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Abstract. Process mining is the practise of distilling a structured pro-
cess description from a series of real executions. In past decades, different
process discovery algorithms have been used to generate process models.
In this paper, we propose a genetic mining algorithm (GA-ProM) for
process discovery and compare it with other state-of-the-art algorithms,
namely, α++, genetic process mining, heuristic miner, and inductive logic
programming. To evaluate the effectiveness of the proposed algorithm the
experimentation was done on 21 synthetic event logs. The results show
that the proposed algorithm outperforms the compared algorithms in
generating the quality model.

Keywords: Process models · Genetic mining · Quality dimensions ·
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1 Introduction

Information systems record abundance of data to support automation of busi-
ness processes in different domains, e.g., supply management, banking, software
development, maintenance, and healthcare systems. A process is a collection of
tasks or activities having one or more links between the activities. Actors perform
the tasks to achieve the business goals. For example, actors in a banking system
include bank manager, cashier, other employees, and the customers. The activi-
ties are performed by a subset of these actors to complete any process. Opening
an account in any bank is a process where a customer performs the following
activities—selecting the bank account type, choosing the right bank for creating
account, gathering the required documents, completing the application process,
collecting the account number, and depositing the funds into the account. Each
organisation has detailed description of their processes. For example, in a bank-
ing system the documents required for opening an account, transaction limits
are clearly described. In any process flow there may be areas of improvement
that allow reduction in the overall working time/cost of the system, improve
productivity and quality, balance resource utilization [18]. Thus arises the need
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of a technique which could understand the flow and deviations in the processes.
Process mining techniques facilitate discovery of process models from the data
stored in the form of an event log and use these for further analysis. In the
real world, process mining has found applications in the domains of healthcare,
information and communication technology, manufacturing, education, finance,
and logistics [18].

In this paper, we present a genetic mining approach for discovering pro-
cess models. The experimentation was done on 21 unbalanced event logs and
the proposed algorithm was compared with state-of-the-art algorithms, namely,
Genetic process mining, Heuristic miner, α++ and Inductive logic programming.
The results show that the proposed algorithm generates competitive process
models as compared to the compared algorithms and it produces “good” quality
process models for all the datasets.

The rest of the paper is organized as follows: Sect. 2 gives a brief summary
of process mining concepts and the related work. Section 3 describes the pro-
posed approach. Section 4 outlines the experimentation and explains the results.
Section 5 concludes the paper.

2 Process Mining and the Related Work

Process mining algorithms abstract the event log data into a well-structured form
known as a process model. An event log is a collection of cases that represents
a process. A case, also known as a trace, is a set of events [16]. Each row of
the event log represents an occurrence that pertains to a single case. Events
are ordered within a case and have attributes such as case ID, activity/task
name, and timestamp, among other things. Table 1 depicts an example event log
with three tasks and three scenarios. Each distinct task is assigned an integer
symbol—‘Search product’ (1), ‘Check availability’ (2), and ‘Order product’ (3).
The timestamp indicates the occurrence time of the corresponding event. A trace
is formed by picking all the events with the same Case ID and arranging them
in ascending order of their timestamp. Each trace (which may include numerous
tasks) can be any length and is expressed as a series of integer symbols. In the
example log, the traces corresponding to the Case ID 7011 (events 1, 2, 5), 7012
(events 3, 7), and 7013 (events 4, 6) are 123, 12, and 13 respectively. Process
mining approaches can be divided into three categories:

– Process discovery: the process of creating a process model from an event log
without any prior knowledge [2,17].

– Conformance checking: determining whether the model provided by an algo-
rithm matches the given event log [2,17].

– Enhancement: using information from the original process captured in an
event log, improve or extend an existing process model [2,17].

