
of the length of the ski session until it ends, and her objective is to optimize
between two choices: she either rents a ski at a unit price every day or buys the
ski for a higher price to ski for free from then on. Intuitively, for a long span of
usage, purchasing makes sense, but for the short term renting is more optimized.

Kumar et al. [10] introduced ML augmented online algorithms for the clas-
sical ski rental problem instance, where the ML oracle predicts the number of
days to ski. Gollapudi and Panigrahi [5] extended this notion to multiple experts,
where multiple ML oracles augment the traditional online algorithm and predict
the future. Anand et al. [1] worked to answer another complimentary question
in this context: whether we can redesign the ML algorithms to serve the online
algorithms well in the context of an online rent-or-buy problem.

The ski rental problem is well-studied in economics and computer science.
Researchers studied several generalizations to the problem to imbibe real-life
scenarios such as deciding whether to buy or rent a house, taking corporate
decisions on whether to invest in a new office, data-center, or rent utilities. Irani
and Ramanathan [6] studied a variant of this problem where the rental price
remains fixed, but the purchasing price fluctuates. Furthermore, Meyerson [15]
proposed the parking permit problem that introduces multiple purchasing
options with different time intervals; Khanafer et al. [9] extended this notion
to rent optimization for cloud servers. Lotker et al. [12] proposed multi-slope
ski rental problem : the skier has to optimize among several choices for skis of
separate rental and purchasing price. Zhang et al. [20] explored a generalization
of the parking permit problem with multiple discount options available for the
skis. However, in all these extensions, the price of any individual rental options
is considered to be fixed.

Ski Rental Problem with a Discount. In this paper, we design and evaluate
algorithms for the ski rental problem with a discount : the purchasing price
is constant, but as the skier rents for a longer period she gets a discount.

El-Yaniv et al. took the first step in this direction by introducing a fixed
nominal interest rate on the rental price, where the purchasing price remains
fixed. The interest effectively introduces a discount on the rental price where
the discount is a fraction of the rent of the first day. The discount remains fixed
with respect to time, i.e. the rental price decreases linearly. They performed
the traditional competitive analysis of the problem. We further generalize the
problem by considering the discount rate to be arbitrary than fixed.

Ski rental problem with a discount has an arbitrary non-increasing function
for the rental price of the ski: we do not restrict the rental price, except that the
price does not increase from what it was on the previous day; see Sect. 3 for the
detailed problem formulation. The above scenario turns up on several occasions
in real life. For example, we need a computing resource for an unknown period,
and we have two choices, either to buy with a fixed purchasing cost upfront
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or to rent where the rental cost reduces as a function of time. The approach
to improve the performance is by aiding the online algorithm with additional
information from one or multiple oracles.

One interesting aspect of the ski rental problem with a discount is that it
approaches to simulate the net present value of an asset. That is, it takes
into account the market interest rate, which is an essential part of any financial
model. For example, let the rent of a ski be 1 dollar per day, the price of the
ski be 10 dollars, and the number of days of usage of the ski is 8. Additionally,
let the market interest rate be 2% for a span of less than 5 days and 1% for 5
days or more. In case the skier purchases the ski on the first day, she spends
10 dollars. In case she rents it for all 8 days, she spends 8 − (1 ∗ 0.02)(1 + 2 +
3 + 4) − (1 ∗ 0.01)(5 + 6 + 7) = 7.62 dollars. Effectively, the rental price can be
modeled as a variable that initially is 1 dollar, and reduces by 2% of the initial
value till the 5th day, then onward by 1% of the initial value each day until the
rent becomes zero. Furthermore, contiguous and non-contiguous usage patterns
do not matter in the case of the traditional ski rental problem. However, for
the ski rental problem with a discount, a gap period of nonusage by the skier
matters as the rent changes during this period.

Results. Our goal is to improve the conventional online algorithms by designing
algorithms with ML advice to solve the ski rental problem with a discount.
If the algorithm blindly follows the ML oracle, the competitive ratio of the
algorithm is unbounded (Lemma 1). However, instead of following the oracle
blindly if the algorithm has a trust parameter λ, it has improved robustness of
1 + 1/λ without losing consistency. This algorithm has an overall competitive
ratio min{1 + 1

λ , 1 + rη
(1−λ)OPT } (Lemma 2). Finally, we extend the problem to

the situation where two separate independent ML advisers are present. If one
of the advisers is correct, the algorithm is φ-competitive; where φ is the golden
ratio (see Sect. 3.2 and Lemma 3). In case both the ML advisers are erroneous,
the competitive ratio of the algorithm is max{φ + 1, 1/(φ − 1 − rη/b)}; where η
is the prediction error of the relatively better predictor, r is the rent for the first
day and b is the purchasing price (Lemma 4).

Paper Overview. The rest of the paper is organized as follows. Section 2
explains the traditional ski rental problem, classical competitive analysis, and
the framework to analyze the classical online algorithms with machine learn-
ing augmentation. Section 3 introduces the ski rental problem with a discount,
explains the classical algorithms and design framework of the online algorithms
with single and multiple machine learning advisers. Finally, Sect. 4 concludes by
stating some future directions of this work.

2 Preliminaries

In order to discuss the online problems and the existing and potential solutions,
it is imperative to study the basics of machine learning and classical competitive
analysis, and define a framework to analyze algorithms augmented by a machine
learning oracle.



Machine Learning Advised Ski Rental Problem with a Discount 217

Classical Competitive Analysis. The classical competitive analysis is a tool
to analyze the performance of an online algorithm. There is an adversary that
decides the input sequence for an online problem. A conventional online algo-
rithm makes decisions without any futuristic knowledge as each element from
the input sequence arrives. We compare the performance of the online algorithm
with the same of the optimal offline algorithm, which has the advantage of hind-
sight for all the sequences possible and finds a worst-case guarantee for the online
algorithm [2]. For an optimization problem Π and a set of instances ΣΠ , τ is
an input sequence where τ ∈ ΣΠ , OPT (τ) is the cost incurred by the optimal
offline algorithm, ALG(τ) is the cost incurred by an online algorithm, the online
algorithm has a competitive ratio of α if ALG(τ) ≤ α × OPT (τ) ∀ τ .

Ski Rental Problem. In the ski rental problem [8], a skier’s goal is to optimize
by either renting a ski at a unit price every day or buy the ski for a higher price
b, and ski for free from then on. The skier does not know the length of the ski
season in advance and only knows it when the season ends. Intuitively, if the ski
session lasts for x days and x > b, the skier should buy the ski; otherwise, she
should keep renting. The optimal offline algorithm being a visionary will do the
same, thus incur a cost of min{x, b}.

The ski rental problem and the potential strategies for the skier are widely
studied in the last two decades [8,9,12]. The well-known best deterministic strat-
egy for the skier, the break-even algorithm , is to rent the ski for (b − 1) days
and to buy the ski on the next day. The break-even algorithm is 2-competitive,
and no other deterministic algorithm can do better than that. Furthermore, it
is worthy to note that there is a randomized algorithm [7,8] that is (e/e − 1)-
competitive (roughly 1.58-competitive).

Machine Learning Basics. This section explains the basics of a machine learn-
ing approach to solve a problem. In the ML problems, we have a feature space
Σ, which says the salient attributes associated with each item and a set of cor-
responding labels, Δ. An example is a tuple (σ, δ), where σ ∈ Σ describes the
specific attributes of the sample item, and δ ∈ Δ provides the corresponding
label [13,16]. A hypothesis is a mapping (either deterministic or probabilistic)
h : Σ → Δ, where h ∈ H, i.e. h belongs to a class of predictors or map-
pings, H. Depending on that, the predictor predicts δ (δ ∈ Δ) as the label of
σ (σ ∈ Σ) with a deterministic or probabilistic strategy. The loss function is
defined to quantify the error in the prediction of the machine learning oracle by
l : Δ × Δ → R≥0.

Augmentation by Machine Learning Oracle. This section revisits the
framework to analyze an algorithm with ML augmentation developed by Lyk-
ouris and Vassilvitskii [13]. As mentioned earlier, we assume a feature space Σ
and a label space Δ and a predictor h : Σ → Δ where h ∈ H where H is a
class of predictors. For an optimization problem Π, a given input sequence is
τ = {τ1, τ2, . . . τ|τ |}, where the length of the sequence is |τ |, τi has feature σi ∈ Σ
and a label δi ∈ Δ, whereas the predicted label is h(σi). The error in prediction
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or the loss function for the input sequence τ , ηl(h, τ), is defined as the difference
between the predicted label and the true label: ηl(h, τ) =

∑
i l(δi, h(σi)).

We define Hl(ε) to be the class of ε-accurate predictors for loss function
l if and only if h is ε-accurate ∀ h ∈ Hl(ε), i.e. ηl(h, τ) ≤ ε × OPTΠ(τ) ∀
input τ where the cost of the optimal offline algorithm is OPTΠ(τ). Algorithm
ALG is ε-assisted if it has access to an ε-accurate predictor h. The competitive
ratio of an ε-assisted algorithm ALG, αALG,l(ε), is expressed as αALG,l(ε) =
maxτ,h∈Hl(ε) αALG,h(τ).

The goal of the ML oracle is twofold: the consistency goal where it improves
the performance of the online algorithm when the predictions by the ML oracles
are fairly accurate and the robustness goal where the performance of the online
algorithm does not degrade significantly as the predictions degrade [5,10]. We
define an algorithm ALG to be β-consistent if the algorithm works no worse
than β times of the optimal offline algorithm when the best prediction has no
error, i.e. αALG,l(0) = β. On the other hand where the best case prediction has
an error ε, ALG is γ-robust if αALG,l(ε) = O(γ(ε)). These goals have to be met
by the online algorithm without the knowledge of the quality of predictions. For
the worst-case prediction, we define an algorithm ALG to be α-competitive if
αALG,l(ε) ≤ α ∀ ε.

3 Ski Rental Problem with a Discount

This section introduces the ski rental problem with a discount in a mathematical
setting. This problem is an extension of the traditional ski rental problem. Next,
we explain algorithms augmented with ML oracle and analyze their performance
and juxtapose them with the same of the conventional online algorithm.

In our notion of the ski rental problem with a discount, the initial daily rent
of the ski is r, i.e. it takes r unit price to rent on the first day. The cost to buy
the ski is b, and the actual number of days to snow in the season is x. However,
the skier does not know x until it does not snow anymore. There is a discount
on the rent of the ski; the rent on the tth day, rent(t), is defined such that
rent(t) ≥ 0, and rent(t + 1) ≤ rent(t)∀ t—it embeds that the rental price can
be any arbitrary non-increasing function. The way to calculate the total rent
up to the tth day is to add the rents from the first day till the tth day; we refer
to this as rent(1 . . . t) where rent(1 . . . t) =

∑t
i=0 rent(i).

We define tb such that rent(1 . . . tb − 1) < b and rent(1 . . . tb) ≥ b. Note that
the skier knows both the rent function and the purchasing price in advance.
Hence, she can calculate tb any time but the source of uncertainty comes from
the actual number of days it snows.

Optimal Offline Algorithm. The optimal offline algorithm being a visionary,
for x < tb it keeps renting the ski, and for x ≥ tb it buys the ski on the first
day itself. Hence, the cost of the optimal offline algorithm can be written as
OPT = min{rent(1 . . . x), b}.

Break-Even Algorithm. The best deterministic strategy, the break-even algo-
rithm, works the same way as it does in the case of the conventional ski
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rental problem. It rents the ski till day tb − 1, and buys the ski on day tb.
Note that the worst-case appears for x = tb. In this case, OPT = b and
ALG = rent(1 . . . tb −1)+ b ≤ 2b. This shows that the break-even algorithm has
a competitive ratio of 2 for the ski rental problem with a discount.

3.1 Algorithm Augmented with a Single ML Adviser

This section introduces ML augmented online algorithms to solve the ski rental
problem with a discount. First we propose a naive ML advised algorithm. Next,
we redesign the algorithm with a “trust” parameter and evaluate the improved
robustness.

Naive ML Advised Algorithm. First, we present Algorithm 1 based on an
ML advice [10]. The ML based predictor estimates the number of days it is going
to snow as y. Such a prediction can be made reasonably well, for instance, by
building models based on weather forecasts and the past behavior of other skiers.
The error in the prediction can be quantified as η = |y − x|. Algorithm 1 is 1-
consistent when η = 0, i.e. the algorithm performs optimally when the prediction
is correct. However, the algorithm is not robust; hence the competitive ratio is
unbounded and can be arbitrarily large for poor predictions. The performance
of Algorithm 1 is analyzed by the Lemma 1.

Algorithm 1. Naive ML Augmented Algorithm
Require: a sequence of past input X = {xi} and current input x

Train the ML Oracle using X
ML Oracle predicts y
if y ≥ tb then

buy the ski on the first day
else if y < tb then

keep renting the ski
end if
Train the loss

Lemma 1. Let ALG be the cost of the naive ML advised algorithm, OPT be the
cost of the optimal offline algorithm, η be the error in the prediction of the ML
model, and r be the rent of the ski on the first day. For all the possible inputs,
the following bound is valid.

ALG < max{OPT (η + 1), OPT + rη}.

Proof. The proof is given in the full version of the paper.

Corollary 1. Let ALG and OPT be the cost of the naive ML advised algo-
rithm and the optimal offline algorithm respectively, the error in the ML predic-
tion model be η where η = k.OPT . The cost of the naive algorithm, ALG, is
unbounded.
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Proof. ALG < k ·OPT 2+OPT < k ·b2+b, where k ≥ 1 and k is unbounded.
On the other hand, ALG < OPT (1 + r · k) < b(1 + r · k) where 0 < k < 1.

ML Advised Algorithm with Trust Parameter. The shortcoming of the
naive ML advised algorithm is that it puts too much trust in the ML oracle.
Hence, as the ML oracle fails and incurs a large prediction error, the performance
degrades harshly leading to a high competitive ratio in the worst-case input. As
per our definition of robustness in Sect. 2, the naive ML advised algorithm is not
robust; hence we aim to design a more robust algorithm.

Algorithm 2. ML advised algorithm with trust parameter
Require: a sequence of past input X = {xi} and current input x

Trust factor: λ ∈ [0, 1]
Train the ML oracle using X
if y ≥ tb then

buy on �λtb�-th day
else if y < tb then

buy on �tb/λ�-th day
end if
Train the loss

Algorithm 2 improves by acquiring more robustness over Algorithm 1 while
not losing much in terms of consistency. It introduces a hyperparameter, trust
factor λ ∈ [0, 1]; this parameter introduces a tradeoff between the traditional
algorithm and the ML advice. This helps the algorithm to acquire a tradeoff
between consistency and robustness. Note that λ → 0 refers to greater trust
in the ML predictor. It leads to better consistency, i.e. the algorithm performs
better than the naive ML augmented algorithm when the prediction is good.
On the other hand, λ → 1 refers to the case when the algorithm has lesser
trust in the ML predictor. Algorithm 2 retains a good consistency compared
to the naive algorithm while achieving more robustness. That is, the algorithm
performs better when the quality of prediction is not so good. The performance
of Algorithm 2 is analyzed by the Lemma 2.

Lemma 2. Let ALG be the cost of the ML advised algorithm with trust param-
eter λ, OPT be the cost of the optimal offline algorithm, η be the error in the
prediction of the ML adviser, and r be the rent of the ski on the first day. Then,

ALG < min{OPT (1 +
1
λ

), OPT +
rη

(1 − λ)
}.

Proof. The complete proof is given in the full version. In the case where �λtb	 ≤
x < tb and y ≥ tb, the worst-case appears at x = �λtb	.

ALG − OPT = b − rent(�λtb	) ≤ b ≤ 1
λ

(λb) ≤ 1
λ

rent(1 . . . �λtb	) ≤ OPT

λ
.
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If the algorithm has high trust on the ML oracle, it buys the ski on the first day
instead of on �λtb	. In the case where tb ≤ x ≤ �tb/λ	 and y < tb, the worst-case
appears at x = �tb/λ	.

ALG − OPT ≤ b + r(�tb/λ	 − tb) ≤ b + b(1/λ − 1) =⇒ ALG = OPT (1 +
1
λ

).

For x > �tb/λ	 and y < tb, ALG = b + rent(1 . . . �tb/λ	 − 1), and OPT = b.

η > �tb/λ	 − tb = tb(1/λ − 1) =⇒ ALG ≤ OPT + r(
tb
λ

) ≤ OPT +
rη

1 − λ
.

From this analysis, we see ALG ≤ min{OPT (1 + 1
λ ), OPT + rη

(1−λ)}.

3.2 Algorithm Augmented with Two ML Advisers

This section explains the variant of the problem where multiple independent ML
advisers are present. Gollapudi and Panigrahi [5] showed that the presence of
more advisers helps to improve the performance as the chance of good predictions
increases. They also observed that as the number of ML advisers increases,
the competitive ratio gets better, but the analysis remains the same. In this
paper, we will restrict ourselves to the analysis where two advisers are present
simultaneously, leading to two different predictions. In this case, ALG is γ-
competitive if and only if ALG ≤ γ.OPT ∀ x, η, where x is the actual number of
days it snows and η is the absolute error in prediction y by the best predictor,
η = min{|y − x|}.

One of the Predictions is Correct. The first scenario we study is where
one of the two predictions is correct. The challenge here is to choose the correct
one from one of these two predictions without the knowledge of its identity.
Let us consider, the two predictions are y1 and y2, where y1 ≥ y2, and the
naive strategy is to blindly follow one of them. In case of y1 ≥ y2 ≥ tb, the
algorithm buys the ski on the first day, i.e., ALG = OPT . On the other hand,
when y2 ≤ y1 < tb, the algorithm keeps renting the ski forever, resulting in
ALG = OPT again. In case of the other two possibilities, y1 ≥ tb and y2 < tb.
If y1 is correct and the algorithm blindly follows y2, it keeps renting and the
competitive ratio in this case becomes γ = b

rent(1...y1)
. Otherwise, if y2 is correct

and the algorithm trusts y1, it buys the ski on the first day, leading to the
competitive ratio, γ = b

rent(1...y2)
. In both the latter cases, γ is unbounded.

We approach to modify the strategy so that when y1 is correct and we trust
y2, instead of keeping renting forever, we rent till y2 and then buy. Hence, the
competitive ratio = γ = rent(1...y2)+b

b ≤ 2. Hence, although we get rid of the
unbounded competitive ratio, we make no improvement from the traditional
online algorithm. Necessarily, the constraint here is that the algorithm should
make the decision to buy before y2; in fact, it is the best to buy on the first day
itself.

The solution lies in striking a balance between the two predictions and finding
a tradeoff between them. Gollapudi and Panigrahi [5] developed such a strategy
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based on the golden ratio. We solve the equation b
z = b+z

b and find z = (φ −
1)b where φ is the golden ratio (roughly equals 1.618). We define tφ such that
rent(1 . . . tφ − 1) < (φ− 1)b and rent(1 . . . tφ) ≥ (φ− 1)b. The algorithm decides
to buy based on the value of tφ as shown in Algorithm 3.

Algorithm 3. ML advised algorithm with two advisers
Require: a sequence of past input X = {xi} and current input x

Train the ML oracle using X
Predictions are y1 and y2 where y1 > y2

if y1, y2 ≥ tb then
buy on the first day

else if y1, y2 < tb then
keep renting

else if tφ ≤ y2 ≤ tb and y1 > tb then
buy on the first day

else if y2 < tφ and y1 > tb then
rent till y2, buy on the next day

end if
Train the loss

Lemma 3. Let the cost of the augmented algorithm with two ML advisers be
ALG and one of the advisers is correct in the prediction, OPT be the cost of the
optimal offline algorithm, and φ be the golden ratio. Then,

ALG < φ · OPT.

Proof. The worst-case may have two possibilities. There are two possible cases:
y2 = tφ and y2 is correct, and in the second case y2 < tφ and y1 is correct
respectively.

γ =
b

rent(1 . . . tφ)
≤ b

(φ − 1)b
= φ and γ =

rent(1 . . . y2) + b

b
≤ (φ − 1)b + b

b
.

From the above analysis, it shows that Algorithm 3 holds φ-competitiveness.

Both Predictions Have Non-zero Errors. This section generalizes the prob-
lem with two ML advisers to the case where both the predictors have non-zero
prediction errors. This represents a more realistic situation where we assume
that the best prediction has an error η. We modify Algorithm 3 and design
Algorithm 4 to avoid unbounded error for the case y1, y2 < tb. Next, we evalu-
ate the performance of Algorithm 4 and observe the performance bounds. The
predictions of the two experts are y1 and y2 where y2 ≤ y1.

Lemma 4. Let ALG be the cost of the augmented algorithm with two ML
advisers where both the advisers have prediction errors. The best predictor has
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Algorithm 4. ML advised algorithm with two erroneous advisers
Require: a sequence of past input X = {xi} and current input x

Train the ML oracle using X
Predictions are y1 and y2 where y1 > y2

if y2 ≥ tφ then
buy on the first day

else if y2 < tφ then
rent till y2, buy on the next day

end if
Train the loss

an error η, the rent of the ski for the first day is r, and the price of the ski b.
OPT is the cost of the optimal offline algorithm and φ is the golden ratio. Then,

ALG ≤ max{ OPT

φ − 1 − rη/b
, (φ + 1)OPT}.

Proof. The worst-case inputs for Algorithm 4 appear in two scenarios. Firstly,
when y1 > tb, y2 ≥ tφ and the actual number of days x = tφ − ε, ALG ≤
OPT ( 1

φ−1−rη/b ). On the other hand, when y1 > tb, y2 < tφ, and x = tφ +ε < tb,
ALG ≤ OPT (φ+1). The detailed proof is given in the full version of the paper.

4 Conclusion

We proposed the ski rental problem with a discount in a mathematical setting
and designed online algorithms with single and multiple ML advice. The future
direction of this study would be to explore the effect of several distributions
of the prediction error of the ML advisers on the competitive ratio. We would
also like to explore designing randomized algorithms useful for this setup. We
also want to test empirically the interplay between a randomly chosen trust
parameter and the robustness of Algorithm 2 over realistic data-sets.
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Abstract. Given a graph G = (V, E), a threshold function t : V → N

and an integer k, we study the Harmless Set problem, where the goal is
to find a subset of vertices S ⊆ V of size at least k such that every vertex
v in V has less than t(v) neighbors in S. We enhance our understand-
ing of the problem from the viewpoint of parameterized complexity. Our
focus lies on parameters that measure the structural properties of the
input instance. We show that the Harmless Set problem with major-
ity thresholds is W[1]-hard when parameterized by the treewidth of the
input graph. On the positive side, we obtain a fixed-parameter tractable
algorithm for the problem with respect to neighbourhood diversity.

Keywords: Parameterized Complexity · FPT · W[1]-hard · treewidth

1 Introduction

Social networks are used not only to stay in touch with friends and family, but
also to spread and receive information on specific products and services. The
spread of information through social networks is a well-documented and well-
studied topic. Kempe, Kleinberg, and Tardos [15] initiated a model to study
the spread of influence through a social network. One of the most well known
problems that appear in this context is Target Set Selection introduced
by Chen [6] and defined as follows. We are given a graph, modeling a social
network, where each node v has a (fixed) threshold t(v), the node will adopt a
new product if t(v) of its neighbors adopt it. Our goal is to find a small set S of
nodes such that targeting the product to S would lead to adoption of the product
by a large number of nodes in the graph. This problem may occur for example in
the context of disease propagation, viral marketing or even faults in distributed
computing [12,19]. This problem received considerable attention in a series of
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papers from classical complexity [5,7,12,20], polynomial time approximability
[1,6], parameterized approximability [3], and parameterized complexity [4,8,18].
A natural research direction considering this fact is to look for the complexity of
variants or constrained version of this problem. Bazgan and Chopin [2] followed
this line of research and introduced the notion of harmless set. Throughout this
article, G = (V,E) denotes a finite, simple and undirected graph. We denote by
V (G) and E(G) its vertex and edge set respectively. For a vertex v ∈ V , we use
N(v) = {u : (u, v) ∈ E(G)} to denote the (open) neighbourhood of v in G.
The degree d(v) of a vertex v ∈ V (G) is |N(v)|. For a subset S ⊆ V (G), we
use NS(v) = {u ∈ S : (u, v) ∈ E(G)} to denote the (open) neighbourhood of
vertex v in S. The degree dS(v) of a vertex v ∈ V (G) in S is |NS(v)|. A harmless
set consists of a set S of vertices with the property that no propagation occurs
if any subset of S gets activated. In other words, a harmless set is defined as a
converse notion of a target set. More formally,

Definition 1. [2] A set S ⊆ V is a harmless set of G = (V,E), if every vertex
v ∈ V has less than t(v) neighbours in S.

Note that in the definition of harmless set, the threshold condition is imposed
on every vertex, including those in the solution S. As mentioned in [2],
another perhaps more natural definition could have been a set S such that
every vertex v /∈ S has less than t(v) neighbours in S. This definition
creates two problems. First, it makes Harmless Set problem meaningless
as the whole set of vertices of the input graph would be a trivial solu-
tion. Second, there might be some propagation steps inside S if some ver-
tices are activated in S. In this paper, we consider the Harmless Set

problem under structural parameters. We define the problem as follows:

Harmless Set

Input: A graph G = (V,E), a threshold function t : V → N where 1 ≤ t(v) ≤
d(v) for every v ∈ V , and an integer k.
Question: Is there a harmless set S ⊆ V of size at least k?

The majority threshold is t(v) = �d(v)
2 � for all v ∈ V . We now review the

concept of a tree decomposition, introduced by Robertson and Seymour in [21].
Treewidth is a measure of how “tree-like” the graph is.

Definition 2. [10] A tree decomposition of a graph G = (V,E) is a tree T
together with a collection of subsets Xt (called bags) of V labeled by the nodes
t of T such that

⋃
t∈T Xt = V and (1) and (2) below hold:

1. For every edge uv ∈ E(G), there is some t such that {u, v} ⊆ Xt.
2. (Interpolation Property) If t is a node on the unique path in T from t1 to t2,

then Xt1 ∩ Xt2 ⊆ Xt.

Definition 3. [10] The width of a tree decomposition is the maximum value
of |Xt| − 1 taken over all the nodes t of the tree T of the decomposition. The
treewidth tw(G) of a graph G is the minimum width among all possible tree
decompositions of G.
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For the standard concepts in parameterized complexity, see the recent textbook
by Cygan et al. [9].

1.1 Our Results

Our results are as follows:

– the Harmless Set problem with general thresholds is FPT when parame-
terized by the neighbourhood diversity.

– the Harmless Set problem with majority thresholds is W[1]-hard when
parameterized by the treewidth of the graph.

1.2 Known Results

Bazgan and Chopin [2] studied the parameterized complexity of Harmless

Set and the approximation of the associated maximization problem. When the
parameter is k, they proved that the Harmless Set problem is W[2]-complete
in general and W[1]-complete if all thresholds are bounded by a constant. When
each threshold is equal to the degree of the vertex, they showed that Harm-

less Set is fixed-parameter tractable for parameter k and the maximization
version is APX-complete. They gave a polynomial-time algorithm for graphs
of bounded treewidth and a polynomial-time approximation scheme for planar
graphs. The parametric dual problem (n − k)-Harmless Set asks for the exis-
tence of a harmless set of size at least n − k. The parameter is k and n denotes
the number of vertices in the input graph. They showed that the parametric dual
problem (n − k)-Harmless Set is fixed-parameter tractable for a large family
of threshold functions.

2 FPT Algorithm Parameterized by Neighbourhood
Diversity

In this section, we present an FPT algorithm for the Harmless Set problem
parameterized by neighbourhood diversity. We say that two (distinct) vertices u
and v have the same neighborhood type if they share their respective neighbor-
hoods, that is, when N(u) \ {v} = N(v) \ {u}. If this is so we say that u and v
are twins. It is possible to distinguish true-twins (those joined by an edge) and
false-twins (in which case N(u) = N(v)).

Definition 4. [16] A graph G = (V,E) has neighbourhood diversity at most d,
if there exists a partition of V into at most d sets (we call these sets type classes)
such that all the vertices in each set have the same neighbourhood type.

If neighbourhood diversity of a graph is bounded by an integer d, then there
exists a partition {C1, C2, . . . , Cd} of V (G) into d type classes. We would like to
point out that it is possible to compute the neighborhood diversity of a graph in
linear time using fast modular decomposition algorithms [23]. Notice that each
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type class could either be a clique or an independent set by definition and two
type classes are either joined by a complete bipartite graph or no edge between
vertices of the two types is present in G. For algorithmic purpose it is often
useful to consider a type graph H of graph G, where each vertex of H is a
type class in G, and two vertices Ci and Cj are adjacent iff there is a complete
bipartite clique between these type classes in G. The key property of graphs of
bounded neighbourhood diversity is that their type graphs have bounded size.
The following result explains why the vertices with low thresholds are inside the
solution.

Lemma 1. Let Ci = {v1, . . . , v|Ci|} be a type class in G such that t(v1) ≤
t(v2) ≤ . . . ≤ t(v|Ci|). Let S be a maximum size harmless set in G and xi =
|Si| = |Ci ∩ S|. Then S′ = (S \ Si) ∪ {v1, v2, . . . , vxi

} is also a maximum size
harmless set in G.

Proof. Clearly, |S| = |S′|. To show S′ is a harmless set, it is enough to show that
each vertex v in Ci has less than t(v) neighbours in S′. For each v ∈ {v1, . . . , vxi

},
we have

dS′(v) =

{
dS(v) if v ∈ S

dS(v) − 1 if v 
∈ S

Therefore, every v ∈ {v1, . . . , vxi
} satisfies the threshold condition dS′(v) ≤

dS(v) < t(v). Let u be an arbitrary vertex in {vxi+1, vxi+2 . . . , v|Ci|}. If u 
∈ S
then dS′(u) = dS(u) < t(u). If u ∈ S then, by definition of S′, some vertex
v ∈ {v1, v2, . . . , vxi

}\S must have replaced u as t(v) ≤ t(u). We have dS(v) =
dS(u) + 1 and also dS′(u) = dS(u) + 1. It implies that dS′(u) = dS(u) + 1 =
dS(v) < t(v) ≤ t(u). Therefore, S′ is a harmless set. ��
In this section, we prove the following theorem:

Theorem 1. The Harmless Set problem with general thresholds is FPT when
parameterized by the neighbourhood diversity.

Given a graph G = (V,E) with neighbourhood diversity nd(G) ≤ d, we first
find a partition of the vertices into at most d type classes C1, . . . , Cd. Let C be the
set of all clique type classes and I be the set of all independent type classes. The
case where some Ci are singletons can be considered as cliques or independent
sets. For simplicity, we consider singleton type classes as independent sets.

ILP Formulation: Our goal here is to find a largest harmless set S of G. For
each Ci, we associate a variable xi that indicates |S ∩Ci| = xi. As the vertices in
Ci have the same neighbourhood, the variables xi determine S uniquely, up to
isomorphism. The threshold t(Ci) of a type class Ci is defined to be

t(Ci) = min{t(v) | v ∈ Ci}.

Let α(Ci) be the number of vertices in Ci with threshold value t(Ci). We define
C1 = {Ci ∈ C | xi < α(Ci)} and C2 = {Ci ∈ C | xi ≥ α(Ci)}. We next guess
if a clique type class Ci belongs to C1 or C2. There are at most 2d guesses as each
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clique type class Ci has two options: either it is in C1 or in C2. We reduce the prob-
lem of finding a maximum harmless set to at most 2d integer linear programming
problems with d variables. Since integer linear programming is fixed-parameter
tractable when parameterized by the number of variables [17], we conclude that
our problem is FPT when parameterized by the neighbourhood diversity d. We
consider the following cases based on whether Ci is in I, C1 or C2:

Case 1: Assume Ci is in I.

Lemma 2. Let Ci be an independent type class and xi ∈ {0, 1, . . . , |Ci|}. Let
u0 be a vertex in Ci with threshold t(Ci). Then every vertex u in Ci has less
than t(u) neighbours in S if and only if u0 has less than t(Ci) neighbours in S.

Proof. Suppose each u ∈ Ci has less than t(u) neighbours in S. Then obviously
u0 ∈ Ci has less than t(u0) = t(Ci) neighbours in S. Conversely, suppose u0

has less than t(Ci) neighbours in S. Let u be an arbitrary vertex of Ci. As
u and u0 are two vertices in the same type class Ci, we have dS(u) = dS(u0).
Moreover, for each u ∈ Ci, we have t(Ci) ≤ t(u) by definition of t(Ci). Therefore,
dS(u) = dS(u0) < t(Ci) ≤ t(u). ��
Here dS(u0) =

∑

Cj∈NH(Ci)

xj . By Lemma 2, every vertex u in Ci has less than

t(u) neighbours in S if and only if
∑

Cj∈NH(Ci)

xj < t(Ci).

Case 2: Assume Ci is in C1. That is, Ci is a clique type class and xi < α(Ci).
Assuming xi < α(Ci) ensures that there exists at least one vertex in Sc ∩ Ci

with threshold t(Ci).

Lemma 3. Let Ci ∈ C1 and u0 be a vertex in Sc ∩ Ci with threshold t(Ci).
Then every vertex u in Ci has less than t(u) neighbours in S if and only if u0

has less than t(Ci) neighbours in S.

Proof. Suppose every vertex u in Ci has less than t(u) neighbours in S. Then
obviously u0 has less than t(u0) = t(Ci) neighbours in S. Conversely, suppose
u0 has less than t(Ci) neighbours in S. Let y be an arbitrary vertex of S ∩ Ci.
Lemma 1 and the condition xi < α(Ci) ensure that every vertex in S ∩ Ci has
threshold value t(Ci); hence y has threshold t(Ci). Note that dS(y) = dS(u0) −
1 < t(Ci) − 1 < t(Ci) = t(y). Now, let z be an arbitrary element of Sc ∩ Ci. It
is easy to note that dS(z) = dS(u0) < t(Ci) ≤ t(z). ��
Here dS(u0) = xi +

∑

Cj∈NH(Ci)

xj . By Lemma 3, every vertex u in Ci has less

than t(u) neighbours in S if and only if

xi +
∑

Cj∈NH(Ci)

xj < t(Ci).
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Case 3: Assume that Ci is in C2. That is, Ci is a clique type class and xi ≥ α(Ci).
By Lemma 1, all the vertices with threshold t(Ci) are inside the solution.

Lemma 4. Let Ci ∈ C2 and u0 be a vertex in S ∩Ci with threshold t(Ci). Then
every vertex u in Ci has less than t(u) neighbours in S if and only if u0 has less
than t(Ci) neighbours in S.

Proof. Suppose every vertex u in Ci has less than t(u) neighbours in S. Then
obviously u0 has less than t(u0) = t(Ci) neighbours in S. Conversely, suppose
u0 has less than t(Ci) neighbours in S. Let y be an arbitrary vertex of S ∩ Ci.
Note that dS(y) = dS(u0) < t(Ci) ≤ t(y). Thus we showed that y has less than
t(y) neighbours in S. Let z be an arbitrary element of Sc ∩Ci. Note that such an
element may not always exist, it is possible that all vertices in Ci are included
in S (that is, xi = |Ci|). Let us assume that such z exists. Since z is outside the
solution and all the vertices with threshold t(Ci) are inside the solution, it implies
that t(z) ≥ t(Ci)+1. It is easy to note that dS(z) = dS(u0)+1 < t(Ci)+1 ≤ t(z).

��
Here dS(u0) = (xi − 1) +

∑

Cj∈NH(Ci)

xj . By Lemma 4, every vertex u in Ci has

less than t(u) neighbours in S if and only if

(xi − 1) +
∑

Cj∈NH(Ci)

xj < t(Ci).

The next lemma follows readily from the three lemmas above and the definition
of the sequence (x1, x2, . . . , xd) and the harmless set.

Lemma 5. Let G = (V,E) be a graph such that V can be partitioned into
at most d type classes C1, . . . , Cd. The sequence (x1, x2, . . . , xd) represents a
harmless set S of G if and only if (x1, x2, . . . , xd) satisfies

1. xi ∈ {0, 1, . . . , |Ci|} for i = 1, 2, . . . , d
2.

∑

Cj∈NH(Ci)

xj < t(Ci) for all Ci ∈ I.

3. xi +
∑

Cj∈NH(Ci)

xj < t(Ci) and xi < α(Ci) for all Ci ∈ C1

4. (xi − 1) +
∑

Cj∈NH(Ci)

xj < t(Ci) and α(Ci) ≤ xi ≤ |Ci| for all Ci ∈ C2.

In the following, we present an ILP formulation for the Harmless Set problem
parameterized by neighbourhood diversity for a guess:
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Maximize
∑

Ci

xi

Subject to
xi ∈ {0, 1, . . . , |Ci|} for i = 1, 2, . . . , d

∑

Cj∈NH(Ci)

xj < t(Ci), for all Ci ∈ I,

xi +
∑

Cj∈NH(Ci)

xj < t(Ci) and xi < α(Ci) for all Ci ∈ C1

(xi − 1) +
∑

Cj∈NH(Ci)

xj < t(Ci) and α(Ci) ≤ xi ≤ |Ci| for all Ci ∈ C2

Solving the ILP. Lenstra [17] showed that the feasibility version of p-ILP
is FPT with running time doubly exponential in p, where p is the number of
variables. Later, Kannan [14] proved an algorithm for p-ILP running in time
pO(p). In our algorithm, we need the optimization version of p-ILP rather than
the feasibility version. We state the minimization version of p-ILP as presented
by Fellows et al. [13].

p-Variable Integer Linear Programming Optimization (p-Opt-ILP):

Let matrices A ∈ Zm×p, b ∈ Zp×1 and c ∈ Z1×p be given. We want to find a
vector x ∈ Zp×1 that minimizes the objective function c · x and satisfies the m
inequalities, that is, A ·x ≥ b. The number of variables p is the parameter. Then
they showed the following:

Proposition 1. [13] p-Opt-ILP can be solved using O(p2.5p+o(p) ·L · log(MN))
arithmetic operations and space polynomial in L. Here L is the number of bits
in the input, N is the maximum absolute value any variable can take, and M is
an upper bound on the absolute value of the minimum taken by the objective
function.

In the formulation for Harmless Set problem, we have at most d variables.
The value of the objective function is bounded by n and the value of any variable
in the integer linear programming is also bounded by n. The constraints can be
represented using O(d2 log n) bits. Proposition 1 implies that we can solve the
problem with the guess P in FPT time. There are at most 2d guesses, and the
ILP formula for a guess can be solved in FPT time. Thus Theorem 1 holds.

3 W[1]-Hardness Parameterized by Treewidth

In this section we show that the Harmless Set problem with majority thresh-
olds is W[1]-hard when parameterized by the treewidth. To show W[1]-hardness
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of Harmless Set with majority thresholds, we reduce from the following prob-
lem, which is known to be W[1]-hard parameterized by the treewidth of the
graph [22]:

Minimum Maximum Outdegree

Input: An undirected graph G whose edge weights are given in unary, and a
positive integer r.
Question: Is there an orientation of the edges of G such that, for each v ∈
V (G), the sum of the weights of outgoing edges from v is at most r?

In Minimum Maximum Outdegree problem, every edge weight ω(u, v) of G
is given in unary, that is, every edge weight ω(u, v) is polynomially bounded in
|V (G)|. In a weighted undirected graph G, the weighted degree of a vertex v, is
defined as the sum of the weights of the edges incident to v in G. In this section,
we prove the following theorem:

Theorem 2. The Harmless Set problem with majority thresholds is W[1]-
hard when parameterized by the treewidth of the graph.

Proof. Let G = (V,E, ω) and a positive integer r ≥ 3 be an instance I of
Minimum Maximum Outdegree. We construct an instance I ′ = (G′, t, k) of
Harmless Set the following way. See Fig. 1 for an illustration.

1. For each weighted edge (u, v) ∈ E(G), we introduce two sets of new ver-
tices Vuv = {uv

1, . . . , u
v
ω(u,v)} and Vvu = {vu

1 , . . . , vu
ω(u,v)} into G′. Make u

and v adjacent to every vertex of Vuv and Vvu, respectively. The vertices of⋃

(u,v)∈E(G)

Vuv ∪ Vvu are called type 1 vertices.

2. For each 1 ≤ i ≤ ω(u, v) − 1, we introduce x(uv
i ,vu

i ) into G′ and make it
adjacent to uv

i and vu
i ; introduce x(uv

i ,vu
i+1)

and make it adjacent to uv
i and

vu
i+1; introduce x(uv

i+1,vu
i ) and make it adjacent to uv

i+1 and vu
i . We also add

x(uv
ω(u,v),v

u
ω(u,v))

into G′ and make it adjacent to uv
ω(u,v) and vu

ω(u,v). We call
such vertices, the vertices of type 2.

3. For every vertex x of type 2, we add a triangle (cycle of length 3) and make
x adjacent to exactly one vertex of this triangle. For every vertex x of type 1,
let n(x) be the number of neighbours of x in V (G) and in the set of type 2
vertices. Note that 2 ≤ n(x) ≤ 4. We add n(x)+1 many triangles corresponds
to vertex x and make x adjacent to exactly one vertex of each triagle.

4. The weighted degree of a vertex x ∈ V in G is denoted by dω(x;G). We
partition the vertices of V (G) based on whether �dω(x;G)

2 � ≤ r + 1 or
�dω(x;G)

2 � > r + 1. A vertex x in G with �dω(x;G)
2 � ≤ r + 1 is called a

vertex of low-degree-type. For each x ∈ V (G) of low-degree-type, we add
2
[
(r + 1) − �dω(x;G)

2 �
]

triangles and make x adjacent to exactly one ver-

tex of each triangle. A vertex x ∈ V (G) with �dω(x;G)
2 � > r + 1 is called a

vertex of high-degree-type. For each x ∈ V (G) of high-degree-type, we add a
set V �

x = {v1�
x , . . . , vα�

x } of α = dω(x;G) − r many vertices and make them
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adjacent to x. For each v ∈ V �
x , we add two triangles and make v adjacent

to exactly one vertex of each triangle. For each high-degree-type vertex x, we
also add a set of (r + 2) many triangles and make x adjacent to exactly one
vertex of each triangle.

This completes the construction of graph G′.

Fig. 1. (i) An instance (G, r) of Minimum Maximum Outdegree with r = 3. (ii) A
valid orientation of G when r = 3. (iii) An illustration of the reduction algorithm in
Theorem 2 using an edge (u, v) with ω(u, v) = 2. Note that u is a high-degree-type
vertex and v is a low-degree-type vertex.

We set k = n + W +
∑

(u,v)∈E(G)

(3ω(u, v) − 2) +
∑

x∈high-degree-type

(dω(x;G) − r)

where W =
∑

(u,v)∈E(G)

ω(u, v). As every edge weight ω(u, v) of G and the integer

r are polynomially bounded in |V (G)|, the number of vertices in G′ is also
polynomially bounded in |V (G)|. Therefore, it is clear that G′ can be constructed
in polynomial time. It can be proved that the treewidth of G′ is at most the
treewidth of G plus eight.

Now we show that our reduction is correct. That is, we prove that (G,w, r)
is a yes instance of Minimum Maximum Outdegree if and only if I ′ is a
yes instance of Harmless Set. Let D be the directed graph obtained by an
orientation of the edges of G such that for each vertex the sum of the weights of
outgoing edges is at most r. We claim that the set
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H = V (G)
⋃

(u,v)∈E(D)

Vuv

⋃

x∈high-degree-type

V �
x

⋃

(u,v)∈E(G)

{
x(uv

i ,vu
i ), x(uv

i ,vu
i+1)

, x(uv
i+1,v

u
i ), x(uv

ω(u,v),v
u
ω(u,v))

| 1 ≤ i ≤ ω(u, v) − 1
}

is harmless set of size at least k. Next, we show that all the vertices in H satisfy
the threshold condition. It is easy to verify that each u ∈ ⋃

(u,v)∈E(G)

(Vuv ∪ Vvu)

satisfies the threshold condition as u has n(u) neighbours in H and n(u) + 1
neighbours outside H, that is, u has less than �dG′ (u)

2 � neighbours in H. Each

x ∈
⋃

(u,v)∈E(G)

{
x(uv

i ,vu
i ), x(uv

i ,vu
i+1)

, x(uv
i+1,vu

i ), x(uv
ω(u,v),v

u
ω(u,v))

| 1 ≤ i ≤ ω(u, v)−1
}

satisfies the threshold condition as x has only one neighbour in H and two
neighbours outside H, that is, x has less than �dG′ (x)

2 � = � 3
2� = 2 neighbours

in H. It is also easy to see that the vertices of triangles satisfy the threshold
condition. Let u be an arbitrary vertex of low-degree-type. If the weighted degree
of u in G is dω(u;G) then its degree in G′ is dω(u;G) + 2

[
(r + 1) − �dω(u;G)

2 �
]
.

Observe that the neighbours of u inside H are all of type 1 which is equal to
outdegree of u and we know outdegree of u is bounded by r. Thus each low-
degree-type vertex has less than �dG′ (u)

2 � = r + 1 neighbours in H. Therefore
each low-degree-type vertex satisfies the threshold condition. Next, let x be an
arbitrary vertex of high-degree-type. If the weighted degree of x in G is dω(x;G)
then its degree in G′ is 2dω(x;G) + 2. Clearly the neighbours of x inside H are
at most r + (dω(x;G) − r). Therefore the vertices of high-degree-type satisfy the
threshold condition. This implies that I ′ is a yes instance.

Conversely, assume that G′ admits a harmless set H of size at least k. We
make the following observations: (i) let C be the set of all triangles introduced in
the reduction algorithm, then C does not intersect with H. This is true because
any vertex with degree 2 has threshold equal to 1. This implies that both the
neighbours of that vertex have to be outside the solution as otherwise the vertex
will fail to satisfy the threshold condition, (ii) for each (u, v) ∈ E(G) the set
Vuv ∪ Vvu contributes at most half vertices in H as otherwise x(uv

i ,vu
i ) for some

1 ≤ i ≤ w(u, v) will fail to satisfy the threshold condition. Note that the total
number of vertices in

⋃

(u,v)∈E(G)

Vuv ∪ Vvu is 2W . The above observations imply

that the size of harmless set H is at most |V (G′)| − W − 3|C| = n + W +∑

(u,v)∈E(G)

(3ω(u, v) − 2) +
∑

x∈high-degree-type

(dω(x;G) − r), which is equal to k. It

implies that either Vuv ⊆ H or Vvu ⊆ H for all (u, v) ∈ E(G) as otherwise some
vertex x(uv

i ,vu
i+1)

will fail to satisfy the threshold condition. Hence the harmless
set is of the form
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H = V (G)
⋃

(u,v)∈E(G)

(Vuv or Vvu)
⋃

x∈high-degree-type

V �
x

⋃

(u,v)∈E(G)

{
x(uv

i ,vu
i ), x(uv

i ,vu
i+1)

, x(uv
i+1,v

u
i ), x(uv

ω(u,v),v
u
ω(u,v))

| 1 ≤ i ≤ ω(u, v) − 1
}

.

Next, we define a directed graph D by V (D) = V (G) and

E(D) =
{
(u, v) | u, v ∈ V (D) and Vuv ⊆ H

} ⋃ {
(v, u) | u, v ∈ V (D) and Vvu ⊆ H

}
.

Let us assume that there exists a vertex x ∈ V (G) of low-degree-type such that
the outdegree is more than r. We can easily see that dH(x) ≥ �dG′ (x)

2 � which is a
contradiction. Let us assume that there exists a vertex x ∈ V (G) of high-degree-
type such that the outdegree is more than r. We can easily see that dH(x) ≥
dw

G(x) ≥ �dG′ (x)
2 � which is a contradiction. This implies that I is a yes-instance.

��

4 Conclusion

The main contributions in this paper are that the Harmless Set problem with
general thresholds is FPT when parameterized by the neighbourhood diver-
sity and the Harmless Set problem with majority thresholds is W[1]-hard
when parameterized by the treewidth of the graph. Drange, Muzi and Reidl [11]
have independently achieved similar results, although in a completely different
manner. It would be interesting to consider the parameterized complexity with
respect to twin cover. The modular width parameter also appears to be a natural
parameter to consider here. The parameterized complexity of the Harmless Set

problem remains unsettled when parameterized by other structural parameters
like feedback vertex set number, pathwidth, treedepth and clique-width.

Acknowledgement. We thank the anonymous reviewers for their constructive com-
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Abstract. A T -graph (a special case of a chordal graph) is the inter-
section graph of connected subtrees of a suitable subdivision of a fixed
tree T . We deal with the isomorphism problem for T -graphs which is
GI-complete in general – when T is a part of the input and even a star.
We prove that the T -graph isomorphism problem is in FPT when T
is the fixed parameter of the problem. This can equivalently be stated
that isomorphism is in FPT for chordal graphs of (so-called) bounded
leafage. While the recognition problem for T -graphs is not known to be in
FPT wrt. T , we do not need a T -representation to be given (a promise
is enough). To obtain the result, we combine a suitable isomorphism-
invariant decomposition of T -graphs with the classical tower-of-groups
algorithm of Babai, and reuse some of the ideas of our isomorphism algo-
rithm for Sd-graphs [MFCS 2020].

Keywords: chordal graph · H-graph · leafage · graph isomorphism ·
parameterized complexity

1 Introduction

Two graphs G and H are called isomorphic, denoted by G � H, if there is a
bijection f : V (G) → V (H) such that for every pair u, v ∈ V (G), {u, v} ∈ E(G)
if and only if {f(u), f(v)} ∈ E(H). The well-known graph isomorphism problem
asks whether two input graphs are isomorphic, and it can be solved efficiently
for various special graph classes [1,9,12,14,18,23]. On the other hand, it is still
unknown whether this problem is polynomial-time solvable or not (though, it is
not expected to be NP-hard) in the general case, and a problem is said to be
GI-complete if it is polynomial-time equivalent to the graph isomorphism.

We now briefly introduce two complexity classes of parameterized problems.
Let k be the parameter, n be the input size, f and g be two computable functions,
and c be some constant. A decision problem is in the class FPT (or FPT-time)
if there exists an algorithm solving that problem correctly in time O(f(k) · nc).
Similarly, a decision problem is in the class XP if there exists an algorithm
solving that problem correctly in time O(f(k) · ng(k)). Some parameters which
yield to FPT - or XP -time algorithms for the graph isomorphism problem can
be listed as tree-depth [10], tree-width [21], maximum degree [7] and genus [23].
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In this paper, we consider the parameterized complexity of the graph isomor-
phism problem for special instances of intersection graphs which we introduce
next.

The intersection graph for a finite family of sets is an undirected graph G
where each set is associated with a vertex of G, and each pair of vertices in G are
joined by an edge if and only if the corresponding sets have a non-empty inter-
section. Chordal and interval graphs are two of the most well-known intersection
graph classes related to our research.

A graph is chordal if every cycle of length more than three has a chord.
They are also defined as the intersection graphs of subtrees of some (non-fixed)
tree T [16]. Chordal graphs can be recognized in linear time, and they have lin-
early many maximal cliques which can be listed in polynomial time [24]. Deciding
the isomorphism of chordal graphs is a GI-complete problem [25]. A graph G is
an interval graph if it is the intersection graph of a set of intervals on the real
line. Interval graphs form a subclass of chordal graphs. They can also be rec-
ognized in linear time, and interval graph isomorphism can be solved in linear
time [9].

A subdivision of a graph G is the operation of replacing selected edge(s)
of G by new induced paths (informally, putting new vertices to the middle of an
edge). For a fixed graph H, an H-graph is the intersection graph of connected
subgraphs of a suitable subdivision of the graph H [8], and they generalize many
types of intersection graphs. For instance, interval graphs are K2-graphs, their
generalization called circular-arc graphs are K3-graphs, and chordal graphs are
the union of T -graphs where T ranges over all trees. We, however, consider T -
graphs where T is a fixed tree. Even though chordal graphs can be recognized
in linear time [24], deciding whether a given chordal graph is a T -graph is NP-
complete when T is on the input [19]. In [11], Chaplick et al. gave an XP -time
algorithm to recognize T -graphs parameterized by the size of T .

Sd-graphs form a subclass of T -graphs where Sd is the star with d rays. The
isomorphism problem for Sd-graphs, and therefore for T -graphs, was shown to
be GI-complete [25] with d on the input. In [3], we have proved by algebraic
means that Sd-graph isomorphism can be solved in FPT -time parameterized by
d, and then in [5] we have extended this approach to an XP -time algorithm for
the isomorphism problem of T -graphs parameterized by the size of T . We have
also considered in [5] the special case of isomorphism of proper T -graphs with a
purely combinatorial FPT -time algorithm.

New Contribution. In this paper, we show that the graph isomorphism prob-
lem for T -graphs can be solved in FPT -time parameterized by the size of T . Our
algorithm does not assume or rely on T -representations of the input graphs to
be given, and in fact it uses only some special properties of T -graphs.

Moreover, our result can be equivalently reformulated as an FPT -time algo-
rithm for testing isomorphism of chordal graphs of bounded leafage, where the
leafage of a chordal graph G can be defined as the least number of leaves of a
tree T such that G is a T -graph. Since there is only a bounded number of trees
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T of a given number of leaves, modulo subdivisions, the correspondence of the
two formulations is obvious.

Highly informally explaining our approach (which is different from [5]), we use
chordality and properties of assumed T -representations of input graphs G and G′

to efficiently compute their special hierarchical canonical decompositions into
so-called fragments (Sect. 2). Each fragment will be an interval graph, and the
isomorphism problem of interval graphs is well understood. Then we use some
classical group-computing tools (Sect. 3, Babai’s tower-of-groups approach) to
compute possible “isomorphisms” between the decompositions of G and of G′

(Sect. 4); each such isomorphism mapping between the fragments of the two
decompositions, and simultaneously between the neighborhood sets of fragments
in other fragments “higher up” in the decomposition.

We remark that the same problem has been independently and concurrently
solved by Arvind, Nedela, Ponomarenko and Zeman [2],1 using different means
(by reducing the problem to automorphisms of colored order-3 hypergraphs with
bounded sizes of color classes).

Due to restricted space, statements marked with an asterisk (*) have proofs
only in the full paper [4] (an arXiv preprint).

2 Structure and Decomposition of T -graphs

In this section, we give a procedure to “extract” a bounded number of special
interval subgraphs (called fragments) of a T -graph G in a way which is invariant
under automorphisms and does not require a T -representation on input. Infor-
mally, the fragments can be seen as suitable “pieces” of G which are placed on
the leaves of T in some representation, and their most important aspects are
their simplicity and limited number. We use this extraction procedure repeat-
edly (and recursively) to obtain the full decomposition of a T -graph.

Structure of Chordal Graphs. We now give several useful terms and facts
related to chordal graphs. A vertex v of a graph G is called simplicial if its
neighborhood corresponds to a clique of G. It is known that every chordal graph
contains a simplicial vertex and, by removing the simplicial vertices of a chordal
graph repeatedly, one obtains an empty graph.

A weighted clique graph CG of a graph G is the graph whose vertices are the
maximal cliques of G and there is an edge between two vertices in CG whenever
the corresponding maximal cliques have a non-empty intersection. The edges
in CG are weighted by the cardinality of the intersection of the correspond-
ing cliques.

A clique tree of G is any maximum-weight spanning tree of CG which may not
be unique. An edge of CG is called indispensable (resp. unnecessary) if it appears

1 To be completely accurate, our paper was first time submitted to a conference at
the beginning of July 2021, and [2] appeared on arXiv just two weeks later, without
mutual influence regarding the algorithms.



242 D. Ağaoğlu Çağırıcı and P. Hliněný

in every (resp. none) maximum-weight spanning tree of CG. If G is chordal, every
maximum-weight spanning tree T of CG is also a T -representation of G, e.g. [22].

For a graph G and two vertices u �= v ∈ V (G), a subset S ⊆ V (G) is called
a u-v separator (or u-v cut) of G if u and v belong to different components of
G − S. When |S| = 1, then S is called a cutvertex. S is called minimal if no
proper subset of S is a u-v separator. Minimal separators of a graph are the
separators which are minimal for some pair of vertices. Chordal graphs, thus
T -graphs, have linearly many minimal vertex separators [17].

A leaf clique of a T -graph G is a maximal clique of G which can be a leaf
of some clique tree of G (informally, it can be placed on a leaf of T in some
T -representation of G). We use the following lemma in our algorithm:

Lemma 2.1 (Matsui et al. [22]). A maximal clique C of a chordal graph G
can be a leaf of a clique tree if and only if C satisfies (1) C is incident to at
most one indispensable edge of CG, and (2) C is not a cutvertex in C′

G which
is the subgraph of CG which includes all edges except the unnecessary ones. The
conditions can be checked in polynomial time.

Decomposing T -graphs. The overall goal now is to recursively find a unique
decomposition of a given T -graph G into levels such that each level consists of
a bounded number of interval fragments.

For an illustration, a similar decomposition can be obtained directly from a
T -representation of G: pick the interval subgraphs of G which are represented
exclusively on the leaf edges of T , forming the outermost level, and recursively in
the same way obtain the next levels. Unfortunately, this is not a suitable solution
for us, not only that we do not have a T -decomposition at hand, but mainly
because we need our decomposition to be canonical, meaning invariant under
automorphisms of the graph, while this depends on a particular representation.

The contribution of this section is to compute such a decomposition the right
canonical way. As sketched above, the core task is to canonically determine in
the given graph G one bounded-size collection of fragments which will form the
outermost level of the decomposition, and then the rest of the decomposition is
obtained in the same way from recursively computed collections of fragments in
the rest of the graph, which is also a T -graph2.

