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Abstract When transverse or torsional vibration amplitudes in a rotor dynamic
system is high, energy is often drawn from the drive to sustain those motions. There-
fore, the part of the drive energy available for spinning the rotor reduces in that
condition. This can lead to perpetual or transient capture of the rotor speed in the
regime where large amplitude vibrations occur. A critical amount of additional drive
power is often needed to escape the capture of the rotor speed and such an escape is
often associatedwith a sudden jump to a higher rotor speed and reduction in the vibra-
tion amplitudes, which is formally recognised as the Sommerfeld effect. Till now,
Sommerfeld effect and resonance capture has been studied for rotor dynamic systems
with unbalanced rotor disc under synchronous whirl condition. In this chapter, it will
be shown that two more kinds of Sommerfeld effects can exist even if the rotor shaft
and disc are perfectly balanced. One of those is related to high amplitude transverse
asynchronous whirl of the non-circular rotor shaft due to parametric instability. The
other is related to resonance capture in torsional vibrations of the transmission shaft
in a universal joint driveline. In this chapter, three simple academic examples have
been considered for each of these kinds of Sommerfeld effect.

1 Introduction

Rotating equipment often operate at a speed which is above one or more of its
critical speeds. This is desired for good vibration isolation behaviour. However, in a
rotor system, a small unbalance may exist due to manufacturing defects, installation
error, faults in the rotor blades or bearings, asymmetric loading, or due to natural
wear and tear process. Sometimes, the unbalance may be intentionally added to
create vibrations, such as in vibrating screens, mixers, and drying cycle of washing
machines. A rotor system has large vibration amplitude at its critical speeds and
sustained operation at any of these critical speeds can cause failure of the entire
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system [1]. In the region of resonance, most of the power supply to the rotating
system from the drive of the rotor, such as an engine or motor, goes to increase the
structural vibration rather than increasing the rotor spin speed [2, 3]. Hence, the rotor
speed may get caught at the resonance with excessive vibration or whirl amplitude.

There is always an energy interaction between the source (drive) and the rotor
system, and any real drive (motor, engine, etc.) has power saturation behaviour. These
drives follow specific torque-speed characteristic and can deliver a limited amount
of torque/power at a given speed. Therefore, the output torque/power of such a drive
is influenced by the load and such a drive is often termed as a non-ideal drive/source
to distinguish it from an ideal drive that can provide unlimited amount of power
output at any speed. In a non-ideally driven rotor, as the rotor speed approaches a
critical speed with gradually increasing input power, the rate of increase in rotor
speed slows down (almost remains constant) and the vibration amplitudes start to
increase at a faster rate. For passage through the resonance or to accelerate through
the critical speed, the rotor requires a minimum (just sufficient) amount of power
supply from the drive, termed as the critical power. If the available power is a little
less than this critical power limit then the rotor speed remains nearly at the critical
speed with large vibration amplitude, and a slightly higher power causes the rotor
speed to attain a much higher value with a corresponding reduction in thee vibration
amplitude. Similar phenomenon is also present during gradual rotor speed reduction
from a speed above the critical speed. This non-linear jump phenomenon is called the
Sommerfeld effect. In fact, there exists a missing speed range in the neighbourhood
of a critical speed which is neither reached during the rotor coast up (speed increase)
nor during coast down (speed reduction). Three different kinds of Sommerfeld effect
due to large vibration amplitudes or load, and consequent drive power saturation in
non-ideally driven rotor dynamic systems will be discussed in this chapter.

Arnold Sommerfeld is credited with being the first to study non-ideal sources [4].
The power saturation phenomenonwas first experimentally observed by Sommerfeld
in 1902 and it has been named in his honor as the Sommerfeld effect [5]. Sommer-
feld’s observation was that the structural response of the system to which a non-ideal
source, such as an electric motor, is connected may act like energy sink under certain
conditions so that a part of the energy supplied by the source is spent to vibrate the
structure rather than to increase the drive speed. Sommerfeld put it as “the plant
owner spends expensive coal not to rotate his shaft, but rather to shake the foun-
dation”. Further to that, Kononenko [6] described an experiment where a cantilever
beam supports a non-ideal energy source (i.e., an unbalanced motor) at its free end
and exhibits large amplitude motions in the region of resonance for a sufficiently
large range of motor power increase and it is then followed by a sudden amplitude
reduction on increasing the input power beyond the critical power input. Sommerfeld
effect has been a subject of discussion in several books [2, 3, 7–9].
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2 Types of Sommerfeld Effect

Generally, the Sommerfeld effect is described by the dynamics of an unbalanced
electric motor, particularly a DC motor, placed on an elastic support [10–12]. With
increase in the input voltage to the motor (coast up operation), the motor speed
increases almost proportionally at the beginning. Due to the unbalance in the rotor,
resonance effect sets in as themotor speed approaches the elastic foundation’s natural
frequency. Therein, the high vibration amplitude of foundation produces a large
dynamic load on the motor and hence, the input power supply from motor goes to
the foundation to overcome this. If the motor supply voltage is increased and still the
motor output power is insufficient to overcome the power diverted to the foundation
then the motor speed remains perpetually caught near the resonance speed. In fact, a
large amount of motor power is delivered to increase the support’s flexural vibration
rather than to increase themotor speed [13]. There is a critical amount ofmotor power
beyond which a non-linear jump phenomenon occurs. This results in a sudden jump
of motor/rotor speed to a higher speed with a simultaneous sudden reduction in the
foundation vibration amplitude. This jump phenomenon is termed as the Sommerfeld
effect of first kind. Similar jump phenomenon occurs during coast down operation,
however, the transition points for this kind of sudden jump are different for coast up
and coast down operations. This non-linear jump phenomenon is characterized by
the inability to obtain certain common motor steady-state speeds near the resonance
frequency [14, 15].

Sommerfeld effect of first kind has been widely studied for mechanical engi-
neering applications in [16–19]. Moreover, several techniques to encourage passage
through resonance with a limited power supply and to prevent the growth of large
amplitude vibration, thereby extending the machine life, has been proposed in [6,
20]. Tuned Sommerfeld effect suppression is proposed in [21], where the effect of a
vibration absorber near the zone of the Sommerfeld effect is described. Sommerfeld
effect in wind turbine [22], vehicle dynamics [23] and slider-crank mechanism are
also reported in [24]. Balthazar and his co-workers [25–31] have published several
studies on different kinds of non-ideal source and system interactions leading to
Sommerfeld effect of first kind. Sommerfeld effect of first kind can also appear
without rotor unbalance. One example is resonance in the torsional vibration modes
due to fluctuating input speed or load [32].

Many rotor dynamic systems exhibit parametric instability. In some specific rotor
dynamic applications, the cross-section of the shaft is purposefully designed to be
non-circular (asymmetric). Considerable amount of research has been reported on
the dynamics of asymmetric rotor shaft mounted on rigid or flexible supports [33–
38]. One unstable speed region appears between the two major critical speeds for
a flexible asymmetric rotor shaft with a centrally placed rotor disc and rigid/ideal
support bearings at the shaft ends [36, 39]. The asymmetry in shaft bending stiffness
combined with flexible and asymmetric supports produce many additional unstable
regions near at the combined parametric resonance regions, as reported by several
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researchers [37, 40–42]. The lumped parameter model of asymmetric shaft-rotor
system is studied in both rotating and inertial frames in [43, 44]. These studies
assume that the rotor can be driven to and through the unstable regions to reach any
operating desired speed, i.e. those do not consider the drive dynamics. The situation
under real drive conditions is significantly different due to drive power saturation.
The power scarcity to escape through the parametric instability regimes leads to a
different kind of Sommerfeld effect, which is termed here as the Sommerfeld effect
of second kind [45]. Parametric instabilities occur in other types of rotor assemblies,
such as geared shaft systems and shafts with universal joints and flexible foundation,
and thus, there can be Sommerfeld effect of second kind present in many as yet
unsolved problems.

When the rotor shaft has material damping, it exhibits a permanent instability at
certain threshold speed. Such permanent instability thresholds also exist in shafts
with internal friction such as splined joints, and shafts supported on journal bearings
[46–50]. Fluid film forces from bearings and Alford forces on bladed disc systems
produce non-conservative circulatory forces and lead to rotor system instability. The
permanent instability threshold is a speed above which there is no further stable
operating speed. A real rotor cannot operate at any speed higher than this permanent
instability speed and shows saturation behaviour termed as the Sommerfeld effect of
third kind [51].

The nature of the above-mentioned three types of Sommerfeld effects is detailed
with example applications in the following sections.

3 The Sommerfeld Effect of First Kind Due to Lateral
Vibrations

Most studies on Sommerfeld effect reported in literature have focused on the
unbalance-induced excitation of natural frequencies with forward precession modes
only,while considering the synchronous critical speeds.However, a backward preces-
sion mode can also be excited by using just the rotor unbalance as the chief driving
force. This has been documented before in some crucial works in this area [52–57].
The occurrence of such a backward whirl response is strongly dependent on stiff-
ness asymmetry at the support ends. Therefore, Sommerfeld effect can also exist at
various speed ranges in addition to that at the forward critical speed.

