Chapter 12 ®
A Tale of Three Families: Discriminative, oo
Descriptive, and Generative Models

12.1 Introduction

Three Families of Probabilistic Models

This chapter gives a general introduction to three families of probabilistic models
and their connections. Most of the models studied in the previous chapters, as well
as most of the models in the current machine learning and deep learning literature,
belong to these three families of models.

The first class consists of discriminative models or classifiers that are commonly
used in supervised learning. The second class consists of descriptive models—
also known as energy-based models—that define unnormalized probability density
functions in the data space. These models are generalizations of the FRAME model
introduced in the previous chapters. The third class consists of generative models
that are directed top-down models that involve latent variables. The generative
models are generalizations of factor analysis and its variants. They are also called
directed graphical models.

About the names of the models, we use the term “generative models” in a much
narrower sense than in the current literature. They refer to top-down models that
consist of latent variables that follow simple prior distributions so that the examples
can be directly generated. As to the “descriptive models,” they refer to the energy-
based models or deep FRAME model introduced in the previous chapter. They only
describe the examples in terms of their probability densities, but they cannot directly
generate the examples. The generative task is left to iterative MCMC sampling
algorithms. Therefore, these models are not literally generative as they do not
explicitly define a generative process, and that is why we call them descriptive.

© Springer Nature Switzerland AG 2023 297
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_12&domain=pdf

 12783 61494 a 12783 61494 a

2908 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Top-down mapping Bottom-up mapping Bottom-up mapping
latent variables z log density fy(x) logit score (density ratio)
y 1 1 (12.1)
example x ~ gg(z) example x example x

(a) Generative (sampler) (b) Descriptive (density) (b) Discriminative (classifier)

Density vs. Sampler A descriptive model specifies the probability density function
explicitly, up to a normalizing constant. A discriminative model specifies the ratios
between two or more densities via the Bayes rule. A generative model, on the other
hand, does not specify a data density explicitly. It specifies a sampler or a sampling
process that transforms latent variables with a known distribution, e.g., Gaussian
white noise variables, to the observed example. By analogy to reinforcement
learning, a density is like a value network or a critic, and a sampler is like a policy
network or an actor.

The above diagram illustrates the three families of probabilistic models. A
generative model is based on a top-down mapping from the latent variables z to
the example x. A descriptive model is based on a bottom-up mapping from the
example x to the log of the unnormalized density. A discriminative model is based
on a bottom-up mapping from the example x to the logit score that is also the ratio
between the densities of positive and negative classes in the binary classification
situation (which can be easily generalized to the multi-class situation). All the
mappings can be parameterized by deep neural networks.

In the previous chapter, we introduced the descriptive models and generative
models for image and video data and the associated maximum likelihood learning
algorithms. This chapter will give a more general treatment. We shall still emphasize
the maximum likelihood learning algorithm. Meanwhile, we shall also present
various joint training schemes, such as variational learning and adversarial learning.
We shall make this chapter self-contained so that readers who are interested in the
development in the deep learning era can read this chapter in isolation.

Notation We shall adopt the notation commonly used in the current literature. We
use x to denote the training example, e.g., an image or a sentence. We use z to
denote the latent variables in the generative model. We use y to denote the output
in the discriminative model, e.g., image category. We use 6 to denote the model
parameters. We use the notations V, and Vy to denote % and %, respectively. For
a function £ (6), its derivative at a fixed value, say, 6;, is denoted Vgh(6;). We use
Dx1. to denote the Kullback—Leibler divergence.

Supervised, Unsupervised, and Self-supervised Learning

Supervised learning refers to the situation where both the input x and the output
y are given, and we want to learn to predict y based on x. More formally, we

12.1 Introduction 299

learn a discriminative or predictive model p(y|x) by maximum likelihood, i.e., we
maximize the average of log p(y|x) over the model parameters where the average
is over the training set {x, y}. The limitation of supervised learning is that it can be
expensive and time-consuming to obtain y in the form of label or annotation.

Unsupervised learning refers to the situation where only the input x is given,
but the output y is unavailable. In that case, we can learn a descriptive model or a
generative model, again by maximum likelihood, but we maximize the average of
log p(x) over the model parameters, where the average is over the training set {x},
instead of the average of log p(y|x), as y is not available. The descriptive model
specifies p(x) up to an unknown normalizing constant, and it is closely related to
the discriminative model through the Bayes rule. For the generative model, p(x) is
implicit because it involves integrating out the latent variables z. The latent z can be
inferred from the input x.

Semi-supervised learning refers to the situation between supervised and unsuper-
vised learning, where there are a small number of labeled examples where both x
and y are given, and there are a large number of unlabeled examples where only x
is given. In that case, we can again learn the model by maximum likelihood, where
we maximize the sum of log p(y|x) over the labeled examples and log p(x) over
the unlabeled examples. Thus probabilistic modeling provides a unified likelihood-
based framework for supervised, unsupervised, and semi-supervised learning.

There is also self-supervised learning, which is to translate unsupervised learning
into supervised learning. Specifically, even if we are only given x without y, we can
nonetheless create a task where we artificially introduce y for a modification of x
that depends on y, and we then learn p(y|x) instead of p(x). This type of learning
can be more formally treated as learning descriptive model by various conditional
likelihoods.

MCMC for Synthesis and Inference

Although likelihood-based learning with probabilistic models is a principled frame-
work for supervised, unsupervised, and semi-supervised learning, the bottleneck for
likelihood-based learning for unsupervised learning is that the derivative of the log-
likelihood function log p(x) usually involves intractable integrals or expectations,
which require expensive MCMC sampling. A lot of effort has been spent on getting
around this obstacle.

We may use short-run MCMC, i.e., running MCMC such as Langevin dynamics
or Hamiltonian Monte Carlo (HMC) [179] from a fixed initial noise distribution
for a fixed number of steps, for inference and synthesis computations. This is
affordable on modern computing platforms. It can also be justified as a modification
or perturbation of the maximum likelihood learning.

Short-run MCMC is convenient for learning models with multiple layers of latent
variables organized in complex architectures because top-down feedback and lateral
inhibition between the latent variables at different layers can automatically emerge
in short-run MCMC. The short-run Langevin dynamics can also be compared with

300 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

attractor dynamics that is a commonly assumed framework for modeling neural
computations [7, 108, 198]. One can also run persistent Markov chains, i.e., in each
learning iteration, we initialize finite-step MCMC from the samples generated in the
previous learning iteration.

Deep Networks as Function Approximators

All three classes of models can be parameterized by deep neural networks [138,
144], which are compositions of multiple layers of linear transformations and
coordinate-wise nonlinear transformations.

Specifically, consider a nonlinear transformation f(x) that can be decomposed
recursively as s; = Wihj_1 + by, and by = r(sy), forl =1, ..., L, with f(x) = hr
and hg = x. W, is the weight matrix at layer /, and b; is the bias vector at layer /.
Both s; and h; are vectors of the same dimensionality, and r; is a one-dimensional
nonlinear function, or rectification function, that is applied coordinate-wise or
element-wise.

The nonlinear rectification is crucial for f(x) to approximate nonlinear mapping.
In the past, the nonlinear rectification r;() is usually sigmoid transformation, which
is approximately a two-piece constant function. This makes f(x) approximately
piecewise constant function. Modern deep networks usually use r;(s) = max(0, s),
the rectified linear unit or ReLU, which makes f(x) piecewise linear.

There are two special classes of neural networks. One consists of convolutional
neural networks [138, 144], which are commonly applied to images, where the same
linear transformations are applied around each pixel locally. The other class consists
of recurrent neural networks [103], which are commonly applied to sequence data
such as speech and natural language. Recently, the transformer model [239] has
become the most prominent architecture.

Deep neural networks are powerful function approximators that can approximate
highly nonlinear high-dimensional continuous functions by interpolating training
examples. Modern deep networks are highly overparameterized, meaning that the
number of parameters greatly exceeds the number of training examples. Thus
they have enough capacity to fit the training data, yet they tend not to overfit
the training data because the networks are learned by stochastic gradient descent
algorithm where the gradient is computed via back-propagation. The stochastic
gradient descent algorithm provides implicit regularization [11, 221].

Learned Computation

Because of the strong approximation capacity, the boundary between representation
and computation is rather blurred because a deep network can approximate an
iterative algorithm. Sometimes this is called learned computation.

12.1 Introduction 301

In fact, the residual network [97] can be considered a finite-step iterative
algorithm. It is of the form x;1 = x;+ f;(x;), where [indexes the layer. Meanwhile,
I may also be interpreted as time step of an iterative algorithm, i.e., we can also write
Xi+1 = x; + fi(x;), which is to model iterative updating or refinement. In general,
it can be interpreted as a mixture of both, i.e., there is actually a small number of
layers, and each layer is computed by a finite-step iterative algorithm.

The transformer model [239] can also be considered a finite-step iterative
algorithm that iteratively updates the vector representations of the words of an input
sentence through the self-attention mechanism where the words pay attention to
and gather information from each other. The graph convolutional network [134] can
learn the iterative message passing mechanism where the nodes of the graph send
messages to each other.

In the above iterative updating mechanisms, there is no need to know the
objective functions of these iterative mechanisms. They can be embedded into a
classifier and be trained by the classification loss via back-propagation through time.

Amortized Computation for Synthesis and Inference
Sampling

Even if there is an objective function, we can still learn a deep network that directly
maps the input to an approximate solution. Sometimes this is called amortized
computation, which seeks to approximate an iterative algorithm of multiple time
steps.

In the case of the generative model, recall that we can use short-run MCMC as an
approximate sampler for synthesis and inference. We can also learn a network that
produces the samples directly. In the case of posterior sampling, this is referred to as
variational inference model [133]. In fact, the short-run MCMC can be considered
a noise-injected residual network.

When there are multiple layers of latent variables, designing a network for
approximate inference sampling can be a non-trivial task, whereas short-run MCMC
remains automatic.

Distributed Representation and Embedding

Deep neural networks are based on continuous vectors and weight matrices. They
are highly interpolative and amendable to gradient-based computations. On the other
hand, high-level reasoning can also be highly symbolic, with symbols, logic, and
grammar. For a dictionary of symbols, each symbol can be represented by a one-hot
vector, and a small subset of symbols selected from the dictionary can be represented
by a sparse vector. This is in contrast to the vectors in deep networks, which are

302 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

continuous and dense. Such vectors are called distributed representations. They are
also commonly referred to as embeddings. For instance, the word2vec model [172,
193] represents each word by a dense vector, and this means we embed the words in
a continuous Euclidean space. A modern deep network such as transformer [239] or
graph neural network [134] can be viewed as a team of vectors, which are operated
on by learned matrices so that they can pass on messages to each other. For discrete
or symbolic inputs or outputs such as words or tokens, they can be encoded into
vectors or decoded from the vectors.

It is still unclear how to unify symbolic and dense representations. Sometimes
this is referred to as the contrast between symbolism and connectionism. It is likely
that there is a duality or complementarity between sparse vectors and dense vectors,
and each is more convenient and efficient than the other depending on the scenario.

Perturbations of Kullback—Leibler Divergence

A unifying theoretical device for studying various learning methods is to perturb the
Kullback-Leibler divergence for maximum likelihood by other Kullback-Leibler
divergences. This scheme consists of three Kullback—Leibler divergences: (1) KL-
divergence underlying maximum likelihood learning. This is the target of the
perturbations. (2) KL-divergence underlying synthesis sampling. (3) KL-divergence
underlying inference sampling. (2) and (3) are perturbations that are applied to (1).
The sign in front of (2) is negative, and the sign in front of (3) is positive.

The above theoretical framework explains the following learning algorithms: (1)
The maximum likelihood learning algorithm. (2) The learning algorithm based on
short-run MCMC for synthesis and inference. (3) The learning methods based on
learned networks for synthesis and inference, including adversarial learning [81]
and variational learning [133].

Kullback—Leibler Divergence in Two Directions

To be more specific, recall that for two probability densities p(x) and g(x), we
define

Dx(pllg) =B, [logp()} f (>1g&d (12.2)

The KL-divergence appears in two scenarios:

(1) Maximum likelihood learning. Suppose the training examples x; ~ pdata(X)
are independent fori = 1, ..., n. Suppose we want to learn a model pg(x). The
log-likelihood function is

12.2 Descriptive Energy-Based Model 303

@)

1 n
L) = - Zlog Do (xi) = Epy.llog pe(x)]. (12.3)

i=1

Thus for big n, maximizing L(0) is equivalent to minimizing

D1 (pdatall pp) = —entropy(pdata) — Epdata [log pe(x)] = —entropy(pdata) — L(6),
(12.4)

where E . can be approximated by averaging over {x;}. We can think of it as
projecting pgata onto the model space {pg, V60}.

