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Abstract In this paper, analysis of the nonlinear dynamics responses of a structure
equipped with a vehicle suspension that uses a fluid with magneto rheological char-
acteristics to control the possible instability and chaotic motion. It is a spray orchards
of tower type, with an unbalanced electric motor (Non-ideal) located at the top of
the tower representing the concentrated mass of their fans, which represents the real
system the best way possible. The simulations show that the MR suspension reduce
the amplitude of oscillations of all themasses of the system, being themost important
the mass of the cart and fans. The influence of the non- ideal motor is important to
check the influence of a possible imbalance of fans.

Keywords Spray orchards type tower · Nonlinear dynamics · Non-ideal system ·
Vehicle suspension · Magneto- Rheological fluid damper

1 Theoretical Mathematical Model of the Tower-Type
Orchard Sprayer

The study of the [6, 8] nonlinear dynamics of an agricultural tower pulverizer, coupled
with a vehicle suspension, that is subject to random excitations due to soil irregu-
larities, modeled as an inverted double pendulum over a moving suspension, with
three degrees of freedom (one translation and two rotations). To take into account
the random loadings, a parametric probabilistic approach was employed, where the
external force was assumed to be a harmonic random process with random ampli-
tude and frequency. The probability distribution of these random [8] parameters was
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constructed based on the known information through the maximum entropy prin-
ciple. The results of numerical simulation show that large discrepancies in the system
response can be seen when one compares the mean of the stochastic model with the
nominal (deterministic) model. It is also noted that these responses are subject to a
high level of uncertainty. Furthermore, an analysis of the system response probability
distributions [6, 8] shows that they present asymmetries with respect to mean and
unimodal behavior.

Some considerations were taken to arrive at the theoretical model. Initially, the
simplifications [14, 15] will be considered. Where, initially, all the masses (truck,
axle, wheel and tower with its eight fans) are concentrated in their centers of gravity.
One of the main simplifications to be considered is that the operation of the sprayer
will take place in short periods of time, because if long periods are taken the mass of
the reservoir tankwill have its center of gravity shifted, due to the fact that the sprayer
starts the work with the reservoir full of defensive liquid and it is discharging during
the spraying operation, until it finishes empty. Therefore, the mass of the reservoir
tank is considered constant.

Once this is done, the reservoir mass and the chassis mass are grouped into a
single invariant center of gravity m2. All the concentrated masses of the eight fans
are replaced by a single mass which, added to the motor mass, results in m3, and
the unbalanced mass of the direct current electric motor is m0, located at the top of
the tower. The tower, in turn, is represented by a negligible mass element of length
L2. The pivot point of the tower is represented by a point P, located at a distance L1

above the trailer’s center of gravity. This same junction P is represented by an elastic
element kt and damping ct torsional and linear.

Starting from the premise that,when the system rotates around the point of concen-
trated massm2, the left and right tires have the same displacement, in opposite direc-
tions; thus, it is considered that the system only presents a translational movement in
the vertical direction. Therefore, the theoretical system can be considered as being of
¼ of a vehicle or quarter-car, taking into account the displacement of only one of the
wheels. This wheel is then represented by an element of massm1with linear stiffness
k1. And a vehicle-type MR damper, represented by F, is coupled to the system, in
parallel to the viscous spring-damper suspension k2 and c, respectively, according to
the Bounc-Wen model.

An X–Y coordinate system is adopted, with X at ground level and Y passing
through the center of mass of truck m2. The tower will then have an angular offset
φ1. It is the angular displacement of the unbalancedmass is φ2. Excitements resulting
from irregularities presented by the soil of the orchards cause displacements in the
tires represented by ye1; mathematically ye1 represents an excitation source that can
be of the harmonic, transient, etc. type.

However, it is observed that in the simplification presented the model presented
has four degrees of freedom, with only the mass of the fans concentrated at the top of
the tower, called m2 in the figure, and without taking in considering the mass of the
wheels. Finally, the next simplification will be to add the unbalanced mass engine
at the top of the tower and also the mass of a wheel, thus transforming the model
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Fig. 1 Theoretical mathematical model of the turret sprayer. a trailer and tower coupled and b
scheme of forces applied

into a ¼ vehicle (Quarter-car). Finally, all the simplifications mentioned above are
represented in a theoretical scheme presented in the following figure, Fig. 1.

The differential equations of motion are obtained from the Method of Energies
and Conservative Forces, which is employed using the so-called Euler–Lagrange
Equations.

