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Abstract Vibrations of a non-ideal system with nonlinear damping and periodi-
cally varying stiffness are presented in the chapter. The system is excited by rotating
unbalanced mass attached to the DCmotor with limited power. Rotation of the motor
is tuned to the period of varying stiffness in 1:2 ratio which corresponds to the prin-
cipal parametric resonance. Nonlinear damping is represented by Rayleigh model
which may generate self-excitation. The analytical solutions obtained by Krylov–
Bogoliubov-Mitropolsky method for the two degree of freedommodel show an exis-
tence of the internal loop on the resonance curve and transition zones from periodic
to quasi-periodic oscillations. Chaotic or hyper-chaotic vibrations are detected by
numerical simulations and an influence of the non-ideal energy source on the motion
type is presented.

1 Introduction

Structural elements of mechanical, aerospace or civil engineering objects are
subjected to various excitation sources. Self-excited vibrations belong to a special
class of vibrations occurring in the nature or in the structures produced bymen. Their
characteristic feature is that they are generated by constant input, independent of time
[10, 13]. An energy transfer is controlled by the system itself and oscillation arise
due to its internal properties. Classical examples are flutter of airplane wings, chatter
in machining or shimmy of vehicle whiles. The self-excitation can be soft, with a
stable limit cycle, or hard (catastrophic) when a limit cycle is unstable and a solu-
tion may tend to zero or to infinity. The second, totally different class, are vibrating
systems with periodically varied coefficients [4, 9, 10]. In machine dynamics the
coefficients are related to periodically changing stiffness or mass moment of inertia.
The main feature of parametric oscillations is that for selected parameters instability
zones occur and the amplitude of oscillations gets large values. These zones, called
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parametric resonances, are dependent on amplitude and frequency of varied coeffi-
cients and damping of the system. Apart from self and parametric vibrations also the
system can be excited by direct applied periodic force. Then the periodic component
occurs on the right side of the equations and the model becomes inhomogeneous. In
some cases all mentioned above vibrations may exist at the same time and then due
to interactions interesting, and sometimes unexpected, phenomena may arise [1, 14,
15, 17]. If the model consists of self-excited terms and parametric with external exci-
tations are tuned 1:2 they interact strongly in the vicinity of the principal parametric
resonance [15]. Inside the resonance zone even five periodic solutions are possible
but only two of them are stable. Moving away from the resonance the interaction
with self-excitation becomes strong and then quasi-periodic oscillation takes place,
followed by the second kind Hopf bifurcation.

Often in mathematical models excitations are defined by simple harmonic force
and dynamics of the energy source (DC motor for example) and its interactions with
the main system are neglected. This kind of model is called ideal [2]. In contrast,
systems with limited power have to consider interactions with the main structure
[5–7]. The effect of non-ideal energy source was first detected by Sommerfeld [11].
During the experimental tests Sommerfeld observed instabilities in a linear structure
with one degree of freedom. The explanationwas foundwhen the characteristic of the
motor was taken into account. The formulated complete model considered coupling
with the energy source confirmed results obtained by experiment.

The non-ideal energy source introduces an additional degree of freedom and
differential equations of motion are expressed by a coordinate describing motion of
the energy source. In consequence the model is represented by autonomous equa-
tions without time given in a direct form [2]. The introduction of new coordinate
φ transforms harmonic excitation sinωt into sinφ, which is a nonlinear function
of the coordinate. A non-ideal model of a parametric and self-excited system with
one degree of freedom was analyzed in paper [16] where the importance of the
proper modelling of the energy source was presented, either for regular or chaotic
oscillations. In the present chapter the model is extended for a chain of coupled oscil-
lators. Detailed analysis is demonstrated for two coupled Rayleigh-Mathieu-Duffing
oscillators with a non-ideal energy source.

2 Model of the Structure

A model of the studied structure is a chain of coupled oscillators excited by rotating
unbalanced mass attached to the DC motor with limited power. Due to this fact the
motor plays a role of a non-ideal energy source. The rotating mass excites the system
with S-degrees of freedombut the oscillators influence the rotormotion aswell. Thus,
the coupled oscillators together with the rotor are represented by S + 1 generalized
coordinates.

