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Abstract This paper addresses the nonlinear dynamical analysis of a block founda-
tion structure for an unbalanced rotatingmachine, with limited power supply, leading
to interaction between themotor and the structure. This aspect is often not considered
during usual design practice, although all real motors are, in this sense, non-ideal
power sources.Ourmathematicalmodel considers this systemas non-ideal, subjected
to the Sommerfeld effect, which may manifest close to foundation/machine’s reso-
nances, with possible jumps from lower to higher frequency rotation regimes, no
intermediate stable steady states in between. The model proposed is defined by three
degrees of freedom, vertical and horizontal translations of the block and rotation
about its axis, and an additional one associated with the rotation of the rotor shaft
(intrinsic to the so-called non-ideal systems). The mathematical model that describes
the system’s motion is derived via Lagrange’s equations. The solution of this system
of differential equations can in principle be carried out analytically, but this can be
difficult or even impossible in some cases, particularly when these equations are
nonlinear, such as the proposed model. The numerical solution adopted here was
implemented in Matlab® software. This paper aims to analyze this little studied
problem of practical importance.

Keywords Machine-foundation interaction · Sommerfeld effect · Non-ideal
systems

1 Introduction

For many systems, disregarding the influence of the structure motion on their excita-
tion source is an acceptable simplification, but for many others it is not. Sommerfeld
(1904) was the first to study the phenomenon of this interaction, later called the
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Sommerfeld Effect, making an experiment of an elastic base supporting an unbal-
anced machine. A few years later this experiment was replicated by Kononenko and
Korablev [1], who had their work re-analyzed by Nayfeh and Mook [2].

Non-ideal systems are those in which the structural motion influences its source
of excitation. These systems can be linear, or nonlinear, regardless of its excitation.
In general, the more the power supply is limited, the more the system moves further
away from the ideal system, and the greater the machine-structure interaction is.
Mathematically it is imperative to include to the model an equation that describes
the dynamics of the motor. Therefore, an additional degree of freedom is required to
model non-ideal systems [1–5].

In this work, we develop a non-ideal system model of a supported machine with
an unbalanced rotor. This non-ideal system is composed of a rigid foundation block
directly supported by springs and dashpots.

This work aims to present ongoing research of the machine-foundation interac-
tions. Themathematical development of the proposed non-ideal system is carried out
via Lagrange’s equations. In Sect. 2, the physical model representing the foundation
structure and its driver source, the machine, will be presented. Next, Sect. 3 presents
the mathematical model composed of equations that describe the displacements and
velocities of the physical model, obtained using Lagrange’s equations. Numerical
simulations and graphical displays are presented in Sect. 5, using assumed stiffness,
mass and damping parameters. Sections 5 and 6 will present the final discussion and
conclusions.

2 Physical Model

The proposed physical model considers the machine and structure interaction and
consists of four degrees of freedom: the two translations (vertical and horizontal),
one rotation (about the axis of the foundation) and the last one associated with the
motor shaft. This additional degree of freedom is typical of the so-called non-ideal
systems, as can be seen in Fig. 1.

Ci (i = 1, 2, 3) and Ki (i = 1, 2, 3) are, respectively, conveniently
adopted damping and stiffness coefficients of the machine foundation.

3 Mathematical Model

In this mathematical model, time functions q1, q2 and q3 are, respectively, the gener-
alized coordinates related the horizontal, vertical, and rotational motions of the block
foundation, while time function q4 is the angular displacement of themotor shaft. The
eccentricity e is obtained through the quality of the balance of the rotating machine,
while h is the height between the motor shaft and the foundation axes (Fig. 1).
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Fig. 1 Model of a foundation structure with unbalanced excitation source

Unbalanced mass (Mr)

The coordinates and velocities of the unbalanced mass from Fig. 1 are:

xr = q1 − hq3 + ecosq4 yr = q2 + esinq4 + h (1)

ẋr = q̇1 − hq̇3 − eq̇4sinq4 ẏr = q̇2 + eq̇4cosq4 (2)

Mass of the foundation block (Mb)

The coordinates and velocities of the machine foundation block mass presented in
the Fig. 1 are:

xb = q1 yb = q2 (3)

ẋb = q̇1 ẏb = q̇2 (4)

Motor mass (Mm)

The coordinates and velocities of the mass of the motor are:

xm = q1 − hq3 ym = q2 + h (5)

ẋm = q̇1 − hq̇3 ẏm = q̇2 (6)



76 S. P. Lima and R. M. L. R. da F. Brasil

Kinetic Energy (T )

The kinetic energy of this model is obtained as follows:

T = 1/2

⎡
⎢⎣
Mb

(
q̇2
1 + q̇2

2

) + Mm
[
(q̇1 − hq̇3)

2 + q̇2
2

]
+Jbq̇2

3 + Mr (q̇1 − hq̇3 − q̇4e sin q4)
2

+Mr
(
q̇2 + q̇4e cos q4) + Jmq̇2

4

)2

⎤
⎥⎦ (7)

in which Jm is the moment of inertia of the machine rotor and Jb the moment of
inertia of foundation block.