For a chordal graph G and a (fixed) collection Z1, Z2, . . . , Zs ⊆ G of distinct
cliques, we write Zi � Zj if there exists k ∈ {1, . . . , s} \ {i, j} such that Zj

separates Zi from Zk in G (meaning that there is no path from Zi \Zj to Zk \Zj

in G − Zj), and say that Zi � Zj is witnessed by Zk. Note that � is transitive,
and hence a preorder. Let Zi � Zj mean that Zi � Zj but Zj �� Zi. We also
write Zi ≈ Zj if there exists k ∈ {1, . . . , s} \ {i, j} such that both Zi � Zj and

2 Since the requirement of canonicity of our collection does not allow us to relate this
collection to a particular T -representation of G, we cannot say whether the rest of
G (after removing our collection of fragments) would be a T1-graph for some strict
subtree T1 � T , or only a T -graph again. That is why we speak about T -graphs for
the same T (or, we could say graphs of bounded leafage here) throughout the whole
recursion. In particular, we cannot directly use this procedure to recognize T -graphs.
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Zj � Zi hold and are witnessed by Zk. Note that Zj ≈ Zi is stronger than just
saying ‘Zi � Zj and Zj � Zi,’ and that Zi ∩ Zj then separates ZiΔZj from Zk.

Lemma 2.2. (*) Let T be a tree with d leaves, and G be a T -graph. Assume that
Z1, . . . , Zs ⊆ G are distinct cliques of G such that one of the following holds:
a) for each 1 ≤ i ≤ s, the set Zi is a maximal clique in G, and for any 1 ≤ i �=
j ≤ s, neither Zi � Zj nor Zi ≈ Zj is true, or
b) for each 1 ≤ i ≤ s, the set Zi is a minimal separator in G cutting off a
component F of G − Zi such that F contains a simplicial vertex of a leaf clique
of G, and that F is disjoint from all Zj, j �= i.
Then s ≤ d.

Let Z ⊆ G be a minimal separator in G and F ⊆ G a connected component of
G−Z. Then Z is a clique since G is chordal, and whole Z is in the neighborhood
of F by minimality. We call a completion of F (in implicit G) the graph F+

obtained by contracting all vertices of G not in V (F ) ∪ Z into one vertex l (the
neighborhood of l is thus Z) and joining l with a new leaf vertex l′, called the
tail of F+. Since F determines Z in a chordal graph G, the term F+ is well
defined.

We call a collection of disjoint nonempty induced subgraphs (not necessarily
connected) X1,X2, . . . , Xs ⊆ G, such that there are no edges between distinct
Xi and Xj , a fragment collection of G of size s. We first give our procedure for
computing a fragment collection, and subsequently formulate (and prove) the
crucial properties of the computed collection and the whole decomposition.

Procedure 2.3 Let T be a tree with d leaves and no degree-2 vertex. Assume
a T -graph G on the input. We compute an induced (and canonical) fragment
collection X1,X2, . . . , Xs ⊆ G of G of size 0 < s ≤ 2d as follows:

1. List all maximal cliques in G (using a simplicial decomposition) and com-
pute the weighted clique graph CG of G. Compute the list L of all possible
leaf cliques of G by Lemma 2.1; in more detail, using [22, Algorithm 2] for
computation of the indispensable edges in CG.

2. For every pair L1, L2 ∈ L such that L1 � L2, remove L2 from the list. Let
L0 ⊆ L be the resulting list of cliques, which is nonempty since � is acyclic.

3. Let L1 :=
{
L ∈ L0 : ∀L′ ∈ L0 \ {L}. L �≈ L′} be the subcollection of cliques

incomparable with others in ≈. By Lemma 2.2(a) we have |L1| ≤ d. If L1 �= ∅,
then output the following fragment collection of G: for each L ∈ L1, include
in it the set F ⊆ L of all simplicial vertices of L in the graph G.

4. Now, for each L ∈ L0 we have L′ ∈ L0 \ {L} such that L ≈ L′ (and so L ∩ L′

is a separator in G). For distinct L1, L2 ∈ L0 such that L1 ≈ L2, we call a
set Z ⊆ L1 ∩L2 a joint separator for L1, L2 if Z separates L1ΔL2 from L \Z
for some (any) L ∈ L0 \ {L1, L2}. We compute the family Z of all inclusion-
minimal sets Z which are joint separators for some pair L1 ≈ L2 ∈ L0 as
above, over all such pairs L1, L2. This is efficient since all minimal separators
in chordal graphs can be listed in linear time. Note that no set Z ∈ Z contains
any simplicial vertex of G, and so V (G) �⊆ ⋃ Z.
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5. Let C be the family of the connected components of G − ⋃ Z, and C0 ⊆ C
consist of such F ∈ C that F is incident to just one set ZF ∈ Z. Note that
C0 �= ∅, since otherwise the incidence graph between C and Z would have a
cycle and this would in turn contradict chordality of G. Let Z0 := {ZF ∈ Z :
F ∈ C0}. Moreover, by Lemma 2.2(b), |Z0| ≤ d.

6. We make a collection C′
0 from C0 by the following operation: for each Z ∈ Z0,

take all F ∈ C0 such that ZF = Z and every vertex of F is adjacent to
whole Z, and join them into one graph in C′

0 (note that there can be arbitrarily
many such F for one Z). Remaining graphs of C0 stay in C′

0 without change.
Then, we denote by C1 ⊆ C′

0 the subcollection of those F ∈ C′
0 such that the

completion F+ of F (in G) is an interval graph.3

7. If C1 �= ∅, then output C1 as the fragment collection. (As we can show from
Lemma 2.2(b), |C1| ≤ d + |Z0| ≤ 2d.)

8. Otherwise, for each graph F ∈ C′
0, we call this procedure recursively on the

completion F+ of F (these calls are independent since the graphs in C′
0 are

pairwise disjoint). Among the fragments returned by this call, we keep only
those which are subgraphs of F .4 We output the fragment collection formed
by the union of kept fragments from all recursive calls.

One call to Procedure 2.3 clearly takes only polynomial time (in some steps
this depends on G being chordal – e.g., listing all cliques or separators). Since the
possible recursive calls in the procedure are applied to pairwise disjoint parts of
the graph (except the negligible completion of F to F+), the overall computation
of Procedure 2.3 takes polynomial time regardless of d. Regarding correctness,
we are proving that s ≤ 2d, which is in the respective steps 3 and 7 indicated
as a corollary of Lemma 2.2, except in the last (recursive) step 8 where it can
be derived in a similar way from Lemma 2.2 applied to the final collection. We
leave the remaining technical details for the full paper [4].

The last part is to prove a crucial fact that the collection X1,X2, . . . , Xs ⊆ G
is indeed canonical, which is precisely stated as follows:

Lemma 2.4. (*) Let G and G′ be isomorphic T -graphs. If Procedure 2.3 com-
putes the canonical collection X1, . . . , Xs for G and the canonical collection
X ′

1, . . . , X
′
s′ for G′, then s = s′ and there is an isomorphism between G and

G′ matching in some order X1, . . . , Xs to X ′
1, . . . , X

′
s.

Levels, Attachments and Terminal Sets. Following Procedure 2.3, we now
show how the full decomposition of a T -graph G is completed.

For every fragment X of the canonical collection computed by Procedure 2.3,
we define the list of attachment sets of X in G−X as follows. If X = F is obtained
in step 3, then it has one attachment set L \ F . Otherwise (steps 6 and 7 ), the
attachment sets of X = F are all subsets A of the corresponding separator Z

3 Informally, F+ ∈ C1 iff F has an interval representation (on a horizontal line) to
which its separator ZF can be “attached from the left” on the same line.

4 Note that, e.g., the separator and tail of F+ may also be involved in a recursively
computed fragment.
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(of F ) such that some vertex of X has the neighborhood in Z equal to A. Observe
that the attachment sets of X are always cliques contained in the completion
X+, as defined above. Moreover, it is important that the attachment sets of X
form a chain by the set inclusion, since G is chordal, and hence they are uniquely
determined independently of automorphisms of X+.

Procedure 2.5. Given a T -graph G, we determine a canonical decomposi-
tion of G recursively as follows. Start with i = 1 and G0 := G.

1. Run Procedure 2.3 for Gi−1, obtaining the collection X1, . . . , Xs.
2. We call the special interval subgraphs X1, . . . , Xs fragments and their family

Xi := {X1, . . . , Xs} a level (of number i) of the constructed decomposition.
3. Let Gi := G − (

V (X1) ∪ . . . ∪ V (Xs)
)
. Mark every attachment set of each

Xj in Gi as a terminal set. These terminal sets will be further refined when
recursively decomposing Gi; namely, further constructed fragments of Gi will
inherit induced subsets of marked terminal sets as their terminal sets.

4. As long as Gi is not an interval graph, repeat this from step 1 with i ← i+1.

Regarding this procedure, we stress that the obtained levels are numbered
“from outside”, meaning that the first (outermost) level is of the least index. The
rule is that fragments from lower levels have their attachment sets as terminal
sets in higher levels. As it will be made precise in the next section, an isomor-
phism between two T -graphs can be captured by a mapping between their canon-
ical decompositions, which relates pairwise isomorphic fragments and preserves
the incidence (i.e., identity) between the attachment sets of mapped fragments
and the terminal sets of fragments in higher levels. See also Fig. 1.

3 Group-Computing Tools

We first recall the notion of the automorphism group which is closely related to
the graph isomorphism problem. An automorphism is an isomorphism of a graph
G to itself, and the automorphism group of G is the group Aut(G) of all auto-
morphisms of G. There exists an isomorphism from G1 to G2 if and only if the
automorphism group of the disjoint union H := G1 �G2 contains a permutation
exchanging the vertex sets of G1 and G2. We work with automorphism groups
by means of their generators; a subset A of elements of a group Γ is called a set
of generators if the members of A together with the operation of Γ can generate
each element of Γ .

There are two related classical algebraic tools which we shall use in the next
section. The first one is an algorithm performing computation of a subgroup of
an arbitrary group, provided that we can efficiently test the membership in the
subgroup and the subgroup is not “much smaller” than the original group:

Theorem 3.1. (Furst, Hopcroft and Luks [15, Cor. 1]) Let Π be a permu-
tation group given by its generators, and Π1 be any subgroup of Π such that one
can test in polynomial time whether π ∈ Π1 for any π ∈ Π (membership test).
If the ratio |Π|/|Π1| is bounded by a function of a parameter d, then a set of
generators of Π1 can be computed in FPT-time (with respect to d).
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The second tool, known as Babai’s “tower-of-groups” procedure (cf. [6]),
will not be used as a standalone statement, but as a mean of approaching the
task of computation of the automorphism group of our object H (e.g., graph).
This procedure can be briefly outlined as follows; imagine an inclusion-ordered
chain of groups Γ0 ⊇ Γ1 ⊇ . . . ⊇ Γk−1 ⊇ Γk such that

– Γ0 is a group of some unrestricted permutations on the ground set of our H,
– for each i ∈ {1, . . . , k}, we “add” some further restriction (based on the

structure of H) which has to be satisfied by all permutations of Γi,
– the restriction in the previous point is chosen such that the ratio |Γi−1|/|Γi|

is guaranteed to be “small”, and
– in Γk, we get the automorphism group of our object H.

Then Theorem 3.1 can be used to compute Γ1 from Γ0, then Γ2 from Γ1, and so
on until we get the automorphism group Γk.

Automorphism Group of a Decomposition. Here we are going to apply
the above procedure in order to compute the automorphism group of a special
object which combines the decompositions (cf. Procedure 2.5) of given T -graphs
G1 and G2, but abstracts from precise structure of the fragments as interval
graphs.

Consider canonical decompositions of the graphs G1 and G2, as produced by
Procedure 2.5 in the form of level families X 1

1 , . . . ,X 1
� and X 2

1 , . . . ,X 2
�′ , respec-

tively. We may assume that � = �′ since otherwise we immediately answer ‘not
isomorphic’. A combined decomposition of H = G1 � G2 hence consists of the
levels Xi := X 1

i ∪ X 2
i for i = 1, . . . , � and their respective terminal sets. More

precisely, let X := X1∪. . .∪X�. Let A[X] for X ∈ Xk be the family of all terminal
sets in X (as marked by Procedure 2.5 and then restricted to V (X) ), and spe-
cially Ai[X] ⊆ A[X] be those terminal sets in X which come from attachment
sets of fragments on level i < k. Let Ak :=

⋃
X∈Xk

A[X] and Ai
k :=

⋃
X∈Xk

Ai[X]
for k = 1, . . . , �, and let A := A1 ∪ . . . ∪ A�.

Recall, from Sect. 2, the definition of the completion X+ of any X ∈ Xi which,
in the current context, is defined with respect to the subgraph of H induced on
the union U of vertex sets of Xi+1∪ . . .∪X� (of the higher levels from X). This is,
exactly, the completion of X defined by the call to Procedure 2.3 on the level i
which defined X as a fragment. Recall also the attachment sets of X which are
subsets of U (in X+) and invariant on automorphisms of X+.

The automorphism group of such a decomposition of H (Fig. 1) acts on the
ground set X ∪ A, and consists of permutations � of X ∪ A which, in particular,
map Xi onto Xi and Ai onto Ai for all i = 1, . . . , �. Overall, we would like the
permutation � correspond to an actual automorphism of the graph H, for which
purpose we introduce the following definition. A permutation � of X ∪ A is an
automorphism of the decomposition of H if the following hold true;

(A1) for each X ∈ Xi (i ∈ {1, . . . , �}), we have �(X) ∈ Xi, and there is a graph
isomorphism from the completion X+ to the completion �(X)+ mapping
the tail of X+ to the tail of �(X)+ and the terminal sets in Aj [X] to the
terminal sets in Aj [�(X)] for each 1 ≤ j < i, and
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X
A

X −1

A −1

. . .

level

level −1

. . . levels − 3, . . . , 1

Fig. 1. An illustration of a (combined) canonical decomposition of the graph H =
G1 � G2 into � levels, with the collections of fragments X (thick black circles) and of
terminal sets A (colored ellipses inside them). The arrows illustrate an automorphism
of this decomposition: straight arrows show the possible mapping between isomorphic
fragments on the same level, as in (A1), and wavy arrows indicate preservation of the
incidence between attachment sets and the corresponding terminal sets, as stated by
condition (A2). (Color figure online)

(A2) for every X ∈ Xi and A ∈ Ai
k where i ∈ {1, . . . , �} and k ∈ {i+1, . . . , �}, we

have that if A is an attachment set of the fragment X (so, A ⊆ X+), then
�(A) ⊆ �(X)+ is the corresponding attachment set of the fragment �(X).

Notice the role of the last two conditions. While (A1) speaks about consis-
tency of � with the actual graph H on the same level, (A2) on the other hand
ensures consistency “between the levels”. Right from this definition we get:

Proposition 3.2. (*) Let H = G1 � G2 and its canonical decomposition (Pro-
cedure 2.5) formed by families X and A be as above. A permutation � of X ∪ A
is an automorphism of this decomposition, if and only if there exists a graph
automorphism of H which acts on X and on A identically to �.

4 Main Algorithm

We are now ready to present our main result which gives an FPT -time algo-
rithm for isomorphism of T -graphs (without need for a given decomposition).
The algorithm is based on Proposition 3.2, and so on efficient checking of the
conditions (A1) and (A2) in the combined decomposition of two graphs. Stated
precisely:
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Theorem 4.1. For a fixed tree T , there is an FPT-time algorithm that, given
graphs G1 and G2, correctly decides whether G1 � G2, or correctly answers that
one or both of G1 and G2 are not T -graphs.5

We first state a reformulation of it as a direct corollary.

Corollary 4.2. (*) The graph isomorphism problem of chordal graphs G1 and
G2 is in FPT parameterized by the leafage of G1 and G2.

Theorem 4.1 now follows using Procedure 2.5, basic knowledge of automor-
phism groups and Proposition 3.2, and the following refined statement.

Theorem 4.3. (*) Assume two T -graphs G1 and G2, and their combined decom-
position (Procedure 2.5) formed by families X and A in � levels, as in Sect. 3.
Let s = max1≤i≤� |Xi| be the maximum size of a level, and t be an upper bound
on the maximum antichain size among the terminal set families Ai[X] over
each X ∈ X . Then the automorphism group of the decomposition, defined by
(A1) and (A2) above, can be computed in FPT-time with the parameter s + t.

Notice that, in our situation, the parameter s + t indeed is bounded in terms of
|T |; we have s ≤ 2d and t ≤ d directly from the arguments in Procedure 2.3.
Due to space limits, we give only a sketch of proof in this short paper.

Proof (sketch). First, we outline that the condition (A1) can be dealt with
(in step 1 below) efficiently w.r.t. the parameter t: the arguments combine the
known and nice description of interval graphs via so-called PQ-trees [9,13], with
an FPT -time algorithm [3] for the automorphism group of set families with
bounded-size antichain (where the latter assumption is crucial for this to work).

Using the previous, we prove the rest as a commented algorithm outline:

1. For every level k ∈ {1, . . . , �} of the decomposition of H = G1 � G2 we
compute the following permutation group Λk acting on Xk ∪ Ak.
a) We partition Xk into classes according to the isomorphism condition (A1);

i.e., X1,X2 ∈ Xk fall into the same class iff there is a graph isomorphism
from X+

1 to X+
2 preserving the tail and bijectively mapping Ai[X1] to

Ai[X2] for all 1 ≤ i < k. We add the bounded-order symmetric subgroup
on each such class of Xk to Λk.

b) Now, for every permutation � ∈ Λk of Xk and all X ∈ Xk, and for any
chosen isomorphism ιX : X+ → �(X)+ conforming to (A1), we add to
Λk the permutation of Ak naturally composed of partial mappings of the
terminal sets induced by the isomorphisms ιX over X ∈ Xk.

c) For every X ∈ Xk, we compute generators of the automorphism subgroup
of X+ which maps Ai[X] to Ai[X] for every 1 ≤ i < k, and we add to Λk

the action of each such generator on A[X] ⊆ Ak (as a new generator
of Λk). This is a nontrivial algorithmic task and we provide the details in
the full paper [4].

5 The latter outcome (‘not a T -graph’) happens when some of the assertions assuming
a T -graph in Procedure 2.3 fails.
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2. We let Γ0 = Λ1 × . . . × Λ� be the direct product of the previous subgroups.
Notice that Γ0 is formed by the permutations conforming to condition (A1).

3. Finally, we apply Babai’s tower-of-groups procedure [6] to Γ0 in order to
compute the desired automorphism group of the decomposition. We loop
over all pairs 1 ≤ i < j ≤ � of levels and over all cardinalities r of terminal
sets in Aj , which is O(n3) iterations, and in iteration k = 1, 2 . . . compute:

* Γk ⊆ Γk−1 consisting of exactly those automorphisms which conform to
the condition (A2) for every component X ∈ Xi and every terminal set
A ∈ Ai

j such that |A| = r. Then Γk forms a subgroup of Γk−1 (i.e., closed
on a composition) thanks to the condition (A1) being true in Γk−1, and
so we can compute Γk using Theorem 3.1.

4. We output the group Γm of the last iteration k = m of step 3 as the result.

Correctness of the outcome of this algorithm is self-explanatory from the
outline; Γm satisfies (A1) and (A2) for all possible choice of X and A.

We finish with a brief argument of why the computation in step 3 via Theo-
rem 3.1 is indeed efficient. Observe that for all i, j, |Xi| ≤ s and the number of
A ∈ Ai

j such that |A| = r is at most st. By standard algebraic means (counting
cosets of Γk in Γk−1), we get that |Γk−1|/|Γk| is bounded from above by the order
of the subgroup “induced” on Xi times the order of the subgroup on considered
sets A of cardinality r. The latter number is at most s! · (st)! regardless of Γk−1,
and hence bounded in the parameter. ��

5 Conclusions

We have provided an FPT -time algorithm to solve the isomorphism problem for
T -graphs with a fixed parameter |T | and for chordal graphs of bounded leafage.
There seems to be little hope to further extend this result for more general
classes of chordal graphs since already for split graphs of unbounded leafage the
isomorphism problem is GI-complete. Though, we may combine our result with
that of Krawczyk [20] for circular-arc graphs isomorphism to possibly tackle the
case of H-graphs for which H contains exactly one cycle.

On the other hand, an open question remains whether a similar decomposi-
tion technique as that in Sect. 2 can be used to solve the recognition problem of
T -graphs in FPT -time, since the currently best algorithm [11] works in XP -time.
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raul@alu.ufc.br, anasilva@mat.ufc.br

Abstract. Chordal graphs are intersection graphs of subtrees of a tree,
while interval graphs are intersection graphs of subpaths of a path. Undi-
rected path graphs are an intermediate class of graphs, defined as the
intersection graphs of paths of a tree. It is known that Dominating

Set, Connected Dominating Set, and Steiner Tree are W[2]-hard
on chordal graphs, when parameterized by the size of the solution, and
are polynomial-time solvable on interval graphs. As for the undirected
path graphs, all these problems are known to be NP-complete, and when
parameterized by the size of the solution, no classification in the param-
eterized complexity theory is known apart from the trivial XP classifica-
tion. We prove that Dominating Set, Connected Dominating Set,
and Steiner Tree are FPT for undirected path graphs when parame-
terized by the size of the solution, and that they continue to be FPT for
general chordal graphs when parameterized by the size of the solution
plus the vertex leafage of the graph, provided a tree model with optimal
vertex leafage is given. We show a relation between the parameterization
of Min-LC-VSP problems by the leafage of the graph versus the vertex
leafage plus the size of a solution.

Keywords: Chordal graphs · Undirected Path graphs · Dominating
Set · Steiner Tree · FPT algorithms

1 Introduction

Given a graph G and a family of subsets S = {Su}u∈V (G) of a set U , we say
that G is the intersection graph of S if uv ∈ E(G) if and only if Su ∩ Sv �= ∅,
and that (U,S) is a model of G. Chordal graphs are defined as graphs having
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no induced cycle of size bigger than three, but it is known that they are also
the intersection graphs of subtrees of a characteristic tree [13]. Nested subclasses
of chordal graphs are defined by putting constraints in either the characteristic
tree, or the subtrees. Interval graphs are the intersection graphs of subpaths of a
path [6]; rooted directed path graphs are the intersection graphs of directed paths
of an out-branching [14] (an oriented rooted tree with all vertices being reachable
from the root); directed path graphs are the intersection graphs of directed paths
of an oriented tree [20]; and undirected path graphs are the intersection graphs of
paths of a tree [12]. The cited papers give polynomial-time recognition algorithms
that also provide models for these classes, called tree models.

A set D ⊆ V (G) is dominating if, for every vertex v ∈ V (G) \ D, we have
that v has a neighbor in D. Given a graph G and a positive integer κ, the
Dominating Set problem consists of deciding whether G has a dominating set
of size at most κ, while the Connected Dominating Set asks the same but
requires additionally that G[D] is connected. Given also a subset X ⊆ V (G),
called set of terminals, the Steiner Tree problem consists of deciding whether
there exists a subset S ⊆ V (G) \ X, called Steiner set, such that |S| ≤ κ and
G[S ∪ X] is connected—and hence G[S ∪ X] has a spanning tree T , called a
Steiner tree of G for X. It is known that Connected Dominating Set and
Steiner Tree have the same complexity for chordal graphs and subclasses [23].
The natural parameter of all these problems is κ.

Dominating Set is considered the canonical problem in the class W[2]-hard
when parameterized by κ, which explains the great interest in it (see e.g. [15]).
When restricted to chordal graphs (and even to split graphs), Dominating Set,
as well as Connected Dominating Set, are still W[2]-hard when parame-
terized by κ [21]. However, they become polynomial-time solvable on interval
graphs, and more generally on rooted directed path graphs [5,23], which brings
the natural question about whether they are also polynomial-time solvable on
undirected path graphs. This unfortunately is not the case, as both are NP-
complete on these graphs [5,10]. Up to our knowledge, it is not known whether
(Connected) Dominating Set is solvable in polynomial time on directed path
graphs. Nevertheless, it could still happen that they are FPT when parameter-
ized by κ on undirected path graphs, and indeed this is one of our results. This
classification closes all the parameterized complexity open entries for undirected
path graphs presented in [10].

Undirected path graphs can also be seen as intersection graphs of subtrees
of a tree where each subtree has at most 2 leaves. A natural generalization
therefore is to investigate intersection of subtrees with at most � leaves, which
leads to the definition of vertex leafage of a chordal graph. Given a tree model
T = (T, {Tu}u∈V (G)) of a chordal G, the vertex leafage of T is the maximum
number v�(T ) of leaves in a subtree Tu, while the vertex leafage of G is the
minimum vertex leafage over all of its tree models [8]; we denote the parameter
by v�(G). Undirected path graphs are exactly the chordal graphs with vertex
leafage 2. Recall that Dominating Set and Connected Dominating Set

are NP-complete on undirected path graphs [5,10], which gives us that they are
NP-complete on chordal graphs with vertex leafage k for every fixed k ≥ 2.
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This fact prevents the existence of FPT algorithms parameterized by the vertex
leafage of chordal graphs unless P = NP.

In this work we prove that Connected Dominating Set and Dominating

Set are FPT on chordal graphs when parameterized by κ + v�(G), as long as
a tree model with optimal vertex leafage is provided. Since a tree model with
optimal vertex leafage can be computed in polynomial time for undirected path
graphs [12], we get that these problems are FPT when parameterized by κ on
these graphs, which is best possible by the mentioned results.

Theorem 1. Let G be a chordal graph. If a tree model T such that v�(T ) =
v�(G) is provided, then Dominating Set, Connected Dominating Set and
Steiner Tree are FPT when parameterized by κ + v�(G). In particular, when
restricted to undirected path graphs, then Dominating Set can always be solved
in time O∗(22κ(1+log κ)), while Connected Dominating Set and Steiner

Tree can be solved in time O∗(4κ).

A closely related parameter is the leafage of G, denoted by �(G), which is
the minimum number of leaves �(T ) in the tree of a tree model T of G [19]. Sur-
prisingly enough, a tree model with �(G) leaves can be computed in polynomial
time [16]. This unfortunately is not the case for the vertex leafage parameter, as
it is known [8] that it is NP-complete to decide whether a chordal graph G has
vertex leafage at most 3; they also give an algorithm to compute v�(G) in time
n�(G), which is XP when parameterized by �(G). In [11] they provide an FPT
algorithm for Dominating Set when parameterized by �(G). Since v�(G) is a
weaker parameter than �(G), the algorithm provided in [11] is not readily appli-
cable to Dominating Set parameterized by κ and v�(G). Nevertheless, we show
that positive instances of Dominating Set and Connected Dominating Set

must have bounded leafage, which brought us to the question about whether the
same holds for generalizations of Dominating Set. Indeed, we have found that
the broader class of problems, called Min-LC-VSP problems [7,11], have the
same property. Given a graph G and subsets σ, ρ ⊆ {0, · · · , n − 1}, a subset
S ⊆ V (G) is a (σ, ρ)-set if: |N(v) ∩ S| ∈ σ for every v ∈ S, and |N(v) ∩ S| ∈ ρ
for every v ∈ V (G) \ S. Fixing σ, ρ, and given a graph G and an integer κ, the
Min-LC-VSPσ,ρ problem consists in deciding whether there exists a (σ, ρ)-set
S of size at most κ. Observe that if 0 ∈ ρ, then the answer is always yes since
taking the empty set satisfies the constraints; this is why we suppose 0 /∈ ρ in
what follows. Min-LC-VSP problems generalize a number of optimization prob-
lems, as e.g. Dominating Set, d-Dominating Set, Total Dominating Set,
Induced d-regular subgraph, etc. [7]. We state our result and its corollary
obtained from v�(G) ≤ �(G).

Theorem 2. Let σ, ρ ⊆ {0, · · · , n − 1} be such that 0 /∈ ρ, G a chordal graph
and κ a positive integer. If (G,κ) is a Yes instance of Min-LC-VSPσ,ρ, then
�(G) ≤ κ · v�(G).

Corollary 1. Let σ, ρ ⊆ {0, · · · , n−1}, G be a chordal graph and κ be a positive
integer. If Min-LC-VSPσ,ρ is FPT when parameterized by v�(G), then Min-

LC-VSPσ,ρ is also FPT when parameterized by �(G). And if Min-LC-VSPσ,ρ
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is FPT when parameterized by �(G) and a tree model T with v�(T ) = v�(G) is
provided, then Min-LC-VSPσ,ρ is also FPT when parameterized by κ + v�(G).

We mention that Max-LC-VSPσ,ρ can also be defined (in this case, the
problem consists in deciding whether there exists a (σ, ρ)-set S such that |S| ≥
κ), but our proof cannot be applied to these problems. Nevertheless, many of the
Max-LC-VSPσ,ρ problems cited in [7] are known to be polynomial-time solvable
in chordal graphs, e.g. Independent Set, Maximum Induced Matching,
Maximum Efficient Edge Dominating Set and Maximum Dominating

Induced Matching, Strong Stable Set, etc. (see for instance [18]).
Another parameter of interest is the mim-width of G [22], since many prob-

lems can be solved in XP time when parameterized by mim-width [2,7,17], and
rooted directed path graphs have mim-width 1 [17]. One could therefore ask
whether undirected path graphs also have bounded mim-width. Up to our knowl-
edge, no explicit construction of undirected path graphs with unbounded mim-
width is known, but the fact that LC-VSP problems can be solved in polynomial
time on graphs with bounded mim-width [7], combined with the NP-hardness
of Dominating Set on undirected path graphs, give evidence that undirected
path graphs do not have bounded mim-width, unless P = NP.

2 Preliminaries

A parameterized problem is a language Π ⊆ Σ × N, where Σ is a fixed finite
alphabet. A pair (I, κ) ∈ Σ × N is called an instance of Π with parameter κ,
and we say that it is a Yes instance if (I, κ) ∈ Π. Given instances (I, κ), (I ′, κ′)
of the same parameterized problem Π, it is said that they are equivalent if (I, κ)
is a Yes instance of Π if and only if so does (I ′, κ′). A reduction rule for Π is
a polynomial-time computable function that maps an instance (I, κ) to another
instance (I ′, κ′). It is safe if (I, κ) and (I ′, κ′) are equivalent and κ′ ≤ g(κ), where
g is a computable function. We refer the reader to [9] for further background on
parameterized complexity.

We denote by T = (T, {Tu}u∈V (G)) a tree model of G. Given a node t ∈ V (T ),
we denote by Vt the set {u ∈ V (G) : t ∈ V (Tu)}. We say that u ∈ V (G) is a
leafy vertex of G (with respect to T ) if V (Tu) = {�u} and �u is a leaf in T ;
denote by L(G, T ) the set of leafy vertices of G with respect to T , and for each
u ∈ L(G, T ), denote by �u the unique node in Tu. We omit (G, T ) when it is
clear from the context.

A tree model (T, {Tu}u∈V (G)) of G is said to be minimal if there are no two
adjacent nodes t, t′ ∈ V (T ) such that Vt ⊆ Vt′ . It is known that such a tree model
can be computed in polynomial time [12]. Even though obtaining a minimal tree
model, given a tree model of G, is a standard operation, we prove it explicitly
in the appendix in order to show that also the vertex leafage does not increase.

Proposition 1 ([12]). Let G be a chordal graph, and T = (T, {Tu}u∈V (G)) be
a tree model of G. Then, a minimal tree model T ′ = (T ′, {T ′

u}u∈V (G)) of G with
v�(T ′) ≤ v�(T ) and �(T ′) ≤ �(T ) can be computed in polynomial time.
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The following lemma directly implies Theorem 2 and will also be useful in the
following sections.

Lemma 1. Let G be a chordal graph, T = (T, {Tu}u∈V (G)) a minimal tree model
of G such that v�(T ) = v�(G), κ a positive integer and S ⊆ V (G) such that
N [u] ∩ S �= ∅ for every leafy vertex u ∈ L. If |S| ≤ κ, then �(G) ≤ κ · v�(G).

Proof. By contradiction, let �1, . . . , �k be the leaves of T , with k ≥ κ · v�(G)+ 1.
Since T is minimal, for each i ∈ {1, . . . , k}, there exists vi ∈ V�i such that
V (Tvi

) = {�i}, as otherwise we would have V�i ⊆ Vti where ti is the neighbor
of �i in T . For each u ∈ S, let Du = {vi | u ∈ N [vi]}. Observe that if vi ∈ S,
then Dvi

= {vi} since �1, . . . , �k are all distinct leaves of T (i.e., {v1, . . . , vk} is
an independent set). Note also that if u ∈ S \ {v1, . . . , vk}, then |Du| ≤ v�(G).
By assumption, we know that N [vi] ∩ S �= ∅ for every vi ∈ {v1, . . . , vk} \ S,
which means that

⋃
u∈S Du = {v1, . . . , vk}. However, we know that |

⋃
u∈S Du| ≤∑

u∈S |Du| ≤ |S| · v�(G) ≤ κ · v�(G), a contradiction since k > κ · v�(G). 
�

Since in Theorem 2 we have 0 /∈ ρ, we get directly that a solution S to
Min-LC-VSPσ,ρ applied to (G,κ) must be such that N [u] ∩ S �= ∅ for every
u ∈ V (G), and in particular for every leafy vertex. Hence, Theorem 2 follows
from the above lemma. Additionally, it is known that Dominating Set can
be solved in time 2O(�2) · nO(1) on a chordal graph G, where � = �(G) and
n = |V (G)| [11]. Since Dominating Set is equivalent to Min-LC-VSPσ,ρ with
σ = {0, . . . , n − 1} and ρ = {1, . . . , n − 1}, we get that Corollary 1 implies
that Dominating Set can be solved in FPT time on a chordal graph G when
parameterized by κ + v�(G), provided the appropriate model is given. To finish
the proof of Theorem 1, we need to investigate the complexity of Steiner Tree

and Connected Dominating Set, and to present the claimed algorithm for
Dominating Set when restricted to undirected path graphs. This is done in
Sects. 3 and 4, respectively.

3 Connected Dominating Set and Steiner Tree

In this section, we present FPT algorithms for Connected Dominating Set

and Steiner Tree parameterized by κ + v�(G). For simplicity, in what follows
we denote an instance of Steiner Tree and Connected Dominating Set

parameterized by κ + v�(G) simply by (G,X, κ) and (G,κ), respectively, since
v�(G) depends on G and hence appears implicitly in the notation. We start by
solving Steiner Tree, and at the end of the section we prove that Connected

Dominating Set is equivalent to Steiner Tree applied to (G,L), where L is
the set of leafy vertices in a given model of G. And to solve Steiner Tree, we
apply two reduction rules that allows us to consider only instances (G,L, κ). We
start by getting rid of the leafy vertices that are not in X.

Reduction Rule 1. Let (G,X, κ) be an instance of Steiner Tree where G is
chordal, and T = (T, {Tu}u∈V (G)) be a tree model of G. If there exists v ∈ L\X,
then delete v, obtaining the instance (G − v,X, κ).
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Proof of safeness. Removing vertices clearly cannot increase the vertex leafage;
hence we just need to prove that (G,X, κ) is a Yes instance if and only if
(G − v,X, κ) also is. Clearly a solution for (G − v,X, κ) is also a solution for
(G,X, κ) since G − v ⊆ G. Conversely, let S ⊆ V (G) be a Steiner set for (G,X)
such that |S| ≤ κ. By definition H = G[S ∪ X] is connected. If v /∈ S, then
H ⊆ G − v, so suppose otherwise. Observe that, by definition of tree model
and since V (Tv) = {�} for some leaf � of T , we get that N(v) is a clique of G.
This clearly implies that v cannot be a cut-vertex in H, i.e., that H − v is still
connected, which means that S − v is a solution for (G − v,X, κ). 
�

We now show that it is enough to consider terminal vertices that are leafy
vertices. We cannot, however, simply delete the set X \ L of non-leafy terminal
vertices since they might be useful to connect terminal leafy vertices, without
making an impact on the size of the Steiner set. Thus we use the bypass operation
to eliminate vertices in X\L while maintaining the connectivity that is gained by
including these vertices in the induced subgraph G[S ∪X]. The bypass operation
of a vertex v ∈ V (G) consists of removing v from V (G), and adding uw for
every pair u,w of neighbors of v (such that uw /∈ E(G) to avoid multiple edges).
Before we apply the bypass reduction, we prove the following lemma.

Lemma 2. Let G be a chordal graph, T = (T, {Tu}u∈V (G)) be a tree model of
G such that L ∩ V� �= ∅ for every leaf � ∈ V (T ), and ∅ �= X ⊆ V (G) be such that
L ⊆ X. If S is a Steiner set for (G,X), then Vt contains some vertex of S ∪ X
for every t ∈ V (T ).

Proof. If V (T ) = {t} it follows trivially because X �= ∅; so suppose |V (T )| > 1.
The lemma also holds trivially for the leaves of T since L ⊆ X and L ∩ V� �= ∅
for every leaf � ∈ V (T ). So consider a non-leaf node t of T . Note that t must be
within a path between two leaves �1 and �2 of T ; let v1, v2 ∈ V (G) be such that
V (Tvi

) = {�i} for each i ∈ {1, 2} (they exist by assumption). Since G[S ∪ X] is
connected and {v1, v2} ⊆ L ⊆ X, there is a path P in G[S ∪ X] between v1, v2.
Because G is chordal, we get that Vq separates v1 from v2 in G for every internal
node q in the �1, �2-path Q in T . Therefore, we get that P must contain a vertex
of Vq for internal node q of Q, in particular it must contain a vertex of Vt. 
�

Reduction Rule 2. Let (G,X, κ) be an instance of Steiner Tree where G
is chordal, T = (T, {Tu}u∈V (G)) be a tree model of G such that L ∩ V� �= ∅ for
every leaf � ∈ V (T ), and suppose that Reduction 1 cannot be applied. If there
exists v ∈ X \ L, then bypass v, obtaining the instance (G′,X − v, κ).

Proof of safeness. First we show that the vertex leafage cannot increase by con-
structing a tree model of G′ from T . Consider T ′ = (T ′, {T ′

u}u∈V (G′)) obtained
as follows.

1. T ′ is the tree obtained from T by contracting Tv to a single vertex, tv; and
2. For each u ∈ V (G′), if V (Tv) ∩ V (Tu) = ∅, then Tu remains the same; oth-

erwise, T ′
u is the subtree of T ′ containing exactly the vertices in (V (Tu) \

V (Tv)) ∪ {tv}.
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To see that the vertex leafage does not increase, just observe that edge con-
tractions of trees cannot increase the number of leaves. It remains to argue that
T ′ is indeed a tree model of G′. For this, we must have uw ∈ E(G′) if and only
if V (T ′

u) ∩ V (T ′
w) �= ∅. To see that it holds it suffices to observe that tv ∈ V (T ′

u)
if and only if u ∈ N(v). Now, because the value of κ remains the same, and since
the bypass operation can be clearly applied in polynomial time, it remains to
show that (G,X, κ) and (G′,X − v, κ) are equivalent. Denote X − v by X ′, and
by L′ the set L(G′, T ′). Note that the existence of v implies that |L| ≥ 2. Since
Reduction 1 cannot be applied, we get that L ⊆ X.

First, consider a solution S for (G,X, κ). We argue that S is also a Steiner
set for (G′,X ′), i.e., that S ∪ X ′ induces a connected subgraph of G′. Indeed, if
u,w ∈ S ∪X ′ ⊂ S ∪X, then there exists a u,w-path P in G[S ∪X]. If v /∈ V (P ),
then P still exists in G′; and otherwise, v is an intermediate vertex in P that is
replaced by an edge in G′, i.e., u,w are still connected in G′[S ∪ X ′].

Now, let S be a solution for (G′,X ′, κ), which means that H ′ = G′[S ∪ X ′]
is connected. We want to prove that H = G[S ∪ X] is also connected. For this,
first observe that H ′ is obtained from H − v by turning N(v) ∩ V (H ′) into a
clique. Therefore, the only way H could be disconnected is if v is an isolated
vertex in H; we show that this cannot occur. Indeed, note that contracting Tv

into a single vertex tv maintains the property that each leaf of T ′ must contain
a leafy vertex, i.e., that L′ ∩V� �= ∅ for every leaf � ∈ V (T ′). Hence, by Lemma 2
we must have (S ∪ X ′) ∩ Vtv �= ∅, i.e., v has some neighbor in H. 
�

We are finally ready to prove the main result of this section.

Theorem 3. Let G be a chordal graph on n vertices and m edges, X ⊆ V (G),
and κ be a positive integer. Steiner Tree can be solved on (G,X, κ) in time
O∗(2κ·v�(G)), provided a tree model with optimal vertex leafage is given. In par-
ticular, if G is an undirected path graph, then Steiner Tree can always be
solved in time O(4κn2 + nm).

Proof. Let (G,X, κ) be an instance of Steiner tree where G is a chordal
graph. If �(G) = 1 or |X| = 1, then G[X] is a complete graph and thus S = ∅
is a solution. Thus we now assume that �(G) ≥ 2 and |X| ≥ 2. First, compute a
minimal tree-model of G; this can be done in polynomial time [12]. Observe that
a minimal tree model satisfies the condition of Reduction Rule 2. By iteratively
applying Reduction Rules 1 and 2, and Proposition 1 to maintain a minimal tree
model, we obtain in polynomial time an equivalent instance (G′,X ′, κ) such that
v�(G′) ≤ v�(G), and X ′ is the set of leafy vertices of G′ (related to a tree model
T ′ = (T ′, {T ′

u}u∈V (G))). Now, let S ⊆ V (G′) be a Steiner set for (G′,X ′) such
that |S| ≤ κ. The connected components of G[X ′] are exactly the cliques V�∩X ′,
� a leaf of T ′. So, we get that either N [u] = N [v] or N [u] ∩ N [v] = ∅ for every
pair of leafy vertices u, v ∈ X ′. Hence, we get N(u) ∩ S �= ∅ for every u ∈ X ′,
and by Lemma 1 we get �(G′) ≤ κ · v�(G′) ≤ κ · v�(G). We can solve (G′,L′, κ)
in the claimed time using the algorithm given in [3] for Steiner Tree which
runs in this instance in time O(2κ·v�(G)n2 + nm) time, and in particular if G is
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an undirected path graph, the starting tree model with optimal vertex leafage
can be found in polynomial time [12]. 
�

Finally, our result for Connected Dominating Set is obtained by proving
equivalence to Steiner Tree on (G,L, κ). Our proof is necessary since the
complexity equivalence proved in [23] concerns only classical complexity.

Theorem 4. Let G be a chordal graph on n vertices and m edges, and κ be
a positive integer. Connected Dominating Set can be solved on (G,κ) in
time O∗(2κ·v�(G)), provided a tree model with optimal vertex leafage is given.
In particular, if G is an undirected path graph, then Connected Dominating

Set can always be solved in time O(4κn2 + nm).

Proof. We prove that S is a connected dominating set of G if and only if S is a
Steiner set for (G,L), where L denotes the set of leafy vertices in a tree model
(T, {Tu}u∈V (G)) of G. The theorem follows by Theorem 3.

Let S be a connected dominating set of G. So G[S] is a connected subgraph
of G, and since it is also dominating, we get that N(u) ∩ S �= ∅ for every u ∈ L.
It follows that G[S ∪L] is also connected, and hence S is a Steiner set for (G,L).

On the other hand, if S is a Steiner set for (G,L), then by Lemma 2 we
know that Vt ∩ (S ∪ L) �= ∅ for every t ∈ V (T ), which in turn implies that every
u ∈ V (G) has a neighbor in S ∪ L. To finish the proof, just recall that if v is
a leafy vertex, then N(v) is a clique. Hence, if u ∈ V (G) is adjacent to v ∈ L,
then u is also adjacent to w ∈ S ∩ N(v) (which exists since S is a Steiner set for
(G,L) and L is a collection of disjoint cliques). 
�

4 Dominating Set

In this section, we present an FPT algorithm for Dominating Set parameterized
by κ restricted to undirected path graphs. Although we believe that our method
can be extended to any chordal graph, when parameterized by κ + v�(G), we
remark that the expected running time of such approach is worse than simply
applying the algorithm given in [11] after bounding the leafage of the input
graph. Thus we refrain from discussing this extension and focus only on the
particular case of undirected path graphs since, in this case, our proof is self-
contained, simpler, and the O∗(22κ(1+log κ)) running time beats the 2O(κ2)nO(1)

running time provided by applying the algorithm in [11].
In the B-Dominating Set, we are given a graph G, a positive integer κ,

and a subset B ⊆ V (G) (called set of black vertices), and the goal is to decide
if there is a set D ⊆ V (G) with |D| ≤ κ such that N [b] ∩ D �= ∅ for every b ∈ B.
In other words, the goal is to find a set of at most κ vertices that dominates
every black vertex of the instance. We say that such a set D is a B-dominating
set (in G). Clearly, solving Dominating Set on (G,κ) is equivalent to solving
B-Dominating Set on (G,V (G), κ).

From this point on, we assume that G is an undirected path graph, and that
T = (T, {Pu}u∈V (G)) is a tree model of G where each Pu is a subpath of T (this
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can be computed in polynomial time [12]). We also denote by L the set L(G, T ).
As in the previous section, we solve this problem by first applying a series of
reduction rules, the first of which is analogous to Reduction Rule 1.

Reduction Rule 3. Let (G,B, κ) be an instance of B-Dominating Set. If
there exists v ∈ L\B, then delete v, obtaining the instance (G− v,B, κ). And if
there exists v ∈ L ∩ B such that v is an isolated vertex, then delete v, obtaining
the instance (G − v,B − v, κ − 1).

Proof of safeness. Deleting a vertex clearly does not increase the vertex leafage,
so we just need to prove the equivalence between instances. For the first case,
clearly a B-dominating set in G − v is also a B-dominating set in G. So let S
be a B-dominating set in G. If v /∈ S, then there is nothing to prove. Otherwise,
since v is a leafy vertex, we get that N [v] is a clique, which means that any
b ∈ B dominated by v can be dominated by any u ∈ N(v) instead. The second
part is analogous. 
�

Now we can assume that every leafy vertex v of G is black and is not isolated.
The following rule allows us to bound the number of leaves in T .

Reduction Rule 4. If B = ∅, then output Yes. And if B �= ∅ and either κ ≤ 0
or T has more than 2κ leaves, then output No.

Safeness. Follows from the assumption that every leafy vertex v is black and
from Lemma 1. 
�

Thus, we assume that T has at most 2κ leaves. Furthermore, if |V (T )| = 1,
then G is the complete graph and any vertex dominates B; so from now on we
assume that T has at least 2 leaves. Our next operation is not a reduction rule,
but a branching rule instead. More specifically, we create a number of smaller
instances in order to solve the problem. The amount of instances created is
bounded by a function of κ, thanks to the fact that T has at most 2κ leaves.

Given nodes t, t′ of T , denote by P (t, t′) the t, t′-path in T . Also, given a
subpath P of T , denote by VP the set {u ∈ V (G) | Pu ⊆ P}. Say that u ∈ VP is
P -maximal if there is no v ∈ VP such that Pu is a proper subpath of Pv.

Branching Rule. Let I = (G,B, κ) be an instance of B-Dominating Set.
Let � ∈ V (T ) be a leaf of T , and u ∈ V (G) be such that V (Pu) = {�}. For each
leaf t ∈ V (T ), t �= �, do the following:

1. Choose v ∈ VP (�,t) to be a P (�, t)-maximal vertex such that � ∈ V (Pv);
2. Define G′ = G − VPv

and B′ = B \ NG[v];
3. Create the instance I(u, t) = (G′, B′, κ − 1).

We remark that {u, v} ⊆ VPv
and thus those two vertices are not in G′.

Correctness of the Branching Rule. First, observe that a minimal tree model of
G′ can again be obtained by applying Proposition 1 to the tree model T restricted
to G′. Therefore, it remains to show that I is a Yes instance of B-Dominating
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Set if and only if there exists a leaf t of T distinct from � such that the instance
I(u, t) is also a Yes instance.

For the necessity, let S be a B-dominating set of G. By our assumption that
Reduction Rule 3 is not applicable, we get that u ∈ B, and N(u) �= ∅. Note that,
since V (Pu) = {�} we get that N(u) is a clique. This means that if u ∈ S, then
(S\{u})∪{v} is also B-dominating, for any v ∈ N(u). Therefore, we can assume
that u �∈ S. Now, let v be the neighbor of u in S. Also, let t′ be the endpoint
of Pv distinct from �, and let t be any leaf separated from � by the edge of Pv

incident to t′ (it might happen that t = t′). Then, either v is P (�, t)-maximal,
or there exists x ∈ V� which is P (�, t)-maximal. If the latter occurs, we get that
Pv ⊆ Px, which in turn gives us that N [v] ⊆ N [x] and that (S \ {v}) ∪ {x} is
a B-dominating set of G. We can therefore suppose, without loss of generality,
that v is P (�, t)-maximal. Now, let I(u, t) be the instance of B-Dominating

Set constructed as in the statement of the Branching Rule. Observe that if v′

is also P (�, t)-maximal such that � ∈ V (Pv′), then Pv′ = Pv and the constructed
instance is the same, so we can suppose that indeed v is the iterated P (�, t)-
maximal vertex. It remains to prove that S′ = S \ {v} is a B′-dominating set of
I(u, t). For this, let b ∈ B′. By construction b ∈ B \ NG[v]. Therefore, b has a
neighbor in S \ {v}, as we wanted to show.

For the sufficiency, let I(u, t) = (G′, B′, κ − 1) be the instance given by the
Branching Rule, and let S′ be a B′-dominating set of G′. Because every b ∈ B′ is
dominated by S′, and B\B′ = NG[v], we get that S = S′∪{v} is a B-dominating
set in G, as we wanted. 
�

The last part of Theorem 1 follows by bounding the number of instances,
since each instance is solved in polynomial time.

Theorem 5. Let G be an undirected path graph. Then Dominating Set can
be solved in time O∗(2O(κ log κ)).

Proof. We start by obtaining a tree model with optimal vertex leafage for G by
applying the polynomial algorithm in [12]. Then, we iteratively apply Reduction
Rules 3 and 4 (also applying Proposition 1 to maintain a minimal tree model),
until we reach the need to apply the Branching Rule. The latter is then applied
for every leaf of the current tree model, which generates at most (2κ)2 = 4κ2

new instances. The process then starts over on each of the generated instances.
Finally, since the budget for the size of the solution decreases by 1 after applying
the Branching Rule, we get that a new application of the rule would generate at
most (2κ − 2)2 new instances, and so on. Observe that this cascade can be done
at most κ times, since at each application we keep one vertex in the dominating
set that is being constructed. Therefore, in the worst case scenario, we get that
the total number of generated instances is: (2κ)2 · (2κ−2)2 · · · · · (2κ− (2κ−2))2

= [(2κ) · (2κ − 2) · · · · · (2)]2 = O([(2κ)κ]2) = O(22κ(log κ+1)). Observe that if an
instance eventually ends up with a non-empty set of black vertices and a budget
of 0 (base case of the branching procedure), then Reduction Rule 4 will output
No. Because the applications of Reduction Rules 3 and 4 and of Proposition 1
are done in polynomial time, we get the claimed running time. 
�
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5 Conclusion

We have investigated the complexity of Dominating Set, Connected Domi-

nating Set and Steiner Tree when parameterized by the size of the solution
plus the vertex leafage (κ + v�(G)) of a given chordal graph G. We have found
that they are all FPT, provided that a tree model with optimal vertex leafage
of G is given. Since such a tree model can be found in polynomial time if G is
an undirected path graph (which are graphs with vertex leafage 2), we get that
they are all FPT on these graphs when parameterized by the size of the solution.
A question is whether the condition about the provided tree model can be lifted.
Because positive instances have leafage bounded by a function of κ and v�(G),
we know that if computing v�(G) is FPT when parameterized by �(G), then we
would have a complete fixed-parameter algorithm. Another option could be to
provide a tree model which is not very far from an optimal one, i.e., that has
vertex leafage at most c ·v�(G) for some constant c. This would increase only the
constants in our complexities, and we would again have complete algorithms. We
ask whether this is achievable. We recall the reader that deciding v�(G) ≤ 3 is
NP-complete, but that the vertex leafage can be computed in time nO(�(G)) [8].

The inequality v�(G) ≤ �(G) says that the vertex leafage of G is a weaker
parameter, i.e., that if a problem is FPT when parameterized by v�(G), then it is
also FPT when parameterized by �(G). However, we have also seen that if some
Min-LC-VSP problem is FPT when parameterized by �(G), then we get also
parameterization by κ+v�(G). In [11] they provide a fixed-parameter algorithm
for Dominating Set when parameterized by �(G). A question is whether their
result can be generalized to all Min-LC-VSP problems. Given the complexity
of the algorithm given in [11], this seems to be a very challenging problem.

Recall the definitions of undirected path, rooted directed path and directed
path graphs given in the introduction. It is known that undirected path graphs
and rooted directed path graphs are separated by Dominating Set, Steiner
Tree, Connected Dominating Set and Graph Isomorphism [1,4,5,10,23],
while directed path and rooted directed path graphs are separated by Graph

Isomorphism [1]. Therefore we ask whether any of the investigated problems
also separates these classes. More generally, is there a problem that separates
directed path graphs from undirected path graphs?

Finally, we also leave as open the question of whether Steiner Tree and
Dominating Set admit polynomial kernels with relation to the parameter κ
when restricted to undirected path graphs.
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1 Introduction

To maximize the probability of success in arranging atoms, approaches need to
minimize the probability of atoms being lost during the time between the array
being loaded and the atoms being arranged. The lifetime of trapped atoms is
short and limited, and the process of moving an atom may result in the loss
of the atom. Previous work [10,20] has focused on minimizing the total time
required, including both the generation and the execution of the sequence of
steps, and consequently has aimed to minimize the number of moves.

The rearrangement of atoms can be framed as a reconfiguration problem;
the reconfiguration framework [2,3,5,12–15,18] characterizes the transformation
between configurations by means of a sequence of reconfiguration steps. By rep-
resenting atoms as tokens, we can define each configuration of unlabelled tokens
as a subset of vertices of a graph, indicating that there is a token placed on
each vertex in the subset; for tokens with labels, a labelled configuration can
be represented as a mapping of distinct labels to a subset of the vertices. One
configuration can be transformed into another by a sequence of moves, where in
each move a token is moved from one vertex to another along a token-free path.

Since finding a shortest sequence of moves between configurations is NP-
hard, even when restricted to grids [4], we turn to the field of parameterized
complexity [6,8,11,17], which studies the impact of one or more parameters
on the running time of algorithms. A problem is in FPT if there exists an
algorithm with worst-case running time bounded by f(k) · nO(1) for n the size
of the instance, k the size of the parameters, and f a computable function;
analogous to NP-hardness in the realm of classical complexity are the classes of
intractable problems in the W-hierarchy such as W[1] and W[2].

We explore the fixed-parameter tractability of the Toking Moving prob-
lem for unlabelled and labelled tokens on undirected and directed graphs, with
respect to various parameters, namely, the number of tokens (k), the number of
moves (�), the number of token-less vertices outside the source and target con-
figurations (f), and the number of moves exceeding the minimum possible for
any instance (namely, the number of differences between the source and target
configurations). Our results are summarized in Table 1.

Table 1. Summary of results for Unlabelled/Labelled and Undirected/Directed Token
Moving problem variants

k � � + f � − |S \ T |
UUTM FPT (Corollary 1) FPT (Theorem 1) FPT (Theorem 1) W[2]-hard (Theorem 4)

UDTM FPT (Corollary 1) FPT (Theorem 3) FPT (Theorem 3) W[2]-hard (Theorem 4)

LUTM Open W[1]-hard (Theorem 6) W[1]-hard (Theorem 6) W[2]-hard (Theorem 4)

LDTM Open W[1]-hard (Theorem 5) W[1]-hard (Theorem 5) W[2]-hard (Theorem 4)

Our work constitutes a first step in a larger interdisciplinary project to
develop a toolkit for use by physicists, wherein the synergy between theory and
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practice will be used to determine the direction of theoretical underpinnings as
well as implementations. Algorithms currently in use rely on the assumption that
one atom can be moved at a time, where the goal is to arrange a small number of
atoms in a grid. Our goal is to incorporate into our algorithms both the physical
constraints of how optical tweezers can be used to move atoms between optical
traps (which can be encoded by adding directions to the underlying graphs), as
well as the loss probabilities of atoms due to movement and the passage of time
(which can be encoded by adding labels to tokens), and to consider arbitrary
graphs. In future work, we will investigate simultaneous movement of multiple
atoms; labels on tokens, representing loss probabilities, will change based on
motion.

The results in this paper, as well as the choice of parameters, reflect aspects
of both current practice and future plans for atom rearrangement. Algorithms
based on parameters k and � have direct application to situations in which
the total number of atoms or number of moves is small. The number of free
vertices f captures the density of the placement of atoms with respect to the
target arrangement, and the results for � − |S \ T | indicate that bounding the
difference between the number of moves and those that are required (differing
in the source and target configurations) does not provide a good strategy for
finding algorithms. By considering both directed and undirected graphs and
both labelled and unlabelled tokens, our work can be compared to other results
as well as serve as the basis for future research.

2 Terminology

We formulate our problems in terms of the moving of tokens in a graph, using
the notation G = (V (G), E(G)) for an undirected graph and D = (V (D), E(D))
for a directed graph. The reader is directed to a standard textbook on graph
theory [7] for definitions of graph classes and other terminology.