As presented in Fig. 1 motion of oscillators is described by xi coordinates, i =
1,2…S, whileφ and is angle of rotation of theDCmotor. The oscillators are connected
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Fig. 1 Non-ideal system
with parametric and
self-excitation with many
degrees of freedom

by springs, considered in further investigation as nonlinear of Mathieu-Duffing type
which are nonlinear and may produce parametric vibrations. Dampers in Fig. 1 are
represented by nonlinear Rayleigh functions which may generate self-excitation.

Kinetic energy of the system takes the form

T = 1

2

(
J0 + m0r

2
)
φ̇2 + 1

2
m0 ẋ

2
1 + ẋ1φ̇rm0cosφ +

s∑

i=1

1

2
mi ẋ

2
i (1)

where r, m0, J0 are radius, unbalanced mass and mass moment of inertia of the rotor
and mi is mass of the selected oscillator.

Let us assume temporarily that the system is linear and conservative, then its
potential energy is defined as

V = 1
2k1x

2
1 + m0g(x1 + rsinφ) +

s−1∑

i=1

1
2ki,i+1(xi − xi+1)

2 + 1
2kSx

2
S (2)
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where, g is gravity acceleration, xi displacement of mi mass, k1, kS , ki,i+1 linear
stiffness of the first spring, the last spring, and springs connecting i and i + 1 oscil-
lators. Applying kinetic and potential energies to Lagrange equations of the second
kind, and considering notation presented in Fig. 1, we obtain a set of S + 1 ordinary
differential equations of motion of coupled oscillators with the DCmotor. The terms
related to static displacements and gravity force components are equal therefore they
are pared. The term m0grcosφ is also assumed as small and can be neglected [7].

To include nonlinear damping and stiffens the additional nonlinear functions f̃
are added to the model. These functions depend on generalized coordinates and
velocities. We assume that nonlinearities are of ε order, where ε is a formal small
parameter. Thus, equations of motion of the complete nonlinear system take the final
form

φ̈ = ε
[
G̃

(
φ̇
) − q̃2 Ẍ1cosφ

]

Ẍ1 + M1(a11X1 + a12X2 + ... + a1S XS) = εM1 f̃1 + q̃1φ̇2sinφ − q̃1φ̈cosφ
Ẍ2 + M2(a21X1 + a22X2 + ... + a2S XS) = εM2 f̃2

...

Ẍ S + MS(aS1X1 + aS2X2 + ... + aSS XS) = εMS f̃S

(3)

Functions with tilde are expressed by small parameter, G̃
(
φ̇
) = εG

(
φ̇
)
and f̃i = ε fi .

Furthermore, Eq. (3) are expressed in dimensionless form by introducing dimen-

sionless time τ = ω1t and coordinates X j = x j

x0
, where ω1 =

√
k1
m1
, x0 = m1g

k1
.

Parameters aij represent linear parts of stiffness coefficients, Mi = mi
m1

, q1 = m0r
M+m0

,

q2 = m0r
J0+m0r2

, q̃1 = εq1 and functions f̃i = f̃i (X1, X2, ...XS, Ẋ1, Ẋ2, ..., Ẋ S, τ ) are
nonlinear functions of dimensionless time and coordinates.

The first equation of set (3) is a driving equation of the DC motor defined as

G
(
φ̇
) = L

(
φ̇
) − H

(
φ̇
)

(4)

where H
(
φ̇
)
is a resistant torque and L

(
φ̇
)
is torque generated by the motor.

According to [2, 7], G
(
φ̇
)
can be accepted by the linear function

G
(
φ̇
) = u1 − u2φ̇ (5)

approximating the resultant torque generated by the rotor. Coefficient u1 repre-
sent voltage supplied to the DC motor while u2 depends on the motor character-
istic. Excitation of the system occurs in the second equation of Eq. (3). It is worth
mentioning that the model is time independent which is characteristic feature of
non-ideal systems.



Nonlinear Dynamics of Self and Parametrically Excited Systems … 57

3 Two Degrees of Freedom Model with Non-ideal Energy
Source

Detailed analysis of the considered system is performed for two degrees of freedom
model presented in Fig. 2.