Strain energy (U)

In this case the strain energy can be obtained by:

U = 1/2(K1q
2
1 + K2q

2
2 + K3q

2
3 ) (8)

in which Ki (i = 1, 2, 3) are the stiffness coefficients.

Work of conservative forces (W)

The work of the weight forces is given by:

W = −g[(Mb + Mm + Mr )q2 + Mr (q2 + esinq4)] (9)

in which g it is the acceleration due to gravity.

Total Potential Energy (V )

The total potential energy will be determined by:

V = U − W (10)

Lagrange’s equation

In this model, Lagrange’s equation can be presented as:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Ni (i = 1, 2, 3, 4) (11)

in which L = T − V is the Lagrangean function and Ni are the non-conservative
generalized forces.
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Equations of Motion

First degree of freedom

For the first degree of freedom the equation of motion is:

(Mb + Mm + Mr )q̈1 + C1q̇1 + K1q1 = (Mm + Mr )hq̈3 + Mre(q̈4 sin q4) + Mre
(
q̇24 cos q4

)

(12)

Second degree of freedom

For the second degree of freedom the equation of motion is:

(Mb + Mr + Mm)q̈2 + C2q̇2 + K2q2 = −g(Mb + Mr + Mm) − Mre
(
q̈4 cos q4 − q̇24 sin q4

)

(13)

Third degree of freedom

For the third degree of freedom the equation of motion is:

(
Mmh

2 + Mrh
2 + Jb

)
q̈3 + C3q̇3 + K3q3 = (Mb + Mm)hq̈1 − Mrhe

(
q̈4 sin q4 − q̇24 cos q4

)

(14)

Fourth degree of freedom

For the fourth degree of freedom the equation of motion is:

Mre(q̈1sinq4 + q̈2cosq4 + hq̈3sinq4) +
(
Mre

2 + Jm
)
q̈4 = L(q̇4) − H(q̇4) + Mregcosq4 (15)

in which L(q̇4) is the total torque of the rotor and H(q̇4) is its the motor damping
torque due to internal friction.

Matrix formulation

Let us re-write the equations of motion (12 to 15) in matrix form:

[M]{q̈} + [C]{q̇} + [K ]{q} = {p} (16)

where
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[M] =

⎡
⎢⎢⎣

Mb + Mr + Mm

0
−(Mm + Mr )h
−Mre sin q4

0
Mb + Mr + Mm

0
Mre cos q4

−(Mm + Mr )h
0

(Mm + Mr )h2 + Jb
Mrhe sin q4

−Mre sin q4
Mre cos q4
Mrhe sin q4
Mre2 + Jm

⎤
⎥⎥⎦

(17)

{q̈} =

⎧⎪⎪⎨
⎪⎪⎩

q̈1
q̈2
q̈3
q̈4

⎫⎪⎪⎬
⎪⎪⎭

(18)

[C] =

⎡
⎢⎢⎣

C1 0
0 C2

0 0
0 0

0 0
0 0

C3 0
0 0

⎤
⎥⎥⎦ (19)

{q̇} =

⎧⎪⎪⎨
⎪⎪⎩

q̇1
q̇2
q̇3
q̇4

⎫⎪⎪⎬
⎪⎪⎭

(20)

[K ] =

⎡
⎢⎢⎣

K1 0
0 K2

0 0
0 0

0 0
0 0

K3 0
0 0

⎤
⎥⎥⎦ (21)

{q} =

⎧⎪⎪⎨
⎪⎪⎩

q1
q2
q3
q4

⎫⎪⎪⎬
⎪⎪⎭

(22)

{p} =

⎧⎪⎪⎨
⎪⎪⎩

−Mreq̇2
4 cosq4

−Mreq̇2
4 sinq4 − (Mb + Mm + Mr )g

−Mrheq̇2
4 cosq4

L(q̇4) − H(q̇4) + Mregcosq4

⎫⎪⎪⎬
⎪⎪⎭

(23)

Equations of this type are difficult to solve in closed form, so is convenient to
transform the second order differential equation system into a first order differential
equations system and then choose a numerical method to solve the problem, as the
Runge–Kutta method implemented in Matlab®.
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4 Torque Relationships