We define a move as a pair (s, t), where s is the source vertex of the move
and t is the target vertex of the move. Note that s and t are not necessarily adja-
cent. The execution of the move (s, t) results in the change from a configuration
containing s to a configuration containing t, where the same label is mapped
to s and t, with the rest of the configuration remaining unchanged. In order
to ensure that atoms do not collide, a move cannot pass through a vertex that
contains a token. A vertex is free if there is no token on it, and a path (directed
or undirected) is free if all intermediate vertices in the path are free. A move
(s, t) in a sequence is valid if, after the execution of the previous moves in the
sequence, there is a token on s, t is free, and there is a free path from s to t,
which we designate as the path for the move. For a sequence of valid moves α
in a graph G (respectively, D), we use Gα (Dα) to denote the graph induced on
the union of edges in the paths for the moves in α.

The execution of a sequence of valid moves transforms a configuration S into
another configuration T if executing the moves starting from S results in tokens
being placed as in configuration T . We will call such a sequence of valid moves
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a transforming sequence for S and T or, when S and T are clear from context,
simply a transforming sequence. In defining a sequence of indices, we use [n] to
denote {1, . . . , n}.

We define the four problems Unlabelled Undirected Token Moving

(UUTM), Unlabelled Directed Token Moving (UDTM), Labelled

Undirected Token Moving (LUTM), and Labelled Directed Token

Moving (LDTM) as follows:

Input (UUTM). An undirected graph G and configurations S ⊆ V (G) and
T ⊆ V (G) such that |S| = |T | = k and an integer �

Input (UDTM). A digraph D and configurations S ⊆ V (D) and T ⊆ V (D)
such that |S| = |T | = k and an integer �

Input (LUTM). An undirected graph G and labelled configurations S ⊆ V (G)
and T ⊆ V (G) such that |S| = |T | = k and an integer �

Input (LDTM). A digraph D and labelled configurations S ⊆ V (D) and T ⊆
V (D) such that |S| = |T | = k and an integer �

Output (all problems). A transforming sequence of length at most �

Unless specified otherwise, all definitions apply to instances (G,S, T, �) of
UUTM and LUTM as well as instances (D,S, T, �) of UDTM and LDTM. We
refer to S as the source configuration, T as the target configuration, O = S ∩ T
as the set of obstacles, and SΔT as the symmetric difference of S and T . In
a clearing move, the source vertex is an obstacle and in a filling move, the
target vertex is an obstacle. When discussing parameters, we use k to denote
|S| = |T | and f to denote |V (G)| − |S ∪ T | or |V (D)| − |S ∪ T | (the number of
vertices without tokens in either S or T ). We will refer to an instance (G,S, T )
(respectively, (D,S, T )) when discussing the length of a shortest transforming
sequence from S to T in G (D). Two instances are equivalent if the lengths of
the shortest transforming sequences of the instances are equal. For a (directed)
path between a pair of vertices s and t, any token on a vertex other than s or
t is said to block that path. If all paths between a pair of vertices s and t are
blocked, then we say that the move (s, t) is blocked. For shorthand, when the
presence of a token on a vertex v results in a move m being blocked, we’ll say
that m is blocked by v. The observations below follow from the definitions:

Observation 1. If a vertex v blocks move (s, t) in G (respectively, D), then
there exists a path (resp., directed path) from v to t.

Observation 2. Suppose that m = (s, t) is the last move in a transforming
sequence α from S to T . The sequence α′ formed from α by removing m is a
transforming sequence from S to a configuration T ′, where T ′ differs from T by
having a token on s instead of on t.

Observation 3. For α, α′, m = (s, t), S, and T as in Observation 2, suppose
there exists a transforming sequence γ from S to a configuration U , where U
differs from T ′ by a single token, where U has a token on a vertex u and T ′ has
a token on a vertex v �= s. Then if m is blocked after the execution of γ on S,
there must be a free (directed, if in D) path from u to t.
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3 Fixed-Parameter Tractability Results

3.1 Preliminaries

We first establish properties of shortest transforming sequences that allow for
clean proofs of our results. Călinescu et al. [4] have shown that in any unlabelled
undirected graph, it is possible to transform any configuration into another by
a single move of each token; in Lemma 1, we show that even for shortest trans-
forming sequences (i.e., ignoring � which is an upper bound on the length of a
sequence), we can assume no token moves twice.

Lemma 1. For any instance (G,S, T, �) of UUTM or instance (D,S, T, �) of
UDTM, there exists a shortest transforming sequence in which no token moves
more than once.

We use Lemma 1 to show that we can find an equivalent instance in which
every vertex is in S ∪ T ; we refer to such an instance as a contracted instance.
In other words, in a contracted instance (G,S, T, �), we have V (G) = S ∪ T and
hence |V (G)| ≤ 2k. We use contracted instances to form algorithms parameter-
ized by k = |S| = |T |, the number of tokens.

Lemma 2. For any instance (G,S, T, �) of UUTM or any instance (D,S, T, �)
of UDTM, we can form an equivalent contracted instance (G′, S′, T ′, �) or
(D′, S′, T ′, �).

Corollary 1. UUTM and UDTM admit an O(k) vertex-kernel when parame-
terized by k. Moreover, the problems can be solved in kO(�) · nO(1) time.

3.2 Unlabelled Undirected Token Moving

Our algorithm for Unlabelled Undirected Token Moving relies on the
characterization of the graph Gα of a transforming sequence α of the minimum
length of a contracted instance. In Lemmas 3 and 4, we show that there exists
α such that Gα is a forest of minimum Steiner trees. By considering all possible
ways of partitioning vertices in SΔT into trees, and counting the number of
moves required by each choice, in Theorem 1 we are able to obtain an FPT
algorithm for the UUTM problem parameterized by � (the upper bound on
the number of moves) on contracted instances, and hence by Lemma 2, for all
instances.

Lemma 3. For any contracted instance (G,S, T ) of UUTM, there exists a
transforming sequence α of minimum length such that Gα is a forest.

Lemma 4. For a contracted instance (G,S, T ) of UUTM and a transforming
sequence α of minimum length such that Gα is a forest, each tree in the forest is
a minimum Steiner tree with terminals and leaves in SΔT and internal vertices
in S ∪T , and such that each internal vertex in O is the source vertex of a move.



268 A. Cooper et al.

Theorem 1. UUTM is fixed-parameter tractable when parameterized by �.

Proof. We first form an equivalent contracted instance (Lemma 2), and then
attempt all possible partitions of vertices in SΔT into at most � Steiner trees,
starting first with a single tree, then two, and so on.

When considering the use of d trees, we first consider all possible ways of
partitioning the vertices of SΔT into d groups, where each group has an equal
number of vertices in S \ T and T \ S, and then run the FPT Steiner tree
algorithm [9] on each such set of vertices. Because in each Steiner tree each
token must move, the number of moves associated with each tree T will be
|(S \T )∩V (T )|+ |O ∩V (T )|. If the total number of moves is at most �, we have
a yes-instance. If we have not succeeded using d trees to verify that the instance
is a yes-instance, we run the algorithm again with the next value of d. If the
procedure fails on all values of d, we conclude that (G,S, T, �) is a no-instance.

The correctness of the algorithm follows from Lemmas 3 and 4. ��

3.3 Unlabelled Directed Token Moving

Like in the case of undirected graphs, our algorithm for the directed case relies
on the characterization of the graph Dα of a transforming sequence α of the
minimum length of a contracted instance. We show, in Lemma 8, that for any
yes-instance there exists an α such that Dα is a directed forest. As a replacement
for the Steiner tree approach of Sect. 3.2, the fact that we can bound the size
of Dα suggests the use of the machinery of color coding, introduced by Alon
et al. [1] (similar to a result obtained by Plehn and Voigt [19]), to determine
whether D contains a labelled subgraph of the correct form to be Dα for a
contracted yes-instance. Unfortunately, Theorem 2 cannot be used directly; in
Theorem 3 we adapt the technique for our purposes.

Theorem 2 ([1]). Let H be a directed forest on q vertices. Let D = (V,E) be
a directed n-vertex graph. A subgraph of D isomorphic to H, if one exists, can
be found in 2O(q) · n2 · log n worst-case time. Moreover, if a real-weight function
β : E → R is defined on the edges of D, then the algorithm can be adapted to
find the copy of H in D with the maximal total weight.

After removing extraneous vertices (Lemma 5), we demonstrate that Dα

forms a forest (Lemma 8); to show that we can ignore cycles, we focus on a
minimal graph containing a cycle as a counterexample. More formally, we call a
directed graph D a circle graph if D is connected and the vertices in V (D) can
be partitioned into cycle vertices, forming a simple cycle C in the underlying
undirected graph, and forest vertices, forming a forest of trees attached to the
cycle vertices, where in each tree either all arcs are directed towards the root or
all arcs are directed away from the root. An instance (D,S, T, �) of UDTM is said
to be a contracted circle instance whenever D is a circle graph and S∪T = V (D).

Lemma 5. For (D,S, T, �) a contracted instance of UDTM and v ∈ S ∩ T ,
(D,S, T, �) is a yes-instance if and only if (D − v, S \ {v}, T \ {v}, �) is a yes-
instance when any of the following conditions hold:
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1. There is no directed path from any vertex in S \ T to v.
2. There is no directed path from v to any vertex in T \ S.
3. Every directed path from any vertex in S \ T to v contains at least � + 1

obstacles and every directed path from v to any vertex in T \ S contains at
least � + 1 obstacles.

Lemma 6. If there exist instances (D,S, T ) of UDTM such that for every
transforming sequence α of minimum length, Dα is not a forest, then at least
one of those instances must be a contracted circle instance.

We use Lemma 6 in the proof of Lemma 8, where we use the structure of
a circle graph to form a transforming sequence. We number the cycle vertices
as v1, v2, . . ., vq in clockwise order, observe that for each i, either (vi, vi+1) or
(vi+1, vi) is an arc in D. We say that a subsequence of vertices va, va+1, . . . , vb is
a forward cycle segment if (vi, vi+1) is an arc for each a ≤ i < b and a backward
cycle segment if (vi+1, vi) is an arc for each a ≤ i < b. Since the paths of moves
are directed paths, no move can use edges in more than one cycle segment.

Of particular interest are the junction vertices shared by two consecutive
cycle segments, where each is either a source or a sink in both cycle segments.
We refer to the in-pool of a source junction vertex v as the set containing v
and any tree vertex that can reach v by a directed path, and the out-pool of a
sink junction vertex v as the set containing v and any tree vertex that can be
reached by a directed path from v. Since each cycle segment starts and ends
with a junction vertex, we can refer without ambiguity to the in-pool and out-
pool of a cycle segment. By partitioning the moves by cycle segments, we form
a sequence of directed trees, thereby allowing us to apply Lemma 7.

Lemma 7. Given a directed tree D, two configurations S and T of D such that
every leaf of D is in SΔT , and a one-to-one mapping μ from S to T such that
there is a directed path from each s ∈ S to μ(s) ∈ T (and s �= μ(s) for all s),
then there exists a transformation from S to T in D.

Lemma 8. For any contracted yes-instance (D,S, T, �) of UDTM, there exists
a transforming sequence α of minimum length such that Dα is a directed forest.

To check if (D,S, T, �) is a contracted yes-instance, it suffices to determine
whether or not a labelled version of D contains a subgraph of the correct form
to be Dα. We assign labels to vertices of D such that the vertices of S \ T are
labelled from s1 to sΔ, the vertices of T \ S are labelled from t1 to tΔ, and all
other vertices are assigned label Δ. Thus, we have |SΔT |+1 distinct labels. We
say that D is (Δ + 1)-labelled and use lab(v) to denote the label of vertex v. In
Dα, all vertices not in SΔT receive label Δ.

When (D,S, T, �) is a contracted yes-instance with α a transforming sequence
of minimum length, Dα has at most |SΔT |+�−|S\T | = �+|S\T | ≤ 2� vertices,
as otherwise �+1 moves are required. Thus, we can enumerate all possible (Δ+1)-
labelled directed graphs of size at most 2� and check whether any one of them
implies a yes-instance and can be found as a subgraph of D. For H a (Δ + 1)-
labelled directed forest, we let S′ = {v ∈ V (H) | lab(v) ∈ {s1, . . . , sΔ,Δ}} and
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T ′ = {v ∈ V (H) | lab(v) ∈ {t1, . . . , tΔ,Δ}}. Then, H is said to be a witness for
(D,S, T, �) if (H,S′, T ′, �) is a yes-instance and a subgraph isomorphic to H can
be found in D such that the labelling of the vertices in SΔT is respected.

Theorem 3. UDTM is in FPT when parameterized by �.

4 Hardness Results

4.1 Preliminaries

To strengthen some of our hardness results, we prove that for any instance of
UDTM we can find an equivalent instance that is of degree at most three or
2-degenerate.

Lemma 9. For any instance (D,S, T ) of UDTM, we can form an equivalent
instance (D′, S′, T ′) such that D′ has maximum degree three.

Lemma 10. For any instance (G,S, T ) of UUTM or any instance (D,S, T )
of UDTM, we can form an equivalent instance (G′, S′, T ′) or (D′, S′, T ′) such
that G′ or D′ is 2-degenerate.

4.2 Parameter � − |S \ T |
Theorem 4. The problems UUTM, UDTM, LUTM, and LDTM are W[2]-
hard when parameterized by � − |S \ T |.

We use Lemmas 9 and 10 (combined with Theorem 4) to obtain the following
results.

Corollary 2. UUTM is W[2]-hard when parameterized by �−|S\T |, even when
restricted to 2-degenerate graphs.

Corollary 3. UDTM is W[2]-hard when parameterized by �−|S\T |, even when
restricted to 2-degenerate graphs of maximum degree three.

4.3 Parameter � + f

We now show that LUTM and LDTM are W[1]-hard parameterized by � or
� + f on general graphs. Recall that f denotes the number of token-less ver-
tices outside the source and target configurations. We give reductions from the
Multicolored Subgraph Isomorphism problem, which determines whether
there is a subgraph of a vertex-colored graph GM that is isomorphic to a vertex-
colored graph H. The problem is W[1]-hard when parameterized by solution size,
even when H is a 3-regular connected bipartite graph [16]. We define H to be a
connected 3-regular bipartite graph such that V (H) = [c], and use col(u) ∈ [c]
to denote the color of a vertex u ∈ V (GM ).
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Both of our reductions create a node-vertex v(w) for each w ∈ V (GM ) and
then use the structure of H to group node-vertices by color to form super-nodes.
By judicious assignment of labels to tokens moving between supernodes, we
ensure that reconfiguration can occur only if we can clear tokens on a set of
node-vertices that form a subgraph of GM isomorphic to H. We start with the
directed case and then explain modifications for the undirected case.

Labelled Directed Token Moving. We explain the reduction in three steps:
(1) forming a DAG H ′ from H to provide the structure of D, (2) creating and
connecting supernodes, and (3) adding gadgets to constrain movement of tokens.

– Step 1. To form a DAG H ′, we create a vertex hi ∈ V (H ′) for each vertex
i ∈ V (H), making use of breadth-first search to assign each vertex to a level.
Choosing an arbitrary vertex r of H for the sole vertex hr at level 0 in H ′,
we assign each remaining vertex hi to the minimum level p such that there
is a path of p vertices from r to i in H. By adding the edges forming the
breadth-first search tree and directing them from vertices at smaller levels to
larger levels, we form a directed acyclic graph. By our construction, each arc
connects vertices in adjacent levels.

– Step 2. We can safely ignore any edge in GM between vertices of the same
color or between colors not connected by an edge in H, as no such edge can
form part of a subgraph of GM isomorphic to H. For each color i, supernode
Di consists of all node-vertices v(w) such that col(w) = i in GM ; we consider
Di to be at the same level as hi in H ′. To form D, we add an arc between any
vertex v(x) ∈ Di and v(y) ∈ Dj such that (hi, hj) is an arc in H ′ and (x, y) is
an edge in GM . When there exists an arc between vertices in Di and Dj , we
say that Di is a super-in-neighbor of Dj and that Dj is a super-out-neighbor
of Di.

– Step 3. In order to ensure that each edge is traversed, we associate a token
with each arc in H ′, where for arc (hi, hj), in S the token is assigned to a
source gadget in Di, and in T , the token is assigned to a target gadget in Dj .
Accordingly, we choose token labels so that for each supernode, there is one
token in its source gadget for each super-out-neighbor, and there is one vertex
in its target gadget for each super-in-neighbor. For each token in S \ T , its
source vertex and target vertex are in consecutive levels.

For LDTM, the source gadget attached to a supernode consists of a set of
vertices with tokens connected by arcs into each node-vertex in the supernode
and the target gadget consists of a set of vertices without tokens connected by
arcs from each node-vertex in the supernode. In addition, associated with each
supernode is a storage gadget consisting of a single vertex that is the in-neighbor
and out-neighbor of every node-vertex in the supernode. As their names suggest,
the union of the vertices in the source gadgets equals S \ T and the union of the
vertices in the target gadgets equals T \ S.

To complete the construction for LDTM, we set S\T to all vertices in source
gadgets, T \ S to all vertices in target gadgets, and S ∩ T to all node-vertices.
By construction, |S \ T | = |E(H)| and f = |V (H)|; we set � = |E(H)| + 2k.
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Lemma 11. If (GM ,H) is a yes-instance of Multicolored Subgraph Iso-

morphism, then (D,S, T, �) is a yes-instance of LDTM.

Lemma 12. If (D,S, T, �) is a yes-instance of LDTM, then (GM ,H) is a yes-
instance of Multicolored Subgraph Isomorphism.

Combining Lemmas 11 and 12 with the fact that � + f = O(|V (H)| +
|E(H)|) = O(k), we obtain the following theorem.

Theorem 5. LDTM is W[1]-hard when parameterized by � + f .

Labelled Undirected Token Moving. We use the same basic structure as in
the previous reduction, but need extra machinery to ensure that a token moving
from Di to Dj is unable to find a route that avoids all edges corresponding
to edges in GM with endpoints of colours i and j. To this end, we introduce
superedges and a clock gadget, defined below, and for each arc (hi, hj) ∈ E(H ′),
specify the numbers of tokens to move from Di to Dj and Dj to Di based on the
level. Source gadgets, target gadgets, and storage gadgets all consist of vertices
connected by a single undirected edge to all node-vertices in a supernode.

To construct G for LUTM, we construct supernodes in the same way as in
D, and although G is undirected, use the terms level, super-in-neighbor, and
super-out-neighbor based on the structure of H ′. In addition, we form an edge-
path p(x, y) of length K (to be defined later) for each edge (x, y) in GM , and
for each arc (hi, hj) in H ′, we form a superedge Di,j consisting of all edge-paths
p(x, y) such that col(x) = i and col(y) = j. The level of Di,j is considered to be
the same as the level of Di. To connect the node-vertices and edge-paths in G,
for each superedge Di,j and each edge-path p(x, y) in Di,j , we add an edge from
v(x) to one end of p(x, y) and an edge from the other end of p(x, y) to v(y).

For convenience, we refer to the tokens in the source gadget attached to Di

destined for the target gadget attached to Dj as the Di − Dj tokens. Our proofs
hinge on showing that the Di − Dj moves pass through superedge Di,j . To limit
possible paths, for each supernode Di,j at level r, we create �r Di − Dj tokens
and �r Dj − Di tokens, where for the last level z, �z = Q = 3k2/2 and for any
level y, �y = Q · �y+1.

The clock gadget is designed to allow the freeing of edge-paths in superedges
one at a time in increasing order of level, which we call the clock numbering (or
just numbering) of the superedges. For large values K and L to be defined later,
the clock gadget consists of |E(H)| storage paths K1, . . . ,K|E(H)|, each of length
K, and |E(H)| − 1 linking paths L1, . . . , L|E(H)|−1, each of length L. Referring
to the two endpoints of each storage path as the top end and the bottom end
and the two endpoints of each linking path as the left end and the right end, for
each i, we add edges connecting the bottom end of Ki to the right end of Li−1

(if it exists) and to the left end of Li (if it exists).
We view tokens for the clock gadget in S as being grouped into |E(H)| − 1

clock segments, each containing K + L tokens, such that K1 is free before the
movement of the tokens in the first clock segment from source to target vertices,
K2 is free between the movements of the first and second clock segments, and
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K|E(H)| is free only after the movement of all of the clock segments. All vertices
in K1 are in T \ S, all vertices in K|E(H)| are in S \ T , and for clock segment i,
the tokens are on Li and Ki+1 in S, in order from left to right and bottom to
top, and on Ki and Li in T , in order from top to bottom and left to right. We
say that the clock is at position p whenever the top end of Kp does not have a
token. Finally, we connect the top end of each Ki to the middle vertex in each
edge-path in the superedge numbered i.

To complete the construction, we set S to consist of vertices in the source
gadgets, source vertices in the clock gadget, and all node-vertices and edge-
paths, and T to consist of vertices the target gadgets, target vertices in the clock
gadget, and all node-vertices and edge-paths. The number of free vertices in G
is thus the total size of the storage gadgets, or f = k.

We now choose large enough values of K and L to control token movement.
We set K = 2Q∗+k+1, where Q∗ is the total number of vertices in source gadgets
in all supernodes. To determine the number of moves �, we sum (|E(H)|−1)(K+
L) moves for the |E(H)| − 1 clock segments, Q∗ moves of tokens from source to
target gadgets, 2k moves to clear and fill the k node-vertices, and 2K|E(H)| to
clear and fill one edge-path in each superedge, or � = (|E(H)| − 1)(K + L) +
Q∗ + 2k + 2K|E(H)|. We let L = (|E(H)| − 1)K + Q∗ + 2k + 2K|E(H)| + 1, so
that written in a more convenient form, we have � = |E(H)|L − 1.

Lemma 13. If (GM ,H) is a yes-instance of Multicolored Subgraph Iso-

morphism, then (G,S, T, �) is a yes-instance of LUTM.

Before we prove the reverse direction, we first show that for a yes-instance
of LUTM, the clock gadget behaves as required: the clock can be in only one
position at a time, “time” cannot go backwards, and at any point in the trans-
formation, we can have at most one superedge with an edge-path free of tokens.

Lemma 14. If (G,S, T, �) is a yes-instance of LUTM then we cannot have Kp

and Kp′ such that the top ends of both are free of tokens.

Lemma 15. If (G,S, T, �) is a yes-instance of LUTM, then after the clock
reaches position p it can never go back to position p−1 (or any earlier position).

Lemma 16. If (G,S, T, �) is a yes-instance of LUTM then at any point in
the transformation we can have at most one superedge with an edge-path free of
tokens. Moreover, whenever superedge numbered p has a free edge-path, then the
clock must be at position p.

Lemma 17. If (G,S, T, �) is a yes-instance of LUTM, then (GM ,H) is a yes-
instance of Multicolored Subgraph Isomorphism.

Combining Lemmas 13 and 17 with the fact that f = O(k) and � = kO(k),
we obtain the following theorem.

Theorem 6. LUTM is W[1]-hard when parameterized by � + f .
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Abstract. We consider the problem of controlling the spread of harmful
items in networks, such as the contagion proliferation of diseases or the
diffusion of fake news. We assume the linear threshold model of diffusion
where each node has a threshold that measures the node’s resistance to
the contagion. We study the parameterized complexity of the problem:
Given a network, a set of initially contaminated nodes, and two integers
k and �, is it possible to limit the diffusion to at most k other nodes
of the network by immunizing at most � nodes? We consider several
parameters associated with the input, including the bounds k and �, the
maximum node degree Δ, the treewidth, and the neighborhood diversity
of the network. We first give W [1] or W [2]-hardness results for each of
the considered parameters. Then we give fixed-parameter algorithms for
some parameter combinations.

Keywords: Parameterized complexity · Contamination minimization ·
Threshold model

1 Introduction

The problem of controlling the spread of harmful items in networks, such as
the contagion proliferation of diseases or the diffusion of fake news, has recently
attracted much interest from the research community. The goal is to try to limit
as much as possible the spreading process by adopting immunization measures.
One such a measure consists in intervening on the network topology by either
blocking some links so that they cannot contribute to the diffusion process [24] or
by immunizing some nodes [11]. In this paper we focus on the second strategy:
Limit the spread to a small region of the network by immunizing a bounded
number of nodes in the network. We study the problem in the linear threshold
model where each node has a threshold, measuring the node resistance to the
diffusion [22]. A node gets influenced/contaminated if it receives the item from
a number of neighbors at least equal to its threshold. The diffusion proceeds in
rounds: Initially only a subset of nodes has the item and is contaminated. At
each round the set of contaminated nodes is augmented with each node that has
a number of already contaminated neighbors at least equal to its threshold.
c© Springer Nature Switzerland AG 2022
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In the presence of an immunization campaign, the immunization operation
on a node inhibits the contamination of the node itself.

Under this diffusion model, we perform a broad parameterized complexity
study of the following problem: Given a network, a spreader set, and two integers
k and �, is it possible to limit the diffusion to at most k other nodes of the network
by immunizing at most � nodes?

Influence Diffusion: Related Work. During the past decade the study of
spreading processes in complex networks has experienced a particular surge of
interest across many research areas from viral marketing, to social media, to
population epidemics. Several studies have focused on the problem of finding a
small set of individuals who, given the item to be diffused, allow its diffusion to a
vast portion of the network, by using the links among individuals in the network
to transmit the item to their contacts [29]. Threshold models are widely adopted
by sociologists to describe collective behaviours [19] and their use to study the
propagation of innovations through a network was first considered in [22]. The
linear threshold model has then been widely used in the literature to study the
problem of influence maximization, which aims at identifying a small subset of
nodes that can maximize the influence diffusion [2,4–6,8,22]. The related Target
set selection problem, which aims at selecting a smallest possible set of nodes,
whose activation eventually leads to influence all the nodes in the network, has
also been widely studied; see for example [2,4,6,7,22].

Recently, some attention has been devoted to the important issue of develop-
ing strategies for reducing the spread of negative things through a network. In
particular several studies considered the problem of which structural changes can
be made to the network topology in order to block negative diffusion processes.
Contamination minimization in the linear threshold model by blocking some
links was studied in [23,24]. Strategies for reducing the spread size by immu-
nizing/removing nodes were considered in several papers. As an example [1,30]
consider a greedy heuristic that immunizes nodes in decreasing order of out-
degree. When all the node thresholds are 1, the immunization can be obtained
by a cut of the network. Some papers dealing with this problem are [3,20,21]
in case of edge cuts and [15] in case of node cuts. Another conceptually related
problem is the Firefighter problem [13]; this is a diffusion process with thresholds
equal to 1, but it assumes that at each round of the burning process one can
defend (immunize) up to d new nodes, instead of � nodes overall, in order to
contain the fire.

Parameterized Complexity. Parameterized complexity is a refinement to
classical complexity theory in which one takes into account not only the input
size, but also other aspects of the problem given by a parameter p. We recall that
a problem with input size n and parameter p is called fixed parameter tractable
(FPT) if it can be solved in time f(p) · nc, where f is a computable function
only depending on p and c is a constant.

We study the parameterized complexity of the studied problem, formally
defined in Sect. 2. We consider several parameters associated to the input: the
bounds k and �, the number ζ related to initially contaminated nodes, and some
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parameters of the underlying network: The maximum degree Δ, the treewidth tw
[32], and the neighborhood diversity nd [28]. The two last parameters, formally
defined in Sects. 3.4 and 5 respectively, are two incomparable parameters of a
graph that can be viewed as representing sparse and dense graphs, respectively
[28]; they received much attention in the literature [2,6,8,16,18,26]. Due to
space constraints, some proofs are omitted but appear in the full version of the
paper available at https://arxiv.org/pdf/2102.03537.pdf.

2 Problem Statement

Let G = (V,E, t) be an undirected graph where V is the set of nodes, E is
the set of edges, and t : V → N is a node threshold function. We use n and
m to denote the number of nodes and edges in the graph, respectively. The
degree of a node v is denoted by dG(v). The neighborhood of v is denoted by
ΓG(v) = {u ∈ V | (u, v) ∈ E}. In general, the neighborhood of a set V ′ ⊆ V is
denoted by ΓG(V ′) = {u ∈ V | (u, v) ∈ E, v ∈ V ′, u /∈ V ′}. The graph induced
by a node set V ′ in G is denoted G[V ′] = (V ′, E′, t′) where E′ = {(u, v) | u, v ∈
V ′, (u, v) ∈ E} and t′(v) = t(v) for each v ∈ V ′.

Given the network and a spreader set S, after one diffusion round, the influ-
enced nodes are all those which are influenced by the nodes in S, that is, have a
number of neighbors in S at least equal to their threshold. Noticing that nodes
in S are already contaminated and cannot be immunized, we can then model the
diffusion process by a graph which represents the network except the spreader
set. Namely, we consider the graph G = (V,E, t) where: V is the set of nodes of
the network excluding those in the spreader set, E ⊆ V ×V is the edge set, and t
is the threshold function t : V → N where t(v) is equal to the original threshold
of the node v in the network decreased by the number of its neighbors in S (if
the difference is negative then t(v) is set to 0). Hence in G, the diffusion process
can be seen as starting at the nodes of threshold 0. Each node in V , including
those of threshold 0, may be immunized.

Definition 1. The diffusion process in G = (V,E, t) in the presence of a set
Y ⊆ V of immunized nodes is a sequence of node subsets DG,Y [1] ⊆ · · · ⊆
DG,Y [τ ] ⊆ · · · ⊆ V with

– DG,Y [1] = {u | u ∈ V − Y, t(u) = 0}, and

– DG,Y [τ ] = DG,Y [τ − 1] ∪
{

u | u ∈ V − Y,
∣∣ΓG(u) ∩ DG,Y [τ − 1]

∣∣ ≥ t(u)
}
.

The process ends at τ∗ s.t. DG,Y [τ∗] = DG,Y [τ∗ + 1]. We set DG,Y = DG,Y [τ∗].

We omit the subscript Y when no node is immunized, that is, DG = DG,∅.
Moreover, we assume that for the input graph it holds DG = V ; indeed, we
could otherwise remove all the nodes that cannot be influenced, since they are
irrelevant to the immunization problem. In particular, each remaining node v ∈
V has t(v) ≤ dG(v), otherwise it could not be influenced. An example is given
in Fig. 1 (a).

We are now ready to formally define our problem.

https://arxiv.org/pdf/2102.03537.pdf
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Fig. 1. A graph G (node thresholds appear in red). (a) The diffusion process in G.
(b) An example of X whose G[X] includes nodes not influenced. (c) An example of
immunizing set Y (X ′) = {v3}, which enables to confine the diffusion to X ′ = {v1, v5}.
(Color figure online)

Influence-Immunization Bounding (IIB): Given a graph G = (V,E, t) and
bounds k and �, is there a set Y such that |Y | ≤ � and |DG,Y | ≤ k?

For a given set Y we are partitioning the nodes into three subsets: The set
DG,Y which contains the nodes that get influenced, the immunizing set Y , which
has the property that, if all its nodes are immunized then the diffusion process is
contained to DG,Y , and the set V −Y −DG,Y of the nodes that, by immunizing Y ,
are not influenced. We will refer to the nodes in the above subsets as influenced,
immunized and safe, respectively.

In some cases it will be easier to deal with a different formulation of IIB

based on the set of nodes to which one wants to confine the diffusion. Given
X ⊆ V , we define the immunizing set Y (X) of X as the set that contains each
node in V − X that can be influenced in one round by those in DG[X], that is,
only by its influenced neighbors in X, namely

Y (X) = {u | u ∈ V − X, |ΓG(u) ∩ DG[X]| ≥ t(u)}. (1)

By the above definitions, we have

DG[X] = DG,Y (X) = DG[V −Y (X)] ⊆ X; (2)

the influenced, immunized, and safe sets are DG[X], Y (X), V − Y (X) − DG[X].
For some X, some nodes in G[X] may be not influenced, even though they

would in the whole graph G (see Fig. 1 (b)). However, it is easy to see that for
each X the set X ′ = DG[X] ⊆ X is such that DG[X′] = X ′ and Y (X ′) = {u |
u ∈ V − X ′, |ΓG(u) ∩DG[X′]| ≥ t(u)} = Y (X). In the following, we will refer as
minimal to a set X such that DG[X] = X (see Fig. 1 (c)).

Fact 1 (IIB equivalent) 〈G, k, �〉 is a yes instance iff there is a minimal X s.t.

|X| = |DG[X]| ≤ k and |Y (X)| ≤ �. (3)

Summary of Results. We prove Influence-Immunization Bounding is:
– W[1]-hard with respect to any of the parameters k, tw or nd
– W[2]-hard with respect to the pairs (�, Δ), or (�, ζ = |{v|v ∈ V, t(v) = 0}|);
– FPT with respect to any of the pairs (k, �), (k, ζ), (k, tw), (Δ, tw), (k, nd),

(�, nd).
In Sects. 3 and 4, we will focus on parameters k, �,Δ, ζ, and tw; the results

for the neighbourhood diversity parameter will be briefly described in Sect. 5.
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3 Hardness

3.1 Parameter k

Theorem 1. IIB is W [1]-hard with respect to k, the size of the influenced set.

Proof. We give a reduction from the cutting at most k vertices with ter-

minal (CVT-k) problem studied in [15]: Given a graph H = (V (H), E(H)),
s ∈ V (H), and two integers k and �, is there a set XH ⊆ V (H) such that
s ∈ XH , |XH | ≤ k, and |ΓH(XH)| ≤ �?

To this aim, construct the instance 〈G, k−1, �〉 of IIB where G = H[V (H)−
{s}] and t(v) = 0 for each node v ∈ ΓH(s) and t(v) = 1 for each node v ∈
V (H) − {s} − ΓH(s).

Lemma 1. 〈H, s, k, �〉 is a yes instance of CVT-k iff 〈G, k−1, �〉 is a yes

instance of IIB.

The theorem follows, since Theorem 3 in [15] proves that CVT-k is W [1]-hard
with respect to k. The same reduction, recalling that Theorem 5 in [15] proves
that CVT-k is W [1]-hard with respect to �, also gives that IIB is W [1]-hard
with respect to �; however, a stronger result is given in the next section.

3.2 Parameters ζ and �

Theorem 2. IIB is W [2]-hard with respect to the pair of parameters ζ, the
number of nodes with threshold 0, and �, the size of the immunized set.

Proof. We give a reduction from Hitting Set (HS), which is W [2]-complete
in the size of the hitting set: Given a collection {S1, . . . , Sm} of subsets of a
set A = {a1, . . . , an} and an integer h > 0, is there a set H ⊆ A such that
H ∩ Si �= ∅, for each1 i ∈ [m] and |H| ≤ h?

Given an instance 〈{S1, . . . , Sm}, A = {a1, . . . , an}, h〉 of HS, we construct an
instance 〈G,n+1, h〉 of IIB. The graph G = (V,E, t) has node set V = I ∪A∪S,
where I = {v0, . . . , vh} is a set of h + 1 independent nodes, A = {a1, . . . , an} is
the ground set, and S = {s1, . . . , sm} (each sj represents the set Sj), edge set

E = {(vi, aj) | vi ∈ I, aj ∈ A} ∪ {(aj , st) | aj ∈ A, st ∈ S, aj ∈ St},
and threshold function defined by

t(v) =

⎧
⎪⎨
⎪⎩

0 if v ∈ I

1 if v ∈ A

|St| = dG(st) if v = st ∈ S.

Trivially, DG[1] = I, DG[2] = I ∪ A, and DG[3] = I ∪ A ∪ S = V .

Lemma 2. 〈{S1, . . . , Sm}, A, h〉 is a yes instance of HS iff 〈G,n + 1, h〉 is a
yes instance of IIB.
1 For a positive integer a, we use [a] to denote the set of integers [a] = {1, 2, . . . , a}.



280 G. Cordasco et al.

Fig. 2. (a) The expansion gadget. (b) The reduction gadget. (c) The graph G.

3.3 Parameters Δ and �

Theorem 3. IIB is W [2]-hard with respect to the parameter �, the size of the
immunized set, even when the maximum degree of the graph is at most 3.

Given an instance 〈{S1, . . . , Sm}, A = {a1, . . . , an}, h〉 of HS, we construct
an instance 〈G, k, �〉 of IIB, where the maximum node degree is 3. We start the
construction of G by inserting the nodes in A∪W ∪U ∪S where A = {a1, . . . , an}
is the ground set and S = {s1, . . . , sm} (each sj represents the set Sj), while W
and U are two auxiliary sets, of at most nm nodes each, that will be used to
keep the degree bounded and, at the same time, simulating a complete bipartite
connection between A and S (depicted using gray connection in Fig. 2 (c)). We
then add the following expansion, reduction and path gadgets.

Expansion Gadgets. For each i ∈ [n], if the sets containing ai are exactly
Si1 , Si2 , . . . , Siδi

then we encode these relationships with a gadget. Namely, we
add δi nodes {wi,i1 , wi,i2 , . . . wi,iδi

} and the edges (ai, wi,i1) and (wi,ij
, wi,ij+1)

for j ∈ [δi − 1]. See Fig. 2 (a).

Reduction Gadgets. For each j ∈ [m], if Sj = {aj1 , aj2 , . . . , ajγj
} then

we encode this relationships with a gadget. Namely, we add γj − 1 nodes
{uj1,j , uj2,j , . . . , ujγj−1,j} and the edges (wjr+1,j , ujr,j), (ujr,j , ujr+1,j), for r ∈
[γj − 2] and (wj1,j , uj1,j), (wjγj

,j , ujγj−1,j) and (ujγj−1,j , sj). The reduction gad-
get is presented in Fig. 2 (b).

Path Gadgets. We complete the construction by adding m paths each on of
p = n + 2nm nodes, which depart from each sj ∈ S. See Fig. 2 (c).

Notice that, by construction the degree of nodes is upper bounded by 3. We
set now the thresholds of the nodes in G as: t(v) = 0 for each node v ∈ A,
t(v) = 2 for each node v ∈ U and t(v) = 1 for all the remaining nodes.

Lemma 3. 〈{S1, . . . , Sm}, A, h〉 is a yes instance of HS iff 〈G, p, h〉 is a yes instance
of IIB.

3.4 Graphs of Bounded Treewidth

Definition 2. A tree decomposition of a graph G = (V,E) is a pair
(T, {Wu}u∈V (T )), where T is a tree where each node u is assigned a node subset
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Wu ⊆ V such that:
1.

⋃
u∈V (T ) Wu = V .

2. For each e = (v, w) ∈ E, there exists u in T s.t. Wu contains both v and w.
3. For each v ∈ V , the set Tv = {u ∈ V (T ) : v ∈ Wu}, induces a connected
subtree of T .

The width of a tree decomposition (T, {Wu}u∈V (T )) of a graph G, is
maxu∈V (T ) |Wu| − 1. The treewidth of G, denoted by tw(G), is the minimum
width over all tree decompositions of G.

Theorem 4. IIB is W [1]-hard with respect to the treewidth of the input graph.

In order to prove Theorem 4, we present a reduction from Multi-Colored

clique (MQ): Given a graph G = (V,E) and a proper vertex-coloring c : V →
[q] for G, does G contain a clique of size q?
Given an instance 〈G, q〉 of MQ, we construct an instance 〈G′ = (V ′, E′), k, �〉 of
IIB. We denote by n′ = |V ′| the number of nodes in G′. For a color c ∈ [q], we
denote by Vc the class of nodes in G of color c and for a pair of distinct c, d ∈ [q],
we let Ecd be the subset of edges in G between a node in Vc and one in Vd.

Our goal is to guarantee that any optimal solution of IIB in G′ encodes a
clique in G and vice-versa. Following some ideas in [2], we construct G′ using
the following gadgets:

Parallel-Paths Gadget: A parallel-paths gadget of size h, between nodes x
and y, consists of h disjoint paths each built by a connection node which is
adjacent to both x and y. In order to avoid cluttering, we draw such a gadget
as an edge with label h (cf. Fig. 3 (a)).

Selection Gadgets: The selection gadgets encode the selection of nodes (node-
selection gadgets) and edges (edge-selection gadgets):

Node-Selection Gadget: For each c ∈ [q], we construct a c-node-selection
gadget which consists of a node xv for each v ∈ Vc; these nodes are referred
to as node-selection nodes. We then add a guard node gc that is connected
to all the other nodes in the gadget; thus the gadget is a star centered at gc.
Edge-Selection Gadget: For each c, d ∈ [q] with c �= d, we construct
a {c, d}-edge-selection gadget which consists of a node xu,v for every edge
(u, v) ∈ Ecd; these nodes are referred to as edge-selection nodes. We then add
a guard node gcd that is connected to all the other nodes in the gadget; thus
the gadget is a star centered at gcd.

Overall there are n node-selection nodes with q guard nodes and m edge-selection
nodes with

(
q
2

)
guard nodes (cf. Fig. 3 (b)).

Validation Gadgets: We assign to every node v ∈ V (G) two unique identifier
numbers, low(v) and high(v), with low(v) ∈ [n] and high(v) = 2n − low(v). For
every pair of distinct c, d ∈ [q], we construct two validation gadgets. One between
the c-node-selection gadget and the {c, d}-edge-selection gadget and one between
the d-node-selection gadget and the {c, d}-edge-selection gadget. We describe the
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Fig. 3. (a) Parallel-paths gadget. (b) Representation of the graph G′ for a trivial
instance of the MQ problem 〈G = (V1 ∪ V2, E1,2), 2〉.

validation gadget between the c-node-selection and {c, d}-edge-selection gadgets.
It consists of two nodes. The first one is connected to each node xv, for v ∈ Vc,
by parallel-paths gadgets of size high(v), and to each edge-selection node xu,v,
for (u, v) ∈ Ecd and v ∈ Vc, by parallel-paths gadgets of size low(v). The other
node is connected to each node xv, for v ∈ Vc, by parallel-paths gadgets of
size low(v), and to each edge-selection node xu,v, for (u, v) ∈ Ecd and v ∈ Vc,
by parallel-paths gadgets of size high(v). Overall, there are q(q − 1) validation
gadgets, each composed of two nodes.

Black-Hole Gadget: We add a set B of |B| = (n − q)(2nq − 2n + 1) +(
m −

(
q
2

))
(4n + 1) independent nodes and a complete bipartite graph between

nodes in B and the guard nodes.
To complete the construction, we specify the thresholds of the nodes in G′

t(x) =

⎧
⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ifx is a selection node
1 ifx is a connection node or x ∈ B

dG′(x) − 2n + 1 ifx is a validation node
|Vc| ifx = gc is a guard node for some c ∈ [q]
|Ecd| ifx = gcd is a guard node for some c, d ∈ [q]

The complete construction of G′ for an instance of the MQ problem appears in
Fig. 3 (b).

Lemma 4. 〈G, q〉 is a yes instance of MQ if and only if 〈G′, k, �〉, where k =
(n − q)(2nq − 2n + 1) +

(
m −

(
q
2

))
(4n + 1) and � = q +

(
q
2

)
is a yes instance of

IIB. G′ has treewidth O(q2).

4 FPT Algorithms

In this section, we present FPT algorithms for several pairs of parameters.
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Parameters k and �

Theorem 5. IIB can be solved in time 2k+�(k + �)O(log(k+�)) · nO(1).

The fixed parameter tractability of IIB with respect to k + � can be proved by
the arguments used in Theorem 1 in [15] for the problem cutting at most k
vertices with terminal.
Parameters k and ζ

Theorem 6. IIB can be solved in time O(ζ3kn5), where ζ=|{v ∈ V | t(v) = 0}|.

Proof. Let 〈G, k, �〉 be the input instance of IIB. Suppose v1, . . . vζ are the nodes
in G having threshold 0 and let Δ denote the maximum degree of a node in G.
Consider the graph G′ = (V ′, E′) obtained from G by adding the internal nodes
and the edges of a Δ-ry tree whose leaves are v1, . . . vζ . Assume 〈G, k, �, 〉 is a
yes instance of IIB. We notice that in G, the solution set X (cfr. (3)) can be
disconnected but any of its connected components must include at least one node
of threshold 0. Hence, in G′ the nodes in X are now connected through a path
in the Δ-ry tree. This implies that there exists X ′ ⊆ V ′ such that: X ⊆ X ′,
(X ′ − X) ⊆ V ′ − V , and G′[X ′] is connected. In particular, if s is the root of
the tree, we can assume that s ∈ X ′. In the worst case, all the paths within the
Δ-ry tree go through the root s, hence |X ′| ≤ |X| logΔ ζ + 1.

Let k′ = k logΔ ζ + 1. We use the following result [27], Lemma 2: There
are at most 4k′

Δk′
connected subgraphs that contain s and have order at most

k′. Furthermore, these subgraphs can be enumerated in O(4k′
Δk′

(|V ′| + |E′|))
time. This can be done in time O(ζ3kn3) noticing that (4Δ)k′

(|V ′| + |E′|) ≤
4Δζk+ k

log4 Δ (2n2) ≤ 8ζ3kn3. We can then apply the result in [27] to enumerate
all the connected subgraphs of G′ of size up to k′. For each candidate set X ′

(the node set of the current connected subgraph) one has to determine whether
X ′ ∩ V is a solution according to (3), which can be done in O(n2) time. �

Parameters k (or Δ) and Treewidth
We present a dynamic programming algorithm, which exploiting a tree

decomposition, enables to solve a minimization version of IIB, namely the
Influence Diffusion Minimization (IDM): Given a graph G = (V,E, t)
and a budget �, find a set Y such that |Y | ≤ � and |DG,Y | is minimized.
We use the nice tree decomposition [25] and the fact that if a graph G

admits a tree decomposition of width at most tw, then it admits a nice tree
decomposition of width at most tw. Moreover, given a tree decomposition of size
tw, one can compute in polynomial time a nice tree decomposition of width at
most tw that has O(tw|V (G)|) nodes [25].

Consider a graph G = (V,E) with treewidth tw and nice tree decomposition
(T, {Wu}u∈V (T )). Let T be rooted at node r and denoted by T (u) the subtree
of T rooted at u, for any node u of T . Moreover, we denote by W (u) the union
of all the bags in T (u), i.e., W (u) =

⋃
v∈T (u) Wv. We will denote by su = |Wu|

the size of Wu.
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We recursively compute the solution of IDM. The algorithm exploits a
dynamic programming strategy and traverses the input tree T in a breadth-
first fashion. Fix a node u in T, in order to be able to recursively reconstruct
the solution, we calculate optimal solutions under different hypotheses based on
the following considerations:
– For each node v ∈ Wu we have three cases: v gets influenced, v is immunized,
or v is safe. We are going to consider all the 3su combinations of such states
with respect to some solution of the problem. We denote each combination with
a vector C of size su indexed by the elements of Wu, where the element indexed
by v ∈ Wu denotes the state influenced (0), immunized (1), safe (2) of node
v. The configuration C = ∅ denotes the vector of length 0 corresponding to an
empty bag. We denote by Cu the family of all the 3su possible state vectors of
the su nodes in Wu.
– Let U be a subset of V (G). Let us first notice that by 3) of Definition 2, all
the edges between nodes in V − W (u) and W (u) connect a node in V − W (u)
with a node in Wu (the bag corresponding to the root of T (u)). We are going
to consider all the possible contribution to the diffusion process, of nodes in
V − W (u); that is, for each v ∈ Wu, we consider all the possible thresholds
among t(v), t(v) − 1, . . . , t(v) − min{t(v), k} (recall that at most k nodes belong
to X and can therefore reduce the threshold of v). We notice that, for each
node v, it is possible to bound the number of thresholds to be considered by the
value min{t(v), k}. Moreover, since no node with t(v) > dG(v) can be influenced
and we can purge such nodes from G in a preprocessing step, we can assume
that in G it holds (maxv∈V t(v)) ≤ Δ. Hence, we will have up to μsu thresh-
old combinations, where μ = min{k,Δ}. We will denote each possible threshold
combination with a vector T , indexed by the su elements in Wu, where the
element indexed by v belongs to {max{0, t(v) − k}, . . . , t(v)} and denotes the
threshold of v ∈ Wu. The configuration T = ∅ denotes the vector of length 0
corresponding to an empty bag. We denote by Tu the family of all the possible
threshold combinations of nodes in Wu.

The following definition introduces the values that will be computed by the
algorithm in order to keep track of all the above cases:

Definition 3. For each node u ∈ T, each j = 0, . . . , �, C ∈ Cu and T ∈ Tu we
denote by Xu(j, C, T ) the minimum number of influenced nodes one can attain
in G[W (u)] by immunizing at most j nodes in W (u), where the states and the
thresholds of nodes in Wu are given by C and T .

Considering that the root r of a nice tree decomposition has Wr = ∅,

Lemma 5. For each u ∈ T , the computation of Xu(j, C, T ), for each j ∈
{0, . . . , �}, state configuration C ∈ Cu, and threshold configuration T ∈ Tu com-
prises O(�3twμtw) values, where μ = min{k,Δ}, each of which can be computed
recursively in time O(2tw + �).

Hence, using [25], Lemma 18, we have that Xr(�, ∅, ∅), which corresponds to
the solution of the IDM instance 〈G, �〉, can be computed in time O(ntw(2tw +
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�)�3twμtw). The optimal set X can be computed in the same time by standard
backtracking techniques. As a consequence,

Theorem 7. IDM is solvable in time O(ntw(2tw + �)�3twμtw), where μ =
min{k,Δ}.

5 Neighbourhood Diversity

Given a graph G = (V,E), two nodes u, v ∈ V are said to have the same type if
ΓG(v) \ {u} = ΓG(u) \ {v}. The neighborhood diversity of a graph G, introduced
by Lampis in [28] and denoted by nd(G), is the minimum number nd of sets in
a partition V1, V2, . . . , Vnd, of the node set V , such that all the nodes in Vi have
the same type, for i ∈ [nd].

We are able to prove both positive and W[1]-hardness results for IIB

on graphs of bounded neighborhood diversity. Namely, we have the following
results: (i) IIB is W[1]-hard with respect to nd; (ii) IIB can be solved in time
O(n2 2k+nd−1); (iii) IIB can be solved in time O(n2 2�+nd−1), where nd be the
neighborhood diversity of the input graph G.

6 Conclusion

We introduced the influence immunization problem on networks under the
threshold model and analyzed its parameterized complexity. We considered sev-
eral parameters and showed that the problem remains intractable with respect
to each one. We have also shown that for some pairs (e.g., (ζ, �) and (Δ, �)) the
problem remains intractable. On the positive side, the problem was shown to
be FPT for some other pairs: (k, �), (k, ζ), (k, tw), (Δ, tw), (k, nd) and (�, nd). It
would be interesting to assess the parameterized complexity of IIB with respect
to the remaining pairs of parameters; in particular with respect to k and Δ.

References

1. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex net-
works. Nature 404, 378–382 (2000)

2. Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the
complexity of target set selection. Discrete Optim. 8(1), 87–96 (2011). ISSN 1572–
5286. https://doi.org/10.1016/j.disopt.2010.09.007

3. Chen, P., David, M., Kempe, D.: Better vaccination strategies for better people.
In: Proceedings 11th ACM Conference on Electronic Commerce (EC-2010), Cam-
bridge, Massachusetts, USA, 7–11 June (2010)

4. Cordasco, G., Gargano, L., Mecchia, M., Rescigno, A.A., Vaccaro, U.: A fast and
effective heuristic for discovering small target sets in social networks. In: Lu, Z.,
Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015. LNCS, vol. 9486, pp.
193–208. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26626-8 15

5. Cordasco, G., Gargano, L., Rescigno, A.A.: Influence propagation over large scale
social networks. In: Proceedings of ASONAM 2015, pp. 1531–1538 (2015)

https://doi.org/10.1016/j.disopt.2010.09.007
https://doi.org/10.1007/978-3-319-26626-8_15


286 G. Cordasco et al.

6. Cordasco, G., Gargano, L., Rescigno, A.A.: On finding small sets that influence
large networks. Soc. Netw. Anal. Min. 6(1), 1–20 (2016). https://doi.org/10.1007/
s13278-016-0408-z

7. Cordasco, G., Gargano, L., Rescigno, A.A.: Active influence spreading in social
networks. Theoret. Comput. Sci. 764, 15–29 (2019)

8. Cordasco, G., Gargano, L., Rescigno, A.A., Vaccaro, U.: Evangelism in social net-
works: algorithms and complexity. Networks 71(4), 346–357 (2018)

9. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. TCS,
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

11. Ehard, S., Rautenbach, D.: Vaccinate your trees! Theoret. Comput. Sci. 772, 46–57
(2019). ISSN 0304–3975. https://doi.org/10.1016/j.tcs.2018.11.018

12. Feige, U., Krauthgamer, R., Nissim, K.: On cutting a few vertices from a graph.
Discret. Appl. Math. 127, 643–649 (2003)

13. Finbow, S., MacGillivray, G.: The firefighter problem: a survey of results, directions
and questions. Australas. J. Comb. 43, 57–77 (2009)

14. Feige, U., Kogan, S.: Target Set Selection for Conservative Population CoRR
abs/1909.03422 (2019)

15. Fomin, F.V., Golovach, P.A., Korhonen, J.H.: On the parameterized complexity
of cutting a few vertices from a graph. In: Chatterjee, K., Sgall, J. (eds.) MFCS
2013. LNCS, vol. 8087, pp. 421–432. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-40313-2 38

16. Gargano, L., Rescigno, A.A.: Complexity of conflict-free colorings of graphs. The-
oret. Comput. Sci. 566, 39–49 (2015)

17. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Francisco (1979)
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Abstract. Given a graph G = (V,E) and an integer k, the Minimum

Membership Dominating Set (MMDS) problem seeks to find a dom-
inating set S ⊆ V of G such that for each v ∈ V , |N [v]∩S| is at most k.
We investigate the parameterized complexity of the problem and obtain
the following results about MMDS:
1. W[1]-hardness of the problem parameterized by the pathwidth (and

thus, treewidth) of the input graph.
2. W[1]-hardness parameterized by k on split graphs.
3. An algorithm running in time 2O(vc)|V |O(1), where vc is the size of

a minimum-sized vertex cover of the input graph.
4. An ETH-based lower bound showing that the algorithm mentioned

in the previous item is optimal.

1 Introduction

For a graph G = (V,E), a set S ⊆ V is a dominating set for G, if for each v ∈ V ,
either v ∈ S, or a neighbor of v in G is in S. The Dominating Set problem takes
as input a graph G = (V,E) and an integer k, and the objective is to test if there
is a dominating set of size at most k in G. The Dominating Set problem is a
classical NP-hard problem [9], which together with its variants, is a well-studied
problem in Computer Science. It is also known under standard complexity the-
oretic assumption that, Dominating Set cannot admit any algorithm running
in time f(k) · |V |O(1) time, where k is the size of dominating set.1 A variant
of Dominating Set that is of particular interest to us in this paper, is the
one where we have an additional constraint that the number of closed neighbors
that a vertex has in a dominating set is bounded by a given integer as input.2

As Dominating Set is a notoriously hard problem in itself, so naturally, the

1 More formally, in the framework of parameterized complexity, the problem is W[2]-
hard, and thus we do not expect any FPT algorithm for the problem, when param-
eterized by the solution size.

2 For a vertex v in a graph G = (V,E), the closed neighborhood of v in G, NG[v], is
the set {u ∈ V | {a, b} ∈ E} ∪ {v}.
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above condition does not make the problem any easier. The above variant has
been studied in the literature, and several hardness results are known for it [11].
Inspired by such negative results, in this paper, we remove the size requirement
of the dominating set that we are seeking, and attempt to study the complexity
variation for such a simplification. We call this version of the Dominating Set

problem as Minimum Membership Dominating Set (MMDS, for short). For
a graph G = (V,E), a vertex u ∈ V and a set S ⊆ V , the membership of u in S
is M(u, S) = |N [u] ∩ S|. Next we formally define the MMDS problem.

Minimum Membership Dominating Set (MMDS)

Input: A graph G = (V,E) and a positive integer k.
Parameter: k.
Question: Does there exist a dominating set S of G such that
maxu∈V M(u, S) ≤ k?

We refer to a solution of MMDS as a k-membership dominating set (k-mds).
Unless, otherwise specified, for MMDS, by k we mean the membership. The term
“membership” is borrowed from a similar version of the Set Cover problem by
Kuhn et al. [10], that was introduced to model reduction in interference among
transmitting base stations in cellular networks.
Our Results. We prove that the MMDS problem is NP-Complete and study
the problem in the realm of parameterized complexity.

Theorem 1. The MMDS problem is NP-complete on planar bipartite graphs for
k = 1.

This shows that the MMDS problem for the parameter k is Para-NP-hard, even
for planar bipartite graphs. In other words, for every polynomial time com-
putable function f , there is no O(nf(k))-time algorithm for the MMDS problem.
Further, our reduction also shows that the MMDS restricted to planar bipartite
graphs does not have a (2 − ε) approximation for any ε > 0.
Having proved the NP-Completeness property of MMDS, we study the prob-
lem parameterized by the pathwidth and treewidth of the input graph. (Please
see [3] for formal definitions of treewidth and pathwidth). We note that Dom-

inating Set parameterized by the treewidth admits an algorithm running in
time 3tw|V |O(1) [3]. In contrast to the above, we show that such an algorithm
cannot exist for MMDS.

Theorem 2. MMDS is W[1]-hard when parameterized by the pathwidth of the
input graph.

We note that the pathwidth of a graph is at least as large as its treewidth, and
thus the above theorem implies that MMDS parameterized by the treewidth
does not admit any FPT algorithm. We prove Theorem 2 by demonstrating
an appropriate parameterized reduction from a well-known W[1]-hard problem
called Multi-Colored Clique (see [8] for its W[1]-hardness). We note that,
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an algorithm with running time ktw|V |O(1), where tw is the treewidth of the
input graph, follows from Theorem 2 of Chapelle [2].
Next we study MMDS for split graphs, and prove the following theorem.

Theorem 3. MMDS is W[1]-hard on split graphs when parameterized by k.

