
Chapter 12
A Tale of Three Families: Discriminative,
Descriptive, and Generative Models

12.1 Introduction

Three Families of Probabilistic Models

This chapter gives a general introduction to three families of probabilistic models
and their connections. Most of the models studied in the previous chapters, as well
as most of the models in the current machine learning and deep learning literature,
belong to these three families of models.

The first class consists of discriminative models or classifiers that are commonly
used in supervised learning. The second class consists of descriptive models—
also known as energy-based models—that define unnormalized probability density
functions in the data space. These models are generalizations of the FRAME model
introduced in the previous chapters. The third class consists of generative models
that are directed top-down models that involve latent variables. The generative
models are generalizations of factor analysis and its variants. They are also called
directed graphical models.

About the names of the models, we use the term “generative models” in a much
narrower sense than in the current literature. They refer to top-down models that
consist of latent variables that follow simple prior distributions so that the examples
can be directly generated. As to the “descriptive models,” they refer to the energy-
based models or deep FRAME model introduced in the previous chapter. They only
describe the examples in terms of their probability densities, but they cannot directly
generate the examples. The generative task is left to iterative MCMC sampling
algorithms. Therefore, these models are not literally generative as they do not
explicitly define a generative process, and that is why we call them descriptive.

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_12

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_12&domain=pdf

 12783 61494 a 12783 61494 a

298 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Top-down mapping Bottom-up mapping Bottom-up mapping

latent variables z log density fθ (x) logit score (density ratio)
⇓ ⇑ ⇑

example x ≈ gθ (z) example x example x

(a) Generative (sampler) (b) Descriptive (density) (b) Discriminative (classifier)

(12.1)

Density vs. Sampler A descriptive model specifies the probability density function
explicitly, up to a normalizing constant. A discriminative model specifies the ratios
between two or more densities via the Bayes rule. A generative model, on the other
hand, does not specify a data density explicitly. It specifies a sampler or a sampling
process that transforms latent variables with a known distribution, e.g., Gaussian
white noise variables, to the observed example. By analogy to reinforcement
learning, a density is like a value network or a critic, and a sampler is like a policy
network or an actor.

The above diagram illustrates the three families of probabilistic models. A
generative model is based on a top-down mapping from the latent variables z to
the example x. A descriptive model is based on a bottom-up mapping from the
example x to the log of the unnormalized density. A discriminative model is based
on a bottom-up mapping from the example x to the logit score that is also the ratio
between the densities of positive and negative classes in the binary classification
situation (which can be easily generalized to the multi-class situation). All the
mappings can be parameterized by deep neural networks.

In the previous chapter, we introduced the descriptive models and generative
models for image and video data and the associated maximum likelihood learning
algorithms. This chapter will give a more general treatment. We shall still emphasize
the maximum likelihood learning algorithm. Meanwhile, we shall also present
various joint training schemes, such as variational learning and adversarial learning.
We shall make this chapter self-contained so that readers who are interested in the
development in the deep learning era can read this chapter in isolation.

Notation We shall adopt the notation commonly used in the current literature. We
use x to denote the training example, e.g., an image or a sentence. We use z to
denote the latent variables in the generative model. We use y to denote the output
in the discriminative model, e.g., image category. We use θ to denote the model
parameters. We use the notations ∇x and ∇θ to denote ∂

∂x
and ∂

∂θ
, respectively. For

a function h(θ), its derivative at a fixed value, say, θt , is denoted ∇θh(θt). We use
DKL to denote the Kullback–Leibler divergence.

Supervised, Unsupervised, and Self-supervised Learning

Supervised learning refers to the situation where both the input x and the output
y are given, and we want to learn to predict y based on x. More formally, we

12.1 Introduction 299

learn a discriminative or predictive model p(y|x) by maximum likelihood, i.e., we
maximize the average of logp(y|x) over the model parameters where the average
is over the training set {x, y}. The limitation of supervised learning is that it can be
expensive and time-consuming to obtain y in the form of label or annotation.

