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Abstract. With the development of IoT, edge computing has been
attracting attention in recent years. In edge computing, simple data pro-
cessing, such as aggregation and filtering, can be performed at network
edges to reduce the amount of data communication and distribute the pro-
cessing load. In edge computing applications, it is important to guarantee
low latency, high reliability, and fault tolerance. We are working on the
solution of this problem in the context of environmental sensing applica-
tions. In this paper, we outline our approach. In the proposed method, the
aggregate value of each device is calculated approximately and the fault
tolerance is also guaranteed approximately even when the input data is
missing due to sensor device failure or communication failure. In addition,
the proposed method reduces the delay by outputting the processing result
when the error guarantee satisfies the user’s requirement.

Keywords: Stream processing · Edge computing · Approximate
processing · Fault tolerance

1 Introduction

With the spread of Internet of Things (IoT ), collection and aggregation of infor-
mation via networks is becoming increasingly important. The approach of trans-
ferring a large amount of information obtained by sensing to a server and pro-
cessing it all at once by the server has a large communication overhead and
greatly deteriorates the processing speed. Therefore, edge computing, which per-
forms filtering and aggregation at the edge of the network as shown in Fig. 1, is
attracting much attention to solve this problem.

Distributed stream processing that introduces processing at edges has advan-
tages in terms of efficiency, but it also has difficulties. In particular, fault-
tolerance is an important issue, especially how to process when a network failure
occurs. One solution is to multiplex resources, but in edge environments, unlike
cluster environments where resources are plentiful, sensing data management
and stream processing must be performed by a small number of poorly equipped
machines, and fault-tolerance based on the premise of resource saving is required.
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Fig. 1. Overview of edge computing

In this study, we focus on approximate stream processing. The basic idea is
to reduce the resource burden of stream processing by allowing a small amount
of error, instead of the considerable overhead incurred when trying to do it rig-
orously. Since the information obtained from sensors and other devices contains
errors by nature, a certain amount of error is considered acceptable in many
cases. Approximate stream processing has been the subject of much theoreti-
cal and systematic research, and approaches to processing with error guarantees
have been proposed [5,9]. In our research, we aim to develop these ideas and
establish a method that is superior in terms of quality and efficiency.

In this paper, we outline our quality-assured approximate stream processing
approach for environmental sensing applications such as temperature. In environ-
mental sensing, theacquiredvaluesofeachsensorareoftencorrelated,andefficiency
improvement using correlation between sensors has been proposed in the context of
sensornetworks [4].Weextendthatapproachbyapproximating theaggregatevalue
of each sensor to provide a theoretical error guarantee for approximate processing
results, which can be applied to fault-tolerance and efficient processing.

The conceptual of the proposed method is shown in Fig. 2. The system
receives the required confidence and tolerance values from the user and estimates
the aggregate values within the range that satisfies the user’s requirements, and
reduce the processing delay. As an example, we consider a sensor stream with
missing data as shown in Fig. 3. Note that in this example, the data from device
X2 has not reached the edge since time 4. Therefore, time 3 is the latest point in
time (watermark) for the entire data source, and data processing cannot proceed
after time 4. Therefore, approximate aggregate values are calculated by estimat-
ing the data of device X2 after time 4 based on the statistical model that models
the correlation and the measured values of other devices. In addition, the loss
of internal state due to node failure can be regarded as data loss of all devices,
such as the situation at time 5 and 6. Therefore, by estimating the missing values
using a statistical model, we can approximate and guarantee the fault-tolerance
of stream processing.

2 Preliminaries

In this section, we define the terms and concepts needed for the rest of this
paper.
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Fig. 2. Overview of the proposed method

Fig. 3. Data stream with missing items

2.1 Definition of Data Streams

First, we define a sensor data stream.

Definition 1. Let X = {X1, X2, . . . , Xn} be the set of all n devices. All devices
are assumed to output data periodically and synchronously, and the true values
of devices at each time t ∈ N

+ is denoted by xt = 〈xt1, x
t
2, . . . , x

t
n〉. he sensor data

stream that started to be measured at a certain time t is represented as an infinite
series of true values of the devices at each time by the following formula:

x[t,∞) = 〈xt,xt+1, . . . 〉 (1)

However, in an edge computing environment, data from all devices may not
be available at each time. Therefore, we define a data stream with missing items
as a data stream that is actually observed.

Definition 2. Let the observed values at time t be ot = 〈ot1, o
t
2, . . . , o

t
n〉. For a

data stream x[t,∞), we define a data stream with missing items by the following
formula:

o[t,∞) = 〈ot, ot+1, . . . 〉, (2)

where it is assumed that the observed values are always equal to the true values.
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In this paper, we assume device failures, communication failures, and node fail-
ures as missing scenarios.