For the rest of this chapter, for notational simplicity, we will not distinguish

between E ;. and sample average over {x;}, and we will treat Dgr.(pdatall Po)
as the loss function for maximum likelihood learning.
Variational approximation. Suppose we have a target distribution piarget, and
we know prarger up to a normalizing constant, €.g., Prarget(x) = exp(f(x))/Z,
where we know f(x) but the normalizing constant Z = f exp(f(x))dx is
analytically intractable. Suppose we want to approximate it by a distribution
q¢- We can find ¢ by minimizing

Dt (4o Prrget) = Egy[10g4p(x)] — Eg [f ()] +log Z. (12.5)

This time, we place g4 on the left-hand side and piarger on the right-hand side of
the KL-divergence, because piarget is accessible only through f(x). The above
minimization does not require knowledge of log Z.

The behaviors of ming Dg1 (pdatall pe) in (1) and ming Dx1.(g¢ || Prarger) in (2) are

different. In (1), py tends to cover all the modes of pgaa because Dkp (pPdatall Po)
is the expectation with respect to pdara. In (2), g4 tends to focus on some major
modes of prarger, While ignoring the minor modes, because Dk (gl Prarger) is the
expectation with respect to gs.

In the perturbation scheme mentioned in the previous subsection, the KL-

divergence for maximum likelihood is (12.4). The perturbations are of the form
in (12.5).

12

.2 Descriptive Energy-Based Model

Model and Origin

Let x be a training example, e.g., an image or a sentence. A descriptive model
specifies an unnormalized probability density function

304 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

1
po(x) = V0] exp(fo(x)), (12.6)

where fp(x) is parameterized by a deep network, with 6 collecting all the weight
and bias parameters. Z(f) = f exp(fp(x))dx is the normalizing constant.

Such a model originated from statistical mechanics and is called the Gibbs
distribution, where x is the state or configuration of a physical system, and — fj (x)
is the energy function of the state so that the lower energy states are more likely
to be observed. For that reason, the above model is also called energy-based model
(EBM) in the literature [32, 70, 99, 161, 180, 182, 184, 266, 269, 270].

In classical mechanics, the configuration x(#) evolves deterministically over
time ¢ according to a partial differential equation. Then where does the probability
distribution come from? We may consider the ensemble or population (x(¢),¢ €
[to, t1]), for a long enough burn-in time fy and long enough duration #; — fy. For a
random time ¢ ~ Uniform[zy, #1], x(¢) follows a probability distribution p(x), and
it can be modeled by a Gibbs distribution.

The quantity Z(6) is called the partition function in statistical mechanics. An
important identity is

Vo log Z(0) = Ep, [Ve fo (x)]. 12.7)

The non-differentiability of log Z(6) underlies the phase transition phenomena in
statistical physics.

The descriptive model has strong expressive power because it only needs to
specify a scalar-valued function fy(x). fp(x) is like an objective function (or value
function, or constraints, or rules). The descriptive model is only responsible for
specifying the objective function and is not responsible for optimizing the objective
function or providing near-optimal solutions. The latter task is left to MCMC
sampling. As a result, a simple descriptive model pg(x) or the objective function
fo(x) can explain rich patterns and complex behaviors.

The descriptive model has been used for inverse reinforcement learning, where
— fo(x) serves as the cost function [283]. It has also been used for Markov logic
network [204], where fj(x) combines logical rules.

Gradient-Based Sampling

For high-dimensional x, such as image, sampling from py (x) requires MCMC, such
as Langevin dynamics or Hamiltonian Monte Carlo. The Langevin dynamics iterates

Xi1 = Xt 4 5V fo (x0) + v/ 2sey, (12.8)

12.2 Descriptive Energy-Based Model 305

where s is the step size and e; ~ N(O, I) is the Gaussian white noise term. The
Langevin dynamics has a gradient ascent term V, fy(x;), and e; is the diffusion
term for randomness. As s — 0 and ¢+ — oo, the distribution of x; converges to
Do (x).

We can write the Langevin dynamics in continuous time as

1
Xe4Ar = X; + vafe(xt)Af + v Atey, (12.9)

or more formally,
1
dx; = Efog(xt)dt +dB;, (12.10)

where d B; plays the role of </ Ate;.
Let p; be the distribution of x,. Then according to the Fokker—Planck equation,
we have

1
Vipi(x) = S[Va(fo)pi(x) + VZpi(x)]. (12.11)

po(x) is the solution to V;p;(x) = 0, i.e., the stationary distribution. In terms of
variational approximation,

Dxv(p:llpe) = —entropy(p;) — Ep, [fo(x)] +10g Z(6) — 0 (12.12)

monotonically as 1 — oo under fairly general conditions. The gradient term in the
Langevin dynamics increases fp(x) or decreases energy, while the noise term e;
increases the entropy of p;.

Intuitively, imagine a population of x’s that are distributed according to pg(x).
The deterministic gradient ascent term in the Langevin dynamics pushes the points
toward the local modes of the log density, making the distribution of the points more
focused on the local modes of the density. Meanwhile, the random diffusion term in
the Langevin dynamics adds random noises to the points, making the distribution of
the points more diffused from the local modes of the density. The two terms balance
each other so that the overall distribution of the points after each Langevin iteration
remains unchanged.

Hamiltonian Monte Carlo (HMC) [105, 179] is a more powerful gradient-based
MCMC sampling method. Similar to gradient descent with momentum, it can
navigate the high curvature regions of the energy landscape more smoothly and
efficiently. The step size in HMC can be adaptively selected based on the acceptance
rate calculated from the energy function [105].

In order to traverse local modes and facilitate fast mixing of the Markov chain,
one can add a temperature parameter to interpolate the multi-modal target density
and a simple unimodal reference density such as Gaussian white noise distribution.
One can then use simulated annealing [135] or more principled and effective MCMC

306 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

schemes such as simulated tempering [168], parallel tempering [48, 77], or replica
exchange [226] to sample from multi-modal density.

Maximum Likelihood Estimation (MLE)

The descriptive model pg(x) can be learned by maximum likelihood estimation
(MLE). The log-likelihood is the average of

log pg(x) = fo(x) —log Z(6), (12.13)

where the average is over the training set {x}. The gradient of log py (x) with respect
to 6 is

86 (x) = Vg log po(x) = Vi fo(x) — Epyx)[Ve fo (x)], (12.14)

where
Vg log Z(0) = Ep,(x)[Ve fo (x)]. (12.15)
Suppose we observe training examples {x;,i = 1,...,n} ~ pdata, Where pgata

is the data distribution. For large n, the sample average over {x;} approximates the
expectation with respect to pgaa. For notational convenience, we treat the sample
average and the expectation as the same.

The log-likelihood is

L) = lzn:l (xi) = Epyy, [1 ()] (12.16)
= 08 po(Xi) = Epgyy, L1Og Po(X)]. .

i=1

The derivative of the log-likelihood is

L'(8) = Epyy[86 (1)1 = Epy, [V fo ()] — Ep, [V fo ()] (12.17)
1 & l &
== Vofali) = D Vofal)), (12.18)
i=1 i=1
where x; ~ pg(x) fori = 1, ..., n are the generated examples from the current
model py(x).

The above equation leads to the “analysis by synthesis” learning algorithm. At
iteration 7, let 6; be the current model parameters. We generate synthesized examples
x; ~ pg,(x) fori =1,...,n. Then we update 6,11 = 6; + n,L’(6;), where n; is
the learning rate, and L'(6;) is the statistical difference between the synthesized
examples and observed examples (Fig. 12.1).

12.2 Descriptive Energy-Based Model 307

(@ b)

Fig. 12.1 Reprinted with permission from [266]. Learning the descriptive model by maximum
likelihood: (a) goose, (b) tiger. For each category, the first row displays four of the training images,
and the second row displays four of the images generated by the learning algorithm. f,(x) is
parameterized by a four-layer bottom-up deep network, where the first layer has 100 7 x 7 filters
with subsampling size 2, the second layer has 64 5 x 5 filters with subsampling size 1, the third
layer has 20 3 x 3 filters with subsampling size 1, and the fourth layer is a fully connected layer with
a single filter that covers the whole image. The number of parallel chains for Langevin sampling is
16, and the number of Langevin iterations between every two consecutive updates of parameters is
10. The training images are 224 x 224 pixels

Objective Function and Estimating Equation of MLE

The maximum likelihood learning minimizes the Kullback-Leibler divergence
Dx1.(pdatall po) over 6. Geometrically, it is to project pgat, onto the manifold formed
by {pe, ¥6}.

The maximum likelihood learning algorithm converges to the solution to the
following estimating equation:

Epy [V fo(x)] = Epg [Vo fo(X)], (12.19)

where the model matches the data in terms of the expectation of Vg fp(x).

For the FRAME model or in general the exponential family model,
fo(x) = (6,h(x)) for feature vector h(x); hence, Vyfo(x) = h(x) and
L'(0) = Epgulh(x)] — Ep[h(x)]. The maximum likelihood estimating equation
is Epy[A(x)] = Epy,, [h(x)], i.e., matching feature statistics. For general fy(x), we
may still consider Vy fp(x) as a feature vector.

Perturbation of KL-divergence

Define D(0) = Dxyr(pdatall po)- It is the loss function of MLE. To understand the
MLE learning algorithm, let 6; be the estimate at iteration 7. Let us consider the
following perturbation of D(6):

S(0) = D) — DxL(ps, | po) = DxrL(paatall po) — DxL(ps, | pe). (12.20)

308 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.2 Reprinted with permission from [95]. The surrogate S minorizes (lower bounds) D, and
they touch each other at 6, with the same tangent

S(0) is the surrogate objective function for D () at iteration ¢. It is simpler than
D(0), because the log Z(0) term gets canceled, and the gradient can be more easily
computed (Fig. 12.2).

The perturbation term Dky (pe, |l pg), as a function of 6, with 6; fixed, has the
following properties: (1) It achieves minimum zero at 6§ = 6;. (2) Its derivative is
zero at O = 6;. As a result, S(8;) = D(9,), and S’ (6;) = D’'(6;). Geometrically,
S(6) and D () touch each other at 6;, and they are co-tangent at ;. Since

S(0) = —E g [fo(x)] + Ep,, [fo (x)] — entropy(pdata) + entropy(pg,), (12.21)

where log Z(0) gets canceled, we have
— 5'(0) = Epyu[Vo fo ()1 — Ep,, [V fo (1)1, (12.22)

Thus

—D'(0;) = =S'(6)) = Epyy,[86, ()] = Epyi, [V fo, ()] — Epp,, [V fo, (X)].
(12.23)

This justifies the MLE learning algorithm.

We shall use this perturbation scheme repeatedly, where we perturb the MLE loss
function D () = Dxr(pdatall Pe) to a simpler surrogate objective function S(8) by
subtracting or adding other KL-divergence terms. This enables us to theoretically
understand other learning methods that are modifications of MLE learning.

Self-adversarial Interpretation

S(0) = Dk (pdatallpe) — DxL(pe, || pe) leads to an adversarial interpretation. When
we update 6 by following the gradient of S(0) at 6 = 6;, we want pg to move away
from pg, and move toward pgae. That is, the model py criticizes its current version
Pe, by comparing py, to pgata. The model serves as both generator and discriminator
if we compare it to GAN (generative adversarial networks). In contrast to GAN
[8, 81, 199], the learning algorithm is MLE, which in general does not suffer from

12.2 Descriptive Energy-Based Model 309

issues such as mode collapsing and instability, as it does not involve the competition
between two separate networks.

Short-Run MCMC for Synthesis

We now consider the learning algorithm based on short-run MCMC [184].
The short-run MCMC is

X0 ~ po(x), Xia1 =Xk + 5V fo(xe) + V2ser, k=1,.... K, (12.24)

where we initialize the Langevin dynamics from a fixed diffused noise distribution
po(x), and we run a fixed number of K steps. Let pg(x) be the distribution of x g . We
use xg as the synthesized example for approximate maximum likelihood learning
(Figs. 12.3 and 12.4).

