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Abstract This paper presents two control techniques for a non-ideal system with
chaotic behavior. To place and maintain the system in a periodic orbit, the techniques
of Time Delayed Feedback Control and Continuous-Delay Control with Satura-
tion are considered. The non-ideal system presented is composed of a mass-spring-
damper system, with cubic stiffness, and an external excitation from a power limited
DC electric motor driven by an unbalanced rotating mass that provides the non-ideal
excitation. To suppress the chaotic behavior, additional damping is considered for the
mechanical system, and the damping force is estimated by the proposed control strate-
gies. Dynamic analysis of the system is performed by various techniques, including
bifurcation diagrams, phase portraits, power spectral densities, and 0–1 test. Numer-
ical simulations demonstrate the effectiveness of the control strategies leading the
system to a stable periodical orbit.
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1 Introduction

The study of vibrating systems for the casewhere the external excitation is influenced
by the system response has attracted many researchers, because its problem is a
great challenge in both theoretical and practical engineering. When the excitation is
influenced by the system response or for which the power supply is limited it is a
non-ideal system [1]. Usually, these systems are consideredwhenmotors are coupled
to structures that need excitation power levels similar to the power capacity of these
motors [1–3].

In many cases, the non-ideal nonlinearities of the system can lead the system to
the jump effect (Sommerfeld effect) [1, 4, 5], or to chaotic behavior [6], as observed
in this work. These behaviors are undesirable in most cases, as they can cause data
to the system [7], being necessary to suppress them.

In this paper, control, and dynamic analysis of a nonideal system are applied and
investigated. The 0–1 test is used to investigate the chaotic behavior of the system.
To suppress the chaotic motion, the Time Delayed Feedback Control (TDFC) and
Continuous-Delay Control with Saturation (DCSC) are applied.

The TDFC is originally proposed by Pyragas [8], who considered a continuous
control input that stabilizes a chaotic oscillation under the difference between the
velocity current output and the previous velocity one [8–10], and successfully applied
in nonideal system [9].

TheDCSC is proposed in [11], to control a non-ideal systemwith chaotic behavior,
and successfully applied to nonideal systems [12, 13].

The 0–1 test is originally proposed by [14]. The method consider a time series
data, based on the statistical properties of a single variable, and analysing its spectral
and statistical properties by considering the asymptotic properties of a Brownian
motion [14–18].

2 Mathematical Model

The system presented in Fig. 1, represents a nonideal oscillator, and consists of a
structure ofmassm1 connected to a damper and to a nonlinear springwith a nonlinear
cubic stiffness. The proposed system is excited by a nonideal DCmotor characterized
by the moment of inertia JM and the unbalanced mass m0 with eccentricity r. The
physical schematics of the DC motor is shown in Fig. 1b. [6, 7, 9, 19, 20].

The equations of motion of the non-ideal system are given by [6, 9]

m1 ẍ + μẋ − k1x + k2x
3 = m0r

(
φ̇2 sin φ − φ̈ cosφ

)

(
J + mor

2
)
φ̈ = CM�I − m0r ẍ cosφ

İm = − Rt

Lt
Im − CE�

Lt
φ̇ + Um

Lt

(1)
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(a) (b)

Fig. 1 a Non-ideal oscillator and b the DC motor in the electrical schematics

where CM , CE are mechanical and electrical constants, respectively. The magnetic
flux is represented by� andω(t) is the angular velocity of the rotor. It is assumed that
the external exciting current Im and voltage Um are constants and then the magnetic
flux � is constant.

The dimensionless mathematical model represented in state-space notation, for
the system (1) can be expressed by the following system of equations [9]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = A

(
w1

(
x24 sin x3 − p3x5 cos x3

) − βx2 + x1 − δx31
)

ẋ3 = x4
ẋ4 = A

(
p3x5 − w2w1x24 sin x3 cos x3 + w2βw cos x3 − w2 cos x3

(
x1 − δx31

))

ẋ5 = −p1x5 − p2x4 + ν

(2)

where x1 = x , x2 = ẋ1, x3 = ϕ, x4 = ϕ̇ and x5 = I , and the dimensionless
parameters are denoted by

ω2
0 = k1

m1+m0
, β = μ

m1ω0
, δ = k2

k1
x20 , w1 = m0r

m1x0
, w2 = m0r x0

(J+m0r2)
, p1 = Rt

Lt I0ω0
,ν =

Um
Lt I0ω0

, p2 = CE�
Lt I0

, p3 = CM�I0
(J+m0r2)ω2

0
and A = 1

1−w1w2(cos x3)2
.

3 Numerical Results

For numerical simulation is considered the parameters: δ = 0.1,w1 = 0.2,w2 = 0.3,
p1 = 0.3, p2 = 3, p3 = 0.15, β = 0.0337, ω0 = 46.4 and 2 ≤ ν ≤ 7, along with
the initial conditions:xi (0) = 0, where i = 1:5 [9]. Where the integration step is
considered by h = 0.001.
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Fig. 2 a Bifurcation diagram. b 0–1 test

In Fig. 2 one can observe the Bifurcation diagram and 0–1 test, for the system (2)
considering:2 ≤ ν ≤ 7.

As can be seen in Fig. 2a for certain values of (v) the system (2) has periodic or
chaotic behavior. Considering the results of the 0–1 test presented in Fig. 2b, one
can observe that the system is chaotic for values of (κ) close to 1 and periodic for
values of (κ) close to zero [21, 22].