Figure 3 shows a data stream with missing items. For example, at time 1, the
value of device X3 is missing. On the other hand, since the values of X1 and X2

are observed, o11 = x11 = 21 and o12 = x12 = 21 hold.
Next, we define partitioning of a data stream based on sliding windows,

assuming an aggregation process with a certain time window length.

Definition 3. Given a data stream x[t,∞), a window width w, and a sliding width
l, using the sliding window concept, the data stream is partitioned based on the
following formula: {

x[t′,t′+w)

| ∀i ∈ N
0, t ′ = t + i · l

}
. (3)

For example, if we parttion the data stream in Fig. 3 with the window width
w = 3 and sliding width l = 2, we obtain the following set:

{
〈o1, o2, o3

〉, 〈o3, o4, o5
〉, . . .

}
. (4)

In this paper, we focus on the processing of a observed finite stream o[t,t+w)

partitioned into time windows.

2.2 Estimation of Missing Values Based on Multidimensional
Gaussian Distribution

In this research, the correlation between devices X is represented using a multi-
dimensional (multivariate) Gaussian distribution N(x | μ, Σ). Note that μ and Σ
represent the mean vector and variance-covariance matrix of X, respectively. In
the following, the missing value estimation by range integration and the improve-
ment of the estimation accuracy by using the posterior probability distribution
(correlation between devices) are explained.

When the value of the device X ∈ X follows a Gaussian distribution with
expected value μ and variance σ, the true value can be estimated probabilistically
by range integration even if the value of X is missing. For example, the probability
that the value of X is x ′ can be obtained using a certain error upper bound e as
follows:

P(X ∈ [x ′ − e, x ′ + e]) =
∫ x′+e

x′−e

N(x | μX, σX )dx. (5)

When using the same error upper bound, since the probability is largest when
x ′ = μ, we can simply use the expected value as an estimate to recover the
missing value probabilistically.

There is a correlation between devices in the real world, for example, the
measured values of temperature sensors located geographically close to each
other have similar values. In [4], this correlation is modeled by a multidimensional
Gaussian distribution, and a method to improve the estimation accuracy by using
the posterior probability distribution has been proposed. When the observed
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value o is obtained for some device O ⊆ X, the Gaussian distribution N(x |

μX |o, σXo, σX |o ) can be obtained from the following equation [3]:

μX |o = μX + ΣXOΣ
−1
OO (o − μO ) (6)

σX |o = ΣXX − ΣXOΣ
−1
OOΣOX, (7)

where the subscript of each symbol indicates that the dimension corresponding
to the subscript has been extracted from the vector or matrix. For example, μX
is the value of the dimension corresponding to X extracted from the mean vector
μ (i.e., the expected value of device X), and ΣXO is the columns corresponding
to O extracted from the X rows of the variance-covariance matrix Σ (i.e., the
covariance vector of device X and the set of devices O from which the data was
obtained). Since the variance of the posterior probability distribution is reduced
compared to that of the prior distribution, more accurate estimation is possible.

3 Estimation of Time Window Aggregation Based
on Probabilistic Models

In [4], Deshpande et al. proposed an approximate aggregate query method using
a multidimensional Gaussian distribution. The method targets the aggregation
among all devices X, i.e., the processing for a specific time. However, stream
processing in this paper generally involves aggregation over time windows, which
requires processing over multiple time periods. We extend the method of Desh-
pande et al. to aggregation over time windows and derive the estimated confi-
dence of the aggregation process for data streams with missing items [12]. Since
the proposed method uses the reproducibility of the Gaussian distribution, it
covers both mean and total aggregates. However, due to space limitations, only
the mean aggregate will be presented below.

3.1 Derivation of Gaussian Distribution for Aggregate Values

Since the Gaussian distribution is reproducible, the mean value of the device
X ∈ X in a given time window x[t,t+w), YX = (

∑
t′ ∈[t,t+w]

X t′
)/w, also follows a

Gaussian distribution. By replacing the expression for the expected value and
variance of the Gaussian distribution for the aggregate value at a particular time
in [4] with YX , we can derive the expected value and variance of YX as follows
[12]:

E[YX ] =
1
w

∑
t′ ∈[t,t+w)

E[X t′
] (8)

E[(YX − μYX )
2
] ≈

1
w2

∑
t′ ∈[t,t+w)

E
[
(X t′

− μX t′ )
2
]
. (9)

In the approximate derivation of Eq. (9), it is assumed that the same probability
model N(μ, Σ) is used for all times in the time window.
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As shown in Eq. (8) and (9), the average aggregate for the time window
x[t,t+w) is obtained from the expectation and variance of the device at each
time. Therefore, from the partial observations ot obtained at each time, the
expectation and variance of the missing values are calculated based on Eq. (6)
and (7), and the mean value for the entire time window is estimated. If there is
an observed value ot at time t for the device X ∈ X, we calculate the expected
value as μtX = ot and the variance as σt

X = 0.

