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Abstract In this paper, the behavior of an electromechanical device for power
production is investigated. The device consists of a motor containing an unbalanced
mass, which has been coupled with a system containing piezoelectric material that
produces an electric current. Thus, the average power produced in the piezoelectric
material subjected to the vibrations of the motor and the fractional dynamics of the
system will be analyzed. For this analysis, the parameter of the fractional derivative
operator and the parameter F for controlling the system are observed. Bifurcation
diagrams and time–frequency analysis method based on synchrosqueezing transform
are used, and the range of the fractional derivative operator parameter near 1, which
modifies the dynamics of the system, is also determined.

Keywords Fractional calculus · Nonlinear dynamics · Synchrosqueezing
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1 Introduction

With the technological advances in recent years, the great demand for energy
consumption has allowed researchers to discover mechanisms that produce energy
in a clean and renewable way. Thus, many works on these mechanisms have been
explored. Examples of these works are those in [1–3] that explore high-degree-of-
freedom mechanisms that convert mechanical energy from applied external forces
into electrical energy.

Several works such as [3, 4] explore the dynamics of mechanisms for energy
production. However, they propose control designs to suppress the chaotic motions.
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Many fractional derivative operators are used to analyze the behavior of elec-
tromechanical structures, an example is the flexibility behavior of microbeams in
MEMS systems. Examples of fractional derivative operators applied for dynamic
analysis are Riemann–Liouville and Grunwald Letinikov [5, 6].

In recent years, new techniques for time–frequency analysis have been proposed,
one emerging technique is the synchrosqueezed transform. Known limitations, such
as tradeoffs between time and frequency resolution, can be overcome by alterna-
tive techniques that extract instantaneous modal components, as presented in the
synchrosqueezed transform. EMD decomposition of a signal into components that
are well separated in the time–frequency plane, allowing reconstruction of these
components [7]. In particular the work presented in [8], provides an overview of
time–frequency reconsignment and synchronization techniques used in multicom-
ponent signals, covering the theoretical background and applications, furthermore it
tries to explain how synchrosqueezing can be seen as a special case of mode enable
reconsignment reconstruction. Methods based on synchrosqueezing transform are
actually an extension of CWT that incorporates elements of empirical mode decom-
position and frequency reassignment techniques. This new tool produces a better-
defined time–frequency representation, allowing the identification of instantaneous
frequencies to highlight individual components.

Synchrosqueezing Wavelet Transform (SWT) is a time–frequency analysis
method [8]. The anti-noise capability and time–frequency resolution of SWT are
improved based on the wavelet transform (CWT). SWT maintains the advantages
of EMD and CWT. SWT is adaptive like EMD and does not depend on the orig-
inal wavelet; the mode mixing problem is significantly improved. Classical time–
frequency analysis methods have been widely used in nonlinear dynamics and chaos
applications [5, 7, 9–12], currently a series of applications based on synchrosqueezing
have been proposed [13–17].

Therefore, will be made a fractional dynamics analysis of the model proposed by
[18, 19] considering Caputo’s fractional derivative operator. However, with a coupled
piezoelectric in the system for the average power output and the exploration of the
proposed fractional mathematical model numerically.

2 Mathematical Background

2.1 Mathematical Model

The mathematical model is based on the one proposed by [20] and the Fig. 1 shows
the mechanism for application the Caputo Operator derivative.

The Eq (1) describe the motor movement and its vertical displacement of the
mass, thus:

ẍ(M + m) + cẋ − md
(
φ̇sin(φ) + φ̇2cos(φ)

) + k1x + k2x
3
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Fig. 1 Scheme of the structure with piezoceramic material coupled

+ θ(1 + θn|x |)q = (M + m)g

φ̈
(
J + md2

) − md ẍ sin(φ) + mgdsin(φ) = �
(
φ̇
)

(1)

ρq̇ − θ(1 + θn|y|)q + q = 0

where M mass is connected to a fixed basement by a non-linear spring and a linear
viscous damper (damping coefficient c). The nonlinear spring stiffness is given by k1x
+ k2x3, where x denotes the structure displacement with respect to some equilibrium
position in the absolute reference frame. The motion of the structure is due to an
in-board non-ideal motor driving an unbalanced rotor. Denoted by φ the angular
displacement of the rotor unbalance, and model it as a particle of mass m and radial
distance d from the rotating axis. The moment of inertia of the rotating part is J. For
the resonant case the structure has an influence on the motor input or output. The
forcing function is dependent of the system it acts on, and the source is of non-ideal
type. And q is electrical current and θ is the linear and θn the nonlinear part.