We prove the above theorem by giving a parameterized reduction from Multi-

Colored Independent Set, which is known to be W[1]-hard [8]. Our reduc-
tion is inspired by the known parameterized reduction from Multi-Colored

Independent Set to Dominating Set, where we carefully incorporate the
membership constraint and remove the size constraint on the dominating set.
We would like to note that Dominating Set is known to be W[2]-complete for
split graphs [13].
Next we study MMDS parameterized by the vertex cover number of the input
graph and show that it admits an FPT algorithm.

Theorem 4. MMDS admits an algorithm running in time 2O(vc)|V |O(1), where
vc is the size of a minimum-sized vertex cover of the input graph.

We prove the above theorem by exhibiting an algorithm which is obtained by
“guessing” the portion of the vertex cover that belongs to the solution, and
for the remainder of the portion, solving an appropriately created instance of
Integer Linear Programming. To complement our Theorem 4, we obtain a
matching algorithmic lower bound as follows.

Theorem 5. Assuming ETH, MMDS does not admit an algorithm running in
time 2o(vc)|V |O(1), where vc is the size of a minimum-sized vertex cover of the
input graph.

For the graph theoretic terminology used in this paper, we refer to Diestel [4].
Further, for parameterized complexity related terminology, we refer to books of
Cygan et al. [3] and Downey and Fellows [6]. We refer the reader to the Arxiv
version of the paper [1] for related works, and proofs of some claims and lemmas.

2 The MMDS Problem on Planar Bipartite Graphs Is
NP-complete

We show that the MMDS problem is NP-hard for k = 1 even when restricted
to planar bipartite graphs. The NP-hardness is proved by a reduction from
Planar Positive 1-in-3 SAT as follows. Let φ be a boolean formula with
no negative literals on n variables X = {x1, x2, . . . , xn} having m clauses
C = {C1, C2, . . . , Cm}. Further we consider the restricted case when the graph
encoding the variable-clause incidence is planar. Such a boolean formula is
naturally associated with a planar bipartite graph Gφ = (C ∪ X,E) where
X = {x1, x2, . . . , xn}, C = {C1, C2, . . . , Cm} and E = {(xi, Cj) | variable xi

appears in the clause Cj}.
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PP1in3SAT (Planar Positive 1-in-3 SAT)
Input : A boolean formula φ(X) without negative literals and that Gφ

is planar
Decide: Does there exist an assignment of values a1, a2, . . . , an to the
variables x1, x2, . . . , xn such that exactly one literal in each clause is set
to true?

It is known that PP1in3SAT is NP-complete [12]. A reduction from PP1in3SAT
to the MMDS problem is shown to prove that the MMDS problem is NP-hard.
The hardness reduction is given in the full version [1].
Remark: The reduction also shows that the MMDS problem does not have a
polynomial time (2 − ε) approximation algorithm unless P = NP. This is because
such an algorithm can solve the MMDS problem for k = 1.

3 W[1]-Hardness with Respect to Pathwidth

We prove Theorem 2 by a reduction from the Multi-Colored Clique prob-
lem to the MMDS problem. It is well-known that the Multi-Colored Clique

problem is W[1]-hard for the parameter solution size [5].

Multi-Colored Clique

Input: A positive integer k and a k-colored graph G.
Parameter: k
Question: Does there exists a clique of size k with one vertex from each
color class?

Let (G = (V,E), k) be an instance of the Multi-Colored Clique problem.
Let V = (V1, . . . , Vk) denote the partition of the vertex set V . By a partition, we
mean the set of all vertices of same color. We assume, without loss of generality,
|Vi| = n for each i ∈ [k]. We usually use n to denote number of vertices in the
input graph. However, we use n here to denote the number of vertices in each
color class. For each 1 ≤ i ≤ k, let Vi = {ui,� | 1 ≤ � ≤ n}.

3.1 Gadget Based Reduction from Multi-colored Clique

For an input instance (G, k) of the Multi-Colored Clique problem, the
reduction outputs an instance (H, k′) of the MMDS problem where k′ = n + 1.
The graph H is constructed using two types of gadgets, D and I (illustrated
in Fig. 1). The gadget I is the primary gadget and the gadget D is secondary
gadget that is used to construct the gadget I.
Gadget of type D. For two vertices u and v, the gadget Du,v is an interval
graph consisting of vertices u, v and n + 2 additional vertices that form an
independent set. The vertices u and v are adjacent, and both u and v are adjacent
to every other vertex. We refer to the vertices u and v as heads of the gadget
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Du,v. Intuitively, for any feasible solution S, and for any gadget Du,v, either u
or v should be in S. Otherwise, remaining n + 2 vertices must be in S which
contradicts the optimality of S because membership for both u and v is at least
n + 2.

Observation 6. The pathwidth of the gadget D is two. Indeed, it is an interval
graph with maximum clique of size three and thus, by definition, has pathwidth 2.

Gadget of Type I. Let n ≥ 1 be an integer. The gadget has two vertices h1

and h2, and two disjoint sets: A = {a1, . . . , an} and D = {d1, . . . , dn}. For each
i ∈ [n], vertices ai and di are connected by the gadget Dai,di

. Let h2 and h1 be
two additional vertices which are adjacent. The vertices in the sets A and D are
adjacent to h2 and h1, respectively. For each 1 ≤ i ≤ n, ai and h1 are connected
by the gadget Dai,h1 , and di and h2 are connected by the gadget Ddi,h2 . In the
reduction a gadget of type I is denoted by the symbol I and an appropriate
subscript.

Fig. 1. To the left is the type-I gadget for n = 4 and to the right is the type-D gadget.
The zigzag edges between vertices u and v represent the gadget Du,v.

Claim 7. ♦3 The pathwidth of a gadget type I is at most four.

Whenever we refer to a gadget we mean the primary gadget I unless the gadget
D is specified. For each vertex and edge in the given graph, our reduction has a
corresponding gadget in the instance output by the reduction.
Description of the Reduction. For 1 ≤ i < j ≤ k, let Ei,j denote the set
of edges with one end point in Vi and the other in Vj , that is Ei,j = {xy | x ∈
Vi, y ∈ Vj}.
For each vertex and edge in G, the reduction uses a gadget of type I. For each
1 ≤ i < j ≤ k, the graph H has an induced subgraph Hi corresponding to Vi, and
has an induced subgraph Hi,j for the edge set Ei,j . We refer to Hi as a vertex-
partition block and Hi,j as an edge-partition block. Inside block4 Hi, there is a
gadget of type I for each vertex in Vi, and in the block Hi,j is a gadget for each
edge in Ei,j . For a vertex ui,x, Ix denotes the gadget corresponding to ui,x in the
partition Vi, and for an edge e, Ie denotes the gadget corresponding to e. Finally,
the blocks are connected by the connector vertices which we describe below. We
3 Proofs of results marked with ♦ can be found in the full version of the paper [1].
4 Not to be confused with “block” of a 1-vertex-connected graph.
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next define the structure of a block which we denote by B. The definition of the
block applies to both the vertex-partition block and the edge-partition block.
A block B consists of the following gadgets, additional vertices, and edges.

– The block B corresponding to the vertex-partition block Hi for any i ∈ [k] is
as follows: for each � ∈ [n], add a gadget I� to the vertex-partition block Hi,
to represent the vertex ui,� ∈ Vi.

– The block B corresponding to the edge-partition gadget Hi,j for any 1 ≤ i <
j ≤ k is as follows: for each e ∈ Ei,j , add a gadget Ie in the edge-partition
block Hi,j , to represent the edge e.

– In addition to the gadgets, we add (n + 1)(n + 3) + 2 vertices to the block
B as follows (A figure is illustrated in full version): Let C(B) denote the
set {f, f ′, c1, c2, . . . , cn+1, b1, b2, . . . , b(n+1)(n+2)}, which is the set of addi-
tional vertices that are added to the block B. Let C ′(B) denote the subset
{c1, c2, . . . , cn+1}. For each gadget I in B, and for each t ∈ [n], at in I is
adjacent to f , and the vertex f is adjacent to f ′. Further, the vertex f ′ is
adjacent to each vertex cp for p ∈ [n + 1]. Finally, for each p ∈ [n + 1] and
(p − 1)(n + 2) < q ≤ p(n + 2), cp is adjacent to bq.

Next, we introduce the connector vertices to connect the edge-partition blocks
and vertex-partition blocks. Let R = {ri

i,j , s
i
i,j , r

j
i,j , s

j
i,j | 1 ≤ i < j ≤ k} be the

connector vertices. The blocks are connected based on the following exclusive
and exhaustive cases, and is illustrated in Fig. 2:
For each i ∈ [k], each i < j ≤ k and each � ∈ [n], the edges are described below.

– for each 1 ≤ t ≤ �, the vertex at in the gadget I� of Hi is adjacent to the
vertex si

i,j

– for each � ≤ t ≤ n, the vertex at in the gadget I� of Hi is adjacent to the
vertex ri

i,j

For each i ∈ [k], each 1 ≤ j < i and each � ∈ [n],

– for each 1 ≤ t ≤ �, the vertex at in the gadget I� of Hi is adjacent to the
vertex si

j,i

– for each � ≤ t ≤ n, the vertex at in the gadget I� of Hi is adjacent to the
vertex ri

j,i

The gadgets for the edges are also connected to the connector vertices sim-
ilarly (explained in full version). This completes construction of the graph H
with O(mn2) vertices and O(mn3) edges. We next bound the pathwidth of the
graph H as a polynomial function of k.

Claim 8. ♦ The pathwidth of a block B is at most five.

Lemma 1. ♦ The pathwidth of the graph H is at most 4
(
k
2

)
+ 5.
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Fig. 2. An illustration of the connector vertices sii,j , r
i
i,j , s

j
i,j and rji,j connect the blocks

Hi and Hi,j , and, Hj and Hi,j for some 1 ≤ i < j ≤ k. The edge e represented in the
gadget Ie is ui,xuj,y ∈ Ei,j .

Properties of a Feasible Solution for the MMDS Instance (H, k′). Let
S be a feasible solution for the MMDS instance (H, k′). We state the following
properties of the set S. In all the arguments below, we crucially use the property
that for each u ∈ V (H), M(u, S) ≤ n + 1.

Claim 9 ♦ For each block B in the graph H, C ′(B) ⊆ S.

Claim 10 ♦ For each block B in H, the vertices f and f ′ in B are not in the
set S.

Claim 11 ♦ For each gadget of type I in each block B in the graph H, either
A ∩ S = A or A ∩ S = ∅.
Claim 12 ♦ For each block B in the graph H, there exists a unique gadget of
type I in the block B such that the set A in the gadget is in S.

Using these properties in the following two lemmas, we prove the correctness of
the reduction.

Lemma 2. ♦ If (G, k) is a YES-instance of the Multi-Colored Clique

problem, then (H, k′) is a YES-instance of the MMDS problem.

Lemma 3. ♦ If (H, k′) is a YES-instance of the MMDS problem, then (G, k)
is a YES-instance of the Multi-Colored Clique problem.

Thus, the proofs of Lemmas 2 and 3 complete the proof of Theorem 2. A
detailed proof is given in full version.

4 W[1]-Hardness in Split Graphs

In this section we prove that MMDS is W[1]-hard on split graphs when param-
eterized by the membership parameter k. We prove this result by demonstrating



Parameterized Complexity of Minimum Membership Dominating Set 295

a parameterized reduction from Multi-Colored Independent Set (MIS) to
Minimum Membership Dominating Set. Multi-Colored Independent

Set requires finding a colorful independent set of size k and is known to be
W[1]-hard for the parameter solution size [8].

Multi-Colored Independent Set

Input: A positive integer k, and a k-colored graph G.
Parameter: k
Question: Does there exist an independent set of size k with one vertex
from each color class?

Let (G = (V,E), k) be an instance of the Multi-Colored Independent

Set problem. Let V = (V1, . . . , Vk) be the partition of the vertex set V , where
vertices in set Vi belong to the ith color class, i ∈ [k]. We now show how to con-
struct a split graph H = (V ′ ∪V ′′, E′) such that if (G, k) is a YES instance, then
H has a dominating set with maximum membership k. V ′ refers to the clique
partition of H and V ′′ consists of the partition containing a set of independent
vertices.
Construction of graph H = (V ′ ∪ V ′′, E′):

Fig. 3. Construction of graph H

For each vertex in V we introduce a vertex in the clique V ′ as in the input
instance. Additionally we add a vertex w to V ′. Edges are added among each pair
of vertices in V ′. The set V ′′ in H is an independent set, and it consists of a set of
vertices denoted by U , a set of vertex sets denoted by D = {Dpq | p, q ∈ [k], p <
q}. The vertex set U comprises a partition of k vertex sets, U = {Ui | i ∈ [k]},
and |Ui| = k + 1. For each edge between a vertex u ∈ Vp and v ∈ Vq in G,
we introduce a vertex xuv in the set Dpq. Conceptually Dpq denotes the set of
edges between Vp and Vq. Thus, the vertex set of H, V (H) = V ′ ∪V ′′, where V ′

induces a clique and V ′′ induces an independent set.
The remaining edges, other than those in clique V ′, are described as follows:

Vi
Ui forms a complete bipartite graph, vertex w is made adjacent to all vertices
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in the set D, each vertex xuv ∈ Dpq is made adjacent to every vertex in Vp \ {u}
and Vq \ {v}.

The above construction is depicted in Fig. 3. Next we show the correctness of
the reduction from the instance (G, k) of MIS to the instance (H, k) of MMDS.

Lemma 4. ♦ If (G, k) is a YES instance of the Multi-Colored Indepen-

dent Set problem then (H, k) is a YES instance of the MMDS problem.

Lemma 5. ♦ If (H, k) is a YES instance of the MMDS problem then (G, k)
is a YES instance of the Multi-Colored Independent Set problem.

5 Parameterizing MMDS by Vertex Cover

First, we show that MMDS is FPT parameterized by vertex cover number, vc.
We then show that conditioned on the truth of the ETH, MMDS does not have
a subexponential algorithm in the size of vertex cover.

5.1 MMDS Is FPT Parameterized by Vertex Cover

In order to design an FPT algorithm parameterized by the size of a vertex cover
of the input graph, we construct an FPT-time Turing reduction from MMDS to
Integer Linear Programming (ILP, See Appendix for formal definition). In the
reduced instance the number of constraints is at most twice the size of a minimum
vertex cover. We then use the recent result by Dvořák et al. [7] which proves that
ILP is FPT parameterized by the number of constraints. The following theorem
directly follows from Corollary 9 of [7].

Integer Linear Programming
Input : A matrix A ∈ Z

m×� and a vector b ∈ Z
m.

Parameter : m
Question : Is there a vector x ∈ Z

� such that A · x ≤ b?

Theorem 13 (Corollary 9, [7]). ILP is FPT in the number of constraints
and the maximum number of bits for one entry.

FPT Time Turing Reduction from MMDS to ILP: Let (G, k) be the
input instance of MMDS. Compute a minimum vertex cover of G, denoted by
C, in time FPT in |C| [3]. Let I denote the maximum independent set V \ C.
The following lemma is crucial to the correctness of the reduction.

Lemma 6. ♦ Let D be a k membership dominating set of G. Let C1 = D ∩ C,
I1 = I \ (N(C1) ∩ I), and R = N(C1) ∩ I ∩ D. Then, I1 ⊆ D, and C \ (N [C1] ∪
N(I1)) is dominated by R.
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As a consequence of this lemma, it is clear that the choice of C1 immediately
fixes I1. Thus, to compute the set D, the task is to compute R. We pose this
problem as the constrained MMDS problem. A CMMDS problem instance is a
4-tuple (G, k,C,C1) where C is a vertex cover and C1 is a subset of C. The
decision question is whether there is a k membership dominating set D of G
such that D ∩ C = C1.

From Lemma 6, we know that given an instance of (G, k,C,C1), we know
that C1 immediately fixes I1 ⊆ I = V \ C. Thus, to compute D, we need to
compute R as defined in Lemma 6. We now describe the ILP formulation to
compute R once C1 (and thus I1) is fixed. Since R is a subset of I \ I1, it follows
that the variables correspond to vertices in I \ I1 which do not already have k
neighbors in C1; we use Ie to denote this set. It can be immediately checked if
C1 ∪ I1 can be part of a feasible solution- we check that for no vertex is the
intersection of its closed neighborhood greater than k. We now assume that this
is the case, and specify the linear constraints. The linear constraints in the ILP
are associated with the vertices in C. For each vertex in C there are at most
two constraints- if v is in C \ (N [C1] ∪ N(I1)), then at least one neighbor and
at most k neighbors from Ie must be chosen into R. On the other hand, for
v ∈ (N [C1] ∩ C) ∪ N(I1), we have the constraint that at most k neighbors must
be in C1∪I1∪R. The choice of variables in Ie does not affect any other vertex in
I, and thus there are no costraints among the vertices in I. To avoid notation,
we assume that an instance of CMMDS(G, k,C,C1), also denotes the ILP.

Lemma 7. ♦ The CMMDS problem on an instance (G, k,C,C1) can be solved
in time which is FPT in the size of the vertex cover.

5.2 Lower Bound Assuming ETH

We show that there is no sub-exponential-time parameterized algorithm for
MMDS when the parameter is the vertex cover number, using a reduction from
3-SAT. By the ETH, 3-SAT does not have a sub-exponential-time algorithm,
and thus the reduction proves the lower bound for MMDS.
Proof: [Proof of Theorem 5 ] Let φ be a boolean formula on n variables X =
{x1, x2, . . . , xn} having m clauses C = {C1, C2, . . . , Cm}. We construct a graph
G = (V,E) from the input formula φ such that φ has a satisfying assignment if
and only if G has a k membership dominating set.

Construction of Graph G
For each variable xi, 1 ≤ i ≤ n in φ, create two vertices vxi

and vxi
, denoting

its literals, with an edge between them. Make both vxi
and vxi

adjacent to
k + 1 degree-two vertices labelled aj

i : 1 ≤ j ≤ k + 1 and another set of k − 1
vertices bj

i : 1 ≤ j ≤ k − 1. Each bj
i is in turn adjacent to k + 1 pendant vertices

dt
i,j : 1 ≤ t ≤ k + 1.

For each clause Cl : 1 ≤ l ≤ m, create a vertex vCl
. For each clause Cl, make vCl

adjacent to a vertex Y . Y is again connected to k more vertices uq : 1 ≤ q ≤ k.
Each uq is in turn adjacent to k + 1 pendant vertices rp

q : 1 ≤ p ≤ k + 1. Finally,
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Fig. 4. Construction for reduction from 3-SAT to MMDS.

create edges between clause vertices and those literal vertices which are in the
clause. The reduction is illustrated in Fig. 4.

Claim 14. ♦ The vertex cover number of graph G is (n + 1)(k + 1).

Lemma 8. ♦ If φ has a satisfying assignment then G has a dominating set
with membership value k.

Lemma 9. ♦ If G has a dominating set with membership value k, then φ has
a satisfying assignment.

From Lemma 8 and Lemma 9, it follows that the 3-SAT can be reduced
to MMDS parameterized by vertex cover number. Therefore a 2o(vc(G))nO(1)

algorithm for MMDS will give a 2o(n) algorithm for 3-SAT which is a violation
of ETH. Hence the proof.

6 Conclusion

In this paper we study the parameterized complexity of the Minimum Mem-

bership Dominating Set problem, which requires finding a dominating set
such that each vertex in the graph is dominated minimum possible times. We
start our analysis by showing that in spite of having no constraints on the size of
the solution, unlike Dominating Set, MMDS turns out to be W[1]-hard when
parameterized by pathwidth (and hence treewidth). We further show that the
problem remains W[1]-hard for split graphs when the parameter is the size of
the membership. For general graphs we prove that MMDS is FPT when param-
eterized by the size of vertex cover. Finally, we show that assuming ETH, the
problem does not admit a sub-exponential algorithm when parameterized by the
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size of vertex cover, thus showing our FPT algorithm to be optimal. There are
many related open problems that are yet to be explored. One such problem is
analyzing the complexity of MMDS in chordal graphs. Other directions involve
structural parameterization of MMDS with respect to other parameters such
as maximum degree, distance to bounded degree graphs, bounded genus and
maximum number of leaves in a spanning tree.
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Abstract. Popular matchings have been intensively studied recently as
a relaxed concept of stable matchings. By applying the concept of popu-
lar matchings to branchings in directed graphs, Kavitha et al. introduced
popular branchings. In a directed graph G = (VG, EG), each vertex has
preferences over its incoming edges. For branchings B1 and B2 in G,
a vertex v ∈ VG prefers B1 to B2 if v prefers its incoming edge of B1

to that of B2, where having an arbitrary incoming edge is preferred to
having none, and B1 is more popular than B2 if the number of vertices
that prefer B1 is greater than the number of vertices that prefer B2.
A branching B is called a popular branching if there is no branching
more popular than B. Kavitha et al. proposed an algorithm for finding
a popular branching when the preferences of each vertex are given by
a strict partial order. The validity of this algorithm is proved by utiliz-
ing classical theorems on the duality of weighted arborescences. In this
paper, we generalize popular branchings to weighted popular branchings
in vertex-weighted directed graphs in the same manner as weighted pop-
ular matchings by Mestre. We give an algorithm for finding a weighted
popular branching, which extends the algorithm of Kavitha et al., when
the preferences of each vertex are given by a total preorder and the
weights satisfy certain conditions. Our algorithm includes elaborated pro-
cedures resulting from the vertex-weights, and its validity is proved by
extending the argument of the duality of weighted arborescences.

1 Introduction

Popular matchings provide a relaxed concept of stable matchings. Popular
matchings were introduced by Gärdenfors [9], and have been attracting inten-
sive attention recently since Abraham et al. [1] started studying their algorithmic
aspects. In a bipartite graph, each vertex has preferences over its adjacent ver-
tices, and a matching M is more popular than another matching N if the number
of vertices that prefer the adjacent vertex in M to that in N is greater than the
number of vertices that prefer the adjacent vertex in N to that in M . A match-
ing M is called a popular matching if no matching is more popular than M .

The second author is supported by JSPS KAKENHI Grant Number JP20K11699,
Japan.
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P. Mutzel et al. (Eds.): WALCOM 2022, LNCS 13174, pp. 303–314, 2022.
https://doi.org/10.1007/978-3-030-96731-4_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96731-4_25&domain=pdf
https://doi.org/10.1007/978-3-030-96731-4_25


304 K. Natsui and K. Takazawa

For popular matchings, several algorithms are known. Abraham et al. [1] were
the first to give an efficient algorithm determining whether a popular matching
exists and finding one if exists.

There have been various other studies on popular matching in recent years,
including [2–4,8,10]. Among those, Mestre [12] provided an algorithm for
weighted popular matching. In the weighted popular matching problem, weights
are attached to the vertices and, instead of the number of vertices, the popu-
larity of matchings is defined by the sum of the weights of the corresponding
vertices. The algorithm [12] runs in polynomial time regardless of whether ties
are allowed or not.

By applying the concept of popular matchings to branchings in directed
graphs, Kavitha, Király, Matuschke, Schlotter, and Schmidt-Kraepelin [11] intro-
duced popular branchings. In a directed graph G = (VG, EG), each vertex has
preferences over its incoming edges. Let B and B′ be branchings in G. We say
that a vertex v ∈ V prefers B to B′ if v prefers the incoming edge in B to that
in B′, where having an arbitrary incoming edge is preferred to having none. We
say that B is more popular than B′ if the number of vertices that prefer B is
greater than the number of vertices that prefer B′. A branching B is called a
popular branching if there is no other branching more popular than B.

Kavitha et al. [11] proposed an algorithm for finding a popular branching
when the preferences of the vertices are given by a strict partial order. This
algorithm determines whether a popular branching exists, and if so, outputs one.
Its validity is proved by a characterization of popular branchings which utilizes
the duality of weighted arborescences. The algorithm constructs a directed graph
D from G by adding a dummy vertex r as a root and an edge (r, v) for each
v ∈ VG. Each branching B in G is extended to an r-arborescence in D by adding
an edge (r, v) for every vertex v ∈ VG with no incoming edge in B. They proved
that an r-arborescence A in D is a popular arborescence if and only if it is a
minimum cost arborescence with respect to edge weights defined in a certain
manner.

For these edge weights, they further proved that, for an integral optimal
solution y ∈ R

2VG of the dual problem, the laminar structure of the support
F(y) = {X ⊆ VG : y(X) > 0} has at most two layers. This structure leads
to a one-to-one correspondence between the support F(y) and the vertex set
VG, and the concept of safe edges, which are candidates of the edges in a pop-
ular arborescence. The algorithm of Kavitha et al. [11] essentially relies on this
structure.

In this paper, we generalize popular branchings to weighted popular branch-
ings in the same manner as weighted popular matchings [12]. Each vertex v ∈ VG

is assigned a positive integer weight w(v). For an r-arborescence A in D and a
vertex v ∈ VG, let A(v) denote the edge in A entering v. For two r-arborescences
A and A′ in D, we define an integer Δw(A,A′) by

Δw(A,A′) =
∑

v:A(v)�vA′(v)

w(v) −
∑

v:A′(v)�vA(v)

w(v), (1)
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where e �v f denotes that v prefers e to f . If Δw(A,A′) > 0, we say that A is
more popular than A′. An r-arborescence A in D is a popular arborescence if no
arborescence is more popular than A.

The main contribution of this paper is an algorithm for finding a popular
arborescence in vertex-weighted directed graphs, which extends the algorithm
of Kavitha et al. [11]. Its validity builds upon a characterization of weighted
popular arborescences, which extends that of popular branchings [11], and our
algorithm includes elaborated procedures resulting from the vertex-weights.

The following two points are specific to our algorithm. The first is that the
preferences of each vertex are given by a total preorder, while they are given by
a strict partial order in [11]. The second is that it requires an assumption on the
vertex weights:

w(s) + w(t) > w(u) (s, t, u ∈ VG).

Under this assumption, we can derive that the laminar structure of the sup-
port of an integer dual optimal solution y has at most two layers. By virtue
of this laminar structure, we can define the one-to-one correspondence between
F(y) and VG, and safe edges in the same manner as [11], which are essential in
designing the algorithm.

Let us mention an application of popular branchings in the context of a
voting system, and what is offered by the generalized model of weighted popular
branchings. Kavitha et al. [11] suggested an application in a voting system called
liquid democracy. This is a new voting system that lies between representative
democracy and direct democracy. In liquid democracy, voters can choose to vote
themselves or to delegate their votes to the judgment of others who they believe
in, and their votes flow over a network, constructing a fluid voting system. In
this system, a popular branching amounts to a reasonable delegation process.
Here, if we take vertex weights into account, it represents a situation where there
is a difference in voting power. That is, weighted popular branchings are of help
when each voter has distinct voting power, and we want to make a decision based
on the total voting power rather than the number of votes.

This paper is organized as follows. Section 2 formally defines weighted popular
branchings. In Sect. 3, in preparation for algorithm design, we analyze some
properties of weighted popular branchings and introduce safe edges. In Sect. 4,
we present our algorithm for finding a weighted popular branching and prove its
correctness.

2 Definition of Weighted Popular Branchings

Let G = (VG, EG) be a directed graph, where every vertex has a positive integer
weight w(v) and preferences over its incoming edges. The preferences of each
vertex v are given by a total preorder �v on the set of edges that enter v.

Recall that a total preorder is defined in the following way. Let S be a finite
set. A binary relation R on S is transitive if, for all a, b, c ∈ S, aRb and bRc
imply aRc. Also, R is reflexive if aRa holds for all a ∈ S. A relation R is called
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a preorder if R is transitive and reflexive. In addition, R is a total relation if
aRb or bRa holds for all a, b ∈ S. That is, a total preorder is a relation which is
transitive, reflexive, and total. Note that a partial order is a preorder, whereas
it is not necessarily a total preorder, and a total preorder is not necessarily a
partial order.

Let e and f be two edges entering the same vertex v. Then, e �v f means
that f has more or the same priority than e. If both e �v f and f �v e holds,
we denote it by e ∼v f , indicating that v is indifferent between e and f . Note
that ∼v is an equivalence relation. Furthermore, if e �v f holds but f �v e does
not, we denote it by e ≺v f . This indicates that vertex v strictly prefers f to e.
If an edge f is strictly preferred to e, then we say that f dominates e.

Instead of discussing branchings in G, we mainly handle arborescences in
an auxiliary directed graph D. The directed graph D is constructed from G by
adding a dummy vertex r as a root and an edge (r, v) for each v ∈ VG. That is, D
is represented as D = (V,E), where V = VG∪{r} and E = EG∪{(r, v) : v ∈ VG}.
For each vertex v ∈ VG, let δ−(v) ⊆ E be the set of edges in D that enter v,
and make (r, v) the least preferred incoming edge in δ−(v). That is, every edge
in EG ∩ δ−(v) dominates (r, v) for each v ∈ VG.

An r-arborescence in D is an out-tree with root r. For an r-arborescence A
in D and v ∈ VG, let A(v) denote the edge in A entering v. For r-arborescences
A and A′ in D, we define Δw(A,A′) by

Δw(A,A′) =
∑

v:A(v)�vA′(v)

w(v) −
∑

v:A′(v)�vA(v)

w(v). (2)

An r-arborescence A is more popular than A′ if Δw(A,A′) > 0. If no r-
arborescence is more popular than A, then we say that A is a popular arbores-
cence. Our primary goal is to find a popular arborescence in D.

3 Properties of Weighted Popular Branchings

3.1 Characterizing Weighted Popular Arborescences

In this subsection, by extending the argument in [11], we give a characteriza-
tion of popular arborescences (Proposition 4) by utilizing the duality theory of
weighted arborescences. We then investigate the structure of dual optimal solu-
tions with a certain property (Proposition 8). Let A be an r-arborescence in D.
For each edge e = (u, v) in D, we define the cost cA(e) as follows:

cA(e) =

⎧
⎪⎨

⎪⎩

0 (e �v A(v)),
w(v) (e ∼v A(v)),
2w(v) (e ≺v A(v)).

(3)
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Since cA(e) = w(v) for every e ∈ A, we have cA(A) = w(VG). For an arbitrary
r-arborescence A′ in D, the following holds:

cA(A′) =
∑

v:A(v)�vA′(v)

2w(v) +
∑

v:A(v)∼vA′(v)

w(v) +
∑

v:A(v)≺vA′(v)

0

= w(VG) +
∑

v:A(v)�vA′(v)

w(v) −
∑

v:A(v)≺vA′(v)

w(v)

= cA(A) + Δw(A,A′).

We thus obtain the following proposition. An r-arborescence is called a min-cost
r-arborescence if the sum of the costs of all edges is the smallest among the
r-arborescences.

Proposition 1. An r-arborescence A is popular if and only if it is a min-cost
r-arborescence in D with respect to the edge costs cA.

Based on Proposition 1, consider the following linear program (LP1), which
describes the min-cost r-arborescence problem, and its dual (LP2). For any non-
empty set X ⊆ VG, let δ−(X) ⊆ E be the set of edges in D that enter X.

(LP1) minimize
∑

e∈E

cA(e) · x(e) (4)

subject to
∑

e∈δ−(X)

x(e) ≥ 1 ∀X ⊆ VG,X �= ∅, (5)

x(e) ≥ 0 ∀e ∈ E. (6)

(LP2) maximize
∑

X⊆VG,X 	=∅
y(X) (7)

subject to
∑

X:e∈δ−(X)

y(X) ≤ cA(e) ∀e ∈ E, (8)

y(X) ≥ 0 ∀X ⊆ VG,X �= ∅. (9)

For any feasible solution y to (LP2), let F(y) = {X ⊆ VG : y(X) > 0} be the
support of y.

The following proposition is a direct consequence of the definition of the costs
cA. Its proof is described in the full version of this extended abstract.

Proposition 2. For an r-arborescence A and a feasible solution y to (LP2), we
have that ∑

X:v∈X

y(X) ≤ 2w(v) (v ∈ VG).

A set family F is called laminar if for any two sets X,Y ∈ F , at least one
of the three sets X \ Y, Y \ X,X ∩ Y is empty. From now on, we deal with an
optimal solution y with certain properties. The first property is described in the
following lemma.
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Lemma 3. ([5–7]). If the costs cA are integers, there exists an integral optimal
solution y∗ to (LP2) such that F(y∗) is laminar.

Since the costs cA(e) ∈ {0, w(v), 2w(v)} are integers, it follows from Lemma 3
that there exists an integral optimal solution y∗

A to (LP2) such that F(y∗
A) is

laminar. Furthermore, the following proposition can be derived from the duality
of weighted arborescences, similarly as described in [11].

Proposition 4. For an r-arborescence A, the following statements are equiva-
lent.

(i) A is a popular arborescence.
(ii)

∑
X⊆VG

y∗
A(X) = w(VG).

(iii) |A ∩ δ−(X)| = 1 for all X ∈ F(y∗
A) and

∑
X:e∈δ−(X) y∗

A(X) = w(v) for all
e = (u, v) ∈ A.

Let A ⊆ E be an r-arborescence and y∗
A be an optimal solution for (LP2).

Here, we consider the properties of y∗
A and F(y∗

A). Let E◦ be the set of edges
e ∈ E satisfying

∑
X:e∈δ−(X) y∗

A(X) = cA(e) and let D◦ = (V,E◦). For a directed
graph D′ = (V ′, E′) and its vertex subset X ⊆ V ′, the subgraph induced by X
is denoted by D′[X] = (X,E′[X]). Similarly, for an edge subset A′ ⊆ E′, the set
of edges in A′ induced by X is denoted by A′[X]. The following lemma applies
to general weighted arborescences.

Lemma 5. For an r-arborescence A ⊆ E, there exists an integral optimal solu-
tion y∗

A to (LP2) such that F(y∗
A) is laminar and D◦[Y ] is strongly connected

for every Y ∈ F(y∗
A).

In what follows, we denote by y∗
A the integer optimal solution to (LP2)

described in Lemma 5. In addition to Lemma 5, if A is a popular arborescence,
we can impose a stronger condition on y∗

A. See the full version for a proof.

Lemma 6. For a popular arborescence A, there exists an integral optimal solu-
tion y∗

A to (LP2) such that F(y∗
A) is laminar, D◦[Y ] is strongly connected for

every Y ∈ F(y∗
A), and the following is satisfied.

For Y ∈ F(y∗
A), let Y1, . . . , Yk be the sets in F(y∗

A) that are maximal proper
subsets of Y . Then,

|Y \ (Y1 ∪ · · · ∪ Yk)| = 1. (10)

For a popular arborescence, the following lemma also holds.

Lemma 7. If A is a popular arborescence and a set Y ∈ F(y∗
A) is minimal in

F(y∗
A), then |Y | = 1.

Proof. Suppose to the contrary that |Y | ≥ 2 for a minimal set Y in F(y∗
A).

Since Y ∈ F(y∗
A), by Proposition 4(iii), we have |A ∩ δ−(Y )| = 1. Also, since A

is an r-arborescence, it holds that |A∩ (
⋃

v∈Y δ−(v))| = |Y |, and hence |A[Y ]| =
|A ∩ (

⋃
v∈Y δ−(v))| − |A ∩ δ−(Y )| = |Y | − 1 ≥ 1. It then follows that A[Y ] �= ∅,

and let e be an edge in A[Y ]. Now Y is a minimal set in F(y∗
A), implying that

e /∈ δ−(Y ′) for any Y ′ ∈ F(y∗
A). This contradicts Proposition 4(iii). ��
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From Lemmas 6 and 7, the next proposition follows.

Proposition 8. Let A be a popular arborescence. Then, there exists a one-to-
one correspondence between the sets in F(y∗

A) satisfying (10) and the vertices
in VG. Moreover, for each X ∈ F(y∗

A) and the terminal vertex v of the edge
(u, v) ∈ A ∩ δ−(X), we have y∗

A(X) = w(v).

Denote by Yv the unique set in F(y∗
A) that is in correspondence with v in the

sense of Proposition 8. Note that F(y∗
A) = {Yv : v ∈ VG} and the unique edge

in A entering Yv is A(v). We thus refer to v as the entry-point of Yv.

3.2 Weight Assumption and Safe Edges

In Kavitha et al.’s algorithm for finding popular branching [11], the laminar
structure of F(y∗

A) has at most two layers:

|{X ∈ F(y∗
A) | v ∈ X}| ≤ 2 (v ∈ VG). (11)

This structure plays an important role in the algorithm: it leads to a one-to-one
correspondence between F(y∗

A) and the vertex set VG, and the concept of safe
edges.

In the unweighted case, (11) follows from Proposition 2. However, when the
weights w(v) can be more than one, Proposition 2 alone does not rule out the
case where |{X ∈ F(y∗

A) | v ∈ X}| ≥ 3. In order to maintain (11), as men-
tioned in Sect. 1, we impose an assumption on the vertex weights. Recall that
the assumption is:

w(s) + w(t) > w(u) (s, t, u ∈ VG). (12)

From this assumption, we can derive the following proposition.

Proposition 9. Let A be a popular arborescence and let y∗
A satisfy (10). If the

condition (12) holds for any three vertices s, t, u ∈ V , then |{X ∈ F(y∗
A) : v ∈

X}| ≤ 2 holds for every vertex v ∈ VG.

Proof. Assume to the contrary that |{X ∈ F(y∗
A) | v ∈ X}| ≥ 3 for some v ∈ VG.

In this case, there exist two vertices a, b ∈ VG \ {v} such that v ∈ Ya ∩ Yb ∩ Yv.
Since y∗

A(Ya) = w(a), y∗
A(Yb) = w(b), y∗

A(Yv) = w(v) from Proposition 8 and
w(v) < w(a)+w(b) from assumption (12), we have cA(r, v) ≤ 2w(v) < y∗

A(Ya)+
y∗

A(Yb)+y∗
A(Yv), which contradicts the constraint (8) in (LP2). Therefore, under

assumption (12), |{X ∈ F(y∗
A) | v ∈ X}| ≤ 2 holds for every v ∈ VG. ��

From Propositions 8 and 9, and the laminarity of F(y∗
A), the following corollary

can be derived.

Corollary 10. Under assumption (12), for y∗
A satisfying (10) and v ∈ VG with

|Yv| ≥ 2, it holds that Yu = {u} for each u ∈ Yv \ {v}.
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The safe edges used in our algorithm are defined in the same way as [11],
described below. For X ⊆ VG, an edge (u, v) ∈ E[X] satisfying the following two
conditions is called a safe edge in X, and the set of safe edges in X is denoted
by S(X).

1. (u, v) is not dominated by any edge in E[X], i.e., (u, v) �v (u′, v) for all
(u′, v) ∈ E[X].

2. (u, v) dominates each edge (t, v) with t /∈ X, i.e., (u, v) �v (t, v) for all
(t, v) ∈ δ−(X).

Recall that the preference of each vertex is taken as the total preorder. Hence,
if there exists e ∈ δ−(v) ∩ δ−(X) such that e is one of the most preferred edges
in δ−(v), it holds that S(X) ∩ δ−(v) = ∅. Otherwise, S(X) ∩ δ−(v) is the set of
the most preferred edges in δ−(v).

The edges in a popular arborescence are basically chosen from safe edges, as
shown in the next proposition. Its proof is described in the full version.

Proposition 11. For any popular arborescence A and X ∈ F(y∗
A) satisfying

(10), it holds that A ∩ E[X] ⊆ S(X).

4 Weighted Popular Branching Algorithm

We are now ready to describe our algorithm for finding a weighted popular
arborescence and prove its validity. The algorithm is described as follows.

1. For each v ∈ VG do:
– let X0

v = VG, i = 0;
– while v does not reach all vertices in the graph Di

v = (Xi
v, S(Xi

v)) do:
Xi+1

v = the set of vertices reachable from v in Di
v; let i = i + 1.

– let Xv = Xi
v and Dv = Di

v.
2. Let X = {Xv : v ∈ VG}, X ′ = {Xv ∈ X : Xv is maximal in X}, E′ = ∅, and

D′ = (X ′ ∪ {r}, E′).
3. For each Xv ∈ X ′, let X̄v be the strongly connected component of Dv such

that no edge in S(Xv) enters. For each X̄v do:
– if every v′ ∈ X̄v which has minimum weight in X̄v satisfies the following

condition, then go to STEP 5.
There exist a vertex s ∈ Xv \ X̄v and an edge f ∈ (E[Xv] \ S(Xv)) ∩
δ−(v′) such that
1. w(s) < w(v′),
2. v′ is reachable from s by the edges in S(Xv) ∪ {f},
3. f �v′ e holds for all e ∈ δ−(v′) ∩ δ−(Xv).

– otherwise, for every v′ ∈ X̄v which has minimum weight in X̄v, do:
• for every u /∈ Xv, if e = (u, v′) is not dominated by an edge in δ−(Xv),

then define an edge e′ in D′ by

e′ =

{
(U,Xv) (u ∈ U,U ∈ X ),
(r,Xv) (u = r),

(13)

and let E′ := E′ ∪ {e′}.
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4. If D′ = (X ′∪{r}, E′) does not contain an r-arborescence A′, then go to STEP
5. Otherwise, do the following.

– let Ã = {e : e′ ∈ A′};
– let R = {v ∈ VG : |Xv| ≥ 2, δ−(v) ∩ Ã �= ∅};
– for each v ∈ R, let Av be an v-arborescence in (Xv, S(Xv));
– return A∗ = Ã ∪ ⋃

v∈R Av.
5. Return “No popular arborescence in D.”

A major difference from the algorithm without the vertex-weights [11]
appears in STEP 3. If the condition shown in STEP 3 is satisfied, there exists
no popular arborescence (see Lemma 18).

We now prove the validity of the algorithm described above by showing that

– if the algorithm returns an edge set A∗, then A∗ is a popular arborescence in
D (Theorem 13), and

– if D admits a popular arborescence, then the algorithm returns an edge set
A∗ (Theorem 19).

The following lemma in [11] is useful in our proof as well.

Lemma 12 ([11]). For each v ∈ VG, let Xv be the set defined in the algorithm
STEP 1. Then, X is laminar, and u ∈ Xv implies Xu ⊆ Xv.

Theorem 13. If the algorithm returns an edge set A∗, then A∗ is a popular
arborescence.

Proof. First, we can show that A∗ is an r-arborescence in D in the same manner
as [11].

Next, we show that A∗ is a popular arborescence. For X ∈ X ′ such that
|X| ≥ 2, let vX ∈ R be the terminal vertex of the edge in A∗ ∩ δ−(X). Let
YvX

⊆ X be a strongly connected component of the subgraph induced by S(X)∪
{e ∈ δ−(vX) : e �vX

A∗(vX)} that contains vX . For a vertex t ∈ VG such that
t ∈ X \ {vX} for some X ∈ X with |X| ≥ 2 or {t} ∈ X ′, let Yt = {t}. Here,
based on Proposition 8, we define

y(Y ) =

{
w(v) (Y = Yv for some v ∈ VG),
0 (otherwise).

(14)

It is clear that
∑

Y ⊆VG
y(Y ) = w(VG). By Proposition 4, the proof completes by

showing that y is a feasible solution to (LP2) determined by A∗.
We show that y satisfies the constraint (8) of (LP2) for all edges. First,

we consider the edges in δ−(vX) for each X ∈ X ′ with |X| ≥ 2. The edges
in δ−(vX) ∩ E[YvX

] do not enter any set in F(y). For e′ ∈ δ−(vX) ∩ δ−(X),
since A∗(vX) is not dominated by e′ from Algorithm STEP 3, it follows that
cA(e′) ∈ {w(vX), 2w(vX)} holds. Since YvX

is the only set in F(y) that e′ enters
and y(YvX

) = w(vX), y satisfies the constraint (8) for e′ in (LP2). Consider an
edge f ′ ∈ δ−(vX) ∩ δ−(YvX

) ∩ E[X]. By construction of YvX
, it must hold that

A∗(vX) �vX
f ′, and hence cA(f ′) ∈ {w(vX), 2w(vX)}. Since YvX

is the only



312 K. Natsui and K. Takazawa

set in F(y) that f ′ enters, it follows that y satisfies the constraint (8) for f ′ in
(LP2).

Next, for t ∈ YvX
\ {vX}, consider the edges in δ−(t). By our algorithm,

A∗(t) ∈ S(X). By the definition of safe edges, for g ∈ δ−(t) ∩ E[YvX
], it holds

that g �t A∗(t), and hence cA(g) = {w(t), 2w(t)}. Since Yt is the only set in
F(y) that g enters and y(Yt) = w(t), y satisfies the constraint (8) for g in (LP2).

Then, consider an edge g′ ∈ δ−(t) ∩ δ−(YvX
). Let g′ = (t0, t). If t0 /∈ X, then

A∗(t) �t g′ holds by the definition of S(X). If t0 ∈ X, then g′ /∈ S(X) holds
by the definition of YvX

. Since A∗(t) ∈ S(X) and the preferences are given by a
total preorder, it follows that

A∗(t) �t g′ (15)

for any g′ ∈ δ−(t) ∩ δ−(YvX
), and thus cA∗(g′) = 2w(t).

If t ∈ X̄, then w(vX) ≤ w(t) follows from the fact that vX is minimum weight
in X̄ by STEP 3 of the algorithm. Suppose that t ∈ YvX

\ X̄. Since t /∈ X̄, vX

is unreachable by safe edges from t. Furthermore, by construction of YvX
, there

exists a path P from t to vX consisting of safe edges and the edges in δ−(vX)
preferred to A∗(vX). In this path P , let (t′, vX) be the edge in δ−(vX). From our
algorithm, vX is a vertex which does not satisfy at least one condition 1, 2, or 3
in STEP 3, and vX satisfies the condition 2 from (t′, s) �vX

A∗(vX). Also, since
the path P ⊆ S(X) ∩ (t′, s), the condition 3 holds for vX and (t′, vX). Thus, it
follows that vX does not satisfy the condition 1, and hence w(vX) ≤ w(t). From
the above, cA∗(g′) = 2w(t) ≥ w(vX) + w(t) = y(YvX

) + y(Yt) holds. Thus, y
satisfies the constraint (8) for g′ in (LP2).

Lastly, for u ∈ X \ YvX
, consider the edges in δ−(u). By our algorithm,

A∗(u) ∈ S(X). For an arbitrary edge h ∈ δ−(u), A∗(u) is not dominated by h
by the definition of safe edges, and therefore cA∗(h) ∈ {w(u), 2w(u)}. Since Yu

is the only set in F(y) that h enters and y(Yu) = w(u), it follows that y satisfies
the constraint (8) for h in (LP2).

Therefore we have proved that y defined by (14) satisfies the constraints in
(LP2) for all edges. ��

We remark that Theorem 13 does not hold if the preferences are given by a
partial order. In the case of partial orders, (15) cannot be derived from A∗(t) ∈
S(X) and g′ /∈ S(X), because it allows for incomparable edges. This is the reason
why we assume throughout the paper that the preferences are given by a total
preorder.

Next, we prove that when a directed graph D has a popular arborescence,
the algorithm always finds one of them. Lemmas needed for the proof are given
below. Omitted proofs of the lemmas are presented in the full version.

Lemma 14 is shown similarly as Lemma 17 in [11], while our proof involves
the vertex weights.

Lemma 14. Let A be a popular arborescence, let y∗
A = {Yv | v ∈ V } be the dual

optimal solution determined by A satisfying (10), and let X ′ = {Xv : v ∈ VG}
be the family of sets defined in the algorithm STEP 1. Then, Yv ⊆ Xv for each
v ∈ VG.
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Lemma 15. Let A be a popular arborescence in D and let X ∈ X ′. Then,
A ∩ δ−(X) contains only one edge, and X = Xv holds for the terminal vertex v
of that edge.

Lemma 16. Let A be an r-arborescence in D and let X ∈ X ′. If there exists an
edge in A[X] \ S(X), then there is an r-arborescence more popular than A.

Proof. By Lemma 15, if |A ∩ δ−(X)| �= 1, then there is an r-arborescence more
popular than A. We thus assume that |A∩δ−(X)| = 1. Let v ∈ X be the terminal
vertex of the edge in A∩δ−(X). Again by Lemma 15, X �= Xv implies that there
is an r-arborescence more popular than A, and hence we further assume that
X = Xv.

Denote the edge in A[X] \ S(X) by f = (s, t). Then, it follows from A(v) ∈
δ−(X) that t �= v. Since X = Xv, we can construct a v-arborescence in a
subgraph (X,S(X)). Define an r-arborescence A′ in D by replacing the edges in
A entering each vertex in X \ {v} with this v-arborescence. Now, since A′(t) ∈
S(X) and f /∈ S(X), we have A′(t) �t f . Also, observe that A′(t′) �t′ A(t′)
if t′ ∈ X \ {t} and A′(t′) = A(t′) if t ∈ V \ X. Thus, Δw(A′, A) ≥ w(t) > 0,
implying that A′ is more popular than A. ��
Lemma 17. For a popular arborescence A and X ∈ X ′, let X̄ be the strongly
connected component in the subgraph (X,S(X)) that an edge in S(X) does not
enter. Then the terminal vertex v of the edge in A ∩ δ−(X) belongs to X̄ and
has minimum weight in X̄.

Lemma 18. For some v ∈ VG, if all the vertices of minimum weight in X̄v

satisfy the condition of Algorithm STEP 3, then there is no popular arborescence.

Proof. Let v ∈ VG and M̄v be the set of the vertices with the minimum weight
in X̄v. Assume to the contrary that every vertex v′ ∈ M̄v satisfies the condition
of STEP 3, i.e., there exist sv′ ∈ Xv \ X̄v and fv′ ∈ (E[Xv] \ S(Xv)) ∩ δ−(v′)
satisfying the three conditions, and there exists a popular arborescence A.

First, consider the case when |X̄v| = 1, i.e., v = v′. By the definition of X̄v,
there is no safe edge entering v′ since all vertices in Xv are reachable by safe edges
from v′. In this case, however, the condition 3 implies that the most preferred
edge in δ−(v) ∩ E[Xv] satisfies the definition of safe edges, a contradiction.

Next, suppose that |X̄v| ≥ 2. Note that A[Xv] ⊆ S(Xv) by Lemma 16. Let
u be the entry-point of Xv for A. By Lemma 17, we have u ∈ M̄v and hence it
follows that there exist su ∈ Xv \X̄v and fu ∈ (E[Xv]\S(Xv))∩δ−(u) satisfying
the three conditions in Algorithm STEP 3. Let B be the r-arborescence obtained
from A by replacing the edges in A[Xv] ∪ A(u) with (r, su) and su-arborescence
in (Xv, S(Xv)∪{fu}). It then follows from Δw(B,A) = w(u)−w(su) > 0 that B
is more popular than A, which contradicts that A is a popular arborescence. ��
Theorem 19. If D admits a popular arborescence, then our algorithm finds one.

Proof. Let A be a popular arborescence and let y∗
A be the dual optimal solution

satisfying (10). By Lemma 15, for each X ∈ X ′, it holds that |A ∩ δ−(X)| = 1.
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Let eX = (u, v) ∈ A ∩ δ−(X). Then X = Xv holds by Lemma 15, and thus we
have v ∈ X̄.

First, we show that eX = (u, v) is not dominated by any edge (u′, v) ∈ δ−(X).
By Lemma 14, we have Yv ⊆ Xv = X. If (u′, v) ∈ δ−(X) dominates (u, v), then
cA(u′, v) = 0. However, since (u′, v) ∈ δ−(Yv) holds, this violates the constraint
(8) in (LP2). Thus, eX = (u, v) is not dominated by an edge in δ−(X) ∩ δ−(v).

From Lemma 17, the vertex v has the minimum weight in X̄. Furthermore,
from Lemma 18, when D admits a popular arborescence, there exists a vertex
that has minimum weight in X̄ which does not satisfy the conditions of Algorithm
STEP 3. For such a vertex v′, our algorithm adds to E′ an edge in δ−(X)∩δ−(v′)
that is not dominated by any edge in δ−(X). Thus, we have eX ∈ E′. Since there
exists an r-arborescence in D and eX ∈ E′ holds, for the graph D′ constructed
in STEP 4 of the algorithm, each X ∈ X ′ is reachable from r using the edges
in E′. Hence E′ contains an r-arborescence A′ in D′. Therefore, the algorithm
returns an edge set A∗, which is a popular arborescence in D by Theorem 13. ��
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Abstract. Consider the following natural variation of the degree real-
ization problem. Let G = (V,E) be a simple undirected graph of order
n. Let f ∈ R

n
≥0 be a vector of vertex requirements, and let w ∈ R

n
≥0

be a vector of provided services at the vertices. Then w satisfies f on
G if the constraints

∑
j∈N(i) wj = fi are satisfied for all i ∈ V , where

N(i) denotes the neighborhood of i. Given a requirements vector f , the
Weighted Graph Realization problem asks for a suitable graph G
and a vector w of provided services that satisfy f on G.

In [7] it is observed that any requirement vector where n is even can be
realized. If n is odd, the problem becomes much harder. For the unsolved
cases, the decision of whether f is realizable or not can be formulated
as whether fn (the largest requirement) lies within certain intervals. In
[5] some intervals are identified where f can be realized, and their com-
plements form n−3

2
connected intervals (“unknown domains”) which we

give odd indices k = 1, 3, . . . , n − 4. The unknown domain for k = 1 is
shown to be unrealizable.

Our main result presents structural properties that a graph must have
if it realizes a vector in one of these unknown domains for k ≥ 3. The
unknown domains are characterized by inequalities which we translate to
graph properties. Our analysis identifies several realizable sub-intervals,
and shows that each of the unknown domains has at least one sub-interval
that cannot be realized.

Keywords: Graph realization · Degree sequence · Graph-algorithms

1 Introduction

Given an n-integer sequence d, the degree realization problem is to decide if
there exists an n-vertex graph whose degree sequence is d, and if so, to con-
struct such a realization (see [1,9,14,18,20,24,27–29]). The problem was well
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researched over the recent decades and plays an important role in the field
of social networks and complex networks (cf. [8,11,13,21,26]). For additional
graph realization problems see [2–4,10,12,15–17,19,22,25,33] and the surveys
[6,23,30–32].

The following natural variation of the problem was introduced in [7]: Let
G = (V,E) be a simple undirected graph on V = {1, 2, . . . , n}. Let f ∈ R

n
≥0 be

a vector of vertex requirements, and let w ∈ R
n
≥0 be a vector of vertex weights.

The weight vector w satisfies the requirement vector f on G if the constraints∑
j∈N(i) wj = fi are satisfied for all i ∈ V , where N(i) denotes the (open)

neighbourhood of vertex i. The vertex-weighted realization problem is now as
follows: Given a requirement vector f , find a suitable graph G and a weight vector
w that satisfy f on G (if exist). In the original degree realization problem, the
requirements are integers in [0, n − 1] and all vertex weights must equal one.

It is shown in [7] that any requirement vector f of even length can be realized
by a matching graph (composed of n/2 independent edges). Each vertex u in a
matching graph has a unique neighbour v, so the weights wu = fv and wv = fu

realize f .

Theorem 1. [7] If n is even, then any f can be realized using a perfect match-
ing.

The problem becomes significantly harder for odd n. In this case, f can be
realized (denoting [i, j] = {i, . . . , j}) if either fi = 0 or fi = fj , for two distinct
indices i, j ∈ [1, n]. Without loss of generality, we focus on the following domain:

Fn �
{
f ∈ R

n
≥0 : 0 < f1 < f2 < · · · < fn

}
.

As an introductory example, consider the domain F3. Observe that any graph
that potentially realizes some f ∈ F3 must be connected since f1 > 0. The only
two connected graphs on 3 vertices are the path P3 (Fig. 1a) and the complete
graph K3 (Fig. 1c). The layout of a graph implies a system of equations that the
requirements and weights must satisfy as displayed in Figs. 1b and 1d for P3 and
K3, respectively.

1

2

3

(a) P3

f1 = w3

f2 = w3

f3 = w1 + w2

(b) P3 equations

1

2

3

(c) K3

f1 = w2 + w3

f2 = w1 + w3

f3 = w1 + w2

(d) K3 equations

Fig. 1. Graphs that realize vectors of F3 and their equation systems.

The system in Fig. 1b implies that f1 = f2 must hold. In general, P3 implies
that f must satisfy fi = fj where i, j are the labels of the two vertices of degree
one. As a consequence, P3 cannot realize a vector f ∈ F3. For K3, the labeling
is immaterial due to the graph’s symmetry. Solving this system for the weights
yields:
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w1 = (f2 + f3 − f1)/2, w2 = (f1 + f3 − f2)/2, w3 = (f1 + f2 − f3)/2.

By the problem definition, the weights need to be non-negative. Hence, each
equation implies a constraint, yielding

0 ≤ f2 + f3 − f1, 0 ≤ f1 + f3 − f2, 0 ≤ f1 + f2 − f3.

The first two equations are satisfied by any f ∈ F3; the third implies that f ∈ F3

can be realized if and only if f3 ≤ f1 + f2.
The example demonstrates an approach (detailed in Sect. 3) that we use

frequently in the course of this study: Given a graph G (or a family of graphs),
we deduce constraints, and use them to define the domain realizable by G in a
convenient way.

For general n, it is shown in [7] that a vector f ∈ Fn does not have a
realization if it belongs to the exponential growth domain

Dexp
n =

{
f : ∀i ∈ [1, n], fi >

∑

j<i
fj

}
.

However, f can be realized if it falls in the sub-exponential growth domain,

Dsub
n =

{
f : ∃i ∈ [1, n − 1], fi ≤

∑

j<i
fj

}
.

Theorem 2. [7] Let n ≥ 3 be an odd integer. Then,

1. a requirements vector f ∈ Dexp
n cannot be realized.

2. a requirements vector f ∈ Dsub
n can be realized.

