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Abstract The present Chapter presents on its entirety the dynamics of mechanical
structures such as beam and rectangular plate when they are subjected to one or
more DC motors with limited power supply. Attention is paid on the various appli-
cations of such study in civil and mechanical engineering. To deal with this topic,
we developed two main approaches with the purpose to give a good insight on vibra-
tion control and stability of the studied system. The first step consists on the use
of some electric transducers and tuned mass damper to reduce the amplitudes of
vibration of a plate. An adequate choice of the physical parameters of the control
device enhances the efficiency of the control strategy. A stability analysis using the
Routh-Hurwitz criteria confirms the pertinence of the control strategy. The second
method is rather based on the synchronization with and without delay between the
external sources (DCmotors) working on the structure. Here, the physical parameters
of the structure enable to present the phase and anti-phase or rapid and late synchro-
nization phenomena between the motors. This difference of phase or the input delay
between the motors and the voltage applied on the motors lead to situations where
the amplitude vibrations of the mechanical structure are considerably reduced.

Keywords Nonlinear dynamics · Mechanical structures · Non ideal sources · DC
motors · Electric transducers · Tuned mass damper · Routh-Hurwitz criteria ·
Self-synchronization

1 Introduction

The study of thin plate vibrations displays a rich and complex dynamics that ranges
from linear to strongly nonlinear regimes when increasing the vibration amplitude
with respect to the thickness. A plate is a continuous system, and thus, in the language
of Mechanical Engineering, it possesses an infinite number of degrees of freedom.
Truncating the degrees of freedom from an infinite number to a finite one can lead
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nonetheless to a faithful reproduction of the dynamics. When a rectangular plate
vibrates in a weakly nonlinear regime, modal couplings produce amplitude depen-
dent vibrations, internal resonances, instabilities, jumps and bifurcations. In the case
where it vibrates in a strongly nonlinear regime, the most appropriate description of
the dynamics is given in terms of the statistical properties of the system, because of
the large number of interacting degrees-of-freedom.

The range of applications of plates is quite large, thus thin vibrating structures
are found very often in musical instruments. For example, plates are fundamental
components of the piano and the guitar, serving as soundboards; they have been
extensively used as analog reverb units before the advent of digital systems. Instru-
ments such as bells, gongs or cymbals are, roughly speaking, curved plates. In old
theatres, large metallic plates were used at times to simulate the powerful sounds of
thunders and storms.

The scientific interest of studyingmechanical structures such as rectangular plates
is really broad, and comprises domains that are apparently very different.Many appli-
cations are found in common engineering problems, such as panel flutter in aero-
nautics, energy harvesting of fluttering flexible plates, piezoelectric and laminated
plates, and others.

Several engineering structures such as buildings, airplanes wings, helicopter
blades, bridges are usually subjected to various types of vibrations. These vibra-
tions may result from wind gusts, high speeding cars, rotating machines and some
environmental disturbances. The dynamic response of mechanical and civil struc-
tures prone to high-amplitude motions is often undesirable and dangerous. These
vibrations often lead to material fatigue, structural damage and failure, deterioration
of system performance, and increased noise level.

Frequently we encounter in civil and mechanical engineering situations where a
rectangular plate is excited by one or more DC motors leading to high amplitude of
vibration. However, there are two principal types of rotating machines, each of them
is composed by a fixed part called stator and another one mobile around a fixed axes
named rotor. Thesemotors can be powered either by direct current (DCmotors) or by
alternative current (AC motors). In DC motors, the rotational speed is proportional
to the applied voltage and the normal method of speed control is by varying the input
voltage. This speed is however also inversely proportional to the flux in the air gap.
This means that the speed increases as the flux provided by the coils decreases.

Analysis of the response of structures subjected to non-ideal excitations is of
fundamental importance for their implementation in industry and civil engineering.
For such an analysis to be able to predict the realistic behavior of a structure during
an actual non-ideal motion, certain information is necessary. First, the nature of
the Non-ideal excitation must be specified, and secondly the mechanical behavior
of the structure (thin plate) should be modeled within a reasonable accuracy. Since
1956, there exist numerous analytical and numerical techniques for the modeling and
dynamics predictions of linear and nonlinear thin plate. Platforms, quay, flagstone
and bridges are some examples of rectangular thin plates currently present in our
environment (Ashour 2001, Shafic 1999). The mastery of this dynamics helps to
prevent some catastrophe and disaster during the construction or the functioning of
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such structures. Among the perturbations which can cause mechanical vibration in
structure, one can note wind, rotating machines, static and moving charges. In the
case of rotating machines which can be divided in two principals groups, AC and DC
motors one can note some situations currently encountered in civil and mechanical
engineering. Usually, these motors are mounted on structure in industry to function
alone or in series. In this last case, the synchronization phenomenon can probably
appear between themwhen they are coupled. This phenomenon has beenwell studied
in the last decades.

Sometimes DC motors are capable of limited power supply and in a situation
where they are fixed on a mechanical structure, the system is named a non ideal one
because the excitation source will be influenced by the response of the main system
[1]. In industry we note the presence of some electrical machines mounted on elastic
structure and during their works they will certainly interact. This interaction may
be profitable or not to the firm, in the last case one has to take some care to avoid
damage. Thus, it is well recommend to study the vibration control theory to predict
some unpredictable behaviors.

The second section will be devoted to the presentation of the generalities on
interaction of DC motors with limited power supply with mechanical structures.
Section 3 dealswithmathematical formalism for the vibration control of a rectangular
plate where both techniques are presented. The fourth section presents recent results
on the topic and the last section concludes the chapter.

2 Generalities on Interaction of DC Motor with Limited
Power Supply and Mechanical Structures

In the manufacturing process in industry, it is common to have a DC motor resting
on a mechanical structure. However, motors will inevitably induce vibrations to the
structure. Depending on the running speed of the motor, we may face a situation
where the resulting vibrations of the mechanical structure will influence that of the
DCmotor which initially acts as an exciter. In the literature, it is known that when the
excitation of a vibrating system is not influenced by its response, it is said to be an
ideal excitation or an ideal source of energy. On the other hand, when the excitation
is influenced by the response of the system, it is said to be non-ideal one.