A steady state constant motor frequency condition is given by the torque relationship

S(q̇4) = H(q̇4) + R(q̇4) (24)

In Eq. (21), remembering that torque and energy have the same unities, S(q̇4)
is the total energy dissipated by the motor/structure system and R(q̇4) the energy
dissipated by damping of the support structure, given by

R(q̇4) =
3∑

i=1

Ci

2q4
ω2
i a

2
i (25)

where ωi are the undamped frequencies of vibration of the support structure (rad/s).
The amplitudes of vibration of these three modes are

ai = Mre

Modemass
Diβ

2
i (26)

where the nondimensional Coefficients of Dynamic Amplification are

Di = 1√(
1 − β2

i

)2 + (2ξiβi )
2

(27)

defining the nondimensional relationships

βi = q4
ωi

ξi = Ci

2(Modemass)ωi
(28)

5 Numerical Simulations

Next, numerical parameters are adopted: Mb + Mr + Mm = 2 t, K1 = 50,000 KN/m,
K2 = 100,000 KN/m, K3 = 75,000 KNm/rad, Mr = 0.1 t, e = 0.01 m, ξ1 = ξ2 =
ξ3 = 0.05, Jm = 1.7 × 10–4 tm2, H(q̇4) = 4x10−4q̇4 KNm. Figure 2 displays the
S(q̇4) energy dissipation curve of this system (in black), from Eq. (21), and three
possible Lk(q̇4) available torque characteristic curves of the motor (in red, green and
blue), for three different possible energy levels, considered as linear, in KNm,

L1(q̇4) = 0.25 − 0.0009q̇4L2(q̇4) = 0.35 − 0.0009q̇4
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Fig. 2 S(q̇4) curve, in black,
L1(q̇4) line, in red, L2(q̇4)
blue and L3(q̇4) blue line, in
green

L3(q̇4) = 0.30 − 0.0009q̇4

Figure 2 displays only the first two resonance peaks of this system. The third one,
related to the roll mode of the foundation block is not of interest for the adopted
parameters.

The computed stable steady state constant motor frequencies (rad/s) and corre-
sponding torques, for positive increase of the motor power (KNm) are: P1 ∼= (152;
0.11), P2 ∼= (214; 0.16) and P3 ∼= (204; 0.11).

Next, it is performed a time step-by-step numerical integration of the equa-
tions of motion, using Runge–Kutta’s 4th and 5th order algorithm, implemented
in Matlab® software. The first steady state regime, P1, is displayed in Fig. 3, the
second, P2, is displayed in Fig. 4 and P3, displayed in Fig. 5.

Fig. 3 Steady state constant
motor frequency regime, P1
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Fig. 4 Steady state constant
motor frequency regime, P2

Fig. 5 Steady state constant
motor frequency regime, P3

In Figs. 3, 4 and 5, a fairly good agreement with Fig. 2 results is obtained. As
expected, the effect of gravity on mr leads to a complex steady state behavior, as is
possible to see in Fig. 6, a zoom of part of Fig. 3.

6 Discussion

Let us discuss simulations results presented in Figs. 2, 3, 4 and 5.
In steady state P1, the amount of energy provided by the motor through torque

curve L1(q̇4), in red, is not enough to surpass the first resonance peak of the energy
dissipation curve, resulting in stagnation of the angular speed regime of the machine.
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Fig. 6 Zoom of steady state
constant motor frequency P1

If somemore energy is provided, through torque curve L3(q̇4), in green, the system
reaches a point at this first resonance peak and jumps to far away point P3 where a
steady state regime is again possible, no stable steady states in between. This is the
so called Sommerfeld Effect.

Finally, if more energy is applied, through torque curve L2(q̇4), in blue, it is
possible to reach higher steady state angular velocity regimes as point P2.

7 Conclusions

Studies of models considering non-ideal systems are important for a better practice
of engineering, but are not usually done, being replaced by approximations. The
system of differential equations of the model studied here is coupled, nonlinear and
of second order, quite difficult to solve analytically. So, it is necessary to use a
numerical method.

Among the possible solver methods to this model, the solution for this model was
carried out in theMatlab® program using the ode45 function, that uses a combination
of fourth and fifth order Runge Kutta methods. The implementation of this algorithm
requires the transformation of the of second-order differential equations into a first
order system [6, 7].

A study of non-ideal behavior of a four degrees of freedom support structure for
a limited power unbalanced motor was presented. The expected Sommerfeld Effect
of rotation frequency stagnation near resonances was observed, as well as a jump
phenomenon due to instability. Modeling of this type of foundation as non-ideal
systems can be of importance in practice.
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