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Preface

It is known that over the years, the construction of Models has played an important
part in the discovery and dissemination of knowledge. The mathematical model of
the vibrating linear systems has been studied exhaustively over the last years and
significant contributions have been also made to the theory of vibrations of nonlinear
dynamical systems. We also note that many oscillatory (vibrating) phenomena of
real systems cannot be explained, nor solved, based on linear theory. That is why
it is important to introduce nonlinear characteristics on the mathematical models
of the considered vibrating systems (and to electro-mechanical systems). The main
difficulty, in comparison to linear systems, is due to the absence of the superposition
principle. This means that every nonlinear vibrating system must be solved indi-
vidually, and a special methodology must be developed for each class of problems.
Nowadays, fractional stiffness and damping are also appearing in different contexts
for vibrating systems with memory and hysteresis. Such damping is defined by a
fractional derivative in contrast to classical viscous damping termwith the first-order
derivative. As the memory of a dynamical system induced extra degree of freedom,
for the phase space, the standard methods of dynamical response analysis and system
identification, which relies on the knowledge of system dimensionality, cannot be
used. Nevertheless, despite of great advances of the vibrating theory, vibrations still
meet which cannot be explained by traditional vibrating theory.Wewill discuss, here,
some vibrating problems belonged to this class called non-ideal vibrations (RNIS).

It is also well known that the conditions of stability (or dynamic instability) are
commonly expressed in the theory of mechanical vibrations considering certain rela-
tions between the frequencies of external excitations and the natural frequencies of
the vibrating system. They are called frequency relations and they are called reso-
nance. It is noteworthy that the existence of resonant vibrations (resonance relations)
and their characteristics (transient or steady state) depend on several factors related
to the vibrating systems and external excitation characteristics. The steps to be used
in solving a resonant vibrating problem are shown in the usual sequence:

• Establishment of the differential equations of motion.
• Obtaining differential equations of motion in time.
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• Using of asymptotic representations of the solutions of the equations obtained,
this procedure determines the resonance relations.

• Solution of differential equations of motion (analytical or numerical).
• Determination of the regions related to the stability and instability of the system.
• Possible use of control techniques.

Additionally, it will be mentioned that the features commonly found in vibrating
engineering are

• Nonlinearities (geometric or physical characteristics).
• Energy dissipation (internal or external).
• Gyroscopic systems.
• Material imperfections.
• Stationary and non-stationary modes.
• Unlimited power sources (or ideal sources) or limited (non-ideal sources (RNIS)).
• Non-conservative dynamic (follower) or forced.

It is known that vibrations of nonlinear systems have been studied exhaustively
over the last years grounded in H. Poincare, W. Ritz, V. G. Galerkin, A. Lyapunov,
A. Stodola, etc. At the end of nineteenth and beginning of the twentieth century,
around 1920, appeared the first works of the authors G. Duffing, Van der Pol, M. N.
Krylov, N. N. Bogolyubov, S. A. Mitrosposky, J. J. Stoker, N. Minorky, C, Hayashi,
H. Kauderer, etc. and other significant contributions have been also made to the
theory of vibrations of nonlinear dynamical systems.

With the development of modern technology, machineries and equipment
are becoming more complex every day. In this book, among all machineries, it will
be restricted to a particular rotary one and the existence full interaction of between
mechanical and electric parts (electro-mechanical systems) their support structures
(RNIS systems).

It is known that electro-mechanical systems (taking into account a full interaction
between the structure and the energy source) fall into three groups (Bishop 2000),
(Premont 2006):

• The conventional electro-mechanical systems (MACRO): Small DC motors with
limited power (RNIS) are usually used in laboratory test and therefore the inves-
tigation of mutual interaction of driven and driving sub-system is very important
and some emergent and new nowadays areas:

• Micro-Electromechanical Systems(MEMS).
• Nano-Electromechanical Systems (NEMS).

Note that MEMS and NEMS technology is still in its infancy with global research
and development actively under way.

In this point, it is important to clarifywhat rotary non-ideal systems (RNIS)means,
in order to avoid future confusions.

Non-ideal systems (RNIS) have appeared in the literature with several meanings;
as an example, some researchers use the concept of (RNIS) solutions for concen-
trated solutions, that is, the solutions can occur in two ways: when intermolecular
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forces between solute and solvent molecules are less strong than between molecules
of similar (of the same type) molecules, and when intermolecular forces between
dissimilar molecules are greater than those between similar molecules.

Here, we deal with an energy transfer between the energy sources and the support
structures and their possible control approaches, that is, we are interested to what
happens to the motor (or electro-mechanical shaker), input, output, as the response
to the rotary system support structure changes.

So, here, we discussed the physical phenomena involved, the adequate method-
ology to deal with (RNIS), and reported a selection of papers recently published,
for emergent vibrating studies. New phenomena are addressed, concerning struc-
tures supporting unbalanced machines, capable of a limited output power, that is,
Rotary Non-Ideal Systems (RNIS), and the motion of an oscillating structure under
the action of such energy source was accompanied by a full interaction between these
non-ideal motors and their supports.

We also analyzed possible and practical applications concerning unbalanced non-
ideal DCmotor-type foundation structure (RNIS) in the presence of the Sommerfeld
effect, that is, getting stuck at resonance (energy imparted to the motor being used to
excite large amplitude motions on the supporting structure), that is, jump phenomena
and the increase in power supply that is required by an excitation source operating
near resonance. The structural response provides a sort of energy sink. Sommerfeld
suggested that the structural response provided a sort of energy sink. Thus, we pay
to vibrate our structure rather than operate the machinery. One of the problems often
faced by designers is how to drive a system through resonance and avoid the “energy
sink” described by Sommerfeld.

This above-mentioned property of (RNIS) enabled the advance of research in
engineering applications, as in the case of using, as an excitation of the system,
an electro-mechanical vibrator instead of a direct current motor, in agreement as it
does, classically. So, this property made it possible to increase the range of research
emergent possibilities on this topic to Macro- and MEMS scales (Balthazar et al.
2018). The possibility of saturation phenomenon occurrence, i.e., the transference of
energy from higher frequency and lower amplitude to lower frequency and higher
amplitude mode, uses 2:1 internal resonance by connecting it to a second-order
controller using quadratic position coupling terms may be possible.

The study of non-ideal vibrating systems (RNIS), that is, when the excitation is
influenced by the response of the system, has been considered a major challenge in
theoretical and practical engineering research.

A classical book of (RNIS) was written by Prof. Kononenko (1969), entirely
devoted to this subject. (Nayfeh andMook 1979) gave a comprehensive and complete
review of different approaches to the problem up to 1979 and in the books of (Evan-
Iwanowski 1976), (Alifov and Frolov 1990 ), (Blekhman 2000), and (Cveticanin
et al. 2018).

We also announced that some few papers concerning some (RNIS) problems
undeserve of others. (Pontes and Balthazar 1975) dealt with friction-induced (RNIS)
as a source of fatigue and (Lima et al. 2019) studied an application to robotic manipu-
lator with a (RNIS) load. (Dantas and Balthazar 2013) by using the averagingmethod
proved the existence of Neimark-Sacker bifurcation in a class of non-ideal (RNIS)
mechanical systems. In fact, such problem drops in a more general research program
on quenching for this mechanical system; (Dantas and Balthazar 2007) presented the
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so-called Somerfield effect, as a bifurcation of periodic orbits, by using the regular
perturbation theory and (Dantas and Balthazar 2003) the authors investigated the
stability of the equilibrium point of the system and we obtain, in the critical case,
sufficient conditions to obtain an appropriate normal form. From this, we get condi-
tions for the appearance of Hopf bifurcation when the difference between the driving
torque and the resisting torque is small. In (Felix et al. 2017), the method of Jacobi-
Anger expansion in a 2DOF model of a flexible portal frame with harmonic force
of varying frequency to an energy harvester is used. The frequencies of these modes
are set in a two-to-one internal resonance condition. The good performance, of the
harvester generator was reported, and the authors observed periodic, quasi-periodic,
or chaotic oscillations, depending on the saturation phenomenon. In (Rocha et al.
2018), the authors deal with Sommerfeld effect, and saturation phenomenon using
method of multiple scales was applied to find an analytical approximated solution of
the equations of motion and numerical simulations of the equations of motion were
carried out. In (Thomaz et al. 2017), the authors investigated the dynamical behavior
of a (RNIS) Duffing oscillator, to identify new features on Duffing oscillator param-
eter space due to the limited power supply. An extensive numerical characterization
in the bi-parameter space by using Lyapunov exponents is provided. Following this
procedure, a remarkable neworganized distribution of periodicwindows is identified,
the ones known as Arnold tongues and shrimp-shaped structures. In addition, inter-
twined basins of attraction for coexisting multiple attractors connected with tongues
are identified. Using the approach published in (Shahlaei-Far and Balthazar 2018) an
analysis of resonant behavior of the non-ideal was done based on Method of Direct
Separation of Motions (MDSM). The decomposition of the equations of motion has
been proposed to separate the infinitely growing coordinate, governing position of
the rotor. In (Silveira et al. 2019), construction of basins of attraction was analyzed
and the algorithm is tested on three systems, the classic nonlinear Duffing system, a
non-ideal system exhibiting the Sommerfeld effect and an immunodynamic system.
Continues Thework of (Piccirillo 2021) concernedwith controlling the basin erosion
phenomenon of a vibrating systemdriven by a sourcewith limited power supply (non-
ideal excitation). In (Balthazar et al. 2018), the main properties of (RNIS) have been
reviewed, such as the Sommerfeld effect, i.e., jump phenomena and the increase
in power supply that is required by an excitation source operating near resonance;
the possibility of saturation phenomenon occurrence, i.e., the transference of energy
from higher frequency and lower amplitude to lower frequency and higher amplitude
mode; and the existence of regular (periodic motion) and irregular (chaotic motion)
behaviors, depending on the value of control parameters (voltage of a DC motor).
In the paper of (Varanis et al. 2020), the authors deal with a (RNIS) system with
memory by possessing a fractional damping term using three different mathemat-
ical tools, which are the 0–1 test, scale index, and wavelet technique. In (Avanco at
al. 2020), the authors presented an analysis focused on the nonlinear dynamics of a
solar panel opening during the trajectory of a satellite around the Earth, analyzing the
dynamics between energy sources and structural response that must not be ignored in
real engineering problems. In (Tusset et al. 2020), two control signals were consid-
ered in which one is the nonlinear feedforward controller to maintain the (RNIS)
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system in periodic orbit and the other one is the feedback controller obtained by the
SDRE, which takes the system trajectory to the desired periodic orbit. Numerical
simulations demonstrated the effectiveness of the control strategy in conducting the
system from any initial condition to the desired orbit and the control of chaos by
time-delayed feedback control.

Finally, we mention that the subject of this book is to deal with a special class
of vibrating system that combines electrical and mechanical drivelines in honor for
Prof. D.T. Mook, Professor Emeritus of Biomedical Engineering and Mechanics at
Virginia Tech, died June 19, 2020, that encouraged me to study this topic in 1994
and I’m still going to today.

The present book doesn’t claim literature completeness since the available litera-
ture is dispersed over many distinct sources. It is restricted to the main references on
the non-ideal vibrating dynamical systems (RNIS). In this new book, about non-ideal
vibrations, we presented new and relevant results concerning (RNIS).

In summary, this book titled Nonlinear Vibrations Excited by Limited Power
Sources contains 21 selected contribution chapters with participation of researchers
of the 6 (six) countries : Ukraine, Poland, Cameroon, Spain, Italy, India, and Brazil
and it is organized into two sections: Electromechanical systems and Nonlinear
Dynamics of (RNIS) and Control of (RNIS) and Harvester Energy of (RNIS).

The Editor hopes that this publication will attract the attention of researchers and
students in the field of engineering and science.

The authors of this book revisited in a systematic way many publications
based on the assumptions that the external excitations are produced by non-ideal
sources (RNIS). Several examples for emergent engineering applications of full inter-
action betweenmechanical and electrical (RNIS) systems that have been studied over
the last year will be presented. Among these applications nonlinear phenomena such
as the Sommerfeld effect, chaotic oscillations are observed, and control systems are
designed. Piezoelectric material selection and the circuit design in nonlinear vibra-
tional energy harvesting are also discussed considering the positioning of the piezo-
electric layer and the effects of the nonlinearities on the behavior of the considered
(RNIS) vibrating systems.
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Electromechanical Systems and Nonlinear
Dynamics of RNIS



A Tutorial on the Simplification
of Electromechanical Dynamic Models

Rafael Henrique Avanço , Danilo Antonio Zanella , Americo Cunha Jr. ,
Angelo Marcelo Tusset , and Jose Manoel Balthazar

Abstract DC motors are electromechanical systems designed to convert electric
power to mechanical power. Their dynamics depend on the features of the motor and
the load which they move. The dynamics of the motor is influenced by the external
loads acting during the rotation. The electromagnetic forces interact according to
the mechanical and electric characteristics of the motor. A common procedure is
to neglect the effect of inductance in the steady-state speed and constant current.
However, a recent analysis in literature claimed the inductance may be highly rel-
evant in some cases in a steady-state regime. However, including the inductance in
computer simulations causes highly time-consuming. Therefore, the intention in the
present text is to investigate when it is mandatory to consider the motor inductance
in the numerical simulation. The conclusion is that the inductance is relevant when
the external loads are relatively high and vary in time.

1 Introduction

This chapter focuses on a discussion on a relatively classic theme in dynamical
systems, themodeling of nonlinear dynamics of electromechanical systems involving
DC motors [1–5]. In addition to contributing to the formation of new researchers on
the subject, the text also aims to clarify some points that still confuse the literature. In
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this sense, the text presents a discussion of the most important aspects of modeling
a system where a cart is coupled to a DC motor via a scotch yoke mechanism.

A DC motor is an electric machine that converts direct current electrical energy
into mechanical energy. These motors have a permanent magnet stator with the
poles N and S, where the electromagnetic forces arise from the current subject to the
magnetic field of the stator [2]. The main goal of this analysis is to understand the
influence of the inductance in the dynamics of the DC motors. The inductance may
be defined as a tendency of an electrical conductor to oppose a change in the electric
current flowing through it. In DC motors, the current flows in coils, what causes
a higher effect in the magnetic field. Therefore, the consequence is that in some
cases the inductance interferes in the dynamics, but in others, it could be neglected.
A DC motor is governed by a set of differential equations. An electric equation
considering current and voltage. The other is a mechanic differential equation based
on the equilibrium of torque. In literature, a useful approach does not consider the
inductance of the motor after the transient condition [5, 6]. However, recent analysis
claimed that this approach is not reasonable in all cases.An analysiswith amotorwith
a mass and scotch yoke was performed in [7], neglecting the inductance in this case
caused a discrepancy when compared with a complete model which considers the
inductance. In the present text, some simulations are worked out where is possible to
verify that under some conditions there is a divergence in results when the inductance
is considered or not. On the other hand, in some situations, the inductance does not
interfere significantly in the dynamics, and the act of disregarding it does not have
great losses, with the advantage of simplifying the mathematical model.

2 Electromechanical System

The mechanism comprehends a cart moved to left and right through a scotch yoke
mechanism. This mechanism is powered by a DC motor and it is illustrated in
(Fig. 1). This type of motor has its electric equation written in as

L Q
′′ + R Q

′ + G �
′ = V, (1)

Fig. 1 Illustration of the
electromechanical system,
which consists of a cart
coupled to a DC motor by a
scotch yoke mechanism
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while the Newton Laws of rotation applied over the rotor in the motor results in the
mechanical equation

J �
′′ + B �

′ − G Q
′ = T . (2)

In the last two equationswe have Q
′ = Q

′
(T ) and� = �(T ) respectively denote

the electrical current and angular displacement of rotor in time T ; the upper prime
is an abbreviations for physical time derivative, i.e., � ′ = d �/dT ; L represents
an electrical inductance of the motor armature; R stands for the internal electrical
resistance of the motor; J the rotational inertia of the rotor; B describes a damp-
ing coefficient related to a viscous friction; while G is an electromechanical cou-
pling coefficient, it is equal to the torque constant and speed constant. The voltage
source V = V(T ) and the external torque T = T (T ) acting over the motor corre-
spond to (possibly) time-dependent external excitations. The torque may also be
a function of the electromechanical system coordinates and their derivatives, i.e.,
T = T (�,�

′
,�

′′
, T ). In the present problem the external torque T is a conse-

quence of the cart reaction and is written as

T = F D sin�. (3)

The position of the cart is represented in Eq. (4), where the cart depends on the
angular position of the rotor

X = D cos�. (4)

The force of the motor acting over the cart is

M X
′′ = F, (5)

and the resultant torque over the motor is given by

T = −M D2 sin�
(
sin��

′′ + cos��
′ 2

)
. (6)

The initial conditions for the dynamic system are represented by

Q
′
(0) = Q

′
0, �

′
(0) = �

′
0, and �(0) = �0, (7)

The dynamic system described by Eqs. (1) and (2) is considered the full-order
dynamic model. In the next section we will introduce and comment the reduced
model.
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3 Reduced-Order Dynamic System

The electrical characteristic time of the problem is defined by

TQ = L

R
, (8)

which in a Resistor-Inductor circuit means 63.2% of the time necessary to reach a
steady-state current. Additionally, the mechanical time constant

T� = J R

G 2
, (9)

represents 63.2% of the time used to reach the maximum speed without external
loads on the DC motor.

In literature, it is common authors [5, 6, 8–14] affirm the inductance could be
neglected when the electrical characteristic time TQ is much smaller than the T�

mechanical characteristic time. Although this approach is very useful, [7, 15] demon-
strated an example where the models highly diverge in results. The reduced-order
dynamic model considers the inductance multiplied by the derivative of the current
is irrelevant in steady-state conditions. Therefore, a set of equations may be resumed
in a single equation.

When inductance is neglected the Eq. (1) turns into

Q
′ = V

R
− G

R
, �

′
(10)

which, after isolating the term Q
′
and substituting in the mechanical equation

Eq. (2) we obtain the reduced-order equation including both electrical and mechan-
ical aspects

J �
′′ + B �

′ − GV
R

V + G2�
′

R
= T . (11)

The initial conditions now do not consider the current. The electrical part depends
on the voltage set. Therefore the initial conditions are simply

�
′
(0) = �

′
0, and �(0) = �0. (12)
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4 Dimensionless Formulation

In this sections the dimensionless parameters are introduced. A method commonly
applied is the Buckingham � theorem. The theorem states one can combine param-
eters from a physical problem and find dimensionless parameters. Some of the most
known are the Reynolds number and Mach number in fluid dynamics. In the present
problem the dimensionless parameters considered are

t = T

J R/G2
, θ = �, θ̇ = �

′

G2/J R
,

q̇ = Q
′

G3/J R2
, � = L

J R2/G2
,

ν = V
G3/J R

, b = B

G2/R
, d = D√

J/M
.

(13)

Here the lower case letters represent the dimensionless parameters and the upper
case letters are physical parameters previously mentioned. The electric equation of
the DC motor represented in Eq. (1) turns into the dimensionless electric equation

� q̈ + q̇ + θ̇ = ν, (14)

while the mechanical equation in Eq. (2) become the dimensionless equation

θ̈ + b θ̇ − q̇ = τ, (15)

which the right-hand-side is given by the dimensionless external torque

τ = −d 2 sin θ
(
sin θ θ̈ + cos θ θ̇ 2

)
. (16)

The dimensionless initial conditions are

q̇(0) = q̇0, θ̇ (0) = θ̇0, and θ(0) = θ0. (17)

In the reduced model we consider the dimensionless electric equations as

q̇ + θ̇ = ν, (18)

so that when the dimensionless current q̇ is replaced in Eq. (15), results in the reduced
dimensionless mechanical equation

θ̈ + (b + 1) θ̇ − ν = τ. (19)
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In consequence, the initial conditions for the reduced model does not contain the
electric current

θ̇ (0) = θ̇0, and θ(0) = θ0. (20)

5 Results and Discussion

In figures from Fig. 2, 3, 4, 5, 6, 7, 8 and 9 we have in each one the graphics of electric
current q̇ versus angular velocity θ̇ , the time history of the motor angular speed θ̇

and the time history of the motor angular position θ . The intention is to vary some
parameters and find some conclusion about the influence of the different parameters.
There are many parameters in the present problem and all of them may have its
own relevance. However, for practical purposes we considered that three of them are
more important. A dimensionless parameter for inductance represented through the
parameter � which is varied from Figs. 2, 3 and 4, while the others parameters are
maintained constant. In Fig. 2, the value of � is 0.02, a relatively small inductance

Fig. 2 Phase-space of electric current q̇ versus angular velocity θ̇ , angular velocity θ̇ versus t and
angular displacement θ versus t . Dimensionless parameters: � = 0.02, ν = 1, b = 1, d = 10. Initial
conditions: (θ0, θ̇0, q̇0) = (0, 0, 3 ν)
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Fig. 3 Phase-space of electric current q̇ versus angular velocity θ̇ , angular velocity θ̇ versus t and
angular displacement θ versus t . Dimensionless parameters: � = 0.2,ν = 1, b = 1, d = 10. Initial
conditions: (θ0, θ̇0, q̇0) = (0, 0, 3 ν)

Fig. 4 Phase-space of electric current q̇ versus angular velocity θ̇ , angular velocity θ̇ versus t and
angular displacement θ versus t . Dimensionless parameters: � = 2,ν = 1, b = 1, d = 10. Initial
conditions: (θ0, θ̇0, q̇0) = (0, 0, 3 ν)
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Fig. 5 Phase-space of electric current q̇ versus angular velocity θ̇ , angular velocity θ̇ versus t and
angular displacement θ versus t . Dimensionless parameters:d = 1, � = 0.05,ν = 1, b = 1. Initial
conditions: (θ0, θ̇0, q̇0) = (0, 0, 3 ν)

Fig. 6 Phase-space of electric current q̇ versus angular velocity θ̇ , angular velocity θ̇ versus t and
angular displacement θ versus t . Dimensionless parameters:d = 10, � = 0.05,ν = 1, b = 1. Initial
conditions: (θ0, θ̇0, q̇0) = (0, 0, 3 ν)
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Fig. 7 Phase-space of electric current q̇ versus angular velocity θ̇ , angular velocity θ̇ versus t and
angular displacement θ versus t . Dimensionless parameters:d = 100, � = 0.05,ν = 1, b = 1. Initial
conditions: (θ0, θ̇0, q̇0) = (0, 0, 3 ν)

Fig. 8 Phase-space of electric current q̇ versus angular velocity θ̇ , angular velocity θ̇ versus t
and angular displacement θ versus t . Dimensionless parameters:ν = 0.5, d = 10, � = 0.05, b = 1.
Initial conditions: (θ0, θ̇0, q̇0) = (0, 0, 3 ν)
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Fig. 9 Phase-space of electric current q̇ versus angular velocity θ̇ , angular velocity θ̇ versus t and
angular displacement θ versus t . Dimensionless parameters:ν = 5, d = 10, � = 0.05, b = 1. Initial
conditions: (θ0, θ̇0, q̇0) = (0, 0, 3 ν)

where the results demonstrated low divergence when the full and reduced model are
compared. An intermediate condition of divergence may be found in Fig. 3 when
the value of � is 0.2. Finally, in Fig. 4 which the highest value of inductance with �

equal to 2, the diverge appears clearly. This comparisons among these three figures
evidence the relevance of the inductance on the present eletromechanical system.
Larger values for the inductance have more impact in the divergence between the
two models.

Another parameter that is took into account is the d. According the Eq. 13, the
term d depends on the mass displaced, the moment of inertia of the rotor and the
crank radius. From Figures 5, 7 and 7 the parameter d is varied while the inductance
is fixed with � equal to 0.05.The results show good accordance between reduced and
full model in Fig. 5. Differences begin to rise in Fig. 6, specially in the graphics for
the angular velocity time histories. Lastly, in Fig. 7 the difference are obvious in the
three graphics.
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The third parameter analyzed is the ν. Higher values for the voltage will exhibit
divergence for the two models. In the Fig. 8 where ν equal to 0.5 the two models
have good accordance in the results of motion, while in Fig. 9 with ν equal to 5 the
reduced and the full models demonstrate a relevant divergence.

6 Conclusion

The conclusion begins pointing the importance to express the system in dimension-
less terms. The common reason for this advice is the purpose to obtain amore generic
result, suitable for diverse range of conditions. However, in this eletromechanical sys-
temwhen you turn the differential equations into dimensionless differential equations
you avoid very small coefficients that oblige the usage of tiny step for integration. In
other words, very small values in the coefficients cause difficulties for the computer
calculus. The effect of high inductance is easier to understand. It follows the deriva-
tive of the current, the consequence is that higher the inductance, higher is the effect
to the dynamics of the eletromechanical system. Not so obvious is the influence of
the parameter d. This parameter is not composed by electric parts. The parameter
d is essentially mechanical and it is responsible for the external loads acting on the
motor. A higher value of d means high external forces alternating during time. It
is similar to a motor in the transient regime, while it is accelerating. The voltage
represented by the parameter ν also provokes divergences between the two models.
The explanation is that high voltage causes a higher current and also contributes for
a greater forces involved in the mechanism. Amathematical note is that in Eqs. 1 and
14 when the speed of motor is reduced near to stall, the electric part of the equation
will have higher influence. It means a higher influence for inductance and electric
resistance. Therefore, the main advice for electromechanical systems with DCmotor
is to test different models including and disregarding the inductance. Operating in
high speeds and with constant load are the best conditions to neglect the influence
of the inductance in DC motors. For more details on the problem discussed in this
chapter the reader is invited to see reference [16].

Code Availability

The simulations of this chapter used a Matlab code dubbed ElectroM - ElectroMe-
chanical Dynamic Code. To facilitate the reproduction of the results, this code is
available for free on GitHub [17]. Other animations of electromechanical dynamics
are available on a YouTube playlist [18].
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Cardiorespiratory System as the System
with Limited Power

Evgeniy D. Pechuk , Tatyana S. Krasnopolskaya ,
and Oleh A. Savytskyi

Abstract Amodified cardiorespiratorymodel based on the famousDeBoer beat-to-
beat model and Zaslavsky map (which describes dynamics of the respiratory system
as a generator of central type) was studied in details. The purpose of this work is
twofold: it is to show and study the occurrence of chaotization in a generalized
model of the interaction of the cardiovascular and respiratory subsystems, when
modeling the entire cardiorespiratory system as a system with limited power. The
second goal is to examine the dynamics of the entire system when changing heart
rhythms. Chaotic modes were revealed, which were produced by the interaction
between the subsystems. It was proved that the irregularity of the behavior of phase
trajectories (which is characteristic of the dynamics of the cardiovascular system of
a healthy person) depends on the intensity of the feedback effect produced by the
heart rate on breathing. Thus, in order to construct right model of cardiorespiratory
system of a healthy person necessary to consider such system as nonideal system
with limited excitation. The second part of the article addresses the strategy to study
the influence of increasing the pulse from 60 to 90 beats per minute on the dynamics
of cardiorespiratory system.

Keywords Heart rate · Cardiovascular system · Respiratory system · Feedback ·
Chaos

1 Introduction

Today the problems of modeling processes in biophysics receive greatest demand
because of Covid-19 epidemic. It is known that the functioning of the heart is closely
related to the dynamics of the lungs, and modeling their interaction is an important
and relevant task. The heart of a healthy person works irregularly, as was shown by
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Goldberger [4] only 13 h before cardiac arrest and death of a person, his heart rate
is periodic, that is, regular. Thus, after discovering the phenomenon of deterministic
chaos, the modern theory of dynamic systems should be used for modeling and
diagnostics of heart rates. The goal of our present paper was to study the interaction
between the cardiovascular and respiratory systems taking into account the direct and
inverse relations of the respiratory and cardiovascular subsystems. The interaction
between the cardiovascular and respiratory subsystemswas described by theDeBoer
model [2], the solution of which is regular. This model has been widely used in many
studies of heart dynamics for the past 30 years. Based on the De Boer model, the
interaction between the cardiovascular and respiratory subsystemswill be considered
with regard to the equations of direct (from respiratory to cardio) and inverse (from
cardio to respiratory) relations of the subsystems. Thus, the cardiorespiratory system
will bemodeled and studied as the systemwith limited power. For that the respiratory
system will be modeled as a Zaslavsky generator, which is described by the known
equations of the dissipative standard map [18, 24]. Chaotic steady-state regimes will
be revealed, and we stress out that they are produced by the interaction between the
subsystems. It will be proved that the irregularity of the behavior of phase trajectories
in a generalizedmodel depends on the intensity of the effect produced by the heart rate
on breathing, which is characteristic of the dynamics of the cardiovascular system of
a healthy person. The novelty of this paper is also that we use the De Boer model of
a cardiovascular system with heart beats around 60 beats/min and compare results
for the model with 90 beats/min.

2 The Mathematical Model of Direct and Feedback
Interactions

A well-known and physiologically correct model of the cardiac system is the De-
Boer model of the cardiovascular system [2], which, in particular, does not take into
account the reverse effect of heart activity on respiration parameters. For the first time
for this model, the indicated inverse effect was taken into account in the Grinchenko-
Rudnitsky model [5], where, in accordance with the principles of optimal control,
the regulation and interactions of pressure in the cardiac system and the amplitudes
of respiratory oscillations were investigated, but chaotic regimes (which are typical
for healthy man) were not found.

Subsequently, theDeBoermodelwas significantly developed in theworkof Seidel
and Herzel [19], where the so-called SH-model is constructed, which differs from the
De Boer model by taking into account some elements of the sinus node activity and
the dynamics of the ventricles. At the same time, the existence of chaotic dynamics
in this model was revealed. The SH model was further developed by Kotani et al.
[7], which took into account the reverse effect of the cardiac system on respiratory
activity.
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The human cardiovascular system directly and indirectly interacts with different
systems of entire organism. Realized self-oscillations in a cardiovascular system are
under an activity of practically all organs (see [2–4, 6, 7, 15–17, 22, 23]).+−. There
are numerous interactions of heart rhythms between itself and with an internal and
external environment. Cardiac and respiratory rhythms form up during embryo stage,
and even the brief break of these rhythms after a birth result in death.

Existence of breathing and heart rhythm synchronization effect, found experi-
mentally in the cardiovascular system both for healthy people and with pathologies,
is well-proven in work Toledo [22] in 2002. It is well-known, the dynamic process
of mutual synchronization can be realized only in a case of presence of a subsystem
mechanical interaction. Therefore, the indicated effect display testifies the presence
of both direct and feedback interactions between the cardiovascular and respiratory
systems.

A heart system and organism of man in general have one of major descriptions of
activity, such as a blood pressure dynamic. His time-history, along with electrocar-
diogram (ECG), is an important information generator for research and diagnostics
of laws and pathologies of the cardiovascular system, see Fig. 1. The task of mathe-
matical model construction, describing the dynamics of arterial blood pressure, is far
from complete. Complications of such design are related to the necessity of taking
into account of influence on the cardiac rhythms not only the cardiovascular system
but also other organs and systems of organism, in particular a respiratory system.
According to studies in healthy people, the heart rate is on average about 60 beats/min
and can fluctuate within 20 beats/min for every few beats. During the day, the heart
rate can vary from 40 to 180 beats/min.

Fig. 1 Characteristics of the heartbeat in De Boer model
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Fig. 2 Interaction of the
cardiovascular and
respiratory system

However, this model does not consider the reverse mechanical influence effect
of the heartbeat changes on a breathing phase (frequency). In the present study, we
add to the De Boer model a self-oscillating system (which describes dynamics of the
respiratory system as a generator of central type [6], shown in Fig. 2) which is under
impulsive influence of heartbeat.

The De Boer model describes the followings main characteristics of the heartbeat
system: systolic pressure S, diastolic pressure D, R-R interval I and arterial time
constant T (in a state of rest for a healthy man S = 120 mmHg, D = 80 mmHg,
I = 800 ms, T = 1500 ms for the middle heart beats as 75 beats/min). This
mathematical model is a system of five discrete nonlinear maps. This model contains
only a direct mechanical influence of the respirator system on the cardiosystem and
can be written in the form:

D′
i = c1 S

′
i−1 exp

(
− I ′

i−1

T ′
i−1

)
;

S′
i = D′

i + γ
T0
S0

I ′
i−1 + A

S0
sin(2π f T0 ti ) + c2

S0
;

I ′
i = Gv

S0
T0

Ŝ′
i−τv

+ Gβ

S0
T0

F(Ŝ′, τβ) + c3
T0

;

T ′
i = 1 + Gα

S0
T0

− Gα

S0
T0

F(Ŝ′, τα);

Ŝ′
i = 1 + 18

S0
arctan

S0 (S′
i − 1)

18
,

(1)

where i ≥ 1, D′ = D/S0, S′ = S/S0, I ′ = I/T0, T ′ = T/T0, F(Ŝ, τ ) =
(Ŝi−τ−2 + 2 Ŝi−τ−1 + 3 Ŝi−τ + 2 Ŝi−τ+1 + Ŝi−τ+2)/9, ti = ∑i−1

k=0 I
′
k is a real time,

A = 3 mmHg is a breathing amplitude, f = 0.25 Hz is a breathing frequency,
c1 = D0/S0 exp (I0/T0), c2 = S0 − D0 − γ I0, c3 = I0 − S0(Gv + Gβ),
γ = 0.016 mmHg, Gα = 18 ms/mmHg, Gβ = 9 ms/mmHg, Gν = 9 ms/mmHg,



Cardiorespiratory System as the System with Limited Power 19

τα = τβ = 4, τν is equal to 0 if frequency of heartbeat is less than 75 beat/min, and
τν is equal to 1, if frequency is more than 75 beat/min.

Generation of body rhythms, according to the theory of Glass [6] is carried out by
the generators of the central type. Breathing is related to the movement of the chest
and its dynamics can bemodeled as the dynamics of the central generator.We suppose
that a healthy man at rest breathes periodically with a permanent frequency and an
amplitude of motions of thorax. In that case a breathing process can be described as
the self-oscillating system,which has a steady limit circle. Thus, for themathematical
modeling of a such system equations of the Zaslavsky map could be used. Famous
Zaslavsky map is the system of equations [18, 24] which describes the dynamics of
an amplitude rn and a phase ϕn of the system (in which periodic self-oscillations with
a frequency ω are realized) which is under T -periodic impulsive action of constant
intensity η.

The system of Zaslavsky map has the following form:

rn+1 = (rn + η sin ϕn) exp(−κT ), (2)

ϕn+1 = ϕn + ω T + ν(rn + η sin ϕn)
1 − exp(−κT )

κ
, (3)

where κ , ν are constant parameters of interaction.
In our approach these Eqs. (2) and (3) are used to describe changes of an amplitude

and phase of a respiratory system effect for every R-R interval with an intensity
proportional to systolic pressure as discrete nonlinear maps

η̃ = −η (Sn − S0) (4)

rn+1 = [rn − η (Sn − S0) sin ϕn] exp(−κ In), (5)

ϕn+1 = ϕn + 2π f In + ν[rn − η (Sn − S0) sin ϕn]
1 − exp(−κ In)

κ
, (6)

where I is R-R interval, η > 0.
Thus, we study the dynamics of the modified model of cardiorespiratory system,

which consists of the De Boermodel with direct respiratory influence (A+ri ) sin ϕi ,
and with reverse influence modeled by the Zaslavsky discrete map system (4)–(6)
(see Fig. 3). In other words, we consider cardio subsystem as oscillating system with
a limited excitation from the respiratory subsystem [1, 3, 8–14, 20, 21]. This is the
basic novelty of our approach.
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Fig. 3 Schema of Zaslavsky
generator as self-oscillating
system with amplifier under
impulse action

3 Numerical Simulations Results for the Heart Beats
75 beats/min

The following values of variables and constants are used in our numerical simulations
of systemofEqs. (1), (4)–(6) for the cardiorespiratory systemwith heart beats equal to
75 beats/min: I ′ [0] = 0.53, S′ [− j] = 1.08, j = 0, 1, . . . , 6, r ′ [0] = 0, ϕ′ [0] =
0[0]= 0, κ = 0.001 1/ms, ν = 0.001 1/(ms mmHg). In order to study steady-
state regimes the largest non-zero Lyapunov exponent [1, 8, 15] was calculated. The
dependence of the largest non-zero Lyapunov exponent of the system on values of
the bifurcation parameter η is shown in Fig. 4. The dynamics of the system changes
with increasing of this parameter. There is the region where this Lyapunov exponent

Fig. 4 The largest non-zero
Lyapunov exponent λ max of
the complex system
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is equals to zero (η = 0.2), what means that a limit circle is realized as steady-state
regimes [1, 8, 15]. We emphasize that η describes intensity of heart influence on a
respiratory system. The next Fig. 5 illustrates a behavior of systolic pressure, power
spectra and projection of the phase portrait for this value of intensity. The spectrum in
Fig. 5b has discrete peaks one ofwhich corresponds to a peak on theMeyer frequency
in the spectrum. So that, graphs indicate that there are regular regimes in the system.
With increasing value of η the transition to chaos occurs. Thus, at η = 0.8 chaos is
realized in the system, when the spectrum in Fig. 6b is continuous and the projection
of the phase portrait occupies some area in the phase space.

Finally, at η = 1.0 the largest non-zero Lyapunov exponent is steady positive and
the chaotic regime is fully developed, the power spectrum is continuous (Fig. 7b). So,
we have found such steady-state basic regimes: at η = 0.2 periodic regime (Fig. 5),
at η = 0.8 and for η ≥ 1.0 chaotic regimes (Figs. 6 and 7).

Fig. 5 Graphs of simulated systolic pressure data a, power spectra b and projection of the phase
portrait c for η = 0.2
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Fig. 6 Graphs of simulated systolic pressure data a, power spectra b and projection of the phase
portrait c for η = 0.8

4 The Cardiorespiratory System Regimes for Different
Heart Rates

Now consider the behavior of the system (1), (4)–(6) when the heart rate increases
from 60 to 90 beats/min. For numerical simulation, we take the following initial
values:

I ′[0] = 0.67, for a pulse 60 beats/min,

I ′[0] = 0.45, for a pulse 90 beats/min,

S′ [− j] = 1.08, j = 0, . . . , 6.
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Fig. 7 Graphs of simulated systolic pressure data a, power spectra b and projection of the phase
portrait c for η = 1

In Fig. 8 shows the projection of the phase space on the plane of the cardio interval
and systolic pressure for the case of pulse equals 60 and values η = 0.03, η = 0.07,
η = 0.1, η = 0.17 (from left to right and from top to bottom). As can be seen from the
graphs, a chaos is observed only when η = 0.17 and projection occupies continuous
area in space and quasiperiodic regimes are realized at smaller value of η ≤ 0.1.
Similar curves for the case of a pulse of 90 beats per minute are shown in Fig. 9.
In this case, the solutions of the system are characterized by chaotic steady-state
regimes even for the smallest value of η = 0.03. In Fig. 10 the corresponding wave
realizations of the value of the cardio interval according to these solutions for 60 s
are shown. Power spectrum for parameter values η = 0.03 and η = 0.17 is built
on Fig. 11. Both spectra have a continuous structure (which proves the realization
of precisely chaotic regimes) with well-defined bursts in the Mayer wave region
(0.1 Hz) at a smaller value of the parameter η = 0.03. At η = 0.17 the spectrum
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Fig. 8 Projection of phase space on the plane of the cardiointerval and systolic pressure for the
case of pulse 60 beats/min and values a η = 0.03, b η = 0.07, c η = 0.10, dη = 0.17

is also continuous with two characteristic peaks at the frequency 0.17 Hz and in the
area 0.335 Hz, which corresponds to a slightly increased frequency of respiratory
waves. Frequency is considered to be as the standard rate of respiration equals to
0.25 Hz [5], which corresponds to a wave period of 4 s. That is, the model shows an
increase in respiration rate with increasing heart rate, which also coincides with the
experimental data.

5 Conclusions

On the basis of the De Boer model an interaction of the cardio and the respiratory
subsystems is studied and modeled as the system with limited power. This model
takes into account both direct and reverse influence of subsystems—cardiovascular
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Fig. 9 Projection of phase space on the plane of the cardiointerval and systolic pressure for the
case of pulse 90 beats/min and values a η = 0.03, b η = 0.07, c η = 0.10, d η = 0.17

and respiratory. The methods of modern theory of the dynamical systems are used
to study laws of the steady-state regimes of the modified model for the pulse equals
to 75 beats/min. It is established that the irregularity of the behavior of the phase
trajectories depends on the intensity of the action of the heart rhythm on breathing,
which is characteristic of the dynamics of the cardiorespiratory system of a healthy
person.

The pulse of an adult without significant pathologies in the cardiovascular system
may be about 60 beats per minute. With increasing body temperature due to viral
infections, its value increases significantly. In the model of De Boer et al., which is
generalized by taking into account the inverse effect of heart activity on the charac-
teristics of chest movements, the effect of increasing the pulse to 90 beats/min was
studied. It is revealed that the process of chaoticity of the dynamic regime occurs
at smaller values of the bifurcation parameter. The chaotic regimes and some of
its characteristics are shown. This may mean that an increase in heart rate leads to
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Fig. 10 Time realizations of the value of the cardiointerval for the case of pulse 90 beats/min and
values a η = 0.03, b η = 0.07, c η = 0.10, d η = 0.17

an increase in the overall sensitivity of the body, due to the sensitive dependence of
chaotic processes on the initial conditions and small changes in parameters. The effect
of increasing the frequency of respiratory oscillations on the frequency spectrum of
the chaotic steady-state regimes of the cardio interval was also revealed.



Cardiorespiratory System as the System with Limited Power 27

Fig. 11 Power spectrum i of systolic pressure for the case of pulse 90 and values a η = 0.03,
b η = 0.17
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Slow Oscillations in Systems with Inertial
Vibration Exciters

Nikolay P. Yaroshevich, Oleksiy S. Lanets, and Olha M. Yaroshevych

Abstract Oscillations of the inertial drive of a vibration machine with a limited-
power motor during passage through the resonance zone are considered. It was found
that in case of “stucking” of vibration exciter’s speed in the resonance zone, its
relatively slow damped oscillations with relatively large amplitudes are excited.
It is shown that during “stucking” of exciter’s speed, oscillations of the vibration
machine’s drive can also be quite large. The critical frequencies of the drive of
vibration machines with unbalanced vibration exciters have been specified.

Keywords Vibration machine · Unbalanced drive · Slow oscillations · Somerfeld
effect

1 Introduction

Vibrationmachines driven by inertial vibration exciters are used in various industries.
Typically, such vibrationmachines operate in an above resonantmode.When starting
vibration machines (run-out) there is a problem of passing through the zone of their
resonance. During this period of movement, slowing down of the electric motor’s run
is possible, up to the “stucking” of its frequency, i.e. occurrence of the Sommerfeld
effect [1]. In this case, a stable resonant mode of vibration machine’s oscillations
takes place; thus all the energy of the motor is consumed to maintain resonance
oscillations. The result of it can also be the excitation of significant oscillations of
the drive of vibration machine.

Investigation of dynamic processes in drives of vibration machines with a limited-
power motor that are driven by inertial vibration exciters—is an urgent task of
vibration engineering.
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2 An Analysis of Studies on the Dynamics of Vibration
Machines with Unbalanced Drive

A detailed consideration of the theory of oscillatory systems with limited excitation
(non-ideal energy source) is given in the works [2–5].

Review of later works, as well as recent achievements in the field of non-ideal
vibrating systems, are reflected in the works [6, 7].

So, in the paper [6], the main characteristics of non-ideal vibrating systems (first
of all, the Sommerfeld effect) and the methodology for solving relevant problems
are analyzed.

In [7], attention is drawn to the fact that a relatively simple theoretical description
of the Sommerfeld effect is obtained using themethod of direct separation ofmotions.

The effectiveness of application of the method of direct separation of motions for
this class of problems is also demonstrated in articles [8–11].

So, in [8], when studying the dynamics of a machine unit with additional degrees
of freedom, it is recommended to use the equation of slow motions rather than the
initial equations of motion. The equation of slow motions takes the form of the
classical equation of a machine unit, but at the same time, it contains an additional
load moment that takes into account resonance phenomena.

In [9], a modification of the method of direct separation of motions is used to
study a non-ideally excited electromechanical pendulum system consisting of three
masses and a DC motor.

The paper [11] demonstrates the effectiveness of the use of continuous wavelet
transform and wavelet packet transform for the characterization of the Sommerfeld
effect in mechanical systems.

Interest in this issue has not waned to the present time. Of the latest publications,
we also note the works [12, 13].

A number of papers are devoted to the issues of starting of vibration machines
with inertial exciters, in particular [14–17].

The starting of vibrationmachineswith several inertial vibration exciters is studied
in [14]. Based on the results of numerical experiments, it is concluded that sequential
starting of motors can significantly reduce the maximum amplitudes of resonant
oscillations during starting.

The dynamics of starting of vibration machines taking into account the elasticity
of connection of the vibration exciter with a limited power motor is analyzed in
[15, 16]. An expression that describes relative torsional oscillations of the vibration
exciter in stationary modes of motion and the formula for the vibration moment are
obtained in these papers.

In [17] it is shown that a two-mass oscillation system with an eccentric-pendulum
drive in the mode of resonant oscillations is characterized by instantaneous start and
stop of the drive without long transient modes.

In [7], attention is drawn to the fact that themodeof behavior of vibrationmachines
with inertial exciters during the passage of resonance is characterized by a number
of rules that have applied significance. So, during the starting in the resonance zone,
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oscillations of the vibration exciter occur with a frequency significantly lower than
the frequency of its rotation [18–20]. In some papers, such oscillations are called
semi-slow. The works [10, 22] are devoted to the applied use of slow oscillations to
facilitate the starting of inertially excited vibration machines.

This chapter is devoted to the further development of the results of works
[16, 18, 21].

3 Investigation of Vibration machine’s Drive Oscillations
During Passing Through the Resonance Zone

3.1 Formulation of the Problem and Equations of Motion
of Vibration Machine

Analytical model of vibration machine (Fig. 1) corresponds to the simplest case,
when the vibrational part of the system is linear and has one degree of freedom. In
such a model, all the studied effects are fully demonstrated. This model is one of the
basic models of the theory of oscillatory systems with limited excitation (excluding
the elastic-damping connection of the rotors of electric motor and vibration exciter).

It should be noted that the elastic-damping connection can be represented by a belt
drive, elastic coupling, flexible shaft or some other deformable element; an element
considered to be inertialess. In this case, let it be a coupling.

The motion equations of such a system are as follows:

I1ϕ̈1 + βc(ϕ̇1 − ϕ̇2) + cc(ϕ1 − ϕ2) = L(ϕ̇1),

I2ϕ̈2 − βc(ϕ̇1 − ϕ̇2) − cc(ϕ1 − ϕ2) = −R(ϕ̇2) + mε(ẍ sin ϕ2 + g cosϕ2), (1)

Mẍ + βx ẋ + cx x = mε
(
ϕ̈2 sin ϕ2 + ϕ̇2

2 cosϕ2
)
, (2)

Fig. 1 Dynamic model of
vibration machine
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where ϕ1, ϕ2—are angles of rotation of rotors of electricmotor and vibration exciter;
I1, I2—are moments of inertia of rotors; x—is horizontal deflection of bearing body;
M—is the total mass of the elastically fixed bearing body of vibration machine;
m, ε—are the mass of the vibration exciter and its eccentricity; cx—is the axial
rigidity of the elastic elements of the suspension bracket of the bearing body; cc—is
the stiffness of the coupling; βx , βc—is the coefficient of viscous friction of suspen-
sion bracket and coupling springs; L(ϕ̇), R(ϕ̇)—is the torque of the electric motor
(static characteristic) and the moment of resistance forces of rotation of the vibration
exciter; g—is gravity acceleration.

3.2 The Slow Motion Equations of Rotors of Electric Motor
and Vibration Exciter in the Zone of the Sommerfeld
Effect

To study themotion of the rotors during slow passage through the resonance zone, we
will use the method of direct separation of motions [4]. In accordance with the basic
condition of the method, we assume that considered motions can be represented in
the form:

ϕ̇i = ω(t) + ψ̇i (t, ωt), x = x(t, ωt), i = 1, 2, (3)

where t—“slow”, τ = ω(t)t—“fast” time; ω(t)—are slow, ψ̇i and x—are fast time
functions, whilst the latter 2 π - being periodic for τ and their average values during
this period are equal to zero.

Coordinates ϕi , taking into account (3), will be determined as follows:
ϕi = ω(t) t + αi (t) + ψi (t, ωt), where αi (t)—is some function t , that will be

considered slow.
Such a representation of the solutions of system (1) and (2) during analyzing the

slow passage of the rotors through the resonance zone, when there is an occurrence of
the Sommerfeld effect, and, accordingly, the frequency ω(t) changes rather slowly,
seems to be reasonable.

It should be noted that the period of passage through the resonance zone is of
particular interest as the maximum loaded operating mode of the vibration machine.

In accordance with the method used, let’s write down the equations of slow
motions of the motor and exciter rotors in the form:

I1ω̇ + cc(α1 − α2) = L(ω),

I2ω̇ − cc(α1 − α2) = −R(ω) − V (ω), (4)
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where V (ω) = −〈
(ẍ, ϕ2)〉—is so-called vibration moment [4]; 
(ẍ, ϕ2) =
mε(ẍ sin ϕ2 + g cosϕ2).

Here and down the text, angle brackets 〈. . .〉 indicate the averaging over a
period 2 π by τ . When receiving the system (4), moments L(ϕ̇1) and R(ϕ̇2) were
linearized near the value ϕ̇i = ω according to the formulas: L(ϕ̇1) = L(ω) − k1ψ̇1,
R(ϕ̇2) = R(ω) + k2ψ̇2 (where ω—is the “sticking” frequency of exciter’s speed
in the resonance zone of the vibration machine); k1, k2—electrical and mechanical
damping coefficients [4].

Thus, the high-frequency vibration of bearing body leads to the appearance of a
vibration moment in the equation of slowmotions of the vibration exciter (additional
moment of forces of resistance to rotation, due to energy losses during oscillations).
When analyzing the equations of slow motions, nature of the change in vibration
moment is very important. The expression for vibration moment in [4] was obtained
in the formV (ω) = −Vmax sin γx , where its detailed analysiswasmade.We represent
this expression in a more informative form

V (ω) = −1

2
k2d A2

stβx px , (5)

where Vmax = mεω2

2 Ax ; sin γx = 2bxω√
(ω2−p2x)

2+4b2xω2
; p2x = cx

M , px ≈ ω; bx = βx

2M ;

Ax = mεω2

M
√
(ω2−p2x)

2+4b2xω
2
; Ast = mε

M —is the amplitude of oscillations of vibration

machine in an above resonant operating mode; kd = λ2
x√

(1−λ2
x)

2+4h2xλ
2
x

—is the dynamic

coefficient; λx = ω
px
; hx = bx

px
—is the relative damping coefficient.

Note that the expression (5) indicates both significant and rapid (proportional
to square of the dynamic coefficient) load increase on the electric motor when the
Sommerfeld effect occurs.

According to the Eq. (4), in this mode of motion, the static deformation of the
drive (average deformation value) will be maximum, α12 ≈ Lmax

/
cc, where Lmax—

is the maximum vibration moment of electric motor; α12 = α1 − α2, at the same
time, it is more than twice its static deformation in an above resonant operating
mode (α12 ≈ Lnom

/
cc, where Lnom—is the nominal vibration moment of the electric

motor).
Summing up the Eqs. (4), we get the equations of slow motions of the vibration

exciter rotor when passing through the resonance zone in the following form

I ω̇ = L(ω) − R(ω) + V (ω), (6)

where I = I1 + I2.
Then, the equation for the frequency of rotation of the vibration exciter in

stationary modes of motion can be written in the form L(ω) = R(ω) − V (ω).
The last two equations do not differ from those given in [4] for the basic dynamic
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model. Consequently, the conclusions made in [4] regarding the possible stationary
modes of motion of the vibration exciter and their stability are also valid for the
model under consideration. Naturally, the presence of an elastic-damping element in
the drive of the vibration machine does not affect the slow motions of the exciter’s
rotor; it cannot be said about the equation of fast motions. In addition, an abrupt
(proportional to k2d ) increase in the vibration moment in the resonance zone of the
vibration machine can lead to the occurrence of nonstationary oscillations of the
vibration exciter’s rotor.

3.3 Equations of Rapid Motions of the Rotors of Electric
Motor and Vibration Exciter and Their Analysis

To analyze oscillatory processes in a vibration machine’s drive in the zone of the
Sommerfeld effect, it is important to consider the equations of fast motion of rotors:

I1ψ̈1 + βc(ψ̇1 − ψ̇2) + cc(ψ1 − ψ2) + k1ψ̇1 = 0,

I2ψ̈2 − βc(ψ̇1 − ψ̇2) − cc(ψ1 − ψ2) + k2ψ̇2 = 
(ẍ, ϕ2) − 〈
(ẍ, ϕ2)〉. (7)

Assuming that ϕi = ωt + ψi , we represent the equations of fast motions of the
vibration exciter’s rotor in the form

I2ψ̈2 + k2ψ̇2 = mε(ẍ sinωt + ẍψ2 cosωt − 〈ẍ sinωt〉). (8)

When deriving Eq. (8), the assumption [17] was taken into account; in accordance
with it, in the initial approximation, the oscillations of the speed of the motor’s
rotor do not have a noticeable effect on the oscillations of the vibration exciter’s
speed, I1 << I2 (that is also confirmed by the results of computer simulation); the
linearization of the right side (7) is performed according ψ2; the effect of the gravity
moment of the debalance is not taken into account.

Taking into account the solution of Eq. (2), corresponding to the steady-state
forced oscillations of the bearing body when the vibration exciter rotates with
frequency ω, we represent (8) in the form:

I2ψ̈2 + k2ψ̇2 + cψψ2 = −Vmax
[
sin(2ωt − γx ) − ψ2 cos(2ωt − γx )

]
, (9)

where cψ = Vmax cos γx .
On the right side of (9), the first and second summands represent the destabilizing

moments; at the same time, the value of the second summand is significantly less
than the first one and, therefore, it can be neglected. Let us write Eq. (9) in the form
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ψ̈2 + 2bψψ̇2 + p2ψψ2 = Φx sin 2ωt, (10)

where bψ = k2
2I2

; Φx = − Vmax
I2

.
Thus, in the zone of the Sommerfeld effect, Eqs. (9) and (10) of fast motions of

the vibration exciter take form of the equation of small forced oscillations of a point
relative to the stable equilibrium position. In (9) term cψψ2 is a kind of elastic force,
and the factor cψ can be called a dynamic or vibrational stiffness coefficient. As you
can see, the value cψ is proportional to Vmax. Consequently, in the resonance zone
of the vibration machine, the coefficient cψ is significant and it seems important to
analyze the possible oscillations in the speed of the vibration exciter.

In Eq. (10), the term pψ is the frequency of natural rotational oscillations
of the vibration exciter’s rotor in the zone of the Sommerfeld effect, pψ =
Ax px

√
M
2I2

∣∣1 − λ2
x

∣∣. In [18], this frequency is called the frequency of free oscillations
of the “inner pendulum”; at the same time, it was found that for vibration machines
with an inertial drive, the following inequality is usually valid ω/pψ > 3. Note that
when the rotor passes through the resonance zone and the rotation frequency reaches
px , the frequency of slow oscillations of the vibration exciter turns into zero.

Obviously, the oscillation amplitudes described by linear Eqs. (9) and (10) are
primarily determined by the correlation between the frequencies pψ and 2ω; in the
case under consideration, when the frequency of excitation of oscillations signif-
icantly exceeds the natural frequency of the system (2ω >> pψ ), along with
establishment of a stationary mode, a pronounced transient process with increased
initial amplitudes will take place. Complex oscillations excited during this period
of movement represent the superposition of low-frequency (with frequency pψ )
damped oscillations of the system with relatively large amplitudes on forced fast
(with frequency 2ω) oscillations with significantly lower amplitudes.

Note that in the frequency range ω ≈ px , the values of the coefficients of viscous
resistance k2 and damping bψ in Eqs. (9) and (10) are relatively small; they are
smaller than for the case of the basic model [4]: k = k1 + k2 i bψ = k1+k2

2(I1+I2)
(k2 < k1, I1 << I2). Consequently, the damping of accompanying free oscillations
described by Eqs. (9) and (10) will occur relatively slowly.

Thus, when analyzing the process of establishing of a stationary mode of rotation
of the vibration exciter’s rotor in the zone of the Sommerfeld effect, it is not enough
to take into account only its forced oscillations; free oscillations will have a decisive
influence on the emerging movement of the vibration exciter.

Let us find the general solution of Eq. (10). When determining the initial
conditions, we take into account that:

– the Sommerfeld effect occurs with a rapid increase in the vibrational moment to
the value Vmax; the impact of it can be estimated by impulse (the frequency of
the vibration moment 2ω is significantly higher than the natural frequency pψ ,
2ω >> pψ );

– the braking effect of the vibration moment takes place during half of the period;
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– before the occurrence of the Sommerfeld effect, the oscillatory motions of the
exciter’s rotor are relatively small.

For greater clarity of the sought solution, we neglect in (10) the moment of resis-
tance bψψ̇2. This simplification is evidenced by the fact that at pψ << 2ω the
influence of the resistance forces on the forced oscillations is insignificant, and on
free oscillations—is reduced only to the gradual damping of the latter (it can be taken
into account when analyzing a solution).

Solution of Eq. (10) taking into account the initial conditions ψ20 = 0, ψ̇20 =
−Vmax/Iω, as well as conditions p2ψ << ω2, can be written in the form

ψ2 ≈ − 3Vmax

2ωpψ I2
sin pψ t + Vmax

4ω2 I2
sin 2ωt. (11)

The rotor oscillation is best judged by its speed oscillations. The expression
describing oscillations of the rotor frequencywhen the stationarymode is established
can be represented in the form

ψ̇2 ≈ Vmax

2ωI2
(3 cos pψ t + cos 2ωt). (12)

Naturally, under the assumptions made above, expression (12) coincides with that
obtained in [21] for the case of the absence of an elastic-damping connection of the
rotors of the electric motor and vibration exciter. Taking into account the assumption
that friction forces are neglected (i.e., that in (10) the amplitudes of the first harmonic
actually gradually decrease), we can conclude:

– when a stationary mode of rotation of the exciter rotor is established, a tran-
sient process takes place, that is representing biharmonic damped oscillations
of the rotor speed with the fundamental frequency pψ ; since pψ << 2ω, the
nonstationary process represents relatively slow oscillations;

– the emergence of slow oscillations in the speed of the vibration exciter is a conse-
quence of an abrupt increase in the vibration moment in the resonance zone of
the vibration machine;

– the maximum (initial) amplitudes of these oscillations are large enough—at least
three times the amplitudes of the subsequently established stationary mode;

– damping of nonstationary oscillations in the zone of the Sommerfeld effect occurs
relatively slowly;

– at the same time, the amplitudes of the steady-state stationary mode are also
relatively large, and that is a consequence of the resonant value of the vibration
moment, V (ω) ≈ Vmax.

Since the condition of vibration isolation of the drive in the zoneof natural frequen-
cies of the vibration machine is not satisfied, oscillations in the exciter’s speed can
cause significant oscillations of the drive.
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3.4 Equations of Fast Motions of a Vibration machine’s Drive

Consider the torsional oscillations of a vibration machine’s drive. We transform the
equations of fast motions of the electric motor’s rotor into the equation of oscillations
of the drive; in this case, we will take into account the estimates of the summands of
the equations of fast motions made in [4]. Then we get the equation

ψ̈12 + 2b12ψ̇12 + p2cψ2 = �ψ sin pψ t + �ω sin 2ωt, (13)

where b12 = βc+k1
2I1

; �ψ = − 3Vmax pψ

2I2ω
; �ω = Vmax

I2
.

It is easy to make sure that the damping coefficient b12 in the equation of the drive
oscillations (13) significantly exceeds the coefficient bψ in the equation of motion of
the vibration exciter (10). In addition, from the strength condition (unacceptability
of large deformations) of the drive, it follows that its natural frequency cannot be
significantly lower than the oscillation excitation frequencies pψ , 2ω. Consequently,
when the stationarymode is established, the transient processwill not be as significant
as for the vibration exciter. Then we represent the solution of Eq. (13) in the form

ψ12 = Φψkψ sin pψ t + Φωkω sin 2ωt, (14)

where Φψ = − 3λp

2
Vmax
I2 p2c

, Φω = Vmax
I2 p2c

;—are the static deformations of the drive;

kω = 1√
(1−λ2

ω)
2+4h2cλ2

ω

; kψ = 1√
(1−λ2

ψ)
2+4h2cλ

2
ψ

—are the dynamic coefficients; hc =
b12
pc
; λψ = pψ

pc
;λω = 2ω

pc
.

Solution (14) makes it possible to estimate the amplitudes of rotary oscillations
of the drive when starting the vibration machine in case of the Sommerfeld effect.
Comparing in (14) the static deformations of the drive (constant components) from
the action of exciting moments with slow and fast frequencies, it is easy to find that
the value of the second is approximately twice the first; moreover, the amplitudes
of the slow harmonic actually decrease. Consequently, the main oscillations of the
drive in the zone of the Sommerfeld effect are its fast oscillations with a frequency
2ω.

As you can see, in (14) the value of the amplitudes of both harmonics is propor-
tional to Vmax. Consequently, in the resonance zone of the vibration machine, the
oscillations of the drive can abruptly increase. At the same time, in case of a hard
drive (pc >> ωw, i.e. when pc >> pψ , pc > 2ω, ωw—is the vibration exciter’s
rotation frequency in operating mode), dynamic coefficients will be smaller than
in case of a soft drive (ωw

pc
>

√
2) and, accordingly, the oscillation amplitudes of

such a drive in the resonance zone of the vibration machine will also be significantly
smaller than the oscillation amplitudes of the soft drive. In addition, the possibility
of coincidence of the frequencies of excitation of oscillations in the resonance zone
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(pψ ,ω ≈ px ,2ω) with the natural frequency of the drive pc is excluded. Thus, oscil-
lations of the soft drive of the vibration machine when it slowly passes through the
resonance zone will be large.

3.5 Computer Simulation of Oscillations in Drives
of Vibration Machines in the Resonance Zone

The joint numerical solution of the original system of Eqs. (1) and (2) and the
system of differential equations of the dynamic model of an asynchronous electric
motor [23] was carried out with the following basic values of the mechanical system
parameters: M = 300 kg; m = 39, 24 kg; ε = 0, 035m; I1 = 0, 0068 kg · m2;
I2 = 0, 068 kg · m2; cx = 6, 9 · 105N/m; βx = 1500 kg/s; in addition, there were
also used the parameters of the three-phase asynchronous electric motor 4A serie
with power Pmot = 2, 2 kW and synchronous rotation frequency ns = 1500 r tm.

According to Fig. 2 (curves 1), when the speed of rotation of the vibration exciter
“stucks” in the natural frequency zone px (px = 48 s−1), its oscillations are excited
with large initial amplitudes, which are the result of superposition of high-frequency
forced (with the doubled “stucking” frequency, 2ω ≈ 92 s−1; ω ≈ px ) and low-
frequency damped (with natural frequency) oscillations.

Thus, when the Sommerfeld effect occurs, a clearly pronounced relatively long
transient process takes place; the process represents biharmonic damped oscillations
of the speed of a vibration exciter with a slow basic frequency pψ (pψ << ω). In this
case, the total oscillations have adistinctive shape: the amplitude of the low-frequency

ϕ⋅

ϕ⋅

Fig. 2 Time dependences of the vibration exciter speed for periods of movement of different
duration (a, b), in the case of: 1— “stucking” of the vibration exciter speed (mε = 1, 199 kg m);
2—passing of vibration exciter through the resonance zone (mε = 1, 197 kg m)
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harmonic noticeably exceeds the amplitude of the high-frequency harmonic. The
initial amplitudes of the oscillations under consideration are relatively large (the
maximum reaches 19, 5 s−1, while subsequently, in a steady state, the amplitudes
decrease to 11 s−1); damping of oscillations is relatively slow (more than 5 s).

The graphs in Fig. 2 convincingly demonstrate that slow oscillations of the vibra-
tion exciter speed are a transient process to its steady motion in the zone of the
Sommerfeld effect.

It seems important to analyze the oscillations of the vibration machine’s drive
during considered period of movement, and in the process to compare the cases of
using the “hard” and “soft” drives. Note that no significant differences are observed
on the graphs of the vibration exciter speed changing for drives of different stiffness.

According to the results obtained (Fig. 3): when the Sommerfeld effect occurs,
no increased initial amplitudes of the drive oscillations are observed in all the cases
under consideration; i.e. a clearly pronounced transition process does not occur. At
the same time, it is clearly seen that along with fast oscillations of the drive with
doubled rotation frequency of the vibration exciter, slow oscillationswith a frequency
pψ occur; the amplitudes of the slow harmonic are noticeably smaller than those of
the fast one, and at the same time, they are damped.

It was found that when using a “soft drive”, its oscillations in the Sommerfeld
zone will be very large. So, as follows from Fig. 3, a, the maximum amplitudes of
the drive oscillations during this period of motion noticeably exceed the maximum
amplitudes of the drive at the moment of the engine start, and much more than the
amplitudes in the above resonant steady-state mode. Note that the parameters of the
system, both when the rotor is “stuck” and when it passes through the resonance
zone, are almost the same, excepting a slight difference in the static moments of the
vibration exciters (mε = 1,199 kg m and mε = 1,197 kg m, consequently).

Fig. 3 Change in angular deformation of the drive: a pc = 88, 1 −1, pc ≈ 2ω; b pc ≈ 203, 5 −1;
pc ≈ pψ , in the case of: 1—“stucking” of the rotors in the zone of theSommerfeld effect; 2—passing
through the resonance zone with exit to the operating mode
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Note that in the example in Fig. 3a, due to the proximity of the frequency of
the disturbing moment 2ω ≈ 92 s−1 and the natural frequency of the drive pc =
88, 1 −1, the excited oscillations have the character of beats; this process is not steady;
accompanying free oscillations quickly disappear; at the same time, the amplitudes
of the continuing oscillations remain practically the same.

4 Results and Discussion

In accordance with the results obtained, when starting a vibration machine with a
limited-power motor in the zone of the Sommerfeld effect, significant low-frequency
(comparatively to the rotational speed) oscillations of the vibration exciter speed can
be excited; the damping of these oscillations is quite long. Their amplitudes are the
greater, the greater the value of the vibrational moment in the resonance zone.

It is shown that the oscillation amplitudes of the vibration machine’s drive in the
resonance zone substantially depend on the relation of its natural frequency pc to the
frequencies pψ , ω and 2ω (ω—is the frequency of “stucking”). This means that the
oscillations of the “soft drive” of the class of soft vibroisolating machines (ωw

px
> 3),

in case of the Sommerfeld effect, can be quite large. Consequently, the occurrence
of a stationary mode of motion in the zone of the Sommerfeld effect is dangerous for
the drive of the vibration machine, as the maximum loaded mode of its operation.

It seems important that slow oscillations in the speed of a vibration exciter are the
physical basis for the effectiveness of methods for controlling the start-up of devices
with inertial vibration exciters. In addition, slow oscillations are at the heart of the
“double start” method of vibration machines with inertial drive. These methods are
based on the fact that in the resonance zone of the vibration machine, the periodic
exchange of kinetic energy between the rotating vibration exciter and the oscillating
bearing body is especially significant.

The results obtained will contribute to the choice of the parameters of the algo-
rithms for the control systems of the start-up of vibration machines to facilitate their
passage through the resonance zone.

5 Conclusions

When the frequency of the electricmotor gets stuck in the resonance zone of the vibra-
tion machine, biharmonic damped oscillations of the speed of the vibration exciter
are excited with the basic relatively slow frequency and rather large amplitudes.
These oscillations represent a transient process to a steady-state mode of vibration
exciter rotation in the zone of the Sommerfeld effect.

When theSommerfeld effect occurs, the oscillations of the “soft drive” of vibration
machines with inertial excitation will be large.
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The critical frequencies of the drive, along with its natural frequency pc (multiple
frequencies), can also be considered the frequency of “stucking” of the electric
motor in the resonance zone of the vibration machine ω ≈ px , the double frequency
of “stucking” 2ω, as well as the frequency of slow oscillations of the speed of the
vibration exciter pψ in the zone of the Sommerfeld effect.
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Bifurcations “Cycle–Chaos–Hyperchaos”
in Some Nonideal Electroelastic Systems

S. V. Donetskyi and A. Yu. Shvets

Abstract A non-ideal dynamic system "piezoceramic transducer—LC generator"
is considered. Various scenarios of transition to deterministic chaos in such a system
are described. For the first time, the implementation of the "chaos-chaos" and "chaos-
hyperchaos" transitions according to the scenarios of generalized intermittency has
been discovered.

1 Introduction

Any oscillatory system consists of two main elements, namely, a source of excitation
of oscillations and the actual oscillatory load. If the power of the oscillation excita-
tion source is comparable to the power consumed by the oscillatory load, then such
systems are called nonideal systems or systems with limited excitation. In nonideal
nonlinear dynamical systems, the interaction between the source of oscillation exci-
tation and the oscillatory subsystem can lead to completely unexpected steady-state
regimes, in particular to the emergence of the deterministic chaos. Especially inter-
esting cases are when the occurrence of chaos is associated exclusively with the
interaction between the excitation source and the oscillatory load, and not with the
internal properties of the subsystems.

For the first time, studies of limited excitation were started in the works of Arnold
Sommerfeld [27, 28]. In the future, such studies were continued by Timoshenko [29],
Kononenko1969,Nayfeh andMook [19].Among theworks of recent decades, signif-
icant contribution was made by Krasnopolskaya [12, 13], Warminski and Balthazar
[30], Balthazar et al. [2], Palacios Felix and Balthazar [20] and many others.

The main purpose of this paper is to study new bifurcations of the transition to
deterministic chaos in some nonlinear dynamic system “piezoceramic transducer—
analog generator of limited power.
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2 Mathematical Model of System “piezoceramic
Transducer-LC-Generator”

Let us consider a piezoceramic rod transducer, which is loaded on the acoustic
medium and to which electrodes the electrical voltage is affixed, raised by the LC–
generator (Fig. 1). The selection of the generator of such type is caused by the renais-
sance of its application observable now in the up-to-date technique. This is related
to facts that the electrovacuum-tube (analogue) devices ensure higher metrological
characteristic to comparison with the numeral devices.

In papers [14, 16] in strict accordance with the theory of the relationship between
mechanical and electrical fields in piezoceramic media [1, 4, 9], as well as based on
the general principles of the theory of systems with limited excitation (Kononenko
1969), a mathematical model of the “transducer-generator” system was derived. It is
proved that such a mathematical model can be written in the form of the following
system of ordinary differential equations:

ϕ̈ + ω2
0ϕ = a1ϕ̇ + a2ϕ̇2 − a3ϕ̇3 − a4V,

V̈ + ω2
1V = a5ϕ + a6ϕ̇ − a7V̇ .

(1)

Here V (t)—voltage in the electrodes of the transducer; t—time; ϕ(t) =∫ t
0

(
eg − Eg

)
dx ; eg—tube grid voltage; Eg—the constant component of voltage eg .

A detailed description of all parameters of the mathematical model (1), each of
which depends onmany electrical and elastic properties of the “transducer-generator”
system is given in the paper [16].

Note that the mathematical model (1) was derived for one specific type of dynam-
ical systems. However, as it was subsequently established in this dynamic system,
a unique variety of steady-state dynamic regimes is realized. So, in this system, all
the main types of regular attractors were discovered, such as equilibrium positions,
limit cycles and invariant tori [3, 16, 25]. Chaotic attractors, including hyperchaotic
ones, were also found in the system [1, 3, 13, 22]. Transitions to chaos (hyperchaos)

Fig. 1 Scheme of viewed system
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through a cascade of period doubling bifurcations [7, 8] and through intermittency
[18, 21] were identified. And at last, in papers [25, 26] self-excited, hidden and rare
attractors were discovered in this system.

Thedynamical system [1] has awider variety of steady-state regimes and scenarios
for the transition from one type of regime to another than, for example, the classical
systems of Lorenz and Roessler. Such system is the “library” of regular and chaotic
dynamics and can be used as a basic one in the study of general theory of dynamical
systems.

3 Research Methodology and Numerical Results

The system of Eq. (1) is a nonlinear system of differential equations with a four-
dimensional phase space. Therefore, in the general case, a solution to such a system
can only be found using numerical or numerical-analytical methods. For the conve-
nience of using such methods, we bring the system of Eq. (1) to a normal form.
We introduce new “dimensionless” phase variables and “dimensionless” time by the
formulas:

ξ = ϕω0

Eg
,

dξ

dτ
= ζ, β = V

Eg
,

dβ

dτ
= γ, τ = ω0t. (2)

Then the system of Eq. (1) can be written in the form:

dξ

dτ
= ς, ds

dτ
= −ξ + α1s + α2s2 − α3s3 + α4β,

dβ
dτ

= γ,
dγ

dτ
= α5ξ + α6ζ − α0β − α7γ.