The influence of anisotropy in support flexibility of a rigid rotor shaft on the
rotor whirl dynamics is studied here for the case when the rotor shaft carries single
unbalanced rotor disc and is driven by a permanent magnet DC (PMDC) motor, as
shown in Fig. 1. The rigid disc is firmly placed away from the middle portion of the
rigid rotor shaft and this introduces a strong gyroscopic coupling to the rotor dynamic
formulation. The rotor dynamic system is studied here for the chosen parameter
values listed in Table 1.

The rotor shaft’s length is l and as the rotor disc is placed asymmetrically at one-
third of shaft length from the left end support. The rigid hollow shaft has a uniform
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Fig. 1 Non-ideal rotor dynamic system with anisotropic bearings

Table 1 The system parameters, their description and values

Parameter Description Value

L Shaft length 0.9 m

l1 Distance between left end bearing and disk 0.3 m

l2 Distance between disk and right end bearing 0.6 m

Ip Polar moment of inertia of rotor disc 0.48 kgm2

Id Diametral moment of inertia of rotor disc 0.24 kgm2

m Mass of the rotor disc 15 kg

e eccentricity of the rotor disc 0.001 m

Re Translational aerial damping coefficient on rotor disc 20 Ns/m

Reφ Rotational aerial damping coefficient on rotor disc 1 Nms/rad

Rx Bearing damping coefficient in x-direction 5 Ns/m

Ry Bearing damping coefficient in y-direction 10 Ns/m

Kx Bearing stiffness in x-direction 20,000 N/m

Ky Bearing stiffness in y-direction 40,000 N/m

Rb Spin rotational damping coefficient 0.0005 Nms/rad

circular cross-section. The disc mass is m and the position of the mass centre of
the rotor disc is assumed to be at a distance e from the shaft geometric centre. The
position of themass centreM is given as (x_m, y_m) and that of the geometric centre
G as (x, y) according to the co-ordinate axes shown in Fig. 2. Thus, the coordinates
of mass centre (x_m, y_m) are expressed as

xm = x + ecos(θ + ϕ)andy_m = y + esin(θ + ϕ) (1)

where θ is the angle of rotation of the rotor disc about the spin axis (i.e. z-axis) and
ϕ is a constant phase corresponding to the initial position of the mass centre of the
disc. The angles φ_x and φ_y describe the small angular motions of the rotor about
the positive x and y directions, respectively. In steady state, the unbalance response



90 A. K. Samantaray

Fig. 2 Positions of the
geometric and mass centre of
the rotor disc
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is a synchronous whirl at same frequency as the constant angular speed ω about the
spin or z-axis. The instantaneous angle between the x-axis and the line passing from
origin to the geometric centre is then expressed as θ = ωt .

With reference to Fig. 1, l_1 and l_2 are the distance of disc from the left and the
right support ends, respectively. K_x and R_x are the bearing stiffness and damping
in the x-direction for both ends of the shaft;whereas, K_y and R_y represent the same
in the y-direction. For the disc, R_e and R_eφ represent the external translational
and rotational damping values acting at the geometric centre of the disc, respectively.
I_p is the rotary inertia of disc about the spin axis and I_d is the disc diametral
moment of inertia. For this analysis, the disc is assumed to be thin and laterally
symmetric, which implies I_p = 2Id .

3.1 Modal Analysis

Aconstant angular speedω about the spin z-axis,which is the synchronous frequency,
is assumed to analyse the ideal drive system. The equations of motion for the rotor
disc system (excluding the non-ideal motor) are obtained as

mẍ + 2Kxx + (l/3)Kxφy + (2Rx + Re)ẋ + (l/3)Rx φ̇y = meω2cos(ωt)

mÿ + 2Ky y − (l/3)Kyφx + (
2Ry + Re

)
ẏ − (l/3)Ry φ̇x = meω2sin(ωt)

Id φ̈y + (l/3)Kx x +
(
5l2/9

)
Kxφy + (l/3)Rx ẋ +

((
5l2/9

)
Rx + Reφ

)
φ̇y − ωIpφ̇x = 0

Id φ̈x − (l/3)Ky y +
(
5l2/9

)
Kyφx − (l/3)Ry ẏ +

((
5l2/9

)
Ry + Reφ

)
φ̇x + ωIpφ̇y = 0 (2)

These equations are then written in state-space form by excluding the excitation
forces and the critical speeds of the system are obtained from the Campbell diagram,
as shown in Fig. 3, through modal or eigenvalue analysis. The first backward and
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Fig. 3 Campbell diagram
showing critical speed versus
shaft spin speed (ω)
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the first forward critical speeds of the shaft are ωcr1 = 48.97 rad/s and ωcr1 = 68.9
rad/s, respectively.

The frequency response plots for the system (operating at constant speed) are
obtained by assuming harmonic solutions in the form x = Acos(ωt + α), y =
Bsin(ωt + β), φx = −Csin(ωt + γ ), and φy = Dcos(ωt + δ), where A, B, C
and D are whirl amplitudes and α, β, γ and δ are the phases. Substitution of these
harmonic solutions into Eq. (2) and separation of sine and cosine terms give eight
equations which are then solved to determine the eight unknown variables, i.e. the
four amplitudes and four phase angles, at any given speed ω. Further details on
these frequency responses are available in [58]. The normalized whirl amplitudes
are defined as x∗ = 0.33(ωcr1)

2A(ω)/g y∗ = 0.4(ωcr1)
2B(ω)/g, φ∗

x = 100C(ω)

and φ∗
y = 120D(ω), where and g is the acceleration due to gravity. The spin speed is

also normalized as ω∗ = ω/ωcr1. The steady-state amplitudes of the rotor at various
constant operating speeds, as would happen in an ideal system, are obtained in the
form of frequency response plots presented in Fig. 4.

3.2 Interfacing the Non-ideal Drive

The permanent type DC motor, whose parameter values are given in Table 2, is
considered here as the non-ideal drive. The DC motor produces torque to rotate the
rotor shaft instead of a constant speed motor considered for ideal drive. The power
developed by a DC motor is given as

Pm = τm θ̇ = km
(
Vi − km θ̇

)

km
θ̇ (3)
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Fig. 4 Normalized steady state whirl amplitudes versus spin speed (ω∗)

Table 2 DC motor
parameters

Notation Description Value

Vi DC motor voltage supply <Variable>

Rm DC motor electrical armature resistance 5 �

km DC motor characteristic constant 0.5 Nm/A

with τm = kmim , im = Vi−Ve
Rm

= (Vi−km θ̇)
Rm

, where Vi is the voltage supplied across
the motor terminal, Ve is the back emf developed in motor coils, km is the motor
characteristic (torque or speed) constant, im is the armature current, Rm is the armature
resistance of the coils,τm is the mechanical torque developed by the motor and θ̇ is
the rotor angular velocity.

Under steady state conditions, θ̇ = ω; with no angular accelerations. Since the
synchronouswhirl response is periodic, an energybalance is carriedout by integrating
the motor power and dissipated power over a cycle, i.e. a complete whirl orbit. The
steady state response presented in Fig. 4 is then used in an averaged steady state
energy balance between the energy produced by non-ideal DC motor and the energy
dissipated through the rotor whirl. The energy dissipation occurs through the external
damping Re and Reφ , and also through the damping in the bearings, i.e. Rx and Ry . In
addition, some dissipation also occurs at the bearings in themotor and spin resistance
in the support bearings, which is represented by a viscous resistance Rb. Overall, the
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net work done by all the dissipative forces over a fixed cycle can be expressed as

Wd =
2π/ω∫

0

(
Pd,left + Pd,right + Pd,disc + Rbω

2)dt (4)

where

Pd,left = q̇T
L

⎡

⎢⎢
⎣

Rx 0 0 0
0
0
0

0
0
0

0
Ry

0

0
0
0

⎤

⎥⎥
⎦q̇L , Pd,right = q̇T

R

⎡

⎢⎢
⎣

Rx 0 0 0
0
0
0

0
0
0

0
Ry

0

0
0
0

⎤

⎥⎥
⎦q̇R ,

Pd,disc = q̇T
d

⎡

⎢
⎢
⎣

Re 0 0 0
0
0
0

Reφ

0
0

0
Re

0

0
0
Reφ

⎤

⎥
⎥
⎦q̇d ,

q̇T
L =

[ (
ẋ − l1φ̇y

)
0

(
ẏ + l1φ̇x

)
0

]
,

q̇T
R =

[ (
ẋ + l2φ̇y

)
0

(
ẏ − l2φ̇x

)
0

]
and q̇T

d =
[
ẋ φ̇y ẏ −φ̇x

]
(5)

The energy supplied by the motor in each cycle is given by

Wm =
2π/ω∫

0

Pmdt =
2π/ω∫

0

km(Vi − kmω)

Ra
ωdt.

The steady state energy balance

Wm = Wd . (6)

Equation (6) is expanded by using the assumed harmonic solutions and treating
the whirl amplitudes (A, B,C, D) and phases (α, β, γ , δ) as constants at any
given steady-state speed ω during the integrations mentioned in Eq. (4). Further
simplification and reorganization of Eq. (6) gives

2km (Vi − kmω)

Rm
=

[
(2Rx + Re)A

2 + (
2Ry + Re

)
B2 +

(
5L2/9Rx + Reφ

)
C2 +

(
5L2/9Ry + Reφ

)
D2

+(2L/3Rx ADcos(α − δ)) + (
2L/3Ry BCcos(β − γ )

) + 2Rb
]
ω. (7)

For a fixed speed ω, and given parameter values and computed parameters of
the frequency response, Eq. (7) is used to compute the motor supply voltage Vi .
Interestingly, it is found that there are ranges of speed where three ω values give
the same Vi , i.e. the map from Vi to ω is not unique. Out of those three solutions,
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two are stable (attainable) and one is not. The solutions that satisfy the condition
d(Wm − Wd)/dω < 0 are attainable [18].