In this paper, we focus on process discovery algorithms. Different state-of-
the-art process discovery techniques include α [1], α+ [15], Multi-phase miner
[10,19], Heuristics miner [22], Genetic process mining (GPM) [16], α++ [23], α#
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Table 1. An example event log

Case ID Activities/Tasks Timestamp

7011 Search product 15-6-2020

7011 Check availability 16-6-2020

7012 Search product 15-6-2020

7013 Search product 15-6-2020

7011 Order product 17-6-2020

7013 Check availability 16-6-2020

7012 Order product 17-6-2020

[24], α∗ [14], Fuzzy miner [3], Inductive logic programming (ILP) [12] etc. A
few of these algorithms have explored the use of evolutionary methodology for
discovering process models [11,16,21]. The recent algorithms in the domain of
process discovery include Evolutionary tree miner (ETM) [6], Inductive miner
[13], Multi-paradigm miner [8], a hybrid process mining approach that integrates
the GPM, particle swarm optimization (PSO), and discrete differential evolution
(DE) techniques to extract process models from event logs [7], Fodina algorithm
which is an extension of Heuristic miner [4], Binary differential evolution [9].
Most of these algorithms either propose a hybrid technique using multiple evo-
lutionary approach or optimize a weighted function of popular quality metrices
of the process model.

3 Proposed Genetic Algorithm for Process Discovery
(GA-ProM)

The process mining data is encapsulated in the form of an event log. Event
log is the starting point for process discovery algorithms. An individual in the
initial population is generated from the event log in the form of a causal relation
matrix. Each bit of an individual is either 0 or 1. The steps for the proposed
genetic mining algorithm for process discovery are outlined in the Algorithm 2.
These steps are explained as follows:

The first task is to compute the dependency links between the tasks/activities
in an event log V with n tasks/activities. The dependency relations that represent
domain knowledge are stored in the form of the dependency measure matrix D
[16]. Dependency measure matrix D which provides information about tasks in
self loops, short loops (length-one and length-two loops) and tasks in parallel,
is then used to generate causality relation matric M (Algorithm 1) [16]. Each
individual in the initial population is represented by a causality relation matrix,
which is computed as:

mt1,t2 =

{
1 if r < D(t1, t2, V)P

0, otherwise
(1)
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where t1, t2 ∈ [1, n], r ∈ [0, 1) is an n × n matrix of random numbers, generated
for each individual in the population of N individuals. P regulates the influence
of the dependency measure while creating the causality relation. [16] suggested
the value of P = 1. A process mining algorithm should, in an ideal situation,
generate a model that is simple (simplicity), precise (precision), general (gener-
alization) and fits the available logs (completeness). All the quality dimensions
are measured on the scale [0, 1]. Completeness [16] is a measure of the ability
of the mined process model to reproduce the traces in the event log. Preciseness
[20,21] is a metric for determining how much extra behaviour a model generates
that isn’t visible in the event log. Simplicity indicates the number of nodes in
the mined model [20,21]. Generalization [11] measures the degree of which the
mined model can reproduce future unforeseen behaviour.

Algorithm 1. Computation of Initial population
1: for i=1:N do
2: M i=zeros(n,n)
3: r=rand(n,n), r ∈ [0, 1)
4: for every tuple (t1, t2) in n x n do do
5: mi

t1,t2 ← (r < D(t1,t2,V)P )
6: end for
7: end for

Algorithm 2. Pseudocode of the Proposed Genetic Algorithm for Process Min-
ing (GA-ProM)
1: Generate N individuals (n x n dimension each) from the given event log

2: Evaluate each individual and find best solution

3: while Stopping criteria not met do
4: for 1 to number of generations do
5: Apply Binary Tournament Selection

6: Create child population after applying Crossover and Mutation

7: Repair the population

8: Combine initial population and repaired population

9: Apply Elitism to find fittest individuals

10: end for
11: end while
12: Return the best solution

In tournament selection, given a population of N individuals, a binary tour-
nament amongst its members is used. Two individuals are randomly selected
from the population and every individual must play two times. Out of those
2N randomly selected individuals (N pairs), the best individual is selected on
the basis of quality dimensions under considerations. The winner individual goes
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into selection pool in the next iteration. Then, on the basis of a random crossover
point, the causal relation of an individual is replaced with the casual relation
of another randomly chosen individual at that crossover point. Input and out-
put tasks are upgraded in causality matrix. The individuals are then mutated
by adding a causality relation, deleting a causality relation or redistributing
the relations in input or output sets of casual matrices. The mutations, that are
inconsistent with the event log, are rejected. The proposed algorithm stops when
there is no improvement in solutions for ten generations in a row, or it executes
for the maximum number of specified generations.

