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Abstract This work proposes the attenuation of the Sommerfeld effect (jump
phenomenon) present in a non-ideal oscillator thought the use of different nonlinear
controllers. The non-ideal system is composed of a beam-like mechanical struc-
ture excited by a limited power supply, in this case an unbalanced direct current
motor. Two different control techniques are considered. The first controller has its
feedback gain obtained through the SDRE (State-Dependent Riccati Equation) tech-
nique in conjunction with a feedforward gain. The second controller is based in the
SMC (Sliding Mode Control) technique. Numerical simulations show that the two
proposed control strategies are effective in suppressing the jump phenomenon, and
thus keeping the structure vibration of the studied system at desirable levels.
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1 Introduction

The Sommerfeld effect is a resonance phenomenon that arises from the interaction
between a non-ideal energy source with the mechanical structure. The energy source
influences the mechanical structure, which in turn influences and exchanges energy
with the source, in a two-way effect. The nomenclature of non-ideal energy source
comes from the fact that the power supply provides limited energy to the system,
thus being a characteristic of all real energy sources [1–6].

The first researcher who studied this phenomenon was Arnould Sommerfeld in
1902 [7]. Through a simple experiment, which consisted of an unbalanced DC elec-
tric motor fixed on a table, Sommerfeld realized that as the motor rotational speed
approached the critical speed of the mechanical structure, the increase in voltage
no longer corresponded to the increase in motor speed, but the vibration amplitudes
continued to increase. This behavior was not expected, as direct current motors have
their angular speed directly proportional to the armature voltage. Moreover, this
behavior quickly changes when the system reaches a critical point, where the vibra-
tion amplitudes suddenly drop to low levels and the motor speed increases return to
the values corresponding to the applied voltage, thus generating a jump phenomenon
in the vibration amplitude graphs in relation to themotor angular velocity [2, 4, 8–10]

Some works have proposed methodologies to suppress the jump effect, because
this effect if is unwanted as it represents a loss of system energy, aswell as resulting in
an amplification of the mechanical vibrations. Reference [11] proposed to include a
friction element in a non-ideal structural system to eliminate the Sommerfeld effect.
In [4] is considered a semi-active control using a magnetorheological damper for
reducing the resonance vibrations of a non-ideal structure in an active way. Refer-
ence [12] considered a shape-memory alloy to attenuate the vibration and Sommer-
feld effect of a non-ideal type oscillator. In [13] is considered a snap-through truss
absorber for attenuation of the jump phenomenon in an oscillator under excitation
of an electric motor with an eccentricity and limited power.

In this work is proposed the use of an active control in order to attenuate the
Sommerfeld effect and the vibration amplitudes of a non-ideal mechanical oscillator.
TheNIS studied is composed of a beamand an unbalanced electricmotorwith limited
power supply. For the active control of the system are considered two techniques.
The first being a controller that uses a portion of feedback gain and another portion
of feedforward gain and the second controller is based in the sliding mode control
technique.

2 Mathematical Model

Figure 1a shows the mechanical part of the non-ideal system. In this figure,m1 is the
mass of the cart with the motor, m2 is the motor unbalance mass, r is the length of
the unbalance axis and ϕ is the position angle of the motor shaft. k and c represent
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a) b)

Fig. 1 aNon-idealmechanical system (NIS). b electrical schematic representation of theDCmotor

the stiffness and damping of the mechanical structure, respectively. Motor unbalance
will cause vibration, with displacement x [4, 9, 14, 15].

The mathematical model that represents the dynamics of the system shown in
Fig. 1 is developed using Lagrange’s energy method, where the Lagrange’s function
is expressed as:

L = Ek − Ep (1)

whereEk is the kinetic energy, andEp is the potential energy. The equations ofmotion
can be obtained through the Euler–Lagrange equation, given by:

d

dt

(
∂L

∂ Q̇i

)
− ∂L

∂Qi
= Ii (2)

where i = 1, 2,..., N. N is the number of degrees-of-freedom, Ii ’s are the non-
conservatives forces, Qi’s are the generalized coordinates, being that Q1 = x , and
Q2 = ϕ.