Considering the following change in variables:
p = ω

�
, ω2 = k1

M+m , γ = k3
(M+m)�6 , ζ = c

(M+m)�
, μ = md�2

(M+m)g , η = gmd

(I+md2)�2 ,

F = M0

(I+d2m)�2 , �
(
φ̇
) = M0

(
1 − ϕ̇

�

)
, x → y = �2

g x and t → τ = �t .

Therefore, we rewrite Eq. (1):

ÿ + ζ ẏ − p2y + γ y3 = 1 + μ
(
φ̈ sin(φ) + φ̇2cos(φ)

) − θ(1 + θn|y|)q
φ̈ = η ÿsin(φ) − ηsin(φ) + F

(
1 − φ̇

)
(2)
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q̇ = 1

ρ
[θ(1 + θn|y|)q − q]

In this way, considering y = x1, ẏ = x2, φ = x3, φ̇ = x4 and q = x5, the system
of first order differential equations is obtained:

ẋ1 = x2

ẋ2 = 1

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1 + μ sin(y3)
)

(
μy24cos(y3) − ηsin(y3) + F(1 − y4)

) − θ(1 + θn|x1|)x5
)

(3)

ẋ3 = x4

ẋ4 = ηsin(y3)

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1 + μy24cos(y3)

+μsin(y3)(−ηsin(y3) + F(1 − y4))) − ηsin(y3) + F(1 − y4)

ẋ5 = 1

ρ
[θ(1 + θn|x1|)x5 − x5]

The Caputo operator is defined as follows [11–18]:

C
a D

q f (t) = 1

�(q − n)

t∫
a

f (n)(τ )dτ

(t − τ)q+1−n (4)

where n − 1 < q < n, in our considerations n = 1, thus, 0 < q < 1 and �(.)

is defined as the gamma function. Therefore, rewrite the System of Differential
Equations considering the Caputo operator for analyses:

C
a D

qx1 = x2

C
a D

qx2 = 1

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1

+μ sin(y3)
(
μy24cos(y3) − ηsin(y3) + F(1 − y4)

))

−θ(1 + θn|x1|)x5)
C
a D

qx3 = x4 (5)

C
a D

qx3 = ηsin(y3)

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1

+μy24cos(y3) + μsin(y3)(−ηsin(y3) + F(1 − y4))
)

− ηsin(y3) + F(1 − y4)

C
a D

qx5 = 1

ρ
[θ(1 + θn|x1|)x5 − x5]
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2.2 Synchrosqueezed Transform

STFT and CWT are the main approaches to simultaneously decompose a signal into
time and frequency components. Known limitations, such as tradeoffs between time
and frequency resolution, can be overcome by alternative techniques that extract
instantaneous modal components. EMD aims to decompose a signal into compo-
nents that are well separated in the time–frequency plane, allowing reconstruction
of these components. On the other hand, a recently proposed method called the
synchrosqueezing transform (SST) is an extension of the wavelet transform that
incorporates elements of empirical mode decomposition and frequency reassignment
techniques. This new tool produces a well-defined time–frequency representation,
allowing the identification of instantaneous frequencies in non-stationary signals to
highlight individual components.

SST was initially proposed in the wavelet case [8] and then later extended to the
STFT case [7, 8]. In fact, it corresponds to a nonlinear operator that bounces the
time–frequency representation of a signal, combining the localization and scattering
properties of the Reassignment Methods with the invertibility property of linear
time–frequency representations.

