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Abstract This chapter investigates the problem of an unbalanced motor attached
to a fixed frame by means of a nonlinear spring and a linear damper. The proposed
mathematical model is simple enough to allow for an analytical treatment of the
equations, while sufficiently complex to preserve the main nonlinear phenomena
that can be observed in real unbalanced rotating machinery. The primary focus is on
the bidirectional interaction that in general exists between the excitation provided
by the motor and the response of the vibrating structure. By combining various
mathematical tools (Averaging, Singular Perturbation Theory, classification of Hopf
bifurcations, Poincaré-Bendixson Theorem), the long-term behaviour of the system
is investigated in detail. The analytical results are verified numerically. It should be
noted that the study presented in this Chapter was originally published in [1, 2].

Keywords Nonideal excitation · Stability · Bifurcation analysis · Limit cycles ·
Unbalanced motors

1 Introduction

The motion of unbalanced rotors constitutes one of the most common vibration
sources in mechanical engineering [3, 4]. Vibrations due to unbalance may occur in
any kind of rotating systems, such as turbines, flywheels, blowers or fans [5]. Actu-
ally, in practice, rotors can never be completely balanced because of manufacturing
errors such as porosity in casting, non-uniform density of thematerial, manufacturing
tolerances, etc. [6]. Even a subsequent balancing process will never be perfect due
to the tolerances of the balancing machines.

Usually, rotor unbalance has a harmful effect on rotating machinery, since vibra-
tion may damage critical parts of the machine, such as bearings, seals, gears and
couplings [6]. However, there are applications where unbalanced rotors are used to
generate a desired vibration. Someexamples are the feeding, conveying and screening
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Fig. 1 Simple 2-DOF model
of a structure excited by an
unbalanced motor

of bulk materials, or the vibrocompaction of quartz agglomerates, which makes use
of unbalanced motors to compact a quartz-resin mixture. Actually, our interest in
this vibrocompaction process has been the motivation for the presented study.

A simple model to analyse the dynamic response of a structure to the excitation
produced by an unbalanced motor is sketched in Fig. 1. The simplest approach to this
problem consists in assuming the rotor speed to be either constant or a prescribed
function of time. In the constant speed case, the centrifugal force on the unbalance
produces a harmonic excitation on the vibrating system, whose amplitude growswith
the square of the rotating speed andwhose frequency coincideswith the rotating speed
[5, 7].

Note that, with this approach, it is implicitly being assumed that the rotational
motion of the motor is independent of the vibration of the structure. This property
is what defines an ideal excitation: it remains unaffected by the vibrating system
response. Thus, the amplitude and frequency of an ideal excitation are known a priori,
before solving the vibration problem. Obviously, this notion of ideality is applicable
to any kind of excitation, and not only to the one produced by an unbalanced motor.

The ideality assumption is valid, with good approximation, in many real prob-
lems. However, there are situations where it is not. In 1904, Sommerfeld [8], whose
pioneering work inspired many subsequent investigations, found experimentally
kinds of behaviour that could not be explained upon the ideality hypothesis. He
mounted an unbalanced electric motor on an elastically supported table and moni-
tored the input power as well as the frequency and amplitude of the response [9]. The
experiment consisted in increasing continuously the power input in order to make the
rotor speed pass through the resonance frequency of the table, and then conduct the
inverse process by decreasing the input power. The results obtained by Sommerfeld
are qualitatively depicted in Fig. 2. When the rotor speed was close to resonance, an
increment of the input power produced only a very slight increase of the rotor speed,
while the oscillation amplitude increased considerably. This means that, in this part
of the experiment, the increasing input power was not making the motor rotate faster,
but was giving rise to larger oscillations. With further increasing of the input power,
the rotor speed jumped abruptly to a frequency above resonance and, at the same
time, the vibration amplitude jumped to a much smaller quantity than measured in
the resonance region. When the process was reversed, by decreasing the motor input
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Fig. 2 Sommerfeld effect

power, a jump phenomenon in the resonance region was also observed (see Fig. 2).
However, this jump was found to be different from the one occurring for increasing
rotor speed. This anomalous behaviour is usually referred to as ‘The Sommerfeld
Effect’.

In 1969 [10], Kononenko published a book entirely devoted to the study of
nonideal excitations. He considered different configurations of vibrating systems
excited by nonideal motors and applied the Averaging Method to the equations
of motion. By taking into account the two-way interaction between the motor and
the vibrating structure, he was able to explain the nonlinear phenomena found by
Sommerfeld. According to Kononenko, the Sommerfeld effect is produced by the
torque on the rotor due to vibration of the unbalanced mass.

Rand et al. [11] reported the detrimental effect of a nonideal energy source in dual
spin spacecrafts, which could endanger a particular manoeuvre of the spacecraft once
placed in orbit.

Although most studies use averaging procedures to obtain approximate solutions
to the equations of motion, Blekhman [12] proposed an alternative approach, based
on the method of ‘Direct Separation of Motions’.

Several authors, like El-Badawi [13] and Bolla et al. [14], analysed models where
the vibrating system included an intrinsic cubic nonlinearity, in addition to the
nonlinearity associated to the nonideal coupling between exciter and structure.

Balthazar et al. [15] published an extensive exposition of the state of the art
concerning nonideal excitations.
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The contents of this chapter are organized as follows. The analytical developments
needed to understand the long-term behaviour of the system are presented in Sect. 2.
Section 3 contains the results of a number of significant simulations with a twofold
purpose: investigate some bifurcations of limit cycles that are too complex for an
analytical treatment and serve as a numerical validation of the analytical procedures
of Sect. 2. Finally, Sect. 4 presents the major conclusions of the study.

2 Analytical Approach

In this section, several analytical techniques are used to investigate the dynamics of
a 2-DOF system consisting in an unbalanced motor attached to the fixed frame by a
nonlinear spring and a linear damper.

2.1 Problem Statement and Assumptions

Consider the system depicted in Fig. 3. It consists in an unbalanced motor attached to
a fixed frame by a nonlinear spring –whose force has linear and cubic components–
and a linear damper. The cubic component of the spring gives the possibility tomodel
a nonlinear behaviour for the structure supporting themotor [16]. The effect of gravity
can be shown to have no relevance [17] and, therefore, it will not be included in the
model.

Variable x stands for the linear motion, φ is the angle of the rotor, m1 is the
unbalanced mass with eccentricity r , m0 is the rest of the vibrating mass, I0 is the
rotor inertia (without including the unbalance), b is the viscous damping coefficient
and k and λ are, respectively, the linear and cubic coefficients of the spring. The
equations of motion for the coupled 2-DOF system are [13]

Fig. 3 Model



On the Stability and Long-Term Behaviour of Structural Systems Excited … 195

mẍ + bẋ + kx + λx3 = m1r
(
φ̇2 cosφ + φ̈ sin φ

)

I φ̈ = Lm
(
φ̇
)+ m1r ẍ sin φ,

(1)

where m = m0 + m1, I = I0 + m1r2 and an overdot represents differentiation with
respect to time, t .

Function Lm
(
φ̇
)
is the driving torque produced by the motor –given by its torque-

speed curve, also known as static characteristic– minus the losses torque due to
friction at the bearings, windage, etc.We assume this net torque to be a linear function
of the rotor speed:

Lm
(
φ̇
) = A + Dφ̇. (2)

Although Lm
(
φ̇
)
includes the damping of rotational motion, we will usually refer

to it shortly as ‘the motor characteristic’.
As will be seen later, it is convenient for the purpose of this chapter to write

the driving torque in an alternative way. Then, denoting by ωn the linear natural
frequency of the oscillator, given by ωn = √

k/m, the motor torque can be written
as

Lm
(
φ̇
) = C + D

(
φ̇ − ωn

)
, (3)

where C represents the driving torque at resonance (Lm(ωn) = C). From Eqs. (2)
and (3), the relation between constants A and C can be directly deduced:

C = A + Dωn. (4)

Along the whole chapter, the motor characteristic will be written as (3) or (4),
depending on the situation. It should be kept in mind that these two expressions are
totally equivalent. The important point is that the driving torque is assumed to follow
a linear relation with the rotor speed. It is further assumed that D < 0 –the driving
torque decreases with the rotor speed–, as is usual for most kinds of motor. This
assumption will prove to be of major importance.

As an example, the static characteristic of an induction motor is depicted in Fig. 4.
Note that such a motor is usually designed to work on the region φ̇ > ωpeak , where
the curve could be reasonably approximated by a straight line with negative slope.
The simplified motor characteristic given at (3) is represented in Fig. 5.