2 Euler–Lagrange Energy Method

Euler–Lagrange equation is defined as:

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= Q j (1)

with j = 1,2,3…. Where L = TT − VT , called Lagrangian where TT represents the
total kinetic energy of the system, VT is the work of conservative forces (potential
energy of the chassis, tower and unbalanced motor masses, and the potential energy
of the elastic elements). And Q is the work of all non-conservative forces (such as
the energy dissipated by the damping elements).
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2.1 Total Kinetic Energy of the System

The total kinetic energy of the TT system is the sum of the kinetic energy portions
of the trailer, the tower, the unbalanced mass of the engine, and the tire, which are
represented by Tc, Tt , To and Tp respectively. TT is then defined as:

TT = Tp + Tc + Tt + T0 (2)

Where:

Tp = 1

2
m1V

2
1 = 1

2
m1

(
ẋ21 + ẏ21

)
(3)

Tc = 1

2
m2V

2
2 = 1

2
m2(ẋ

2
1 + ẏ22 ) (4)

Tt = 1

2
(m3)V

2
3 = 1

2
(m3)

(
ẋ22 + ẏ23

) + 1

2
m3L

2
2φ̇

2
1 (5)

With m3 = M +m, where M represents the concentrated mass of the fans and m
the mass of the motor. The term m3L2

2 in Eq. 5 represents the moment of inertia of
the tower.

To = 1

2
m0

(
ẋ20 + ẏ20

) + 1

2
m0r

2φ̇2
2 (6)

The horizontal and vertical positions of the m3 tower mass are given as follows,
respectively: The horizontal position is:

x2 = L2sinφ1 − x1
x2 = L2sinφ1 − x1 (7)

and its first and second derivatives, respectively in time:

ẋ2 = L2φ̇1cosφ1 − ẋ1

ẍ2 = ẍ1L2φ̈1cosφ1 − L2φ
2
1sinφ1

The vertical position is:

y3 = y2 + L1 + L2cosφ1 (8)

and its first and second derivatives, respectively in time:

ẏ3 = ẏ2 + L1 + L2φ̇1sinφ1
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ÿ3 = ÿ2 − L2φ̈1sinφ1 − L2φ̇
2
1cosφ1

The horizontal and vertical positions of the unbalanced massm0 can be described
as follows:

x0 = L2sinφ1 − rcosφ2 (9)

y0 = L2cosφ1 − rsinφ2 + L1 + y2 (10)

With its derivatives ẋ0 and ẏ0 in time given by:

ẋ0 = φ̇1L2cos + φ̇2rsinφ2

ẏ0 = −φ̇1L2sinφ1 + φ̇2rcosφ2 + ẏ2

representing the coordinates of the angular velocity of the unbalanced mass m0.
In this way, substituting Eqs. 3–6 in Eq. 2, we obtain:

Tt = 1
2m1

(
ẋ21 + ẏ21

) + 1
2m2

(
ẋ21 + ẏ22

) + 1
2m3

(
ẋ22 + ẏ23

)
+ 1

2m3L2
2φ̇

2
1 + 1

2m0
(
ẋ20 + ẏ20

) + 1
2m0r2φ̇2

2
(11)

with respect to time of Eqs. 7 and 8 in the previous Eq. 11, we have:

Tt = 1

2
m1 ẋ

2
1 + 1

2
m1 ẏ

2
1 + 1

2
m2 ẋ

2
1 + 1

2
m2 ẏ

2
2+

1

2
m0

(
ẋ20 + ẏ20

) + 1

2
m3L

2
2φ̇

2
1 + 1

2
m0r

2φ̇2
2

1

2
m3

(
ẋ1 + L2φ̇1cosφ1

)2 + 1

2
m3

(
ẏ2 − L2φ̇1sinφ1

)2+ (12)

And now the first time derivatives of Eqs. 9 and 10 in Eq. 12, you get:

TT = 1

2
m1 ẋ

2
1 + 1

2
m1 ẏ

2
1 + 1

2
m2 ẋ

2
1 + 1

2
m2 ẏ

2
2

+ 1

2
m3

(
ẋ1 + L2φ̇1cosφ1

)2 + 1

2
m3

(
ẏ2 − L2φ̇1sinφ1

)2+
1

2
m0

(
φ̇1L2cosφ1 + φ̇2rsinφ2

)2 + 1

2
m3L

2
2φ̇

2
1 + 1

2
m0r

2φ̇2
2

1

2
m0

(−φ̇1L2sinφ1 + φ̇2rcosφ2 + ẏ2
)2

(13)