2.3 Synchrosqueezing Wavelet Transform

The Synchrosqueezing Wavelet Transform calculation consists of three steps. The
first step is to calculate the CWT. In the second step, a preliminary frequency ω (a,
b) is obtained from the oscillatory behavior of Wx (a, b) at a, so that:

ω(a, b) = −i(Wx (a, b))−1 ∂

∂a
Wx (a, b) (6)

In the third step the transformation from the time scale plane to the time–frequency
plane is performed. Each value of Wx (a, b) is assigned again to (a, ωl). Where ωl
denotes the frequency that is closest to the preliminary frequency of the original
(discrete) point ω (a, b). This operation is presented in Eq. (7):

T (a, ω1) = (�ω)−1
∑

bk :|ω(a,bk )−ωl |≤�ω/2
Wx(a, bk)b

−3/2
k �b (7)

In Eq. (7) �ω denotes the width of each frequency b in �ω = ω_l-ω_(l-1) and
equivalently for �b. SWT can obtain a high-resolution time–frequency spectrum by
compressing (reassigning) theCWT result. However,when the amplitude of the high-
frequency components of a signal is low, it is difficult to identify the components in
the CWT spectrum or the SST spectrum that is based on the CWT result. In contrast
to CWT, the SWT transform is able to more efficiently display the high frequency,
low amplitude components of a signal and perform a lossless inverse transformation.
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Originally proposed in the wavelet case, the SST has been similarly extended to
the STFT context, known as the Fourier-based synchrosqueezing transform (FSST).
A long study and in-depth formulation on STFT, CWT and FSST can be seen in
[21–24].

3 Numerical Results and Discussion

For the numerical analysis, using the following initial conditions x0 = [0,0,0,0]
and for analysis corresponds to q = [0.978- 1]. Thus, we analyzed the behavior of
fractional dynamics for values close to 1, which we could observe some chaotic
windows in the system. The parameters is: η = 0.05, μ = 8.737, p = 1.0, γ = 9.0,
θ = 0.1,θn = 0.5, ζ = 0.2, θ = 0.1 and θn = 0.5 [20].

The numerical method for solving the Eq. (5) is composed of the initial value
problem and the variational system and Adams–Bashforth-Moulton scheme for
fractional differential equations [20–24], with a h = 0.001 and a time of 105 [s]
considering 40% of total time with transient time. Utiliza-se métodos de análise
tempo-frequência para caracterizar a dinâmica caótica do sistema, ente eles CWT
e métodos baseados em synchrosqueezing transform, em especial, Fourier-based
synchrosqueezing transform e synchrosqueezing wavelet transform [4, 9, 14].

Therefore, Fig. 2 shows the behavior of the bifurcation diagrams of the systems,
and considering F = [23., 46.6, 70], we can observe the emergence of chaotic
windows with the variation of the parameter of the fractional derivative.

Figure 2a observes the chaotic windows at q = [0.9790:9793], [0.9816, 0.9822],
[0.9871, 0.9873], [0.9887, 0.9936] and q = [0.995; 1.0] with parameter F = 23.3.
According to [9] for F= 23.3 and q= 1, which results in the conventional derivative
operator, so the system exhibits chaotic regime. This happens for q = 1 at F = 46.6
and 70 has a chaotic behavior which corroborates the data collected by [9], where
for systems with the entire derivative operator the system is in a chaotic regime. In
Fig. 2b with F = 46.6 has the following chaotic windows q = [0.978, 0.9783], q =
[0.9875, 0.9876], q = [0.9937, 0.9941], q = [0.9946, 0.9952] and q = [0.9976;1]
and in Fig. 2c q = [0.978; 0.9737], q = [0.9871; 0.9875], q = [0.9919; 0.992], q
= [0.9921; 0.9928], q = [0.9942; 0.996] and q = [0.9983; 1]. In Fig. 2c with F =
70 has the following chaotic windows q = [0.978, 0.9783], q = [0.9875, 0.9876],
q = [0.9937, 0.9941], q = [0.9946, 0.9952] and q = [0.9976;1] and in Fig. 3c q =
[0.978; 0.9737], q = [0.9871; 0.9875], q = [0.9919; 0.992], q = [0.9921; 0.9928], q
= [0.9942; 0.996] and q = [0.9983; 1]. Thus, through the bifurcation diagrams we
can observe the correspondence of the intervals in which the chaotic behavior of the
subintervals contained in the interval q = [0.978, 1.0].