(3)

where the coefficients are equal to

α0 = ω2
1/ω

2
0, α1 = a0/ω0, α2 = a2Eg/ω0, α3 = a3E2

g/ω0,

α4 = −a4/ω0, α5 = a5/ω3
0, α6 = a6/ω2

0, α7 = a7/ω0.

For construction and study of attractors of system (3) (both regular and chaotic), a
whole complex of numerical methods was applied. Such as, the fifth order method of
Runge–Kutta with the application of correcting procedure of Dormand–Prince [10],
the algorithm of Benettin [6, 5], the method of Henon [11] and some other methods.
A detailed methodology for applying the above methods is described in the papers
[17, 23].

At studying attractors of dynamical systems, a description of scenarios (a sequence
of bifurcations) of transitions from an attractor of one type to an attractor of another
type have great interest. In particular, investigation of scenarios of transitions from
regular to chaotic attractors, as well as transitions from a chaotic attractor of one
type to a chaotic attractor of another type. As noted earlier, transitions to chaos were
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Fig. 2 Dependence of two
Lyapunov characteristic
exponents on the parameter
α2

found in the “transducer-generator” system according to the Feigenbaum scenario (a
cascade of period doubling bifurcations) and according to the Manneville-Pomeau
scenario (through intermittency).

Let us show that in system (3) a transition is realized from a chaotic attractor of
one type to a chaotic attractor of another type according to a more complex scenario
of generalized intermittency. The scenario of generalized intermittency for nonideal
hydrodynamic systems was described in papers [15, 16, 24].

Suppose that the parameters of system (3) are respectively equal to α0 = −0.104;
α1 = 0.0535; α3 = 9.95; α4 = 0.103; α5 = 0.0604; α6 = 0.12; α7 = 0.01. We
choose α2 as the bifurcation parameter.

In Fig. 2, the dependences of twoLyapunov characteristic exponents on the param-
eter α2 are plotted. The maximal exponent λ1 is shown in black and the second λ2 is
shown in red.

As can be seen from Fig. 2 for α2 < 9.7128 maximal Lyapunov exponent will
be zero, while the second exponent will be negative. This means that the attractor of
system (3) for such values will be the limit cycle. At α2 > 9.7128maximal Lyapunov
exponent becomes positive, which indicates the appearance of a chaotic attractor in
system (3). Chaos in the systemwill exist for almost all the values of α2 considered in
Fig. 2, with the exception of a very narrow periodicity window at the right boundary
of the interval 9.7128 < α2 < 9.74. As for the second Lyapunov exponent, it (up to
the error of the Benettin et al. method) will be zero at 9.7128 < α2 < 9.7348. At
α2 > 9.7348 the second, the Lyapunov exponent becomes positive. The presence of
two positive Lyapunov indicators indicates the emergence of a hyperchaotic attractor.

In Fig. 3 the phase-parametric characteristic (bifurcation tree) of the system (3)
is shown. Limit cycles correspond to individual branches of this tree, and chaotic
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Fig. 3 Phase-parametric
characteristic

attractors correspond to densely black areas. In Fig. 3, two types of densely black
areas are clearly visible. These densely black areas correspond to different types
of chaotic attractors, which differ noticeably in the size of the attractor localization
region in the phase space.

Figure 4 shows an enlarged fragment of the phase-parametric characteristics of
the system (3). This figure makes it possible to very clearly illustrate the transitions

Fig. 4 Enlarged fragment of
phase-parametric
characteristic
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from one type of attractor to another. Thus, with an increase in the value of the
parameter α2 the limit cycle is replaced by a chaotic attractor with a small region of
localization in the phase space. In turn, this chaotic attractor is replaced by a chaotic
attractor of another type with a much larger area of localization in the phase space.
In addition, Fig. 3 and Fig. 4 allow us to make an assumption about the scenario of
the transition from a chaotic attractor of one type to a chaotic attractor of another
type through generalized intermittency [16, 24]. However, most clear the scenario of
such a transition can be revealed when studying the projections of the phase portraits
of attractors and the distributions of invariant measures over the phase portraits.

Let us consider the dynamic behavior of system (3) with increasing parameter α2.
In Fig. 5a), a projection of the phase portrait of the limit cycle at α2 = 9.7125 is
shown. As the parameter α2 increases up to α2 ≈ 9.7128, the limit cycle disappears
and a chaotic attractor arises in the system. The projection of the phase portrait of
a chaotic attractor constructed at α2 ≈ 9.71305 is shown in Fig. 5b). The transition
from a limit cycle to a chaotic attractor occurs through intermittency trough one rigid
bifurcation [18]. Despite the fact that the chaotic attractor is very similar in shape

(a) (b)

(c) (d)

Fig. 5 Limit cycle at α2 = 9.7125 (a); Chaotic attractor at α2 = 9.7125 (b); Chaotic attractor at
α2 = 9.7131 (c); Distribution of invariant measure at α2 = 9.713 (d)
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to the disappeared limit cycle, there are fundamental differences between them. The
limit cycle consists of one orbitally stable trajectory along which the movement is
strictly periodic. A chaotic attractor consists of an infinite set of arbitrarily close to
each other open trajectories along which the motion is unpredictable.

Note that such a chaotic attractor exists on a very small interval of variation of the
parameter α2, and small increase in parameter α2, namely α2 ≈ 9.7131 leads to next
rigid bifurcation after which chaotic attractor of another type arises. The existing
chaotic attractor disappears and a chaotic attractor of a different type appears in the
system. The projection of the phase portrait of the new chaotic attractor is shown in
Fig. 5c). The distribution of the Krylov-Bogolyubov measure over the projection of
the phase portrait of the new chaotic attractor is shown in Fig. 5d).

The scenario of such a transition from a chaotic attractor of one type to a chaotic
attractor of another type is called generalized intermittency [16, 24]. In this scenario,
after passing the bifurcation point, the chaotic attractor disappears and a chaotic
attractor of a new type appears. Motion along the trajectory new chaotic attractor
consists of two alternating phases, namely rough-laminar phase and turbulent phase.
In the rough-laminar phase, the trajectory makes chaotic movements in a neighbor-
hood of the trajectories of the disappeared chaotic attractor. Then, at an unpredictable
moment of time, the trajectory leaves the localization region of the disappeared
attractor and moves to more distant regions of the phase space. Rough-laminar phase
corresponds to the much blacker areas in Fig. 5c, d. In turn, turbulent phase corre-
sponds to much less darkened areas in Fig. 5c, d. After some time, the movement
of the trajectory returns to the rough-laminar phase again. Then, trajectories switch
to turbulent phase again. Such transitions are repeated an infinite number of times.
From Fig. 5b, d it is especially clearly seen that the contours of the disappeared
chaotic attractor are essentially rough laminar phase of a new chaotic attractor. Note
that the duration of both rough-laminar and turbulent phases is unpredictable as are
the moments of times of transition from one phase to another.

With a further increase in the value of the parameter α2, the second Lyapunov
characteristic exponent also becomes positive. A chaotic attractor turns into a hyper-
chaotic one. Hyperchaotic attractors have two directions in the phase space along
which the trajectories of the hyperchaotic attractor run away.

Finally, let us consider on one more interesting feature of the “transducer-
generator” system. Figure 6 shows the phase-parametric characteristic for another
interval of variation of the parameter α2. Here, as before, the separated “branches” of
the bifurcation tree correspond to the limit cycles, and the densely black areas corre-
spond to chaotic attractors. Clearly, it can be identified the transitions from densely
black areas to densely black areas with noticeably greater size. At such transitions,
the chaotic attractor of one type is replaced by a chaotic attractor of another type.
As before, such transition is carried out according to the scenario of generalized
intermittency. However, there is difference in sequence of bifurcations with such
transitions. Therefore, on transitions corresponding to the Fig. 3, following bifurca-
tion sequence occurs: limit cycle–intermittency–chaotic attractor of one type–gener-
alized intermittency–chaotic attractor of another type. In turn, Fig. 6 corresponds
to the following sequence of bifurcations: limit cycle–cascade of bifurcations of
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Fig. 6 Phase-parametric
characteristic

period doubling–intermittency–chaotic attractor of one type–generalized intermit-
tency–chaotic attractor of another type. Thus, first transition to chaos corresponding
to Fig. 3 is carried out through one rigid bifurcation, and the first transition to chaos
corresponding Fig. 6 is carried out through an infinite number of soft bifurcations.

In conclusion, we emphasize that implementation of the scenario of generalized
intermittency for the “transducer-generator” system was found for the first time.
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Nonlinear Dynamics of Self
and Parametrically Excited Systems
with Non-ideal Energy Source

Jerzy Warminski

Abstract Vibrations of a non-ideal system with nonlinear damping and periodi-
cally varying stiffness are presented in the chapter. The system is excited by rotating
unbalanced mass attached to the DCmotor with limited power. Rotation of the motor
is tuned to the period of varying stiffness in 1:2 ratio which corresponds to the prin-
cipal parametric resonance. Nonlinear damping is represented by Rayleigh model
which may generate self-excitation. The analytical solutions obtained by Krylov–
Bogoliubov-Mitropolsky method for the two degree of freedommodel show an exis-
tence of the internal loop on the resonance curve and transition zones from periodic
to quasi-periodic oscillations. Chaotic or hyper-chaotic vibrations are detected by
numerical simulations and an influence of the non-ideal energy source on the motion
type is presented.

1 Introduction

Structural elements of mechanical, aerospace or civil engineering objects are
subjected to various excitation sources. Self-excited vibrations belong to a special
class of vibrations occurring in the nature or in the structures produced bymen. Their
characteristic feature is that they are generated by constant input, independent of time
[10, 13]. An energy transfer is controlled by the system itself and oscillation arise
due to its internal properties. Classical examples are flutter of airplane wings, chatter
in machining or shimmy of vehicle whiles. The self-excitation can be soft, with a
stable limit cycle, or hard (catastrophic) when a limit cycle is unstable and a solu-
tion may tend to zero or to infinity. The second, totally different class, are vibrating
systems with periodically varied coefficients [4, 9, 10]. In machine dynamics the
coefficients are related to periodically changing stiffness or mass moment of inertia.
The main feature of parametric oscillations is that for selected parameters instability
zones occur and the amplitude of oscillations gets large values. These zones, called
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parametric resonances, are dependent on amplitude and frequency of varied coeffi-
cients and damping of the system. Apart from self and parametric vibrations also the
system can be excited by direct applied periodic force. Then the periodic component
occurs on the right side of the equations and the model becomes inhomogeneous. In
some cases all mentioned above vibrations may exist at the same time and then due
to interactions interesting, and sometimes unexpected, phenomena may arise [1, 14,
15, 17]. If the model consists of self-excited terms and parametric with external exci-
tations are tuned 1:2 they interact strongly in the vicinity of the principal parametric
resonance [15]. Inside the resonance zone even five periodic solutions are possible
but only two of them are stable. Moving away from the resonance the interaction
with self-excitation becomes strong and then quasi-periodic oscillation takes place,
followed by the second kind Hopf bifurcation.

Often in mathematical models excitations are defined by simple harmonic force
and dynamics of the energy source (DC motor for example) and its interactions with
the main system are neglected. This kind of model is called ideal [2]. In contrast,
systems with limited power have to consider interactions with the main structure
[5–7]. The effect of non-ideal energy source was first detected by Sommerfeld [11].
During the experimental tests Sommerfeld observed instabilities in a linear structure
with one degree of freedom. The explanationwas foundwhen the characteristic of the
motor was taken into account. The formulated complete model considered coupling
with the energy source confirmed results obtained by experiment.

The non-ideal energy source introduces an additional degree of freedom and
differential equations of motion are expressed by a coordinate describing motion of
the energy source. In consequence the model is represented by autonomous equa-
tions without time given in a direct form [2]. The introduction of new coordinate
φ transforms harmonic excitation sinωt into sinφ, which is a nonlinear function
of the coordinate. A non-ideal model of a parametric and self-excited system with
one degree of freedom was analyzed in paper [16] where the importance of the
proper modelling of the energy source was presented, either for regular or chaotic
oscillations. In the present chapter the model is extended for a chain of coupled oscil-
lators. Detailed analysis is demonstrated for two coupled Rayleigh-Mathieu-Duffing
oscillators with a non-ideal energy source.

2 Model of the Structure

A model of the studied structure is a chain of coupled oscillators excited by rotating
unbalanced mass attached to the DC motor with limited power. Due to this fact the
motor plays a role of a non-ideal energy source. The rotating mass excites the system
with S-degrees of freedombut the oscillators influence the rotormotion aswell. Thus,
the coupled oscillators together with the rotor are represented by S + 1 generalized
coordinates.

As presented in Fig. 1 motion of oscillators is described by xi coordinates, i =
1,2…S, whileφ and is angle of rotation of theDCmotor. The oscillators are connected
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Fig. 1 Non-ideal system
with parametric and
self-excitation with many
degrees of freedom

by springs, considered in further investigation as nonlinear of Mathieu-Duffing type
which are nonlinear and may produce parametric vibrations. Dampers in Fig. 1 are
represented by nonlinear Rayleigh functions which may generate self-excitation.

Kinetic energy of the system takes the form

T = 1

2

(
J0 + m0r

2
)
φ̇2 + 1

2
m0 ẋ

2
1 + ẋ1φ̇rm0cosφ +

s∑

i=1

1

2
mi ẋ

2
i (1)

where r, m0, J0 are radius, unbalanced mass and mass moment of inertia of the rotor
and mi is mass of the selected oscillator.

Let us assume temporarily that the system is linear and conservative, then its
potential energy is defined as

V = 1
2k1x

2
1 + m0g(x1 + rsinφ) +

s−1∑

i=1

1
2ki,i+1(xi − xi+1)

2 + 1
2kSx

2
S (2)
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where, g is gravity acceleration, xi displacement of mi mass, k1, kS , ki,i+1 linear
stiffness of the first spring, the last spring, and springs connecting i and i + 1 oscil-
lators. Applying kinetic and potential energies to Lagrange equations of the second
kind, and considering notation presented in Fig. 1, we obtain a set of S + 1 ordinary
differential equations of motion of coupled oscillators with the DCmotor. The terms
related to static displacements and gravity force components are equal therefore they
are pared. The term m0grcosφ is also assumed as small and can be neglected [7].

To include nonlinear damping and stiffens the additional nonlinear functions f̃
are added to the model. These functions depend on generalized coordinates and
velocities. We assume that nonlinearities are of ε order, where ε is a formal small
parameter. Thus, equations of motion of the complete nonlinear system take the final
form

φ̈ = ε
[
G̃

(
φ̇
) − q̃2 Ẍ1cosφ

]

Ẍ1 + M1(a11X1 + a12X2 + ... + a1S XS) = εM1 f̃1 + q̃1φ̇2sinφ − q̃1φ̈cosφ
Ẍ2 + M2(a21X1 + a22X2 + ... + a2S XS) = εM2 f̃2

...

Ẍ S + MS(aS1X1 + aS2X2 + ... + aSS XS) = εMS f̃S

(3)

Functions with tilde are expressed by small parameter, G̃
(
φ̇
) = εG

(
φ̇
)
and f̃i = ε fi .

Furthermore, Eq. (3) are expressed in dimensionless form by introducing dimen-

sionless time τ = ω1t and coordinates X j = x j

x0
, where ω1 =

√
k1
m1
, x0 = m1g

k1
.

Parameters aij represent linear parts of stiffness coefficients, Mi = mi
m1

, q1 = m0r
M+m0

,

q2 = m0r
J0+m0r2

, q̃1 = εq1 and functions f̃i = f̃i (X1, X2, ...XS, Ẋ1, Ẋ2, ..., Ẋ S, τ ) are
nonlinear functions of dimensionless time and coordinates.

The first equation of set (3) is a driving equation of the DC motor defined as

G
(
φ̇
) = L

(
φ̇
) − H

(
φ̇
)

(4)

where H
(
φ̇
)
is a resistant torque and L

(
φ̇
)
is torque generated by the motor.

According to [2, 7], G
(
φ̇
)
can be accepted by the linear function

G
(
φ̇
) = u1 − u2φ̇ (5)

approximating the resultant torque generated by the rotor. Coefficient u1 repre-
sent voltage supplied to the DC motor while u2 depends on the motor character-
istic. Excitation of the system occurs in the second equation of Eq. (3). It is worth
mentioning that the model is time independent which is characteristic feature of
non-ideal systems.



Nonlinear Dynamics of Self and Parametrically Excited Systems … 57

3 Two Degrees of Freedom Model with Non-ideal Energy
Source

Detailed analysis of the considered system is performed for two degrees of freedom
model presented in Fig. 2.

Equation of motion of the presented model take the form

(
J0 + m0r2

)
φ

′′ = G(φ
′
) − m0r x

′′
1cosφ

m1x
′′
1 + f1

(
x, x

′) + k1x1 + k
∧

1x31 +
(
k12 − k

∧

12cos2νt
)
(x1 − x2)

= m0rφ
′2(

sinφ − φ
′′
cosφ

)

m2x
′′
2 + f2(x, x

′
) + k2x2 + k

∧

2x32 −
(
k12 − k

∧

12cos2νt
)
(x1 − x2) = 0

(6)

where prime denotes derivative with respect to time.
The system is composed of two self-excited oscillators with nonlinear damping

of Rayleigh type defined as: f1 = −α1X ′
1 + β1X ′3

1 , f2 = −α2X ′
2 + β2X ′3

2 and
nonlinear Duffing springs:k1x1 + k

∧

1x31 , k2x2 + k
∧

2x32 . The oscillators are coupled by
a linear spring with periodically varied stiffness k

∧

12cos2νt . The system is excited by
non-ideal energy source—DC motor with the rotating unbalanced mass.

Introducing dimensionless timeτ = ω1t , where ω2
1 = k1

m1
, m1 = m10 +m0, and

small formal parameter ε, Eq. (6) is transformed to the form

Fig. 2 Non-ideal system
with parametric and
self-excitation with two
degrees of freedom



58 J. Warminski

φ̈ = ε
[
G̃

(
φ̇
) − q̃2 Ẍ1cosφ

]

Ẍ1 + δ1X1 + δ12(X1 − X2) = ε
[
f̃1

(
X1, X2, Ẋ1, Ẋ2, τ

) + q̃1
(
φ̇2sinφ − φ̈cosφ

)]

Ẍ2 + Mδ2X2 − Mδ12(X1 − X2) = ε
[
M f̃2

(
X1, X2, Ẋ1, Ẋ2, τ

)]

(7)

where dot denotes derivative with respect to dimensionless time τ .
Equations (7) are transformed from generalized coordinates Xi to quasi-normal

coordinates Yi by a linear transformation

Y1 = X1 + λ21X2 + ... + λS1XS

Y2 = X1 + λ22X2 + ... + λS2XS
...

YS = X1 + λ2S X2 + ... + λSS XS

(8)

whereλij are coefficients of linearmodes normalized to the first coordinate, therefore,
λi1 = 1.

After transformation to normal coordinates we get

φ̈ = ε
[∼
� (ω) + q̃2

(
ψ1Ÿ2 − ψ2Ÿ1

)
cosφ

]
(9)

Ÿ1 + p21Y1 = ε
[
−F̃d1 − ∼

γ 1(Y2ψ1 − Y1ψ2)
3 + (Y2η1 − Y1η2)

∼
μ cos2φ

]

+Mλ12

[
−F̃d2 − ∼

γ 2χ
3(Y1 − Y2)

3 − (Y2η1 − Y1η2)
∼
μ cos2φ

] (10)

Ÿ2 + p22Y2 = ε
[
−F̃d1 − ∼

γ 1(Y2ψ1 − Y1ψ2)
3 + (Y2η1 − Y1η2)

∼
μ cos2φ

]

+Mλ22

[
−F̃d2 − ∼

γ 2χ
3(Y1 − Y2)

3 − (Y2η1 − Y1η2)
∼
μ cos2φ

] (11)

where

F̃d1 =
[
−∼

α1 + ∼
β1

(
ψ1Ẏ2 − ψ2Ẏ1

)2
](

ψ1Ẏ2 − ψ2Ẏ1
)
,

F̃d2 =
[
−∼

α2 + ∼
β2χ

2
(
Ẏ1 − Ẏ2

)2
]
χ

(
Ẏ1 − Ẏ2

)
,

are Rayleigh damping functions expressed in normal coordinates, p1 and p2 are

natural frequencies of the system. Parametric excitation is represented by term
∼
μ

cos2φ with amplitude μ̃ and frequency 2φ̇
If ε is equal to zero then the system is fully uncoupled. However, if ε is a

small positive number then all coordinates are fully coupled and depending on the
angular velocity of the DC motor and frequency of the periodically varying stiffness
various resonance states can occur. We focus on the resonance zone when the rotor
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speed is synchronized with the parametric excitation in the ration 1:2. This situation
corresponds to the principal parametric resonance. Additionally the system includes
self-excitations which interact with parametric and externally excited vibrations.

3.1 Analytical Solutions

Let us consider vibrations around the principal parametric resonance. The rotor
rotates with angular velocity φ̇ = ω1 in the vicinity of the first natural frequency p1,
thus we can write

p1 − ω1 = ε�1 (12)

where�1 is a frequency detuning parameter. Parametric excitation frequency is tuned
with the rotor speed.

We also assume that system is weakly nonlinear and therefore the first quasi-
normal coordinate Y1 plays the main role in the response and the second Y2 is close
to zero in the first order approximation. Thus, Eqs. (9)–(11) are reduced to the form

d2φ

dt
= ε

[
�(ω1) + q̃2ψ2Ÿ1cosφ

]
(13)

Ÿ1 + p21Y1 = ε

{
−∼

α1ψ2Ẏ1 + ∼
β1ψ

3
2 Ẏ

3
1 + ∼

γ 1ψ
3
2Y

3
1 − Y1η2

∼
μ cos2φ

+q̃1
(
ω2sinφ − φ̈cosφ

) + Mλ12

[
∼
α2χ Ẏ1 − ∼

β2χ
3Ẏ 3

1 − ∼
γ 2χ

3Y 3
1 + Y1η2

∼
μ cosφ

]}

(14)

For the weakly nonlinear system we assume that vibrations amplitude and the
angular velocity ω1 are slowly varying in time. To determine analytical solutions it
is convenient to introduce new coordinates

Y1 = Acos(φ + ψ) (15)

Ẏ1 = −Ap1cos(φ + ψ) (16)

Computing the first time derivative of Y1 and comparing with Eq. (16) we get

d A

dt
cos(φ + ψ) − dψ

dt
Asin(φ + ψ) = (ω1 − p1)Asin(φ + ψ) (17)

The second time derivative takes the form
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Ÿ1 = −d A

dt
p1sin(φ + ψ) −

(
ω1 + dψ

dt

)
Ap1cos(φ + ψ) (18)

Substituting (15)–(18) into Eqs. (13)–(14) we get a set of the first order differential
equations

dω1

dt
= ε

{∼
� (ω1) − q̃2ψ2A1 p1ωcosφcos(φ + ψ)

}
(19)

d A

dt
= ε{ f1A(A, φ, ψ) + Mλ12 f2A(A, φ, ψ)}sin(φ + ψ) + ε2... (20)

dψ

dt
= ε

{
�1 + 1

A
[ f1A(A, φ, ψ) + Mλ12 f2A(A, φ, ψ)]

}
cos(φ + ψ) + ε2...

(21)

where

f1A(A, φ, ψ) = − q̃1ω1
2

p1
sinφ − A

∼
α1ψ2sin(φ + ψ) + 3

4 A
3 p12

∼
β1ψ

3
2 sin(φ + ψ)

− 1
4 A

3 p12
∼
β1ψ

3
2 sin3(φ + ψ) + A

∼
μ

2p1
η2cos(φ − ψ) + A

∼
μ

2p1
η2cos(3φ + ψ)

− 3
4
A3

∼
γ 1
p1

ψ3
2 cos(φ + ψ) − 1

4
A3

∼
γ 1
p1

ψ3
2 cos3(φ + ψ)

f2A(A, φ, ψ) = A
∼
α2χsin(φ + ψ) − 3

4 A
3 p12

∼
β2χ

3sin(φ + ψ)

+ 1
4 A

3 p12
∼
β2χ

3sin3(φ + ψ) − A
∼
μ

2p1
η2cos(φ − ψ) − A

∼
μ

2p1
η2cos(3φ + ψ)

+ 3
4
A3

∼
γ 2
p1

χ3cos(φ + ψ) + 1
4
A3

∼
γ 2
p1

χ3cos3(φ + ψ)

Functions A(t), φ(t), ψ(t) are slowly changing in time. To find the approxi-
mate solutions we apply Krylov–Bogoliubov-Mitropolsky method [3]. In the first
approximation we write

ω1 = �1 + εU1(φ1,�1, a1, ξ1) (22)

A = a1 + εU2(φ,�1, a1, ξ1) (23)

ψ = ξ1 + εU3(φ1,�1, a1, ξ1) (24)

where U1(φ,�, a, ξ),U2(φ,�, a, ξ),U3(φ,�, a, ξ) are also slowly varying func-
tions. To get solutions for Ω1, a1, ξ 1, we average the right sides of Eqs. (19)–(21)
through the vibration period
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d�1

dt
= ε

2π

2π∫

0

f�1dϕ,
da1
dt

= ε

2π

2π∫

0

fa1dϕ,
dξ1

dt
= ε

2π

2π∫

0

fξ1dϕ (25)

and we obtain

d�1

dt
= ε

{
�(�1) − 1

2
a1 p1q̃2�1ψ2cosξ1

}
(26)

da1
dt = ε

{
− 1

2

∼
α1ψ1a1 + 3

8a1
3 p12

∼
β1ψ

3
2 + 1

4a1
∼
μ

p1
η2sin2ξ1

+Mλ12

[
1
2

∼
α2χa1 − 3

8a1
3 p12

∼
β2χ

3 − 1
4a1

∼
μ

p1
η2sin2ξ1

]
− 1

2 q̃1
�1

2

p1
cosξ1

} (27)

dξ1
dt = ε

{
�1 − 3

8a1
2

∼
γ 1
p1

ψ3
2 + 1

4

∼
μ

p1
η2cos2ξ1

+Mλ12

[
3
8a1

2
∼
γ 2
p1

χ3 − 1
4

∼
μ

p1
η2cos2ξ1

]
+ 1

2 q̃1
�1

2

a1 p1
sinξ1

} (28)

In a steady state d�1
dt = 0, da1

dt = 0, dξ1
dt = 0, thus Eqs. (26)–(28) become nonlinear

algebraic equations enabling determining amplitude and phase of vibrations and
angular velocity of themotor in the vicinity of thefirst principal parametric resonance.

3.2 Stability Analysis

Stability analysis of the obtained solutions is based on Eqs. (26)–(28) which can be
written in the consistent form

d�1
dt = �1(a1,�1, ξ1)
da1
dt = �2(a1,�1, ξ1)
dξ1
dt = �3(a1,�1, ξ1)

(29)

Perturbing above equations and subtracting unperturbed from perturbed we get a set
of equations in perturbations

dδ�1
dt =

(
∂�1
∂�1

)

0
δ�1 +

(
∂�1
∂a1

)

0
δa1 +

(
∂�1
∂ξ1

)

0
δξ1

dδa1
dt =

(
∂�2
∂�1

)

0
δ�1 +

(
∂�2
∂a1

)

0
δa1 +

(
∂�2
∂ξ1

)

0
δξ1

dδξ1

dt =
(

∂�3
∂�1

)

0
δ�1 +

(
∂�3
∂a1

)

0
δa1 +

(
∂�3
∂ξ1

)

0
δξ1

(30)
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where δmeans variation of the selected function and the subscript “0” denotes deriva-
tives in the steady state. Stability depends on the values of the roots of the charac-
teristic determinant of (30). The solution is stable if all real parts of the roots are
negative, otherwise the system is unstable.

The derivatives take definitions
(

∂�1

∂�1

)
= −εŨ2 − 1

2
εap1q̃2ψ2 cos ξ1,

(
∂�1

∂a

)
= −1

2
εp1q̃2ψ2�1 cos ξ1,

(
∂�1

∂ξ1

)
= 1

2
εap1q̃2ψ2�1 sin ξ1,

(
∂�2

∂�1

)

0

= −ε
q̃1�1

p1
cos ξ1,

(
∂�2
∂a

)

0
= 1

2
ε

[
−∼

α1ψ2 + 9

4
a2p1

2∼
β1ψ

3
2 + η2

2p1

∼
μ sin2ξ1 + Mλ21

(∼
α2χ − 9

4
a2p1

2∼
β2χ

3 − η2
2p1

∼
μ sin2ξ1

)]

(
∂�2

∂ξ1

)
= 1

2p1
ε
(
aμ̃η2 cos 2ξ1 − Mλ21aμ̃η2 cos 2ξ1 + q̃1�

2
1 sin ξ1

)
,

(
∂�3

∂a

)
= 1

2p1
ε

(
−3

2
aγ̃1ψ

3
2 + 3

2
Mλ21aγ̃2χ

3 − 1

a2
q̃1�

2 sin ξ1

)
,

(
∂�3

∂ξ1

)

0

= 1

2p1
ε

(
q̃1
a

�2
1 cos ξ1 − μ̃η2 sin 2ξ1 − Mλ21η2μ̃ sin 2ξ1

)
.

4 Numerical Analysis of Regular Oscillations

Nonlinear oscillations of the two degrees freedom model with non-ideal energy
source and parametric and self-excitations are analyzed for the following data

α1 = 0.1, β1 = 0.05, γ1 = 0.1, α2 = 0.1, β2 = 0.05, γ2 = 0.1,

μ = 0.2, M = 0.5, δ1 = 1, δ12 = 0.3, δ2 = 1 (31)

Natural frequencies of the system, modal coefficients and coefficients related to
coordinate transformation take values

p1 = 0.766, p2 = 1.168, λ12 = 4.754, λ22 = −0.421

χ = 0.192, ψ1 = 0.919, ψ2 − 0.0813, η1 = 1.112, η2 = 0.112 (32)

Let us assume that the characteristic of the DC motor is defined by function
�

(
φ̇
)
(Eq. (5)). Parameter u1 (related to the supplied voltage) is varied in domain

u1 ∈ (0, 1.8), parameter u2 is fixed, u2 = 1.5.
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Fig. 3 Vibration amplitudes in the vicinity of the principal parametric resonance around frequency
p1, a amplitude against u1 parameter and b amplitude against excitation frequency �1

Resonance curves for the principal parametric resonance are presented in Fig. 3.
The curves in black are determined for the steady state on the basis of analytical
solutions (26)–(28) while the stability checked by computing characteristic roots of
Eq. (30). Unstable solutions are marked by dashed lines. The analytical solutions
are stable close to the first natural frequency p1. Moving away from this frequency
solutions become unstable and the quasi periodic oscillations occur (Fig. 3a).

The quasi-periodic solutions are obtained by a direct integration of equations of
motion (7) and then solutions are transformed from generalized (physical) coordi-
nates to quasi-normal coordinates using transformation (8). Because the motion has
a beating nature with modulated amplitude it is denoted by dotes indicating maximal
and minimal values of the amplitude. As we can observe quasi-periodic motion
starts when the stability of periodic solution is lost. The modulation of the amplitude
decreases moving away from the resonance zone. The periodic solution bifurcates
to quasi-periodic via the second kind Hopf bifurcation, not indicated in the figure.
Varying parameter u1 we can observe also change in the angular speed of the DC
motor. Therefore, the shape of the resonance curve against angular velocity �1 is
different than against parameter u1 as presented in Fig. 3b. The additional fully stable
loop occurs on the left branch of the resonance curve. This solution is in agreement
with results published in the paper [16] for one degree of freedom model. For the
ideal system [15], excited by a motor with infinite power, the loop arises on the
declining branch and it is only partially stable. In contrast the loop existing in the
non-ideal model arises on the inclining branch and is fully stable.

The detailed changes in the amplitude and angular velocity can be observed on
the basis of the averaged Eqs. (26)–(28) which have been modelled in the Matlab
–Simulink package and then solved numerically. Figure 4 and Fig. 5 present solu-
tions a1(t) and �1(t) while supplied voltage is slowly increasing and decreasing,
respectively.
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Fig. 4 Amplitude and
angular velocity of the motor
against slowly increasing in
time parameter
u1 ∈ (0.4 − 2.4)

Fig. 5 Amplitude and
angular velocity of the motor
against slowly decreasing in
time
parameter u1 ∈ (2.4 − 0.4)

Two different scales are used in the figures, red color represents amplitude while
blue angular velocity (frequencyof excitation) of the computed solutions.Modulation
of amplitude are clearly visible out of the resonance zone. This result is an effect
of interactions between parametric and external vibrations and additional interaction
with the non-ideal energy source. Therefore, quasi-periodic oscillations are observed
on the angular velocity curves (blue line).

Modulation of the oscillations increases close to the resonance zone and inside
the resonance zone transits to periodic with constant amplitude, both either for the
main system or angular velocity of the motor. Inside the resonance zone two local
maxima occur. The drop of angular velocity in the middle of the resonance zone
(blue line in Fig. 4) is related with the limited power supply which is too small to
maintain the response to be continuously increasing.
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Time histories of amplitude a1 and angular velocity Ω1 outside and inside the
resonance region for selected parameters u1 are presented in Fig. 6. Amplitudemodu-
lations very close to the frequency locking for u1 = 1.1 and u1 = 1.53 are presented
in Fig. 6a, c.

Inside the resonance for u1 = 1.2 where the frequency locking takes place ampli-
tude is constant (Fig. 6b). For u1 = 1.7 (Fig. 6d), far away from the resonance,
amplitude modulations are much smaller and oscillation frequency is increased.

Fig. 6 Time histories of vibration amplitudes and angular velocity against parameter u1 parameter;
a u1 = 1.1, b u1 = 1.2, c u1 = 1.53, d u1 = 1.70
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5 Chaotic Oscillations of Nonlinear Two Degrees
of Freedom System with Non-ideal Energy Source

Apart from regular oscillations which can be periodic or quasi-periodic also more
complex chaotic oscillationsmay occur [12]. One of themain criterion for themotion
classification is based on Lyapunov exponent. Parameters (31) are accepted to check
regular periodic or quasi-periodic dynamics. For this purpose bifurcation diagrams
based on Lyapunov exponents are computed for varied parameter u1 in domain
u1 ∈ (0 − 6). The computations have been performed till steady state has been
achieved, transient solutions have been rejected.

Lyapunov exponents diagram is presented in Fig. 7. As we can see values of
the exponents do not exceed zero values which confirms regular oscillations in the
analyzed domain of bifurcation parameter u1. Examples of Poincaré maps for X1, Ẋ1

coordinates are presented in Fig. 8.
As it has been mentioned the considered system is autonomous and time is not

present in the direct form therefore the base of solution sampling and then plotting
period T = π has been applied.

Themap in Fig. 8b corresponds to a periodic solution and the attractor gets a shape
of a single closed curve. In the rest maps the oscillations are quasi-periodic occurring
due to nonlinear dynamics of the whole coupled system. The most complex structure
of the attractor is presented in Fig. 8a, f, just before and after the resonance zone.
Then, a very strong impact of self-excitation on the system dynamics takes place.
In Fig. 8c–e the quasi-periodic motion is related to couplings of the whole structure
and smaller influence of self-excitation.

A detailed motion classification based on Lyapunov exponents is proposed in
Table 1.

For periodic motion just one, out of six, Lyapunov exponent is equal to zero, rest
get negative values. Quasi-periodicmotion is characterized by two or three exponents
equal to zero and they are called respectively as quasi-periodic oscillations of the
first or the second kind (see Fig. 8f).

Fig. 7 Lyapunov exponents
against u1 parameter for
the non-ideal system with
two degrees of freedom,
parameters (31); μ = 0.2

0.0                     2.0              u1 4.0                               6.0

1.0

-1.0
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Fig. 8 Phase portraits for selected parameters u1„ μ = 0.2, a u1 = 0.80, b u1 = 1.30, c u1 = 1.70,
d u1 = 2.2, e u1 = 2.6, f u1 = 3.2
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Table 1 Type of attractors and Lyapunov exponents for selected parameter u1; μ = 0.2

u1 Attractor λ1 λ2 λ3 λ4 λ5 λ6

0.80 Quasi-periodic 0.0 0.0 −0.0167 −0.0167 −0.0691 −1.5213

1.30 Periodic 0.0 −0.0285 −0.0296 −0.0296 −0.0738 −1.4178

1.70 Quasi-periodic 0.0 0.0 −0.0381 −0.0924 −0.3185 −1.288

2.20 Quasi-periodic 0.0 0.0 −0.0664 −0.1533 −0.2060 −1.4447

2.60 Quasi-periodic 0.0 0.0 −0.0519 −0.0823 −0.0823 −1.5788

3.20 Quasi-periodic type II 0.0 0.0 0.0 −0.0200 −0.0643 −1.5637

Fig. 9 Lyapunov exponents
against u1 parameter for
non-ideal system with two
degrees of freedom,
parameters (31); μ = 1.0

Dynamics of the non-ideal system is analyzed also for larger parametric excitation
by increasing μ parameter up to μ = 1.0 and keeping the same values of the rest
coefficients. Now, the maximal Lyapunov exponent gets positive values as presented
in diagram in Fig. 9. These zones indicate chaotic oscillations of the system. The first
chaotic region occurs out of the resonance for u1 ∈ (0, 1.2) with a minor windows
of regular motion. On Poincaré map for u1 = 0.6 we obtain periodic oscillations
while for u1 = 0.7 and u1 = 1.1 oscillations become chaotic (Fig. 10a–c).

Other two chaotic regions occur next to u1 ≈ 2.2 and u1 ≈ 2.5 with quasi-
periodic oscillations between them (Fig. 10f). For large values of u1 parameter the
only regular motion takes place (Fig. 10h).

The Lyapunov exponents corresponding to bifurcation diagram in Fig. 9 and
Poincaré maps are collected in Table 2. For u1 = 0.70, u1 = 2.22, u1 = 2.55,
values of the maximal Lyapunov exponent are positive, which means that for these
parameters oscillations are chaotic. This fact is also confirmed by strange chaotic
attractors presented on Poincaré maps. For u1 = 1.1, and attractor presented in
Fig. 10c, two exponents are positive. This motion is called hyper-chaotic. In the rest
cases one or two exponents are equal to zerowhat indicates periodic or quasi-periodic
motion.

The additional numerical simulations (not presented here) show that the model
with non-ideal energy source has much higher tendency in transition to complex
dynamics, including chaos or hyper-chaos, than its ideal counterpart. This is the
effect of the additional degree of freedom related to nonlinear DC motor dynamics.
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Fig. 10 Phase portraits for selected parameters u1, μ = 1.0, a u1 = 0.60, b u1 = 0.70, c u1 = 1.10,
d u1 = 1.80, e u1 = 2.22, f u1 = 2.40, g u1 = 2.55, h u1 = 2.80
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Fig. 10 (continued)

Table 2 Type of attractors and Lyapunov exponents for selected parameter u1; μ = 1.0

u1 attractor λ1 λ2 λ3 λ4 λ5 λ6

0.60 periodic 0.0 −0.0013 −0.0268 −0.1308 −0.2129 −1.4659

0.70 chaotic 0.0404 0.0 −0.0254 −0.0925 −0.2236 −1.4681

1.10 chaotic 0.0490 0.0027 −0.0002 −0.1951 −0.6851 −1.4755

1.80 quasi-periodic 0.0 0.0 −0.0641 −0.4832 −0.4834 −1.4884

2.22 chaotic 0.0280 0.0 −0.0822 −0.2048 −0.4496 −1.4382

2.40 quasi-periodic 0.0 0.0 −0.1507 −0.3651 −0.5436 −1.5040

2.55 chaotic 0.0289 0.0 −0.0060 −0.3707 −0.7586 −1.4469

2.80 quasi-periodic 0.0 0.0 −0.0406 −0.0869 −0.1244 −1.5715

6 Conclusions

The interactions between external, parametric and self-excited vibrations are studied
in the paper. The model assumed as non-ideal, includes the additional degree of
freedom of the energy source (DC motor). The parametric and external excitations
are tuned in 1:2 ratio which leads to very strong interactions in the principal para-
metric zone. The analytical solutions based on the Krylov–Bogoliubov-Mitropolsky
method show that in the vicinity of this zone the phenomenon of frequency locking
takes place. The system vibrates periodically. The influence of the non-ideal energy
source is observed by local decrease of the amplitude and angular velocity inside the
resonance zone against the supplied voltage.On the resonance characteristic—ampli-
tude against excitation frequency—this effect creates a loop on the increasing branch
of the resonance curve and the loop is fully stable. The phenomenon is in contrast
to the ideal system where the loop arises on the declining branch and its upper part
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is stable [15]. Outside the principal parametric resonance, after the Hopf bifurcation
of the second kind, the system transits to quasi-periodic oscillations. Based on the
extended numerical simulation, apart from periodic or quasi-periodic, also chaotic
or hyper-chaotic vibrations may arise while parametric excitation is increased. This
fact is confirmed by computed Lyapunov exponents and strange chaotic attractors
plotted on Poincaré maps. The dynamics of the non-ideal model differs from the
ideal system in a case of regular vibrations as well as chaotic motion. The non-ideal
model is more sensitive in the transition to chaotic oscillations when compared with
its counterpart.
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A Study of the Sommerfeld Effect
in a Rotor Machine Foundation Model
with 4 DOF

Sara Prates Lima
and Reyolando Manoel Lopes Rebello da Fonseca Brasil

Abstract This paper addresses the nonlinear dynamical analysis of a block founda-
tion structure for an unbalanced rotatingmachine, with limited power supply, leading
to interaction between themotor and the structure. This aspect is often not considered
during usual design practice, although all real motors are, in this sense, non-ideal
power sources.Ourmathematicalmodel considers this systemas non-ideal, subjected
to the Sommerfeld effect, which may manifest close to foundation/machine’s reso-
nances, with possible jumps from lower to higher frequency rotation regimes, no
intermediate stable steady states in between. The model proposed is defined by three
degrees of freedom, vertical and horizontal translations of the block and rotation
about its axis, and an additional one associated with the rotation of the rotor shaft
(intrinsic to the so-called non-ideal systems). The mathematical model that describes
the system’s motion is derived via Lagrange’s equations. The solution of this system
of differential equations can in principle be carried out analytically, but this can be
difficult or even impossible in some cases, particularly when these equations are
nonlinear, such as the proposed model. The numerical solution adopted here was
implemented in Matlab® software. This paper aims to analyze this little studied
problem of practical importance.

Keywords Machine-foundation interaction · Sommerfeld effect · Non-ideal
systems

1 Introduction

For many systems, disregarding the influence of the structure motion on their excita-
tion source is an acceptable simplification, but for many others it is not. Sommerfeld
(1904) was the first to study the phenomenon of this interaction, later called the
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Sommerfeld Effect, making an experiment of an elastic base supporting an unbal-
anced machine. A few years later this experiment was replicated by Kononenko and
Korablev [1], who had their work re-analyzed by Nayfeh and Mook [2].

Non-ideal systems are those in which the structural motion influences its source
of excitation. These systems can be linear, or nonlinear, regardless of its excitation.
In general, the more the power supply is limited, the more the system moves further
away from the ideal system, and the greater the machine-structure interaction is.
Mathematically it is imperative to include to the model an equation that describes
the dynamics of the motor. Therefore, an additional degree of freedom is required to
model non-ideal systems [1–5].

In this work, we develop a non-ideal system model of a supported machine with
an unbalanced rotor. This non-ideal system is composed of a rigid foundation block
directly supported by springs and dashpots.

This work aims to present ongoing research of the machine-foundation interac-
tions. Themathematical development of the proposed non-ideal system is carried out
via Lagrange’s equations. In Sect. 2, the physical model representing the foundation
structure and its driver source, the machine, will be presented. Next, Sect. 3 presents
the mathematical model composed of equations that describe the displacements and
velocities of the physical model, obtained using Lagrange’s equations. Numerical
simulations and graphical displays are presented in Sect. 5, using assumed stiffness,
mass and damping parameters. Sections 5 and 6 will present the final discussion and
conclusions.

2 Physical Model

The proposed physical model considers the machine and structure interaction and
consists of four degrees of freedom: the two translations (vertical and horizontal),
one rotation (about the axis of the foundation) and the last one associated with the
motor shaft. This additional degree of freedom is typical of the so-called non-ideal
systems, as can be seen in Fig. 1.

Ci (i = 1, 2, 3) and Ki (i = 1, 2, 3) are, respectively, conveniently
adopted damping and stiffness coefficients of the machine foundation.

3 Mathematical Model

In this mathematical model, time functions q1, q2 and q3 are, respectively, the gener-
alized coordinates related the horizontal, vertical, and rotational motions of the block
foundation, while time function q4 is the angular displacement of themotor shaft. The
eccentricity e is obtained through the quality of the balance of the rotating machine,
while h is the height between the motor shaft and the foundation axes (Fig. 1).
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Fig. 1 Model of a foundation structure with unbalanced excitation source

Unbalanced mass (Mr)

The coordinates and velocities of the unbalanced mass from Fig. 1 are:

xr = q1 − hq3 + ecosq4 yr = q2 + esinq4 + h (1)

ẋr = q̇1 − hq̇3 − eq̇4sinq4 ẏr = q̇2 + eq̇4cosq4 (2)

Mass of the foundation block (Mb)

The coordinates and velocities of the machine foundation block mass presented in
the Fig. 1 are:

xb = q1 yb = q2 (3)

ẋb = q̇1 ẏb = q̇2 (4)

Motor mass (Mm)

The coordinates and velocities of the mass of the motor are:

xm = q1 − hq3 ym = q2 + h (5)

ẋm = q̇1 − hq̇3 ẏm = q̇2 (6)
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Kinetic Energy (T )

The kinetic energy of this model is obtained as follows:

T = 1/2

⎡
⎢⎣
Mb

(
q̇2
1 + q̇2

2

) + Mm
[
(q̇1 − hq̇3)

2 + q̇2
2

]
+Jbq̇2

3 + Mr (q̇1 − hq̇3 − q̇4e sin q4)
2

+Mr
(
q̇2 + q̇4e cos q4) + Jmq̇2

4

)2

⎤
⎥⎦ (7)

in which Jm is the moment of inertia of the machine rotor and Jb the moment of
inertia of foundation block.

Strain energy (U)

In this case the strain energy can be obtained by:

U = 1/2(K1q
2
1 + K2q

2
2 + K3q

2
3 ) (8)

in which Ki (i = 1, 2, 3) are the stiffness coefficients.

Work of conservative forces (W)

The work of the weight forces is given by:

W = −g[(Mb + Mm + Mr )q2 + Mr (q2 + esinq4)] (9)

in which g it is the acceleration due to gravity.

Total Potential Energy (V )

The total potential energy will be determined by:

V = U − W (10)

Lagrange’s equation

In this model, Lagrange’s equation can be presented as:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= Ni (i = 1, 2, 3, 4) (11)

in which L = T − V is the Lagrangean function and Ni are the non-conservative
generalized forces.
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Equations of Motion

First degree of freedom

For the first degree of freedom the equation of motion is:

(Mb + Mm + Mr )q̈1 + C1q̇1 + K1q1 = (Mm + Mr )hq̈3 + Mre(q̈4 sin q4) + Mre
(
q̇24 cos q4

)

(12)

Second degree of freedom

For the second degree of freedom the equation of motion is:

(Mb + Mr + Mm)q̈2 + C2q̇2 + K2q2 = −g(Mb + Mr + Mm) − Mre
(
q̈4 cos q4 − q̇24 sin q4

)

(13)

Third degree of freedom

For the third degree of freedom the equation of motion is:

(
Mmh

2 + Mrh
2 + Jb

)
q̈3 + C3q̇3 + K3q3 = (Mb + Mm)hq̈1 − Mrhe

(
q̈4 sin q4 − q̇24 cos q4

)

(14)

Fourth degree of freedom

For the fourth degree of freedom the equation of motion is:

Mre(q̈1sinq4 + q̈2cosq4 + hq̈3sinq4) +
(
Mre

2 + Jm
)
q̈4 = L(q̇4) − H(q̇4) + Mregcosq4 (15)

in which L(q̇4) is the total torque of the rotor and H(q̇4) is its the motor damping
torque due to internal friction.

Matrix formulation

Let us re-write the equations of motion (12 to 15) in matrix form:

[M]{q̈} + [C]{q̇} + [K ]{q} = {p} (16)

where
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[M] =

⎡
⎢⎢⎣

Mb + Mr + Mm

0
−(Mm + Mr )h
−Mre sin q4

0
Mb + Mr + Mm

0
Mre cos q4

−(Mm + Mr )h
0

(Mm + Mr )h2 + Jb
Mrhe sin q4

−Mre sin q4
Mre cos q4
Mrhe sin q4
Mre2 + Jm

⎤
⎥⎥⎦

(17)

{q̈} =

⎧⎪⎪⎨
⎪⎪⎩

q̈1
q̈2
q̈3
q̈4

⎫⎪⎪⎬
⎪⎪⎭

(18)

[C] =

⎡
⎢⎢⎣

C1 0
0 C2

0 0
0 0

0 0
0 0

C3 0
0 0

⎤
⎥⎥⎦ (19)

{q̇} =

⎧⎪⎪⎨
⎪⎪⎩

q̇1
q̇2
q̇3
q̇4

⎫⎪⎪⎬
⎪⎪⎭

(20)

[K ] =

⎡
⎢⎢⎣

K1 0
0 K2

0 0
0 0

0 0
0 0

K3 0
0 0

⎤
⎥⎥⎦ (21)

{q} =

⎧⎪⎪⎨
⎪⎪⎩

q1
q2
q3
q4

⎫⎪⎪⎬
⎪⎪⎭

(22)

{p} =

⎧⎪⎪⎨
⎪⎪⎩

−Mreq̇2
4 cosq4

−Mreq̇2
4 sinq4 − (Mb + Mm + Mr )g

−Mrheq̇2
4 cosq4

L(q̇4) − H(q̇4) + Mregcosq4

⎫⎪⎪⎬
⎪⎪⎭

(23)

Equations of this type are difficult to solve in closed form, so is convenient to
transform the second order differential equation system into a first order differential
equations system and then choose a numerical method to solve the problem, as the
Runge–Kutta method implemented in Matlab®.
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4 Torque Relationships

A steady state constant motor frequency condition is given by the torque relationship

S(q̇4) = H(q̇4) + R(q̇4) (24)

In Eq. (21), remembering that torque and energy have the same unities, S(q̇4)
is the total energy dissipated by the motor/structure system and R(q̇4) the energy
dissipated by damping of the support structure, given by

R(q̇4) =
3∑

i=1

Ci

2q4
ω2
i a

2
i (25)

where ωi are the undamped frequencies of vibration of the support structure (rad/s).
The amplitudes of vibration of these three modes are

ai = Mre

Modemass
Diβ

2
i (26)

where the nondimensional Coefficients of Dynamic Amplification are

Di = 1√(
1 − β2

i

)2 + (2ξiβi )
2

(27)

defining the nondimensional relationships

βi = q4
ωi

ξi = Ci

2(Modemass)ωi
(28)

5 Numerical Simulations

Next, numerical parameters are adopted: Mb + Mr + Mm = 2 t, K1 = 50,000 KN/m,
K2 = 100,000 KN/m, K3 = 75,000 KNm/rad, Mr = 0.1 t, e = 0.01 m, ξ1 = ξ2 =
ξ3 = 0.05, Jm = 1.7 × 10–4 tm2, H(q̇4) = 4x10−4q̇4 KNm. Figure 2 displays the
S(q̇4) energy dissipation curve of this system (in black), from Eq. (21), and three
possible Lk(q̇4) available torque characteristic curves of the motor (in red, green and
blue), for three different possible energy levels, considered as linear, in KNm,

L1(q̇4) = 0.25 − 0.0009q̇4L2(q̇4) = 0.35 − 0.0009q̇4
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Fig. 2 S(q̇4) curve, in black,
L1(q̇4) line, in red, L2(q̇4)
blue and L3(q̇4) blue line, in
green

L3(q̇4) = 0.30 − 0.0009q̇4

Figure 2 displays only the first two resonance peaks of this system. The third one,
related to the roll mode of the foundation block is not of interest for the adopted
parameters.

The computed stable steady state constant motor frequencies (rad/s) and corre-
sponding torques, for positive increase of the motor power (KNm) are: P1 ∼= (152;
0.11), P2 ∼= (214; 0.16) and P3 ∼= (204; 0.11).

Next, it is performed a time step-by-step numerical integration of the equa-
tions of motion, using Runge–Kutta’s 4th and 5th order algorithm, implemented
in Matlab® software. The first steady state regime, P1, is displayed in Fig. 3, the
second, P2, is displayed in Fig. 4 and P3, displayed in Fig. 5.

Fig. 3 Steady state constant
motor frequency regime, P1
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Fig. 4 Steady state constant
motor frequency regime, P2

Fig. 5 Steady state constant
motor frequency regime, P3

In Figs. 3, 4 and 5, a fairly good agreement with Fig. 2 results is obtained. As
expected, the effect of gravity on mr leads to a complex steady state behavior, as is
possible to see in Fig. 6, a zoom of part of Fig. 3.

6 Discussion

Let us discuss simulations results presented in Figs. 2, 3, 4 and 5.
In steady state P1, the amount of energy provided by the motor through torque

curve L1(q̇4), in red, is not enough to surpass the first resonance peak of the energy
dissipation curve, resulting in stagnation of the angular speed regime of the machine.
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Fig. 6 Zoom of steady state
constant motor frequency P1

If somemore energy is provided, through torque curve L3(q̇4), in green, the system
reaches a point at this first resonance peak and jumps to far away point P3 where a
steady state regime is again possible, no stable steady states in between. This is the
so called Sommerfeld Effect.

Finally, if more energy is applied, through torque curve L2(q̇4), in blue, it is
possible to reach higher steady state angular velocity regimes as point P2.

7 Conclusions

Studies of models considering non-ideal systems are important for a better practice
of engineering, but are not usually done, being replaced by approximations. The
system of differential equations of the model studied here is coupled, nonlinear and
of second order, quite difficult to solve analytically. So, it is necessary to use a
numerical method.

Among the possible solver methods to this model, the solution for this model was
carried out in theMatlab® program using the ode45 function, that uses a combination
of fourth and fifth order Runge Kutta methods. The implementation of this algorithm
requires the transformation of the of second-order differential equations into a first
order system [6, 7].

A study of non-ideal behavior of a four degrees of freedom support structure for
a limited power unbalanced motor was presented. The expected Sommerfeld Effect
of rotation frequency stagnation near resonances was observed, as well as a jump
phenomenon due to instability. Modeling of this type of foundation as non-ideal
systems can be of importance in practice.
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Three Kinds of Sommerfeld Effect
in Rotor Dynamics

A. K. Samantaray

Abstract When transverse or torsional vibration amplitudes in a rotor dynamic
system is high, energy is often drawn from the drive to sustain those motions. There-
fore, the part of the drive energy available for spinning the rotor reduces in that
condition. This can lead to perpetual or transient capture of the rotor speed in the
regime where large amplitude vibrations occur. A critical amount of additional drive
power is often needed to escape the capture of the rotor speed and such an escape is
often associatedwith a sudden jump to a higher rotor speed and reduction in the vibra-
tion amplitudes, which is formally recognised as the Sommerfeld effect. Till now,
Sommerfeld effect and resonance capture has been studied for rotor dynamic systems
with unbalanced rotor disc under synchronous whirl condition. In this chapter, it will
be shown that two more kinds of Sommerfeld effects can exist even if the rotor shaft
and disc are perfectly balanced. One of those is related to high amplitude transverse
asynchronous whirl of the non-circular rotor shaft due to parametric instability. The
other is related to resonance capture in torsional vibrations of the transmission shaft
in a universal joint driveline. In this chapter, three simple academic examples have
been considered for each of these kinds of Sommerfeld effect.

1 Introduction

Rotating equipment often operate at a speed which is above one or more of its
critical speeds. This is desired for good vibration isolation behaviour. However, in a
rotor system, a small unbalance may exist due to manufacturing defects, installation
error, faults in the rotor blades or bearings, asymmetric loading, or due to natural
wear and tear process. Sometimes, the unbalance may be intentionally added to
create vibrations, such as in vibrating screens, mixers, and drying cycle of washing
machines. A rotor system has large vibration amplitude at its critical speeds and
sustained operation at any of these critical speeds can cause failure of the entire
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system [1]. In the region of resonance, most of the power supply to the rotating
system from the drive of the rotor, such as an engine or motor, goes to increase the
structural vibration rather than increasing the rotor spin speed [2, 3]. Hence, the rotor
speed may get caught at the resonance with excessive vibration or whirl amplitude.

There is always an energy interaction between the source (drive) and the rotor
system, and any real drive (motor, engine, etc.) has power saturation behaviour. These
drives follow specific torque-speed characteristic and can deliver a limited amount
of torque/power at a given speed. Therefore, the output torque/power of such a drive
is influenced by the load and such a drive is often termed as a non-ideal drive/source
to distinguish it from an ideal drive that can provide unlimited amount of power
output at any speed. In a non-ideally driven rotor, as the rotor speed approaches a
critical speed with gradually increasing input power, the rate of increase in rotor
speed slows down (almost remains constant) and the vibration amplitudes start to
increase at a faster rate. For passage through the resonance or to accelerate through
the critical speed, the rotor requires a minimum (just sufficient) amount of power
supply from the drive, termed as the critical power. If the available power is a little
less than this critical power limit then the rotor speed remains nearly at the critical
speed with large vibration amplitude, and a slightly higher power causes the rotor
speed to attain a much higher value with a corresponding reduction in thee vibration
amplitude. Similar phenomenon is also present during gradual rotor speed reduction
from a speed above the critical speed. This non-linear jump phenomenon is called the
Sommerfeld effect. In fact, there exists a missing speed range in the neighbourhood
of a critical speed which is neither reached during the rotor coast up (speed increase)
nor during coast down (speed reduction). Three different kinds of Sommerfeld effect
due to large vibration amplitudes or load, and consequent drive power saturation in
non-ideally driven rotor dynamic systems will be discussed in this chapter.

Arnold Sommerfeld is credited with being the first to study non-ideal sources [4].
The power saturation phenomenonwas first experimentally observed by Sommerfeld
in 1902 and it has been named in his honor as the Sommerfeld effect [5]. Sommer-
feld’s observation was that the structural response of the system to which a non-ideal
source, such as an electric motor, is connected may act like energy sink under certain
conditions so that a part of the energy supplied by the source is spent to vibrate the
structure rather than to increase the drive speed. Sommerfeld put it as “the plant
owner spends expensive coal not to rotate his shaft, but rather to shake the foun-
dation”. Further to that, Kononenko [6] described an experiment where a cantilever
beam supports a non-ideal energy source (i.e., an unbalanced motor) at its free end
and exhibits large amplitude motions in the region of resonance for a sufficiently
large range of motor power increase and it is then followed by a sudden amplitude
reduction on increasing the input power beyond the critical power input. Sommerfeld
effect has been a subject of discussion in several books [2, 3, 7–9].
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2 Types of Sommerfeld Effect

Generally, the Sommerfeld effect is described by the dynamics of an unbalanced
electric motor, particularly a DC motor, placed on an elastic support [10–12]. With
increase in the input voltage to the motor (coast up operation), the motor speed
increases almost proportionally at the beginning. Due to the unbalance in the rotor,
resonance effect sets in as themotor speed approaches the elastic foundation’s natural
frequency. Therein, the high vibration amplitude of foundation produces a large
dynamic load on the motor and hence, the input power supply from motor goes to
the foundation to overcome this. If the motor supply voltage is increased and still the
motor output power is insufficient to overcome the power diverted to the foundation
then the motor speed remains perpetually caught near the resonance speed. In fact, a
large amount of motor power is delivered to increase the support’s flexural vibration
rather than to increase themotor speed [13]. There is a critical amount ofmotor power
beyond which a non-linear jump phenomenon occurs. This results in a sudden jump
of motor/rotor speed to a higher speed with a simultaneous sudden reduction in the
foundation vibration amplitude. This jump phenomenon is termed as the Sommerfeld
effect of first kind. Similar jump phenomenon occurs during coast down operation,
however, the transition points for this kind of sudden jump are different for coast up
and coast down operations. This non-linear jump phenomenon is characterized by
the inability to obtain certain common motor steady-state speeds near the resonance
frequency [14, 15].

Sommerfeld effect of first kind has been widely studied for mechanical engi-
neering applications in [16–19]. Moreover, several techniques to encourage passage
through resonance with a limited power supply and to prevent the growth of large
amplitude vibration, thereby extending the machine life, has been proposed in [6,
20]. Tuned Sommerfeld effect suppression is proposed in [21], where the effect of a
vibration absorber near the zone of the Sommerfeld effect is described. Sommerfeld
effect in wind turbine [22], vehicle dynamics [23] and slider-crank mechanism are
also reported in [24]. Balthazar and his co-workers [25–31] have published several
studies on different kinds of non-ideal source and system interactions leading to
Sommerfeld effect of first kind. Sommerfeld effect of first kind can also appear
without rotor unbalance. One example is resonance in the torsional vibration modes
due to fluctuating input speed or load [32].

Many rotor dynamic systems exhibit parametric instability. In some specific rotor
dynamic applications, the cross-section of the shaft is purposefully designed to be
non-circular (asymmetric). Considerable amount of research has been reported on
the dynamics of asymmetric rotor shaft mounted on rigid or flexible supports [33–
38]. One unstable speed region appears between the two major critical speeds for
a flexible asymmetric rotor shaft with a centrally placed rotor disc and rigid/ideal
support bearings at the shaft ends [36, 39]. The asymmetry in shaft bending stiffness
combined with flexible and asymmetric supports produce many additional unstable
regions near at the combined parametric resonance regions, as reported by several
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researchers [37, 40–42]. The lumped parameter model of asymmetric shaft-rotor
system is studied in both rotating and inertial frames in [43, 44]. These studies
assume that the rotor can be driven to and through the unstable regions to reach any
operating desired speed, i.e. those do not consider the drive dynamics. The situation
under real drive conditions is significantly different due to drive power saturation.
The power scarcity to escape through the parametric instability regimes leads to a
different kind of Sommerfeld effect, which is termed here as the Sommerfeld effect
of second kind [45]. Parametric instabilities occur in other types of rotor assemblies,
such as geared shaft systems and shafts with universal joints and flexible foundation,
and thus, there can be Sommerfeld effect of second kind present in many as yet
unsolved problems.

When the rotor shaft has material damping, it exhibits a permanent instability at
certain threshold speed. Such permanent instability thresholds also exist in shafts
with internal friction such as splined joints, and shafts supported on journal bearings
[46–50]. Fluid film forces from bearings and Alford forces on bladed disc systems
produce non-conservative circulatory forces and lead to rotor system instability. The
permanent instability threshold is a speed above which there is no further stable
operating speed. A real rotor cannot operate at any speed higher than this permanent
instability speed and shows saturation behaviour termed as the Sommerfeld effect of
third kind [51].

The nature of the above-mentioned three types of Sommerfeld effects is detailed
with example applications in the following sections.

3 The Sommerfeld Effect of First Kind Due to Lateral
Vibrations

Most studies on Sommerfeld effect reported in literature have focused on the
unbalance-induced excitation of natural frequencies with forward precession modes
only,while considering the synchronous critical speeds.However, a backward preces-
sion mode can also be excited by using just the rotor unbalance as the chief driving
force. This has been documented before in some crucial works in this area [52–57].
The occurrence of such a backward whirl response is strongly dependent on stiff-
ness asymmetry at the support ends. Therefore, Sommerfeld effect can also exist at
various speed ranges in addition to that at the forward critical speed.

The influence of anisotropy in support flexibility of a rigid rotor shaft on the
rotor whirl dynamics is studied here for the case when the rotor shaft carries single
unbalanced rotor disc and is driven by a permanent magnet DC (PMDC) motor, as
shown in Fig. 1. The rigid disc is firmly placed away from the middle portion of the
rigid rotor shaft and this introduces a strong gyroscopic coupling to the rotor dynamic
formulation. The rotor dynamic system is studied here for the chosen parameter
values listed in Table 1.

The rotor shaft’s length is l and as the rotor disc is placed asymmetrically at one-
third of shaft length from the left end support. The rigid hollow shaft has a uniform
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Coupling

DC Motor
x

y

z

Fig. 1 Non-ideal rotor dynamic system with anisotropic bearings

Table 1 The system parameters, their description and values

Parameter Description Value

L Shaft length 0.9 m

l1 Distance between left end bearing and disk 0.3 m

l2 Distance between disk and right end bearing 0.6 m

Ip Polar moment of inertia of rotor disc 0.48 kgm2

Id Diametral moment of inertia of rotor disc 0.24 kgm2

m Mass of the rotor disc 15 kg

e eccentricity of the rotor disc 0.001 m

Re Translational aerial damping coefficient on rotor disc 20 Ns/m

Reφ Rotational aerial damping coefficient on rotor disc 1 Nms/rad

Rx Bearing damping coefficient in x-direction 5 Ns/m

Ry Bearing damping coefficient in y-direction 10 Ns/m

Kx Bearing stiffness in x-direction 20,000 N/m

Ky Bearing stiffness in y-direction 40,000 N/m

Rb Spin rotational damping coefficient 0.0005 Nms/rad

circular cross-section. The disc mass is m and the position of the mass centre of
the rotor disc is assumed to be at a distance e from the shaft geometric centre. The
position of themass centreM is given as (x_m, y_m) and that of the geometric centre
G as (x, y) according to the co-ordinate axes shown in Fig. 2. Thus, the coordinates
of mass centre (x_m, y_m) are expressed as

xm = x + ecos(θ + ϕ)andy_m = y + esin(θ + ϕ) (1)

where θ is the angle of rotation of the rotor disc about the spin axis (i.e. z-axis) and
ϕ is a constant phase corresponding to the initial position of the mass centre of the
disc. The angles φ_x and φ_y describe the small angular motions of the rotor about
the positive x and y directions, respectively. In steady state, the unbalance response
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Fig. 2 Positions of the
geometric and mass centre of
the rotor disc

e

O

M

G

x

y

disc

is a synchronous whirl at same frequency as the constant angular speed ω about the
spin or z-axis. The instantaneous angle between the x-axis and the line passing from
origin to the geometric centre is then expressed as θ = ωt .

With reference to Fig. 1, l_1 and l_2 are the distance of disc from the left and the
right support ends, respectively. K_x and R_x are the bearing stiffness and damping
in the x-direction for both ends of the shaft;whereas, K_y and R_y represent the same
in the y-direction. For the disc, R_e and R_eφ represent the external translational
and rotational damping values acting at the geometric centre of the disc, respectively.
I_p is the rotary inertia of disc about the spin axis and I_d is the disc diametral
moment of inertia. For this analysis, the disc is assumed to be thin and laterally
symmetric, which implies I_p = 2Id .

3.1 Modal Analysis

Aconstant angular speedω about the spin z-axis,which is the synchronous frequency,
is assumed to analyse the ideal drive system. The equations of motion for the rotor
disc system (excluding the non-ideal motor) are obtained as

mẍ + 2Kxx + (l/3)Kxφy + (2Rx + Re)ẋ + (l/3)Rx φ̇y = meω2cos(ωt)

mÿ + 2Ky y − (l/3)Kyφx + (
2Ry + Re

)
ẏ − (l/3)Ry φ̇x = meω2sin(ωt)

Id φ̈y + (l/3)Kx x +
(
5l2/9

)
Kxφy + (l/3)Rx ẋ +

((
5l2/9

)
Rx + Reφ

)
φ̇y − ωIpφ̇x = 0

Id φ̈x − (l/3)Ky y +
(
5l2/9

)
Kyφx − (l/3)Ry ẏ +

((
5l2/9

)
Ry + Reφ

)
φ̇x + ωIpφ̇y = 0 (2)

These equations are then written in state-space form by excluding the excitation
forces and the critical speeds of the system are obtained from the Campbell diagram,
as shown in Fig. 3, through modal or eigenvalue analysis. The first backward and
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Fig. 3 Campbell diagram
showing critical speed versus
shaft spin speed (ω)
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the first forward critical speeds of the shaft are ωcr1 = 48.97 rad/s and ωcr1 = 68.9
rad/s, respectively.

The frequency response plots for the system (operating at constant speed) are
obtained by assuming harmonic solutions in the form x = Acos(ωt + α), y =
Bsin(ωt + β), φx = −Csin(ωt + γ ), and φy = Dcos(ωt + δ), where A, B, C
and D are whirl amplitudes and α, β, γ and δ are the phases. Substitution of these
harmonic solutions into Eq. (2) and separation of sine and cosine terms give eight
equations which are then solved to determine the eight unknown variables, i.e. the
four amplitudes and four phase angles, at any given speed ω. Further details on
these frequency responses are available in [58]. The normalized whirl amplitudes
are defined as x∗ = 0.33(ωcr1)

2A(ω)/g y∗ = 0.4(ωcr1)
2B(ω)/g, φ∗

x = 100C(ω)

and φ∗
y = 120D(ω), where and g is the acceleration due to gravity. The spin speed is

also normalized as ω∗ = ω/ωcr1. The steady-state amplitudes of the rotor at various
constant operating speeds, as would happen in an ideal system, are obtained in the
form of frequency response plots presented in Fig. 4.

3.2 Interfacing the Non-ideal Drive

The permanent type DC motor, whose parameter values are given in Table 2, is
considered here as the non-ideal drive. The DC motor produces torque to rotate the
rotor shaft instead of a constant speed motor considered for ideal drive. The power
developed by a DC motor is given as

Pm = τm θ̇ = km
(
Vi − km θ̇

)

km
θ̇ (3)



92 A. K. Samantaray

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

Fig. 4 Normalized steady state whirl amplitudes versus spin speed (ω∗)

Table 2 DC motor
parameters

Notation Description Value

Vi DC motor voltage supply <Variable>

Rm DC motor electrical armature resistance 5 �

km DC motor characteristic constant 0.5 Nm/A

with τm = kmim , im = Vi−Ve
Rm

= (Vi−km θ̇)
Rm

, where Vi is the voltage supplied across
the motor terminal, Ve is the back emf developed in motor coils, km is the motor
characteristic (torque or speed) constant, im is the armature current, Rm is the armature
resistance of the coils,τm is the mechanical torque developed by the motor and θ̇ is
the rotor angular velocity.

Under steady state conditions, θ̇ = ω; with no angular accelerations. Since the
synchronouswhirl response is periodic, an energybalance is carriedout by integrating
the motor power and dissipated power over a cycle, i.e. a complete whirl orbit. The
steady state response presented in Fig. 4 is then used in an averaged steady state
energy balance between the energy produced by non-ideal DC motor and the energy
dissipated through the rotor whirl. The energy dissipation occurs through the external
damping Re and Reφ , and also through the damping in the bearings, i.e. Rx and Ry . In
addition, some dissipation also occurs at the bearings in themotor and spin resistance
in the support bearings, which is represented by a viscous resistance Rb. Overall, the
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net work done by all the dissipative forces over a fixed cycle can be expressed as

Wd =
2π/ω∫

0

(
Pd,left + Pd,right + Pd,disc + Rbω

2)dt (4)

where

Pd,left = q̇T
L

⎡

⎢⎢
⎣

Rx 0 0 0
0
0
0

0
0
0

0
Ry

0

0
0
0

⎤

⎥⎥
⎦q̇L , Pd,right = q̇T

R

⎡

⎢⎢
⎣

Rx 0 0 0
0
0
0

0
0
0

0
Ry

0

0
0
0

⎤

⎥⎥
⎦q̇R ,

Pd,disc = q̇T
d

⎡

⎢
⎢
⎣

Re 0 0 0
0
0
0

Reφ

0
0

0
Re

0

0
0
Reφ

⎤

⎥
⎥
⎦q̇d ,

q̇T
L =

[ (
ẋ − l1φ̇y

)
0

(
ẏ + l1φ̇x

)
0

]
,

q̇T
R =

[ (
ẋ + l2φ̇y

)
0

(
ẏ − l2φ̇x

)
0

]
and q̇T

d =
[
ẋ φ̇y ẏ −φ̇x

]
(5)

The energy supplied by the motor in each cycle is given by

Wm =
2π/ω∫

0

Pmdt =
2π/ω∫

0

km(Vi − kmω)

Ra
ωdt.

