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Abstract A non-ideal dynamic system "piezoceramic transducer—LC generator"
is considered. Various scenarios of transition to deterministic chaos in such a system
are described. For the first time, the implementation of the "chaos-chaos" and "chaos-
hyperchaos" transitions according to the scenarios of generalized intermittency has
been discovered.

1 Introduction

Any oscillatory system consists of two main elements, namely, a source of excitation
of oscillations and the actual oscillatory load. If the power of the oscillation excita-
tion source is comparable to the power consumed by the oscillatory load, then such
systems are called nonideal systems or systems with limited excitation. In nonideal
nonlinear dynamical systems, the interaction between the source of oscillation exci-
tation and the oscillatory subsystem can lead to completely unexpected steady-state
regimes, in particular to the emergence of the deterministic chaos. Especially inter-
esting cases are when the occurrence of chaos is associated exclusively with the
interaction between the excitation source and the oscillatory load, and not with the
internal properties of the subsystems.

For the first time, studies of limited excitation were started in the works of Arnold
Sommerfeld [27, 28]. In the future, such studies were continued by Timoshenko [29],
Kononenko1969,Nayfeh andMook [19].Among theworks of recent decades, signif-
icant contribution was made by Krasnopolskaya [12, 13], Warminski and Balthazar
[30], Balthazar et al. [2], Palacios Felix and Balthazar [20] and many others.

The main purpose of this paper is to study new bifurcations of the transition to
deterministic chaos in some nonlinear dynamic system “piezoceramic transducer—
analog generator of limited power.
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2 Mathematical Model of System “piezoceramic
Transducer-LC-Generator”

Let us consider a piezoceramic rod transducer, which is loaded on the acoustic
medium and to which electrodes the electrical voltage is affixed, raised by the LC–
generator (Fig. 1). The selection of the generator of such type is caused by the renais-
sance of its application observable now in the up-to-date technique. This is related
to facts that the electrovacuum-tube (analogue) devices ensure higher metrological
characteristic to comparison with the numeral devices.

In papers [14, 16] in strict accordance with the theory of the relationship between
mechanical and electrical fields in piezoceramic media [1, 4, 9], as well as based on
the general principles of the theory of systems with limited excitation (Kononenko
1969), a mathematical model of the “transducer-generator” system was derived. It is
proved that such a mathematical model can be written in the form of the following
system of ordinary differential equations:

ϕ̈ + ω2
0ϕ = a1ϕ̇ + a2ϕ̇2 − a3ϕ̇3 − a4V,

V̈ + ω2
1V = a5ϕ + a6ϕ̇ − a7V̇ .

(1)

Here V (t)—voltage in the electrodes of the transducer; t—time; ϕ(t) =∫ t
0

(
eg − Eg

)
dx ; eg—tube grid voltage; Eg—the constant component of voltage eg .

A detailed description of all parameters of the mathematical model (1), each of
which depends onmany electrical and elastic properties of the “transducer-generator”
system is given in the paper [16].

Note that the mathematical model (1) was derived for one specific type of dynam-
ical systems. However, as it was subsequently established in this dynamic system,
a unique variety of steady-state dynamic regimes is realized. So, in this system, all
the main types of regular attractors were discovered, such as equilibrium positions,
limit cycles and invariant tori [3, 16, 25]. Chaotic attractors, including hyperchaotic
ones, were also found in the system [1, 3, 13, 22]. Transitions to chaos (hyperchaos)

Fig. 1 Scheme of viewed system
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through a cascade of period doubling bifurcations [7, 8] and through intermittency
[18, 21] were identified. And at last, in papers [25, 26] self-excited, hidden and rare
attractors were discovered in this system.

Thedynamical system [1] has awider variety of steady-state regimes and scenarios
for the transition from one type of regime to another than, for example, the classical
systems of Lorenz and Roessler. Such system is the “library” of regular and chaotic
dynamics and can be used as a basic one in the study of general theory of dynamical
systems.

3 Research Methodology and Numerical Results

The system of Eq. (1) is a nonlinear system of differential equations with a four-
dimensional phase space. Therefore, in the general case, a solution to such a system
can only be found using numerical or numerical-analytical methods. For the conve-
nience of using such methods, we bring the system of Eq. (1) to a normal form.
We introduce new “dimensionless” phase variables and “dimensionless” time by the
formulas:

ξ = ϕω0

Eg
,

dξ

dτ
= ζ, β = V

Eg
,

dβ

dτ
= γ, τ = ω0t. (2)

Then the system of Eq. (1) can be written in the form:

dξ

dτ
= ς, ds

dτ
= −ξ + α1s + α2s2 − α3s3 + α4β,

dβ
dτ

= γ,
dγ

dτ
= α5ξ + α6ζ − α0β − α7γ.