TT = 1

2
m3 ẋ

2
1 + 1

2
m3 ẏ

2
2 − m3 ẋ1L2φ̇1cosφ1 − m3 ẏ2L2φ̇1sinφ1+
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1

2
m3L

2
2φ̇

2
1

(
cos2φ1 + sin2φ1

) + 1

2
m0φ̇

2
1L

2
2

(
cos2φ1 + sin2φ1

)+
1

2
m0φ̇

2
2r

2(cos2φ2 + sin2φ2
)−

m0φ̇1φ̇2L2r(cosφ2sinφ1 − cosφ1sinφ2)+
1

2
m0 ẏ

2
2 − m0 ẏ2φ̇1L2sinφ1 + m0 ẏ2φ̇2rcosφ2+

1

2
m1 ẋ

2
1 + 1

2
m1 ẏ

2
1 + 1

2
m2 ẋ

2
1 + 1

2
m2 ẏ

2
2 + 1

2
m3L

2
2φ̇

2
1 + 1

2
m0r

2φ̇2
2 (13b)

The lateral displacement of the trailer’s center of gravity, x1, limited by the tires,
is very small compared to the magnitudes of the other displacements. Thus, it will
be assumed that x1 is constant [13]. So: if constant, then: if x1 ∼= constant, then:
ẋ1 ∼= ẍ1 ∼= 0.

In this way, making use of the trigonometric identities below:

sin2φ2 + cos2φ2 = 1

cosφ2cosφ1 + sinφ1sinφ2 = cos(φ2 − φ1)

we have the following equation for the total kinetic energy of the system:

TT = 1

2
m3 ẏ

2
2 − m3 ẏ1L2φ̇1sinφ1 + 1

2
m3L

2
2φ̇

2
1 + 1

2
m0φ̇

2
1L

2
2

+ 1

2
m0r

2φ̇2
2 − m0φ̇1φ̇2L2r cos(φ2 − φ1) + 1

2
m0 ẏ

2
2−

m0 ẏ2φ̇1L2sinφ1 + m0 ẏ2φ̇2rcosφ2 + 1

2
m1 ẏ

2
1 + 1

2
m2 ẏ

2
2+

1

2
m3L

2
2φ̇

2
1 + 1

2
m0r

2φ̇2
2 (14)

TT = 1

2
(m2 + m3 + m0)ẏ

2
2 − (m3 + m0)L2 ẏ2φ̇1sinφ1+

m3L
2
2φ̇

2
1 + m0r

2φ̇2
2 + m0 ẏ2φ̇2rcosφ2−

m0r φ̇1φ̇2L2 cos(φ2 − φ1) + 1

2
m1 ẏ

2
1 + 1

2
m0L

2
2φ̇

2
1 (14a)

2.2 Total Potential Energy of the System

The total potential energy of the system or the work of the conservative forces of the
VT system is given by the sum of the potential energy portions of the elastic elements
of the K1, K2 and KT system, as follows:
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VT = EPk1 + EPk2 + EPkT (15)

The previous potential energy equation can then be rewritten as follows:

VT = 1

2
K1

(
�yK1

)2 + 1

2
K2

(
�yK2

)2 + 1

2
KT

(
�yKT

)2
(16)

Replacing the appropriate displacements, Eqs. 8 and 10, we obtain the following
equation:

VT = 1

2
K1(y1 − ye1)

2 + 1

2
K2(y2 − y1)

2 + 1

2
KTφ2

1 (17)

VT = 1

2
K1

(
y21 − 2y1ye1 + y2e1

)2 + 1

2
K2

(
y21 − 2y1y2 + y21

)2 + 1

2
KTφ2

1 (17a)

From the previous equation (Eq. 17a), the effect of gravity as a conservative force
was disregarded, due to its little influence on the response of the system.