Equation of motion of the presented model take the form

(
J0 + m0r2

)
φ

′′ = G(φ
′
) − m0r x

′′
1cosφ

m1x
′′
1 + f1

(
x, x

′) + k1x1 + k
∧

1x31 +
(
k12 − k

∧

12cos2νt
)
(x1 − x2)

= m0rφ
′2(

sinφ − φ
′′
cosφ

)

m2x
′′
2 + f2(x, x

′
) + k2x2 + k

∧

2x32 −
(
k12 − k

∧

12cos2νt
)
(x1 − x2) = 0

(6)

where prime denotes derivative with respect to time.
The system is composed of two self-excited oscillators with nonlinear damping

of Rayleigh type defined as: f1 = −α1X ′
1 + β1X ′3

1 , f2 = −α2X ′
2 + β2X ′3

2 and
nonlinear Duffing springs:k1x1 + k

∧

1x31 , k2x2 + k
∧

2x32 . The oscillators are coupled by
a linear spring with periodically varied stiffness k

∧

12cos2νt . The system is excited by
non-ideal energy source—DC motor with the rotating unbalanced mass.

Introducing dimensionless timeτ = ω1t , where ω2
1 = k1

m1
, m1 = m10 +m0, and

small formal parameter ε, Eq. (6) is transformed to the form

Fig. 2 Non-ideal system
with parametric and
self-excitation with two
degrees of freedom
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φ̈ = ε
[
G̃

(
φ̇
) − q̃2 Ẍ1cosφ

]

Ẍ1 + δ1X1 + δ12(X1 − X2) = ε
[
f̃1

(
X1, X2, Ẋ1, Ẋ2, τ

) + q̃1
(
φ̇2sinφ − φ̈cosφ

)]

Ẍ2 + Mδ2X2 − Mδ12(X1 − X2) = ε
[
M f̃2

(
X1, X2, Ẋ1, Ẋ2, τ

)]

(7)

where dot denotes derivative with respect to dimensionless time τ .
Equations (7) are transformed from generalized coordinates Xi to quasi-normal

coordinates Yi by a linear transformation

Y1 = X1 + λ21X2 + ... + λS1XS

Y2 = X1 + λ22X2 + ... + λS2XS
...

YS = X1 + λ2S X2 + ... + λSS XS

(8)

whereλij are coefficients of linearmodes normalized to the first coordinate, therefore,
λi1 = 1.

After transformation to normal coordinates we get

φ̈ = ε
[∼
� (ω) + q̃2

(
ψ1Ÿ2 − ψ2Ÿ1

)
cosφ

]
(9)

Ÿ1 + p21Y1 = ε
[
−F̃d1 − ∼

γ 1(Y2ψ1 − Y1ψ2)
3 + (Y2η1 − Y1η2)

∼
μ cos2φ

]

+Mλ12

[
−F̃d2 − ∼

γ 2χ
3(Y1 − Y2)

3 − (Y2η1 − Y1η2)
∼
μ cos2φ

] (10)

Ÿ2 + p22Y2 = ε
[
−F̃d1 − ∼

γ 1(Y2ψ1 − Y1ψ2)
3 + (Y2η1 − Y1η2)

∼
μ cos2φ

]

+Mλ22

[
−F̃d2 − ∼

γ 2χ
3(Y1 − Y2)

3 − (Y2η1 − Y1η2)
∼
μ cos2φ

] (11)

where

F̃d1 =
[
−∼

α1 + ∼
β1

(
ψ1Ẏ2 − ψ2Ẏ1

)2
](

ψ1Ẏ2 − ψ2Ẏ1
)
,

F̃d2 =
[
−∼

α2 + ∼
β2χ

2
(
Ẏ1 − Ẏ2

)2
]
χ

(
Ẏ1 − Ẏ2

)
,

are Rayleigh damping functions expressed in normal coordinates, p1 and p2 are

natural frequencies of the system. Parametric excitation is represented by term
∼
μ

cos2φ with amplitude μ̃ and frequency 2φ̇
If ε is equal to zero then the system is fully uncoupled. However, if ε is a

small positive number then all coordinates are fully coupled and depending on the
angular velocity of the DC motor and frequency of the periodically varying stiffness
various resonance states can occur. We focus on the resonance zone when the rotor
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speed is synchronized with the parametric excitation in the ration 1:2. This situation
corresponds to the principal parametric resonance. Additionally the system includes
self-excitations which interact with parametric and externally excited vibrations.