For each x, we define

89 (x) = Vg fo(x) — By () [V fo ()] (12.25)

and modify the learning algorithm to

Or1 = 0 + 0B pgy [86, ()] = 6 + 11 (B oo [V fo ()] — B3, [V fo (x)]) . (12.26)

Fig. 12.3 Reprinted with permission from [184]. Synthesis by short-run MCMC: Generating
synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise
for CelebA (64 x 64)

%

Ny
|]

Fig. 12.4 Reprinted with permission from [184]. Synthesis by short-run MCMC: Generating
synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise
for CelebA (128 x 128)

310 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Objective Function and Estimating Equation with Short-Run
MCMC

The following are justifications for the learning algorithm based on short-run
MCMC synthesis:

(1) Objective function. Again we use perturbation of KL-divergence. At iteration
t, with 6, fixed, the learning algorithm follows the gradient of the following
perturbation of D(0) at 6 = 6;:

§(0) = D(0)—DxvL(pg, |l po) =DxL(pdatall po) —Dx1(Ps, I pe), (12.27)

so that 6,1 = 6; + n;: S’ (6;), where n;, is the step size, and

-5 = Epaa[Vo fo ()] — Ej, [Vo fo (x)]. (12.28)

— 8'(01) = By, [86, ()] = By, [V fi, ()] — Ejz,, [V fo, (0)]. (12.29)

Compared to the perturbation of KL-divergence in MLE learning, we use pe,
instead of pg,. While sampling py, can be impractical if it is multi-modal,
sampling py, is practical and exact because it is a short-run MCMC.

Note that S'(6;) # D’(6;), because py, # pe,. Thus the learning gradient
based on short-run MCMC is biased from that of MLE. As a result, the learned
po based on short-run MCMC may be biased from MLE.

S(0) indicates that we need to minimize Dy (pg || pe) in order to minimize
the bias relative to the maximum likelihood learning. We can do that by
increasing K because Dxp (pgllpg) decreases monotonically to zero as K
increases. For fixed K, we can also employ more efficient MCMC, especially
those that can traverse local modes, such as parallel tempering [48, 77] or replica
exchange [226].

(2) Estimating equation. The learning algorithm converges to the solution to the
following estimating equation:

Ejy [Vo fo(x)] = Epy, [Vo fo(x)], (12.30)

which is a perturbation of the maximum likelihood estimating equation where
we replace pg by pg (Fig. 12.5).

Thus even if the learned pg may be biased from MLE, the resulting short-run
MCMC py can nonetheless be considered a valid model, in that it matches pgata
in terms of expectations of Vy fy(x). Recall in the case of FRAME model where
fo(x) = (0, h(x)), Vg fo(x) = h(x), i.e., the learned short-run MCMC pg matches
Pdata in terms of expectations of /(x). In general, Vg fg(x) may be considered a

12.2 Descriptive Energy-Based Model 311

b P Orinve

Fig. 12.5 Reprinted with permission from [184]. The blue curve illustrates the model distributions
corresponding to different values of parameter 6. The black curve illustrates all the distributions
that match pgaea (black dot) in terms of E[A(x)]. The MLE p; (green dot) is the intersection
between © (blue curve) and €2 (black curve). The MCMC (redggotted line) starts from pg (hollow
blue dot) and runs toward Poune (hollow red dot), but the MCMC stops after K step, reaching
Pi E (red dot), which is the learned short-run MCMC

Fig. 12.6 Reprinted with permission from [184]. Interpolation by short-run MCMC resembling a
generator or flow model: The transition depicts the sequence F'(z,) with interpolated noise z, =

pz1 ++/1 — p2z5, where p € [0, 1] on CelebA (64 x 64). Left: F(z1). Right: F(z2)

UL UUUN

ssa%@@é%é%

Fig. 12.7 Reprinted with permission from [184]. Reconstruction by short-run MCMC resembling
a generator or flow model: The transition depicts F(z;) over time ¢ from random initialization
t = 0 to reconstruction ¢ = 200 on CelebA (64 x 64). Left: Random initialization. Right: Observed
examples

generalized version of feature vector 4 (x). Thus we may justify the learned short-
run MCMC py as a generalized moment matching estimator éMME. The generalized
moment matching explains the synthesis ability of the descriptive model and various
learning schemes in general.

The short-run Langevin dynamics can be considered a noise-injected RNN or
noise-injected residual network. Specifically, we can write xx = F(xo, ¢), where

= (ex,k = 1,..., K). We can use it to reconstruct the observed image x by
minimizing ||x — F(xo, e)| over xo and e. As a simple approximation, we can set
er = 0 and write xg = F(xp) (Figs. 12.6 and 12.7).

312 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models
Flow-Based Model

A flow-based model is of the form

x = ga(2); 2~ q0(2), (12.31)

where go is a known noise distribution. g, is a composition of a sequence of
invertible transformations where the log determinants of the Jacobians of the
transformations can be explicitly obtained. o denotes the parameters. Let g, (x) be
the probability density of the model at a data point x with parameter «. Then under
the change of variables, g, (x) can be expressed as

ga(*) = qo(gy ' (x))] det(dgy ' (x)/ax)!. (12.32)

More specifically, suppose g, is composed of a sequence of transformations
8« = 8a; © * - O &q,- The relation between z and x can be written as z < k| <
-+ <> hy,_1 <> x. And thus we have

G (x) = qo(gy ' ()T, | det(dh,—1/0h/)], (12.33)

where we define z := hg and x := h,, for conciseness. With carefully designed
transformations, as explored in flow-based methods, the determinant of the Jacobian
matrix (dh;—1/dh;) can be computed exactly. The key idea is to choose transforma-
tions whose Jacobian is a triangle matrix so that the determinant becomes

| det(dh,_1/dh,)| = T1|diag(dh,_1/dh,)]. (12.34)

The following are the two scenarios for estimating g,

(1) Generative modeling by MLE [13, 43, 44, 82, 131, 139, 233], by minyg Dxr,
(Pdatallge), where E,, . can be approximated by average over observed exam-
ples.

(2) Variational approximation to an unnormalized target density p [130, 132, 202],
based on min, Dx1 (g« |l p), where

Dk1(qullP) = Eg,[10g o (x)] — Eg, [log p(x)]
= E,[log go(z)— log |det(g,, (2))[1-Eg, [log p(x)]. (12.35)

Dx1(q« |l p) is the difference between energy and entropy, i.e., we want g,
to have low energy but high entropy. Dki.(¢«|lp) can be calculated without
inversion of gy .

When ¢, appears on the right of KL-divergence, as in (1), it is forced to cover
most of the modes of pgaa. When g, appears on the left of KL-divergence, as in (2),
it tends to chase the major modes of p while ignoring the minor modes.

12.2 Descriptive Energy-Based Model 313

The flow-based model has explicit normalized density and can be sampled
directly. It is both a density and a sampler.

Flow-Based Reference and Latent Space Sampling

[181] propose to use a flow-based model as the reference distribution for the
descriptive model or the energy-based model (EBM) and perform MCMC sampling
in latent space.

Instead of using uniform or Gaussian white noise distribution for the reference
distribution ¢ (x) in the descriptive model, we can use a flow-based model g, as the
reference model. g, can be pre-trained by MLE and serves as the backbone of the
model so that the model is of the following form:

po(x) = exp(fo (x))qa (x). (12.36)

Z(9)
The resulting model py(x) is a correction or refinement of g, or an exponential
tilting of g4 (x), and fp(x) is a free-form ConvNet to parameterize the correction.
The overall negative energy is fp(x) + log gq (x).
In the latent space of z, let p(z) be the distribution of z under py(x); then

p()dz = pg(x)dx = 20, exp(fo(x))ga(x)dx. (12.37)
Because g, (x)dx = qo(z)dz, we have
1
p(2) = 70 exp(fo (g« (2)))q0(2)- (12.38)

p(2) is an exponential tilting of the prior noise distribution gg(z). It is a very simple
form that does not involve the Jacobian or inversion of gy (2).

Instead of sampling py(x), we can sample p(z) in Eq.(12.38). While g, (x)
is multi-modal, go(z) is unimodal. Since py(x) is a correction of gy, p(z) is a
correction of pp(z) and can be much less multi-modal than pg(x) that is in the
data space. After sampling z from p(z), we can generate x = g4(2).

The above MCMC sampling scheme is a special case of neutral transport MCMC
proposed by Hoffman et al. [104] for sampling from an EBM or the posterior
distribution of a generative model. The basic idea is to train a flow-based model
as a variational approximation to the target EBM and sample the EBM in the latent
space of the flow-based model. In our case, since py is a correction of gy, we can
simply use g, directly as the approximate flow-based model in the neural transport
sampler. The extra benefit is that the distribution p(z) is of an even simpler form
than pg(x) because p(z) does not involve the inversion and Jacobian of g,. As a
result, we may use a flow-based backbone model of a more free form such as one

314 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

based on residual network [13]. We use HMC [179] to sample from p(z) and push
the samples forward to the data space through g,. We can then learn 6 by MLE.

Diffusion Recovery Likelihood

Inspired by recent work on diffusion-based models [102, 222, 223], [72] propose
a diffusion recovery likelihood method to tackle the challenge of training the
descriptive models or energy-based models (EBMs) directly on a dataset by instead
learning a sequence of EBMs for the marginal distributions of the diffusion process.
Specifically, assume a sequence of noisy observations Xo, X, . .. , X7 such that

X0 ™~ Pdata(X); Xt +1=4/ 1_Ut2+1Xt+Ut+1€t+la t=0,1,...T—1. (12.39)

The scaling factor ,/1 — (le_H ensures that the sequence is a spherical interpolation

between the observed sample and Gaussian white noise. Lety; = /1 — ‘7:2+1Xt’ and
we assume a sequence of marginal EBMs on the perturbed data

1
po(y:) = 7., &P (fo(yi 1), (12.40)
0,t

where fy(y;, t) is defined by a neural network conditioned on ¢. The sequence of
marginal EBMs can be learned with recovery likelihoods that are defined as the
conditional distributions that invert the diffusion process, which can be derived by
Egs. (12.39) and (12.40):

||Xz+1—Yz||2), t=0,1,...,T —1.

(12.41)

1
po(yelXep1) = z=———exp | fo(yr,) — ——
Zg 1 (Xe41) (2Gt24r1

Compared to the standard maximum likelihood estimation (MLE) of EBMs,
learning marginal EBMs by diffusion recovery likelihood only requires sampling
from the conditional distributions in Eq. (12.41), which is much easier than sampling
from the marginal distributions due to the additional quadratic term, which makes
the conditional EBMs close to unimodal. After learning the marginal EBMs, we can
generate synthesized images by a sequence of conditional samples initialized from
the Gaussian white noise distribution using MCMC techniques such as Langevin
sampling:

b*c?

1
yith =y + T(Vyfe(y,r, 1)+ G—Z(Xz+1 —y;) +boe’. (12.42)
t

12.2 Descriptive Energy-Based Model 315
Data Synthesized

samples

density

Fig. 12.8 Reprinted with permission from [72]. Illustration of diffusion recovery likelihood on
2D checkerboard example. Top: progressively generated samples. Bottom: estimated marginal
densities

Fig. 12.9 Reprinted with permission from [72]. Generated samples on LSUN 1282
church_outdoor (left), LSUN 1282 bedroom (center), and CelebA 642 (right)

The framework of recovery likelihood was originally proposed in [17]. Gao et
al. [72] adapt it to learning the sequence of marginal EBMs from the diffusion
data. Figure 12.8 shows an illustration on a 2D toy example. Figure 12.9 displays
uncurated samples generated from learned models on large image datasets.

Diffusion-Based Model

Diffusion-based models [102, 222, 223] prove to be exceedingly powerful in
generating photorealistic images. It learns a sampling process instead of an explicit
density. Thus it is on the side of the sampler (like a policy network), instead of
density (like a value network). The sampling process is similar to the short-run
Langevin dynamics for sampling from an energy-based model.

The key idea of the diffusion-based model of [222] is to continuously add noises
of infinitesimal variance to the clean image until the resulting image becomes a

316 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Gaussian white noise image. This is a forward diffusion process. Then we learn to
reverse this forward process by going from the Gaussian white noise distribution
back to the multi-modal data distribution of the clean images. This reverse diffusion
process is as if showing the movie of the forward diffusion process in reverse time,
and it was inspired by the non-equilibrium thermodynamics [222]. The reverse
diffusion process is a denoising process. Adding noises amounts to reducing the
precision of the pixel intensities.