The steady state energy balance

Wm = Wd . (6)

Equation (6) is expanded by using the assumed harmonic solutions and treating
the whirl amplitudes (A, B,C, D) and phases (α, β, γ , δ) as constants at any
given steady-state speed ω during the integrations mentioned in Eq. (4). Further
simplification and reorganization of Eq. (6) gives

2km (Vi − kmω)

Rm
=

[
(2Rx + Re)A

2 + (
2Ry + Re

)
B2 +

(
5L2/9Rx + Reφ

)
C2 +

(
5L2/9Ry + Reφ

)
D2

+(2L/3Rx ADcos(α − δ)) + (
2L/3Ry BCcos(β − γ )

) + 2Rb
]
ω. (7)

For a fixed speed ω, and given parameter values and computed parameters of
the frequency response, Eq. (7) is used to compute the motor supply voltage Vi .
Interestingly, it is found that there are ranges of speed where three ω values give
the same Vi , i.e. the map from Vi to ω is not unique. Out of those three solutions,
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two are stable (attainable) and one is not. The solutions that satisfy the condition
d(Wm − Wd)/dω < 0 are attainable [18].

Accordingly, the non-ideal rotor system’s response is predicted andmultiple jump
phenomena due to Sommerfeld effect in the non-ideal system are revealed at the
forward and backward critical speeds as shown in Fig. 5. Therein two jumps in the
rotor speed, which correspond to the two resonance zones are shown– the first occurs
from first backward whirl critical speed ωcr1 to ω = 57.07rad/s (i.e. near ω∗ = 1)
and the second takes place from the first forwardwhirl critical speedωcr2 toω = 89.1
rad/s (i.e. near ω∗ = 1.41).

During the rotor coast up operation, the rotor speed continues to increase almost
linearly until it reaches point ‘a’. Thereafter, further increase in supply voltage does
not result in appreciable change in rotor speed. For the region ‘a’ to ‘b’, although the
supply voltage is being increased, the rotor speed does not increase and is stuck at
the first backward critical speed for the voltage range 26.43 V to 28.81 V. When the
voltage is increased above 28.81 V, the rotor speed suddenly jumps from point ‘b’ to
a much higher value at point ‘g’. Afterwards, by increasing voltage, the shaft speed
again increases linearly till point ‘c’ (at 37.7 V). This is the zone for the first forward
critical speed. Here, the rotor speed is stuck again, from ‘c’ to ‘d’ i.e. for the voltage
range 37.77 V to 44.83 V. Subsequently, the second jump takes place from ‘d’ to
‘e’. Thereafter, from point ‘e’ onwards, the speed increases linearly with increase in
voltage. The Sommerfeld effect is thus observed for both the first backward and first
forward whirl modes of the system; thus, it is termed as ‘Multi-Sommerfeld effect’.
Between the two, the jump size is comparatively higher for the first forward critical
speed.

On the other hand, during coast down operation from a very high speed, the spin
speed reduces linearly as the supply voltage is decreased along the line connecting
points ‘e’ to ‘f’. As the voltage is reduced just below 37.77 V (point ‘f’), the speed
jumps from point ‘f’ to ‘c’, i.e. there is a sudden reduction in the speed. On further
voltage reduction, the voltage-speed curve traces the path along the line joining points
‘c’ to ‘h’ and a second jump occurs from point ‘h’ to ‘a’.

Fig. 5 Normalized spin
speed (ω∗) versus voltage
supply Vi
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Note that there are three possible rotor speeds for the voltage ranges ‘a’ to ‘b’ and
‘c’ to ‘d’. However, the speed ranges 48.79 to 51.1 rad/s and 68.9 to 72.7 rad/s, are
not physically achievable either during rotor coast-up or coast-down. This is because
the branches in between ‘d’ to ‘f’ and ‘b’ to ‘h’ are unstable in nature [60, 69]. As a
result, only two possible speeds exist near the resonance region; one of these can be
reached during rotor coast-up and the other during rotor coast-down.

Further note that the whirl amplitudes are also functions of speed. As a direct
consequence, there is an amplitude jump associatedwith the speed jump at the respec-
tive resonance zones. Near the resonance, the energy from the non-ideal motor is not
used to increase the spin speed; instead, this energy is transferred to the vibration or
whirl amplitudes. Consequently, as speed saturation occurs on approaching a crit-
ical speed during the rotor coast up, the whirl amplitudes increase. Such continuous
large amplitudes of vibration may severely affect the performance of the rotor and
its support structures. This happens for a voltage range in the immediate pre-jump
scenario. Afterwards, as the speed jumps to a higher value, the whirl amplitudes
promptly reduce. Likewise, during rotor coast down, the discrete jump in speed from
a higher value to a lower value is associated with a discrete jump in amplitude from
a lower value to a higher value. This dependency comes from the energy balance.

The tendency to get stuck near resonance, also called resonance capture, which
occurs due to power saturation, is a typical feature of non-ideal systems. The motor
energy Wm for different supply voltages and the dissipated energy Wd are plotted
against the normalized rotor speed ω∗ in Fig. 6. The Wm curve for 28.81 V supply
voltage grazes the dissipated energy curve at ω∗ = 1 and intersects it at ω∗ = 1.19.
Likewise, the Wm curve for 44.83 V supply voltage grazes the dissipated energy
curve Wd at ω∗ = 1.41 and intersects it at ω∗ = 1.85. The grazing or intersecting
points indicate exact energy balance equation Wm = Wd given in Eq. (6) and hence
those are the possible steady-state operating points. There can be one or two or
three operating points. One operating point indicates that the operation is away from
the resonance regime, two means operation at the exact point from which jumps
occur. When there are three intersection points, the one giving the middle speed is
an unstable solution. As an example of one operating point, the Wm curve for 25 V

Fig. 6 Energy versus
Normalized spin speed (ω∗)
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intersects the Wd curve once and it is at a point below first backward critical speed,
and theWm curve for 35 V intersects theWd curve once and it is at a point below first
forward critical speed. If the input voltage is increased slowly from 25 V or 35 V,
then there is a resonance capture at the respective critical speeds. On the other hand,
the Wm curve for 40 V intersects the dissipated energy Wd curve at three points, out
of which two are stable [59] and there is resonance capture during rotor coast up at
the lowest of the three speed values corresponding to the intersection points.

The inset in Fig. 6 shows a zoomed view of the resonance condition at 2BW
critical speed. It is seen that the energy dissipation at 2BW critical speed and its
neighbourhood is too small, and hence, no Sommerfeld effect is observed at 2BW
critical speed. However, with a weakly damped bearing support system and large
translational and small rotational damping on the rotor disc, it is possible to encounter
Sommerfeld effect the 2BW speed. High damping often suppresses Sommerfeld
effect [18]. The net external damping in 1FW and 1BW modes comes from the
bearing supports and the translational external damping (Re) whereas the net external
damping on 2BW and 2FWmodes some from the bearing supports and the rotational
external damping.

The steady state analysis of the non-ideal system is valid only if the rotor accel-
eration is negligible, i.e. when voltage increment is done gradually or the rotor disc
has large polar moment of inertia. For step input voltages, the steady-state analysis
may not give accurate results. To address that, a separate transient analysis for the
rotor-motor system, with non-ideal source loading, is carried out.

3.3 Transient Analysis

The frequency response and power balance are obtained analytically, but with the
assumption that the rotor system operates at a steady-state. These analytical results
are then validated through direct numerical simulations of the non-ideal system. To
include interaction with the non-ideal drive, the equations of motion are modified
with introduction of angular acceleration terms as well as one additional equation
describing the spin dynamics of the motor/rotor. From Eq. (1), it can be shown that
mẍm = mẍ−meθ̇2cos(θ + ϕ)−meθ̈sin(θ + ϕ) andmÿm = mÿ−meθ̇2sin(θ + ϕ)+
meθ̈cos(θ + ϕ). These inertia forces produce reactive moment about the axis of the
motor rotation. The new set of equations are then given as

mẍ + 2Kx x + (l/3)Kxφy + (2Rx + Re)ẋ + (l/3)Rx φ̇y = meθ̇2cos(θ + ϕ) + meθ̈sin(θ + ϕ)

mÿ + 2Ky y − (l/3)Kyφx + (
2Ry + Re

)
ẏ − (l/3)Ry φ̇x = meθ̇2sin(θ + ϕ) − meθ̈cos(θ + ϕ)

Id φ̈y + (l/3)Kx x +
(
5l2/9

)
Kxφy + (l/3)Rx ẋ +

((
5l2/9

)
Rx + Reφ

)
φ̇y − ωIpφ̇x = 0

Id φ̈x − (l/3)Ky y +
(
5l2/9

)
Kyφx − (l/3)Ry ẏ +

((
5l2/9

)
Ry + Reφ

)
φ̇x + ωIpφ̇y = 0
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(
Ip + me2

)
θ̈ − meẍsin(θ + ϕ) + meÿcos(θ + ϕ) + Rbθ̇ = km(Vi − kmω)

Ra
(8)

The above equation of motion is numerically integrated to obtain the transient
response of the system. The initial phase ϕ does not influence the key aspects of the
results and can be taken zero during the analysis. In Fig. 7a, the transient response
amplitude for a step input voltage of Vi = 28.8 V is shown, for which the shaft
speed is stuck at ω∗ = 1, i.e. at the first backward critical speed. Note that the line
styles and colors used to plot the variables are mentioned in the y-axis label of these
graphs. At this point, with a slight increase of input voltage to Vi = 28.81 V, the first
jump is detected as shown in Fig. 7b. It can be seen that the normalized amplitudes
x∗ and φ∗

y are comparatively larger than y∗ and φ∗
x . Similarly, the second jump is

also detected when supply voltage is increased from Vi = 44.73 V (Fig. 8a) to
Vi = 44.74 V (Fig. 8b). This is the resonance zone corresponding to the first forward
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Fig. 7 Transient response during coasting up for a constant Vi = 28.8 V and b constant Vi =
28.81 V, showing resonance capture and escape through the 1st critical speed
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critical speed. Here, i.e. in the second resonance zone, the normalized amplitudes y∗
and φ∗

x are larger than x∗ and φ∗
y .

The numerical simulation results differ a little from the analytically predicted
results. Numerical simulations show that the voltage required to escape resonance
capture can be slightly less than the theoretically predicted values through steady
state analysis. In fact, the discrepancy can be more when the rotary inertia of the
rotor disc and the shaft is too small. For large rotary inertia of rotor disc, it acts
like a flywheel that reduces the angular accelerations (speed variation due to load
transients) and hence, the simulation results tend to bemore agreeablewith the steady
state analysis results.

The severity of the Sommerfeld effect of first kind depends on the system param-
eters. Especially, if the support and external damping are small then there can be
resonance capture for a significantly large range of input power variation. In fact, in
the absence of damping in the system, a rotor cannot be operated above the critical
speed because it would theoretically require infinite amount of energy to do so. With
very high values of damping in the system, Sommerfeld effect can disappear at one
or more of the critical speeds. The influence of system damping on the Sommerfeld
effect is detailed in [18].

Another interesting phenomenon occurs in the considered system when the two
critical speeds are closely spaced and the system is weakly damped. In that case,
escape from the 1BW critical speed directly leads to resonance capture at the 1FW
critical speed. More such interesting results can be seen in [58].

4 Sommerfeld Effect of First Kind Due to Torsional
Vibrations

Universal joints (U-joints) or Cardan joints are used for power transmission while
accommodatingparallel or angularmisalignment between the input andoutput shafts.
Torsional dynamics of rotor-shafts with a single U-joint driveline and small misalign-
ment angle was analysed in [61–63]. The single U-joint transmission shaft system
with lateral vibrations leads to parametric resonance, quasi-periodic and chaotic
motions in certain speed ranges [64–66]. Double U-joints driveline also shows para-
metric instabilities [67]. Only very recently, the resonance capture phenomenon in
a Double U-joints driveline is reported by [68] under combined torsional and lateral
vibrations. However, the analysis of Sommerfeld effect purely due to resonance in
torsional vibrations in the presence of large U-joint angle and large twist of the elastic
shaft has not been studied so far.

Now, we discuss another system of double Cardan joint driveline which shows the
Sommerfeld effect of first kind. The schematic representation of the system under
consideration is shown in Fig. 9. A non-ideal motor (DC motor) drives a short and
rigid input shaft which transmits power to the drive shaft through a U-joint. The
hollow drive shaft is long and makes an angle β with the input shaft. The drive shaft
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Fig. 9 Schematic representation of double U-joint transmission system with parallel offset

is assumed to be flexible and it is connected to a short and rigid output shaft at its
other end. The input and output shafts have parallel misalignment due to which the
double U-joint configuration is called Z-configuration. A heavy rotor disc is mounted
on the output shaft. It is assumed that the coupler shaft is massless and its flexural
vibrations are prevented by suitably placed idealized rigid bearings. Furthermore,
the idealized rigid bearings supporting the shafts (including the coupler shaft) and
the spline joint (which is needed for in-phase assembly) are supposed to prevent
warping /buckling of the shaft due to combined torsion and bending. Therefore, only
torsional vibrations of the system will be considered here. Furthermore, the rotary
inertia of the U-joints, clearance/backlash and friction effects are neglected. The two
U-joints are assumed to be initially in phase, i.e. the yokes are initially aligned in a
plane. Here, the input shaft is driven by either an open-loop controlled torque or a
torque applied by a DC motor.

4.1 Equations of Motion

The torque applied by the DC motor is denoted by Ti and the angular velocity of the
input shaft of the transmission line is ωi = θ̇i . The angular velocity of the output
shaft is ωo = θ̇o. The angular speed of the motor and load sides (input and output
shaft sides) of the coupler shaft are denoted by θ̇ic and θ̇oc, respectively. It is assumed
that while the shaft angle of twist θt = θic − θoc can be large, the maximum dynamic
shear stress remains well within the yield stress, and preferably within the endurance
limit (for fatigue). The angular velocities at the two ends of the coupler shaft are
given by using the transmission ratio at the U-joints as

θ̇ic = cosβ

1 − sin2βcos2θi
θ̇i and θ̇oc = cosβ

1 − sin2βcos2θo
θ̇o (9)

Further, by assuming no power loss (friction) at the universal joint, the reaction
torque on the input shaft Ti and active torque To on the output shaft are given,
respectively, as
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Ti = cosβ

1 − sin2βcos2θi
Tc and To = cosβ

1 − sin2βcos2θo
Tc (10)

where Tc = ktθt +ct θ̇t is the torque transmitted through the coupler shaft, and kt and
ct = λkt , with λ as a material constant, are the torsional stiffness and damping of the
coupler shaft, respectively. The equations of motion of this two-degrees-of-freedom
mechanical sub-system are given as

Jm θ̈i + cosβ

1 − sin2βcos2θi
× (

ktθt + ct θ̇t
) = T (11)

Jd θ̈o − cosβ

1 − sin2βcos2θo
× (

ktθt + ct θ̇t
) + Rd θ̇o = 0 (12)

θ̇t = cosβ

1 − sin2βcos2θi
θ̇i − cosβ

1 − sin2βcos2θo
θ̇o (13)

where, T (or Ti ) is the motor torque that applied on the input shaft.

4.2 Numerical Simulation Results

A representative set of parameter values given in Table 3 is chosen for this system.
The natural frequency of torsional vibration is ωn0 = √

kt (1/Jm + 1/Jd), which, for
the given data, turns out to be 176.21 rad/s, when β = 0 or the input, output and

Table 3 Parameter values of the double Cardan joint transmission shaft system

Parameter Description Value

Jm Moment of inertia of rotor of motor 0.2 kg.m2

Jd Moment of inertia of output side large rotor disc 2.8 kg.m2

G Modulus of rigidity of shaft material 80 GPa

τmax Allowable shear stress of ASTM A514 alloy steel 414 MPa

doc Outer diameter of coupler shaft 5 cm

L Length of coupler shaft 5 m

Ip Polar moment of area of coupler shaft 3.62265 × 10–7 m4

kt Torsional stiffness of coupler shaft 5796 Nm/rad

λ Material / internal damping (beta-damping) factor 0.002 s−1

ct Torsional damping of coupler shaft 11.592 Nms/rad

Rd Load damping on large rotor disc 3 Nms/rad

β U-joint angle 1 rad

T External torque applied by motor on input shaft <Variable>



Three Kinds of Sommerfeld Effect in Rotor Dynamics 101

coupler shafts are perfectly aligned in a line. For the considered parameter values
in Table 3, numerical simulations are done for the different constant input torque
values (T = 200 Nm, 300 Nm and 474 Nm) and the respective results for the input
side rotor speed, the output side rotor speed and angle of twist of the coupler shaft
are shown in Fig. 10.

Due to flywheel effect, the angular velocity of the bigger rotor is steadier with
respect to that of the rotor of the motor. At this nearly steady speed of the output
rotor, a ball park estimate of the average speed can be obtained as �o = T/Rd and
the actual average output shaft speed �o. Since, the input shaft is directly connected
to the geared motor the speed of the output shaft of the motor, the motor output speed
θ̇m = ωi = θ̇i . Likewise, since the rotor disc is rigidly fixed to the output drive shaft,
the rotor disc speed θ̇d = ωo = θ̇o.

The results show that the output shaft speed almost reaches the estimated speed for
lowvalues of torque. For example, consider the simulation results presented in Fig. 10
for a constant input toque T = 200 Nm. With chosen value Rd = 3 Nms/rad (see
Table 3), the estimated output shaft speed �o is 66.67 rad/s whereas the simulation
results show that the average actual speed of output shaft �o is less, about 62.1 rad/s
(see Fig. 10). The estimation error is about 4.5 rad/s or about 7%. This is because a
part of the energy is lost through damping in torsional vibration (see Fig. 10). Also,
the output shaft speed has less fluctuation due to heavy rotor inertia whereas there is
significant fluctuation in the input shaft speed.

When the torque is increased to T = 300 Nm, the estimated output shaft speed
�o is 100 rad/s. However. The corresponding results given in Fig. 10 show that the
average output shaft speed �o is about 78.5 rad/s; i.e. the estimation error is about
21.5 rad/s or 27%. This increase in error is due to the increased torsional vibration
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Fig. 10 The angular velocities of input side rotor θ̇m and output side rotor θ̇d , and angle of twist of
the coupler shaft θt for constant input torque. Column 1: T = 200 N.m, Column 2: T = 300 N.m
and Column 3: T = 474 N.m
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Fig. 11 a The angular velocities of input side rotor θ̇m and output side rotor θ̇d , b angle of twist of
the coupler shaft θt , for constant input torque T = 480 N.m

amplitude. In this case, the output shaft speed is closer to half of the torsional natural
frequency of the zero-offset configuration (β = 0) of the system.Apparently, the high
torsional vibration amplitudes are due to approaching the resonance speed (twice the
shaft speed is closer to the zero-offset configuration natural frequency). In fact, this
shows that a kind of saturation phenomena is starting to take hold and more andmore
energy from the source is being wasted in torsional vibrations rather than being used
to accelerate the output shaft.

For T = 474 Nm, the estimated output shaft speed �o is 158 rad/s. However, the
actual average output shaft speed �o is 94.7 rad/s as shown in simulation results in
Fig. 10. The torsional vibration amplitudes have reached peak twist of 0.38 rad and
that vibration amplitude persists thereafter. Therefore, with the increase in torque T
from 300 to 474 Nm, the output shaft speed has changed by a small margin because
the additional energy is diverted to sustain the torsional vibrations. This is a classic
symptom associated with the Sommerfeld effect of first kind and is termed as the
capture at the resonance or resonance capture.

If input torque is increased to T = 480 Nm, the estimated output shaft speed is
160 rad/s and the simulated average output shaft speed (see Fig. 11a) is 148.5 rad/s.
Hence by increasing the input torque up to the critical value, system has escaped
the resonance capture at about 20 s which is associated with an upward speed jump,
together with a simultaneous reduction in torsional vibration amplitude and speed
fluctuations of the input shaft. As soon as there is escape from resonance, less drive
power is lost in torsional vibrations and the extra power is able to accelerate the output
shaft rotor disc. An important observation is that during the rotor coast up, the range
of steady average output shaft speeds between 94.7 to 148.5 rad/s are unreachable
(excluding the transient period). The resonance capture and escape at this sub-critical
speed would be henceforth referred to as Zone-A dynamics.

When the torque is increased further, the output shaft speed continues to increase
in a nonlinear manner showing a second speed saturation or resonance capture. The
response of the system for T = 540 N.m given in Fig. 12 shows that after escaping
Zone-A capture, the output shaft speed initially increases to 170 rad/s and then
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Fig. 12 The angular velocities of input side rotor θ̇m and output side rotor θ̇d , and angle of twist of
the coupler shaft θt for constant input torque. Column 1: T = 540 N.m, Column 2: T = 765 N.m
and Column 3: T = 770 N.m

reduces to approximately steady mean speed of 156 rad/s (marked as Zone-B in the
Fig. 12).

The estimated average output shaft speed at T = 540 Nm is 180 rad/s. When
the input torque is increased further, there is very little increase in the approximate
steady average output shaft speed. For example, with T = 765 Nm, the estimated
output shaft speed is 255 rad/s whereas the actual average output shaft speed initially
reaches 225 rad/s and then reduces to a steady average output shaft speed of 166 rad/s
(see Fig. 12). Thus, for input torque changing from 480 Nm (see Fig. 11) to 765 Nm
(see Fig. 12) or about 60%, the average output shaft speed has changed from 148.5
to 166 rad/s or about 12%. This indicates presence of another resonance capture in
the neighbourhood of the critical speed of the straight-line assembly configuration
of the system, which is 176.21 rad/s.

Figure 12 also shows the transient response of the system for constant input torque
T = 770 Nm, where the resonance capture is escaped and the average output shaft
speed reaches 237 rad/s. So, an abrupt speed increase or jump of more than 70 rad/s
is obtained with a small increase in torque from 765 to 770 Nm.Moreover, the torque
change from 480 to 770 Nm (about 60.4%) produces 148.5 to 237 rad/s speed change
(about 60%). Such almost commensurate change occurs when the resonance capture
is avoided.

Further, note that the upward speed jump is associated with a corresponding
reduction in torsional vibration amplitude. In fact, the peak vibration amplitude
(almost 1 rad) at T = 765 Nm exceeds the allowable limit and the steady vibration
amplitude is large enough to cause quick fatigue failure. However, if the applied
torque ismore than the threshold value (T ≥ 770Nm) to escape the resonance capture
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then the peak aswell as steady torsional vibration amplitudes reduce significantly and
the system can be operated safely. This establishes the need for dynamic analysis of
the system because an undersized actuator can lead to resonance capture and system
failure.

In addition to the resonance capture and escapes seen during rotor coast up,
discrete speed jumps are also observed for this system during rotor coast down.
More such results can be consulted in [32]. In this section, a pre-computed open-
loop controlled torque T = �oRd is applied for any desired mean speed �o. Similar
phenomena are also observed in the case the drive is a non-ideal source, such as a
DC motor. To include the DC motor dynamics in the model, the following set of
modified system equations are considered.

Jm θ̈i + cosβ

1 − sin2βcos2θi
× (

ktθt + ct θ̇t
) = kmia (14)

Jd θ̈o − cosβ

1 − sin2βcos2θo
× (

ktθt + ct θ̇t
) + Rd θ̇o = 0 (15)

θ̇t = cosβ

1 − sin2βcos2θi
θ̇i − cosβ

1 − sin2βcos2θo
θ̇o (16)

Lm
dia
dt

+ km θ̇i + Rmia = V (17)

where the motor torque that applied on the input shaft is given as T = kmia , ia is the
armature current, km is the effective motor characteristic constant, and Lm and Rm

are, respectively, the motor armature coil inductance and resistance. The two-way
coupling between Eqs. (14) and (17) establishes an energy transfer pipeline. Note
that while many authors do not consider the inductance term Lm in the model, here it
is important to retain it because of large speed fluctuations of the input shaft which is
connected to the rotor of the motor [26, 69–72]. The motor is assumed to be geared
and hence a large motor characteristic constant km = 5 Nm/A is chosen here. The
other chosen motor parameters are Lm = 0.01 H and Rm = 10�. The motor supply
voltage V is the controllable input.

A consolidated result showing gradual coast up and coast down dynamics is given
in Fig. 13. Here, the motor input voltage is increased @50 V/s till 80 s, held at 4 kV
for the next 40 s and then reduced @50 V/s for the next 80 s.

The trend for average output shaft speed, in time sequence, shows escape through
Zone-A resonance capture at sub-critical speed, a small downward speed jump at the
onset of resonance capture at the critical speed (Zone-B1), gradual speed increase at a
slow rate followed by a sudden upward speed jump to escape resonance capture at the
critical speed (Zone-B2), constant speed for the duration of constant input torque,
gradually decreasing speed and then a sudden downward speed jump through the
critical speed (Zone-C) and a small downward jump through the sub-critical speed
resonance (Zone-D). Note that sudden speed jumps in Zones A and C are not clearly
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visible in this result due to faster rate of input voltage ramp. The resonance capture
and escape symptoms are also present in the motor current signature. Interested
readers may refer to [32] for more such information.

Hence, two instances of Sommerfeld effect were observed in the system for large
joint angle at the U-joints. If a so-called critical speed is defined as the fundamental
torsional vibration natural frequency of the system with zero joint angle then these
Sommerfeld effects occur in the neighborhood of half of the so-called critical speed,
termed sub-critical speed resonance capture and escape, and further in the vicinity
of the critical speed itself, called critical speed resonance capture and escape. The
zone of the resonance can be determined through a simplification by assuming the
mean output shaft speed to be�o, and initially neglecting the small fluctuations over
it. Then the angular speed fluctuations in the output shaft side of the coupler shaft
are obtained from Eq. (9), which is periodic with time period τ = 2π/�o and can
be expanded as a Fourier series

θ̇oc =
(
a0
2

+
n∑

i=1

a2icos2i�ot

)

�o, (18)

where

ai = 2

τ

∫ τ

0

cosβcosi�ot

1 − sin2βcos2�ot
dt = 1

π

∫ 2π

0

cosβcosiθ

1 − sin2βcos2θ
dθ, i = 0, 1, 2, . . .

All the sin(.) terms of regular Fourier series are absent because the function is
even and odd coefficients (i = 1, 3, . . . ) of cos(.) terms also vanish on integration;
thus only even coefficients are shown as a2i (i = 0..n) in Eq. (18). These coefficients
depend only on the value of β. For the chosen value β = 1 rad, a good convergence is
obtained by considering the first five coefficients a0 = 2, a2 = 0.5969, a4 = 0.1781,
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a6 = 0.0532 and a8 = 0.0159. From Eq. (18), it is evident that the mean θ̇oc is
a0
2 �o = �o and the fluctuating parts have frequencies 2�o, 4�o, 6�o, … Thus,
resonance occurs when the average output shaft speed approaches natural frequency
or any of its even fractions. However, Sommerfeld effect is not observed at all those
speeds because of the presence of damping in the system. If the system has smaller
torsional damping and/or stiffness, then it is possible to obtain resonance capture
and escape at further subcritical speed ranges. On the other hand, Sommerfeld effect
may disappear at lower values of angular misalignment and higher values of shaft
stiffness and damping. Thus, the severity of Sommerfeld effect in the considered
system depends on a whole lot of system parameters, mostly the torsional stiffness
and damping, motor constant and the shaft misalignment angle.

5 The Sommerfeld Effect of Second Kind

There are some specific applications in rotor dynamic systems, in which the rotor
shaft is designed with non-circular or asymmetric cross section. For example, rotor
shafts of multi-pole electric motors, twisted brush motors, shafts with keyways or
flats to allow coupling, spade drill bits, rotary broaches, etc. Due to this rotating asym-
metry, the vibrational characteristics of the rotor system have unstable dynamics in
certain conditions. The asymmetry appears in the form of different bending stiffness
or different moment of inertia of rotor shaft or rotor disc along the principal axes
in the shaft cross-section. A rotor system with asymmetry in its bending flexibility
has unstable speed range near the vicinity of the natural frequencies. The dynamics
of such a system is governed by differential equations with time-varying parametric
coefficients which lead to parametric instability in certain rotor speed range. There-
fore, the unstable speed range is bounded by a lower stable speed range and an upper
stable speed range.

However, to reach the upper stable speed range, the rotor system has to transit
through the unstable speeds. This consideration is not made when mathematical
analysis of the system is done with an ideal drive assumption. In reality, the whirl
amplitudes growexponentially at any speed lying in the unstable speed range and such
whirl loads the drive, thereby limiting the amount of energy available to accelerate
the shaft spin. The transition from the lower stable range to higher stable range
would require the rotor spin to accelerate quickly through the unstable speed range
before the whirl amplitudes grow substantially and create energy scarcity for rotor
spin acceleration. As a consequence, when rotor spin escapes the unstable speed
range, it would reach a substantially higher speed with decaying whirl amplitudes.
Similar behavior occurs during rotor coast down through unstable speed range. This
kind of non-linear jump phenomena is termed as the Sommerfeld effect of second
kind. Unlike regular Sommerfeld effect (of first kind) where the power scarcity at
the resonance is the cause of speed capture, Sommerfeld effect of the second kind
relates to power scarcity at the parametric instability regions.
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5.1 Flexible Asymmetric Rotor Shaft with Rigid Supports

Weconsider an asymmetric flexible rotor shaft which ismounted on two ideal or rigid
bearings at its two ends and carries a heavy centrally placed rotor disc. A permanent
magnet type DC motor is used to drive the rotor. A schematic representation of
this rotor dynamic system is shown in Fig. 14, in which the shaft’s cross-section is
rectangular. The two ends of the rotor shaft, where the shaft is supported on the rigid
bearings, are cylindrical for negligibly small lengths. The rotor shaft mass is referred
to the rotor disc position, as it is common in a Jeffcott rotor model, and the torsional
vibrations are neglected.

A rotating coordinate frame is aligned parallel to the principal axes in the shaft
cross-section so that the shaft bending stiffness remains constant in that reference
frame. In the fixed or inertial coordinate frame, the shaft bending stiffness change
with time as the shaft rotates. Here, x , y, z is the fixed coordinate system and η, ζ , z
is the rotating coordinate system, as shown in Fig. 14, with the rotation θ about the
common or parallel z-axis defining the angle between the two coordinate systems at
any particular time and � = θ̇ is the angular rotational speed of shaft about z-axis
(shaft spin axis). The coordinates (x , y) and (η, ζ ) refer to position of deflected shaft
centre C in the respective frames. The shaft stiffness in η, ζ—directions are kη and
kζ , respectively.

An overall viscous damping c is assumed to act at the geometric centre C of the
rotor disc. Since the rotor disc is symmetrically mounted on the rotor shaft and the
rotor whirls in cylindrical mode, only two degrees of freedom of the system are
considered. For studying the Sommerfeld effect of second kind, there is no need for
rotor disc eccentricity. However, if the system is ideally at equilibrium (zero whirl
amplitude) then it cannot show exponential whirl amplitude growth at instability.
Therefore, one needs to disturb the system from equilibrium to initiate the whirl.
This disturbance is naturally present in a real working environment. However, for
simulation or analysis, this disturbance can be given as an initial condition such as
impact or as small residual unbalance [73]. An ideal coupling which is flexible in
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Fig. 14 Rectangular flexible rotor shaft with central rotor disc driven by a DC motor
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bending and rigid in torsion is assumed between the DC motor and the rotor shaft.
Since the torsion of the rotor shaft is neglected, the motor torque is directly applied
to the rotor disc.

5.2 Equations of Motion of the System

Only lateral displacements of the disc in the first bending (whirl) mode of the rotor
shaft are considered with no rotation of the disc about diametral (η − ζ ) axes. To
derive the stability domain of the rotor system at various rotor spin speeds, initially,
the rotor speed is assumed to be constant; i.e., θ = �t , θ̇ = � and θ̈ = 0. The
equations of motion of the rotor in the lateral directions can be written as

Mz̈ + Dż + ∼
ksz = f (19)

where mass matrix M = mI, damping matrix D = cI, I is a 2 × 2 identity

matrix,
∼
ks is a time-varying shaft bending stiffness matrix, rotor’s lateral displace-

ment vector in the fixed frame z = [
x y

]T
, f is a forcing vector which is zero

in the present case, m is rotor disc mass (including referred shaft mass) and c is
the viscous damping coefficient at the rotor disc position. At constant spin speed,

the rotation matrix from rotating to fixed frame is R =
[
cos�t −sin�t
sin�t cos�t

]
. If

t = [
η ζ

]T
is the rotor’s lateral displacement vector then the restoring force vector

in rotating frame is kst = ksRT z where ks =
[
kη 0
0 kζ

]
. Transformation of the

restoring forces from rotating coordinate system to fixed coordinate system gives the

restoring force vector in fixed frame as RksRT z = ∼
ksz where time varying matrix

∼
ks = RksRT=

[
ks + �kscos2�t �kssin2�t

�kssin2�t ks − �kscos2�t

]
with ks = kη+kζ

2 as the mean

shaft bending stiffness and �ks = kη−kζ

2 as the deviatoric shaft bending stiffness.
Thus the equation of motion in fixed coordinate system is obtained as

Mz̈ + Dż + Koz + �K1zcos
(∼
� t

)
+ �K2zsin

(∼
� t

)
= 0 (20)

where Ko =
[
ks 0
0 ks

]
, �K1 =

[
�ks 0
0 −�ks

]
, �K2 =

[
0 �ks

�ks 0

]
and

∼
�= 2�.

It can be seen that Eq. (20) is a second order differential equation containing
time dependent coefficients. Usually, the boundaries of unstable regions of systems
described by differential equations with parametric coefficients are determined by
using Floquet theory. Hence, the state space form of Eq. (20) is first obtained as
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Table 4 The asymmetric rotor shaft and rotor disc system parameters

Parameter Description Value

l Length of rotor shaft 0.9 m

b Width of rotor shaft 1.49 cm

h Depth of rotor shaft 2.11 cm

ρ Density of rotor shaft material 7850 kg/m3

E Young’s modulus of rotor shaft material 210 GPa

J Rotary inertia of rotor disc 0.02 kgm2

m Mass of rotor disc 10 kg

c External viscous damping coefficient 60 Ns/m

kη Shaft stiffness in η direction:kη = 4Eh(b/ l)3 80,000 N/m

kζ Shaft stiffness in ζ direction:kζ = 4Eb(h/ l)3 160,000 N/m

[
ẍ ÿ ẋ ẏ

]T = S4×4

[
ẋ ẏ x y

]T
orȦT = S(t)AT (21)

where S(t) =

⎡

⎢⎢
⎣

−c/m 0 −(ks + �kscos2�t)/m −(�kssin2�t)/m
0 −c/m −(�kssin2�t)/m −(ks − �kscos2�t)/m
1 0 0 0
0 1 0 0

⎤

⎥⎥
⎦.

As S(t) is T -periodic with T = 2π/�, the monodromy matrix is obtained by
numerical integration of Eq. (21) from 0 to T with initial conditions set to [I ]4×4 (4×
4 identity matrix) and then the eigenvalues σi (i = 1..4) of the monodromy matrix
are used to conclude the stability of the system. The real parts of the eigenvalues σ ,
i.e. σRe, indicate the system’s stability. Positive real part indicates instability whereas
negative real part indicates stability. The parameter values chosen for this study are
listed in Table 4.

5.3 Numerical Results

In the absence of external damping (c = 0), available theoretical results indicate
instability speed range appears between the non-rotating beam natural frequencies
in principal directions, i.e. between �η = √

(ks − �ks)/m = 89.44 rad/s and �ζ =√
(ks + �ks)/m = 126.49 rad/s. The eigenvalues are evaluated numerically in the

frequency range of interest. The real parts of the eigenvalues are plotted with respect
to rotor spin speed in Fig. 15. In Fig. 15, real parts of all the four eigenvalues are
equal and negative everywhere except between a narrow region identified as UI. The
absolute values of eigenvalues are plotted Fig. 16, in which the region for ‖σ‖ > 1
indicates instability.

Hence for the chosen parameter values given in Table 4, the unstable speed range
is 89.63 to 126.2 rad/s. It is evident that the system has one unstable region UI which
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Fig. 15 Real parts of
eigenvalues versus rotor spin
speed from x − y frame
model

Fig. 16 Absolute values of
eigenvalues versus rotor spin
speed from x − y frame
model

appears near the critical speeds of system, as previously reported in [39, 74]. Only
principal parametric resonance appears, in which the instability boundaries are near
the major natural frequencies, i.e. �η and �ζ . The combined resonance and other
parametric resonances do not appear for this system with rigid supports.

Let us introduce a shaft non-circularity parameter κ = �ks/ks and a non-
dimensional rotor speed �∗ = �/�avg with �2

avg = (
�2

η + �2
ζ

)
/2. The stability

domain for constant zero damping c = 0 Ns/m, evaluated from Eq. (21), is shown in
Fig. 17, wherein the hatched area shows the unstable region which has two bound-

Fig. 17 Shaft
non-circularity κ versus
non-dimensional rotor speed
�∗ and c = 0 Ns/m
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Fig. 18 Absolute magnitude
of eigenvalues versus rotor
speed, κ = 1/3 and c = 365
Ns/m

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

, rad/s

Fig. 19 Stability domain of
rotor for different values of
κ , ξ and �∗

aries. FromFig. 17, it is observed that unstable speed range increases as the shaft stiff-
ness asymmetry or non-crcularity (κ) increases. It is known that increasing system
damping reduces the parametric instability region [75]. As c increases, the unstable
zone starts shrinking in size. In the present model with κ = 1/3, for damping value
c = 365 Ns/m, the unstable zone vanishes completely (absolute magnitude of the
eigenvalues ≤ 1) as shown in Fig. 18.

Let us introduce a damping coefficient ratio ξ = c/
(
2m�avg

)
. The stability

domain variation with shaft non-circularity κ , damping coefficient ratio ξ and non-
dimensional rotor spin speed �∗ is shown in Fig. 19. Note that Fig. 17 is a cross-
section of Fig. 19 at ξ = 0.

5.4 Transient Analysis of the Non-ideal System

The permanent type DCmotor is considered here as the non-ideal drive with suitable
motor parameters needs to be considered, as given in Table 3. TheDCmotor produces
torque to rotate the rotor shaft instead of a constant speed motor considered for ideal
drive.

It can be shown that the reactive load torque applied on the motor is �l =
2�ksηζ = (

kη − kζ

)
(xcosθ + ysinθ)(−xsinθ + ycosθ) [45]. Thus, the equations
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Table 5 DC motor
specifications

Parameters Description Value

Vi Supply voltage <Input>

Rm Armature resistance 5 �

Lm Armature inductance 0.01 H

km Motor’s constant 0.5 Nm/A

of motion for transient analysis are given as

mẍ + cẋ + (ks + �kscos2θ)x + (�kssin2θ)y = 0 (22)

mÿ + cẏ + (�kssin2θ)x + (ks − �kscos2θ)y = 0 (23)

J θ̈ + 2�ks(xcosθ + ysinθ)(−xsinθ + ycosθ) = kmia (24)

Lm
dia
dt

+ km θ̇i + Rmia = Vi (25)

where J is the rotary inertia of the rotor disc (including the rotor of the motor and the
rotor shaft) about the spin axis, km is the motor constant, ia is the armature current,
Lm and Rm are, respectively, the motor armature coil inductance and resistance, and
Vi is the voltage applied across the motor terminals. The parameters of the DCmotor
chosen for the transient analysis are given in Table 5.

The theoretical analysis provides the stable and unstable speed ranges, but does
not reveal the process to reach stable speed regions beyond the unstable regions
when the energetic coupling between the motor and the rotor is considered. Thus,
the transition through the unstable speed ranges is analyzed here through numerical
simulations. The power supply by motor is used to overcome the load produced by
rotor system. If the amount of available power is insufficient then the rotor may get
stuck in boundary of the unstable zone. So it is essential to determine the critical
amount of power to smoothly escape the instability for the motor sizing and overall
system design perspectives.

The transient analysis of the rotor system with a non-ideal DC motor is carried
out through numerical simulation; therein an initial momentum of 1 kg.m/s is given
to the rotor disc in x-direction. Note that the dynamics of the system is governed
by the initial conditions because the excitation here is of multiplicative nature. If
there is no whirl in the rotor (η = 0 or ζ = 0) then there is no load on the motor.
Even a small residual unbalance is sufficient to initiate the load on the motor. The
rotor speed response and amplitude response are plotted with time for coast up
operation, as shown in Figs. 20 and 21.When constant input voltage is applied, the
speed saturation starts to occur from about Vi = 44.83 V. Such saturation behavior
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Fig. 20 Rotor speed
response for motor supply
voltages Vi = 83 V and
83.1 V showing passage
through parametric
instability
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continues up to Vi = 83 V (see Fig. 21). When the speed is saturated, i.e. captured at
the lower instability bound (89.66 rad/s), the whirl amplitude increases with applied
voltage (see Fig. 21) and more and more energy is dissipated through the external
viscous damping. During transient phase, the maximum speed does not exceed the
upper instability bound.

At the steady-state, the motor power is balanced by the dissipated power. The
steady-state whirl amplitude depends on the excess motor power, i.e., it is zero at
Vi = 44.83 V and increases as Vi increases, until it reaches 83 V, where the whirl
amplitudes are very large and the system is still captured at the lower instability
threshold.

When the supply voltage reaches or exceeds a critical value, Vi = 83.1 V, then
the rotor system escapes from capture at the lower instability threshold and reaches
a higher speed. Thus, between Vi = 83 V and Vi = 83.1 V, there is a sudden speed
jump. Also, the whirl amplitude converges to 0 at Vi = 83.1 V, i.e. there is also an
associated amplitude jump (see Fig. 21). Note that at Vi = 83 V, the rotor speed just
about reaches the upper instability threshold speed � = 126.2 rad/s (indicated by
dashed line in Fig. 20).

When the voltage is reduced from a value Vi > 83.1 V or above, there is also
a similar jump phenomenon where the rotor speed suddenly jumps from the upper
instability threshold to the lower instability threshold (see Figs. 22 and 23), but there
is no speed capture at the upper stability threshold. The results in Figs. 22 and 23 are
obtained under the initial conditions that correspond to initial rotor spin speed 200

Fig. 21 Rotor amplitude
response for motor supply
voltages Vi = 83 V and
83.1 V showing passage
through parametric
instability
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Fig. 22 Rotor speed
response for motor supply
voltages Vi = 63 V and
63.1 V showing passage
through parametric
instability
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Fig. 23 Rotor amplitude
response for motor supply
voltages Vi = 63 V and
63.1 V showing passage
through parametric
instability
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rad/s (above the upper stability threshold) and 0.1 m/s initial velocity of the rotor
disc in x-direction. The initial input voltage is 100 V and it is reduced suddenly (a
step drop) to a lower value.

Note that in this case, the induced emf is initially larger than the supplied voltage
to the motor and hence, the motor applies brake or negative torque on the rotor. Up
to Vi > 63.1 V, the whirl amplitude converges to zero and the steady rotor speed
reaches Vi/km > 126.2 rad/s. When Vi is reduced just below 63.1 V, the rotor
becomes unstable and whirl amplitudes start growing. This causes dissipation of
energy through the viscous damping on the rotor and hence the rotor speed reduces
until it reaches the lower instability threshold speed, i.e. 89.66 rad/s and it remains
captured there until the motor supply voltage is reduced below 49.83 V. The bending
stresses in the rotor shaft remain below yield stress when there is smooth passage
through instability; whereas, capture at the lower instability threshold may lead to
failure of the rotor shaft.

5.5 Jump Phenomena Characteristics

From the results, there is a clear similaritywith the Sommerfeld effect of the first kind,
although the Sommerfeld effect of the second kind happens here due to instability of
whirlmode. This characteristic of the non-linear jumpphenomena is shown inFig. 24.
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Fig. 24 Characterization of
the Sommerfeld effect of
second kind in asymmetric
rotor
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During the rotor coast up (speed increase), the steady-state rotor speed follows the
path o → a → b → c → d containing a capture at lower stability threshold in the
path a → b and a jump b → c, as shown in Fig. 24. During rotor coast down (speed
decrease), the steady-state rotor speed follows the path d → e → f → a → o
containing a capture at lower stability threshold in the path f → a and a jump
e → f , as shown in Fig. 24. Note that there is no speed capture at the upper
instability threshold speed. Further note that steady-state speeds in the range lying
between points a to e, i.e. the unstable speed range, can neither be reached during
rotor coast-up nor during rotor coast-down.

Additionally, the plot between the non-circularity κ and the rotor speed � is
presented together with plot between input voltage supply Vi and the rotor speed �,
for coast up and coast down operation in Figs. 25 and 26, respectively. In Fig. 25,
the blue colored lines indicate stability boundaries for different values of κ . Here,
the Sommerfeld effect is shown for a fixed value κ=0.4 and c = 0 Ns/m, for which
the shaded area is unstable speed range (69.28 rad/s to 105.8 rad/s). During coast
up operation, the input voltage and speed variation (red line) takes the linear path
a to b till the voltage reaches 34.6 V and speed reaches 69.28 rad/s. After point b,
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Fig. 25 Non-circularity versus rotor speed (stability map), and motor supply voltage versus rotor
speed with κ = 0.4 for coast up dynamics
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Fig. 26 Non-circularity versus rotor speed (stability map), and motor supply voltage versus rotor
speed with κ=0.4 for coast down dynamics

i.e. at the stability boundary, the rotor speed gets stuck at 69.28 rad/s even as the
input voltage is increased. During this period, the vibration amplitude increases as
the energy supplied by motor contributes to increase in the whirl amplitude. At point
c, for the input voltage of 102 V, enough energy is available to escape from this
unstable region and a sudden speed jump occurs from c to d, i.e. the rotor speed
increases to 204 rad/s from 69.28 rad/s (shown by dashed line). After that, the rotor
speed increases linearly with the input voltage along the path d to e.

Similarly, for the coast down operation, the variation of the rotor speed with
voltage follows the path e → d → c → b → a as shown in Fig. 26. Once the
rotor speed reaches the speed corresponding to the upper stability boundary (point
d, 105.8 rad/s at 54.5 V), further reduction in voltage reduces the rotor speed to that
corresponding to the lower stability boundary (point c, 69.28 rad/s at 54.5 V). Further
reduction in voltage up to 34.6 V does not change the rotor speed and thereafter, a
linear reduction in speed with voltage occurs in the path b to a.

Mathematically, the location of points c and d depend on the initial conditions
during rotor coast up. With large rotor inertia and sufficiently high constant supply
voltage, realistic initial disturbances die out by the time the rotor speed starts from
zero and reaches the stability boundary. Thus, the whirl amplitude is usually small at
point b if sufficient time has elapsed to reach there and then point c appears closer to
point b. However, for large initial conditions or rotor unbalance, the whirl amplitude
on reaching point b can be large and then it grows very fast at the stability boundary.
In that case, point c shifts upwards. Likewise, if the supply voltage is gradually
increased then the rotor speed gets permanently captured at the stability boundary,
i.e. the voltage at point c in Fig. 25 tends to infinity. On the other hand, location
of points b, c and d during rotor coast down are mostly unaffected by the initial
conditions.
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6 The Sommerfeld Effect of Third Kind

Rotor systems become permanently unstable beyond a certain threshold speed due to
the effect of non-conservative circulatory forces, which can arise out of shaft mate-
rial/internal damping, anti-symmetric bearing stiffness, Alford forces, etc. These
physical phenomena create an energy pipeline for continuous pumping of motor
power to the rotorwhirl. In fact, thematerial damping increases the effective damping
for rotor speeds below the shaft natural frequency and the destabilizing effect (effec-
tive damping reduction) starts for rotor speeds after the shaft natural frequency
[76]. The material damping effect is present during asynchronous rotor whirl and
it vanishes during synchronous rotor whirl. The material damping is modeled in a
rotating frame just like the asymmetric shaft stiffness and for higher frequencies, it
is found to be proportional to the shaft’s stiffness, with the proportionality constant
λ. Here, the material damping parameter λ = 0.002 s−1, which is a standard material
constant, is chosen for the steel rotor shaft.

6.1 Flexible Asymmetric Rotor Shaft Mounted on Rigid
Support

Here, we consider the same asymmetric rotor shaft system as in the previous section

(Sect. 5). The material damping of the shaft Csi is given as

[
cηi 0
0 cζ i

]
in rotating

coordinate system where, cηi = λkη and cζ i = λkζ . Thus, the force due to shaft’s

material damping in fixed coordinate system is determined as
∼
C

1

siż + �
∼
C

2

siz where,

∼
C

1

si =
[
csi + �csicos2�t �csi sin2�t

�csi sin2�t csi − �csicos2�t

]
,

∼
C

2

si =
[ −�csi sin2�t csi + �csicos2�t

−csi + �csicos2�t �csi sin2�t

]
,

csi = cηi+cζ i

2 is mean shaft material damping and �csi = cηi−cζ i

2 is deviatoric
shaft material damping. Finally, in form of matrices and vectors representation, the
system’s equation in fixed coordinate system is obtained as.

(26)
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where, D =
[
c 0
0 c

]
,Ko =

[
ks 0
0 ks

]
, Co =

[
csi 0
0 csi

]
, C1

0 =
[

0 csi
−csi 0

]
, �C1 =

[
�csi 0
0 −�csi

]
, �C2 =

[
0 �csi

�csi 0

]
and

∼
�= 2�.

6.2 Stability Analysis

The boundaries of unstable regions of system are determined by using Floquet theory.
Hence, Eq. (26) written in state space form as ȦT = P(t)AT.

where P(t) =

⎡

⎢⎢
⎣

p11
m

p12
m

p13
m

p14
m

p21
m
1
0

p22
m
0
1

p23
m
0
0

p24
m
0
0

⎤

⎥⎥
⎦ (27)

and, p11 = c + csi + �csicos2�t , p12 = �csi sin2�t , p13 = ks + �kscos2�t −
��csi sin2�t , p14 = �csi +��csicos2�t +�kssin2�t, p21 = �csi sin2�t , p22 =
c + csi − �csicos2�t , p23 = −�csi + ��csicos2�t + �kssin2�t, and p24 =
ks − �kscos2�t + �csi sin2�t .

As themonodromymatrix is obtainedbynumerical integration ofP(t) and then the
eigenvalues σi (i = 1..4) of the monodromy matrix are used to conclude the stability
of the system by inputting the values of parameters that are given in Table 4. The
real parts of the eigenvalues σRe are plotted with respect to rotor spin speed without
considering the internal damping in Fig. 27. It can be seen that only one unstable
region (UI) due to parametric instability appears in entire speed range of the rotor.
The real parts of the eigenvalues σRe are plotted for the same parameters with internal
damping (λ = 0.002 s−1) in Fig. 28. Now, there is a similar unstable operation region
due to parametric instability (speeds u1 to u2 i.e., 89.7 to 126.2 rad/s, corresponding
to region UI) and another permanent instability region (from 133.2 rad/s i.e., u3
onwards). Thus, the instability threshold speed �th = 133.2 rad/s and there is no

Fig. 27 Real parts of
eigenvalues versus rotor
speed for the rotor and
λ = 0s−1
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Fig. 28 Real parts of
eigenvalues versus rotor
speed for the rotor and
λ = 0.002 s−1

stable operating speed beyond this permanent instability threshold. The range of
parametric instability and the onset of permanent flutter instability strongly depend
upon the damping in the system. For example, if the external damping is increased to
c = 100Ns/m then the system has parametric instability region from u1 = 90 rad/s to
u2 = 125.7 rad/s, i.e. there is a very small change in the unstable speed range,whereas
the permanent instability threshold value increases significantly to u3 = 151.9 rad/s.

6.3 Transient Analysis of Non-ideal System

Some sample simulation results are discussed here corresponding to the stability
behavior shown in Fig. 28 where the parametric instability region appears for speed
range 89.7–126.2 rad/s, and the stability threshold speed is 133.2 rad/s. The excitation
to initiate rotor whirl is provided by the initial momentum of 1 kg-m/s in x-direction
of disc centre. The rotor speed reaches the desired steady-state value � = Vi/km for
Vi ≤ 44.9 V. The results show that the rotor spin speed is stuck at 89.65 rad/s (near
lower unstable boundary U1) for Vi = 45V. After that, it never escapes through the
unstable regions for any further increase in the supply voltage. This is because the
when there is sufficient power given to accelerate the rotor speed outside the capture
at the parametric instability boundary, the rotor speed would actually reach a value
beyond the permanent stability threshold (133.2 rad/s, here). Thus, the vibration
amplitudes start to increase and reduce the shaft speed back to the lower limit of the
parametric instability boundary. Such a behavior is observed when the permanent
instability speed is very close to the parametric instability region.

For the case of higher value of external–damping, i.e. c = 100 Ns/m, there
is sufficient gap between the parametric instability regions (90−125.7 rad/s) and
stability threshold (151.9 rad/s). In this case, the rotor speed reaches the desired
steady-state value � = Vi/km for Vi ≤ 45.1 V. For the supply voltage range Vi =
45.1 to 69.8V, the rotor speed is captured at the lower stability threshold of parametric
instability zone u1, i.e. at the average speed of 90 rad/s. The system escapes from the
parametric instability for Vi ≥ 69.9 V (see Fig. 29), reaches the desired steady-state
value � = Vi/km and the whirl amplitudes reduces (see Fig. 30).
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Fig. 29 Rotor speed
response during capture at
and escape through
parametric instability for the
rotor with c = 100 Ns/m and
material damping
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Fig. 30 Rotor whirl
amplitudes during capture at
and escape through
parametric instability for the
rotor with c = 100 Ns/m and
material damping
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On further increasing the supply voltage, at Vi = 75.9V, the rotor speed gets stuck
at 151.9 rad/s (near threshold value of permanent instability�th) with large bounded
amplitudes of vibration. Hence, on reaching the stability threshold for Vi ≥ 75.9,
there is a permanent capture of rotor speed at average speed of 151.9 rad/s and the
whirl amplitude continues to increase with any further increase in voltage, as shown
for two such supply voltages in Figs. 31 and 32. Note that in Fig. 32, the whirl
amplitude appears unsteady because of the simultaneous presence of synchronous
and asynchronous whirls.

This permanent capture at stability threshold is termed as the Sommerfeld effect
of third kind. It has been discussed previously in various articles [19, 48–51, 77,

Fig. 31 Rotor speed
response during capture at
stability threshold for the
rotor with material damping
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Fig. 32 Rotor whirl
amplitudes during capture at
stability threshold for the
rotor with material damping

0 2 4 6 8 10
0

2

4

6

8

A
m

p
li

tu
d
e,

 m
m

Time, s

=75 V

=80 V

Passage through 

parametric instability

78]. Note that permanent capture at the stability threshold does not give steady whirl
amplitude. In fact, there is a synchronous whirl and an asynchronous whirl present
at the same time. In rotor dynamic systems, various means have been proposed to
increase the stable operating speed regions, such as squeeze film dampers, impact
dampers, and visco-elastic supports, all of which attempt to increase the effective
external damping in the system. However, effective external damping cannot be
increased arbitrarily in a system because it is also related to the vibration isolation
capacity of the foundation and the energy efficiency of the non-ideal motor, as has
been recently described in [79].
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Nonlinear Modal Analysis of Vibrating
Systems with Limited Power Supply

V. Piccirillo , A. M. Tusset , Jose Manoel Balthazar ,
and A. G. Martinez

Abstract Nonlinear modal analysis is a powerful technique that allows a better
understanding of the nonlinear dynamic behavior of mathematical models with few
degrees of freedom. Nonlinear modes have emerged as a natural extension of linear
modes for systems with large oscillation amplitudes. This chapter applies the tech-
nique of nonlinear normal modes analysis in a nonlinear Duffing oscillator driven
by a limited (non-ideal) power source. Results show that the use of nonlinear modal
analysis allows the description of the complex behavior of the system, resulting from
the nonlinearities considered.

1 Introduction

It is known that nonlinearities in the dynamical systems may make it exhibits unex-
pected responses. The dynamic responses of a nonlinear systemexcited by an external
energy source are very rich, being able to show, for example, interactions near
resonance regions, and many other interesting phenomena.

The nonlinear normal modes (NNMs) [1, 2] is a promising approach that can be
used in nonlinear systems because it allows the decoupling of the system. Therefore,
from an engineering point of view, this decoupling is efficient in reduces the engi-
neering structures in oscillators with a single degree of freedom (1-DOF). Besides,
all the information related to the dynamics of the non-linear system can be found
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in these oscillators. The nonlinear normal modes theory for strong nonlinearities in
conservative or damped autonomous systems was developed by Shaw and Pierre [3].
They built this theory based on the center manifold theory and geometric aspects of
a dynamical system. The nonlinear normal modes allow the decoupling of the equa-
tions of motion of a dynamical system taking into account both the displacement and
the velocity of a chosen set of coordinates. These coordinates are called master coor-
dinates, while the rest of them, consisting of a modal surface, are classified as slave
coordinates. This approach can be applied only to autonomous nonlinear systems.

In nonautonomous equations ofmotion, the time variable is considered as an addi-
tional coordinate, which makes the formulation of the NNMs very challenging for
this kind of system. To deals with this problem [4], uses a numerical technique based
on a Galerkin type scheme with the time as a new coordinate, therefore allowing,
determinate the NNMs for each instant of time.

In this chapter, the Nonlinear Normal Modes (NNMs) of oscillators driven by a
limited power supply under resonant conditions, and with strongly nonlinearity are
formulated for resonant regions. This formulation should allow the reduction of the
problem without any loss in the dynamics of the original system.

2 The Vibratory System

The equations of motion of a coupled oscillators can be written as follows

mẌ + kX + fS(X) + fD
(
X, Ẋ

) = fe(ωτ) (1)

where X is the displacement vector, m is the mass matrix, k is the stiffness matrix
related to the linear part, fS(X) is amatrix related to the nonlinear stiffness, fD

(
X, Ẋ

)

is a matrix related to the damping that can be linear or not and the system is excited
by an external force vector fe(ωτ).

Note that in this equation there are terms dependent on displacement, velocity,
as well as the time variable. As pointed out by Warminski [5] a linear procedure of
decoupling of the equations can only be applied if the system is weakly nonlinear
or linear with little damping. Therefore, a decoupling procedure for a more general
dynamical system (apart from the characteristics mentioned before) is complicated.
Thus, the decoupling of Eq. (1) occurs in some specific cases.

The nonautonomous system analyzed in this chapter is a two-degree of freedom
oscillator nonideal oscillator with Duffing nonlinearity elements and with small
viscous damping. The methodology adopted here considers responses near reso-
nant regions. A new version of Eq. (1) can be obtained by assuming the following
transformation,

X = uY (2)
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where u is a linearmodal vector and Y is a vector of normal coordinates. Substituting,
Eq. (2) into (1) and multiplying the equation by uT (matrix transpose of u) we have,

MŸ + KY = ε
[
F̃

(
Y, Ẏ

) + Q̃cos(ωτ)
]

(3)

where M = diag[Mj ] = uTmu, K = diag[Miω
2
0 j ] = uT ku, and ω2

0 j correspond
to the j th natural frequency of a linear mode. A small parameter ε is used to group
all nonlinear terms related to structural and/or damping as a function of F̃

(
Y, Ẏ

)
and

the excitation in terms of Q̃cos(ωτ). If the parameter ε is equal to zero, then the set
of decoupled linear equations can be solved independently. However, in our case, the
presence of nonlinearities cannot be ruled out, and therefore the system is coupled
and the normal nonlinear modes need to be introduced.

3 Modeling the Nonideal System

In order to model a nonideal system, consider a two degree of freedom oscillator as
described in Fig. 1. It consists of two masses mi (i = 1, 2) connected by a nonlinear
spring described by the function fi (xi )(i = 1, 2) and linear dampers ci (i = 1, 2),
and the oscillators are coupled by a linear spring k12. In addition, let us consider that
the first oscillator is driven by a motor with limited power source.

The equations of motion of the model shown in Fig. 1 are described by the
following system of differential equations

Mẍ1 + c1 ẋ1 + f1(x1) + k12(x1 − x2) =m0r
(
ϕ̇2sinϕ − ϕ̈2osϕ

)

m2 ẍ2 + c2 ẋ2 + f2(x2) − k12(x1 − x2) = 0 (4)

Fig. 1 Two degree of freedom oscillator driven by limited power source
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J ϕ̈ = �(ϕ̇) + m0r ẍ1cosϕ

The nonlinear stiffness are functions of the Duffing type, represented by f1(x1) =
k1x1 +γ1x31 and f2(x2) = k2x2 +γ2x32 . The physical parameters shown in Fig. 1 are:
m0 unbalance mass; M = m0 + m1 total mass of vibrating parts; J inertia moment
of rotor; r is the eccentricity of mass m0; ϕ is the angular displacement of the rotor
(motor shafts).

Note that Eq. (4) is an autonomous and nonlinear equation, containing cubic
nonlinearities. The functions m0r ϕ̇2sinϕ and m0r ϕ̈2cosϕ are the inertia functions
produced by the motor and the function m0r ẍ1cosϕ represents the moment of this
force of inertia.

4 The Nonlinear Normal Modes Formulation

The normal nonlinear modes are formulated from observations of the response of
the physical system [6]. In order to formulate the approach of the nonlinear normal
modes, we will focus only on a neighborhood of the primary resonance region.

In contrast to the purely linear system approach, we define the modes of vibration
as a function of amplitude. Specifically, one of the modal coefficients is considered
to be arbitrary, and the second is expressed as a function of the amplitude. Therefore,
the coefficient u1 is taken to be constant and for convenience this value is equal to
1 (u1 = 1), while the second is a function of the amplitude: u2 = u2(a), where a
denotes the amplitude function.

For the modal coefficient u2 j (a), the modal solution takes the following form:

X1 = Y j (5)

X2 = u2 j (a)Y j (6)

where j = 1, 2 corresponds to the first and second modes respectively and Y j =
acos

(
ω0 jτ

)
is a time periodic function. Observe that ω0 j corresponds to the j th

natural frequency of the nonlinear system. According to the definition given in the
literature, coordinate X1 (the displacement) is called the “master coordinate” while
X2 is known as the “slave coordinate”, and is functionally related to the previous
one.

This formulation of normal modes for the conservative nonlinear system will be
applied to the system Eq. (4).
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5 Vibration of the Nonideal System

In order to transform the generalized coordinate system into normal coordinates, we
will assume that when the considered nonlinear system is conservative within the
main resonance, the modes of vibration are sufficiently close to the normal nonlinear
modes formulated in the previous section.

By replacing (5) in the set of original Eq. (4) and thenmultiplying the first equation
by u1 j (in this case equal 1) and the second by u2 j ( j = 1, 2), and then adding the
two equations turns out that,

(
M + m2u

2
2 j

)
Ÿ j +

[
k1+u22 j k2 + (

1 − u2 j
)2k12

]
Y j +

(
γ1 + γ2u

4
2 j

)
Y 3
j = Fj

(
Ẏ j , ϕ, ϕ̇, ϕ̈

)

(7)

where Fj
(
Ẏ j , ϕ, ϕ̇, ϕ̈

) = m0r
(
ϕ̇2sinϕ − ϕ̈2cosϕ

) −
(
c1 + c2u22 j

)
Ẏ j , j = 1, 2.

Taking into account that the system is conservative, is valid that Fj
(
Ẏ j , ϕ, ϕ̇, ϕ̈

) =
0 and substituting the periodic solutionY j = acos

(
ω0 jτ

)
in (7),weobtain the relation

that represents the natural frequency of the nonlinear system,

ω2
0 j = 1

(
M + m2u22 j

)
[
k1 + u22 j k2 + (

1 − u2 j
)2
k12 + 3

4
a2

(
γ1 + γ2u

4
2 j

)]
(8)

It follows that the equations of motion can be written in terms of nonlinear normal
coordinates,

Mj (a)Ÿ j + Mj (a)ω2
0 j (a)Y j = Fj

(
Ẏ j , ϕ, ϕ̇, ϕ̈

)
, j = 1, 2 (9)

where Mj (a) = M +m2u22 j is the modal mass of the system for the first and second
vibration modes for j = 1, 2, respectively.

6 Analytical Solution for the Nonideal System

Due to their nonlinear nature, analytical solutions of the system of Eq. (9) can be
determined by applying approximation methods. The method of averaging [7], is a
well-known perturbation method used to find an approximate solution for nonlinear
dynamical systems. In this method, a small parameter ε is introduced to take into
account the nonlinear terms of the problem. Then Eq. (9) can be written in the form,

Mj (a)Ÿ j + Mj (a)ω2
0 j (a)Y j = ε F̃j

(
Ẏ j , ϕ, ϕ̇, ϕ̈

)
, j = 1, 2 (10)
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where, Fj = ε F̃ j
According to the formulation presented in Sect. 4, it is assumed that the system

response is periodic. The previous approach considered the case of primary reso-
nance. In this case, the average angular velocity of the direct current engine, varies
close to the natural frequency of the system, that is, ϕ̇ ≈ ω0 j .

Imposing ε = 0 (unperturbed problem) in Eq. (10), we obtain that the solution is
given by,

Y j = a j cos
(
ϕ + β j

)
(11)

Using the method of the variation of parameters, we have that,

Ẏ j = −a jω0 j sin
(
ϕ + β j

)
(12)

where a, ϕ and β are functions of time τ .
When considering displacements close to the resonance region, it is convenient

to introduce a tuning parameter σ as follows:

ϕ̇ = 
 (13)

where


 = ω0 j + εσ (14)

The first-order derivative of Y j in (11) is,

Ẏ j = ȧ j cos
(
ϕ + β j

) − a j sin
(
ϕ + β j

)(

 + β̇ j

)
(15)

Comparing the Eqs. (12) and (15) we have,

ȧ j cos
(
ϕ + β j

) − a j β̇ j sin
(
ϕ + β j

) = a j
(

 − ω0 j

)
sin

(
ϕ + β j

)
(16)

differentiating Eq. (12) we have,

Ÿ j = −ȧ jω0 j sin
(
ϕ + β j

) − a j β̇ jω0 j cos
(
ϕ + β j

) − a j
ω0 j cos
(
ϕ + β j

)
(17)
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After replacing Eqs. (11), (13) and (17) in Eq. (9), we have:

−Mj (a)
[
ȧ jω0 j sin

(
ϕ + β j

) + a j β̇ jω0 j cos
(
ϕ + β j

) + a j
ω0 j cos
(
ϕ + β j

)] + Mj (a)ω2
0 j a j cos

(
ϕ + β j

)

= ε
[
r̂1

(

̇cosϕ − 
2sinϕ

) + υa jω0 j sin
(
ϕ + β j

) − �a3j cos
3
(
ϕ + β j

)]

(18)

and


̇ = ε
[
�
∧

(
) − r
∧

2
(
ȧ jω0 j sin

(
ϕ + β j

) + a j
ω0 j cos
(
ϕ + β j

) + a j β̇ jω0 j cos
(
ϕ + β j

))
cosϕ

]
(19)

where υ = c1 + c2u22 j and � = γ1 + γ2u42 j .
Using trigonometric identities, it is possible to isolate the variables ȧ, β̇ and 
̇

from Eqs. (18) and (19),

ȧ j = − ε

Mj (a)ω0 j

[
r
∧

1
(

̇cosϕ − 
2sinϕ

) + υa jω0 j sin
(
ϕ + β j

) − �a3j cos
3(ϕ + β j

)]
sin

(
ϕ + β j

)
(20)

β̇ j = −εσ − ε

a j M j (a)ω0 j

[
r
∧

1
(

̇cosϕ − 
2sinϕ

) + υa jω0 j sin
(
ϕ + β j

) − �a3j cos
3(ϕ + β j

)]
cos

(
ϕ + β j

)

(21)

Note that Eqs. (20) and (21) are equivalent to system (4), without making any
approximations so far. As a simplification we will neglect all O(ε) terms that appear
in Eqs. (19) through (21). Then,


̇ = ε
[
�
∧

(
) − r
∧

2a j
ω2
0 j cos

(
ϕ + β j

)
cosϕ

]
(22)

ȧ j = − ε

Mj (a)ω0 j

[
r
∧

1ω
2
0 j sinϕ − υa jω0 j sin

(
ϕ + β j

) + �a3j cos
3(ϕ + β j

)]
sin

(
ϕ + β j

)

(23)
β̇ j = − ε

a j M j (a)ω0 j

[
a j M j (a)ω0 jσ − r

∧

1

(

̇cosϕ − 
2sinϕ

)
+ υa jω0 j sin

(
ϕ + β j

) + �a3j cos
3(ϕ + β j

)]
cos

(
ϕ + β j

)

(24)

Another simplification that can be considered here is that a j ,
 and β j remain
constant over a cycle. Thus, by integrating the last three equations on this cycle, by
averaging, we obtain the following result:


̇ = ε

[
�
∧

(
) − 1

2
r
∧

2a jω
2
0 j cosβ j

]
(25)

ȧ j = ε

[
r
∧

1ω0 j

2Mj (a)
cosβ j − υa j

]
(26)

β̇ j = −ε

[

σ + r
∧

1ω0 j

2a j M j (a)
sinβ j − 3�

8Mj (a)ω0 j
a2j

]

(27)
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Now substituting Fj = ε F̃ j into the above equations, it follows that,


̇ = �(
) − 1

2
r2a jω

2
0 j cosβ j (28)

ȧ j = r1ω0 j

2Mj (a)
cosβ j − υa j (29)

β̇ j = 3�

8Mj (a)ω0 j
a2j − (


 − ω0 j
) − r

∧

1ω0 j

2a j M j (a)
sinβ j (30)

In order to obtain the equilibrium points, we have that 
̇ = ȧ j = β̇ j = 0,
therefore,

�(
) − Acosβ j = 0 (31)

Bcosβ j − υa j = 0 (32)

Ca2j − (

 − ω0 j

) − r
∧

1ω0 j

2a j M j (a)
sinβ j = 0 (33)

where A = 1
2r2a jω

2
0 j , B = r1ω0 j

2Mj (a)
, C = 3�

8Mj (a)ω0 j
.

From Eqs. (31) and (32) we have cos2β j = υ
AB�(
). Rewriting Eq. (33) in

terms of σ = 
 − ω0 j , we obtain Bsin(β) = Ca j

(
a2j − σ

)
. Using fundamental

trigonometric identity, we have:

υ

AB
�(
) +

[a j

B

(
Ca j

(
a2j − σ

))]2 − 1 = 0 (34)

Therefore

C2

B2
a6j − 2

C

B2
a4j + σ 2

B2
a2j + υ

AB
�(
) − 1 = 0 (35)

Note that in this polynomial the terms of odd degree are absent, so it can be
rewritten as a third-degree polynomial in a2j . We can have 3 real roots or just one real
and two other complex conjugates.

The existence ofmore thanone real root, corresponds to a “multivalued” amplitude
and indicates the entrance into a region of instability, that is, the presence of an
unstable solution.
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7 Numerical Results

In this section, some numerical results are presented for the data of the nonlinear
model. Considering M = 1; m2 = 2; k1 = 1; k2 = 1; k12 = 0, 3; γ1 =
0.1; γ2 = 0.1. In this case, the coefficients of the modal matrix are,

u =
[
u11 u12
u21 u22

]

where u11 = 1, u21 = 2.3770, u12 = 1, u22 = 0.21035 and the corresponding
natural frequencies to the linear system are ω01 = 0.766091, ω01 = 1.16752.

Considering Eq. 8, which constitutes the relation between the coefficient
u2(u21 and u22) and the amplitude of vibration, the nonlinear modal curve can be
evaluated as a function of the amplitude. Figure 2 shows a comparison of such coef-
ficient of vibration between the linear and nonlinear cases. For the linear system,
this coefficient is independent of the amplitude (vertical line). However, as might be
expected, the nonlinear vibration mode corresponds to the linear modes, when the
amplitude value is equal to zero, i.e., a = 0. For non-zero amplitude values, in the
nonlinear case, it is possible to observe a variation of these coefficients.

Figure 3 shows the comparison between the natural frequencies for the twomodes
of vibration (linear and nonlinear cases) given by the non-ideal system studied here,
considering free vibration. Dashed lines show that natural frequencies, of the two
linear modes of vibration, do not change in the presence of a variation in the ampli-
tude of vibration. On the other hand, the solid lines representing the two non-linear
vibration modes, vary as the system exhibits vibration.

Fig. 2 Amplitude versus vibration modes a first mode, b second mode
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Fig. 3 Amplitude versus natural frequency of vibration

Figures 4 and 5 shows the responses, analytically determined in normal coor-
dinates, of the coupled oscillators for the non-ideal system. Using the nonlinear
transformation given by Eq. (5) we have that the initial conditions of the problem in
terms of the modal coordinates are: Y1(0) = 10; Ẏ1(0) = 0; Y2(0) = 10; Ẏ2(0) = 0.