The behavior of ideal vibrating systems iswell known in the current literature [2, 3]
but there are few results on non ideal ones. Laval is probably the first one toworkwith
non-ideal problems. He built, in 1889, a one single-stage turbine and demonstrated
that in the case of rapid passage through resonancewith enough power; themaximum
vibration amplitude may be reduced significantly compared with that obtained in
the steady state resonant vibration. Balthazar [1] and his research group present the
progress of this kind of problem. It is also known for non ideal systems that sometimes
the passage through resonance requires more input power than the dynamical system
driven has available. The consequence is the so-called Sommerfeld Effect which
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Fig. 1 A DC motor mounted on a hinged-hinged beam

means that the dynamical system cannot pass the resonance or requires an intensive
interaction between the dynamical system and the motor to do it. Kononenko [4] has
devoted an entire text to this subject. Nayfeh andMook [5] gave a comprehensive and
complete review of different approaches to the problem up to 1979. More recently,
De Mattos [6] presented experimental results of the vibrations excited by a rotating
mass at the end of a cantilever beam. They observed that the extent of the associated
jump could be increased by increasing the unbalanced mass. Also, they observed
that, in some cases, the amplitude and frequency of the motion became and remained
modulated. Contrary to their counterpart, non-ideal vibrating systems have one more
degree of freedom.

As application of such systems, one canhave amechanical structure (beam, rectan-
gular plate, etc.…) supporting an unbalanced direct-current (DC) motor with limited
power supply. A sample of schematic presentation of non idealsystem is given in
Fig. 1, where the DC motor is mounted on a hinged-hinged beam.

The general form of dynamical equations of a non ideal system is presented as
follow:{

Dynamic Equation of the supporting structure = I nteraction terms

J d2ϕ

dt2 + F
(
dϕ

dt

)
= Other Interactionterms

where J, H and (
dϕ

dt ) represent respectively the inertia moment of the rotating
mass, the driving torque of the DC motor and the angular velocity of the rotor. The
previous equations can take into account damping and the resisting torque of the
motor. Others details will depend on the particular problem studied the properties of
the supported structure and the characteristics of the used rotor.

Another characteristic of non ideal excitation is that it is always limited in two
senses:

– The characteristic curves of the energy source (DC source)
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– The dependence of the motion of the dynamical system on the motion of the
energy source, that is, the coupling between the governing equations of motion
of the dynamical system and the energy source

3 Mathematical Formalism of the Vibration Control
of Rectangular Plate

The present section gives some information about the different control approaches
which could be used to control the vibration amplitude of a rectangular plate, begin-
ning by the used of some electric transducers in Sect. 3.1. Section 3.2 used the
coupling between DC sources and the plate. Each section gives some details about
the mathematical formalism used. The equations of motion of a rectangular plate
submitted to a non ideal excitation can be derived following the Hamilton’s prin-
ciple. This principle is based on the knowledge of the kinetic, the elastic potential
and the external energy of the system under consideration.

3.1 Rectangular Plate Connected to an Electric Transducer
as Controller

The active control is based on the use of secondary sources of noise or vibrations
which by superposition with the primary sources leads to a minimize signal. For thus
control strategy, the actuator applies a force on a structure using for their functioning
an external energy source [7] (Bravo 2000, Ottersten 2003, Tchokuegno 2003, Le
2009, Deng 2012, Jamula 2012, Yan 2013). This control method uses two main
strategies. The first consists to identify the perturbation creating the excitation and to
cancel it by adding another source of excitation inverse to it. The second one consist
of indentifying the response of the structure instead of the excitation, thus it needs the
modeling of the dynamics behavior of the structure. One can use smart materials like
piezoelectric, ceramics or electric transducers as device to reduce the amplitude of
vibration of mechanical structures. Today, we have some new control techniques like
opto-electromechanical control, saturation control [3], magnetorheological control
[8].

In the case of electric transducers, we have to add another differential equation
to the one obtained without the transducer. Thus the system will have a new degree
of freedom, which can be the electric charge or the electric current of the studied
system. The dynamical equation of the plate will have an additional term related to
the coupling with the electric transducer; this term is usually connected to the control
parameter of the system. Its variation leads to appreciate the control of the amplitude
of vibration in considered structure. The dynamical equation of the controller have
too a term coupled to the mechanical structure which is responsible to the energy
balance between the external source and the controller.
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Sometimes the formof the coupling terms leads to somephenomenon as saturation
one [9]. When we display analytically the dynamical equation of the system, one
can denote the influence of these terms in the energy transfer between the external
excitation and the absorber.

The usual form of the dynamic equation of a rectangular plate supporting a DC
motor with limited power supply connected to an electric transducer is given as
follow:⎧⎪⎨
⎪⎩

Dynamic equation of the structure = I nteractions terms + Coupling term

J d2ϕ

dt + L
(
dϕ

dt

)
= Other interaction terms

Dynamic equation of the controller = Another Coupling term

where J, L and (
dϕ

dt ) represent respectively the inertia moment of the rotating mass,
the driving torque of the DC motor and the angular velocity of the rotor.

The obtained dynamical equations are explored by taking into account the
boundary conditions of the plate. The solutions of the PDEof the system are supposed
to be a superposition of a spatial and a temporal term expressed as follow:

Inserting this solution in the PDE and using the orthogonal properties of the
spatial function, one obtains the normalized equation in the first mode denotedmodal
equation of the system. Thismodal equation can be analyzed by a number of different
methods such as the asymptoticmethods, themultiples scalesmethod and themethod
of normal forms.

3.2 DC Motors Mounted on a Rectangular Plate

In this subsection, we present mechanical systems, with rotating parts, which are
typical in engineering applications and subject of intensive studies. Problem of scien-
tific interest, which among others occurs in those systems, is the phenomenon of
synchronization of different rotating parts. Such situations are currently encountered
in industry where on the same mechanical structure are mounted two or more DC
motorswith limited power supply. This is usually done in order to increase the output,
to avoid human physical effort and to realize easily some tasks. The coupling between
the external sources is assured by the rectangular plate where they are fixed.