There are two slightly different perspectives on the diffusion-based model. One is
based on the observation that the conditional distribution pg (y;|X;+1) in Eq. (12.41)
is approximately Gaussian if O'ZZ_H is infinitesimally small. The conditional Gaussian
distribution can be derived by the first-order Taylor expansion of the log density
of y;. Thus the reverse process can be decomposed into a Markov sequence of
conditional Gaussian models with infinitesimal variances, and they can be learned
within the maximum likelihood or variational inference framework. A single
conditional Gaussian model can be learned for the whole reverse process, with time
embedding being input to the model. In the learning of the conditional Gaussian
model, we can condition on the original clean image for the purpose of variance
reduction. More specifically, at each time step of the diffusion process, we can
predict the noise image that has been added to the original clean image, and then
we can move toward the clean image by removing a small amount of the predicted
noise image.

A closely related perspective is to estimate the derivative of the log density of the
noisy image at each time step of the diffusion process by score matching [114, 115]
via denoising auto-encoder [6, 227, 241]. The derivative of the log density or score
is related to the first-order Taylor expansion mentioned above. The derivative or the
score enables us to reverse the forward diffusion process via a stochastic differential
equation [223].

Intuitively, for a population of points that follow a certain density, if we add small
random noise to each point, the resulting population of perturbed points will have
a density that is more diffused than the original density. We can achieve the same
effect by perturbing each point deterministically via a gradient descent movement
on the log density so that the resulting population of the deterministically perturbed
points will have the same diffused density resulting from adding random noises.
Thus we can reverse the effect of the noise diffusion by deterministic gradient ascent
on the log density. This underlies the reversion of the forward diffusion process
mentioned above. It also underlies the Langevin dynamics where the gradient ascent
and the diffusion term balance each other.

The diffusion-based model is effective for modeling multi-modal data density
by the reverse diffusion process starting from a unimodal Gaussian white noise
density. The idea is related to simulated annealing [135], simulated tempering [168],
parallel tempering [48, 77], or replica exchange [226] for sampling from multi-
modal densities.

12.3 Equivalence Between Discriminative and Descriptive Models 317

12.3 Equivalence Between Discriminative and Descriptive
Models

Discriminative Model

Let x be an input example, e.g., an image or a text, and let y be a label or annotation
of x, e.g., the category that x belongs to in the case of classification. Let us focus on
the classification problem, and suppose there are C categories. The commonly used
soft-max classifier assumes that

po(y = clx) = exp(fe,(x))
Y S exp(furg(x))

(12.43)

where f ¢ is a deep network, and 6 denotes all the weight and bias parameters. For
different c, the networks f, 9 may share a common body and only differ in the head
layer.

We can write the above model as

po(y = clx) exp(fe,0(x)), (12.44)

T ZO)®)
where
C
ZO)(x) =Y exp(feo(x)). (12.45)
c=1

The discriminative model py(y|x) can be learned by maximum likelihood. The
log-likelihood is the average of

log pg(ylx) = fy,0(x) —log Z(0)(x), (12.46)

where the average is over the training set {x, y}. The gradient of log py (y|x) with
respect to 0 is

Vo log pe(y1x) = Ve fy.0(x) = Epyy10)[Ve fy.0 ()], (12.47)

where

Vo log Z(0)(x) = Epy(y10)[Ve fy,0 ()] (12.48)

Let pgaa(x,y) be the data distribution of (x,y). The MLE minimizes
Dx1(pdata(¥1X) | po (¥]x)), where for two conditional distributions p(y|x) and
q(y|x), their KL-divergence is defined as

318 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

p(ylx)]

12.49
q(ylx) ()

DxL(p(y1X)llg(y|x)) = Epx,y) [log

where the expectation is with respect to p(x, y) = p(x) p(¥|x), i.e., we also average
over p(x) in addition to p(y|x).

The above calculations are analogous to the calculations for the descriptive
model. The difference is that for the discriminative model, the normalizing constant
Z and the expectation are summations over y, where y belongs to a finite set of
categories, whereas for the descriptive model, the normalizing constant Z and the
expectation are integral over x, where x belongs to a high-dimensional space. As a
result, the expectation in the descriptive model cannot be calculated in closed form
and has to be approximated by MCMC sampling such as Langevin dynamics.

A special case is binary classification, where y € {0, 1}. It is usually assumed
that

fo,o(x) =0, frokx) = folx), (12.50)

so that

1
poly = 1) = s = sigmoid(fu(x)), (12.51)

and y follows a nonlinear logistic regression on x.

Descriptive Model as Exponential Tilting of a Reference
Distribution

A more general version of the descriptive model is of the following form of
exponential tilting of a reference distribution [32, 253]:

1
po(x) = V0] exp(fo(x))gq(x), (12.52)

where ¢(x) is a given reference measure, such as uniform measure or Gaussian
white noise distribution. The original form of the descriptive model corresponds to
¢ (x) being a uniform measure. If ¢ (x) is a Gaussian white noise distribution, then
the energy function is — fy (x) + ||x]|?/2.

Although g (x) is usually taken to be a simple known distribution, g (x) can also
be a model in its own right. We may call it a base model or a backbone model, and
po(x) can be considered a correction of g(x), where fy(x) is the correction term.
We may also call py(x) the energy-based correction of the base model g (x).

12.3 Equivalence Between Discriminative and Descriptive Models 319
Discriminative Model via Bayes Rule

The above exponential tilting leads to the following discriminative model. We can
treat pg as the positive distribution, and ¢ (x) the negative distribution. Let y €
{0, 1}, and the prior probability p(y = 1) = p, so that p(y = 0) = 1 — p. Let
pxly = 1) = pp(x), p(x]ly = 0) = g(x). Then according to the Bayes rule
[32, 121, 143, 149, 234, 253],

exp(fo(x) +b)

: (12.53)
1+ exp(fo(x) + b)

p(y=llx) =

where b = log(p/(1 — p)) — log Z(0). This leads to nonlinear logistic regression.
Sometimes, people call fy(x) 4 b the logit or logit score because

tog PO =1 yogit(p(y = 1)) = fo () + . (12.54)
p(y =0lx)

More generally, suppose we have C categories, and

1
Pes®) = ——exp(fep)g(@). c=1.....C, (12.55)

c,

where (fco(x),c = 1,...,C) are C networks that may share the same body but
with different heads. Suppose the prior probability for category c is p., then

exp(fe.o(x) +be)
Y exp(feo(x) +be)

p(y =clx) = (12.56)

where b, = logp. — logZ. 9. The above is a conventional soft-max classifier.
Conversely, if p(y = c|x) is of the above form of soft-max classifier, then p. g (x)
is of the form of exponential tilting based on the logit score f. ¢(x) + b.. Thus the
discriminative model and the descriptive model are equivalent to each other.

Noise Contrastive Estimation

The above equivalence suggests that we can learn the descriptive model by fitting
a logistic regression. Specifically, suppose we want to learn a descriptive model
po(x) = ﬁ exp(fo(x))g(x), where g (x) is a noise distribution, such as Gaussian
white noise distribution. We can treat the observed examples as the positive
examples, so that for each positive x, y = 1, and we generate negative examples
from the noise distribution g(x), so that for each negative example x ~ ¢(x),
y = 0. Then we learn a discriminator in the form of logistic regression to distinguish

320 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

between the positive and negative examples, and then logit(p(y = 1|x)) =
fo(x) + b, where b = log(p/(1 — p)) — log Z(0), where p is the proportion of
the positive examples. We can learn both 8 and b by fitting a logistic regression,
where b is treated as an independent bias or intercept term, even though log Z(6)
depends on 6. This enables us to learn fp and estimate log Z(0). This is called noise
contrastive estimation (NCE) [92].

The problem with the above scheme is that the noise distribution and the
data distribution usually do not have much overlap, especially if x is of high
dimensionality. As a result, fy(x) cannot be well learned.

The introspective learning method [121, 234] tries to remedy the above problem
with sampling. After learning fy(x) by noise contrastive estimation, we want to
inspect whether fj(x) is well learned. We then treat the current pg(x) as our new
q(x), and we draw negative samples from it. If it is well learned, then the negative
samples will be close to the positive examples. To check that, we fit a logistic
regression again on the positive examples and negative examples from the new ¢ (x).
Then we learn a new A fy (x) by the new logistic regression. This A fy (x) can then be
added to the previous learned fy(x) to obtain the new fy(x). We can keep repeating
this process until A fy(x) is small.

In general, while the descriptive model learns the probability density function,
the discriminative model learns the ratios between the probability densities of
different classes. If we know the density of a base class, such as the Gaussian white
noise, we can learn the densities of other classes by noise contrastive estimation.
Noise contrastive estimation is a form of self-supervised learning.

Noise contrastive estimation (NCE) based on diffusion sequence is explored in
[203].

Flow Contrastive Estimation

Gao et al. [71] propose an improvement of noise contrastive estimation (NCE) [92]
based on the flow-based model. The basic idea is to transform the noise so that
the resulting distribution is closer to the data distribution. This is exactly what the
flow model achieves. That is, a flow model transforms a known noise distribution
qo(z) by a composition of a sequence of invertible transformations g (-). However,
in practice, we find that a pre-trained g, (x), such as learned by MLE, is not strong
enough for learning an EBM py(x) because the synthesized data from the MLE
of g4 (x) can still be easily distinguished from the real data by an EBM. Thus, we
propose to iteratively train the EBM and flow model, in which case the flow model is
adaptively adjusted to become a stronger contrast distribution or a stronger training
opponent for EBM. This is achieved by a parameter estimation scheme similar to
GAN [81, 199], where py(x) and g, (x) play a minimax game with a unified value
function: min, maxg V (6,),

12.3 Equivalence Between Discriminative and Descriptive Models 321

V(0. a) = Epy, [log Po(x)]+E2 [10 G (8(2)]

DPo(x) + qo(x) P6(8a(2)) + qu (8 (2))
(12.57)

where Ep; . is approximated by averaging over observed samples {x;,i =
1,...,n}, while E; is approximated by averaging over negative samples {x;,i =
1,...,n} drawn from gy (x), with z; ~ go(z) independently for i = 1,...,n. In
the experiments, we choose Glow [131] as the flow-based model. The algorithm
can start from either a randomly initialized Glow model or a pre-trained one by
MLE. Here we assume equal prior probabilities for observed samples and negative
samples. It can be easily modified to the situation where we assign a higher prior
probability to the negative samples, given the fact we have access to an infinite
amount of free negative samples.
The objective function can be interpreted from the following perspectives:

(1) Noise contrastive estimation for EBM. The update of € can be seen as noise
contrastive estimation of py(x), but with a flow-transformed noise distribution
g« (x) that is adaptively updated. The training is essentially a logistic regression.
However, unlike regular logistic regression for classification, for each x; or
Xi, we must include log g, (x;) or logg,(X;) as an example-dependent bias
term. This forces pg(x) to replicate g, (x) in addition to distinguishing between
Pdata(x) and gy (x), so that pg(x;) is in general larger than g, (x;), and pg(%;) is
in general smaller than g (X;).

(2) Minimization of Jensen—Shannon divergence for the flow model. If pg(x) is
close to the data distribution, then the update of « is approximately minimizing
the Jensen—Shannon divergence between the flow model ¢, and data distribu-
tion pdata:

Djs(qa |l pdata) = DKL (Pdatall(Pdata + ga)/2) + DKL(Ge |l (Pdata + ga)/2).
(12.58)
Its gradient wr.t. o equals the gradient of —E,, . [log((ps + g4)/2)] +
Dx1.(qull(pe + qo)/2). The gradient of the first term resembles MLE, which
forces g4 to cover the modes of data distribution, and tends to lead to an over-
dispersed model, which is also pointed out in [131]. The gradient of the second
term is similar to reverse Kullback-Leibler divergence between g, and pg, or
variational approximation of pg by g, which forces g, to chase the modes of
po. This may help correct the over-dispersion of MLE.
(3) Connection with GAN [81, 199]. Our parameter estimation scheme is closely
related to GAN. In GAN, the discriminator D and generator G play a minimax
game: ming maxp V (G, D),

V(G, D) = Ep,,, [log D(x)] + E; [log(1 — D(G(z:)))]. (12.59)

The discriminator D(x) is learning the probability ratio pgata(x)/(Pdata(x) +
pc(x)), which is about the difference between pgaa and pg [56]. pg is the

322 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

density of the generated data. In the end, if the generator G learns to perfectly
replicate pdata, then the discriminator D ends up with a random guess. However,
in our method, the ratio is explicitly modeled by py and g,. pg must contain
all the learned knowledge in g4, in addition to the difference between pgaia
and g, . In the end, we learn two explicit probability distributions py and g, as
approximations to pdaa-

12.4 Generative Latent Variable Model

Model and Origin

Both discriminative model and descriptive model are based on a bottom-up network
fo(x). The generative model is based on top-down network with latent variables.
The prototype of such a model is factor analysis. Let x be the observed example,
which is a D-dimensional vector. We assume that x can be explained by a d-
dimensional latent vector, each element of which is called a factor. Given z, x is
generated by x = Wz + €, where W is a D x d matrix, sometimes called loading
matrix. It is usually assumed that z ~ N(O, I;), where I; is d-dimensional identity
matrix, € ~ N(O, o2l p), and € is independent of z. The factor analysis model
originated from psychometrics, where x consists of a pupil’s scores on a number
of subjects, and z = (z1, z2), where z; is verbal intelligence and z; is analytical
intelligence.