Next in Fig. 3 is presented the time–frequency analysis of the system for F =
23 and q = 0.98. In Fig. 3a the phase diagram is presented. Already in Fig. 3b is
presented the response of the system in the frequency domain to CWT and it is
possible to identify the periodicity of the system, as well as to identify the dominant
frequency and the multiple frequencies, typical of systems with cubic nonlinearity,
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Fig. 2 Bifurcation diagram for q = [0.978, 1.0]: a F = 23.3, b F = 46.6 and c F = 70

(a) (b)

Fig. 3 F = 23, q = 0,98: a Phase diagram, b CWT



182 M. Varanis et al.

but there is still an energy dispersion in the time–frequency plane, which does not
make the analysis suitable for application. Meyer’s wavelet [4] was used in the CWT
analysis.

In Fig. 4 the time–frequency analysis of the system (F = 23 and q = 0.98)
using synchrosqueezing transform based methods is presented. In Fig. 4a the system
response is analyzed using the Fourier-based synchrosqueezing transform (FSST),
it is possible to characterize the periodicity of the system, as well as identify the
dominant frequency and the multiple frequencies, but the method presents low reso-
lution in the time–frequency plane. In Fig. 4b is presented the system response in
the frequency domain using SWT, in this case it is possible, quite clearly, to identify
the periodicity of the system, as well as to identify the dominant frequency and the
multiple frequencies and notice that the energy dispersion in the time–frequency
plane is very small.

(a) (b)

Fig. 4 F = 23, q = 0,98: a S-SFT, b SWT

(a) (b)

Fig. 5 F = 23, q = 1: a Phase diagram, b CWT
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(a) (b)

Fig. 6 F = 23, q = 1: a S-SFT, b SWT

In Fig. 5 is presented the time–frequency analysis of the system for F = 23 and
q = 1, for these parameters the system exhibits chaotic dynamics, as shown in the
bifurcation diagram (Fig. 2a). In Fig. 5a the phase diagram of the system is presented.
In Fig. 5b the response of the system in the frequency domain to CWT is presented,
it is still possible to identify the dominant frequency, but the response presents a
large scattering and abrupt change in the frequency spectrum, typical characteristic
of chaotic systems [4, 14].

Figure 6 presents the time–frequency analysis of the system (F = 23 and q = 1)
using synchrosqueezing transform based methods. The system response is analyzed
using FSST (Fig. 6a), it is noted that there was large scattering and abrupt change in
the frequency spectrum, but due to low resolution and large energy dispersion in the
time–frequency plane, it is not possible to characterize the chaotic dynamics of the
system. In Fig. 6b is presented the response of the system in the frequency domain
using SWT, in this case it is possible to identify the dominant frequency and the
response presents a large scattering and abrupt change in the frequency spectrum,
but the energy dispersion in the time–frequency plane is very small, which makes
the technique quite accurate and appropriate.

Next in Fig. 7 is presented the time–frequency analysis of the system for F= 46.6
and q = 0.985. Again, the phase space is presented (Fig. 7a) and the CWT response
of the system in the frequency domain (Fig. 7b). The response via CWT allows the
periodicity of the system to be identified, as well as easily identifying the dominant
frequency and multiple frequencies.

In Fig. 8 the time–frequency analysis of the system (F= 46.6 and q= 0.985) using
synchrosqueezing transform based methods is presented. The response of the system
using FSST is presented in Fig. 8a, the large energy dispersion and low resolution in
the time–frequency plane do not allow to characterize the periodicity of the system,
also the dominant frequency and multiple frequencies cannot be identified with the
necessary clarity. In Fig. 8b the response of the system (F = 23 and q = 0.98) in
the frequency domain using SWT is presented, in this case it is possible to identify
the periodicity of the system, as well as to identify the dominant frequency and the
multiple frequencies.
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(a) (b)

Fig. 7 F = 46.6, q = 0.985: a Phase diagram, b CWT

(a) (b)