4 Experimentation and Results

The population size is set to 100. The proposed algorithm (GA-ProM) is run
for maximum of 100 iterations. The total number of runs is fixed at 30 and the
results are based on the average performance of these runs. We have picked 21
complex case scenarios without noise [21]. The logs used in this experimentation
are imbalanced, i.e., they contain traces with very different frequencies. The
event logs were present in the .xes, .xml, and .hn formats. Using Prom 6 we first
converted the .xes file into .csv format then traces are formed by picking all the
events with the same Case ID and arranging them in ascending order of their
timestamp to give the desired input file for experimentation. Summary of the
experimental datasets is given in the Table 2.

The proposed algorithm (GA-ProM) is run on 21 unbalanced logs (Table 2),
namely, ETM, g2–g10, g12–g15, g19–g25 [21]. These logs contain traces of vary-
ing frequencies. As a result, these logs are better for evaluating an algorithm’s
ability to overfit or underfit the data. The proposed algorithm is compared with
α++ [23], Heuristic miner [22], Genetic miner [16], and ILP [12] algorithms. The
values for completeness, preciseness, and simplicity for ETM, g2–g10, g12–g15,
g19–g25 datasets are taken as reported by [21]. However, [21] do not report the
value of generalization for these datasets. The value of generalization for ETM,
g2–g10, g12–g15, g19–g25 datasets, for the models generated by α++, Heuristic
miner, Genetic miner, and ILP algorithms, is computed using the Cobefra tool
[5,21]. The parameter settings for each of these algorithms is provided in Table 3.

4.1 Results and Analysis

In this paper, we compare the proposed algorithm (GA-ProM) with α++, Heuris-
tic miner, Genetic process mining (GPM), and ILP algorithms. α++ is an
abstraction-based algorithm that deals with non-free choice constructs. It is
an extension of one of the earliest process discovery algorithm, known as α-
algorithm [23]. Heuristic Miner is heuristic-based algorithm and also an exten-
sion of α-algorithm. The frequency of activity in the traces is taken into account
by heuristic miner to deal with noise and imperfection in the logs [22]. GPM,
a main contender for the proposed algorithm, is a pure genetic approach pro-
posed in process mining domain. GPM optimizes a function of completeness and
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Table 2. Details of the datasets characteristics

Event-log name Activities Traces Events Source

ETM 7 100 790 [21]

g2 22 300 4501

g3 29 300 14599

g4 29 300 5975

g5 20 300 6172

g6 23 300 5419

g7 29 300 14451

g8 30 300 5133

g9 26 300 5679

g10 23 300 4117

g12 26 300 4841

g13 22 300 5007

g14 24 300 11340

g15 25 300 3978

g19 23 300 4107

g20 21 300 6193

g21 22 300 3882

g22 24 300 3095

g23 25 300 9654

g24 21 300 4130

g25 20 300 6312

Table 3. Parameter settings for the algorithms

Algorithm Parameters

HM [21,22] Relative-to-best–0.05, length-one-loops–0.9, length-two-loops–0.9,
dependency–0.9, long distance–0.9

α++ [21,23] –

ILP [12,21] ILP Solver–(JavaILP, LPSolve 5.5), ILP Variant–Petri net,
number of places–per causal dependency

GPM [16,21] Selection–Binary tournament selection, Mutation Rate–
0.2, Crossover Rate–0.8, Elitism Rate–0.2, extra behavior
punishment–0.025