Nonlinear Modal Analysis of Vibrating Systems … 137

(a) (b)  

   (c) (d) (e)

Fig. 4 Vibration in modal coordinates for the first mode: a Amplitude versus time, b Phase plane,
c Modulation of the amplitude, d Modulation of the phase, e History of the rotational velocity of
the motor
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Fig. 5 Vibration inmodal coordinates for the secondmode: aAmplitude versus time,bPhase plane,
c Modulation of the amplitude, d Modulation of the phase, e History of the rotational velocity of
the motor
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Resonance Dynamics of the Non-ideal
System Having the Pendulum
as Absorber of Elastic Vibrations

Y. O. Lebedenko , Y. V. Mikhlin , and M. A. Pinsky

Abstract The resonance behavior of the 3-DOF systemwith a limited power supply
(non-ideal system) having the pendulum-type absorber is analyzed by the multiple
scales method. Comparison of the obtained analytical solution with corresponding
numerical simulation demonstrates a good exactness of the analytical construction.
It is shown that amplitudes of the elastic sub-system resonance vibrations can be
essentially reduced by some choosing of the system parameters.

Keywords Non-ideal system · Resonance · Pendulum absorber

1 Introduction

The system with a limited power supply (or non-ideal system, NIS) is characterized
by interaction of source of energy and elastic sub-system which is under action
of the source. For the non-ideal systems the external applied excitation depends on
displacements of the excited elastic sub-system.Themost interesting effect appearing
in such systems is the Sommerfeld effect [1], when in the elastic sub-system it is
appeared the stable resonance regime with large amplitudes, and the big part of
the vibration energy passes from the energy source to these resonance vibrations.
Resonance dynamics of the non-ideal systemswas first analytically described byV.O.
Kononenko [2]. Then investigations on the subject were continued as by Kononenko
[3], aswell by other authors [4–7]. Reviews on numerous studies of theNIS dynamics
can be found in papers [8, 9] and in the book [10]. We can note that different kinds
of the NIS behavior were considered, including forced and parametric vibrations,
self-oscillations, transient, including transfer to chaotic vibrations, interaction of the
NIS with the energy supplies of the different physical characters, etc.

It is known that nonlinear vibration absorbers permit to reduce essentially ampli-
tudes of the resonance elastic vibrations. Reduction of the vibration amplitudes and
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elimination or reduction of the Sommerfeld effect in NIS coupled with different type
nonlinear absorbers and dampers, are studied in [11–13].

In the paper the resonance behavior of the 3-DOF non-ideal system having the
pendulum-type absorber is considered by the multiple scales method. The basic
model is presented in Sect. 2. Then the construction of the system solution in the
region of the first resonance is presented in Sect. 3. Numerical simulation is shown
in Sect. 4. Besides, it is shown in the Sect. 4 that amplitudes of the elastic sub-
system resonance vibrations in the system can be reduced by changing some system
parameters.

2 The Basic Model

The non-ideal system under consideration contains the limited power supply (or the
motor), the elastic sub-system with the Duffing type nonlinear elastic characteristic,
which vibrations take place under the motor excitation. Besides, the system contains
the pendulum as absorber.Models under consideration are shown in Fig. 1. Themotor
(source of energy) acts to the elastic sub-system having a mass M by the crank shaft
of the radius r . The pendulum having a mass m is attached to the elastic sub-system.
Here L is the driving moment of the source of energy.

Kinetic and potential energies of the system without the driving moment are the
following:

T = 1

2
I ϕ̇2 + 1

2
Mẋ2 + 1

2
m

[(
ẋ + l θ̇ cos θ

)2 + l2θ̇2 sin2 θ
]
;

V = 1

2
c0x

2 + 1

2
c1(x − r sin ϕ)2 + mgl(1 − cos θ). (1)

Fig. 1 The non-ideal systems with the pendulum absorber
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The small parameter ε in relations (1) characterizes a smallness of the absorber
mass with respect to the mass of elastic part of the system. Using the Lagrange
equations, one obtains the following equations of motion:

⎧⎨
⎩

(M + m)ẍ + (c0 + c1)x = c1r sin ϕ − ml
(
θ̈ cos θ − θ̇2 sin θ

);
I ϕ̈ = a − bϕ̇ + c1r(x − r sin ϕ) cosϕ;
ml

(
l θ̈ + g sin θ + ẍ cos θ

) = 0.
(2)

In relations (1) and Eq. (2) I is a moment of inertia of rotating masses; (c0 + c1)
is a stiffness of the elastic sub-system having the mass M , L = a− bϕ̇ is the driving
moment of the source of energy, that is the motor characteristic. We can see from
the Eq. (2) that the moment c1r x cosϕ is such part of the motor excitation, which
depends on the elastic sub-system vibrations.

3 Construction of the Analytical Solution

To describe the system behavior in the neighborhood of the resonance some asymp-
totic approach, namely the multiple scales method [14] is used. To apply the method
one has the following transformations. First of all, we use expansions of the func-
tions cos θ and sin θ in the system (2) to the Maclaurin series, and save terms up
to third degree. The small parameter ε introduced in the equations of motion char-
acterizes a smallness of the absorber mass with respect to the mass of elastic part
of the system, m → εm, and a smallness of vibration components in variability in
time of angle ϕ velocity with respect to the main constant component. The small
terms εh ẋ and εh θ̇ describe a dissipation which is proportional to velocities of
variables. Considering a region of the resonance between frequencies of the motor
rotation and the elastic sub-system vibrations, we introduce the small detuning as
ε� = ω2 − ϕ̇2, where (c0 + c1)/M = ω2. We also suppose that in a region of the
resonance the external excitation to the elastic sub-system is small. The relatively
not large nonlinear response of the elastic sub-system is presented by the term ετ x3.
It is included to the first equation of the system (2). Thus, the equations of motion
(2) are transformed to the following equations, containing the small parameter:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(M + εm)ẍ + ω2Mx + εhẋ + ετ x3 = εc1r sin ϕ − εml

⎛
⎜⎜⎝

θ̈

(
1 − 1

2
θ2

)

−
(

θ − θ3

6

)
θ̇2

⎞
⎟⎟⎠

I ϕ̈ = ε(a − bϕ̇ + c1r(x − r sin ϕ) cosϕ)

εml
(
l θ̈ + g

(
θ − θ3

6

)
+ ẍ

(
1 − 1

2θ
2
)) + εhθ̇ = 0

(3)

Later the following notations will be used:
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a

I�2
= K ,

b

I�
= N ,

c1r

I�2
= q (4)

According to the multiple scales method one uses the following presentations for
the unknown variables:

x(t, ε) = x
(
t, εt, ε2t, ...; ε

); ϕ(t, ε) = ϕ
(
t, εt, ε2t, ...; ε

);
θ(t, ε) = θ

(
t, εt, ε2t, ...; ε

)
(5)

Besides, the next transformations are also used:

d

dt
= ∂

∂T0
+ ε

∂

∂T1
+ ε2

∂

∂T2
+ ...

d2

dt2
= ∂2

∂T 2
0

+ 2ε
∂

∂T0

∂

∂T1
+ ε2

(
∂2

∂T 2
1

+ 2
∂

∂T0

∂

∂T2

)
+ ... (6)

Here T0 = ωt; T1 = εt, etc. Solutions for variables x , ϕ and θ are presented as
the following power series by the small parameter:

x = x0 + εx1 + ε2x2 + ..., ϕ = ϕ0 + εϕ1 + ε2ϕ2 + ..., θ = θ0 + εθ1 + ε2θ2 + ...

(7)

Substituting the expansions (5)–(7) to the system (3) one extracts terms of the
zero and first power by the small parameter. As a result, the following system of
differential equations can be obtained:

ε0 : ∂2x0
∂T 2

0

+ �2x0 = 0 (8)

∂2ϕ0

∂T 2
0

= 0 (9)

ε1 : 2M ∂2x0
∂T0∂T1

+ M ∂2x1
∂T 2

0
+ m ∂2x0

∂T 2
0

+ �Mx0+
+M�2x1 + h ∂x0

∂T0
+ rτ x30 = c1rsin(�T0)−

−ml ∂2θ0
∂T 2

0
+ 1

2ml ∂2θ0
∂T 2

0
· θ2

0 + mlθ0
(

∂θ0
∂T0

)2 − ml θ3
0
6 ·

(
∂θ0
∂T0

)2
(10)

2
∂2ϕ0

∂T0∂T1
+ ∂2ϕ1

∂T 2
0

= K − N
∂ϕ0

∂T0
+ qx0 cosϕ0 − 0.5qr sin 2ϕ0 (11)

l
∂2θ0

∂T 2
0

+ gθ0 − g
θ3
0

6
+ ∂2x0

∂T 2
0

− θ2
0

2

∂2x0
∂T 2

0

+ (h/ml)
∂θ0

∂T0
= 0 (12)

One has the solution of the Eqs. (8) and (9) as
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{
x0 = A cos(�T0) + B sin(�T0)
ϕ0 = �T0

(13)

We assume that in the resonance under consideration between frequencies of the
motor rotation and the elastic sub-system vibrations, amplitudes of the pendulum
vibrations are not large. Thus, one assumes that in the system (12) all terms having
a power more than one, have an order of the small parameter ε. Hence one has from
the Eq. (12) that

θ0 = C cos�T0 + D sin�T0 , where C = A�2

g − l�2
, D = B�2

g − l�2
(14)

The solution of the zero approximation by the small parameter is substituted to
the Eq. (10). To avoid an appearance the secular terms in solution, coefficients at
sin(�T0), cos(�T0) in the right side of the equation are equated to zero. As a result
one obtains so-called modulation equations in the following form:

2
∂A

∂T1
� + μB�2 − �B + hA�

M
− 3τ A2B

4M
− 3τ B3

4M
+ σ + μlD�2 = 0 (15)

−2
∂B

∂T1
� + μA�2 − �A − hB�

M
− 3τ AB2

4M
− 3τ A3

4M
+ μlC�2 = 0 (16)

(
μ = m

M
, σ = c1r

M

)

Then, to avoid an appearance of the secular terms in solution of the Eq. (11), one
has the following relation:

2
∂�

∂T1
+ N�2 = K + q A

2
, (17)

whereK, N, q are determined by the relations (4). The Eqs. (14) and (15) represent
a dependence of functions A and B on the excitation frequency�. The Eq. (16) is the
so-called “system characteristic”. Together all three Eqs. (15)–(17) give values of
the variables A, B and � corresponding to the resonance state under consideration.

Considering the stationary solutionwe assume that valuesA, B andΩ are constant.
In this case the Eqs. (15)–(17) are converted to the system of nonlinear algebraic
equations with respect to these values, which is solved by the numerical Newton
method in the pocket Matlab. Thus, the constant values A0, B0,�0 for the stationary
regime can be obtained. In particular, we have from the Eq. (17) that

�0 = ±
√
2a + c1r A0

2b
(18)
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Note that in the resonance region the frequencies � and ω differ for the value of
the order of the small parameter ε. Thus, if we change in the coefficients K, N the
variable frequency � for ω, we can find the following solution of the Eq. (17):

� = �0 + ρe−0.5NT1 (19)

Here the constant ρ is determined by the initial value of �. The last relation
presents a tending of the motor frequency to the stationary value �0 with an increase
of time.

4 Numerical Simulation. Influence of the System
Parameters to Resonance Dynamics of the System

Here we consider an influence of the system parameters to the elastic vibration
amplitudes in the resonance region. Namely, a change of the parameter of the driving
moment a, the pendulum mass m and the parameter of the nonlinearity in elastic
force τ is considered. Simultaneously the obtained analytical solution is compared
with numerical simulation which is realized for the basic system (2) by use of the
Runge–Kutta method of the 4-th order. Note that an increase of the pendulum length
l leads to the insignificant decrease of the elastic vibration amplitude, thus, results
corresponding to change of the parameter are not presented here.

Based on the numerical simulation we can conclude that amplitudes of the reso-
nance elastic vibrations can be essentially reducedwhen themassm and the parameter
τ increase. Some change of the parameter a, permits to reduce essentially the elastic
vibration amplitude. Note that values of the parameter a are chosen near the value
corresponding to maximal resonance amplitudes. We can note that only a small part
of obtained numerical results are presented.

In Fig. 2 the analytical and numerical solutions are shown for the following param-
eters: a = 0.3815, l = 0.5, τ = 0.05 when the pendulum mass m is changing. In
Fig. 2a the parameter m = 0.04 (here A0 = 0.506, B0 = −0.836), and in Fig. 2b
the parameter m = 0.1 (here A0 = −0.07, B0 = 0.489). We can see here the notice-
able decrease of the resonance vibration amplitude with increase of the absorber
mass. In Fig. 3 the analytical and numerical solutions are presented for the following
parameters: l = 1, a = 0.3728, m = 0.05 when the parameter of nonlinearity τ is
changing. Figure 3a represents calculations made for τ = 0.01, and in Fig. 3b the
parameter τ = 0.03. In Fig. 4 the analytical and numerical solutions are shown for the
following parameters: m = 0.05, l = 1, τ = 0.05 when the parameter a is changing.
In Fig. 4a the calculations are made for a = 0.3728, and in Fig. 4b the parameter a
= 0.3778. We can see the essential decrease of the resonance vibration amplitude
for considered change of the parameters τ and a, where such effect is observed even
for insignificant change of the parameter characterizing the driving moment a. Note
that in all presented variants the admissible coincidence of the analytical solution
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Fig. 2 Change of the variables x, ϕ, θ in time for different values of the pendulum mass m
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Fig. 3 Change of the variables x, ϕ, θ in time for different values of the parameter of
nonlinearity τ
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Fig. 4 Change of the variables x, ϕ, θ in time for different values of the parameter a
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and the numerical simulations is observed. Here the numerical solution is calculated
with initial values obtained from the approximate analytical solution.

5 Conclusion

In the paper the system with a limited power supply (or non-ideal system) having the
pendulum as absorber, is considered. The analytical solution in the region of the first
resonance is obtained by the multiple scales method. Numerical simulation shows
a good exactness of the analytical results. It is shown that an essential reduction
of the system resonance vibration amplitudes can be obtained by choose of the
system parameters, namely, of the pendulum massm, the parameter τ characterizing
the nonlinear response of the elastic sub-system, and the parameter of the driving
moment a. We suppose that the presented results can help in the future as in more
precise analysis of the steady states of the non-ideal system, as well in analysis of
transient in such systems.

Acknowledgements This study is supported in part by the grant of the Ministry of Education and
Science of Ukraine M2137, UDK 539.3, № DP 0118U002045.

References

1. Sommerfeld, A.: Beitr¨age zum dynamischen ausbau der festigkeitslehe. Physikal Zeitschr 3,
266–286 (1902)

2. Kononenko, V.O.: Vibrating Systems with Limited Power Supply. Illife Books, London (1969)
3. Kononenko, V.O., Kovalchuk, P.S.: Dynamic interaction ofmechanisms generating oscillations

in nonlinear systems. Mech. Solids (USSR) 8, 48–56 (1973). (in Russian)
4. Goloskokov, E.G., Filippov, A.P.: Unsteady oscillations of deformable systems. Naukova

dumka, Kyiv (1977) (in Russian)
5. Alifov, A.A., Frolov, K.V.: Interaction of Nonlinear Oscillating Systems. Taylor & Francis Inc.,

London (1990)
6. Palacios Felix, J.L., Balthazar, J.M., Dantas, M.J.H.: On energy pumping, synchronization

and beat phenomenon in a non-ideal structure coupled to an essentially nonlinear oscillator.
Nonlinear Dyn 56(1–2), 1–11 (2009)

7. Mikhlin, Yu., Onizhuk, A., Awrejcewicz, J.: Resonance behavior of the system with a limited
power supply having the Mises girder as absorber. Nonlinear Dyn. 99(1), 519–536 (2020)

8. Eckert,M.: The Sommerfeld effect: theory and history of a remarkable resonance phenomenon.
European J. Phys. 17(5), 285–289 (1996)

9. Balthazar, J.M., et al.: An overview on the appearance of the Sommerfeld effect and saturation
phenomenon in non-ideal vibrating systems (NIS) in macro and mems scales. Nonlinear Dyn.
93(1), 19–40 (2018)

10. Cveticanin, L., Zukovic,M., Balthazar, J.M.: Dynamics ofMechanical SystemswithNon-Ideal
Excitation. Springer, Cham (2018)

11. Felix, J.L.P., Balthazar, J.M., Dantas, M.J.H.: On energy pumping, synchronization and beat
phenomenon in a non-ideal structure coupled to an essentially nonlinear oscillator. Nonlinear
Dyn. 56(1–2), 1–11 (2009)



Resonance Dynamics of the Non-ideal System Having … 149

12. Felix, J.L.P., Balthazar, J.M.: Comments on a nonlinear and non-ideal electromechanical
damping vibration absorber, Sommerfeld effect and energy transfer. Nonlinear Dyn. 55(1),
1–11 (2009)

13. de Souza, et al.: Impact dampers for controlling chaos in systems with limited power supply.
J. Sound and Vibration 279(3–5), 955–967 (2005)

14. Nayfeh, A.H., Mook, D.T.: Nonlinear Oscillations. Wiley, NY (1979)



On a Vehicular Suspension
for a Non-ideal and Nonlinear Orchard
Tower Sprayer Through an Inverted
Pendulum Using Reologic Magneto (MR)

R. N. Silva , J. L. P. Felix , Jose Manoel Balthazar, A. M. Tusset ,
M. A. Ribeiro , W. B. Lenz , and A. Cunha

Abstract In this paper, analysis of the nonlinear dynamics responses of a structure
equipped with a vehicle suspension that uses a fluid with magneto rheological char-
acteristics to control the possible instability and chaotic motion. It is a spray orchards
of tower type, with an unbalanced electric motor (Non-ideal) located at the top of
the tower representing the concentrated mass of their fans, which represents the real
system the best way possible. The simulations show that the MR suspension reduce
the amplitude of oscillations of all themasses of the system, being themost important
the mass of the cart and fans. The influence of the non- ideal motor is important to
check the influence of a possible imbalance of fans.

Keywords Spray orchards type tower · Nonlinear dynamics · Non-ideal system ·
Vehicle suspension · Magneto- Rheological fluid damper

1 Theoretical Mathematical Model of the Tower-Type
Orchard Sprayer

The study of the [6, 8] nonlinear dynamics of an agricultural tower pulverizer, coupled
with a vehicle suspension, that is subject to random excitations due to soil irregu-
larities, modeled as an inverted double pendulum over a moving suspension, with
three degrees of freedom (one translation and two rotations). To take into account
the random loadings, a parametric probabilistic approach was employed, where the
external force was assumed to be a harmonic random process with random ampli-
tude and frequency. The probability distribution of these random [8] parameters was
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constructed based on the known information through the maximum entropy prin-
ciple. The results of numerical simulation show that large discrepancies in the system
response can be seen when one compares the mean of the stochastic model with the
nominal (deterministic) model. It is also noted that these responses are subject to a
high level of uncertainty. Furthermore, an analysis of the system response probability
distributions [6, 8] shows that they present asymmetries with respect to mean and
unimodal behavior.

Some considerations were taken to arrive at the theoretical model. Initially, the
simplifications [14, 15] will be considered. Where, initially, all the masses (truck,
axle, wheel and tower with its eight fans) are concentrated in their centers of gravity.
One of the main simplifications to be considered is that the operation of the sprayer
will take place in short periods of time, because if long periods are taken the mass of
the reservoir tankwill have its center of gravity shifted, due to the fact that the sprayer
starts the work with the reservoir full of defensive liquid and it is discharging during
the spraying operation, until it finishes empty. Therefore, the mass of the reservoir
tank is considered constant.

Once this is done, the reservoir mass and the chassis mass are grouped into a
single invariant center of gravity m2. All the concentrated masses of the eight fans
are replaced by a single mass which, added to the motor mass, results in m3, and
the unbalanced mass of the direct current electric motor is m0, located at the top of
the tower. The tower, in turn, is represented by a negligible mass element of length
L2. The pivot point of the tower is represented by a point P, located at a distance L1

above the trailer’s center of gravity. This same junction P is represented by an elastic
element kt and damping ct torsional and linear.

Starting from the premise that,when the system rotates around the point of concen-
trated massm2, the left and right tires have the same displacement, in opposite direc-
tions; thus, it is considered that the system only presents a translational movement in
the vertical direction. Therefore, the theoretical system can be considered as being of
¼ of a vehicle or quarter-car, taking into account the displacement of only one of the
wheels. This wheel is then represented by an element of massm1with linear stiffness
k1. And a vehicle-type MR damper, represented by F, is coupled to the system, in
parallel to the viscous spring-damper suspension k2 and c, respectively, according to
the Bounc-Wen model.

An X–Y coordinate system is adopted, with X at ground level and Y passing
through the center of mass of truck m2. The tower will then have an angular offset
φ1. It is the angular displacement of the unbalancedmass is φ2. Excitements resulting
from irregularities presented by the soil of the orchards cause displacements in the
tires represented by ye1; mathematically ye1 represents an excitation source that can
be of the harmonic, transient, etc. type.

However, it is observed that in the simplification presented the model presented
has four degrees of freedom, with only the mass of the fans concentrated at the top of
the tower, called m2 in the figure, and without taking in considering the mass of the
wheels. Finally, the next simplification will be to add the unbalanced mass engine
at the top of the tower and also the mass of a wheel, thus transforming the model
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Fig. 1 Theoretical mathematical model of the turret sprayer. a trailer and tower coupled and b
scheme of forces applied

into a ¼ vehicle (Quarter-car). Finally, all the simplifications mentioned above are
represented in a theoretical scheme presented in the following figure, Fig. 1.

The differential equations of motion are obtained from the Method of Energies
and Conservative Forces, which is employed using the so-called Euler–Lagrange
Equations.

2 Euler–Lagrange Energy Method

Euler–Lagrange equation is defined as:

d

dt

(
∂L

∂q̇ j

)
− ∂L

∂q j
= Q j (1)

with j = 1,2,3…. Where L = TT − VT , called Lagrangian where TT represents the
total kinetic energy of the system, VT is the work of conservative forces (potential
energy of the chassis, tower and unbalanced motor masses, and the potential energy
of the elastic elements). And Q is the work of all non-conservative forces (such as
the energy dissipated by the damping elements).



154 R. N. Silva et al.

2.1 Total Kinetic Energy of the System

The total kinetic energy of the TT system is the sum of the kinetic energy portions
of the trailer, the tower, the unbalanced mass of the engine, and the tire, which are
represented by Tc, Tt , To and Tp respectively. TT is then defined as:

TT = Tp + Tc + Tt + T0 (2)

Where:

Tp = 1

2
m1V

2
1 = 1

2
m1

(
ẋ21 + ẏ21

)
(3)

Tc = 1

2
m2V

2
2 = 1

2
m2(ẋ

2
1 + ẏ22 ) (4)

Tt = 1

2
(m3)V

2
3 = 1

2
(m3)

(
ẋ22 + ẏ23

) + 1

2
m3L

2
2φ̇

2
1 (5)

With m3 = M +m, where M represents the concentrated mass of the fans and m
the mass of the motor. The term m3L2

2 in Eq. 5 represents the moment of inertia of
the tower.

To = 1

2
m0

(
ẋ20 + ẏ20

) + 1

2
m0r

2φ̇2
2 (6)

The horizontal and vertical positions of the m3 tower mass are given as follows,
respectively: The horizontal position is:

x2 = L2sinφ1 − x1
x2 = L2sinφ1 − x1 (7)

and its first and second derivatives, respectively in time:

ẋ2 = L2φ̇1cosφ1 − ẋ1

ẍ2 = ẍ1L2φ̈1cosφ1 − L2φ
2
1sinφ1

The vertical position is:

y3 = y2 + L1 + L2cosφ1 (8)

and its first and second derivatives, respectively in time:

ẏ3 = ẏ2 + L1 + L2φ̇1sinφ1
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ÿ3 = ÿ2 − L2φ̈1sinφ1 − L2φ̇
2
1cosφ1

The horizontal and vertical positions of the unbalanced massm0 can be described
as follows:

x0 = L2sinφ1 − rcosφ2 (9)

y0 = L2cosφ1 − rsinφ2 + L1 + y2 (10)

With its derivatives ẋ0 and ẏ0 in time given by:

ẋ0 = φ̇1L2cos + φ̇2rsinφ2

ẏ0 = −φ̇1L2sinφ1 + φ̇2rcosφ2 + ẏ2

representing the coordinates of the angular velocity of the unbalanced mass m0.
In this way, substituting Eqs. 3–6 in Eq. 2, we obtain:

Tt = 1
2m1

(
ẋ21 + ẏ21

) + 1
2m2

(
ẋ21 + ẏ22

) + 1
2m3

(
ẋ22 + ẏ23

)
+ 1

2m3L2
2φ̇

2
1 + 1

2m0
(
ẋ20 + ẏ20

) + 1
2m0r2φ̇2

2
(11)

with respect to time of Eqs. 7 and 8 in the previous Eq. 11, we have:

Tt = 1

2
m1 ẋ

2
1 + 1

2
m1 ẏ

2
1 + 1

2
m2 ẋ

2
1 + 1

2
m2 ẏ

2
2+

1

2
m0

(
ẋ20 + ẏ20

) + 1

2
m3L

2
2φ̇

2
1 + 1

2
m0r

2φ̇2
2

1

2
m3

(
ẋ1 + L2φ̇1cosφ1

)2 + 1

2
m3

(
ẏ2 − L2φ̇1sinφ1

)2+ (12)

And now the first time derivatives of Eqs. 9 and 10 in Eq. 12, you get:

TT = 1

2
m1 ẋ

2
1 + 1

2
m1 ẏ

2
1 + 1

2
m2 ẋ

2
1 + 1

2
m2 ẏ

2
2

+ 1

2
m3

(
ẋ1 + L2φ̇1cosφ1

)2 + 1

2
m3

(
ẏ2 − L2φ̇1sinφ1

)2+
1

2
m0

(
φ̇1L2cosφ1 + φ̇2rsinφ2

)2 + 1

2
m3L

2
2φ̇

2
1 + 1

2
m0r

2φ̇2
2

1

2
m0

(−φ̇1L2sinφ1 + φ̇2rcosφ2 + ẏ2
)2

(13)

TT = 1

2
m3 ẋ

2
1 + 1

2
m3 ẏ

2
2 − m3 ẋ1L2φ̇1cosφ1 − m3 ẏ2L2φ̇1sinφ1+
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1

2
m3L

2
2φ̇

2
1

(
cos2φ1 + sin2φ1

) + 1

2
m0φ̇

2
1L

2
2

(
cos2φ1 + sin2φ1

)+
1

2
m0φ̇

2
2r

2(cos2φ2 + sin2φ2
)−

m0φ̇1φ̇2L2r(cosφ2sinφ1 − cosφ1sinφ2)+
1

2
m0 ẏ

2
2 − m0 ẏ2φ̇1L2sinφ1 + m0 ẏ2φ̇2rcosφ2+

1

2
m1 ẋ

2
1 + 1

2
m1 ẏ

2
1 + 1

2
m2 ẋ

2
1 + 1

2
m2 ẏ

2
2 + 1

2
m3L

2
2φ̇

2
1 + 1

2
m0r

2φ̇2
2 (13b)

The lateral displacement of the trailer’s center of gravity, x1, limited by the tires,
is very small compared to the magnitudes of the other displacements. Thus, it will
be assumed that x1 is constant [13]. So: if constant, then: if x1 ∼= constant, then:
ẋ1 ∼= ẍ1 ∼= 0.

In this way, making use of the trigonometric identities below:

sin2φ2 + cos2φ2 = 1

cosφ2cosφ1 + sinφ1sinφ2 = cos(φ2 − φ1)

we have the following equation for the total kinetic energy of the system:

TT = 1

2
m3 ẏ

2
2 − m3 ẏ1L2φ̇1sinφ1 + 1

2
m3L

2
2φ̇

2
1 + 1

2
m0φ̇

2
1L

2
2

+ 1

2
m0r

2φ̇2
2 − m0φ̇1φ̇2L2r cos(φ2 − φ1) + 1

2
m0 ẏ

2
2−

m0 ẏ2φ̇1L2sinφ1 + m0 ẏ2φ̇2rcosφ2 + 1

2
m1 ẏ

2
1 + 1

2
m2 ẏ

2
2+

1

2
m3L

2
2φ̇

2
1 + 1

2
m0r

2φ̇2
2 (14)

TT = 1

2
(m2 + m3 + m0)ẏ

2
2 − (m3 + m0)L2 ẏ2φ̇1sinφ1+

m3L
2
2φ̇

2
1 + m0r

2φ̇2
2 + m0 ẏ2φ̇2rcosφ2−

m0r φ̇1φ̇2L2 cos(φ2 − φ1) + 1

2
m1 ẏ

2
1 + 1

2
m0L

2
2φ̇

2
1 (14a)

2.2 Total Potential Energy of the System

The total potential energy of the system or the work of the conservative forces of the
VT system is given by the sum of the potential energy portions of the elastic elements
of the K1, K2 and KT system, as follows:
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VT = EPk1 + EPk2 + EPkT (15)

The previous potential energy equation can then be rewritten as follows:

VT = 1

2
K1

(
�yK1

)2 + 1

2
K2

(
�yK2

)2 + 1

2
KT

(
�yKT

)2
(16)

Replacing the appropriate displacements, Eqs. 8 and 10, we obtain the following
equation:

VT = 1

2
K1(y1 − ye1)

2 + 1

2
K2(y2 − y1)

2 + 1

2
KTφ2

1 (17)

VT = 1

2
K1

(
y21 − 2y1ye1 + y2e1

)2 + 1

2
K2

(
y21 − 2y1y2 + y21

)2 + 1

2
KTφ2

1 (17a)

From the previous equation (Eq. 17a), the effect of gravity as a conservative force
was disregarded, due to its little influence on the response of the system.

2.3 Work of Non-Conserved Forces

The work of the non-conserved forces or total damping of the Q system represents
the total energy dissipated by the damping elements, and is given by the sum of
the energy dissipated by the suspension damper (Fc) and by the junction damper
torsional (FcT ), in addition to the energy dissipated by the damper with MR (F), as
follows:

Q = Fc + FcT + F (18)

So the previous equation is rewritten as follows:

Q = C(�ẏC) + CT (�ẏCT ) + F (19)

where the terms �ẏC and �ẏCT represent the deformation velocities of the damping
elements, respectively. And they are given as follows:

�ẏC = ẏ2 − ẏ1 (20)

�ẏCT = φ̇1 (21)

The strength of theMRdamper ismathematically represented by the Bounce-Wen
model. And then, replacing Eqs. 20 and 21 in 19, you can rewrite the expression for
Q as follows:
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Q = C(ẏ2 − ẏ1) + CT
(
φ̇1

) + αz (22)

where Va is the supply voltage, ia is the supply current, Φ is the magnetic flux and
ϕ is the angular position of the motor [12].

La
dia
dt

+ Raia + Eb = Va (23)

where Eb is the counter-electromotive force between the motor armature terminals
given by:

Eb = kE
dφ2

dt where kE is the motor voltage constant and φ2 the motor angular
position. Also according to [12], to study the interaction between the tower and the
motor, the direct current motor is considered in a simplified way, and therefore the
torque generated by the motor can be expressed as follows:

Mm = a
∧ − b

∧

φ̇2 (24)

where parameter â is related to the electrical voltage applied to the direct current
motor and b

∧

related to the type of motor used, both defined as follows, respectively:

a
∧ = kmVa

Ra
(25)

b
∧

= kmkb
Ra

(26)

where Ra is the motor electrical resistance, kb the motor voltage constant, Va the
input voltage applied to the motor armature, km is the motor torque constant.

Then, replacing Eq. 24, rewrite Eq. 22 as follows:

Q = C(ẏ2 − ẏ1) + CT
(
φ̇1

) + αz + a
∧ − b

∧

φ̇2 (27)

2.4 Application of the Euler–Lagrange Equation

The Lagrangian of the system under study is calculated by the difference between
the total kinetic energy, the total potential energy and the dissipation energy of the
system, is L = TT − VT . The Lagrangian is then obtained through the difference
between Eqs. 7, 10 which results in [5]



On a Vehicular Suspension for a Non-ideal and Nonlinear Orchard Tower … 159

L = 1

2
(m2 + m3 + m0)ẏ

2
2 − (m3 + m0)L2 ẏ2φ̇1sinφ1

+ m3L
2
2φ̇

2
1 + m0r

2φ̇2
2 − m0 ẏ2φ̇2rcosφ2−

m0r φ̇1φ̇2L2 cos(φ2 − φ1) + 1

2
m1 ẏ

2
1 + 1

2
m0L

2
2φ̇

2
1−

1

2
K1

(
y21 − 2y1ye1 + y2e1

)2 + 1

2
K2

(
y21 − 2y1y2 + y21

)2 + 1

2
KTφ2

1 (28)

For the application of the Lagrange Equation, the generalized coordinates of the
system in question must be determined. For the system of the present work, the
following generalized coordinates are defined: y1, y2, φ1 and φ2, so according to
the Lagrange Equation, the Lagrangian (Eq. 16) must be derived in relation to these
generalized coordinates.

But, once the equations of kinetic, potential and dissipation energies are deduced,
the Hamilton Principle can be used for each one of the generalized coordinates. As
will be shown below: For the y1 coordinate, vertical displacement of the tire:

d
dt

(
∂L
∂ ẏ1

)
−

(
∂L
∂y1

)
= Q1

d
dt

(
∂TT
∂ ẏ1

− ∂VT
∂ ẏ1

)
−

(
∂TT
∂y1

− ∂VT
∂y1

)
= Q1

(29)

But: ∂VT
∂ ẏ1

= 0 e ∂TT
∂y1

= 0 so the previous equation looks like this:

d

dt

(
∂TT
∂ ẏ1

)
+ ∂VT

∂y1
= Q1

m1 ÿ1 = −K1(y1 − ye1) + K2(y2 − y1) + C(ẏ2 − ẏ1) − δz (30)

where z is the evolutionary variable given by:

ż = −γ |ẏ2 − ẏ1|z|z|n−1z − β(ẏ2 − ẏ1)|z|n + λ(ẏ2 − ẏ1)

More details on the evolutionary variable z [5].
And ye1 is considered to be an excitation of the harmonic type and given as follows

ye1 = Acos(wt), where A is the amplitude that represents the irregularities of the
ground surface.

For the y2 coordinate, vertical displacement of the chassis:

d
dt

(
∂L
∂ ẏ2

)
−

(
∂L
∂y2

)
= Q2

d
dt

(
∂TT
∂ ẏ2

− ∂VT
∂ ẏ2

)
−

(
∂TT
∂y2

− ∂VT
∂y2

)
= Q2

(31)

But: ∂VT
∂ ẏ2

= 0 e ∂TT
∂y2

= 0 so the previous equation looks like this:
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d

dt

(
∂TT
∂ ẏ2

)
+ ∂VT

∂y2
= Q2

(m2 + m3 + m0)ÿ2 − (m3 + m0)L2φ̈1sinφ1 + m0r φ̈2cosφ2

= (m3 + m0)L2φ̇
2
1cosφ1 + m0r φ̇2

2sinφ2 + K2(y2 − y1)+
C(ẏ1 − ẏ2) − δz

(32)

Similarly, the Hamilton Principle is used for the φ1 coordinate, angular displace-
ment of the tower:

d
dt

(
∂L
∂φ̇1

)
−

(
∂L
∂φ1

)
= Q3

d
dt

(
∂TT
∂φ̇1

− ∂VT

∂φ̇1

)
−

(
∂TT
∂φ1

− ∂VT
∂φ1

)
= Q3

(33)

But: ∂VT

∂φ̇1
= 0 so the previous equation looks like this:

d

dt

(
∂TT
∂φ̇1

)
− ∂TT

∂φ1
+ ∂VT

∂φ1
= Q3

−(m3 + m0)ÿ2L2sinφ1 + 2m3L2
2φ̈1 + m0L2

2φ̈1−
m0r L2φ̈2 cos(φ2 − φ1) = −m0r L2φ̇2 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)−
m0r L2φ̇2φ̇1 sin(φ2 − φ1) − KTφ1 − CT φ̇1

(34)

And now, using Hamilton’s Principle for the φ2 coordinate, angular displacement
of the unbalanced mass, we have:

d
dt

(
∂L
∂φ̇2

)
−

(
∂L
∂φ2

)
= Q4

d
dt

(
∂TT
∂φ̇2

− ∂VT

∂φ̇2

)
−

(
∂TT
∂φ2

− ∂VT
∂φ2

)
= Q4

(35)

But: ∂VT

∂φ̇2
= 0 so the previous equation looks like this:

d
dt

(
∂TT
∂φ̇2

)
− ∂TT

∂φ2
+ ∂VT

∂φ2
= Q4

2m0r2φ̈2 + m0r ÿ2cosφ2 − m0r L2φ̈1cos(φ2 − φ1)

= −m0r L2φ̇1 sin(φ2 − φ1)
(
φ̇2 − φ̇1

)+
m0r L2φ̇1φ̇2 sin(φ2 − φ1) +

(
â − b̂φ̇2

) (36)

So the system of differential equations that define the movements of the system
under

m1 ÿ1 = −K1(y1 − ye1) + K2(y2 − y1) + C(ẏ2 − ẏ1) − δz

(m2 + m3 + m0)ÿ2 − (m3 + m0)L2φ̈1sinφ1 + m0r φ̈2cosφ2
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= (m3 + m0)L2φ̇
2
1cosφ1+

m0r φ̇
2
2sinφ2 + K2(y2 − y1) + C(ẏ1 − ẏ2) − δz

− (m3 + m0)ÿ2L2sinφ1 + 2m3L
2
2φ̈1 + m0L

2
2φ̈1

− m0r L2φ̈2 cos(φ2 − φ1) = −
m0r L2φ̇2 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)
− m0r L2φ̇2φ̇1 sin(φ2 − φ1) − KTφ1 − CT φ̇1

2m0r
2φ̈2 + m0r ÿ2cosφ2 − m0r L2φ̈1cos(φ2 − φ1)

= −m0r L2φ̇1 sin(φ2 − φ1)
(
φ̇2 − φ̇1

)+
m0r L2φ̇1φ̇2 sin(φ2 − φ1) +

(
â − b̂φ̇2

)
(37)

When the turret plus the non-ideal unbalanced motor are considered as a simple
pendulum, then the angle φ1 is considered small compared to φ2. Therefore, the
following relation is valid [13].

{
sinφ1

∼= φ1

cosφ1
∼= 1

Thus, the system of equations presented above (Eq. 37) is rewritten as follows:

m1 ÿ1

= −K1(y1 − ye1) + K2(y2 − y1) + C(ẏ2 − ẏ1) − δz

(m2 + m3 + m0)ÿ2 − (m3 + m0)L2φ̈1φ1 + m0r φ̈2cosφ2

= (m3 + m0)L2φ̇
2
1+

m0r φ̇
2
2 sinφ2 + K2(y2 − y1) + C(ẏ1 − ẏ2) − δz

− (m3 + m0)ÿ2L2φ1 + 2m3L
2
2φ̈1 + m0L

2
2φ̈1

− m0r L2φ̈2 cos(φ2 − φ1) = −
m0r L2φ̇2 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)
− m0r L2φ̇2φ̇1 sin(φ2 − φ1) − KT φ1 − CT φ̇1

2m0r
2φ̈2 + m0r ÿ2cosφ2 − m0r L2φ̈1cos(φ2 − φ1)

= −m0r L2φ̇1 sin(φ2 − φ1)
(
φ̇2 − φ̇1

)+
m0r L2φ̇1φ̇2 sin(φ2 − φ1) +

(
â − b̂φ̇2

)
(38)

The previous system of equations (Eq. 38) is rewritten as follows:

ÿ1 = −q1(y1 − ye1) + q2(y2 − y1) + p1(ẏ2 − ẏ1) − μz

(1 + α1 + α)ÿ2 − (α1 + α)φ̈1φ1 + αr φ̈2cosφ2

= (α1 + α)L2φ̇
2
1+

αr φ̇2
2sinφ2 + q3(y2 − y1) + p2

(
y

′
1 − y

′
2

)
− μ1z
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− m3 + m0

2m3L2
ÿ2φ1 +

(
1 + m0

2m3

)
φ̈1 − m0r

2m3L2
φ̈2 cos(φ2 − φ1) = −

m0r

2m3L2
φ̇2 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)

− m0r

2m3L2
φ̇2φ̇1 sin(φ2 − φ1) − q4φ1 − p3φ̇1

1

2r
ÿ2cosφ2 + φ̈2 − m0L2

2r
φ̈1cos(φ2 − φ1)

= L2

2r
φ̇1 sin(φ2 − φ1)

(
φ̇2 − φ̇1

)+
L2

2r
φ̇1φ̇2 sin(φ2 − φ1) + a − bφ̇2 (39)

The parameters considered in the previous system are listed below:

q1 = K1
m1

, q2 = K2
m1

, q3 = K2
m1

, q3 = K2
m2

, p1 = C
m1

, p2 = C
m1

, p3 = CT
m3L2

2
, α = m0

m2
α1 = m3

m2
,

α2 = m0
m3

, ζ = r
L2

, μ = δ
m1L2

, μ1 = δ
m2L2

, a = â
m0r2

, b = b̂
m0r2

.

The system of equations is then rewritten, making use of a change of variables
employing the following state variables:

u1 = y1, u2 = y′
1, u3 = y2, u4 = y′

2, u5 = φ1, u6 = φ′
2, u7 = φ2, u8 = φ′

2, e u9 = z.

Which results in a new system of equations:

⎧⎨
⎩

E1y2 − E2φ1 + E3φ2 = f2
−E4y2 + E5φ1 + E6φ2 = f3
E7y2 − E8φ1 + E9φ2 = f4

(40)

Where do you have:

f1 = −q1[u1 − A cos(wt)] + q2(u3 − u1) + p1(u4 − u2) − μ1z − u5) − q4u5 − p3u6
f2 = (α1 + α)L2u26 + αru28 sin u7 − q3(u3 − u1) − p2(u4 − u2) + μ1z
f3 = − m0r

2m3L2
u8 sin(u7 − u5)(u8 − u6) − m0r

2m3L2
u6u8 sin(u7

f4 = − L2
2r u6 sin(u7 − u5)(u8 − u6) + L2

2r u6u8 sin(u7 − u5) + α − bu8

And also:

E1 = 1 + α1 + αE2 = (α1 + α2)L2u5E3 = ar cos(α7)E4 = m3+m0
2m3L2

u5E5 = 1 + m0
2m3

E6 = m0r
2m3L2

cos(u7 − u5)E7 = 1
2r cos(u7)E8 = m0L2

2r cos(u7 − u5)E9 = 1

So, rewriting the system in matrix form, you have:
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⎡
⎣ E1 −E2 E3

−E4 E5 −E6

E7 −E8 E9

⎤
⎦

⎡
⎣ y"2

φ"
1

φ"
2

⎤
⎦ =

⎡
⎣ f2

f3
f4

⎤
⎦

⎡
⎣ y"2

φ"
1

φ"
2

⎤
⎦ =

⎡
⎣ f2

f3
f4

⎤
⎦

⎡
⎣ E1 −E2 E3

−E4 E5 −E6

E7 −E8 E9

⎤
⎦

−1

(41)

Finally, solving the inverse matrix andmaking the necessary multiplication of this
answer in the system of equations above, we have the system of second order linear
differential equations that govern the dynamics of the system under study, presented
below:

y1 = f1
y2 = 1/�[(E5E9 − E6E8) f2 + (E2E9 − E3E8) f3 + (E2E6 − E3E5) f4]
∅1 = 1/�[(E4E9 − E6E7) f2 + (E1E9 − E3E7) f3 + (E1E6 − E3E4) f4]
∅2 = 1/�[(E4E8 − E5E7) f2 + (E1E8 − E2E7) f3 + (E1E5 − E2E4) f4]
z′ = −γ |u4 − u2|u9|u9|n−1 − β(u4 − u2)|u9|n + λ(u4 − u2)

(42)

The parameter � of the previous equation (Eq. 42) is given by:

� = E1E5E9 − E1E6E8 − E2E4E9 + E2E6E7 + E3E4E8 − E3E5E7

Making now, the right sides of the equations of y2′′, φ1′′ and φ2′′ of the previous
system (Eq. 42) equal to f5, f6 and f7, respectively, and also the equation of z equal
to f8 as follows:

f8 = −γ |u4 − u2|u9|u9|n−1 − β(u4 − u2)|u9|n + λ(u4 − u2) (43)

You can write the derivatives of system 42 as follows:

u′
1 = u2

u′
2 = f1

u′
3 = u4

u′
4 = f5

u′
5 = u6

u′
6 = f6

u′
7 = u8

u′
8 = f7

u′
9 = f8

(44)
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3 Results

3.1 System Responses in Time Domain

Time and phase domain responses will be presented for the following system compo-
nents: wheel mass, trailer mass, mass concentrated at the top of the tower and unbal-
anced enginemass, respectively. The values considered for the dimensionless param-
eters of the system are those shown in Table 1, for a time interval of 0 ≤ t ≤ 100 and
the initial conditions were considered as being null.

The following table (Table 2) shows the values considered for the MR damper
parameters.

Figure 2 shows the behavior of the displacements of the wheel in (a), the trailer
in (b), the turret in (c) and the angular velocity of the unbalanced mass of the engine
in (d), under suspension action with MR, in red compared to the MR shockless
response in black. It can be seen that with the addition of the suspension with MR it
significantly reduces the range of motion of each component of the system, having
a lesser influence, in relation to the other components, on the displacement of the
wheel, as expected. It is verified that the greatest influence is on the displacement of
the trailer, which satisfies the proposed objectives, since the proposal is the reduction
of the amplitudes of the trailer and the tower.

Table 1 Values for
dimensionless parameters for
the non-suspension system
with MR

Parameter Value Parameter Value

q1 77.5 α1 0.247

q2 6.016 b 1.3

q3 1.11 μ 500

q4 5.395 μ1 92.307

p1 1.306 α 7.69 × 10–4

p2 0.241 p3 0.108

Table 2 Values assigned to
the parameters related to the
MR damper

Parameter Value

γ (1/m2) 800

β (1/m2) 1,000,000

λ 1.0

n 2.0
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Fig. 2 displacements of the wheel in (a), the trailer in (b), the turret in (c) and the angular velocity
of the unbalanced mass of the engine in (d)
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Fig. 2 (continued)
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3.2 Analyze the Influence of the External Force Applied
on the Structure Described

We analyze the influence of the external force applied on the structure described by
Eq. (42) considering amplitude A in the interval [0.1: 0.3] and frequency ω in the
interval [1, 2]. For this we use the 4th order Runge–Kutta method with an integration
step h = 0.001 and a total integration time t = 106[s]. We also consider a transient
time of 40% of the total time and considering the initial conditions × 0 = [0, 0, 0, 0,
0, 0, 0, 0, 0]. Figure 3a represents the maximum amplitude of the displacement of the
trailer and Fig. 3b of the tower that supports themotor for spraying, both are described
by the set of Eq. 42. Thus, the yellow regions represent the maximum amplitude and
the light gray region represents the minimum amplitude for the structure.

Fig. 3 Representation of the
maximum amplitude
considering Eq. (42). a
trailer displacement and b
turret displacement
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Fig. 4 Representation of the
FFT for the parameter ω as
Eq. (42). a trailer
displacement and b turret
displacement

Another analysis performed was the oscillation frequency and thus we obtain the
fast Fourier transforms (FFT) with the variation of the amplitude of the external force
(ω), inwhichwe can observe a characteristic frequency of the Eq. (42) referring to the
trailer and the tower. Figure 4. (a) represents the FFT sweeping the parameterω in the
interval [1, 2] of the trailer displacement, inwhichwe can observe a natural frequency
of the system in yellow and in gray scale are very low secondary frequencies. In
Fig. 4b represents the variation ω for the same interval, however, for the tower
displacement, in yellow it represents the dominant frequency of the system and in
gray, low amplitude secondary frequencies.

Therefore, we delimited the maximum amplitude regions for the displacement
of the sprayer system truck and tower considering the external force applied to the
system. This external force in Eq. (42) represents possible irregularities in the terrain
where the spraying vehiclemoves, as high displacements in the structure compromise
the spraying application. The analysis of the frequency of for the parameterω showed
that there is a natural frequency for both the truck and the tower vibration, which
showed a behavior of possible periodicity, such frequencies are between 0.1 and 0.5
[Hz]. Thus, Fig. 5a–c represent the time series of the trailer displacement for ω =
2.936 [Hz] and considering A = [0.0, 0.16, 0.5], respectively.
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Fig. 5 Time series of the trailer displacement a A = 0.0, b A = 1.6 and c A = 0.5

Thus, Figs. 6a–c represent the time series of the trailer displacement for ω =
2.936 [Hz] and considering A = [0.0, 0.16, 0.5], respectively.

3.3 Calculation of Resulting Vibrations with and Without MR

Thus, we calculated the vibrations resulting from the absence of the MR actuation
in Eq. (42), considering the same constants of the previous case, that is, the same
constants of the MR system actuation in the vehicle system. Fig. 7a represent the
maximum amplitude of the tower and (7b) represent the maximum amplitude of the
trailer with the variation of the parameters of the external force of the system. Colors
fromwhite to black represent theminimum tomedium span and from black to yellow
the medium to maximum span.

We also calculated the variation of the control parameter (a) for the system with
and without MR application. Thus, Fig. 8a represents the behavior of the tower
vibrations with the MR and Fig. 8b without the MR acting on the system with the
variation of the parameter a = [3, 7]. It can be observed that there are peaks of
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Fig. 6 Time series of tower displacement a A = 0.0, b A = 1.6 and c A = 0.5

Fig. 7 Representation of maximum amplitude as a function of external force parameters. a turret
and b cart

maximum amplitude a = 5.329 and a = 7.691 for the system containing the MR and
for the system with the MR there is a decay of the amplitude, however, it remains in
a range from 0.04625 to 0.04616.



On a Vehicular Suspension for a Non-ideal and Nonlinear Orchard Tower … 171

Fig. 8 Representation of themaximum amplitude with the variation of the tower control parameter.
a with the application of the MR and b without the application of the MR

Fig. 9 Representation of themaximumamplitudewith the variation of the trailer control parameter.
a with the application of the MR and b without the application of the MR.

And figs. a and fig. B. Represents the behavior of the control parameter (a) for
the trailer with and without the MR application, respectively (Fig. 9).

We can observe that there is a peak with maximum amplitude for the value of a
= 4.2 in both cases with and without the MR, however, there is the appearance of a
peak with amplitude at a = 8.8.

4 Conclusion

In this work, a vehicular suspension with Magneto Rheological (MR) was used, plus
the addition of an unbalanced electric motor on top of the tower of a Quarter-car
model that represents the structure of an orchard sprayer, in order to reduce vertical
movements. mainly of the trailer or chassis, and also the angular movements of the
turret. The use of the MR damper proved to be efficient for the main purpose for
which it was used: to reduce the oscillation amplitudes of both the trailer or chassis
(m2) and the tower (m3). It is clearly seen that there were reductions in amplitude,
however in some components of the system, this reduction was minimal, as can be
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seen, for the wheel, and also for the tower. This fact can be justified due to the shock
absorber with MR being strongly influenced by an external electric current, which
was considered to be constant in this work. The analysis of the unbalanced electric
motor showed that the m3 mass amplitudes are strongly influenced by a possible
unbalance of the sprayer fan blades.
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On the Use of Synchrosqueezing
Transform for Chaos and Nonlinear
Dynamics Analysis in Fractional-Order
Systems

M. Varanis , C. Oliveira , M. A. Ribeiro , W. B. Lenz , A. M. Tusset ,
and Jose Manoel Balthazar

Abstract In this paper, the behavior of an electromechanical device for power
production is investigated. The device consists of a motor containing an unbalanced
mass, which has been coupled with a system containing piezoelectric material that
produces an electric current. Thus, the average power produced in the piezoelectric
material subjected to the vibrations of the motor and the fractional dynamics of the
system will be analyzed. For this analysis, the parameter of the fractional derivative
operator and the parameter F for controlling the system are observed. Bifurcation
diagrams and time–frequency analysis method based on synchrosqueezing transform
are used, and the range of the fractional derivative operator parameter near 1, which
modifies the dynamics of the system, is also determined.

Keywords Fractional calculus · Nonlinear dynamics · Synchrosqueezing
transform

1 Introduction

With the technological advances in recent years, the great demand for energy
consumption has allowed researchers to discover mechanisms that produce energy
in a clean and renewable way. Thus, many works on these mechanisms have been
explored. Examples of these works are those in [1–3] that explore high-degree-of-
freedom mechanisms that convert mechanical energy from applied external forces
into electrical energy.

Several works such as [3, 4] explore the dynamics of mechanisms for energy
production. However, they propose control designs to suppress the chaotic motions.
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Many fractional derivative operators are used to analyze the behavior of elec-
tromechanical structures, an example is the flexibility behavior of microbeams in
MEMS systems. Examples of fractional derivative operators applied for dynamic
analysis are Riemann–Liouville and Grunwald Letinikov [5, 6].

In recent years, new techniques for time–frequency analysis have been proposed,
one emerging technique is the synchrosqueezed transform. Known limitations, such
as tradeoffs between time and frequency resolution, can be overcome by alterna-
tive techniques that extract instantaneous modal components, as presented in the
synchrosqueezed transform. EMD decomposition of a signal into components that
are well separated in the time–frequency plane, allowing reconstruction of these
components [7]. In particular the work presented in [8], provides an overview of
time–frequency reconsignment and synchronization techniques used in multicom-
ponent signals, covering the theoretical background and applications, furthermore it
tries to explain how synchrosqueezing can be seen as a special case of mode enable
reconsignment reconstruction. Methods based on synchrosqueezing transform are
actually an extension of CWT that incorporates elements of empirical mode decom-
position and frequency reassignment techniques. This new tool produces a better-
defined time–frequency representation, allowing the identification of instantaneous
frequencies to highlight individual components.

Synchrosqueezing Wavelet Transform (SWT) is a time–frequency analysis
method [8]. The anti-noise capability and time–frequency resolution of SWT are
improved based on the wavelet transform (CWT). SWT maintains the advantages
of EMD and CWT. SWT is adaptive like EMD and does not depend on the orig-
inal wavelet; the mode mixing problem is significantly improved. Classical time–
frequency analysis methods have been widely used in nonlinear dynamics and chaos
applications [5, 7, 9–12], currently a series of applications based on synchrosqueezing
have been proposed [13–17].

Therefore, will be made a fractional dynamics analysis of the model proposed by
[18, 19] considering Caputo’s fractional derivative operator. However, with a coupled
piezoelectric in the system for the average power output and the exploration of the
proposed fractional mathematical model numerically.

2 Mathematical Background

2.1 Mathematical Model

The mathematical model is based on the one proposed by [20] and the Fig. 1 shows
the mechanism for application the Caputo Operator derivative.

The Eq (1) describe the motor movement and its vertical displacement of the
mass, thus:

ẍ(M + m) + cẋ − md
(
φ̇sin(φ) + φ̇2cos(φ)

) + k1x + k2x
3
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Fig. 1 Scheme of the structure with piezoceramic material coupled

+ θ(1 + θn|x |)q = (M + m)g

φ̈
(
J + md2

) − md ẍ sin(φ) + mgdsin(φ) = �
(
φ̇
)

(1)

ρq̇ − θ(1 + θn|y|)q + q = 0

where M mass is connected to a fixed basement by a non-linear spring and a linear
viscous damper (damping coefficient c). The nonlinear spring stiffness is given by k1x
+ k2x3, where x denotes the structure displacement with respect to some equilibrium
position in the absolute reference frame. The motion of the structure is due to an
in-board non-ideal motor driving an unbalanced rotor. Denoted by φ the angular
displacement of the rotor unbalance, and model it as a particle of mass m and radial
distance d from the rotating axis. The moment of inertia of the rotating part is J. For
the resonant case the structure has an influence on the motor input or output. The
forcing function is dependent of the system it acts on, and the source is of non-ideal
type. And q is electrical current and θ is the linear and θn the nonlinear part.

Considering the following change in variables:
p = ω

�
, ω2 = k1

M+m , γ = k3
(M+m)�6 , ζ = c

(M+m)�
, μ = md�2

(M+m)g , η = gmd

(I+md2)�2 ,

F = M0

(I+d2m)�2 , �
(
φ̇
) = M0

(
1 − ϕ̇

�

)
, x → y = �2

g x and t → τ = �t .

Therefore, we rewrite Eq. (1):

ÿ + ζ ẏ − p2y + γ y3 = 1 + μ
(
φ̈ sin(φ) + φ̇2cos(φ)

) − θ(1 + θn|y|)q
φ̈ = η ÿsin(φ) − ηsin(φ) + F

(
1 − φ̇

)
(2)
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q̇ = 1

ρ
[θ(1 + θn|y|)q − q]

In this way, considering y = x1, ẏ = x2, φ = x3, φ̇ = x4 and q = x5, the system
of first order differential equations is obtained:

ẋ1 = x2

ẋ2 = 1

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1 + μ sin(y3)
)

(
μy24cos(y3) − ηsin(y3) + F(1 − y4)

) − θ(1 + θn|x1|)x5
)

(3)

ẋ3 = x4

ẋ4 = ηsin(y3)

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1 + μy24cos(y3)

+μsin(y3)(−ηsin(y3) + F(1 − y4))) − ηsin(y3) + F(1 − y4)

ẋ5 = 1

ρ
[θ(1 + θn|x1|)x5 − x5]

The Caputo operator is defined as follows [11–18]:

C
a D

q f (t) = 1

�(q − n)

t∫
a

f (n)(τ )dτ

(t − τ)q+1−n (4)

where n − 1 < q < n, in our considerations n = 1, thus, 0 < q < 1 and �(.)

is defined as the gamma function. Therefore, rewrite the System of Differential
Equations considering the Caputo operator for analyses:

C
a D

qx1 = x2

C
a D

qx2 = 1

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1

+μ sin(y3)
(
μy24cos(y3) − ηsin(y3) + F(1 − y4)

))

−θ(1 + θn|x1|)x5)
C
a D

qx3 = x4 (5)

C
a D

qx3 = ηsin(y3)

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1

+μy24cos(y3) + μsin(y3)(−ηsin(y3) + F(1 − y4))
)

− ηsin(y3) + F(1 − y4)

C
a D

qx5 = 1

ρ
[θ(1 + θn|x1|)x5 − x5]
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2.2 Synchrosqueezed Transform

STFT and CWT are the main approaches to simultaneously decompose a signal into
time and frequency components. Known limitations, such as tradeoffs between time
and frequency resolution, can be overcome by alternative techniques that extract
instantaneous modal components. EMD aims to decompose a signal into compo-
nents that are well separated in the time–frequency plane, allowing reconstruction
of these components. On the other hand, a recently proposed method called the
synchrosqueezing transform (SST) is an extension of the wavelet transform that
incorporates elements of empirical mode decomposition and frequency reassignment
techniques. This new tool produces a well-defined time–frequency representation,
allowing the identification of instantaneous frequencies in non-stationary signals to
highlight individual components.

SST was initially proposed in the wavelet case [8] and then later extended to the
STFT case [7, 8]. In fact, it corresponds to a nonlinear operator that bounces the
time–frequency representation of a signal, combining the localization and scattering
properties of the Reassignment Methods with the invertibility property of linear
time–frequency representations.

2.3 Synchrosqueezing Wavelet Transform

The Synchrosqueezing Wavelet Transform calculation consists of three steps. The
first step is to calculate the CWT. In the second step, a preliminary frequency ω (a,
b) is obtained from the oscillatory behavior of Wx (a, b) at a, so that:

ω(a, b) = −i(Wx (a, b))−1 ∂

∂a
Wx (a, b) (6)

In the third step the transformation from the time scale plane to the time–frequency
plane is performed. Each value of Wx (a, b) is assigned again to (a, ωl). Where ωl
denotes the frequency that is closest to the preliminary frequency of the original
(discrete) point ω (a, b). This operation is presented in Eq. (7):

T (a, ω1) = (�ω)−1
∑

bk :|ω(a,bk )−ωl |≤�ω/2
Wx(a, bk)b

−3/2
k �b (7)

In Eq. (7) �ω denotes the width of each frequency b in �ω = ω_l-ω_(l-1) and
equivalently for �b. SWT can obtain a high-resolution time–frequency spectrum by
compressing (reassigning) theCWT result. However,when the amplitude of the high-
frequency components of a signal is low, it is difficult to identify the components in
the CWT spectrum or the SST spectrum that is based on the CWT result. In contrast
to CWT, the SWT transform is able to more efficiently display the high frequency,
low amplitude components of a signal and perform a lossless inverse transformation.
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Originally proposed in the wavelet case, the SST has been similarly extended to
the STFT context, known as the Fourier-based synchrosqueezing transform (FSST).
A long study and in-depth formulation on STFT, CWT and FSST can be seen in
[21–24].

3 Numerical Results and Discussion

For the numerical analysis, using the following initial conditions x0 = [0,0,0,0]
and for analysis corresponds to q = [0.978- 1]. Thus, we analyzed the behavior of
fractional dynamics for values close to 1, which we could observe some chaotic
windows in the system. The parameters is: η = 0.05, μ = 8.737, p = 1.0, γ = 9.0,
θ = 0.1,θn = 0.5, ζ = 0.2, θ = 0.1 and θn = 0.5 [20].

The numerical method for solving the Eq. (5) is composed of the initial value
problem and the variational system and Adams–Bashforth-Moulton scheme for
fractional differential equations [20–24], with a h = 0.001 and a time of 105 [s]
considering 40% of total time with transient time. Utiliza-se métodos de análise
tempo-frequência para caracterizar a dinâmica caótica do sistema, ente eles CWT
e métodos baseados em synchrosqueezing transform, em especial, Fourier-based
synchrosqueezing transform e synchrosqueezing wavelet transform [4, 9, 14].

Therefore, Fig. 2 shows the behavior of the bifurcation diagrams of the systems,
and considering F = [23., 46.6, 70], we can observe the emergence of chaotic
windows with the variation of the parameter of the fractional derivative.

Figure 2a observes the chaotic windows at q = [0.9790:9793], [0.9816, 0.9822],
[0.9871, 0.9873], [0.9887, 0.9936] and q = [0.995; 1.0] with parameter F = 23.3.
According to [9] for F= 23.3 and q= 1, which results in the conventional derivative
operator, so the system exhibits chaotic regime. This happens for q = 1 at F = 46.6
and 70 has a chaotic behavior which corroborates the data collected by [9], where
for systems with the entire derivative operator the system is in a chaotic regime. In
Fig. 2b with F = 46.6 has the following chaotic windows q = [0.978, 0.9783], q =
[0.9875, 0.9876], q = [0.9937, 0.9941], q = [0.9946, 0.9952] and q = [0.9976;1]
and in Fig. 2c q = [0.978; 0.9737], q = [0.9871; 0.9875], q = [0.9919; 0.992], q
= [0.9921; 0.9928], q = [0.9942; 0.996] and q = [0.9983; 1]. In Fig. 2c with F =
70 has the following chaotic windows q = [0.978, 0.9783], q = [0.9875, 0.9876],
q = [0.9937, 0.9941], q = [0.9946, 0.9952] and q = [0.9976;1] and in Fig. 3c q =
[0.978; 0.9737], q = [0.9871; 0.9875], q = [0.9919; 0.992], q = [0.9921; 0.9928], q
= [0.9942; 0.996] and q = [0.9983; 1]. Thus, through the bifurcation diagrams we
can observe the correspondence of the intervals in which the chaotic behavior of the
subintervals contained in the interval q = [0.978, 1.0].

Next in Fig. 3 is presented the time–frequency analysis of the system for F =
23 and q = 0.98. In Fig. 3a the phase diagram is presented. Already in Fig. 3b is
presented the response of the system in the frequency domain to CWT and it is
possible to identify the periodicity of the system, as well as to identify the dominant
frequency and the multiple frequencies, typical of systems with cubic nonlinearity,



On the Use of Synchrosqueezing Transform for Chaos … 181

Fig. 2 Bifurcation diagram for q = [0.978, 1.0]: a F = 23.3, b F = 46.6 and c F = 70

(a) (b)

Fig. 3 F = 23, q = 0,98: a Phase diagram, b CWT
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but there is still an energy dispersion in the time–frequency plane, which does not
make the analysis suitable for application. Meyer’s wavelet [4] was used in the CWT
analysis.

In Fig. 4 the time–frequency analysis of the system (F = 23 and q = 0.98)
using synchrosqueezing transform based methods is presented. In Fig. 4a the system
response is analyzed using the Fourier-based synchrosqueezing transform (FSST),
it is possible to characterize the periodicity of the system, as well as identify the
dominant frequency and the multiple frequencies, but the method presents low reso-
lution in the time–frequency plane. In Fig. 4b is presented the system response in
the frequency domain using SWT, in this case it is possible, quite clearly, to identify
the periodicity of the system, as well as to identify the dominant frequency and the
multiple frequencies and notice that the energy dispersion in the time–frequency
plane is very small.

(a) (b)

Fig. 4 F = 23, q = 0,98: a S-SFT, b SWT

(a) (b)

Fig. 5 F = 23, q = 1: a Phase diagram, b CWT
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(a) (b)

Fig. 6 F = 23, q = 1: a S-SFT, b SWT

In Fig. 5 is presented the time–frequency analysis of the system for F = 23 and
q = 1, for these parameters the system exhibits chaotic dynamics, as shown in the
bifurcation diagram (Fig. 2a). In Fig. 5a the phase diagram of the system is presented.
In Fig. 5b the response of the system in the frequency domain to CWT is presented,
it is still possible to identify the dominant frequency, but the response presents a
large scattering and abrupt change in the frequency spectrum, typical characteristic
of chaotic systems [4, 14].

Figure 6 presents the time–frequency analysis of the system (F = 23 and q = 1)
using synchrosqueezing transform based methods. The system response is analyzed
using FSST (Fig. 6a), it is noted that there was large scattering and abrupt change in
the frequency spectrum, but due to low resolution and large energy dispersion in the
time–frequency plane, it is not possible to characterize the chaotic dynamics of the
system. In Fig. 6b is presented the response of the system in the frequency domain
using SWT, in this case it is possible to identify the dominant frequency and the
response presents a large scattering and abrupt change in the frequency spectrum,
but the energy dispersion in the time–frequency plane is very small, which makes
the technique quite accurate and appropriate.

Next in Fig. 7 is presented the time–frequency analysis of the system for F= 46.6
and q = 0.985. Again, the phase space is presented (Fig. 7a) and the CWT response
of the system in the frequency domain (Fig. 7b). The response via CWT allows the
periodicity of the system to be identified, as well as easily identifying the dominant
frequency and multiple frequencies.

In Fig. 8 the time–frequency analysis of the system (F= 46.6 and q= 0.985) using
synchrosqueezing transform based methods is presented. The response of the system
using FSST is presented in Fig. 8a, the large energy dispersion and low resolution in
the time–frequency plane do not allow to characterize the periodicity of the system,
also the dominant frequency and multiple frequencies cannot be identified with the
necessary clarity. In Fig. 8b the response of the system (F = 23 and q = 0.98) in
the frequency domain using SWT is presented, in this case it is possible to identify
the periodicity of the system, as well as to identify the dominant frequency and the
multiple frequencies.



184 M. Varanis et al.

(a) (b)

Fig. 7 F = 46.6, q = 0.985: a Phase diagram, b CWT

(a) (b)

Fig. 8 F = 46.6, q = 0.985: a S-SFT, b SWT

(a) (b)

Fig. 9 F = 46.6, q = 1: a Phase diagram, b CWT
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(a) (b)

Fig. 10 F = 46,6, q = 0,995: a FSST, b SWT

Figure 9 presents the time–frequency analysis of the system for F = 46.6 and q
= 1, for these parameters the system exhibits chaotic dynamics as presented in the
bifurcation diagram (Fig. 2b). In Fig. 9a the phase diagram of the system is presented.
In Fig. 9b is presented the response of the system in the frequency domain to CWT,
one can clearly identify the dominant frequency, but the response presents a large
scattering and abrupt change at the beginning of the frequency spectrum, indicating
chaos in the system.

In Fig. 10a the response of the system using FSST is presented, it can be seen
that there was a large scattering and abrupt change in the frequency spectrum, but
due to low resolution and large energy dispersion in the time–frequency plane, it is
not possible to clearly characterize the chaotic dynamics of the system. The SWT
analysis (Fig. 10b) shows that it is possible to identify the dominant frequency and a
large scattering and abrupt change in the frequency spectrum at the beginning of the
response, again the low energy dispersion allows the characterization of the chaotic
dynamics of the system.

Next in Fig. 11 is presented the time–frequency analysis of the system for F = 70
and q= 0.995. Again, the phase space is presented (Fig. 11a) and the system response
in the frequency domain to CWT (Fig. 11b). The response via CWT allows, as in
the previous cases, the periodicity of the system to be identified, as well as easily
identifying the dominant frequency and multiple frequencies. The same occurs with
analysis via FSST (Fig. 12c) and SWT (Fig. 12d).

Finally, Fig. 13 presents the time–frequency analysis of the system for F= 70 and
q= 0.999. The phase space (Fig. 13a) shows the rich dynamics of the system and the
response of the system in the frequency domain to CWT (Fig. 13b) characterizing
the chaotic dynamics in the system. In (Fig. 14a) shows the response of the system
with the use of FSST, it is noted that there was large scattering and abrupt change in
the frequency spectrum, as in previous cases, it is not possible to clearly characterize
the chaotic dynamics of the system. The analysis using SWT (Fig. 14b), shows that
it is possible to identify the dominant frequency and a large scattering and abrupt
change in the frequency spectrum, in order to characterize the chaotic dynamics of
the system.
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(a) (b)

Fig. 11 F = 70, q = 0,995: a Phase diagram, b STFT

(a) (b)

Fig. 12 F = 70, q = 0.985: a S-SFT, b SWT

(a) (b)

Fig. 13 F = 70, q = 0.999: a Phase diagram, b CWT
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(a) (b)

Fig. 14 F = 70, q = 0,999: a S-SFT, b SWT

4 Conclusion

The fractional model for energy harvesting presented in the interval q = [0.958, 1] a
chaotic behavior for the structure with Caputo’s fractional derivative operator. Thus,
bifurcation diagrams and synchrosqueezing-based transform were used to analyze
the location of these windows, for a set of F parameters and characterize the chaotic
dynamics of the system. Therefore, it was determined for values close to q = 1,
regions that exhibited chaotic and periodic behavior. These regions are confirmed in
the bifurcation diagrams, CWT and SWT. The analysis of the fractional dynamics
of the system not only corroborates the generalization of the mathematical model
in a numerical form, but also in the behavior with the Caputo fractional derivative
operator. CWT-based techniques show good resolution in the time–frequency plane,
but CWT still overshadows other components when there are high concentrations of
energy at some signal frequency.Applications ofwavelet transform-based techniques
to nonlinear systems have demonstrated the ability of this technique to monitor
signal frequency variations and detect short-term transients with excellent time–
frequency localization, far exceeding the limitations presented by Fourier transform-
based techniques such as STFT.

Finally, the results obtained using the synchrosqueezed wavelet transform were
excellent, showing very good time–frequency resolution and minimal energy
dispersion, proving adequate to characterize the chaotic dynamics of the system.
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On the Stability and Long-Term
Behaviour of Structural Systems Excited
by Nonideal Power Sources

Javier González-Carbajal , Daniel García-Vallejo ,
and Jaime Domínguez

Abstract This chapter investigates the problem of an unbalanced motor attached
to a fixed frame by means of a nonlinear spring and a linear damper. The proposed
mathematical model is simple enough to allow for an analytical treatment of the
equations, while sufficiently complex to preserve the main nonlinear phenomena
that can be observed in real unbalanced rotating machinery. The primary focus is on
the bidirectional interaction that in general exists between the excitation provided
by the motor and the response of the vibrating structure. By combining various
mathematical tools (Averaging, Singular Perturbation Theory, classification of Hopf
bifurcations, Poincaré-Bendixson Theorem), the long-term behaviour of the system
is investigated in detail. The analytical results are verified numerically. It should be
noted that the study presented in this Chapter was originally published in [1, 2].

Keywords Nonideal excitation · Stability · Bifurcation analysis · Limit cycles ·
Unbalanced motors

1 Introduction

The motion of unbalanced rotors constitutes one of the most common vibration
sources in mechanical engineering [3, 4]. Vibrations due to unbalance may occur in
any kind of rotating systems, such as turbines, flywheels, blowers or fans [5]. Actu-
ally, in practice, rotors can never be completely balanced because of manufacturing
errors such as porosity in casting, non-uniform density of thematerial, manufacturing
tolerances, etc. [6]. Even a subsequent balancing process will never be perfect due
to the tolerances of the balancing machines.