2.3 Work of Non-Conserved Forces

The work of the non-conserved forces or total damping of the Q system represents
the total energy dissipated by the damping elements, and is given by the sum of
the energy dissipated by the suspension damper (Fc) and by the junction damper
torsional (FcT ), in addition to the energy dissipated by the damper with MR (F), as
follows:

Q = Fc + FcT + F (18)

So the previous equation is rewritten as follows:

Q = C(�ẏC) + CT (�ẏCT ) + F (19)

where the terms �ẏC and �ẏCT represent the deformation velocities of the damping
elements, respectively. And they are given as follows:

�ẏC = ẏ2 − ẏ1 (20)

�ẏCT = φ̇1 (21)

The strength of theMRdamper ismathematically represented by the Bounce-Wen
model. And then, replacing Eqs. 20 and 21 in 19, you can rewrite the expression for
Q as follows:
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Q = C(ẏ2 − ẏ1) + CT
(
φ̇1

) + αz (22)

where Va is the supply voltage, ia is the supply current, Φ is the magnetic flux and
ϕ is the angular position of the motor [12].

La
dia
dt

+ Raia + Eb = Va (23)

where Eb is the counter-electromotive force between the motor armature terminals
given by:

Eb = kE
dφ2

dt where kE is the motor voltage constant and φ2 the motor angular
position. Also according to [12], to study the interaction between the tower and the
motor, the direct current motor is considered in a simplified way, and therefore the
torque generated by the motor can be expressed as follows:

Mm = a
∧ − b

∧

φ̇2 (24)

where parameter â is related to the electrical voltage applied to the direct current
motor and b

∧

related to the type of motor used, both defined as follows, respectively:

a
∧ = kmVa

Ra
(25)

b
∧

= kmkb
Ra

(26)

where Ra is the motor electrical resistance, kb the motor voltage constant, Va the
input voltage applied to the motor armature, km is the motor torque constant.

Then, replacing Eq. 24, rewrite Eq. 22 as follows:

Q = C(ẏ2 − ẏ1) + CT
(
φ̇1

) + αz + a
∧ − b

∧

φ̇2 (27)

2.4 Application of the Euler–Lagrange Equation

The Lagrangian of the system under study is calculated by the difference between
the total kinetic energy, the total potential energy and the dissipation energy of the
system, is L = TT − VT . The Lagrangian is then obtained through the difference
between Eqs. 7, 10 which results in [5]
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L = 1

2
(m2 + m3 + m0)ẏ

2
2 − (m3 + m0)L2 ẏ2φ̇1sinφ1

+ m3L
2
2φ̇

2
1 + m0r

2φ̇2
2 − m0 ẏ2φ̇2rcosφ2−

m0r φ̇1φ̇2L2 cos(φ2 − φ1) + 1

2
m1 ẏ

2
1 + 1

2
m0L

2
2φ̇

2
1−

1

2
K1

(
y21 − 2y1ye1 + y2e1

)2 + 1

2
K2

(
y21 − 2y1y2 + y21

)2 + 1

2
KTφ2

1 (28)

For the application of the Lagrange Equation, the generalized coordinates of the
system in question must be determined. For the system of the present work, the
following generalized coordinates are defined: y1, y2, φ1 and φ2, so according to
the Lagrange Equation, the Lagrangian (Eq. 16) must be derived in relation to these
generalized coordinates.

But, once the equations of kinetic, potential and dissipation energies are deduced,
the Hamilton Principle can be used for each one of the generalized coordinates. As
will be shown below: For the y1 coordinate, vertical displacement of the tire:

d
dt

(
∂L
∂ ẏ1

)
−

(
∂L
∂y1

)
= Q1

d
dt

(
∂TT
∂ ẏ1

− ∂VT
∂ ẏ1

)
−

(
∂TT
∂y1

− ∂VT
∂y1

)
= Q1

(29)

But: ∂VT
∂ ẏ1

= 0 e ∂TT
∂y1

= 0 so the previous equation looks like this:

d

dt

(
∂TT
∂ ẏ1

)
+ ∂VT

∂y1
= Q1

m1 ÿ1 = −K1(y1 − ye1) + K2(y2 − y1) + C(ẏ2 − ẏ1) − δz (30)

where z is the evolutionary variable given by:

ż = −γ |ẏ2 − ẏ1|z|z|n−1z − β(ẏ2 − ẏ1)|z|n + λ(ẏ2 − ẏ1)

More details on the evolutionary variable z [5].
And ye1 is considered to be an excitation of the harmonic type and given as follows

ye1 = Acos(wt), where A is the amplitude that represents the irregularities of the
ground surface.