The kinetic energy is given by:

Ek = 1

2
m1 ẋ

2 + 1

2
J ϕ̇2 + 1

2
m2

(
(ẋ − ϕ̇r sin(ϕ))2 + (ϕ̇r cos(ϕ))2

)
(3)

where: J is the moment of inertia, ϕ̇ is the rotational speed, m2 is the unbalanced
mass.

The potential energy is given by:

Ep = 1

2
kx2 (4)

The non-conservatives forces are given by:

I1 = −cẋ (5)
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Substituting Eqs. (3), (4) into Eq. (1), and substituting the result accounting for
Eq. (5) into Eq. (2), we obtain:

Mẍ + cẋ + kx = mr(ϕ̇2 sin(ϕ) + ϕ̈ cos(ϕ))

(J + mr2)ϕ̈ = mrx cos(ϕ̈) + Te (6)

where: M = m1 + m2

The electrical part, shown in Fig. 1b, refers to the circuit of a direct current motor.
In this circuit, Va is the applied armature voltage, I is the armature current. Ra and
La are the resistance and inductance of the armature, respectively. EA is the counter-
electromotive force (CEMF) and in the case of constant flux can be directly related
to the rotational speed of the motor as Ea = keϕ̇, where ke is the electrical constant.
Using the Kirchhoff’s circuit laws will have:

Va = Ra I + La İ + Ea (7)

This is the voltage equation for the armature circuit of a DC motor. To obtain the
motor torque equation, it is necessary to analyze its mechanical structure, where the
torque experienced by the motor windings Te can be directly related to the armature
current as Te = kt I , where kt is the torque constant. The equation of motion for a
DC motor is given by:

Te = J ϕ̈ + bϕ̇ + Tl (8)

where: J is the inertia, b is the coefficient of viscous friction and Tl is the load torque.
In this paper Tl will be neglected.

Coupling the elements of inertia, as well as relating the displacement of the
mechanical structure to the angular displacement of the motor, it is possible to obtain
the following set of equations, this being the set of dynamic nonlinear equations for
the non-ideal system shown in Fig. 1.

Mẍ + cẋ + kx = mr(ϕ̇2 sin(ϕ) + ϕ̈ cos(ϕ))

(J + mr2)ϕ̈ = mrx cos(ϕ̈) + kt I

La İ = Ra I − ke I + Va (9)

Equation (9) can be written in state-space notation as follows:

ẋ1 = x2

ẋ2 = �
(
α1x5 cos(x3) − α2x

2
4 sin(x3) − α3x2 − α4x1

)
ẋ3 = x4

ẋ4 = �
(−β1x

2
4 sin(x3) cos(x3) − β2x2 cos(x3) − b3x1 cos(x3) + β4x5

)
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ẋ5 = −c1x5 − c2x4 + c3 (10)

where: x1 = x , x2 = ẋ , x3 = ϕ, x4 = ϕ̇, x5 = I , α1 = ktmr , α2 = m2r3 + Jmr ,
α3 = cmr2 + cJ , α4 = kmr2 + k J , α5 = Mmr2 + JM , β1 = m2r2, β2 = cmr ,
β3 = kmr , β4 = Mkt , c1 = Ra

La
, c2 = ke

La
, c3 = V

La
and � = 1

−β1 cos(x3)2+α5
.

3 Numerical Simulations

The numerical simulations are carried out accounting for the following parameters:
m1 = 0.13, m2 = 0.005, k = 399, c = 0.077, t = 0.015, Ra = 51, J = 9 × 10−7,
J = 2.82 × 10−6, La = 0.004, kt = 0.0663 and km = 0.0663.

Figure 2 shows the results for the jump phenomenon according to the motor shaft
angular frequency and the voltage applied to the armature.