Balthazar et al. [10] investigated the self-synchronization of a vibrating system
composed of two rotating unbalanced motors with limited power supply, mounted
on a simple portal frame. Their obtained results lead to conclude that we can denote
self-synchronization and absence of synchronization between the two motors for
specific characteristics. This phenomenon has been studied before in the literature
in other ideal problems, distinct from the present one by [11, 12], among others.

In seventeenth century Huygens reported his discovery of tendency of two pendu-
lums (of the clocks) coupled through elastic structure (beam) to synchronize [13].
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It was the first observation, which has an application in physics, of phenomenon of
coupled harmonic oscillators. Kanunnikov and Lamper prove that accurate antiphase
motion of pendulums with different masses cannot occur. Pogromsky created a
controller which solves the synchronization problem. Pendulums reach required
level of energy andmove synchronously in opposite directions.More recently, others
works have been implemented in the same sense. Between them, we can note those of
Czolczynski et al. [14, 15] who studied the synchronization phenomenon appearing
between a numbers of rotating pendulums mounted on a horizontal beam which can
roll on the parallel surface. They showed that after the initial transient, different
states of pendulums synchronization occurs. Additionally, it is shown in [16], that
two motors mounted on the same plate can enter into synchronization with a phase
difference equal to 0,π or 2π depending on the physical characteristics of the motors
and the plate, and that a reduction of vibration in a plate is obtained when the motors
phase difference is equal to π.

The number of the PDE describing the dynamic of a rectangular plate supporting
some DC motors with limited power supply depends on the number of non ideal
sources fixed on the plate. Their usual form is obtained by using the Hamilton
principle and is given as follow:

⎧⎪⎨
⎪⎩

Dynamic equation of the structure = I nteractions term (equal to
the number of DCsources)

J i d
2ϕi
dt + Li

(
dϕi
dt

)
= Other interaction terms

where Ji, Li and (
dϕi
dt ) represent respectively the inertia moment of the rotating

mass, the driving torque and the angular velocity of the rotor of each DC motor.

4 Recent Results

The present section is devoted to the recent published results on the vibration control
of rectangular plate supporting some DC motors. The presented results are obtained
by the authors on the use of electric transducers and tuned mass damper as controller
device where we paid an attention on the stability analysis of the controlled system
and self-synchronization with and without delay of the DC sources mounted on the
rectangular plate.
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4.1 Electromechanical Control of Vibration on a Plate
Submitted to a Non-ideal Excitation

Nonlinear vibration of rectangular plates has been investigated by a number of authors
[17]. Subjected to various types of excitation they can lead to high amplitude of
vibration which is not always necessary for the human being.

The topic of vibration control is one of the most relevant in the civil and mechan-
ical engineering domain. However, the attenuation of vibration remains a problem
of primary importance in many engineering fields. In the past, the reduction of the
amplitude of vibration in a mechanical system was pursued by increasing the stiff-
ness and the mass of the structure with respect to the initial scheme in order to
increase the damping effect. To deal with vibrations in mechanical structure, various
configurations of devices have been proposed until now. Thus, in the literature we
can note that they are range from simple archaic solutions to more modern one using
new techniques of vibration control. The new one presents the advantage that they
are less costly and more effective. Moreover, some control techniques used electric
transducers such as electromechanical devices to come through natural vibration in
mechanical structures. However in 2006, Kitio Kwuimy et al. showed the optimiza-
tion of the electromechanical control of a beam submitted to transversal and axial
loads.

In this subsection, we present an electromechanical device used to control the
vibration of a rectangular plate submitted to a DC motor with an unbalanced mass
acting on a particular surface of the plate. After the modeling of the studied system,
we analyze analytically and numerically the condition for the effectiveness of the
control strategy. The reader should keep in their mind that in our previous works
[9, 18], the dynamics of a beam was studied. There, we have used an electrostatic
device as a controller coupled with the notion of saturation to determine the effect
of control on the vibration amplitude.

4.1.1 Presentation of the Device and Mathematical Modeling
of the Studied Problem

The studied system consists of a mechanical structure represent here by a rectangular
plate with edges simply supported, on which a DCmotor with an unbalanced mass is
fixed. In order to perform the modeling of the studied system, the surface on which
the motor is fixed is taken into account through the step function. The acting force
provided by the mechanical part of the electromechanical system acts under the plate
by various stings regularly spaced and connected to the plate. Figure 2 presents an
overview of the studied system.

The angular displacement of themotor is denoted byϕ. TheDCmotor is composed
by a rotor with a moment of inertia J which carries an unbalanced mass m0 situated at
a distance r from the axis. In order to pursue the theoretical study, the driving torque
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Fig. 2 An overview of the system under control (the top of figure is composed by a rectangular
plate where is resting a DC motor and the bottom is composed by a RL circuit with a magnet
connected to the structure by stings)

Fig. 3 Stability card of the controlled system around the chosen fixed point
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characteristic of the motor is considered to be a type frame 284. This indication is a
reference which is well known either by the manufacturer or the experimenters.

The dynamical equations of motions are derived using the Hamilton Principle
where is taken into account the total potential energy of the controlled system, the
kinetic energy of the system and the sum of the non conservative forces.

According to the Hamilton Principle we obtained the coupled partial differential
equations of the motion for the plate under control (of length a, wide b and thickness
h) with the DC motor are given as follows:

(
ρh + m0

ab

)∂2W

∂t2
+ λ

∂W

∂t
+ D

[
∂4W

∂x4
+ 2

∂2W

∂x2
∂2W

∂y2
+ ∂4W

∂y4

]

= m0r

a1b1

(
ϕ̇2 sin ϕ − ϕ̈ cosϕ

)[
H(x − x0) − H(x − x ′

0)
]

× [
H(y − y0) − H(y − y′

0)
] − lb B

NM

N∑
i=1

M∑
j=1

I δ(x − xi )δ(y − yi )

[(
J + m0r

2
)
ϕ̈ − L(ϕ̇) + m0rg cosϕ

] + m0r

2

∂2W

∂t2
cosϕ = 0

L

(
(1 + ζ ) − ζ tanh2

(
I

I0

))
∂ I

∂t
+ RI = lb B

N∑
i=1

M∑
j=1

∂W

∂t
δ(x − xi )δ(y − yi )