(3)

where the coefficients are equal to

α0 = ω2
1/ω

2
0, α1 = a0/ω0, α2 = a2Eg/ω0, α3 = a3E2

g/ω0,

α4 = −a4/ω0, α5 = a5/ω3
0, α6 = a6/ω2

0, α7 = a7/ω0.

For construction and study of attractors of system (3) (both regular and chaotic), a
whole complex of numerical methods was applied. Such as, the fifth order method of
Runge–Kutta with the application of correcting procedure of Dormand–Prince [10],
the algorithm of Benettin [6, 5], the method of Henon [11] and some other methods.
A detailed methodology for applying the above methods is described in the papers
[17, 23].

At studying attractors of dynamical systems, a description of scenarios (a sequence
of bifurcations) of transitions from an attractor of one type to an attractor of another
type have great interest. In particular, investigation of scenarios of transitions from
regular to chaotic attractors, as well as transitions from a chaotic attractor of one
type to a chaotic attractor of another type. As noted earlier, transitions to chaos were



46 S. V. Donetskyi and A. Yu. Shvets

Fig. 2 Dependence of two
Lyapunov characteristic
exponents on the parameter
α2

found in the “transducer-generator” system according to the Feigenbaum scenario (a
cascade of period doubling bifurcations) and according to the Manneville-Pomeau
scenario (through intermittency).

Let us show that in system (3) a transition is realized from a chaotic attractor of
one type to a chaotic attractor of another type according to a more complex scenario
of generalized intermittency. The scenario of generalized intermittency for nonideal
hydrodynamic systems was described in papers [15, 16, 24].

Suppose that the parameters of system (3) are respectively equal to α0 = −0.104;
α1 = 0.0535; α3 = 9.95; α4 = 0.103; α5 = 0.0604; α6 = 0.12; α7 = 0.01. We
choose α2 as the bifurcation parameter.

In Fig. 2, the dependences of twoLyapunov characteristic exponents on the param-
eter α2 are plotted. The maximal exponent λ1 is shown in black and the second λ2 is
shown in red.

As can be seen from Fig. 2 for α2 < 9.7128 maximal Lyapunov exponent will
be zero, while the second exponent will be negative. This means that the attractor of
system (3) for such values will be the limit cycle. At α2 > 9.7128maximal Lyapunov
exponent becomes positive, which indicates the appearance of a chaotic attractor in
system (3). Chaos in the systemwill exist for almost all the values of α2 considered in
Fig. 2, with the exception of a very narrow periodicity window at the right boundary
of the interval 9.7128 < α2 < 9.74. As for the second Lyapunov exponent, it (up to
the error of the Benettin et al. method) will be zero at 9.7128 < α2 < 9.7348. At
α2 > 9.7348 the second, the Lyapunov exponent becomes positive. The presence of
two positive Lyapunov indicators indicates the emergence of a hyperchaotic attractor.

In Fig. 3 the phase-parametric characteristic (bifurcation tree) of the system (3)
is shown. Limit cycles correspond to individual branches of this tree, and chaotic
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Fig. 3 Phase-parametric
characteristic

attractors correspond to densely black areas. In Fig. 3, two types of densely black
areas are clearly visible. These densely black areas correspond to different types
of chaotic attractors, which differ noticeably in the size of the attractor localization
region in the phase space.

Figure 4 shows an enlarged fragment of the phase-parametric characteristics of
the system (3). This figure makes it possible to very clearly illustrate the transitions

Fig. 4 Enlarged fragment of
phase-parametric
characteristic
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from one type of attractor to another. Thus, with an increase in the value of the
parameter α2 the limit cycle is replaced by a chaotic attractor with a small region of
localization in the phase space. In turn, this chaotic attractor is replaced by a chaotic
attractor of another type with a much larger area of localization in the phase space.
In addition, Fig. 3 and Fig. 4 allow us to make an assumption about the scenario of
the transition from a chaotic attractor of one type to a chaotic attractor of another
type through generalized intermittency [16, 24]. However, most clear the scenario of
such a transition can be revealed when studying the projections of the phase portraits
of attractors and the distributions of invariant measures over the phase portraits.