In the second of Eq. (1), which imposes the equilibrium of the rotor, the last
term is of great significance, since it accounts for the torque on the rotor caused
by linear motion of the system. Its physical interpretation can be readily understood
with the aid of Fig. 6. Due to displacement x(t), a horizontal inertial force acts on the
unbalanced mass and generates a torque with respect to the rotor axis. This particular
term of the equations of motion is what makes the excitation nonideal, for it takes
into account how vibration influences rotation. If this torque due to vibration did



196 J. González-Carbajal et al.

Fig. 4 Typical static
characteristic for an
asynchronous motor

Fig. 5 Static characteristic
corresponding to Eq. (3)

Fig. 6 Torque on the rotor
due to vibration

not exist –or if it was negligible–, the rotor equilibrium equation would reduce to
I φ̈ = Lm

(
φ̇
)
, and it could be solved for φ(t) regardless of the linear motion. Then,

this solution φ(t) could be introduced in the first of Eq. (1) as a prescribed excitation.
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By defining

Rm = m1/m, RI = m1r2/I, ξ = b
2
√
km

, α = RI Rm
2ξ

c = C
Iω2

n
, d = D

Iωn
, τ = ωnt, u = x

r
2ξ
Rm

, ρ = λr2

k

(
Rm
2ξ

)2
,

(5)

the equations of motion can be written in a more convenient dimensionless form

ü + u = −2ξ u̇ − ρu3 + 2ξ
(
φ̇2 cos φ + φ̈ sin φ

)

φ̈ = c + d
(
φ̇ − 1

)+ αü sin φ,
(6)

where a dot now represents differentiation with respect to dimensionless time, τ .
In order to apply perturbation techniques to system (6), some assumptions on the

order of magnitude of the system parameters have to be made. Thus, we assume
the damping, the unbalance and the nonlinearity to be small. This is expressed by
making the corresponding coefficients proportional to a sufficiently small, positive
and dimensionless parameter ε:

ξ = εξ0, α = εα0, ρ = ερ0, (7)

where parameters with subscript ‘0’ are ε-independent. It is also assumed that the
torque generated by the motor at resonance

(
φ̇ = 1

)
is sufficiently small:

c = εc0 (8)

Finally, the slope of the motor characteristic is assumed to be of the order of unity,
i.e. independent of ε:

d = d0 (9)

This last statement deserves some attention. Two possible assumptions with
respect to the order of magnitude of parameter d are particularly relevant: d = d0
(large slope of the motor characteristic) and d = εd0 (small slope of the motor
characteristic). It will be seen in Sect. 2.4 that the particular choice made in this
chapter (large slope) implies that the slope of the motor torque curve is comparable
to the slope of the curve representing the torque on the rotor due to vibration. On the
other hand, the assumption of small slope of the motor characteristic corresponds
to a situation where the motor torque is nearly constant around the resonance region
of the system. Both the required mathematical approach and the dynamics exhibited
by the system are very different depending on whether the slope of the motor
characteristic is large or small. References [18, 19] are examples of investigations
based on the assumption of small slope of the motor characteristic, while [9, 10, 12,
14, 17] correspond to the assumption of large slope.
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Taking the proposed scaling (7)–(9) into account and dropping the subscript ‘0’
for convenience, system (1) takes the form

ü + u = ε
[−2ξ u̇ − ρu3 + 2ξ

(
φ̇2 cos φ + φ̈ sin φ

)]

φ̈ = d
(
φ̇ − 1

)+ ε[c + αü sin φ].
(10)

2.2 First Order Averaging

Before turning to the treatment of (10), a specific averaging technique is developed
in this section. The reader might wonder why there is a need to develop any new
averaging procedures, instead of relying on the well-established averaging theorems
for dynamical systems that can be found, for example, in [18]. The reason is that
averaging theorems are usually valid for systems where the state variables can be
split-up into two groups: a set of slow variables and one or more fast rotating phases
over which the averaging is performed. It will be seen in Sect. 2.3 that the system
under study does not take this form, but has one additional non-angular fast variable
that makes conventional averaging theorems not applicable.

In order to make the procedure as general as possible, consider a system of the
form

⎧
⎨

⎩

ẋ = ε
[
Ay + X(x, φ)

]+ O
(
ε2
)

ẏ = B y + Y(x, φ) + O(ε)

φ̇ = 
 + O(ε)

⎫
⎬

⎭
,

x ∈ D ⊂ R
n

y ∈ R ⊂ R
m

φ ∈ S1,
(11)

where A and B are matrices of constant coefficients and 
 is a scalar constant,
bounded away from zero. It will be shown in the next section that system (10) can
be written in the form (11).

First, we define the averaged variables as

x(t) ≡ 1

T

t+T/2∫

t−T/2

x(s)ds, y(t) ≡ 1

T

t+T/2∫

t−T/2

y(s)ds (12)

where T = 2π/
. As illustrated in Fig. 7, the effect of the operator defined in
(12) is to smooth out the short-term fluctuations of each variable, while retaining the
long-term behavior.

Suppose we are interested in the evolution of the averaged variables x(t) and y(t).
Then, we can average the first two equations in (11), which yields
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Fig. 7 Definition of the
averaged variables

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = ε

[

Ay + 1
T

t+T/2∫

t−T/2
X(x(s), φ(s))ds

]

+ O
(
ε2
)

ẏ = B y + 1
T

t+T/2∫

t−T/2
Y(x(s), φ(s))ds + O(ε)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (13)

where it has been used that the average, as defined in (12), is a linear operator (the
average of the sum is the sum of the averages).

The next step consists in transforming the integrals in (13). Since the process is
exactly the same for both integrals, we only focus on the first of them.

First, we can write

1

T

t+T/2∫

t−T/2

X(x(s), φ(s))ds = 1

T

t+T/2∫

t−T/2

X(x(t), φ(s))ds + O(ε), (14)

where it has been used the property that, in one period T , x(t) can only change by
O(ε), according to (11). Thus, we can write x(s) = x(t) + O(ε). Changing the
integration variable from s to φ yields

1

T

t+T/2∫

t−T/2

X(x(t), φ(s))ds + O(ε) = 1

2π

φ(t+T/2)∫

φ(t−T/2)

X(x(t), φ)dφ + O(ε), (15)

where the last of relations (11) has been used (dφ = 
ds + O(ε)). The integration
limits can also be transformed by using again φ̇ = 
 + O(ε):

1

2π

φ(t+T/2)∫

φ(t−T/2)

X(x(t), φ)dφ + O(ε) = 1

2π

φ(t)+π∫

φ(t)−π

X(x(t), φ)dφ + O(ε). (16)
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Finally, as function X is 2π-periodic in φ, we can write

1

2π

φ(t)+π∫

φ(t)−π

X(x(t), φ)dφ + O(ε) = 1

2π

2π∫

0

X(x(t), φ)dφ + O(ε). (17)

Thus, system (13) can be rewritten as

{
ẋ = ε

[
Ay + X(x)

]+ O
(
ε2
)

ẏ = B y + Y(x) + O(ε)

}
, (18)

where

X(·) ≡ 1

2π

2π∫

0

X(·, φ)dφ, Y(·) ≡ 1

2π

2π∫

0

Y(·, φ)dφ (19)

We have been able to derive an autonomous system for the averaged variables,
where the fast angle no longer appears –except in the higher order terms of (18). Note
that the proposed approach exploits a particular property of system (11), namely the
fact that the vector of fast variables y only appears linearly on the r.h.s. of the
equations. This feature, together with the linearity of the averaging operator, allows
applying an averaging technique to system (11), despite it containing fast variables
(in addition to the fast rotating phase φ).

Finally, it is convenient to remark the difference between the original and averaged
variables. From Eq. (11), variations of x and y in one period T are O(ε) and O(1),
respectively. Therefore, we can write

x(t) = x(t) + O(ε), y(t) = y(t) + O(1). (20)

2.3 Perturbation Approach: Derivation of the Reduced
System

Going back to the mechanical system under study, Eq. (10) constitute an autonomous
dynamical system of dimension 4, with state variables

{
u, u̇, φ, φ̇

}
. A perturbation

approach is proposed in this section,whereby (10) is transformed into an approximate
2D system.

First, it is convenient to perform a change of variables, from {u, u̇} to polar
coordinates [18]:
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u = a cos (φ + β)

u̇ = −a sin (φ + β).
(21)

This step does not include any approximation, since it consists in just replacing the
pair of variables {u(τ ), u̇(τ )}with the pair of amplitude-phase variables {a(τ ), β(τ )}.

By differentiating the first of relations (21) we obtain

u̇ = ȧ cos (φ + β) − a
(
φ̇ + β̇

)
sin (φ + β). (22)

Comparing (22) with the second of relations (21) yields

ȧ cos(φ + β) − a
(
φ̇ − 1 + β̇

)
sin (φ + β) = 0. (23)

On the other hand, if (21) is introduced into the first of Eq. (10), we have

−ȧ sin (φ + β) − a
(
φ̇ − 1 + β̇

)
cos (φ + β) =

= ε
[
2ξa sin (φ + β) − ρa3 cos 3(φ + β) + 2ξ

(
φ̇2 cos φ + φ̈ sin φ

)] (24)

Equations (23) and (24) together form a linear system for ȧ and β̇ that can be
readily solved:

ȧ = −ε sin (φ + β)
[
2ξa sin (φ + β) − ρa3 cos 3(φ + β) + 2ξ

(
φ̇2 cos φ + φ̈ sin φ

)]

β̇ = 1 − φ̇ − ε
cos (φ+β)

a

[
2ξa sin (φ + β) − ρa3 cos3(φ + β) + 2ξ

(
φ̇2 cos φ + φ̈ sin φ

)] (25)

It is also suitable to define a new variable for the rotor speed:


 ≡ φ̇. (26)

Then, the dynamical system, written in terms of the new variables, becomes

⎧
⎪⎪⎨

⎪⎪⎩

ȧ = −ε sin(φ + β)F1(a, β, φ,
) + O
(
ε2
)

β̇ = 1 − Ω − ε
cos(φ+β)

a F1(a, β, φ,
) + O
(
ε2
)


̇ = d(Ω − 1) + ε(c − αa sin φ cos (φ + β)) + O
(
ε2
)

φ̇ = 
,

⎫
⎪⎪⎬

⎪⎪⎭
, (27)

where

F1 = 2ξa sin (φ + β) − ρa3 cos3(φ + β) + 2ξ
[

2 cos φ + d(
 − 1) sin φ

]
.