(1)

where W, ρ, D and h are respectively transversal displacement, density, flexural
rigidity and thickness of the plate, L(ϕ.) is the difference between the generated and
frictional torque of the motor, λ is the damping coefficient, r and m0 are the excen-
tricity and themass of the unbalanced shaft of the electric motor, g the intensity of the
gravity field. B, L, lb, ς and R are respectively the magnetic field, inductance, length,
saturation parameter of the coil and resistance of the electric circuit. a1 = x’0 − x0 and
b1 = y’0 − y0 the position of the electric motor on the plate, where x0, x’0, y0, y’0 are
coordinates of the boundary of the surface occupy by the DC motor respectively in x
and y directions, I the electric current. H, δ are respectively the Heaviside and Dirac
delta functions. xi and yj are the coordinates of the stings acting under the plate.
The characteristic curve of the energy source (DC motor) is considered as a straight
line (for more details see Warminski [19]): In this case the constant u1 and u2 refer
respectively to the voltage and a physical characteristic of the corresponding motor.

L(ϕ̇) = u1 − u2ϕ̇ (2)

In this case the constants u1 and u2 refer respectively to the voltage and a physical
characteristic of the corresponding motor.
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Taking in account the boundary conditions of the plate (simply supported one) and
according to the orthogonality of the eigenfunctions (Peeters, 2010), the following
modal equations are derived as:

(
ρh + m0

ab

)
Ÿn,m(t) + λẎn,m(t) + D

[(nπ

a

)2 +
(mπ

b

)2]2
Yn,m(t)

= 4m0r

π2a1b1

(
ϕ̇2 sin ϕ − ϕ̈∂ cosϕ

)[
cos

(nπ

a
x0

)
− cos

(nπ

a
x ′
0

)]

×
[
cos

(mπ

b
y0

)
− cos

(mπ

b
y′
0

)]
− 4lb B

abNM
I

N∑
i=1

M∑
j=1

sin
(nπ

a
xi

)
sin

(mπ

b
y j

)
[(

J + m0r
2
)
ϕ̈ − L(ϕ̇) + m0rg cosϕ

]
+ π2m0r

8(1 − cos(nπ))(1 − cos(mπ))
Ÿn,m(t) cosϕ = 0

L

(
(1 + ζ ) − ζ tanh2

(
I

I0

))
d I

dt
+ RI = lb BẎnm(t)

N∑
i=1

M∑
j=1

sin
(nπ

a
xi

)
sin

(mπ

b
y j

)
(3)

Where

Ẏn,m(t) = dYn,m

dt
, ϕ̇ = dϕ

dt
, ϕ̈ = d2ϕ

dt2
, Ÿn,m = d2Yn,m

dt2
,

For the n and m mode in each direction we derive the normalized equations:

Ün,m(t) + γ U̇n,m(t) + ω2
n,mUn,m(t) = 4m0r

aπ2a1b1(ρh + (m0/ab))

(
ϕ̇2 sin ϕ − ϕ̈ cosϕ

)
×

[
cos

(nπ

a
x0

)
− cos

(nπ

a
x ′
0

)]

×
[
cos

(mπ

b
y0

)
− cos

(mπ

b
y′
0

)]
− 4lb B I0ω

2
0

a2bNM(ρh + (m0/ab))
Vn,m

×
N∑
i=1

M∑
j=1

sin
(nπ

a
xi

)
sin

(mπ

b
y j

)

ϕ̈ = L ′(ϕ̇) + χ cosϕ + σn,mÜn,m(t) cosϕ

(
1 − ε tanh2

(
Vn,m

))dVn,m

dt
+ ωεVn,m(t) = albB

I0L
U̇nm(t)

N∑
i=1

M∑
j=1

sin
(nπ

a
xi

)
sin

(mπ

b
y j

)
(4)

with the dimensionless variables given by: Vnm = (I/I0); Unm = (Ynm/a); τ = (t/ω0);
Here I0, ν, N and M are respectively the characteristic current of the electrical

circuit, Poisson ratio, number of stings acting in x and y direction respectively.



322 A. A. N. Djanan et al.

4.1.2 Performance of the Control Strategy

(a) Stability analysis of the controlled system

Instead of reinforcing the structure, active control strategies could destabilize the
structure due to the forces acting on the system. It is therefore primordial to focus on
the stability of the system in autonomous case. Thus, the Jacobian matrix related to
the dynamics equations is extracted and explored. Four fixed points are derived from
the dynamics equations with a condition but only two are physically possible [20].
The characteristic polynomial is derived from this Jacobian and according to the
Routh–Hurwitz criterion [21], the system is stable if some conditions are satisfied.
In order to get the real domain where the controlled systemwill be stable in the space
parameter, we display the following diagram, where the region with dark points is
the stable region of the controlled system. The stability card obtained is validated by
carrying out the eigenvalues of the Jacobian matrix of the controlled system in the
both regions [20].

(b) Effect of the control on the amplitude of vibration of the plate

The equations of motion of the system under control are solved analytically by using
the harmonic balance method. After some algebraic analytical manipulation, we
obtained strongly non-linear and coupled amplitude equations. A good accordance
between our analytical results with the numerical one is observed since it is quite
impossible to plot separately the amplitude of the structure, angular velocity and the
current as function of the motor velocity (see [20] for more details).

To show the effect of the control strategy used, we display in Fig. 4 the evolution
of amplitude when the control is on and off. We observed from this figure that the
amplitude response of the plate is well reduced for these set of parameters.

By increasing the number of stings acting under the plate in each direction, we
observe in Fig. 5 that the amplitude response of the plate is more and more reduced.

The effect of the saturation parameters of the inductance has been explored and
we can observe that the reduction of amplitude may lead to the production of an
important quantity of energy in the electromechanical device. It is also proved [20]
that the amplitude of vibration of the plate decreases as the number of the stings
increases and as the intensity of the magnetic field increases.

4.2 Vibration Control a Rectangular Plate Submitted
to a Non-ideal Excitation with a TLCD

4.2.1 Description of the Control Device and Mathematical Modeling
of the Studied Problem

The schematic of the studied system consists on simply supported edges rectangular
plate under the excitation of an unbalanced DC motor with limited power supply
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Fig. 4 Amplitude curve of the plate when the control is off (points with dashed line) and on (points
with line) for N = 5 and M = 3

coupled with a TLCD. Both the motor and the damper are fixed to the plate. The
plate and the DC motor system form a non-ideal system, meaning that the excitation
created by the DC motor is influenced by the response of the supporting structure
and that the applied voltage has a limited power supply.