3.2 Confidence of Estimation in Time Window Aggregation

Since the results of the time window aggregation also follow a Gaussian distribu-
tion as described in the previous section, we can calculate the confidence of the
estimation in a similar way to Sect. 2.2. The estimated confidence of the mean
value YX of the device X ∈ X in a given time window is given by the following
equation:

P(YX ∈ [μYX − e, μYX + e]) =
∫ μYX +e

μYX −e

N(y | μYX , σYX )dy, (10)

where the expected value μYX is treated as an estimate, and the upper bound
on the error is denoted by e.

Note here that the results of the aggregate query are probabilistic because
they contain missing values. Therefore, in order to calculate the estimated con-
fidence level, the user needs to specify the parameters for either the error upper
bound or the required confidence level. For example, suppose that the user spec-
ifies the required confidence level δ as a parameter. In this case, by solving
P(YX ∈ [μYX − e, μYX + e]) = δ, we can calculate the minimum estimation error e
that satisfies the required confidence level. Note that if the number of missing
values is extremely large, the estimation error e also becomes large, and the
range of possible values of the aggregate μYX ± e also becomes wide.

4 Delay Reduction Based on Probabilistic Estimation

The approach of approximate data stream processing can be applied to efficient
processing as well as fault handling. In this section, we discuss delay reduction
in time window aggregation based on the output of estimates. The idea here is
to reduce the delay in the time window aggregation by outputting the results
when the user-specified estimation accuracy is met.

In this study, we use the required confidence level δ and acceptable error ε as
thresholds to determine the estimation accuracy. In other words, we require that
the aggregate value of each device in a given time window satisfies the following
formula:

∀X ∈ X, P(YX ∈ [μYX − ε, μYX + ε]) ≥ δ. (11)

Note, however, that this equation may not be satisfied depending on the degree
of deficiency, as described in Sect. 3.2.
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If we express the required confidence level of the estimation by Eq. (11), it
can be seen that there are cases where not all observations in the entire time
window are required for the output of the estimate. To take an extreme example,
if the required confidence level is extremely small, such as δ = 0.01, it is possible
that Eq. (11) can be satisfied by the prior distribution alone without using any
observations. Therefore, in this paper, the estimated aggregate value is output
when it is determined that Eq. (11) is satisfied, even if it is in the middle of
processing a time window.

In order to efficiently determine whether or not to output an estimate, we first
describe the variance thresholds necessary for sufficiently accurate estimation.
We then describe the computation of the estimation accuracy at the midpoint
of the time window, and propose an output decision for the estimate based on
stream processing with incremental Gaussian updates.

4.1 Threshold Value for Output Judgment of Estimated Value

In order to efficiently determine the validity of Eq. (11), the decision of the size
of the confidence level is attributed to the decision of the size of the variance.
Equation (11) determines whether each confidence level satisfies the required
confidence level δ, but the calculation of the confidence level requires a range
integral over a Gaussian distribution. Namely, it is inefficient to simply calculate
the range integral for each device at each time.

Here, we note that the integration result does not depend on the expected
value when using an integration range centered on the expected value in the
Gaussian distribution [4]. In this case, Eq. (11) can be rewritten as follows:

∀X ∈ X, P(YX ∈ [−ε, ε]) ≥ δ↔ ∀X ∈ X,

∫ ε

−ε
N(y | 0, σYX )dy ≥ δ. (12)

This allows us to solve the following equation for the given required confidence
level δ and error upper bound ε to find the variance threshold σθ required to
meet the required estimation accuracy:

∫ ε

−ε
N(y | 0, σYX )dy = δ. (13)

Since it is a range integral centered on the expected value of the Gaussian distri-
bution, the smaller the value of the variance, the larger the value of the confidence
level. In other words, the following equation and Eq. (11) are equivalent:

∀X ∈ X, σYX ≤ σθ . (14)

As described below, the variance of the aggregate value can be calculated incre-
mentally by basic arithmetic operations, and thus the timing of the output can
be determined more efficiently than a simple decision using range integration.
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4.2 Incremental Update of Probabilistic Estimation

Using the variance thresholds described in the previous section, we can calculate
the estimates and determine their output by determining the expected value
and variance of the Gaussian distribution that the aggregate follows at each
time in the time window. That is, for each sensor X ∈ X, when the variance of
the aggregate σYX is less than or equal to the threshold σθ , the expected value
μYX is output as the estimated value. If we simply calculate the expected value
and variance, duplicate calculations will be performed at each time. Thus, in
the following, we describe an incremental update method suitable for stream
processing.