Usually, rotor unbalance has a harmful effect on rotating machinery, since vibra-
tion may damage critical parts of the machine, such as bearings, seals, gears and
couplings [6]. However, there are applications where unbalanced rotors are used to
generate a desired vibration. Someexamples are the feeding, conveying and screening

J. González-Carbajal (B) · D. García-Vallejo · J. Domínguez
Faculty of Engineering of Seville, Department of Mechanical Engineering and Manufacturing,
C/ Camino de los Descubrimientos S/N, 41092 Seville, Spain
e-mail: jgcarbajal@us.es

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. M. Balthazar (ed.), Nonlinear Vibrations Excited by Limited Power Sources,
Mechanisms and Machine Science 116, https://doi.org/10.1007/978-3-030-96603-4_12

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96603-4_12&domain=pdf
http://orcid.org/0000-0002-1379-0406
http://orcid.org/0000-0002-2319-2688
http://orcid.org/0000-0002-0491-7911
mailto:jgcarbajal@us.es
https://doi.org/10.1007/978-3-030-96603-4_12


192 J. González-Carbajal et al.

Fig. 1 Simple 2-DOF model
of a structure excited by an
unbalanced motor

of bulk materials, or the vibrocompaction of quartz agglomerates, which makes use
of unbalanced motors to compact a quartz-resin mixture. Actually, our interest in
this vibrocompaction process has been the motivation for the presented study.

A simple model to analyse the dynamic response of a structure to the excitation
produced by an unbalanced motor is sketched in Fig. 1. The simplest approach to this
problem consists in assuming the rotor speed to be either constant or a prescribed
function of time. In the constant speed case, the centrifugal force on the unbalance
produces a harmonic excitation on the vibrating system, whose amplitude growswith
the square of the rotating speed andwhose frequency coincideswith the rotating speed
[5, 7].

Note that, with this approach, it is implicitly being assumed that the rotational
motion of the motor is independent of the vibration of the structure. This property
is what defines an ideal excitation: it remains unaffected by the vibrating system
response. Thus, the amplitude and frequency of an ideal excitation are known a priori,
before solving the vibration problem. Obviously, this notion of ideality is applicable
to any kind of excitation, and not only to the one produced by an unbalanced motor.

The ideality assumption is valid, with good approximation, in many real prob-
lems. However, there are situations where it is not. In 1904, Sommerfeld [8], whose
pioneering work inspired many subsequent investigations, found experimentally
kinds of behaviour that could not be explained upon the ideality hypothesis. He
mounted an unbalanced electric motor on an elastically supported table and moni-
tored the input power as well as the frequency and amplitude of the response [9]. The
experiment consisted in increasing continuously the power input in order to make the
rotor speed pass through the resonance frequency of the table, and then conduct the
inverse process by decreasing the input power. The results obtained by Sommerfeld
are qualitatively depicted in Fig. 2. When the rotor speed was close to resonance, an
increment of the input power produced only a very slight increase of the rotor speed,
while the oscillation amplitude increased considerably. This means that, in this part
of the experiment, the increasing input power was not making the motor rotate faster,
but was giving rise to larger oscillations. With further increasing of the input power,
the rotor speed jumped abruptly to a frequency above resonance and, at the same
time, the vibration amplitude jumped to a much smaller quantity than measured in
the resonance region. When the process was reversed, by decreasing the motor input
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Fig. 2 Sommerfeld effect

power, a jump phenomenon in the resonance region was also observed (see Fig. 2).
However, this jump was found to be different from the one occurring for increasing
rotor speed. This anomalous behaviour is usually referred to as ‘The Sommerfeld
Effect’.

In 1969 [10], Kononenko published a book entirely devoted to the study of
nonideal excitations. He considered different configurations of vibrating systems
excited by nonideal motors and applied the Averaging Method to the equations
of motion. By taking into account the two-way interaction between the motor and
the vibrating structure, he was able to explain the nonlinear phenomena found by
Sommerfeld. According to Kononenko, the Sommerfeld effect is produced by the
torque on the rotor due to vibration of the unbalanced mass.

Rand et al. [11] reported the detrimental effect of a nonideal energy source in dual
spin spacecrafts, which could endanger a particular manoeuvre of the spacecraft once
placed in orbit.

Although most studies use averaging procedures to obtain approximate solutions
to the equations of motion, Blekhman [12] proposed an alternative approach, based
on the method of ‘Direct Separation of Motions’.

Several authors, like El-Badawi [13] and Bolla et al. [14], analysed models where
the vibrating system included an intrinsic cubic nonlinearity, in addition to the
nonlinearity associated to the nonideal coupling between exciter and structure.

Balthazar et al. [15] published an extensive exposition of the state of the art
concerning nonideal excitations.
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The contents of this chapter are organized as follows. The analytical developments
needed to understand the long-term behaviour of the system are presented in Sect. 2.
Section 3 contains the results of a number of significant simulations with a twofold
purpose: investigate some bifurcations of limit cycles that are too complex for an
analytical treatment and serve as a numerical validation of the analytical procedures
of Sect. 2. Finally, Sect. 4 presents the major conclusions of the study.

2 Analytical Approach

In this section, several analytical techniques are used to investigate the dynamics of
a 2-DOF system consisting in an unbalanced motor attached to the fixed frame by a
nonlinear spring and a linear damper.

2.1 Problem Statement and Assumptions

Consider the system depicted in Fig. 3. It consists in an unbalanced motor attached to
a fixed frame by a nonlinear spring –whose force has linear and cubic components–
and a linear damper. The cubic component of the spring gives the possibility tomodel
a nonlinear behaviour for the structure supporting themotor [16]. The effect of gravity
can be shown to have no relevance [17] and, therefore, it will not be included in the
model.

Variable x stands for the linear motion, φ is the angle of the rotor, m1 is the
unbalanced mass with eccentricity r , m0 is the rest of the vibrating mass, I0 is the
rotor inertia (without including the unbalance), b is the viscous damping coefficient
and k and λ are, respectively, the linear and cubic coefficients of the spring. The
equations of motion for the coupled 2-DOF system are [13]

Fig. 3 Model
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mẍ + bẋ + kx + λx3 = m1r
(
φ̇2 cosφ + φ̈ sin φ

)

I φ̈ = Lm
(
φ̇
)+ m1r ẍ sin φ,

(1)

where m = m0 + m1, I = I0 + m1r2 and an overdot represents differentiation with
respect to time, t .

Function Lm
(
φ̇
)
is the driving torque produced by the motor –given by its torque-

speed curve, also known as static characteristic– minus the losses torque due to
friction at the bearings, windage, etc.We assume this net torque to be a linear function
of the rotor speed:

Lm
(
φ̇
) = A + Dφ̇. (2)

Although Lm
(
φ̇
)
includes the damping of rotational motion, we will usually refer

to it shortly as ‘the motor characteristic’.
As will be seen later, it is convenient for the purpose of this chapter to write

the driving torque in an alternative way. Then, denoting by ωn the linear natural
frequency of the oscillator, given by ωn = √

k/m, the motor torque can be written
as

Lm
(
φ̇
) = C + D

(
φ̇ − ωn

)
, (3)

where C represents the driving torque at resonance (Lm(ωn) = C). From Eqs. (2)
and (3), the relation between constants A and C can be directly deduced:

C = A + Dωn. (4)

Along the whole chapter, the motor characteristic will be written as (3) or (4),
depending on the situation. It should be kept in mind that these two expressions are
totally equivalent. The important point is that the driving torque is assumed to follow
a linear relation with the rotor speed. It is further assumed that D < 0 –the driving
torque decreases with the rotor speed–, as is usual for most kinds of motor. This
assumption will prove to be of major importance.

As an example, the static characteristic of an induction motor is depicted in Fig. 4.
Note that such a motor is usually designed to work on the region φ̇ > ωpeak , where
the curve could be reasonably approximated by a straight line with negative slope.
The simplified motor characteristic given at (3) is represented in Fig. 5.

In the second of Eq. (1), which imposes the equilibrium of the rotor, the last
term is of great significance, since it accounts for the torque on the rotor caused
by linear motion of the system. Its physical interpretation can be readily understood
with the aid of Fig. 6. Due to displacement x(t), a horizontal inertial force acts on the
unbalanced mass and generates a torque with respect to the rotor axis. This particular
term of the equations of motion is what makes the excitation nonideal, for it takes
into account how vibration influences rotation. If this torque due to vibration did
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Fig. 4 Typical static
characteristic for an
asynchronous motor

Fig. 5 Static characteristic
corresponding to Eq. (3)

Fig. 6 Torque on the rotor
due to vibration

not exist –or if it was negligible–, the rotor equilibrium equation would reduce to
I φ̈ = Lm

(
φ̇
)
, and it could be solved for φ(t) regardless of the linear motion. Then,

this solution φ(t) could be introduced in the first of Eq. (1) as a prescribed excitation.
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By defining

Rm = m1/m, RI = m1r2/I, ξ = b
2
√
km

, α = RI Rm
2ξ

c = C
Iω2

n
, d = D

Iωn
, τ = ωnt, u = x

r
2ξ
Rm

, ρ = λr2

k

(
Rm
2ξ

)2
,

(5)

the equations of motion can be written in a more convenient dimensionless form

ü + u = −2ξ u̇ − ρu3 + 2ξ
(
φ̇2 cos φ + φ̈ sin φ

)

φ̈ = c + d
(
φ̇ − 1

)+ αü sin φ,
(6)

where a dot now represents differentiation with respect to dimensionless time, τ .
In order to apply perturbation techniques to system (6), some assumptions on the

order of magnitude of the system parameters have to be made. Thus, we assume
the damping, the unbalance and the nonlinearity to be small. This is expressed by
making the corresponding coefficients proportional to a sufficiently small, positive
and dimensionless parameter ε:

ξ = εξ0, α = εα0, ρ = ερ0, (7)

where parameters with subscript ‘0’ are ε-independent. It is also assumed that the
torque generated by the motor at resonance

(
φ̇ = 1

)
is sufficiently small:

c = εc0 (8)

Finally, the slope of the motor characteristic is assumed to be of the order of unity,
i.e. independent of ε:

d = d0 (9)

This last statement deserves some attention. Two possible assumptions with
respect to the order of magnitude of parameter d are particularly relevant: d = d0
(large slope of the motor characteristic) and d = εd0 (small slope of the motor
characteristic). It will be seen in Sect. 2.4 that the particular choice made in this
chapter (large slope) implies that the slope of the motor torque curve is comparable
to the slope of the curve representing the torque on the rotor due to vibration. On the
other hand, the assumption of small slope of the motor characteristic corresponds
to a situation where the motor torque is nearly constant around the resonance region
of the system. Both the required mathematical approach and the dynamics exhibited
by the system are very different depending on whether the slope of the motor
characteristic is large or small. References [18, 19] are examples of investigations
based on the assumption of small slope of the motor characteristic, while [9, 10, 12,
14, 17] correspond to the assumption of large slope.
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Taking the proposed scaling (7)–(9) into account and dropping the subscript ‘0’
for convenience, system (1) takes the form

ü + u = ε
[−2ξ u̇ − ρu3 + 2ξ

(
φ̇2 cos φ + φ̈ sin φ

)]

φ̈ = d
(
φ̇ − 1

)+ ε[c + αü sin φ].
(10)

2.2 First Order Averaging

Before turning to the treatment of (10), a specific averaging technique is developed
in this section. The reader might wonder why there is a need to develop any new
averaging procedures, instead of relying on the well-established averaging theorems
for dynamical systems that can be found, for example, in [18]. The reason is that
averaging theorems are usually valid for systems where the state variables can be
split-up into two groups: a set of slow variables and one or more fast rotating phases
over which the averaging is performed. It will be seen in Sect. 2.3 that the system
under study does not take this form, but has one additional non-angular fast variable
that makes conventional averaging theorems not applicable.

In order to make the procedure as general as possible, consider a system of the
form

⎧
⎨

⎩

ẋ = ε
[
Ay + X(x, φ)

]+ O
(
ε2
)

ẏ = B y + Y(x, φ) + O(ε)

φ̇ = 
 + O(ε)

⎫
⎬

⎭
,

x ∈ D ⊂ R
n

y ∈ R ⊂ R
m

φ ∈ S1,
(11)

where A and B are matrices of constant coefficients and 
 is a scalar constant,
bounded away from zero. It will be shown in the next section that system (10) can
be written in the form (11).

First, we define the averaged variables as

x(t) ≡ 1

T

t+T/2∫

t−T/2

x(s)ds, y(t) ≡ 1

T

t+T/2∫

t−T/2

y(s)ds (12)

where T = 2π/
. As illustrated in Fig. 7, the effect of the operator defined in
(12) is to smooth out the short-term fluctuations of each variable, while retaining the
long-term behavior.

Suppose we are interested in the evolution of the averaged variables x(t) and y(t).
Then, we can average the first two equations in (11), which yields
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Fig. 7 Definition of the
averaged variables

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = ε

[

Ay + 1
T

t+T/2∫

t−T/2
X(x(s), φ(s))ds

]

+ O
(
ε2
)

ẏ = B y + 1
T

t+T/2∫

t−T/2
Y(x(s), φ(s))ds + O(ε)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

, (13)

where it has been used that the average, as defined in (12), is a linear operator (the
average of the sum is the sum of the averages).

The next step consists in transforming the integrals in (13). Since the process is
exactly the same for both integrals, we only focus on the first of them.

First, we can write

1

T

t+T/2∫

t−T/2

X(x(s), φ(s))ds = 1

T

t+T/2∫

t−T/2

X(x(t), φ(s))ds + O(ε), (14)

where it has been used the property that, in one period T , x(t) can only change by
O(ε), according to (11). Thus, we can write x(s) = x(t) + O(ε). Changing the
integration variable from s to φ yields

1

T

t+T/2∫

t−T/2

X(x(t), φ(s))ds + O(ε) = 1

2π

φ(t+T/2)∫

φ(t−T/2)

X(x(t), φ)dφ + O(ε), (15)

where the last of relations (11) has been used (dφ = 
ds + O(ε)). The integration
limits can also be transformed by using again φ̇ = 
 + O(ε):

1

2π

φ(t+T/2)∫

φ(t−T/2)

X(x(t), φ)dφ + O(ε) = 1

2π

φ(t)+π∫

φ(t)−π

X(x(t), φ)dφ + O(ε). (16)



200 J. González-Carbajal et al.

Finally, as function X is 2π-periodic in φ, we can write

1

2π

φ(t)+π∫

φ(t)−π

X(x(t), φ)dφ + O(ε) = 1

2π

2π∫

0

X(x(t), φ)dφ + O(ε). (17)

Thus, system (13) can be rewritten as

{
ẋ = ε

[
Ay + X(x)

]+ O
(
ε2
)

ẏ = B y + Y(x) + O(ε)

}
, (18)

where

X(·) ≡ 1

2π

2π∫

0

X(·, φ)dφ, Y(·) ≡ 1

2π

2π∫

0

Y(·, φ)dφ (19)

We have been able to derive an autonomous system for the averaged variables,
where the fast angle no longer appears –except in the higher order terms of (18). Note
that the proposed approach exploits a particular property of system (11), namely the
fact that the vector of fast variables y only appears linearly on the r.h.s. of the
equations. This feature, together with the linearity of the averaging operator, allows
applying an averaging technique to system (11), despite it containing fast variables
(in addition to the fast rotating phase φ).

Finally, it is convenient to remark the difference between the original and averaged
variables. From Eq. (11), variations of x and y in one period T are O(ε) and O(1),
respectively. Therefore, we can write

x(t) = x(t) + O(ε), y(t) = y(t) + O(1). (20)

2.3 Perturbation Approach: Derivation of the Reduced
System

Going back to the mechanical system under study, Eq. (10) constitute an autonomous
dynamical system of dimension 4, with state variables

{
u, u̇, φ, φ̇

}
. A perturbation

approach is proposed in this section,whereby (10) is transformed into an approximate
2D system.

First, it is convenient to perform a change of variables, from {u, u̇} to polar
coordinates [18]:
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u = a cos (φ + β)

u̇ = −a sin (φ + β).
(21)

This step does not include any approximation, since it consists in just replacing the
pair of variables {u(τ ), u̇(τ )}with the pair of amplitude-phase variables {a(τ ), β(τ )}.

By differentiating the first of relations (21) we obtain

u̇ = ȧ cos (φ + β) − a
(
φ̇ + β̇

)
sin (φ + β). (22)

Comparing (22) with the second of relations (21) yields

ȧ cos(φ + β) − a
(
φ̇ − 1 + β̇

)
sin (φ + β) = 0. (23)

On the other hand, if (21) is introduced into the first of Eq. (10), we have

−ȧ sin (φ + β) − a
(
φ̇ − 1 + β̇

)
cos (φ + β) =

= ε
[
2ξa sin (φ + β) − ρa3 cos 3(φ + β) + 2ξ

(
φ̇2 cos φ + φ̈ sin φ

)] (24)

Equations (23) and (24) together form a linear system for ȧ and β̇ that can be
readily solved:

ȧ = −ε sin (φ + β)
[
2ξa sin (φ + β) − ρa3 cos 3(φ + β) + 2ξ

(
φ̇2 cos φ + φ̈ sin φ

)]

β̇ = 1 − φ̇ − ε
cos (φ+β)

a

[
2ξa sin (φ + β) − ρa3 cos3(φ + β) + 2ξ

(
φ̇2 cos φ + φ̈ sin φ

)] (25)

It is also suitable to define a new variable for the rotor speed:


 ≡ φ̇. (26)

Then, the dynamical system, written in terms of the new variables, becomes

⎧
⎪⎪⎨

⎪⎪⎩

ȧ = −ε sin(φ + β)F1(a, β, φ,
) + O
(
ε2
)

β̇ = 1 − Ω − ε
cos(φ+β)

a F1(a, β, φ,
) + O
(
ε2
)


̇ = d(Ω − 1) + ε(c − αa sin φ cos (φ + β)) + O
(
ε2
)

φ̇ = 
,

⎫
⎪⎪⎬

⎪⎪⎭
, (27)

where

F1 = 2ξa sin (φ + β) − ρa3 cos3(φ + β) + 2ξ
[

2 cos φ + d(
 − 1) sin φ

]
.

(28)

A new 4D autonomous dynamical system (27) has been derived, with state
variables {a, β, φ,Ω}, which is fully equivalent to (10).
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Consider now a general set of initial conditions {a0, β0, φ0,Ω0} and let us investi-
gate how the variables evolve with time. In the next subsections, it will be shown that
the dynamics of (27) is composed of three consecutive stages of time, with different
qualitative behaviours.

First stage

For the moment, consider only the evolution equations for variables β and 
, which
can be written as

{
β̇ = 1 − 
 + O(ε)

Ω̇ = d(
 − 1) + O(ε)

}
. (29)

It is clear that, to first order of approximation, the evolution of β and 
 only
depends on 
. This first order approximation corresponds to neglecting the O(ε)

terms in (29).

{
β̇ = 1 − 



̇ = d(
 − 1)

}
. (30)

The relation between exact system (29) and (30) is established by the Regular
Perturbation Theory [18], which assures that solutions of (30) are O(ε)–approxima-
tions to solutions of (29), for τ = O(1). Thus, we proceed to solve system (30):

{
β = β∗

0 + 1−
0
d edτ


 = 1 + [
0 − 1]edτ

}
, (31)

with

β∗
0 ≡ β0 + 
0 − 1

d
. (32)

It is clear from (31) that both variables tend exponentially to constant values:

β → β∗
0 , 
 → 1. (33)

This is due to the assumption d < 0 (otherwise, the exponentials in (31) would
be divergent). Taking into account the approximation made when transforming (29)
into (30), it can be stated that, after a time interval τ = O(1), we have

β = β∗
0 + O(ε), 
 = 1 + O(ε). (34)

Onceβ and
 are at an O(ε)–distance fromβ∗
0 and 1, respectively, the first stage of

themotion is over. Note that, during this stage, the rotor speed evolves monotonically
towards the resonance region.
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During this first phase, variable a remains nearly constant. Since ȧ = O(ε)—see
(27), variable a needs a time length τ = O(1/ε) to evolve significantly. Thus, at the
end of the first stage, we have

a = a0 + O(ε). (35)

In summary, the first stage corresponds to a time length τ = O(1). It starts at
τ = 0 and it ends when β and 
 have reached an O(ε)–distance to β∗

0 and 1,
respectively.

Second stage

At the beginning of the second stage, the rotor speed is already in the vicinity of
resonance. Consequently, it can be naturally expanded as


 = 1 + εσ. (36)

A new variable σ has been introduced in (36), which will be very widely used
throughout the chapter. Notice that σ is a detuning coordinate, which measures how
much the rotor speed deviates from the system natural frequency.

If system (27) is written using variable σ instead of 
, it becomes

⎧
⎪⎪⎨

⎪⎪⎩

ȧ = −ε sin (φ + β)F2(a, β, φ) + O
(
ε2
)

β̇ = −εσ − ε
cos (φ+β)

a F2(a, β, φ) + O
(
ε2
)

σ̇ = c + dσ − αa sin φ cos(φ + β) + O(ε)

φ̇ = 1 + εσ

⎫
⎪⎪⎬

⎪⎪⎭
, (37)

where

F2 = 2ξa sin(φ + β) − ρa3 cos3(φ + β) + 2ξ cosφ. (38)

Notice that the closeness between the rotor speed and the natural frequency of the
system has transformed β into a slow variable. Note also that system (37) is of the
form (11), with {a, β} playing the role of vector x and σ that of vector y. Therefore,
the averaging technique presented in Sect. 2.2 can be readily applied to (37), in order
to obtain the evolution of the averaged variables.

The averaged system, which in the general case is given by (18), takes in the
present case the form

⎧
⎪⎨

⎪⎩

ȧ = −εξ
(
a + sin β

)+ O
(
ε2
)

β̇ = −ε
(
σ + ξ

cosβ

a − 3
8ρa

2
)

+ O
(
ε2
)

σ̇ = c + dσ + α
2 a sin β + O(ε)

⎫
⎪⎬

⎪⎭
, (39)
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where the averaged variables
{
a, β, σ

}
are defined as in (12). System (39) has

dimension 3, since variable φ no longer appears.
It is convenient to highlight the relation between the original and the averaged

variables. Particularizing the general expression (20) to the system under analysis,
we find

a = a + O(ε)

β = β + O(ε)

σ = σ + O(1).
(40)

Observe that, even with an O(1) error in σ , the rotor speed is still known with
O(ε) precision, according to (36). From now on, the overbars will be omitted, unless
otherwise stated.

The task now is to investigate system (39). As pointed out before, this is a fast-
slow system, with two slow variables a and β and one fast variable σ . This difference
in the time scales allows exploiting the Singular Perturbation Theory [20–22].

According to the SPT, a system with the form of (39) displays two qualitatively
different behaviors at two sequential time scales, which correspond to the second and
third stages of the original system (27). With the aim of studying the first of them
–second stage of (27), consider a time interval τ = O(1) for system (39). Since a
and β evolve with rate O(ε), it is clear that we have

a = a0 + O(ε)

β = β∗
0 + O(ε)

σ̇ = c + dσ + α
2 a0 sin β∗

0 + O(ε),

(41)

where we have taken into account that, at the beginning of stage 2, a = a0 + O(ε)

and β = β∗
0 + O(ε).

Then, the only variable that changes considerably during this stage is σ . From a
direct analysis of the last of Eq. (41), it can be deduced that σ tends exponentially
to the following value

σ → − c

d
− α

2d
a0 sin β∗

0 , (42)

which is the only fixed point for the last of Eq. (41). The assumption d < 0 guarantees
that the fixed point is globally attracting.

Expression (42), generalized to any values of a and β, gives what is called ‘the
Slow Manifold’:

σ ∗(a, β) = − c

d
− α

2d
a sin β. (43)

Thus, (42) can be rewritten as
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σ → σ ∗(a0, β∗
0

)
. (44)

Thereby, at this stage, the slow variables remain almost constant, while the fast
variable evolves until reaching the vicinity of the slow manifold.

Summing up, the second stage corresponds to a time length τ = O(1), just as
the first one. It ends once variable σ has reached an O(ε)–distance to σ ∗(a0, β∗

0

)
.

During this phase of the motion, a and β do not change significantly.

Third stage

The third stage of the original system (27) –which is the second stage of the averaged
system (39)—occurs at a time scale τ = O(1/ε). This can be easily understood by
noticing that, once the system is near the slow manifold, variable σ becomes slow
(introducing (43) in (39) leads to σ̇ = O(ε)). Therefore, near the slow manifold, all
variables are slowand, as a consequence, the systemnatural time scale is τ = O(1/ε).

Obviously it still needs to be proved that, once the system is near the slowmanifold,
it remains in its neighborhood for all subsequent time. In other words, we have to
verify that the manifold is always attracting. Although the proof is beyond the scope
of this book and will not be displayed here, it can be shown that the attractiveness of
the slow manifold is guaranteed as long as d < 0.

By introducing the expression of the slow manifold in (39), the equations
corresponding to the third phase of the motion are obtained:

⎧
⎪⎨

⎪⎩

ȧ = −εξ(a + sin β) + O
(
ε2
)

β̇ = −ε
(
σ ∗(a, β) + ξ

cos β

a − 3
8ρa

2
)

+ O
(
ε2
)

σ = σ ∗(a, β) + O(ε).

⎫
⎪⎬

⎪⎭
(45)

As usual, higher order terms in (45) can be eliminated, giving rise to an O(ε)

approximation for a time length τ = O(1/ε):

⎧
⎪⎨

⎪⎩

ȧ = −εξ(a + sin β)

β̇ = −ε
(
σ ∗(a, β) + ξ

cos β

a − 3
8ρa

2
)

σ = σ ∗(a, β).

⎫
⎪⎬

⎪⎭
(46)

It is convenient to observe that, although (46) contains three equations, only two
of them are differential equations. Thus, (46) represents a 2D autonomous dynamical
system. The evolution of a and β no longer depends on σ , once σ is written as a
function of a and β. The last equation is written with the only purpose of tracking
the evolution of variable σ .

In summary, the third stage corresponds to a time length τ = O(1/ε). At this
phase of the motion, the averaged system evolves along the slow manifold given by
(43). Variables a, β and σ obey Eq. (46), with O(ε) precision.

Figure 8 shows a schematic representation of the three different stages of the
system dynamics, summing up the results obtained in the present section. Note that,
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Fig. 8 Overview of the system dynamics, with {aR, βR} being the solution of system (46) with
appropriate initial conditions

in Fig. 8, the use of overbars for the averaged variables is recovered. The most
relevant result is that, once the initial transient corresponding to the first two stages
has finished, the evolution of variables a and β is governed by Eq. (46)—within an
O(ε) error–.

From Fig. 8, it is clear that suitable initial conditions for system (46) are{
a0, β∗

0

}
. Recalling definition (32), this can be written as {a0, β0 + (
0 − 1)/d},

where {a0, β0, φ0,
0} is the set of initial conditions for system (27).
However, we may be interested in a particular set of initial conditions for system

(10), given as
{
u0, u̇0, φ0, φ̇0

}
. It is, then, convenient, to express the initial conditions

for (46) as functions of the initial conditions for (10):

a0 =
√
u20 + u̇20

β∗
0 = tan−1

(
−u̇0
u0

)
− φ0 + φ̇0−1

d ,
(47)

as can be readily deduced from relations (21), (26) and (32).
Recapitulating, we have been able to eliminate from the formulation variable φ

by Averaging, and variable σ by applying the Singular Perturbation Theory.

2.4 Analysis of the Reduced System

This section focuses on the behaviour of system (46), once it has been shown to
capture, with O(ε) precision, the dynamics of the original system (10) during the
third stage of the motion.

Firstly, it is useful to make a comparison between the system under study and its
ideal counterpart, where the rotor speed is constant. Clearly, for this ideal case, the
equation of motion of the system shown in Fig. 3 is given by
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mẍ + bẋ + kx + λx3 = m1r φ̇
2 cos φ, (48)

with φ̇ fixed. Equation (48) describes a Duffing oscillator, subjected to harmonic
excitation. This is a very well-known problem, which has been widely studied in the
literature [9, 19, 23, 24]. Under the assumptions of small damping, small nonlinearity,
small unbalance and near-resonant excitation

(
φ̇ = 1 + εσ0

)
, the Averaging Method

can be applied to system (48), leading to

{
ȧ = −εξ(a + sin β)

β̇ = −ε
(
σ0 + ξ

cos β

a − 3
8ρa

2
)
}

, (49)

where all the parameters and variables are defined as in Sects. 2.1 and 2.3. It is easy
to verify that system (49) is exactly the same as (46), with the only difference of
replacing σ ∗(a, β) by the constant value σ0. This is a clear illustration of the concept
of nonideal excitation. In the ideal case, the rotor speed appears in Eq. (49) as a
constant value σ0, externally imposed by the motor. However, in the nonideal case,
the rotor speed enters Eq. (46) as a function of the system vibratorymotion, σ ∗(a, β).

It is also important to observe that an ideal motor displays a vertical static char-
acteristic, corresponding to the limit case d → −∞. The motor is, then, able to
generate any torque for the same rotor speed. This suggests the idea that a real motor
with a static characteristic of very large slope (in absolute value) is more likely to
behave in an ideal manner than another one with a smaller slope.

Fixed points

Going back to the objective of analyzing system (46), it is first convenient to look
for its fixed points,

{
aeq , βeq , σeq

}
:

aeq = − sin βeq

σ ∗(aeq , βeq
) = 3

8ρa
2
eq − ξ

cos βeq

aeq

σeq = σ ∗(aeq , βeq
)
.

(50)

From the first of Eq. (50), we have

cos βeq = −z
√
1 − a2eq , z = ±1. (51)

Combining (43), (50) and (51) yields

− c

d
+ α

2d
a2eq = 3

8
ρa2eq + zξ

√
1 − a2eq

aeq
. (52)
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Solutions of (52), for both values of z, give aeq for all the fixed points of (46).
This can be done analytically, but the expressions become cumbersome and difficult
to interpret. An alternative procedure is proposed, which leads to the fixed points of
(46) in a graphical way. To this end, the last of Eq. (46) can be rewritten as

c + dσ = −α

2
a sin β, (53)

where definition (43) has been used. Now, recall the last of Eq. (39), which governs
the evolution of the rotor speed for the averaged system:

σ̇ = c + dσ + α

2
a sin β + O(ε). (54)

In the light of (54), (53) can be interpreted as an equilibrium between two torques
on the rotor. The left hand term in (53) represents the driving torque produced by
the motor, while the right hand term represents the resisting torque due to vibration.
Thus, the fact that the averaged system is on the slow manifold –which is expressed
in Eq. (53)—can be understood as a torque equilibrium condition.

Equation (53), particularized for the fixed point
{
aeq , βeq , σeq

}
, takes the form

c + dσeq = α

2
a2eq , (55)

where (50) has been used. We now define the following functions:

Tm(σ ) ≡ c + dσ

Tv(a) ≡ α
2 a

2.
(56)

Clearly, according to the comments below Eq. (54), Tm represents the driving
torque produced by the motor, while Tv corresponds to the resisting torque due to
vibration. Then, (55) can be rewritten as

Tm
(
σeq
) = Tv

(
aeq
)
, (57)

which is the torque equilibrium condition, particularized for the fixed point.
In order to solve (57) in a graphical way, it would be desirable towrite both torques

explicitly in terms of σeq . However, this would in turn need explicitly writing aeq in
terms of σeq , which produces long and complicated expressions. Thus, an implicit
procedure for the graphical representation is proposed. Combining (50) and (51)
results in

σeq = σv

(
z, aeq

)
, (58)

where function σv(z, a) is defined as



On the Stability and Long-Term Behaviour of Structural Systems Excited … 209

Fig. 9 Fixed points of
system (46)

σv(z, a) ≡ 3

8
ρa2 + zξ

√
1 − a2

a
. (59)

The proposed representation can be constructed as follows: first, graph Tm versus
σ according to (56). Then, graph on the same plot the parametric curve given by
{σv(z, a), Tv(a)}, for z = ±1 and a ∈ (0, 1] . The fact that a is strictly positive
comes from the definition of a as the radius of a polar coordinate transformation
–see (21)–(20). On the other hand aeq cannot be greater than 1, according to the first
of Eq. (50).

The above procedure gives rise to a plot like that shown in Fig. 9. Considering
Eq. (57), the fixed points can be found as the intersections of the two torque curves.
In the particular case displayed in Fig. 9, there are three equilibrium points, marked
with circles. Note that the curve associated to the vibration torque is composed of
two branches, which collide at the maximum of the curve. They correspond to the
two possible values of parameter z, as specified in Fig. 9.

We note that the ‘Sommerfed effect’, which was described in the introduction, can
be readily explained by using Fig. 9. For such an explanation, the interested reader
can refer to [9, 10, 12, 17].

Stability Analysis

Once the fixed points of the reduced system have been obtained, it is convenient to
investigate their stability. For a 2D system, this reduces to calculating the trace and
determinant of the jacobian matrix, evaluated at the equilibrium point of interest:

J eq = ε

[ −ξ zξ Req(− α
2d + 3ρ

4

)
aeq − zξ Req

a2eq
− zαaeq Req

2d − ξ

]

, (60)

where Req stands for
√
1 − a2eq .

The conditions for a fixed point to be asymptotically stable are



210 J. González-Carbajal et al.

C1. tr
(
Jeq
)

< 0 (61)

C2. det
(
Jeq
)

> 0. (62)

After some algebra, these conditions can be expressed as

C1.
zαaeq Req

4d
+ ξ > 0 (63)

C2.

{
1
η

− 1
d < 0, i f z = 1

1
η

− 1
d > 0, i f z = −1

}

, (64)

where η denotes the slope of the Tv curve at the considered equilibrium point (see
Figs. 10 and 11), and has the expression

1

η
= − zξ

αa3eq Req
+ 3ρ

4α
, (65)

as can be deduced from (56), (59).
Conditions (63) and (64)are now applied to evaluate stability regions in different

scenarios. The procedure is as follows. Consider parameters α, ξ, ρ fixed, so that

Fig. 10 Stability regions for
z = −1. S and U label the
stable and unstable regions,
respectively. a η > 0, b
η < 0
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Fig. 11 Stability regions for
z = 1. S and U label the
stable and unstable regions,
respectively. a η > 0, (b.1)
η < dH < 0, (b.2)
dH < η < 0

the Tv curve –see Fig. 9– is fixed too. Consider a pair of values (c, d) that gives
a particular curve Tm(σ ). The intersections between the two curves represent the
equilibrium points of the system. Select one of them –if there are more than one– and
let parameters (c, d) vary in such away that the selected equilibrium point remains an
equilibrium point. In other words, let parameters (c, d) vary so as to make the curve
Tm(σ ) rotate around the selected equilibrium point, satisfying restriction d < 0.
Finally, use conditions (63) and (64) to analyze how the stability of the fixed point
is affected by the slope d of the motor characteristic.

Figure 10 displays the outcome of applying the above procedure for a fixed point
located at the left branch of the vibration torque curve (z = −1). Two scenarios
are considered, depending on the sign of slope η, evaluated at the fixed point under
consideration. It is observed that a change of stability occurs when both torque
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curves become tangent (d = η). This can be shown to correspond to a transcritical
bifurcation. Note that, in Fig. 10, the motor curve corresponding to d = η has been
directly labeled as d = η, instead of Tm(d = η). This shortened notation will be
widely used in the figures of the document.

Figure 11 shows analogous results for a fixed point located at the right branch of
the vibration torque curve (z = 1). The system behavior is richer in this case, since
stability may change in two different ways, depending on the comparison η ≶ dH
where dH is defined below.

We define critical slope dH as the value of d that makes tr
(
Jeq
) = 0. Recall that

the stability condition tr
(
Jeq
)

< 0 was written as (63). Therefore, dH takes the form

dH
(
α, ξ, aeq

) = −αaeq Req

4ξ
. (66)

Below, the different possibilities for z = 1 are considered.

• If η > 0 (Fig. 11a), condition C2 is never fulfilled, so the fixed point is unstable
regardless the value of slope d.

• If η < dH < 0 (Fig. 11b.1), the critical condition –i.e. the one that produces
the stability change– is C2. In this case, a transcritical bifurcation can be shown
to occur when both torque curves are tangent (d = η). Note that this result is
analogous to that obtained for the left branch (Fig. 10).

• If dH < η < 0 (Fig. 11b.2), the critical condition is C1. In this case, the stability
change occurs at d = dH through a Hopf bifurcation, after which parameter dH
was named.

To better understand the nature of the different bifurcations, notice the following
correspondence between conditions C1 and C2, and the eigenvalues of J eq ,
according to (61), (62):

• C1 is the critical condition →
{

tr
(
Jeq
) = 0

det
(
Jeq
)

> 0

}
both eigenvalues of J eq , being

complex conjugates, cross the imaginary axis.

• C2 is the critical condition →
{

tr
(
Jeq
)

< 0
det
(
Jeq
) = 0

}
a single, real eigenvalue of J eq

crosses the imaginary axis.

It is worth stressing that most of the literature on nonideal excitations maintains
that stability changes when the torque curves become tangent [9, 10, 12, 17]. This is
consistent with our results, with the important exception of case z = 1, dH < η < 0
(Fig. 11b.2). Thus, one of the major findings presented in this chapter consists in
having found a case where the usual rule of thumb for stability is not valid. In this
scenario, the stable region is in fact smaller than predicted by usual theories (see
Fig. 11b.2). Not taking this into account may be dangerous in real applications, since
it could lead to unexpected instabilities.
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Finally, the conditions for the existence of a Hopf bifurcation in the linear case
(ρ = 0) are investigated in more detail. As stated above, a Hopf bifurcation exists if

z = 1, dH < η < 0. (67)

By substituting expression (65) and (66) into (67), for ρ = 0, we have

z = 1, −αaeq Req

4ξ
< −αa3eq Req

ξ
< 0. (68)

Simplifying (68) yields

z = 1, aeq < 0.5. (69)

Therefore, if the system under study has no structural nonlinearity (ρ = 0), it is
particularly easy to predict the existence of a Hopf bifurcation, by simply checking
condition (69).

2.5 Classification of the Hopf Bifurcations

Clearly, it would be of great interest to characterize the Hopf bifurcation encountered
in last section as subcritical or supercritical. In the former case, an unstable limit cycle
coexists with the stable fixed point, while in the latter case there is a stable limit cycle
coexisting with the unstable fixed point, as represented in Fig. 12.

Characterizing the bifurcations requires several transformations of system (46)
that are detailed below.

Fig. 12 Classification of Hopf bifurcations. a Supercritical b Subcritical. Thick (thin) lines
represent stable (unstable) solutions
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Transformation to Cartesian Coordinates

We assume the system parameters are such that there exists a fixed point on the
right branch of curve Tv (z = 1), satisfying condition (67) and, thereby, undergoing
a Hopf bifurcation. By defining change of variables

{
x̃ = a cos β

ỹ = a sin β

}
, (70)

system (46), particularized for the bifurcation point (d = dH ), can be rewritten as

⎧
⎨

⎩

˙̃x = −ε
[
ξ x̃ + c

dH
ỹ + α

2dH
ỹ2 + 3

8ρ ỹ
(
x̃2 + ỹ2

)]

˙̃y = ε
[
−ξ − ξ ỹ + c

dH
x̃ + α

2dH
x̃ ỹ + 3

8ρ x̃
(
x̃2 + ỹ2

)]

⎫
⎬

⎭
. (71)

Displacement of the origin

In order to characterize the bifurcation, it is convenient to locate the origin of the
coordinate system at the fixed point under investigation. Then, we define change of
variables

{
x = x̃ − aeq cos βeq

y = ỹ − aeq sin βeq

}
. (72)

Using the new coordinates, system (71) takes the form

⎧
⎨

⎩

ẋ = ε
[
−[ξ + 3

4 ρa3R
]
x − [ 3

4 ρa4 + ξ
( 2a

R − R
a

)]
y + 3

8 ρa2x2 +
[
2ξ
aR + 9

8 ρa2
]
y2 + 3

4 ρaRxy − 3
8 ρy

[
x2 + y2

]]

ẏ = ε
[[ 3

4 ρa2R2 − ξ R
a

]
x + [

ξ + 3
4 ρa3R

]
y − 9

8 ρaRx2 − 3
4 ρaRy2 −

[
2ξ
aR + 3

4 ρa2
]
xy + 3

8 ρx
[
x2 + y2

]]

⎫
⎬

⎭
.

(73)

where aeq and Req are shortly written as a and R, respectively, in order to make
the expression more manageable. This abbreviated notation will also be used in the
Appendix. Note that system (73) is of the form

[
ẋ
ẏ

]
= ε

(
A
[
x
y

]
+ h(x, y)

)
(74)

where matrix A is given by

A =
⎡

⎣−(ξ + 3
4ρa

3
eq Req

) −
[
3
4ρa

4
eq + ξ

(
2aeq
Req

− Req

aeq

)]

3
4ρa

2
eq R

2
eq − ξ

Req

aeq
ξ + 3

4ρa
3
eqReq

⎤

⎦ (75)
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and vector h(x, y) contains the nonlinear terms of the system.

Transformation to the real eigenbasis of matrix A

A new change of variables, using the real eigenbasis of matrix A, is defined:

[
x
y

]
= T

[
z1
z2

]
, (76)

where the columns of matrix T are the real and imaginary parts of the complex
conjugate eigenvectors of A, denoted by v1,2:

v1,2 =
[
c1
c2

]
± i

[
ω0

0

]
→ T =

[
c1 ω0

c2 0

]
, (77)

with

c1 = ξ + 3
4ρa

3
eq Req

c2 = ξ
Req

aeq
− 3

4ρa
2
eq R

2
eq

ω0 =
√(

1−4a2eq
a2eq

)
ξ 2 − 3

4ρξaeq Req .

(78)

System (73), written in terms of the new variables, takes the form

[
ż1
ż2

]
= ε

([
0 −ω0

ω0 0

][
z1
z2

]
+
[
f (z1, z2)
g(z1, z2)

])
, (79)

where functions f and g, containing the nonlinear terms of the system, can bewritten
as Taylor series:

f (z1, z2) =
3∑

i+ j=2

1
i ! j ! fi j z

i
1z

j
2

g(z1, z2) =
3∑

i+ j=2

1
i ! j !gi j z

i
1z

j
2

(80)

Coefficients fi j and gi j are specified in the Appendix.

Transformation to normal form

The final step to characterize the bifurcation includes transformation in complex
form, near-identity transformation and transformation in polar coordinates [25]. This
is a standard procedure whose details can be found in [26, 27]. After these last
transformations, system (79) can be written in its Normal Form
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ṙ = εδr3, (81)

which governs the radial dynamics at the bifurcation. As shown in [27], coefficient
δ can be computed as

16δ =

⎧
⎪⎨

⎪⎩

f30 + f12 + g21 + g03
+ 1

ω0
[ f11( f20 + f02) − g11(g20 + g02)]

+ 1
ω0
[ f02g02 − f20g20]

⎫
⎪⎬

⎪⎭
. (82)

In summary, we can say that, after a large number of variable transformations,
system (46) can be written as (81), from which we deduce that the bifurcation is
supercritical (subcritical) if δ < 0(δ > 0).

Despite the fact that coefficients fi j and gi j are of rather complicated form, we
find –with the aid of the symbolic computation toolbox in Matlab– that the condition
for supercriticality or subcriticality can be expressed in a surprisingly simplemanner:

Supercritical ⇒ δ < 0 ⇒ ρ < − 8ξ
3aeq Req

Subcritical ⇒ δ > 0 ⇒ ρ > − 8ξ
3aeq Req

(83)

From (83), it is clear that a nonlinearity of the softening type (ρ < 0) is needed
to have a supercritical bifurcation.

It is also worth noting that conditions (83) admit a very clear graphical inter-
pretation. Consider a curve Tm which intersects Tv at the equilibrium point under
consideration and also at the peak of curve Tv . Let dP denote the slope of this
particular motor characteristic, as depicted in Fig. 13.

In order to obtain dP , the coordinates of the two points defining the straight line
are defined below. First, the highest peak of curve Tv can be shown to correspond to
a = 1. Substituting this condition into (56) and (59) yields

Fig. 13 Definition of slope
dP
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σ = 3

8
ρ, T = α

2
(84)

On the other hand, the (σ, T ) coordinates of the equilibrium point under study
are directly given in (56) and (59):

σ = 3

8
ρa2eq + ξ

Req

aeq
, T = α

2
a2eq (85)

Then, from (84) and (85), the expression of dP can be readily obtained:

1

dP
= 3ρ

4α
− 2ξ

αaeq Req
, (86)

By comparing (86) and (66) conditions (83) can be expressed as

Supercritical ⇒ dH < dP
Subcritical ⇒ dH > dP .

(87)

This last manner of characterizing the bifurcation is certainly appealing from a
graphical point of view, since the essential information about the bifurcation can
be directly observed from the torque–speed curves, as shown in Fig. 14 for two
particular examples.

Fig. 14 Examples of a
subcritical and b
supercritical bifurcations. a
ξ = 1, α = 1, ρ =
−2, aeq = 0.3 b ξ = 1, α =
1, ρ = −15, aeq = 0.4
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2.6 Conditions Under Which All System Trajectories are
Attracted Towards a Limit Cycle

In Sect. 2.5, a simple condition has been obtained to ascertain whether the Hopf
bifurcation under study is subcritical or supercritical, which in turn allows predicting
the kind of limit cycle generated by the bifurcation (see Fig. 12). Although this
distinction is relevant, it is based on a local analysis and, consequently, it only gives
local information about the system behaviour. This is so in two senses: the analysis
of Sect. 2.5 provides insight into the system dynamics.

• for values of d close enough to dH (results are local in the parameter space) and
• for trajectories close enough to the investigated fixed point (results are local in

the phase plane).

In view of the aforementioned limitations, this section addresses a new global
result that complements those of Sect. 2.5. First, let us briefly recall the Poincaré-
Bendixson theorem, which is an essential result from the global theory of nonlinear
systems [28]. The theorem can be stated, in short terms, as follows.

Consider a 2D dynamical system and a closed, bounded region R of the phase
plane that does not contains any equilibrium points. Then, every trajectory that is
confined in R –it starts in R and remains in R for all future time– is a closed orbit or
spirals towards a closed orbit as t → ∞. For a more rigorous and detailed exposition
of the theorem, see [28].

Let us show that, under certain circumstances, the P-B theorem can be used to
prove that all trajectories of the system under study are attracted towards a limit
cycle.

First, it can be easily deduced from (46) that

a > 1 ⇒ ȧ < 0. (88)

Let a and β represent polar coordinates on the phase plane, according to (70), and
let D denote a circle centred at the origin of the phase plane with a radius slightly
greater than 1, say 1.01. From (88), it can be said that every trajectory starting
outside region D will enter D and remain inside for all subsequent time. Obviously,
trajectories starting inside D will also remain inside forever. This kind of behavior
would present D as a suitable candidate for the role of region R in the P-B theorem,
if it were not for the presence of fixed points inside D.

Consider now the following particular situation:

{
The system has only one fixed point

z = 1, dH < d < η < 0

}
, (89)
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Fig. 15 Schematic view of
the torque curves
corresponding to conditions
(89)

whose torque curves are depicted in Fig. 15. We suppose that the only fixed point
of the system is on the right branch of curve Tv and undergoes a Hopf bifurcation.
It is also assumed that the actual slope of the motor characteristic is d > dH and,
therefore, the equilibrium is unstable.

First, let us prove that the fixed point is a repeller. Since the equilibrium is already
known to be unstable, we only need to prove that it is not a saddle. Let J eq be
the jacobian matrix of system (46), evaluated at the equilibrium point. Taking into
account that a saddle point has two real eigenvalues λ1, λ2 with different signs, we
can state

If det
(
J eq
) = λ1λ2 > 0, then the equilibrium is not a saddle. (90)

With some simple algebra, it can be shown that, for z = 1, condition det
(
J eq
)

> 0
can be written as d < η. Then, it is clear that, for a fixed point satisfying (89), we
have det

(
J eq
)

> 0. Thus, the equilibrium is a repeller.
A new region Q is now defined as D minus a circle of infinitesimal radius around

the equilibrium point. From the above considerations –all trajectories enter D and
the fixed point is a repeller–, it is clear that the flow on the boundary of Q is directed
inwards, as depicted in Fig. 16.

In summary, a closed, bounded region Q of the phase plane has been obtained,
which contains no fixed points and such that all trajectories of the system enter Q
and remain inside forever. Then, all conditions of the P-B theorem are fulfilled, and
it can be assured that any trajectory of the system is attracted towards a closed orbit
as t → ∞, if it is not a closed orbit itself.

Finally, it should be noted that, although the P-B theorem does not guarantee that
all trajectories tend to the same closed orbit, all the numerical experiments conducted
show the presence of only one stable limit cycle, namely that created by the Hopf
bifurcation. This suggests that, for a system verifying (89), all the system dynamics
is attracted towards a unique limit cycle.
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Fig. 16 Flow on the
boundary of region Q
(dashed), under conditions
(89)

2.7 Discussion

Time validity

A crucial point in any perturbation analysis is the time scale for which the obtained
approximate solution is valid. It has been shown in Sect. 2.3 that the solution given
by the reduced system is valid, at least, for a time scale τ = O(1/ε) –see Fig. 8–.

However, the situation is even better than that. From the Averaging Theory, it is
known [18], that the asymptotic approximations attained through averaging are valid
for all time, whenever they are attracted by a stable fixed point or a stable limit cycle.
In the latter case, the uniform validity holds for all variables except the angular one,
i.e. the variable measuring the flow on the limit cycle. As will be seen later, all the
numerical solutions obtained in this chapter fulfil the above condition of attraction.

Comparison with other authors’ results

In this subsection, the presented approach and results are compared to some proposed
by other authors.

First of all, as far as the authors know, there has been no attempt in the literature
to use the SPT for the analysis of nonideally excited systems. Thus, the analytical
procedure addressed in this Chapter appears to be a novel approach to the problem.

On the other hand, the possibility of a Hopf bifurcation on the right branch of the
vibration torque curve (Fig. 11b.2) has been addressed. An important implication of
this result is that the stability of the stationary solutions near resonance does not only
depends on the comparison between the slopes of the two torque curves (η ≶ d), as
commonly stated in the literature [9, 10, 12, 17]. Let us try to explain this divergence
in the results.
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Kononenko’s book [10] is one of the most relevant references in the subject. He
considered several linear and nonlinear systems excited by nonidealmotors. By using
the averaging method, he was able to analytically investigate the stationary motions
of the motor and their stability. His approach was as follows. Considering the rotor
speed to be in the vicinity of resonance, he expanded it as

φ̇ = 1 + Δ, Δ = εσ. (91)

Thus, he found equations of motion of the form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ȧ = O(ε)

β̇ = −εσ + O(ε)

Δ̇ = O(ε)

φ̇ = 1 + Δ

Δ = εσ

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

, (92)

which is a system analogous to (37). Then, he averaged (92) over the fast angle φ,
obtaining an averaged system of the form

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ȧ = O(ε)

β̇ = −εσ + O(ε)

Δ̇ = O(ε)

Δ = εσ

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

. (93)

This averaged system is completely analogous to system (39), obtained in the
present chapter. The only difference lies in the fact that Kononenko used the evolution
equation for Δ, instead of that for σ . This has an important consequence. From (39),
it is clear that σ is a fast variable, while a and β are slow. This property was exploited
in Sect. 2.3 to obtain a reduced 2D system (46), by using the SPT. The analysis of the
fixed points of this reduced system and their stability has revealed the possibility of
Hopf bifurcations, and conditions for their appearance have been derived in Sect. 2.4.
However, the form of the averaged Eq. (93), used by Kononenko, doesn’t evidence
so clearly the fact that σ is a fast variable. Then, instead of taking advantage of this
separation in the time scales through the SPT, he directly investigated system (93),
which did not allow him to obtain analytical conditions for the existence of Hopf
bifurcations.

While several authors followed Kononenko’s approach [9, 17], Blekhman
proposed a completely different one, based on the ‘method of direct separation
of motions’ [12]. With this procedure, he came to the conclusion that the system
dynamics is governed by equation

I φ̈ = Lm
(
φ̇
)+ V

(
φ̇
)

(94)
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where dimensional variables have been used. In (94), V
(
φ̇
)
represents the torque on

the rotor due to vibration. Based on this equation, Blekhman deduced the same result
as Kononenko regarding the stability of stationary solutions, namely, that stability
changes when the driving torque curve and the vibration torque curve are tangent.

It is worth noting that Blekhman’s approach is not applicable under the assump-
tions of the present chapter. The reason is that, in general, the torque on the rotor due
to vibration depends on the linear motion of the system, as observed in the second
of Eq. (1). This feature is maintained in the averaged system (39) obtained in this
Chapter, where the vibration torque appears as a function of a, β.

On the contrary, in [12], the vibration torque is written as a function of the rotor
speed –see (94), which implies neglecting the dynamics associated to variables a and
β. This would only be valid if the rotor speed was a much slower variable than those
associated to the linear vibration (a, β). To better understand this point, suppose that,
in system (1), the rotor inertia was O(1/ε), with the rest of the parameters being
O(1). Then, writing I = Ĩ/ε, system (1) would take the form

{
mẍ + bẋ + kx + λx3 = m1r φ̇2 cos φ + O(ε)

Ĩ φ̈ = ε
[
A + Dφ̇ + m1r ẍ sin φ

]
}
. (95)

With this particular scaling of the parameters, Blekhman’s approach would be
valid because the dynamics of linear motion would be much faster than that of the
rotor speed. Then, as predicted by the SPT, the variables associated to the linear
motion would be slaved to the rotor speed. This would in turn allow writing the
vibration torque as a function of the rotor speed, as in (94).

As pointed out above, the assumptions of the present chapter (7)–(9)are not
compatible with the results in [12], because the required difference in the time scales
of the different variables is not satisfied. This can be observed in the averaged system
(39), where we find

{
ȧ = O(ε), β̇ = O(ε), σ̇ = O(1)

}
.

More recently, Bolla et al. [14] used the Multiple Scales method to solve the
same problem studied in this Chapter, under the same assumptions. However, after
obtaining system (39), they conducted the stability analysis considering only the first
two equations in (39) and taking σ as a fixed parameter. As explained at the beginning
of Sect. 2.4, this corresponds to studying the ideal case, where the rotor speed is
externally imposed. Consequently, they did not find the Hopf bifurcations that have
been identified within this work. In fact, Bolla et al. explicitly stated the impossibility
of Hopf bifurcations: ‘This fact eliminates the possibility of a pair eigenvalue pure
imaginary, so this eliminates Hopf bifurcation kind’. Thus, the present Chapter can
be envisaged as an extension of [14], where new bifurcations are encountered due to
the nonideal interaction between motor and vibrating system.
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3 Numerical Simulations

This section presents two main purposes. First, a numerical investigation of the
reduced system (46) is conducted in order to analyse the global bifurcations of limit
cycles. While Sect. 2.5 studies how the Hopf bifurcations give rise to the appearance
of limit cycles, Sect. 3.1 gives some insight about the dynamicalmechanismswhereby
the limit cycles are destroyed. A second subsection is presented where, by comparing
numerical solutions of the original and reduced systems (10) and (46), respectively the
proposed approach is validated. The objective is to demonstrate that the conclusions
attained for the reduced system are also valid for the original system.

3.1 Global Bifurcations of the Limit Cycles

In Sect. 3.1, the creation of limit cycle oscillations (LCOs) throughHopf bifurcations
has been investigated. Now, the opposite question is examined: once a limit cycle
is born, does it exist for every d > dH in the supercritical case –for every d < dH
in the subcritical case–, or is it destroyed at any point? In the latter case, it would
also be interesting to know the dynamical mechanism which makes the limit cycle
disappear.

The aim of this Section is to analyse the global dynamics of the system, tracking
the evolution of the limit cycles in order to find out how they are destroyed –if
they are destroyed at all–. Since this task is in general too difficult to be carried out
analytically, we resort to numerical computation.

The Subcritical Case

Consider the following set of dimensionless parameters:

ξ = 1, α = 1, ρ = 0, aeq = 0.3, z = 1, (96)

which might be associated to dimensional parameters

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = 1 kg
k = 1 N/m

b = 0.002 Ns/m
m1 = 0.001 kg
λ = 0 N/m3

r = 0.1m
I = 5 · 10−3m2kg

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (97)

with ε = 0.001. Obviously, (97) s only one of the many possible sets of dimensional
parameters giving rise to (96).
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Fig. 17 Torque curves
corresponding to parameters
(96)

By using Eqs. (66) and (86), slopes dH and dP can be obtained, as depicted in
Fig. 17.

dH = −0.0715, dP = −0.1431 (98)

According to criterion (87), the Hopf bifurcation is found to be subcritical. Thus,
as represented in Fig. 12, an unstable limit cycle is known to exist for d < dH , within
a certain neighborhood of dH . We are interested in tracking the evolution of this limit
cycle as slope d decreases. By numerically integrating system (46), using embedded
Runge-Kutta formulae of orders 4 and 5, for different values of d, the limit cycle is
found to disappear at d = dC –see Fig. 17, with

dC = −0.0795 (99)

The dynamical mechanism whereby the limit cycle is destroyed, which turns out
to be a homoclinic bifurcation [26], is shown in Figs. 18 and 19 Let us follow the
evolution of the phase portrait. From Fig. 18a, b, the Hopf bifurcation takes place: the
focus becomes stable, while an unstable limit cycle is born around it. In Fig. 19a, the
cycle has swelled considerably and passes close to saddle point S. The homoclinic
bifurcation occurs when the cycle touches the saddle point (d = dC), becoming a
homoclinic orbit. In Fig. 19b, we have d < dC and the loop has been destroyed.

It is worth noting that, when the unstable limit cycle exists –namely, for dC <

d < dH–, it acts as a frontier between the domains of attraction of the two stable
equilibrium points of the system –see Figs. 18b, 19a.

Many other cases exhibiting a subcritical bifurcation, which are not shown here,
have also been numerically solved. In all of them, the unstable limit cycle has been
found to disappear through a homoclinic bifurcation.

The Supercritical Case

Consider the following set of dimensionless parameters:

ξ = 1, α = 2, ρ = −10, aeq = 0.5, z = 1, (100)
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Fig. 18 Phase portraits corresponding to parameters (96). The fixed points are marked with dots.
The dashed loop represents the unstable limit cycle a d = −0.070, b d = −0.073

which might be associated to dimensional parameters

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m = 1 kg
k = 1 N/m

b = 0.002 Ns/m
m1 = 0.001 kg
λ = −4 N/m3

r = 0.1m
I = 2.5 · 10−3m2kg

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (101)

with ε = 0.001. Equations (66) and (86) yield the values of slopes dH and dP ,
depicted in Fig. 20.
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Fig. 19 Phase portraits corresponding to parameters (96). The fixed points are marked with dots.
The dashed loop represents the unstable limit cycle a d = −0.078, b d = −0.081

Fig. 20 Torque curves
corresponding to parameters
(100)
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dH = −0.2165, dP = −0.1650 (102)

Criterion (87) allows characterizing thebifurcation as supercritical. Then, as repre-
sented in Fig. 12, it can be assured that a stable limit cycle encircles the unstable
equilibrium for d > dH , within a certain neighborhood of dH . As a matter of fact,
the results of Sect. 2.6 can be used here to investigate the range of slopes d for which
the limit cycle exists.

Consider the curve Tm which intersects Tv at the fixed point under study and is
tangent to curve Tv at some other point close to the peak. Let dT stand for the slope
of that particular torque curve, as displayed in Fig. 20. Then, it is straightforward
to show that, for dH < d < dT , conditions (89) are fulfilled and, consequently, it
can be assured that all system trajectories tend to a periodic orbit. In the case under
analysis, we have

dT = −0.1697 (103)

Note that the Poincaré-Bendixson Theorem gives sufficient, but not necessary,
conditions for the existence of a stable periodic orbit. Thus, it cannot be deduced
from the Theorem whether the limit cycle survives or not when d > dT . To the end
of answering this question, we resort again to a numerical resolution of system (46),
for increasing values of d. The results are displayed in Figs. 21 and 22.

Let us track the evolution of the phase portrait. In Fig. 21a we have d < dH and
all system trajectories are attracted towards the only fixed point of the system. It
may seem from Fig. 21a that trajectories are actually attracted towards a limit cycle
surrounding the fixed point. The reason for this false impression is that the attraction
of the fixed point is very weak, as it is close to becoming unstable (d is close to dH ).
Hence the required time for trajectories to approach the equilibrium is extremely
long.

Figure 21b corresponds to dH < d < dT . The Hopf bifurcation has occurred and,
therefore, the focus has lost its stability at the same time that a stable limit cycle has
appeared around it. Note that, in Fig. 21b, conditions (89) hold. Consequently, all
system trajectories are attracted towards a periodic orbit. Actually, Fig. 21b can be
observed as a particular example of the general picture shown in Fig. 16.

The numerical results mentioned above are only useful to confirm the analytical
developments of previous sections. By contrast, Fig. 22 does provide new informa-
tion about the global dynamics of the system. It shows that the stable limit cycle
is destroyed through a saddle-node homoclinic bifurcation [26], which occurs at
d = dT . This means that the cycle disappears exactly when conditions (89) are not
fulfilled anymore. The mechanism is as follows. At d = dT a new fixed point, which
immediately splits into a saddle and a node, is created through a saddle-node bifurca-
tion. This new equilibrium appears precisely on the limit cycle, transforming it into
a homoclinic orbit. What is found at d > dT , as observed in Fig. 22, is that the limit
cycle has been replaced by a couple of heteroclinic orbits connecting the saddle and
the node.
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Fig. 21 Phase portraits corresponding to parameters (100). The fixed points are marked with dots.
The solid loop represents the stable limit cycle. a d = −0.22, b d = −0.19

Fig. 22 Phase portraits
corresponding to parameters
(100), for d = −0.169. The
fixed points are marked with
dots



On the Stability and Long-Term Behaviour of Structural Systems Excited … 229

It has been shown that, for the particular set of parameters (100), conditions
(89) are necessary and sufficient for the existence of a stable limit cycle. Thus, the
periodic orbit never coexists with any other attractor of the system. Nevertheless, it
should be stressed that this is not always the case. In fact, cases have also been found
where the stable limit cycle is destroyed through a homoclinic bifurcation, just like
in the subcritical case. In these situations, the global bifurcation occurs at certain
slope dC > dT and, therefore, the limit cycle coexists with a stable equilibrium for
dT < d < dC .

As an example, consider a case with dH satisfying dT < dH < dP . Clearly,
according to (87), the Hopf bifurcation is supercritical. However, it is not possible
for the limit cycle to be destroyed through a saddle-node homoclinic bifurcation,
because the saddle and the node are created before the limit cycle. In fact, in these
cases, the closed orbit has been found to die in the same way as the unstable limit
cycle shown in Fig. 19., i.e. through a homoclinic bifurcation due to the presence of
a saddle point.

In summary, the simulations carried out suggest that, while unstable limit cycles
are destroyed by homoclinic bifurcations, the stable ones can disappear either through
homoclinic bifurcations or saddle-node homoclinic bifurcations.

3.2 Numerical Validation of Analytical Results

A Subcritical Case

Consider again the set of parameters given at (96), which gives rise to a subcritical
Hopf bifurcation, as depicted in Figs. 18 and 19. Two different scenarios are studied,
corresponding to the following slopes of the motor characteristic:

d1 = −0.078, d2 = −0.070. (104)

By comparing (104) with Figs. 18 and 19, it can be verified that, for d = d1, the
system has a stable focus surrounded by an unstable limit cycle, while, at d = d2,
the focus has become unstable through a Hopf bifurcation. As pointed out in Sect.
3.1, the unstable limit cycle for d = d1 is the boundary which separates the basins
of attraction of the two attracting fixed points present in the system–see Fig. 19a.

For d = d1, two sets of initial conditions, I.C. (1) and I.C. (2), are selected, outside
and inside the limit cycle, respectively:

I.C.(1)

{
a0 = 0.2

β∗
0 = −2.8

}
, I.C.(2)

{
a0 = 0.1

β∗
0 = −2.8

}
. (105)

Then, by using relations (47), corresponding initial conditions for the original
system can be computed:
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Fig. 23 Comparison of
numerical solutions of the
original (solid line) and
reduced (dashed line)
systems for parameters (96),
ε = 10−3 and
d = d1 = −0.078. a
Displacements b Rotor
Speed

I.C.(1)

⎧
⎪⎪⎨

⎪⎪⎩

u0 = 0.2
u̇0 = 0

φ0 = 2.8
φ̇0 = 1

⎫
⎪⎪⎬

⎪⎪⎭
, I.C.(2)

⎧
⎪⎪⎨

⎪⎪⎩

u0 = 0.1
u̇0 = 0

φ0 = 2.8
φ̇0 = 1

⎫
⎪⎪⎬

⎪⎪⎭
. (106)

Note that this step has not a unique solution, because different sets of original
initial conditions can produce the same reduced initial conditions.

The obtained numerical solutions are shown in Fig. 23, for ε = 10−3. A good
agreement between solutions of both systems is observed. Clearly, the two considered
sets of initial conditions lead the system to different attractors.

It is convenient to make here an observation about the size of parameter ε. The
procedure used in Sect. 2 to transform the original system into a simpler reduced
system is based on perturbation methods. These techniques are useful for dynamical
systems containing a small parameter ε, and they explain how such systems behave
for a sufficiently small ε. This means that the smaller ε is, the more accurate pertur-
bation predictions are. Figure 23 shows that, for the case under consideration, a value
of ε = 10−3 gives a remarkable accordance between solutions of the original and
reduced system. As an illustrative example, the same numerical computation is done,
for initial conditions I.C. (2) and ε = 10−2. This larger ε gives rise to a less accurate
prediction, as displayed in Fig. 24. The required ε to have an accurate result depends
on the case under study. For instance, in the following simulation (Fig. 25), it was
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Fig. 24 Comparison of
numerical solutions of the
original (solid line) and
reduced (dashed line)
systems for parameters (96),
initial conditions I. C. (2),
ε = 10−2 and
d = d1 = −0.078. a
Displacements b Rotor
Speed

Fig. 25 Comparison of
numerical solutions of the
original (solid line) and
reduced (dashed line)
systems for parameters (96),
ε = 10−4 and
d = d2 = −0.070. a
Displacements b Rotor speed
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necessary to take ε = 10−4 for a good matching between solutions of the exact and
approximate systems. However, in the majority of simulations conducted within this
work, ε = 10−3 proved to be small enough.

Consider now the case d = d2 where, according to Fig. 18a, the focus is unstable
and there is a unique attracting fixed point in the system. Initial conditions

I.C.(3)

{
a0 = 0.25

β∗
0 = −2.65

}
(107)

are selected for the reduced system, from which corresponding initial conditions for
the original system can be obtained:

I.C.(3)

⎧
⎪⎪⎨

⎪⎪⎩

u0 = 0.25
u̇0 = 0

φ0 = 2.65
φ̇0 = 1

⎫
⎪⎪⎬

⎪⎪⎭
. (108)

The original and reduced systems are numerically solved with ε = 10−4 and
initial conditions (108) and (107) respectively. The results are displayed in Fig. 25,
where it is clearly observed how the system moves away from the unstable focus, as
the oscillation amplitude increases, until it is attracted to the stable node.

A Supercritical Case

In order to observe limit cycle oscillations in the original system,weneed to consider a
casewhere a supercritical Hopf bifurcation occurs, giving birth to a stable limit cycle.
Thus, consider again the set of parameters given at (100) and a motor characteristic
with slope d = −0.19, which corresponds to the phase portrait exhibited in Fig. 21b.
With these parameters, the original system of Eq. (10) is numerically solved for
ε = 10−3 and initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

u0 = 0.1
u̇0 = 0
φ0 = 0
φ̇0 = 0

⎫
⎪⎪⎬

⎪⎪⎭
. (109)

The reduced system (46) is numerically integrated as well for comparison. The
associated initial conditions for the reduced system can be computed with the aid of
relations (47):

{
a0 = 0.1

β∗
0 = 5.263

}
. (110)
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With these sets of initial conditions, the obtained results for both systems are
represented in Figs. 26 and 27, exhibiting very good agreement.

It is worth stressing that, as depicted in Figs. 26 and 27, a new kind of behaviour
has been found for the mechanical system under study, which consists in a vibratory
motion of the structure with slowly oscillating amplitude, due to the nonideal inter-
action between exciter and vibrating system. The periodic solutions of the averaged
system correspond to quasiperiodic solutions of the original one.

This type of motion had not been addressed before, to the authors’ knowledge, in
the literature about nonideal excitations. Note that the LCOs give rise, in this case,
to very large variations of the amplitude. Thus, the effect of the studied instability
may be of great importance in real applications.

Fig. 26 Comparison of
displacements obtained by
numerical resolution of the
original (solid line) and
reduced (dashed line)
systems for parameters
(100), ε = 10−3 and
d = −0.19

Fig. 27 Comparison of the
rotor speed obtained by
numerical resolution of the
original (solid line) and
reduced (dashed line)
systems for parameters
(100), ε = 10−3 and
d = −0.19 a Full view b
Close-up around resonance
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4 Summary and Conclusions

The present chapter contains a detailed analytical and numerical investigation of
the dynamics of a 2-DOF mechanical system, consisting in an unbalanced motor
connected to a fixed frame through a nonlinear spring and a linear damper. Thismodel
intends to constitute a simplified representation of a general unbalanced rotating
machine, with the purpose of analyzing the kinds of nonlinear behavior that might
be found in real applications.

In addition to the nonlinearity of the spring, a peculiar type of nonlinearity appears
if the excitation is nonideal, i.e. if there is a significant bidirectional interaction
between the system vibration and the rotation of the motor. The combination of
these two types of nonlinearity gives rise to a rich dynamic behavior that can be
studied analytically and numerically.

The main contributions presented in this chapter are summarized below.

• A novel analytical approach to the problem, which combines an averaging proce-
dure with the Singular Perturbation Theory (SPT), has been proposed. It is worth
stressing that, although both the SPT and the Averaging Method are actually clas-
sical in nonlinear dynamics, they had not been used together before in the context
of nonideal excitations. Thanks to this novel combination of perturbation tech-
niques, the original 4D system is transformed into a reduced 2D system, much
easier to analyse.

• The conditions for stability of equilibria of the reduced system have been analyt-
ically derived. Transcritical and Hopf bifurcations have been found. The Hopf
bifurcation is particularly relevant, for it gives rise to a smaller stable region than
predicted by conventional theories. Consequently, not taking it into account may
be perilous for real applications, since unexpected instabilities could occur.

• TheHopf bifurcations have been analytically investigated, in order to characterize
them as subcritical or supercritical. A very simple criterion, with clear graphical
interpretation, has been obtained to distinguish both types of bifurcations.

• The Poincaré-Bendixson Theorem has been used to find conditions under which
all trajectories in the averaged system are attracted towards a periodic orbit,
corresponding to a quasiperiodic solution of the original system.

• The global bifurcations destroying the stable and unstable limit cycles have
been numerically investigated. These simulations suggest that unstable LCOs are
destroyed through homoclinic bifurcations, while stable LCOs can be destroyed
either through homoclinic bifurcations or through saddle-node homoclinic
bifurcations.

• When an unstable limit cycle exists, the system exhibits two stable equilibrium
points, whose domains of attraction are clearly delimited by the periodic orbit.

• The presence of LCOs in the problem under study has been confirmed by numer-
ically solving the original system of equations. An excellent agreement between
the solutions of the original and reduced systems has been found. In addition,
numerical results show that LCOs can produce very significant variations in the
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vibration amplitude, which suggests that the addressed instability might be of
great relevance in real applications.

• All the analytical developments presented here have been validated by comparing
numerical solutions of the original and reduced systems. In particular, the Hopf
bifurcation existence has been numerically proved, not only for the reduced
system, but, more importantly, also for the original system of equations.

Appendix

This section provides the expressions of parameters fi j and gi j in Eq. (80). These
are simply the coefficients of the nonlinear terms of system (79), which result when
system (73) is transformed according to change of variables (76),

f20 = −3ρaR

4c2

(
3c21 + c22

)− 2c1

(
2ξ

aR
+ 3

4
ρa2

)
(A.1)

f02 = −9ρaRω2
0

4c2
(A.2)

f11 = −3

4
ρω0a

(
a + 3R

c1
c2

)
− 2ξω0

aR
(A.3)

f30 = 9ρc1
4c2

(
c21 + c22

)
(A.4)

f03 = 9ρω3
0

4c2
(A.5)

f21 = 3ρω0

4c2

(
3c21 + c22

)
(A.6)

f12 = 9c1ρω2
0

4c2
(A.7)

g20 =
(
c21 + c22

)

ω0

[
9ρa

4

(
R
c1
c2

+ a

)
+ 4ξ

aR

]
(A.8)

g02 = 3ρω0a

4

(
a + 3R

c1
c2

)
(A.9)

g11 = 3

2
ρa2c1 + 3ρaR

4c2

(
3c21 + c22

)+ 2ξc1
aR

(A.10)
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g30 = − 9ρ

4ω0c2

(
c21 + c22

)2
(A.11)

g03 = −9c1ρω2
0

4c2
(A.12)

g21 = −9c1ρ

4c2

(
c21 + c22

)
(A.13)

g12 = −3ρω0

4c2

(
3c21 + c22

)
, (A.14)

where aeq and Req have been shortly written as a and R, respectively.
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Abstract This work proposes the attenuation of the Sommerfeld effect (jump
phenomenon) present in a non-ideal oscillator thought the use of different nonlinear
controllers. The non-ideal system is composed of a beam-like mechanical struc-
ture excited by a limited power supply, in this case an unbalanced direct current
motor. Two different control techniques are considered. The first controller has its
feedback gain obtained through the SDRE (State-Dependent Riccati Equation) tech-
nique in conjunction with a feedforward gain. The second controller is based in the
SMC (Sliding Mode Control) technique. Numerical simulations show that the two
proposed control strategies are effective in suppressing the jump phenomenon, and
thus keeping the structure vibration of the studied system at desirable levels.
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1 Introduction

The Sommerfeld effect is a resonance phenomenon that arises from the interaction
between a non-ideal energy source with the mechanical structure. The energy source
influences the mechanical structure, which in turn influences and exchanges energy
with the source, in a two-way effect. The nomenclature of non-ideal energy source
comes from the fact that the power supply provides limited energy to the system,
thus being a characteristic of all real energy sources [1–6].