The present device is different from the others commonly seen in the literature
[3] in the sense that the orifice is placed vertically. Once the system is excited by
the motor, there arise transversal vibrations of the plate. As a result, the liquid inside
the columns of TLCD starts vibrating by passing through the vertical orifice and
try to stabilize the plate. This allows us to distinguish the vertical column Lv to the
horizontal column Lh as shown in Fig. 6.

The dynamic equations of the system are obtained by combining the kinetic,
potential and external energies of the plate, the motor, and the TLCD. Then after
determining the respective derivatives and substituting in the Lagrangian equations,
we get the following system of equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
ρph + m0

a0b0
(H(x − x1) − H(x − x2))(H(y − y1) − H(y − y2)) + ρc L

a1b1

(
H

(
x − x ′

1

) − H
(
x − x ′

2

))(
H

(
y − y′

1

) − H
(
y − y′

2

))]
Ẅs

λ
ab Ẇs + D

[
∂4Ws
∂x4

+ 2 ∂4Ws
∂x2∂y2

+ ∂4Ws
∂y4

]
= m0r0

a0b0

(
ϕ̈ sin ϕ + ϕ̇2 cosϕ

)
(H(x − x1) − H(x − x2))(H(y − y1) − H(y − y2))

− ρc A
a1b1

(
2Ẇ 2

f + 2W f Ẅ f

)(
H

(
x − x ′

1

) − H
(
x − x ′

2

))(
H

(
y − y′

1

) − H
(
y − y′

2

))
(
J + m0r2

)
ϕ̈ − 1

2m0r Ẅs sin ϕ − 1
2m0gr cosϕ = â − bϕ̇

2Lv Ẅ f + 1
2L ξ

∣∣Ẇ f
∣∣Ẇ f + gW f = −2W f Ẅs
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Fig. 5 Maximum amplitude of the plate as function of the number of stings acting in each direction

with Lv and Lh the vertical and horizontal length of the liquid inside the tube, ρc the
density of the fluid inside the columns of the TLCD, a1 = x2 − x1 and b1 = y2 −
y1 are the dimensions occupied by the TLCD along the x- and y-axes of the plate,
respectively, with x1, x2, y1, and y2 the coordinates of the boundaries of the areas
occupied by the TLCD, respectively, in the x and y directions.Av andAh are the cross-
sectional areas, respectively, of the vertical and thehorizontal columnsof the tube, and
H represents the Heaviside function. The movement of the system is characterized
by two generalized coordinates Wf and Ws, respectively, the response of the liquid
damper (TLCD) and the response of the plate in the transversal motion. The plate has
the following dimensions: the length a, the width b, and the thickness h. Concerning
the motor, a mass m0 is fixed on the shaft of the rotor with an eccentricity r.

4.2.2 Optimization of the Control Strategy

Taking into account the boundary conditions of the plate and the Galerking approach
we displayed the orthogonality of the obtained spaced function and we derived the
following algebraic modal dimensionless equations:
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Fig. 6 Rectangular plate
supporting an unbalanced
DC motor and a TLCD: a
perspective view and b front
view

⎧⎪⎨
⎪⎩
T̈nm + λṪnm + ω2

nmTnm = α0
(
ϕ̈ sin ϕ + ϕ̇2 cosϕ

) − α1

(
2Ż2

f + 2Z f Z̈ f

)
ϕ̈ − β0T̈nm sin ϕ − g0 cosϕ = u1 − v1ϕ̇

Z̈ f + 1
4L ξ

∣∣Ż f

∣∣Ż f + g1Z f = −β1Z f T̈nm

(6)

This system of ODE’s has been displayed analytically and numerically to perform
the control strategy used (Feulefack 2021). Thus, it has been proved that some phys-
ical parameters of the studied system have a great effect on the vibration control of
the rectangular plate.

Modeling of the studied system here takes more details into account such as the
spaces occupied by the DC motor and TLCD under and over the rectangular plate
respectively. Physical and mechanical parameters used for numerical simulations
are chosen according to a common situation in civil or mechanical engineering.
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Fig. 7 Numerical results of the responses of the rectangular plate and phase diagrams with and
without TLCD device obtained with the parameters’ values u1 = 2.1; α0 = 0.42; α1 = 0.201; g0 =
7.9; g1 = 1; β0 = 0.1; λ1 = 0.001; ξ = 0.6; ω1 = 2; β1 = 1.25; and v1 = 0.02

Accordance observed between numerical and analytical results lead to conclude that
one can predict the influence of some physical or mechanical parameters of the
system on the plate amplitude of vibration. Consequently, the results obtained will,
therefore, encourage engineers to use a TLCD concept as a control system for tall
buildings and structures due to its multiple advantages.
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Fig. 8 Rectangular plate supporting two DC motors

4.3 Self-synchronization of DC Motors on a Rectangular
Plate and Reduction of Vibration

In industry, several rotating machines inevitably exhibit nonlinear behaviors when
they are mounted on flexible structures. In general, the excitation of this type of
vibrating system is considered to be always a limited power supply since the response
of the structure influences the rotatingmoving of themotors [1, 9]. TheMathematical
formalism leading to themodeling of a non-ideal system includes an additional equa-
tion compared to that of the corresponding ideal system, to describe the interaction
between the energy source and the rest of the system.

In order to optimize the output in industry or to carry out many tasks at the
same time, synchronization or desynchronization of machines can be necessary
to optimize the production. Thus, it may be possible for two or more machines
having each a motor to self-synchronize. Balthazar et al. [1, 22] investigated the self-
synchronization of a vibrating system composed of two rotating unbalanced motors
with limited power supply mounted on a simple portal frame. They reached to the
conclusion that we can denote self-synchronization and absence of synchronization
between the two motors for specific characteristics.