Let us consider the dynamic behavior of system (3) with increasing parameter α2.
In Fig. 5a), a projection of the phase portrait of the limit cycle at α2 = 9.7125 is
shown. As the parameter α2 increases up to α2 ≈ 9.7128, the limit cycle disappears
and a chaotic attractor arises in the system. The projection of the phase portrait of
a chaotic attractor constructed at α2 ≈ 9.71305 is shown in Fig. 5b). The transition
from a limit cycle to a chaotic attractor occurs through intermittency trough one rigid
bifurcation [18]. Despite the fact that the chaotic attractor is very similar in shape

(a) (b)

(c) (d)

Fig. 5 Limit cycle at α2 = 9.7125 (a); Chaotic attractor at α2 = 9.7125 (b); Chaotic attractor at
α2 = 9.7131 (c); Distribution of invariant measure at α2 = 9.713 (d)
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to the disappeared limit cycle, there are fundamental differences between them. The
limit cycle consists of one orbitally stable trajectory along which the movement is
strictly periodic. A chaotic attractor consists of an infinite set of arbitrarily close to
each other open trajectories along which the motion is unpredictable.

Note that such a chaotic attractor exists on a very small interval of variation of the
parameter α2, and small increase in parameter α2, namely α2 ≈ 9.7131 leads to next
rigid bifurcation after which chaotic attractor of another type arises. The existing
chaotic attractor disappears and a chaotic attractor of a different type appears in the
system. The projection of the phase portrait of the new chaotic attractor is shown in
Fig. 5c). The distribution of the Krylov-Bogolyubov measure over the projection of
the phase portrait of the new chaotic attractor is shown in Fig. 5d).

The scenario of such a transition from a chaotic attractor of one type to a chaotic
attractor of another type is called generalized intermittency [16, 24]. In this scenario,
after passing the bifurcation point, the chaotic attractor disappears and a chaotic
attractor of a new type appears. Motion along the trajectory new chaotic attractor
consists of two alternating phases, namely rough-laminar phase and turbulent phase.
In the rough-laminar phase, the trajectory makes chaotic movements in a neighbor-
hood of the trajectories of the disappeared chaotic attractor. Then, at an unpredictable
moment of time, the trajectory leaves the localization region of the disappeared
attractor and moves to more distant regions of the phase space. Rough-laminar phase
corresponds to the much blacker areas in Fig. 5c, d. In turn, turbulent phase corre-
sponds to much less darkened areas in Fig. 5c, d. After some time, the movement
of the trajectory returns to the rough-laminar phase again. Then, trajectories switch
to turbulent phase again. Such transitions are repeated an infinite number of times.
From Fig. 5b, d it is especially clearly seen that the contours of the disappeared
chaotic attractor are essentially rough laminar phase of a new chaotic attractor. Note
that the duration of both rough-laminar and turbulent phases is unpredictable as are
the moments of times of transition from one phase to another.

With a further increase in the value of the parameter α2, the second Lyapunov
characteristic exponent also becomes positive. A chaotic attractor turns into a hyper-
chaotic one. Hyperchaotic attractors have two directions in the phase space along
which the trajectories of the hyperchaotic attractor run away.

Finally, let us consider on one more interesting feature of the “transducer-
generator” system. Figure 6 shows the phase-parametric characteristic for another
interval of variation of the parameter α2. Here, as before, the separated “branches” of
the bifurcation tree correspond to the limit cycles, and the densely black areas corre-
spond to chaotic attractors. Clearly, it can be identified the transitions from densely
black areas to densely black areas with noticeably greater size. At such transitions,
the chaotic attractor of one type is replaced by a chaotic attractor of another type.
As before, such transition is carried out according to the scenario of generalized
intermittency. However, there is difference in sequence of bifurcations with such
transitions. Therefore, on transitions corresponding to the Fig. 3, following bifurca-
tion sequence occurs: limit cycle–intermittency–chaotic attractor of one type–gener-
alized intermittency–chaotic attractor of another type. In turn, Fig. 6 corresponds
to the following sequence of bifurcations: limit cycle–cascade of bifurcations of
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Fig. 6 Phase-parametric
characteristic

period doubling–intermittency–chaotic attractor of one type–generalized intermit-
tency–chaotic attractor of another type. Thus, first transition to chaos corresponding
to Fig. 3 is carried out through one rigid bifurcation, and the first transition to chaos
corresponding Fig. 6 is carried out through an infinite number of soft bifurcations.

In conclusion, we emphasize that implementation of the scenario of generalized
intermittency for the “transducer-generator” system was found for the first time.
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