3.1 Analytical Solutions

Let us consider vibrations around the principal parametric resonance. The rotor
rotates with angular velocity φ̇ = ω1 in the vicinity of the first natural frequency p1,
thus we can write

p1 − ω1 = ε�1 (12)

where�1 is a frequency detuning parameter. Parametric excitation frequency is tuned
with the rotor speed.

We also assume that system is weakly nonlinear and therefore the first quasi-
normal coordinate Y1 plays the main role in the response and the second Y2 is close
to zero in the first order approximation. Thus, Eqs. (9)–(11) are reduced to the form

d2φ

dt
= ε

[
�(ω1) + q̃2ψ2Ÿ1cosφ

]
(13)

Ÿ1 + p21Y1 = ε

{
−∼

α1ψ2Ẏ1 + ∼
β1ψ

3
2 Ẏ

3
1 + ∼

γ 1ψ
3
2Y

3
1 − Y1η2

∼
μ cos2φ

+q̃1
(
ω2sinφ − φ̈cosφ

) + Mλ12

[
∼
α2χ Ẏ1 − ∼

β2χ
3Ẏ 3

1 − ∼
γ 2χ

3Y 3
1 + Y1η2

∼
μ cosφ

]}

(14)

For the weakly nonlinear system we assume that vibrations amplitude and the
angular velocity ω1 are slowly varying in time. To determine analytical solutions it
is convenient to introduce new coordinates

Y1 = Acos(φ + ψ) (15)

Ẏ1 = −Ap1cos(φ + ψ) (16)

Computing the first time derivative of Y1 and comparing with Eq. (16) we get

d A

dt
cos(φ + ψ) − dψ

dt
Asin(φ + ψ) = (ω1 − p1)Asin(φ + ψ) (17)

The second time derivative takes the form
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Ÿ1 = −d A

dt
p1sin(φ + ψ) −

(
ω1 + dψ

dt

)
Ap1cos(φ + ψ) (18)

Substituting (15)–(18) into Eqs. (13)–(14) we get a set of the first order differential
equations

dω1

dt
= ε

{∼
� (ω1) − q̃2ψ2A1 p1ωcosφcos(φ + ψ)

}
(19)

d A

dt
= ε{ f1A(A, φ, ψ) + Mλ12 f2A(A, φ, ψ)}sin(φ + ψ) + ε2... (20)

dψ

dt
= ε

{
�1 + 1

A
[ f1A(A, φ, ψ) + Mλ12 f2A(A, φ, ψ)]

}
cos(φ + ψ) + ε2...

(21)

where

f1A(A, φ, ψ) = − q̃1ω1
2

p1
sinφ − A

∼
α1ψ2sin(φ + ψ) + 3

4 A
3 p12

∼
β1ψ

3
2 sin(φ + ψ)

− 1
4 A

3 p12
∼
β1ψ

3
2 sin3(φ + ψ) + A

∼
μ

2p1
η2cos(φ − ψ) + A

∼
μ

2p1
η2cos(3φ + ψ)

− 3
4
A3

∼
γ 1
p1

ψ3
2 cos(φ + ψ) − 1

4
A3

∼
γ 1
p1

ψ3
2 cos3(φ + ψ)

f2A(A, φ, ψ) = A
∼
α2χsin(φ + ψ) − 3

4 A
3 p12

∼
β2χ

3sin(φ + ψ)

+ 1
4 A

3 p12
∼
β2χ

3sin3(φ + ψ) − A
∼
μ

2p1
η2cos(φ − ψ) − A

∼
μ

2p1
η2cos(3φ + ψ)

+ 3
4
A3

∼
γ 2
p1

χ3cos(φ + ψ) + 1
4
A3

∼
γ 2
p1

χ3cos3(φ + ψ)

Functions A(t), φ(t), ψ(t) are slowly changing in time. To find the approxi-
mate solutions we apply Krylov–Bogoliubov-Mitropolsky method [3]. In the first
approximation we write

ω1 = �1 + εU1(φ1,�1, a1, ξ1) (22)

A = a1 + εU2(φ,�1, a1, ξ1) (23)