The results presented here are divided in two parts where the first one is devoted
to the synchronization of two DC motors supported by the same plate and on the
analysis of plate vibration control when the motors enter into synchronization. The
second one focuses on the synchronization of three DC motors supported by the
same plate when they are rotating in the same or in the opposite direction. The plate
vibration control analysis is studied when the motors enter into synchronization or
not. Using numerical simulation, one can show the influence of the main frequency
structure on synchronization, and the impact of rotating direction of the DC motors
on the plate displacement.
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4.3.1 Self-synchronization of Two DC Motors Mounted
on a Rectangular Plate

(a) Description of the model

The studied system consists of a rectangular plate with simply supported edges, on
which two DC motors with an unbalanced mass are fixed. The surface on which the
motors are fixed is taken into account by considering the area a1b1 and a2b2.

The angular displacements of the motors are denoted ϕ1 and ϕ2. The rotors have
respectively the inertia moment J1, J2 and carry the same unbalanced mass m0 at
a distance r from their axis. The physical characteristics of the motors such as the
characteristic driving torque of the motor for each is assumed to be well known,
either from the manufacturer or from experiments [10].

According to the Hamilton principle, the PDE describing the dynamics of the
system is given as follow:

(
ρh + m1+m2

ab

)
∂2w
∂t2

+ λ∂w
∂t + D

[
∂4w
∂x4
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∂y4

]
=∑
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= 12 −miri

ai bi
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ϕ̇2
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)[
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i

)][
H(y − yi ) − H

(
y − y′
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)]
ϕ̈i = −miri

2
(
J+mir2i

) ∂2w
∂t2

cosϕi − miri g(
J+mir2i

) cosϕi + Li (ϕ̇i )

(7)

Taking in account the boundary conditions of the plate (simply supported one),
and using the orthogonality of the eigenfunctions obtained, the following normalized
modal equations are derived as:

ÿ + δ ẏ + ω2y = α1
(
ϕ̇2
1 sin ϕ1 − ϕ̈1 cosϕ1

) + α′
1

(
ϕ̇2
2 sin ϕ2 − ϕ̈2 cosϕ2

)
ϕ̈1 = β1 ÿ cosϕ1 + ε1 cosϕ1 + L̃1(ϕ̇1)

ϕ̈2 = β2 ÿ cosϕ2 + ε2 cosϕ2 + L̃2(ϕ̇2)

wherey represent the normalized plate amplitude.
Considering the two non ideal sources acting on the structure and taking into

account their physical characteristics, we can distinguish four situations for which
the dynamics can be explored:

. 1st case: a01 = a02, b01 = b02, meaning that the DC motors are identical and have
the same applied voltages.

. 2nd case: a01 �= a02, b01 �= b02, meaning that the DC motors are different and have
different applied voltages.

. 3rd case: a01 = a02, b01 �= b02, meaning that the DC motors have the same applied
voltages and are different.

. 4th case: a01 �= a02, b01 = b02, meaning that the DC motors are identical and have
different applied voltages.

We assume first that the both non ideal sources are identical with the same source
of voltage apply, that the both non ideal sources have a source voltage, Fig. 9 shows
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Fig. 9 Self-synchronization of the non ideal sources with b01 = b02 = 1.624 and a01 = 3.209, a02 =
3.207

the (a) variation of the velocity, (b) velocity difference, (c) phase difference between
the two motors (d) and plate amplitude as a function of the time.

Observation of these curves let appears that curves that the two DC motors enter
into synchronization in the first case mentioned above with a phase difference of
�ϕ=2π. This synchronization appears with time because of the energy transfer
between the two rotors (Kapitaniak 2012). This synchronization phenomenon
appears with time because of the energy transfer between the two rotors (Kapita-
niak 2012). It is also found that the amplitude of vibration of the plate increases.
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Still in the first case, one notice that for some values of the frequencies, the phases
difference can be equal to π, 2π or equal to 0(see Fig. 10).

However, there is a domain where the phase difference is different to the previous
values (see Fig. 10). This domain is situated between the domains where the phase
differences are π and 2π or 0. In this domain we note high amplitude of vibration
in the plate [16]. On the base of these results, we can note that self-synchronization
of non ideal sources may lead to reduction of amplitude vibration of the plate when
they have a phase difference �ϕ=π.

Due to the fact that, the frequency of the structure ω is a parameter which
contributes to get synchronization with phase difference of π or 2π, the density
of the structure and its thickness are parameters that can be chosen to reduce the
amplitude of the plate. For instance, with two identical DC motors, a concrete plate
having the following characteristics:

. Dimensions: 800 mm × 600 mm × 4 mm;

. Density: 2500 kg/m3;

. Young modulus: 3.0× 1010 N.m−2;

. Poisson ratio: 0.20.
leads to a structure frequency of ω = 2.21 when the thickness is h = 4 mm,

meaning that we can get self-synchronization with�ϕ = 2π.and when the thickness
is h = 1.4 mmwe have ω = 0.77 leading to self-synchronization with �ϕ = π. With
a thickness of h = 2.4 mm, the phase difference is between] π, 2π [.

Fig. 10 Phase difference between the DC sources as function of frequency structure for identical
sources



Control of the Dynamics of Mechanical Structures … 331

Fig. 11 Amplitude of the plate for �ϕ= π (dash lines) ω = 0.78, �ϕ = 2π (solid lines) ω = 2.21

(b) Influences of voltage sources on amplitude vibration of the plate for different
motor

For identicalmotors (b01 = b02), we display in Fig. 11 the amplitude of vibration of the
plate when the voltage applied to one DC source varies and for the other one we fix as
a02 = 3.201. Observation of this curve shows that the transition to the resonance leads
to less amplitude of vibrationwhen the twoDC sources are synchronizedwith a phase
difference of 2π or 0 compared to the synchronization with phase difference of π. In
the region where we have ω = 0.78 and ω = 1.3 (synchronization with �ϕ = π and
self-synchronization with �ϕ ε] π, 2π [) Figs. 12 and 13 show a global view of the
plate amplitude in a 3D plot for identical DC motors (b01 = b02), while each applied
voltage is varied. The associated color bars showing different regions, indicating
values of the amplitude vibration of the plate as it increases from minimum (blue)
to maximum (brown) are clearly identified. The blue color denotes regions in space
parameters (a01, a02) where the amplitude vibration of the plate is less than amplitude
in the region where we have brown color. Through the diagonal (a01 = a02), we note
less amplitude of vibration in the plate whether in resonant regions or not.Figure 13
Amplitude of the plate as function of a01 and a02 for ω = 1.3 and identical motor.
a: Space representation in 3D; b projection in the plan