Unsupervised learning refers to the situation where only the input x is given,
but the output y is unavailable. In that case, we can learn a descriptive model or a
generative model, again by maximum likelihood, but we maximize the average of
logp(x) over the model parameters, where the average is over the training set {x},
instead of the average of logp(y|x), as y is not available. The descriptive model
specifies p(x) up to an unknown normalizing constant, and it is closely related to
the discriminative model through the Bayes rule. For the generative model, p(x) is
implicit because it involves integrating out the latent variables z. The latent z can be
inferred from the input x.

Semi-supervised learning refers to the situation between supervised and unsuper-
vised learning, where there are a small number of labeled examples where both x

and y are given, and there are a large number of unlabeled examples where only x

is given. In that case, we can again learn the model by maximum likelihood, where
we maximize the sum of logp(y|x) over the labeled examples and logp(x) over
the unlabeled examples. Thus probabilistic modeling provides a unified likelihood-
based framework for supervised, unsupervised, and semi-supervised learning.

There is also self-supervised learning, which is to translate unsupervised learning
into supervised learning. Specifically, even if we are only given x without y, we can
nonetheless create a task where we artificially introduce y for a modification of x

that depends on y, and we then learn p(y|x) instead of p(x). This type of learning
can be more formally treated as learning descriptive model by various conditional
likelihoods.

MCMC for Synthesis and Inference

Although likelihood-based learning with probabilistic models is a principled frame-
work for supervised, unsupervised, and semi-supervised learning, the bottleneck for
likelihood-based learning for unsupervised learning is that the derivative of the log-
likelihood function logp(x) usually involves intractable integrals or expectations,
which require expensive MCMC sampling. A lot of effort has been spent on getting
around this obstacle.

We may use short-run MCMC, i.e., running MCMC such as Langevin dynamics
or Hamiltonian Monte Carlo (HMC) [179] from a fixed initial noise distribution
for a fixed number of steps, for inference and synthesis computations. This is
affordable on modern computing platforms. It can also be justified as a modification
or perturbation of the maximum likelihood learning.

Short-run MCMC is convenient for learning models with multiple layers of latent
variables organized in complex architectures because top-down feedback and lateral
inhibition between the latent variables at different layers can automatically emerge
in short-run MCMC. The short-run Langevin dynamics can also be compared with

300 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

attractor dynamics that is a commonly assumed framework for modeling neural
computations [7, 108, 198]. One can also run persistent Markov chains, i.e., in each
learning iteration, we initialize finite-step MCMC from the samples generated in the
previous learning iteration.

Deep Networks as Function Approximators

All three classes of models can be parameterized by deep neural networks [138,
144], which are compositions of multiple layers of linear transformations and
coordinate-wise nonlinear transformations.

Specifically, consider a nonlinear transformation f (x) that can be decomposed
recursively as sl = Wlhl−1 + bl , and hl = rl(sl), for l = 1, . . . , L, with f (x) = hL

and h0 = x. Wl is the weight matrix at layer l, and bl is the bias vector at layer l.
Both sl and hl are vectors of the same dimensionality, and rl is a one-dimensional
nonlinear function, or rectification function, that is applied coordinate-wise or
element-wise.

The nonlinear rectification is crucial for f (x) to approximate nonlinear mapping.
In the past, the nonlinear rectification rl() is usually sigmoid transformation, which
is approximately a two-piece constant function. This makes f (x) approximately
piecewise constant function. Modern deep networks usually use rl(s) = max(0, s),
the rectified linear unit or ReLU, which makes f (x) piecewise linear.

There are two special classes of neural networks. One consists of convolutional
neural networks [138, 144], which are commonly applied to images, where the same
linear transformations are applied around each pixel locally. The other class consists
of recurrent neural networks [103], which are commonly applied to sequence data
such as speech and natural language. Recently, the transformer model [239] has
become the most prominent architecture.

Deep neural networks are powerful function approximators that can approximate
highly nonlinear high-dimensional continuous functions by interpolating training
examples. Modern deep networks are highly overparameterized, meaning that the
number of parameters greatly exceeds the number of training examples. Thus
they have enough capacity to fit the training data, yet they tend not to overfit
the training data because the networks are learned by stochastic gradient descent
algorithm where the gradient is computed via back-propagation. The stochastic
gradient descent algorithm provides implicit regularization [11, 221].

Learned Computation

Because of the strong approximation capacity, the boundary between representation
and computation is rather blurred because a deep network can approximate an
iterative algorithm. Sometimes this is called learned computation.