(28)

A new 4D autonomous dynamical system (27) has been derived, with state
variables {a, β, φ,Ω}, which is fully equivalent to (10).
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Consider now a general set of initial conditions {a0, β0, φ0,Ω0} and let us investi-
gate how the variables evolve with time. In the next subsections, it will be shown that
the dynamics of (27) is composed of three consecutive stages of time, with different
qualitative behaviours.

First stage

For the moment, consider only the evolution equations for variables β and 
, which
can be written as

{
β̇ = 1 − 
 + O(ε)

Ω̇ = d(
 − 1) + O(ε)

}
. (29)

It is clear that, to first order of approximation, the evolution of β and 
 only
depends on 
. This first order approximation corresponds to neglecting the O(ε)

terms in (29).

{
β̇ = 1 − 



̇ = d(
 − 1)

}
. (30)

The relation between exact system (29) and (30) is established by the Regular
Perturbation Theory [18], which assures that solutions of (30) are O(ε)–approxima-
tions to solutions of (29), for τ = O(1). Thus, we proceed to solve system (30):

{
β = β∗

0 + 1−
0
d edτ


 = 1 + [
0 − 1]edτ

}
, (31)

with

β∗
0 ≡ β0 + 
0 − 1

d
. (32)

It is clear from (31) that both variables tend exponentially to constant values:

β → β∗
0 , 
 → 1. (33)

This is due to the assumption d < 0 (otherwise, the exponentials in (31) would
be divergent). Taking into account the approximation made when transforming (29)
into (30), it can be stated that, after a time interval τ = O(1), we have

β = β∗
0 + O(ε), 
 = 1 + O(ε). (34)

Onceβ and
 are at an O(ε)–distance fromβ∗
0 and 1, respectively, the first stage of

themotion is over. Note that, during this stage, the rotor speed evolves monotonically
towards the resonance region.
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During this first phase, variable a remains nearly constant. Since ȧ = O(ε)—see
(27), variable a needs a time length τ = O(1/ε) to evolve significantly. Thus, at the
end of the first stage, we have

a = a0 + O(ε). (35)

In summary, the first stage corresponds to a time length τ = O(1). It starts at
τ = 0 and it ends when β and 
 have reached an O(ε)–distance to β∗

0 and 1,
respectively.

Second stage

At the beginning of the second stage, the rotor speed is already in the vicinity of
resonance. Consequently, it can be naturally expanded as


 = 1 + εσ. (36)

A new variable σ has been introduced in (36), which will be very widely used
throughout the chapter. Notice that σ is a detuning coordinate, which measures how
much the rotor speed deviates from the system natural frequency.

If system (27) is written using variable σ instead of 
, it becomes

⎧
⎪⎪⎨

⎪⎪⎩

ȧ = −ε sin (φ + β)F2(a, β, φ) + O
(
ε2
)

β̇ = −εσ − ε
cos (φ+β)

a F2(a, β, φ) + O
(
ε2
)

σ̇ = c + dσ − αa sin φ cos(φ + β) + O(ε)

φ̇ = 1 + εσ

⎫
⎪⎪⎬

⎪⎪⎭
, (37)

where

F2 = 2ξa sin(φ + β) − ρa3 cos3(φ + β) + 2ξ cosφ. (38)

Notice that the closeness between the rotor speed and the natural frequency of the
system has transformed β into a slow variable. Note also that system (37) is of the
form (11), with {a, β} playing the role of vector x and σ that of vector y. Therefore,
the averaging technique presented in Sect. 2.2 can be readily applied to (37), in order
to obtain the evolution of the averaged variables.

The averaged system, which in the general case is given by (18), takes in the
present case the form

⎧
⎪⎨

⎪⎩

ȧ = −εξ
(
a + sin β

)+ O
(
ε2
)

β̇ = −ε
(
σ + ξ

cosβ

a − 3
8ρa

2
)

+ O
(
ε2
)

σ̇ = c + dσ + α
2 a sin β + O(ε)

⎫
⎪⎬

⎪⎭
, (39)
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where the averaged variables
{
a, β, σ

}
are defined as in (12). System (39) has

dimension 3, since variable φ no longer appears.
It is convenient to highlight the relation between the original and the averaged

variables. Particularizing the general expression (20) to the system under analysis,
we find

a = a + O(ε)

β = β + O(ε)

σ = σ + O(1).
(40)

Observe that, even with an O(1) error in σ , the rotor speed is still known with
O(ε) precision, according to (36). From now on, the overbars will be omitted, unless
otherwise stated.

The task now is to investigate system (39). As pointed out before, this is a fast-
slow system, with two slow variables a and β and one fast variable σ . This difference
in the time scales allows exploiting the Singular Perturbation Theory [20–22].

According to the SPT, a system with the form of (39) displays two qualitatively
different behaviors at two sequential time scales, which correspond to the second and
third stages of the original system (27). With the aim of studying the first of them
–second stage of (27), consider a time interval τ = O(1) for system (39). Since a
and β evolve with rate O(ε), it is clear that we have

a = a0 + O(ε)

β = β∗
0 + O(ε)

σ̇ = c + dσ + α
2 a0 sin β∗

0 + O(ε),

(41)

where we have taken into account that, at the beginning of stage 2, a = a0 + O(ε)

and β = β∗
0 + O(ε).

Then, the only variable that changes considerably during this stage is σ . From a
direct analysis of the last of Eq. (41), it can be deduced that σ tends exponentially
to the following value

σ → − c

d
− α

2d
a0 sin β∗

0 , (42)

which is the only fixed point for the last of Eq. (41). The assumption d < 0 guarantees
that the fixed point is globally attracting.

Expression (42), generalized to any values of a and β, gives what is called ‘the
Slow Manifold’:

σ ∗(a, β) = − c

d
− α

2d
a sin β. (43)

Thus, (42) can be rewritten as
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σ → σ ∗(a0, β∗
0

)
. (44)

Thereby, at this stage, the slow variables remain almost constant, while the fast
variable evolves until reaching the vicinity of the slow manifold.

Summing up, the second stage corresponds to a time length τ = O(1), just as
the first one. It ends once variable σ has reached an O(ε)–distance to σ ∗(a0, β∗

0

)
.

During this phase of the motion, a and β do not change significantly.

Third stage

The third stage of the original system (27) –which is the second stage of the averaged
system (39)—occurs at a time scale τ = O(1/ε). This can be easily understood by
noticing that, once the system is near the slow manifold, variable σ becomes slow
(introducing (43) in (39) leads to σ̇ = O(ε)). Therefore, near the slow manifold, all
variables are slowand, as a consequence, the systemnatural time scale is τ = O(1/ε).

Obviously it still needs to be proved that, once the system is near the slowmanifold,
it remains in its neighborhood for all subsequent time. In other words, we have to
verify that the manifold is always attracting. Although the proof is beyond the scope
of this book and will not be displayed here, it can be shown that the attractiveness of
the slow manifold is guaranteed as long as d < 0.

By introducing the expression of the slow manifold in (39), the equations
corresponding to the third phase of the motion are obtained:

⎧
⎪⎨

⎪⎩

ȧ = −εξ(a + sin β) + O
(
ε2
)

β̇ = −ε
(
σ ∗(a, β) + ξ

cos β

a − 3
8ρa

2
)

+ O
(
ε2
)

σ = σ ∗(a, β) + O(ε).

⎫
⎪⎬

⎪⎭
(45)

As usual, higher order terms in (45) can be eliminated, giving rise to an O(ε)

approximation for a time length τ = O(1/ε):

⎧
⎪⎨

⎪⎩

ȧ = −εξ(a + sin β)

β̇ = −ε
(
σ ∗(a, β) + ξ

cos β

a − 3
8ρa

2
)

σ = σ ∗(a, β).

⎫
⎪⎬

⎪⎭
(46)

It is convenient to observe that, although (46) contains three equations, only two
of them are differential equations. Thus, (46) represents a 2D autonomous dynamical
system. The evolution of a and β no longer depends on σ , once σ is written as a
function of a and β. The last equation is written with the only purpose of tracking
the evolution of variable σ .

In summary, the third stage corresponds to a time length τ = O(1/ε). At this
phase of the motion, the averaged system evolves along the slow manifold given by
(43). Variables a, β and σ obey Eq. (46), with O(ε) precision.

Figure 8 shows a schematic representation of the three different stages of the
system dynamics, summing up the results obtained in the present section. Note that,
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Fig. 8 Overview of the system dynamics, with {aR, βR} being the solution of system (46) with
appropriate initial conditions

in Fig. 8, the use of overbars for the averaged variables is recovered. The most
relevant result is that, once the initial transient corresponding to the first two stages
has finished, the evolution of variables a and β is governed by Eq. (46)—within an
O(ε) error–.

From Fig. 8, it is clear that suitable initial conditions for system (46) are{
a0, β∗

0

}
. Recalling definition (32), this can be written as {a0, β0 + (
0 − 1)/d},

where {a0, β0, φ0,
0} is the set of initial conditions for system (27).
However, we may be interested in a particular set of initial conditions for system

(10), given as
{
u0, u̇0, φ0, φ̇0

}
. It is, then, convenient, to express the initial conditions

for (46) as functions of the initial conditions for (10):

a0 =
√
u20 + u̇20

β∗
0 = tan−1

(
−u̇0
u0

)
− φ0 + φ̇0−1

d ,
(47)

as can be readily deduced from relations (21), (26) and (32).
Recapitulating, we have been able to eliminate from the formulation variable φ

by Averaging, and variable σ by applying the Singular Perturbation Theory.