ψ = ξ1 + εU3(φ1,�1, a1, ξ1) (24)

where U1(φ,�, a, ξ),U2(φ,�, a, ξ),U3(φ,�, a, ξ) are also slowly varying func-
tions. To get solutions for Ω1, a1, ξ 1, we average the right sides of Eqs. (19)–(21)
through the vibration period
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d�1

dt
= ε

2π

2π∫

0

f�1dϕ,
da1
dt

= ε

2π

2π∫

0

fa1dϕ,
dξ1

dt
= ε

2π

2π∫

0

fξ1dϕ (25)

and we obtain

d�1

dt
= ε

{
�(�1) − 1

2
a1 p1q̃2�1ψ2cosξ1

}
(26)

da1
dt = ε

{
− 1

2

∼
α1ψ1a1 + 3

8a1
3 p12

∼
β1ψ

3
2 + 1

4a1
∼
μ

p1
η2sin2ξ1

+Mλ12

[
1
2

∼
α2χa1 − 3

8a1
3 p12

∼
β2χ

3 − 1
4a1

∼
μ

p1
η2sin2ξ1

]
− 1

2 q̃1
�1

2

p1
cosξ1

} (27)

dξ1
dt = ε

{
�1 − 3

8a1
2

∼
γ 1
p1

ψ3
2 + 1

4

∼
μ

p1
η2cos2ξ1

+Mλ12

[
3
8a1

2
∼
γ 2
p1

χ3 − 1
4

∼
μ

p1
η2cos2ξ1

]
+ 1

2 q̃1
�1

2

a1 p1
sinξ1

} (28)

In a steady state d�1
dt = 0, da1

dt = 0, dξ1
dt = 0, thus Eqs. (26)–(28) become nonlinear

algebraic equations enabling determining amplitude and phase of vibrations and
angular velocity of themotor in the vicinity of thefirst principal parametric resonance.

3.2 Stability Analysis

Stability analysis of the obtained solutions is based on Eqs. (26)–(28) which can be
written in the consistent form

d�1
dt = �1(a1,�1, ξ1)
da1
dt = �2(a1,�1, ξ1)
dξ1
dt = �3(a1,�1, ξ1)

(29)

Perturbing above equations and subtracting unperturbed from perturbed we get a set
of equations in perturbations

dδ�1
dt =

(
∂�1
∂�1

)

0
δ�1 +

(
∂�1
∂a1

)

0
δa1 +

(
∂�1
∂ξ1

)

0
δξ1

dδa1
dt =

(
∂�2
∂�1

)

0
δ�1 +

(
∂�2
∂a1

)

0
δa1 +

(
∂�2
∂ξ1

)

0
δξ1

dδξ1

dt =
(

∂�3
∂�1

)

0
δ�1 +

(
∂�3
∂a1

)

0
δa1 +

(
∂�3
∂ξ1

)

0
δξ1

(30)
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where δmeans variation of the selected function and the subscript “0” denotes deriva-
tives in the steady state. Stability depends on the values of the roots of the charac-
teristic determinant of (30). The solution is stable if all real parts of the roots are
negative, otherwise the system is unstable.

The derivatives take definitions
(

∂�1

∂�1

)
= −εŨ2 − 1

2
εap1q̃2ψ2 cos ξ1,

(
∂�1

∂a

)
= −1

2
εp1q̃2ψ2�1 cos ξ1,

(
∂�1

∂ξ1

)
= 1

2
εap1q̃2ψ2�1 sin ξ1,

(
∂�2

∂�1

)

0

= −ε
q̃1�1

p1
cos ξ1,

(
∂�2
∂a

)

0
= 1

2
ε

[
−∼

α1ψ2 + 9

4
a2p1

2∼
β1ψ

3
2 + η2

2p1

∼
μ sin2ξ1 + Mλ21

(∼
α2χ − 9

4
a2p1

2∼
β2χ

3 − η2
2p1

∼
μ sin2ξ1

)]

(
∂�2

∂ξ1

)
= 1

2p1
ε
(
aμ̃η2 cos 2ξ1 − Mλ21aμ̃η2 cos 2ξ1 + q̃1�

2
1 sin ξ1

)
,

(
∂�3

∂a

)
= 1

2p1
ε

(
−3

2
aγ̃1ψ

3
2 + 3

2
Mλ21aγ̃2χ

3 − 1

a2
q̃1�

2 sin ξ1

)
,

(
∂�3

∂ξ1

)

0

= 1

2p1
ε

(
q̃1
a

�2
1 cos ξ1 − μ̃η2 sin 2ξ1 − Mλ21η2μ̃ sin 2ξ1

)
.