Accordingly, the non-ideal rotor system’s response is predicted andmultiple jump
phenomena due to Sommerfeld effect in the non-ideal system are revealed at the
forward and backward critical speeds as shown in Fig. 5. Therein two jumps in the
rotor speed, which correspond to the two resonance zones are shown– the first occurs
from first backward whirl critical speed ωcr1 to ω = 57.07rad/s (i.e. near ω∗ = 1)
and the second takes place from the first forwardwhirl critical speedωcr2 toω = 89.1
rad/s (i.e. near ω∗ = 1.41).

During the rotor coast up operation, the rotor speed continues to increase almost
linearly until it reaches point ‘a’. Thereafter, further increase in supply voltage does
not result in appreciable change in rotor speed. For the region ‘a’ to ‘b’, although the
supply voltage is being increased, the rotor speed does not increase and is stuck at
the first backward critical speed for the voltage range 26.43 V to 28.81 V. When the
voltage is increased above 28.81 V, the rotor speed suddenly jumps from point ‘b’ to
a much higher value at point ‘g’. Afterwards, by increasing voltage, the shaft speed
again increases linearly till point ‘c’ (at 37.7 V). This is the zone for the first forward
critical speed. Here, the rotor speed is stuck again, from ‘c’ to ‘d’ i.e. for the voltage
range 37.77 V to 44.83 V. Subsequently, the second jump takes place from ‘d’ to
‘e’. Thereafter, from point ‘e’ onwards, the speed increases linearly with increase in
voltage. The Sommerfeld effect is thus observed for both the first backward and first
forward whirl modes of the system; thus, it is termed as ‘Multi-Sommerfeld effect’.
Between the two, the jump size is comparatively higher for the first forward critical
speed.

On the other hand, during coast down operation from a very high speed, the spin
speed reduces linearly as the supply voltage is decreased along the line connecting
points ‘e’ to ‘f’. As the voltage is reduced just below 37.77 V (point ‘f’), the speed
jumps from point ‘f’ to ‘c’, i.e. there is a sudden reduction in the speed. On further
voltage reduction, the voltage-speed curve traces the path along the line joining points
‘c’ to ‘h’ and a second jump occurs from point ‘h’ to ‘a’.

Fig. 5 Normalized spin
speed (ω∗) versus voltage
supply Vi
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Note that there are three possible rotor speeds for the voltage ranges ‘a’ to ‘b’ and
‘c’ to ‘d’. However, the speed ranges 48.79 to 51.1 rad/s and 68.9 to 72.7 rad/s, are
not physically achievable either during rotor coast-up or coast-down. This is because
the branches in between ‘d’ to ‘f’ and ‘b’ to ‘h’ are unstable in nature [60, 69]. As a
result, only two possible speeds exist near the resonance region; one of these can be
reached during rotor coast-up and the other during rotor coast-down.

Further note that the whirl amplitudes are also functions of speed. As a direct
consequence, there is an amplitude jump associatedwith the speed jump at the respec-
tive resonance zones. Near the resonance, the energy from the non-ideal motor is not
used to increase the spin speed; instead, this energy is transferred to the vibration or
whirl amplitudes. Consequently, as speed saturation occurs on approaching a crit-
ical speed during the rotor coast up, the whirl amplitudes increase. Such continuous
large amplitudes of vibration may severely affect the performance of the rotor and
its support structures. This happens for a voltage range in the immediate pre-jump
scenario. Afterwards, as the speed jumps to a higher value, the whirl amplitudes
promptly reduce. Likewise, during rotor coast down, the discrete jump in speed from
a higher value to a lower value is associated with a discrete jump in amplitude from
a lower value to a higher value. This dependency comes from the energy balance.

The tendency to get stuck near resonance, also called resonance capture, which
occurs due to power saturation, is a typical feature of non-ideal systems. The motor
energy Wm for different supply voltages and the dissipated energy Wd are plotted
against the normalized rotor speed ω∗ in Fig. 6. The Wm curve for 28.81 V supply
voltage grazes the dissipated energy curve at ω∗ = 1 and intersects it at ω∗ = 1.19.
Likewise, the Wm curve for 44.83 V supply voltage grazes the dissipated energy
curve Wd at ω∗ = 1.41 and intersects it at ω∗ = 1.85. The grazing or intersecting
points indicate exact energy balance equation Wm = Wd given in Eq. (6) and hence
those are the possible steady-state operating points. There can be one or two or
three operating points. One operating point indicates that the operation is away from
the resonance regime, two means operation at the exact point from which jumps
occur. When there are three intersection points, the one giving the middle speed is
an unstable solution. As an example of one operating point, the Wm curve for 25 V

Fig. 6 Energy versus
Normalized spin speed (ω∗)
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intersects the Wd curve once and it is at a point below first backward critical speed,
and theWm curve for 35 V intersects theWd curve once and it is at a point below first
forward critical speed. If the input voltage is increased slowly from 25 V or 35 V,
then there is a resonance capture at the respective critical speeds. On the other hand,
the Wm curve for 40 V intersects the dissipated energy Wd curve at three points, out
of which two are stable [59] and there is resonance capture during rotor coast up at
the lowest of the three speed values corresponding to the intersection points.

The inset in Fig. 6 shows a zoomed view of the resonance condition at 2BW
critical speed. It is seen that the energy dissipation at 2BW critical speed and its
neighbourhood is too small, and hence, no Sommerfeld effect is observed at 2BW
critical speed. However, with a weakly damped bearing support system and large
translational and small rotational damping on the rotor disc, it is possible to encounter
Sommerfeld effect the 2BW speed. High damping often suppresses Sommerfeld
effect [18]. The net external damping in 1FW and 1BW modes comes from the
bearing supports and the translational external damping (Re) whereas the net external
damping on 2BW and 2FWmodes some from the bearing supports and the rotational
external damping.

The steady state analysis of the non-ideal system is valid only if the rotor accel-
eration is negligible, i.e. when voltage increment is done gradually or the rotor disc
has large polar moment of inertia. For step input voltages, the steady-state analysis
may not give accurate results. To address that, a separate transient analysis for the
rotor-motor system, with non-ideal source loading, is carried out.

3.3 Transient Analysis

The frequency response and power balance are obtained analytically, but with the
assumption that the rotor system operates at a steady-state. These analytical results
are then validated through direct numerical simulations of the non-ideal system. To
include interaction with the non-ideal drive, the equations of motion are modified
with introduction of angular acceleration terms as well as one additional equation
describing the spin dynamics of the motor/rotor. From Eq. (1), it can be shown that
mẍm = mẍ−meθ̇2cos(θ + ϕ)−meθ̈sin(θ + ϕ) andmÿm = mÿ−meθ̇2sin(θ + ϕ)+
meθ̈cos(θ + ϕ). These inertia forces produce reactive moment about the axis of the
motor rotation. The new set of equations are then given as

mẍ + 2Kx x + (l/3)Kxφy + (2Rx + Re)ẋ + (l/3)Rx φ̇y = meθ̇2cos(θ + ϕ) + meθ̈sin(θ + ϕ)

mÿ + 2Ky y − (l/3)Kyφx + (
2Ry + Re

)
ẏ − (l/3)Ry φ̇x = meθ̇2sin(θ + ϕ) − meθ̈cos(θ + ϕ)

Id φ̈y + (l/3)Kx x +
(
5l2/9

)
Kxφy + (l/3)Rx ẋ +

((
5l2/9

)
Rx + Reφ

)
φ̇y − ωIpφ̇x = 0

Id φ̈x − (l/3)Ky y +
(
5l2/9

)
Kyφx − (l/3)Ry ẏ +

((
5l2/9

)
Ry + Reφ

)
φ̇x + ωIpφ̇y = 0
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(
Ip + me2

)
θ̈ − meẍsin(θ + ϕ) + meÿcos(θ + ϕ) + Rbθ̇ = km(Vi − kmω)

Ra
(8)

The above equation of motion is numerically integrated to obtain the transient
response of the system. The initial phase ϕ does not influence the key aspects of the
results and can be taken zero during the analysis. In Fig. 7a, the transient response
amplitude for a step input voltage of Vi = 28.8 V is shown, for which the shaft
speed is stuck at ω∗ = 1, i.e. at the first backward critical speed. Note that the line
styles and colors used to plot the variables are mentioned in the y-axis label of these
graphs. At this point, with a slight increase of input voltage to Vi = 28.81 V, the first
jump is detected as shown in Fig. 7b. It can be seen that the normalized amplitudes
x∗ and φ∗

y are comparatively larger than y∗ and φ∗
x . Similarly, the second jump is

also detected when supply voltage is increased from Vi = 44.73 V (Fig. 8a) to
Vi = 44.74 V (Fig. 8b). This is the resonance zone corresponding to the first forward
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Fig. 7 Transient response during coasting up for a constant Vi = 28.8 V and b constant Vi =
28.81 V, showing resonance capture and escape through the 1st critical speed
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critical speed. Here, i.e. in the second resonance zone, the normalized amplitudes y∗
and φ∗

x are larger than x∗ and φ∗
y .