For the y2 coordinate, vertical displacement of the chassis:

d
dt

(
∂L
∂ ẏ2

)
−

(
∂L
∂y2

)
= Q2

d
dt

(
∂TT
∂ ẏ2

− ∂VT
∂ ẏ2

)
−

(
∂TT
∂y2

− ∂VT
∂y2

)
= Q2

(31)

But: ∂VT
∂ ẏ2

= 0 e ∂TT
∂y2

= 0 so the previous equation looks like this:
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d

dt

(
∂TT
∂ ẏ2

)
+ ∂VT

∂y2
= Q2

(m2 + m3 + m0)ÿ2 − (m3 + m0)L2φ̈1sinφ1 + m0r φ̈2cosφ2

= (m3 + m0)L2φ̇
2
1cosφ1 + m0r φ̇2

2sinφ2 + K2(y2 − y1)+
C(ẏ1 − ẏ2) − δz

(32)

Similarly, the Hamilton Principle is used for the φ1 coordinate, angular displace-
ment of the tower:

d
dt

(
∂L
∂φ̇1

)
−

(
∂L
∂φ1

)
= Q3

d
dt

(
∂TT
∂φ̇1

− ∂VT

∂φ̇1

)
−

(
∂TT
∂φ1

− ∂VT
∂φ1

)
= Q3

(33)

But: ∂VT

∂φ̇1
= 0 so the previous equation looks like this:

d

dt

(
∂TT
∂φ̇1

)
− ∂TT

∂φ1
+ ∂VT

∂φ1
= Q3

−(m3 + m0)ÿ2L2sinφ1 + 2m3L2
2φ̈1 + m0L2

2φ̈1−
m0r L2φ̈2 cos(φ2 − φ1) = −m0r L2φ̇2 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)−
m0r L2φ̇2φ̇1 sin(φ2 − φ1) − KTφ1 − CT φ̇1

(34)

And now, using Hamilton’s Principle for the φ2 coordinate, angular displacement
of the unbalanced mass, we have:

d
dt

(
∂L
∂φ̇2

)
−

(
∂L
∂φ2

)
= Q4

d
dt

(
∂TT
∂φ̇2

− ∂VT

∂φ̇2

)
−

(
∂TT
∂φ2

− ∂VT
∂φ2

)
= Q4

(35)

But: ∂VT

∂φ̇2
= 0 so the previous equation looks like this:

d
dt

(
∂TT
∂φ̇2

)
− ∂TT

∂φ2
+ ∂VT

∂φ2
= Q4

2m0r2φ̈2 + m0r ÿ2cosφ2 − m0r L2φ̈1cos(φ2 − φ1)

= −m0r L2φ̇1 sin(φ2 − φ1)
(
φ̇2 − φ̇1

)+
m0r L2φ̇1φ̇2 sin(φ2 − φ1) +

(
â − b̂φ̇2

) (36)

So the system of differential equations that define the movements of the system
under

m1 ÿ1 = −K1(y1 − ye1) + K2(y2 − y1) + C(ẏ2 − ẏ1) − δz

(m2 + m3 + m0)ÿ2 − (m3 + m0)L2φ̈1sinφ1 + m0r φ̈2cosφ2
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= (m3 + m0)L2φ̇
2
1cosφ1+

m0r φ̇
2
2sinφ2 + K2(y2 − y1) + C(ẏ1 − ẏ2) − δz

− (m3 + m0)ÿ2L2sinφ1 + 2m3L
2
2φ̈1 + m0L

2
2φ̈1

− m0r L2φ̈2 cos(φ2 − φ1) = −
m0r L2φ̇2 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)
− m0r L2φ̇2φ̇1 sin(φ2 − φ1) − KTφ1 − CT φ̇1

2m0r
2φ̈2 + m0r ÿ2cosφ2 − m0r L2φ̈1cos(φ2 − φ1)

= −m0r L2φ̇1 sin(φ2 − φ1)
(
φ̇2 − φ̇1

)+
m0r L2φ̇1φ̇2 sin(φ2 − φ1) +

(
â − b̂φ̇2

)
(37)

When the turret plus the non-ideal unbalanced motor are considered as a simple
pendulum, then the angle φ1 is considered small compared to φ2. Therefore, the
following relation is valid [13].