4 Numerical Analysis of Regular Oscillations

Nonlinear oscillations of the two degrees freedom model with non-ideal energy
source and parametric and self-excitations are analyzed for the following data

α1 = 0.1, β1 = 0.05, γ1 = 0.1, α2 = 0.1, β2 = 0.05, γ2 = 0.1,

μ = 0.2, M = 0.5, δ1 = 1, δ12 = 0.3, δ2 = 1 (31)

Natural frequencies of the system, modal coefficients and coefficients related to
coordinate transformation take values

p1 = 0.766, p2 = 1.168, λ12 = 4.754, λ22 = −0.421

χ = 0.192, ψ1 = 0.919, ψ2 − 0.0813, η1 = 1.112, η2 = 0.112 (32)

Let us assume that the characteristic of the DC motor is defined by function
�

(
φ̇
)
(Eq. (5)). Parameter u1 (related to the supplied voltage) is varied in domain

u1 ∈ (0, 1.8), parameter u2 is fixed, u2 = 1.5.
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Fig. 3 Vibration amplitudes in the vicinity of the principal parametric resonance around frequency
p1, a amplitude against u1 parameter and b amplitude against excitation frequency �1

Resonance curves for the principal parametric resonance are presented in Fig. 3.
The curves in black are determined for the steady state on the basis of analytical
solutions (26)–(28) while the stability checked by computing characteristic roots of
Eq. (30). Unstable solutions are marked by dashed lines. The analytical solutions
are stable close to the first natural frequency p1. Moving away from this frequency
solutions become unstable and the quasi periodic oscillations occur (Fig. 3a).

The quasi-periodic solutions are obtained by a direct integration of equations of
motion (7) and then solutions are transformed from generalized (physical) coordi-
nates to quasi-normal coordinates using transformation (8). Because the motion has
a beating nature with modulated amplitude it is denoted by dotes indicating maximal
and minimal values of the amplitude. As we can observe quasi-periodic motion
starts when the stability of periodic solution is lost. The modulation of the amplitude
decreases moving away from the resonance zone. The periodic solution bifurcates
to quasi-periodic via the second kind Hopf bifurcation, not indicated in the figure.
Varying parameter u1 we can observe also change in the angular speed of the DC
motor. Therefore, the shape of the resonance curve against angular velocity �1 is
different than against parameter u1 as presented in Fig. 3b. The additional fully stable
loop occurs on the left branch of the resonance curve. This solution is in agreement
with results published in the paper [16] for one degree of freedom model. For the
ideal system [15], excited by a motor with infinite power, the loop arises on the
declining branch and it is only partially stable. In contrast the loop existing in the
non-ideal model arises on the inclining branch and is fully stable.

The detailed changes in the amplitude and angular velocity can be observed on
the basis of the averaged Eqs. (26)–(28) which have been modelled in the Matlab
–Simulink package and then solved numerically. Figure 4 and Fig. 5 present solu-
tions a1(t) and �1(t) while supplied voltage is slowly increasing and decreasing,
respectively.
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Fig. 4 Amplitude and
angular velocity of the motor
against slowly increasing in
time parameter
u1 ∈ (0.4 − 2.4)

Fig. 5 Amplitude and
angular velocity of the motor
against slowly decreasing in
time
parameter u1 ∈ (2.4 − 0.4)

Two different scales are used in the figures, red color represents amplitude while
blue angular velocity (frequencyof excitation) of the computed solutions.Modulation
of amplitude are clearly visible out of the resonance zone. This result is an effect
of interactions between parametric and external vibrations and additional interaction
with the non-ideal energy source. Therefore, quasi-periodic oscillations are observed
on the angular velocity curves (blue line).

Modulation of the oscillations increases close to the resonance zone and inside
the resonance zone transits to periodic with constant amplitude, both either for the
main system or angular velocity of the motor. Inside the resonance zone two local
maxima occur. The drop of angular velocity in the middle of the resonance zone
(blue line in Fig. 4) is related with the limited power supply which is too small to
maintain the response to be continuously increasing.
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Time histories of amplitude a1 and angular velocity Ω1 outside and inside the
resonance region for selected parameters u1 are presented in Fig. 6. Amplitudemodu-
lations very close to the frequency locking for u1 = 1.1 and u1 = 1.53 are presented
in Fig. 6a, c.