12.1 Introduction 301

In fact, the residual network [97] can be considered a finite-step iterative
algorithm. It is of the form xl+1 = xl +fl(xl), where l indexes the layer. Meanwhile,
l may also be interpreted as time step of an iterative algorithm, i.e., we can also write
xt+1 = xt + ft (xt), which is to model iterative updating or refinement. In general,
it can be interpreted as a mixture of both, i.e., there is actually a small number of
layers, and each layer is computed by a finite-step iterative algorithm.

The transformer model [239] can also be considered a finite-step iterative
algorithm that iteratively updates the vector representations of the words of an input
sentence through the self-attention mechanism where the words pay attention to
and gather information from each other. The graph convolutional network [134] can
learn the iterative message passing mechanism where the nodes of the graph send
messages to each other.

In the above iterative updating mechanisms, there is no need to know the
objective functions of these iterative mechanisms. They can be embedded into a
classifier and be trained by the classification loss via back-propagation through time.

Amortized Computation for Synthesis and Inference
Sampling

Even if there is an objective function, we can still learn a deep network that directly
maps the input to an approximate solution. Sometimes this is called amortized
computation, which seeks to approximate an iterative algorithm of multiple time
steps.

In the case of the generative model, recall that we can use short-run MCMC as an
approximate sampler for synthesis and inference. We can also learn a network that
produces the samples directly. In the case of posterior sampling, this is referred to as
variational inference model [133]. In fact, the short-run MCMC can be considered
a noise-injected residual network.

When there are multiple layers of latent variables, designing a network for
approximate inference sampling can be a non-trivial task, whereas short-runMCMC
remains automatic.

Distributed Representation and Embedding

Deep neural networks are based on continuous vectors and weight matrices. They
are highly interpolative and amendable to gradient-based computations. On the other
hand, high-level reasoning can also be highly symbolic, with symbols, logic, and
grammar. For a dictionary of symbols, each symbol can be represented by a one-hot
vector, and a small subset of symbols selected from the dictionary can be represented
by a sparse vector. This is in contrast to the vectors in deep networks, which are

302 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

continuous and dense. Such vectors are called distributed representations. They are
also commonly referred to as embeddings. For instance, the word2vec model [172,
193] represents each word by a dense vector, and this means we embed the words in
a continuous Euclidean space. A modern deep network such as transformer [239] or
graph neural network [134] can be viewed as a team of vectors, which are operated
on by learned matrices so that they can pass on messages to each other. For discrete
or symbolic inputs or outputs such as words or tokens, they can be encoded into
vectors or decoded from the vectors.

It is still unclear how to unify symbolic and dense representations. Sometimes
this is referred to as the contrast between symbolism and connectionism. It is likely
that there is a duality or complementarity between sparse vectors and dense vectors,
and each is more convenient and efficient than the other depending on the scenario.

Perturbations of Kullback–Leibler Divergence

A unifying theoretical device for studying various learning methods is to perturb the
Kullback–Leibler divergence for maximum likelihood by other Kullback–Leibler
divergences. This scheme consists of three Kullback–Leibler divergences: (1) KL-
divergence underlying maximum likelihood learning. This is the target of the
perturbations. (2) KL-divergence underlying synthesis sampling. (3) KL-divergence
underlying inference sampling. (2) and (3) are perturbations that are applied to (1).
The sign in front of (2) is negative, and the sign in front of (3) is positive.

The above theoretical framework explains the following learning algorithms: (1)
The maximum likelihood learning algorithm. (2) The learning algorithm based on
short-run MCMC for synthesis and inference. (3) The learning methods based on
learned networks for synthesis and inference, including adversarial learning [81]
and variational learning [133].

Kullback–Leibler Divergence in Two Directions

To be more specific, recall that for two probability densities p(x) and q(x), we
define

DKL(p‖q) = Ep

[
log

p(x)

q(x)

]
=

∫
p(x) log

p(x)

q(x)
dx. (12.2)

The KL-divergence appears in two scenarios:

(1) Maximum likelihood learning. Suppose the training examples xi ∼ pdata(x)

are independent for i = 1, . . . , n. Suppose we want to learn a model pθ(x). The
log-likelihood function is

12.2 Descriptive Energy-Based Model 303

L(θ) = 1

n

n∑
i=1

logpθ(xi) → Epdata [logpθ(x)]. (12.3)

Thus for big n, maximizing L(θ) is equivalent to minimizing

DKL(pdata‖pθ) = −entropy(pdata) − Epdata [logpθ (x)] .= −entropy(pdata) − L(θ),

(12.4)

where Epdata can be approximated by averaging over {xi}. We can think of it as
projecting pdata onto the model space {pθ ,∀θ}.