The first researcher who studied this phenomenon was Arnould Sommerfeld in
1902 [7]. Through a simple experiment, which consisted of an unbalanced DC elec-
tric motor fixed on a table, Sommerfeld realized that as the motor rotational speed
approached the critical speed of the mechanical structure, the increase in voltage
no longer corresponded to the increase in motor speed, but the vibration amplitudes
continued to increase. This behavior was not expected, as direct current motors have
their angular speed directly proportional to the armature voltage. Moreover, this
behavior quickly changes when the system reaches a critical point, where the vibra-
tion amplitudes suddenly drop to low levels and the motor speed increases return to
the values corresponding to the applied voltage, thus generating a jump phenomenon
in the vibration amplitude graphs in relation to themotor angular velocity [2, 4, 8–10]

Some works have proposed methodologies to suppress the jump effect, because
this effect if is unwanted as it represents a loss of system energy, aswell as resulting in
an amplification of the mechanical vibrations. Reference [11] proposed to include a
friction element in a non-ideal structural system to eliminate the Sommerfeld effect.
In [4] is considered a semi-active control using a magnetorheological damper for
reducing the resonance vibrations of a non-ideal structure in an active way. Refer-
ence [12] considered a shape-memory alloy to attenuate the vibration and Sommer-
feld effect of a non-ideal type oscillator. In [13] is considered a snap-through truss
absorber for attenuation of the jump phenomenon in an oscillator under excitation
of an electric motor with an eccentricity and limited power.

In this work is proposed the use of an active control in order to attenuate the
Sommerfeld effect and the vibration amplitudes of a non-ideal mechanical oscillator.
TheNIS studied is composed of a beamand an unbalanced electricmotorwith limited
power supply. For the active control of the system are considered two techniques.
The first being a controller that uses a portion of feedback gain and another portion
of feedforward gain and the second controller is based in the sliding mode control
technique.

2 Mathematical Model

Figure 1a shows the mechanical part of the non-ideal system. In this figure,m1 is the
mass of the cart with the motor, m2 is the motor unbalance mass, r is the length of
the unbalance axis and ϕ is the position angle of the motor shaft. k and c represent
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a) b)

Fig. 1 aNon-idealmechanical system (NIS). b electrical schematic representation of theDCmotor

the stiffness and damping of the mechanical structure, respectively. Motor unbalance
will cause vibration, with displacement x [4, 9, 14, 15].

The mathematical model that represents the dynamics of the system shown in
Fig. 1 is developed using Lagrange’s energy method, where the Lagrange’s function
is expressed as:

L = Ek − Ep (1)

whereEk is the kinetic energy, andEp is the potential energy. The equations ofmotion
can be obtained through the Euler–Lagrange equation, given by:

d

dt

(
∂L

∂ Q̇i

)
− ∂L

∂Qi
= Ii (2)

where i = 1, 2,..., N. N is the number of degrees-of-freedom, Ii ’s are the non-
conservatives forces, Qi’s are the generalized coordinates, being that Q1 = x , and
Q2 = ϕ.

The kinetic energy is given by:

Ek = 1

2
m1 ẋ

2 + 1

2
J ϕ̇2 + 1

2
m2

(
(ẋ − ϕ̇r sin(ϕ))2 + (ϕ̇r cos(ϕ))2

)
(3)

where: J is the moment of inertia, ϕ̇ is the rotational speed, m2 is the unbalanced
mass.

The potential energy is given by:

Ep = 1

2
kx2 (4)

The non-conservatives forces are given by:

I1 = −cẋ (5)
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Substituting Eqs. (3), (4) into Eq. (1), and substituting the result accounting for
Eq. (5) into Eq. (2), we obtain:

Mẍ + cẋ + kx = mr(ϕ̇2 sin(ϕ) + ϕ̈ cos(ϕ))

(J + mr2)ϕ̈ = mrx cos(ϕ̈) + Te (6)

where: M = m1 + m2

The electrical part, shown in Fig. 1b, refers to the circuit of a direct current motor.
In this circuit, Va is the applied armature voltage, I is the armature current. Ra and
La are the resistance and inductance of the armature, respectively. EA is the counter-
electromotive force (CEMF) and in the case of constant flux can be directly related
to the rotational speed of the motor as Ea = keϕ̇, where ke is the electrical constant.
Using the Kirchhoff’s circuit laws will have:

Va = Ra I + La İ + Ea (7)

This is the voltage equation for the armature circuit of a DC motor. To obtain the
motor torque equation, it is necessary to analyze its mechanical structure, where the
torque experienced by the motor windings Te can be directly related to the armature
current as Te = kt I , where kt is the torque constant. The equation of motion for a
DC motor is given by:

Te = J ϕ̈ + bϕ̇ + Tl (8)

where: J is the inertia, b is the coefficient of viscous friction and Tl is the load torque.
In this paper Tl will be neglected.

Coupling the elements of inertia, as well as relating the displacement of the
mechanical structure to the angular displacement of the motor, it is possible to obtain
the following set of equations, this being the set of dynamic nonlinear equations for
the non-ideal system shown in Fig. 1.

Mẍ + cẋ + kx = mr(ϕ̇2 sin(ϕ) + ϕ̈ cos(ϕ))

(J + mr2)ϕ̈ = mrx cos(ϕ̈) + kt I

La İ = Ra I − ke I + Va (9)

Equation (9) can be written in state-space notation as follows:

ẋ1 = x2

ẋ2 = �
(
α1x5 cos(x3) − α2x

2
4 sin(x3) − α3x2 − α4x1

)
ẋ3 = x4

ẋ4 = �
(−β1x

2
4 sin(x3) cos(x3) − β2x2 cos(x3) − b3x1 cos(x3) + β4x5

)
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ẋ5 = −c1x5 − c2x4 + c3 (10)

where: x1 = x , x2 = ẋ , x3 = ϕ, x4 = ϕ̇, x5 = I , α1 = ktmr , α2 = m2r3 + Jmr ,
α3 = cmr2 + cJ , α4 = kmr2 + k J , α5 = Mmr2 + JM , β1 = m2r2, β2 = cmr ,
β3 = kmr , β4 = Mkt , c1 = Ra

La
, c2 = ke

La
, c3 = V

La
and � = 1

−β1 cos(x3)2+α5
.

3 Numerical Simulations

The numerical simulations are carried out accounting for the following parameters:
m1 = 0.13, m2 = 0.005, k = 399, c = 0.077, t = 0.015, Ra = 51, J = 9 × 10−7,
J = 2.82 × 10−6, La = 0.004, kt = 0.0663 and km = 0.0663.

Figure 2 shows the results for the jump phenomenon according to the motor shaft
angular frequency and the voltage applied to the armature.

Considering the process of increasing the electrical voltage (V ), the jump
phenomenon occurs when the motor reaches 56 rad/s and 8.5 V. After this point,
if the voltage increase is maintained, the system returns to the linear and normal
operation expected. Due to the effect of the coupling between the motor and the

           a)                                                                           b) 

c)

Fig. 2 Jump phenomenon. a Frequency response diagram. b Jump phenomenon due to the applied
voltage in the DC motor. c Angular frequency response by voltage
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          a)                                                                              b) 

Fig. 3 Dynamics of the systems considering x1. a Time history. b Phase plane for x1 versus x2

mechanical structure, the system has its operation weakened and it is realized that
between 3.5 and 8.5 V all the increase of voltage in the motor serves almost solely to
increase the amplitudes of vibration and not the rotation of the motor. This disrup-
tion of the direct relationship between electrical voltage and motor rotation can be
clearly seen in Fig. 2c. The effect of converting electrical energy into mechanical
vibration can also be observed during the process of decreasing the electrical voltage.
However, as this is a non-linear system and that it depends on its initial conditions,
the Sommerfeld effect of the voltage decrease process occurs at a different point
than that of the increasing voltage process, in this case occurring when the motor
reaches 55.5 rad/s and 5.3 V. This conversion of electrical energy into mechanical
vibration energy is one of the biggest problems of this type of system, being respon-
sible for reducing the efficiency of the electric motor, as well as reducing the angular
frequencies available for the project.

In Fig. 3 it is possible to observe the behavior of the system (11), considering a
voltage of 3 V applied to the DC motor.

As can be seen in Fig. 3, when the motor is powered with 3 V, the vibrations of the
structure are low, showing a periodic behavior with a unit period after the transient
period.

Considering the behavior of x1 shown in Fig. 3, the following displacement
equation for x1 can be determined:

x̃1 = 0.001113 sin(44.88t)

x̃2 = 0.05 cos(44.88t) (11)
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3.1 Nonlinear Control Project

Considering that the objective is to eliminate the Somerfield effect observed in x1,
the following control signal (U) can be introduced in Eq. (10) [9, 14, 16, 17]:

ẋ1 = x2

ẋ2 = �
(
α1x5 cos(x3) − α2x

2
4 sin(x3) − α3x2 − α4x1

) +U

ẋ3 = x4

ẋ4 = �
(−β1x

2
4 sin(x3) cos(x3) − β2x2 cos(x3) − b3x1 cos(x3) + β4x5

)
ẋ5 = −c1x5 − c2x4 + c3 (12)

Since the objective of the control signal (U) is to control the displacement of x1,
the control design can be obtained by considering only the first two equations of (12).
In addition, the states x3, x4 and x5 will be considered disturbances in the system [9].

ẋ1 = x2

ẋ2 = �
(
α1x5 cos(x3) − α2x

2
4 sin(x3) − α3x2 − α4x1

) +U (13)

3.2 Proposed SDRE Control

The vector control U for the Optimal Linear feedback control consists of two parts:
U = ũ+u, where u is the optimal feedback control and ũ is the feedforward control
gain, the last one responsible for maintaining the system in the desired trajectory.
The feedforward gain is given by:

ũ = −�
(
α1x5 cos(x3) − α2x

2
4 sin(x3) − α3 x̃2 − α4 x̃1

)
(14)

Substituting Eq. (14) into Eq. (13), and defining the deviation of the desired
trajectory as:

e =
[
x1 − x̃1
x2 − x̃2

]
(15)

where x̃1 and x̃2 are the trajectories desired. The system can be represented in the
following form:

ė1 = e2
ė2 = −�α3e2 − �α4e1 + u (16)
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Or in matrix form as:

Pe = Ae + Bu (17)

The control u is optimal and it transfers the nonlinear system of Eq. (16) from
any initial state to the final state e(∞) = 0.

Minimizing the cost functional to:

J =
∫ ∞

0

(
eTQe + uTRu

)
dt (18)

the control u can be found solving the following equation:

u = −R−1BTPe (19)

BeingP a symmetricmatrix, theAlgebraic Riccati Equation is developed, denoted
by:

PA + ATP − PBR−1BTP + Q = 0 (20)

The matrices A and B may be represented by:

A =
[

0 1
−�α4 −�α3

]
, B =

[
0
1

]
and by definition: Q = 104

[
103 0
0 1

]
and

R = 10−4.
In Figs. 4, it is observed the jump phenomenon suppression using the proposed

control U = ũ + u, considering x̃1 and x̃2 obtained in the Eq. (11).
As can be seen in the results presented in Fig. 4, using the proposed control

(U = ũ + u), it is possible to eliminate the jump effect, keeping the displacements
in the desired amplitude and frequency.

3.3 Proposed Sliding Mode Control

For the sliding mode control, the sliding surface is generally given by [18, 19]:

s = e2 + λe1 (21)

The existence of the slidingmode requires the following conditions to be satisfied:

s = e2 + λe1
ṡ = ė2 + λe1 (22)
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           a)                                                                           b) 

c)

Fig. 4 Jump phenomenon suppression by SDRE control. a Frequency response diagram. b Jump
phenomenon due to the applied voltage in the DC motor. c Angular frequency response by voltage

where λ represents a real number.
Equation (21) defines the output of the sliding mode control, while the reaching

law is given by [18, 19]:

U =

⎧⎪⎨
⎪⎩

Umax i f s
μ

< −1

−Umax i f s
μ

> 1

Ksmcs i f − 1 < s
μ

< 1

(23)

where μ is the layer thickness of the control, Ksmc is a proportional gain, and Umax

is related to the saturation value. The parameters μ and Ksmc are positive constants
[18, 19].

In Figs. 5, it is observed the jump phenomenon suppression using the Proposed
sliding mode control for parameters: μ = 10−3, Ksmc = 103 and Umax = 100.

It can be seen in Fig. 5 that the proposed control using the sliding mode control
was also efficient in suppressing the jump effect, keeping the displacements in the
desired amplitude and frequency.
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           a)                                                                           b) 

c)

Fig. 5 Jump phenomenon suppression by Sliding Mode control. a Frequency response diagram. b
Jump phenomenon due to the applied voltage in the DC motor. c Angular frequency response by
voltage

4 Conclusions

This work presented two control techniques for suppression of the Sommerfeld effect
of a non-ideal system, i.e., a system where the excitation source is influenced by
its own performance, losing energy in the process that serves only to amplify the
vibration amplitudes.

The numerical results showed that both the SDRE and SMC controls are efficient
in suppressing the jump effect, keeping the vibration amplitudes at desired levels as
well as the motor voltage.
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Abstract This paper presents two control techniques for a non-ideal system with
chaotic behavior. To place and maintain the system in a periodic orbit, the techniques
of Time Delayed Feedback Control and Continuous-Delay Control with Satura-
tion are considered. The non-ideal system presented is composed of a mass-spring-
damper system, with cubic stiffness, and an external excitation from a power limited
DC electric motor driven by an unbalanced rotating mass that provides the non-ideal
excitation. To suppress the chaotic behavior, additional damping is considered for the
mechanical system, and the damping force is estimated by the proposed control strate-
gies. Dynamic analysis of the system is performed by various techniques, including
bifurcation diagrams, phase portraits, power spectral densities, and 0–1 test. Numer-
ical simulations demonstrate the effectiveness of the control strategies leading the
system to a stable periodical orbit.
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1 Introduction

The study of vibrating systems for the casewhere the external excitation is influenced
by the system response has attracted many researchers, because its problem is a
great challenge in both theoretical and practical engineering. When the excitation is
influenced by the system response or for which the power supply is limited it is a
non-ideal system [1]. Usually, these systems are consideredwhenmotors are coupled
to structures that need excitation power levels similar to the power capacity of these
motors [1–3].

In many cases, the non-ideal nonlinearities of the system can lead the system to
the jump effect (Sommerfeld effect) [1, 4, 5], or to chaotic behavior [6], as observed
in this work. These behaviors are undesirable in most cases, as they can cause data
to the system [7], being necessary to suppress them.

In this paper, control, and dynamic analysis of a nonideal system are applied and
investigated. The 0–1 test is used to investigate the chaotic behavior of the system.
To suppress the chaotic motion, the Time Delayed Feedback Control (TDFC) and
Continuous-Delay Control with Saturation (DCSC) are applied.

The TDFC is originally proposed by Pyragas [8], who considered a continuous
control input that stabilizes a chaotic oscillation under the difference between the
velocity current output and the previous velocity one [8–10], and successfully applied
in nonideal system [9].

TheDCSC is proposed in [11], to control a non-ideal systemwith chaotic behavior,
and successfully applied to nonideal systems [12, 13].

The 0–1 test is originally proposed by [14]. The method consider a time series
data, based on the statistical properties of a single variable, and analysing its spectral
and statistical properties by considering the asymptotic properties of a Brownian
motion [14–18].

2 Mathematical Model

The system presented in Fig. 1, represents a nonideal oscillator, and consists of a
structure ofmassm1 connected to a damper and to a nonlinear springwith a nonlinear
cubic stiffness. The proposed system is excited by a nonideal DCmotor characterized
by the moment of inertia JM and the unbalanced mass m0 with eccentricity r. The
physical schematics of the DC motor is shown in Fig. 1b. [6, 7, 9, 19, 20].

The equations of motion of the non-ideal system are given by [6, 9]

m1 ẍ + μẋ − k1x + k2x
3 = m0r

(
φ̇2 sin φ − φ̈ cosφ

)

(
J + mor

2
)
φ̈ = CM�I − m0r ẍ cosφ

İm = − Rt

Lt
Im − CE�

Lt
φ̇ + Um

Lt

(1)
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(a) (b)

Fig. 1 a Non-ideal oscillator and b the DC motor in the electrical schematics

where CM , CE are mechanical and electrical constants, respectively. The magnetic
flux is represented by� andω(t) is the angular velocity of the rotor. It is assumed that
the external exciting current Im and voltage Um are constants and then the magnetic
flux � is constant.

The dimensionless mathematical model represented in state-space notation, for
the system (1) can be expressed by the following system of equations [9]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = A

(
w1

(
x24 sin x3 − p3x5 cos x3

) − βx2 + x1 − δx31
)

ẋ3 = x4
ẋ4 = A

(
p3x5 − w2w1x24 sin x3 cos x3 + w2βw cos x3 − w2 cos x3

(
x1 − δx31

))

ẋ5 = −p1x5 − p2x4 + ν

(2)

where x1 = x , x2 = ẋ1, x3 = ϕ, x4 = ϕ̇ and x5 = I , and the dimensionless
parameters are denoted by

ω2
0 = k1

m1+m0
, β = μ

m1ω0
, δ = k2

k1
x20 , w1 = m0r

m1x0
, w2 = m0r x0

(J+m0r2)
, p1 = Rt

Lt I0ω0
,ν =

Um
Lt I0ω0

, p2 = CE�
Lt I0

, p3 = CM�I0
(J+m0r2)ω2

0
and A = 1

1−w1w2(cos x3)2
.

3 Numerical Results

For numerical simulation is considered the parameters: δ = 0.1,w1 = 0.2,w2 = 0.3,
p1 = 0.3, p2 = 3, p3 = 0.15, β = 0.0337, ω0 = 46.4 and 2 ≤ ν ≤ 7, along with
the initial conditions:xi (0) = 0, where i = 1:5 [9]. Where the integration step is
considered by h = 0.001.
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Fig. 2 a Bifurcation diagram. b 0–1 test

In Fig. 2 one can observe the Bifurcation diagram and 0–1 test, for the system (2)
considering:2 ≤ ν ≤ 7.

As can be seen in Fig. 2a for certain values of (v) the system (2) has periodic or
chaotic behavior. Considering the results of the 0–1 test presented in Fig. 2b, one
can observe that the system is chaotic for values of (κ) close to 1 and periodic for
values of (κ) close to zero [21, 22].

In Fig. 2 one can observe the chaotic behavior of the system (2) for ν = 5.4
(κ = 1).

As can be seen in Fig. 2 the system (2) without control has a chaotic behavior.

4 Chaos Control

To eliminate the chaotic behavior presented by the system, the proposed control
techniques are introduced as a control signal U, given by:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = A

(
w1

(
x24 sin x3 − p3x5 cos x3

) − βx2 + x1 − δx31
) +U

ẋ3 = x4
ẋ4 = A

(
p3x5 − w2w1x24 sin x3 cos x3 + w2βw cos x3 − w2 cos x3

(
x1 − δx31

))

ẋ5 = −p1x5 − p2x4 + ν

(3)

4.1 Chaos Control by Time Delayed Feedback Control

The TDF control, was originally suggested by the author of [8], being obtained by
the difference between the past and current velocity for a given sampling time [8,
9]. Thus, assuming that the oscillation speed (x2) can be measured, the TDF control
signal UT DFc is given as:
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UT DFc = kT DFc[x2(τ − T ) − x2(τ )] (4)

where T is the time delay and kT DFc the feedback gain.
Figure 4 shows the 0–1 test for different feedback gain intervals of the 0 ≤

kT DFc ≤ 10, with fixed T = 1.133.
As can be seen in Fig. 4 for gains of (kT DFc ≥ 0.1), the control (4) takes the

system (3) to a periodic behavior, considering that (U = UTDFc).
In Fig. 5 we can observe the system (3) with TDF control (U = UTDFc) and

parameters: kT DFc = 0.3 and T = 1.133.
As can be seen in Fig. 5 the TDF controlled the system to a chaotic behavior for

a periodic with a small control signal (Fig. 3d).

(a)                                                                 (b) 

(c)                                                         (d) 

Fig. 3 a Time history of the states x1. b Time history of the states x2. c Phase diagram to x1 versus
x2. d Power spectral density (FFT) to x2
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Fig. 4 0–1 test for0 ≤ kT DFc ≤ 10 and T = 1.133

       (a)                                                                         (b) 

(c)                                                                         (d)

Fig. 5 a Time history of the states x1. b Time history of the states x2. c Phase diagram to x1 versus
x2. d Signal control UT DFc
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Fig. 6 0–1 test
for0.5 ≤ α ≤ 10 and β = 1

4.2 Suppression of Chaotic Behaviour by Continuous-Delay
Control with Saturation

The Continuous-Delay Control with Saturation (CDCS), was proposed by [11] to
control a non-ideal system with chaotic behavior, and successfully used in other
nonideal mechanical systems [12, 13].

The Continuous-Delay Control with Saturation signal (UCDCS) is given as
[12, 13]:

UCDCS = αtanh(βx2) (5)

where α and β are positive constant.
Figure 6 shows the 0–1 test for system (3) with (U = −UCDCS) and different f

gain intervals of the 0.5 ≤ α ≤ 10, with fixed β = 1.
As can be seen in Fig. 4 for gains of (0.5 ≤ α ≤ 8.2), the control (5) takes the

system (3) to a periodic behavior, considering that (U = −UCDCS).
In Fig. 7 we can observe the system (3) with continuous-delay control with

saturation (U = −UCDCS) and parameters: α = 0.5 and β = 1.
As can be seen in Fig. 7 the CDCS control drove the system to a chaotic behavior

for a periodic with a small control signal (Fig. 7d).

5 Conclusions

To control the chaos of the non-ideal systempresented in Eq. (2), TimeDelayed Feed-
back Control and the Continuous-Delay Control with Saturation are considered to be
projected and applied. The efficiency of two techniques was demonstrated through
numerical simulations in order to eliminate the chaotic behavior of the system, and
it was efficient to maintain the amplitude of the non-ideal systems in the periodic
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(a)                                                                         (b)

(c)                                                                         (d) 

Fig. 7 a Time history of the states x1. b Time history of the states x2. c Phase diagram to x1 versus
x2. d Signal control UCDCS

orbit. As can be seen in Figs. 5c and 7c, both controls took the system to the same
orbit with practically the same control signal, as can be seen in Figs. 5d and 7d.

Appendix

A.1. The 0–1 Test Method

The 0–1 test consists of estimating a single parameter κ by [17]:

κ = cov(Y, M(c))√
var(Y )var(M(c))

(A1)

where: c ∈ (0, π), M(c) = [M(1, c), M(2, c), . . . , M(nmaxc)] and Y =
[1, 2, . . . , nmax ].

If κ is close to 0 the system is periodic. On the other hand, if κ is close to 1 the
system is chaotic. The test utilizes a system variable x( j), where two new coordinates
(p,q) are defined as follows [18]:
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p(n, c) =
n∑

j=0

x( j) cos( jc) (A2)

q(n, c) =
n∑

j=0

x( j) sin( jc) (A3)

The mean square displacement of the new variables p(n, c) and q(n, c) is given
by [18]:

M(n, c) = lim
n→∞

1

N

N∑

j=1

[
(p( j + n, c) − p( j, c))2 . . . + (q( j + n, c) − q( j, c))2

]

(A4)

where n = 1, 2, . . . , N .
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Abstract Themathematicalmodelling and control of a nonlinear systemcomprising
of a rotating flexible beam-like structure driven by a non-ideal DC motor and inter-
acting with a surrounding quiescent fluid is investigated here. The flexible structure
is mathematically modeled considering linear curvature and clamped-free boundary
conditions. This structure has an angle of attack which is considered constant in
this work. Nonlinearities resulting from the coupling between the angular velocity
of the rotating axis and the transversal vibration of the beam are considered. The
interaction between the structure and the fluid is considered through the inclusion
in the mathematical model of the system of a drag force and of a lift force acting
along the beam length. These forces are considered velocity dependent nonlinear
external excitations. In the mathematical model investigated here, the direct current
(DC) motor, responsible for the angular displacement, interacts with the structure
being moved and this structure interacts with the DC motor, characterizing what is
conventionally called a non-ideal system. It is one of the objectives of this research
to investigate the degree of this interaction. The system studied here is a nonlinear
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1 Introduction

The mathematical modeling, dynamics and control of nonlinear rotating flexible
beam-like structures compose an area of continuing interest to researchers and scien-
tists around the world due to the wide range of application of such structures in
research areas as distinct as aerospace, naval and oceanic engineering. The main
objective of these studies is, in general, the design of more lightweight and faster
structures. For the purposes forwhich they are intended, it is essential that the designer
takes into account the stability of these complex structures, as well as the control or
reduction of their mechanical vibrations.

The inclusion of the aerodynamic drag and lift effects (in a simple—as in this
work—or in a more complex manner) in the mathematical model of such flex-
ible rotating structures incorporates the interaction between these structures and the
surrounding fluid. This interaction can significantly alter the control performance
and efficiency. But this type of interaction, despite being present in real systems and
despite its importance, is not the main subject of this work.

The main interaction discussed in this work involves the energy transference
between the actuator (sometimes identified as the energy source) and the system on
which it is acting (the flexible structure) through an ideal and a non ideal system
approach [1, 2]. In dealing with these kind of rotating structures, the interaction
between the angular displacement and velocity of the rotating axis and the deflection
of the structure can be very important in some cases, as in high angular speed maneu-
vers [3–5]. In fact, in the case where a linear model is assumed for the curvature of
the flexible structure, the governing equation of motion of the beam is nonlinear due
only to the presence of terms that represent its interaction with the rotating axis. On
the other hand, and since terms associated with the beam also appear in the mathe-
matical model related to the motor shaft, the angular displacement and velocity that
are driving the beam are not known as long as the beam equations are not integrated.
In other words, the whole set is integrated at the same time.

Because of its mechanical characteristics these structures are vulnerable to any
external or internal disturbances. The undesired oscillations along the structure must
be eliminated with some appropriate vibration control design. In the discussion
presented here, in addition to the elimination of vibration in the structure, one wants
also the angular velocity of the rotating axis to be kept constant, which asks for
another control action.

The flexible structures like the one presented here belong to a class of systems
named continuous or distributed parameter systems. In order to actuate along these
structures one must uses specific devices such as piezoelectric actuators [6, 7]. The
forces developed in these actuators, in order to realize its tasks, must follow some
control law.

Besides all the particularities and difficulties commented above, the system inves-
tigated here is also underactuated [8], what means that it belongs to a class of
dynamical systems which are characterized by the fact that they have fewer actu-
ators than the number of degrees of freedom. The underactuation condition in the
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problem investigated here comes from the ascension degree of freedom, which is not
controlled.

This class of systems asks for a specific class of nonlinear control methods. The
nonlinear control technique for underactuated nonlinear systems used in this work
is the partial feedback linearization [9, 10].

The part of the dynamics corresponding to the actuated degrees of freedom is
linearized by nonlinear feedback. The part related to the degrees of freedom which
are not controlled is not linearized and constitutes what is called the zero dynamics,
whose analysis is crucial to the understanding of the response of the overall system
[11, 12].

2 The Geometric Model

The geometric model of the system investigated in this work is presented in Fig. 1.
This system comprises a rigid cylindrical body connected to a flexible beam-like

structure in rotation about Z axis and the whole set is interacting with a quiescent
fluid. The fluid effect on this structure is represented in this work by the drag, D(x,
t) and the lift, L(x, t), forces. These forces are not represented on the figure.

The drag and lift forces, as considered in this work, are functions of the velocities
ν̇(x, t) and θ̇(t). The lift is also a function of the vertical velocity ṡ(t). The model for
the lift uses strip theory, and no tridimensional effects are included.

In Fig. 1, the inertial axis is represented by XYZ and the moving axis (attached
to the system and rotating with it) is represented by xyz.

3 The Mathematical Model

The governing equations of motion for the system depicted in Fig. 1 are obtained
through the energy method [13, 14]. The application of this method requires knowl-
edge of the kinetic, potential and strain energies stored in the system (hub and flexible
structure) during the time evolution.

The total kinetic energy, T, of the system is given by:

T = 1

2
mhubṡ

2 + 1

2
Ihubθ̇

2 + 1

2

L∫

0

ρA[θ̇2(r + x)2 − 2θ̇(r + x)ν̇ sin α

+ ν̇2 + ν2 sin2 α θ̇2 + 2ν̇ cos αṡ + ṡ2]dx (1)

In Eq. (1) (and Fig. 1), θ(t) represents the angular displacement of the hub axis,
s(t) represents the vertical displacement of the system, r represents the radius of the
hub, α represents the angle of attack of the beam, v(x, t) represents the transversal
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Fig. 1 The rotating flexible beam system interacting with a fluid

displacement of the beam, ρ represents the density of the material that composes the
beam, A represents the beam cross section area and L represents the non-deflected
length of the beam.

Linear curvature is assumed in this work for the flexible structure [2, 15, 16]. The
total potential + strain energy, V, of the system is given by:

V = mhubgs + 1

2

L∫

0

ρAg(s + ν cos α)dx + 1

2

L∫

0

EIν′′ 2dx (2)

where E represents the Young’s modulus of the material of which the beam is made,
and I represents the moment of inertia of the cross-sectional area of the beam.

The lagrangian, L, therefore, is given by:
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L = T − V (3)

or:

L = 1

2
mhubṡ

2 + 1

2
Ihubθ̇

2 − mhubgs + 1

2

L∫

0

ρA[θ̇2(r + x)2

− 2θ̇(r + x)ν̇ sin α + ν̇2 + ν2 sin2 α θ̇2 + 2ν̇ cos αṡ + ṡ2 − 2g(s + ν cos α) − EI

ρA
ν′′ 2]dx (4)

The drag effect is inserted into the Hamiltonian formalism as the work done by
thenon-conservative generalized drag force, D, which is given at any cross section
by [17]:

Dsec = 1

2
ρfSCDU

2 (5)

In Eq. (5), ρf represents the density of the fluid, S = c sin βf represents the section
orthographic projection of the beam, c is the beamcross sectionalwidth (mean chord),
U is the modulus of the fluid velocity as seen by the beam cross section, with:

U2 = [θ̇(r + x) − ν̇ sin α]2 + [ν̇ cos α + ṡ]2 (6)

and CD represents the nondimensional drag coefficient. The parameter βf is the angle
of attack as seen by the beam cross section and is given by:

βf(x, t) = α − tan−1

(
ν̇ cos α + ṡ

θ̇(r + x) − ν̇ sin α

)
(7)

This angle varies with the cross section position, x, along the beam and time.
Assuming that the horizontal velocity is much larger than the vertical velocity, it is
possible to consider βf = α. In this case, the sectional lift is in the vertical direction
(z direction) and the sectional drag is in the horizontal direction (y direction).

The external force normal to the flow, the lift force, is also inserted into the
Hamiltonian formalismas awork done by anon-conservative generalized lift force, L.

Let a cross section of the beam at a distance x from the hub. The lift generated by
this beam section is given by [17]:

Lsec = 1

2
ρfU

2cCL (8)

where CL represents the nondimensional lift coefficient.
For further details on the assumptions that are made with relation to the drag and

lift forces see [17, 18].
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The virtual work generated by the cross sectional lift and drag forces is given by:

δWsec = (Lsec + Dsec){ν sin αδθi + [(r + x)δθ − δν sin α]j
+ [δν cos α + δs]k} (9)

Using Eqs. (5) and (8), the total virtual work due to the lift and drag forces is
obtained by the integration of Eq. (9) along the beam, resulting:

δWfluid = 1

2
ρfc

L∫

0

{
[θ̇(r + x) − ν̇ sin α]2 + (ν̇ cos α + ṡ)2

}
CL (δν cos α + δs)dx

− 1

2
ρfSCD

L∫

0

{
[θ̇(r + x) − ν̇ sin α]2 + (ν̇ cos α + ṡ)2

}
[(r + x)δθ − δν sin α ]dx (10)

The torqueapplied to the axis of the cylinder is not considered at this point. It will
be discussed later when the DC motor equations are introduced. The analysis of the
mechanical part of the DC motor provides the governing equation of motion for the
variable θ.

The extended Hamilton’s Principle can begiven for a mechanical system as [13]:

∫ t2

t1

(δW + δL)dt = 0 (11)

where W is the total work done by external forces (or loads) on the bodies, t1 and t2
are the initial and final times and L is the lagrangian of the system. In this work, the
external forces are the result of the interaction between the structure and the fluid
and Eq. (11) can be writen as:

∫ t2

t1

(δWfluid + δL)dt = 0 (12)

Substituting Eqs. (4) and (10) into Eq. (12) results the governing equations of
motion for the variables s(t) and v(x, t), respectively, as given by:

(mhub + ρAL)s̈ + ρAcos α

L∫

0

ν̈ dx − (mhub − ρAL)g = Fs (13)

ν̈ + (r + x) sin α
..

θ + cos αs̈ − ν sin2 α θ̇2

+ ρAg cos α + EI

ρA
νiv = fν (14)
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where Fs and fv are given by:

Fs = ρc

2

L∫

0

CL{[θ̇(r + x) − ν̇ sin α]2 + [ν̇ cos α + ṡ]2}dx (15)

fν = ρc

2
{[θ̇(r + x) − ν̇ sin α]2

+ [ν̇ cos α + ṡ]2}[CL cos α + 1

2
k sin α] (16)

where the proportionality constant k is given by:

k = ρfSCD.

The boundary conditions for the beam can be obtained asa subproduct of the
application of the extended Hamilton’s Principle and are given to a clamped-free
beam by:

ν(0, t) = 0

ν′(0, t) = 0

ν′′(L, t) = 0

ν′′′(L, t) = 0

3.1 Appying the Simpson’s Rule

Consider the method for numerical approximation of definite integrals named
Simpson´s rule as given by [19]:

b∫

a

f(x)dx ≈ h

3
(f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + 2f(x4) + . . . + 4f(xn−1) + f(xn))

(17)

The beam is divided in 8 elements (or 9 nodes). The element size is h. Expanding
L∫
0

ν̈ dx in Eq. 13 using the Simpson´s rule as defined in Eq. (17) results:
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L∫

0

ν̈ dx = h

3
(ν̈1 + 4ν̈2 + 2ν̈3 + 4ν̈4 + 2ν̈5 + 4ν̈6 + 2ν̈7 + 4ν̈8 + ν̈9) (18)

Expanding the term
L∫
0
CL(α){[θ̇(r + x) − ν̇ sin α]2 + [ν̇ cos α + ṡ]2}dx in Eq. 15

results:

L∫

0

CL[r2θ̇2 + 2rxθ̇2 + x2θ̇2 + ν̇2 + ṡ2 − 2ν̇ θ̇(r + x) sin α + 2ν̇ṡ cos α]dx

= (r2θ̇2 + ṡ2)

L∫

0

CLdx + 2rθ̇2
L∫

0

CL xdx + θ̇2

L∫

0

CLx
2dx +

L∫

0

CLν̇2dx − 2rθ̇

L∫

0

CLν̇ sin αdx

− 2θ̇

L∫

0

CLν̇x sin αdx + 2ṡ

L∫

0

CLν̇ cos αdx (19)

Using the Simpson’s rule in Eq. (19) (and again considering that the beam is
divided in 8 elements (or 9 nodes)), each term in this equation can be rewriten as:

(r2 θ̇2 + ṡ2)

L∫

0

CLdx = (r2 θ̇2 + ṡ2)
h

3
(CL1 + 4CL2 + 2CL3 + 4CL4 + 2CL5 + 4CL6 + 2CL7 + 4CL8 + CL9)

2rθ̇2
L∫

0

CLxdx = 2rθ̇2
h

3
(x1CL1 + 4x2CL2 + 2x3CL3 + 4x4CL4 + 2x5CL5 + 4x6CL6 + 2x7CL7

+ 4x8CL8 + x9CL9)

= 2rθ̇2
h

3
((0)CL1 + 4(h)CL2 + 2(2h)CL3 + 4(3h)CL4 + 2(4h)CL5 + 4(5h)CL6

+ 2(6h)CL7 + 4(7h)CL8 + (8h)CL9)

= rθ̇2
h2

3
(8CL2 + 8CL3 + 24CL4 + 16CL5 + 40CL6 + 24CL7 + 56CL8 + 16CL9)

θ̇2

L∫

0

CLx
2dx = θ̇2

h

3
(x21CL1 + 4x22CL2 + 2x23CL3 + 4x24CL4 + 2x25CL5 + 4x26CL6 + 2x27CL7

+ 4x28CL8 + x29CL9)

= θ̇2
h

3
((0)2CL1 + 4(h)2CL2 + 2(2h)2CL3 + 4(3h)2CL4 + 2(4h)2CL5 + 4(5h)2CL6

+ 2(6h)2CL7 + 4(7h)2CL8 + (8h)2CL9)

= θ̇2
h3

3
(4CL2 + 8CL3 + 36CL4 + 32CL5 + 100CL6 + 72CL7 + 196CL8 + 64CL9)

L∫

0

CLν̇2dx = h

3
(CL1ν̇

2
1 + 4CL2ν̇

2
2 + 2CL3ν̇

2
3 + 4CL4ν̇

2
4 + 2CL5ν̇

2
5 + 4CL6ν̇

2
6 + 2CL7ν̇

2
7 + 4CL8ν̇

2
8 + CL9ν̇

2
9)
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−2rθ̇

L∫

0

CLν̇ sin αdx = −rθ̇
h

3
(2CL1ν̇1 sin α1 + 8CL2ν̇2 sin α2 + 4CL3ν̇3 sin α3 + 8CL4ν̇4 sin α4

+ 4CL5ν̇5 sin α5 + 8CL6ν̇6 sin α6 + 4CL7ν̇7 sin α7 + 8CL8ν̇8 sin α8 + 2CL9ν̇9 sin α9)

−2θ̇

L∫

0

CLν̇x sin αdx = −θ̇
h2

3
(8CL2ν̇2 sin α2 + 8CL3ν̇3 sin α3 + 24CL4ν̇4 sin α4 + 16CL5ν̇5 sin α5

+ 40CL6ν̇6 sin α6 + 24CL7ν̇7 sin α7 + 56CL8ν̇8 sin α8 + 16CL9ν̇9 sin α9)

2ṡ

L∫

0

CLν̇ cos αdx = ṡ
h

3
(2CL1ν̇1 cos α1 + 8CL2ν̇2 cos α2 + 4CL3ν̇3 cos α3 + 8CL4ν̇4 cos α4

+ 4CL5ν̇5 cos α5 + 8CL6ν̇6 cos α6 + 4CL7ν̇7 cos α7 + 8CL8ν̇8 cos α8 + 2CL9ν̇9 cos α9)

In the terms above, for example, one has CL1 = CL1(α1) where α1 = α(x1)
represents the angle of attack at position x1 (and so on).

Substituting all these terms in the first governing equation of motion—Eq. 13—
and considering ν̇1 = ν̈1 = 0 results (the second governing equation of motion is
not altered at this step):

(mhub + ρAL)s̈ + ρAh cos α

3
(ν̈1 + 4ν̈2 + 2ν̈3 + 4ν̈4 + 2ν̈5 + 4ν̈6 + 2ν̈7 + 4ν̈8

+ ν̈9) − (mhub − ρAL)g = ρc

2
[ (r

2 θ̇2 + ṡ2)h

3
(CL1 + 4CL2 + 2CL3 + 4CL4 + 2CL5

+ 4CL6 + 2CL7 + 4CL8 + CL9) + rh2 θ̇2

3
(8CL2 + 8CL3 + 24CL4 + 16CL5 + 40CL6 + 24CL7

+ 56CL8 + 16CL9) + h3θ̇2

3
(4CL2 + 8CL3 + 36CL4 + 32CL5 + 100CL6 + 72CL7 + 196CL8

+ 64CL9) + h

3
(CL1ν̇

2
1 + 4CL2ν̇

2
2 + 2CL3ν̇

2
3 + 4CL4ν̇

2
4 + 2CL5ν̇

2
5 + 4CL6ν̇

2
6 + 2CL7ν̇

2
7

+ 4CL8ν̇
2
8 + CL9ν̇

2
9) − rhθ̇

3
(2CL1ν̇1 sin α1 + 8CL2ν̇2 sin α2 + 4CL3ν̇3 sin α3 + 8CL4ν̇4 sin α4

+ 4CL5ν̇5 sin α5 + 8CL6ν̇6 sin α6 + 4CL7ν̇7 sin α7 + 8CL8ν̇8 sin α8 + 2CL9ν̇9 sin α9)

− h2 θ̇

3
(8CL2ν̇2 sin α2 + 8CL3ν̇3 sin α3 + 24CL4ν̇4 sin α4 + 16CL5ν̇5 sin α5 + 40CL6ν̇6 sin α6

+ 24CL7ν̇7 sin α7 + 56CL8ν̇8 sin α8 + 16CL9ν̇9 sin α9) + h ṡ

3
(2CL1ν̇1 cos α1

+ 8CL2ν̇2 cos α2 + 4CL3ν̇3 cos α3 + 8CL4ν̇4 cos α4 + 4CL5ν̇5 cos α5 + 8CL6ν̇6 cos α6

+ 4CL7ν̇7 cos α7 + 8CL8ν̇8 cos α8 + 2CL9ν̇9 cos α9)]

or:

�1s̈ + �2ν̈2 + �3ν̈3 + �2ν̈4 + �3ν̈5 + �2ν̈6 + �3ν̈7 + �2ν̈8 + �4ν̈9 − �5

= β1θ̇
2 + β21ṡ

2 + β22ν̇
2
2 + β23ν̇

2
3 + β24ν̇

2
4 + β25ν̇

2
5 + β26ν̇

2
6 + β27ν̇

2
7 + β28ν̇

2
8 + β29ν̇

2
9 − β2θ̇ ν̇2

− β3θ̇ ν̇3 − β4θ̇ ν̇4 − β5θ̇ ν̇5 − β6θ̇ ν̇6 − β7θ̇ ν̇7 − β8θ̇ ν̇8 − β9θ̇ ν̇9 + β13ṡν̇2 + β14ṡν̇3

+ β15ṡν̇4 + β16ṡν̇5 + β17ṡν̇6 + β18ṡν̇7 + β19ṡν̇8 + β20ṡν̇9 (20)
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where:

�1 = mhub + ρAL

�2 = 4ρAh cos α

3

�3 = 2ρAh cos α

3

�4 = ρAh cos α

3

�5 = (mhub − ρAL)g

β1 = ρc

2

(
β10 r2h + β11rh2 + β12h3

3

)

β2 = 8ρc

6
(rh + h2)CL2 sin α2

β3 = 4ρc

6
(rh + 2h2)CL3 sin α3

β4 = 8ρc

6
(rh + 3h2)CL4 sin α4

β5 = 4ρc

6
(rh + 4h2)CL5 sin α5

β6 = 8ρc

6
(rh + 5h2)CL6 sin α6

β7 = 4ρc

6
(rh + 6h2)CL7 sin α7

β8 = 8ρc

6
(rh + 7h2)CL8 sin α8

β9 = 2ρc

6
(rh + 8h2)CL9 sin α9

β10 = ρc

2
(CL1 + 4CL2 + 2CL3 + 4CL4 + 2CL5 + 4CL6 + 2CL7 + 4CL8 + CL9)

β11 = ρc

2
(8CL2 + 8CL3 + 24CL4 + 16CL5 + 40CL6 + 24CL7 + 56CL8 + 16CL9)



Nonlinear Control of Rotating Flexible Structures Considering … 273

β12 = ρc

2
(4CL2 + 8CL3 + 36CL4 + 32CL5 + 100CL6 + 72CL7 + 196CL8 + 64CL9)

β13 = 8ρc

6
hCL2 cos α2

β14 = 4ρc

6
hCL3 cos α3

β15 = 8ρc

6
hCL4 cos α4

β16 = 4ρc

6
hCL5 cos α5

β17 = 8ρc

6
hCL6 cos α6

β18 = 4ρc

6
hCL7 cos α7

β19 = 8ρc

6
hCL8 cos α8

β20 = 2ρc

6
hCL9 cos α9

β21 = ρc

6
β10h

β22 = 4ρc

6
hCL2

β23 = 2ρc

6
hCL3

β24 = 4ρc

6
hCL4

β25 = 2ρc

6
hCL5

β26 = 4ρc

6
hCL6

β27 = 2ρc

6
hCL7

β28 = 4ρc

6
hCL8
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β29 = ρc

6
hCL9

In Eq. (20), for example, ν̈1 means d2ν1
d t2 at the point whose space coordinate is x1

(it is a total derivative and not a partial derivative). And so on.
The next step is the application of the finite difference method into the governing

equation of motion given by Eq. 14.

3.2 Applying the Finite Difference Method

Making explicit the derivatives of ν in Eq. 14 and expanding fν in Eq. 16 results:

∂2ν

∂t2
+ (r + x) sin α

..

θ + cos αs̈ − ν sin2 α θ̇2 + ρAg cos α + EI

ρA

∂4ν

∂x4
= ρc

2
{[θ̇(r + x) − ∂ν

∂t
sin α]2

+ [ ∂ν

∂t
cos α + ṡ]2}[CL cos α + 1

2
k sin α] (21)

Consider Fig. 2.
The general formula for the central difference using 5 points is given by [20]:

∂4ν(xi,t)

∂ x4
= ν(xi + 2h,t) − 4ν(xi + h,t) + 6ν(xi,t) − 4ν(xi − h,t) + ν(xi − 2h,t)

h4
(22)

For points 3 to 7 one has, respectively (remembering that v1 = 0):

∂4ν(x3,t)

∂ x4
= ν(x3 + 2h,t) − 4ν(x3 + h,t) + 6ν(x3,t) − 4ν(x3 − h,t) + ν(x3 − 2h,t)

h4

Fig. 2 Discretization of a clamped-free beam
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= ν5 − 4ν4 + 6ν3 − 4ν2 + ν1

h4
= ν5 − 4ν4 + 6ν3 − 4ν2

h4
= ∂4ν3

∂x4
(23)

∂4ν(x4,t)

∂ x4
= ν(x4 + 2h,t) − 4ν (x4 + h,t) + 6ν(x4,t) − 4ν(x4 − h,t) + ν(x4 − 2h,t)

h4

= ν6 − 4ν5 + 6ν4 − 4ν3 + ν2

h4
= ∂4ν4

∂x4
(24)

∂4ν(x5,t)

∂ x4
= ν(x5 + 2h,t) − 4ν (x5 + h,t) + 6ν(x5,t) − 4ν(x5 − h,t) + ν(x5 − 2h,t)

h4

= ν7 − 4ν6 + 6ν5 − 4ν4 + ν3

h4
= ∂4ν5

∂ x4
(25)

∂4ν(x6,t)

∂ x4
= ν(x6 + 2h,t) − 4ν (x6 + h,t) + 6ν(x6,t) − 4ν(x6 − h,t) + ν(x6 − 2h,t)

h4

= ν8 − 4ν7 + 6ν6 − 4ν5 + ν4

h4
= ∂4ν6

∂ x4
(26)

∂4ν(x7,t)

∂ x4
= ν(x7 + 2h,t) − 4ν(x7 + h,t) + 6ν(x7,t) − 4ν(x7 − h,t) + ν(x7 − 2h,t)

h4

= ν9 − 4ν8 + 6ν7 − 4ν6 + ν5

h4
= ∂4ν7

∂ x4
(27)

As the structure is clamped at point 1, for this point one always has:

ν(x1,t) = ν1 = 0 (28)

It means that it is not necessary to solve an equation for this variable.
For point 2, applying the general formula one has:

∂4ν(x2,t)

∂x4
= ν(x2 + 2h,t) − 4ν (x2 + h,t) + 6ν(x2,t) − 4ν(x2 − h,t) + ν(x2 − 2h,t)

h4
(29)

The point x2–2 h is outside the beam. However, for point x1 it is known that
ν′(x1,t) = 0 (since the beam is clamped at this point). Using the central difference
formula and considering three points, it can be writen that:

∂ν(x1,t)

∂ x
= ν(x1 + h,t) − ν(x1 − h,t)

2h
= ν (x1 + h,t) − ν(x2 − 2h,t)

2h
= 0 (30)

Therefore:

ν (x1 + h,t) = ν(x2 − 2h,t) (31)
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Substituting Eq. (31) into Eq. (29) results:

∂4ν(x2,t)

∂x4
= ν(x2 + 2h,t) − 4ν (x2 + h,t) + 6ν(x2,t) − 4ν(x2 − h,t) + ν(x1 + h,t)

h4

= ν4 − 4ν3 + 7ν2 − 4ν1
h4

= ν4 − 4ν3 + 7ν2
h4

= ∂4ν2

∂ x4
(32)

For point 8, applying the general formula one has:

∂4ν(x8,t)

∂x4
= ν(x8 + 2h,t) − 4ν (x8 + h,t) + 6ν(x8,t) − 4ν(x8 − h,t) + ν(x8 − 2h,t)

h4
(33)

The point x8 + 2 h is outside the beam. However, for point x9 it is known that
ν′′(x9,t) = 0 (since the beam is free at this point). Using the central difference formula
and considering three points, it can be writen that:

∂2ν(x9,t)

∂x2
= ν(x9 + h,t) − 2ν (x9,t) + ν(x9 − h,t)

h2
= 0 (34)

or:

∂2ν(x9,t)

∂x2
= ν(x8 + 2h,t) − 2ν (x9,t) + ν(x9 − h,t)

h2
= 0 (35)

Therefore:

ν(x8 + 2h,t) = 2ν(x9,t) − ν(x9 − h,t) (36)

Substituting Eq. (36) into Eq. (33) results:

∂4ν(x8,t)

∂ x4
= 2ν(x9,t) − ν(x9 − h,t) − 4ν (x8 + h,t) + 6ν(x8,t) − 4ν(x8 − h,t) + ν(x8 − 2h,t)

h4

= −2ν9 + 5ν8 − 4ν 7 + ν6

h4
= ∂4ν8

∂x4
(37)

For point 9, applying the general formula one has:

∂4ν(x9,t)

∂x4
= ν(x9 + 2h,t) − 4ν (x9 + h,t) + 6ν(x9,t) − 4ν(x9 − h,t) + ν(x9 − 2h,t)

h4
(38)

The points x9 + h and x9 + 2 h are outside the beam. However, from Eq. (36)
one has:

ν(x8 + 2h,t) = 2ν(x9,t) − ν(x9 − h,t) = ν(x9 + h,t) (39)
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From the problem in question (free end), it is also known that:

∂3ν(x9,t)

∂x3
= 0

or, using the central difference formula considering 5 points:

∂3ν(x9,t)

∂x3
= ν(x9 + 2h,t) − 2ν (x9 + h,t) + 2ν(x9 − h,t) − ν(x9 − 2h,t)

2h3
= 0

Therefore:

ν(x9 + 2h,t) = 2ν(x9 + h,t) − 2ν(x9 − h,t) + ν(x9 − 2h,t) (40)

Substituting Eq. (39) into Eq. (40) results:

ν(x9 + 2h,t) = 4ν(x9,t) − 4ν(x9 − h,t) + ν(x9 − 2h,t) (41)

Substituting Eq. (39) and Eq. (41) into Eq. (38) results:

∂4ν(x9,t)

∂x4
= 2ν(x9,t) − 4ν(x9 − h,t) + 2ν(x9 − 2ht)

h4
= 2ν9 − 4ν8 + 2ν7

h4
= ∂4ν9

∂x4
(42)

So, finally, Eq. 21 can be rewriten for nodes 2 through 9 as (and considering that
x2 = h, x3 = 2 h, x4 = 3 h,…):

ν̈2 + (r + h) sin α2
..

θ + cos α2s̈ − ν2 sin
2 α2θ̇

2 + ρAg cos α2

+ EI

ρAh4
(ν4 − 4ν3 + 7ν2) = ρc

2
{[θ̇(r + h) − ν̇2 sin α2]2

+ [ν̇2 cos α2 + ṡ]2}[CL2 cos α2 + 1

2
k sin α2] (43)

ν̈3 + (r + 2h ) sin α3
..

θ + cos α3 s̈ − ν3 sin
2 α3θ̇

2 + ρAg cos α3 + EI

ρAh4
(ν5 − 4ν4 + 6ν3

− 4ν2) = ρc

2
{[θ̇(r + 2h ) − ν̇3 sin α3]2 + [ν̇3 cos α3 + ṡ]2][CL3 cos α3 + 1

2
k sin α3] (44)

ν̈4 + (r + 3h ) sin α4
..

θ+ cos α4s̈ − ν4 sin
2 α4θ̇

2 + ρAg cos α4 + EI

ρAh4
(ν6 − 4ν5 + 6ν4 − 4ν3

+ ν2) = ρc

2
{[θ̇(r + 3h ) − ν̇4 sin α4]2 + [ν̇4 cos α4 + ṡ]2}[CL4 cos α4 + 1

2
k sin α4] (45)

ν̈5 + (r + 4h ) sin α5
..

θ + cos α5s̈ − ν5 sin
2 α5θ̇

2 + ρAg cos α5 + EI

ρAh4
(ν7 − 4ν6 + 6ν5 − 4ν4

+ ν3) = ρc

2
{[θ̇ (r + 4h) − ν̇5 sin α5]2 + [ν̇5 cos α5 + ṡ]2}[CL5 cos α5 + 1

2
k sin α5] (46)
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ν̈6 + (r + 5h) sin α6
..

θ+ cos α6s̈ − ν6 sin
2 α6θ̇

2 + ρAg cos α6 + EI

ρAh4
(ν8 − 4ν7 + 6ν6 − 4ν5

+ ν4) = ρc

2
{[θ̇(r + 5h ) − ν̇6 sin α6] 2 + [ν̇6 cos α6 + ṡ]2}[CL6 cos α6 + 1

2
k sin α6] (47)

ν̈7 + (r + 6h) sin α7
..

θ+ cos α7s̈ − ν7 sin
2 α7θ̇

2 + ρAg cos α7 + EI

ρAh4
(ν9 − 4ν8 + 6ν7 − 4ν6

+ ν5) = ρc

2
{[θ̇(r + 6h ) − ν̇7 sin α7]2 + [ν̇7 cos α7 + ṡ]2}[CL7 cos α7 + 1

2
k sin α7] (48)

ν̈8 + (r + 7h) sin α8
..

θ+ cos α8s̈ − ν8 sin
2 α8θ̇

2 + ρAg cos α8 + EI

ρAh4
(−2ν9 + 5ν8 − 4ν7

+ ν6) = ρc

2
{[θ̇(r + 7h) − ν̇8 sin α8]2 + [ν̇8 cos α8 + ṡ]2}[CL8 cos α8 + 1

2
k sin α8] (49)

ν̈9 + (r + 8h) sin α9
..

θ + cos α9s̈ − ν9 sin
2 α9θ̇

2 + ρAg cos α9 + EI

ρAh4
(2ν9 − 4ν8 + 2ν7)

= ρc

2
{[θ̇(r + 8h) − ν̇9 sin α9]2 + [ν̇9 cos α9 + ṡ]2}[CL9 cos α9 + 1

2
k sin α9] (50)

Equations (43) to (50) can be rewriten as:

ν̈2 + (r + h) sin α2
..

θ + cos α2s̈ − C2(r + h)2θ̇ 2 − C2ν̇
2
2 − C2ṡ

2 + 2C2(r + h) sin α2θ̇ ν̇2

− 2C2 cos α2ṡν̇2 − sin2 α2ν2θ̇
2 + EI

ρAh4
(ν4 − 4ν3 + 7ν2) = −ρAg cos α2 (51)

ν̈3 + (r + 2h) sin α3
..

θ+ cos α3s̈ − C3(r + 2h)2θ̇ 2 − C3ν̇
2
3 − C3ṡ

2 + 2C3(r + 2h) sin α3θ̇ ν̇3

− 2C3 cos α3ṡν̇3 − sin2 α3ν3θ̇
2 + EI

ρAh4
(ν5 − 4ν4 + 6ν3 − 4ν2) = −ρAg cos α3 (52)

ν̈4 + (r + 3h) sin α4
..

θ+ cos α4s̈ − C4(r + 3h)2θ̇2 − C4ν̇
2
4 − C4ṡ

2 + 2C4(r + 3h) sin α4θ̇ ν̇4

− 2C4 cos α4ṡν̇4 − sin2 α4ν4θ̇
2 + EI

ρAh4
(ν6 − 4ν5 + 6ν4 − 4ν3 + ν2) = −ρAg cos α4 (53)

ν̈5 + (r + 4h) sin α5
..

θ+ cos α5s̈ − C5(r + 4h)2θ̇ 2 − C5ν̇
2
5 − C5ṡ

2 + 2C5(r + 4h) sin α5θ̇ ν̇5

− 2C5 cos α5ṡν̇5 − sin2 α5ν5 θ̇2 + EI

ρAh4
(ν7 − 4ν6 + 6ν5 − 4ν4 + ν3) = −ρAg cos α5 (54)

ν̈6 + (r + 5h) sin α6
..

θ + cos α6s̈ − C2(r + 5h )2θ̇ 2 − C6ν̇
2
6 − C6ṡ

2 + 2C6(r + 5h) sin α6θ̇ ν̇6

− 2C6 cos α6ṡν̇6 − sin2 α6 ν6θ̇
2 + EI

ρAh4
(ν8 − 4ν7 + 6ν6 − 4ν5 + ν4) = −ρAg cos α6 (55)

ν̈7 + (r + 6h) sin α7
..

θ+ cos α7s̈ − C7(r + 6h)2θ̇ 2 − C7ν̇
2
7 − C7ṡ

2 + 2C7(r + 6h) sin α7θ̇ ν̇7

− 2C7 cos α7ṡν̇7 − sin2 α7ν7θ̇
2 + EI

ρAh4
(ν9 − 4ν8 + 6ν7 − 4ν6 + ν5) = −ρAg cos α7 (56)

ν̈8 + (r + 7h) sin α8
..

θ+ cos α8s̈ − C8(r + 7h)2θ̇2 − C8ν̇
2
8 − C8ṡ

2 + 2C8(r + 7h) sin α8θ̇ ν̇8

− 2C8 cos α8ṡν̇8 − sin2 α8ν8θ̇
2 + EI

ρAh4
(−2ν9 + 5ν8 − 4ν 7 + ν6) = −ρAg cos α8 (57)

ν̈9 + (r + 8h) sin α9
..

θ+ cos α9s̈ − C9(r + 8h)2θ̇ 2 − C9ν̇
2
9 − C9ṡ

2 + 2C9(r + 8h) sin α9 θ̇ ν̇9

− 2C9 cos α9ṡν̇9 − sin2 α9ν9θ̇
2 + EI

ρAh4
(2ν9 − 4ν8 + 2ν7) = −ρAg cos α9 (58)
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where:

C2 = ρc

2

(
CL2 cos α2 + 1

2
k sin α2

)

C3 = ρc

2

(
CL3 cos α3 + 1

2
k sin α3

)

C4 = ρc

2

(
CL4 cos α4 + 1

2
k sin α4

)

C5 = ρc

2

(
CL5 cos α5 + 1

2
k sin α5

)

C6 = ρc

2

(
CL6 cos α6 + 1

2
k sin α6

)

C7 = ρc

2

(
CL7 cos α7 + 1

2
k sin α7

)

C8 = ρc

2

(
CL8 cos α8 + 1

2
k sin α8

)

C9 = ρc

2

(
CL9 cos α9 + 1

2
k sin α9

)

4 The Non-ideal DC Motor

The difference between the mathematical models of an ideal and of a non-ideal
dynamical system is given by the choice of the actuator-structure coupling model,
e.g., it depends on the way the torque τ is modeled [1, 2].

In the case the motor axis is sufficiently short, in order that one can consider it
sufficiently rigid, the total torque, τ, acting on this axis can be writen as:

τ = −M + Iaxis
..

θ (59)

In Eq. (59), M is the flexure moment of the beam, acting on the motor axis. Using
this equation, the mechanical equation of the DC motor becomes:

(Iaxis + ImN
2
g)

..

θ +(cmN
2
g)θ̇ − (NgKt)ia = M (60)

The moment M can be represented by the assumption of linear curvature model
as:

M = EIν′′(x1, x) = EIν′′
1(t)



280 A. Fenili

Using the central difference formula and considering three points, it can bewriten:

∂2ν(x1, t)

∂x2
= ν(x1 + h, t) − 2ν(x1, t) + ν(x1 − h, t)

h2
= ν2 − 2ν1 + ν(x1 − h, t)

h2
= ν′′

1(t)

Using Eqs. (30) and (31) one can write:

ν(x1 − h, t) = ν(x2 − 2h, t) = ν(x1 + h, t)

Therefore:

ν′′
1(t) = 2ν2 − 2ν1

h2

And, finally:

M = 2EI

h2
(ν2 − ν1) =

(
2EI

h2

)
ν2 (61)

The equations of motion for the slewing flexible structure considering an ideal
( β = 0 ) and a nonideal (β = 1) power source are given by Eqs. (20) and (51) to
(58) and by the electrical and mechanical direct current motor governing equations
of motion given respectively by:

Lm
dia
dt

+ Raia + NgKbθ̇ = U (62)

(Iaxis + ImN
2
g)

..

θ +(cmN
2
g)θ̇ − (NgKt)ia = β

(
2EI

h2

)
ν2 (63)

The electrical time constant Lm
Ra

is often neglected since it is at least one order

in magnitude smaller than the mechanical time constant
Iaxis+ImN2

g

cmN2
g

. By neglecting the

term Lm
dia
dt in Eq. (62), one can write:

ia = U − NgKbθ̇

Ra
(64)

SubstitutingEq. (64) into Eq. (63), the governing equation ofmotion of the electric
motor is simplified to:

(Iaxis + ImN
2
g)

..

θ +
(
cmN

2
g + N2

gKtKb

Ra

)
θ̇ =

(
NgKt

Ra

)
U + β

(
2EI

h2

)
ν2 (65)
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5 The Piezoelectric Actuator

A more detailed discussion about these actuators, their mathematical modeling and
incorporation into the governing equations of motion of the rotating flexible structure
is not part of the scope of this work. For this work, the idea that the addition of
piezoelectric actuators acting along the flexible structure adds external forces on the
right side of Eq. (14) is sufficient.

Adding the piezoelectric actuation in Eq. (14) results [21, 22]:

ν̈ + (r + x) sin α
..

θ + cos αs̈ − ν sin2 α θ̇2 + ρAg cos α + EI

ρA
νiv = fν + ∂2Mpiezo(x, t)

∂x2
(66)

ou, equivalently:

ν̈ + (r + x) sin α
..

θ + cos αs̈ − ν sin2 α θ̇2 + ρAg cos α + EI

ρA
νiv = fν + qpiezo(x, t)

(67)

where Mpiezo(x, t)in Eq. (66)represents the bending moment applied by the piezo-
electric actuator to the beam and qpiezo(x, t)in Eq. (67) represents the force applied
by the piezoelectric actuator to the beam. The external force qpiezo(x, t) is also the
control force to be applied along the flexible structure.

In Eqs. (43) to (50) (or Eqs. (51) to (58)), related to each one of the discretized
nodes, one must add on the right side the external forces qpiezo, i (xi, t) where i = 2 to
9 or, equivalently, qpiezo, i (t). This external force applied to each node is related to the
vibration control of the flexible structure and is connected to an ideal DC motor. The
equations for the ideal motor are not considered here in the numerical integration of
the governing equations of motion.

6 Nonlinear Control: Partial Feedback Linearization

The main ideas developed in this subchapter are based on several papers which deal
with a very assorted class of underactuated mechanical systems [10, 23–25].

The stability and control analysis of the underactuated system investigated here
start with the definition of two classes of variables: collocated variables (or the
actuated variables) and non-collocated variables (or the unactuated variables), which
are represented respectively by the vectors q1 and q2.

In matrix form, the complete set of governing equations of motion can be writen
as:

[
M11 M12

M21 M22

]{
q̈1

boldsymbolq̈2

}
+

{
h1
h2

}
+

{
01
02

}
+

{
�1

�2

}
=

{
t
0

}
(68)
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In Eq. (68), Coriolis and centrifugal terms are collected into the vector functions
h1 and h2, gravitational terms are collected into the vector functions ϕ1 and ϕ2, the
linear terms are collected into the vector functions �1 and �2 and the input generalized
forces produced by the actuators on the actuated variables are collected into the vector
function τ.

The matrix Eq. (68) can be rewritten as:

M11q̈1 + M12q̈2 + h1 + 01 + �1 = τ (69)

M21q̈1 + M22 q̈2 + h2 + 02 + �2 = 0 (70)

The unactuated states, q2, can be determined from Eq. (70) according to:

q̈2 = −M−1
22

(
M21q̈1 + h2 + 02 + �2

)
(71)

Substituting q̈2 as given by Eq. (71) into Eq. (69) results:

M11q̈1 + h1 + 01 + �1 = τ (72)

where:

M11 = M11 − M12M−1
22 M21

h1 = h1 − M12M−1
22 h2

01 = 01 − M12M−1
22 02

�1 = �1 − M12M−1
22 �2

Equation (72) can be rewritten in order to isolate q̈1 according to:

q̈1 = M
−1
11

(
τ − h1 − 01 − �1

)
(73)

or:

q̈1 = M
−1
11

(
τ − h1 − 01

) − M
−1
11 �1

or, finally:

q̈1 + M
−1
11 �1 = M

−1
11

(
τ − h1 − 01

)
(74)
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In Eq. (74), matrix M
−1
11 is constant (that is, it has elements that do not vary over

time, since the angle of attack α is considered constant in this work). In this way,
all the linear terms on the set of governing equations of motion and that represent
important couplings for the problem in question are kept. The left side of Eq. (74) is
linear.

Consider the actuated states, q1, as the system outputs. Let the control signal τ

be defined as:

τ = M11νa + h1 + 01 (75)

where νa is an additional control input (yet to be defined).
Substituting Eq. (75) into Eq. (74), the equation of motion related to the actuated

dynamics becomes:

q̈1 + M
−1
11 �1 = νa (76)

Considering Eq. (76) and substituting q̈1 as given by this equation into Eq. (70),
the complete set of governing equations of motion (related to both collocated and
non-collocated variables) is now writen as:

q̈1 + M
−1
11 �1 = νa (77)

M22 q̈2 + h2 + 02 + �2 − M21M
−1
11 �1 = −M21νa (78)

y1 = q1 (79)

Equation (78) represents the dynamics of the unactuated degrees of freedom and
Eq. (79) is the output equation.

The new controller νa in Eqs. (77) and (78) must be designed to drive the actuated
variables:

q1 = {
θ ν2 ν3 ν4 ν5 ν6 ν7 ν8 ν9

}T
(80)

to the desired final values (or reference values):

qd
1 = {

θd νd2 νd3 νd4 νd5 νd6 νd7 νd8 νd9

}T
(81)

In order to reach the desired values given by Eq. (81)and (if possible) to keep
the unactuated states stabilized, the additional control input νa is obtained in this
work using the optimal control technique named Linear Quadratic Regulator (LQR)
according to [26]:
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νa = −R−1BTP(q1 − qd
1)

= {
νa1 νa2 νa3 νa4 νa5 νa6 νa7 νa8 νa9

}
(82)

where P is the solution of the Riccati equation:

PA + ATP + Q − PBR−1BTP = 0 (83)

Q and R are weighting matrices that satisfy the positivedefiniteness condition Q >
0 and R > 0, A and B are matricesobtained when the system is written in the state
space form:

ẋ = Ax + Bu (84)

x is the state vector (not including the states related to variable s) and u is the vector
of control forces and torques in the state space form.

For underactuated mechanical systems, after the governing equations of motion
related to the actuated degrees of freedom are linearized through partial feedback
linearization,the remaining equation(s) related to the unactuated degree(s) of freedom
is(are) nonlinear and is(are) called internal dynamics [10].The internal dynamics for
the problem under investigation here is given by Eq. (78).

The stability of the internal dynamicsmust be investigated.If the internal dynamics
is stable (in this stage of the analysis, the stability of the equations related to the actu-
ated variables was already checked), the whole system is stable. This stability of the
internal dynamics is checked through the analysis of the zero dynamics, which is the
set of governing equations that remains when one considers all the actuated degrees
of freedom and its time derivatives equal to zero (the actuated states converged to
the desired values) in the internal dynamics [10].

7 The Complete Set of Governing Equations of Motion
Considering the Nonlinear Control

Considering the developments presented in Sect. 3, 4 and 5, the complete set of
governing equations of motion for the mechanical system presented in Fig. 1 is
finally given by:

(Iaxis + ImN
2
g)

..

θ +
(
cmN

2
g + N2

gKtKb

Ra

)
θ̇ =

(
NgKt

Ra

)
U + β

(
2EI

h2

)
ν2 (85)

�1s̈ + �2ν̈2 + �3ν̈3 + �2ν̈4 + �3ν̈5 + �2ν̈6 + �3ν̈7 + �2ν̈8 + �4ν̈9 − �5

= β1θ̇
2 + β21ṡ

2 + β22ν̇
2
2 + β23ν̇

2
3 + β24ν̇

2
4 + β25ν̇

2
5 + β26ν̇

2
6 + β27ν̇

2
7 + β28ν̇

2
8 + β29ν̇

2
9 − β2θ̇ ν̇2

− β3θ̇ ν̇3 − β4θ̇ ν̇4 − β5θ̇ ν̇5 − β6θ̇ ν̇6 − β7θ̇ ν̇7 − β8θ̇ ν̇8 − β9θ̇ ν̇9 + β13ṡν̇2 + β14ṡν̇3 + β15ṡν̇4
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+ β16ṡν̇5 + β17ṡν̇6 + β18ṡν̇7 + β19ṡν̇8 + β20ṡν̇9 (86)

ν̈2 + (r + h) sin α2
..

θ + cos α2s̈ − C2(r + h)2θ̇ 2 − C2ν̇
2
2 − C2ṡ

2 + 2C2(r + h) sin α2θ̇ ν̇2

− 2C2 cos α2ṡν̇2 − sin2 α2ν2θ̇
2 + EI

ρAh4
(ν4 − 4ν3 + 7ν2) = −ρAg cos α2 + qpiezo, 2 (87)

ν̈3 + (r + 2h) sin α3
..

θ+ cos α3s̈ − C3(r + 2h)2θ̇ 2 − C3ν̇
2
3 − C3ṡ

2 + 2C3(r + 2h) sin α3θ̇ ν̇3

− 2C3 cos α3ṡν̇3 − sin2 α3ν3θ̇
2 + EI

ρAh4
(ν5 − 4ν4 + 6ν3 − 4ν2) = −ρAg cos α3 + qpiezo, 3

(88)

ν̈4 + (r + 3h) sin α4
..

θ + cos α4s̈ − C4(r + 3h)2θ̇ 2 − C4ν̇
2
4 − C4ṡ

2 + 2C4(r + 3h) sin α4 θ̇ ν̇4

− 2C4 cos α4ṡν̇4 − sin2 α4ν4θ̇
2 + EI

ρAh4
(ν6 − 4ν5 + 6ν4 − 4ν3 + ν2) = −ρAg cos α4 + qpiezo,4

(89)

ν̈5 + (r + 4h) sin α5
..

θ+ cos α5 s̈ − C5(r + 4h)2θ̇2 − C5ν̇
2
5 − C5ṡ

2 + 2C5(r + 4h) sin α5θ̇ ν̇5

− 2C5 cos α5ṡν̇5 − sin2 α5ν5θ̇
2 + EI

ρAh4
(ν7 − 4ν6 + 6ν5 − 4ν4 + ν3) = −ρAg cos α5 + qpiezo,5

(90)

ν̈6 + (r + 5h) sin α6
..