2.4 Analysis of the Reduced System

This section focuses on the behaviour of system (46), once it has been shown to
capture, with O(ε) precision, the dynamics of the original system (10) during the
third stage of the motion.

Firstly, it is useful to make a comparison between the system under study and its
ideal counterpart, where the rotor speed is constant. Clearly, for this ideal case, the
equation of motion of the system shown in Fig. 3 is given by
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mẍ + bẋ + kx + λx3 = m1r φ̇
2 cos φ, (48)

with φ̇ fixed. Equation (48) describes a Duffing oscillator, subjected to harmonic
excitation. This is a very well-known problem, which has been widely studied in the
literature [9, 19, 23, 24]. Under the assumptions of small damping, small nonlinearity,
small unbalance and near-resonant excitation

(
φ̇ = 1 + εσ0

)
, the Averaging Method

can be applied to system (48), leading to

{
ȧ = −εξ(a + sin β)

β̇ = −ε
(
σ0 + ξ

cos β

a − 3
8ρa

2
)
}

, (49)

where all the parameters and variables are defined as in Sects. 2.1 and 2.3. It is easy
to verify that system (49) is exactly the same as (46), with the only difference of
replacing σ ∗(a, β) by the constant value σ0. This is a clear illustration of the concept
of nonideal excitation. In the ideal case, the rotor speed appears in Eq. (49) as a
constant value σ0, externally imposed by the motor. However, in the nonideal case,
the rotor speed enters Eq. (46) as a function of the system vibratorymotion, σ ∗(a, β).

It is also important to observe that an ideal motor displays a vertical static char-
acteristic, corresponding to the limit case d → −∞. The motor is, then, able to
generate any torque for the same rotor speed. This suggests the idea that a real motor
with a static characteristic of very large slope (in absolute value) is more likely to
behave in an ideal manner than another one with a smaller slope.

Fixed points

Going back to the objective of analyzing system (46), it is first convenient to look
for its fixed points,

{
aeq , βeq , σeq

}
:

aeq = − sin βeq

σ ∗(aeq , βeq
) = 3

8ρa
2
eq − ξ

cos βeq

aeq

σeq = σ ∗(aeq , βeq
)
.

(50)

From the first of Eq. (50), we have

cos βeq = −z
√
1 − a2eq , z = ±1. (51)

Combining (43), (50) and (51) yields

− c

d
+ α

2d
a2eq = 3

8
ρa2eq + zξ

√
1 − a2eq

aeq
. (52)
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Solutions of (52), for both values of z, give aeq for all the fixed points of (46).
This can be done analytically, but the expressions become cumbersome and difficult
to interpret. An alternative procedure is proposed, which leads to the fixed points of
(46) in a graphical way. To this end, the last of Eq. (46) can be rewritten as

c + dσ = −α

2
a sin β, (53)

where definition (43) has been used. Now, recall the last of Eq. (39), which governs
the evolution of the rotor speed for the averaged system:

σ̇ = c + dσ + α

2
a sin β + O(ε). (54)

In the light of (54), (53) can be interpreted as an equilibrium between two torques
on the rotor. The left hand term in (53) represents the driving torque produced by
the motor, while the right hand term represents the resisting torque due to vibration.
Thus, the fact that the averaged system is on the slow manifold –which is expressed
in Eq. (53)—can be understood as a torque equilibrium condition.

Equation (53), particularized for the fixed point
{
aeq , βeq , σeq

}
, takes the form

c + dσeq = α

2
a2eq , (55)

where (50) has been used. We now define the following functions:

Tm(σ ) ≡ c + dσ

Tv(a) ≡ α
2 a

2.
(56)

Clearly, according to the comments below Eq. (54), Tm represents the driving
torque produced by the motor, while Tv corresponds to the resisting torque due to
vibration. Then, (55) can be rewritten as

Tm
(
σeq
) = Tv

(
aeq
)
, (57)

which is the torque equilibrium condition, particularized for the fixed point.
In order to solve (57) in a graphical way, it would be desirable towrite both torques

explicitly in terms of σeq . However, this would in turn need explicitly writing aeq in
terms of σeq , which produces long and complicated expressions. Thus, an implicit
procedure for the graphical representation is proposed. Combining (50) and (51)
results in

σeq = σv

(
z, aeq

)
, (58)

where function σv(z, a) is defined as
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Fig. 9 Fixed points of
system (46)

σv(z, a) ≡ 3

8
ρa2 + zξ

√
1 − a2

a
. (59)

The proposed representation can be constructed as follows: first, graph Tm versus
σ according to (56). Then, graph on the same plot the parametric curve given by
{σv(z, a), Tv(a)}, for z = ±1 and a ∈ (0, 1] . The fact that a is strictly positive
comes from the definition of a as the radius of a polar coordinate transformation
–see (21)–(20). On the other hand aeq cannot be greater than 1, according to the first
of Eq. (50).

The above procedure gives rise to a plot like that shown in Fig. 9. Considering
Eq. (57), the fixed points can be found as the intersections of the two torque curves.
In the particular case displayed in Fig. 9, there are three equilibrium points, marked
with circles. Note that the curve associated to the vibration torque is composed of
two branches, which collide at the maximum of the curve. They correspond to the
two possible values of parameter z, as specified in Fig. 9.

We note that the ‘Sommerfed effect’, which was described in the introduction, can
be readily explained by using Fig. 9. For such an explanation, the interested reader
can refer to [9, 10, 12, 17].

Stability Analysis

Once the fixed points of the reduced system have been obtained, it is convenient to
investigate their stability. For a 2D system, this reduces to calculating the trace and
determinant of the jacobian matrix, evaluated at the equilibrium point of interest:

J eq = ε

[ −ξ zξ Req(− α
2d + 3ρ

4

)
aeq − zξ Req

a2eq
− zαaeq Req

2d − ξ

]

, (60)

where Req stands for
√
1 − a2eq .

The conditions for a fixed point to be asymptotically stable are
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C1. tr
(
Jeq
)

< 0 (61)

C2. det
(
Jeq
)

> 0. (62)

After some algebra, these conditions can be expressed as

C1.
zαaeq Req

4d
+ ξ > 0 (63)

C2.

{
1
η

− 1
d < 0, i f z = 1

1
η

− 1
d > 0, i f z = −1

}

, (64)

where η denotes the slope of the Tv curve at the considered equilibrium point (see
Figs. 10 and 11), and has the expression

1

η
= − zξ

αa3eq Req
+ 3ρ

4α
, (65)

as can be deduced from (56), (59).
Conditions (63) and (64)are now applied to evaluate stability regions in different

scenarios. The procedure is as follows. Consider parameters α, ξ, ρ fixed, so that

Fig. 10 Stability regions for
z = −1. S and U label the
stable and unstable regions,
respectively. a η > 0, b
η < 0
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Fig. 11 Stability regions for
z = 1. S and U label the
stable and unstable regions,
respectively. a η > 0, (b.1)
η < dH < 0, (b.2)
dH < η < 0

the Tv curve –see Fig. 9– is fixed too. Consider a pair of values (c, d) that gives
a particular curve Tm(σ ). The intersections between the two curves represent the
equilibrium points of the system. Select one of them –if there are more than one– and
let parameters (c, d) vary in such away that the selected equilibrium point remains an
equilibrium point. In other words, let parameters (c, d) vary so as to make the curve
Tm(σ ) rotate around the selected equilibrium point, satisfying restriction d < 0.
Finally, use conditions (63) and (64) to analyze how the stability of the fixed point
is affected by the slope d of the motor characteristic.

Figure 10 displays the outcome of applying the above procedure for a fixed point
located at the left branch of the vibration torque curve (z = −1). Two scenarios
are considered, depending on the sign of slope η, evaluated at the fixed point under
consideration. It is observed that a change of stability occurs when both torque
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curves become tangent (d = η). This can be shown to correspond to a transcritical
bifurcation. Note that, in Fig. 10, the motor curve corresponding to d = η has been
directly labeled as d = η, instead of Tm(d = η). This shortened notation will be
widely used in the figures of the document.

Figure 11 shows analogous results for a fixed point located at the right branch of
the vibration torque curve (z = 1). The system behavior is richer in this case, since
stability may change in two different ways, depending on the comparison η ≶ dH
where dH is defined below.

We define critical slope dH as the value of d that makes tr
(
Jeq
) = 0. Recall that

the stability condition tr
(
Jeq
)

< 0 was written as (63). Therefore, dH takes the form

dH
(
α, ξ, aeq

) = −αaeq Req

4ξ
. (66)

Below, the different possibilities for z = 1 are considered.

• If η > 0 (Fig. 11a), condition C2 is never fulfilled, so the fixed point is unstable
regardless the value of slope d.

• If η < dH < 0 (Fig. 11b.1), the critical condition –i.e. the one that produces
the stability change– is C2. In this case, a transcritical bifurcation can be shown
to occur when both torque curves are tangent (d = η). Note that this result is
analogous to that obtained for the left branch (Fig. 10).

• If dH < η < 0 (Fig. 11b.2), the critical condition is C1. In this case, the stability
change occurs at d = dH through a Hopf bifurcation, after which parameter dH
was named.