Note that in the definition of Dsub
n , there is no inequality for bounding fn. The

“unknown domain” at this point, for which the realizability problem is unsettled,
is the “almost exponential” domain

Dexp−
n =

{
f : ∀i ∈ [1, n − 1], fi >

∑
j<i fj and fn ≤ ∑

j<n fj

}
.

Hence, subsequent analysis should concentrate on refining the domain Dexp−
n ,

resolve the status of its subdomains and thus narrow down the unknown regions.
Based on these results, the question whether a vector f ∈ Dexp−

n can be
realized or not, depends on the value of fn in relation to the other requirements.
Hence, subdomains of Dexp−

n are typically defined in terms of intervals in the
range of possible values for fn. The situation at the two extremes of this range
is clear. If fn is larger than

∑
i<n fi, then vector f cannot be realized due to

Theorem 2. At the other end, if fn ≤ fn−1+fn−2, then there exists a realization
for f that uses K3 and a matching graph as described in [7]. Consequently,
our analysis concentrates on vectors f ∈ Dexp−

n where fn is in the intermediate
range, fn ∈ [fn−1 + fn−2,

∑
i<n fi].

It is shown in [7] that parts of this interval can be realized by two types
of domains which are called windmill and kite domains. In a subsequent study
[5], these domains were extended, and it was shown that certain collections of
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these domains have pairwise overlapping intervals, i.e., they form a single, larger
interval. The larger intervals are used to define meta-domains DM

n,�, for every
even integer 2 ≤ � ≤ n − 5:

DM
n,� =

{
f ∈ Dexp−

n :
∑n−1

j=�+1(fj − f�+1) ≤ fn ≤ ∑n−1
j=1 fj − f�

}
, and

DM
n,0 =

{
f ∈ Dexp−

n :
∑n−1

j=2 (fj − f1) ≤ fn ≤ ∑n−1
j=1 fj

}
.

Theorem 3. [5] Let n ≥ 5 and let � ≤ n − 5 be an even number. The vector f
in the meta domain DM

n,� can be realized.

We now describe the unknown domains located between the meta domains
where it is an open question whether a vector can be realized or not. Let k be
an odd index such that k ≤ n − 4. The k-th unknown domain is:

D U
n,k =

{
f ∈ Dexp−

n :
∑n−1

j=1 fj − fk+1 < fn <
∑n−1

j=k (fj − fk)
}

.

Our Results. Section 2 analyses the domains D U
n,k, using a complementary

approach to the earlier one (of generating a set of constraints from a graph).
Assume that a vector f ∈ D U

n,k is realized by a graph G and weights w. Then
f is subject to a set of constraints, namely, upper and lower bounds on fn,
and exponential growth constraints for f1, . . . , fn−1 implied by the definition
of Dexp−

n . From these, we deduce structural properties of G. For example, we
show that vertex n plays a central role in G’s layout: it must be adjacent to
the n − k +1 vertices with the largest weights, and moreover, these large weight
vertices must have degree two.

Based on the exponential growth of f1, . . . , fn−1, we show that each vertex
has a neighbour with a dedicated weight ensuring that its requirement is met.
This dependency is pairwise by deducing a one-to-one correspondence between
weights and requirements, revealed by decomposing the graph G. The decom-
position process can be viewed as removing pairs of vertices in n−1

2 many steps.
Each pair of vertices is connected by an edge and all these edges form a matching
in G, such that the matching partner of a vertex carries its dedicated weight.

The main outcome of Sect. 2 is a structural pattern (or layout), namely,
some property that a graph must have in order to realize a requirements vector
f ∈ D U

n,k. All subsequent steps make heavy use of this structural result.
In Sect. 4, we put our pattern to use and find new graphs that realize subdo-

mains of D U
n,k, and define the domains that are based on these graphs in terms

of bounds on fn. Our approach is a bit more general, in the sense that we first
define families of domains and then identify useful members of these families.
This provides us with additional tools exploited in later sections. We obtain
three new types of realizable subdomains of D U

n,k, named the double windmill,
kite clique and extended kite clique domains. However, these subdomains do not
cover D U

n,k completely.
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Some of these subdomains are then used (in Sect. 5) to show a negative
result: For every k there is at least one interval Î for fn where f ∈ D U

n,k cannot
be realized. This Î has the same lower bound as the domain D U

n,k. To find its
upper bound, we had to find the realizable domain of D U

n,k with the smallest
lower bound.

The existence of Î is shown by contradiction. Assuming that a vector f is
realized by graph G where fn falls within Î, it follows that f ∈ D U

n,k, which
implies that G adheres to our pattern. This enables us to deduce an upper
bound on the requirements, which eventually yields a contradiction with the
lower bound of the realizable domains bordering Î.

Organization. Section 2 shows the structure a graph must have to realize a vec-
tor of D U

n,k. In Sect. 3, we outline our general approach to define domains, which
we apply then in Sect. 4. In Sect. 5, we show that each domain D U

n,k contains at
least one unrealizable part.

2 Exploring the Domain D U
n,k

We analyse the structure of a graph that realizes a requirement vector f ∈ D U
n,k,

where n and k are odd and k ≤ n − 4. Let f be realized by a graph G and
weights w ∈ R

n
≥0. By definition of D U

n,k, we have that f ∈ Dexp−
n and

∑n−1

j=1
fj − fk+1 < fn, (1)

fn <
∑n−1

j=k+1
(fj − fk). (2)

Recall that such a domain exists only if
∑k−1

j=1 fj + (n − k)fk < fk+1.

The Connected Component Containing n: Let H be the connected com-
ponent of G that contains the vertex n, and define h � |H|. For the rest of this
section, we focus on H. We first show that H is the only component with an
odd number of vertices. Hence other components, if exist, play a minor role and
can be thought of as a matching graph.

Lemma 1. Let f ∈ D U
n,k, where n and k are odd and k ≤ n − 4. H is the only

connected component of G that has an odd number of vertices.

Proof. Suppose, towards a contradiction, thatH ′ is an odd, connected component
ofG that does not contain n. The componentH ′ induces a requirement vector f |H′

on V (H ′). Observe that f |H′ is realized byH ′ andw|H′ . Since f ∈ Dexp−
n , it follows

that f |H′ ∈ Dexp
|H′|. However, Theorem 2 implies that f |H′ cannot be realized as H ′

has an oddnumber of vertices.We reach the desired contradiction. Sincen is odd,G
must have at least one odd component.We conclude thatH is the only component
of G which has an odd number of vertices. ��
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Let H̄ be the version of H where we renumber the vertices in V (H) such that
V (H̄) � [1, h]. Furthermore, let f̄ and w̄ denote the induced requirement vector
and weights on V (H̄). It follows that H̄ and w̄ realize f̄ . Since n ∈ H, we have
that f̄h = fn. In addition, since V (H) ⊆ V (G), it follows that

∑
j<i f̄j < f̄i, for

every i ∈ [1, h−1]. Since f̄ is realized by H̄ and w̄, it must be that f̄h ≤ ∑h−1
j=1 f̄j .

Hence, f̄ ∈ Dexp−
h .

Next, we show that H contains the largest n − k requirements, i.e., the
requirements of the set [k + 1, n].

Lemma 2. Let f ∈ D U
n,k where n and k are odd and k ≤ n − 4. The vertices

[k + 1, n − 1] are contained in H.

Proof. Suppose towards a contradiction that there exists i ∈ [k + 1, n − 1] such
that i 
∈ V (H). Observe that

∑h−1
j=1 f̄j ≤ ∑n−1

j=1 fj − fi ≤ ∑n−1
j=1 fj − fk+1

(�)
< fn = f̄h ,

where (�) holds due to Eq. (1). It follows that f̄ ∈ Dexp
n . Hence, Theorem 2

implies that f̄ is not realizable and we reach the desired contradiction. ��
Since H contains the vertices [k + 1, n], we have that h ≥ n − k. Moreover,

since h is odd and n−k is even, it must be that h ≥ n−k+1. This implies that,
there is at least one vertex i ∈ V (H), such that fi ≤ fk. Let k̄ � h − n + k be
the number of such vertices in H. Observe that k̄ ≤ k and that k̄ is odd. Next,
we show that f̄ ∈ D U

h,k̄
.

Lemma 3. Let f ∈ D U
n,k, where n and k are odd and k ≤ n−4. Then, f̄ ∈ D U

h,k̄
.

Proof. Lemma 2 implies that f̄k̄+j = fk+j for j ∈ [1, n − k]. With Eq. (2) it
follows that

∑h−1
j=k̄+1(f̄j − f̄k̄) ≥ ∑n−1

j=k+1(fj − fk) > fn = f̄h . (3)

In addition, due to Eq. (1)
∑h−1

j=1 f̄j − f̄k̄+1 ≤ ∑n−1
j=1 fj − fk+1 < fn = f̄h . (4)

Finally, recall that f̄ ∈ Dexp−
h . The lemma follows. ��

We note that the lemma implies that the interval for f̄h = fn that corresponds
to D U

h,k̄
is at least as large as the interval for fn that corresponds to D U

n,k.

The Partition of H̄: Given a weight function w : V (H̄) → R
h
≥0, let σ be a

permutation of V (H̄) = [1, h] for which w̄σ(i) ≤ w̄σ(i+1) for every i ∈ [1, h − 1].
We call w̄σ(1), . . . , w̄σ(k̄+1) (resp., w̄σ(k̄+2), . . . , w̄σ(h)) the small (resp., large)
weights. Define

L �
{
σ−1(i) ∈ H̄ : i > k̄ + 1

}
S �

{
σ−1(i) ∈ H̄ : i ≤ k̄ + 1

}
.



Vertex-Weighted Graphs: Realizable and Unrealizable Domains 321

The set S contains small weight vertices, while the set L contains vertices with
large weights. Note that |L| = h − k̄ − 1 is odd and |S| is even.

We call f̄1, . . . , f̄k̄ small requirements and f̄k̄+1, . . . , f̄h−1 large requirements.
Note that the requirement f̄h is neither small nor large.

Define the sets X, Y , Z, and W as follows:

X � L ∩ {
k̄ + 1, . . . , h − 1

}
Z � S ∩ {

k̄ + 1, . . . , h − 1
}

Y � L \ (X ∪ {h}) W � S \ (Z ∪ {h})

The set X ∪ Y contains large weight vertices. Vertices in X have large require-
ments while vertices in Y have small requirements. Similarly, Z and W partition
the set of small weight vertices. Vertex h is not contained in any of X, Y , Z,
or W .

The main result of this section is the next theorem which summarizes impor-
tant structural properties of H. An illustration is given in Fig. 2.

Theorem 4. Let f ∈ D U
n,k, where n and k ≤ n − 4 are odd. The vertices of

V (H̄) are partitioned into five subsets X, Y , Z, W , and {h}, which satisfy the
following conditions:

(1) X ∪ Z = [k̄ + 1, h − 1] and Y ∪ W = [1, k̄].
(2) X ∪ Y ⊆ N(h).
(3) deg(i) = 2, for every i ∈ X ∪ Y .
(4) |X| is even and E ∩ (X × X) is a matching of size |X|/2.
(5) |Y | = |Z| is odd and E ∩ (Y × Z) is a matching of size |Y |.
(6) |W | is even and E ∩ (W × W ) contains a matching of size |W |/2.

h

XY

Z

W

Fig. 2. The structure of H̄. X and Y vertices cannot have more incident edges than
depicted. Z ∪ W vertices may be adjacent to other vertices in Z ∪ W ∪ {h}.

Observe that item (1) of Theorem 4 is already implied by Lemma 2 and the
definition of X and Z. The other conditions of Theorem 4 are shown in the full
version of this paper.
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3 General Approach to Defining Domains

Based on the results of [7], we defined the domain Dexp−
n in the introduction.

For a vector f ∈ Dexp−
n , we exhibit exponential growth for the indices [1, n − 1].

Whether f is realizable or not depends therefore on the value of fn. Hence, we
ask, given a vector f ′ ∈ Dexp

n−1, which values for fn extend f ′ to a realizable
vector f ∈ Dexp−

n ? We say that f extends f ′ if fi = f ′
i for i = 1, . . . n − 1.

Our approach to answering this question is by relating it to a ’realizing’ graph.
Let f ′ ∈ Dexp

n−1 and let G be a graph. Define their realization domain to be the
collection of requirement vectors

Dreal(G, f ′) �
{
f ∈ Dexp−

n : f extends f ′ and ∃w ∈ R
n
≥0 s.t. G and w realize f

}
.

We now define a second collection of requirement vectors associated with each
graph G and f ′ ∈ Dexp

n−1, namely, those vectors f whose last component lies in a
specific range, i.e., fn ∈ [LB,UB]. Formally, let

R(G, f ′) � {f̂ : ∃f ∈ Dreal(G, f ′) s.t. fn = f̂},

LB � minR(G, f ′) and UB � maxR(G, f ′) .

Then the range domain of G and f ′ is defined to be

Drange(G, f ′) � {f ∈ Dexp−
n : f extends f ′ and LB ≤ fn ≤ UB} .

A-priori, it is unclear that every requirement vector f ∈ Drange(G, f ′) can be
realized using G. It might be that the range [LB,UB] contains “holes” in the
form of requirement vectors f such that fn ∈ [LB,UB] and yet f does not
belong to Dreal(G, f ′). As it turns out, these mishaps do not happen for the
graphs analysed in this paper, and in fact, their realization and range domains
satisfy that Drange(G) = Dreal(G).

Our approach to show that Dreal(G) = Drange(G) for these graphs is as
follows. Graph G yields a system of equations of the form fj =

∑
i∈N(j) wi, for

each i ∈ [1, n]. For a given requirement vector f the unknowns in this system are
the weights. The system can also be expressed using the adjacency matrix AG of
G, as AG · w = f . For the graphs that we consider in the following, this system
has a unique solution, i.e., AG has full rank. Consequently, we get an expression
for each of the weights that is a linear combination of the requirements: wj =∑n

i=1 ai,j · fi, for j ∈ [1, n]. It follows that f is realized by G and these weights.
However, the weights are not necessarily non-negative.

Requiring that 0 ≤ ∑n
i=1 ai,j · fi yields a constraint for each j ∈ [1, n].

It follows that each requirement vector that satisfies all of these constraints is
realized by G and non-negative weights.

For the graphs that we consider, it turns out that the constraints are either
satisfied by any requirements vector (e.g. f1 < f2) or they can be formulated as
a bound on fn. A constraint can be rearranged as a bound on fn if an,j 
= 0.
In case an,j < 0, a constraint yields an upper bound while a constraint yields a



Vertex-Weighted Graphs: Realizable and Unrealizable Domains 323

lower bound if an,j > 0. We define LB to be the largest lower bound and UB to
be the smallest upper bound1 (it must hold that LB < UB). As a consequence,
we showed that the weights which we found realize f based on G and that the
weights are non-negative as long as LB ≤ fn ≤ UB.

This approach allows us to restrict our attention to the definition of range
domains, which is easier to manipulate and use than realization domains. Sub-
sequently, our strategy is based on seeking specific graphs that turn out to be
useful as realization graphs, and finding explicit expressions for UB and LB for
those graphs.

4 Realizable Domains of D U
n,k

In Sect. 2, we deduce a pattern that a graph must have if it realizes a vector
f ∈ D U

n,k. In this section, we describe realizable domains based on this pattern.
Let GU

n,k be the set of all graphs that realize some vector f ∈ D U
n,k. For a

graph G ∈ GU
n,k, V (G) contains the subsets X,Y,Z and W , but several aspects

of G are not specified by Theorem 4, e.g., the connectivity of vertices in Z and
W .

To describe domains, we first define domain families that are based on sub-
families of GU

n,k. The sub-families are (mostly) characterized by constraints on
the size of X,Y,Z and W . Second, we define domains that are useful for the
following section. Here, we specify the vertex labelling as well as the connectivity
of vertices in W and Z. Note that, the sets Y and W do not have to contain all
of the small requirements: An even sub-sequence can be realized in a separate
component, e.g., with a matching graph.

We use the notation NU (i) for the neighbourhood of vertex i ∈ V (G) inter-
sected with U ⊆ V (G), and δU (i) � |NU (i)|. For vertices i, j ∈ V (G) we use a
binary indicator variable: Ii,j(G) = 1 if and only if i and j are adjacent in G.

In the extended abstract, we only present one domain family and one domain
based on it.

The Windmill Family. The first family G��
n,k ⊆ GU

n,k is called the windmill
family. It contains all graphs such that (i) |Y | = |Z| = 1, (ii) for i ∈ W ,
NW (i) = χ(i), and (iii) i and n are not adjacent. Let Y = {y} and Z = {z}
where fy and fz can be any small and large requirement, respectively. Vertex z
can be adjacent to any i ∈ W and n. The remaining small and large requirements
are contained in W and X, respectively. For a vertex i ∈ X, N(i) = {ϕ(i), n},
and N(y) = {z, n}. Figure 3 presents the layout of graphs in G��

n,k.

1 The lower and upper bound depend on f , i.e., LB(f),UB(f).
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n

y

z...
...

Fig. 3. Layout of a graph in the windmill family. The dashed edges are optional.

Let G ∈ G��
n,k. We show that Dreal(G, f) can be defined in terms of bounds

on fn. To state the bound, let μ = min {i ∈ W : Ii,z(G) = 1} ,

c��(G) =
∑

i∈W Ii,z(G)Iχ(i),z(G) + 2Iz,n(G) + |X|, and

Δ��(G, f) � −∑
i∈W Iχ(i),z(G) · fi − (Iz,n(G) + |X|) · fy +

∑
i∈X fi + fz.

Theorem 5. Let n, k be odd integer such that n ≥ 5 and k ≤ n−4. Requirement
vector f ∈ D U

n,k can be realized based on graph G ∈ G��
n,k if

Δ��(G, f) ≤ fn ≤ Δ��(G, f) + c��(G) · fμ.

Note that 0 < c��(G) and that we can assign any of the large requirements to z
and get the same lower and upper bounds. The proof of Theorem 5 is presented
in the full version. It is based on the outline in Sect. 3.

Useful Domains. We set up domains based on the families. Besides showing
that parts of D U

n,k can be realized, this serves towards the goal of showing that
there is at least one interval for fn where f ∈ D U

n,k cannot be realized (in Sect. 5).
This unrealizable interval has the same lower bound as the domain D U

n,k. To find
the upper bound of this interval, we need to find the realizable domain of D U

n,k

which has the smallest lower bound.
One such domain is denoted DDW1

n,k , and it is based on the graph GDW1
n,k ∈ G��

n,k

where Y = {k} and W = {1, . . . , k − 1}. Vertex z is adjacent to all vertices in
W and to vertex n.

Theorem 6. Let n, k be odd integer such that n ≥ 5 and k ≤ n − 4. f ∈ DDW1
n,k

can be realized.

In the full version, we present two more domain families. Moreover, we define
the domains DKC1

n,k ,DKC2
n,k and DKC+

n,k which are, in addition to DDW1
n,k , candidates

for the smallest lower bound in D U
n,k.
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5 Unrealizable Domains of D U
n,k

In this section, we show that parts of D U
n,k cannot be realized. In [5] it was shown

that a vector f ∈ D U
n,1 cannot be realized. For k ≥ 3, there are f ∈ D U

n,k which
can be realized, e.g., f ∈ DDW1

n,k . However, we can state that f ∈ D U
n,k cannot be

realized based on graph GDW1
n,k if fn < δ DW1

n,k (f)+
∑n−1

i=k+1 fi, The next theorem
shows that there is an interval for fn that cannot be realized based on any
graph. This unrealizable interval has the lower bound of D U

n,k as a left border.
The right border, denoted η(f), is the smallest, lower bound of the domains
DDW1

n,k ,DKC1
n,k ,DKC2

n,k or DKC+

n,k , i.e.,

η(f) = min{LB(DDW1
n,k , f),LB(DKC1

n,k , f),LB(DKC2
n,k , f),LB(DKC+

n,k , f)}.

The relations between the requirements f1, . . . , fk determine which lower bound
is the smallest. See Fig. 4 for an illustration.

The proof of Theorem 7 relies on the results of Sect. 2 which we use to derive
an upper bound on the sum of the large requirements. Eventually, this upper
bound will contradict Eq. (5). The proof is presented in the full version of the
paper.

fn

n−1
i=k+1 fi − (n − k − 1)fk

DM
n,k−1D U

n,k

n−1
i=1 fi − fk+1

DM
n,k+1

DKC2
n,k

DDW1
n,k

DKC+
n,k

η + n−1
i=k+1 fi

Fig. 4. The figure shows D U
n,k and a possible placement of the domains DKC2

n,k , DDW1
n,k

and DKC+

n,k . Theorem 7 shows that the red interval cannot be realized.

Theorem 7. Let n, k be odd integers such that n ≥ 7 and 3 ≤ k ≤ n − 4. A
vector f ∈ D U

n,k cannot be realized if

fn < η(f) +
∑n−1

i=k+1 fi. (5)

6 Conclusion

Based on [5,7], we advanced the understanding of theWeighted Graph Real-

ization problem. Our analysis concentrates on the domains D U
n,k. We show that

a graph which realizes a vector f ∈ D U
n,k must conform to a pattern, which

lead us to discovering realizable subdomains and, qualitatively more important,
enabled us to show that parts of the domains cannot be realized. Note that our
positive results are based on constructive proofs. The full characterization for
any odd n remains an open problem.

Additionally, [5] initiates studying vertex weighted realizations on specific
graph classes, by giving full characterizations for paths and acyclic graphs.
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Abstract. We propose a new representation of k-partite, k-uniform
hypergraphs (i.e. a hypergraph with a partition of vertices into k parts
such that each hyperedge contains exactly one vertex of each type; we
call them k-hypergraphs for short) by a finite set P of points in R

d

and a parameter � ≤ d − 1. Each point in P is covered by k =
(

d
�

)

many axis-aligned affine �-dimensional subspaces of Rd, which we call �-
subspaces for brevity. We interpret each point in P as a hyperedge that
contains each of the covering �-subspaces as a vertex. The class of (d, �)-
hypergraphs is the class of k-hypergraphs that can be represented in this
way, where k =

(
d
�

)
. The resulting classes of hypergraphs are fairly rich:

Every k-hypergraph is a (k, k−1)-hypergraph. On the other hand, (d, �)-
hypergraphs form a proper subclass of the class of all

(
d
�

)
-hypergraphs

for � < d − 1.
In this paper we give a natural structural characterization of (d, �)-

hypergraphs based on vertex cuts. This characterization leads to a
polynomial-time recognition algorithm that decides for a given

(
d
�

)
-

hypergraph whether or not it is a (d, �)-hypergraph and that computes
a representation if existing. We assume that the dimension d is constant
and that the partitioning of the vertex set is prescribed.

1 Introduction

Motivation and Related Work. Geometric representations of graphs or hyper-
graphs is a wide and intensively studied field of research in particular in the
geometric context. Well-known examples are geometric intersection or incidence
graphs with a large body of literature [6,17,18]. The benefit of studying geo-
metric graph representations is two-fold. On the one hand, knowing that a given
graph can be represented geometrically may give new insights because the geo-
metric perspective is often more intuitive. On the other hand, giving a graphical
characterization for certain types of geometric objects may help pin down the
essential combinatorial properties that can be exploited in the geometric setting.

One example of this interplay is the study of geometric set cover and hitting
set problems [2,3,19]. In this important branch of geometric optimization, inci-
dence relations of two types of geometric objects are studied where one object
type is represented by vertices of a hypergraph whose hyperedges are, in turn,
represented by the other object type. In this representation a vertex is contained
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in a hyperedge if and only if the corresponding geometric objects have a certain
geometric relation such as containment or intersection. The objective is to find
the minimum number of nodes hitting all hyperedges.1 In this line of research,
the goal is to exploit the geometry in order to improve upon the state of the
art for general hypergraphs. This is known to be surprisingly challenging even
in many seemingly elementary settings.

For example, in the well-studied point line cover problem [12,15] we are
given a set of points in the plane and a set of lines. The goal is to identify a
smallest subset of the lines to cover all the points. This problem can be cast as a
hypergraph vertex cover problem. Points can be viewed as hyperedges containing
the incident lines as vertices. The objective is to cover all the hyperedges by the
smallest number of vertices.

It seems quite clear that point line cover instances form a heavily restricted
subclass of general hypergraph vertex cover. For example, they have the natural
intersection property that two lines can intersect in at most one point. How-
ever, somewhat surprisingly, in terms of approximation algorithms, no worst-
case result improving the ratios for general hypergraph vertex cover [1,5,11] is
known. In fact, it has been shown that merely exploiting the above intersec-
tion property in the hypergraph vertex cover is not sufficient to give improved
approximations [16]. Giving a simple combinatorial characterization of the point
line cover instances seems to be challenging.

In this paper, we study a representation of hypergraphs that arises from
a natural variant of point line cover where we want to cover a given set P
of points in R

d by axis-parallel lines, see Fig. 1 for an illustration. While the
axis-parallel case of point line cover has been considered before [10] the known
algorithms do not improve upon the general case of hypergraph vertex cover [1,
5]. More generally, we investigate the generalization where we are additionally
given a parameter � ≤ d − 1 and we would like to cover P by axis-aligned
affine �-dimensional subspaces of Rd, which we call �-subspaces. The resulting
classes of hypergraphs is fairly rich as any k-partite k-uniform hypergraph (i.e.
a hypergraph with a partition of vertices into k parts such that each hyperedge
contains exactly one vertex of each type) can be represented by a set of points
in R

k to be covered by (k − 1)-subspaces. On the other hand for � < d − 1 we
obtain proper subclasses of all k-hypergraphs.

We remark that our representation does not exploit the geometry of the
Euclidean R

d. Rather, the representation can also be considered on a hypercube
Xd for some set X where subspaces are subsets of Xd fixing certain coordinates.
We feel that the usage of the geometric language is more intuitive.

Related Work. The question of representing (hyper-)graphs geometrically is
related to the area of graph drawing. For example, Evans et al. [8] study drawing
hypergraphs in 3D by representing vertices as points and hyperedges as convex

1 For the sake of presentation, we use here the representation as hitting set problem
rather than the equivalent and maybe more common geometric set cover interpreta-
tion.
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Fig. 1. A graph (a) and a hypergraph (b) and their representations in 2D and 3D,
respectively.

polygons while preserving incidence relations. Note that in our work we study
the “dual” where hyperedges are represented as points and vertices are rep-
resented as axis-parallel lines or affine subspaces. Another related problem in
graph drawing has been introduced by Chaplick et al. [4]. They study drawings
of graphs on the plane or in higher dimension so that the vertices (and the edges
in some variants) of the graph can be covered by a minimum number of lines or
hyperplanes.

Our Contribution and Outlook. To the best of our knowledge, we are the first to
study the representation of k-hypergraphs via axis-aligned point subspace cover
instances in this generality. Our main insight is that the axis-aligned case of point
subspace cover allows for a natural, combinatorial characterization contrasting
what is known for the non-aligned (see discussion above). The characterization
is based on vertex cuts and can be leveraged to obtain a polynomial time recog-
nition algorithm for such hypergraphs assuming the dimension d is a constant
and that we are given the partition of the vertices (which is NP-hard to compute
for k ≥ 3 [14]).

We believe that it is an interesting research direction to exploit these com-
binatorial properties in order to obtain improved results for various optimiza-
tion problems in hypergraphs such as hypergraph vertex cover or hypergraph
matching. We also hope that our combinatorial characterization may help make
progress on geometric problems. We conclude our paper by an outlook containing
related open questions and some first small motivating results in this direction.

2 Point Line Cover and Hypergraph Representation

For the sake of an easier presentation, we first describe the result for the special
case of point line covers, that is, for (d, 1)-hypergraphs. We later describe how the
result generalizes to higher-dimensional axis-aligned affine subspaces. Generally,
we use d, � to denote the dimensions of the (sub-)space and k =

(
d
�

)
to denote

the number of parts in the corresponding hypergraph. For the special case of
point line cover considered in this section we have k = d.
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Let P be a finite set of points in R
k. We define the k-hypergraph GP as

follows. The vertex set of GP is the set of axis-parallel lines containing at least
one point in P . The hyperedges in GP correspond to the points in P where the
hyperedge corresponding to some p ∈ P contains the k axis-parallel lines incident
on p as vertices. Note that GP is k-partite and k-uniform (that is GP is a k-
hypergraph) where the k parts of the partition correspond to the k dimensions.

Our main task is to decide for a given hypergraph G whether there is a point
line cover instance P such that G and GP are isomorphic. We say that G is
represented by P and, thus, representable. We assume that the partition of G
into k parts is given.

More formally, we want to compute for a given k-hypergraph G = (V = V1 ∪
V2∪, . . . ,∪Vk, E) a point line cover instance P such that each e = (v1, . . . , vk) ∈
E corresponds to some pe = (xe

1, . . . , x
e
k) ∈ P and where vi ∈ Vi corresponds to

the line �vi that is parallel to the i-th coordinate axis and contains pe, that is,
for all j �= i, we fix the coordinates xe

j , j �= i whereas the ith coordinate is free,
see Fig. 1 for examples.

We remark that every bipartite graph is representable in R
2 because we can

derive a grid-like representation as shown in Fig. 1a directly from the adjacency
matrix of this graph. However, for k ≥ 3 the class of (k, 1)-hypergraphs forms a
non-trivial subclass of all k-hypergraphs.

3 Characterization of Representable Hypergraphs

We use the notation [k] = {1, . . . , k} for k ∈ N. Let G = (V = V1 ∪ · · · ∪ Vk, E)
be a k-hypergraph.

Definition 1. Let s, t ∈ V . An s–t path is a sequence of vertices s = v1, . . . , vr =
t such that vi and vi+1 are both contained in some hyperedge e ∈ E for all
i ∈ [r − 1]. Similarly, if e, e′ ∈ E then an e–e′ path is a v–v′ path such that v ∈ e
and v′ ∈ e′.

The following two separability conditions based on vertex cuts are key for
our characterization.

Definition 2 (Vertex separability). For a given k-hypergraph G we say that
two distinct vertices v and v′ from the same part Vi, i ∈ [k] are separable if there
exists some j ∈ [k] with j �= i such that every v–v′ path contains a vertex in Vj.
(Informally, removing Vj from the vertex set and from the edges separates v and
v′.) A hypergraph is called vertex-separable if every two vertices from the same
part are separable.

Definition 3 (Edge separability). For a given k-hypergraph G we say that
two distinct hyperedges e and e′ are separable if there exists some j ∈ [k] such
that every e–e′ path contains a vertex in Vj. A hypergraph is called edge-separable
if every two hyperedges are separable.

Note that any pair of hyperedges sharing two or more vertices are not separable.
Therefore, edge-separable hypergraphs do not contain such hyperedge pairs.
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Fig. 2. A hypergraph G (on the left) that is edge-separable, but not vertex-separable
(the vertices v and v′ from V2 are not separable). In a hypothetical representation of G

(on the right), the line �v′
must simultaneously intersect �u′

and �w′
and therefore must

be equal to �v—a contradiction. (Color figure online)

Lemma 1. For any given k-hypergraph, vertex separability implies edge separa-
bility.

Proof. Assume that a given k-hypergraph G is not edge-separable. This means
that there are two distinct hyperedges e and e′ that are not separable. Then
∀j ∈ [k] there is an e–e′ path that does not contain a vertex from Vj . Because
e and e′ are distinct, there are distinct vertices v and v′ with v ∈ e and v′ ∈ e′

from the same part Vi for some i ∈ [k]. Now, for each j ∈ [k], j �= i there exists
an e–e′ path πj that does not contain any vertex from Vj . But then v, πj , v

′

forms a v–v′ path not containing any vertex from Vj . This means that G is not
vertex-separable. �	

The converse is not true, see Fig. 2. In the instance depicted, the two red
edges containing v,u and u′, v′ or the two black edges containing v, w and w′,
v′, for example, are separated by removing the blue vertex part V2 (which we
can not do to show that vertices v and v′ are separable).

Definition 4. Let G be a k-hypergraph. For each i ∈ [k] we construct a graph
Gi = (E,Ei) as follows: e and e′ ∈ E are adjacent if and only if e and e′ have
a common vertex in a part Vj with j �= i.

In the following theorem we state our characterization of k-hypergraphs rep-
resentable by point line covers via vertex separability.

Theorem 1. A k-hypergraph G is representable if and only if it is vertex-
separable.

Proof. We construct for each hyperedge e a point pe ∈ R
k and for each vertex

vi ∈ Vi with i ∈ [k] a line �vi ⊆ R
k that is parallel to the xi-axis. We do

this as follows. For G we construct the graphs Gi, i ∈ [k]. For each graph Gi,
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i ∈ [k] we consider the connected components of Gi and assign to each connected
component a unique (integer) value in {1, 2, . . . , |V (Gi)|}.

Now, if pe
i is the value of the connected component in Gi that contains e

then we let the point pe = (pe
1, . . . , p

e
k) represent the hyperedge e, see Fig. 3 for

an example.
Recall that any line parallel to the xi-axis can be defined by fixing its

xj-coordinate for all j �= i, while leaving xi free. Now, if the hyperedge
e = {v1, . . . , vk} is represented by pe = (pe

1, . . . , p
e
k) then for each i ∈ [k], the line

�vi that represents the vertex vi is defined by coordinates pe
j , j �= i while leaving

the xi-coordinate free, see Fig. 3. It is important to note, that the representation
�vi is well-defined although vi may be contained in multiple hyperedges in G.
This follows from the fact that all the hyperedges containing vi belong to the
same connected component in Gj , j ∈ [k], j �= i because each pair of them is
joined by some edge in Gj corresponding to vi and in particular these hyperedges
form a clique. Therefore, there is no disagreement in the xj-coordinate where
j �= i. Hence, we uniquely define the coordinates that determine a line.

(⇐) Assume that G is vertex-separable. By the construction of the point line
cover instance we have:

– every point pe is in fact covered by the lines �v1 , . . . , �vk where e =
{v1, . . . , vk}, because by construction every line �vi and point pe have the
same xj-coordinate with j �= i.

– ∀v �= v′ ∈ V it holds that �v �= �v′
. This is obviously true if vertices belong to

different parts, because then the free coordinate of v is fixed for v′ and vice
versa. If v, v′ ∈ Vi for some i ∈ [k] then, by vertex separability, there exists
j �= i such that v and v′ are not connected in graph Gj and get different
xj-coordinates. So they represent distinct lines.

– ∀e �= e′ ∈ E it holds that pe �= pe′
. Indeed, by Lemma 1, G is edge-separable

and by definition of edge separability (see Def. 3) distinct hyperedges are not
connected in at least one graph Gi and get different xi-coordinates. So they
represent distinct points.

By the above construction, for every incident vertex-hyperedge pair v ∈ V, e ∈
E, that is, v ∈ e, the corresponding geometric objects �v and pe are incident as
well. We claim that if v and e are not incident, that is, v /∈ e then �v and pe

are not incident as well. This is because every point pe is already incident to
precisely k lines �v by construction, because the lines �v are pairwise distinct,
and because pe cannot be incident on more than k axis-parallel lines. Thus we
constructed a point line cover instance that represents the hypergraph G and
this means that G is representable.

(⇒) Assume that G is not vertex-separable but that it has a point line cover
representation. This means that it contains at least two distinct vertices v and
v′ from the same part Vi that are not separable. Then for each part Vj with
j �= i, there exists a v–v′ path v = v1, . . . , vr = v′ such that vt /∈ Vj for each
t ∈ [r]. All lines �vt with t ∈ [r] that represent the vertices v1, . . . , vr lie on the
same hyperplane Hj perpendicular to the xj-axis. This is because successive line
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Fig. 3. The graphs G1, G2, G3 and the coordinates of the points and lines correspond-
ing to the hyperedges and vertices. The dots instead of coordinates mean that those
coordinates are free.

pairs are joined by a common point (representing the hyperedge containing both)
and since none of these lines is parallel to the xj-axis and so the xj-coordinate
stays fixed. Since this holds for all j ∈ [k], j �= i, the lines �v and �v′

lie in the
intersection

⋂

j �=i

Hj . But the intersection of such hyperplanes is a single line. This

contradicts that v and v′ correspond to the distinct lines. �	
Note that our characterization in Theorem 1 directly gives rise to an efficient

recognition algorithm to check whether or not a given k-hypergraph is repre-
sentable. We check for every vertex pair from the same part whether they are
vertex-separable.

Below we give an algorithm to actually compute a representation for a given
k-hypergraph (or output that a representation does not exist). The algorithm is
an algorithmic implementation of the construction used in the proof Theorem 1
to recover a representation from a given (representable) k-hypergraph.

Computing a Representation. For each i ∈ [k] we compute a graph Gi as in
Definition 4. We use the construction from the proof of Theorem 1 to assign
the coordinates for all points and lines (using connected components of Gi).
In particular, we uniquely number the connected components of each graph
Gi, i ∈ [k]. Then for any hyperedge e we construct the point pe whose i-th
coordinate is the number of the connected component containing e in Gi. Based
on the representation of the hyperedges we can easily obtain the representation
of the vertices as lines as well. To verify if the resulting candidate representation
is in fact valid, we have to check if any two points pe, pe′

representing distinct
hyperedges e, e′ are in fact distinct, that is, differ in at least one coordinate.
Similarly, we have to check distinctness of the lines. If this is the case then
the hypergraph G is representable and we get the point line cover instance
corresponding to G.

Constructing a point line cover instance for a given hypergraph can be done
in O(k ·m2), where m is the number of hyperedges. Checking distinctness of the
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vertex and edge representation takes O(k·(m log m+n log n)) using lexicographic
sorting, where n is the number of vertices. In total the runtime of the algorithm
is O(k · (m2 + n log n)).

4 Generalization to Point Subspace Cover

In this section, we generalize the previous result for (d, 1)-hypergraphs to the gen-
eral case of (d, �)-hypergraphs. That is, we want to characterize k-hypergraphs
(where k =

(
d
�

)
) that are representable as sets of points in R

d covered by �-
dimensional axis-aligned subspaces where 1 ≤ � ≤ d − 1 and d ≥ 2. Notice that
such an axis-aligned subspace is equal to the set of d-dimensional vectors for
which d − � coordinates are fixed and � coordinates are free. Note that in the
case � = d − 1 every k-hypergraph is representable analogously to the case of
bipartite graphs each of which is representable in dimension two. This follows
immediately from our characterization below but can also be seen in a direct
way analogously to the two-dimensional setting.

For each � ≤ d − 1 the class of (d, �)-hypergraphs forms a subclass of k-
hypergraphs (where k =

(
d
�

)
). Every part of the vertex partition in the hyper-

graph represents a set of �-subspaces that have the same free coordinates. In
what follows we assume that we know the labeling of the parts of the hyper-
graph. That is, we assume that for each part of the hypergraph we know to
which �-subset I of free coordinates this part corresponds; we write VI to denote
this correspondence. To this end, we guess the correct labeling in a brute force
fashion by checking all O(d�d�

) many labelings if it satisfies the characterization
for fixed labeling as described below.

The below definitions and proofs are natural generalizations of the ones for
(d, 1)-hypergraphs. In the case of � = 1 the idea of separability is related to
cutting the part Vj of the graph corresponding to some coordinate j ∈ [k]. The
key idea in the generalized setting is to cut instead all parts VI that contain
a specific coordinate j. Below, we give the full definitions and proofs, which
are along the lines of � = 1 but rather use the generalized concept of cuts and
separability.

Generalization of the Vertex Separability Property. Let
(
[d]
�

)
denote the family

of subsets of [d] of cardinality �. Note that there are exactly
(
d
�

)
such sets. For

a given
(
d
�

)
-hypergraph G and for all I ∈ (

[d]
�

)
we define the part VI to be a

set of subspaces, in which the coordinates with numbers from I are free. Now
we generalize the vertex separability property using the definition of a path
(Definition 1 from Sect. 3).

Definition 5 (Vertex separability). For a given
(
d
�

)
-hypergraph G two dis-

tinct vertices v and v′ from the same part VI where I ∈ (
[d]
�

)
are separable if

there exists a free coordinate j ∈ [d], that is not free in VI such that every v-v′

path contains a vertex in one of the
(
d−1
�−1

)
parts that share the free coordinate

j. (Informally, removing all those
(
d−1
�−1

)
parts from the vertex set and from the



336 O. Firman and J. Spoerhase

hyperedges separates v and v′.) A hypergraph is called vertex-separable if every
two vertices from the same part are separable.

In an analogous way we can generalize edge separability and Lemma 1 that
vertex separability implies edge separability.

Definition 6 (Edge separability). For a given
(
d
�

)
-hypergraph G two distinct

hyperedges e and e′ are separable if there exists a free coordinate j ∈ [d] such
that every e–e′ path contains a vertex in one of the

(
d−1
�−1

)
parts that share the

free coordinate j. A hypergraph is called edge-separable if every two hyperedges
are separable.

Lemma 2. For any given
(
d
�

)
-hypergraph where � ≤ d − 1, vertex separability

implies edge separability.

Proof. Assume that a given
(
d
�

)
-hypergraph G is not edge-separable. This means

that there are two distinct hyperedges e and e′ that are not separable. Then
∀j ∈ [d] there is an e–e′ path that does not contain a vertex from any of the(
d−1
�−1

)
parts that share the free coordinate j. Because e and e′ are distinct, there

are distinct vertices v and v′ with v ∈ e and v′ ∈ e′ from the same part VI for
some I ∈ (

[d]
�

)
. Now, for each j ∈ [d], that is not free in VI , there exists an e–e′

path πj that does not contain a vertex from any of the
(
d−1
�−1

)
parts that share the

free coordinate j. But then v, πj , v
′ forms a v–v′ path not containing a vertex

from any of the mentioned parts. This means that G is not vertex-separable.

As was already mentioned in the previous section, the converse is not true,
see Fig. 2.

Definition 7. For a
(
d
�

)
-hypergraph G we construct a graph Gi = (E,Ei) for

each i ∈ [d] as follows: e and e′ ∈ E are adjacent iff e and e′ have a common
vertex in a part VI where I ∈ (

[d]
�

)
and i /∈ I.

Theorem 2. A
(
d
�

)
-hypergraph G is representable if and only if it is vertex-

separable.

Proof. The proof is a natural generalization of the proof for line case.
We construct for each hyperedge e a point pe ∈ R

d and for each vertex
vI ∈ VI with I ∈ (

[d]
�

)
a subspace �vI ∈ R

d that is parallel to all xi-axis where
i ∈ I. We do this as follows. For G we construct the graphs Gi, i ∈ [d]. For each
graph Gi we consider the connected components of the graph and assign to each
of them a unique (integer) value.

Now, if pe
i is the value of the connected component in Gi that contains e

then we let the point pe = (pe
1, . . . , p

e
d) represent the hyperedge e, see Fig. 3 for

an example.
Recall that any subspace parallel to all xi-axis where i ∈ I can be defined

by fixing its xj-coordinate j �= i, while leaving xi coordinates free. Now, if the
hyperedge e = {vI} for all I ∈ (

[d]
�

)
is represented by pe = (pe

1, . . . , p
e
d) then
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for each I ∈ (
[d]
�

)
, the subspace �vI that represents the vertex vI is defined by

coordinates pe
j , j /∈ I while leaving the xi-coordinates free. It is important to

note, that the representation �vI is well-defined although vI may be contained
in multiple hyperedges in G. This follows from the fact that all the hyperedges
containing vI belong to the same connected component in Gj , j ∈ [d] because
each pair of them is joined by some edge in Gj corresponding to vI and in
particular these hyperedges form a clique. Therefore, there is no disagreement
in the xj-coordinate where j �= i for all i ∈ I. Hence, we uniquely define the
coordinates that determine a subspace.

(⇐) Assume that G is vertex-separable. By the construction of the point
subspace cover instance we have:

1. every point pe is in fact covered by the lines �vI where e = {vI} for all
I ∈ (

[d]
�

)
. This is because by construction every line �vI and point pe have the

same xj-coordinate with j /∈ I.
2. ∀v �= v′ ∈ V it holds that �v �= �v′

. This is obviously true if vertices belong to
different parts, because then there exist at least one free coordinate of v that
is fixed for v′ and vice versa. If v, v′ ∈ VI for some I ∈ (

[d]
�

)
then, by vertex

separability, there exists j /∈ I such that v and v′ are not connected in graph
Gj and get different xj-coordinates. So they represent distinct subspaces.

3. ∀e �= e′ ∈ E it holds that pe �= pe′
. Indeed, by Lemma 2, G is edge-separable

and by the definition of edge separability (see Def. 6) distinct hyperedges are
not connected in at least one graph Gi and get different xi-coordinates. So
they represent distinct points.

By the above construction, for every incident vertex-hyperedge pair v ∈ V, e ∈
E, that is, v ∈ e, the corresponding geometric objects �v and pe are incident as
well. We claim that if v and e are not incident, that is, v /∈ e then �v and pe are
not incident as well. This is because every point pe is already incident to precisely(
d
�

)
subspaces �v by construction, because the subspaces �v are pairwise distinct,

and because pe cannot be incident on more than
(
d
�

)
axis-parallel subspaces. Thus

we constructed a point subspace cover instance that represents the hypergraph
G and this means that G is representable.

(⇒) Assume that G is not vertex-separable but that it has a point subspace
cover representation. This means that it contains at least two distinct vertices v
and v′ from the same part VI that are not separable. Then for each coordinate
j /∈ I, there exists a v-v′ path such that none of the vertices on this path has
j as a free coordinate. All subspaces that represent the vertices from the path
lie in the same hyperplane Hj perpendicular to the xj-axis, i.e. xj-coordinate is
fixed and all others are free. This is because successive subspace pairs are joined
by a common point (representing the hyperedge containing both). Since none
of these subspaces is parallel to the xj-axis the xj-coordinate stays fixed. Since
this holds for all j ∈ [d], such that j /∈ I, the subspaces �v and �v′

lie in the
intersection

⋂

j /∈I

Hj . But the intersection of such hyperplanes is a single subspace

that has all coordinates i ∈ I free. This contradicts that v and v′ correspond to
the distinct subspaces. �	
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Analogously to (d, 1)-case the above proof leads directly to an algorithm
computing a representation (or notifying about non-existence). A naive imple-
mentation of this algorithm gives a running time of O(d�d�+2(m2+n log n)) where
the exponential factor in d comes from guessing the labeling of the parts. It is a
very interesting question if the exponential dependence on d can be removed to
get a polynomial algorithm also for non-constant d.

5 Conclusion and Outlook

There is a large body of literature in algorithms and graph theory on hypergraph
problems. This motivates various future research directions, which we discuss in
the full version [9].

1. Can the structure of (d, �)-hypergraphs be leveraged in (optimization) prob-
lems for hypergraphs such as matching or vertex cover?

2. What is the relation to other classes of hypergraphs (for example geometri-
cally representable hypergraphs)?

For example, maximum matching in k-hypergraphs is a very well-studied prob-
lem still exhibiting large gaps in our current understanding [7,13]. Another
example is hypergraph vertex cover for which tight approximability results are
known [11] on general k-hypergraphs. While the problem has been considered
on (k, 1)-hypergraphs before [10] (from the geometric perspective of point-line
covering) no improvement upon the general case is known. We hope that our
structural characterization can help obtaining such improvements. In the full
version [9], we state some first small results opening up these lines of research,
namely we showed that matching on (3,1)-hypergraphs is NP-hard and con-
sidered the relation of (d, 1)-hypergraphs to point line cover representations on
the plane where we drop the requirement of axis-alignment. We hope that our
structural characterization helps make progress on these questions.
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Abstract. We introduce a variant of the graph coloring problem, which
we denote as Budgeted Coloring Problem (BCP). Given a graph
G, an integer c and an ordered list of integers {b1, b2, . . . , bc}, BCP asks
whether there exists a proper coloring of G where the i-th color is used to
color at most bi many vertices. This problem generalizes two well-studied
graph coloring problems, Bounded Coloring Problem (BoCP) and
Equitable Coloring Problem (ECP), and as in the case of other col-
oring problems, BCP is NP-hard even for constant values of c. So we
study BCP under the paradigm of parameterized complexity, particu-
larly with respect to (structural) parameters that specify how far (the
deletion distance) the input graph is from a tractable graph class.

– We show that BCP is FPT (fixed-parameter tractable) parameter-
ized by the vertex cover size. This generalizes a similar result for
ECP and immediately extends to the BoCP, which was earlier not
known.

– We show that BCP is polynomial time solvable for cluster graphs
generalizing a similar result for ECP. However, we show that BCP

is FPT, but unlikely to have polynomial kernel, when parameterized
by the deletion distance to clique, contrasting the linear kernel for
ECP for the same parameter.

– While the BoCP is known to be polynomial time solvable on split
graphs, we show that BCP is NP-hard on split graphs. We also show
that BCP is NP-hard on co-cluster graphs, contrasting the polyno-
mial time algorithm for ECP and BoCP.

Finally we present an O∗(2|V (G)|) algorithm for the BCP, generalizing
the known algorithm with a similar bound for the standard chromatic
number.
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1 Introduction

A proper vertex coloring of a graph G is an assignment ϕ : V (G) −→ [c], of
colors to its vertices such that, for any edge (u, v) ∈ E(G), ϕ(u) �= ϕ(v), here
[c] = {1, 2, 3, · · · , c}. Minimum number of colors used by any proper coloring of
G is the chromatic number of G and denoted by χ(G). For any proper coloring
ϕ, we denote the set of vertices which gets color i by Vi, formally Vi = {v ∈
V (G)|ϕ(v) = i}.

We introduce a generalization of a well-studied variant called Bounded Col-

oring Problem (BoCP) which asks for a proper coloring of G with each |Vi|
bounded by a given constant d. One motivation comes from the problem Bin

Packing Problem with Conflicts (BPPC) [9]. Here we are given a set of
n unit sized objects to be packed into at most c bins of size at most d each,
except that some pairs of objects can not be placed in the same bin. This con-
flict information can be captured by a conflict graph and the problem is exactly
an instance of BoCP. We consider a natural generalization where the bins have
different, but given, sizes. The associated graph coloring problem which we call
Budgeted Coloring Problem (BCP) is as follows.

Budgeted Coloring Problem (BCP)
Input: An undirected graph G(V,E), an integer c and an ordered list
B = {b1, b2, . . . , bc}
Question: Does there exist a proper coloring ϕ : V (G) → [c] of G such
that |Vi| ≤ bi for all 1 ≤ i ≤ c?

Given G and B we denote any proper coloring ϕ of G a proper budgeted

coloring if |Vi| ≤ bi for all 1 ≤ i ≤ c. BCP also generalizes another well-
studied variant, the Equitable Coloring Problem (ECP). Given a graph G
and an integer c, ECP asks whether G can be colored with c colors such that
for each i, |Vi| = �∗�n

c or |Vi| = 	∗
n
c .

As coloring is hard even when c is 3 for general graphs [15], we can rule out
any fixed parameter tractable (FPT) algorithm parameterized by the number of
colors for BCP for general graphs. In this paper, we study the complexity of
BCP for restricted graph classes and present FPT algorithms parameterized by
some structural parameters.

Throughout the paper, we denote the number of colors by c. We follow the
symbols and notations of graph theory and parameterized complexity theory as
in the textbooks [11] and [10], respectively. A detailed description of notations
used in the paper, definition of different graph classes, graph parameters and
proof of lemmas marked with � can be found in the full arXiv version [2].

It follows from the definition of BoCP that for the graph classes for which
BCP has a polynomial time or fixed-parameter tractable algorithms, BoCP also
has a similar algorithm. On the other hand, if BoCP is NP-hard (W[i]-hard for
a parameter) on a graph class then BCP is NP-hard (W[i]-hard for the same
parameter) too. The following extension is not obvious though not difficult.
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Lemma 1. �1 If there exists an algorithm to solve BCP for a graph class G
with respect to some parameter k in time f(k, |V (G)|), then we can solve ECP

in time f(k, |V (G)|) for any graph G ∈ G.
The following two corollaries are immediate from Lemma 1.

Corollary 1. If for some graph class G (and a parameter k), BCP is polynomial
time (FPT for the parameter k) then BoCP and ECP are also polynomial time
(FPT for the same parameter respectively) for G.
Corollary 2. If for some graph class G (and a parameter k), BoCP or ECP is
NP-hard (W[i]-hard for the parameter k), then BCP is NP-hard (W[i]-hard for
the same parameter respectively) for G.

It follows from Corollary 2 that BCP is NP-hard on interval graphs and co-
graphs as ECP is NP-hard on these class of graphs [16]. Similarly as ECP is W[1]-
hard on bounded treewidth graphs [12], BCP is also W[1]-hard parameterized
by treewidth.

Table 1. Summary of Results in Different Graph Classes; Results marked with � are
in this paper.

Graph
Class

Chromatic
Number

Equitable
Coloring

Bounded
Coloring

Budgeted
Coloring

Bipartite Polynomial
Time

NP-hard even for
three colors �

NP-hard even for
three colors [4]

NP-hard even for
three colors

Cluster Polynomial
Time

Polynomial Time
[16]

Polynomial Time Polynomial Time�

Split Polynomial
Time

OPEN Polynomial Time
[6]

NP-hard �

Co-Cluster Polynomial
Time

Polynomial Time Polynomial Time NP-hard �

Our Results: In this paper, we first show NP-hard and polynomial time results
for BCP in some graph classes. For the most part, we design fixed-parameter
tractable algorithms parameterized by cluster vertex deletion set size (i.e. min-
imum number of vertices whose removal makes the graph a cluster graph – a
collection of cliques) and vertex cover size. The results (including previously
known results on ECP and BoCP, for contrast) are summarized in Table 1 and
Table 2. We also give an O∗(2|V (G)|)2 exact algorithm for the problem gener-
alizing the known algorithm with a similar bound for the standard chromatic
number.

1 Proofs of results marked � are in the full arXiv version [2].
2 O∗ hides the polynomial factor of the input size.
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Table 2. Summary of Results in Parameterized Setting; Results marked � are in this
paper.

Parameters Chromatic
Number

Equitable
Coloring

Bounded
Coloring

Budgeted
Coloring

Cluster Vertex Deletion
Number (CVD)

FPT FPT [16] OPEN OPEN

CVD + Number of
Colors

FPT FPT [16] FPT � FPT �

CVD + Number of
Clusters

FPT FPT [16] FPT � FPT �

Vertex Cover FPT [3] FPT [13] FPT � FPT �, Polynomial
kernel unlikely �

Distance to Clique FPT [17] Linear
Kernel [16]

FPT � FPT �, Polynomial
Kernel Unlikely �

2 On Special Graphs

In this section we derive the complexity of BCP on cluster graphs (a collection of
cliques) and co-cluster graphs (complete multipartite graphs), split graphs and
bipartite graphs. The result on cluster graphs will be used in the next section
when we generize to look at parameterization by cluster deletion set.

On Cluster and Co-Cluster Graphs. BCP is trivial on cliques as every
vertex should get distinct color. Though BCP can be solved in polynomial time
on cluster graphs by constructing a flow network [16], we provide a simpler and
faster algorithm proving the following lemma.

Lemma 2. � Let I = (G, c,B) be an instance of BCP where G is a cluster
graph with a set {K1,K2, · · · ,K�} of clusters sorted in non-increasing order of
their sizes. If I is a YES instance, then there exists a proper coloring of G where
the largest cluster K1 is colored with |V (K1)| colors having the largest |V (K1)|
budgets.

Lemma leads to a greedy algorithm (Algorithm 1 in the full arXiv version [2])
establishing the following theorem.

Theorem 1. BCP on the class of Cluster Graphs can be solved in polynomial
time.

A co-cluster graph is a complement of a cluster graph. While ECP is known
to be polynomial time solvable on co-cluster graphs, we are unable to extend our
polynomial time algorithm for cluster graphs, and the following theorem explains
why. We prove the following theorem by showing a reduction from 3-Partition
Problem.
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Theorem 2. �
BCP on Co-Cluster Graphs is NP-hard.

On Split Graphs. It is known that BoCP is polynomial-time solvable on the
class of Split Graphs [7]. Surprisingly it turns out that BCP is NP-hard on Split
Graphs. We give a reduction from the Dominating Set Problem and prove
the following theorem.

Theorem 3. The BCP is NP-hard on Split Graphs.

Proof. Let, I = (G, k) be an arbitrary instance of the Dominating Set Prob-

lem, where V (G) = {w1, w2, · · · , wn} and k ≤ n. We construct a BCP instance
I ′ = (G′, n,B), where G′ is a split graph as follows. V (G′) = C ∪ I, where
C = {u1, u2, . . . , un} be the clique and I = {v1, v2, . . . , vn} be the independent
set. E(G′) = E1∪E2, where E1 = {(ui, uj)| ∀i �= j} and E2 = {(ui, vj)|(wi, wj) /∈
E(G)}. The number of colors c is n, with budgets bi = n + 1 for i ∈ [k] and the
budget for the remaining colors is 1.

Next, we show that the graph G has a dominating set of size k if and
only if there exists a proper budgeted coloring of G′. Assume that the graph
G has a dominating set D of size k. Without loss of generality assume D =
{w1, w2, · · · , wk}. Color ui with color i where i ∈ [k]. As D is a dominating set
in G, each vertex in I is adjacent to some vertex d of D in G, and hence is
non-adjacent to that vertex in G′, and so can be colored with the color of d.
Thus we can color every vertex in I with the first k colors. Now, we have only
n − k uncolored vertices in C. Color them with the last n − k colors. Hence we
have a proper budgeted coloring of G′.