A recent generalization [81, 133] is to keep the prior assumption about z, but
replace the linear model x = Wz 4 € by a nonlinear model x = gy(z) + €, where
80(2) is parameterized by a top-down neural network where 6 collects all the weight
and bias parameters. In the case of image modeling, gg(z) is usually a convolutional
neural network, which is sometimes called deconvolutional network, due to its top-
down nature. The above model leads to a conditional or generation model pg(x|z),
such that

log po(x, z) = log[p(2) po(x|2)] (12.60)

1
= =3 [12? + 1x = g @12/0?] + e, (12.61)

where c is a constant independent of 6. 0% is usually treated as a tuning parameter.
The model follows the manifold assumption, which assumes that the density of the
D-dimensional data focuses on a lower, d-dimensional manifold.

The joint distribution of (x,z) is pg(x,z) = p(z)pe(x|z). The marginal
distribution of x is pg(x) = f Po(x, 7)dz. The marginal distribution is analytically
intractable due to the integration of z. The model specifies a direct sampling method
for generating x, but it does not explicitly specify the density of x.

12.4 Generative Latent Variable Model 323

Given x, the inference of z can be based on the posterior distribution py(z|x) =
po(x, 2)/po(x), which is also intractable due to the intractability of the marginal
Do (x).

The above model is often referred to as the generator network in the literature.

Generative Model with Multi-layer Latent Variables

While it is computationally convenient to have a single latent noise vector at the top
layer, it does not account for the fact that patterns can appear at multiple layers of
compositions or abstractions (e.g., face — (eyes, nose, mouth) — (edges, corners)
— pixels), where variations and randomness occur at multiple layers. To capture
such a hierarchical structure, it is desirable to introduce multiple layers of latent
variables organized in a top-down architecture [183]. Specifically, we have z =
(z;,1 = 1,..., L), where layer L is the top layer, and layer 1 is the bottom layer
above x. For notational simplicity, we let x = zo. We can then specify pg(z) as

L—1

po(2) = po(zr) [| potzilzipn). (12.62)
=0

One concrete example is z; ~ N(O, I), [z7]zi+1] ~ N(uwi(zi+1), (712(21+1)), | =
0,...,L — 1, where y;() and 012 () are the mean vector and the diagonal variance—
covariance matrix of z;, respectively, and they are functions of z; 1. 8 collects all the
parameters in these functions. pg(x, z) can be obtained similarly as in Eq. (12.61).

MLE Learning and Posterior Inference

Let pgata(x) be the data distribution that generates the example x. The learning of
parameters 6 of pg(x) can be based on ming DKL (pPdata(X) || pe(x)). If we observe
training examples {x;,i = 1,...,n} ~ pdaa(x), the above minimization can be
approximated by maximizing the log-likelihood

L®) = £ log po) = Epylog po(o) (12.63)
= og po(xj) = Pdata WO PO (X) |, .

i=1

which leads to MLE.
The gradient of the log-likelihood, L'(#), can be computed according to the
following identity:

324 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

1
8o(x) = Vplog po(x) = Vo po(x) (12.64)
Ppo(x)
1

= / Vo po(x, 2)dz (12.65)

Po(x)
= Epyzx) [Vo log ps(x, 2)] . (12.66)

Thus

L'(6) = Epy,, [86 ()] = Epyya0)Epy i) [Vo log po (x, 2)] (12.67)

1 n
=~ Epycaisn [Vo log poti. 20)]. (12.68)

i=1

The expectation with respect to pg(z|x) can be approximated by Monte Carlo
samples. Each learning iteration updates 6 by 6,11 = 0; + n; L’ (6;).

Posterior Sampling

Sampling from pg(z|x) usually requires MCMC. One convenient MCMC is
Langevin dynamics, which iterates

Ze41 = 2 + sV log p(z:|x) + V2se, (12.69)

where e; ~ N(O, I), ¢ indexes the time step of the Langevin dynamics, and s
is the step size. The Langevin dynamics consists of a gradient descent term on
—log p(z]x). In the case of generator network, it amounts to gradient descent
on ||z]|2/2 + |lx — go(2)]?>/202, which is the penalized reconstruction error. The
Langevin dynamics also consists of a white noise diffusion term +/2se; to create
randomness for sampling from pg(z|x).

For small step size s, the marginal distribution of z; will converge to pg(z|x)
as t+ — oo regardless of the initial distribution of zg. More specifically, let
p:(z) be the marginal distribution of z; of the Langevin dynamics, and then
Dx1.(p:(2)| pa(z]x)) decreases monotonically to 0, that is, by increasing ¢, we
reduce Dy (p;(z)|l po(z]x)) monotonically.

Perturbation of KL-divergence

Again we understand the MLE learning algorithm by perturbing the KL-divergence
for MLE. Define D(0) = DKL (pdatall po)- It is the objective function of MLE. Let
0; be the estimate at iteration ¢. Let us consider the following perturbation of D(6):

12.4 Generative Latent Variable Model 325

k>

— B ':' S

Fig. 12.10 Reprinted with permission from [95]. The surrogate S majorizes (upper bounds) D,
and they touch each other at 6, with the same tangent

S$(0) = D(O) + Dxr(pg, (z|x) || ps (z]x)) (12.70)

= DKL(Pdata(X) || po (x)) + DkL(pg, (z|x)|I pa(z|x)) (12.71)

= DKL (Pdata,6, (X, 2) || po (x, 2)), (12.72)

where we define pgarap, (X, 2) = Pdaa(x)pe, (z|x). Again S(0) is a surrogate

for D(0) at 6;, and S(0) is simpler than D(6) because S(0) is based on the
joint distributions instead of the marginal distributions as in D(8). Unlike the
joint distribution py(x,z) = p(z)pe(x|z), the marginal distribution py(x) =
[po(x, 2)dz is implicit as it is an intractable integral (Fig. 12.10).

The perturbation term Dk, (pg, (z|x) || pe(z|x)), as a function of 6, achieves its
minimum O at & = 6;, and its derivative at & = 6; is zero. Thus S(0) and D () touch
each other at 6,, and they share the same gradient at 6;.

— 8(0) = Epy(0)Epy, 21y [10g po (x, 2)] — entropy(pdata,6, (x, 2)). (12.73)

— 5'(0) = Epgya(0Epy, z1n) [Vo log po (x, 2)1. (12.74)

Thus, the learning gradient at 6; is

—D'(6:) = =S (61) = E pya[86, ()] = E poa) E py, (21 [V log pg, (x, 2)].
(12.75)

This provides another justification for the learning algorithm.

The above perturbation of KL-divergence can be compared to that in the
descriptive model, where the sign in front of the second KL-divergence is negative,
in order to cancel the intractable log Z(#) term. For the generative model, the sign
in front of the second KL-divergence is positive, in order to change the marginal
distributions in the first KL-divergence, i.e., D(6), into the joint distributions, so
that pg(z, x) = p(z) pp(x|z) is obtained in closed form.

Short-Run MCMC for Approximate Inference

We can use short-run MCMC as inference dynamics [183], with a fixed small K
(e.g., K =25),

326 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

20 ~ p(2), Zk+1 = zk + sV 1og po(zk|x) + V2se, k=1,..., K, (12.76)

where p(z) is the prior noise distribution of z.
We can write the above short-run MCMC as

20 ~ p(2), zk+1 = 2k +sR(zk) + V2ser, k=1,..., K, (12.77)

R(z) = V,log pg(z]x), where we omit x and 6 in R(z) for simplicity of notation.
To further simplify the notation, we may write the short-run MCMC as

20 ~ p), zx = F(z0,), (12.78)

where e = (e, k =1, ..., K), and F composes the K steps of Langevin updates.
Let the distribution of zx be p(z). Recall that the distribution of zx also depends

on x and 6 and step size s, so that in full notation, we may write p(z) as ps.g(z|x).
For each x, we define

80(x) = Ej, (i) [Ve log po(x, 2)] (12.79)

and modify the learning algorithm to

Or41 = O; + 0B py 80, (0] = 6 + 01 Epyy By, 1 [Vo log po, (x, 2)].
(12.80)

where 7, is the learning rate and th,o, (zi|x;) (here we use the full notation py ¢ (z|x)
instead of the abbreviated notation ¢(z)) can be approximated by sampling from
Ds.0, (zilx;) using the noise initialized K -step Langevin dynamics.

Compared to MLE learning algorithm, we replace pg(z|x) by ps.e(z|x), and fair
Monte Carlo samples from p; ¢(z|x) can be obtained by short-run MCMC.

One major advantage of the proposed method is that it is simple and automatic.
For models with multiple layers of latent variables that may be organized in
complex top-down architectures, the gradient computation in Langevin dynamics is
automatic on modern deep learning platforms. Such dynamics naturally integrates
explaining-away competitions and bottom-up and top-down interactions between
multiple layers of latent variables. It thus enables researchers to explore flexible
generative models without dealing with the challenging task of designing and
learning the inference models. The short-run MCMC is automatic, natural, and
biologically plausible as it may be related to attractor dynamics [7, 108, 198].

Objective Function and Estimating Equation

The following are justifications for learning with short-run MCMC:

12.4 Generative Latent Variable Model 327

ey

(@)

on
be

Objective function. Again we use perturbation of KL-divergence. At iteration
t, with 6, fixed, the learning algorithm follows the gradient of the following
perturbation of D(0) at 6 = 6;:

S(0) = D(6) 4+ DxL(ps,0, (z|x) || po(z|x)) (12.81)
= D1 (Pdata(X) | po (x)) + DKL (Ps,6, (z]1X)] po (z]X)), (12.82)

so that 6,41 = 6, — n;S'(6;), where n;, is the step size, and

— 5'(6) = Epgua0)Epy g, vy [V log po (. 2)1. (12.83)

— 5'(6) = E 186, (0] = E B, o, (el [V 10g pe, (x, 2)]. (12.84)

Compared to the perturbation of KL-divergence in MLE learning, we use
Ds.6, (z]x) instead of pg, (z|x). While sampling pg, (z|x) can be impractical if it
is multi-modal, sampling py g, (z|x) is practical because it is a short-run MCMC.
Estimating equation. The fixed point of the learning algorithm (12.80) solves
the following estimating equation:

1 <)
n > Ep ol [V 10 Po(xis 20)] = Epru0 B g ely [Vo log pa(x, 2)] = 0.
i=1
(12.85)

If we approximate Ej , (;;|x,) by Monte Carlo samples from p g, (zil|xi),
then the learning algorithm becomes Robbins—Monro algorithm for stochastic
approximation [205].

The bias of the learned 6 based on short-run MCMC relative to the MLE depends
the gap between p; o(z|x) and pg(z|x). We suspect that this bias may actually
beneficial in the following sense. The learning gradient seeks to decrease D(6)

while decreasing Dxr,(Ps,6, (zi |x:) || po(zi|xi)). The latter tends to bias the learned
model so that its posterior distribution pg(z;|x;) is close to the short-run MCMC

Ps.

6,(zi|x;), i.e., our learning method may bias the model to make inference by

short-run MCMC accurate.

We can optimize the step size s and other algorithmic parameters of the short-

run Langevin dynamics by minimizing Dxr.(Ps,e, (zi1xi) | pe(zilx;)) over s. This is
a variational optimization.

328 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models
12.5 Descriptive Model in Latent Space of Generative Model
Top-Down and Bottom-Up

Top-down mapping Bottom-up mapping

hidden vector z energy — fp(x)
U T (12.86)
signal x ~ gy (z) signal x

(a) Generator model (b) Descriptive model

The above diagram compares the generative model and the descriptive model.
The former is based on top-down generation, whereas the latter is based on the
bottom-up description.