The numerical simulation results differ a little from the analytically predicted
results. Numerical simulations show that the voltage required to escape resonance
capture can be slightly less than the theoretically predicted values through steady
state analysis. In fact, the discrepancy can be more when the rotary inertia of the
rotor disc and the shaft is too small. For large rotary inertia of rotor disc, it acts
like a flywheel that reduces the angular accelerations (speed variation due to load
transients) and hence, the simulation results tend to bemore agreeablewith the steady
state analysis results.

The severity of the Sommerfeld effect of first kind depends on the system param-
eters. Especially, if the support and external damping are small then there can be
resonance capture for a significantly large range of input power variation. In fact, in
the absence of damping in the system, a rotor cannot be operated above the critical
speed because it would theoretically require infinite amount of energy to do so. With
very high values of damping in the system, Sommerfeld effect can disappear at one
or more of the critical speeds. The influence of system damping on the Sommerfeld
effect is detailed in [18].

Another interesting phenomenon occurs in the considered system when the two
critical speeds are closely spaced and the system is weakly damped. In that case,
escape from the 1BW critical speed directly leads to resonance capture at the 1FW
critical speed. More such interesting results can be seen in [58].

4 Sommerfeld Effect of First Kind Due to Torsional
Vibrations

Universal joints (U-joints) or Cardan joints are used for power transmission while
accommodatingparallel or angularmisalignment between the input andoutput shafts.
Torsional dynamics of rotor-shafts with a single U-joint driveline and small misalign-
ment angle was analysed in [61–63]. The single U-joint transmission shaft system
with lateral vibrations leads to parametric resonance, quasi-periodic and chaotic
motions in certain speed ranges [64–66]. Double U-joints driveline also shows para-
metric instabilities [67]. Only very recently, the resonance capture phenomenon in
a Double U-joints driveline is reported by [68] under combined torsional and lateral
vibrations. However, the analysis of Sommerfeld effect purely due to resonance in
torsional vibrations in the presence of large U-joint angle and large twist of the elastic
shaft has not been studied so far.

Now, we discuss another system of double Cardan joint driveline which shows the
Sommerfeld effect of first kind. The schematic representation of the system under
consideration is shown in Fig. 9. A non-ideal motor (DC motor) drives a short and
rigid input shaft which transmits power to the drive shaft through a U-joint. The
hollow drive shaft is long and makes an angle β with the input shaft. The drive shaft
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Fig. 9 Schematic representation of double U-joint transmission system with parallel offset

is assumed to be flexible and it is connected to a short and rigid output shaft at its
other end. The input and output shafts have parallel misalignment due to which the
double U-joint configuration is called Z-configuration. A heavy rotor disc is mounted
on the output shaft. It is assumed that the coupler shaft is massless and its flexural
vibrations are prevented by suitably placed idealized rigid bearings. Furthermore,
the idealized rigid bearings supporting the shafts (including the coupler shaft) and
the spline joint (which is needed for in-phase assembly) are supposed to prevent
warping /buckling of the shaft due to combined torsion and bending. Therefore, only
torsional vibrations of the system will be considered here. Furthermore, the rotary
inertia of the U-joints, clearance/backlash and friction effects are neglected. The two
U-joints are assumed to be initially in phase, i.e. the yokes are initially aligned in a
plane. Here, the input shaft is driven by either an open-loop controlled torque or a
torque applied by a DC motor.

4.1 Equations of Motion

The torque applied by the DC motor is denoted by Ti and the angular velocity of the
input shaft of the transmission line is ωi = θ̇i . The angular velocity of the output
shaft is ωo = θ̇o. The angular speed of the motor and load sides (input and output
shaft sides) of the coupler shaft are denoted by θ̇ic and θ̇oc, respectively. It is assumed
that while the shaft angle of twist θt = θic − θoc can be large, the maximum dynamic
shear stress remains well within the yield stress, and preferably within the endurance
limit (for fatigue). The angular velocities at the two ends of the coupler shaft are
given by using the transmission ratio at the U-joints as

θ̇ic = cosβ

1 − sin2βcos2θi
θ̇i and θ̇oc = cosβ

1 − sin2βcos2θo
θ̇o (9)

Further, by assuming no power loss (friction) at the universal joint, the reaction
torque on the input shaft Ti and active torque To on the output shaft are given,
respectively, as
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Ti = cosβ

1 − sin2βcos2θi
Tc and To = cosβ

1 − sin2βcos2θo
Tc (10)

where Tc = ktθt +ct θ̇t is the torque transmitted through the coupler shaft, and kt and
ct = λkt , with λ as a material constant, are the torsional stiffness and damping of the
coupler shaft, respectively. The equations of motion of this two-degrees-of-freedom
mechanical sub-system are given as

Jm θ̈i + cosβ

1 − sin2βcos2θi
× (

ktθt + ct θ̇t
) = T (11)

Jd θ̈o − cosβ

1 − sin2βcos2θo
× (

ktθt + ct θ̇t
) + Rd θ̇o = 0 (12)

θ̇t = cosβ

1 − sin2βcos2θi
θ̇i − cosβ

1 − sin2βcos2θo
θ̇o (13)

where, T (or Ti ) is the motor torque that applied on the input shaft.

4.2 Numerical Simulation Results

A representative set of parameter values given in Table 3 is chosen for this system.
The natural frequency of torsional vibration is ωn0 = √

kt (1/Jm + 1/Jd), which, for
the given data, turns out to be 176.21 rad/s, when β = 0 or the input, output and

Table 3 Parameter values of the double Cardan joint transmission shaft system

Parameter Description Value

Jm Moment of inertia of rotor of motor 0.2 kg.m2

Jd Moment of inertia of output side large rotor disc 2.8 kg.m2

G Modulus of rigidity of shaft material 80 GPa

τmax Allowable shear stress of ASTM A514 alloy steel 414 MPa

doc Outer diameter of coupler shaft 5 cm

L Length of coupler shaft 5 m

Ip Polar moment of area of coupler shaft 3.62265 × 10–7 m4

kt Torsional stiffness of coupler shaft 5796 Nm/rad

λ Material / internal damping (beta-damping) factor 0.002 s−1

ct Torsional damping of coupler shaft 11.592 Nms/rad

Rd Load damping on large rotor disc 3 Nms/rad

β U-joint angle 1 rad

T External torque applied by motor on input shaft <Variable>
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coupler shafts are perfectly aligned in a line. For the considered parameter values
in Table 3, numerical simulations are done for the different constant input torque
values (T = 200 Nm, 300 Nm and 474 Nm) and the respective results for the input
side rotor speed, the output side rotor speed and angle of twist of the coupler shaft
are shown in Fig. 10.

Due to flywheel effect, the angular velocity of the bigger rotor is steadier with
respect to that of the rotor of the motor. At this nearly steady speed of the output
rotor, a ball park estimate of the average speed can be obtained as �o = T/Rd and
the actual average output shaft speed �o. Since, the input shaft is directly connected
to the geared motor the speed of the output shaft of the motor, the motor output speed
θ̇m = ωi = θ̇i . Likewise, since the rotor disc is rigidly fixed to the output drive shaft,
the rotor disc speed θ̇d = ωo = θ̇o.

The results show that the output shaft speed almost reaches the estimated speed for
lowvalues of torque. For example, consider the simulation results presented in Fig. 10
for a constant input toque T = 200 Nm. With chosen value Rd = 3 Nms/rad (see
Table 3), the estimated output shaft speed �o is 66.67 rad/s whereas the simulation
results show that the average actual speed of output shaft �o is less, about 62.1 rad/s
(see Fig. 10). The estimation error is about 4.5 rad/s or about 7%. This is because a
part of the energy is lost through damping in torsional vibration (see Fig. 10). Also,
the output shaft speed has less fluctuation due to heavy rotor inertia whereas there is
significant fluctuation in the input shaft speed.

When the torque is increased to T = 300 Nm, the estimated output shaft speed
�o is 100 rad/s. However. The corresponding results given in Fig. 10 show that the
average output shaft speed �o is about 78.5 rad/s; i.e. the estimation error is about
21.5 rad/s or 27%. This increase in error is due to the increased torsional vibration
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Fig. 10 The angular velocities of input side rotor θ̇m and output side rotor θ̇d , and angle of twist of
the coupler shaft θt for constant input torque. Column 1: T = 200 N.m, Column 2: T = 300 N.m
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Fig. 11 a The angular velocities of input side rotor θ̇m and output side rotor θ̇d , b angle of twist of
the coupler shaft θt , for constant input torque T = 480 N.m

amplitude. In this case, the output shaft speed is closer to half of the torsional natural
frequency of the zero-offset configuration (β = 0) of the system.Apparently, the high
torsional vibration amplitudes are due to approaching the resonance speed (twice the
shaft speed is closer to the zero-offset configuration natural frequency). In fact, this
shows that a kind of saturation phenomena is starting to take hold and more andmore
energy from the source is being wasted in torsional vibrations rather than being used
to accelerate the output shaft.