For the rest of this chapter, for notational simplicity, we will not distinguish
between Epdata and sample average over {xi}, and we will treat DKL(pdata‖pθ)

as the loss function for maximum likelihood learning.
(2) Variational approximation. Suppose we have a target distribution ptarget, and

we know ptarget up to a normalizing constant, e.g., ptarget(x) = exp(f (x))/Z,
where we know f (x) but the normalizing constant Z = ∫

exp(f (x))dx is
analytically intractable. Suppose we want to approximate it by a distribution
qφ . We can find φ by minimizing

DKL(qφ‖ptarget) = Eqφ [log qφ(x)] − Eqφ [f (x)] + logZ. (12.5)

This time, we place qφ on the left-hand side and ptarget on the right-hand side of
the KL-divergence, because ptarget is accessible only through f (x). The above
minimization does not require knowledge of logZ.

The behaviors of minθ DKL(pdata‖pθ) in (1) and minφ DKL(qφ‖ptarget) in (2) are
different. In (1), pθ tends to cover all the modes of pdata because DKL(pdata‖pθ)

is the expectation with respect to pdata. In (2), qφ tends to focus on some major
modes of ptarget, while ignoring the minor modes, because DKL(qφ‖ptarget) is the
expectation with respect to qφ .

In the perturbation scheme mentioned in the previous subsection, the KL-
divergence for maximum likelihood is (12.4). The perturbations are of the form
in (12.5).

12.2 Descriptive Energy-Based Model

Model and Origin

Let x be a training example, e.g., an image or a sentence. A descriptive model
specifies an unnormalized probability density function

304 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

pθ(x) = 1

Z(θ)
exp(fθ (x)), (12.6)

where fθ (x) is parameterized by a deep network, with θ collecting all the weight
and bias parameters. Z(θ) = ∫

exp(fθ (x))dx is the normalizing constant.
Such a model originated from statistical mechanics and is called the Gibbs

distribution, where x is the state or configuration of a physical system, and −fθ (x)

is the energy function of the state so that the lower energy states are more likely
to be observed. For that reason, the above model is also called energy-based model
(EBM) in the literature [32, 70, 99, 161, 180, 182, 184, 266, 269, 270].

In classical mechanics, the configuration x(t) evolves deterministically over
time t according to a partial differential equation. Then where does the probability
distribution come from? We may consider the ensemble or population (x(t), t ∈
[t0, t1]), for a long enough burn-in time t0 and long enough duration t1 − t0. For a
random time t ∼ Uniform[t0, t1], x(t) follows a probability distribution p(x), and
it can be modeled by a Gibbs distribution.

The quantity Z(θ) is called the partition function in statistical mechanics. An
important identity is

∇θ logZ(θ) = Epθ [∇θfθ (x)]. (12.7)

The non-differentiability of logZ(θ) underlies the phase transition phenomena in
statistical physics.

The descriptive model has strong expressive power because it only needs to
specify a scalar-valued function fθ (x). fθ (x) is like an objective function (or value
function, or constraints, or rules). The descriptive model is only responsible for
specifying the objective function and is not responsible for optimizing the objective
function or providing near-optimal solutions. The latter task is left to MCMC
sampling. As a result, a simple descriptive model pθ(x) or the objective function
fθ (x) can explain rich patterns and complex behaviors.

The descriptive model has been used for inverse reinforcement learning, where
−fθ (x) serves as the cost function [283]. It has also been used for Markov logic
network [204], where fθ (x) combines logical rules.