θ+ cos α6s̈ − C2(r + 5h)2θ̇ 2 − C6ν̇
2
6 − C6ṡ

2 + 2C6(r + 5h) sin α6θ̇ ν̇6

− 2C6 cos α6ṡν̇6 − sin2 α6ν6θ̇
2 + EI

ρAh4
(ν8 − 4ν7 + 6ν6 − 4ν5 + ν4) = −ρAg cos α6 + qpiezo, 6

(91)

ν̈7 + (r + 6h) sin α7
..

θ+ cos α7s̈ − C7(r + 6h)2θ̇2 − C7ν̇
2
7 − C7ṡ

2 + 2C7(r + 6h) sin α7θ̇ ν̇7

− 2C7 cos α7ṡν̇7 − sin2 α7ν7θ̇
2 + EI

ρAh4
(ν9 − 4ν8 + 6ν7 − 4ν6 + ν5) = −ρAg cos α7 + qpiezo,7

(92)

ν̈8 + (r + 7h) sin α8
..

θ + cos α8s̈ − C8(r + 7h)2θ̇ 2 − C8ν̇
2
8 − C8ṡ

2 + 2C8(r + 7h) sin α8 θ̇ ν̇8

− 2C8 cos α8ṡν̇8 − sin2 α8ν8θ̇
2 + EI

ρAh4
(−2ν9 + 5ν8 − 4ν7 + ν6) = −ρAg cos α8 + qpiezo, 8

(93)

ν̈9 + (r + 8h) sin α9
..

θ+ cos α9s̈ − C9(r + 8h)2θ̇ 2 − C9ν̇
2
9 − C9ṡ

2 + 2C9(r + 8h) sin α9θ̇ ν̇9

− 2C9 cos α9ṡν̇9 − sin2 α9ν9θ̇
2 + EI

ρAh4
(2ν9 − 4ν8 + 2ν7) = −ρAg cos α9 + qpiezo, 9 (94)

Writing Eqs. (85) to (94) in matrix form results:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iaxis + ImN2
g 0 0 0 0 0 0 0 0 0

0 �1 �2 �3 �2 �3 �2 �3 �2 �4

(r + h) sin α2 cos α2 1 0 0 0 0 0 0 0

(r + 2h) sin α3 cos α3 0 1 0 0 0 0 0 0

(r + 3h) sin α4 cos α4 0 0 1 0 0 0 0 0

(r + 4h) sin α5 cos α5 0 0 0 1 0 0 0 0

(r + 5h) sin α6 cos α6 0 0 0 0 1 0 0 0

( r + 6h) sin α7 cos α7 0 0 0 0 0 1 0 0

( r + 7h) sin α8 cos α8 0 0 0 0 0 0 1 0

(r + 8h) sin α9 cos α9 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

..

θ
..
s

ν̈2

ν̈3

ν̈4

ν̈5

ν̈6

ν̈7

ν̈8

ν̈9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

f1
f2
f3
f4
f5
f6
f7
f8
f19

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

−�5

(ρAcos α2)g

(ρAcos α3)g

(ρAcos α4)g

(ρAcos α5)g

(ρAcos α6)g

(ρAcos α7)g

(ρAcos α8)g

(ρAcos α9)g

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1a

0

�1b

�1c

�1d

�1e

�1f

�1g

�1h

�1i

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NgKt
Ra

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U

0

qpiezo,2
qpiezo,3
qpiezo,4
qpiezo,5
qpiezo,6
qpiezo,7
qpiezo,8
qpiezo,9

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(95)

where:

f1 = β1θ̇
2 + β21ṡ

2 + β22ν̇
2
2 + β23ν̇

2
3 + β24ν̇

2
4 + β25ν̇

2
5 + β26ν̇

2
6 + β27ν̇

2
7 + β28ν̇

2
8 + β29ν̇

2
9

− β2θ̇ ν̇2 − β3θ̇ ν̇3 − β4θ̇ ν̇4 − β5θ̇ ν̇5 − β6θ̇ ν̇6 − β7θ̇ ν̇7 − β8θ̇ ν̇8 − β9θ̇ ν̇9 + β13ṡν̇2

+ β14ṡν̇3 + β15ṡν̇4 + β16ṡν̇5 + β17ṡν̇6 + β18ṡν̇7 + β19ṡν̇8 + β20ṡν̇9 (96)

f2 = −C2(r + h)2θ̇2 − C2ν̇
2
2 − C2ṡ

2 + 2C2(r + h) sin α2θ̇ ν̇2 − 2C2 cos α2ṡν̇2 − sin2 α2ν2θ̇
2 (97)

f3 = −C3(r + 2h)2θ̇ 2 − C3ν̇
2
3 − C3ṡ

2 + 2C3(r + 2h) sin α3θ̇ ν̇3 − 2C3 cos α3ṡν̇3 − sin2 α3ν3θ̇
2

(98)

f4 = −C4(r + 3h)2θ̇ 2 − C4ν̇
2
4 − C4ṡ

2 + 2C4(r + 3h) sin α4θ̇ ν̇4 − 2C4 cos α4ṡν̇4 − sin2 α4ν4θ̇
2

(99)

f5 = −C5(r + 4h)2θ̇ 2 − C5ν̇
2
5 − C5ṡ

2 + 2C5(r + 4h) sin α5θ̇ ν̇5 − 2C5 cos α5ṡν̇5 − sin2 α5ν5θ̇
2

(100)

f6 = −C2(r + 5h)2θ̇2 − C6ν̇
2
6 − C6ṡ

2 + 2C6(r + 5h) sin α6θ̇ ν̇6 − 2C6 cos α6ṡν̇6 − sin2 α6ν6θ̇
2

(101)

f7 = −C7(r + 6h)2θ̇2 − C7ν̇
2
7 − C7ṡ

2 + 2C7(r + 6h) sin α7θ̇ ν̇7 − 2C7 cos α7ṡν̇7 − sin2 α7ν7θ̇
2

(102)

f8 = −C8(r + 7h)2θ̇ 2 − C8ν̇
2
8 − C8ṡ

2 + 2C8(r + 7h) sin α8θ̇ ν̇8 − 2C8 cos α8ṡν̇8 − sin2 α8ν8θ̇
2

(103)

f9 = −C9(r + 8h)2θ̇2 − C9ν̇
2
9 − C9ṡ

2 + 2C9(r + 8h) sin α9θ̇ ν̇9 − 2C9 cos α9ṡν̇9 − sin2 α9ν9θ̇
2

(104)

�1a =
(
cmN

2
g + N2

gKtKb

Ra

)
θ̇ + β

(
2EI

h2

)
ν2 (105)

�1b = EI

ρAh4
(ν4 − 4ν3 + 7ν2) (106)

�1c = EI

ρAh4
(ν5 − 4ν4 + 6ν3 − 4ν2) (107)
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�1d = EI

ρAh4
(ν6 − 4ν5 + 6ν4 − 4ν3 + ν2) (108)

�1e = EI

ρAh4
(ν7 − 4ν6 + 6ν5 − 4ν4 + ν3) (109)

�1f = EI

ρAh4
(ν8 − 4ν7 + 6ν6 − 4ν5 + ν4) (110)

�1g = EI

ρAh4
(ν9 − 4ν8 + 6ν7 − 4ν6 + ν5) (111)

�1h = EI

ρAh4
(−2ν9 + 5ν8 − 4ν7 + ν6) (112)

�1i = EI

ρAh4
(2ν9 − 4ν8 + 2ν7) (113)

In order to write the governing equations in the matrix form shown in Eq. (68),
Eq. (95) is rewriten as:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iaxis + ImN2
g 0 0 0 0 0 0 0 0 0

(r + h) sin α2 1 0 0 0 0 0 0 0 cos α2

(r + 2h) sin α3 0 1 0 0 0 0 0 0 cos α3

(r + 3h) sin α4 0 0 1 0 0 0 0 0 cos α4

(r + 4h) sin α5 0 0 0 1 0 0 0 0 cos α5

(r + 5h) sin α6 0 0 0 0 1 0 0 0 cos α6

(r + 6h) sin α7 0 0 0 0 0 1 0 0 cos α7

(r + 7h) sin α8 0 0 0 0 0 0 1 0 cos α8

(r + 8h) sin α9 0 0 0 0 0 0 0 1 cos α9

0 �2 �3 �2 �3 �2 �3 �2 �4 �1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

..

θ

ν̈2

ν̈3

ν̈4

ν̈5

ν̈6

ν̈7

ν̈8

ν̈9

s̈

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

f2
f3
f4
f5
f6
f7
f8
f9
f1

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

(ρAcos α2)g

(ρAcos α3)g

(ρAcos α4)g

(ρAcos α5)g

(ρAcos α6)g

(ρAcos α7)g

(ρAcos α8)g

(ρAcos α9)g

−�5

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�1a

�1b

�1c

�1d

�1e

�1f

�1g

�1h

�1i

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

NgKt
Ra

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U

qpiezo,2
qpiezo,3
qpiezo,4
qpiezo,5
qpiezo,6
qpiezo,7
qpiezo,8
qpiezo,9

0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(114)
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Based on Eq. (68) and Eq. (114),one can write:

M11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Iaxis + ImN2
g 0 0 0 0 0 0 0 0

(r + h) sin α2 1 0 0 0 0 0 0 0
(r + 2h) sin α3 0 1 0 0 0 0 0 0
(r + 3h) sin α4 0 0 1 0 0 0 0 0
(r + 4h) sin α5 0 0 0 1 0 0 0 0
(r + 5h) sin α6 0 0 0 0 1 0 0 0
(r + 6h) sin α7 0 0 0 0 0 1 0 0
(r + 7h) sin α8 0 0 0 0 0 0 1 0
(r + 8h) sin α9 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

M12 = [
0 cos α2 cos α3 cos α4 cos α5 cos α6 cos α7 cos α8 cos α9

]T

M21 = [
0 �2 �3 �2 �3 �2 �3 �2 �4

]

M22 = [�1]

h1 = {
0 f2 f3 f4 f5 f6 f7 f8 f9

}T

h2 = {f1}

01 = ρAg
{
0 cos α2 cos α3 cos α4 cos α5 cos α6 cos α7 cos α8 cos α9

}T

02 = {−�5}

�1 = {
�1a �1b �1c �1d �1e �1f �1g �1h �1i

}T

�2 = {0}

τ =
{(

NgKt

Ra

)
U qpiezo,2 qpiezo,3 qpiezo,4 qpiezo,5 qpiezo,6 qpiezo,7 qpiezo,8 qpiezo,9

}T

Expanding M11 one obtains:
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M
11

=

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣

I a
xi
s
+

I m
N

2 g
0

0
0

0
0

0
0

0
(r

+
h )

si
n

α
2
1

−
�

2
co
sα

2
�

1
−�

3
co
sα

2
�

1
−�

2
co
sα

2
�

1
−�

3
co
sα

2
�

1
−�

2
co
sα

2
�

1
−�

3
co
sα

2
�

1
−�

2
co
sα

2
�

1
−�

4
co
sα

2
�

1

(r
+

2h
)
si
n

α
3

−�
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And let the inverse of M11 be given by:

M
−1
11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m1 0 0 0 0 0 0 0 0
m10 m11 m12 m13 m14 m15 m16 m17 m18

m19 m20 m21 m22 m23 m24 m25 m26 m27

m28 m29 m30 m31 m32 m33 m34 m35 m36

m37 m38 m39 m40 m41 m42 m43 m44 m45

m46 m47 m48 m49 m50 m51 m52 m53 m54

m55 m56 m57 m58 m59 m60 m61 m62 m63

m64 m65 m66 m67 m68 m69 m70 m71 m72

m73 m74 m75 m76 m77 m78 m79 m80 m81

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The elements of matrixM
−1
11 are quite complex to be obtained analytically. These

quantities must be obtained numerically. In this article, this matrix is constant and
only needs to be calculated once.

Expanding Eqs. (77) and (78), the governing equations motion in closed-loop
form (for the actuated variables) result:

..

θ +ϑ1θ̇ + (βϑ10)ν2 = νa1 (115)

ν̈2 + ϑ2θ̇ + (βϑ11 + ϑ19)ν2 + ϑ27ν3 + ϑ35ν4 + ϑ43ν5

+ ϑ51ν6 + ϑ59ν7 + ϑ67ν8 + ϑ75ν9 = νa2 (116)

ν̈3 + ϑ3θ̇ + (βϑ12 + ϑ20)ν2 + ϑ28ν3 + ϑ36ν4 + ϑ44ν5

+ ϑ52ν6 + ϑ60ν7 + ϑ68ν8 + ϑ76ν9 = νa3 (117)

ν̈4 + ϑ4θ̇ + (βϑ13 + ϑ21)ν2 + ϑ29ν3 + ϑ37ν4 + ϑ45ν5

+ ϑ53ν6 + ϑ61ν7 + ϑ69ν8 + ϑ77ν9 = νa4 (118)

ν̈5 + ϑ5θ̇ + (βϑ14 + ϑ22)ν2 + ϑ30ν3 + ϑ38ν4 + ϑ46ν5

+ ϑ54ν6 + ϑ62ν7 + ϑ70ν8 + ϑ78ν9 = νa5 (119)
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ν̈6 + ϑ6θ̇ + (βϑ15 + ϑ23)ν2 + ϑ31ν3 + ϑ39ν4 + ϑ47ν5

+ ϑ55ν6 + ϑ63ν7 + ϑ71ν8 + ϑ79ν9 = νa6 (120)

ν̈7 + ϑ7θ̇ + (βϑ16 + ϑ24)ν2 + ϑ32ν3 + ϑ40ν4 + ϑ48ν5

+ ϑ56ν6 + ϑ64ν7 + ϑ72ν8 + ϑ80ν9 = νa7 (121)

ν̈8 + ϑ8θ̇ + (βϑ17 + ϑ25)ν2 + ϑ33ν3 + ϑ41ν4 + ϑ49ν5

+ ϑ57ν6 + ϑ65ν7 + ϑ73ν8 + ϑ81ν9 = νa8 (122)

ν̈9 + ϑ9θ̇ + (βϑ18 + ϑ26)ν2 + ϑ34ν3 + ϑ42ν4 + ϑ50ν5

+ ϑ58ν6 + ϑ66ν7 + ϑ74ν8 + ϑ82ν9 = νa9 (123)

�1s̈ + f1 − �5 − σ1�1a − σ2�1b − σ3�1c − σ4�1d − σ5�1e

− σ6�1f − σ7�1g − σ8�1h − σ9�1i = −�2νa2 − �3νa3 − �2νa4 − �3νa5

− �2νa6 − �3νa7 − �3νa7 − �2νa8 − �4νa9 (124)

where:

ϑ1 = m1

(
cmN2

g + N2
gKtKb

Ra

)
ϑ2 = m10

(
cmN2

g + N2
gKtKb

Ra

)
ϑ3 = m19

(
cmN2

g + N2
gKtKb

Ra

)

ϑ4 = m28

(
cmN2

g + N2
gKtKb

Ra

)
ϑ5 = m37

(
cmN2

g + N2
gKtKb

Ra

)
ϑ6 = m46

(
cmN2

g + N2
gKtKb

Ra

)

ϑ7 = m55

(
cmN2

g + N2
gKtKb

Ra

)
ϑ8 = m64

(
cmN2

g + N2
gKtKb

Ra

)
ϑ9 = m73

(
cmN2

g + N2
gKtKb

Ra

)
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σ1 = �2m10 + �3m19 + �2m28 + �3m37 + �2m46 + �3m55 + �2m64 + �4m73

σ2 = �2m11 + �3m20 + �2m29 + �3m38 + �2m47 + �3m56 + �2m65 + �4m74

σ3 = �2m12 + �3m21 + �2m30 + �3m39 + �2m48 + �3m57 + �2m66 + �4m75

σ4 = �2m13 + �3m22 + �2m31 + �3m40 + �2m49 + �3m58 + �2m67 + �4m76

σ5 = �2m14 + �3m23 + �2m32 + �3m41 + �2m50 + �3m59 + �2m68 + �4m77

σ6 = �2m15 + �3m24 + �2m33 + �3m42 + �2m51 + �3m60 + �2m69 + �4m78

σ7 = �2m16 + �3m25 + �2m34 + �3m43 + �2m52 + �3m61 + �2m70 + �4m79

σ8 = �2m17 + �3m26 + �2m35 + �3m44 + �2m53 + �3m62 + �2m71 + �4m80

σ9 = �2m18 + �3m27 + �2m36 + �3m45 + �2m54 + �3m63 + �2m72 + �4m81

Let the state variables be given by:

x1 = θ x2 = θ̇ x3 = ν2 x4 = ν̇2

x5 = ν3 x6 = ν̇3 x7 = ν4 x8 = ν̇4

x9 = ν5 x10 = ν̇5 x11 = ν6 x12 = ν̇6

x13 = ν7 x14 = ν̇7 x15 = ν8 x16 = ν̇8

x17 = ν9 x18 = ν̇9 x19 = s x20 = ṡ

Considering these new variables, Eqs. (115)–(123) are writen in state space form
as:

ẋ1 = x2 (125)

ẋ2 = νa1 − ϑ1x2 − (β ϑ10)x3 (126)

ẋ3 = x4 (127)

ẋ4 = νa2 − ϑ2x2 − (βϑ11 + ϑ19)x3 − ϑ27x5 − ϑ35x7 − ϑ43x9 − ϑ51x11 − ϑ59x13
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− ϑ67x15 − ϑ75x17 (128)

ẋ5 = x6 (129)

ẋ6 = νa3 − ϑ3x2 − (βϑ12 + ϑ20)x3 − ϑ28x5 − ϑ36x7 − ϑ44x9 − ϑ52x11 − ϑ60x13
− ϑ68x15 − ϑ76x17 (130)

ẋ7 = x8 (131)

ẋ8 = νa4 − ϑ4x2 − (βϑ13 + ϑ21) x3 − ϑ29x5 − ϑ37x7 − ϑ45x9 − ϑ53x11 − ϑ61x13
− ϑ69x15 − ϑ77x17 (132)

ẋ9 = x10 (133)

ẋ10 = νa5 − ϑ5x2 − (βϑ14 + ϑ22)x3 − ϑ30x5 − ϑ38x7 − ϑ46x9 − ϑ54x11 − ϑ62x13
− ϑ70x15 − ϑ78x17 (134)

ẋ11 = x12 (135)

ẋ12 = νa6 − ϑ6x2 − (βϑ15 + ϑ23)x3 − ϑ31x5 − ϑ39x7 − ϑ47x9 − ϑ55x11 − ϑ63x13
− ϑ71x15 − ϑ79x17 (136)

ẋ13 = x14 (137)

ẋ14 = νa7 − ϑ7x2 − (βϑ16 + ϑ24)x3 − ϑ32x5 − ϑ40x7 − ϑ48x9 − ϑ56x11 − ϑ64x13
− ϑ72x15 − ϑ80x17 (138)

ẋ15 = x16 (139)

ẋ16 = νa8 − ϑ8x2 − (βϑ17 + ϑ25)x3 − ϑ33x5 − ϑ41x7 − ϑ49x9 − ϑ57x11 − ϑ65x13
− ϑ73x15 − ϑ81x17 (140)

ẋ17 = x18 (141)

ẋ18 = νa9 − ϑ9x2 − (βϑ18 + ϑ26)x3 − ϑ34x5 − ϑ42x7 − ϑ50x9 − ϑ58x11 − ϑ66x13
− ϑ74x15 − ϑ82x17 (142)
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Writing Eqs. (125)–(142) in matrix form results the matrix equation:

ẋ = Ax + Bu (143)

where:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −ϑ1 −β ϑ10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 −ϑ2 −(βϑ11 + ϑ19) 0 −ϑ27 0 −ϑ35 0 −ϑ43 0 −ϑ51 0 −ϑ59 0 −ϑ67 0 −ϑ75 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 −ϑ3 −(βϑ12 + ϑ20) 0 −ϑ28 0 −ϑ36 0 −ϑ44 0 −ϑ52 0 −ϑ60 0 −ϑ68 0 −ϑ76 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 −ϑ4 −(βϑ13 + ϑ21) 0 −ϑ29 0 −ϑ37 0 −ϑ45 0 −ϑ53 0 −ϑ61 0 −ϑ69 0 −ϑ77 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 −ϑ5 −(βϑ14 + ϑ22) 0 −ϑ30 0 −ϑ38 0 −ϑ46 0 −ϑ54 0 −ϑ62 0 − ϑ70 0 −ϑ78 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 −ϑ6 −(βϑ15 + ϑ23) 0 −ϑ31 0 −ϑ39 0 −ϑ47 0 −ϑ55 0 −ϑ63 0 −ϑ71 0 − ϑ79 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 −ϑ7 −(βϑ16 + ϑ24) 0 −ϑ32 0 −ϑ40 0 −ϑ48 0 −ϑ56 0 −ϑ64 0 −ϑ72 0 −ϑ80 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 −ϑ8 −(βϑ17 + ϑ25) 0 −ϑ33 0 −ϑ41 0 −ϑ49 0 −ϑ57 0 −ϑ65 0 −ϑ73 0 −ϑ81 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 −ϑ9 −(βϑ18 + ϑ26) 0 − ϑ34 0 −ϑ42 0 −ϑ50 0 −ϑ58 0 − ϑ66 0 −ϑ74 0 −ϑ82 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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x = {
x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18

}T

ẋ = {
ẋ1 ẋ2 ẋ3 ẋ4 ẋ5 ẋ6 ẋ7 ẋ8 ẋ9 ẋ10 ẋ11 ẋ12 ẋ13 ẋ14 ẋ15 ẋ16 ẋ17 ẋ18

}T

u = {
νa1 νa2 νa3 νa4 νa5 νa6 νa7 νa8 νa9

}

and the LQR weighting matrices are given by:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 Q2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 Q3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 Q4 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 Q5 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 Q6 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 Q7 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 Q8 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Q9 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 Q10 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 Q11 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 Q12 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 Q13 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 Q14 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q15 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q16 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q17 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q18

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R1 0 0 0 0 0 0 0 0
0 R2 0 0 0 0 0 0 0
0 0 R3 0 0 0 0 0 0
0 0 0 R4 0 0 0 0 0
0 0 0 0 R5 0 0 0 0
0 0 0 0 0 R6 0 0 0
0 0 0 0 0 0 R7 0 0
0 0 0 0 0 0 0 R8 0
0 0 0 0 0 0 0 0 R9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In the problem investigated here, one of the actuated degrees of freedom (θ) and
its time derivative (θ̇) are not equal to zero. The governing equation of motion for
the analysis of the zero dynamics is obtained by manipulating the internal dynamics
given by Eq. (124) and results:
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s̈ + σ10ṡ
2 + σ11θ̇

2 − σ12θ̇ + σ13g = 0 (144)

where:

σ10 = β21

ρAL + mhub

σ11 = β1

ρAL + mhub

σ12 = σ1

ρAL + mhub

(
cmN

2
g + N2

gKtKb

Ra

)

σ13 = ρAL − mhub

ρAL + mhub

In Eq. (144), the third, fourth and fifth terms are constant and will be collected in
the constant parameter σ14. For this reason, let:

σ14 = σ11θ̇
2 − σ12θ̇ + σ13g

Then, Eq. (144) is rewriten as:

s̈ + σ10ṡ
2 + σ14 = 0 (145)

Writing Eq. (145) in state space form results:

ẋ19 = x20 (146)

ẋ20 = −σ10x
2
20 − σ14 (147)

The stability of Eqs. (146) and (147) is verified through numerical simulations.

8 Numerical Simulations and Discussions

The problem of flexible rotary wings rotating at high speeds and interacting with
a fluid (as in the case of mathematical modeling of helicopters) is a very complex
problem. This one is not yet a work that intends to discuss issues of aerodynamics
and aeroelasticity associated with these systems. The expressions for CD and CL

are presented here just to complete the reasoning. The aim here is to present the
simplest (and sufficiently representative) expressions for these coefficients just so
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that their values are not imposed in a table. Here, only the geometric angle of attack
is considered (α; the angle between the free stream and the chord line).

Therefore, for a finite and symmetrical wing-like structure, the lift coefficient and
the drag coefficient considered in this work are given, respectively, by:

CL = 2π sin (α + βh)

1 + 2
AR

CD = CD∞ + C2
L

πAR

where AR = b2

Ap
represents the aspect ratio of the wing, βh represents a parameter

(angle) associated to unsymmetric airfolis, CD∞ represents the drag of the infinite-
span airfoil, b represents the span of the wing (the longest distance between the
plane’s wing tips) and Ap represents the planform area (the body area as seen from
above; suitable for wide, flat bodies such as wings and hydrofoils).

In this work, the airfoil is symmetric (βh = 0o) and the flexible wing-like structure

is rectangular. Considering this: Ap = b
2 c = Lc and AR = ( b

2 )
2

Ap
= L2

Ap
= L

c . It is also
considered, for simplicity, that CD∞ is negligible.

The parameters values used in the numerical simulations are presented in Table 1.
The objective of the numerical simulation presented here (and the objective of

this work as well) is to discuss the significant difference between the ideal system
approach for the system investigated in this work and the non-ideal (more realistic)
system approach for this same system.

Table 1 Parameters values used in the numerical simulations

Parameter Nomenclature Value

Mass density (beam) ρ 2700 kg/m3

Elastic modulus (beam) E 0.700*1011 Pa

Beam length L 1.500 m

Beam tickness hb 0.001 m

Beam width w 0.080 m

Gravitational acceleration g 9.810 m/s2

Radius of the hub r 0.100 m

Density of the fluid ρf 1.184 kg/m3

Mean chord (beam cross sectional width) c 0.080 m

Angle of attack α 1°

Nondimensional lift coefficient CL CL = 2π sin(α)
(

L
L+2c

)
= 0.099

Nondimensional drag coefficient CD CD = C2
L

( c
πL

) = 1.664 ∗ 10−4

Span b 3.000 m (=2L)
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The LQR weighting matrices used in the numerical simulations are:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The governing equations of motion are numerically integrated using the Runge–
Kutta–Fehlberg method with a time step of 0.001 s.

In order to compare the results for the ideal approach and for the non-ideal
approach, the same conditions are imposed for both cases. For all the numerical
simulations presented in this work, the actuation control on the equations linearized
by feedback are performed using the feedback controller called LQRwith the weight
matrices as presented above.

Comparing Fig. 3 with Fig. 4, it can be seen that, with the sameQ and Rweighting
matrices, the non-ideal system comes closer and faster to the imposed reference to
displacement and angular velocity than the ideal system.

Comparing Fig. 5 with Fig. 6, it is verified that the motor control torque when one
considers the ideal approach is about 480 times that necessary when the non-ideal



Nonlinear Control of Rotating Flexible Structures Considering … 301

Fig. 3 Angular displacement: (…..) reference, (- - -) ideal approach and (____) non-ideal approach

Fig. 4 Angular velocity: (.....) reference, (- - -) ideal approach and (____) non-ideal approach
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Fig. 5 Control torque generated by the direct current motor: ideal approach

Fig. 6 Control torque generated by the direct current motor: non-ideal approach
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approach is considered.And even so, as observed in the previous paragraph, themotor
control torque in the non-ideal approach proves to be more efficient. In the non-ideal
approach, part of the energy stored in the beam(due to the angular displacement and
velocity provided by the motor) flows back to the dc motor through the coupling
terms involving the beam variables and the motor variables present in the motor
equation (which characterizes the system as non-ideal) and helps the control action.
It is clear the amount of error one may commit in the case the wrong approach is
considered. For the same task, the ideal system approach will ask for a much larger
motor (actuator).

Figures 7 and 8 present the control forces generated on the piezoelectric actuators
considering the ideal approach (Fig. 7) and the non-ideal approach (Fig. 8). Again,
the control forces required for the non-ideal approach are in general smaller than
those required when considering the ideal approach. In this case, the differences are
significant but not as dissimilar as in the case of motor control torques.

Figures 9 and 10 present a comparison between the beam deflection (through its
nodes) for each approach. It is clear again that the non-ideal approach predicts a
much smaller amplitude of vibration than the ideal approach. As stated before, in
fact, part of the energy in the beam flows back to the dc motor. Figures 11 and 12
present similar results for the velocities along the beam.

Figures 13 and 14 present the results for the zero dynamics for this problem. The
variable s and its first time derivative are related to the unactuated variables. Figure 14

Fig. 7 Control forces generated on the piezoelectric actuators: ideal approach
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Fig. 8 Control forces generated on the piezoelectric actuators: non-ideal approach

Fig. 9 Displacement of beam nodes 2 to 5: (- - -) ideal approach and (____) non-ideal approach
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Fig. 10 Displacement of beam nodes 6 to 9: (- - -) ideal approach and (____) non-ideal approach

shows that the ascension velocity naturally converges to a specific constant value and,
therefore, according to Fig. 13, the vertical displacement continues linearly forever.

The situation in which the system reaches a certain height and interrupts its ascen-
sion, causing the ascension velocity to converge to zero (amovement called hovering)
is not considered in this work.

9 Conclusions

Amathematicalmodel for amechanical systemconsisting of a rotatingflexible beam-
like structure under the influence of aerodynamic drag and lift forces is derived
using extended Hamilton’s principle. The resulting system of coupled nonlinear
governing equationsofmotion isanalyzedin closed loop under two assumptions: ideal
andnon-ideal energy source interactions.The choice betweenone approachor another
significantly alters the results obtained by the numerical integration of the governing
equations of motion and depends on the understanding and knowledge about the
mathematical modeling of these systems.

The results presented here prove that indeed the ideal and the non-ideal approaches
produce totally different results. The response amplitudes for the non-ideal approach
are always smaller when compared to the response amplitudes presented in the ideal
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Fig. 11 Velocity of beam nodes 2 to 5: (- - -) ideal approach and (____) non-ideal approach

approach. In the non-ideal approach, part of the energy stored in the flexible structure
is allowed to flows back to the energy source (dc motor) while, in the ideal approach,
all the energy accumulated on the flexible structure is contained in the structure,
increasing the vibration amplitudes and the efforts necessary for the control actions.

The nonlinear control technique named Partial Feedback Linearization comple-
mented by a linear control method named Linear Quadratic Regulator is used in
order to eliminate the vibration on the flexible structure while controlling the angular
velocity of the system in order to keep it constant. The control laws command the
torque on the dc motor axis and the forces on the piezoelectric actuators located
along the beam-like structure.Despite the differences in magnitude, the linear and
nonlinear control laws employed here are effective for both the ideal and the non-
ideal cases. For the non-ideal case, however, the forces and torque magnitudes are
smaller and the control action is more efficient.

The system investigated here is underactuated. In the study of these systems, it is
important to analyze the behavior of the non-actuated states (internal dynamics). The
analysis of the zero dynamics associated with the system investigated here shows
that the uncontrolled variables do not present a behavior that will compromise the
behavior of the controlled variables over time.
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Fig. 12 Velocity of beam nodes 6 to 9: (- - -) ideal approach and (____) non-ideal approach

Fig. 13 Zero dynamics: vertical displacement (ideal and non-ideal approches give the same result)
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Fig. 14 Zero dynamics: vertical velocity (ideal and non-ideal approaches give the same result)
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Control of the Dynamics of Mechanical
Structures Supporting DC Motors
with Limited Power Supply

A. A. Nanha Djanan, B. R. Nana Nbendjo, and P. Woafo

Abstract The present Chapter presents on its entirety the dynamics of mechanical
structures such as beam and rectangular plate when they are subjected to one or
more DC motors with limited power supply. Attention is paid on the various appli-
cations of such study in civil and mechanical engineering. To deal with this topic,
we developed two main approaches with the purpose to give a good insight on vibra-
tion control and stability of the studied system. The first step consists on the use
of some electric transducers and tuned mass damper to reduce the amplitudes of
vibration of a plate. An adequate choice of the physical parameters of the control
device enhances the efficiency of the control strategy. A stability analysis using the
Routh-Hurwitz criteria confirms the pertinence of the control strategy. The second
method is rather based on the synchronization with and without delay between the
external sources (DCmotors) working on the structure. Here, the physical parameters
of the structure enable to present the phase and anti-phase or rapid and late synchro-
nization phenomena between the motors. This difference of phase or the input delay
between the motors and the voltage applied on the motors lead to situations where
the amplitude vibrations of the mechanical structure are considerably reduced.

Keywords Nonlinear dynamics · Mechanical structures · Non ideal sources · DC
motors · Electric transducers · Tuned mass damper · Routh-Hurwitz criteria ·
Self-synchronization

1 Introduction

The study of thin plate vibrations displays a rich and complex dynamics that ranges
from linear to strongly nonlinear regimes when increasing the vibration amplitude
with respect to the thickness. A plate is a continuous system, and thus, in the language
of Mechanical Engineering, it possesses an infinite number of degrees of freedom.
Truncating the degrees of freedom from an infinite number to a finite one can lead
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nonetheless to a faithful reproduction of the dynamics. When a rectangular plate
vibrates in a weakly nonlinear regime, modal couplings produce amplitude depen-
dent vibrations, internal resonances, instabilities, jumps and bifurcations. In the case
where it vibrates in a strongly nonlinear regime, the most appropriate description of
the dynamics is given in terms of the statistical properties of the system, because of
the large number of interacting degrees-of-freedom.

The range of applications of plates is quite large, thus thin vibrating structures
are found very often in musical instruments. For example, plates are fundamental
components of the piano and the guitar, serving as soundboards; they have been
extensively used as analog reverb units before the advent of digital systems. Instru-
ments such as bells, gongs or cymbals are, roughly speaking, curved plates. In old
theatres, large metallic plates were used at times to simulate the powerful sounds of
thunders and storms.

The scientific interest of studyingmechanical structures such as rectangular plates
is really broad, and comprises domains that are apparently very different.Many appli-
cations are found in common engineering problems, such as panel flutter in aero-
nautics, energy harvesting of fluttering flexible plates, piezoelectric and laminated
plates, and others.

Several engineering structures such as buildings, airplanes wings, helicopter
blades, bridges are usually subjected to various types of vibrations. These vibra-
tions may result from wind gusts, high speeding cars, rotating machines and some
environmental disturbances. The dynamic response of mechanical and civil struc-
tures prone to high-amplitude motions is often undesirable and dangerous. These
vibrations often lead to material fatigue, structural damage and failure, deterioration
of system performance, and increased noise level.

Frequently we encounter in civil and mechanical engineering situations where a
rectangular plate is excited by one or more DC motors leading to high amplitude of
vibration. However, there are two principal types of rotating machines, each of them
is composed by a fixed part called stator and another one mobile around a fixed axes
named rotor. Thesemotors can be powered either by direct current (DCmotors) or by
alternative current (AC motors). In DC motors, the rotational speed is proportional
to the applied voltage and the normal method of speed control is by varying the input
voltage. This speed is however also inversely proportional to the flux in the air gap.
This means that the speed increases as the flux provided by the coils decreases.

Analysis of the response of structures subjected to non-ideal excitations is of
fundamental importance for their implementation in industry and civil engineering.
For such an analysis to be able to predict the realistic behavior of a structure during
an actual non-ideal motion, certain information is necessary. First, the nature of
the Non-ideal excitation must be specified, and secondly the mechanical behavior
of the structure (thin plate) should be modeled within a reasonable accuracy. Since
1956, there exist numerous analytical and numerical techniques for the modeling and
dynamics predictions of linear and nonlinear thin plate. Platforms, quay, flagstone
and bridges are some examples of rectangular thin plates currently present in our
environment (Ashour 2001, Shafic 1999). The mastery of this dynamics helps to
prevent some catastrophe and disaster during the construction or the functioning of
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such structures. Among the perturbations which can cause mechanical vibration in
structure, one can note wind, rotating machines, static and moving charges. In the
case of rotating machines which can be divided in two principals groups, AC and DC
motors one can note some situations currently encountered in civil and mechanical
engineering. Usually, these motors are mounted on structure in industry to function
alone or in series. In this last case, the synchronization phenomenon can probably
appear between themwhen they are coupled. This phenomenon has beenwell studied
in the last decades.

Sometimes DC motors are capable of limited power supply and in a situation
where they are fixed on a mechanical structure, the system is named a non ideal one
because the excitation source will be influenced by the response of the main system
[1]. In industry we note the presence of some electrical machines mounted on elastic
structure and during their works they will certainly interact. This interaction may
be profitable or not to the firm, in the last case one has to take some care to avoid
damage. Thus, it is well recommend to study the vibration control theory to predict
some unpredictable behaviors.

The second section will be devoted to the presentation of the generalities on
interaction of DC motors with limited power supply with mechanical structures.
Section 3 dealswithmathematical formalism for the vibration control of a rectangular
plate where both techniques are presented. The fourth section presents recent results
on the topic and the last section concludes the chapter.

2 Generalities on Interaction of DC Motor with Limited
Power Supply and Mechanical Structures

In the manufacturing process in industry, it is common to have a DC motor resting
on a mechanical structure. However, motors will inevitably induce vibrations to the
structure. Depending on the running speed of the motor, we may face a situation
where the resulting vibrations of the mechanical structure will influence that of the
DCmotor which initially acts as an exciter. In the literature, it is known that when the
excitation of a vibrating system is not influenced by its response, it is said to be an
ideal excitation or an ideal source of energy. On the other hand, when the excitation
is influenced by the response of the system, it is said to be non-ideal one.

The behavior of ideal vibrating systems iswell known in the current literature [2, 3]
but there are few results on non ideal ones. Laval is probably the first one toworkwith
non-ideal problems. He built, in 1889, a one single-stage turbine and demonstrated
that in the case of rapid passage through resonancewith enough power; themaximum
vibration amplitude may be reduced significantly compared with that obtained in
the steady state resonant vibration. Balthazar [1] and his research group present the
progress of this kind of problem. It is also known for non ideal systems that sometimes
the passage through resonance requires more input power than the dynamical system
driven has available. The consequence is the so-called Sommerfeld Effect which
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Fig. 1 A DC motor mounted on a hinged-hinged beam

means that the dynamical system cannot pass the resonance or requires an intensive
interaction between the dynamical system and the motor to do it. Kononenko [4] has
devoted an entire text to this subject. Nayfeh andMook [5] gave a comprehensive and
complete review of different approaches to the problem up to 1979. More recently,
De Mattos [6] presented experimental results of the vibrations excited by a rotating
mass at the end of a cantilever beam. They observed that the extent of the associated
jump could be increased by increasing the unbalanced mass. Also, they observed
that, in some cases, the amplitude and frequency of the motion became and remained
modulated. Contrary to their counterpart, non-ideal vibrating systems have one more
degree of freedom.

As application of such systems, one canhave amechanical structure (beam, rectan-
gular plate, etc.…) supporting an unbalanced direct-current (DC) motor with limited
power supply. A sample of schematic presentation of non idealsystem is given in
Fig. 1, where the DC motor is mounted on a hinged-hinged beam.

The general form of dynamical equations of a non ideal system is presented as
follow:{

Dynamic Equation of the supporting structure = I nteraction terms

J d2ϕ

dt2 + F
(
dϕ

dt

)
= Other Interactionterms

where J, H and (
dϕ

dt ) represent respectively the inertia moment of the rotating
mass, the driving torque of the DC motor and the angular velocity of the rotor. The
previous equations can take into account damping and the resisting torque of the
motor. Others details will depend on the particular problem studied the properties of
the supported structure and the characteristics of the used rotor.

Another characteristic of non ideal excitation is that it is always limited in two
senses:

– The characteristic curves of the energy source (DC source)
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– The dependence of the motion of the dynamical system on the motion of the
energy source, that is, the coupling between the governing equations of motion
of the dynamical system and the energy source

3 Mathematical Formalism of the Vibration Control
of Rectangular Plate

The present section gives some information about the different control approaches
which could be used to control the vibration amplitude of a rectangular plate, begin-
ning by the used of some electric transducers in Sect. 3.1. Section 3.2 used the
coupling between DC sources and the plate. Each section gives some details about
the mathematical formalism used. The equations of motion of a rectangular plate
submitted to a non ideal excitation can be derived following the Hamilton’s prin-
ciple. This principle is based on the knowledge of the kinetic, the elastic potential
and the external energy of the system under consideration.

3.1 Rectangular Plate Connected to an Electric Transducer
as Controller

The active control is based on the use of secondary sources of noise or vibrations
which by superposition with the primary sources leads to a minimize signal. For thus
control strategy, the actuator applies a force on a structure using for their functioning
an external energy source [7] (Bravo 2000, Ottersten 2003, Tchokuegno 2003, Le
2009, Deng 2012, Jamula 2012, Yan 2013). This control method uses two main
strategies. The first consists to identify the perturbation creating the excitation and to
cancel it by adding another source of excitation inverse to it. The second one consist
of indentifying the response of the structure instead of the excitation, thus it needs the
modeling of the dynamics behavior of the structure. One can use smart materials like
piezoelectric, ceramics or electric transducers as device to reduce the amplitude of
vibration of mechanical structures. Today, we have some new control techniques like
opto-electromechanical control, saturation control [3], magnetorheological control
[8].

In the case of electric transducers, we have to add another differential equation
to the one obtained without the transducer. Thus the system will have a new degree
of freedom, which can be the electric charge or the electric current of the studied
system. The dynamical equation of the plate will have an additional term related to
the coupling with the electric transducer; this term is usually connected to the control
parameter of the system. Its variation leads to appreciate the control of the amplitude
of vibration in considered structure. The dynamical equation of the controller have
too a term coupled to the mechanical structure which is responsible to the energy
balance between the external source and the controller.
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Sometimes the formof the coupling terms leads to somephenomenon as saturation
one [9]. When we display analytically the dynamical equation of the system, one
can denote the influence of these terms in the energy transfer between the external
excitation and the absorber.

The usual form of the dynamic equation of a rectangular plate supporting a DC
motor with limited power supply connected to an electric transducer is given as
follow:⎧⎪⎨
⎪⎩

Dynamic equation of the structure = I nteractions terms + Coupling term

J d2ϕ

dt + L
(
dϕ

dt

)
= Other interaction terms

Dynamic equation of the controller = Another Coupling term

where J, L and (
dϕ

dt ) represent respectively the inertia moment of the rotating mass,
the driving torque of the DC motor and the angular velocity of the rotor.

The obtained dynamical equations are explored by taking into account the
boundary conditions of the plate. The solutions of the PDEof the system are supposed
to be a superposition of a spatial and a temporal term expressed as follow:

Inserting this solution in the PDE and using the orthogonal properties of the
spatial function, one obtains the normalized equation in the first mode denotedmodal
equation of the system. Thismodal equation can be analyzed by a number of different
methods such as the asymptoticmethods, themultiples scalesmethod and themethod
of normal forms.

3.2 DC Motors Mounted on a Rectangular Plate

In this subsection, we present mechanical systems, with rotating parts, which are
typical in engineering applications and subject of intensive studies. Problem of scien-
tific interest, which among others occurs in those systems, is the phenomenon of
synchronization of different rotating parts. Such situations are currently encountered
in industry where on the same mechanical structure are mounted two or more DC
motorswith limited power supply. This is usually done in order to increase the output,
to avoid human physical effort and to realize easily some tasks. The coupling between
the external sources is assured by the rectangular plate where they are fixed.

Balthazar et al. [10] investigated the self-synchronization of a vibrating system
composed of two rotating unbalanced motors with limited power supply, mounted
on a simple portal frame. Their obtained results lead to conclude that we can denote
self-synchronization and absence of synchronization between the two motors for
specific characteristics. This phenomenon has been studied before in the literature
in other ideal problems, distinct from the present one by [11, 12], among others.

In seventeenth century Huygens reported his discovery of tendency of two pendu-
lums (of the clocks) coupled through elastic structure (beam) to synchronize [13].
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It was the first observation, which has an application in physics, of phenomenon of
coupled harmonic oscillators. Kanunnikov and Lamper prove that accurate antiphase
motion of pendulums with different masses cannot occur. Pogromsky created a
controller which solves the synchronization problem. Pendulums reach required
level of energy andmove synchronously in opposite directions.More recently, others
works have been implemented in the same sense. Between them, we can note those of
Czolczynski et al. [14, 15] who studied the synchronization phenomenon appearing
between a numbers of rotating pendulums mounted on a horizontal beam which can
roll on the parallel surface. They showed that after the initial transient, different
states of pendulums synchronization occurs. Additionally, it is shown in [16], that
two motors mounted on the same plate can enter into synchronization with a phase
difference equal to 0,π or 2π depending on the physical characteristics of the motors
and the plate, and that a reduction of vibration in a plate is obtained when the motors
phase difference is equal to π.

The number of the PDE describing the dynamic of a rectangular plate supporting
some DC motors with limited power supply depends on the number of non ideal
sources fixed on the plate. Their usual form is obtained by using the Hamilton
principle and is given as follow:

⎧⎪⎨
⎪⎩

Dynamic equation of the structure = I nteractions term (equal to
the number of DCsources)

J i d
2ϕi
dt + Li

(
dϕi
dt

)
= Other interaction terms

where Ji, Li and (
dϕi
dt ) represent respectively the inertia moment of the rotating

mass, the driving torque and the angular velocity of the rotor of each DC motor.

4 Recent Results

The present section is devoted to the recent published results on the vibration control
of rectangular plate supporting some DC motors. The presented results are obtained
by the authors on the use of electric transducers and tuned mass damper as controller
device where we paid an attention on the stability analysis of the controlled system
and self-synchronization with and without delay of the DC sources mounted on the
rectangular plate.
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4.1 Electromechanical Control of Vibration on a Plate
Submitted to a Non-ideal Excitation

Nonlinear vibration of rectangular plates has been investigated by a number of authors
[17]. Subjected to various types of excitation they can lead to high amplitude of
vibration which is not always necessary for the human being.

The topic of vibration control is one of the most relevant in the civil and mechan-
ical engineering domain. However, the attenuation of vibration remains a problem
of primary importance in many engineering fields. In the past, the reduction of the
amplitude of vibration in a mechanical system was pursued by increasing the stiff-
ness and the mass of the structure with respect to the initial scheme in order to
increase the damping effect. To deal with vibrations in mechanical structure, various
configurations of devices have been proposed until now. Thus, in the literature we
can note that they are range from simple archaic solutions to more modern one using
new techniques of vibration control. The new one presents the advantage that they
are less costly and more effective. Moreover, some control techniques used electric
transducers such as electromechanical devices to come through natural vibration in
mechanical structures. However in 2006, Kitio Kwuimy et al. showed the optimiza-
tion of the electromechanical control of a beam submitted to transversal and axial
loads.

In this subsection, we present an electromechanical device used to control the
vibration of a rectangular plate submitted to a DC motor with an unbalanced mass
acting on a particular surface of the plate. After the modeling of the studied system,
we analyze analytically and numerically the condition for the effectiveness of the
control strategy. The reader should keep in their mind that in our previous works
[9, 18], the dynamics of a beam was studied. There, we have used an electrostatic
device as a controller coupled with the notion of saturation to determine the effect
of control on the vibration amplitude.

4.1.1 Presentation of the Device and Mathematical Modeling
of the Studied Problem

The studied system consists of a mechanical structure represent here by a rectangular
plate with edges simply supported, on which a DCmotor with an unbalanced mass is
fixed. In order to perform the modeling of the studied system, the surface on which
the motor is fixed is taken into account through the step function. The acting force
provided by the mechanical part of the electromechanical system acts under the plate
by various stings regularly spaced and connected to the plate. Figure 2 presents an
overview of the studied system.

The angular displacement of themotor is denoted byϕ. TheDCmotor is composed
by a rotor with a moment of inertia J which carries an unbalanced mass m0 situated at
a distance r from the axis. In order to pursue the theoretical study, the driving torque
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Fig. 2 An overview of the system under control (the top of figure is composed by a rectangular
plate where is resting a DC motor and the bottom is composed by a RL circuit with a magnet
connected to the structure by stings)

Fig. 3 Stability card of the controlled system around the chosen fixed point
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characteristic of the motor is considered to be a type frame 284. This indication is a
reference which is well known either by the manufacturer or the experimenters.

The dynamical equations of motions are derived using the Hamilton Principle
where is taken into account the total potential energy of the controlled system, the
kinetic energy of the system and the sum of the non conservative forces.

According to the Hamilton Principle we obtained the coupled partial differential
equations of the motion for the plate under control (of length a, wide b and thickness
h) with the DC motor are given as follows:

(
ρh + m0

ab

)∂2W

∂t2
+ λ

∂W

∂t
+ D

[
∂4W

∂x4
+ 2

∂2W

∂x2
∂2W

∂y2
+ ∂4W

∂y4

]

= m0r

a1b1

(
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)[
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0)
]

× [
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[(
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2
)
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] + m0r
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(
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(
I
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))
∂ I

∂t
+ RI = lb B

N∑
i=1

M∑
j=1

∂W

∂t
δ(x − xi )δ(y − yi )

(1)

where W, ρ, D and h are respectively transversal displacement, density, flexural
rigidity and thickness of the plate, L(ϕ.) is the difference between the generated and
frictional torque of the motor, λ is the damping coefficient, r and m0 are the excen-
tricity and themass of the unbalanced shaft of the electric motor, g the intensity of the
gravity field. B, L, lb, ς and R are respectively the magnetic field, inductance, length,
saturation parameter of the coil and resistance of the electric circuit. a1 = x’0 − x0 and
b1 = y’0 − y0 the position of the electric motor on the plate, where x0, x’0, y0, y’0 are
coordinates of the boundary of the surface occupy by the DC motor respectively in x
and y directions, I the electric current. H, δ are respectively the Heaviside and Dirac
delta functions. xi and yj are the coordinates of the stings acting under the plate.
The characteristic curve of the energy source (DC motor) is considered as a straight
line (for more details see Warminski [19]): In this case the constant u1 and u2 refer
respectively to the voltage and a physical characteristic of the corresponding motor.

L(ϕ̇) = u1 − u2ϕ̇ (2)

In this case the constants u1 and u2 refer respectively to the voltage and a physical
characteristic of the corresponding motor.
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Taking in account the boundary conditions of the plate (simply supported one) and
according to the orthogonality of the eigenfunctions (Peeters, 2010), the following
modal equations are derived as:

(
ρh + m0

ab
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Where

Ẏn,m(t) = dYn,m

dt
, ϕ̇ = dϕ

dt
, ϕ̈ = d2ϕ

dt2
, Ÿn,m = d2Yn,m

dt2
,

For the n and m mode in each direction we derive the normalized equations:
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with the dimensionless variables given by: Vnm = (I/I0); Unm = (Ynm/a); τ = (t/ω0);
Here I0, ν, N and M are respectively the characteristic current of the electrical

circuit, Poisson ratio, number of stings acting in x and y direction respectively.
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4.1.2 Performance of the Control Strategy

(a) Stability analysis of the controlled system

Instead of reinforcing the structure, active control strategies could destabilize the
structure due to the forces acting on the system. It is therefore primordial to focus on
the stability of the system in autonomous case. Thus, the Jacobian matrix related to
the dynamics equations is extracted and explored. Four fixed points are derived from
the dynamics equations with a condition but only two are physically possible [20].
The characteristic polynomial is derived from this Jacobian and according to the
Routh–Hurwitz criterion [21], the system is stable if some conditions are satisfied.
In order to get the real domain where the controlled systemwill be stable in the space
parameter, we display the following diagram, where the region with dark points is
the stable region of the controlled system. The stability card obtained is validated by
carrying out the eigenvalues of the Jacobian matrix of the controlled system in the
both regions [20].

(b) Effect of the control on the amplitude of vibration of the plate

The equations of motion of the system under control are solved analytically by using
the harmonic balance method. After some algebraic analytical manipulation, we
obtained strongly non-linear and coupled amplitude equations. A good accordance
between our analytical results with the numerical one is observed since it is quite
impossible to plot separately the amplitude of the structure, angular velocity and the
current as function of the motor velocity (see [20] for more details).

To show the effect of the control strategy used, we display in Fig. 4 the evolution
of amplitude when the control is on and off. We observed from this figure that the
amplitude response of the plate is well reduced for these set of parameters.

By increasing the number of stings acting under the plate in each direction, we
observe in Fig. 5 that the amplitude response of the plate is more and more reduced.

The effect of the saturation parameters of the inductance has been explored and
we can observe that the reduction of amplitude may lead to the production of an
important quantity of energy in the electromechanical device. It is also proved [20]
that the amplitude of vibration of the plate decreases as the number of the stings
increases and as the intensity of the magnetic field increases.

4.2 Vibration Control a Rectangular Plate Submitted
to a Non-ideal Excitation with a TLCD

4.2.1 Description of the Control Device and Mathematical Modeling
of the Studied Problem

The schematic of the studied system consists on simply supported edges rectangular
plate under the excitation of an unbalanced DC motor with limited power supply
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Fig. 4 Amplitude curve of the plate when the control is off (points with dashed line) and on (points
with line) for N = 5 and M = 3

coupled with a TLCD. Both the motor and the damper are fixed to the plate. The
plate and the DC motor system form a non-ideal system, meaning that the excitation
created by the DC motor is influenced by the response of the supporting structure
and that the applied voltage has a limited power supply.

The present device is different from the others commonly seen in the literature
[3] in the sense that the orifice is placed vertically. Once the system is excited by
the motor, there arise transversal vibrations of the plate. As a result, the liquid inside
the columns of TLCD starts vibrating by passing through the vertical orifice and
try to stabilize the plate. This allows us to distinguish the vertical column Lv to the
horizontal column Lh as shown in Fig. 6.

The dynamic equations of the system are obtained by combining the kinetic,
potential and external energies of the plate, the motor, and the TLCD. Then after
determining the respective derivatives and substituting in the Lagrangian equations,
we get the following system of equations:
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ab Ẇs + D

[
∂4Ws
∂x4

+ 2 ∂4Ws
∂x2∂y2

+ ∂4Ws
∂y4

]
= m0r0

a0b0

(
ϕ̈ sin ϕ + ϕ̇2 cosϕ

)
(H(x − x1) − H(x − x2))(H(y − y1) − H(y − y2))

− ρc A
a1b1

(
2Ẇ 2
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Fig. 5 Maximum amplitude of the plate as function of the number of stings acting in each direction

with Lv and Lh the vertical and horizontal length of the liquid inside the tube, ρc the
density of the fluid inside the columns of the TLCD, a1 = x2 − x1 and b1 = y2 −
y1 are the dimensions occupied by the TLCD along the x- and y-axes of the plate,
respectively, with x1, x2, y1, and y2 the coordinates of the boundaries of the areas
occupied by the TLCD, respectively, in the x and y directions.Av andAh are the cross-
sectional areas, respectively, of the vertical and thehorizontal columnsof the tube, and
H represents the Heaviside function. The movement of the system is characterized
by two generalized coordinates Wf and Ws, respectively, the response of the liquid
damper (TLCD) and the response of the plate in the transversal motion. The plate has
the following dimensions: the length a, the width b, and the thickness h. Concerning
the motor, a mass m0 is fixed on the shaft of the rotor with an eccentricity r.

4.2.2 Optimization of the Control Strategy

Taking into account the boundary conditions of the plate and the Galerking approach
we displayed the orthogonality of the obtained spaced function and we derived the
following algebraic modal dimensionless equations:
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Fig. 6 Rectangular plate
supporting an unbalanced
DC motor and a TLCD: a
perspective view and b front
view

⎧⎪⎨
⎪⎩
T̈nm + λṪnm + ω2

nmTnm = α0
(
ϕ̈ sin ϕ + ϕ̇2 cosϕ

) − α1

(
2Ż2

f + 2Z f Z̈ f

)
ϕ̈ − β0T̈nm sin ϕ − g0 cosϕ = u1 − v1ϕ̇

Z̈ f + 1
4L ξ

∣∣Ż f

∣∣Ż f + g1Z f = −β1Z f T̈nm

(6)

This system of ODE’s has been displayed analytically and numerically to perform
the control strategy used (Feulefack 2021). Thus, it has been proved that some phys-
ical parameters of the studied system have a great effect on the vibration control of
the rectangular plate.

Modeling of the studied system here takes more details into account such as the
spaces occupied by the DC motor and TLCD under and over the rectangular plate
respectively. Physical and mechanical parameters used for numerical simulations
are chosen according to a common situation in civil or mechanical engineering.
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Fig. 7 Numerical results of the responses of the rectangular plate and phase diagrams with and
without TLCD device obtained with the parameters’ values u1 = 2.1; α0 = 0.42; α1 = 0.201; g0 =
7.9; g1 = 1; β0 = 0.1; λ1 = 0.001; ξ = 0.6; ω1 = 2; β1 = 1.25; and v1 = 0.02

Accordance observed between numerical and analytical results lead to conclude that
one can predict the influence of some physical or mechanical parameters of the
system on the plate amplitude of vibration. Consequently, the results obtained will,
therefore, encourage engineers to use a TLCD concept as a control system for tall
buildings and structures due to its multiple advantages.
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Fig. 8 Rectangular plate supporting two DC motors

4.3 Self-synchronization of DC Motors on a Rectangular
Plate and Reduction of Vibration

In industry, several rotating machines inevitably exhibit nonlinear behaviors when
they are mounted on flexible structures. In general, the excitation of this type of
vibrating system is considered to be always a limited power supply since the response
of the structure influences the rotatingmoving of themotors [1, 9]. TheMathematical
formalism leading to themodeling of a non-ideal system includes an additional equa-
tion compared to that of the corresponding ideal system, to describe the interaction
between the energy source and the rest of the system.

In order to optimize the output in industry or to carry out many tasks at the
same time, synchronization or desynchronization of machines can be necessary
to optimize the production. Thus, it may be possible for two or more machines
having each a motor to self-synchronize. Balthazar et al. [1, 22] investigated the self-
synchronization of a vibrating system composed of two rotating unbalanced motors
with limited power supply mounted on a simple portal frame. They reached to the
conclusion that we can denote self-synchronization and absence of synchronization
between the two motors for specific characteristics.

The results presented here are divided in two parts where the first one is devoted
to the synchronization of two DC motors supported by the same plate and on the
analysis of plate vibration control when the motors enter into synchronization. The
second one focuses on the synchronization of three DC motors supported by the
same plate when they are rotating in the same or in the opposite direction. The plate
vibration control analysis is studied when the motors enter into synchronization or
not. Using numerical simulation, one can show the influence of the main frequency
structure on synchronization, and the impact of rotating direction of the DC motors
on the plate displacement.
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4.3.1 Self-synchronization of Two DC Motors Mounted
on a Rectangular Plate

(a) Description of the model

The studied system consists of a rectangular plate with simply supported edges, on
which two DC motors with an unbalanced mass are fixed. The surface on which the
motors are fixed is taken into account by considering the area a1b1 and a2b2.

The angular displacements of the motors are denoted ϕ1 and ϕ2. The rotors have
respectively the inertia moment J1, J2 and carry the same unbalanced mass m0 at
a distance r from their axis. The physical characteristics of the motors such as the
characteristic driving torque of the motor for each is assumed to be well known,
either from the manufacturer or from experiments [10].

According to the Hamilton principle, the PDE describing the dynamics of the
system is given as follow:

(
ρh + m1+m2

ab

)
∂2w
∂t2

+ λ∂w
∂t + D

[
∂4w
∂x4

+ 2 ∂4w
∂x2∂y2

+ ∂4w
∂y4

]
=∑

i
= 12 −miri

ai bi

(
ϕ̇2
i sin ϕi − ϕ̈i cosϕi

)[
H(x − xi ) − H

(
x − x ′

i

)][
H(y − yi ) − H

(
y − y′

i

)]
ϕ̈i = −miri

2
(
J+mir2i

) ∂2w
∂t2

cosϕi − miri g(
J+mir2i

) cosϕi + Li (ϕ̇i )

(7)

Taking in account the boundary conditions of the plate (simply supported one),
and using the orthogonality of the eigenfunctions obtained, the following normalized
modal equations are derived as:

ÿ + δ ẏ + ω2y = α1
(
ϕ̇2
1 sin ϕ1 − ϕ̈1 cosϕ1

) + α′
1

(
ϕ̇2
2 sin ϕ2 − ϕ̈2 cosϕ2

)
ϕ̈1 = β1 ÿ cosϕ1 + ε1 cosϕ1 + L̃1(ϕ̇1)

ϕ̈2 = β2 ÿ cosϕ2 + ε2 cosϕ2 + L̃2(ϕ̇2)

wherey represent the normalized plate amplitude.
Considering the two non ideal sources acting on the structure and taking into

account their physical characteristics, we can distinguish four situations for which
the dynamics can be explored:

. 1st case: a01 = a02, b01 = b02, meaning that the DC motors are identical and have
the same applied voltages.

. 2nd case: a01 �= a02, b01 �= b02, meaning that the DC motors are different and have
different applied voltages.

. 3rd case: a01 = a02, b01 �= b02, meaning that the DC motors have the same applied
voltages and are different.

. 4th case: a01 �= a02, b01 = b02, meaning that the DC motors are identical and have
different applied voltages.

We assume first that the both non ideal sources are identical with the same source
of voltage apply, that the both non ideal sources have a source voltage, Fig. 9 shows
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Fig. 9 Self-synchronization of the non ideal sources with b01 = b02 = 1.624 and a01 = 3.209, a02 =
3.207

the (a) variation of the velocity, (b) velocity difference, (c) phase difference between
the two motors (d) and plate amplitude as a function of the time.

Observation of these curves let appears that curves that the two DC motors enter
into synchronization in the first case mentioned above with a phase difference of
�ϕ=2π. This synchronization appears with time because of the energy transfer
between the two rotors (Kapitaniak 2012). This synchronization phenomenon
appears with time because of the energy transfer between the two rotors (Kapita-
niak 2012). It is also found that the amplitude of vibration of the plate increases.
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Still in the first case, one notice that for some values of the frequencies, the phases
difference can be equal to π, 2π or equal to 0(see Fig. 10).

However, there is a domain where the phase difference is different to the previous
values (see Fig. 10). This domain is situated between the domains where the phase
differences are π and 2π or 0. In this domain we note high amplitude of vibration
in the plate [16]. On the base of these results, we can note that self-synchronization
of non ideal sources may lead to reduction of amplitude vibration of the plate when
they have a phase difference �ϕ=π.

Due to the fact that, the frequency of the structure ω is a parameter which
contributes to get synchronization with phase difference of π or 2π, the density
of the structure and its thickness are parameters that can be chosen to reduce the
amplitude of the plate. For instance, with two identical DC motors, a concrete plate
having the following characteristics:

. Dimensions: 800 mm × 600 mm × 4 mm;

. Density: 2500 kg/m3;

. Young modulus: 3.0× 1010 N.m−2;

. Poisson ratio: 0.20.
leads to a structure frequency of ω = 2.21 when the thickness is h = 4 mm,

meaning that we can get self-synchronization with�ϕ = 2π.and when the thickness
is h = 1.4 mmwe have ω = 0.77 leading to self-synchronization with �ϕ = π. With
a thickness of h = 2.4 mm, the phase difference is between] π, 2π [.

Fig. 10 Phase difference between the DC sources as function of frequency structure for identical
sources
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Fig. 11 Amplitude of the plate for �ϕ= π (dash lines) ω = 0.78, �ϕ = 2π (solid lines) ω = 2.21

(b) Influences of voltage sources on amplitude vibration of the plate for different
motor

For identicalmotors (b01 = b02), we display in Fig. 11 the amplitude of vibration of the
plate when the voltage applied to one DC source varies and for the other one we fix as
a02 = 3.201. Observation of this curve shows that the transition to the resonance leads
to less amplitude of vibrationwhen the twoDC sources are synchronizedwith a phase
difference of 2π or 0 compared to the synchronization with phase difference of π. In
the region where we have ω = 0.78 and ω = 1.3 (synchronization with �ϕ = π and
self-synchronization with �ϕ ε] π, 2π [) Figs. 12 and 13 show a global view of the
plate amplitude in a 3D plot for identical DC motors (b01 = b02), while each applied
voltage is varied. The associated color bars showing different regions, indicating
values of the amplitude vibration of the plate as it increases from minimum (blue)
to maximum (brown) are clearly identified. The blue color denotes regions in space
parameters (a01, a02) where the amplitude vibration of the plate is less than amplitude
in the region where we have brown color. Through the diagonal (a01 = a02), we note
less amplitude of vibration in the plate whether in resonant regions or not.Figure 13
Amplitude of the plate as function of a01 and a02 for ω = 1.3 and identical motor.
a: Space representation in 3D; b projection in the plan

(iii) Influences of voltage sources on amplitude vibration of the plate for different
motor

When the two non ideal sources are different (b01 �= b02), we represent the amplitude
vibration of the plate when varying the voltage applied to one DC motor and setting
the other at a02 = 3.201. The curves in Fig. 14 are obtained with two values of
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Fig. 12 Amplitude of the plate as function of a01 and a02 forω = 0.78 and identical motor. a Space
representation in 3D; b projection in the plan

Fig. 13 Amplitude of the plate as function of a01 and a02 for ω = 1.3 and identical motor. a: Space
representation in 3D; b projection in the plan

structure frequency (ω = 0.78, ω = 2.5). We note that, the amplitude of vibration
in the structure is reduced for ω = 2.5 compare with the value ω = 0.78 at the
resonance.

Comparison between the both figures let appears that the amplitude of vibration
of the plate is more reduced when the frequency structure is increasing. Thus for
different DC motors, plate thickness and his density are parameters to be chosen
carefully so as to avoid high amplitude of vibration in the structure. It is also important
to know the physical characteristics of one motor which will self-synchronize (in
phase or in antiphase) with a different one whose characteristics are well known [16].
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Fig. 14 Plate amplitude as function of voltage apply to one DC motor a ω = 0.78 dashed curve
with stars and ω = 2.5 solid lines with points

4.3.2 Self-synchronization of Three DC Motors Mounted
on a Rectangular Plate

(a) Description of the studied system

Here, the studied system consists of a rectangular plate with simply supported edges,
onwhich threeDCmotorswith an unbalancedmass are fixed and are capable to rotate
in the same or in the opposite direction. The surface on which the motors are fixed is
taken into account by considering the area a1b1, a2b2 and a3b3. A schematic of the
set-up is shown in Fig. 15. The rotors have each the moment of inertia Ji carrying
an unbalanced mass mi at a distance r from their axis. The angular displacements of
the motors are denoted ϕi. The characteristic driving torque of the motor for each
given power level is assumed to be well known, either from the manufacturer or from
experiments [19].

On the base of the Hamilton principle, the obtained PDE describe the dynamics
of the system is similar to the one obtained in the case of two DC motors but the
number of PDE correspond to the number of DC motors mounted on the plate. The
main structure equation has additional external term equal to the number of the DC
sources mounted on the structure.

The rotating opposite direction of the DC sources is taken in account in the
characteristics equations by taken negative the voltage apply to the DC sources.
This characteristics curve of the energy source is assumed to be a straight line as in
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Fig. 15 Schematic of a rectangular plate supporting three DCmotors rotating in opposite direction

Warminski [19]. The boundary condition of the studied plate is a simply supported
one.

(b) Self-synchronization and amplitude vibration of the plate when the DCmotors
rotate in the same direction

In this subsection, we assume that the non-ideal sources have a same source voltage
and the same physical characteristics. It is quite important to note that the values
of the coupling terms are different because of different position occupied by the
motors on the structure. We denote self-synchronization between the DC sources
[23] by observing the behavior of the phase difference between the DC motors as
the structure frequency is varied. We note that for small frequency of vibration of
the structure the phase difference between motors 2 (DC2) and 3 (DC3) is equal to
0while the phase difference between motor 1 (DC1) and motor 2 (DC2) is π. When
the plate frequency is high there is a perfect synchronization between motor 2 and
motor 3 and anti phase synchronization between motor 1 and motor 2 or motor 3.

Through numerical simulation, we observe that by comparing the plate ampli-
tude for small and high value of the frequency, anti-phase synchronization is quite
recommended to get small amplitude of vibration of the plate.

Substituting DC motor 2 by another one, we note that for small frequency of the
plate, the phase differences φ2 − φ3 and φ1 − φ2 are equal to 4π/5 and represent the
half of φ1 − φ3, while for high frequency, all the DC motors synchronize in phase.
Looking and comparing the plate amplitude, one can note that these amplitudes are
small when one motor synchronizes in phase with the others even if one of them is
out of phase. It is also possible to substitute a DC motor with another one capable of
creating and in-phase synchronization.
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As we note that the natural frequency of the structure is a relevant parameter
which contributes to get synchronization with phase difference of π, 4π/5, 8π/5 or
2π we can conclude that the density of the structure and its thickness are parameters
that can be well chosen in order to more reduce the amplitude vibration of the plate.

(iii) Self-synchronization and amplitude vibration of the plate when the DC
motors rotate in different directions

This subsection is related to the situation presented in Fig. 15, however according to
the rotating direction ofDCmotor 2, the control parameter a2 will be count negatively.
Thus, when we considered identical motors (b01 = b02 = b03), we display in Fig. 16
the phase differences between the DC motors while the plate frequency is varied.

The corresponding plate amplitude show low amplitude of vibration for less value
of the frequency and high amplitude in the other case. This means that when two
of the three DC sources are synchronized in phase the amplitude of vibration is
inevitably high even if the structure frequency is high.

By displaying the corresponding plate amplitude, the obtained figures [23], it is
shown that for identical motors rotating in the same direction compare to the case of
different motors rotating in the opposite direction both obtained for a small value of
the structure frequency.

However, it is noted that for a high value of the structure frequency the amplitude
of vibration of the plate is identical when the motors are identical or not and rotating
in the same direction or in the opposite directions.

Fig. 16 Phase difference between DC motors as function of structure frequency, DC1-DC3 (black
points), DC2-DC3 (red stars), DC1-DC2 (green points)
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Fig. 17 Representation of velocity difference (a) and phase difference (b) between the two DC
motors as function of dimensionless time computed with α1 = α2 = 0.201 when the main frequency
of the structure is ω11 = 0.873

In the case where the three non-ideal sources are different (b01 �= b02 �= b03), we
denote small amplitude of vibration when one of the motors rotate in the opposite
direction.

4.3.3 Effect of Time Delay of DC Motors on Their Self-synchronization
When Mounted on a Rectangular Plate

It has been already proved before that two or three DC motors supported by a rect-
angular plate can easily enter in a self-synchronized dynamics with different phase
differences. However, up to now we do not yet pay enough attention about the effect
of the switching delay which could be imposed to one or two DCmotors when others
are already switch on [24].

The mathematical formalism of such system follows the same rules as presented
before thus, we obtained the following dynamical equations:

Ÿk,l(τ ) + 2δẎk,l(τ ) + ω2
k,lYk,l(τ ) = αi (τ − τi )

(
ϕ̇2
i sin ϕi − ϕ̈i cosϕi

) + βi (τ − τi )

ϕ̈i = σi,kl Ÿk,l(τ ) cosϕi + εi cosϕi + L̃ i (ϕ̇i )

where i = 1;2 or 3, τ i the functioning delay imposed to the DC motors, k and l
refer nodal lines along the x- and the y- directions, respectively.

(a) Case of two DC motors

Here we display a situation where two DCmotors are mounted on a rectangular plate
and one is switch on with a delay τ i when the second one is already working on the
plate. The study is restricted here to the first mode of vibration in each direction of the
plate because it has been proven that it is the place of high amplitude of vibration in
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the system. Based on numerical simulations done, It is observed that when the second
DC motor starts to function with a delay τ2, both DC motors quickly synchronize,
the faster for an increased delay. Hence, this leads us to conclude firstly that late
switching on of the second motor reduces the time to reach to a synchronous state
between DC motors.

However from Fig. 18, we observe that whatever the value of the starting delay
imposed to the second DC motor, it doesn’t have any effect on the plate amplitude
of vibration in the case of the high natural frequency of the plate. Nevertheless, we
denote the presence of high amplitude of plate vibration when the phase difference
ϕ2-ϕ1 = 2π compared to the situation of an anti-phase (ϕ2-ϕ1 = π obtained with
low value of the natural frequency) synchronization between the sources which is in
accordance with previous results [16].

(b) Case of three DC motors

The situation presented here consists of three motors resting and acting on a rectan-
gular plate. However, the starting delay imposed to the DCmotors can be introduced
in different ways. To show the impact of the starting delay of the DC motors on the
time required for synchronization, we focus our attention on the case where the DC
motors are synchronized (identical motor characteristics and same voltage supply).
Note that numerical solutions have been provided for the fundamental mode in each
direction of the plate and motors rotate in the same direction.

However, when the natural frequency of the plate is ω11 = 0.873(Fig. 19) the
starting time of the third motor affects the time required to achieve synchronization
of the three DC motors. Thus, from the start of the third DC motor, the three DC
motors are caused to synchronize more sooner. This can be explained by the fact that

Fig. 18 Representation of plate amplitude vibration for two values of the main frequency of the
plate ω11 = 2.73 (a) and ω11 = 0.873 (b) in view of their comparison
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Fig. 19 Representationof phase difference (a,b, c) between the threemotors andvelocity difference
between the DC1 and DC3 (d) for a main frequency of the structure of ω11 = 0.873. The first and
the second DC motors start at the same moment τ 1 = τ 2 = 0 while the third starts with a delay τ 3
= 100 (red);τ 3 = 200 (black); τ 3 = 300 (blue)

the third DC starts when the two others are already synchronized. Thus, we could
conclude that the natural frequency of the plate (by its physical and mechanical
characteristics) contributes efficiently to the rapid self-synchronization between the
DCmotors.Moreover, we can denote that energy transfer is quickly realized between
the sources for a high of the value natural frequency of the plate.