Considering the process of increasing the electrical voltage (V ), the jump
phenomenon occurs when the motor reaches 56 rad/s and 8.5 V. After this point,
if the voltage increase is maintained, the system returns to the linear and normal
operation expected. Due to the effect of the coupling between the motor and the

           a)                                                                           b) 

c)

Fig. 2 Jump phenomenon. a Frequency response diagram. b Jump phenomenon due to the applied
voltage in the DC motor. c Angular frequency response by voltage
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          a)                                                                              b) 

Fig. 3 Dynamics of the systems considering x1. a Time history. b Phase plane for x1 versus x2

mechanical structure, the system has its operation weakened and it is realized that
between 3.5 and 8.5 V all the increase of voltage in the motor serves almost solely to
increase the amplitudes of vibration and not the rotation of the motor. This disrup-
tion of the direct relationship between electrical voltage and motor rotation can be
clearly seen in Fig. 2c. The effect of converting electrical energy into mechanical
vibration can also be observed during the process of decreasing the electrical voltage.
However, as this is a non-linear system and that it depends on its initial conditions,
the Sommerfeld effect of the voltage decrease process occurs at a different point
than that of the increasing voltage process, in this case occurring when the motor
reaches 55.5 rad/s and 5.3 V. This conversion of electrical energy into mechanical
vibration energy is one of the biggest problems of this type of system, being respon-
sible for reducing the efficiency of the electric motor, as well as reducing the angular
frequencies available for the project.

In Fig. 3 it is possible to observe the behavior of the system (11), considering a
voltage of 3 V applied to the DC motor.

As can be seen in Fig. 3, when the motor is powered with 3 V, the vibrations of the
structure are low, showing a periodic behavior with a unit period after the transient
period.

Considering the behavior of x1 shown in Fig. 3, the following displacement
equation for x1 can be determined:

x̃1 = 0.001113 sin(44.88t)

x̃2 = 0.05 cos(44.88t) (11)
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3.1 Nonlinear Control Project

Considering that the objective is to eliminate the Somerfield effect observed in x1,
the following control signal (U) can be introduced in Eq. (10) [9, 14, 16, 17]:

ẋ1 = x2

ẋ2 = �
(
α1x5 cos(x3) − α2x

2
4 sin(x3) − α3x2 − α4x1

) +U

ẋ3 = x4

ẋ4 = �
(−β1x

2
4 sin(x3) cos(x3) − β2x2 cos(x3) − b3x1 cos(x3) + β4x5

)
ẋ5 = −c1x5 − c2x4 + c3 (12)

Since the objective of the control signal (U) is to control the displacement of x1,
the control design can be obtained by considering only the first two equations of (12).
In addition, the states x3, x4 and x5 will be considered disturbances in the system [9].

ẋ1 = x2

ẋ2 = �
(
α1x5 cos(x3) − α2x

2
4 sin(x3) − α3x2 − α4x1

) +U (13)

3.2 Proposed SDRE Control

The vector control U for the Optimal Linear feedback control consists of two parts:
U = ũ+u, where u is the optimal feedback control and ũ is the feedforward control
gain, the last one responsible for maintaining the system in the desired trajectory.
The feedforward gain is given by:

ũ = −�
(
α1x5 cos(x3) − α2x

2
4 sin(x3) − α3 x̃2 − α4 x̃1

)
(14)

Substituting Eq. (14) into Eq. (13), and defining the deviation of the desired
trajectory as:

e =
[
x1 − x̃1
x2 − x̃2

]
(15)

where x̃1 and x̃2 are the trajectories desired. The system can be represented in the
following form:

ė1 = e2
ė2 = −�α3e2 − �α4e1 + u (16)
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Or in matrix form as:

Pe = Ae + Bu (17)

The control u is optimal and it transfers the nonlinear system of Eq. (16) from
any initial state to the final state e(∞) = 0.