First, we show the expected value and variance at any time t∗ ∈ [t, t + w)

in a time window x[t,t+w). Since o[t,t∗] is obtained as the observed value, the
value of the device at each time can be estimated using the posterior probability
distribution up to time t∗ and the prior probability distribution at times after
t∗. That is, from Eq. (8) and (9), the expected value of the aggregate μt

∗

YX
and

variance σt∗

YX
at time t∗ can be obtained by the following equation:

μt
∗

YX
=

1
w

��


∑
t′ ∈[t,t∗]

μX t′
|o t′ +

∑
t′ ∈(t∗,t+w)

μX
��
�

(15)

σt∗

YX
=

1
w2

��


∑
t′ ∈[t,t∗]

σX t′
|o t′ +

∑
t′ ∈(t∗,t+w)

σX
��
�
. (16)

Note that the prior distribution in the time window is constant.
We derive an asymptotic equation to incrementally update the expected value

and variance. The following equations can be derived by transforming μt
∗

YX
−μt

∗

−1
YX

for the expectation value and σt∗

YX
− σt∗−1

YX
for the variance:

μt
∗

YX
= μt

∗

−1
YX

−

μX − μX t∗
|o t∗

w
(17)

σt∗

YX
= σt∗−1

YX
−

σX − σX t∗
|o t∗

w2
. (18)

In other words, the Gaussian distribution of aggregate values can be updated
by calculating the posterior probability distribution based on the new observed
values ot∗ obtained at each time t∗ and applying the difference.

5 Application to Fault Tolerance Assurance

In this section, we consider the estimation of aggregate values based on the prob-
abilistic model described so far as a guarantee of fault tolerance in edge comput-
ing environments. Unlike existing distributed parallel stream processing systems
that take fault tolerance into account, in an edge computing environment, there
may be a situation in which communication with each device is disrupted due
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to a fault, making it impossible to retrieve and resend data observed during the
fault. Namely, there may be cases where all the input data for a certain period
of time is missing, such as time 5 and 6 in Fig. 3.

Even if all data for a certain period of time is missing due to a failure, the
aggregate value can be estimated in the same way using our method. Although
missing data due to a failure has a large impact, it is not theoretically different
from partial missing data due to communication failure or specific missing data
due to device failure. In other words, by estimating all data for all missing periods
based on prior probabilities, we can calculate the estimated aggregate value and
the confidence level reduced by the missing data.

Specifically, we use checkpointing together with the incremental probabilistic
estimation described in Sect. 4. Checkpointing is a common method used in
existing distributed parallel stream processing systems. The internal state of
the process, i.e., the expected value and variance of the aggregate result, is
periodically stored in a persistent storage area as a checkpoint. Then, when a
failure occurs, the expected value μtc

Y and variance σtc
Y of the latest checkpoint

acquisition time tc are restored to main memory and processing is restarted.
However, as mentioned earlier, our method does not allow retransmission of lost
data from the data source after recovery. All input data o(tc,td ) up to the recovery
time td are assumed to have been lost and the process is restarted. If no failure
occurs after that, the expected value μYX and variance σYX of the Gaussian
distribution followed by the aggregate YX for sensor X ∈ X can be obtained as
follows:

μYX =
1
w

��


∑
t′ ∈[t,tc ]

μX t′
|o t′ +

∑
t′ ∈(tc,td )

μX +
∑

t′ ∈[td,t+w)

μX t′
|o t′

��
�

(19)

σYX =
1
w2

��


∑
t′ ∈[t,tc ]

σX t′
|o t′ +

∑
t′ ∈(tc,td )

σX +
∑

t′ ∈[td,t+w)

σX t′
|o t′

��
�
. (20)

In the proposed method, there is no need to perform any special processing
other than restoring the checkpoint as a failure recovery process. As shown in
Eq. (15) and the second term in parentheses of (16), for any time t∗ ∈ [t, t + w)

in a time window, the prior distribution is used to calculate the expectation and
variance for times after t∗. Thus, at the time of the latest checkpoint acquisition
tc, we can say that the computation of the expected value and variance esti-
mates for all missing data intervals (tc, td) until the completion of the recovery
has been completed. Therefore, after the failure is recovered, the approximate
aggregation process with error guarantee can be resumed by simply restoring
the latest checkpoint.