To prove the converse, note that in any proper budgeted coloring of G′, all n
colors must be used to color the vertices in C. Without loss of generality assume
that ui gets the color i, for i = 1 to n. Therefore the vertices in I are colored with
the first k colors (as only they have budgets more than 1). Thus ∪i∈[k]N(ui) = I.
Hence {w1, w2, . . . , wk} forms a dominating set in G. This completes the proof.
�

On Bipartite Graphs. It was known that the bounded coloring problem is
NP-hard on bipartite graphs when c ≥ 3 [4]. We extend this result for ECP

thus proving hardness for ECP as well as BCP (the later result follows from
Corollary 2).

Theorem 4. �
ECP on Bipartite Graphs is NP-hard even when c = 3.

3 Structural Parameterization of BCP

In this section, we address the parameterized complexity of BCP with respect
to some structural parameters, parameters that measure the (deletion) distance
to a tractable graph class. Formal definition of these parameters can be found
in the full arXiv version [2].
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3.1 BCP Parameterized by Cluster Vertex Deletion Number (CVD)

Recall from Sect. 2 that BCP is polynomial time solvable on cluster graphs. So,
here we ask what if the input graph is k-vertices away from a cluster graph i.e.,
deleting k vertices from the graph makes the graphs a cluster graph? We show
that BCP is FPT parameterized by k and an additional parameter which is the
number of colors or the number of clusters in the resulting graph.

Consider any instance of I = (G, c,B) of BCP. Let S be the cluster vertex
deletion set of G and P = {P1, P2, · · · , P�} be a partition of S. We remark
that we do not need to assume that we are given the deletion set S, as we
can find it in O∗(1.9102k) time [5]. Let α be any proper coloring of S such
that all vertices of Pi get the same color; i.e. for each part Pi and any two
vertices u, v ∈ Pi, α(u) = α(v). We define a new instance I ′ = (G, c,B,P, α) of
Extended Budgeted Coloring Problem (EBCP) as follows. Given I ′, the
EBCP asks whether there exists a proper budgeted coloring β of G such that
∀v ∈ S, β(v) = α(v). Without loss of generality assume that, in α for each i, Pi

is colored with color i. Though the following lemma follows from Lemma 1 and
Lemma 2 in [16], we give a slightly different proof in the full arXiv version [2]
just for completeness.

Lemma 3. � Given a partition P and its coloring α of cluster vertex deletion
set S, EBCP instance I ′ = (G, c,B,P, α) can be solved in polynomial time.

Let Γ be the number of colorings of S. Observe that |Γ | = ck. If (G, c,B) is
a YES instance of BCP then there must exist one coloring α ∈ Γ such that we
have a solution to the EBCP with respect to α. Thus from Lemma 3 we have
the following theorem.

Theorem 5. BCP parameterized by cluster vertex deletion number and the
number of colors can be solved in time O∗(ck), where c is the number of col-
ors and k is the cardinality of the cluster vertex deletion set.

Next, we prove that BCP is FPT parameterization by CVD and the number
of clusters in G \ S. Observe that the number of clusters can be significantly
smaller than the number of colors, for example when G \ S is a large clique.

Parameterization by CVD and the Number of Clusters. Let S be
the cluster vertex deletion set and d be the number of clusters in G − S.
Let P = {P1, P2, · · · , P�} be any partition of S into � independent sets, and
D = {d1, d2, · · · , d�} be any ordered list of integers such that 0 ≤ di ≤ d for
each i ∈ [�]. Without loss of generality assume |P1| ≥ |P2| ≥ · · · ≥ |P�|. For
any P, D we define γPD as follows. γPD(P1) be the least budgeted color with
budget at least |P1|+d1. We inductively define γPD(Pi) to be the least budgeted
color a with budget at least |Pi| + di such that for all j < i, γPD(Pj) �= a. If
there is no such a, we abandon (P,D). Observe that each color is assigned to
at most one part in a partition. We modify B and create a new list of bud-
gets BPD = {b′

1, b
′
2, · · · , b′

�} as follows. b′
a = |Pi| + di, if there exists a Pi
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such that γPD(Pi) = a and b′
a = ba otherwise. Let U be the set of all pairs

(P,D), where P be the all possible partition of S into independent sets and
D ∈ {0, 1, 2, · · · , d}|P|. Suppose we know the partition of S induced by a feasible
coloring and for each part in the partition, we also know the number of vertices
in V \ S that get the same color. Given these two informations we can design
a greedy algorithm to solve the problem in polynomial time using Lemma 3.
Towards that we prove the following lemma.

Lemma 4. I = (G, c,B) is a YES instance if and only if there exists at least one
(P∗,D∗) ∈ U such that IP∗D∗ = (G, c,BP∗D∗ ,P∗, γP∗D∗) is a YES instance.

Proof. Let us assume I is a YES instance of BCP i.e., there is a proper budgeted
coloring β of G. Without loss of generality, assume that we have used the first
� colors to color the vertices of S. Recall, Vi = {v| β(v) = i}. We define P ′ =
{P ′

1, P
′
2, · · · , P ′

�}, where P ′
i = Vi ∩ S. Define D′ = {d′

1, d
′
2, d

′
3, · · · d′

�} such that
d′

i = |Vi| − |P ′
i | and B′ = {b′

1, b
′
2, b

′
3, · · · , b′

c}, where b′
i = |Vi|, if i ∈ [�] and

b′
i = bi, otherwise. Observe that, (P ′,D′) ∈ U . As I is a YES instance, I ′ =

(G, c,B′,P ′, β) is also a YES instance of EBCP. Next we show that IP′D′ =
(G, c,B′,P ′, γP′D′) is a YES instance.

Observe that if for all 1 ≤ j ≤ �, γP′D′(P ′
j) = β(P ′

j) then nothing to prove.
Let P ′

j be the largest part in P ′ such that γP′D′(Pj) �= β(P ′
j). Let γP′D′(P ′

j) = x
and β(P ′

j) = y. By construction bx ≤ by. We can exchange colors x and y to
construct a new coloring β1 from β which is also a feasible coloring for I ′. In β1

one more part of S receives same color as γP′D′ . Thus applying the same step
at most � times we can create a feasible coloring β� such that for all 1 ≤ j ≤ �,
γP′D′(P ′

j) = β�(P ′
j). Thus proving IP′D′ is a YES instance.

For the converse, it is not hard to show that if IP,D, is a YES instance then
I is also a YES instance. �

As there can be kk many partitions of S and dk many choices of D, |U| =
O(dk ·2k log k). For each pair of (P,D) using Lemma 3, we can solve the problem
in polynomial time. Therefore we have the following theorem.

Theorem 6. BCP parameterized by k, the cluster vertex deletion number and
d, the number of clusters can be solved in time O∗(dk · 2k log k).

3.2 BCP Parameterized by the Distance to Clique

First, observe that when the number of clusters is one, the problem reduces to
the BCP parameterized by the distance to a clique. Thus from Theorem 6 we
get the following theorem as a corollary.

Theorem 7. BCP parameterized by the distance to clique can be solved in time
O∗(2k log k), where k is the size of clique modulator.

Next, we prove that there is no polynomial kernel for BCP parameterized
by the distance to clique under standard complexity theoretic assumptions. We
show a parameter preserving reduction from the clique problem (refer to the full



Structural Parameterizations of Budgeted Graph Coloring 347

arXiv version [2] for a formal definition) parameterized by vertex cover size. It
is known that the clique problem parameterized by vertex cover does not admit
a polynomial kernel unless NP ⊆ coNP/poly [3].

Theorem 8. BCP parameterized by the distance to clique does not admit a
polynomial kernel unless NP ⊆ coNP/poly.

Proof. Consider any instance of clique problem parameterized by vertex cover,
I = (G,X, �). Here G is a graph, X ⊆ V (G) is a vertex cover and we would like
to find out whether there exists a clique of size � in G. Parameter is k = |X|.
We construct the following instance I ′ = (Gc, n − � + 1,B) of BCP as follows.
Here Gc is the complement of G and we set the budgets as follows. First n − �
colors have budget one and the last color has budget �.

Next, we prove that G has a clique of size � if and only if I ′ admits a proper
budgeted coloring. Assume that G has a clique of size �. It is an independent set
in Gc, and use the color with budget � to color the independent set. There are
n − � colors with budget one and n − � vertices left to color. Color them with
all different colors. To prove the converse, assume I ′ is a YES instance. Observe
that sum of the budgets of the colors is exactly n. So, the color with budget �
has been entirely used, which forms an independent set of size � in Gc and hence
a clique in G.

Observe that as X is a vertex cover in G, V (G) \ X is an independent set
in G. Thus V (G) \ X is a clique in Gc and X is a clique modulator in Gc. This
completes the proof. �

3.3 Budgeted Graph Coloring Parameterized by the Vertex Cover
Size

In this section, we study the BCP on the class of graphs that are k vertices away
from an independent set, i.e. on graphs that have a k-sized vertex cover. Observe
that if a graph has a k-sized vertex cover, then it also has a k-sized CVD because
a vertex cover is also a CVD. Thus the FPT results of Sect. 3.1 follow for vertex
cover size as well. However, in this section, we give a stronger result by showing
that BCP is FPT parameterized just by vertex cover, independent of any other
parameter.

Let, (G, c,B) be an instance of the BCP where the graph G has a vertex
cover S of size k. So, I = V (G) \ S is an independent set. Note that we do not
need to assume that we are given S, as we can find S in O∗(1.2738k) time [8].

Our algorithm differs from the algorithm of Sect. 3.1 (Proof of Theorem 5)
in only the first step of coloring the vertices of S. Instead of trying all possible
colorings to color S in the first step, we apply a greedy method.

Let P = {P1, P2, P3, · · · , P�} be the partition of S, where � ≤ k, and each
part Pi is independent. For each part Pi, we define the set of feasible colors for
Pi by Fi where Fi = {j ∈ [c]|bj ≥ |Pi|}. Let Li be the set of least budgeted �
colors in Fi; if |Fi| ≤ �, we set Li = Fi.

Next we show that if there exist a proper budgeted coloring for G then there
exist a proper budgeted coloring where each Pi gets one of the colors from Li. We
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denote a coloring ϕ, a restricted proper budgeted coloring with respect
to P if for all Pi ∈ P any two vertices u, v ∈ Pi, ϕ(u) = ϕ(v).

Lemma 5. If there exists a restricted proper budgeted coloring of G with respect
to P, then there exists a restricted proper budgeted coloring where the vertices in
each partition Pi is colored with one of the colors in Li.

Pi

a

Vr
Vq

e′

d′

Fig. 1. Illustration of Lemma 5, color q and r are denoted by and • respectively
(Color figure online)

Proof. Let ϕ∗ be the coloring that maximizes the number of partitions Pi that
are colored with one of the colors in Li. Observe that if for a partition |Li| ≤ �
then Li = Fi thus must be colored with one of the colors in Li in any restricted
budgeted proper coloring. Let Pi ∈ P be the partition that is colored with a
color r /∈ Li. As Li contains at least � colors there exist a color say q ∈ Li which
is not used to color any of the partitions in P. Observe that bq ≤ br (see Fig. 1).
Let |Pi| = a, bq = a + d and br = a + e where 0 ≤ d ≤ e. Next, we construct
a coloring ϕ′ from ϕ∗ as follows. If d = e then exchange the color r and q to
construct ϕ′ contradicting the maximality of ϕ∗. Thus assume that d < e. Let
Vr be the set of vertices in V \ S which are colored with color r. Observe that
there are no edge between Pi and Vr. Let |Vr| = e′ ≤ e. Let Vq be the set of
vertices in V \ S which are colored with color q. Suppose |Vq| = d′ ≤ a + d.

We construct ϕ′ from ϕ∗ as follows. We color the vertices of Pi with the color
q and the vertices of Vq with r (observe that bq < br). We color Vr with rest
of the colors of q and r. In order to prove that there are sufficient colors left to
color Vr let us observe the following. |Vr| = e′ ≤ e ≤ e+a+d−d′ (as d′ ≤ a+d).
Thus |Vr| ≤ d+(e+a−d′) = (bq −a)+(br −d′) We color the rest of the vertices
with the same color as of ϕ∗. Observe that ϕ′ is a restricted proper budgeted
coloring and contradicts the maximality of ϕ∗ and the claim holds. �

For each part Pi in the partition, we first find a set of the least budgeted
� colors each of which is of size at least |Pi| (if there aren’t � different colors
satisfying the budget constraint, we pick all those that satisfy; if there aren’t
any color satisfying the budget constraint, we abandon this partition and move
on). Then we try all possible colorings of S coloring each Pi with any of the
colors we have found for Pi making sure that no pairs of Pi’s get the same color.
As soon as we fix the coloring of each Pi, we are left with the independent set
vertices. Since each vertex in the independent set is itself a singleton cluster, we
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have to solve the EBCP. By Lemma 3, it is known that the problem can be
solved in polynomial time.

As the number of partitions P of S is O(kk), and as the number of colorings
tried for each partition is O∗(kk), we have the following theorem.

Theorem 9. BCP parameterized by vertex cover can be solved in O∗(22k log k)
time.

It is known that ECP does not admit a polynomial kernel when parameter-
ized by vertex cover and the number of colors unless NP ⊆ coNP/poly [16]. Hence
the same result is true for ECP when parameterized by vertex cover alone. As
BCP is a generalization of ECP we have the following corollary.

Corollary 3. BCP does not admit a polynomial kernel when parameterized by
vertex cover unless NP ⊆ coNP/poly.

4 Exact Algorithm for Budgeted Coloring

In this section, we present an exact exponential time algorithm for the BCP

based on dynamic programming. Let G[X] denote the subgraph induced by X,
for X ⊆ V (G). A O∗(3n2c) algorithm is easy by computing a table T of size
2n × 2c whose entries are as follows. For a subset X of vertices, and a subset C
of colors, the entry T [X,C] will contain 1, if G[X] can be colored with the colors
in C along with their respective budgets and 0 otherwise. Now the recurrence
relation for this problem is as follows: T [S,C] =

∨

I∈G[S],c∈C

T [S \I, C \{c}] where

I is an independent set in G[S] of size at most bc. Trivially, when both S and C
are ∅, T [S,C] = 0. Our algorithm runs on all possible subsets S of V (G), and
for every subset S, it runs on all its independent sets, and all possible colors. For
every S, we have table entries for all possible subset C of colors, whose number
is bounded by 2c. Hence, the total running time of this algorithm can be easily
seen to be

∑n
i=1

(
n
i

)
2i · 2c · c which is = O(3n · 2c · c).

In what follows we improve the runtime to O∗(2n) using the principle of
inclusion-exclusion, essentially generalizing the known algorithm for the proper
c-coloring problem [14] to show the following.

Theorem 10. Budgeted c-Coloring problem can be solved in O∗(c2n) time.

Proof. We give an algorithm with the claimed bound for the more general Bud-

geted Set Cover problem defined as follows.
Input: A ground set U of size n, and a family F of m subsets of U , and a set
b1, b2, . . . , bc of integers for c ≥ 1.
Question: Are there subsets F1, F2, . . . , Fc in F such that |Fi| ≤ bi and⋃c

i=1 Fi = U?

In this problem, we can even assume that the family F is given implicitly in
the sense, given a subset S of U , one can test in time polynomial in |S| whether
or not S is in F . We call a subfamily that witnesses a solution to our problem
as a budgeted c-cover of F .
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Now by treating the family F as the family of independent sets of the
input graph of the budgeted c-coloring, the claim in the theorem follows. To
design an algorithm for Budgeted Set Cover using inclusion-exclusion, we
define our object of interest. The object of interest is simply a subfamily
F ′ = {F1, F2, . . . , Fc} of F such that |Fi| ≤ bi; observe that in our definition for
i �= j Fi and Fj can be the same. The subfamily F ′ satisfies property P (u) if
u ∈ ⋃

F∈F ′ F.
Now it follows that the number of budgeted c-covers of F is simply the

number of objects that satisfy P (u) for every u ∈ U (as our objects are ordered,
the same budgeted c-cover will be counted a fixed number (c!) times, and hence
the final number has to be divided by c! which we ignore hereafter).

For a subset W ⊆ U , let F (W, bi) be the family of sets in F that avoids W
(i.e. doesn’t have any element of W ) and are of size at most bi, and let f(W, bi)
be the number of such sets. Then the number of objects that do not satisfy
property P (u) for any element u of W is simply Πc

i=1f(W, bi). This is simply
because there are f(W, bi) choices for the i-th set of our object.

Hence, by the principle of inclusion-exclusion (see Theorem 4.7 of [14]), we
have that the number of budgeted c-covers of F is given by

∑

W⊆U

(−1)|W |Πc
i=1f(W, bi) (1)

For a fixed W and bi, f(W, bi) is the number of subsets of U \ W of size at
most bi that are in F and hence can be computed in

(
n−|W |

bi

)|bi|O(1) which can
result in an O∗(3n) time for all W . In the following claim, we show that we can
pre-compute and store f(W, bi) for each W and bi using dynamic programming
and compute them all in O∗(2n) time.

Claim. � The quantity f(W, bi), for all W and bi, i = 1 to c can be computed in
O∗(2n) time.

The theorem follows from the Eq. 1 and the Claim. �

5 Conclusions and Open Problems

In this paper, we have introduced BCP and obtained hardness results, poly-
nomial time algorithms, FPT algorithms and kernelization results. There are a
number of open problems.

– What is the complexity of the BCP on trees when c ≥ 3? The related ECP

and BoCP are polynomial time solvable on trees [1,7].
– In Sect. 3.1, we showed that BCP when parameterized by the distance to a

cluster graph and the number of colors or the number of clusters, is FPT. The
parameterized complexity of the problem parameterized just by the distance
to a cluster graph is an interesting open problem.
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Abstract. We study counting problems for several types of orientations
of chordal graphs: source-sink-free orientations, sink-free orientations,
acyclic orientations, and bipolar orientations, and, for the latter two, we
also present linear-time uniform samplers. Counting sink-free, acyclic, or
bipolar orientations are known to be #P-complete for general graphs,
motivating our study on a restricted, yet well-studied, graph class. Our
main focus is source-sink-free orientations, a natural restricted version of
sink-free orientations related to strong orientations, which we introduce
in this work. These orientations are intriguing, since despite their simi-
larity, currently known FPRAS and sampling techniques (such as Markov
chains or sink-popping) that apply to sink-free orientations do not seem
to apply to source-sink-free orientations. We present fast polynomial-time
algorithms counting these orientations on chordal graphs. Our approach
combines dynamic programming with inclusion-exclusion (going two lev-
els deep for source-sink-free orientations and one level for sink-free orienta-
tions) throughout the computation. Dynamic programming counting algo-
rithms can be typically used to produce a uniformly random sample. How-
ever, due to the negative terms of the inclusion-exclusion, the typical app-
roach to obtain a polynomial-time sampling algorithm does not apply in
our case. Obtaining such an almost uniform sampling algorithm for source-
sink-free orientations in chordal graphs remains an open problem.

Little is known about counting or sampling of acyclic or bipolar orien-
tations, even on restricted graph classes. We design efficient (linear-time)
exact uniform sampling algorithms for these orientations on chordal
graphs. These algorithms are a byproduct of our counting algorithms,
but unlike in other works that provide dynamic-programming-based sam-
plers, we produce a random orientation without computing the corre-
sponding count, which leads to a faster running time than the counting
algorithm (since it avoids manipulation of large integers).

1 Introduction

An orientation of an undirected graph is an assignment of a direction to each
edge, converting the original graph to a directed graph. We initiate the study of
counting source-sink-free orientations, where there are no sources, nor sinks (that
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is, no vertices of indegree or outdegree 0). Our motivation is twofold: First, these
orientations are related to the well-studied sink-free orientations, which can be
counted (approximately) despite being #P-hard for general graphs. While clearly
similar, source-sink-free orientations exhibit certain properties that prevent the
application of the current techniques for counting or sampling of sink-free orien-
tations. Therefore, new techniques are needed to understand this problem, and
we are starting with a restricted but well-known graph class. Second, source-sink-
free orientations can be thought of as a local (soft) version of strong orientations,
another well-studied class of orientations, the counting of which is also #P-hard
on general graphs [15] as well as on restricted graph classes such as planar and
bipartite graphs [13]. Our study is a first step beyond sink-free and towards
strong orientations.

Chordal graphs have attracted great attention in computer science theory as
a natural graph class with real-world applications (for example, some inference
techniques in probabilistic graphical models rely on sampling and counting of
certain types of orientations on chordal graphs [9,16]), on which some problems
that are NP-hard or #P-hard on general graphs can be solved in polynomial
time; see, for example, [11].

Sink-free orientations are well understood. Bubley and Dyer [5] proved that
counting these orientations is #P-complete on general graphs. They also pro-
vided a Markov Chain that samples sink-free orientations of an arbitrary input
graph G approximately from the uniform distribution in time O(|E(G)|3 log ε−1),
where ε is the degree of approximation. Additionally, they showed that the
problem of counting sink-free orientations is self-reducible, yielding a fully poly-
nomial randomized approximation scheme (FPRAS) for the counting problem,
the running time of which is roughly |E(G)| times the sampling running time.
Huber [8] used the “coupling from the past” technique to obtain an exact
sample in time O(|E(G)|4). Cohn, Pemantle, and Propp [6] proposed a “sink-
popping” algorithm which can generate a sink-free orientation uniformly at ran-
dom in O(|V (G)||E(G)|) time. This algorithm fits the “partial rejection sampling
through the Lovász Local Lemma” framework of Guo, Jerrum and Liu [7], yield-
ing a uniformly random sink-free orientation in time O(|V (G)|2) time. Interest-
ingly, none of these techniques appear to apply to the problems of counting and
sampling of source-sink-free orientations.

Our main contribution is a polynomial (cubic in the worst case) exact count-
ing algorithm for source-sink-free orientations in chordal graphs, combining
dynamic programming with two-level inclusion-exclusion at every step of the
dynamic programming computation. However, our combination with inclusion-
exclusion prevents us from extending our algorithm to an exact uniform sampler,
and we leave the sampling question as the main open problem of our work. We
apply a similar approach, using one-level inclusion-exclusion, to count sink-free
orientations of a given chordal graph in almost linear time, significantly improv-
ing the running time over the FPRAS for this graph class. Besides these two
orientations, we also present almost linear time counting and linear time sam-
pling algorithms for acyclic orientations and bipolar orientations, which are both
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#P-complete on general graphs [10]. The problem of counting acyclic orienta-
tions has also attracted a lot of attention since it corresponds to a specific input
of the well-studied Tutte polynomial TG(x, y) [4], in particular to TG(2, 0) [14]),
which plays an important role in graph theory and statistical physics. Acyclic
orientations can be counted efficiently on chordal graphs via the calculation of
the chromatic polynomial [1]. However, this result does not yield a(n almost)
uniform sampler since acyclic orientations are not known to be self-reducible.
In this work we present a simple linear-time exact uniform sampling algorithm
for acyclic orientations in chordal graphs. An interesting aspect of this sampling
algorithm is that it runs faster than its counting counterpart. This is atypical—
dynamic programming based samplers usually rely on a precomputation of the
corresponding counts and are efficient only after substantial preprocessing time.
We note that, with some extra work to maintain the desired (unique) source s and
sink t, our results extend to counting and sampling of bipolar (s, t)-orientations,
also known as st-numberings. Finally, we compare our work to the recent cele-
brated results of Wienöbst, Bannach, and Lískiewicz [16], who count and sam-
ple another type of orientations, the so-called v-structure-free acyclic (or moral
acyclic) orientations in chordal graphs. The authors prove interesting structural
results for these orientations and employ dynamic programming over the clique
tree in order to count them. In their case, the dynamic programming consists
of additive quantities, which allows them to extend their counting approach to
sampling. In contrast, in our work we either do not need to compute the counts
in order to sample, or our dynamic programming does not appear to extend to
sampling due to the presence of negative terms in the computation.

The paper is organized as follows. Section 2 contains preliminaries on
chordal graphs and clique trees. Our main result, a fast counting algorithm for
source-sink-free orientations, combining dynamic programming with inclusion-
exclusion, is in Sect. 3. We summarize our other results in Sect. 4.

2 Preliminaries

For a graph G, we denote by G[U ] the graph induced in G on the vertex set
U ⊆ V (G). An undirected graph is chordal if for every cycle of more than three
vertices there exists an edge, called a chord, not on this cycle connecting two
vertices on the cycle. Every chordal graph G can be represented by a tree TG

where V (TG) is the set of maximal cliques of G, and the tree satisfies the induced
subtree property : For every vertex v ∈ V (G), the induced subgraph TG[Av] is
connected, where Av is the set of maximal cliques of G containing v. Such a tree
TG is called a clique tree of G, see, for example, [12]. Let TG,Cr

be the clique tree
TG rooted at a maximal clique Cr. If G is clear from the context, we will simply
write TCr

, or simply T if Cr is also clear. We denote by TCr,C the subtree of TCr

containing C and its descendants; we write TC if Cr is clear from the context.
Each clique C in TCr

can be partitioned into a separator set Sep(C) =
C ∩ Parent(C) and a residual set Res(C) = C\Sep(C), where Parent(C) is
the parent clique of C in TCr

(if C = Cr, then Parent(C) = ∅). The following
properties hold, see, for example, [2,12].
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– For each vertex v in G, there is a unique clique Cv that contains v in its
residual set. This implies that |V (TG)| ≤ |V (G)| and that Cv is the root of
TCr

[Av]; we denote this rooted subtree by TCv
. All other cliques in TCv

that
contain v have it in their separator set.

– For a clique C let D(C) be the set of vertices in the descendant cliques of C in
TCr

, excluding the vertices in Sep(C), i.e., D(C) := C ′ ∈ V (TC)C ′ − Sep(C).
Let A(C) be the vertices in the cliques not in TC , excluding the vertices in
Sep(C), i.e., A(C) :=

⋃
C′∈V (TCr )−V (TC) C ′ − Sep(C). The separator Sep(C)

separates A(C) and D(C) in G: there is no edge with one endpoint in A(C)
and the other endpoint in D(C).

– Construction of a clique tree for a connected chordal graph can be done in
time O(|E(G)|).
We use G[TC ] for the subgraph induced by the vertices that belong to cliques

in TC , i.e., G[TC ] := G[
⋃

C′∈V (TC) C ′]. We will often work with the following
subgraph of G[TC ]: Let Ĝ[TC ] be G[TC ] with the edges within the separator set
Sep(C) removed, i.e., Ĝ[TC ] := G[TC ] − E(G[Sep(C)]).

The following lemma will be essential for our calculations.

Lemma 1. Let C be a clique in the rooted clique tree TCr
and let C1, C2, . . . , Cd

be its child cliques. The edge sets of the graphs Ĝ[TCi
], i = 1, . . . , d, are mutually

disjoint.

Proof. By contradiction, suppose that there are i �= j ∈ {1, . . . , d} such that
Ĝ[TCi

] and Ĝ[TCj
] share an edge e = (u, v). Since Sep(Ci) is a separator in G,

separating vertices in V (G[TCi
]) − Sep(Ci) from V (G) − V (G[TCi

]), and since
V (G[TCj

]) ⊆ V (G)−V (G[TCi
]), it follows that u and v must be in Sep(Ci). But

then e is not in Ĝ[TCi
], a contradiction. �	

In order to make the running times of our algorithms more readable, we
assume that each arithmetic operation takes a constant time. This is, of course,
a bit optimistic, since the ultimate number of orientations can be as high as
2m for a graph with m edges, and, therefore, the true running time of each
arithmetic operation adds a factor of about m polylog(m). We use Õ() notation
to indicate that this factor is omitted from our running time estimate.

Our sampling algorithms produce orientations uniformly at random: Each
orientation is chosen with equal probability from the set of all desired orienta-
tions. We use [d] to denote {1, 2, . . . , d}.

3 Counting Source-Sink-Free Orientations

In this section we describe the main contribution of this paper. We show how
to count source-sink-free orientations in chordal graphs using dynamic program-
ming on the clique tree. While this approach is quite standard for algorithms on
chordal graphs, the novel aspect of our work is to employ a two-level inclusion-
exclusion principle as a subroutine of the dynamic programming. We prove the
following theorem:
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Theorem 1. Let G be a chordal graph. The number of source-sink-free orienta-
tions of G can be computed in time Õ(|Cmax||E(G)|) = Õ(|E(G)||V (G)|), where
Cmax is a maximum clique of G.

Proof. We define the following quantities for each clique C in a rooted clique
tree T of the given chordal graph G:

– SSFO(TC): The number of orientations of the graph Ĝ[TC ] where every sink
and every source is in Sep(C). Let S(TC) be the set of all these orientations.

– SoO(TC , v1): The number of orientations in S(TC), where v1 ∈ Sep(C) is a
source.

– SiO(TC , v2): The number of orientations in S(TC), where v2 ∈ Sep(C) is a
sink.

– SoSiO(TC , v1, v2): The number of orientations in S(TC), where v1 ∈ Sep(C)
is a source and v2 ∈ Sep(C) is a sink. Notice that since Res(C) �= ∅, it follows
that v1 �= v2.

We will compute the quantities SSFO(TC), SoO(TC , v1), SiO(TC , v2), and
SoSiO(TC , v1, v2) by dynamic programming on the rooted clique tree TCr

. The
quantity SSFO(TCr

) represents the number of source-sink-free orientations of G.
To simplify our expressions, for a clique C we define quantities oa(C), os(C),

ox(C), oss(C), and oxx(C) as follows. Let oa(C) be the number of all orientations
of C, i.e., oa(C) = 2(|C|

2 ). Let os(C, v) be the number of orientations of C where
the vertex v ∈ C is a sink. All edges have to be oriented towards v, hence
os(C, v) = 2(|C|−1

2 ). It also follows that v is the only sink in C. Moreover, since
the quantity os(C, v) does not depend on the vertex v, we simplify the notation
to just os(C). Let ox(C) be the number of orientations of C where no vertex
is a sink. Since each orientation with a sink has a unique sink, we get that
ox(C) = oa(C)−|C| os(C). Let oss(C, v1, v2) be the number of orientations of C

where v1 is a source and v2 is a sink. It follows that oss(C, v1, v2) = 2(|C|−2
2 ). Since

the value does not depend on v1, v2, we simplify the notation to just oss(C). Let
oxx(C) be the number of orientations of C with no sources or sinks. An oriented
clique can have at most one source and at most one sink. Therefore, from all
orientations we can subtract those that have a sink and those that have a source;
leading to “double penalization” of orientations with both a source and a sink.
Therefore, oxx(C) = oa(C) − 2|C| os(C) +

(|C|
2

)
oss(C).

Base case of the computation of SSFO(TC), SoO(TC , v1), SiO(TC , v2), and
SoSiO(TC , v1, v2): Let C be a leaf of T . In SoO(TC , v1) and SoSiO(TC , v1, v2) all
edges incident to v1 point away from v1, and in SiO(TC , v2) and SoSiO(TC , v1, v2)
the edges incident to v2 need to point towards v2; the other edges can be oriented
either way. We get:

SoO(TC , v1) = SiO(TC , v2) = oa(Res(C))2|Res(C)|(| Sep(C)|−1),

SoSiO(TC , v1, v2) = oa(Res(C))2|Res(C)|(| Sep(C)|−2).

For SSFO(TC), we partition S(TC) into these four mutually exclusive cases.
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� The orientation restricted to G[Res(C)] contains no sources or sinks. Then,
the edges between Res(C) and Sep(C) can be oriented arbitrarily, leading to
oxx(Res(C))2|Res(C)|| Sep(C)| of such orientations.

� The orientation restricted to G[Res(C)] contains a (single) source u1 ∈ Res(C)
and no sinks. Then, at least one of the edges from Sep(C) needs to be oriented
towards u1 to prevent it from remaining a source, and the other edges between
Sep(C) and Res(C)−{u1} can be oriented arbitrarily. The part of the orientation
within Res(C) has to have all edges outgoing from u1, and the remaining edges
must be oriented so that there is no sink within Res(C)−{u1}. This corresponds
to ox(Res(C) − {u1})(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1) of such orientations.

� The orientation restricted to G[Res(C)] contains a (single) sink u2 ∈ Res(C)
and no sources. The calculation is analogous to the previous case.

� The orientation restricted to G[Res(C)] contains a (single) source u1 and
a (single) sink u2. Then, u1 needs to be “fixed” by at least one edge from
Sep(C), u2 by at least one edge to Sep(C), and the other edges between Sep(C)
and Res(C) can be oriented arbitrarily. Likewise, the edges within Res(C) −
{u1, u2} can be oriented arbitrarily. We get oa(Res(C) − {u1, u2})(2| Sep(C)| −
1)22| Sep(C)|(|Res(C)|−2) of such orientations.

Therefore, summing across possible u1, u2 ∈ Res(C), we get

SSFO(TC) = oxx(Res(C))2|Res(C)|| Sep(C)|+

2|Res(C)| ox(Res(C)−1)(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1)+
(|Res(C)|

2

)

oa(Res(C)−2)(2| Sep(C)| − 1)22| Sep(C)|(|Res(C)|−2),

where for a clique Ĉ, the notation Ĉ−k stands for removing k vertices from Ĉ.

Inductive Case. Let C be a non-leaf of T , and let C1, C2, . . . , Cd be its child
cliques in T . For u ∈ Res(C) we denote by Iu the set of indices corresponding
to the child cliques containing u, i.e., Iu := {i ∈ [d] | u ∈ Ci}.

To compute SoSiO(TC , v1, v2), the edges between v1, respectively v2, and
Res(C) are forced (away from v1, towards v2). This implies that no vertex in
Res(C) will be a source, or a sink, and hence the orientation of all other edges
can be arbitrary. We get:

SoSiO(TC , v1, v2) = oa(Res(C))2| Sep(C)|(|Res(C)|−2)
d∏

i=1

SSFO(TCi
).

For SoO(TC , v1), the edges between v1 and Res(C) need to point away from
v1, and as such there will be no sources in Res(C). We distinguish two cases:

� There is no sink in the orientation restricted to G[Res(C)]. There are α1 :=
ox(Res(C))2| Sep(C)|(|Res(C)|−1)

∏d
i=1 SSFO(TCi

) such orientations of Ĝ[TC ].

� The orientation restricted to G[Res(C)] contains a (single) sink u2. Then either
there is an edge between u2 and Sep(C) pointing towards u2, or all edges point
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away from u2 and u2 cannot be a sink at least one of the child subtrees. The
number of orientations of Ĝ[TC ] corresponding to this case is

α2(u2) := os(Res(C), u2)(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi
)+

os(Res(C), u2)2| Sep(C)|(|Res(C)|−1)
∏

i∈[d]−Iu2

SSFO(TCi
)×

⎛

⎝
∏

i∈Iu2

SSFO(TCi
) −

∏

i∈Iu2

SiO(TCi
, u2)

⎞

⎠ .

Putting the two cases together, we get SoO(TC , v1) = α1+
∑

u2∈Res(C) α2(u2).
Note that SiO(TC , v1) can be computed analogously.

It remains to compute SSFO(TC). We will split the possible orientations into
these four mutually exclusive cases:

� The orientation restricted to G[Res(C)] contains no sources or sinks. Then,
all the remaining edges within Res(C) can be oriented arbitrarily, and the child
subtrees can be oriented recursively (provided, as always, that there are no
sinks or sources outside their separator sets). Therefore, the number of these
orientations is β1 := ox(Res(C))2| Sep(C)||Res(C)| ∏d

i=1 SSFO(TCi
).

� The orientation restricted to G[Res(C)] contains a (single) source u1 and no
sinks. Then, either there is an edge oriented from Sep(C) to u1, or all edges are
oriented from u1 to Sep(C) and one of the child subtrees does not have u1 as
their source. Within Res(C), all edges point away from u1 and the remainder
of Res(C) needs to be sink-free. Thus, the number of orientations of Ĝ[TC ]
corresponding to this case is:

β2(u1) := ox(Res(C)−1)(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−1)
d∏

i=1

SSFO(TCi
)+

ox(Res(C)−1)2| Sep(C)|(|Res(C)|−1)
∏

i∈[d]−Iu1

SSFO(TCi
)×

⎛

⎝
∏

i∈Iu1

SSFO(TCi
) −

∏

i∈Iu1

SoO(TCi
, u1)

⎞

⎠ .

� The orientation restricted to G[Res(C)] contains a (single) sink u2 and no
sources. The number of the corresponding orientations of Ĝ[TC ] can be computed
analogously to the previous case; we refer to this quantity as β3(u2).

� The orientation restricted to G[Res(C)] contains a (single) source u1 and a
(single) sink u2. We will partition the corresponding orientations of Ĝ[TC ] into
these subcases:
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a) There is an edge from Sep(C) to u1 and from u2 to Sep(C) (i.e., both u1 and
u2 are “fixed” by an edge from/to Sep(C)). The number of corresponding
orientations is

β4a := oss(Res(C))(2| Sep(C)| − 1)22| Sep(C)|(|Res(C)|−2)
d∏

i=1

SSFO(TCi
).

b) There is an edge from Sep(C) to u1 but no edge from u2 to Sep(C) (i.e., u1

is “fixed” by Sep(C) but u2 is not). Then u2 needs to be “fixed” by one of
the child subtrees. The number of corresponding orientations is

β4b(u2) := oss(Res(C))(2| Sep(C)| − 1)2| Sep(C)|(|Res(C)|−2)×
∏

i∈[d]−Iu2

SSFO(TCi
)

⎛

⎝
∏

i∈Iu2

SSFO(TCi
) −

∏

i∈Iu2

SiO(TCi
, u2)

⎞

⎠ .

c) There is an edge from u2 to Sep(C) but no edge from Sep(C) to u1 (i.e., u2

is “fixed” by Sep(C) but u1 is not). The number of corresponding orienta-
tions can be computed analogously to the previous subcase; we refer to this
quantity as β4c(u1).

d) There is no edge from Sep(C) to u1 and no edge from u2 to Sep(C) (i.e.,
neither u1 nor u2 is “fixed” by Sep(C)). Then both u1 and u2 need to be
“fixed” by one of the child subtrees. Let Xu1 be the set of valid orientations
of the subtrees where no subtree fixes u1. (We call an orientation of the
subtrees valid if sinks and sources are present only in the residual sets in
the root cliques of each tree.) Then,

|Xu1 | =
∏

i∈[d]−Iu1

SSFO(TCi
)

∏

i∈Iu1

SoO(TCi
, u1).

Let Yu1 be the set of valid orientations of the subtrees where no subtree
fixes u2. Then,

|Yu2 | =
∏

i∈[d]−Iu2

SSFO(TCi
)

∏

i∈Iu2

SiO(TCi
, u2).

Let Zu1,u2 = Xu1∩Yu2 . In particular, Zu1,u2 is the set of all valid orientations
of the subtrees where no subtree fixes u1 or u2. In other words, the subtrees
containing u1 but not u2 have u1 as a source, the subtrees containing u2 but
not u1 have u2 as a sink, and the subtrees containing both u1 and u2 have
u1 as a source and u2 as a sink. Therefore,

|Zu1,u2 | =
∏

i∈[d]−Iu1−Iu2

SSFO(TCi
)

∏

i∈Iu1−Iu2

SoO(TCi
, u1)×

∏

i∈Iu2−Iu1

SiO(TCi
, u2)

∏

i∈Iu1∩Iu2

SoSiO(TCi
, u1, u2).
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Then, when accounting for all orientations in case d, we use inclusion-
exclusion as follows: We consider all valid orientations of the subtrees, then
subtract those in Xu1 and Yu2 , and then add those in Zu1,u2 to compensate
for the double subtraction. Therefore, the number of orientations of Ĝ[TC ]
corresponding to case d is

β4d(u1, u2) := oss(Res(C))2| Sep(C)|(|Res(C)|−2)×
⎛

⎝
∏

i∈[d]

SSFO(TCi
) − |Xu1 | − |Yu2 | + |Zu1,u2 |

⎞

⎠ .

Putting it all together we get

SSFO(TC) = β1 +
∑

u1∈Res(C)

β2(u1) +
∑

u2∈Res(C)

β3(u2)+

∑

u1,u2∈Res(C),u1 �=u2

[β4a + β4b(u2) + β4c(u1) + β4d(u1, u2)] .

Finally, we need to estimate the running time of the algorithm. After con-
structing the clique tree T (which is of size O(|V (G)|)), the algorithm per-
forms a tree traversal of T . In the base case it performs O(1) arithmetic opera-
tions per leaf clique.1 To analyze the running time in the inductive case, we
first pretend that we have access to the quantities SSFO(TCi

). Notice that
we do not need to store the quantities SoSiO(TC , v1, v2) for each v1, v2, since
the computation is independent of v1, v2 and therefore we really need only
one quantity SoSiO(TC) for each clique. The computation of SoSiO(TC) takes
O(d) arithmetic operations, assuming SSFO(TCi

)’s have been computed. Since
d = outdegT (C), the computation of all SoSiO’s across the entire tree T takes
O(

∑
C∈T outdegT (C)) = O(|T |) = O(|V (G)|) arithmetic operations.

Next we consider the computations of SoO(TC , v1); notice that the compu-
tations are independent of v1. All α1 quantities can be computed in O(|V (G)|
time following the same reasoning as for SoSiO. The same holds for the first
term of the quantities α2(u2). We need to estimate the running time needed
to compute the second (additive) term of the α2(u2)’s. Notice that the size of
the set Iu2 corresponding to the child cliques of C that contain u2 is upper-
bounded by degG(u2). This is because for each child clique Ci for i ∈ Iu2 we
have a wi ∈ Res(Ci). All the wi’s are distinct since Sep(C) separates them,
yielding |Iu2 | ≤ degG(u2). We can rewrite the computation of the second term
of α2(u2) as a product of os(Res(C), u2)2| Sep(C)|(|Res(C)|−1)

∏
i∈[d] SSFO(TCi

)

and (1 − ∏
i∈Iu2

SiO(TCi
,u2)

SSFO(TCi
). Computing the last term of this product takes

O(
∑

u∈Res(C) |Iu|) operations. Since |Iu| ≤ degG(u), across the entire tree T

we get O(
∑

C∈T

∑
u2∈Res(C) degG(u2)) = O(

∑
u2∈V (G) degG(u2)) = O(|E(G)|)

operations to compute all SoO(TC)’s (and the same holds for the SiO(TC)’s).
1 Computation of the factorial of a k-bit number takes O(k polylog k), see [3], which

will be subsumed by our Õ() notation.
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It remains to bound the running time needed to compute all the SSFO’s.
Using the same arguments as before we get that the computation of all β1,
β2(u1), β3(u2), β4a, β4b(u2), and β4c(u1) takes O(|E(G)|) arithmetic operations.
The tricky part is to account for the computation of the β4d(u1, u2)’s, due to the
2-level inclusion-exclusion depth. In particular, we want to efficiently compute

∑

u1,u2∈Res(C),u1 �=u2

[
∏

i∈[d]

SSFO(TCi
) −

∏

i∈[d]−Iu1

SSFO(TCi
)

∏

i∈Iu1

SoO(TCi
, u1)−

∏

i∈[d]−Iu2

SSFO(TCi
)

∏

i∈Iu2

SiO(TCi
, u2) +

∏

i∈[d]−Iu1−Iu2

SSFO(TCi
)×

∏

i∈Iu1−Iu2

SoO(TCi
, u1)

∏

i∈Iu2−Iu1

SiO(TCi
, u2)

∏

i∈Iu1∩Iu2

SoSiO(TCi
, u1, u2)] =

∏

i∈[d]

SSFO(TCi
)

∑

u1,u2∈Res(C),u1 �=u2

[(1 −
∏

i∈Iu1

SoO(TCi
, u1)

SSFO(TCi
)

−
∏

i∈Iu2

SiO(TCi
, u2)

SSFO(TCi
)

+

∏

i∈Iu1−Iu2

SoO(TCi
, u1)

SSFO(TCi
)

∏

i∈Iu2−Iu1

SiO(TCi
, u2)

SSFO(TCi
)

∏

i∈Iu1∩Iu2

SoSiO(TCi
, u1, u2)

SSFO(TCi
)

].

The first three products can be computed within the linear number of arith-
metic operations discussed earlier. For the remaining part of the calculation, we
get this bound on the number of arithmetic operations across all cliques in T :

O(
∑

C∈T

∑

u1,u2∈Res(C)

[degG(u1) + degG(u2)]) = O(
∑

C∈T

∑

u1∈Res(C)

|C|degG(u1)),

which is O(|Cmax||E(G)|). This concludes the proof of the theorem. �	
Counting algorithms based on dynamic programming can often be used to

sample: If the algorithm is based on summing counts corresponding to disjoint
subproblems, one first runs the counting algorithm, followed by the sampling
which proceeds top-down, always choosing which subproblem to go into pro-
portionally to its count. However, here we are subtracting quantities as part
of our computations and, as such, a sampling algorithm does not seem to fol-
low from the counting algorithm. For a single level inclusion-exclusion (a single
subtraction), one could employ rejection sampling to reject the unfavorable (i.e.
those that are subtracted) configurations. However, if almost all configurations
are rejected, the probability of sampling success could be minuscule. For two-
level inclusion-exclusion, as is the case for our algorithm, even this (potentially
low-probability and hence large running time) approach is unclear. We leave the
problem of efficient (almost) uniform sampling of source-sink-free orientations
in chordal graphs open.

4 Results for the Other Types of Orientations

In this section we briefly sketch our results on counting and sampling of acyclic
and bipolar orientations, and on counting sink-free orientations. We include the
detailed proofs and discussion in the appendix.
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An orientation is acyclic if it does not contain a directed cycle. A structural
examination of the properties of acyclic orientations in chordal graphs leads to
a simple relationship: AO(TC) = |C|!

| Sep(C)|!
∏d

i=1 AO(TCi
), where AO(TC) is the

number of acyclic orientations of the clique subtree TC and where C1, . . . , Cd are
the child cliques of C in the rooted T (and d = 0 if C is a leaf of T ). This allows
us to count all acyclic orientations in time Õ(|V (G)| + |E(G)|).

To sample an acyclic orientation uniformly at random, we first construct a
clique tree of the input graph and randomly pick a clique Cr as the root. We pick
a uniformly random ordering of Cr. Then we process the remaining cliques in
a depth-first manner. Let C be the current clique we are processing, we always
pick an orientation on G[C] that is consistent with G[Sep(C)]. This can be done
by choosing a random ordering π of C and replacing the relative order of Sep(C)
in π by the given ordering. Once all cliques are processed, the resulting directed
graph is just a uniformly generated random acyclic orientation. The running
time is O(

∑
C∈T |C|) = O(

∑
v∈V (G)(degG(v) + 1)) = O(|E(G)|), assuming G

is connected. The first equality follows from the fact that each v occurs in at
most degG(v)+1 cliques. Both results are summarized in the following theorem,
which also includes a more precise statement of the counting running time:

Theorem 2. Let G be a connected chordal graph. The number of its acyclic
orientations can be calculated in Õ(|V (G)|) + O(|E(G)|) time, and a uniformly
random acyclic orientation can be produced in time O(|E(G)|).

A bipolar (s, t)-orientation is an acyclic orientation with a unique source s and
a unique sink t. We employ a similar strategy as we did for acyclic orientations.
At the beginning, we construct a clique tree and randomly pick a clique Cs that
contains the source s as the root clique. In order to maintain s and t as the unique
source and sink, we differentiate between cliques in T that are or are not on the
Cs-Ct path in T , and we recursively compute corresponding bipolar orientations
of the subtrees (with some well-chosen restrictions to maintain the overall source
and sink). While somewhat more complex than acyclic orientations, the structure
still allows us to sample very efficiently analogously to acyclic orientations, as
summarized in the following theorem:

Theorem 3. Let G be a connected chordal graph and s �= t be two of its
vertices. The number of bipolar (s, t)-orientations of G can be computed in
Õ(|V (G)|) + O(|E(G)|)) time. A uniformly random bipolar (s, t)-orientation of
G can be produced in time O(|E(G)|).

We conclude with sink-free orientations. Recall that for any graph there is
an FPRAS counting these orientations [5] and an efficient exact uniform “sink-
popping” sampler is also known [6]. Therefore, we focus on the counting problem,
aiming to improve the running time compared to the FPRAS. In fact, our count-
ing algorithm is deterministic, exact, and efficient, with (near) linear running
time, as stated in this theorem:

Theorem 4. Let G be a connected chordal graph. The number of sink-free ori-
entations of G can be counted in Õ(|V (G)|) + O(|E(G)|) time.
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The algorithm computes two separate quantities at every node of the clique
tree: (i) NSFO(TC), which counts orientations of Ĝ[TC ] where only sinks in
Sep(C) are allowed, and (ii) ASFO(TC , v), which counts orientations of Ĝ[TC ],
where v ∈ Sep(C) is a sink and there are no sinks in V (Ĝ[TC ]) − Sep(C). These
quantities are reminiscent of the ones we used for the source-sink-free calculation,
but they are significantly less involved. Due to the nature of these orientations,
a single-level inclusion-exclusions is needed to compute these quantities, which
allows us to run in the (near) linear running time, just as for acyclic and bipolar
orientations. However, unlike for the other types of orientations, due to the
negative term in the computation, this dynamic programming does not extend
to a corresponding sampling algorithm. Understanding how to obtain a sampler
from a dynamic programming approach combined with a single level inclusion-
exclusion might help with solving our open problem related to sampling source-
sink-free orientations in chordal graphs.
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Abstract. For a constant t ≥ 1, a t-spanner of a connected graph G
is a spanning subgraph of G in which the distance between any pair of
vertices is at most t times its distance in G. We address two problems on
spanners: the minimum t-spanner problem (MinSt), and a minimization
version of the tree t-spanner problem (TreeSt). MinSt seeks a t-spanner
with minimum number of edges. TreeSt is a decision problem concern-
ing the existence of a t-spanner that is a tree. The concept of spanner was
introduced by Peleg & Ullman in 1989, in a context regarding the con-
struction of optimal synchronizers for the hypercube. MinSt is known
to be NP-hard for every t ≥ 2 even on some bounded-degree graphs.
TreeSt is polynomially solvable for t = 2 and NP-complete for t ≥ 4,
but its complexity for t = 3 remains open.

We investigate both MinS3 and TreeS2 on the class of subcubic
graphs. We prove that MinS3 can be solved in polynomial time, using a
similar technique as the one used by Cai & Keil (1994) for t = 2. This
result also gives an alternative algorithm to solve TreeS3 in polynomial
time. Additionally, we study TreeS2 from a polyhedral point-of-view
and show a complete linear characterization of the associated polytope.
This result, interesting on its own right, gives a polynomial-time algo-
rithm to solve a natural minimization version of TreeS2 on subcubic
graphs with costs assigned to its edges.

Keywords: spanner · sparse spanner · tree spanner · subcubic graph ·
polyhedra

1 Introduction

For the problems considered here, the input graph is always connected (even
if this is not stated explicitly). The distance between two vertices u and v in
a graph G, dG(u, v), is the minimum length of a path between them. For a
(rational) constant t ≥ 1, a t-spanner of a graph G = (V,E) is a spanning
subgraph H of G in which the distance between any pair of vertices is at most
t times its distance in G. That is,

dH(u, v) ≤ t · dG(u, v), for all u, v ∈ V.
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This concept was introduced, in 1989, by Peleg & Ullman [20] when they
presented a novel technique to construct an optimal synchronizer for the hyper-
cube. This technique explored the close connection between synchronizers and
a t-spanner on a network. Since then, spanners have raised much attention,
both from theoretical and practical point-of-view. It has applications in many
areas such as distributed systems and communication networks (synchroniza-
tion, building succinct and efficient routing tables [21], distance oracles [3,22],
roadmap planning [24]), computational geometry, robotics, etc.

The definition we have given refers to multiplicative t-spanner, in the sense
that we require that the distances be preserved up to a multiplicative error; but
one could require (solely or additionally) that they be preserved up to an additive
error. We shall not mention here the different problems regarding spanners, but
refer the readers to a recent survey by Ahmed et al. [1] that gives an overview
of the rich body of literature on graph spanners.

We address here two problems on t-spanners, all of them on subcubic graphs
(those with maximum degree at most three). The first one is the Minimum

t-spanner problem (MinSt), also known as the sparsest t-spanner problem,
that asks for a t-spanner with minimum number of edges. The second one is
an optimization version of the Tree t-spanner problem (TreeSt) which is
a decision problem regarding the existence of a t-spanner that is a tree. In the
latter problem we consider graphs with costs assigned to its edges.

Before mentioning some of the main results on these and related problems,
we observe that when the graph is unweighted, case of MinSt and TreeSt, it
suffices to study them only when t is an integer number. It is not difficult to see
that results for this case carries over to the case t is a rational number. (This is
not true when G is edge-weighted.)

In 1989, Peleg & Schäffer [19] proved that MinS2 is NP-hard, and Cai [5]
extended this result proving that MinSt is NP-hard for t ≥ 2. Venkatesan et
al. [23] showed that MinSt is NP-hard for t ≥ 2 even if the graph is chordal. In
an attempt to find classes of graphs that yield polynomial algorithms, another
line of studies considered graphs of bounded degree. Let Δ denote the maximum
degree of a graph. Cai & Keil [7] showed that MinS2 can be solved in polynomial
time if Δ ≤ 4. They also showed that MinSt is NP-hard when t ≥ 2 and Δ ≥ 9.
More recently, Kobayashi [14] improved this result showing that MinSt is NP-
hard when t = 2 and Δ ≥ 8; and also when 3 ≤ t ≤ 4 and Δ ≥ 6. We note that
when Δ = 3 (the input graph is subcubic), Cai & Keil [7] believed that, using an
approach similar to the one they used for MinS2 and Δ ≤ 4, the problem MinS3

could be solved in polynomial time. Indeed, this approach worked for t = 3 and
Δ = 3, but turned out to be much more complicated. These results are shown
here. In Table 1 we summarize the main results known in the literature regarding
the computational complexity status of MinSt.

In terms of approximation, the following is known. A first result in this
context follows as a consequence of a greedy algorithm proposed by Althöfer et
al. [2]. Given an n-vertex graph G and a real number k > 0, this algorithm finds a
(2k+1)-spanner of G with O(n1+1/k) edges. Since every spanner contains at least
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n−1 edges, this algorithm can be seen as an O(n
2

t−1 )-approximation for MinSt,
for t ≥ 4. In 2007, Elkin & Peleg [11] showed that MinSt, t ≥ 3, is quasi-NP-hard
to approximate by a factor of O(2log

1−ε n), for any 0 < ε < 1. It is interesting
to note that there is a significant difference between the approximability for the
cases t = 2 and t ≥ 3. Indeed, Kortsarz & Peleg [16] obtained an O(log n)-
approximation for MinS2, shown to be best possible, unless P = NP [15].

Now, let us turn our attention to tree t-spanners. Clearly, a polynomial-time
algorithm for MinSt, for a fixed t, solves the corresponding TreeSt problem
in polynomial time. Cai & Corneil [6] showed that TreeSt can be solved in
polynomial time when t ≤ 2, and that it is NP-complete when t ≥ 4. On the
other hand, when we consider the class of bounded-degree graphs, Fomin et
al. [13] showed that TreeSt can be solved in polynomial time. (See additional
comments on this result in Sect. 4.1). For t = 3, the complexity of TreeSt has
not been settled. Looking for an answer to this question, it was shown that
TreeS3 can be solved in polynomial time for several classes of graphs such as
planar graphs [12], convex graphs [23], split graphs [23], line graphs [9], etc. We
study a minimization version of TreeSt that considers an input graph with
costs assigned to its edges, and seeks a tree t-spanner of minimum total cost. We
called this problem the minimum cost tree t-spanner problem (MCTSt). Our
contribution on these problems are a polynomial-time algorithm for MinS3 on
subcubic graphs, and for MCTSt we show a polynomial-time algorithm for t = 2
on subcubic graphs.

Table 1. Computational complexity of MinSt on graphs with maximum degree at
most Δ. The symbol (∗) indicates a result presented here.

Δ t = 2 t = 3 t = 4 t ≥ 5

= 3 P [7] P (∗) open open

= 4 P [7] open open open

= 5 open open open open

= 6 open NP-hard [14] NP-hard [14] open

= 7 open NP-hard [14] NP-hard [14] open

= 8 NP-hard [14] NP-hard [14] NP-hard [14] open

≥ 9 NP-hard [7] NP-hard [7] NP-hard [7] NP-hard [7]

This work is organized as follows. In Sect. 2 we present some concepts that
will be used throughout this text. In particular, we define a partition of the edges
of a graph G, denoted by Ct(G), that helps us subdivide MinSt (and TreeSt)
into (possibly) smaller subproblems, each one on a (simpler) graph induced by
the edges in a class of the partition. In Sect. 3, we study the polytope defined
as the convex hull of the incidence vectors of the tree 2-spanners of a subcubic
graph. We show a complete linear description of this polytope that yields a
polynomial-time algorithm to solve MCTS2 on subcubic graphs. To the best of
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our knowledge, this is a novel approach and result. In Sect. 4, we characterize the
subgraphs that belong to C3(G) when G is a subcubic graph. Using this result,
we show how to solve MinS3 in polynomial time for this class of graphs. As a
byproduct, we obtain a simple algorithm to solve TreeS3 on subcubic graphs.
Owing to space limitation, most of the proofs are sketched and in some cases
they are omitted.

2 Preliminaries

In this section, we present some results and define the main concepts that will
be used throughout the text. The length of a path (resp. cycle) is its number of
edges. We say that a path (resp. cycle) is a k-path (resp. k-cycle) if its length
is k. The following result is very useful (and will be used henceforth) as it tells
us that, to verify whether a spanning subgraph H is a t-spanner of a graph G,
it suffices to test the distance condition only for pairs of adjacent vertices (see
also Cai & Corneil [6]).