GA-ProM Selection–Binary tournament selection, Mutation Rate–0.2,
Crossover Rate–0.8

preciseness. ILP was created to add artificially generated negative events, such
as the traces describing a path that is not permitted in a process [12]. A pro-
cess model with “good” completeness value indicates that the process model is
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Table 4. Quality dimensions for the process models obtained using α++, HM, GPM,
ILP, and the proposed algorithm (GA-ProM) for synthetic datasets (C: Completeness,
P: Preciseness, S: Simplicity, G: Generalization)

Algorithm ETM g2 g3 g4 g5 g6 g7 g8 g9 g10 g12 g13 g14 g15 g19 g20 g21 g22 g23 g24 g25

Heuristic miner C 0.37 1 1 0.78 1 0.66 1 0.52 0.74 0.78 1 1 0.91 0.87 0.85 1 1 0.9 0 0.93 0.23

P 0.98 1 1 1 1 0.99 1 1 1 1 1 1 0.99 1 1 1 1 1 0.42 0.97 0.97

S 1 1 1 1 1 0.99 0.98 0.93 0.96 1 1 1 1 1 1 1 1 1 0.93 1 0.94

G 0.62 0.91 0.89 0.81 0.92 0.80 0.81 0.90 0.73 0.60 0.84 0.87 0.54 0.75 0.85 0.94 0.89 0.88 0.60 0.52 0.51

Alpha++ C 0.89 0.33 0 1 1 0.45 0 0.35 0.48 0.56 1 0.48 0 0.05 0.25 0.46 0.68 0.43 0 0 0.97

P 1 0.96 0.18 0.97 1 1 0.12 1 1 1 0.97 1 0.82 0.14 0.98 0.86 0.09 1 0.42 0.11 0.26

S 1 0.78 0.79 1 1 0.76 0.93 0.74 0.79 0.76 0.99 0.79 0.79 0.97 0.75 1 0.83 0.32 0.34 0.42 0.89

G 0.56 0.62 0.74 0.91 0.92 0.84 0.81 0.91 0.59 0.43 0.94 0.95 0.61 0.72 0.72 0.97 0.89 0.65 0.36 0.33 0.45

ILP C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

P 1 0.97 0.97 1 1 0.99 1 0.98 0.98 0.95 0.97 0.07 0.95 0.96 0.98 0.96 0.96 0.93 0.83 0.89 0.8

S 0.93 0.93 0.92 0.96 1 0.74 0.93 0.67 0.9 0.68 0.99 0.97 0.69 0.76 0.79 0.79 0.97 0.52 0.28 0.7 0.59

G 0.69 0.99 0.93 0.91 0.92 0.79 0.91 0.92 0.76 0.61 0.94 0.92 0.60 0.78 0.85 0.94 0.89 0.87 0.58 0.66 0.60

Genetic miner C 0.3 1 0.31 0.59 1 1 1 0.26 0.48 0.48 1 0.75 1 0.15 0.2 1 1 0.43 0.2 0.72 0.41

P 0.94 1 0.6 1 1 1 1 0.15 1 1 1 1 0.81 0.14 0.08 1 1 0.96 0.42 0.99 0.75

S 1 1 1 0.97 1 1 1 0.72 0.96 0.88 1 0.95 0.99 0.88 0.95 1 1 1 0.88 1 0.82

G 0.56 0.91 0.88 0.90 0.92 0.80 0.91 0.88 0.75 0.61 0.91 0.97 0.56 0.50 0.82 0.71 0.89 0.90 0.42 0.47 0.49

GA-ProM C 1 1 0.997 0.99 1 0.98 0.99 0.99 0.98 0.96 1 1 0.99 0.99 0.99 1 1 0.99 0.87 0.99 0.88