For T = 474 Nm, the estimated output shaft speed �o is 158 rad/s. However, the
actual average output shaft speed �o is 94.7 rad/s as shown in simulation results in
Fig. 10. The torsional vibration amplitudes have reached peak twist of 0.38 rad and
that vibration amplitude persists thereafter. Therefore, with the increase in torque T
from 300 to 474 Nm, the output shaft speed has changed by a small margin because
the additional energy is diverted to sustain the torsional vibrations. This is a classic
symptom associated with the Sommerfeld effect of first kind and is termed as the
capture at the resonance or resonance capture.

If input torque is increased to T = 480 Nm, the estimated output shaft speed is
160 rad/s and the simulated average output shaft speed (see Fig. 11a) is 148.5 rad/s.
Hence by increasing the input torque up to the critical value, system has escaped
the resonance capture at about 20 s which is associated with an upward speed jump,
together with a simultaneous reduction in torsional vibration amplitude and speed
fluctuations of the input shaft. As soon as there is escape from resonance, less drive
power is lost in torsional vibrations and the extra power is able to accelerate the output
shaft rotor disc. An important observation is that during the rotor coast up, the range
of steady average output shaft speeds between 94.7 to 148.5 rad/s are unreachable
(excluding the transient period). The resonance capture and escape at this sub-critical
speed would be henceforth referred to as Zone-A dynamics.

When the torque is increased further, the output shaft speed continues to increase
in a nonlinear manner showing a second speed saturation or resonance capture. The
response of the system for T = 540 N.m given in Fig. 12 shows that after escaping
Zone-A capture, the output shaft speed initially increases to 170 rad/s and then
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Fig. 12 The angular velocities of input side rotor θ̇m and output side rotor θ̇d , and angle of twist of
the coupler shaft θt for constant input torque. Column 1: T = 540 N.m, Column 2: T = 765 N.m
and Column 3: T = 770 N.m

reduces to approximately steady mean speed of 156 rad/s (marked as Zone-B in the
Fig. 12).

The estimated average output shaft speed at T = 540 Nm is 180 rad/s. When
the input torque is increased further, there is very little increase in the approximate
steady average output shaft speed. For example, with T = 765 Nm, the estimated
output shaft speed is 255 rad/s whereas the actual average output shaft speed initially
reaches 225 rad/s and then reduces to a steady average output shaft speed of 166 rad/s
(see Fig. 12). Thus, for input torque changing from 480 Nm (see Fig. 11) to 765 Nm
(see Fig. 12) or about 60%, the average output shaft speed has changed from 148.5
to 166 rad/s or about 12%. This indicates presence of another resonance capture in
the neighbourhood of the critical speed of the straight-line assembly configuration
of the system, which is 176.21 rad/s.

Figure 12 also shows the transient response of the system for constant input torque
T = 770 Nm, where the resonance capture is escaped and the average output shaft
speed reaches 237 rad/s. So, an abrupt speed increase or jump of more than 70 rad/s
is obtained with a small increase in torque from 765 to 770 Nm.Moreover, the torque
change from 480 to 770 Nm (about 60.4%) produces 148.5 to 237 rad/s speed change
(about 60%). Such almost commensurate change occurs when the resonance capture
is avoided.

Further, note that the upward speed jump is associated with a corresponding
reduction in torsional vibration amplitude. In fact, the peak vibration amplitude
(almost 1 rad) at T = 765 Nm exceeds the allowable limit and the steady vibration
amplitude is large enough to cause quick fatigue failure. However, if the applied
torque ismore than the threshold value (T ≥ 770Nm) to escape the resonance capture
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then the peak aswell as steady torsional vibration amplitudes reduce significantly and
the system can be operated safely. This establishes the need for dynamic analysis of
the system because an undersized actuator can lead to resonance capture and system
failure.

In addition to the resonance capture and escapes seen during rotor coast up,
discrete speed jumps are also observed for this system during rotor coast down.
More such results can be consulted in [32]. In this section, a pre-computed open-
loop controlled torque T = �oRd is applied for any desired mean speed �o. Similar
phenomena are also observed in the case the drive is a non-ideal source, such as a
DC motor. To include the DC motor dynamics in the model, the following set of
modified system equations are considered.

Jm θ̈i + cosβ

1 − sin2βcos2θi
× (

ktθt + ct θ̇t
) = kmia (14)

Jd θ̈o − cosβ

1 − sin2βcos2θo
× (

ktθt + ct θ̇t
) + Rd θ̇o = 0 (15)

θ̇t = cosβ

1 − sin2βcos2θi
θ̇i − cosβ

1 − sin2βcos2θo
θ̇o (16)

Lm
dia
dt

+ km θ̇i + Rmia = V (17)

where the motor torque that applied on the input shaft is given as T = kmia , ia is the
armature current, km is the effective motor characteristic constant, and Lm and Rm

are, respectively, the motor armature coil inductance and resistance. The two-way
coupling between Eqs. (14) and (17) establishes an energy transfer pipeline. Note
that while many authors do not consider the inductance term Lm in the model, here it
is important to retain it because of large speed fluctuations of the input shaft which is
connected to the rotor of the motor [26, 69–72]. The motor is assumed to be geared
and hence a large motor characteristic constant km = 5 Nm/A is chosen here. The
other chosen motor parameters are Lm = 0.01 H and Rm = 10�. The motor supply
voltage V is the controllable input.

A consolidated result showing gradual coast up and coast down dynamics is given
in Fig. 13. Here, the motor input voltage is increased @50 V/s till 80 s, held at 4 kV
for the next 40 s and then reduced @50 V/s for the next 80 s.

The trend for average output shaft speed, in time sequence, shows escape through
Zone-A resonance capture at sub-critical speed, a small downward speed jump at the
onset of resonance capture at the critical speed (Zone-B1), gradual speed increase at a
slow rate followed by a sudden upward speed jump to escape resonance capture at the
critical speed (Zone-B2), constant speed for the duration of constant input torque,
gradually decreasing speed and then a sudden downward speed jump through the
critical speed (Zone-C) and a small downward jump through the sub-critical speed
resonance (Zone-D). Note that sudden speed jumps in Zones A and C are not clearly
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i , and b angle of twist of the coupler shaft θt , when the DC motor voltage is ramped up @50 V/s
from t = 0 s to 80 s, held constant at 4 kV up to t = 120 s and then ramped down @50 V/s up to
t = 200 s

visible in this result due to faster rate of input voltage ramp. The resonance capture
and escape symptoms are also present in the motor current signature. Interested
readers may refer to [32] for more such information.

Hence, two instances of Sommerfeld effect were observed in the system for large
joint angle at the U-joints. If a so-called critical speed is defined as the fundamental
torsional vibration natural frequency of the system with zero joint angle then these
Sommerfeld effects occur in the neighborhood of half of the so-called critical speed,
termed sub-critical speed resonance capture and escape, and further in the vicinity
of the critical speed itself, called critical speed resonance capture and escape. The
zone of the resonance can be determined through a simplification by assuming the
mean output shaft speed to be�o, and initially neglecting the small fluctuations over
it. Then the angular speed fluctuations in the output shaft side of the coupler shaft
are obtained from Eq. (9), which is periodic with time period τ = 2π/�o and can
be expanded as a Fourier series

θ̇oc =
(
a0
2

+
n∑

i=1

a2icos2i�ot

)

�o, (18)

where

ai = 2

τ

∫ τ

0

cosβcosi�ot

1 − sin2βcos2�ot
dt = 1

π

∫ 2π

0

cosβcosiθ

1 − sin2βcos2θ
dθ, i = 0, 1, 2, . . .

All the sin(.) terms of regular Fourier series are absent because the function is
even and odd coefficients (i = 1, 3, . . . ) of cos(.) terms also vanish on integration;
thus only even coefficients are shown as a2i (i = 0..n) in Eq. (18). These coefficients
depend only on the value of β. For the chosen value β = 1 rad, a good convergence is
obtained by considering the first five coefficients a0 = 2, a2 = 0.5969, a4 = 0.1781,
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a6 = 0.0532 and a8 = 0.0159. From Eq. (18), it is evident that the mean θ̇oc is
a0
2 �o = �o and the fluctuating parts have frequencies 2�o, 4�o, 6�o, … Thus,
resonance occurs when the average output shaft speed approaches natural frequency
or any of its even fractions. However, Sommerfeld effect is not observed at all those
speeds because of the presence of damping in the system. If the system has smaller
torsional damping and/or stiffness, then it is possible to obtain resonance capture
and escape at further subcritical speed ranges. On the other hand, Sommerfeld effect
may disappear at lower values of angular misalignment and higher values of shaft
stiffness and damping. Thus, the severity of Sommerfeld effect in the considered
system depends on a whole lot of system parameters, mostly the torsional stiffness
and damping, motor constant and the shaft misalignment angle.

5 The Sommerfeld Effect of Second Kind

There are some specific applications in rotor dynamic systems, in which the rotor
shaft is designed with non-circular or asymmetric cross section. For example, rotor
shafts of multi-pole electric motors, twisted brush motors, shafts with keyways or
flats to allow coupling, spade drill bits, rotary broaches, etc. Due to this rotating asym-
metry, the vibrational characteristics of the rotor system have unstable dynamics in
certain conditions. The asymmetry appears in the form of different bending stiffness
or different moment of inertia of rotor shaft or rotor disc along the principal axes
in the shaft cross-section. A rotor system with asymmetry in its bending flexibility
has unstable speed range near the vicinity of the natural frequencies. The dynamics
of such a system is governed by differential equations with time-varying parametric
coefficients which lead to parametric instability in certain rotor speed range. There-
fore, the unstable speed range is bounded by a lower stable speed range and an upper
stable speed range.