To better understand the nature of the different bifurcations, notice the following
correspondence between conditions C1 and C2, and the eigenvalues of J eq ,
according to (61), (62):

• C1 is the critical condition →
{

tr
(
Jeq
) = 0

det
(
Jeq
)

> 0

}
both eigenvalues of J eq , being

complex conjugates, cross the imaginary axis.

• C2 is the critical condition →
{

tr
(
Jeq
)

< 0
det
(
Jeq
) = 0

}
a single, real eigenvalue of J eq

crosses the imaginary axis.

It is worth stressing that most of the literature on nonideal excitations maintains
that stability changes when the torque curves become tangent [9, 10, 12, 17]. This is
consistent with our results, with the important exception of case z = 1, dH < η < 0
(Fig. 11b.2). Thus, one of the major findings presented in this chapter consists in
having found a case where the usual rule of thumb for stability is not valid. In this
scenario, the stable region is in fact smaller than predicted by usual theories (see
Fig. 11b.2). Not taking this into account may be dangerous in real applications, since
it could lead to unexpected instabilities.



On the Stability and Long-Term Behaviour of Structural Systems Excited … 213

Finally, the conditions for the existence of a Hopf bifurcation in the linear case
(ρ = 0) are investigated in more detail. As stated above, a Hopf bifurcation exists if

z = 1, dH < η < 0. (67)

By substituting expression (65) and (66) into (67), for ρ = 0, we have

z = 1, −αaeq Req

4ξ
< −αa3eq Req

ξ
< 0. (68)

Simplifying (68) yields

z = 1, aeq < 0.5. (69)

Therefore, if the system under study has no structural nonlinearity (ρ = 0), it is
particularly easy to predict the existence of a Hopf bifurcation, by simply checking
condition (69).

2.5 Classification of the Hopf Bifurcations

Clearly, it would be of great interest to characterize the Hopf bifurcation encountered
in last section as subcritical or supercritical. In the former case, an unstable limit cycle
coexists with the stable fixed point, while in the latter case there is a stable limit cycle
coexisting with the unstable fixed point, as represented in Fig. 12.

Characterizing the bifurcations requires several transformations of system (46)
that are detailed below.

Fig. 12 Classification of Hopf bifurcations. a Supercritical b Subcritical. Thick (thin) lines
represent stable (unstable) solutions
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Transformation to Cartesian Coordinates

We assume the system parameters are such that there exists a fixed point on the
right branch of curve Tv (z = 1), satisfying condition (67) and, thereby, undergoing
a Hopf bifurcation. By defining change of variables

{
x̃ = a cos β

ỹ = a sin β

}
, (70)

system (46), particularized for the bifurcation point (d = dH ), can be rewritten as

⎧
⎨

⎩

˙̃x = −ε
[
ξ x̃ + c

dH
ỹ + α

2dH
ỹ2 + 3

8ρ ỹ
(
x̃2 + ỹ2

)]

˙̃y = ε
[
−ξ − ξ ỹ + c

dH
x̃ + α

2dH
x̃ ỹ + 3

8ρ x̃
(
x̃2 + ỹ2

)]

⎫
⎬

⎭
. (71)

Displacement of the origin

In order to characterize the bifurcation, it is convenient to locate the origin of the
coordinate system at the fixed point under investigation. Then, we define change of
variables

{
x = x̃ − aeq cos βeq

y = ỹ − aeq sin βeq

}
. (72)

Using the new coordinates, system (71) takes the form

⎧
⎨

⎩

ẋ = ε
[
−[ξ + 3

4 ρa3R
]
x − [ 3

4 ρa4 + ξ
( 2a

R − R
a

)]
y + 3

8 ρa2x2 +
[
2ξ
aR + 9

8 ρa2
]
y2 + 3

4 ρaRxy − 3
8 ρy

[
x2 + y2

]]

ẏ = ε
[[ 3

4 ρa2R2 − ξ R
a

]
x + [

ξ + 3
4 ρa3R

]
y − 9

8 ρaRx2 − 3
4 ρaRy2 −

[
2ξ
aR + 3

4 ρa2
]
xy + 3

8 ρx
[
x2 + y2

]]

⎫
⎬

⎭
.

(73)

where aeq and Req are shortly written as a and R, respectively, in order to make
the expression more manageable. This abbreviated notation will also be used in the
Appendix. Note that system (73) is of the form

[
ẋ
ẏ

]
= ε

(
A
[
x
y

]
+ h(x, y)

)
(74)

where matrix A is given by

A =
⎡

⎣−(ξ + 3
4ρa

3
eq Req

) −
[
3
4ρa

4
eq + ξ

(
2aeq
Req

− Req

aeq

)]

3
4ρa

2
eq R

2
eq − ξ

Req

aeq
ξ + 3

4ρa
3
eqReq

⎤

⎦ (75)
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and vector h(x, y) contains the nonlinear terms of the system.

Transformation to the real eigenbasis of matrix A

A new change of variables, using the real eigenbasis of matrix A, is defined:

[
x
y

]
= T

[
z1
z2

]
, (76)

where the columns of matrix T are the real and imaginary parts of the complex
conjugate eigenvectors of A, denoted by v1,2:

v1,2 =
[
c1
c2

]
± i

[
ω0

0

]
→ T =

[
c1 ω0

c2 0

]
, (77)

with

c1 = ξ + 3
4ρa

3
eq Req

c2 = ξ
Req

aeq
− 3

4ρa
2
eq R

2
eq

ω0 =
√(

1−4a2eq
a2eq

)
ξ 2 − 3

4ρξaeq Req .

(78)

System (73), written in terms of the new variables, takes the form

[
ż1
ż2

]
= ε

([
0 −ω0

ω0 0

][
z1
z2

]
+
[
f (z1, z2)
g(z1, z2)

])
, (79)

where functions f and g, containing the nonlinear terms of the system, can bewritten
as Taylor series:

f (z1, z2) =
3∑

i+ j=2

1
i ! j ! fi j z

i
1z

j
2

g(z1, z2) =
3∑

i+ j=2

1
i ! j !gi j z

i
1z

j
2

(80)

Coefficients fi j and gi j are specified in the Appendix.

Transformation to normal form

The final step to characterize the bifurcation includes transformation in complex
form, near-identity transformation and transformation in polar coordinates [25]. This
is a standard procedure whose details can be found in [26, 27]. After these last
transformations, system (79) can be written in its Normal Form
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ṙ = εδr3, (81)

which governs the radial dynamics at the bifurcation. As shown in [27], coefficient
δ can be computed as

16δ =

⎧
⎪⎨

⎪⎩

f30 + f12 + g21 + g03
+ 1

ω0
[ f11( f20 + f02) − g11(g20 + g02)]

+ 1
ω0
[ f02g02 − f20g20]

⎫
⎪⎬

⎪⎭
. (82)

In summary, we can say that, after a large number of variable transformations,
system (46) can be written as (81), from which we deduce that the bifurcation is
supercritical (subcritical) if δ < 0(δ > 0).

Despite the fact that coefficients fi j and gi j are of rather complicated form, we
find –with the aid of the symbolic computation toolbox in Matlab– that the condition
for supercriticality or subcriticality can be expressed in a surprisingly simplemanner:

Supercritical ⇒ δ < 0 ⇒ ρ < − 8ξ
3aeq Req

Subcritical ⇒ δ > 0 ⇒ ρ > − 8ξ
3aeq Req

(83)

From (83), it is clear that a nonlinearity of the softening type (ρ < 0) is needed
to have a supercritical bifurcation.

It is also worth noting that conditions (83) admit a very clear graphical inter-
pretation. Consider a curve Tm which intersects Tv at the equilibrium point under
consideration and also at the peak of curve Tv . Let dP denote the slope of this
particular motor characteristic, as depicted in Fig. 13.

In order to obtain dP , the coordinates of the two points defining the straight line
are defined below. First, the highest peak of curve Tv can be shown to correspond to
a = 1. Substituting this condition into (56) and (59) yields

Fig. 13 Definition of slope
dP
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σ = 3

8
ρ, T = α

2
(84)

On the other hand, the (σ, T ) coordinates of the equilibrium point under study
are directly given in (56) and (59):

σ = 3

8
ρa2eq + ξ

Req

aeq
, T = α

2
a2eq (85)

Then, from (84) and (85), the expression of dP can be readily obtained:

1

dP
= 3ρ

4α
− 2ξ

αaeq Req
, (86)

By comparing (86) and (66) conditions (83) can be expressed as

Supercritical ⇒ dH < dP
Subcritical ⇒ dH > dP .

(87)

This last manner of characterizing the bifurcation is certainly appealing from a
graphical point of view, since the essential information about the bifurcation can
be directly observed from the torque–speed curves, as shown in Fig. 14 for two
particular examples.

Fig. 14 Examples of a
subcritical and b
supercritical bifurcations. a
ξ = 1, α = 1, ρ =
−2, aeq = 0.3 b ξ = 1, α =
1, ρ = −15, aeq = 0.4
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2.6 Conditions Under Which All System Trajectories are
Attracted Towards a Limit Cycle

In Sect. 2.5, a simple condition has been obtained to ascertain whether the Hopf
bifurcation under study is subcritical or supercritical, which in turn allows predicting
the kind of limit cycle generated by the bifurcation (see Fig. 12). Although this
distinction is relevant, it is based on a local analysis and, consequently, it only gives
local information about the system behaviour. This is so in two senses: the analysis
of Sect. 2.5 provides insight into the system dynamics.