Gradient-Based Sampling

For high-dimensional x, such as image, sampling from pθ(x) requires MCMC, such
as Langevin dynamics or HamiltonianMonte Carlo. The Langevin dynamics iterates

xt+1 = xt + s∇xfθ (xt) + √
2set , (12.8)

12.2 Descriptive Energy-Based Model 305

where s is the step size and et ∼ N(0, I) is the Gaussian white noise term. The
Langevin dynamics has a gradient ascent term ∇xfθ (xt), and et is the diffusion
term for randomness. As s → 0 and t → ∞, the distribution of xt converges to
pθ(x).

We can write the Langevin dynamics in continuous time as

xt+�t = xt + 1

2
∇xfθ (xt)�t + √

�tet , (12.9)

or more formally,

dxt = 1

2
∇xfθ (xt)dt + dBt , (12.10)

where dBt plays the role of
√

�tet .
Let pt be the distribution of xt . Then according to the Fokker–Planck equation,

we have

∇tpt (x) = 1

2
[∇x(fθ (x)pt (x)) + ∇2

xpt (x)]. (12.11)

pθ(x) is the solution to ∇tpt (x) = 0, i.e., the stationary distribution. In terms of
variational approximation,

DKL(pt‖pθ) = −entropy(pt) − Ept [fθ (x)] + logZ(θ) → 0 (12.12)

monotonically as t → ∞ under fairly general conditions. The gradient term in the
Langevin dynamics increases fθ (x) or decreases energy, while the noise term et

increases the entropy of pt .
Intuitively, imagine a population of x’s that are distributed according to pθ(x).

The deterministic gradient ascent term in the Langevin dynamics pushes the points
toward the local modes of the log density, making the distribution of the points more
focused on the local modes of the density. Meanwhile, the random diffusion term in
the Langevin dynamics adds random noises to the points, making the distribution of
the points more diffused from the local modes of the density. The two terms balance
each other so that the overall distribution of the points after each Langevin iteration
remains unchanged.

Hamiltonian Monte Carlo (HMC) [105, 179] is a more powerful gradient-based
MCMC sampling method. Similar to gradient descent with momentum, it can
navigate the high curvature regions of the energy landscape more smoothly and
efficiently. The step size in HMC can be adaptively selected based on the acceptance
rate calculated from the energy function [105].

In order to traverse local modes and facilitate fast mixing of the Markov chain,
one can add a temperature parameter to interpolate the multi-modal target density
and a simple unimodal reference density such as Gaussian white noise distribution.
One can then use simulated annealing [135] or more principled and effectiveMCMC

306 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

schemes such as simulated tempering [168], parallel tempering [48, 77], or replica
exchange [226] to sample from multi-modal density.

Maximum Likelihood Estimation (MLE)

The descriptive model pθ(x) can be learned by maximum likelihood estimation
(MLE). The log-likelihood is the average of

logpθ(x) = fθ (x) − logZ(θ), (12.13)

where the average is over the training set {x}. The gradient of logpθ(x) with respect
to θ is

δθ (x) = ∇θ logpθ(x) = ∇θfθ (x) − Epθ (x)[∇θfθ (x)], (12.14)

where

∇θ logZ(θ) = Epθ (x)[∇θfθ (x)]. (12.15)

Suppose we observe training examples {xi, i = 1, . . . , n} ∼ pdata, where pdata
is the data distribution. For large n, the sample average over {xi} approximates the
expectation with respect to pdata. For notational convenience, we treat the sample
average and the expectation as the same.

The log-likelihood is

L(θ) = 1

n

n∑
i=1

logpθ(xi)
.= Epdata [logpθ(x)]. (12.16)

The derivative of the log-likelihood is

L′(θ) = Epdata [δθ (x)] = Epdata [∇θfθ (x)] − Epθ [∇θfθ (x)] (12.17)

.= 1

n

n∑
i=1

∇θfθ (xi) − 1

n

n∑
i=1

∇θfθ (x
−
i), (12.18)

where x−
i ∼ pθ(x) for i = 1, . . . , n are the generated examples from the current

model pθ(x).
The above equation leads to the “analysis by synthesis” learning algorithm. At

iteration t , let θt be the current model parameters. We generate synthesized examples
x−
i ∼ pθt (x) for i = 1, . . . , n. Then we update θt+1 = θt + ηtL

′(θt), where ηt is
the learning rate, and L′(θt) is the statistical difference between the synthesized
examples and observed examples (Fig. 12.1).