Inside the resonance for u1 = 1.2 where the frequency locking takes place ampli-
tude is constant (Fig. 6b). For u1 = 1.7 (Fig. 6d), far away from the resonance,
amplitude modulations are much smaller and oscillation frequency is increased.

Fig. 6 Time histories of vibration amplitudes and angular velocity against parameter u1 parameter;
a u1 = 1.1, b u1 = 1.2, c u1 = 1.53, d u1 = 1.70
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5 Chaotic Oscillations of Nonlinear Two Degrees
of Freedom System with Non-ideal Energy Source

Apart from regular oscillations which can be periodic or quasi-periodic also more
complex chaotic oscillationsmay occur [12]. One of themain criterion for themotion
classification is based on Lyapunov exponent. Parameters (31) are accepted to check
regular periodic or quasi-periodic dynamics. For this purpose bifurcation diagrams
based on Lyapunov exponents are computed for varied parameter u1 in domain
u1 ∈ (0 − 6). The computations have been performed till steady state has been
achieved, transient solutions have been rejected.

Lyapunov exponents diagram is presented in Fig. 7. As we can see values of
the exponents do not exceed zero values which confirms regular oscillations in the
analyzed domain of bifurcation parameter u1. Examples of Poincaré maps for X1, Ẋ1

coordinates are presented in Fig. 8.
As it has been mentioned the considered system is autonomous and time is not

present in the direct form therefore the base of solution sampling and then plotting
period T = π has been applied.

Themap in Fig. 8b corresponds to a periodic solution and the attractor gets a shape
of a single closed curve. In the rest maps the oscillations are quasi-periodic occurring
due to nonlinear dynamics of the whole coupled system. The most complex structure
of the attractor is presented in Fig. 8a, f, just before and after the resonance zone.
Then, a very strong impact of self-excitation on the system dynamics takes place.
In Fig. 8c–e the quasi-periodic motion is related to couplings of the whole structure
and smaller influence of self-excitation.

A detailed motion classification based on Lyapunov exponents is proposed in
Table 1.

For periodic motion just one, out of six, Lyapunov exponent is equal to zero, rest
get negative values. Quasi-periodicmotion is characterized by two or three exponents
equal to zero and they are called respectively as quasi-periodic oscillations of the
first or the second kind (see Fig. 8f).

Fig. 7 Lyapunov exponents
against u1 parameter for
the non-ideal system with
two degrees of freedom,
parameters (31); μ = 0.2

0.0                     2.0              u1 4.0                               6.0

1.0

-1.0
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Fig. 8 Phase portraits for selected parameters u1„ μ = 0.2, a u1 = 0.80, b u1 = 1.30, c u1 = 1.70,
d u1 = 2.2, e u1 = 2.6, f u1 = 3.2
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Table 1 Type of attractors and Lyapunov exponents for selected parameter u1; μ = 0.2

u1 Attractor λ1 λ2 λ3 λ4 λ5 λ6

0.80 Quasi-periodic 0.0 0.0 −0.0167 −0.0167 −0.0691 −1.5213

1.30 Periodic 0.0 −0.0285 −0.0296 −0.0296 −0.0738 −1.4178

1.70 Quasi-periodic 0.0 0.0 −0.0381 −0.0924 −0.3185 −1.288

2.20 Quasi-periodic 0.0 0.0 −0.0664 −0.1533 −0.2060 −1.4447

2.60 Quasi-periodic 0.0 0.0 −0.0519 −0.0823 −0.0823 −1.5788

3.20 Quasi-periodic type II 0.0 0.0 0.0 −0.0200 −0.0643 −1.5637

Fig. 9 Lyapunov exponents
against u1 parameter for
non-ideal system with two
degrees of freedom,
parameters (31); μ = 1.0

Dynamics of the non-ideal system is analyzed also for larger parametric excitation
by increasing μ parameter up to μ = 1.0 and keeping the same values of the rest
coefficients. Now, the maximal Lyapunov exponent gets positive values as presented
in diagram in Fig. 9. These zones indicate chaotic oscillations of the system. The first
chaotic region occurs out of the resonance for u1 ∈ (0, 1.2) with a minor windows
of regular motion. On Poincaré map for u1 = 0.6 we obtain periodic oscillations
while for u1 = 0.7 and u1 = 1.1 oscillations become chaotic (Fig. 10a–c).