The top-down model is a very natural representation of knowledge, with its
multiple layers of latent variables representing concepts at multiple levels of abstrac-
tions. The top-down model is also called the directed acyclic graphical model.
It is characterized by independence or conditional independence assumptions of
the latent variables. Such assumptions limit the expressive power of the top-down
model.

For the special case of the generator network, there is a latent vector z at the top
layer, which generates the example x via the top-down generation mapping g (z).
The prior distribution of z is usually assumed to be a simple noise distribution,
e.g., the Gaussian white noise distribution z ~ N(0, 7). The top-down gy (z) maps
this simple isotropic unimodal prior distribution to the multi-modal data distribution
Pdata- However, the expressive power may be limited by the simple prior distribution
p(2) (as well as the simple Gaussian white noise distribution of € in x = gg(z) +¢€).
The marginal distribution of pg(x) = f p(2) po(x|z)dz is implicit because of the
intractable integral over the latent z.

The bottom-up model only needs to specify a scalar-valued energy function
— fo(x), instead of a vector-valued gy(z), while leaving the generative task to
MCMC. It specifies the distribution py (x) = ﬁ exp(fp(x)) explicitly even though
the normalizing constant Z(6) is intractable. Compared to the generator model, the
descriptive model tends to have stronger expressive power in terms of synthesis
ability.

However, because pgaa tends to be highly multi-modal, the learned pg can also
be highly multi-modal. As a result, MCMC sampling cannot mix. Even though we
can use short-run MCMC to learn the model and synthesize images, the model is
admittedly biased. One remedy is to use more sophisticated MCMC such as parallel
tempering [189] or replica exchange MCMC [226]. The other option is to move the
descriptive model to the latent space.

12.5 Descriptive Model in Latent Space of Generative Model 329
Descriptive Energy-Based Model in Latent Space

We follow the philosophy of empirical Bayes, that is, instead of assuming a given
prior distribution for the latent vector, as in the generator network, we learn a prior
model from empirical observations.

Specifically, we assume the latent vector follows a descriptive model or, more
specifically, an energy-based correction of the isotropic Gaussian white noise
prior distribution. We call this model the latent space descriptive model. Such a
model adds more expressive power to the generator model. In the latent space, the
descriptive model is close to unimodal as it is a correction of the unimodal Gaussian
distribution, and MCMC sampling is expected to mix well.

The MLE learning of the generative model with a latent space descriptive model
involves MCMC sampling of the latent vector from both the prior and posterior
distributions. Parameters of the prior model can then be updated based on the
statistical difference between samples from the two distributions. Parameters of
the top-down network can be updated based on the samples from the posterior
distribution as well as the observed data.

Let x € RP be an observed example such as an image or a piece of text, and let
z € R? be the latent variables, where D >> d. The joint distribution of (x, z) is

po(x,2) = pa(2)pp(x|2), (12.87)

where pq(z) is the prior model with parameters «, pg(x|z) is the top-down
generation model with parameters 8, and 8 = («,).

The prior model p,(z) is formulated as a descriptive model or an energy-based
model

Pa(z) = exp(fa(2)) po(2), (12.88)

Z(a)
where pg(z) is a reference distribution, assumed to be isotropic Gaussian white
noise distribution. f,(z) is the negative energy and is parameterized by a small
multi-layer perceptron with parameters «. Z(a) = f exp(fu(2)po(z)dz =
E o lexp(f« (z))] is the normalizing constant or partition function.

The prior model (12.88) can be interpreted as an energy-based correction or
exponential tilting of the original prior distribution pg, which is the prior distribution
in the generator model.

The generation model is the same as the top-down network in the generator
model. For image modeling,

x =gp2) +e, (12.89)

where € ~ N(0, 021p), so that pp(x|z) ~ N(gg(2), o2Ip). Usually, o2 takes an
assumed value. For text modeling, let x = (x®),r =1, ..., T), where each x is a

330 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

token. A commonly used model is to define pg(x|z) as a conditional auto-regressive
model,

T
ppxl) = [[ppc@x®, .. x7D), (12.90)

t=1

which is often parameterized by a recurrent network with parameters S.

In the original generator model, the top-down network gg maps the unimodal
prior distribution pg to be close to the usually highly multi-modal data distribution.
The prior model in (12.88) refines pg so that gg maps the prior model p, to be closer
to the data distribution. The prior model p,, does not need to be highly multi-modal
because of the expressiveness of gg.

The marginal distribution is pg(x) = [pg(x,2)dz = [pa(2)pp(x|z)dz. The
posterior distribution is py(z|x) = pe(x, 2)/pe(x) = pa(2) pp(x|2)/pe(x).

In the above model, we exponentially tilt pg(z). We can also exponentially tilt
po(x,2) = po(z)pp(x|z) to py(x,z) = ﬁ exp(fu(x, 2))po(x, z). Equivalently,
we may also exponentially tilt po(z, €) = po(z) p(€), as the mapping from (z, €)
to (z, x) is a change of variable. This leads to a descriptive model in both the latent
space and data space, which makes learning and sampling more complex. Therefore,
we choose to only tilt py(z) and leave pg(x|z) as a directed top-down generation
model.

Maximum Likelihood Learning

Suppose we observe training examples (x;,i = 1,...,n). The log-likelihood
function is

1 n
L©®) = p Zlog po(xi) = Epy,, [log pg (x)]. (12.91)

i=1

The learning gradient can be calculated according to

Vg 10g pg(x) = Epyz1x) [Ve log pe(x, 2)| = Ep, () [Ve (log pa (2) + log pp(x2))] .
(12.92)

For the prior model, Vy log pa(z) = Vufa(z) — Ep,)[Va fa(2)]. Thus the
learning gradient for an example x is

3q(x) = Vg log po(x) = EP@(ZIX)[Vafa (2)] — Epa(z)[vafa(Z)]~ (12.93)

12.5 Descriptive Model in Latent Space of Generative Model 331

The above equation has an empirical Bayes nature. pg(z|x) is based on the empirical
observation x, while py is the prior model. « is updated based on the difference
between z inferred from empirical observation x and z sampled from the current
prior.

For the generation model,

8p(x) = Vg log po(x) = Ep 10 [Vg log pp(x]2)], (12.94)

where log pg(x|z) = —|lx—gp (2)]1?/(20°%)+constant or ZT:] log p,g(x(’)|x(]), e,
x@=D z) for image and text modeling, respectively, which is about the
reconstruction error.

Writing 8¢ (x) = (8¢ (x), 8g(x)), we have L) = Epyua[80 (x)], and the learning
algorithm is 6,11 = 6, + n,Epy,, [86, (X)].

Expectations in (12.93) and (12.94) require MCMC sampling of the prior model
P« (2) and the posterior distribution py(z|x). We can use Langevin dynamics. For a
target distribution 7 (z), the dynamics iterates

Zk+1 = 2k + sV logmw(zx) + v 2sey, (12.95)

where k indexes the time step of the Langevin dynamics, s is a small step size, and
ex ~ N(0, 1) is the Gaussian white noise. 7 (z) can be either py(z) or py(z|x). In
either case, V, log (z) can be efficiently computed by back-propagation.

Short-Run MCMC for Synthesis and Inference

We use short-run MCMC for approximate sampling. This is in agreement with
the philosophy of variational inference [133], which accepts the intractability of
the target distribution and seeks to approximate it by a simpler distribution. The
difference is that we adopt short-run Langevin dynamics instead of learning a
separate network for approximation.

The short-run Langevin dynamics is always initialized from the fixed initial
distribution pgy and only runs a fixed number of K steps, e.g., K = 20,

20 ~ po(2), Zk+1 = zx + sV logm(zk) +~2ser, k=1,..., K. (12.96)

Denote the distribution of zx to be 7 (z). Because of fixed po(z) and fixed K and
s, the distribution 77 is well defined. In this section, we put ~ sign on top of the
symbols to denote distributions or quantities produced by short-run MCMC, and for
simplicity, we omit the dependence on K and s in notation. The Kullback—Leibler
divergence Dk (77]|7r) decreases to zero monotonically as K — oo.

Specifically, denote the distribution of zx to be py(z) if the target 7 (z) = py(2),
and denote the distribution of zg to be pg(z|x) if m(z) = pp(z|x). We can then

332 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

a -. @ a r& [@V@‘ dy [@
& a[ﬂ@{”@ 8.

£
aaccEinne
's's eré slelizle)

Fig. 12.11 Reprinted with permission from [191]. Generated images for CelebA (128 x 128 x 3)

replace py(z) by py(z) and replace pg(z|x) by pe(z|x) in Egs. (12.93) and (12.94),
so that the learning gradients in Egs. (12.93) and (12.94) are modified to

8o (¥) = Ejy e[Ve fa ()] = Ejpy) Ve fu (D)1, (12.97)
56 (x) = Ejyov)[Vg log pp(x|2)]. (12.98)

We then update o and B based on (12.97) and (12.98), where the expectations
can be approximated by Monte Carlo samples. Specifically, writing So(x) =
(8 (x), 8,3 (x)), the learning algorithm is 6; 1 = 6, + n,E),,, [89t x)].

The short-run MCMC sampling is always initialized from the same initial
distribution po(z) and always runs a fixed number of K steps. This is the case for
both training and testing stages, which share the same short-run MCMC sampling
(Figs.12.11, 12.12, and 12.13).

Divergence Perturbation

The learning algorithm based on short-run MCMC sampling is a modification or
perturbation of maximum likelihood learning, where we replace p,(z) and pg(z|x)
by pu(z) and pg(z|x), respectively. For theoretical underpinning, we should also
understand this perturbation in terms of the objective function and estimating
equation:

(1) Objective function. In terms of objective function, the MLE loss function is
D(0) = DxL(pdawall po)- At iteration ¢, with fixed 6; = (ay,), we perturb
D(0) to S(0):

12.5 Descriptive Model in Latent Space of Generative Model 333

O CHEN A 3 R
@ummmaaa;asgg

!1‘!\ |§7 |5 55 | 5551)) B3 5,

L] 20 a0 80 80

Fig. 12.12 Reprinted with permission from [191]. Transition of Markov chains initialized from
po(z) toward py(z) for 100 Langevin dynamics steps. Top: Trajectory in the CelebA data space.
Bottom: Energy profile over time

o 500 1000 1500 2000 2500

Fig. 12.13 Reprinted with permission from [191]. Transition of Markov chains initialized from
po(z) toward pg(z) for 2500 Langevin dynamics steps. Top: Trajectory in the CelebA data space
for every 100 steps. Bottom: Energy profile over time

S(6) = DkL(pdatall po) + DxL(Pe, (21x) 1| po (21x)) — DKL(Po, ()11 P (),
(12.99)

where

—’59‘@"“)} , (12.100)

Dxu(pe, (z]x zlx)) = E Ej lo
KL (Po, (z|X) || po(z]x)) Pdata(X) pe,(zx)|: g po(z|x)

e., the KL-divergence between conditional distributions of z given x also
integrates over the marginal distribution x as defined before.
The learning algorithm based on short-run MCMC is 6,41 = 0, — 1, S’ (6;)
because

S'(6) = E pypa[80, ()] (12.101)

334 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Thus the updating rule of the learning algorithm follows the stochastic
gradient (i.e., Monte Carlo approximation of the gradient) of a perturbation of
the log-likelihood.

S(0) is in the form of a divergence triangle, which consists of two pertur-
bations. Dxi.(pe, (z|x) || pe(z|x)) is for inference, and D1, (Pq, (2) 1l pa(2)) is for
synthesis. It is a combination of the perturbations for the descriptive model and
generative model, respectively.

(2) Estimating equation. In terms of estimating equation, the stochastic gradient
descent learning is a Robbins—Monro stochastic approximation algorithm [205]
that solves the following estimating equation:

L) = -3 B Ve ae)] — By [V @] = 0
i o _ni=1 pozilx) [Va fa (i @ VaJa(2)] =10,

(12.102)

1< 1 <&
- 21:5/3(751‘) = ZEﬁe(Zi\xi)[vﬂ log pg(xilzi)] = 0. (12.103)
1=

i=1

The solution to the above estimating equation defines an estimator of the
parameters. The learning algorithm converges to this estimator under the usual
regularity conditions of Robbins—Monro. If we replace p,(z) by pq(z), and
Po(z]x) by pe(z]x), then the above estimating equation is the maximum
likelihood estimating equation.

12.6 Variational and Adversarial Learning

From Short-Run MCMC to Learned Sampling Computations

In both the descriptive model and the generative model, we use short-run MCMC
[183, 184] for the sampling computations of synthesis and inference. In this
section, we shall study learning methods that replace short-run MCMC by learned
computations for synthesis and inference sampling.