12.2 Descriptive Energy-Based Model 307

Fig. 12.1 Reprinted with permission from [266]. Learning the descriptive model by maximum
likelihood: (a) goose, (b) tiger. For each category, the first row displays four of the training images,
and the second row displays four of the images generated by the learning algorithm. fα(x) is
parameterized by a four-layer bottom-up deep network, where the first layer has 100 7 × 7 filters
with subsampling size 2, the second layer has 64 5 × 5 filters with subsampling size 1, the third
layer has 20 3×3 filters with subsampling size 1, and the fourth layer is a fully connected layer with
a single filter that covers the whole image. The number of parallel chains for Langevin sampling is
16, and the number of Langevin iterations between every two consecutive updates of parameters is
10. The training images are 224 × 224 pixels

Objective Function and Estimating Equation of MLE

The maximum likelihood learning minimizes the Kullback–Leibler divergence
DKL(pdata‖pθ) over θ . Geometrically, it is to project pdata onto the manifold formed
by {pθ ,∀θ}.

The maximum likelihood learning algorithm converges to the solution to the
following estimating equation:

Epθ [∇θfθ (x)] = Epdata [∇θfθ (x)] , (12.19)

where the model matches the data in terms of the expectation of ∇θfθ (x).
For the FRAME model or in general the exponential family model,

fθ (x) = 〈θ, h(x)〉 for feature vector h(x); hence, ∇θfθ (x) = h(x) and
L′(θ) = Epdata [h(x)] − Epθ [h(x)]. The maximum likelihood estimating equation
is Epθ [h(x)] = Epdata [h(x)], i.e., matching feature statistics. For general fθ (x), we
may still consider ∇θfθ (x) as a feature vector.

Perturbation of KL-divergence

Define D(θ) = DKL(pdata‖pθ). It is the loss function of MLE. To understand the
MLE learning algorithm, let θt be the estimate at iteration t . Let us consider the
following perturbation of D(θ):

S(θ) = D(θ) − DKL(pθt ‖pθ) = DKL(pdata‖pθ) − DKL(pθt ‖pθ). (12.20)

308 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.2 Reprinted with permission from [95]. The surrogate S minorizes (lower bounds) D, and
they touch each other at θt with the same tangent

S(θ) is the surrogate objective function for D(θ) at iteration t . It is simpler than
D(θ), because the logZ(θ) term gets canceled, and the gradient can be more easily
computed (Fig. 12.2).

The perturbation term DKL(pθt ‖pθ), as a function of θ , with θt fixed, has the
following properties: (1) It achieves minimum zero at θ = θt . (2) Its derivative is
zero at θ = θt . As a result, S(θt) = D(θt), and S′(θt) = D′(θt). Geometrically,
S(θ) and D(θ) touch each other at θt , and they are co-tangent at θt . Since

S(θ) = −Epdata [fθ (x)] + Epθt
[fθ (x)] − entropy(pdata) + entropy(pθt), (12.21)

where logZ(θ) gets canceled, we have

− S′(θ) = Epdata [∇θfθ (x)] − Epθt
[∇θfθ (x)]. (12.22)

Thus

−D′(θt) = −S′(θt) = Epdata[δθt (x)] = Epdata [∇θfθt (x)] − Epθt
[∇θfθt (x)].

(12.23)

This justifies the MLE learning algorithm.
We shall use this perturbation scheme repeatedly, where we perturb the MLE loss

function D(θ) = DKL(pdata‖pθ) to a simpler surrogate objective function S(θ) by
subtracting or adding other KL-divergence terms. This enables us to theoretically
understand other learning methods that are modifications of MLE learning.

Self-adversarial Interpretation

S(θ) = DKL(pdata‖pθ)−DKL(pθt ‖pθ) leads to an adversarial interpretation. When
we update θ by following the gradient of S(θ) at θ = θt , we want pθ to move away
from pθt and move toward pdata. That is, the model pθ criticizes its current version
pθt by comparing pθt to pdata. The model serves as both generator and discriminator
if we compare it to GAN (generative adversarial networks). In contrast to GAN
[8, 81, 199], the learning algorithm is MLE, which in general does not suffer from

12.2 Descriptive Energy-Based Model 309

issues such as mode collapsing and instability, as it does not involve the competition
between two separate networks.