Proposition 1 (Peleg & Schäffer, 1989). Let H be a spanning subgraph of
a graph G = (V,E). Then, H is a t-spanner of G if and only if for every edge
uv ∈ E, dH(u, v) ≤ t.

Let G = (V,E) be a graph, and let H be a t-spanner of G. Observe that, if an
edge e ∈ E does not belong to H, there must exist in H a k-path, k ≤ t, linking
the ends of e. Moreover, if P is one such path, then P + e is a (k +1)-cycle in G.
Cai & Keil [7] studied MinS2 and defined a partition of E based on the 3-cycles
in G. Characterizing the subgraphs in this partition is the main idea behind
their polynomial algorithm for MinS2 on graphs of maximum degree four. To
derive our result for MinS3 on subcubic graphs, we also use this approach, and
study a partition of E based on the 3-cycles and 4-cycles in G.

Now, we define formally this partition for any integer t ≥ 2. Let G = (V,E)
be a graph, and let L be the graph associated with G defined as follows.

V (L) = {ve : e ∈ E},
E(L) = {vevf : e, f ∈ E belong to a k-cycle in G, k ≤ t + 1}.

We denote by Ct(G) the partition of E induced by L, defined as follows: two
edges e, f ∈ E belong to the same class (of Ct(G)) if and only if ve and vf belong
to the same connected component of L. Observe that, by the definition of E(L),
for every k-cycle in G, k ≤ t + 1, all its edges belong to the same class in Ct(G).
In Fig. 1, we show a graph G, its associated graph L, and the classes in C2(G).
Observe that, for the graph G in Fig. 1, C3(G) = C2(G), and Ct(G) = {E}, for
t ≥ 4. For simplicity, throughout this text we consider each class in Ct(G) as a
subgraph of G.

Our first result shows that, if we are interested in finding a t-spanner of G,
it suffices to find a t-spanner for each subgraph H ∈ Ct(G).
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(a) (b) (c)

Fig. 1. (a) a graph G; (b) the graph L (its vertices are shaded, and its edges are
depicted by full black edges); (c) the four classes in C2(G) (represented by different
types of edges).

Proposition 2. A subgraph S of a graph G is a t-spanner if, and only if, S ∩H
is a t-spanner of H, for every H ∈ Ct(G).

Proof. Let S be a subgraph of G. First, suppose that S is a t-spanner of G. Let
H ∈ Ct(G). We will show that S ∩ H is a t-spanner of H. Let e ∈ E(H). By the
definition of Ct(G), H contains every path in G of length at most t between the
ends of e. Since S is a t-spanner of G, S ∩ H must contain one such path. Thus,
S ∩ H is a t-spanner of H.

Now, suppose that for every H ∈ Ct(G), S ∩ H is a t-spanner of H. We
will show that S is a t-spanner of G. Since every edge e ∈ E(G) belongs to a
subgraph H ∈ Ct(G), and S ∩ H is a t-spanner of H, S must contain a k-path,
k ≤ t, between the ends of e. Therefore, S is a t-spanner of G. ��

The result above shows that, to find a t-spanner of a graph G, it suffices
to find a t-spanner for each subgraph H ∈ Ct(G), and take the union of all
these t-spanners. If we are interested in tree t-spanners, we can also base on this
approach, but we may derive one of the conclusions: if the union of the tree
t-spanners of each of the classes in Ct(G) is not a tree, we can conclude that G
does not have a tree t-spanner. Otherwise, such a union gives a tree t-spanner
of G.

We observe that, for fixed t, we can obtain Ct(G) in polynomial time. Now,
we introduce some notation and terminology to be used in what follows. Let
G = (V,E) be a graph. We denote by R

E the set of real-valued vectors indexed
by the elements in E. We denote by χF ∈ R

E the incidence vector of the set
F ⊆ E. That is, χF is the binary vector whose nonzero entries correspond to
the elements in F . If H is a subgraph of G, we abbreviate χE(H) by χH .
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3 Polytope of the TREE 2-SPANNERS

Throughout this section G = (V,E) denotes a connected subcubic graph. Our
aim is to study the polytope defined by the following set in R

E .

T2(G) := conv({χT ∈ R
E : T is a tree 2-spanner of G}),

where conv(X) denotes the convex hull of the vectors in X. In particular, we
want to find a set of (linear) inequalities that describe T2(G). Observe that, by
Proposition 2, it suffices to describe the set T2(H), for each H ∈ C2(G), and
write a restriction combining them.

Cai & Keil [7] characterized the subgraphs in C2(F ) when Δ(F ) ≤ 4. When
specialized to subcubic graphs, their result gives the following result. For com-
pleteness, we present a simplified proof for this case.

(a) (b) (c) (d)

Fig. 2. (a) K2; (b) K3; (c) K4 − e; and (d) K4.

Lemma 1 (Cai & Keil, 1994). Let G be a graph such that Δ(G) ≤ 3. If
H ∈ C2(G), then H is isomorphic to K2, K3, K4 − e, or K4.

Proof. Let H ∈ C2(G), and let uv ∈ E(H). If uv does not belong to any 3-cycle
in G, then H ∼= K2. Now, suppose uv belong to a 3-cycle in G. We have that
NG(u) ∩ NG(v) 
= ∅. We distinguish two cases.

Case 1: |NG(u) ∩ NG(v)| = 2
Let NG(u)∩NG(v) = {x, y}. If xy ∈ E(G), then H ∼= K4. Otherwise, the set

{u, v, x, y} induces a K4 − e in H. Since Δ(H) ≤ 3, we have that 〈u, x, v〉 is the
unique 3-cycle that contains xu and xv. Similarly, 〈u, y, v〉 is the unique 3-cycle
that contains yu and yv. Therefore, H ∼= K4 − e.

Case 2: |NG(u) ∩ NG(v)| = 1
Let NG(u)∩NG(v) = {w}, and let C = 〈u, v, w〉. If H ∼= C, the claim follows.

So suppose that H � C. Then, there must exist a 3-cycle Q 
= C that contains
either uw or vw. Without loss of generality, suppose that uw ∈ E(Q). Since
Δ(H) ≤ 3, we conclude that C (resp. Q) is the only 3-cycle in H that contains
the edges in E(C) − uw (resp. E(Q) − uw). Therefore, H ∼= K4 − e. ��

In Fig. 2, we show the graphs that belong to C2(G). In what follows, we show
a linear formulation that describes T2(G). The inequalities that compose this
formulation are based on the following observations. First, if H is a complete
graph, any tree 2-spanner of H must be a star. Thus, any such tree does not
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contain a matching of size two. Moreover, if C is 4-cycle in G, then any tree
2-spanner must contain at most two edges in C. This follows from the fact that,
if a tree 2-spanner of G contains any three edges of C, these edges would induce
a 3-path in the tree, violating the condition of 2-spanner. These observations
explain the first two set of inequalities of the linear formulation below.

Now, consider the decision variables x ∈ R
E such that xe = 1 if and only if

e belongs to the solution. Let P (G) be the polytope defined by the following set
of inequalities.

(P (G))

x(E(G)) = |V (G)| − 1,

x(E(H)) = |V (H)| − 1, ∀H ∈ C2(G),

x(F ) ≤ 1, ∀F ⊆ E(H), F matching, H ∈ C2(G), H clique,

x(C) ≤ 2, ∀C ⊆ E(H), C is a 4-cycle, H ∈ C2(G),

xe ≤ 1, ∀e ∈ E,

xe ≥ 0, ∀e ∈ E.

Next, we show the main result of this section.

Theorem 1. Let G = (V,E) be a connected graph such that Δ(G) ≤ 3. Then

T2(G) = P (G).

Proof (sketch). By the previous arguments, we have that T2(G) ⊆ P (G). Now,
we show that P (G) ⊆ T2(G). For this, it suffices to show that every vertex
of P (G) has integer coordinates. Let x∗ be a vertex of P (G). We say that an
edge e ∈ E is fractional if 0 < x∗

e < 1. Moreover, we say that an edge e is full if
x∗
e = 1. Let e ∈ E, and let H ∈ C2(G) be the subgraph that contains e. To show

that x∗
e = 0 or x∗

e = 1, we distinguish four cases.

Case 1: H ∼= K2

In this case, E(H) = {e}. Then, x∗(E(H)) = x∗
e = 1.

Case 2: H ∼= K3

In this case, we omit the proof, but the idea is to show that if x∗
e is fractional,

then x∗ is a convex combination of two vectors in P (G).

Case 3: H ∼= K4 − e
In this case, we first prove the following claim. (We omit this proof owing to

space limitation.)

Claim. Let C be the unique 4-cycle in H. If C contains a fractional edge, then
x∗(C) < 2.

Since there is a unique edge in E(H) \E(C), the previous claim implies that
C does not contain any fractional edge. Otherwise, we would have x∗(E(H)) < 3,
a contradiction. Finally, since x∗(E(H)) = 3 and x∗(C) ≤ 2, the unique edge in
E(H) \ E(C) must also be integral.
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Case 4: H ∼= K4

Let f be an edge of H. We will denote by f ′ the unique edge in H such that
{f, f ′} is a matching. In this case, the idea is to show first the following claim.
We leave the proof to the reader.

Claim. If x∗
f is fractional, then x∗

f ′ = 0.

Consider that E(H) = {e, e′, f, f ′, g, g′}. As x∗ ∈ P (G), we have that x∗
e +

x∗
e′ ≤ 1, x∗

f + x∗
f ′ ≤ 1, and x∗

g + x∗
g′ ≤ 1. Since x∗(E(H)) = 3, all the previous

inequalities must be satisfied with equality. Therefore, the above claim implies
that H has no fractional edge. ��

By Lemma 1, the graphs in C2(G) are all graphs on at most 4 vertices and at
most 6 edges. Hence, the polytope P (G) is defined by O(|E|) inequalities, and
therefore, we can find an optimal solution of P (G) in polynomial time on the
size of the input graph G [10].

Now, suppose that there are costs ce ∈ R, e ∈ E, assigned to the edges of G,
and consider the minimum cost tree t-spanner problem (MCTSt): given a graph
with costs assigned to its edges, find a tree t-spanner of minimum total cost. We
observe that, the distance between two vertices is the minimum number of edges
of a path between them. That is, when measuring the distance, we disregard the
costs of the edges.

By Theorem 1, an optimal solution of min{cx : x ∈ P (G)} induces a tree
2-spanner of G which is an optimal solution for MCTS2. Therefore, we obtain
the following result.

Theorem 2. MCTS2 can be solved in polynomial time on subcubic graphs.

4 MINIMUM 3-SPANNER on Subcubic Graphs

In this section, we show that MinS3 can be solved in polynomial time if the
input graph is subcubic. As in the previous section, we consider that G = (V,E)
is a connected subcubic graph. First, we study the structure of the subgraphs
in C3(G). Our first result shows a constructive characterization of the subgraphs
in C3(G). It says that for any graph H in C3(G), different from K2, we can define
a sequence of graphs H0, . . . , Hn such that H0 is a cycle of length at most four,
Hn

∼= H, and Hi+1 is obtained from Hi by applying one of the four operations
defined below. We now describe these operations. Let Hi be a subcubic graph.
Let u and v be distinct vertices of degree two in Hi. The first three operations
are the following:

a) Add to Hi an edge between uv if uv /∈ E(Hi) and dHi
(u, v) ≤ 3.

b) Add to Hi a 2-path between u and v if dHi
(u, v) ≤ 2.

c) Add to Hi a 3-path between u and v if uv ∈ E(Hi).
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Now, for the last operation, let uv and xy be edges in E(Hi) such that u, v,
x and y have degree two in Hi. We say that uv and xy match if ux, vy /∈ E(Hi)
or if uy, vx /∈ E(Hi). Moreover, we call any of these pairs of edges a matching
between uv and xy. Then, the fourth operation is the following.

d) Add to Hi a matching between the edges uv and xy.

Note that only operations b) and c) add vertices to Hi, and these new vertices
have degree two in the resulting graph. Moreover, each operation increases the
degree of the vertices where it is applied. Since H0 is a 3-cycle or 4-cycle, we
have that δ(Hi) ≥ 2, for i = 0, . . . , n. We show, in Fig. 3, the graphs obtained
after applying one of these operations to a 4-cycle. The vertices and edges added
to the graph are depicted by solid vertices and wavy edges, respectively.

In the next lemma we show that any graph in C3(G), except for K2, can be
constructed using the previous operations. Its proof is omitted owing to space
limitation.

Lemma 2. Let H ∈ C3(G) such that H � K2. Then, there exists a sequence of
graphs H0, . . . , Hn such that H0 is a cycle of length at most four, Hn

∼= H, and
Hi+1 is obtained from Hi by applying one of the operations a), b), c) or d).

Before we characterize the graphs in C3(G), we define some classes of graphs
related to it. The k-ladder graph, denoted by Lk, is the cartesian product of
a k-path with K2. We note that Lk has exactly four vertices of degree two. We
denote these vertices by x1, x2, y1 and y2. Moreover, we consider that the edges
x1y1, x2y2 belong to E(Lk) (see Fig. 4 (a)). If we add the edges x1y2 and x2y1
(resp. x1x2 and y1y2) to Lk, for k ≥ 2, we obtain the graph Mk (resp. Nk).
From Lk we can also obtain two other graphs that are of our interest. If we add
a 2-path between x1 and y1, we obtain the graph T 1

k . Moreover, if we add a
2-path between x2 and y2 in T 1

k , we obtain the graph T 2
k . We show, in Fig. 4, an

example of those graphs for k = 2.
Let Mk − e (resp. Nk − e) be the graph obtained from Mk (resp. Nk) by

removing the edge x1y2 (resp. y1y2). In Fig. 5, we show an example of M2 − e
and N2 − e along with the graphs G1, G2 and G3 that will be important in our
characterization.

Let F3 be the family composed of the following graphs:

a) K2

b) K3

c) K4 − e
d) K4

e) K2,3

f) M2 − e
g) N2 − e
h) N3 − e

i) G1

j) G2

k) G3

l) Lk, k ≥ 1

m) Mk, k ≥ 2
n) Nk, k ≥ 2
o) T 1

k , k ≥ 1
p) T 2

k , k ≥ 1

Next, we show the main result of this section.

Theorem 3. Let G be a graph such that Δ(G) ≤ 3. If H ∈ C3(G), then H ∈ F3.
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(a) (b) (c) (d)

Fig. 3. Graphs obtained from a 4-cycle after applying operation a), b), c), or d)

x2 y2

x1 y1

(a)

x2 y2

x1 y1

(b)

x2 y2

x1 y1

(c)

x2 y2

x1 y1

(d)

x2 y2

x1 y1

(e)

Fig. 4. (a) L2; (b) M2; (c) N2; (d) T 1
2 ; (e) T 2

2 .

Proof (sketch). Let H ∈ C3(G). By the definition of C3(G), if H is acyclic, then
H ∼= K2. So, suppose that H is not acyclic. By Lemma 2, there is a sequence of
graphs H0,H1, . . . ,Hn such that

– H0
∼= K3 or H0

∼= L1,
– Hn = H,
– Hi+1 is obtained from Hi by applying one of the operations a), b), c) or d).

The proof is by case analysis. We will show that Hi ∈ F3, for i = 0, . . . , n.
Moreover, if we can apply any operation to Hi, we will suppose that H 
= Hi,
and consider each possibility for Hi+1.

By Lemma 2, H0
∼= K3 or H0

∼= L1. We will show the proof for the case
H0

∼= K3. Suppose that H0
∼= K3. Observe that we can not apply operations a)

or d) to H0. That is, we may obtain H1 as a result of operation b) or operation c).
In the first case, H1

∼= K4 − e, and in the second case, H1
∼= T 1

1 . We distinguish
these two cases.

(a) (b) (c) (d) (e)

Fig. 5. (a) M2 − e; (b) N2 − e; (c) G1; (d) G2; (e) G3.
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

(m) (n) (o) (p) (q) (r)

Fig. 6. Minimum 3-spanners for (representative) graphs in F3 (from (a) to (p)); and
minimum 3-spanners for the special cases M2 and N2 (resp. (q) and (r)).

Case 1: H1
∼= K4 − e

In this case, H1 contains only two vertices of degree two. Since these vertices
are not adjacent, we can apply operations a) or b) to H1. Thus, we have that
either H2

∼= K4 or H2
∼= G1 (see Fig. 5). Observe that, in both cases, H2 has at

most one vertex of degree two. Therefore, H = H2.

Case 2: H1
∼= T 1

1

In this case, H1 has three vertices of degree two. Let a, b and c be those
vertices such that the neighbors of a have degree three (see Fig. 7 (a)). We may
obtain H2 by applying a), b) or c). If we apply operation a), H2 is obtained by
adding the edge ab or ac to H1. In either case, we have H2

∼= G1 (see Fig. 7 (b)).
Moreover, we must have H = H2 since H2 has only one vertex of degree two.
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(a) (b) (c)

Fig. 7. (a) H1
∼= T 1

1 , (b) H2
∼= G1; and (c) H2

∼= N2 − e.
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Now, suppose that H2 is obtained by applying operation b). We may apply
operation b) on vertices a and b (or c), or on vertices b and c. In the first case,
we have that H2

∼= N2 − e (see Fig. 7 (c)). In the other case, H2
∼= T 2

1 . Finally,
we can only apply operation c) on vertices b and c. In this case, H2

∼= T 1
2 . We

distinguish these three cases for H2.

Case 2.1: H2
∼= N2 − e

Since H2 contains only two vertices of degree two, and these vertices are at
distance two, we can only apply operation a) or b) to obtain H3. In the first
case, we have H3

∼= N2, and in the second case, H3
∼= G3. In both cases, H3 has

at most one vertex of degree two. Therefore H = H3.

Case 2.2: H2
∼= T 2

1

In this case, H2 has only two vertices of degree two. Moreover, these vertices
are at distance three. Then, we can only obtain H3 by applying operation a) to
those vertices. Therefore, H3

∼= N2 (see Fig. 8 (a)). Since N2 is cubic, we must
have H = H3.

3

1 2

4

5

6 1

2 4

3

5 6

b

d e

c

f g

a

b

d f

a

e g

c

(a) (b)

Fig. 8. (a) H3
∼= N2; and (b) H3

∼= G3.

Case 2.3: H2
∼= T 1

2

Let a, b and c be the three vertices of degree two in T 1
2 such that b is adjacent

to c. We may obtain H3 by applying operations a), b) or c) to H2. First, suppose
that H3 is obtained by applying a) to H2. Note that, we can only apply this
operation on vertices a and b (or c). In both cases, we have H3

∼= G3 (see Fig. 8
(b)). As G3 has only one vertex of degree two, we have that H = H3.

Now, suppose that we apply b) to obtain H3. Observe that we can only apply
this operation on vertices b and c. Thus, we have that H3

∼= T 2
2 . Since the vertices

of degree two, in T 2
2 , are at distance four, we must have H = H3.

Finally, we can only apply c) to H2 on vertices b and c. Then H3
∼= T 1

3 .
Note that we can only apply operations b) and c) to T 1

3 . Thus, by analogous
arguments as before, we must have that H ∼= T 2

k , k ≥ 3. ��

The previous result characterizes the subgraphs in C3(G). By Proposition 2,
to solve MinS3 on subcubic graphs, it suffices to find a minimum 3-spanner for
each subgraph in F3. We show, in Fig. 6, a minimum 3-spanner (in solid edges)
for each of these subgraphs. In most cases such 3-spanner is a tree which implies
its minimality. We observe that, for K2, K3, K4 − e and K4, such tree spanner
is a star centered at a vertex of maximum degree. In a similar way, for K2,3,
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G1, G2 and G3, we can obtain a tree 3-spanner, by case analysis. Finally, for
the remaining graphs, a minimum 3-spanner is obtained from a tree 3-spanner
of Lk.

In what follows, we describe a method to construct a minimum 3-spanner
for Lk, T 1

k and T 2
k , k ≥ 1. Observe that, all the previous graphs contain Lk as a

subgraph. Let x1, y1, x2 and y2 be the vertices of degree two, in Lk, such that
xi is adjacent to yi, for i = 1, 2. A tree 3-spanner of Lk can be obtained in the
following way:

i) Let P be the path between x1 and x2 of length k.
ii) Let S be the tree obtained from P by linking every vertex v ∈ V (Lk)\V (P )

to its neighbor in P .

An example of the above construction is depicted in Fig. 6 (l). To show that
S is indeed a tree 3-spanner of Lk, note that for each edge in E(Lk)\E(S), there
is a 3-path between its ends. Now, we show how to add edges to S in order to
obtain a minimum 3-spanner of T 1

k , T 2
k . Since Lk is a subgraph of T 1

k and T 2
k , we

will suppose that V (Lk) ⊂ V (T i
k), for i = 1, 2. Note that, by adding to S, the

edges that link each vertex in V (T i
k) \ V (Lk) to P , we obtain a tree 3-spanner

of T i
k, for i = 1, 2. This construction is shown in Fig. 6 (o) and Fig. 6 (p). To

conclude, we show how to construct a minimum 3-spanner of Mk and Nk, k ≥ 2.
We distinguish the cases k = 2 and k ≥ 3. In Fig. 6 (q) and Fig. 6 (r), we show
tree 3-spanners of M2 and N2, respectively, indicated with solid edges.

Since Nk is the cartesian product of a (k+1)-cycle with K2, a result obtained
by Lin & Lin [17] implies that Nk does not admit a tree 3-spanner, for k ≥ 3.
In what follows, we show that this also holds for Mk. For this, we first name
some elements of a tree 3-spanner of Lk to state a property we need later.
Let B1, B2, . . . , Bk be the 4-cycles in Lk such that E(Bi) ∩ E(Bi+1) 
= ∅, for
i = 1, . . . , k − 1. Moreover, let e0 (resp. ek) be the edge that links x1 and y1
(resp. x2 and y2); and let ei be the edge that belongs to Bi and Bi+1, for
i = 1, . . . , k − 1. In Fig. 9 we show an example for k = 3. We denote by fi
and gi the edges in Bi that are different from ei−1 and ei. The following result,
regarding the edges ei and the tree 3-spanners of Lk, is straightforward and is
left to the reader.

e3e2e1e0

B1 B2 B3

(a)

Fig. 9. (a) The 4-cycles B1, B2 and B3 in L3.
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Lemma 3. Let S be a tree 3-spanner of Lk. Then, ei ∈ E(S), for i = 1, . . . ,
k − 1.

The following result shows that a minimum 3-spanner of Mk has at least
|V (Lk)| edges.

Lemma 4. The graph Mk does not admit a tree 3-spanner if k ≥ 3.

Proof (sketch). First, we consider that Lk is a subgraph of Mk. In particular,
V (Lk) = V (Mk). Let x1, x2, y1 and y2 be the vertices of degree two in Lk, such
that x1y1 and x2y2 are edges in Lk. The proof is by contradiction. Suppose that
Mk admits a tree 3-spanner, say S. First, we observe that E(S)∩{x1y2, y1x2} 
=
∅. Otherwise, S is a subgraph of Lk. This implies that the distance between x1

and y2, in S, is at least k + 1 which is a contradiction for k ≥ 3.
So, suppose that E(S) ∩ {x1y2, y1x2} 
= ∅. By symmetry, we can suppose

that x1y2 ∈ E(S). Let S′ = S − x1y2. The following claim holds. We leave its
proof to the reader.

Claim. For every edge uv ∈ E(Mk) \ {x1y2, y1x2}, we have that u and v belong
to the same component in S′.

Observe that, the previous claim implies that S′ is connected, a
contradiction. ��

Then, any minimum 3-spanner of Mk or Nk, for k ≥ 3, must have at
least |V (Lk)| edges. Let S be the tree 3-spanner of Lk constructed by the steps i)
and ii). Note that, by adding the edge x1y2 (resp. x1x2) to S, we obtain a min-
imum 3-spanner of Mk (resp. Nk). An example of this construction is depicted
in Fig. 6 (m) and Fig. 6 (n). Therefore, we have shown the following result.

Corollary 1. If S∗ is a minimum 3-spanner of Mk or Nk, then |E(S∗)| =
|V (Lk)|, for k ≥ 3.

Theorem 4. MinS3 can be solved in polynomial time on subcubic graphs.

Proof. First, we find the subgraphs in C3(G). Let H ∈ C3(G). We have already
argued how to construct a minimum 3-spanner for the graphs in F3. Thus, we
only need to show how to decide which graph, in F3, H is isomorphic to. First,
if |V (H)| ≤ 8, we do this by a brute-force algorithm. Second, if |V (H)| = 9,
then H ∼= T 1

3 . Now, suppose that |V (H)| ≥ 10. Note that the only candidates
are Lk, T

1
k , T 2

k ,Mk and Nk, for k ≥ 4. Let s be the number of vertices of degree
two in H. Observe that: (i) if s = 4, then H ∼= Lk; (ii) if s = 3, then H ∼= T 1

k ;
(iii) if s = 2, then H ∼= T 2

k ; and (iv) if s = 0, then H ∼= Mk or H ∼= Nk.
For the case s = 0, we distinguish between Mk and Nk as follows. Let E′

be the set of edges, in H, that belong to just one 4-cycle. Note that, we can
obtain this information when we find C3(G). Observe that E′ induces either a
Hamiltonian cycle of H, or two disjoint cycles of length k + 1. In the first case,
we have H ∼= Mk, and in the second case, we have H ∼= Nk. ��
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4.1 Consequences for TREES3

Fomin et al. [13] showed that if a graph G has a tree t-spanner then its treewidth
is at most Δ(G)t. Using this result, they show that if G has bounded degree,
say d, then TreeSt can be solved in linear time, in the following way: (i) check
whether G has treewidth at most dt; and (ii) look for a tree t-spanner if (i)
holds. Step (i) can be solved in linear time, using a well-known result proved by
Bodlaender [4]. Step (ii) can be solved in linear time by Courcelle’s theorem [8]
since the property of admitting a tree t-spanner is expressible in monadic second
order logic [13]. More recently, Papoutsakis [18] proposed a dynamic program-
ming approach for TreeSt on bounded-degree graphs that solves the problem
in polynomial time (for fixed t and maximum degree).

We note that, by Proposition 2, our approach on MinS3 gives an alternative
algorithm for TreeS3 on subcubic graphs: for each H ∈ C3(G), find a tree 3-
spanner of H, say TH . If H ∼= Mk or H ∼= Nk, k ≥ 3, then G does not admit
a tree 3-spanner. Otherwise, let T be the union of the 3-spanners TH . Then, G
admits a 3-tree spanner if and only if T is a tree.

5 Concluding Remarks and Future Work

In this work, we studied MinSt, and a minimization version of TreeSt, which
we called MCTSt. We showed that MinS3 can be solved in polynomial time on
subcubic graphs. This result answers partially an open question regarding the
complexity of MinSt on bounded-degree graphs. As a byproduct, our approach
yielded an alternative algorithm to solve TreeS3 on subcubic graphs. Currently,
we are working on the remaining open questions regarding the computational
complexity of MinSt on bounded-degree graphs.

We also studied the polytope defined as the convex hull of the incidence
vectors of the tree 2-spanners of a subcubic graph. We showed a complete lin-
ear description of this polytope (of polynomial size). As a result, we obtained a
polynomial-time algorithm for MCTS2 on subcubic graphs. As far as we know,
this is a novel result. The current (mixed) integer linear formulations for min-
imum t-spanner and its variants are able to solve only small instances in a
reasonable amount of time. Possibly, finding strong and tight inequalities for the
relaxed formulations may lead to approaches with better performance, but this
seems to be a hard and challenging problem.
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Abstract. Bundling crossings is a strategy which can enhance the read-
ability of graph drawings. In this paper we consider bundlings for families
of pseudosegments, i.e., simple curves such that any two have share at
most one point at which they cross. Our main result is that there is a
polynomial-time algorithm to compute an 8-approximation of the bun-
dled crossing number of such instances (up to adding a term depending
on the facial structure). This 8-approximation also holds for bundlings
of good drawings of graphs. In the special case of circular drawings the
approximation factor is 8 (no extra term), this improves upon the 10-
approximation of Fink et al. [6]. We also show how to compute a 9

2
-

approximation when the intersection graph of the pseudosegments is
bipartite.

1 Introduction

The study of bundled crossings is a promising topic in Graph Drawing due to
its practical applications in Network Visualization and the rich connections with
related areas such as Topological Graph Theory. One of the mantras motivat-
ing the study of crossing numbers is that “reducing crossings can improve the
readability of a drawing, leading to better representation of graphs”. The study
of bundled crossings provide an alternative way to assess readability by allow-
ing crossings of a drawing to be bundled into regular grid-patterns with the
goal of minimizing the number of bundles instead of minimizing the number of
individual crossings.

The crossing number of a graph G is the minimum integer cr(G) for which G
has a drawing in the sphere with cr(G) crossings. Computing the crossing number
of a graph is a notoriously hard problem. There are long standing conjectures
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regarding the crossing numbers of complete graphs [2,7] and complete bipartite
graphs [10]. Another family whose crossing numbers have been intensely studied
are Cartesian products of two cycles CmlCn. It is conjectured that their crossing
number is cr(CmlCn) “ (m´2)n for, 3 ď m ď n [8]. Figure 1(left) indicates how
to draw products of cycles with few crossings, these drawings show cr(CmlCn) ď
(m ´ 2)n.

Fig. 1. The crossing number of C4lC4 is 8 (left) but there is a drawing with 16
crossings which can be viewed as a single bundled crossing (right).

To define bundled crossings, we consider the planarization of a drawing D in
the sphere, this is the plane graph obtained by replacing crossings by degree-4
vertices (we always assume that a crossing point belongs to only two edges).
A bundled crossing or bundle of D is a subgraph of the planarization of D
isomorphic to an n × m-grid graph (n, m ě 1), whose vertices are exclusively
crossings. A drawing of C4lC4 where all crossings can be assigned to a single
bundle is shown in Fig. 1(right).

A bundling of D is a partition of the crossings of D into disjoint bundles.
The bundled crossing number bc(D) of a drawing D is the minimum number of
bundles in any bundling of D, whereas the bundled crossing number bc(G) of a
graph G is the minimum bc(D) taken over all drawings D of G. From the fact
that C4lC4 is not planar and Fig. 1, it follows that bc(C4lC4) “ 1. Indeed,
bc(CmlCn) “ 1 for n,m ě 3.

Previous Work. Schaefer in his survey on crossing number problems [9] sug-
gests to consider bundlings of crossings. Alam et al. [1] were the first to study
the problem from a graph drawing viewpoint. Later, Fink and coauthors consid-
ered the problem of computing bc(·) both in the free-drawing variant, when a
graph G is the input, and the goal is to compute bc(G), and in the fixed-drawing
variant, where the drawing D is the input, and the goal is to find bc(D), i.e., to
assign the crossings to as few bundles as possible. In this work we will focus on
the fixed-drawing variant1.

1 In this work we are interested on bundling connected drawings. In this context, faces
of a bundle bounded by “squares” are empty. In previous literature, the emptyness
of squares was part of the definition of bundled crossings.
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Fink et al. [6] showed that computing bc(·) is NP-hard in the fixed-drawing
variant of the problem. The hardness of the free-drawing variant has been shown
by Chaplick et al. [3]. An algorithm that computes a 10-approximation of bc(D)
for circular drawings was presented by Fink et al. [6], here a circular drawing of a
graph is one where vertices are drawn on a circle and edges are drawn inside the
circle. Circular drawings are assumed to be simple. Simple drawings also known
as good drawings obey: (0) there are no self-intersections of edges; (1) any two
edges intersect at most once; (2) the intersection between any two edges is either
a common vertex or a crossing; and (3) no three edges share a crossing. Our work
was motivated by the question of whether bc(D) can be approximated on simple
drawings or even more general classes of drawings of graphs.

Our Contribution. To prepare for the statement of our main results we first
show how to reduce the problem of computing bc(·) for a graph drawing D to
computing bc(·) for a set of strings. We then introduce a special configuration
called a toothed-face which plays a special role in this work.

To a graph drawing D we associate a set E of strings obtained in two steps:
first, delete all the uncrossed edges of D; second, for each edge e of D, remove
a small bit of e at each endpoint to obtain a string (a closed arc). This results
in a set E of strings which is the drawing of a matching, thus bc(E) is well-
defined. Moreover, the bundlings of D are in one-to-one correspondence with
the bundlings of E , so often in this work we restrict ourselves to study bundlings
of sets of strings. If the drawing D is a good drawing the associated family E is
a family of pseudosegments, i.e., it is a set of strings with the property that no
string self-intersects and no two strings cross more than once.

Any set of strings divides the plane into open regions called faces. A string
ends in a face F if one of its endpoints is incident with the boundary of F .
Before defining toothed-faces, keep in mind that the boundary of a face is not
necessarily the same as the boundary of its closure. For instance, Fig. 2 shows
two examples of faces where their boundaries include pieces of strings ending in
the face while their closure is bounded by only four pieces of strings.

Fig. 2. Examples of
toothed-faces.

A toothed-face is a face F of a set of strings such that (1)
at least one string ends in F ; (2) the closure F is bounded
by exactly four pieces of strings; and (3) all the crossings
between the strings ending in F and the boundary of F
occur in only two opposite string-pieces among the four
string-pieces bounding F . For a set E of strings we let t(E)
be the number of toothed-faces. The next is our first main
result.

Theorem 1. For a connected family of pseudosegments E
there is a bundling with at most 8bc(E)` t(E) bundles. This
bundling can be computed in polynomial-time.

If E is associated to a drawing D, then define t(D) :“
t(E). With this definition the approximation bound of
8bc(D) ` t(D) applies to a class of drawings containing but not restricted to
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simple drawings. In the absence of toothed-faces2 we get a clean 8 approxi-
mation. Since circular drawings have no toothed-faces, Theorem 1 yields an
8-approximation for this class thus improving over the 10-approximation Fink
et al. [6].

In our second main result we consider bipartite families of pseudosegments,
i.e., families with a bipartite intersection graph, and obtain an improved approx-
imation for such bipartite instance.

Theorem 2 (∗3). For a connected bipartite family of pseudosegments E there is
a bundling with at most 9

2bc(E) ` 1
2 t(E) bundles. This bundling can be computed

in polynomial-time.

1.1 An Easy Example: Bundling Laminar Families of Chords

In this section, in an informal approach, we consider a concrete example that
captures many of the concepts that will be used in the later parts of the paper.
The approximation algorithm of Fink et al. [6] is essentially based on the same
concepts.

A laminar family of chords is a drawing obtained from adding to a circle a
collection of vertical blue and horizontal red chords with ends on the circle.

Any such laminar family can be converted, by an appropriate crossing-
preserving transformation, into a family of blue vertical chords and red horizontal
chords drawn inside an orthogonal polygon P , i.e., a polygon whose edges are
parallel to the x- and y-axis (Fig. 3.1). Moreover, the polygon and the chords can
be chosen so that the chords are evenly spaced forming a regular grid inside P .

(1) (2) (3) (4) (5)

Fig. 3. Bundling a laminar family of chords. (Color figure online)

Subdivide the interior of P into squares, each of them containing a crossing
in its center. We will refer to the graph obtained from the union of P and the
perimeter of the squares as the dual net of the instance (Fig. 3.2). A bundled
crossing corresponds to a collection of squares in the dual net forming a rectan-
gle; moreover, a bundling of the new instance corresponds to a partition of the
squares of the dual net into rectangles (Fig. 3.3). We refer to such a partition
as a rectangulation of P . A minimal bundling corresponds to a rectangulation
using a minimum number of rectangles.
2 A toothed-face in a drawing D corresponds to a vertex v such that v is in a four face

of D\v and all edges incident to v leave the face through one or two opposite edges.
3 Proofs of results marked by (∗) can be found in the full version: arXiv:2109.14892.
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The problem of rectangulating an orthogonal polygon into the minimum
number of rectangles was solved by at least three independent groups in the 80’s,
Eppstein [5] contains the relevant references. We next describe a polynomial-time
algorithm for finding a minimum rectangulation.

The segments added to the polygon P to obtain a rectangulation are either
horizontal or vertical (red bi-arrows in Fig. 3.4). In a rectangulation with R
rectangles and S segments, the relation R “ S `1 holds. Therefore, the problem
of finding a minimum rectangulation is equivalent to the problem of adding a
set of segments of minimum cardinality that induces a rectangulation of P .

Each concave corner v of P (red vertices in Fig. 3.2) must be incident with at
least one segment of any rectangulation. We call this the requirement at v (the
requirement is related to what we later call the exponent of v). A good segment
is a segment connecting two concave corners; it is called good because it satisfies
the requirement of two corners. Figure 3.5 shows the given polygon together with
all the good segments. The example shows that pairs of segments may cross or
share an endpoint, we say that they are in conflict.

Ultimately the rectangulation problem for P reduces to study a conflict
graph C whose vertices are the possible good segments. Two good segments
in C are joined by an edge, when they are in conflict. The conflict graph is
bipartite, with blue segments on one side and red segments on the other. A min-
imum family of segments that yields a rectangulation corresponds to a maximum
independent set I of C plus a set of segments covering the corners which are not
incident with elements in I. Computing a maximum independent set in a bipar-
tite graph can be done in polynomial-time, the same holds true for computing
a minimum family of segments rectangulating P .

Although we know how to find an exact solution for rectangulating P , we
now describe how to find an approximate solution to illustrate the algorithm
we will use to prove Theorem 1. Let S be a set of segments which is initially
empty. Consider the concave corners of P one by one, if the current corner v
is not incident to a segment S choose a direction d (horizontal or vertical) and
shoot a segment in direction d from v, i.e., let sv be the segment with one end
at v extending into the interior of P and ending at the first point which belongs
to a segment in S or the boundary of P , this segment sv is added to S. From
the discussion it should be clear that for laminar families of chords this process
yields a rectangulation that uses at most twice as many the segments as an
optimal one, i.e., it is a 2-approximation for the number of segments and also for
the number of rectangles. We refer to this approach as the greedy strategy. Fink
et al. [6] analyze this strategy in the setting where the input of the bundling
problem is a circular drawing. They show that it yields a 10-approximation for
the number of bundles. In Sects. 4, 5 and 6 we analyze the greedy strategy for the
bundling problem for good drawings and show that this simple-minded strategy
guarantees an 8-approximation (Theorem 1).

In Sect. 7 of the full version, we study bipartite collections of strings; this is
somehow closer to the laminar family studied here. There we show that a slightly
modified greedy strategy produces a solution which is a 3

2 -approximation for the
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number of segments needed to rectangulate P . The key is to first compute a set
of segments of one color which maximizes a parameter called marginal gain. This
set is extended using the greedy strategy until a rectangulation is obtained.

2 Strings and Nets

We think of a bundling instance as a set of strings, i.e., as a set of simple curves
in the plane. Throughout this paper, unless otherwise stated, we assume that
the endpoints of any two strings are different and the union of the strings forms
a connected set. A set E of strings is grounded in B (see Fig. 4.2) if B is a set of
pairwise disjoint blue simple closed-curves, we refer to them as boundary curves,
such that (1) each string has its ends in the union of the boundary curves; (2)
boundary curves only intersect the strings at their ends; (3) each boundary curve
contains at least one end of a string; and (4) no two boundary curves are incident
with the same cell of E Y B.

One can always turn a set of strings into a grounded one by adding a sin-
gle blue curve in each face where strings end (Fig. 4.1/4.2). Henceforth, unless
otherwise stated, any set of strings we consider is grounded.

(1) (2) (3) (4)

Fig. 4. A set of strings, its grounding, and the corresponding net

To a grounded set of strings (E ,B) we associate a plane graph which is called
the dual net or just the net (Fig. 4.3/4.4). The net N is obtained by placing a
vertex in each cell which is not bounded by a single closed curve in B and by
adding an edge between two vertices whenever their corresponding cells share a
segment of a string connecting two consecutive intersection points. We will draw
our dual net as in Fig. 4 so that each vertex corresponding to a cell incident
to a boundary curve is drawn on the boundary curve, and edges connecting
two consecutive vertices in the same boundary curve are also drawn along the
boundary curve. Note that boundary holes containing one ore two ends of strings
cause loops and double-edges in the net.

The faces of N come in two kinds: boundary-holes, defined as the faces
bounded by the boundary blue curves; and squares, each of them enclosing
exactly one crossing of strings.
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A bundle of a set of strings corresponds to a rectangle in the dual net.
To be more precise, a set of squares is a rectangle if their enclosed crossings
induce a bundle, i.e., if the squares can be labeled with a vertex-set of an n ×
m-grid, so that any two squares adjacent in the grid share an edge of their
boundaries. A rectangulation is a partition of the squares into rectangles, and
such rectangulation is optimal if it corresponds to a bundling with a minimum
number of bundles.

3 Segments and Holes

In this section we consider a fixed set of grounded strings with its dual net
N “ (V,E). The border of N is the subgraph induced by vertices and edges
drawn on boundary curves. Any vertex or edge of N not on the border is interior.
A degree-4 interior vertex is called regular and any other interior vertex is a
vertex-hole. A hole is a vertex or face of N that is either a vertex-hole or a
boundary-hole.

A path of N is straight if all its inner vertices are regular and any two
consecutive edges are opposite in the rotation at their common vertex. Since a
single edge has no inner vertex it qualifies as straight path. A cut-set is a set
S of edge-disjoint straight-paths where every end of a path is either on a hole
or in the interior of another path of S. We refer to the elements of a cut-set as
segments.

Given a rectangulation R of N , an edge of E is separating if it belongs to the
boundary of two squares belonging to different rectangles. A cut-set delimits R if
its segments only include separating edges and each separating edge is included
in a segment.

Given R it is easy to iteratively build a delimiting cut-set: The first segment
s1 is obtained by considering any edge e1 in the set E′ Ď E of separating
edges, and by maximally extending e1 into a straight path. In the i-th step, si

is obtained by maximally extending an edge ei of E′ \ E(s1 Y · · · Y si´1) into
a straight path that is edge-disjoint from s1,. . ., si´1. This is done until all the
edges of E′ are covered by segments.

If there is no regular vertex v whose four incident edges are separating, then
the cut-set delimiting R is unique. Otherwise, for any such vertex v, one can
choose the pair of opposite edges which belong to a common segment, the other
two segments end at v. This binary choice at any such vertex v may give rise to
exponentially many delimiting cut-sets. In practice, we will not be bothered by
this technicality. We choose and fix an arbitrary cut-set of R. With this in mind,
we can now refer to the segments of R as the segments of the chosen cut-set
delimiting R.

Figure 5 shows a rectangulation with 10 segments and the corresponding
bundling of the crossings with 6 bundles.
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Fig. 5. A rectangulation with 10 segments (holes are blue) and the corresponding
bundling. (Color figure online)

Next we relate the number of rectangles and the number of segments in a
rectangulation. Let H “ H(N ) denote the number of holes of N .

Lemma 1. In a net N with H holes the numbers R of rectangles and S of
segments satisfy:

R ´ S ` H “ 2. (1)

To prove Lemma 1, to any rectangulation R of N we will associate a cubic
plane graph Γ “ Γ (R). The construction will be used again in Sect. 5.

Construction of Γ : First, we consider the subgraph H of N obtained from the
union of the segments in R and the border of N . Color the edges of H included
in segments such that for each segment all the edges on the segment have the
same color and the colors used for different segments are distinct.

Next, we apply a local transformation at each vertex v P V (H): If v is a
regular vertex, then we keep v unchanged unless degH(v) “ 4. In this case we
split v into two vertices v1, v2 joined by an edge as in Fig. 6, where each vi has
degree 3 and the color of v1v2 is the color of the unique segment having v in its
interior.

v v1 v2

Fig. 6. Local transformation when v is regular and degH(v) “ 4.

If v belongs to the border and degH(v) ě 4 or if v is a vertex-hole of arbitrary
degree we split v as follows. Let ρH(v) “ (e1, . . . , ed) be its rotation in H, so that
when v is in the border of N , we assume that the edges e1 and ed are also in the
border. Subdivide each vertex ei by adding a degree-2 vertex in the middle of ei.
Remove v and all the half-edges incident with v. Next, add a path (e1, . . . , ed)
or a cycle (e1, . . . , ed, e1) depending whether v is in the border or not.
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Fig. 7. The graph Γ cor-
responding to the rectan-
gulation of Fig. 5. Vertices
obtained by splitting vertex-
holes or vertices on boundaries
are shown in light blue. (Color
figure online)

Finally, we suppress degree-2 vertices, i.e., if v
is a vertex with degH(v) “ 2 and incident edges
e1, e2, then we delete v and make e1, e2 a single
edge. This yields Γ . Figure 7 shows an example.

Proof of Lemma 1 Given a rectangulation R,
let Γ “ Γ (R) as above. Each segment of the rect-
angulation corresponds to a monochromatic path
in Γ and each vertex of Γ is an end-vertex of
exactly one of them. Thus |V (Γ )| “ 2S. As Γ
is cubic, E(Γ ) “ 3

2 |V (Γ )| “ 3S. Finally, as each
face of Γ corresponds to either a rectangle or a
hole, Γ has R ` H faces. Equation 1 now follows
from Euler’s formula.

Before concluding this section, we make some
remarks about Γ that will be used later. We let
Γ ∗ denote the plane dual of Γ .

Remark 1. (i) Each face of Γ corresponds to a hole or to a rectangle.
(ii) Γ ∗ is a plane triangulation, i.e., the boundary of each face consists of three

edges.
(iii) Γ and its planar dual Γ ∗ are simple graphs when every hole is incident with

at least three segments of R (otherwise Γ has multi-edges and/or loops).
(iv) The vertices of Γ ∗ corresponding to holes form an independent set in Γ ∗.

4 Approximating the Number of Segments

Let N “ (V,E) be a net and B ⊂ E be the set of edges in the border of N . An
edge-set E0 Ď E saturates a vertex v P V if each angle induced by the edges of
E0 Y B at v sees at most two squares, or, if v is regular and no edge of E0 is
incident with v. Moreover, E0 saturates N if every vertex is saturated by E0.

Naturally, the (edge-set of the) segments of a rectangulation saturate N . The
next lemma shows that saturation is also sufficient to induce a rectangulation.

Lemma 2 (�). A cut-set of a net N is saturating if and only if it delimits a
rectangulation.

Observe that this lemma does not extend to more general systems of curves.
In Fig. 8 we depict more general systems of curves allowing closed curves and self-
intersecting strings. Their corresponding dual nets are saturated by ∅ whereas
∅ does not induce a rectangulation in any of them.

Fig. 8. Two bad examples a square ring and a square loop.
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The duals of the two nets shown in Fig. 8 contain special configuration
of squares forbidden in nets of strings: A square-ring is a circular sequence
(s0, s1, . . . , sm, s0) of squares, where si is glued to si´1 and si`1 by using oppo-
site sides of si. A square-loop is similar to a square-ring, except that one square
is glued by using two consecutive sides instead of opposite sides.

Definition 1 (Exponent). Given a net N “ (V,E) and v P V , the exponent of
v is the minimum number of edges in an edge-set saturating v. Hence exp(v) “ 0
if v is a regular vertex and

exp(v) “

⎧
⎪⎪⎨

⎪⎪⎩

⌊
degN (v)

2

⌋
´ 1 v is in the border;

⌈
degN (v)

2

⌉
v is a vertex-hole.

We let exp(N ) :“ ∑
vPV exp(v).

A Greedy Strategy: This strategy consists on linearly ordering the vertices
v1, . . . , vk of N with positive exponent and start adding segments at the vertices
with increasing index. When it comes to vi some incident edges may already
be contained in segments belonging to earlier vertices. Select a minimal set of
edges not covered by the segments such that shooting segments from these edges
results in an edge set saturating vi. Note that the number of segments introduced
to saturate vi is upper bounded by exp(vi).

Henceforth, we will denote the number of rectangles and segments in an opti-
mal rectangulation of N by Ropt and Sopt, respectively. Likewise, we let Rgreed

and Sgreed be the number of rectangles and segments, respectively, obtained
after a run of the greedy strategy in N for some linear order of the vertices.

Observation 1 (∗). The following hold true for a net N :

(i) Sgreed ď exp(N );
(ii) Sopt ě 1

2exp(N ); and consequently
(iii) Sgreed ď 2 · Sopt.

5 Rectangles and Holes

In this section we collect a few facts about rectangles and holes that will be used
in our approximations. It is important to observe that a greedy rectangulation
approximates the optimal when Rgreed is bounded by a constant factor of Ropt.
The next observation already gives a related bound by adding the holes.

Observation 2. Rgreed ď 2Ropt ` H ´ 2.

Proof. Apply Lemma 1 to both sides of Observation 1.(iii)
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Our task of approximating Ropt now reduces to understand under which
circumstances H “ O(Ropt). Let us start by deriving a bound for the odd holes.
Let Hodd be the number of vertex-holes with odd degree in N , i.e., Hodd is the
number of vertices of odd degree ě 3 in N .

Observation 3 (∗). Hodd ď 4 · Ropt.

Our next observation about holes requires the following general observation
about triangulations:

Observation 4 (∗). In a simple plane triangulation with n vertices, an inde-
pendent set has size at most 2

3n.

Definition 2. Given a rectangulation R of N , δ(R) denotes the minimum num-
ber of segments of R incident to any hole of H (δ(R) is the same as the minimum
degree among the vertices of Γ ∗(R) that represent holes). We let δ(N ) be the
minimum integer k for which there is an optimal rectangulation R0 of N with
δ(R0) “ k.

Fig. 9. A set of strings (1) and its dual net (2). The red segments induce an optimal
rectangulation, indeed δ(N ) “ 4. The exponents only imply δ(N ) ě 0. (Color figure
online)

Note that when h is a vertex-hole, then degΓ ∗(R)(h) ě exp(h). For boundary-
holes a corresponding lower bound is given by the sum of exponents of the
incident vertices. Figure 9 shows that there are examples where δ(N ) is much
larger than given by these lower bounds.

Observation 5 (∗). If δ(N ) ě 3, then H ď 2 · Ropt.

5.1 Toothed-Holes and Toothed-Faces

Fig. 10. An example where Ropt “
2 and H is arbitrarily large.

Previously, we saw that if all holes are inci-
dent with at least three segments, then H
is O(Ropt). Unfortunately, it is not true in
general that H is O(Ropt): Fig. 10 shows
that H can be arbitrarily large compared to
Ropt. With the next lemma we prove that
the unboundedness of H in terms of Ropt

can always be attributed to the presence of
toothed-faces.

Lemma 3 (∗). H ď 6Ropt ` t(E) ´ 4.
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6 Approximations for the Number of Rectangles

The first proposition in this section states that the greedy strategy results in a
4-approximation when δ(N ) ě 3. Two families of strings whose elements have a
dual net satisfying this condition are circular drawings with a bipartite sets of
pseudosegments and triangle-free hyperbolic line arrangements. For references
to triangle-free hyperbolic line arrangements we refer to Eppstein [5, Section 7]
and his figure [4] in the Wikipedia article on circle graphs.

Proposition 1. If δ(N ) ě 3, then Rgreed ď 4 · Ropt ´ 2.

Proof. Apply Observations 2 and 5.

Condition δ(N ) ě 3 is restrictive as it forbids in a set of strings the existence
of a cell bounded by three pieces of strings. The next lemma handles very general
sets of strings at the expense of a larger approximation factor.

Lemma 4. If N is the dual net of a set of pseudosegments, then Rgreed ď
8Ropt ` t(E) ´ 6.

Proof. Apply Observation 2 and Lemma 3.

Now our main result is an immediate corollary.

Proof (Proof of Theorem 1). Apply the greedy strategy and Lemma 3 to each
connected component of the set of strings E associated to D to obtain the desired
bundling.

7 Conclusion

In this paper we studied the bundled crossing number of connected good draw-
ings and showed that the greedy strategy derived from the problem of rectan-
gulating an orthogonal polygon leads to an 8-approximation (up to adding the
number of toothed-faces in the drawing). In the full version we improved this
strategy for bipartite instances by considering an initial good set of segments.
We hope that the tools and the framework developed in this work will inspire
more results about bundled crossings. We leave below some open questions.

1. Is there a constant c guaranteeing that, for any simple drawing D, the greedy
algorithm produces bundling with at most c ·bc(D) bundles? In other words,
are toothed-faces relevant to approximate bc(D)?

2. What is the computational complexity of computing bc(E) for bipartite
instances?
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Abstract. For a graph G = (V, E), a collection P of vertex-disjoint
(simple) paths is called a path cover of G if every vertex v ∈ V is
contained in exactly one path of P. The Path Cover problem (PC
for short) is to find a minimum cardinality path cover of G. In this
paper, we introduce generalizations of PC, where each path is associ-
ated with a weight (cost or profit). Our problem, Minimum (Maximum)

Weighted Path Cover (MinPC (MaxPC)), is defined as follows: Let
U = {0, 1, . . . , n − 1}. Given a graph G = (V, E) and a weight func-
tion f : U → R∪ {+∞, −∞}, which defines a weight for each path in its
length, MinPC (MaxPC) is to find a path cover P of G such that the total
weight of the paths in P is minimized (maximized). Let L be a subset
of U , and PL be the set of paths such that each path is of length � ∈ L.
We especially consider MinPLPC with 0–1 cost, i.e., the cost function is
f(�) = 1 if � ∈ L; otherwise f(�) = 0. We also consider MaxPLPC with
f(�) = � + 1, if � ∈ L; otherwise f(�) = 0. That is, MaxPLPC is to max-
imize the number of vertices contained in the paths with length � ∈ L
in a path cover. In this paper, we first show that MinP {0,1,2}PC is NP-
hard for planar bipartite graphs of maximum degree three. This implies
that (i) for any constant σ ≥ 1, there is no polynomial-time approxi-
mation algorithm with approximation ratio σ for MinP {0,1,2}PC unless
P=NP, and (ii) MaxP {3,...,n−1}PC is NP-hard for the same graph class.
Next, (iii) we present a polynomial-time algorithm for MinP {0,1,...,k}PC
on graphs with bounded treewidth for a fixed k. Lastly, (iv) we present a
4-approximation algorithm for MaxP {3,...,n−1}PC, which becomes a 2.5-
approximation for subcubic graphs.

1 Introduction

Let G = (V,E) be an unweighted and undirected graph, where V and E are
the sets of vertices and edges, respectively. Unless otherwise stated, we denote
n = |V |. A path is a sequence of vertices in which each vertex is connected by an
c© Springer Nature Switzerland AG 2022
P. Mutzel et al. (Eds.): WALCOM 2022, LNCS 13174, pp. 396–408, 2022.
https://doi.org/10.1007/978-3-030-96731-4_32
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(A) (B) (C)

Fig. 1. (A) Graph G and (B)(C) two path covers of G; both of the path covers (B)
and (C) are the optimal solutions of PC on G, while (C) is the optimal solution for
MinP[2]PC under the current binary cost function. The path cover (B) contains one
length-2 path and the cost of the path cover (B) is one. The path cover (C) only
contains paths of length-3 or longer and the cost of the path cover (C) is zero.

edge to the next. The path length is the number of edges in the path. Given a
graph G, a collection P of vertex-disjoint simple paths is called a path cover of G
if every vertex v ∈ V is contained in exactly one path of P. The goal of the Path

Cover problem (PC for short) is to find a minimum cardinality path cover of G.
PC is a fundamental problem and contains the well-known Hamiltonian Path

problem, which is to seek a single path visiting every vertex exactly once. In
other words, PC generalizes the Hamiltonian Path problem. Therefore, if the
Hamiltonian Path problem is NP-hard for a certain graph class G, PC is also
NP-hard for G. In this paper, we introduce generalizations of PC, where each
path is associated with a weight (which represents cost or profit). Our problems
are defined as follows:

Minimum (Maximum) Weighted Path Cover (MinPC (MaxPC))
Let U = {0, 1, . . . , n−1} denote a set of path lengths (where the length of an
isolated vertex is defined as 0). Given a graph G = (V,E) and a cost (profit)
function f : U → R ∪ {+∞,−∞}, which defines a cost (profit) for each path
in its length, find a path cover P of G such that the total cost (profit) of the
paths in P is minimized (maximized).

Let L be a subset of U . We denote the set consisting of all the paths whose
length is in L as PL. We, especially, consider MinPC whose cost function is
f(�) = 1 if � ∈ L; otherwise f(�) = 0. The problem is denoted by MinPLPC.
Under the current setting, namely, MinPLPC is a problem to find a path cover
with the minimum number of paths of length � ∈ L since we consider a binary
cost function. We also consider the problem MaxPLPC with f(�) = � + 1, if
� ∈ L, and f(�) = 0, otherwise. We can see that the objective function of
MaxPLPC is to maximize the number of vertices contained in the paths with
length � ∈ L in a path cover. For ease of expression, let [k] = {0, 1, . . . , k} and
let [k] = U \ [k] = {k+1, k+2, . . . , n−1}, i.e., MinP [k]PC means MinP {0,...,k}PC.
Consider the graph G in Fig. 1(A). Since G has no Hamiltonian paths, both of
the path covers (B) and (C) are the optimal solutions for PC containing two
paths. For MinP [2]PC, however, the path cover (B) has cost one for MinP [2]PC
since it contains one length-2 path, and the path cover (C) achieves cost zero for
MinP [2]PC since the two paths are of length three and four, respectively.
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Table 1. Complexity of MinPLPC and MaxPLPC

Problem The setting of L Complexity

MinPLPC L = [n − 2] NP-hard (Hamiltonian Path)

L = [0], [1] P ([2])

L = [2] NP-hard (Theorem 2)

L = [k] FPT w.r.t. k plus treewidth (Theorem 3)

MaxPLPC L = {0} ∪ L′ for any L′ P (the optimal solution is trivially V )

L = {1} P (Maximum Matching)

L = {2} NP-hard ([4])

L = [2] NP-hard (Corollary 2)

4-approximation algorithm (Theorem 4)

Related Work. Note that several classical problems can be seen as special cases
of MinPC or MaxPC. For example, the Hamiltonian Path problem is a decision
version with cost zero of MinP [n−2]PC and the Maximum Matching problem is
equivalent to MaxP {1}PC. Also, the MaxPkPacking problem (defined later) is
a special case of MaxPC. In Table 1, we summarize the computational complexity
results on MinPLPC and MaxPLPC.