One popular learning method is variational auto-encoder (VAE) [133] for the
generator model, where the short-run MCMC for inference is replaced by an
inference model. The other popular learning method is generative adversarial
networks (GAN) [81, 199], which is related to the descriptive model, where we
replace short-run MCMC for synthesis by a generator model.

Both learning methods can be theoretically understood by the divergence triangle
framework [95].

12.6 Variational and Adversarial Learning 335
VAE: Learned Computation for Inference Sampling

For the generator model pg(x, z) = p(z)po(x|z) studied in the previous sections,
the VAE [133] approximates the posterior py(z|x) by a tractable g4 (z|x), such as

94 (z]x) ~ N(ug (x), diag(vg (x))), (12.104)

where both g and vy are bottom-up networks that map x to d-dimensional vectors,
with ¢ collecting all the weight and bias parameters of the bottom-up networks. For
Z ~ qp(z|x), we can write z = g (x) + diag(vg (x))l/ze, where e ~ N(0, 1;). Thus
expectation with respect to z ~ g¢(z|x) can be written as expectation with respect
to e. This reparameterization trick [133] helps reduce the variance in Monte Carlo
integration. We may consider g¢(z|x) as an approximation to the iterative MCMC
sampling of py(z|x). In other words, g4 (z|x) is the learned inferential computation
that approximately samples from pg (z|x).

The VAE objective is a modification of the maximum likelihood estimation
(MLE) objective D(0) = DKL (Pdaia(x) || po (x)):

S0, ¢) = D(0) + Dxr(q¢(z|x) || po(z|x)) (12.105)
= DKL(Pdata(¥) [po (X)) + DxL(q9 (2]X) [o (2]x)) (12.106)
= DKL(Pdata(X)q9 (2] %) || o (2, X)). (12.107)

We define the conditional KL-divergence

q4(z IX):|
D zZl|x z|x)) =E,, E log —— |, 12.108
KL(G¢ (z|%) | po(z]X)) = EpgEgyzix) [g o2 ()
where we also average over pdata-
We estimate 6 and ¢ jointly by
m@inn}én S@, o), (12.109)

which can be accomplished by gradient descent.

Define Q(z,x) = pdaa(x)ge(z|x). Define P(z,x) = p(z)pa(x]z). Q is the
distribution of the complete data (z, x), where g¢(z|x) can be interpreted as an
imputer that imputes the missing data z. P is the distribution of the complete-data
model. Then §(8, ¢) = Dkr.(Q|| P). The VAE is ming ming D1 (Q| P).

We may interpret the VAE as an alternating projection between Q and P.
Figure 12.14 provides an illustration. The wake—sleep algorithm [101] is similar
to the VAE, except that it updates ¢ by ming Dxy (P || Q), where the order is flipped.

In the VAE, the model g4 (z|x) and the parameter ¢ are shared by all the training
examples x, so that py(x) and vy (x) in Eq. (12.104) can be computed directly for
each x given ¢. This is different from traditional variational inference [20, 122],

336 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

iz
p(2)ps(x | 2)

fo

Fig. 12.14 Reprinted with permission from [95]. Variational auto-encoder as joint minimization
by alternating projection. P = p(z) pg(x|z) is the distribution of the complete-data model, where
p(z) is the prior distribution of hidden vector z and py(x|z) is the conditional distribution of x
given z. QO = py(x)qe(z|x) is the distribution of the complete data (z, x), where py(x) refers to
the data distribution pgaa and gg(z|x) is the learned inferential computation that approximately
samples from the posterior distribution py(x|z). (Left) Interaction between the models. (Right)
Alternating projection. The two models run toward each other

where for each x, a model g, ,(z) is learned by minimizing Dxi.(q,.,»(2) |l pe(z]x))
with x fixed, so that (i, v) is computed by an iterative algorithm for each x, which
is an inner loop of the learning algorithm. This is similar to maximum likelihood
learning, except that in maximum likelihood learning, the inner loop is an iterative
algorithm that samples pg(z|x) instead of minimizing over (u, v). The learned
networks (g (x) and vy (d) in the VAE are to approximate the iterative minimization
algorithm by direct mappings.

GAN: Joint Learning of Generator and Discriminator

The generator model learned by MLE or the VAE usually cannot generate very
realistic images. Both MLE and the VAE target Dky (pdatall po), though the VAE
only minimizes an upper bound of Dk (pdatall po). Consider minimizing Dxy (¢ || p)
over p within a certain model class. If ¢ is multi-modal, then p is obliged to fit all
the major modes of g because Dk, (¢]| p) is an expectation with respect to g. Thus,
p tends to interpolate the major modes of g if p cannot fit the modes of ¢ closely.
As aresult, py learned by MLE or the VAE tends to generate images that are not as
sharp as the observed images.

The behavior of minimizing Dy (¢q|p) over p is different from minimizing
Dx1(ql|p) over g. If p is multi-modal, ¢g tends to capture some major modes of
p while ignoring the other modes of p, because Dxp (g| p) is an expectation with
respect to g. In other words, min, Dy (¢ p) encourages mode chasing, whereas
min, Dy (¢l p) encourages mode covering.

Sharp synthesis can be achieved by GAN [81, 199], which pairs a generator
model G with a discriminator model D. For an image x, D(x) is the probability
that x is an observed (real) image instead of a generated (faked) image. It can be

12.6 Variational and Adversarial Learning 337

parameterized by a bottom-up network f,, (x), so that D(x) = 1/(1 +exp(— fu (x)),
i.e., logistic regression. We can train the pair of (G, D) by an adversarial, zero-sum
game. Specifically, let G(z) = gg(z) be a generator. Let

V(D, G) = Epy, [log D(x)] + E.~pollog(1 — D(G(z))], (12.110)

where E . can be approximated by averaging over the observed examples, and E,
can be approximated by Monte Carlo average over the faked examples generated
by the generator model. We learn D and G by ming maxp V (D, G). V(D, G) is
the log-likelihood for D, i.e., the log probability of the real and faked examples.
However, V(D, G) is not a very convincing objective for G. In practice, the
training of G is usually modified into maximizing E,~ ,(;)[log D(G(z))] to avoid
the vanishing gradient problem.

For a given 0, let py be the distribution of gy (z) with z ~ p(z). Assume a perfect
discriminator. Then, according to the Bayes theorem, D(x) = pgata(X)/(Pdata(xX) +
Ppo(x)) (assuming equal numbers of real and faked examples). Then & minimizes
the Jensen—Shannon (JS) divergence

Djs(pdatall po) = DKL(pe || pmix) + DKL (Pdatall Pmix)» (12.111)

where pmix = (Pdata + Po)/2.

In JS divergence, the model py also appears on the left-hand side of KL-
divergence. This encourages pg to fit some major modes of pga, While ignoring
others. As a result, GAN learning suffers from the mode collapsing problem, i.e.,
the learned pg may miss some modes of pga- However, the pg learned by GAN
tends to generate sharper images than the pg learned by MLE or the VAE.

Joint Learning of Descriptive and Generative Models

We can also learn the descriptive model and the generative model jointly, similar to
GAN. In this joint learning scheme, we seek to learn the descriptive model by MLE,
following the analysis by synthesis scheme. But we recruit the generator model
as an approximate sampler, i.e., in this context, the generator model is the learned
computation for synthesis sampling.

We continue to use pg(x, z) = p(z) po(x|z) to denote the generative model, and
we denote the descriptive model by

7o (x) = exp(fa (X)), (12.112)

Z(a)

so that we will not confuse the notation.
To avoid MCMC sampling of 7,, we may approximate it by a generator model
po, which can generate synthesized examples directly (i.e., sampling z from p(z),

338 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

and transforming z to x by x = gy(z)). We may consider pg an approximation to
the iterative MCMC sampling of 7. In other words, pg is the learned computation
that approximately samples from 7. It is an approximate direct sampler of 7.

The MLE learning objective is D(«) = DKL (Pdatall o). We can learn both
and pg using the following objective function [33, 128]:

S(a, 0)=D(a)—DgL(pollne) = DKL(PdatallTe) —DxL(pgllme). (12.113)
We learn « and 6 by

minmeax S(a, 0), (12.114)
o

which defines a minimax game.
The gradient for updating o becomes

VaS(e, 0) = Vo[Epgy, (fa (X)) — Epy (fa (X)), (12.115)

where the intractable log Z («) term is canceled.

Because of the negative sign in front of the second KL-divergence in
Eq. (12.113), we need maxg in Eq. (12.114), so that the learning becomes adversarial
(illustrated in Fig. 12.15). Inspired by Hinton [100], Han et al. [95] called
Eq. (12.114) the adversarial contrastive divergence (ACD). It underlies the work
of [33, 128].

The adversarial form (Eq.(12.114) or (12.113)) defines a chasing game with
the following dynamics: The generator py chases the energy-based model 7, in
ming Dk1.(pellmy), while the energy-based model m, seeks to get closer to pgata
and away from py. The red arrow in Fig. 12.15 illustrates this chasing game.
The result is that m, lures pg toward pgana. In the idealized case, py always
catches up with 7y, and then 7, will converge to the maximum likelihood estimate
ming DKL (Pdatall o), and pg converges to my.

I
7o ()gs(2 | @)

.. I

Fig. 12.15 Reprinted with permission from [95]. Adversarial contrastive divergence where the
energy-based model favors real data against the generator. (Left) Interaction between the models.
The red arrow indicates a chasing game, where the red arrow pointing to IT indicates that IT seeks
to move away from P. The blue arrow pointing from P to IT indicates that P seeks to move close
to IT. (Right) Contrastive divergence

12.6 Variational and Adversarial Learning 339

This chasing game is different from the VAE ming ming Dk (Q|| P), which
defines a cooperative game where g4 and pg run toward each other.

Even though the above chasing game is adversarial, both models are running
toward the data distribution. While the generator model runs after the energy-based
model, the energy-based model runs toward the data distribution. As a consequence,
the energy-based model guides or leads the generator model toward the data
distribution. It is different from GAN [81], in which the discriminator eventually
becomes confused because the generated data become similar to the real data. In the
above chasing game, the energy-based model becomes close to the data distribution.

The updating of o by Eq. (12.115) is similar to Wasserstein GAN (WGAN) [8],
but unlike WGAN, f, defines a probability distribution my, and the learning of 6
is based on ming Dky (pgllmy), which is a variational approximation to m,. This
variational approximation only requires knowing f,(x), without knowing Z(«x).
However, unlike g4 (z|x), pg(x) is still intractable; in particular, its entropy does not
have a closed form. Thus, we can again use variational approximation, by changing
the problem ming Dk1 (pgl|7y) to

min rrgn DL (p(z) po(x]2)|I7a (X)gg (2] X)). (12.116)

Define I(z, x) = 7y (x)qe(z|x), and then the problem is ming ming Dy (P | T1),
which is analytically tractable and underlies the work of [33]. In fact,

Dyp(P|IT) = Dkr(pe (x)|7a (x)) + DxL(po(z|x)llge (z|x)). (12.117)

Thus, we can use max, ming ming[Dky(P|IT) — Dgpr(Q|I1)] because
DL (QIITT) = DxL(pdatall 7).

Note that in the VAE (Eq. (12.107)), the objective function is in the form of
KL + KL, whereas in ACD (Eq. (12.113)), it is in the form of KL — KL. In both
Egs. (12.107) and (12.113), the first KL is about maximum likelihood. The KL +
KL form of the VAE makes the computation tractable by changing the marginal
distribution of x to the joint distribution of (z, x). The KL — KL form of ACD makes
the computation tractable by canceling the intractable log Z («) term. Because of the
negative sign in Eq.(12.113), the ACD objective function becomes an adversarial
one or a minimax game.

Also note that in the VAE, py appears on the right-hand side of KL, whereas in
ACD, pg appears on the left-hand side of KL. Thus in ACD, pg may exhibit mode
chasing behavior, i.e., fitting the major modes of m,, while ignoring other modes.

Divergence Triangle: Integrating VAE and ACD

We can combine the VAE and ACD into a divergence triangle, which involves the
following three joint distributions on (z, x) defined above:

340 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

II
ma(2)gs(2 | 2)

Fig. 12.16 Reprinted with permission from [95]. Divergence triangle is based on the Kullback—
Leibler divergences between three joint distributions, Q, P, and II, of (z, x). The blue arrow
indicates the “running toward” behavior, and the red arrow indicates the “running away” behavior

1. Q distribution: Q(z, xX) = pdata(X)gg (z]X).
2. P distribution: P(z, x) = p(2) pe(x]2).
3. M distribution: T1(z, x) = 74 (x)ge(z]x).