• for values of d close enough to dH (results are local in the parameter space) and
• for trajectories close enough to the investigated fixed point (results are local in

the phase plane).

In view of the aforementioned limitations, this section addresses a new global
result that complements those of Sect. 2.5. First, let us briefly recall the Poincaré-
Bendixson theorem, which is an essential result from the global theory of nonlinear
systems [28]. The theorem can be stated, in short terms, as follows.

Consider a 2D dynamical system and a closed, bounded region R of the phase
plane that does not contains any equilibrium points. Then, every trajectory that is
confined in R –it starts in R and remains in R for all future time– is a closed orbit or
spirals towards a closed orbit as t → ∞. For a more rigorous and detailed exposition
of the theorem, see [28].

Let us show that, under certain circumstances, the P-B theorem can be used to
prove that all trajectories of the system under study are attracted towards a limit
cycle.

First, it can be easily deduced from (46) that

a > 1 ⇒ ȧ < 0. (88)

Let a and β represent polar coordinates on the phase plane, according to (70), and
let D denote a circle centred at the origin of the phase plane with a radius slightly
greater than 1, say 1.01. From (88), it can be said that every trajectory starting
outside region D will enter D and remain inside for all subsequent time. Obviously,
trajectories starting inside D will also remain inside forever. This kind of behavior
would present D as a suitable candidate for the role of region R in the P-B theorem,
if it were not for the presence of fixed points inside D.

Consider now the following particular situation:

{
The system has only one fixed point

z = 1, dH < d < η < 0

}
, (89)
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Fig. 15 Schematic view of
the torque curves
corresponding to conditions
(89)

whose torque curves are depicted in Fig. 15. We suppose that the only fixed point
of the system is on the right branch of curve Tv and undergoes a Hopf bifurcation.
It is also assumed that the actual slope of the motor characteristic is d > dH and,
therefore, the equilibrium is unstable.

First, let us prove that the fixed point is a repeller. Since the equilibrium is already
known to be unstable, we only need to prove that it is not a saddle. Let J eq be
the jacobian matrix of system (46), evaluated at the equilibrium point. Taking into
account that a saddle point has two real eigenvalues λ1, λ2 with different signs, we
can state

If det
(
J eq
) = λ1λ2 > 0, then the equilibrium is not a saddle. (90)

With some simple algebra, it can be shown that, for z = 1, condition det
(
J eq
)

> 0
can be written as d < η. Then, it is clear that, for a fixed point satisfying (89), we
have det

(
J eq
)

> 0. Thus, the equilibrium is a repeller.
A new region Q is now defined as D minus a circle of infinitesimal radius around

the equilibrium point. From the above considerations –all trajectories enter D and
the fixed point is a repeller–, it is clear that the flow on the boundary of Q is directed
inwards, as depicted in Fig. 16.

In summary, a closed, bounded region Q of the phase plane has been obtained,
which contains no fixed points and such that all trajectories of the system enter Q
and remain inside forever. Then, all conditions of the P-B theorem are fulfilled, and
it can be assured that any trajectory of the system is attracted towards a closed orbit
as t → ∞, if it is not a closed orbit itself.

Finally, it should be noted that, although the P-B theorem does not guarantee that
all trajectories tend to the same closed orbit, all the numerical experiments conducted
show the presence of only one stable limit cycle, namely that created by the Hopf
bifurcation. This suggests that, for a system verifying (89), all the system dynamics
is attracted towards a unique limit cycle.
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Fig. 16 Flow on the
boundary of region Q
(dashed), under conditions
(89)

2.7 Discussion

Time validity

A crucial point in any perturbation analysis is the time scale for which the obtained
approximate solution is valid. It has been shown in Sect. 2.3 that the solution given
by the reduced system is valid, at least, for a time scale τ = O(1/ε) –see Fig. 8–.

However, the situation is even better than that. From the Averaging Theory, it is
known [18], that the asymptotic approximations attained through averaging are valid
for all time, whenever they are attracted by a stable fixed point or a stable limit cycle.
In the latter case, the uniform validity holds for all variables except the angular one,
i.e. the variable measuring the flow on the limit cycle. As will be seen later, all the
numerical solutions obtained in this chapter fulfil the above condition of attraction.

Comparison with other authors’ results

In this subsection, the presented approach and results are compared to some proposed
by other authors.

First of all, as far as the authors know, there has been no attempt in the literature
to use the SPT for the analysis of nonideally excited systems. Thus, the analytical
procedure addressed in this Chapter appears to be a novel approach to the problem.

On the other hand, the possibility of a Hopf bifurcation on the right branch of the
vibration torque curve (Fig. 11b.2) has been addressed. An important implication of
this result is that the stability of the stationary solutions near resonance does not only
depends on the comparison between the slopes of the two torque curves (η ≶ d), as
commonly stated in the literature [9, 10, 12, 17]. Let us try to explain this divergence
in the results.
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Kononenko’s book [10] is one of the most relevant references in the subject. He
considered several linear and nonlinear systems excited by nonidealmotors. By using
the averaging method, he was able to analytically investigate the stationary motions
of the motor and their stability. His approach was as follows. Considering the rotor
speed to be in the vicinity of resonance, he expanded it as

φ̇ = 1 + Δ, Δ = εσ. (91)

Thus, he found equations of motion of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ȧ = O(ε)

β̇ = −εσ + O(ε)

Δ̇ = O(ε)

φ̇ = 1 + Δ

Δ = εσ

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (92)

which is a system analogous to (37). Then, he averaged (92) over the fast angle φ,
obtaining an averaged system of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ȧ = O(ε)

β̇ = −εσ + O(ε)

Δ̇ = O(ε)

Δ = εσ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (93)

This averaged system is completely analogous to system (39), obtained in the
present chapter. The only difference lies in the fact that Kononenko used the evolution
equation for Δ, instead of that for σ . This has an important consequence. From (39),
it is clear that σ is a fast variable, while a and β are slow. This property was exploited
in Sect. 2.3 to obtain a reduced 2D system (46), by using the SPT. The analysis of the
fixed points of this reduced system and their stability has revealed the possibility of
Hopf bifurcations, and conditions for their appearance have been derived in Sect. 2.4.
However, the form of the averaged Eq. (93), used by Kononenko, doesn’t evidence
so clearly the fact that σ is a fast variable. Then, instead of taking advantage of this
separation in the time scales through the SPT, he directly investigated system (93),
which did not allow him to obtain analytical conditions for the existence of Hopf
bifurcations.

While several authors followed Kononenko’s approach [9, 17], Blekhman
proposed a completely different one, based on the ‘method of direct separation
of motions’ [12]. With this procedure, he came to the conclusion that the system
dynamics is governed by equation

I φ̈ = Lm
(
φ̇
)+ V

(
φ̇
)

(94)
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where dimensional variables have been used. In (94), V
(
φ̇
)
represents the torque on

the rotor due to vibration. Based on this equation, Blekhman deduced the same result
as Kononenko regarding the stability of stationary solutions, namely, that stability
changes when the driving torque curve and the vibration torque curve are tangent.

It is worth noting that Blekhman’s approach is not applicable under the assump-
tions of the present chapter. The reason is that, in general, the torque on the rotor due
to vibration depends on the linear motion of the system, as observed in the second
of Eq. (1). This feature is maintained in the averaged system (39) obtained in this
Chapter, where the vibration torque appears as a function of a, β.

On the contrary, in [12], the vibration torque is written as a function of the rotor
speed –see (94), which implies neglecting the dynamics associated to variables a and
β. This would only be valid if the rotor speed was a much slower variable than those
associated to the linear vibration (a, β). To better understand this point, suppose that,
in system (1), the rotor inertia was O(1/ε), with the rest of the parameters being
O(1). Then, writing I = Ĩ/ε, system (1) would take the form

{
mẍ + bẋ + kx + λx3 = m1r φ̇2 cos φ + O(ε)

Ĩ φ̈ = ε
[
A + Dφ̇ + m1r ẍ sin φ

]
}
. (95)

With this particular scaling of the parameters, Blekhman’s approach would be
valid because the dynamics of linear motion would be much faster than that of the
rotor speed. Then, as predicted by the SPT, the variables associated to the linear
motion would be slaved to the rotor speed. This would in turn allow writing the
vibration torque as a function of the rotor speed, as in (94).

As pointed out above, the assumptions of the present chapter (7)–(9)are not
compatible with the results in [12], because the required difference in the time scales
of the different variables is not satisfied. This can be observed in the averaged system
(39), where we find

{
ȧ = O(ε), β̇ = O(ε), σ̇ = O(1)

}
.

More recently, Bolla et al. [14] used the Multiple Scales method to solve the
same problem studied in this Chapter, under the same assumptions. However, after
obtaining system (39), they conducted the stability analysis considering only the first
two equations in (39) and taking σ as a fixed parameter. As explained at the beginning
of Sect. 2.4, this corresponds to studying the ideal case, where the rotor speed is
externally imposed. Consequently, they did not find the Hopf bifurcations that have
been identified within this work. In fact, Bolla et al. explicitly stated the impossibility
of Hopf bifurcations: ‘This fact eliminates the possibility of a pair eigenvalue pure
imaginary, so this eliminates Hopf bifurcation kind’. Thus, the present Chapter can
be envisaged as an extension of [14], where new bifurcations are encountered due to
the nonideal interaction between motor and vibrating system.
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3 Numerical Simulations

This section presents two main purposes. First, a numerical investigation of the
reduced system (46) is conducted in order to analyse the global bifurcations of limit
cycles. While Sect. 2.5 studies how the Hopf bifurcations give rise to the appearance
of limit cycles, Sect. 3.1 gives some insight about the dynamicalmechanismswhereby
the limit cycles are destroyed. A second subsection is presented where, by comparing
numerical solutions of the original and reduced systems (10) and (46), respectively the
proposed approach is validated. The objective is to demonstrate that the conclusions
attained for the reduced system are also valid for the original system.