Short-Run MCMC for Synthesis

We now consider the learning algorithm based on short-run MCMC [184].
The short-run MCMC is

x0 ∼ p0(x), xk+1 = xk + s∇xfθ (xk) + √
2sek, k = 1, . . . , K, (12.24)

where we initialize the Langevin dynamics from a fixed diffused noise distribution
p0(x), and we run a fixed number ofK steps. Let p̃θ (x) be the distribution of xK . We
use xK as the synthesized example for approximate maximum likelihood learning
(Figs. 12.3 and 12.4).

For each x, we define

δ̃θ (x) = ∇θfθ (x) − Ep̃θ (x)[∇θfθ (x)] (12.25)

and modify the learning algorithm to

θt+1 = θt + ηtEpdata [δ̃θt (x)] = θt + ηt

(
Epdata [∇θfθ (x)] − Ep̃θ

[∇θfθ (x)]) . (12.26)

Fig. 12.3 Reprinted with permission from [184]. Synthesis by short-run MCMC: Generating
synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise
for CelebA (64 × 64)

Fig. 12.4 Reprinted with permission from [184]. Synthesis by short-run MCMC: Generating
synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise
for CelebA (128 × 128)

310 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Objective Function and Estimating Equation with Short-Run
MCMC

The following are justifications for the learning algorithm based on short-run
MCMC synthesis:

(1) Objective function. Again we use perturbation of KL-divergence. At iteration
t , with θt fixed, the learning algorithm follows the gradient of the following
perturbation of D(θ) at θ = θt :

S(θ) = D(θ)−DKL(p̃θt ‖pθ)=DKL(pdata‖pθ)−DKL(p̃θt ‖pθ), (12.27)

so that θt+1 = θt + ηtS
′(θt), where ηt is the step size, and

− S′(θ) = Epdata [∇θfθ (x)] − Ep̃θt
[∇θfθ (x)]. (12.28)

− S′(θt) = Epdata [δ̃θt (x)] = Epdata[∇θfθt (x)] − Ep̃θt
[∇θfθt (x)]. (12.29)

Compared to the perturbation of KL-divergence in MLE learning, we use p̃θt

instead of pθt . While sampling pθt can be impractical if it is multi-modal,
sampling p̃θt is practical and exact because it is a short-run MCMC.

Note that S′(θt) �= D′(θt), because p̃θt �= pθt . Thus the learning gradient
based on short-run MCMC is biased from that of MLE. As a result, the learned
pθ based on short-run MCMC may be biased from MLE.

S(θ) indicates that we need to minimize DKL(p̃θ‖pθ) in order to minimize
the bias relative to the maximum likelihood learning. We can do that by
increasing K because DKL(p̃θ‖pθ) decreases monotonically to zero as K

increases. For fixed K , we can also employ more efficient MCMC, especially
those that can traverse local modes, such as parallel tempering [48, 77] or replica
exchange [226].

(2) Estimating equation. The learning algorithm converges to the solution to the
following estimating equation:

Ep̃θ
[∇θfθ (x)] = Epdata [∇θfθ (x)] , (12.30)

which is a perturbation of the maximum likelihood estimating equation where
we replace pθ by p̃θ (Fig. 12.5).

Thus even if the learned pθ may be biased from MLE, the resulting short-run
MCMC p̃θ can nonetheless be considered a valid model, in that it matches pdata
in terms of expectations of ∇θfθ (x). Recall in the case of FRAME model where
fθ (x) = 〈θ, h(x)〉, ∇θfθ (x) = h(x), i.e., the learned short-run MCMC p̃θ matches
pdata in terms of expectations of h(x). In general, ∇θfθ (x) may be considered a

12.2 Descriptive Energy-Based Model 311

Fig. 12.5 Reprinted with permission from [184]. The blue curve illustrates the model distributions
corresponding to different values of parameter θ . The black curve illustrates all the distributions
that match pdata (black dot) in terms of E[h(x)]. The MLE p

θ̂MLE
(green dot) is the intersection

between 	 (blue curve) and
 (black curve). The MCMC (red dotted line) starts from p0 (hollow
blue dot) and runs toward p