Other two chaotic regions occur next to u1 ≈ 2.2 and u1 ≈ 2.5 with quasi-
periodic oscillations between them (Fig. 10f). For large values of u1 parameter the
only regular motion takes place (Fig. 10h).

The Lyapunov exponents corresponding to bifurcation diagram in Fig. 9 and
Poincaré maps are collected in Table 2. For u1 = 0.70, u1 = 2.22, u1 = 2.55,
values of the maximal Lyapunov exponent are positive, which means that for these
parameters oscillations are chaotic. This fact is also confirmed by strange chaotic
attractors presented on Poincaré maps. For u1 = 1.1, and attractor presented in
Fig. 10c, two exponents are positive. This motion is called hyper-chaotic. In the rest
cases one or two exponents are equal to zerowhat indicates periodic or quasi-periodic
motion.

The additional numerical simulations (not presented here) show that the model
with non-ideal energy source has much higher tendency in transition to complex
dynamics, including chaos or hyper-chaos, than its ideal counterpart. This is the
effect of the additional degree of freedom related to nonlinear DC motor dynamics.
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Fig. 10 Phase portraits for selected parameters u1, μ = 1.0, a u1 = 0.60, b u1 = 0.70, c u1 = 1.10,
d u1 = 1.80, e u1 = 2.22, f u1 = 2.40, g u1 = 2.55, h u1 = 2.80
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Fig. 10 (continued)

Table 2 Type of attractors and Lyapunov exponents for selected parameter u1; μ = 1.0

u1 attractor λ1 λ2 λ3 λ4 λ5 λ6

0.60 periodic 0.0 −0.0013 −0.0268 −0.1308 −0.2129 −1.4659

0.70 chaotic 0.0404 0.0 −0.0254 −0.0925 −0.2236 −1.4681

1.10 chaotic 0.0490 0.0027 −0.0002 −0.1951 −0.6851 −1.4755

1.80 quasi-periodic 0.0 0.0 −0.0641 −0.4832 −0.4834 −1.4884

2.22 chaotic 0.0280 0.0 −0.0822 −0.2048 −0.4496 −1.4382

2.40 quasi-periodic 0.0 0.0 −0.1507 −0.3651 −0.5436 −1.5040

2.55 chaotic 0.0289 0.0 −0.0060 −0.3707 −0.7586 −1.4469

2.80 quasi-periodic 0.0 0.0 −0.0406 −0.0869 −0.1244 −1.5715

6 Conclusions

The interactions between external, parametric and self-excited vibrations are studied
in the paper. The model assumed as non-ideal, includes the additional degree of
freedom of the energy source (DC motor). The parametric and external excitations
are tuned in 1:2 ratio which leads to very strong interactions in the principal para-
metric zone. The analytical solutions based on the Krylov–Bogoliubov-Mitropolsky
method show that in the vicinity of this zone the phenomenon of frequency locking
takes place. The system vibrates periodically. The influence of the non-ideal energy
source is observed by local decrease of the amplitude and angular velocity inside the
resonance zone against the supplied voltage.On the resonance characteristic—ampli-
tude against excitation frequency—this effect creates a loop on the increasing branch
of the resonance curve and the loop is fully stable. The phenomenon is in contrast
to the ideal system where the loop arises on the declining branch and its upper part
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is stable [15]. Outside the principal parametric resonance, after the Hopf bifurcation
of the second kind, the system transits to quasi-periodic oscillations. Based on the
extended numerical simulation, apart from periodic or quasi-periodic, also chaotic
or hyper-chaotic vibrations may arise while parametric excitation is increased. This
fact is confirmed by computed Lyapunov exponents and strange chaotic attractors
plotted on Poincaré maps. The dynamics of the non-ideal model differs from the
ideal system in a case of regular vibrations as well as chaotic motion. The non-ideal
model is more sensitive in the transition to chaotic oscillations when compared with
its counterpart.
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