5 Conclusions

In this chapter, the dynamics and vibration control ofmechanical structures submitted
to the vibrations of rotating machines with limited power supply is treated. Such
systems are usually called non ideal systems because they are systems for which the
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external source is influenced by the response of main system. This kind of system is
regularly encountered in industry, civil and mechanical engineering.

The first section presents a large number of applications of rectangular plate,
following by history and some information about rotating machines especially the
DC motor. The vibration control problem is approached by the presentation of some
control techniques. Some examples/applications and details on the dynamics on
non-ideal systems are presented in the following section.

The mathematical formalism of the vibration control of the mechanical structure
is presented in two steps. The first one concerns the used of electric transducer
and a tuned mass damper as controller device and the second the synchronization
phenomenon with and without delay appearing between the external excitation. A
brief review of each techniques of control is well presented.

The recent results on the subject are divided in two parts, they concern the elec-
tromechanical control of the rectangular plate where we paid an attention on the
stability of the control systemand the self synchronization of theDCsourcesmounted
on the rectangular plate.

In the first case studied, aftermodeling of the proposed device, the implementation
of the control strategy leads to obtain the condition for which the control is effective,
the effect of some control parameters on the reduction of the amplitude are displayed
and the stability condition of all the system is established in order to enhance the
efficiency of the control strategy used.

In the second set of results, the dynamics of two and three DC sources with limited
power supply mounted on a rectangular plate is studied; the sources are capable to
rotate in the same or in the opposite direction. The main phenomenon observes is
the self-synchronization appearing between the DC sources with time. It is shown
that the structure frequency is a relevant factor allowing synchronization between
the sources with a phase difference of zero, π, 2π, 2π/5, 4π/5, 8π/5. The effects of
the control parameter (voltage apply to the DC sources), physical and mechanical
characteristics of the plate are displayed and the impact on the control strategy of the
direction of rotation of the sources is also shown. It is conclude that the rectangular
plate will less vibrate when the two sources are antiphase synchronizing, or when
one of the sources are rotate in the opposite direction than the two others. The phase
synchronization will be profitable only in the case of resonance.

This work leads to some prospective works which could be to get vibration control
device which do not need more energy for functioning and to evaluate eventually
damage on the structure when it is connected to the controlled device during his
functioning. In addition, it will be preferable to adapt the DC motors before or
during his functioning to themechanical structure in order to get early energy balance
between the both and to avoid early high amplitude of vibration of the system.We can
also study the stability of the system, while the DC motors are synchronized on the
mechanical structure and look for experimental verification of the synchronization
of DC motors fixed on a plate usually encountered in building site.
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Dynamic Analysis and PID Control
of a Double Pendulum Arm Excited
by a Nonideal Source

A. M. Tusset , P. L. Paula Filho , V. Piccirillo , G. G. Lenzi ,
Jose Manoel Balthazar , C. Oliveira , and M. Varanis

Abstract In this paper the dynamics of a double pendulum arm coupled through
a magnetic field to a nonlinear RLC based shaker circuit is presented and will
be studied numerically. This kind of electromechanical system is often found in
robotic systems and has important applications in Engineering Sciences. The double
pendulum considered is coupled through a magnetic field to an RLC circuit based on
nonlinear shaker. The nonlinear response analysis of the system is done by various
techniques, including bifurcation diagrams, phase portraits, power spectral densities,
and Lyapunov exponents. Numerical simulations show the existence of chaotic and
hyperchaotic behavior for some regions of the parameter space. In order to suppress
the chaotic motion, a PID control is proposed and analyzed. Numerical simulations
show the effectiveness of the proposed control in suppressing the chaotic motion.

Keywords Non-ideal systems · Electromechanical system · PID control · Chaos
suppression · Hyperchaotic behavior · Chaotic behavior

1 Introduction

The growing number of researches considering the dynamical systems with
pendulum elements has demonstrated the importance of the theme in applications
in Engineering Sciences. In [1–11] the dynamics of the parametrically excited
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pendulum is studied. In [12–16] the nonideal pendulum autoparametric system was
studied, and in [17, 18] the double pendulum autoparametric system with harmonic
excitation was studied. The nonlinear dynamics of a triple pendulum is investigated
experimentally and numerically in [19–23].

Dynamic systemswith pendulum elements can exhibit different types of behavior,
ranging from periodic oscillations to chaotic behavior [24–26]. In many cases, peri-
odic behavior may be desirable, avoiding chaotic movement [27]. The suppression
of chaotic behavior has received a lot of attention in recent years and various control
methods have been proposed to control the chaotic system [28]. In [29] analyzed
delayed feedback control. In [28] the Lyapunov function method is applied to design
the control. In [30] the nonlinear SDRE control is used to suppress the chaotic
behavior of a simple pendulum system with parametric excitation. In [18], SDRE
and Saturation control are considered to suppress the chaotic behavior of a double
pendulum system. In [31], an MR damper was used as a passive control for the
suppression of chaotic behavior in a simple pendulum system with autoparametric
excitation. In this paper, a PID control is proposed to suppress the chaotic behavior
of the double pendulum arm coupled to a nonlinear shaker.

2 Mathematical Model

Figure 1 presents the double pendulum of lengths l1 and l2 and masses m1 and m2

investigated in the paper.

Fig. 1 Schematic diagram
of the electrical excited
pendulum system
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In Fig. 1 it is observed that the electrical part of the system consists of a capacitor
C, an inductor L, a resistor R and a source of voltage e(t), where the pendulum
deflection angles ϕ1 and ϕ2 are measured from the vertical axis.

The mathematical model for the system presented by Fig. 1 can be expressed by
equations [18]:

Lq̈ + Rq̇ + 1

C0
q + a3q

3 + nBσ 2l2

2
φ̇1 = ν0 cos(�t)

(m1 + m2)l
2
1 φ̈1 + m2l1l2φ̈2 cos(φ1 − φ2)

+ m2ll2φ̇
2
2 sin(φ1 − φ2) + (m1 + m2)gl1 sin φ1 =

− c1φ̇1 − c2(φ̇1 − φ̇2) + nBσ 2l2

2
q̇

m2l
2
2 φ̈2 + m2l1l2φ̈1 cos(φ1 − φ2)

− m2l1l2φ̇
2
1 sin(φ1 − φ2) + m2gl2 sin φ2 = c2(φ̇1 − φ̇2) (1)

where: ν0 and � are the amplitude and frequency, respectively, C0 is the linear
value of C , a3 is the nonlinear coefficient depending on the type of the capacitor
used, c1 and c2 is damping coefficients, B is magnetic field, σ is the permeability
coefficient, l is length of the conductor and n is the number of turns per unit length.

The dimensionless mathematical model for the system (1) can be expressed by
the following system of equations [18]:

ẍ + μẋ + x + kx3 + b1φ̇1 = E cos(ωτ)

φ̈1 + 1

(b + 1)a
φ̈2 cos(φ1 − φ2)

+ 1

(b + 1)a
φ̇2
2 sin(φ1 − φ2) + ω2

1 sin φ1 = −μ1φ̇1

− μ2

(b + 1)a2
(φ̇1 − φ̇2) + b2 ẋ

φ̈2 + aφ̈1 cos(φ1 − φ2) − aφ̇2
1 sin(φ1 − φ2) + (ω2

1a) sin φ2 = μ2(φ̇1 − φ̇2) (2)

where: τ = ωet , x = q
Q0
, a = l1

l2
, b = m1

m2
, μ = R

Lωe
, k = a3Q2

0
Lω2

e
, ω2

e = 1
LC0

,

ω2
2 = g

l2ω2
e

= ω2a, ω = �
ωe
, E = ν0

LQ0ωe
, μ1 = c1

(m1+m2)l21ωe
, μ2 = c2

m2l22ωe
, b1 = nBσ 2l2

2LQ0ωe

and b2 = nBσ 2l2Q0

2(m1+m2)l21ωe
.

Equation (2) can be rewritten in state space form as follows:

ẋ1 = x2

ẋ2 = −μx2 − x1 − kx31 − b1x4 + E cos(ωτ)

ẋ3 = x4
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ẋ4 = − 1

(b + 1)a
ẋ6 cos(x3 − x5)

− 1

(b + 1)a
x26 sin(x3 − x5) − ω2

1 sin x3 − μ1x4

− μ2

(b + 1)a2
(x4 − x6) + b2x2

ẋ5 = x6

ẋ6 = −aẋ4 cos(x3 − x5) + ax24 sin(x3 − x5) − (ω2
1a) sin x5 + μ2(x4 − x6) (3)

3 Numerical Simulation

For numerical simulation is considered the parameters: E = 1, b = 0.5,μ = 0.02,
μ1 = 0.01, μ2 = 0.01, k = 0.95, ω1 = 1, ω = 1, b1 = 0.2 and b2 = 0.4, along
with the initial conditions:xi (0) = 0, where i = 1:6 [18].

In Fig. 2 one can observe the Bifurcation diagram for the system (3) considering
0.5 ≤ a ≤ 1.

Analyzing the results obtained in Fig. 2, it can be perceived that the system has
a chaotic behavior for a range of values of a = l1

l2
, demonstrating that the length of

the links interferes directly in the dynamics of the system.
In Fig. 3 the first two most significant Lyapunov exponent of the system (3)

considering 0.5 ≤ a ≤ 1 are presented.
Analyzing the results presented in Fig. 3, it can be seen that the system shows

chaotic behavior for a > 0.55. As the system has two positive Lyapunov exponents
for a > 0.57, it can be said that the system has hyperchaotic behavior [32].

Fig. 2 Bifurcation diagram
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Fig. 3 Most significant Lyapunov exponent

In Fig. 4, 5 and 6 one can observe the time history of the states, for the electrical
system, first link and second link, respectively, considering a = 0.91.

As can be seen from the results presented in Fig. 4, 5 and 6, the system shows a
chaotic behavior with variations in the motor voltage and movements of the links.

(a) (b)

(c)

Fig. 4 Electrical system. a Time history of the states x1. b Phase diagram to x1 versus x2. c Power
Spectral Density for x2
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(c)

(a) (b)

Fig. 5 First link. a Time history of the states x3. b Phase diagram to x3 versus x4. c Power Spectral
Density for x4

(a) (b)

(c)

Fig. 6 Second link. a Time history of the states x5. b Phase diagram to x5 versus x6 . c Power
Spectral Density for x6
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4 Proposed PID Control

The designed control systems aim to eliminate the chaotic behavior of the system
(3) for a = 0.91 by introducing a control signal (u) into system (3), (4) shows the
proposed method.

ẋ1 = x2

ẋ2 = −μx2 − x1 − kx31 − b1x4 + E cos(ωτ) + u1
ẋ3 = x4

ẋ4 = − 1

(b + 1)a
ẋ6 cos(x3 − x5)

− 1

(b + 1)a
x26 sin(x3 − x5) − ω2

1 sin x3 − μ1x4

− μ2

(b + 1)a2
(x4 − x6) + b2x2 + u2

ẋ5 = x6

ẋ6 = −aẋ4 cos(x3 − x5) + ax24 sin(x3 − x5) − (ω2
1a) sin x5 + μ2(x4 − x6) + u3

(4)

The PID controller operates according to the following equations [33]:

u1 = kp1e1 + kd1ė1 + ki1

∫
e1dτ

u2 = kp2e2 + kd1ė2 + ki1

∫
e2dτ

u3 = kp3e3 + kd1ė3 + ki1

∫
e3dτ (5)

where kp_ is the proportional gain, kd_ is the derivative gain and ki_ is the corre-
sponding integral gain of the control loop, respectively. The errors, e1 = x̃1 − x1,
e2 = x̃3 − x3 and e3 = x̃5 − x5, where x̃− represent the desired states.

For numerical simulations, the gains are adjusted using Ziegler-Nichols method,
and is considered: x̃1 = 1.5 sin(τ ), x̃3 = sin(τ ) and x̃3 = sin(τ + π

2 ).

4.1 Control in Electrical System, and in First and Second
Link

Considering the case in which it is possible to control the motor voltage and the
torque of the two links, the proposed control (Eq. (4)) can be defined as follows:
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(a) (b)

(c) (d)

Fig. 7 Electrical system. aTime history of the states x1.bPhase diagram to x1 versus x2. cAbsolute
error e1. d Signal of the control u1

u1 = 605.3207e1 + 62.6759ė1 + 1343.5235
∫

e1dτ

u2 = 4071.7062e2 + 102.0894ė2 + 28487.1399
∫

e2dτ

u3 = 293.75204e3 + 33.37143ė3 + 554.6683
∫

e3dτ (6)

In Fig. 7, 8 and 9 one can observe the behavior of the system (4) with the proposed
control (Eq. (6)).

4.2 Control Only in Electrical System and in First Link

Considering now the case that it is possible to directly control only the electric motor
and the first link, using u1 and u2. In this case, we consider that u3 = 0. In Fig. 10, 11
and 12 one can observe the behavior of the system (4), considering only the control
u1 and u2.
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(a) (b)

(c) (d)

Fig. 8 First link. a Time history of the states x3. b Phase diagram to x3 versus x4. c Absolute error
e2. d Signal of the control u2

(a) (b)

(c) (d)

Fig. 9 Second link. a Time history of the states x5. b Phase diagram to x5 versus x6 . c Absolute
error e3. d Signal of the control u3
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(c) (d)

(a) (b)

Fig. 10 Electrical system. a Time history of the states x1. b Phase diagram to x1 versus x2. c
Absolute error e1. d Signal of the control u1

(a) (b)

(c) (d)

Fig. 11 First link. a Time history of the states x3. b Phase diagram to x3 versus x4. c Absolute
error e2. d Signal of the control u2
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(a) (b)

Fig. 12 Second link. a Time history of the states x5. b Phase diagram to x5 versus x6

4.3 Control Only in Electrical System

Considering the case that it is only possible to include control in the electric motor.
In this case, only u1 is used, and it is considered that: u2 = u3 = 0. In Fig. 13, 14
and 15 one can observe the behavior of the system (4), considering only the control
u1.

(a) (b)

(c) (d)

Fig. 13 Electrical system. a Time history of the states x1. b Phase diagram to x1 versus x2. c
Absolute error e1. d Signal of the control u1



354 A. M. Tusset et al.

(a) (b)

Fig. 14 First link. a Time history of the states x3. b Phase diagram to x3 versus x4

(a) (b)

Fig. 15 First link. a Time history of the states x5. b Phase diagram to x5 versus x6

5 Final Considerations

In Fig. 16, the absolute errors for e1 = x̃1 − x1, e2 = x̃3 − x3 and e3 = x̃5 − x5 are
presented, considering the different control strategies considered.

As can be seen from the results presented in Fig. 16, the presented system is of the
non-ideal type, as the irregular movements of the elements lead to an increase in the
error of the desired voltage (x̃1 = 1.5 sin(τ )). As can be seen in Fig. 16a, the error
increases when the system is connected to the motor and does not have the control
signal (u2), and remains practically the same when using control on both links (x3
and x5), or only on the first link (x3).

Analyzing Fig. 13b, it can be seen that the movement of the second link (x5)
interferes with the movement of the first link (x3). If the second link is in free
movement, the error of the first link increases in relation to the desired one (x̃3 =
sin(τ )).

Additionally, it was possible to observe that the relationship in the length of
the links is determinant for the dynamic interactions of the presented system. It is
possible to observe periodic, chaotic and hyperchaotic behavior for certain values of
(a = l1

/
l2).

The results presented also demonstrate that for applications where it is desirable
to eliminate the chaotic behavior of the system, PID control is a good option.
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(a) (b)

(c)

Fig. 16 a Absolute error e1. b Absolute error e2. c Absolute error e3
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Fractional Dynamics of Harvester
with Nonideal Source Excitation

M. A. Ribeiro , W. B. Lenz , A. M. Tusset , Jose Manoel Balthazar ,
C. Oliveira , and M. Varanis

Abstract In this paper, the behavior of an electromechanical device for energy
production is investigate. Such a device consists of a motor containing an unbalanced
mass that causes vibrations in a mass, in this device was coupled a system containing
piezoelectric material that produces an electric current. Thus, the average power
produced in the piezoelectric material subject to the vibrations of the motor and
the fractional dynamics analysis of the system considering the Caputo operator is
analyzed in this device. For this fractional dynamic analysis, is used the parameter
of the fractional derivative operator and the F parameter for system control, the FFT,
bifurcation diagrams, 01-Test, and phase maps of the system were analyzed. Also
determine the range of the Caputo fractional derivative operator parameter near 1 in
which it modifies the dynamics of the system.

Keywords Fractional calculus · Nonlinear dynamics · Nonideal source

1 Introduction

With the technological advances in recent years, the great demand for energy
consumption has allowed researchers to discover mechanisms that produce energy
in a clean and renewable way. Thus, many works on these mechanisms have been
explored. Examples of these works are those in [1–3] that explore high-degree-of-
freedom mechanisms that convert mechanical energy from applied external forces
into electrical energy.
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Thus, many of these mechanisms for producing clean and renewable energy have
been explored, such as those using piezoceramic materials. Authors such as [4]
explore a device with frame portal geometry with ideal and nonideal external force.
Thus, establishing the dynamic behavior and energy production regimes.

Other works such as [5] explore the dynamics of mechanisms for energy produc-
tion. However, they propose control designs to suppress chaotic movements. Control
designs determine the conditions necessary for the system to maintain a periodic
orbit that will produce harvest energy.

Other authors [6–10], explore energy production with piezoceramic materials in
structures with non-ideal external forces. Thus, they establish the dynamic behavior
of these structures and propose new alternatives for clean and renewable energy. In
these papers, the authors explore a mechanism with a non-ideal force in a cantilever
beam, covered by piezoelectric layers on both sides and a direct current (DC) electric
motor connected to the beam and the rotor has an unbalanced mass.

At the attached end, the piezoelectric elements are connected via electrodes to an
electrical charge, i.e. load resistor. A direct current (DC) electric motor is connected
to the beam with non-linear cubic stiffness and linear damping properties. The rotor
has a mass (m) to generate the unbalanced oscillatory displacement. Finally, the
piezoelectric elements are connected through electrodes to an electrical network, for
example, a resistor R. Therefore, they propose analytical solutions using approxi-
mation methods and analyze the Somerfield effect that appears in the mathematical
model proposed by the authors [11]. Therefore, the generalization of mathematical
modeling with fractional calculus corroborates to determine the behavior of the frac-
tional dynamics of the system considering the parameter of the fractional derivative
operator. Often, the fractional derivative operator is linked to a property of the system,
such as viscoelasticity [12–16].

Many fractional derivative operators are used to analyze the behavior of elec-
tromechanical structures, an example is the flexibility behavior of microbeams in
MEMS systems [references]. Examples of fractional derivative operators applied for
dynamic analysis are Riemann–Liouville and Grünwald-Letnikov [13, 14, 18–20].

Therefore, using a fractional dynamics analysis of the model proposed by [13, 14]
consideringCaputo’s fractional derivative operator. However, coupled a piezoelectric
in the system for the average output power. Therefore, the work aims to analyze the
fractional dynamic behavior based on the Caputo’s fractional derivative operator
parameter. For this, was used the FFT to determine the regions of the dominant
frequencies, bifurcation diagrams and 0-1 Test [18, 20, 21] for determine the range of
the Caputo operator that can generate periodic or chaotic orbits. Another analysis was
with the average power generated by the system with the variation of the application
of the F parameter, according to [11] this parameter is defined as the system control
parameter. The exploration of the proposed fractional mathematical model is fully
numerical.
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2 Mathematical Modeling

The mathematical model is based on the one proposed by [11] and the Fig. 1 shows
the mechanism for application the Caputo Operator derivative.

The Eqs. (1) describe the motor movement and its vertical displacement of the
mass, thus:

ẍ(M + m) + cẋ − md
(
φ̇sin(φ) + φ̇2cos(φ)

)

+ k1x + k2x
3 + θ(1 + θn|x |)q = (M + m)g

φ̈
(
J + md2

) − md ẍ sin(φ) + mgdsin(φ) = �
(
φ̇
)

(1)

ρq̇ − θ(1 + θn|y|)q + q = 0

where M mass is connected to a fixed basement by a non-linear spring and a linear
viscous damper (damping coefficient c). The nonlinear spring stiffness is given by k1x
+ k2x3, where x denotes the structure displacement with respect to some equilibrium
position in the absolute reference frame. The motion of the structure is due to an
in-board non-ideal motor driving an unbalanced rotor. Denoted by φ the angular
displacement of the rotor unbalance, and model it as a particle of mass m and radial
distance d from the rotating axis. The moment of inertia of the rotating part is J. For
the resonant case the structure has an influence on the motor input or output. The
forcing function is dependent of the system it acts on, and the source is of non-ideal
type. And q is electrical current and θ is the linear and θn the nonlinear part.

Fig. 1 Scheme of the structure with piezoceramic material coupled
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Considering the following change in variables:

p = ω

�
, ω2 = k1

M + m
, γ = k3

(M + m)�6
, ζ = c

(M + m)�
, μ = md�2

(M + m)g
,

η = gmd
(
I + md2

)
�2

, F = M0(
I + d2m

)
�2

, �
(
φ̇
) = M0

(
1 − ϕ̇

�

)
,

x → y = �2

g
x and t → τ = �t.

,

Therefore, we rewrite Eqs. (1):

ÿ + ζ ẏ − p2y + γ y3

= 1 + μ
(
φ̈sin(φ) + φ̇2cos(φ)

) − θ(1 + θn|y|)q
φ̈ = η ÿ sin(φ) − ηsin(φ) + F

(
1 − φ̇

)
(2)

q̇ = 1

ρ
[θ(1 + θn|y|)q − q]

In this way, considering y = x1, ẏ = x2, φ = x3, φ̇ = x4 and q = x5, the system
of first order differential equations is obtained:

ẋ1 = x2

ẋ2 = 1

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1 + μ sin(y3)
(
μy24cos(y3) − ηsin(y3) + F(1 − y4)

) − θ(1 + θn|x1|)x5
)

(3)

ẋ3 = x4

ẋ4 = ηsin(y3)

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1 + μy24cos(y3) + μsin(y3)

(−ηsin(y3) + F(1 − y4)))

− ηsin(y3) + F(1 − y4)

ẋ5 = 1

ρ
[θ(1 + θn|x1|)x5 − x5]

However, we consider the fractional system for our analysis considering the
Caputo operator for fractional derivative, the Caputo operator is defined as follows
[13–20]:

C
a D

q f (t) = 1

�(q − n)

t∫
a

f (n)(τ )dτ

(t − τ)q+1−n (4)
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where n − 1 < q < n, in our considerations n = 1, thus, 0 < q < 1 and �(.)

is defined as the gamma function. Therefore, rewrite the System of Differential
Equations considering the Caputo operator for analyses:

C
a D

qx1 = x2

C
a D

qx2 = 1

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1 + μ sin(y3)
(
μy24cos(y3) − ηsin(y3) + F(1 − y4)

) − θ(1 + θn|x1|)x5
)

C
a D

qx3 = x4 (5)

C
a D

qx3 = ηsin(y3)

1 − μηsin2(y3)

(−ζ y2 − py1 − γ y31 + 1 + μy24cos(y3)

+μsin(y3)(−ηsin(y3) + F(1 − y4)))

− ηsin(y3) + F(1 − y4)

C
a D

qx5 = 1

ρ
[θ(1 + θn|x1|)x5 − x5]

3 Numerical Results and Discussion

For the numerical analysis, using the following initial conditions x0= [0,0,0,0] and
for analysis corresponds to q= [0.978, 1] because according to [13–16] values close
to q = 1 is conventional derivative operator. Thus, we analyzed the behavior of
fractional dynamics for values close to 1, which we could observe some chaotic
windows in the system. The parameters is: η = 0.05, μ = 8.737, p = 1.0, γ = 9.0,
θ = 0.1,θn = 0.5, ζ = 0.2, θ = 0.1 and θn = 0.5 [11].

The numerical method for solving the Eqs. (5) is composed of the initial
value problem and the variational system and Adams-Bashforth-Moulton predictor-
corrector for fractional differential equations [22–25], with a h = 0.001 and a time
of 105 [s] considering 40% of total time with transient time. Therefore, was analyzed
the behavior of Fast Fourier Transforms. In Fig. 2 shows the behavior of the Fourier
transforms of Eqs. (5), with the variation of q= [0.978,1] and for the following values
of F = [23.3, 46.6, 70]. Can be observed the dominant frequency in the system in the
red region where the q parameter shows more than one dominant frequency of the
system, which indicates multiple vibrational periods. It can be observed that values
of q close to 1 the system has overlapping frequencies, thus indicating a chaotic
behavior.

Therefore, Fig. 2 shows the behavior of the bifurcation diagrams of the systems,
and consideringF = [23, 46.6, 70],we can observe the emergence of chaoticwindows
with the variation of the parameter of the fractional derivative.
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Fig. 2 FFT for q = [0.978, 1.0]: a F = 23.3, b F = 46.6 and c F = 70

In Fig. 2(a) one can observe the chaotic windows at q = [0.9790:9793], [0.9816,
0.9822], [0.9871, 0.9873], [0.9887, 0.9936] and q = [0.995; 1.0] with parameter F
= 23.3. According to [11] for F = 23.3 and q = 1 which results in the conventional
derivative operator the system is in a chaotic regime. This happens for q = 1 in F
= 46.6 and 70 has a chaotic behavior which corroborates the data collected by [11],
where for systems with the integer derivative operator the system is in a chaotic
regime. In Fig. 3(b) with F = 46.6 has the following chaotic windows q = [0.978,
0.9783], q = [0.9875, 0.9876], q = [0.9937, 0.9941], q = [0.9946, 0.9952] and q =
[0.9976;1] and in Fig. 3c q = [0.978; 0.9737], q = [0.9871; 0.9875], q = [0.9919;
0,992], q = [0.9921; 0,9928], q = [0.9942; 0,996] and q = [0.9983; 1]. In Fig. 4
shows the behavior of 01-Test for the analysis of the fractional system, that is, for
values of k close to zero, the system’s periodic behavior is obtained, and for values
close to 1, the system’s behavior is chaotic [17–21, 23, 25].

Thus, through the bifurcation diagrams and 01-Test we can observe the correspon-
dence of the intervals in which the chaotic behavior of the subintervals contained
in the interval q = [0.978, 1.0]. Due to this correspondence, we build the phase
plane (x1 versus x2), thus we observe the chaotic and periodic behavior that the
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(a) (b)

(c)

Fig. 3 Bifurcation diagram for q = [0.978, 1.0]: a F = 23.3, b F = 46.6 and c F = 70

system presents, in Fig. 5(a) q = 0.98 periodic behavior, Fig. 5(b) q = 0.985 periodic
behavior and Fig. 5(c) q = 1.0 chaotic behavior for a value of F = 23.3. Figure 5(d)
q = 0.98 periodic behavior, Fig. 5(e) q = 0.985 periodic behavior and Fig. 5(f) q
= 1.0 chaotic behavior for F = 46.6 and in Fig. 5(g) q = 0.98 periodic behavior,
Fig. 5(h) q = 0.985 periodic behavior and Fig. 5(i) q = 1.0 chaotic behavior for a
value of F = 70.0.

We also analyzed the behavior of the harvesting energy of the system produced
by the piezoceramic material. According to [6–10], the Harvesting energy, in which
calculated from the mechanical component V = RQ̇ and according to the relation
for the non-dimensional electric power harvested is determined as follows:

P = ρq̇2 (6)
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(a) (b)

(c)

Fig. 4 01-Test com q = [0.978,1]: a F = 23.3, b F = 46.6 and c F = 70

where q̇ is the system voltage. However, we determine the average output power of
the system:

Pavg = 1

T

τ∫
0
P(τ )dτ (7)

Thus, Fig. 6 show the behavior of the harvesting power considering the parameter
q, we can see that the region in black corresponds toPavg <mean (Pavg) of the system.
However, the region between yellow and red corresponds to the calculated maximum
power, that is, Pavg > mean (Pavg).
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Fig. 5 Phase Portrait of Eq. (6). (a) q=0.98 and F =23.3, (b) q=0.985 and F =23.3, (c) q=0.98
and F =1.0, (d) q=0.98 and F =23.3, (e) q=0.985 and F =23.3, (f) q=1.0 and F =23.3, (g) q=0.98
and F =46.6, (h) q=0.985 and F =46.6 and (i) q=1.00 and F =46.6

Fig. 6 Pavg using Eq. (7) for q ∈ [0.978, 1] × F ∈ [1, 70]
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4 Conclusion

The fractional model for energy harvesting presented in the interval q = [0.958, 1] a
chaotic behavior for the structure with Caputo’s fractional derivative operator. Thus,
we applied01-Test andbifurcationdiagrams to analyze the locationof thesewindows,
for a set of F parameters. Therefore, was determined for values close to q= 1, regions
that presented chaotic and periodical behavior. These regions are confirmed with 01-
Test, bifurcation diagrams and the FFT. The analysis of the fractional dynamics of
the system not only corroborates the generalization of the mathematical model in a
numerical form, but also in the behavior with Caputo’s fractional derivative operator.
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Piezoelectric Energy Harvesting
from a Non-ideal Portal Frame System
Including Shape Memory Alloy Effect
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Jose Manoel Balthazar , G. Litak , and D. Bernardini

Abstract In this work, the investigation of energy harvesting for a U-frame-type
(portal frame) structure is presented. The structure is considered as a composite
made out of a Shape Memory Alloy (SMA), accounting for a non-ideal DC motor of
limited power supply attached to its rigid body. The energy harvesting is carried out
using a piezoelectric material (PZT), accounting for a nonlinear electromechanical
coupling model. For the behavior of the SMA, a polynomial constitutive model is
adopted, which relates the voltage variation to the temperature. Numerical results
demonstrate that both PZT and SMA material has a significant influence on energy
harvesting. In addition, it is highlighted that the use of SMA makes controlling the
vibrations of the structure possible, increasing the harvested energy.
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1 Introduction

In recent years, the demand for renewable energy sources, more efficient and nonpol-
luting, has been growing. As kinetic energy is an energy source easily found in the
environment, devices that convert kinetic energy into electrical energy have been
widely studied, and special attention has been given to devices that use piezoelectric
elements as a means of energy transduction [1–3].

Among the vibration sources that constantly produce kinetic energy, it is possible
to highlight the systems excited by a DC motor with an unbalanced mass connected
to its axis. The aforementioned excitation source is of non-ideal type and is charac-
terized as is because its amplitude and frequency are dependent on the movement of
the structure [4]. The non-ideal energy source can induce high levels of vibrations in
a structure, which becomes a promising kinetic energy source. Therefore, the piezo-
electric energy harvesting is a feasible, low-cost, and efficient way to convert kinetic
energy into electrical energy.

Many researchers are paying special attention to energy harvesting from nonlinear
and non-ideal vibration systems [5–15]. The main advantage of nonlinear energy
harvesters is the conversion of energy over a wider range of frequencies of vibrations
[7].

In this work, we investigate the energy harvesting for a U-frame-type (portal
frame) structure consisting of a composite material accounting for a Shape Memory
Alloy subjected to a non-ideal excitation source. The energy harvesting is obtained by
using a piezoelectric material accounting for a nonlinear model of electromechanical
coupling [16]. To describe the SMA behavior, a polynomial constitutive model is
adopted,which relates the voltage variation to temperature [17–20].When theSMAis
heated to a specific temperature, large contraction forces are induced due to the shape
recovery that occurs during the martensitic transformation, changing the stiffness of
the structure and its dynamics [21–27].

2 Mathematical Model

Figure 1 shows an equivalent physical model to represent the swaymotion (1st mode)
of a portal frame structure composed of a shape memory alloy and a piezoelectric
material attached on a column. A DC motor with a limited power supply containing
an unbalanced rotating mass into its shaft is fixed on the bottom of the mid-span of
the supported beam [7].

The mathematical model that represents the dynamics of the system shown in
Fig. 1 is developed using Lagrange’s energy method, where the Lagrange’s function
is expressed as:

L = Ek − Ep (1)
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Fig. 1 Schematic of the non-ideal portal frame energy harvester with SMA material

whereEk is the kinetic energy, andEp is the potential energy. The equations ofmotion
can be obtained through the Euler–Lagrange equation, given by:

d

dt

(
∂L

∂ Q̇i

)
− ∂L

∂Qi
= �i (2)

where i = 1, 2,..., N. N is the number of degrees-of-freedom, �i ’s are the non-
conservatives forces,Qi’s are the generalized coordinates, being that Q1 = X , Q2 =
ϕ and Q3 = q.

The kinetic energy is given by:

Ek = 1

2
MẊ2 + 1

2
I ϕ̇2 + 1

2
m0

[
Ẋ − r ϕ̇ sin ϕ

]2 + 1

2
m0[r ϕ̇ cosϕ]2 (3)

The potential energy is given by:

Ep = 1

2
kl X

2 + 1

4
knl X

4 + m0gr sin ϕ + 1

2
a�T X2 − 1

4
bX4

+1

6
eX6 − d(X)

C
qX + 1

2C
q2 (4)

The non-conservatives forces are given by:

�1 = −cẊ

�2 = V1 − V2ϕ̇

�3 = −Rq̇ (5)

Substituting Eqs. (3), and (4) into Eq. (1), and substituting the result accounting
for Eq. (5) into Eq. (2), we obtain:

MẌ + cẊ + kl X + knl X
3 = m0r

(
ϕ̈ sin ϕ − ϕ̇2 cosϕ

) − d(X)

C
q
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− p�T X + bX3 − eX5

(J + m0r
2)ϕ̈ − m0r Ẍ cosϕ = V1 − V2ϕ̇

Rq̇ − d(X)

C
X + q

C
= 0 (6)

where M = m1 +m0 is the total mass of the system, m0 is the eccentric mass of the
electric motor shaft, m1 is the mass of the structure, X is the vertical displacement
of the system, c is the damping coefficient, kl is linear stiffness coefficient, knl is
nonlinear stiffness coefficient, ϕ is the angular displacement of the rotor, r is the
eccentricity, J is the moment of inertia of the rotor, p, b a nd e are constants, �T =
T −Tm , T is temperature, Tm is temperature in which the martensitic phase is stable,
V1 and V2 are parameters of the DC motor, d(X) is a coupling coefficient between
the structure and the PZTmaterial, R is the electrical resistance,C is the capacitance,
and q is the electric charge.

Equations (6) can be written in state-space notation as follows:

x ′
1 = x2

x ′
2 = 1

1 − δ1ρ1 sin(x3)
2

⎛
⎝−α1x2 − ksma

(
a�T x1 − bx31 + cx51

)
+θ(1 + 	|x1|)x5 − β1x1 − β3x31
+δ1 sin x3(−ρ3x4 + ρ2) + δ2x24 cos x3

⎞
⎠

x ′
3 = x4

x ′
4 = 1

1 − δ1ρ1 sin(x3)
2

⎛
⎜⎜⎝ρ1 sin x3

⎛
⎝−α1x2 − ksma

(
a�T x1 − bx31 + cx51

)
−β1x1 − β3x31 + θ(1 + 	|x1|)x5
+δ2x24 cos x3

⎞
⎠

+ρ2 − ρ3x4

⎞
⎟⎟⎠

x ′
5 = θ(1 + 	|x1|)x1

ρ
− x5

ρ
(7)

where x1 = X , x2 = Ẋ , x3 = ϕ, x4 = ϕ̇, x5 = q, θ(1 + 	|x1|) = d(X), α1 = c
M ,

ksma = 1
M , a = p; b = b, c = e, β1 = kl

M , β3 = knl
M , ρ2 = V1

(J+m0r2)
, ρ3 = V2

(J+m0r2)
,

δ1 = δ2 = m0r
M , ρ1 = m0r

(J+m0r2)
, and ρ = 1

CR .
The average power is obtained through

Pavg = 1

T

T∫
0

P(τ )dτ (8)

where the instant power is calculated using

P = ρv′2 (9)
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3 Numerical Simulations

The numerical simulations are carried out accounting for the parameters: a =
0.00156987, b = 114.367348, c = 7232.49136, α1 = 0.1, β1 = −1, β3 = 0.2,
ρ1 = 0.05, ρ2 = 100, ρ3 = 200, δ1 = 8.373, θ = 0.20, Θ = 0.60 , ρ = 1.0, along
with the initial conditions: xi (0) = 0, where i = 1:5 [7].

Assuming ksma as a control parameter for the SMA, the following subsections
show the parametrical analysis of the control parameter ksma, the temperature varia-
tion �T, and the linear piezoelectric coefficient ρ, discussing their influence in the
behavior of the system and in the amount of power available to be harvested.

3.1 Control Parameter ksma Analysis

Here, the influence of the ksma in the behavior of the system is analyzed. Figure 2
shows the numerical results considering the range of parameters ksma = [0.05 : 10]
and�T = 70. It is noted that the highest average powers are obtained under a chaotic

(a) (b)

(c)

Fig. 2 Dynamics of de systems for ksma = [0.05:10] and �T = 70. a Bifurcation Diagram b
Representation of Kc (0-1 test). c Average power Pavg
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behavior with low ksma valleys. It is also observed that as ksma increases, the average
power progressively reduces for the system with chaotic behavior until the transition
to a periodic behavior (when ksma ≥ 5.8) with the increase in the average power and
stabilizing it at Pavg = 0.027.

Figure 3 shows the phase plane of the system (Fig. 3a) and the time history of the
electrical charge (Fig. 3b) accounting for ksma = 0.7 and�T = 70. It is observed that
the system has chaotic behavior, and the generated average power is Pavg = 0.0203.

Figure 4 shows the phase plane of the system (Fig. 4a) and the time history of the
electrical charge (Fig. 4b) accounting for �T = 70 and increasing ksma to ksma = 7.
Note that, in this case, the system shows periodic behavior and also increases the
harvested average power to Pavg = 0.0254.

(a) (b)

Fig. 3 Dynamics of the systems for ksma = 0.7 and �T = 70. a Phase plane for x1 versus x2. b
Time history of the electrical charge x5

(a) (b)

Fig. 4 Dynamics of de systems for ksma = 7 and �T = 70. a Phase plane for x1 versus x2. b
Time history of the electrical charge x5
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3.2 Temperature Variation ΔT Analysis

The behavior of the system can also change depending on the variation of temperature
of the SMA.

Figure 5 show the 0-1 test (Fig. 5a) and the amount of average power (Fig. 5b)
considering ksma = 0.7 and varying the temperature in a range of �T = [70 : 150].
It is noticed that the system remains in a chaotic regime for the entire range of
temperature. However, it is also observed there is an increase of power when the
temperature of the SMA increases.

Figure 6 show the phase plane of the system (Fig. 6a) and the time history of the
electrical charge (Fig. 6b) accounting for ksma = 0.7 and �T = 131.1. Note that the
system has chaotic behavior, and the generated average power is Pavg = 0.0211.

(a) (b)

Fig. 5 a 0-1 test and b average power varying the temperature within the range of�T = [70 : 150]
and considering ksma = 0.7

(a) (b)

Fig. 6 Dynamic of de systems for ksma = 0.7 and �T = 131.1. a Phase plane for x1 versus x2. b
Time history of the electrical charge x5
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(a) (b)

Fig. 7 a 0-1 test and b average power varying the linear piezoelectric coefficient within the range
of ρ = [0.05: 1] and considering ksma = 0.7 and �T = 131.1

3.3 Linear Piezoelectric Coefficient ρ Analysis

The linear piezoelectric coefficient has the most influence over the possible energy
that piezoelectric material can harvest. This coefficient represents the strain coef-
ficient of different piezoelectric materials. Hence, the higher is the coefficient, the
higher the energy harvesting is expected. However, it can directly affect the behavior
of the system as well.

Figure 7 show the 0-1 test (Fig. 7a) and the amount of average power (Fig. 7b)
considering ksma = 0.7 at a variation of temperature of �T = 131.1, and varying
the linear piezoelectric coefficient in a range of ρ = [0.05: 1]. It is observed that the
PZT parameter (ρ) has a greater influence on the average power. It is also important
to highlight that, for values between ρ = [0.53: 0.59], and ρ = [0.82: 1], there may
be ρ values that drive the system to a periodic state (contrasting Fig. 7b with Fig. 7a).

3.4 Control Parameter ksma Versus Piezoelectric Coefficient ρ

From the previous analyses, it is clear that the parameters ρ and ksma are the ones
that have the foremost effect on the dynamics of the structure and in the energy
harvesting. Therefore, a deep investigation of both parameters is carried out.

Figure 8 show 0-1 test map (Fig. 8a) and the average harvested map (Fig. 8b)
power for the variation of both parameters in the ranges ρ = [0.05: 1], and ksma =
[0.05: 10] when the variation of temperature is �T = 131.1. It is observed that for
most of the values of ρ the system presents chaotic behavior (Kc ≥ 0.8). However,
when ksma > 8.8, periodic behavior is dominant over the dynamics of the system
regardless of the values of ρ (Kc < 0.8). In addition, note that the maximum average
power is obtained when the values of ρ and ksma are minimum.
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Fig. 8 a 0-1 test map and b average power map for the variation of the ρ versus ksma within the
ranges of ρ = [0.05: 1] and ksma = [0.05: 10], �T = 131.1

Fig. 9 Dynamic of de systems for ksma = 0.05, ρ = 0.05, and �T = 131.1. a Phase plane for x1
versus x2. b Time history of the electrical charge x5

Accounting for the parameters of the system when there is maximum energy
harvesting,which are�T = 131.1, ksma = 0.05, andρ = 0.05, Fig. 9 show the phase
plane of the system (Fig. 9a) and the time history of the electrical charge (Fig. 9b).
It is observed that the system is chaotic, and the average power is Pavg = 0.04.

4 Conclusions

This work presented the investigation of the energy harvesting for a U-frame-type
(portal frame) structure considered a composite material made of an SMA under a
non-ideal excitation.

The numerical results demonstrated that the structure with the least of the SMA
material and a small piezoelectric component can generate a high amount of power for
energy generation. This is observed through Fig. 8b. It is also important to highlight
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that the use of SMA showed to be a viable alternative for controlling the chaotic
behavior and vibrations of the system, whose results are in agreement with those
observed in the cited works.

Appendix

The 0-1 Test Method

The 0-1 test consists of estimating a single parameter κ by [28]:

κ = cov(Y, M(c))√
var(Y )var(M(c))

(10)

where: c ∈ (0, π), M(c) = [M(1, c), M(2, c), . . . , M(nmaxc)] and Y =
[1, 2, . . . , nmax ].

If κ is close to 0 the system is periodic. On the other hand, if κ is close to 1 the
system is chaotic. The test utilizes a system variable x( j), where two new coordinates
(p, q) are defined as follows [29]:

p(n, c) =
n∑
j=0

x( j) cos( jc) (11)

q(n, c) =
n∑
j=0

x( j) sin( jc) (12)

The mean square displacement of the new variables p(n, c) and q(n, c) is given
by [29]:

M(n, c) = lim
n→∞

1

N

N∑
j=1

[
(p( j + n, c) − p( j, c))2 . . . + (q( j + n, c) − q( j, c))2

]

(13)

where n = 1, 2, . . . , N .
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LQR Optimal Control Applied
in an Energy Harvesting System
with Non-ideal Excitation Operating
with Uncertain Parameters

Estevão Fuzaro de Almeida and Fábio Roberto Chavarette

Abstract Themajority of active control applications in vibrational dynamic systems
are utilized to minimize vibrations. The goal of this research, on the other hand, is
to employ vibrations to generate electrical energy in such a way that the vibra-
tion becomes a desired phenomenon. The change of the physical characteristics of
the system was conducted in this work with the goal of enhancing the modeling
of complex energy harvesting systems with non-ideal excitation, bringing higher
resilience, and bringing them closer to reality. To stabilize the orbits and compare
the power generated by the systems with and without control, the optimal control
technique via Linear Quadratic Regulator (LQR) is used.

Keywords Energy harvesting · Non-ideal excitation · Uncertain parameters ·
Optimal control · Linear quadratic regulator (LQR)

1 Introduction

Energy Harvesting techniques have been created with the goal of providing a sustain-
able, safe, and efficient source of energy. Tiny temperature gradients, small mass
movements, and vibration are among the strategies used to capture energy from
nature. Furthermore, EnergyHarvesting is a promising alternative for lowpower elec-
tronic devices. In addition, electronic devices are becoming more energy efficient,
and some remote sensors can already operate with up to 100µW [1].

This chapter focuses on vibration-based mechanical energy harvesting systems,
considering that luminous energy (from a solar source) and thermal energy may not
be accessible at the application site, resulting in an energy shortage, even if minimal
[2, 3].
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In addition, vibration-based energy harvesters tend to have low maintenance
requirements and, moreover, can be used in environments considered hostile to more
technological and complex systems; such environments are commonly chosen for
the allocation of these sensors due to the higher amplitude of vibrations and because
this type of harvester does not require extensive cabling [4].

The initial types of vibration-based energy harvesters provide efficient responses
only when the excitation vibration frequency corresponds with the natural frequency
of the excited system, resulting in the phenomenon known as resonance [1, 5–8].
The so-called natural frequency of a body is given by the expression ω = (k/m)1/2,
where k is the stiffness of the system and m is its mass [9]. Thus, resonance occurs
when the external excitation frequency (ω) equals the body’s natural frequency.Most
vibration in the environment, on the other hand, has a large frequency range [1, 10]
and behaves randomly, as seen in the vibration of building structures subjected to
wind activity [11]. Because of this broad range, the influence of resonance is limited.

Several solutions have been presented in light of the research that has been
conducted in the area, with the goal of improving the efficiency of energy capture
in vibrational systems, one of which is known as multimodal [12]. The multimodal
method offers the use of multiple beams in order to better use the system’s natural
frequencies of oscillation. The multimodal solution has the effect of keeping the
system in extended resonance over a greater range of excitation frequency.

In terms of the system’s excitation forms, various studies have been discovered in
which periodic excitation sources, i.e., those that repeat throughout time, are utilized.
The angular frequency values of these sources are modified for this sort of analysis
in order to achieve system resonance and maximum energy capture for the selected
parameters. Non-ideal sources, on the other hand, are provided as a novel suggestion
for vibrational systems [13]. The essential feature of this sort of excitation is that
the source sends energy to the system, and the system’s dynamic reaction influences
the source’s action. Non-ideal systems are those in which the energy source interacts
with the system, and the source is referred to as a non-ideal source [14]. Non-ideal
sources include brushedDCelectricmotors, inductionmotors, driveswith dissipative
couplings or any type of load-dependent slip, and so on [15, 16].

The usage of controllers is an additional option to what has been presented thus
far that tries to improve the efficiency of energy harvesting devices. As stated in
the previous works [1, 10], the majority of the vibration in the environment exhibits
random behavior, fluctuating throughout a wide frequency band and exhibiting low
power. Ideal Control is provided in a recent paper [17] as the most promising option
for improving the efficiency of piezoelectricity- based energy harvesting devices
through active control.

Furthermore, given that real systems have dimensional limits and are subject to
constitutional fluctuations, the application of Uncertain Parameters theory is recom-
mended. Uncertainties are variations in the physical properties of the parts of a
dynamic system that cause changes in the natural frequencies of vibration and influ-
ence how the non-ideal source behaves. Uncertainties in the modeling of dynamic
systems can be taken into consideration using numerous theories available in the
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literature, each with its own practical application. Themost popular methods for esti-
mating uncertainties are probabilistic formulations, previously determined intervals,
and even the theory of possibilities [18–22].

2 Objectives

This chapter presents the application of contemporary control theory to an energy
harvesting system with piezoelectric-mechanical coupling subjected to non-ideal
excitation and operating with Uncertain Parameters using a Linear Quadratic
Regulator.

3 Methodology

The goal of this chapter is to investigate the energy harvesting system with non-ideal
excitation depicted in Fig. 1.

A multimodal mass-spring-damper system is coupled to an energy transducer
(piezoelectric ceramics) that endures non-ideal excitation in the energy harvesting
system. The system consists of two masses (m1 and m2) connected by springs (k1
and k2) and dampers; an unbalancing mass (m0) joined to the shaft of a DC motor
by a fixed-length rod (r); and a sensor (ν) responsible for converting mechanical
energy into electrical energy. The displacements of the masses (x1 and x2), the
angular displacement (z) of the non-ideal source, and the voltage collected (ν) by
the transducer are the temporal quantities.

The multimodal solution entails the use of multiple beams, which have varied
natural frequencies as a result. The stiffness varies with the mass and length of the
beam, but the damping remains constant because thematerial employed in each beam
is the same.

r

x1ν

k1

m1

m2

m0

ζζ

k2

x2

z

Fig. 1 Energy harvesting model with non-ideal excitation
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The non-ideal vibration produced by the unbalancedmass produces changes in the
system’s behavior. There will be a vibrational reaction, and the piezoelectric ceramic
will be distorted, generating an electric current due to the piezoelectric ceramic’s
physical qualities.

3.1 Mathematical Description

A non-dimensional mathematical description of the model shown in Fig. 1 is
represented by the system of Eqs. 1 [12, 23].

ẍ1 + 2ζ ẋ1 + k1x1 − k2(x1 − x2) − χν = d
(
ż2 cos z + z̈ sin z

)

ẍ2 + 2ζ ẋ2 − k2(x1 − x2) = 0

z̈ + bż = r ẍ1 sin z + a

v̇ + �ν + κ(ẋ1 − ẋ2) = 0

(1)

where ζ is the mass damping factor, χ is the piezoelectric-mechanical coupling rate,
� is the reciprocal of the capacitive loading time constant, k1 and k2 are the stiffness
rates, and κ is the piezoelectric-electric coupling rate. For the non-ideal source, d is
the eccentricity rate of the unbalanced mass and a and b are the rates of net torque
resistance by the moment of inertia of the DC motor. The time dependent variables
are x for the displacement of the beam; ν for voltage output rate; and z for the rate
of the angular position of the mass m0 [12].

A state space is thus defined, presented in the system of Eqs. 2.

ẏ1 = y2

ẏ2 = −2ζ y2 − k1y1 + k2(y1 − y3) + χy7 + d
(
y26 cos y5 − by6 sin y5 + a sin y5

)

1 − dr sin2 y5
ẏ3 = y4
ẏ4 = −2ζ y4 + k2(y1 − y3)

ẏ5 = y6

ẏ6 = −by6 + a + r sin y5[−2ζ y2 − k1y1 + k2(y1 − y3) + χy7 + y26d cos y5]
1 − dr sin2 y5

ẏ7 = −�y7 − κ(y2 − y4)
(2)
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3.2 Optimal Control—Linear Quadratic Regulator (LQR)

The development of the Optimal Control design is mainly based on previous works
[24–29]. A controlled system is governed by Eq. 3, in which y ∈ Rn is a state vector,
A ∈ Rn×n is a parameter matrix (Jacobian matrix), B ∈ Rn×m is a constant matrix
responsible for defining which state variables will be controlled and u ∈ Rm is the
control vector, whose solution has the form presented by Eq. 4, in which K is the
state feedback vector.

.
y = Ay + Bu (3)

u = −Ky (4)

Substituting Eq. 4 into Eq. 3 gives the new controlled system, and is shown in
Eq. 5.

.
y = (A − BK)y (5)

Defining A, B, Q and R as constant matrices, the positive definite matrix P is
obtained by solving the nonlinear algebraic Riccati equation, shown in Eq. 6. With
P obtained, the feedback vector K presented in Eq. 7 can be calculated.

PA + AT P − PBR−1BT P + Q = 0 (6)

K = R−1BTP (7)

With the feedback vector K, the system can be controlled by the Linear Quadratic
Regulator (LQR).

3.3 Uncertain Parameters

The uncertain parameters were defined from a deviation of 20% from the mean
value. The random function used in MATLAB® has variation between 0 and 1, so
the Eq. 8 is used in order to get around this computational limitation, where β is
the mean parameter to be transformed, β is the uncertain parameter, and r(t) is the
random functionwith normal distribution.We usemodulus over the equation to avoid
negative values, as presented below.

βu = |0.8 × β + 0.4 × β × r(t)| (8)
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3.4 Dimensionless Generated Power

The dimensionless power generated in RMS (	) is calculated by dividing the output
voltage rate squared

(
ν2

)
by the electrical resistance rate (
), as presented by Eq. 9.

An electrical resistance rate 
 = 0.1 was used [12, 23].

	 = (
ν2
rms/


)
(9)

4 Results and Discussion

For all cases, the same initial conditions and the same average parameters were used.
Only damping ratio was changed in order to modify the system stability: based on
Second Lyapunov Method, ζ = 0.3 was labeled as stable case and ζ = 0.1 + LQR
was labeled as controlled case. In this way, a comparison of the power generated by
the systems is encouraged.

4.1 Setting Parameters and Initial Conditions

TheTable 1 presents the average parameters andTable 2 presents the initial conditions
used for the numerical solution of the system. Both the parameters and the initial
conditions were chosen arbitrarily.

The next step was to choose the LQR control parameters in such a way that there
was the minimum effort just for the systems to undergo translation from an unstable
to a stable orbit. The choice of the matricesQ and R, presented in Eq. 10, were made
with the objective of stabilizing the system at the initial instant t = t0.

Table 1 Average parameters

χ κ � k1 k2 a b d r

1.3 1.07 1.1 0.3 0.2 1.2 0.8 0.5 1

Table 2 Initial conditions

y1(0) y2(0) y3(0) y4(0) y5(0) y6(0) y7(0)

1.2 0 0.8 0 0 0 0
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Q =

⎛

⎜⎜⎜
⎜⎜⎜⎜⎜⎜
⎝

0.01 0 0 0 0 0 0
0 0.01 0 0 0 0 0
0 0 0.01 0 0 0 0
0 0 0 0.01 0 0 0
0 0 0 0 0.01 0 0
0 0 0 0 0 0.01 0
0 0 0 0 0 0 0.01

⎞

⎟⎟⎟
⎟⎟⎟⎟⎟⎟
⎠

, R = [5] (10)

The matrix Q has the characteristic of pondering the effects of minimization
on the states, and the matrix R has the characteristic of pondering the effects of
minimization on the input.

The values on the diagonal of Q represent the “penalty” that will be used for each
of the state variables, in such a way that it dictates how fast it is necessary to reach the
desired trajectory during control. The matrix term R is related to the energy that will
be used in the controller: if R is large, it means that the control uses less energy and
requires less of the components responsible for the control, if R is smaller, it means
that the control uses more energy and requires more of the components responsible
for the control.

Basically, choosing a large value for R means stabilizing the system with less
energy. On the other hand, choosing a small value for R means that you do not want
to penalize the control signal. Similarly, if you choose a small value for Q, it means
that you try to stabilize the system with as few changes in states as possible, and
a large Q implies more concern about changes in states. You can choose a large R
if there is a limit on the controller output signal (for example, if the control signals
introduce noise from the sensor or cause saturation of the actuator) and choose a
small R if a large control signal is not a problem for the system.

4.2 Action of Control

The matrix A changes at each infinitesimal interval of numerical integration due to
the presence of the Uncertain Parameters. The action of control LQR was set for
every 1 second: in each step, the controllability matrix of the system is calculated
for each input matrix B, obtained using a loop-implemented binary counter in order
to obtain a combination between zeros and ones. Subsequently, as a definition, all
results that corresponded to a rank of the controllability matrix equal to the system
dimension (n = 7) were obtained, and these cases were classified as controllable.
Among these cases, the one with the highest controllability value was chosen and,
using LQR function (fed by the matrices A, B, Q and R), the gain matrix K is
calculated, obtaining, finally, the matrix with state feedback (A – BK).

The system is re-evaluated, taking advantage of the pre-stored values of B and
K and receives new input vectors (B) and, as a consequence, a new gain matrix (K)
generating a new state feedback matrix (A – BK). This progressive control action
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during the entire evaluated period guarantees that the system remains stable even if,
at some point, the uncertain parameters cause the Jacobian matrix to suffer insta-
bility. The choice of control action every 1 second is based directly on minimizing
the computational effort during the numerical solution of the system, as could be
observed through several tests throughout the simulations.

4.3 Phase Planes

Two cases were analyzed using the methods described above: when ζ = 0.3 (stable
case) and when ζ = 0.1 (unstable case) applying LQR control action.

Figures 2 and 3 show the phase planes for when ζ = 0.3 for both masses and for
the output voltage, respectively.

It can be seen from Fig. 2 that masses present stabilized orbits after the transient
period for both the displacement and velocity. Even with the uncertain parameters,
the orbit of the velocity displacement remained practically closed, with very minor
disturbances due to parameter changes as a function of time. Figure 3 shows the
voltage as a stabilized orbit with energy generation due to the AC characteristic, as
expected from the energy harvester.

Figures 4 and 5 show the controlled phase planes for when ζ = 0.1 for bothmasses
and for the output voltage, respectively.

It can be seen from Fig. 4 that mass presents stabilized orbits after the transient
period for both the displacement and velocity. The system was already unstable
before the inclusion of the uncertain parameters, and the dynamic behavior of the
system would be greatly influenced. In this sense, the control action via LQR was

Fig. 2 Phase planes of Mass 1 and Mass 2 when ζ= 0.3
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Fig. 3 Phase plane of output voltage when ζ= 0.3

Fig. 4 Controlled phase planes of Mass 1 and Mass 2 when ζ = 0.1

critical in order to achieve a controlled system that still generates energy. The goal
was to stabilize the orbit rather than to bring it to equilibrium. Figure 5 shows the
voltage as a stabilized orbit after a large transient period; however, it can be seen that
the system generates energy, which was the main objective. It reinforces the effective
use of a control action that, while reducing computational effort, is able to stabilize
a nonlinear dynamic system.
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Fig. 5 Controlled phase plane of output voltage when ζ= 0.1

Table. 3. Dimensionless
generated powers

Case ζ 	

Stable 0.3 0.5883

Controlled 0.1 0.7235

Finally, Table 3 presents the generated powers for all the cases studied in this
chapter. The dimensionless power generated by the harvesting system is obtained
from Eq. 9.

5 Conclusions

The addition of uncertain parameters to the energy harvesting system with non-
ideal excitation source combined with the application of control increases the
computational effort required to simulate the system.

Initially, when it was determined to control only once and based on average
parameters and initial conditions, the results achieved were not adequate, owing to
the difficulties in regulating systemswith uncertain parameters. Because the Jacobian
matrix is always changing, it was decided to apply the control technique at each short
iteration of 10−5 seconds; however, in practice, a controller with such a high actuation
frequency does not exist. Finally, it was agreed that the control should be applied
every 1 second, which resulted in a significant reduction in processing effort.

It can be concluded that, when using the same parameters and initial condi-
tions varying only the damping rate, which is a critical parameter, the tendency
is that unstable systems present an advantage in relation to energy harvesting when
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compared to the stable system. But building an unstable system is impossible, given
its uncertainty over time. By applying active control on such energy harvesting
systems operating with non-ideal sources, it was possible to correct the unstable
orbits to stable ones in addition to optimizing the energy harvesting when compared
to the stable system. Control will always be beneficial since, in addition to stabi-
lizing the system and permit- ting its construction, it maximizes energy harvesting
in respect to the stable system.
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A Hybrid PID-LQR Control Applied
in Positioning Control of Robotic
Manipulators Subject to Excitation
from Non-ideal Sources

A. M. Tusset , J. J. De Lima , F. C. Janzen , P. L. Paula Filho ,
J. A. G. Luz Junior , Jose Manoel Balthazar , and A. Kossoski

Abstract This paper proposes the use of a hybrid controller that combines concepts
of the Proportional-Integral-Derivative (PID) controller with the Linear-Quadratic-
Regulator (LQR) and aFeedforward gain to control the positioning of a 2DOF robotic
arm with flexible joints. As the joints are flexible, there is in this system a non-ideal
coupling between the links of the robotic arm, where the angular movement of one
link can generate oscillations that spread and impact the response of the system. The
non-ideal excitation source originates from the coupling between the electric motor
used to move the link of the robotic arm with the flexible element of the structure.
These mechanical oscillations interfere in the positioning of the motor, and thus in
the electrical power consumed by the system. In the results section of this work,
numerical simulations are used to show the functionality and performance of the
proposed controller in the studied system.

Keywords Non-ideal systems · Feedforward control · PID control · LQR control ·
Robotic manipulators

1 Introduction

Controlling robotic manipulators with two Degrees of Freedom (DOF) is considered
a classical control problem, this being a class of systems that has always attracted
the interest of researchers due to the wide industrial use of this type of machine.
Thus, one can observe many control strategies proposed for this kind of system [1,
2]. In [3], they proposed a combination of Sliding Mode Control (SMC) and PID
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control. In [4], the authors proposed a controller based on a self-tuning Fuzzy-PID
and SMC control. In [5] the authors presented a robust controller to improve the
performance of a 2-DOF robotic arm under disturbance. In [2, 6] the authors used
adaptive control for robotic arms. In [7–10] the nonlinear SDRE (State-Dependent
Riccati Equation) control is implemented. In [11–13] they used a feedforward gain to
improve the performance of a SDRE type controller. In [14] the SDRE control is used
in association with a feedforward gain for a robotic systemwith non-ideal excitation.

Thiswork aims to present the control of position and dynamic behavior of a robotic
manipulator with 2DOFdriven byDC electricmotors and considering flexible joints.
We propose the use a hybrid PID-LQR with Feedforward control both meet the
positioning objectives and mitigate the effects caused by the non-ideal vibration.

2 Mathematical Model

The model of the manipulator with flexible joints with a non-ideal coupling, illus-
trated in Fig. 1, consists of two rigid links, l1 and l2, and two flexible joints with
flexibility coefficient ks. The second link is excited by a DC motor.

Fig. 1 Schematic of the manipulator model
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The dynamics of the robotic manipulator represented in Fig. 1 can be represented
by the following equation [11]:

M θ̈ + V θ̇+kaθ + G = τ (1)

where: M is the inertia matrix, V is the Coriolis and Centrifugal force matrix, ka is
the coefficient of friction of the manipulator, G is the gravitational matrix and τ is
the torque. These functions can be represented in the following form:

M =
[
m11 m12
m21 m22

]
, V =

[
v11 0
0 v22

]
, G =

[
g11
g21

]
and τ =

[
bs

(
θ̇3 − θ̇1

) + k(θ3 − θ1)

bs
(
θ̇4 − θ̇2

) + k(θ4 − θ2)

]
.

where bs is the damping constant, k is the spring constant, and the other constants are
given by: v11 = −m2l1l2sin(θ2)θ̇2; v21 = −m2l1l2sin(θ2)(2θ̇1 + θ̇2), g11 = −(m1 +
m2)gl1sin(θ1)−m2gl2sin(θ1 +θ2), g21 = −m2gl2sin(θ1 +θ2)m11 = l21(m1 + m2),
m21 = m12, m12 = l1l2m2 cos(θ1 − θ2) and m22 = l22m2.

The angular positions of the motor θ3 and θ4 can be obtained from the following
equation [11]:

J θ̈3 + bv θ̇3 = kt i − bs
(
θ̇3 − θ̇1

) − k(θ3 − θ1)

J θ̈4 + bv θ̇4 = kt i − bs
(
θ̇4 − θ̇2

) − k(θ4 − θ2)
(2)

where J is the motor constant of inertia, bv is the rotor damping constant, kt is the
motor torque constant and i is the electrical current of the DC motor.

The angular positions of the links θ1 and θ2 can be obtained from the following
equation:

θ̈ = P
(
−V θ̇ − kaθ − G + τ

)
(3)

where: P = M−1.
Considering the Eqs. (2) and (3), we can obtain the system in the state-space

representation:
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ẋ1 = x2
ẋ2 = −p11kx1 + αx2 − p12kx3 + βx4 + p11kx5 + p11bsx6 + p12kx7

+p12bsx8 − p11g1 − p12g2
ẋ3 = x4
ẋ4 = −p21kx1 + γ x2 − p22kx3 + δx4 + p21kx5 + p21bsx6 + p22kx7

+p22bsx8 − p21g1 − p22g2
ẋ5 = x6

ẋ6 = 1

J
(−kx1 + bsx2 − kx5 − (bv + bs)x6 + kt i1)

ẋ7 = x8

ẋ8 = 1

J
(−kx3 + bsx4 − kx7 − (bv + bs)x8 + kt i2)

(4)

where x1 = θ1, x2 = θ̇1, x3 = θ2, x4 = θ̇2, x5 = θ3, x6 = θ̇3, x7 = θ4, x8 = θ̇4,
α = −p11(ka +bs)− p12c2, β = p11c1 − p12(ka +bs), γ = −p21(ka +bs)− p22c2,
δ = −p22(ka + bs) − p21c1, p11 = −m22

−m12m21+m11m22
, p12 = −m21

−m12m21+m11m22
, p21 =

−m12
−m12m21+m11m22

and p22 = −m11
−m12m21+m11m22

.

3 Proposed Control

The position control of themotor links andmotor shaft is given by the electric current
(i). Introducing the control of the electric current in the system (4), one will have the
following system:

ẋ1 = x2
ẋ2 = −p11kx1 + αx2 − p12kx3 + βx4 + p11kx5 + p11bsx6 + p12kx7

+p12bsx8 − p11g1 − p12g2
ẋ3 = x4
ẋ4 = −p21kx1 + γ x2 − p22kx3 + δx4 + p21kx5 + p21bsx6 + p22kx7

+p22bsx8 − p21g1 − p22g2
ẋ5 = x6

ẋ6 = 1

J
(−kx1 + bsx2 − kx5 − (bv + bs)x6 + ktU1)

ẋ7 = x8

ẋ8 = 1

J
(−kx3 + bsx4 − kx7 − (bv + bs)x8 + ktU2)

(5)
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Fig. 2 Block diagram for
PID control

+
+

+

d
dt

Error
dt

where: Ui = ui + ũi , ui is the state feedback control, and ũi is the feedforward
control, the last one being composed of terms that depend on the gravitational force
g in the following form [12, 15]:

ũ1 = p11g1 + p12g2
ũ2 = p21g1 + p22g2

(6)

The state feedback control is a PID controller, and operates according to the
following block diagram (Fig. 2).

Where Kp is the proportional gain, Kd is the derivative gain and Ki is the corre-
sponding integral gain of the control loop, respectively. The errors, e1 = x̃1 − x1,
e2 = ˙̃x1 − ẋ1, e3 = x̃3 − x3, e4 = ˙̃x3 − ẋ3, e5 = x̃5 − x5, e6 = ˙̃x5 − ẋ5, e7 = x̃7 − x7
and e8 = ˙̃x7 − ẋ7, where x̃− represent the desired states for angular position of the
links and the motor shaft.

In this work the LQR control was used to determine the Kp and Kd gains, which
allows the design of an optimal PD control.

K = R−1BTP (7)

where Kp = ki, j for j = 1, 3, 5, 7..., Kd = ki, j for j = 2, 4, 6, 8..., for PD control
Ui . The matrix P is obtained by solving the following Riccati equation:

ATP + PA − PBR−1BTP + Q = 0 (8)

The cost function for the control problem for optimal PD control is given by:

J = 1

2

∞∫
t0

(eTQe + uTRu) dt (9)

where Q and R are positive definite matrices.



398 A. M. Tusset et al.

4 Numerical Simulation

The following parameter are used for the numerical simulations [11]: m1 = 1, m2 =
1, l1 = 0.8, l2 = 0.8, g = 9.8, k = 450, bs = 510, ka = 6, bv = 0.02, J = 0.0002, kt
= 0.8, along with the initial conditions: xi (0) = 0, where i = 1:8.

Two cases are used in order to analyze the efficiency of the proposed control. In
the first case the links are positioned at two fixed points. In the second case, the first
link is positioned at a fixed point while the second link is in a rotational movement,
representing a motor with unbalanced mass (non-ideal system).

The definite matrices Q and R and the system matrices A and B used can be
found in the appendix of this paper. The integral gain Ki is given by: for u1( Ki1 =
2179449.33, Ki3 = 224821.58, Ki5 = 2280104.28 and Ki7 = 21848.79) and for u2(
Ki1 = 162457.09, Ki3 = 2950790.59, Ki5 = 170105.19 and Ki7 = 300778.54).

4.1 Position Control for Fixed Points

Considering the desired states:x̃1 = x̃5 = π
3 ,x̃3 = x̃7 = π

4 and x̃2 = x̃4 = x̃6 = x̃8 =
0. In Fig. 3 we can observe the error in the positioning of the links and the motor
shaft considering the case of using only the PD control obtained from the LQR and
without using the feedforward control gain and Fig. 4 show the control response with
the feedforward control gain.

In Fig. 5we can observe the error in the positioning of the links and themotor shaft
considering the case of using only the PDI control, without using the feedforward
control and in Fig. 6 with the feedforward control gain.

Analyzing the numerical results, one can observe that including the feedforward
control gain reduced the positioning error of the links and the motor shaft.

(a) (b)

Fig. 3 Positioning error for PD control without feedforward control. a Error for θ1, θ2, θ3 and θ4.
b Error for θ̇1, θ̇2, θ̇3 and θ̇4
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(a) (b)

Fig. 4 Positioning error for PD control with feedforward control. a Error for θ1, θ2, θ3 and θ4. b
Error for θ̇1, θ̇2, θ̇3 and θ̇4

(a) (b)

Fig. 5 Positioning error for PDI control without feedforward control. a Error for θ1, θ2, θ3 and θ4.
b Error for θ̇1, θ̇2, θ̇3 and θ̇4

(a) (b)

Fig. 6 Positioning error for PDI control with feedforward control. a Error for θ1, θ2, θ3 and θ4. b
Error for θ̇1, θ̇2, θ̇3 and θ̇4
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4.2 Position Control for a Fixed Points and a Rotational

Considering the desired states: x̃1 = x̃5 = π
3 , x̃3 = x̃7 = sin(t)+ t , x̃2 = x̃6 = 0 and

x̃4 = x̃8 = cos(t) + 1. In Fig. 7 one can observe the error in the positioning of the
links and the motor shaft considering the case of using only the PD control obtained
from the LQR algorithm, without using the feedforward control, and in Fig. 8 with
feedforward control gain.

In Fig. 9 one can observe the error in the positioning of the links and the motor
shaft considering the case of using only the PDI control without the feedforward
control and in Fig. 10 with the feedforward control gain.

The results show that for the case of position control for the first link in a fixed point
and the second in rotational movement, the PD-LQR control without the feedforward
control was not efficient, leaving the system unstable. Furthermore, the PID control

(a) (b)

Fig. 7 Positioning error for PD control without feedforward control. a Error for θ1, θ2, θ3 and θ4.
b Error for θ̇1, θ̇2, θ̇3 and θ̇4

(a) (b)

Fig. 8 Positioning error for PD control with feedforward control. a Error for θ1, θ2, θ3 and θ4. b
Error for θ̇1, θ̇2, θ̇3 and θ̇4
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(a) (b)

Fig. 9 Positioning error for PID control without feedforward control. a Error for θ1, θ2, θ3 and θ4.
b Error for θ̇1, θ̇2, θ̇3 and θ̇4

(a) (b)

Fig. 10 Positioning error for PID control with feedforward control. a Error for θ1, θ2, θ3 and θ4. b
Error for θ̇1, θ̇2, θ̇3 and θ̇4

versions demonstrated efficiency, controllability and low error, where this last feature
is further improved with the inclusion of the feedforward gain.

5 Conclusions

The numerical results presented in this paper show that we can consider a robotic
arm with flexible joints as a system with non-ideal excitation sources. This behavior
was more clear with one link being in rotational movement, a behavior similar to that
observed when we couple a motor to the end of the first link. The numerical results
showed that the combination of the PID control is the most suitable for cases where
the links are subject to rotational movement (vibration), and that the PD and LQR
control demonstrates efficiency only when combined with the feedforward gain.
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Appendix

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

107 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 107 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 107 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 107 0
0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
kt
J 0
0 0
0 kt

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
−kp11 α −kp12 β kp11 bs p11 kp12 bs p12

0 0 1 0 0 0 0 0
−kp21 γ −kp22 δ kp21 bs p21 kp22 bs p22

0 0 0 0 0 1 0 0
−k
J

bs
J 0 0 −k

J
−(bs+bv)

J 0 0
0 0 0 0 0 0 1 0
0 0 −k

J
bs
J 0 0 −k

J
−(bs+bv)

J

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

R =
[
10−2 0
0 10−2

]
,

and

K =
[
21250.11 3008.71 −21760.09 −993.00 222386.01 1.50 −2111.67 0.31
15721.43 −925.88 289671.93 1925.28 16458.92 0.31 30071.57 1.70

]
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