P 1 1 0.93 0.96 1 0.86 0.93 0.92 0.83 0.75 1 1 0.85 0.99 0.97 1 1 0.98 0.64 0.85 0.69

S 1 1 1 1 1 1 1 1 1 1 1 1 0.99 0.99 0.99 1 1 0.98 0.99 0.99 0.99

G 0.88 0.92 0.94 0.91 0.94 0.92 0.95 0.89 0.92 0.90 0.91 0.92 0.95 0.88 0.87 0.93 0.89 0.82 0.94 0.91 0.93

Table 5. Weighted average of the quality dimensions for synthetic datasets

Algorithm ETM g2 g3 g4 g5 g6 g7 g8 g9 g10 g12 g13 g14 g15 g19 g20 g21 g22 g23 g24 g25

HM 0.485 0.993 0.992 0.816 0.994 0.722 0.984 0.618 0.776 0.8 0.987 0.99 0.89 0.88 0.87 0.995 0.992 0.914 0.15 0.907 0.36

α++ 0.882 0.435 0.132 0.991 0.994 0.546 0.143 0.473 0.552 0.602 0.992 0.58 0.17 0.179 0.38 0.57 0.66 0.48 0.086 0.066 0.869

ILP 0.972 0.992 0.986 0.99 0.994 0.963 0.988 0.967 0.972 0.942 0.992 0.92 0.942 0.962 0.97 0.976 0.986 0.948 0.899 0.94 0.92

GPM 0.423 0.993 0.429 0.675 0.994 0.985 0.993 0.335 0.578 0.561 0.99 0.80 0.951 0.23 0.296 0.978 0.99 0.55 0.286 0.74 0.474

GA-ProM 0.991 0.994 0.981 0.988 0.995 0.971 0.979 0.976 0.962 0.939 0.993 0.994 0.976 0.982 0.979 0.995 0.992 0.975 0.867 0.973 0.871

able to reproduce the behavior expressed in the event log [6]. Completeness may
be considered an important metric to measure the quality of process models.
It’s important was highlighted by the authors of [6] when they assigned a 10
times higher weight to completeness than the weight assigned to other quality
dimensions.

The proposed algorithm optimizes completeness to discover the process mod-
els. In order to assess the quality of the discovered process models, we also com-
pute the remaining three quality dimensions—namely, preciseness, simplicity,
and generalization. We have also computed a weighted average of the quality
dimensions, so as to rank the algorithms based on the weighted average and to
compare the quality of the model generated by different algorithms [6].

Table 4 shows the values of the quality dimensions for the process models
discovered by different algorithms. The proposed algorithm is able to achieve
completeness values for the discovered process models that are better or at least
as good as those achieved by the other algorithms. The results show that the
discovered process models exhibit “good” values for the other quality dimensions
also. Table 5 and Fig. 1 show that in terms of the weighted average, the process
models discovered by the proposed algorithm are better in 14 datasets out of 21
in contrast to the other algorithms.
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Fig. 1. Plots of weighted average of quality dimensions for the process models generated
from Heuristic Miner, α++, ILP, Genetic Process Miner, and the proposed algorithm
(GA-ProM). In the figures GA-ProM has been abbreviated as GA.
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5 Conclusion

In the past decade, the domain of process mining has developed into an active
research area. Process mining techniques empower organizations to gain valuable
insights into their business process from the digital data recorded in the informa-
tion systems. The discovery of process models from the data stored in the form of
an event log is usually the first step towards process improvements. The quality of
the discovered process models is measured using four metrices, namely, simplicity,
preciseness, generalization, and completeness. Completeness is considered more
important than the others as a “good” completeness value indicates that the pro-
cess model is able to reproduce the behavior expressed in the event log.

In this paper, we present a genetic mining algorithm (GA-ProM) for process
model discovery from the given event data. We have experimented with complete-
ness as the fitness function. The algorithm was tested on 21 unbalanced logs. We
have also compared the proposed algorithm (GA-ProM) with the state-of-the-
art algorithms, namely, Heuristic miner, α++, Genetic process Mining (GPM),
and Inductive logic programming (ILP). The results show the effectiveness of
the proposed approach as it produces “good” quality process models for all the
datasets. The proposed approach compares well with the other algorithms in
terms of completeness value of the discovered process models and also in terms
of the weighted average of the quality dimensions for the process models.
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