6 Related Work

We discuss the problem of missing data in time series data and related research
on fault-tolerance guarantees for stream processing.
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6.1 Missing Data in Time Series

The problem of missin data in time series has long attracted attention, and many
studies have been reported. The basic approaches to the missing value problem
are listwise and pairwise methods, which remove tuples and cases containing
missing values [10]. Although these methods are widely used due to their sim-
plicity, they have a problem of processing accuracy because the number of data
to be processed is small and the number of data per attribute can be biased.
Then, many methods have been proposed to estimate missing values with high
accuracy, including interpolation by regression [6,11,13] and association rule
mining [8].

For example, stochastic regression imputation takes into account the distri-
bution of the data and randomly scatters the values from the regression line as
the estimated values, and unlike conventional regression methods, it can pro-
vide more accurate estimates without underestimating the variance [6]. While
this method targets the accurate estimation of each missing value, the proposed
method aims to efficiently obtain an approximate aggregate result of the data
stream containing the missing values. The proposed method takes into account
the variance of the estimates through an error evaluation framework, and also
allows for early output based on error guarantees and fault tolerance guarantees
using checkpointing.

In addition, existing methods have various innovations to improve the pro-
cessing accuracy, such as multiple imputation that combines multiple estima-
tion results to solve the problems of underestimation of variance and estimation
uncertainty [6]. However, there are some issues in low latency and fault tolerance,
which are important in edge computing environments.

6.2 Fault Tolerance Assurance for Stream Processing Systems

For the problem of data loss due to system failures, many stream processing
systems, including Flink [1] and Spark Streaming [2], guarantee robust fault tol-
erance without errors. These systems, which assume a parallel processing envi-
ronment in the cloud, can guarantee the output of the result of processing the
input data once without excess or deficiency, regardless of the occurrence of
a failure, by backing up the internal state by checkpointing and restoring the
input data based on retransmission and reprocessing. However, especially in a
single-node environment, a failure at the network edge may cause a breakdown
in communication with each device, making it impossible to acquire and resend
data observed during the failure. The redundant configuration of the system is
essential for retransmission of missing data, but the redundant configuration for
each edge machine is expensive and impractical.

In order to reduce the cost of fault tolerance guarantee, Huang et al. [7] pro-
posed an approximate fault tolerance method that guarantees the reliability of
the processing results. This method reduces the amount of data to be backed up
and the frequency of backups by backing up only when the threshold values for
the number of unprocessed data and the amount of change in the internal state
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are exceeded, thereby improving the throughput. However, this method requires
a detailed preliminary analysis that takes into account the actual node configu-
ration in order to set a threshold value suitable for a Service Level Agreement
(SLA), which poses many difficulties in actual operation.

In addition, all of these methods target only missing data due to stream
processing system failures, and cannot handle missing input data due to sensor
device failures or communication failures.

7 Conclusions

In this paper, we outlined our research on approximate aggregate processing
methods that improve processing low latency, high reliability, and fault tolerance
for edge computing environmental sensing applications. The proposed method
uses a probabilistic model to estimate missing data due to sensor device failures
or communication failures, and theoretically guarantees an upper bound on the
error for aggregated results. Furthermore, we reduce the delay by outputting
an approximate aggregate value that is incrementally computed at the shortest
time when the error guarantee of our method satisfies the user requirement. In
addition, our method can efficiently recover from failures even in situations where
acquisition and retransmission of input data are impossible due to failures.

One of the future challenges is to follow the changes in correlation over time
by updating the model dynamically. Dynamic model updating is expected to
improve the accuracy of the process, since it will be able to take into account
changes in correlations by time of day and season. However, in order to enable
dynamic model updating, there are many issues that need to be considered in
terms of consistency of processing results and fault tolerance, such as the ade-
quacy of guaranteeing errors in aggregate results in response to model changes,
and considering the effects of model update information loss due to node fail-
ures. For example, incremental processing and internal state management will be
necessary to ensure that the theoretical error guarantee does not break down in
response to changes in the model, including cases where the models are different
before and after failure recovery. Adaptive checkpointing can also be consid-
ered, taking into account the trade-off between the degradation of processing
performance due to the loss of model update information and the checkpointing
cost, but it should also be balanced among multiple time windows with partial
overlap, such as a sliding window.
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