However, to reach the upper stable speed range, the rotor system has to transit
through the unstable speeds. This consideration is not made when mathematical
analysis of the system is done with an ideal drive assumption. In reality, the whirl
amplitudes growexponentially at any speed lying in the unstable speed range and such
whirl loads the drive, thereby limiting the amount of energy available to accelerate
the shaft spin. The transition from the lower stable range to higher stable range
would require the rotor spin to accelerate quickly through the unstable speed range
before the whirl amplitudes grow substantially and create energy scarcity for rotor
spin acceleration. As a consequence, when rotor spin escapes the unstable speed
range, it would reach a substantially higher speed with decaying whirl amplitudes.
Similar behavior occurs during rotor coast down through unstable speed range. This
kind of non-linear jump phenomena is termed as the Sommerfeld effect of second
kind. Unlike regular Sommerfeld effect (of first kind) where the power scarcity at
the resonance is the cause of speed capture, Sommerfeld effect of the second kind
relates to power scarcity at the parametric instability regions.



Three Kinds of Sommerfeld Effect in Rotor Dynamics 107

5.1 Flexible Asymmetric Rotor Shaft with Rigid Supports

Weconsider an asymmetric flexible rotor shaft which ismounted on two ideal or rigid
bearings at its two ends and carries a heavy centrally placed rotor disc. A permanent
magnet type DC motor is used to drive the rotor. A schematic representation of
this rotor dynamic system is shown in Fig. 14, in which the shaft’s cross-section is
rectangular. The two ends of the rotor shaft, where the shaft is supported on the rigid
bearings, are cylindrical for negligibly small lengths. The rotor shaft mass is referred
to the rotor disc position, as it is common in a Jeffcott rotor model, and the torsional
vibrations are neglected.

A rotating coordinate frame is aligned parallel to the principal axes in the shaft
cross-section so that the shaft bending stiffness remains constant in that reference
frame. In the fixed or inertial coordinate frame, the shaft bending stiffness change
with time as the shaft rotates. Here, x , y, z is the fixed coordinate system and η, ζ , z
is the rotating coordinate system, as shown in Fig. 14, with the rotation θ about the
common or parallel z-axis defining the angle between the two coordinate systems at
any particular time and � = θ̇ is the angular rotational speed of shaft about z-axis
(shaft spin axis). The coordinates (x , y) and (η, ζ ) refer to position of deflected shaft
centre C in the respective frames. The shaft stiffness in η, ζ—directions are kη and
kζ , respectively.

An overall viscous damping c is assumed to act at the geometric centre C of the
rotor disc. Since the rotor disc is symmetrically mounted on the rotor shaft and the
rotor whirls in cylindrical mode, only two degrees of freedom of the system are
considered. For studying the Sommerfeld effect of second kind, there is no need for
rotor disc eccentricity. However, if the system is ideally at equilibrium (zero whirl
amplitude) then it cannot show exponential whirl amplitude growth at instability.
Therefore, one needs to disturb the system from equilibrium to initiate the whirl.
This disturbance is naturally present in a real working environment. However, for
simulation or analysis, this disturbance can be given as an initial condition such as
impact or as small residual unbalance [73]. An ideal coupling which is flexible in
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Fig. 14 Rectangular flexible rotor shaft with central rotor disc driven by a DC motor
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bending and rigid in torsion is assumed between the DC motor and the rotor shaft.
Since the torsion of the rotor shaft is neglected, the motor torque is directly applied
to the rotor disc.

5.2 Equations of Motion of the System

Only lateral displacements of the disc in the first bending (whirl) mode of the rotor
shaft are considered with no rotation of the disc about diametral (η − ζ ) axes. To
derive the stability domain of the rotor system at various rotor spin speeds, initially,
the rotor speed is assumed to be constant; i.e., θ = �t , θ̇ = � and θ̈ = 0. The
equations of motion of the rotor in the lateral directions can be written as

Mz̈ + Dż + ∼
ksz = f (19)

where mass matrix M = mI, damping matrix D = cI, I is a 2 × 2 identity

matrix,
∼
ks is a time-varying shaft bending stiffness matrix, rotor’s lateral displace-

ment vector in the fixed frame z = [
x y

]T
, f is a forcing vector which is zero

in the present case, m is rotor disc mass (including referred shaft mass) and c is
the viscous damping coefficient at the rotor disc position. At constant spin speed,

the rotation matrix from rotating to fixed frame is R =
[
cos�t −sin�t
sin�t cos�t

]
. If

t = [
η ζ

]T
is the rotor’s lateral displacement vector then the restoring force vector

in rotating frame is kst = ksRT z where ks =
[
kη 0
0 kζ

]
. Transformation of the

restoring forces from rotating coordinate system to fixed coordinate system gives the

restoring force vector in fixed frame as RksRT z = ∼
ksz where time varying matrix

∼
ks = RksRT=

[
ks + �kscos2�t �kssin2�t

�kssin2�t ks − �kscos2�t

]
with ks = kη+kζ

2 as the mean

shaft bending stiffness and �ks = kη−kζ

2 as the deviatoric shaft bending stiffness.
Thus the equation of motion in fixed coordinate system is obtained as

Mz̈ + Dż + Koz + �K1zcos
(∼
� t

)
+ �K2zsin

(∼
� t

)
= 0 (20)

where Ko =
[
ks 0
0 ks

]
, �K1 =

[
�ks 0
0 −�ks

]
, �K2 =

[
0 �ks

�ks 0

]
and

∼
�= 2�.

It can be seen that Eq. (20) is a second order differential equation containing
time dependent coefficients. Usually, the boundaries of unstable regions of systems
described by differential equations with parametric coefficients are determined by
using Floquet theory. Hence, the state space form of Eq. (20) is first obtained as
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Table 4 The asymmetric rotor shaft and rotor disc system parameters

Parameter Description Value

l Length of rotor shaft 0.9 m

b Width of rotor shaft 1.49 cm

h Depth of rotor shaft 2.11 cm

ρ Density of rotor shaft material 7850 kg/m3

E Young’s modulus of rotor shaft material 210 GPa

J Rotary inertia of rotor disc 0.02 kgm2

m Mass of rotor disc 10 kg

c External viscous damping coefficient 60 Ns/m

kη Shaft stiffness in η direction:kη = 4Eh(b/ l)3 80,000 N/m

kζ Shaft stiffness in ζ direction:kζ = 4Eb(h/ l)3 160,000 N/m

[
ẍ ÿ ẋ ẏ

]T = S4×4

[
ẋ ẏ x y

]T
orȦT = S(t)AT (21)

where S(t) =

⎡

⎢⎢
⎣

−c/m 0 −(ks + �kscos2�t)/m −(�kssin2�t)/m
0 −c/m −(�kssin2�t)/m −(ks − �kscos2�t)/m
1 0 0 0
0 1 0 0

⎤

⎥⎥
⎦.

As S(t) is T -periodic with T = 2π/�, the monodromy matrix is obtained by
numerical integration of Eq. (21) from 0 to T with initial conditions set to [I ]4×4 (4×
4 identity matrix) and then the eigenvalues σi (i = 1..4) of the monodromy matrix
are used to conclude the stability of the system. The real parts of the eigenvalues σ ,
i.e. σRe, indicate the system’s stability. Positive real part indicates instability whereas
negative real part indicates stability. The parameter values chosen for this study are
listed in Table 4.

5.3 Numerical Results

In the absence of external damping (c = 0), available theoretical results indicate
instability speed range appears between the non-rotating beam natural frequencies
in principal directions, i.e. between �η = √

(ks − �ks)/m = 89.44 rad/s and �ζ =√
(ks + �ks)/m = 126.49 rad/s. The eigenvalues are evaluated numerically in the

frequency range of interest. The real parts of the eigenvalues are plotted with respect
to rotor spin speed in Fig. 15. In Fig. 15, real parts of all the four eigenvalues are
equal and negative everywhere except between a narrow region identified as UI. The
absolute values of eigenvalues are plotted Fig. 16, in which the region for ‖σ‖ > 1
indicates instability.

Hence for the chosen parameter values given in Table 4, the unstable speed range
is 89.63 to 126.2 rad/s. It is evident that the system has one unstable region UI which
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Fig. 15 Real parts of
eigenvalues versus rotor spin
speed from x − y frame
model

Fig. 16 Absolute values of
eigenvalues versus rotor spin
speed from x − y frame
model

appears near the critical speeds of system, as previously reported in [39, 74]. Only
principal parametric resonance appears, in which the instability boundaries are near
the major natural frequencies, i.e. �η and �ζ . The combined resonance and other
parametric resonances do not appear for this system with rigid supports.