{
sinφ1

∼= φ1

cosφ1
∼= 1

Thus, the system of equations presented above (Eq. 37) is rewritten as follows:

m1 ÿ1

= −K1(y1 − ye1) + K2(y2 − y1) + C(ẏ2 − ẏ1) − δz

(m2 + m3 + m0)ÿ2 − (m3 + m0)L2φ̈1φ1 + m0r φ̈2cosφ2

= (m3 + m0)L2φ̇
2
1+

m0r φ̇
2
2 sinφ2 + K2(y2 − y1) + C(ẏ1 − ẏ2) − δz

− (m3 + m0)ÿ2L2φ1 + 2m3L
2
2φ̈1 + m0L

2
2φ̈1

− m0r L2φ̈2 cos(φ2 − φ1) = −
m0r L2φ̇2 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)
− m0r L2φ̇2φ̇1 sin(φ2 − φ1) − KT φ1 − CT φ̇1

2m0r
2φ̈2 + m0r ÿ2cosφ2 − m0r L2φ̈1cos(φ2 − φ1)

= −m0r L2φ̇1 sin(φ2 − φ1)
(
φ̇2 − φ̇1

)+
m0r L2φ̇1φ̇2 sin(φ2 − φ1) +

(
â − b̂φ̇2

)
(38)

The previous system of equations (Eq. 38) is rewritten as follows:

ÿ1 = −q1(y1 − ye1) + q2(y2 − y1) + p1(ẏ2 − ẏ1) − μz

(1 + α1 + α)ÿ2 − (α1 + α)φ̈1φ1 + αr φ̈2cosφ2

= (α1 + α)L2φ̇
2
1+

αr φ̇2
2sinφ2 + q3(y2 − y1) + p2

(
y

′
1 − y

′
2

)
− μ1z
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− m3 + m0

2m3L2
ÿ2φ1 +

(
1 + m0

2m3

)
φ̈1 − m0r

2m3L2
φ̈2 cos(φ2 − φ1) = −

m0r

2m3L2
φ̇2 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)

− m0r

2m3L2
φ̇2φ̇1 sin(φ2 − φ1) − q4φ1 − p3φ̇1

1

2r
ÿ2cosφ2 + φ̈2 − m0L2

2r
φ̈1cos(φ2 − φ1)

= L2

2r
φ̇1 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)+
L2

2r
φ̇1φ̇2 sin(φ2 − φ1) + a − bφ̇2 (39)

The parameters considered in the previous system are listed below:

q1 = K1
m1

, q2 = K2
m1

, q3 = K2
m1

, q3 = K2
m2

, p1 = C
m1

, p2 = C
m1

, p3 = CT
m3L2

2
, α = m0

m2
α1 = m3

m2
,

α2 = m0
m3

, ζ = r
L2

, μ = δ
m1L2

, μ1 = δ
m2L2

, a = â
m0r2

, b = b̂
m0r2

.

The system of equations is then rewritten, making use of a change of variables
employing the following state variables:

u1 = y1, u2 = y′
1, u3 = y2, u4 = y′

2, u5 = φ1, u6 = φ′
2, u7 = φ2, u8 = φ′

2, e u9 = z.

Which results in a new system of equations:

⎧⎨
⎩

E1y2 − E2φ1 + E3φ2 = f2
−E4y2 + E5φ1 + E6φ2 = f3
E7y2 − E8φ1 + E9φ2 = f4

(40)

Where do you have:

f1 = −q1[u1 − A cos(wt)] + q2(u3 − u1) + p1(u4 − u2) − μ1z − u5) − q4u5 − p3u6
f2 = (α1 + α)L2u26 + αru28 sin u7 − q3(u3 − u1) − p2(u4 − u2) + μ1z
f3 = − m0r

2m3L2
u8 sin(u7 − u5)(u8 − u6) − m0r

2m3L2
u6u8 sin(u7

f4 = − L2
2r u6 sin(u7 − u5)(u8 − u6) + L2

2r u6u8 sin(u7 − u5) + α − bu8

And also:

E1 = 1 + α1 + αE2 = (α1 + α2)L2u5E3 = ar cos(α7)E4 = m3+m0
2m3L2

u5E5 = 1 + m0
2m3

E6 = m0r
2m3L2

cos(u7 − u5)E7 = 1
2r cos(u7)E8 = m0L2

2r cos(u7 − u5)E9 = 1

So, rewriting the system in matrix form, you have:



On a Vehicular Suspension for a Non-ideal and Nonlinear Orchard Tower … 163

⎡
⎣ E1 −E2 E3

−E4 E5 −E6

E7 −E8 E9

⎤
⎦

⎡
⎣ y"2

φ"
1

φ"
2

⎤
⎦ =

⎡
⎣ f2

f3
f4

⎤
⎦

⎡
⎣ y"2

φ"
1

φ"
2

⎤
⎦ =

⎡
⎣ f2

f3
f4

⎤
⎦

⎡
⎣ E1 −E2 E3

−E4 E5 −E6

E7 −E8 E9

⎤
⎦

−1

(41)

Finally, solving the inverse matrix andmaking the necessary multiplication of this
answer in the system of equations above, we have the system of second order linear
differential equations that govern the dynamics of the system under study, presented
below:

y1 = f1
y2 = 1/�[(E5E9 − E6E8) f2 + (E2E9 − E3E8) f3 + (E2E6 − E3E5) f4]
∅1 = 1/�[(E4E9 − E6E7) f2 + (E1E9 − E3E7) f3 + (E1E6 − E3E4) f4]
∅2 = 1/�[(E4E8 − E5E7) f2 + (E1E8 − E2E7) f3 + (E1E5 − E2E4) f4]
z′ = −γ |u4 − u2|u9|u9|n−1 − β(u4 − u2)|u9|n + λ(u4 − u2)

(42)

The parameter � of the previous equation (Eq. 42) is given by:

� = E1E5E9 − E1E6E8 − E2E4E9 + E2E6E7 + E3E4E8 − E3E5E7

Making now, the right sides of the equations of y2′′, φ1′′ and φ2′′ of the previous
system (Eq. 42) equal to f5, f6 and f7, respectively, and also the equation of z equal
to f8 as follows:

f8 = −γ |u4 − u2|u9|u9|n−1 − β(u4 − u2)|u9|n + λ(u4 − u2) (43)

You can write the derivatives of system 42 as follows:

u′
1 = u2

u′
2 = f1

u′
3 = u4

u′
4 = f5

u′
5 = u6

u′
6 = f6

u′
7 = u8

u′
8 = f7

u′
9 = f8

(44)
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3 Results

3.1 System Responses in Time Domain

Time and phase domain responses will be presented for the following system compo-
nents: wheel mass, trailer mass, mass concentrated at the top of the tower and unbal-
anced enginemass, respectively. The values considered for the dimensionless param-
eters of the system are those shown in Table 1, for a time interval of 0 ≤ t ≤ 100 and
the initial conditions were considered as being null.

The following table (Table 2) shows the values considered for the MR damper
parameters.

Figure 2 shows the behavior of the displacements of the wheel in (a), the trailer
in (b), the turret in (c) and the angular velocity of the unbalanced mass of the engine
in (d), under suspension action with MR, in red compared to the MR shockless
response in black. It can be seen that with the addition of the suspension with MR it
significantly reduces the range of motion of each component of the system, having
a lesser influence, in relation to the other components, on the displacement of the
wheel, as expected. It is verified that the greatest influence is on the displacement of
the trailer, which satisfies the proposed objectives, since the proposal is the reduction
of the amplitudes of the trailer and the tower.

Table 1 Values for
dimensionless parameters for
the non-suspension system
with MR

Parameter Value Parameter Value

q1 77.5 α1 0.247

q2 6.016 b 1.3

q3 1.11 μ 500

q4 5.395 μ1 92.307

p1 1.306 α 7.69 × 10–4

p2 0.241 p3 0.108

Table 2 Values assigned to
the parameters related to the
MR damper

Parameter Value

γ (1/m2) 800

β (1/m2) 1,000,000

λ 1.0

n 2.0
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Fig. 2 displacements of the wheel in (a), the trailer in (b), the turret in (c) and the angular velocity
of the unbalanced mass of the engine in (d)
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Fig. 2 (continued)
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3.2 Analyze the Influence of the External Force Applied
on the Structure Described

We analyze the influence of the external force applied on the structure described by
Eq. (42) considering amplitude A in the interval [0.1: 0.3] and frequency ω in the
interval [1, 2]. For this we use the 4th order Runge–Kutta method with an integration
step h = 0.001 and a total integration time t = 106[s]. We also consider a transient
time of 40% of the total time and considering the initial conditions × 0 = [0, 0, 0, 0,
0, 0, 0, 0, 0]. Figure 3a represents the maximum amplitude of the displacement of the
trailer and Fig. 3b of the tower that supports themotor for spraying, both are described
by the set of Eq. 42. Thus, the yellow regions represent the maximum amplitude and
the light gray region represents the minimum amplitude for the structure.