(iii) Influences of voltage sources on amplitude vibration of the plate for different
motor

When the two non ideal sources are different (b01 �= b02), we represent the amplitude
vibration of the plate when varying the voltage applied to one DC motor and setting
the other at a02 = 3.201. The curves in Fig. 14 are obtained with two values of
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Fig. 12 Amplitude of the plate as function of a01 and a02 forω = 0.78 and identical motor. a Space
representation in 3D; b projection in the plan

Fig. 13 Amplitude of the plate as function of a01 and a02 for ω = 1.3 and identical motor. a: Space
representation in 3D; b projection in the plan

structure frequency (ω = 0.78, ω = 2.5). We note that, the amplitude of vibration
in the structure is reduced for ω = 2.5 compare with the value ω = 0.78 at the
resonance.

Comparison between the both figures let appears that the amplitude of vibration
of the plate is more reduced when the frequency structure is increasing. Thus for
different DC motors, plate thickness and his density are parameters to be chosen
carefully so as to avoid high amplitude of vibration in the structure. It is also important
to know the physical characteristics of one motor which will self-synchronize (in
phase or in antiphase) with a different one whose characteristics are well known [16].
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Fig. 14 Plate amplitude as function of voltage apply to one DC motor a ω = 0.78 dashed curve
with stars and ω = 2.5 solid lines with points

4.3.2 Self-synchronization of Three DC Motors Mounted
on a Rectangular Plate

(a) Description of the studied system

Here, the studied system consists of a rectangular plate with simply supported edges,
onwhich threeDCmotorswith an unbalancedmass are fixed and are capable to rotate
in the same or in the opposite direction. The surface on which the motors are fixed is
taken into account by considering the area a1b1, a2b2 and a3b3. A schematic of the
set-up is shown in Fig. 15. The rotors have each the moment of inertia Ji carrying
an unbalanced mass mi at a distance r from their axis. The angular displacements of
the motors are denoted ϕi. The characteristic driving torque of the motor for each
given power level is assumed to be well known, either from the manufacturer or from
experiments [19].

On the base of the Hamilton principle, the obtained PDE describe the dynamics
of the system is similar to the one obtained in the case of two DC motors but the
number of PDE correspond to the number of DC motors mounted on the plate. The
main structure equation has additional external term equal to the number of the DC
sources mounted on the structure.

The rotating opposite direction of the DC sources is taken in account in the
characteristics equations by taken negative the voltage apply to the DC sources.
This characteristics curve of the energy source is assumed to be a straight line as in
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Fig. 15 Schematic of a rectangular plate supporting three DCmotors rotating in opposite direction

Warminski [19]. The boundary condition of the studied plate is a simply supported
one.

(b) Self-synchronization and amplitude vibration of the plate when the DCmotors
rotate in the same direction

In this subsection, we assume that the non-ideal sources have a same source voltage
and the same physical characteristics. It is quite important to note that the values
of the coupling terms are different because of different position occupied by the
motors on the structure. We denote self-synchronization between the DC sources
[23] by observing the behavior of the phase difference between the DC motors as
the structure frequency is varied. We note that for small frequency of vibration of
the structure the phase difference between motors 2 (DC2) and 3 (DC3) is equal to
0while the phase difference between motor 1 (DC1) and motor 2 (DC2) is π. When
the plate frequency is high there is a perfect synchronization between motor 2 and
motor 3 and anti phase synchronization between motor 1 and motor 2 or motor 3.

Through numerical simulation, we observe that by comparing the plate ampli-
tude for small and high value of the frequency, anti-phase synchronization is quite
recommended to get small amplitude of vibration of the plate.

Substituting DC motor 2 by another one, we note that for small frequency of the
plate, the phase differences φ2 − φ3 and φ1 − φ2 are equal to 4π/5 and represent the
half of φ1 − φ3, while for high frequency, all the DC motors synchronize in phase.
Looking and comparing the plate amplitude, one can note that these amplitudes are
small when one motor synchronizes in phase with the others even if one of them is
out of phase. It is also possible to substitute a DC motor with another one capable of
creating and in-phase synchronization.
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As we note that the natural frequency of the structure is a relevant parameter
which contributes to get synchronization with phase difference of π, 4π/5, 8π/5 or
2π we can conclude that the density of the structure and its thickness are parameters
that can be well chosen in order to more reduce the amplitude vibration of the plate.

(iii) Self-synchronization and amplitude vibration of the plate when the DC
motors rotate in different directions

This subsection is related to the situation presented in Fig. 15, however according to
the rotating direction ofDCmotor 2, the control parameter a2 will be count negatively.
Thus, when we considered identical motors (b01 = b02 = b03), we display in Fig. 16
the phase differences between the DC motors while the plate frequency is varied.

The corresponding plate amplitude show low amplitude of vibration for less value
of the frequency and high amplitude in the other case. This means that when two
of the three DC sources are synchronized in phase the amplitude of vibration is
inevitably high even if the structure frequency is high.

By displaying the corresponding plate amplitude, the obtained figures [23], it is
shown that for identical motors rotating in the same direction compare to the case of
different motors rotating in the opposite direction both obtained for a small value of
the structure frequency.

However, it is noted that for a high value of the structure frequency the amplitude
of vibration of the plate is identical when the motors are identical or not and rotating
in the same direction or in the opposite directions.

Fig. 16 Phase difference between DC motors as function of structure frequency, DC1-DC3 (black
points), DC2-DC3 (red stars), DC1-DC2 (green points)
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Fig. 17 Representation of velocity difference (a) and phase difference (b) between the two DC
motors as function of dimensionless time computed with α1 = α2 = 0.201 when the main frequency
of the structure is ω11 = 0.873

In the case where the three non-ideal sources are different (b01 �= b02 �= b03), we
denote small amplitude of vibration when one of the motors rotate in the opposite
direction.