One of the most natural variants of PC is to have some bounds of lengths
for paths, for example, the number of vertices of each path, in the path cover.
In fact, such a problem has been well-researched for several years [3,5,8,11].
Chen et al. [3] state that, if the number of vertices of each path in the path
cover is restricted to exactly some constant k, then the problem is called
Pk-partitioning. Garey and Johnson [4] show that P3-partitioning is NP-
complete. This implies that MaxP {2}PC is NP-hard. Similarly, if the number of
vertices of each path in the path cover is at most some constant k, then the prob-
lem is called k-Path Partition (kPP), which is to find a minimum collection
of vertex-disjoint paths. We remark that kPP is equivalent to MinPC with cost
function f such that the cost of each path of length at most k − 1 is 1, or +∞
otherwise. kPP is a nice relaxation of Pk-partitioning, since it always ensures
the existence of a feasible solution on any given graph, while Pk-partitioning
not.

The maximization variant of Pk-partitioning is also studied, which is often
called MaxPkPacking. Given a graph G, MaxPkPacking aims to find the
maximum number of vertex-disjoint paths of exactly k vertices. For example,
Monnot and Toulouse [11] discuss its (in)tractabilities.

MaxPkPacking is equivalent to MaxPC with cost function f(k−1) = 1 and
f(�) = −∞ for � ∈ {0, . . . , n − 1} \ {k − 1}.

On the other hand, for the variant of PC with a lower bound of the length
of each path, there are only a few algorithmic results so far. Almost all of the
known results for this variant are obtained from the graph-theoretical point of
view, such as the existence of such path covers and its necessary and sufficient
conditions. For example, we can find a related recent result in [12]. A P≥3-factor
F of a graph G is a spanning subgraph of G such that every component of F is a
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path of length at least two [7]. A graph G is called a P≥3-factor covered graph if
G has a P≥3-factor including all edges of G. Zhou et al. [12] show some sufficient
conditions for graphs to be P≥3-factor covered graphs. Very recently, Cai et
al. [2] and Gómez and Wakabayashi [6] have independently studied this variant
from the algorithmic point of view. In the former paper, they propose algorithms
to find a path cover with the minimum number of length-0 paths and with the
minimum total number of length-0 and length-1 paths. The latter paper studies a
path cover problem without using length-0 paths. Given a graph, their algorithm
returns such a path cover if it exists, or answers no together with a certificate.
The maximization variant is also introduced. In the previous papers [2,6], it is
known that MinP [0]PC and MinP [1]PC with the same cost function as ours can
be solved in polynomial time. This also shows that MaxP [0]PC and MaxP [1]PC
are both polynomial-time solvable.

Our Results. In this paper, we show that MinP [2]PC is NP-hard even on
planar bipartite graphs with maximum degree three. Our proof also implies that
MaxP [2]PC is NP-hard on the same graph class. Our result can also be evaluated
with the following perspective. When one tries to seek the complexity of PC on
some graph class, usually it depends on the hardness of Hamiltonian Path

problem on the same class. In other words, it has never been argued which
length of path affects the hardness of PC. Thus, our result can be recognized as
the first step of revealing the hidden structures in PC. Our main goal is to reveal
the computational complexities of this path cover variant with respect to path
lengths, restricting the graph structures. Our contribution is as follows.

– First, we show that MinP [2]PC is NP-hard on planar bipartite subcubic
graphs, by giving a polynomial-time reduction from Planar 3-SAT. Accord-
ingly, we obtain the NP-hardness of MaxP [2]PC on the same graph class.
Furthermore, our reduction shows that, for any constant σ ≥ 1, there is
no polynomial-time approximation algorithm with approximation ratio σ for
MinP [2]PC unless P = NP.

– Fortunately, however, we can solve MinP [k]PC on graphs with bounded
treewidth in polynomial time. In other words, we show that MinP [k]PC is
fixed-parameter tractable when parameterized by treewidth plus k. Assum-
ing we are given an n-vertex graph of treewidth at most W together with its
tree decomposition, the running time of our algorithm is O(42W · W 2W+2 ·
(k + 2)2W+2 · n).

– Finally, we focus on the approximability of the maximization variant; we
design a polynomial-time approximation algorithm for MaxP [2]PC. We prove
that its approximation ratio is 4 in general, and can be improved to 2.5 if the
maximum degree of the input graph is three.

Due to the space constraint, some results and proofs are omitted from this
extended abstract.
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2 Preliminaries

Definitions. All graphs considered in this paper are unweighted, undirected,
and simple. That is, graphs are containing no loops or multiple edges. For a
graph G = (V,E), V (G) and E(G) denote the vertex set and the edge set of G,
respectively. A subgraph of G induced by a vertex set S ⊆ V is denotes by G[S].
The open neighborhood of a vertex v is denoted by N(v). The degree of a vertex
v on G is denoted by degG(v), which is defined as degG(v) = |N(v)|.

A (simple) path p of k vertices from a vertex v1 to vk is represented by a
sequence p = 〈v1, . . . , vk〉 of distinct vertices. If a path has no vertices, then it
is called an empty path. The vertex set of p is referred to as V (p) and v1 and vk

are called endpoints of p. A length of path p is defined by the number of edges
contained in p, denoted by �(p). If the length of a path p is �, then we say that
p is a length-� path. We often use P � to denote a set of all length-� paths. To
simplify the expression, let the set of lengths �1, �2, . . . , �c be denoted by “length-
{�1, �2, . . . , �c}.” Also, let the set of paths of length �1, �2, . . . , or �c be denoted
by P {�1,�2,...,�c}. Consider two vertex-disjoint paths p1 = 〈v1,0, . . . , v1,k1〉 and
p2 = 〈v2,0, . . . , v2,k2〉 such that v1,k1 is adjacent to v2,0. A concatenation of p1
and p2 is a path p = 〈v1,0, . . . , v1,k1 , v2,0, . . . , v2,k2〉 and denoted by p = p1 ⊕ p2.
Since the graph is simple, this concatenation is defined uniquely if we are given
two paths. For a graph G, a path cover P of G is a set of vertex-disjoint paths
such that every vertex in G belongs to exactly one path of P.

Given a graph G, a tree decomposition of G is a pair T = (T, {Xt}t∈V (T )),
where T is a tree and Xt is a subset of V (G) called a bag, such that (i) every
vertex of G is contained in at least one bag, (ii) for every edge uv ∈ E(G), there
exists a node t ∈ V (T ) such that bag Xt contains both u and v, and (iii) for every
vertex v ∈ V (G), the set Tv = {t ∈ V (T ) : v ∈ Xt}, i.e., the set of nodes whose
corresponding bags contain v, induces a connected subtree of T . The width of a
tree decomposition is maxt∈V (T ) |Xt|−1, and the treewidth of the graph G is the
minimum possible width of a tree decomposition of G. Note that, given a graph,
it is NP-hard to obtain the optimal treewidth of the graph [1]. If the treewidth of
a graph G is bounded in some constant W , then G is called a bounded-treewidth
graph, or a graph with bounded treewidth.

An algorithm ALG is called a σ-approximation algorithm and ALG’s approx-
imation ratio is σ if ALG(x)/OPT (x) ≤ σ (OPT (x)/ALG(x) ≤ σ, resp.)
holds for every input x of a minimization (maximization, resp.) problem, where
ALG(x) and OPT (x) are the total costs (profits, resp.) of solutions obtained by
ALG and an optimal algorithm, respectively.

Hardness and Tractability Results. Before proceeding to our results, we
show some basic results. We define the decision version of MinPLPC, named
MinPLPC(t), as follows: Given a graph G = (V,E) and an integer t, MinPLPC(t)
determines whether there is a path cover P of G such that the total cost of the
paths in P is at most t or not. Recall that the cost function in MinPC is f(�) = 1
if � ∈ L; otherwise f(�) = 0. Therefore, the decision problem is equivalent to
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determine whether there is a path cover P of G such that the number of length-L
paths is at most t. Similarly, we define the decision version of MaxPLPC. Recall
that this problem is MaxPC with f(�) = � + 1, if � ∈ L, and f(�) = 0 otherwise.
MaxPLPC(t) is a problem to determine whether there exists a path cover such
that the number of vertices contained in the paths with length � ∈ L in the path
cover is at least t. First, we can show the following proposition:

Proposition 1. MinP [k]PC(0) is equivalent to MaxP [k]PC(n) for any integer k
and n-vertex graphs.

Suppose that we have a path cover P without length-0, length-1, . . . , and length-
k paths. Then it is obvious that such a P contains only length-(k + 1), . . . ,
and length-(n − 1) paths. Additionally, we should emphasize that, for example,
MinP [n−2]PC(0) coincides with Hamiltonian Path problem. Summing up the
results shown in [2,6] and the NP-completeness of Hamiltonian Path problem,
we obtain the following (in)tractabilities:

Theorem 1 [2,6]. MinP [0]PC and MinP [1]PC are in P, while MinP [n−2]PC is
NP-hard.

Furthermore, we can show the following hardness of MinP [2]PC(0):

Theorem 2. MinP [2]PC(0) is NP-complete for planar bipartite subcubic graphs.

The proof is by a polynomial-time reduction to MinP [2]PC(0) from Planar 3-

SAT for 3-CNF-formulas such that each variable occurs in exactly three clauses,
exactly once negatively and twice positively [9,10]. Since Theorem 2 implies that
it is NP-complete to determine whether the cost is zero or not, we can derive
the following hardness of approximation:

Corollary 1. For any constant σ ≥ 1, there is no polynomial-time approxima-
tion algorithm with approximation ratio σ for MinP [2]PC unless P = NP.

Fortunately, however, MinP [k]PC is solvable in polynomial time if the input
is restricted to graphs with bounded treewidth:

Theorem 3. Let G be an n-vertex graph together with its tree decomposition of
treewidth at most W . Then, for a fixed constant k, MinP [k]PC can be solved in
time O(42W · W 2W+2 · (k + 2)2W+2 · n).

3 Approximation Algorithm for MaxP [2]PC

In this section, we turn our attention to the maximization variant MaxP [2]PC.
Recall that the goal of MaxPLPC is to maximize the total profit, i.e., the number
of vertices contained in the paths with length � ∈ L in a path cover. First, by
Proposition 1 and Theorem 2, one can verify that MaxP [2]PC is also NP-hard
for planar bipartite subcubic graph.
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Algorithm 1: ALG
Input: A graph G = (V, E)
Output: A path cover P ′

1 P := ∅, P ′ := ∅, π = null, i := 1, j := 1;
2 while G contains at least one length-3 path do
3 Find a length-3 path p in G;
4 P := P ∪ {p}, G := G[V \ V (p)], π(i) := p, i := i + 1;

// Next, along π, try the extension procedure

5 while j �= i do
6 Extend π(j) as long as possible and rename it p′;
7 P ′ := P ′ ∪ {p′}, G := G[V \ V (p′)], j := j + 1;

8 P ′ := P ′ ∪ {〈u〉 | a vertex u is not included in any paths in P ′};
9 return P ′;

Corollary 2. MaxP [2]PC is NP-hard for planar bipartite n-vertex subcubic
graphs.

In the following we consider the approximability of MaxP [2]PC. As shown
before in Sect. 2, the minimization variant MinP [2]PC is hard from the view-
point of the approximability; Corollary 1 shows that the minimization variant
MinP [2]PC is NP-hard to approximate even if the input graph is very restricted.
On the other hand, for the maximization variant MaxP [2]PC, we show that there
is a simple 4-approximation algorithm. Furthermore, we sharpen the approxi-
mation algorithm when restricted to subcubic graphs as input, and prove the
approximation ratio can be improved to 2.5.

The proposed algorithm ALG is based on the following strategies: (1) First,
obtain a maximal set of vertex-disjoint length-3 paths. Then, (2) pick an arbi-
trary path, say, p up, and extend its length by adding a vertex (i.e., length-0
path), a length-1 path, or a length-2 path to the head and/or the tail of p if the
extended path does not intersect with any other paths obtained in (1). If several
paths can be added, then the longest path is always added, i.e., p is extended
to the longest possible direction. In the following, we denote a pick-up ordering
of paths by π, where π(i) denotes the i-th path in the ordering. See the detailed
descriptions of our algorithm ALG. The above (1) and (2) are implemented in
the first while-loop on the second through fourth lines and in the “Extend”
operation on the sixth line, respectively.

Theorem 4. Algorithm ALG is a 4-approximation algorithm for MaxP [2]PC.

Proof. The running time of our algorithm ALG is clearly polynomial. We show the
approximation ratio of ALG by estimating an upper bound of the total profit of an
optimal solution. Note that the profit of every path of length at most two is zero.
Therefore, let ALG and OPT be sets of paths of length at least three obtained
by ALG and an optimal algorithm, respectively. Let V (OPT ) =

⋃
p∈OPT V (p)

and also let V (ALG) =
⋃

p∈ALG V (p). That is, |V (OPT )| and |V (ALG)| are the
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optimal profit and the profit obtained by ALG, respectively. Suppose that ALG
and OPT have α vertex-disjoint paths, p1 through pα, and β vertex-disjoint
paths, q1 through qβ , respectively. Now, to “locally” bound the optimal profit
of OPT from above, we divide every path in OPT into subpaths such that each
subpath intersects with exactly one path in ALG as follows: Consider a path
qi ∈ OPT , assuming that qi intersects with k paths pi1 , pi2 , . . ., pik in ALG
in this order, where {i1, i2, . . . , ik} ⊆ {1, 2, . . . , α}. Note that qi might intersect
with one path twice or more, and hence some two paths pij and pij′ may be
identical for ij �= ij′ (1 ≤ j ≤ k and 1 ≤ j′ ≤ k). Suppose that qi and pij

(1 ≤ j ≤ k) share a path ri,j = 〈vi,j,0〉 ⊕ r′
i,j ⊕ 〈vi,j,�j 〉 of length �j , where if

�j = 0, then ri,j is the single vertex vi,j,0, and if �j = 1, then ri,j is the edge
〈vi,j,0, vi,j,1〉 and r′

i,j is an empty path. One sees that we can represent the path qi

by the concatenation qi = qi,0 ⊕ ri,1 ⊕ qi,1 ⊕ ri,2 ⊕ qi,2 ⊕ . . . ,⊕qi,k−1 ⊕ ri,k ⊕ qi,k,
where the subpath qi,j′′ might be an empty one for 0 ≤ j′′ ≤ k. Then, we
construct the following k subpaths from qi: qi,0 ⊕ ri,1 ⊕ qi,1, ri,2 ⊕ qi,2, ri,3 ⊕ qi,3,
. . ., ri,k ⊕ qi,k. It is important to note here that the length of every qi,j is at
most two because of the maximality of the set of vertex-disjoint length-3 paths
obtained in the first while-loop of ALG. After dividing all the paths in OPT
into subpaths as mentioned above, we define OPT ∗ by the set of such subpaths,
i.e., OPT ∗ =

⋃
qi∈OPT {qi,0 ⊕ ri,1 ⊕ qi,1, ri,2 ⊕ qi,2, ri,3 ⊕ qi,3, . . . , ri,ki

⊕ qi,ki
},

supposing that qi is divided into ki subpaths. For 1 ≤ i ≤ α, let OPTpi
= {q |

q ∈ OPT ∗, V (q) ∩ V (pi) �= ∅}, i.e., a subset of subpaths in OPT ∗ which share
at least one vertex in the path pi ∈ ALG.

For ease of understanding, see an example graph illustrated in Fig. 2(A).
Here, suppose that ALG finds two paths 〈v1, v2, v3, v4〉 and 〈v5, v6, v7, v8〉
of length three in the first while-loop. Also suppose that ALG selects
(1) the former path 〈v1, v2, v3, v4〉 and obtains the extended path p1 =
〈w3, w2, w1, v1, v2, v3, v4, w4, w5〉 by concatenating two paths 〈w1, w2, w3〉 and
〈w4, w5〉, and then selects (2) the latter path 〈v5, v6, v7, v8〉 and obtains the
extended path p2 = 〈w6, v5, v6, v7, v8〉 by concatenating a path 〈w6〉 in the sec-
ond while-loop. That is, ALG outputs ALG = {p1, p2}. On the other hand,
suppose that OPT has three paths, q1 = 〈w3, w2, w1, v1, u1, u2, v2〉, q2 =
〈u3, w4, v4, v3, u4, u5, u6, v7, u7, u8, u9〉 and q3 = 〈u10,u11, u12, v6, u13, u14, u15〉.
Here, q1 intersects with p1 twice. The path q2 intersects with both p1 and p2.
The path q3 intersects with p2. As mentioned above, we now define OPTpi

for 1 ≤ i ≤ α (α = 2 in this example). See Fig. 2(B). (1) First, take a look
at q1, and set p11 = p1 and p12 = p1. One sees that q1,0 is an empty path,
r1,1 = 〈w3, w2, w1, v1〉, q1,1 = 〈u1, u2〉, r1,2 = 〈v2〉, and q1,2 is an empty path.
That is, we can represent q1 by the concatenation 〈w3, w2, w1, v1〉⊕〈u1, u2〉⊕〈v2〉.
Hence, we divide q1 into two subpaths 〈w3, w2, w1, v1, u1, u2〉, and 〈v2〉. Next,
(2) consider q2, p21 = p1, and p22 = p2. One sees that r2,1 = 〈w4, v4, v3〉,
r2,2 = 〈v7〉, and thus q2 = 〈u3〉 ⊕ r2,1 ⊕ 〈u4, u5, u6〉 ⊕ r2,2 ⊕ 〈u7, u8, u9〉. Thus, q2
is divided into two subpaths 〈u3, w4, v4, v3, u4, u5, u6〉 and 〈v7, u7, u8, u9〉. On the
other hand, (3) since q3 intersects with only one path in ALG, q3 is not divided.
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In summary, we define OPT ∗ as follows:

OPT ∗ = {〈w3, w2, w1, v1, u1, u2〉, 〈v2〉, 〈u3, w4, v4, v3, u4, u5, u6〉,
〈v7, u7, u8, u9〉, 〈u10, u11, u12, v6, u13, u14, u15〉}.

Then, we obtain OPTp1 and OPTp2 :

OPTp1 = {〈w3, w2, w1, v1, u1, u2〉, 〈v2〉, 〈u3, w4, v4, v3, u4, u5, u6〉},
OPTp2 = {〈v7, u7, u8, u9〉, 〈u10, u11, u12, v6, u13, u14, u15〉}.

Roughly, we compare the number |V (pi)| of vertices in pi with the upper bound
of the total number |V (OPTpi

)| of vertices in OPTpi
.

The following simple observations play an important role to prove the approx-
imation ratio of ALG:

Observation 1. (1) V (OPT ) = V (OPT ∗), i.e., |V (OPT ∗)| is equal to the
optimal profit |V (OPT )|. (2) Every path in OPT ∗ must intersect exactly one
path in ALG. (3) OPT ∗ =

⋃
pi∈ALG OPTpi

, and OPTpi
∩ OPTpj

= ∅ for dif-
ferent two paths pi, pj ∈ ALG. (4) The graph consisting of V (pi) ∪ V (OPTpi

) is
a connected component (i.e., subgraph) for every pi ∈ ALG.

One sees that the number |V (pi) ∪ V (OPTpi
)| of vertices in the connected

subgraph is a (trivial) upper bound of |V (OPTpi
)|. It follows that the maximum

ratio of the number |V (pi) ∪ V (OPTpi
)| of vertices in the graph consisting of

pi and all the paths in OPTpi
to the number |V (pi)| of vertices in pi over i is

an upper bound of the ratio of |V (OPT )| to |V (ALG)|, i.e., the approximation
ratio can be bounded above by max

pi∈ALG

{
|V (pi) ∪ V (OPTpi

)|/|V (pi)|
}

.

In the following, (1) we first suppose that 〈v1, v2, v3, v4〉 is the path obtained
in the first while-loop of ALG. Next, (2) we see the possibilities on the extended
paths in the second while-loop of ALG. Then, (3) for each extended path, repre-
sented by p = w ⊕ 〈v1, v2, v3, v4〉 ⊕ w′ where w and w′ are respectively concate-
nated to v1 and v4, we consider the “largest” set OPTp of paths which intersect
with p. (4) Let H = (V (p) ∪ V (OPTp), E(p) ∪ E(OPTp)) be a connected graph
consisting of the path p and all the paths in OPTp. Then, we count the number
|V (H)| of vertices in H and the number |V (p)| of vertices in p.

Let � and �′ be the numbers of vertices in two concatenated paths w and
w′, respectively. Let |OPT (H)| and |ALG(H)| be the solution sizes obtained
by an optimal algorithm and ALG for the connected subgraph H, respectively.
We consider ten possibilities on the numbers of vertices in w and w′, (�, �′) =
(3, 3), (2, 3), (1, 3), (0, 3), (2, 2), (1, 2), (0, 2), (1, 1), (0, 1), (0, 0) since (�, �′) = (i, j)
is essentially the same as (�, �′) = (j, i) for 0 ≤ i, j ≤ 3.

Case 1: (�, �′) = (3, 3). Assume that p = 〈w1, w2, w3, v1, v2, v3, v4, w4, w5, w6〉 be
the path obtained by ALG. Then, the connected subgraph H1 which includes
the largest set OPTp of paths intersecting with p is shown in Fig. 3. For exam-
ple, if w1 has an additional edge, say, 〈u27, w1〉, then after the first while-loop
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(A) (B)

Fig. 2. How to divide paths into several subpaths: For example, if the optimal path
cover contains a path 〈u3, w4, v4, v3, u4, u5, u6, v7, u7, u8, u9〉 as (A), then we divide the
path into two paths 〈u3, w4, v4, v3, u4, u5, u6〉 and 〈v7, u7, u8, u9〉 as (B).

of ALG, one vertex-disjoint length-3 path 〈u27, w1, w2, w3〉 is not selected into
ALG, which contradicts to the maximality of the set of vertex-disjoint length-
3 paths. As another example, if w3 has an additional edge, say, 〈u28, w3〉,
then there exists a path 〈w1, w2, w3, u28〉 of length 3, which is again a con-
tradiction. Therefore, in this case, |OPT (H1)| ≤ |V (H1)| = 38 holds. Since
|ALG(H1)| = 10 (= the number of black vertices in Fig. 3), the approximation
ratio |OPT (H1)|/|ALG(H1)| is bounded above by |V (H1)|/|ALG(H1)| = 3.8.

Case 2: (�, �′) = (2, 3). Assume that p = 〈w1, w2, v1, v2, v3, v4, w4, w5, w6〉 is
the path obtained by ALG. In this case, the connected subgraph H2 which
includes the largest set OPTp of paths intersecting with p is illustrated in
Fig. 4. If u1 has a neighbor vertex, say, u0, then the longer path 〈u0, u1, u2〉
must be concatenated to v1 in the second while-loop of ALG, which is a
contradiction to the assumption that 〈w1, w2〉 is concatenated to v1. By the
same reason, u5 (and u6) has no additional neighbor vertex. Therefore, in this
case, |OPT (H2)| ≤ |V (H2)| = 35 holds. Since |ALG(H2)| = 9 (= the number
of black vertices in Fig. 4), the approximation ratio |OPT (H2)|/|ALG(H2)|
is bounded above by |V (H2)|/|ALG(H2)| = 35/9 < 3.9.

Case 3: (�, �′) = (1, 3). Assume that p = 〈w1, v1, v2, v3, v4, w2, w3, w4〉 is the path
obtained by ALG. In this case, the connected subgraph H3 which includes the
largest set OPTp of paths intersecting with p is illustrated in Fig. 5. Note that
u1 dose not have any additional neighbor vertex since the path 〈w1〉 of length
zero is selected in the second while-loop of ALG. One sees that |V (H3)| = 30
and |ALG(H3)| = 8. Therefore, the approximation ratio is at most 3.75.

Case 4: (�, �′) = (0, 3). Assume that p = 〈v1, v2, v3, v4, w1, w2, w3〉 is the path
obtained by ALG. In this case, it is sufficient to consider the subgraph H4

shown in Fig. 6. Since v1 cannot be extended, all the neighboring vertices of
v1 are included in some other paths in ALG. One sees that |OPT (H4)| ≤ 27
and |ALG(H4)| = 7. Hence, the approximation ratio is at most 3.86.

One can observe that vertices connecting to v2 and v3 in the “middle v-part”
are the same in every case. Moreover, for example, in the case (�, �′) = (2, 2), all
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Fig. 3. Case 1: (�, �′) = (3, 3) Fig. 4. Case 2: (�, �′) = (2, 3)

Fig. 5. Case 3: (�, �′) = (1, 3) Fig. 6. Case 4: (�, �′) = (0, 3)

we have to do is check the subgraph consisting of vertices connecting to w1, w2

and v1 in Fig. 4 (i.e., the case where � = 2) as the “left w-part” subgraph or the
“right w′-part” subgraph of the case (�, �′) = (2, 2). In the case (�, �′) = (1, 2),
we should observe the subgraph including the left-part (� = 1) in Fig. 5 and the
left-part (� = 2) in Fig. 4. Although details are omitted here, we can show that
the approximation ratios are (Case 5) at most 4 for (�, �′) = (2, 2), (Case 6)
at most 3.86 for (�, �′) = (1, 2), (Case 7) at most 4 for (�, �′) = (0, 2), (Case 8)
at most 4 for (�, �′) = (1, 1), (Case 9) at most 3.8 for (�, �′) = (0, 1), and
(Case 10) at most 4 for (�, �′) = (0, 0). As a result, the approximation ratio of
ALG is bounded above by 4. �

If the maximum degree of the input graph is three, then the approximation
ratio of ALG can be slightly improved as follows:

Corollary 3. Algorithm ALG is a 2.5-approximation algorithm for MaxP [2]PC
on subcubic graphs.

Remark 1. The analysis on the approximation ratio of Corollary 3 is tight in the
following sense: There exists a bad example such that the optimal solution has
value 10k but the solution by ALG has value 4k for any integer k ≥ 1.

See a graph G illustrated in Fig. 7. The graph has 4k vertices v1,1, v1,2,
v1,3, v1,4, v2,1, . . . , vk,1, vk,2, vk,3, vk,4 and 6k vertices u1,1 through uk,6. The
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...

Fig. 7. Bad example for MaxP[2]PC on subcubic graphs

former 4k vertices form a simple path. For 1 ≤ i ≤ k, 〈vi,2, ui,1, ui,2, ui,3〉
and 〈vi,3, ui,4, ui,5, ui,6〉 are paths of length three. If the graph is given as
input, ALG first might obtain a maximal set of k vertex-disjoint length-3 paths,
〈v1,1, v1,2, v1,3, v1,4〉 through 〈vk,1, vk,2, vk,3, vk,4〉. One sees that at this moment,
ALG cannot do anything, i.e., |ALG(G)| = 4k. On the other hand, an optimal
solution consists of 2k length-4 paths, 〈vi,1, vi,2, ui,1, ui,2, ui,3〉 and 〈vi,4, vi,3, ui,4,
ui,5, ui,6〉 for each 1 ≤ i ≤ k. That is, the maximum number of vertices is 10k.

Acknowledgments. This work is partially supported by NSERC Canada, JSPS
KAKENHI Grant Numbers JP17K00016, JP18H04091, JP19K12098, JP20H05794,
JP20K11666 and JP21K11755, and JST CREST JPMJCR1402.

References

1. Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algeb. Discrete Meth. 8(2), 277–284 (1987)

2. Chen, Y., et al.: Path cover with minimum nontrivial paths and its application
in two-machine flow-shop scheduling with a conflict graph. J. Combin. Optim.
(online) (2021). https://doi.org/10.1007/s10878-021-00793-3

3. Chen, Y., et al.: A local search 4/3-approximation algorithm for the minimum 3-
path partition problem. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS,
vol. 11458, pp. 14–25. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
18126-0 2

4. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1990)

5. George, S.: On the k-path partition of graphs. Theoret. Comput. Sci. 290(3),
2147–2155 (2003)
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Barcelona, Spain
rodrigo.silveira@upc.edu

Abstract. We study the quality of weighted shortest paths when a con-
tinuous 2-dimensional space is discretized by a weighted triangular tes-
sellation. In order to evaluate how well the tessellation approximates the
2-dimensional space, we study three types of shortest paths: a weighted
shortest path SPw (s, t), which is a shortest path from s to t in the space; a
weighted shortest vertex path SVPw (s, t), which is a shortest path where
the vertices of the path are vertices of the tessellation; and a weighted
shortest grid path SGPw (s, t), which is a shortest path whose edges are

edges of the tessellation. The ratios ‖SGPw (s,t)‖
‖SPw (s,t)‖ , ‖SVPw (s,t)‖

‖SPw (s,t)‖ , ‖SGPw (s,t)‖
‖SVPw (s,t)‖

provide estimates on the quality of the approximation.
Given any arbitrary weight assignment to the faces of a triangu-

lar tessellation, we prove upper and lower bounds on the estimates
that are independent of the weight assignment. Our main result is that
‖SGPw (s,t)‖
‖SPw (s,t)‖ = 2√

3
≈ 1.15 in the worst case, and this is tight.

Keywords: Shortest Path · Tessellation · Weighted Region Problem

1 Introduction

Geometric shortest path problems, where the goal is to find an optimal path
in a geometric setting, are fundamental problems in computational geometry. In
contrast to the classical shortest path problem in graphs, where the space of pos-
sible paths is discrete, in geometric settings the space is continuous: the source
and target points can be anywhere within a certain geometric domain (e.g., a
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polygon, the plane, a surface), and the set of possible paths to consider has infi-
nite size. Many variations of geometric shortest path problems exist, depending
on the geometric domain, the objective function (e.g., Euclidean metric, link-
distance, geodesic distance), or specific domain constraints (e.g., obstacles in the
plane, or holes in polygons). Applications of geometric shortest path problems
are ubiquitous, appearing in diverse areas such as robotics, video game design, or
geographic information science. We refer to Mitchell [15] for a complete survey
on geometric shortest path problems.

One of the most general settings for geometric shortest path problems arises
when the cost of traversing the domain varies depending on the region. That is,
the domain consists of a planar subdivision, that without loss of generality can be
assumed to be triangulated. Each region i of the subdivision has a weight wi, that
represents the cost per unit of distance of traveling in that region. Thus, the cost
of traversing a region is typically given by the Euclidean distance traversed in
the region, multiplied by the corresponding weight. The resulting metric is often
called the weighted region metric, and the problem of computing a shortest path
between two points under this metric is known as the weighted region problem
(WRP) [13,14]. The WRP is very general, since it allows to model many well-
known variants of geometric shortest path problems. Indeed, having that all
weights are equal makes the metric equivalent to the Euclidean metric (up to
scaling), while using two different weight values, such as 1 and ∞, allows to
model paths amidst obstacles.

Perhaps not surprisingly, the WRP turns out to be a challenging prob-
lem. The first algorithm for WRP was a (1 + ε)-approximation proposed by
Mitchell and Papadimitriou [14], which runs in time O(n8 log

(
nNW

wε

)
), where N

is the maximum integer coordinate of any vertex of the subdivision, W and w
are, respectively, the maximum finite and the minimum nonzero integer weight
assigned to the regions. Substantial research has been devoted to studying faster
approximation algorithms and different variants of the problem [1–3]. Approxi-
mation schemes for WRP are sophisticated methods that usually are based on
variants of continuous Dijkstra, subdividing triangle edges in parts for which
crossing shortest paths have the same combinatorial structure (e.g., [14]), or
work by computing a discretization of the domain by carefully placing Steiner
points (e.g., see [9] for the currently best method of this type). The lack of
exact algorithms for WRP is probably justified by algebraic reasons: WRP was
recently shown to be impossible to solve in the Algebraic Computation Model
over the Rational Numbers [10]. This is a model of computation where one can
compute exactly any number that can be obtained from rational numbers by a
finite number of basic operations. Efficient algorithms for WRP only exist for
a few special cases, e.g., rectilinear subdivisions with L1 metric [8], or weights
restricted to {0, 1,∞} [11].

In applications where the WRP arises, like robotics, gaming or simulation,
which usually require efficient and practical algorithms, the problem is simpli-
fied in two ways. First, the domain is approximated by using a (weighted) plane
subdivision with a simpler structure. Secondly, optimal shortest paths in that



On Approximating Shortest Paths in Weighted Triangular Tessellations 411

simpler subdivision are approximated. The typical way to represent a 2D (or
3D) environment where shortest paths need to be computed is by using naviga-
tion meshes [18]. These are polygonal subdivisions together with a graph that
models the adjacency between the regions. Path planning is then done first on
the graph to obtain a sequence of regions to be traversed, and then within each
region, for which a shortest geometric path is extracted. Triangles, convex poly-
gons, disks or squares—of different sizes—are among the most frequently used
region shapes [18]. Navigational meshes allow efficient path planning in large
environments as long as the region weights are limited to {1,∞} (i.e., obstacles
only). In case general weights are needed, the complexity of computing the short-
est path inside each region requires the use of the simplest possible navigational
mesh: regular grids. In 2D, the only three types of regular polygons that can be
used to tessellate continuous environments are triangles, squares and hexagons.
The drawback with a grid is that it imposes a fixed resolution, requiring in gen-
eral a large number of cells or regions. Still, grids are often used as navigation
meshes (even for weights {1,∞}), since they are easy to implement, are a natural
choice for environments that are grid-based by design (e.g., many game designs),
and popular shortest path algorithms such as A∗ can be optimized for grids [16].

Even when a regular grid is used as a navigation mesh, in practice exact
weighted shortest paths are not computed: instead, an approximation is obtained
by computing a shortest path on a weighted graph associated to the grid. To this
end, two different graphs have been considered in the literature [5], corner-vertex
graph and k-corner grid graph, defined next. The baseline to analyze the quality
of any approximate path is the weighted shortest path that takes into account
the full geometry of each region, as in the WRP. A weighted shortest path will
be denoted SPw (s, t). As already mentioned, exact weighted shortest paths for
regions with weights in {0, 1,∞} were studied in [13,14].

In a corner-vertex graph Gcorner, the vertex set is the set of corners of the
tessellation and every pair of vertices is connected by an edge. These graphs can
be seen as the complete graphs over the set of vertices. Figure 1a depicts some of
the neighbors of a vertex v in the corner-vertex graph. Note that in this graph
some edges overlap. A path in this graph is called a vertex path; a shortest vertex
path between s and t will be denoted SVPw (s, t), where w makes explicit that
this path depends also on a particular weight assignment w.

In a k-corner grid graph Gkcorner, which is a subgraph of a corner-vertex
graph, the vertex set is the set of corners of the tessellation, and each vertex is
connected by an edge to a predefined set of k neighboring vertices, depending on
the tessellation and other design decisions. See Fig. 1b for the 6-corner grid graph
in a triangular tessellation. (Analogous k-corner grid graphs can be defined for
square and hexagonal tessellations.) A path in this graph is called a grid path;
a shortest grid path between s and t will be denoted SGPw (s, t).

Shortest vertex paths and shortest grid paths for the case of weights of the
cells being 1 or ∞ have been previously studied in [17] and [4], respectively. In all
cases, the weight of each graph edge is defined based on the cost of the associated
line segment, depending on the weights of the regions that it goes through. More
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v

(a) Some neighbors of a vertex v in
the corner-vertex graph.

v

(b) All neighbors of a vertex v in the
6-corner grid graph.

Fig. 1. Vertex v is connected to its neighbors in a triangular tessellation.

formally, let Ti be a region in a subdivision with weight ωi ∈ R>0. The cost of
a segment πi in the interior of a cell Ti is given by ωi‖πi‖, where ‖ · ‖ is the
Euclidean norm. In the case where a segment π lies in the boundary of two
cells Tj and Tk, the cost is min{ωj , ωk}‖π‖.

Figure 2 shows an example, illustrating the three paths considered: the short-
est path SPw (s, t) (blue), the shortest vertex path SVPw (s, t) (green), and the
shortest grid path SGPw (s, t) (red) in a 6-corner grid graph. Note that in all
figures in this work, cells that are not depicted are considered to have infinite
weight.

1.1 Quality Bounds for Approximation Paths

ω1 =8s

t
ω2 =2

ω3 =1

Fig. 2. SPw (s, t) (blue), SVPw (s, t)
(green), and a SGPw (s, t) (red) between
two corners s and t in G6corner. The
cost of each path is 16.75, 17.32 and 18,
respectively.

The goal of this work is to understand
the relation between SGPw (s, t),
SVPw (s, t), and the baseline SPw (s, t).
Since SVPw (s, t) and SGPw (s, t) are
approximations of SPw (s, t), a funda-
mental question is: what is the worst-
case approximation factor that they
can give?

In this paper we focus on weighted
tessellations where every face is an
equilateral triangle (analog ideas can
be used for square and hexagonal
grids). In particular, we are inter-
ested in upper-bounding the ratios
‖SGPw (s,t)‖
‖SPw (s,t)‖ and ‖SVPw (s,t)‖

‖SPw (s,t)‖ , since they
indicate the approximation factor of the shortest grid and vertex path, respec-
tively. The ratio ‖SGPw (s,t)‖

‖SVPw (s,t)‖ is also studied, to see which approximation is better.

Almost all previous bounds on the ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ consider a limited set of

weights for the cells. Nash [17] considered only weights in the set {1,∞} and
proved that the weight of SGPw (s, t) in hexagonal G6corner, and G12corner, square
G4corner, and G8corner, triangle G6corner, and G3corner can be, respectively, up to
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Table 1. Bounds on the quality of approximations of shortest paths in weighted tri-
angular tessellations for G6corner. The upper bound for the ratio ‖SGPw (s,t)‖

‖SVPw (s,t)‖ , and the

bounds for the ratio ‖SVPw (s,t)‖
‖SPw (s,t)‖ are shown in the full version [6].

‖SGPw (s,t)‖
‖SVPw (s,t)‖

‖SGPw (s,t)‖
‖SPw (s,t)‖

‖SVPw (s,t)‖
‖SPw (s,t)‖

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

2√
3

≈ 1.15 [17] 2√
3

≈ 1.15 [6] 2√
3

≈ 1.15 [17] 2√
3

≈ 1.15 (Thm. 1)
2
√

7
√
3−12

(7−4
√
3)(6

√
2+

√
7
√
3−12)

≈ 1.11 [6] 2√
3

≈ 1.15 [6]

≈1.15, ≈1.04, ≈1.41, ≈1.08, ≈1.15, and 2 times the weight of SPw (s, t). When
the weights of the cells are allowed to be in R>0, the only result that we are aware
of is for square tessellations and another type of shortest path, with vertices at
the center of the cells, for which Jaklin [12] showed that ‖SGPw (s,t)‖

‖SPw (s,t)‖ ≤ 2
√

2.
The main contribution of this paper is the analysis of the quality of the

three types of shortest paths for a triangular grid for G6corner, which is the most
natural graph defined on a triangular grid. In contrast to previous work, we
allow the weights ωi to take any value in R>0, so the main challenge here is
to obtain tight upper bounds that hold for any assignment of region weights.
Surprisingly, we show that this is possible: the ratios are upper bounded by
constants that are independent of the weights assigned to the regions in the
tessellation. Our main result is that ‖SGPw (s,t)‖

‖SPw (s,t)‖ = 2√
3

in the worst case, for
any (positive) weight assignment. This implies bounds for the other two ratios
considered. Moreover, our upper bound for ‖SGPw (s,t)‖

‖SPw (s,t)‖ is tight, since it matches
the lower bound claimed by Nash [17]. Table 1 summarizes our results, together
with the previously known lower bounds.

2 ‖SGPw (s,t)‖
‖SPw (s,t)‖ Ratio in G6corner for Triangular Cells

This section is devoted to obtaining, for two vertices s and t, an upper bound
on the ratio ‖SGPw (s,t)‖

‖SPw (s,t)‖ in G6corner in a triangular tessellation T . We suppose,
without loss of generality, that the length of each edge of the triangular cells
is 2, in order to have a non-fractional length for the cell height.

Let (s = u1, u2, . . . , un = t) be the ordered sequence of consecutive points
where GPw (s, t) and SPw (s, t) coincide; in case GPw (s, t) and SPw (s, t) share
one or more segments, we define the corresponding points as the endpoints of
each of these segments, see Fig. 3 for an illustration. Observation 1 below is a
special case of the mediant inequality.

Observation 1. Let GPw (s, t) and SPw (s, t) be, respectively, a weighted grid
path, and a weighted shortest path, from s to t. Let ui and ui+1 be two consecutive
points where GPw (s, t) and SPw (s, t) coincide. Then, the ratio ‖GPw (s,t)‖

‖SPw (s,t)‖ is at

most the maximum of all ratios ‖GPw (ui,ui+1)‖
‖SPw (ui,ui+1)‖ .
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s=u1 =a1

t=u8 =a13

u2 =a2

T1

T2

T3
u3 =a3

a4

T4

T5

u4 = a5

a6

a7

T6

T7 = T9

a10
u7 =a11

T12T10

a12

T11

u5 =a8u6 =a9

T8

Fig. 3. Weighted shortest path SPw (s, t) (blue) and the crossing path X(s, t) (orange)
from s to t in a triangular tessellation. (Color figure online)

2.1 Crossing Paths and Weakly Simple Polygons

In the weighted version of the problem, conversely to the unweighted version,
we need to take into account all the different weights of the regions inter-
sected by SPw (s, t). In addition, we do not know the shape of the shortest
paths SPw (s, t) and SGPw (s, t). To solve all these inconveniences, for each
SPw (s, t) we will define a particular grid path called crossing path X(s, t), whose
behavior will be easier to control. See orange path in Fig. 3. Then, the key idea
to prove the upper bound on the ratio ‖SGPw (s,t)‖

‖SPw (s,t)‖ will be to upper-bound it by

the ratio ‖X (s,t)‖
‖SPw (s,t)‖ . To do so, we will analyze the components resulting from the

intersection between SPw (s, t) and X(s, t). Each component will be a weakly
simple polygon, which will be the basic unit that we will analyze to obtain
our main result. Also, a relation between the weights of some cells intersected
by SPw (s, t) and X(s, t) will be obtained.

Let (T1, . . . , Tn) be the ordered sequence of consecutive cells intersected
by SPw (s, t) in the tessellation T . Let vi

1, v
i
2, v

i
3 be the three consecutive cor-

ners of the boundary of Ti, 1 ≤ i ≤ n. Let (s = a1, a2, . . . , an+1 = t) be the
sequence of consecutive points where SPw (s, t) changes cell in T . In particular,
let ai and ai+1 be, respectively, the points where SPw (s, t) enters and leaves Ti.
In a triangular tessellation, the crossing path X(s, t) from a vertex s to a vertex t
is defined as follows:

Definition 1. The crossing path X(s, t) between two vertices s and t in a tri-
angular tessellation T is defined by the sequence (X1, . . . , Xn), where Xi is a
sequence of vertices determined by the pair (ai, ai+1), 1 ≤ i ≤ n, as follows. Let
ei
1 ∈ Ti be an edge containing ai, then:

– If ai+1 ∈ ei
1, let [v, w] be the endpoints of ei

1, where ai is encountered before
ai+1 when traversing ei

1 from v to w. Then Xi = (v, w), see Fig. 4a.
– If ai is an endpoint of ei

1, let p be the midpoint of the edge ei
2 ∈ Ti not

containing ai. If ai+1 ∈ ei
2 is to the left of −→aip, Xi is ai and the endpoint of

ei
2 to the right of −→aip, see Fig. 4b. Otherwise, Xi is ai and the endpoint of ei

2

to the left of −→aip.
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ai

Ti

ai+1

ei1v w

(a)

Ti

p

ai

ai+1

ei2

(b)

ai

ai+1

Ti

ei1

(c)

ai

Ti ai+1

ei2

ei1

(d)

Fig. 4. Some of the positions of the intersection points between SPw (s, t) (blue) and a
cell. The vertices of the crossing path X(s, t) in a triangular cell are depicted in orange.
(Color figure online)

– If ai is in the interior of ei
1 and ai+1 is a corner, Xi = (ai+1), see Fig. 4c.

– If ai and ai+1 belong to the interior of two different edges ei
1 and ei

2, Xi is
the common endpoint of ei

1 and ei
2, see Fig. 4d.

Let (s=u1, u2, . . . , u� = t) be the sequence of consecutive points where X(s, t)
and SPw (s, t) coincide. The union of SPw (s, t) and X(s, t) between two consec-
utive points uj and uj+1, for 1 ≤ j < �, induces a weakly simple polygon
(see [7] for a formal definition). We distinguish six different types of weakly sim-
ple polygons, denoted P1, . . . , P6, depending on the number of edges intersected
by SPw (uj , uj+1), see Fig. 5. Observe that, by definition of X(s, t), these are the
only weakly simple polygons that can arise.

The weakly simple polygons will be an important tool in our proof, since it
will be enough to upper bound ‖X(s,t)‖

‖SPw (s,t)‖ for each of P1, . . . , P6.

Definition 2. Let uj and uj+1 be two consecutive points in a triangular tes-
sellation, where X(s, t) and SPw (s, t) coincide. Let p be a common endpoint of
the edges of the tessellation that contain uj and uj+1. A weakly simple polygon
induced by uj and uj+1 is of type Pk, for 1 ≤ k ≤ 6, if the subpath SPw (uj , uj+1)
intersects k consecutive edges around p.

2.2 Bounding the Ratio for Weakly Simple Polygons

We are now ready to upper bound the ratio ‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ for each of the six

types of weakly simple polygons in G6corner.
First we make a geometric observation that will be needed later. Let p and q

be two points that are in the interior of two different edges on the boundary of
the same triangular cell. Then, the length of the subpath of the weighted shortest
path between p and q is given in Observation 2, which can be proved using the
law of cosines.

Observation 2. Let Ti be a triangular cell, and let (u, v, w) be the three vertices
of Ti, in clockwise order. Let p ∈ [u, v] and q ∈ [v, w] be two points on the
boundary of Ti. Then, |pq| =

√
|pv|2 + |vq|2 − |pv||vq|, see Fig. 6a.
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uj

uj+1

uj+1

uj
uj+1uj

P1 P2 P3

uj

uj+1

uj

uj+1

uj

uj+1

P4 P5 P6

p p p

p p p

Fig. 5. Some weakly simple polygons Pk, and the subpath of the crossing path X(s, t)
(orange) from uj to uj+1 intersecting consecutive triangular cells. (Color figure online)

v

q

u

w

p
Ti

(a) Position of two points p and q in
a triangular cell.

ω2=0.8

s t

ω1=1 ω3=1

(b) The ratio ‖X(s,t)‖
‖SPw (s,t)‖ is ≈ 1.4, whereas

the ratio ‖Πi(s,t)‖
‖SPw (s,t)‖ is almost 1.

Fig. 6. Weighted shortest path SPw (s, t) (blue), crossing path X (s, t) (orange), and
shortcut path Πi(s, t) (purple) intersecting a weakly simple polygon P2. (Color figure
online)

We observe that, by definition, for P1 we have ‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ = 1. Therefore

the focus will be on bounding P2, . . . , P6. We will begin from the simpler case of
P3, . . . , P6, and later we will consider P2, which is substantially more involved.
The proof of the lemma below can be found in the full version [6].

Lemma 1. Let uj , uj+1 ∈ Pk, for 3 ≤ k ≤ 6, be two consecutive points where
a shortest path SPw (s, t) and the crossing path X(s, t) coincide in a triangular
tessellation T . An upper bound on the ratio ‖X(uj ,uj+1)‖

‖SPw (uj ,uj+1)‖ in G6corner is 2√
3
.

The grid paths in G6corner are paths whose edges are edges of the triangular
cells. Thus, the ratio ‖X(uj ,uj+1)‖

‖SPw (uj ,uj+1)‖ between two consecutive crossing points uj
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and uj+1 depends on the weights of these regions. So, the next difficulty that
we encountered, related to the crossing path, was that it is possible to find an
instance where SPw(s, t) intersects a weakly simple polygon P2 such that the
ratio ‖X(s,t)‖

‖SPw (s,t)‖ is much larger than ‖SGPw (s,t)‖
‖SPw (s,t)‖ , see Fig. 6b. However, between s

and t there are other grid paths shorter than X(s, t) that intersect a P2. So, in
order to obtain an upper bound when SPw(s, t) intersects a P2, we will need a
finer analysis.

Since the ratio ‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ is at most 2√

3
for weakly simple polygons Pk,

k 	= 2, we will assume from now on, that the ratio is maximized when all weakly
simple polygons are of type P2. Otherwise, we are done.

Definition 3 determines another class of grid paths called shortcut paths that
gives a tighter upper bound on the ratio ‖SGPw (s,t)‖

‖SPw (s,t)‖ when a weakly simple poly-
gon P2 is intersected by SPw(s, t).

Let {v1, . . . , vn} be a sequence of corners of a triangular tessellation. Then,
the grid path Π(s, [v1, . . . , vn], t) is defined as the path X(s, v1)∪π(v1, . . . , vn)∪
X(vn, t), where π(v1, . . . , vn) is the grid path through the vertices v1, . . . , vn in
that order. We now define shortcut paths.

Definition 3. Let (u, v, w) be the sequence of vertices of a cell Ti ∈ T in clock-
wise order. If X(s, t) contains the subpath (u, v, w), the shortcut path Πi(s, t) is
defined as the grid path Π(s, [u,w], t), see purple path in Fig. 6a.

Now, we have all the tools needed to obtain an upper bound on the ratio
‖X(uj ,uj+1)‖

‖SPw (uj ,uj+1)‖ for P2. By using the shortcut path Πi(s, t), we will be able to
obtain a relation between the weights of the cells adjacent to Ti ∈ T intersected
by the crossing path X(s, t). This relation is given in the next lemma.

Lemma 2. Let (Tk, . . . , Tm) be the sequence of consecutive cells for which there
exists a shortcut path Πi(s, t), k ≤ i ≤ m, for a given assignment of weights
w to the cells of the triangular tessellation. The ratio ‖SGPw (s,t)‖

‖SPw (s,t)‖ is maximized
when ‖X(s, t)‖ = ‖Πi(s, t)‖ in G6corner.

Proof. Consider an instance for which the ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ is maximized. Recall

this instance just contains weakly simple polygons of type P2. We will argue
that if there is a grid path GPw (s, t) among X(s, t), Πi(s, t), k ≤ i ≤ m, that
is strictly shorter than the other grid paths, then this instance cannot maximize
‖SGPw (s,t)‖
‖SPw (s,t)‖ .

Suppose that there is one grid path GPw (s, t) among X(s, t), Πi(s, t), k ≤
i ≤ m, that is strictly shorter than the other grid paths in the set. Since GPw (s, t)
is a grid path, the ratio ‖SGPw (s,t)‖

‖SPw (s,t)‖ is upper bounded by ‖GPw (s,t)‖
‖SPw (s,t)‖ . The objective

of the proof is to find another assignment of weights w′ for the cells, such that
GPw ′(s, t) is still a shortest grid path among the grid paths in the set, and
‖GPw′ (s,t)‖
‖SPw′ (s,t)‖ > ‖GPw (s,t)‖

‖SPw (s,t)‖ .
Let uj , uj+1 be two consecutive points where GPw (s, t) and SPw (s, t) coin-

cide. Let T� be the cell that shares the edge of Πi(s, t) with Ti, see Fig. 7. We
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first set to infinity the weight of all the cells that are not traversed by SPw (s, t).
This way, we ensure that when modifying the weights of some cells, the combi-
natorial structure of the shortest path is preserved. The weight of the crossing
path X(s, t) along the edges of Ti is 2min{ωi−1, ωi} + 2min{ωi, ωi+1}, and the
weight of the shortcut path Πi(s, t) along the edges of Ti is 2min{ωi, ω�} = 2ωi

(because ω� = ∞). Let [p, q], and [p′, q′] be, respectively, the edges containing uj

and uj+1, where p, p′ ∈ T�.

– If GPw (s, t) = X(s, t) then ‖X(s, t)‖ < ‖Πi(s, t)‖, and we have that

min{ωi−1, ωi} + min{ωi, ωi+1} < ωi. (1)

• Suppose ωi ≤ ωi−1, then ωi + min{ωi, ωi+1} < ωi, which is not possible
since min{ωi, ωi+1} > 0. Hence, ωi > ωi−1.

• Suppose ωi ≤ ωi+1, then min{ωi−1, ωi}+ωi+1 < ωi, which is not possible
since min{ωi−1, ωi} > 0. Hence, ωi > ωi+1.

These two facts together with Eq. 1 imply that ωi−1 + ωi+1 < ωi. We also
have that

‖X(s, t)‖
‖SPw (s, t)‖ =

‖X(s, p)‖ + 2(ωi−1 + ωi+1) + ‖X(p′, t)‖
‖SPw (s, uj)‖ + |ujuj+1|ωi + ‖SPw (uj+1, t)‖

,

being |ujuj+1| > 0, so if we decrease the weight ωi until ωi−1 + ωi+1 = ωi,
the denominator ‖SPw (s, t)‖ will decrease, and the numerator ‖X(s, t)‖ will
remain. Hence, the ratio ‖X(s,t)‖

‖SPw (s,t)‖ will increase, so we found another weight

assignment w′ such that ‖X(s,t)‖
‖SPw′ (s,t)‖ > ‖X(s,t)‖

‖SPw (s,t)‖ and ‖X(s, t)‖ = ‖Πi(s, t)‖.
– Otherwise, if GPw (s, t) = Πi(s, t) then ‖Πi(s, t)‖ < ‖X(s, t)‖, and we have

that ωi < min{ωi−1, ωi} + min{ωi, ωi+1}. We also have that

‖Πi(s, t)‖
‖SPw (s, t)‖ =

‖Πi(s, p)‖ + 2ωi + ‖Πi(p′, t)‖
‖SPw (s, uj)‖ + |ujuj+1|ωi + ‖SPw (uj+1, t)‖

,

given |ujuj+1| < 2. If we increase the weight ωi until ωi = ωi−1 + ωi+1, the
numerator ‖Πi(s, t)‖ will increase faster than the denominator ‖SPw (s, t)‖.
Hence, the ratio ‖Πi(s,t)‖

‖SPw (s,t)‖ will increase, so we found another weight assign-

ment w′ such that ‖Πi(s,t)‖
‖SPw′ (s,t)‖ > ‖Πi(s,t)‖

‖SPw (s,t)‖ and ‖X(s, t)‖ = ‖Πi(s, t)‖.

We are now ready to prove the upper bound on the ratio ‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ in

a P2. Lemma 3 presents an upper bound on the ratio ‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ , where

uj , uj+1 ∈ Ti are two consecutive points where X(s, t) and Πi(s, t) coin-
cide. Lemma 2 implies that the ratio ‖X(s,t)‖

‖SPw (s,t)‖ in G6corner is maximized when
‖X(s, t)‖ = ‖Πi(s, t)‖ for each i such that the shortcut path Πi(s, t) exists. Thus,
the ratio is obtained in a weakly simple polygon P2 when ‖X(s, t)‖ = ‖Πi(s, t)‖.
Since the exact shape of SPw (s, t) is unknown, when calculating the ratio in the
following Lemma 3, we will maximize the ratio for any position of the points uj

and uj+1 where SPw (s, t) and X(s, t) coincide. The prove of the result is given
in the full version [6].
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Fig. 7. SPw (s, t) through a P2, where ‖Πi(s, t)‖ < ‖X(s, t)‖.

Lemma 3. Let uj , uj+1 ∈ P2 be two consecutive points in a triangular tessel-
lation T , where a shortest path SPw (s, t) and the crossing path X(s, t) coincide.
Let uj , uj+1 ∈ Ti and ‖X(s, t)‖ = ‖Πi(s, t)‖, then an upper bound on the ratio

‖X(uj ,uj+1)‖
‖SPw (uj ,uj+1)‖ in G6corner is 2√

3
.

Finally, we have all the pieces to prove our main result.

Theorem 1. In G6corner, an upper bound on the ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ is 2√

3
.

Figure 8 provides an illustration of the lower bound 2√
3

on the ratio between
the weighted shortest grid path SGPw (s, t) (red) and the weighted shortest path
SPw (s, t) (blue) claimed by Nash [17]. Hence, the upper bound in Theorem 1 is
tight for G6corner.

3 Discussion and Future Work

t
ω1=1 ω2=1

s

Fig. 8. The ratio ‖SGPw (s,t)‖
‖SPw (s,t)‖ is 2√

3
.

We presented upper bounds on the
ratio between the lengths of three
types of weighted shortest paths in a
triangular tessellation. The fact that
a compact grid graph such as G6corner

guarantees an error bound of ≈15%,
regardless of weights used, justifies
its widespread use in applications in
areas such as gaming and simulation,
where performance is a priority over
accuracy.

Our analysis techniques, presented
here for triangular grids, can also be
applied to obtain upper bounds for the same ratios in the other two types of
regular tessellations, square and hexagonal. The main differences lie in the exact
definition of the crossing paths and the weakly simple polygons. Our techniques
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can also be used to derive upper bounds for another type of grid graphs, where
the vertices are cell centers instead of corners (see, e.g., [12,17]).

For future work, it would be interesting to close the gap for ‖SVPw (s,t)‖
‖SPw (s,t)‖ . It

is an intriguing question whether the seemingly richer graph SVPw (s, t) can
actually guarantee a better quality factor than G6corner.
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