Minimizing the cost functional to:

J =
∫ ∞

0

(
eTQe + uTRu

)
dt (18)

the control u can be found solving the following equation:

u = −R−1BTPe (19)

BeingP a symmetricmatrix, theAlgebraic Riccati Equation is developed, denoted
by:

PA + ATP − PBR−1BTP + Q = 0 (20)

The matrices A and B may be represented by:

A =
[

0 1
−�α4 −�α3

]
, B =

[
0
1

]
and by definition: Q = 104

[
103 0
0 1

]
and

R = 10−4.
In Figs. 4, it is observed the jump phenomenon suppression using the proposed

control U = ũ + u, considering x̃1 and x̃2 obtained in the Eq. (11).
As can be seen in the results presented in Fig. 4, using the proposed control

(U = ũ + u), it is possible to eliminate the jump effect, keeping the displacements
in the desired amplitude and frequency.

3.3 Proposed Sliding Mode Control

For the sliding mode control, the sliding surface is generally given by [18, 19]:

s = e2 + λe1 (21)

The existence of the slidingmode requires the following conditions to be satisfied:

s = e2 + λe1
ṡ = ė2 + λe1 (22)
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           a)                                                                           b) 

c)

Fig. 4 Jump phenomenon suppression by SDRE control. a Frequency response diagram. b Jump
phenomenon due to the applied voltage in the DC motor. c Angular frequency response by voltage

where λ represents a real number.
Equation (21) defines the output of the sliding mode control, while the reaching

law is given by [18, 19]:

U =

⎧⎪⎨
⎪⎩

Umax i f s
μ

< −1

−Umax i f s
μ

> 1

Ksmcs i f − 1 < s
μ

< 1

(23)

where μ is the layer thickness of the control, Ksmc is a proportional gain, and Umax

is related to the saturation value. The parameters μ and Ksmc are positive constants
[18, 19].

In Figs. 5, it is observed the jump phenomenon suppression using the Proposed
sliding mode control for parameters: μ = 10−3, Ksmc = 103 and Umax = 100.

It can be seen in Fig. 5 that the proposed control using the sliding mode control
was also efficient in suppressing the jump effect, keeping the displacements in the
desired amplitude and frequency.
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           a)                                                                           b) 

c)

Fig. 5 Jump phenomenon suppression by Sliding Mode control. a Frequency response diagram. b
Jump phenomenon due to the applied voltage in the DC motor. c Angular frequency response by
voltage

4 Conclusions

This work presented two control techniques for suppression of the Sommerfeld effect
of a non-ideal system, i.e., a system where the excitation source is influenced by
its own performance, losing energy in the process that serves only to amplify the
vibration amplitudes.

The numerical results showed that both the SDRE and SMC controls are efficient
in suppressing the jump effect, keeping the vibration amplitudes at desired levels as
well as the motor voltage.

References

1. Kononenko, V.O.: Vibrating System of Limited Power Supply. Illife Books, London (1969)
2. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley-Interscience, New York (1979)
3. Krasnopolskaya, T.S.: Chaos in acoustic subspace raised by the Sommerfeld-Kononenko effect.

Meccanica 41, 299–310 (2006)
4. Piccirillo, V., Tusset, A.M., Balthazar, J.M.: Dynamical jump attenuation in a non-ideal system

through magneto rheological damper. J. Theor. Appl. Mech. 53, 595–604 (2014)



Nonlinear Control Applied in Jump Attenuation … 251

5. Gonçalves, P.J.P., Silveira, M., Petronio, E.A., Pontes, B.R., Balthazar, J.M.: Double resonance
capture of a two-degree-of-freedom oscillator coupled to a non-ideal motor. Meccanica 51,
2203–2214 (2016)

6. Balthazar J. M., Tusset A. M., Brasil R. M. L. R. F., Felix J. L. P., Rocha R. T., Janzen,
F. C., Nabarrete, A., Oliveira C.: An overview on the appearance of the Sommerfeld effect
and saturation phenomenon in non-ideal vibrating systems (NIS) in macro and MEMS scales.
Nonlinear Dyn. 93, 19–40 (2018)