Fig. 3 Representation of the
maximum amplitude
considering Eq. (42). a
trailer displacement and b
turret displacement
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Fig. 4 Representation of the
FFT for the parameter ω as
Eq. (42). a trailer
displacement and b turret
displacement

Another analysis performed was the oscillation frequency and thus we obtain the
fast Fourier transforms (FFT) with the variation of the amplitude of the external force
(ω), inwhichwe can observe a characteristic frequency of the Eq. (42) referring to the
trailer and the tower. Figure 4. (a) represents the FFT sweeping the parameterω in the
interval [1, 2] of the trailer displacement, inwhichwe can observe a natural frequency
of the system in yellow and in gray scale are very low secondary frequencies. In
Fig. 4b represents the variation ω for the same interval, however, for the tower
displacement, in yellow it represents the dominant frequency of the system and in
gray, low amplitude secondary frequencies.

Therefore, we delimited the maximum amplitude regions for the displacement
of the sprayer system truck and tower considering the external force applied to the
system. This external force in Eq. (42) represents possible irregularities in the terrain
where the spraying vehiclemoves, as high displacements in the structure compromise
the spraying application. The analysis of the frequency of for the parameterω showed
that there is a natural frequency for both the truck and the tower vibration, which
showed a behavior of possible periodicity, such frequencies are between 0.1 and 0.5
[Hz]. Thus, Fig. 5a–c represent the time series of the trailer displacement for ω =
2.936 [Hz] and considering A = [0.0, 0.16, 0.5], respectively.
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Fig. 5 Time series of the trailer displacement a A = 0.0, b A = 1.6 and c A = 0.5

Thus, Figs. 6a–c represent the time series of the trailer displacement for ω =
2.936 [Hz] and considering A = [0.0, 0.16, 0.5], respectively.

3.3 Calculation of Resulting Vibrations with and Without MR

Thus, we calculated the vibrations resulting from the absence of the MR actuation
in Eq. (42), considering the same constants of the previous case, that is, the same
constants of the MR system actuation in the vehicle system. Fig. 7a represent the
maximum amplitude of the tower and (7b) represent the maximum amplitude of the
trailer with the variation of the parameters of the external force of the system. Colors
fromwhite to black represent theminimum tomedium span and from black to yellow
the medium to maximum span.

We also calculated the variation of the control parameter (a) for the system with
and without MR application. Thus, Fig. 8a represents the behavior of the tower
vibrations with the MR and Fig. 8b without the MR acting on the system with the
variation of the parameter a = [3, 7]. It can be observed that there are peaks of
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Fig. 6 Time series of tower displacement a A = 0.0, b A = 1.6 and c A = 0.5

Fig. 7 Representation of maximum amplitude as a function of external force parameters. a turret
and b cart

maximum amplitude a = 5.329 and a = 7.691 for the system containing the MR and
for the system with the MR there is a decay of the amplitude, however, it remains in
a range from 0.04625 to 0.04616.
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Fig. 8 Representation of themaximum amplitude with the variation of the tower control parameter.
a with the application of the MR and b without the application of the MR

Fig. 9 Representation of themaximumamplitudewith the variation of the trailer control parameter.
a with the application of the MR and b without the application of the MR.

And figs. a and fig. B. Represents the behavior of the control parameter (a) for
the trailer with and without the MR application, respectively (Fig. 9).

We can observe that there is a peak with maximum amplitude for the value of a
= 4.2 in both cases with and without the MR, however, there is the appearance of a
peak with amplitude at a = 8.8.

4 Conclusion

In this work, a vehicular suspension with Magneto Rheological (MR) was used, plus
the addition of an unbalanced electric motor on top of the tower of a Quarter-car
model that represents the structure of an orchard sprayer, in order to reduce vertical
movements. mainly of the trailer or chassis, and also the angular movements of the
turret. The use of the MR damper proved to be efficient for the main purpose for
which it was used: to reduce the oscillation amplitudes of both the trailer or chassis
(m2) and the tower (m3). It is clearly seen that there were reductions in amplitude,
however in some components of the system, this reduction was minimal, as can be
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seen, for the wheel, and also for the tower. This fact can be justified due to the shock
absorber with MR being strongly influenced by an external electric current, which
was considered to be constant in this work. The analysis of the unbalanced electric
motor showed that the m3 mass amplitudes are strongly influenced by a possible
unbalance of the sprayer fan blades.
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