4.3.3 Effect of Time Delay of DC Motors on Their Self-synchronization
When Mounted on a Rectangular Plate

It has been already proved before that two or three DC motors supported by a rect-
angular plate can easily enter in a self-synchronized dynamics with different phase
differences. However, up to now we do not yet pay enough attention about the effect
of the switching delay which could be imposed to one or two DCmotors when others
are already switch on [24].

The mathematical formalism of such system follows the same rules as presented
before thus, we obtained the following dynamical equations:

Ÿk,l(τ ) + 2δẎk,l(τ ) + ω2
k,lYk,l(τ ) = αi (τ − τi )

(
ϕ̇2
i sin ϕi − ϕ̈i cosϕi

) + βi (τ − τi )

ϕ̈i = σi,kl Ÿk,l(τ ) cosϕi + εi cosϕi + L̃ i (ϕ̇i )

where i = 1;2 or 3, τ i the functioning delay imposed to the DC motors, k and l
refer nodal lines along the x- and the y- directions, respectively.

(a) Case of two DC motors

Here we display a situation where two DCmotors are mounted on a rectangular plate
and one is switch on with a delay τ i when the second one is already working on the
plate. The study is restricted here to the first mode of vibration in each direction of the
plate because it has been proven that it is the place of high amplitude of vibration in
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the system. Based on numerical simulations done, It is observed that when the second
DC motor starts to function with a delay τ2, both DC motors quickly synchronize,
the faster for an increased delay. Hence, this leads us to conclude firstly that late
switching on of the second motor reduces the time to reach to a synchronous state
between DC motors.

However from Fig. 18, we observe that whatever the value of the starting delay
imposed to the second DC motor, it doesn’t have any effect on the plate amplitude
of vibration in the case of the high natural frequency of the plate. Nevertheless, we
denote the presence of high amplitude of plate vibration when the phase difference
ϕ2-ϕ1 = 2π compared to the situation of an anti-phase (ϕ2-ϕ1 = π obtained with
low value of the natural frequency) synchronization between the sources which is in
accordance with previous results [16].

(b) Case of three DC motors

The situation presented here consists of three motors resting and acting on a rectan-
gular plate. However, the starting delay imposed to the DCmotors can be introduced
in different ways. To show the impact of the starting delay of the DC motors on the
time required for synchronization, we focus our attention on the case where the DC
motors are synchronized (identical motor characteristics and same voltage supply).
Note that numerical solutions have been provided for the fundamental mode in each
direction of the plate and motors rotate in the same direction.

However, when the natural frequency of the plate is ω11 = 0.873(Fig. 19) the
starting time of the third motor affects the time required to achieve synchronization
of the three DC motors. Thus, from the start of the third DC motor, the three DC
motors are caused to synchronize more sooner. This can be explained by the fact that

Fig. 18 Representation of plate amplitude vibration for two values of the main frequency of the
plate ω11 = 2.73 (a) and ω11 = 0.873 (b) in view of their comparison
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Fig. 19 Representationof phase difference (a,b, c) between the threemotors andvelocity difference
between the DC1 and DC3 (d) for a main frequency of the structure of ω11 = 0.873. The first and
the second DC motors start at the same moment τ 1 = τ 2 = 0 while the third starts with a delay τ 3
= 100 (red);τ 3 = 200 (black); τ 3 = 300 (blue)

the third DC starts when the two others are already synchronized. Thus, we could
conclude that the natural frequency of the plate (by its physical and mechanical
characteristics) contributes efficiently to the rapid self-synchronization between the
DCmotors.Moreover, we can denote that energy transfer is quickly realized between
the sources for a high of the value natural frequency of the plate.

5 Conclusions

In this chapter, the dynamics and vibration control ofmechanical structures submitted
to the vibrations of rotating machines with limited power supply is treated. Such
systems are usually called non ideal systems because they are systems for which the
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external source is influenced by the response of main system. This kind of system is
regularly encountered in industry, civil and mechanical engineering.

The first section presents a large number of applications of rectangular plate,
following by history and some information about rotating machines especially the
DC motor. The vibration control problem is approached by the presentation of some
control techniques. Some examples/applications and details on the dynamics on
non-ideal systems are presented in the following section.

The mathematical formalism of the vibration control of the mechanical structure
is presented in two steps. The first one concerns the used of electric transducer
and a tuned mass damper as controller device and the second the synchronization
phenomenon with and without delay appearing between the external excitation. A
brief review of each techniques of control is well presented.

The recent results on the subject are divided in two parts, they concern the elec-
tromechanical control of the rectangular plate where we paid an attention on the
stability of the control systemand the self synchronization of theDCsourcesmounted
on the rectangular plate.

In the first case studied, aftermodeling of the proposed device, the implementation
of the control strategy leads to obtain the condition for which the control is effective,
the effect of some control parameters on the reduction of the amplitude are displayed
and the stability condition of all the system is established in order to enhance the
efficiency of the control strategy used.

In the second set of results, the dynamics of two and three DC sources with limited
power supply mounted on a rectangular plate is studied; the sources are capable to
rotate in the same or in the opposite direction. The main phenomenon observes is
the self-synchronization appearing between the DC sources with time. It is shown
that the structure frequency is a relevant factor allowing synchronization between
the sources with a phase difference of zero, π, 2π, 2π/5, 4π/5, 8π/5. The effects of
the control parameter (voltage apply to the DC sources), physical and mechanical
characteristics of the plate are displayed and the impact on the control strategy of the
direction of rotation of the sources is also shown. It is conclude that the rectangular
plate will less vibrate when the two sources are antiphase synchronizing, or when
one of the sources are rotate in the opposite direction than the two others. The phase
synchronization will be profitable only in the case of resonance.

This work leads to some prospective works which could be to get vibration control
device which do not need more energy for functioning and to evaluate eventually
damage on the structure when it is connected to the controlled device during his
functioning. In addition, it will be preferable to adapt the DC motors before or
during his functioning to themechanical structure in order to get early energy balance
between the both and to avoid early high amplitude of vibration of the system.We can
also study the stability of the system, while the DC motors are synchronized on the
mechanical structure and look for experimental verification of the synchronization
of DC motors fixed on a plate usually encountered in building site.
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