3.1 Global Bifurcations of the Limit Cycles

In Sect. 3.1, the creation of limit cycle oscillations (LCOs) throughHopf bifurcations
has been investigated. Now, the opposite question is examined: once a limit cycle
is born, does it exist for every d > dH in the supercritical case –for every d < dH
in the subcritical case–, or is it destroyed at any point? In the latter case, it would
also be interesting to know the dynamical mechanism which makes the limit cycle
disappear.

The aim of this Section is to analyse the global dynamics of the system, tracking
the evolution of the limit cycles in order to find out how they are destroyed –if
they are destroyed at all–. Since this task is in general too difficult to be carried out
analytically, we resort to numerical computation.

The Subcritical Case

Consider the following set of dimensionless parameters:

ξ = 1, α = 1, ρ = 0, aeq = 0.3, z = 1, (96)

which might be associated to dimensional parameters

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = 1 kg
k = 1 N/m

b = 0.002 Ns/m
m1 = 0.001 kg
λ = 0 N/m3

r = 0.1m
I = 5 · 10−3m2kg

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (97)

with ε = 0.001. Obviously, (97) s only one of the many possible sets of dimensional
parameters giving rise to (96).
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Fig. 17 Torque curves
corresponding to parameters
(96)

By using Eqs. (66) and (86), slopes dH and dP can be obtained, as depicted in
Fig. 17.

dH = −0.0715, dP = −0.1431 (98)

According to criterion (87), the Hopf bifurcation is found to be subcritical. Thus,
as represented in Fig. 12, an unstable limit cycle is known to exist for d < dH , within
a certain neighborhood of dH . We are interested in tracking the evolution of this limit
cycle as slope d decreases. By numerically integrating system (46), using embedded
Runge-Kutta formulae of orders 4 and 5, for different values of d, the limit cycle is
found to disappear at d = dC –see Fig. 17, with

dC = −0.0795 (99)

The dynamical mechanism whereby the limit cycle is destroyed, which turns out
to be a homoclinic bifurcation [26], is shown in Figs. 18 and 19 Let us follow the
evolution of the phase portrait. From Fig. 18a, b, the Hopf bifurcation takes place: the
focus becomes stable, while an unstable limit cycle is born around it. In Fig. 19a, the
cycle has swelled considerably and passes close to saddle point S. The homoclinic
bifurcation occurs when the cycle touches the saddle point (d = dC), becoming a
homoclinic orbit. In Fig. 19b, we have d < dC and the loop has been destroyed.

It is worth noting that, when the unstable limit cycle exists –namely, for dC <

d < dH–, it acts as a frontier between the domains of attraction of the two stable
equilibrium points of the system –see Figs. 18b, 19a.

Many other cases exhibiting a subcritical bifurcation, which are not shown here,
have also been numerically solved. In all of them, the unstable limit cycle has been
found to disappear through a homoclinic bifurcation.

The Supercritical Case

Consider the following set of dimensionless parameters:

ξ = 1, α = 2, ρ = −10, aeq = 0.5, z = 1, (100)
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Fig. 18 Phase portraits corresponding to parameters (96). The fixed points are marked with dots.
The dashed loop represents the unstable limit cycle a d = −0.070, b d = −0.073

which might be associated to dimensional parameters

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = 1 kg
k = 1 N/m

b = 0.002 Ns/m
m1 = 0.001 kg
λ = −4 N/m3

r = 0.1m
I = 2.5 · 10−3m2kg

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (101)

with ε = 0.001. Equations (66) and (86) yield the values of slopes dH and dP ,
depicted in Fig. 20.
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Fig. 19 Phase portraits corresponding to parameters (96). The fixed points are marked with dots.
The dashed loop represents the unstable limit cycle a d = −0.078, b d = −0.081

Fig. 20 Torque curves
corresponding to parameters
(100)
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dH = −0.2165, dP = −0.1650 (102)

Criterion (87) allows characterizing thebifurcation as supercritical. Then, as repre-
sented in Fig. 12, it can be assured that a stable limit cycle encircles the unstable
equilibrium for d > dH , within a certain neighborhood of dH . As a matter of fact,
the results of Sect. 2.6 can be used here to investigate the range of slopes d for which
the limit cycle exists.

Consider the curve Tm which intersects Tv at the fixed point under study and is
tangent to curve Tv at some other point close to the peak. Let dT stand for the slope
of that particular torque curve, as displayed in Fig. 20. Then, it is straightforward
to show that, for dH < d < dT , conditions (89) are fulfilled and, consequently, it
can be assured that all system trajectories tend to a periodic orbit. In the case under
analysis, we have

dT = −0.1697 (103)

Note that the Poincaré-Bendixson Theorem gives sufficient, but not necessary,
conditions for the existence of a stable periodic orbit. Thus, it cannot be deduced
from the Theorem whether the limit cycle survives or not when d > dT . To the end
of answering this question, we resort again to a numerical resolution of system (46),
for increasing values of d. The results are displayed in Figs. 21 and 22.

Let us track the evolution of the phase portrait. In Fig. 21a we have d < dH and
all system trajectories are attracted towards the only fixed point of the system. It
may seem from Fig. 21a that trajectories are actually attracted towards a limit cycle
surrounding the fixed point. The reason for this false impression is that the attraction
of the fixed point is very weak, as it is close to becoming unstable (d is close to dH ).
Hence the required time for trajectories to approach the equilibrium is extremely
long.

Figure 21b corresponds to dH < d < dT . The Hopf bifurcation has occurred and,
therefore, the focus has lost its stability at the same time that a stable limit cycle has
appeared around it. Note that, in Fig. 21b, conditions (89) hold. Consequently, all
system trajectories are attracted towards a periodic orbit. Actually, Fig. 21b can be
observed as a particular example of the general picture shown in Fig. 16.

The numerical results mentioned above are only useful to confirm the analytical
developments of previous sections. By contrast, Fig. 22 does provide new informa-
tion about the global dynamics of the system. It shows that the stable limit cycle
is destroyed through a saddle-node homoclinic bifurcation [26], which occurs at
d = dT . This means that the cycle disappears exactly when conditions (89) are not
fulfilled anymore. The mechanism is as follows. At d = dT a new fixed point, which
immediately splits into a saddle and a node, is created through a saddle-node bifurca-
tion. This new equilibrium appears precisely on the limit cycle, transforming it into
a homoclinic orbit. What is found at d > dT , as observed in Fig. 22, is that the limit
cycle has been replaced by a couple of heteroclinic orbits connecting the saddle and
the node.
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Fig. 21 Phase portraits corresponding to parameters (100). The fixed points are marked with dots.
The solid loop represents the stable limit cycle. a d = −0.22, b d = −0.19

Fig. 22 Phase portraits
corresponding to parameters
(100), for d = −0.169. The
fixed points are marked with
dots
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It has been shown that, for the particular set of parameters (100), conditions
(89) are necessary and sufficient for the existence of a stable limit cycle. Thus, the
periodic orbit never coexists with any other attractor of the system. Nevertheless, it
should be stressed that this is not always the case. In fact, cases have also been found
where the stable limit cycle is destroyed through a homoclinic bifurcation, just like
in the subcritical case. In these situations, the global bifurcation occurs at certain
slope dC > dT and, therefore, the limit cycle coexists with a stable equilibrium for
dT < d < dC .

As an example, consider a case with dH satisfying dT < dH < dP . Clearly,
according to (87), the Hopf bifurcation is supercritical. However, it is not possible
for the limit cycle to be destroyed through a saddle-node homoclinic bifurcation,
because the saddle and the node are created before the limit cycle. In fact, in these
cases, the closed orbit has been found to die in the same way as the unstable limit
cycle shown in Fig. 19., i.e. through a homoclinic bifurcation due to the presence of
a saddle point.

In summary, the simulations carried out suggest that, while unstable limit cycles
are destroyed by homoclinic bifurcations, the stable ones can disappear either through
homoclinic bifurcations or saddle-node homoclinic bifurcations.

3.2 Numerical Validation of Analytical Results

A Subcritical Case

Consider again the set of parameters given at (96), which gives rise to a subcritical
Hopf bifurcation, as depicted in Figs. 18 and 19. Two different scenarios are studied,
corresponding to the following slopes of the motor characteristic:

d1 = −0.078, d2 = −0.070. (104)

By comparing (104) with Figs. 18 and 19, it can be verified that, for d = d1, the
system has a stable focus surrounded by an unstable limit cycle, while, at d = d2,
the focus has become unstable through a Hopf bifurcation. As pointed out in Sect.
3.1, the unstable limit cycle for d = d1 is the boundary which separates the basins
of attraction of the two attracting fixed points present in the system–see Fig. 19a.