In Fig. 2 one can observe the chaotic behavior of the system (2) for ν = 5.4
(κ = 1).

As can be seen in Fig. 2 the system (2) without control has a chaotic behavior.

4 Chaos Control

To eliminate the chaotic behavior presented by the system, the proposed control
techniques are introduced as a control signal U, given by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = A

(
w1

(
x24 sin x3 − p3x5 cos x3

) − βx2 + x1 − δx31
) +U

ẋ3 = x4
ẋ4 = A

(
p3x5 − w2w1x24 sin x3 cos x3 + w2βw cos x3 − w2 cos x3

(
x1 − δx31

))

ẋ5 = −p1x5 − p2x4 + ν

(3)

4.1 Chaos Control by Time Delayed Feedback Control

The TDF control, was originally suggested by the author of [8], being obtained by
the difference between the past and current velocity for a given sampling time [8,
9]. Thus, assuming that the oscillation speed (x2) can be measured, the TDF control
signal UT DFc is given as:
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UT DFc = kT DFc[x2(τ − T ) − x2(τ )] (4)

where T is the time delay and kT DFc the feedback gain.
Figure 4 shows the 0–1 test for different feedback gain intervals of the 0 ≤

kT DFc ≤ 10, with fixed T = 1.133.
As can be seen in Fig. 4 for gains of (kT DFc ≥ 0.1), the control (4) takes the

system (3) to a periodic behavior, considering that (U = UTDFc).
In Fig. 5 we can observe the system (3) with TDF control (U = UTDFc) and

parameters: kT DFc = 0.3 and T = 1.133.
As can be seen in Fig. 5 the TDF controlled the system to a chaotic behavior for

a periodic with a small control signal (Fig. 3d).

(a)                                                                 (b) 

(c)                                                         (d) 

Fig. 3 a Time history of the states x1. b Time history of the states x2. c Phase diagram to x1 versus
x2. d Power spectral density (FFT) to x2
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Fig. 4 0–1 test for0 ≤ kT DFc ≤ 10 and T = 1.133

       (a)                                                                         (b) 

(c)                                                                         (d)

Fig. 5 a Time history of the states x1. b Time history of the states x2. c Phase diagram to x1 versus
x2. d Signal control UT DFc
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Fig. 6 0–1 test
for0.5 ≤ α ≤ 10 and β = 1

4.2 Suppression of Chaotic Behaviour by Continuous-Delay
Control with Saturation

The Continuous-Delay Control with Saturation (CDCS), was proposed by [11] to
control a non-ideal system with chaotic behavior, and successfully used in other
nonideal mechanical systems [12, 13].

The Continuous-Delay Control with Saturation signal (UCDCS) is given as
[12, 13]:

UCDCS = αtanh(βx2) (5)

where α and β are positive constant.
Figure 6 shows the 0–1 test for system (3) with (U = −UCDCS) and different f

gain intervals of the 0.5 ≤ α ≤ 10, with fixed β = 1.
As can be seen in Fig. 4 for gains of (0.5 ≤ α ≤ 8.2), the control (5) takes the

system (3) to a periodic behavior, considering that (U = −UCDCS).
In Fig. 7 we can observe the system (3) with continuous-delay control with

saturation (U = −UCDCS) and parameters: α = 0.5 and β = 1.
As can be seen in Fig. 7 the CDCS control drove the system to a chaotic behavior

for a periodic with a small control signal (Fig. 7d).

5 Conclusions

To control the chaos of the non-ideal systempresented in Eq. (2), TimeDelayed Feed-
back Control and the Continuous-Delay Control with Saturation are considered to be
projected and applied. The efficiency of two techniques was demonstrated through
numerical simulations in order to eliminate the chaotic behavior of the system, and
it was efficient to maintain the amplitude of the non-ideal systems in the periodic
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(a)                                                                         (b)

(c)                                                                         (d) 

Fig. 7 a Time history of the states x1. b Time history of the states x2. c Phase diagram to x1 versus
x2. d Signal control UCDCS

orbit. As can be seen in Figs. 5c and 7c, both controls took the system to the same
orbit with practically the same control signal, as can be seen in Figs. 5d and 7d.

Appendix

A.1. The 0–1 Test Method

The 0–1 test consists of estimating a single parameter κ by [17]:

κ = cov(Y, M(c))√
var(Y )var(M(c))

(A1)

where: c ∈ (0, π), M(c) = [M(1, c), M(2, c), . . . , M(nmaxc)] and Y =
[1, 2, . . . , nmax ].

If κ is close to 0 the system is periodic. On the other hand, if κ is close to 1 the
system is chaotic. The test utilizes a system variable x( j), where two new coordinates
(p,q) are defined as follows [18]:
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p(n, c) =
n∑

j=0

x( j) cos( jc) (A2)

q(n, c) =
n∑

j=0

x( j) sin( jc) (A3)

The mean square displacement of the new variables p(n, c) and q(n, c) is given
by [18]:

M(n, c) = lim
n→∞

1

N

N∑

j=1

[
(p( j + n, c) − p( j, c))2 . . . + (q( j + n, c) − q( j, c))2

]

(A4)

where n = 1, 2, . . . , N .
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