Let us introduce a shaft non-circularity parameter κ = �ks/ks and a non-
dimensional rotor speed �∗ = �/�avg with �2

avg = (
�2

η + �2
ζ

)
/2. The stability

domain for constant zero damping c = 0 Ns/m, evaluated from Eq. (21), is shown in
Fig. 17, wherein the hatched area shows the unstable region which has two bound-

Fig. 17 Shaft
non-circularity κ versus
non-dimensional rotor speed
�∗ and c = 0 Ns/m
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Fig. 18 Absolute magnitude
of eigenvalues versus rotor
speed, κ = 1/3 and c = 365
Ns/m
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Fig. 19 Stability domain of
rotor for different values of
κ , ξ and �∗

aries. FromFig. 17, it is observed that unstable speed range increases as the shaft stiff-
ness asymmetry or non-crcularity (κ) increases. It is known that increasing system
damping reduces the parametric instability region [75]. As c increases, the unstable
zone starts shrinking in size. In the present model with κ = 1/3, for damping value
c = 365 Ns/m, the unstable zone vanishes completely (absolute magnitude of the
eigenvalues ≤ 1) as shown in Fig. 18.

Let us introduce a damping coefficient ratio ξ = c/
(
2m�avg

)
. The stability

domain variation with shaft non-circularity κ , damping coefficient ratio ξ and non-
dimensional rotor spin speed �∗ is shown in Fig. 19. Note that Fig. 17 is a cross-
section of Fig. 19 at ξ = 0.

5.4 Transient Analysis of the Non-ideal System

The permanent type DCmotor is considered here as the non-ideal drive with suitable
motor parameters needs to be considered, as given in Table 3. TheDCmotor produces
torque to rotate the rotor shaft instead of a constant speed motor considered for ideal
drive.

It can be shown that the reactive load torque applied on the motor is �l =
2�ksηζ = (

kη − kζ

)
(xcosθ + ysinθ)(−xsinθ + ycosθ) [45]. Thus, the equations
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Table 5 DC motor
specifications

Parameters Description Value

Vi Supply voltage <Input>

Rm Armature resistance 5 �

Lm Armature inductance 0.01 H

km Motor’s constant 0.5 Nm/A

of motion for transient analysis are given as

mẍ + cẋ + (ks + �kscos2θ)x + (�kssin2θ)y = 0 (22)

mÿ + cẏ + (�kssin2θ)x + (ks − �kscos2θ)y = 0 (23)

J θ̈ + 2�ks(xcosθ + ysinθ)(−xsinθ + ycosθ) = kmia (24)

Lm
dia
dt

+ km θ̇i + Rmia = Vi (25)

where J is the rotary inertia of the rotor disc (including the rotor of the motor and the
rotor shaft) about the spin axis, km is the motor constant, ia is the armature current,
Lm and Rm are, respectively, the motor armature coil inductance and resistance, and
Vi is the voltage applied across the motor terminals. The parameters of the DCmotor
chosen for the transient analysis are given in Table 5.

The theoretical analysis provides the stable and unstable speed ranges, but does
not reveal the process to reach stable speed regions beyond the unstable regions
when the energetic coupling between the motor and the rotor is considered. Thus,
the transition through the unstable speed ranges is analyzed here through numerical
simulations. The power supply by motor is used to overcome the load produced by
rotor system. If the amount of available power is insufficient then the rotor may get
stuck in boundary of the unstable zone. So it is essential to determine the critical
amount of power to smoothly escape the instability for the motor sizing and overall
system design perspectives.

The transient analysis of the rotor system with a non-ideal DC motor is carried
out through numerical simulation; therein an initial momentum of 1 kg.m/s is given
to the rotor disc in x-direction. Note that the dynamics of the system is governed
by the initial conditions because the excitation here is of multiplicative nature. If
there is no whirl in the rotor (η = 0 or ζ = 0) then there is no load on the motor.
Even a small residual unbalance is sufficient to initiate the load on the motor. The
rotor speed response and amplitude response are plotted with time for coast up
operation, as shown in Figs. 20 and 21.When constant input voltage is applied, the
speed saturation starts to occur from about Vi = 44.83 V. Such saturation behavior
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Fig. 20 Rotor speed
response for motor supply
voltages Vi = 83 V and
83.1 V showing passage
through parametric
instability
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continues up to Vi = 83 V (see Fig. 21). When the speed is saturated, i.e. captured at
the lower instability bound (89.66 rad/s), the whirl amplitude increases with applied
voltage (see Fig. 21) and more and more energy is dissipated through the external
viscous damping. During transient phase, the maximum speed does not exceed the
upper instability bound.

At the steady-state, the motor power is balanced by the dissipated power. The
steady-state whirl amplitude depends on the excess motor power, i.e., it is zero at
Vi = 44.83 V and increases as Vi increases, until it reaches 83 V, where the whirl
amplitudes are very large and the system is still captured at the lower instability
threshold.

When the supply voltage reaches or exceeds a critical value, Vi = 83.1 V, then
the rotor system escapes from capture at the lower instability threshold and reaches
a higher speed. Thus, between Vi = 83 V and Vi = 83.1 V, there is a sudden speed
jump. Also, the whirl amplitude converges to 0 at Vi = 83.1 V, i.e. there is also an
associated amplitude jump (see Fig. 21). Note that at Vi = 83 V, the rotor speed just
about reaches the upper instability threshold speed � = 126.2 rad/s (indicated by
dashed line in Fig. 20).

When the voltage is reduced from a value Vi > 83.1 V or above, there is also
a similar jump phenomenon where the rotor speed suddenly jumps from the upper
instability threshold to the lower instability threshold (see Figs. 22 and 23), but there
is no speed capture at the upper stability threshold. The results in Figs. 22 and 23 are
obtained under the initial conditions that correspond to initial rotor spin speed 200

Fig. 21 Rotor amplitude
response for motor supply
voltages Vi = 83 V and
83.1 V showing passage
through parametric
instability
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Fig. 22 Rotor speed
response for motor supply
voltages Vi = 63 V and
63.1 V showing passage
through parametric
instability
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Fig. 23 Rotor amplitude
response for motor supply
voltages Vi = 63 V and
63.1 V showing passage
through parametric
instability
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rad/s (above the upper stability threshold) and 0.1 m/s initial velocity of the rotor
disc in x-direction. The initial input voltage is 100 V and it is reduced suddenly (a
step drop) to a lower value.

Note that in this case, the induced emf is initially larger than the supplied voltage
to the motor and hence, the motor applies brake or negative torque on the rotor. Up
to Vi > 63.1 V, the whirl amplitude converges to zero and the steady rotor speed
reaches Vi/km > 126.2 rad/s. When Vi is reduced just below 63.1 V, the rotor
becomes unstable and whirl amplitudes start growing. This causes dissipation of
energy through the viscous damping on the rotor and hence the rotor speed reduces
until it reaches the lower instability threshold speed, i.e. 89.66 rad/s and it remains
captured there until the motor supply voltage is reduced below 49.83 V. The bending
stresses in the rotor shaft remain below yield stress when there is smooth passage
through instability; whereas, capture at the lower instability threshold may lead to
failure of the rotor shaft.

5.5 Jump Phenomena Characteristics

From the results, there is a clear similaritywith the Sommerfeld effect of the first kind,
although the Sommerfeld effect of the second kind happens here due to instability of
whirlmode. This characteristic of the non-linear jumpphenomena is shown inFig. 24.
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Fig. 24 Characterization of
the Sommerfeld effect of
second kind in asymmetric
rotor
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During the rotor coast up (speed increase), the steady-state rotor speed follows the
path o → a → b → c → d containing a capture at lower stability threshold in the
path a → b and a jump b → c, as shown in Fig. 24. During rotor coast down (speed
decrease), the steady-state rotor speed follows the path d → e → f → a → o
containing a capture at lower stability threshold in the path f → a and a jump
e → f , as shown in Fig. 24. Note that there is no speed capture at the upper
instability threshold speed. Further note that steady-state speeds in the range lying
between points a to e, i.e. the unstable speed range, can neither be reached during
rotor coast-up nor during rotor coast-down.

Additionally, the plot between the non-circularity κ and the rotor speed � is
presented together with plot between input voltage supply Vi and the rotor speed �,
for coast up and coast down operation in Figs. 25 and 26, respectively. In Fig. 25,
the blue colored lines indicate stability boundaries for different values of κ . Here,
the Sommerfeld effect is shown for a fixed value κ=0.4 and c = 0 Ns/m, for which
the shaded area is unstable speed range (69.28 rad/s to 105.8 rad/s). During coast
up operation, the input voltage and speed variation (red line) takes the linear path
a to b till the voltage reaches 34.6 V and speed reaches 69.28 rad/s. After point b,
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Fig. 25 Non-circularity versus rotor speed (stability map), and motor supply voltage versus rotor
speed with κ = 0.4 for coast up dynamics
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Fig. 26 Non-circularity versus rotor speed (stability map), and motor supply voltage versus rotor
speed with κ=0.4 for coast down dynamics

i.e. at the stability boundary, the rotor speed gets stuck at 69.28 rad/s even as the
input voltage is increased. During this period, the vibration amplitude increases as
the energy supplied by motor contributes to increase in the whirl amplitude. At point
c, for the input voltage of 102 V, enough energy is available to escape from this
unstable region and a sudden speed jump occurs from c to d, i.e. the rotor speed
increases to 204 rad/s from 69.28 rad/s (shown by dashed line). After that, the rotor
speed increases linearly with the input voltage along the path d to e.