Han et al. [95] proposed to learn the three models pg, 74, and g4 by the following
divergence triangle loss functional S:

maxnbinrrgn S(a, 6,),
S = Dx(Q||P) + DxL(P||TT) — Dxp(Q||TD). (12.118)

See Fig. 12.16 for an illustration. The divergence triangle is based on the three KL-
divergences between the three joint distributions on (z, x). It has a symmetric and
anti-symmetric form, where the anti-symmetry is due to the negative sign in front
of the last KL-divergence and the maximization over «. Compared to the VAE and
ACD objective functions in the previous subsections, Dky (Q|| P) is the VAE part,
and Dgp (P||TT) — Dgp(Q|| 1) is the ACD part.

The divergence triangle leads to the following dynamics between the three
models: (a) Q and P seek to get close to each other. (b) P seeks to get close to
IT. (c) seeks to get close to pgata, but it seeks to get away from P, as indicated by
the red arrow. Note that Dxy. (Q||T1) = Dy (pdatall7e) because gg (z]x) is canceled
out. The effect of (b) and (c) is that = gets close to pgaa While inducing P to get
close to pdara as well, or in other words, P chases my toward pgata.

[95] also employed the layer-wise training scheme of [125] to learn models by
divergence triangle from the CelebA-HQ dataset [125], including 30,000 celebrity
face images with resolutions of up to 1024 x 1024 pixels. The learning algorithm
converges stably, without extra tricks, to obtain realistic results as shown in
Fig. 12.17.

Figure 12.17a displays a few 1024 x 1024 images generated by the learned
generator model with 512-dimensional latent vector. Figure 12.17b shows an
example of interpolation. The two images at the two ends are generated by two
different latent vectors. The images in between are generated by the vectors that

12.7 Cooperative Learning via MCMC Teaching 341

(a) Generated face images

(b) Llnedr |nterpu|dt|0n

HOOOO

Fig. 12.17 Reprinted with permission from [95]. Learning generator model by divergence triangle
from the CelebA-HQ dataset [125] that includes 30,000 high-resolution celebrity face images. (a)
Generated face images with 1024 x 1024 resolution sampled from the learned generator model with
512-dimensional latent vector. (b) Linear interpolation of the vector representations. The images
at the two ends are generated from latent vectors randomly sampled from a Gaussian distribution.
Each image in the middle is obtained by first interpolating the two vectors of the two end images
and then generating the image using the generator

are linear interpolations of the two vectors at the two ends. Even though the
interpolation is linear in the latent vector space, the nonlinear mapping leads to a
highly nonlinear interpolation in the image space. We first do a linear interpolation
between the latent vectors at the two ends, i.e., (1 —a)zo + oz1, where zg and z; are
two latent vectors at two ends, respectively, and « is in the closed unit interval [0,
1]. The images in between are generated by mapping those interpolated vectors to
image space via the learned generator. The interpolation experiment shows that the
algorithm can learn a smooth generator model that traces the manifold of the data
distribution.

12.7 Cooperative Learning via MCMC Teaching

Joint Training of Descriptive and Generative Models

In ACD, the generator model py is used to approximate the energy-based model
Ty, and we treat the examples generated by pyg as if they are generated from my
for the sake of updating «. The gap between py and 7, can cause bias in learning.
In the work of [262, 263], we proposed to bring back MCMC to bridge the gap.
Instead of running MCMC from scratch, we run a finite-step MCMC toward 7,
initialized from the examples generated by pg. We then use the examples produced
by the finite-step MCMC as the synthesized examples from 7, for updating «.
Meanwhile, we update pg based on how the finite-step MCMC revises the initial
examples generated by py; in other words, the energy-based model (as a teacher)
7y distills the MCMC into the generator (as a student) py. We call this scheme
cooperative learning.

342 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Specifically, we first generate Z; ~ N(0, I;) and then generate X; = gg(Z;) + €;,
fori =1, ..., a. Starting from {X;,i = 1, ..., i1}, we run MCMC such as Langevin
dynamics for a finite number of steps toward m, to get {X;,i = 1,...,n}, which
are revised versions of {%;}. {X;} are used as the synthesized examples from the
descriptive model.

The descriptive model can teach the generator via MCMC. The key is that in the
generated examples, the latent z is known. In order to update 6 of the generator
model, we treat {X;,i = 1,...,n} as the training data for the generator. Since
these {X;} are obtained by the Langevin dynamics initialized from {%;}, which are
generated by the generator model with known latent factors {z;}, we can update 0
by learning from the complete data {(z;, X;);i = 1, ..., 7}, which is a supervised
learning problem, or more specifically, a nonlinear regression of %; on 2;. At 0, the
latent factors z; generate and thus reconstruct the initial example X;. After updating
6, we want Z; to reconstruct the revised example ;. That is, we revise 6 to absorb
the MCMC transition from X; to X;. The left panel of diagram (12.119) illustrates
the basic idea.

. A
Zq Zf TToToT > Zj
Q(f’] glt+1) HU}[glt+1)
By ~===== > T f SEEea > I
alt) alt) (12.119)

In the two diagrams in (12.119), the double-line arrows indicate generation
and reconstruction by the generator model, while the dashed-line arrows indicate
Langevin dynamics for MCMC sampling and inference in the two models. The right
panel of diagram (12.119) illustrates a more rigorous method, where we initialize
the MCMC for inferring {z;} from the known {Z;} and then update 6 based on
{@i, x),i=1,....n}

The theoretical understanding of the cooperative learning scheme is given below:

(1) Modified contrastive divergence for the energy-based model. In the traditional
contrastive divergence [100], X; is taken to be the observed x;. In cooperative
learning, X; is generated by pyw. Let M, be the Markov transition kernel
of finite steps of Langevin dynamics that samples m,. Let (Mypg)(x) =
[My (x', x)pg(x")dx" be the marginal distribution by running M, initialized
from pg. Then similar to the traditional contrastive divergence, the learning gra-
dient of the energy-based model « at iteration ¢ is the gradient of Dxr.(pdata ||
7q) — DkL(My0 pgoy || 7o) with respect to «. In the traditional contrastive
divergence, pdara takes the place of py«) in the second KL-divergence.

(2) MCMC teaching of the generator model. The learning gradient of the generator
0 in the right panel of diagram (12.119) is the gradient of Dk (M, pyor | Pe)
with respect to 6. Here 41 — M,) py takes the place of pgara as the data to

12.7 Cooperative Learning via MCMC Teaching 343

Pg®

Fig. 12.18 Reprinted with permission from [264]. The MCMC teaching of the generator alternates
between Markov transition and projection. The family of the generator models G is illustrated by
the black curve, and each distribution is illustrated by a point. py is a generator model, and 7, is a
descriptive model

train the generator model. It is much easier to minimize Dki.(M o pgo || pe)
than to minimize Dky (pdata || Po) because the latent variables are essentially
known in the former, so the learning is supervised. The MCMC teaching
alternates between Markov transition from pyq) to 7+ and projection from
7+ to pya+, as illustrated by Fig. 12.18.

Conditional Learning via Fast Thinking Initializer and Slow
Thinking Solver

Xie et al. [267] extended the cooperative learning scheme to the conditional learning
problem by jointly learning a conditional energy-based model and a conditional
generator model. The conditional energy-based model is of the following form:

1
7o (x]c) = mexp[fa(xm)], (12.120)

where x is the input signal and c is the condition. Z(c, «) is the normalizing constant
conditioned on c. fy (x, c) can be defined by a bottom-up ConvNet where « collects
all the weight and bias parameters. Fixing the condition ¢, fy (x, ¢) defines the value
of x for the condition ¢, and — fy (x, ¢) defines the conditional energy function.
7y (x|c) is also a deep generalization of conditional random fields [140]. Both the
conditional generator model and the conditional energy-based model can be learned
jointly by the cooperative learning scheme in Sect. 12.7.

Figure 12.19 shows some examples of pattern completion on the CMP (Center
for Machine Perception) Facades dataset [238] by learning a mapping from an
occluded image (256 x 256 pixels), where a mask of the size of 128 x 128 pixels is
centrally placed onto the original version, to the original image. In this case, c is the
observed part of the signal, and x is the unobserved part of the signal.

344 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

ground truth initializer solver conditional GA

Fig. 12.19 Reprinted with permission from [268]. Pattern completion by conditional learning.
Each row displays one example. The first image is the testing image (256 x 256 pixels) with a
hole of 128 x 128 that needs to be recovered, the second image shows the ground truth, and the
third image shows the result recovered by the initializer (i.e., conditional generator model), the
fourth image shows the result recovered by the solver (i.e., the MCMC sampler of the conditional
energy-based model, initialized from the result of the initializer), and the last image shows the
result recovered by the conditional GAN as a comparison

The cooperative learning of the conditional generator model and conditional
energy-based model can be interpreted as follows. The conditional energy function
defines the objective function or value function, i.e., it defines what solutions are
desirable given the condition or the problem. The solutions can then be obtained
by an iterative optimization or sampling algorithm such as MCMC. In other words,
the conditional energy-based model leads to a solver in the form of an iterative
algorithm, and this iterative algorithm is a slow thinking process. In contrast, the
conditional generator model defines a direct mapping from condition or problem to
solutions, and it is a fast thinking process. We can use the fast thinking generator
as an initializer to generate the initial solution and then use the slow thinking solver
to refine the fast thinking initialization by the iterative algorithm. The cooperative
learning scheme enables us to learn both the fast thinking initializer and slow
thinking solver. Unlike conditional GAN, the cooperative learning scheme has a
slow thinking refining process, which can be important if the fast thinking initializer
is not optimal.

In terms of inverse reinforcement learning [1, 283], the conditional energy-based
model defines the reward or value function, and the iterative solver defines an
optimal control or planning algorithm. The conditional generator model defines a
policy. The fast thinking policy is about habitual, reflexive, or impulsive behaviors,
while the slow thinking solver is about deliberation and planning. Compared with
the policy, the value is usually simpler and more generalizable, because it is in
general easier to specify what one wants than to specify how to produce what one
wants.

	12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models
	12.1 Introduction
	Three Families of Probabilistic Models
	Supervised, Unsupervised, and Self-supervised Learning
	MCMC for Synthesis and Inference
	Deep Networks as Function Approximators
	Learned Computation
	Amortized Computation for Synthesis and InferenceSampling
	Distributed Representation and Embedding
	Perturbations of Kullback–Leibler Divergence
	Kullback–Leibler Divergence in Two Directions

	12.2 Descriptive Energy-Based Model
	Model and Origin
	Gradient-Based Sampling
	Maximum Likelihood Estimation (MLE)
	Objective Function and Estimating Equation of MLE
	Perturbation of KL-divergence
	Self-adversarial Interpretation
	Short-Run MCMC for Synthesis
	Objective Function and Estimating Equation with Short-Run MCMC
	Flow-Based Model
	Flow-Based Reference and Latent Space Sampling
	Diffusion Recovery Likelihood
	Diffusion-Based Model

	12.3 Equivalence Between Discriminative and DescriptiveModels
	Discriminative Model
	Descriptive Model as Exponential Tilting of a Reference Distribution
	Discriminative Model via Bayes Rule
	Noise Contrastive Estimation
	Flow Contrastive Estimation

	12.4 Generative Latent Variable Model
	Model and Origin
	Generative Model with Multi-layer Latent Variables
	MLE Learning and Posterior Inference
	Posterior Sampling
	Perturbation of KL-divergence
	Short-Run MCMC for Approximate Inference
	Objective Function and Estimating Equation

	12.5 Descriptive Model in Latent Space of Generative Model
	Top-Down and Bottom-Up
	Descriptive Energy-Based Model in Latent Space
	Maximum Likelihood Learning
	Short-Run MCMC for Synthesis and Inference
	Divergence Perturbation

	12.6 Variational and Adversarial Learning
	From Short-Run MCMC to Learned Sampling Computations
	VAE: Learned Computation for Inference Sampling
	GAN: Joint Learning of Generator and Discriminator
	Joint Learning of Descriptive and Generative Models
	Divergence Triangle: Integrating VAE and ACD

	12.7 Cooperative Learning via MCMC Teaching
	Joint Training of Descriptive and Generative Models
	Conditional Learning via Fast Thinking Initializer and Slow Thinking Solver