For d = d1, two sets of initial conditions, I.C. (1) and I.C. (2), are selected, outside
and inside the limit cycle, respectively:

I.C.(1)

{
a0 = 0.2

β∗
0 = −2.8

}
, I.C.(2)

{
a0 = 0.1

β∗
0 = −2.8

}
. (105)

Then, by using relations (47), corresponding initial conditions for the original
system can be computed:
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Fig. 23 Comparison of
numerical solutions of the
original (solid line) and
reduced (dashed line)
systems for parameters (96),
ε = 10−3 and
d = d1 = −0.078. a
Displacements b Rotor
Speed

I.C.(1)

⎧
⎪⎪⎨

⎪⎪⎩

u0 = 0.2
u̇0 = 0

φ0 = 2.8
φ̇0 = 1

⎫
⎪⎪⎬

⎪⎪⎭
, I.C.(2)

⎧
⎪⎪⎨

⎪⎪⎩

u0 = 0.1
u̇0 = 0

φ0 = 2.8
φ̇0 = 1

⎫
⎪⎪⎬

⎪⎪⎭
. (106)

Note that this step has not a unique solution, because different sets of original
initial conditions can produce the same reduced initial conditions.

The obtained numerical solutions are shown in Fig. 23, for ε = 10−3. A good
agreement between solutions of both systems is observed. Clearly, the two considered
sets of initial conditions lead the system to different attractors.

It is convenient to make here an observation about the size of parameter ε. The
procedure used in Sect. 2 to transform the original system into a simpler reduced
system is based on perturbation methods. These techniques are useful for dynamical
systems containing a small parameter ε, and they explain how such systems behave
for a sufficiently small ε. This means that the smaller ε is, the more accurate pertur-
bation predictions are. Figure 23 shows that, for the case under consideration, a value
of ε = 10−3 gives a remarkable accordance between solutions of the original and
reduced system. As an illustrative example, the same numerical computation is done,
for initial conditions I.C. (2) and ε = 10−2. This larger ε gives rise to a less accurate
prediction, as displayed in Fig. 24. The required ε to have an accurate result depends
on the case under study. For instance, in the following simulation (Fig. 25), it was
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Fig. 24 Comparison of
numerical solutions of the
original (solid line) and
reduced (dashed line)
systems for parameters (96),
initial conditions I. C. (2),
ε = 10−2 and
d = d1 = −0.078. a
Displacements b Rotor
Speed

Fig. 25 Comparison of
numerical solutions of the
original (solid line) and
reduced (dashed line)
systems for parameters (96),
ε = 10−4 and
d = d2 = −0.070. a
Displacements b Rotor speed
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necessary to take ε = 10−4 for a good matching between solutions of the exact and
approximate systems. However, in the majority of simulations conducted within this
work, ε = 10−3 proved to be small enough.

Consider now the case d = d2 where, according to Fig. 18a, the focus is unstable
and there is a unique attracting fixed point in the system. Initial conditions

I.C.(3)

{
a0 = 0.25

β∗
0 = −2.65

}
(107)

are selected for the reduced system, from which corresponding initial conditions for
the original system can be obtained:

I.C.(3)

⎧
⎪⎪⎨

⎪⎪⎩

u0 = 0.25
u̇0 = 0

φ0 = 2.65
φ̇0 = 1

⎫
⎪⎪⎬

⎪⎪⎭
. (108)

The original and reduced systems are numerically solved with ε = 10−4 and
initial conditions (108) and (107) respectively. The results are displayed in Fig. 25,
where it is clearly observed how the system moves away from the unstable focus, as
the oscillation amplitude increases, until it is attracted to the stable node.

A Supercritical Case

In order to observe limit cycle oscillations in the original system,weneed to consider a
casewhere a supercritical Hopf bifurcation occurs, giving birth to a stable limit cycle.
Thus, consider again the set of parameters given at (100) and a motor characteristic
with slope d = −0.19, which corresponds to the phase portrait exhibited in Fig. 21b.
With these parameters, the original system of Eq. (10) is numerically solved for
ε = 10−3 and initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

u0 = 0.1
u̇0 = 0
φ0 = 0
φ̇0 = 0

⎫
⎪⎪⎬

⎪⎪⎭
. (109)

The reduced system (46) is numerically integrated as well for comparison. The
associated initial conditions for the reduced system can be computed with the aid of
relations (47):

{
a0 = 0.1

β∗
0 = 5.263

}
. (110)
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With these sets of initial conditions, the obtained results for both systems are
represented in Figs. 26 and 27, exhibiting very good agreement.

It is worth stressing that, as depicted in Figs. 26 and 27, a new kind of behaviour
has been found for the mechanical system under study, which consists in a vibratory
motion of the structure with slowly oscillating amplitude, due to the nonideal inter-
action between exciter and vibrating system. The periodic solutions of the averaged
system correspond to quasiperiodic solutions of the original one.

This type of motion had not been addressed before, to the authors’ knowledge, in
the literature about nonideal excitations. Note that the LCOs give rise, in this case,
to very large variations of the amplitude. Thus, the effect of the studied instability
may be of great importance in real applications.

Fig. 26 Comparison of
displacements obtained by
numerical resolution of the
original (solid line) and
reduced (dashed line)
systems for parameters
(100), ε = 10−3 and
d = −0.19

Fig. 27 Comparison of the
rotor speed obtained by
numerical resolution of the
original (solid line) and
reduced (dashed line)
systems for parameters
(100), ε = 10−3 and
d = −0.19 a Full view b
Close-up around resonance
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4 Summary and Conclusions

The present chapter contains a detailed analytical and numerical investigation of
the dynamics of a 2-DOF mechanical system, consisting in an unbalanced motor
connected to a fixed frame through a nonlinear spring and a linear damper. Thismodel
intends to constitute a simplified representation of a general unbalanced rotating
machine, with the purpose of analyzing the kinds of nonlinear behavior that might
be found in real applications.

In addition to the nonlinearity of the spring, a peculiar type of nonlinearity appears
if the excitation is nonideal, i.e. if there is a significant bidirectional interaction
between the system vibration and the rotation of the motor. The combination of
these two types of nonlinearity gives rise to a rich dynamic behavior that can be
studied analytically and numerically.

The main contributions presented in this chapter are summarized below.

• A novel analytical approach to the problem, which combines an averaging proce-
dure with the Singular Perturbation Theory (SPT), has been proposed. It is worth
stressing that, although both the SPT and the Averaging Method are actually clas-
sical in nonlinear dynamics, they had not been used together before in the context
of nonideal excitations. Thanks to this novel combination of perturbation tech-
niques, the original 4D system is transformed into a reduced 2D system, much
easier to analyse.

• The conditions for stability of equilibria of the reduced system have been analyt-
ically derived. Transcritical and Hopf bifurcations have been found. The Hopf
bifurcation is particularly relevant, for it gives rise to a smaller stable region than
predicted by conventional theories. Consequently, not taking it into account may
be perilous for real applications, since unexpected instabilities could occur.

• TheHopf bifurcations have been analytically investigated, in order to characterize
them as subcritical or supercritical. A very simple criterion, with clear graphical
interpretation, has been obtained to distinguish both types of bifurcations.

• The Poincaré-Bendixson Theorem has been used to find conditions under which
all trajectories in the averaged system are attracted towards a periodic orbit,
corresponding to a quasiperiodic solution of the original system.

• The global bifurcations destroying the stable and unstable limit cycles have
been numerically investigated. These simulations suggest that unstable LCOs are
destroyed through homoclinic bifurcations, while stable LCOs can be destroyed
either through homoclinic bifurcations or through saddle-node homoclinic
bifurcations.

• When an unstable limit cycle exists, the system exhibits two stable equilibrium
points, whose domains of attraction are clearly delimited by the periodic orbit.

• The presence of LCOs in the problem under study has been confirmed by numer-
ically solving the original system of equations. An excellent agreement between
the solutions of the original and reduced systems has been found. In addition,
numerical results show that LCOs can produce very significant variations in the
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vibration amplitude, which suggests that the addressed instability might be of
great relevance in real applications.

• All the analytical developments presented here have been validated by comparing
numerical solutions of the original and reduced systems. In particular, the Hopf
bifurcation existence has been numerically proved, not only for the reduced
system, but, more importantly, also for the original system of equations.

Appendix

This section provides the expressions of parameters fi j and gi j in Eq. (80). These
are simply the coefficients of the nonlinear terms of system (79), which result when
system (73) is transformed according to change of variables (76),

f20 = −3ρaR

4c2

(
3c21 + c22

)− 2c1

(
2ξ

aR
+ 3

4
ρa2

)
(A.1)

f02 = −9ρaRω2
0

4c2
(A.2)

f11 = −3

4
ρω0a

(
a + 3R

c1
c2

)
− 2ξω0

aR
(A.3)

f30 = 9ρc1
4c2

(
c21 + c22

)
(A.4)

f03 = 9ρω3
0

4c2
(A.5)

f21 = 3ρω0

4c2

(
3c21 + c22

)
(A.6)

f12 = 9c1ρω2
0

4c2
(A.7)

g20 =
(
c21 + c22

)

ω0

[
9ρa

4

(
R
c1
c2

+ a

)
+ 4ξ

aR

]
(A.8)

g02 = 3ρω0a

4

(
a + 3R

c1
c2

)
(A.9)

g11 = 3

2
ρa2c1 + 3ρaR

4c2

(
3c21 + c22

)+ 2ξc1
aR

(A.10)
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g30 = − 9ρ

4ω0c2

(
c21 + c22

)2
(A.11)

g03 = −9c1ρω2
0

4c2
(A.12)

g21 = −9c1ρ

4c2

(
c21 + c22

)
(A.13)

g12 = −3ρω0

4c2

(
3c21 + c22

)
, (A.14)

where aeq and Req have been shortly written as a and R, respectively.
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