Similarly, for the coast down operation, the variation of the rotor speed with
voltage follows the path e → d → c → b → a as shown in Fig. 26. Once the
rotor speed reaches the speed corresponding to the upper stability boundary (point
d, 105.8 rad/s at 54.5 V), further reduction in voltage reduces the rotor speed to that
corresponding to the lower stability boundary (point c, 69.28 rad/s at 54.5 V). Further
reduction in voltage up to 34.6 V does not change the rotor speed and thereafter, a
linear reduction in speed with voltage occurs in the path b to a.

Mathematically, the location of points c and d depend on the initial conditions
during rotor coast up. With large rotor inertia and sufficiently high constant supply
voltage, realistic initial disturbances die out by the time the rotor speed starts from
zero and reaches the stability boundary. Thus, the whirl amplitude is usually small at
point b if sufficient time has elapsed to reach there and then point c appears closer to
point b. However, for large initial conditions or rotor unbalance, the whirl amplitude
on reaching point b can be large and then it grows very fast at the stability boundary.
In that case, point c shifts upwards. Likewise, if the supply voltage is gradually
increased then the rotor speed gets permanently captured at the stability boundary,
i.e. the voltage at point c in Fig. 25 tends to infinity. On the other hand, location
of points b, c and d during rotor coast down are mostly unaffected by the initial
conditions.
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6 The Sommerfeld Effect of Third Kind

Rotor systems become permanently unstable beyond a certain threshold speed due to
the effect of non-conservative circulatory forces, which can arise out of shaft mate-
rial/internal damping, anti-symmetric bearing stiffness, Alford forces, etc. These
physical phenomena create an energy pipeline for continuous pumping of motor
power to the rotorwhirl. In fact, thematerial damping increases the effective damping
for rotor speeds below the shaft natural frequency and the destabilizing effect (effec-
tive damping reduction) starts for rotor speeds after the shaft natural frequency
[76]. The material damping effect is present during asynchronous rotor whirl and
it vanishes during synchronous rotor whirl. The material damping is modeled in a
rotating frame just like the asymmetric shaft stiffness and for higher frequencies, it
is found to be proportional to the shaft’s stiffness, with the proportionality constant
λ. Here, the material damping parameter λ = 0.002 s−1, which is a standard material
constant, is chosen for the steel rotor shaft.

6.1 Flexible Asymmetric Rotor Shaft Mounted on Rigid
Support

Here, we consider the same asymmetric rotor shaft system as in the previous section

(Sect. 5). The material damping of the shaft Csi is given as

[
cηi 0
0 cζ i

]
in rotating

coordinate system where, cηi = λkη and cζ i = λkζ . Thus, the force due to shaft’s

material damping in fixed coordinate system is determined as
∼
C

1

siż + �
∼
C

2

siz where,

∼
C

1

si =
[
csi + �csicos2�t �csi sin2�t

�csi sin2�t csi − �csicos2�t

]
,

∼
C

2

si =
[ −�csi sin2�t csi + �csicos2�t

−csi + �csicos2�t �csi sin2�t

]
,

csi = cηi+cζ i

2 is mean shaft material damping and �csi = cηi−cζ i

2 is deviatoric
shaft material damping. Finally, in form of matrices and vectors representation, the
system’s equation in fixed coordinate system is obtained as.

(26)
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where, D =
[
c 0
0 c

]
,Ko =

[
ks 0
0 ks

]
, Co =

[
csi 0
0 csi

]
, C1

0 =
[

0 csi
−csi 0

]
, �C1 =

[
�csi 0
0 −�csi

]
, �C2 =

[
0 �csi

�csi 0

]
and

∼
�= 2�.

6.2 Stability Analysis

The boundaries of unstable regions of system are determined by using Floquet theory.
Hence, Eq. (26) written in state space form as ȦT = P(t)AT.

where P(t) =

⎡

⎢⎢
⎣

p11
m

p12
m

p13
m

p14
m

p21
m
1
0

p22
m
0
1

p23
m
0
0

p24
m
0
0

⎤

⎥⎥
⎦ (27)

and, p11 = c + csi + �csicos2�t , p12 = �csi sin2�t , p13 = ks + �kscos2�t −
��csi sin2�t , p14 = �csi +��csicos2�t +�kssin2�t, p21 = �csi sin2�t , p22 =
c + csi − �csicos2�t , p23 = −�csi + ��csicos2�t + �kssin2�t, and p24 =
ks − �kscos2�t + �csi sin2�t .

As themonodromymatrix is obtainedbynumerical integration ofP(t) and then the
eigenvalues σi (i = 1..4) of the monodromy matrix are used to conclude the stability
of the system by inputting the values of parameters that are given in Table 4. The
real parts of the eigenvalues σRe are plotted with respect to rotor spin speed without
considering the internal damping in Fig. 27. It can be seen that only one unstable
region (UI) due to parametric instability appears in entire speed range of the rotor.
The real parts of the eigenvalues σRe are plotted for the same parameters with internal
damping (λ = 0.002 s−1) in Fig. 28. Now, there is a similar unstable operation region
due to parametric instability (speeds u1 to u2 i.e., 89.7 to 126.2 rad/s, corresponding
to region UI) and another permanent instability region (from 133.2 rad/s i.e., u3
onwards). Thus, the instability threshold speed �th = 133.2 rad/s and there is no

Fig. 27 Real parts of
eigenvalues versus rotor
speed for the rotor and
λ = 0s−1



Three Kinds of Sommerfeld Effect in Rotor Dynamics 119

Fig. 28 Real parts of
eigenvalues versus rotor
speed for the rotor and
λ = 0.002 s−1

stable operating speed beyond this permanent instability threshold. The range of
parametric instability and the onset of permanent flutter instability strongly depend
upon the damping in the system. For example, if the external damping is increased to
c = 100Ns/m then the system has parametric instability region from u1 = 90 rad/s to
u2 = 125.7 rad/s, i.e. there is a very small change in the unstable speed range,whereas
the permanent instability threshold value increases significantly to u3 = 151.9 rad/s.

6.3 Transient Analysis of Non-ideal System

Some sample simulation results are discussed here corresponding to the stability
behavior shown in Fig. 28 where the parametric instability region appears for speed
range 89.7–126.2 rad/s, and the stability threshold speed is 133.2 rad/s. The excitation
to initiate rotor whirl is provided by the initial momentum of 1 kg-m/s in x-direction
of disc centre. The rotor speed reaches the desired steady-state value � = Vi/km for
Vi ≤ 44.9 V. The results show that the rotor spin speed is stuck at 89.65 rad/s (near
lower unstable boundary U1) for Vi = 45V. After that, it never escapes through the
unstable regions for any further increase in the supply voltage. This is because the
when there is sufficient power given to accelerate the rotor speed outside the capture
at the parametric instability boundary, the rotor speed would actually reach a value
beyond the permanent stability threshold (133.2 rad/s, here). Thus, the vibration
amplitudes start to increase and reduce the shaft speed back to the lower limit of the
parametric instability boundary. Such a behavior is observed when the permanent
instability speed is very close to the parametric instability region.

For the case of higher value of external–damping, i.e. c = 100 Ns/m, there
is sufficient gap between the parametric instability regions (90−125.7 rad/s) and
stability threshold (151.9 rad/s). In this case, the rotor speed reaches the desired
steady-state value � = Vi/km for Vi ≤ 45.1 V. For the supply voltage range Vi =
45.1 to 69.8V, the rotor speed is captured at the lower stability threshold of parametric
instability zone u1, i.e. at the average speed of 90 rad/s. The system escapes from the
parametric instability for Vi ≥ 69.9 V (see Fig. 29), reaches the desired steady-state
value � = Vi/km and the whirl amplitudes reduces (see Fig. 30).
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Fig. 29 Rotor speed
response during capture at
and escape through
parametric instability for the
rotor with c = 100 Ns/m and
material damping
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Fig. 30 Rotor whirl
amplitudes during capture at
and escape through
parametric instability for the
rotor with c = 100 Ns/m and
material damping
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On further increasing the supply voltage, at Vi = 75.9V, the rotor speed gets stuck
at 151.9 rad/s (near threshold value of permanent instability�th) with large bounded
amplitudes of vibration. Hence, on reaching the stability threshold for Vi ≥ 75.9,
there is a permanent capture of rotor speed at average speed of 151.9 rad/s and the
whirl amplitude continues to increase with any further increase in voltage, as shown
for two such supply voltages in Figs. 31 and 32. Note that in Fig. 32, the whirl
amplitude appears unsteady because of the simultaneous presence of synchronous
and asynchronous whirls.

This permanent capture at stability threshold is termed as the Sommerfeld effect
of third kind. It has been discussed previously in various articles [19, 48–51, 77,

Fig. 31 Rotor speed
response during capture at
stability threshold for the
rotor with material damping
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Fig. 32 Rotor whirl
amplitudes during capture at
stability threshold for the
rotor with material damping
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78]. Note that permanent capture at the stability threshold does not give steady whirl
amplitude. In fact, there is a synchronous whirl and an asynchronous whirl present
at the same time. In rotor dynamic systems, various means have been proposed to
increase the stable operating speed regions, such as squeeze film dampers, impact
dampers, and visco-elastic supports, all of which attempt to increase the effective
external damping in the system. However, effective external damping cannot be
increased arbitrarily in a system because it is also related to the vibration isolation
capacity of the foundation and the energy efficiency of the non-ideal motor, as has
been recently described in [79].
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