Fig. 8 F = 46.6, q = 0.985: a S-SFT, b SWT

(a) (b)

Fig. 9 F = 46.6, q = 1: a Phase diagram, b CWT
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(a) (b)

Fig. 10 F = 46,6, q = 0,995: a FSST, b SWT

Figure 9 presents the time–frequency analysis of the system for F = 46.6 and q
= 1, for these parameters the system exhibits chaotic dynamics as presented in the
bifurcation diagram (Fig. 2b). In Fig. 9a the phase diagram of the system is presented.
In Fig. 9b is presented the response of the system in the frequency domain to CWT,
one can clearly identify the dominant frequency, but the response presents a large
scattering and abrupt change at the beginning of the frequency spectrum, indicating
chaos in the system.

In Fig. 10a the response of the system using FSST is presented, it can be seen
that there was a large scattering and abrupt change in the frequency spectrum, but
due to low resolution and large energy dispersion in the time–frequency plane, it is
not possible to clearly characterize the chaotic dynamics of the system. The SWT
analysis (Fig. 10b) shows that it is possible to identify the dominant frequency and a
large scattering and abrupt change in the frequency spectrum at the beginning of the
response, again the low energy dispersion allows the characterization of the chaotic
dynamics of the system.

Next in Fig. 11 is presented the time–frequency analysis of the system for F = 70
and q= 0.995. Again, the phase space is presented (Fig. 11a) and the system response
in the frequency domain to CWT (Fig. 11b). The response via CWT allows, as in
the previous cases, the periodicity of the system to be identified, as well as easily
identifying the dominant frequency and multiple frequencies. The same occurs with
analysis via FSST (Fig. 12c) and SWT (Fig. 12d).

Finally, Fig. 13 presents the time–frequency analysis of the system for F= 70 and
q= 0.999. The phase space (Fig. 13a) shows the rich dynamics of the system and the
response of the system in the frequency domain to CWT (Fig. 13b) characterizing
the chaotic dynamics in the system. In (Fig. 14a) shows the response of the system
with the use of FSST, it is noted that there was large scattering and abrupt change in
the frequency spectrum, as in previous cases, it is not possible to clearly characterize
the chaotic dynamics of the system. The analysis using SWT (Fig. 14b), shows that
it is possible to identify the dominant frequency and a large scattering and abrupt
change in the frequency spectrum, in order to characterize the chaotic dynamics of
the system.
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(a) (b)

Fig. 11 F = 70, q = 0,995: a Phase diagram, b STFT

(a) (b)

Fig. 12 F = 70, q = 0.985: a S-SFT, b SWT

(a) (b)

Fig. 13 F = 70, q = 0.999: a Phase diagram, b CWT
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(a) (b)

Fig. 14 F = 70, q = 0,999: a S-SFT, b SWT

4 Conclusion

The fractional model for energy harvesting presented in the interval q = [0.958, 1] a
chaotic behavior for the structure with Caputo’s fractional derivative operator. Thus,
bifurcation diagrams and synchrosqueezing-based transform were used to analyze
the location of these windows, for a set of F parameters and characterize the chaotic
dynamics of the system. Therefore, it was determined for values close to q = 1,
regions that exhibited chaotic and periodic behavior. These regions are confirmed in
the bifurcation diagrams, CWT and SWT. The analysis of the fractional dynamics
of the system not only corroborates the generalization of the mathematical model
in a numerical form, but also in the behavior with the Caputo fractional derivative
operator. CWT-based techniques show good resolution in the time–frequency plane,
but CWT still overshadows other components when there are high concentrations of
energy at some signal frequency.Applications ofwavelet transform-based techniques
to nonlinear systems have demonstrated the ability of this technique to monitor
signal frequency variations and detect short-term transients with excellent time–
frequency localization, far exceeding the limitations presented by Fourier transform-
based techniques such as STFT.

Finally, the results obtained using the synchrosqueezed wavelet transform were
excellent, showing very good time–frequency resolution and minimal energy
dispersion, proving adequate to characterize the chaotic dynamics of the system.
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