7. Sommerfeld, A.: Beiträge zum dynamischen ausbau der festigkeitslehe. Phys. Z. 3, 266–286
(1902)

8. Tusset, A.M., Balthazar, J.M.: On the chaotic suppression of both ideal and non-ideal duffing
based vibrating systems, using a magnetorheological damper. Differ. Equ. Dyn. Syst. 21, 105–
121 (2013)

9. Tusset A.M., Piccirillo V., Balthazar J.M., Brasil M.R.L.F.: On suppression of chaotic motions
of a portal frame structure under non-ideal loading using a magneto-rheological damper. J.
Theoret. Appl. Mech., 653–664 (2015)

10. Awrejcewicz, J., Starosta, R., Sypniewska-Kaminska, G.: Decomposition of governing equa-
tions in the analysis of resonant response of a nonlinear and non-ideal vibrating. Nonlinear
Dyn. 82, 299–309 (2015)

11. Felix, J.L.P., Balthazar, J.M., Brasil, R.M.L.R.F., Pontes, B.R.: On lugre friction model to
mitigate Nonideal vibrations. ASME. J. Comput. Nonlinear Dynam. 4, 034503 (2009)

12. Kossoski, A., Tusset, A.M., Janzen, F.C., Rocha, R.T., Balthazar, J.M., Brasil, R.M.L.R.F.,
Nabarrete, A.: Jump attenuation in a non-ideal system using shape memory element. Matec
Web Conf. 148, 03003–03003–4 (2018)

13. De Godoy, W.R., Balthazar, J.M., Pontes, B.R., Felix, J.L., Tusset, A.M.: A note on non-linear
phenomena in a non-ideal oscillator, with a snap-through truss absorber, including parameter
uncertainties. Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn. 227, 76–86 (2013)

14. Tusset, A.M., Balthazar, J.M., Rocha, R.T., Ribeiro, M.A., Lenz, W.B., Janzen, F.C.: Time-
Delayed Feedback Control Applied in a Nonideal System with Chaotic Behavior. Nonlinear
Dynamics and Control. 1ed.: Springer International Publishing, Vol. 1, pp. 237–244 (2020)

15. Kossoski, A., Tusset, A.M., Janzen, F.C., Ribeiro, M.A., Balthazar, J.M.: Attenuation of the
Vibration in a Non-ideal Excited Flexible Electromechanical System Using a Shape Memory
Alloy Actuator. Mechanisms and Machine Science. 1ed.: Springer International Publishing,
Vol. 95, pp. 431–444 (2021)

16. Tusset, A.M., Balthazar, J.M., Chavarette, F.R., Felix, J.L.P.: On energy transfer phenomena,
in a nonlinear ideal and nonideal essential vibrating systems, coupled to a (MR) magneto-
rheological damper. Nonlinear Dyn. 69, 1859–1880 (2012)

17. Tusset, A.M., Balthazar, J.M., Felix, J.L.P.: On elimination of chaotic behavior in a non-ideal
portal frame structural system, using both passive and active controls. J. Vib. Control 19,
803–813 (2013)

18. Bassinello, D.G., Tusset, A.M., Rocha, R.T., Balthazar, J.M.: Dynamical analysis and control
of a chaotic microelectromechanical resonator model. Shock. Vib. 50, 1–10 (2018)

19. Piccirillo, V., Goes, L.C.S., Balthazar, J.M., Tusset, A.M.: Deflection control of an aeroelastic
system utilizing an antagonistic shape memory alloy actuator. Meccanica 53, 727–745 (2017)


	 Nonlinear Control Applied in Jump Attenuation of a Non-ideal System
	1 Introduction
	2 Mathematical Model
	3 Numerical Simulations
	3.1 Nonlinear Control Project
	3.2 Proposed SDRE Control
	3.3 Proposed Sliding Mode Control

	4 Conclusions
	References