θ̂MME
(hollow red dot), but the MCMC stops after K step, reaching

p̃
θ̂MME

(red dot), which is the learned short-run MCMC

Fig. 12.6 Reprinted with permission from [184]. Interpolation by short-run MCMC resembling a
generator or flow model: The transition depicts the sequence F(zρ) with interpolated noise zρ =
ρz1 + √

1 − ρ2z2, where ρ ∈ [0, 1] on CelebA (64 × 64). Left: F(z1). Right: F(z2)

Fig. 12.7 Reprinted with permission from [184]. Reconstruction by short-run MCMC resembling
a generator or flow model: The transition depicts F(zt) over time t from random initialization
t = 0 to reconstruction t = 200 on CelebA (64×64). Left: Random initialization. Right: Observed
examples

generalized version of feature vector h(x). Thus we may justify the learned short-
run MCMC p̃θ as a generalized moment matching estimator θ̂MME. The generalized
moment matching explains the synthesis ability of the descriptive model and various
learning schemes in general.

The short-run Langevin dynamics can be considered a noise-injected RNN or
noise-injected residual network. Specifically, we can write xK = F(x0, e), where
e = (ek, k = 1, . . . , K). We can use it to reconstruct the observed image x by
minimizing ‖x − F(x0, e)‖ over x0 and e. As a simple approximation, we can set
ek = 0 and write xK = F(x0) (Figs. 12.6 and 12.7).

312 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Flow-Based Model

A flow-based model is of the form

x = gα(z); z ∼ q0(z), (12.31)

where q0 is a known noise distribution. gα is a composition of a sequence of
invertible transformations where the log determinants of the Jacobians of the
transformations can be explicitly obtained. α denotes the parameters. Let qα(x) be
the probability density of the model at a data point x with parameter α. Then under
the change of variables, qα(x) can be expressed as

qα(x) = q0(g
−1
α (x))| det(∂g−1

α (x)/∂x)|. (12.32)

More specifically, suppose gα is composed of a sequence of transformations
gα = gα1 ◦ · · · ◦ gαm . The relation between z and x can be written as z ↔ h1 ↔
· · · ↔ hm−1 ↔ x. And thus we have

qα(x) = q0(g
−1
α (x))�m

t=1| det(∂ht−1/∂ht)|, (12.33)

where we define z := h0 and x := hm for conciseness. With carefully designed
transformations, as explored in flow-based methods, the determinant of the Jacobian
matrix (∂ht−1/∂ht) can be computed exactly. The key idea is to choose transforma-
tions whose Jacobian is a triangle matrix so that the determinant becomes

| det(∂ht−1/∂ht)| = �|diag(∂ht−1/∂ht)|. (12.34)

The following are the two scenarios for estimating qα:

(1) Generative modeling by MLE [13, 43, 44, 82, 131, 139, 233], by minα DKL
(pdata‖qα), where Epdata can be approximated by average over observed exam-
ples.

(2) Variational approximation to an unnormalized target density p [130, 132, 202],
based on minα DKL(qα‖p), where

DKL(qα‖p) = Eqα [log qα(x)] − Eqα [logp(x)]
= Ez[log q0(z)− log |det(g′

α(z))|]−Eqα [logp(x)]. (12.35)

DKL(qα‖p) is the difference between energy and entropy, i.e., we want qα

to have low energy but high entropy. DKL(qα‖p) can be calculated without
inversion of gα .

When qα appears on the right of KL-divergence, as in (1), it is forced to cover
most of the modes of pdata. When qα appears on the left of KL-divergence, as in (2),
it tends to chase the major modes of p while ignoring the minor modes.

12.2 Descriptive Energy-Based Model 313

The flow-based model has explicit normalized density and can be sampled
directly. It is both a density and a sampler.

Flow-Based Reference and Latent Space Sampling

[181] propose to use a flow-based model as the reference distribution for the
descriptive model or the energy-based model (EBM) and perform MCMC sampling
in latent space.

Instead of using uniform or Gaussian white noise distribution for the reference
distribution q(x) in the descriptive model, we can use a flow-based model qα as the
reference model. qα can be pre-trained by MLE and serves as the backbone of the
model so that the model is of the following form:

pθ(x) = 1

Z(θ)
exp(fθ (x))qα(x). (12.36)

The resulting model pθ(x) is a correction or refinement of qα or an exponential
tilting of qα(x), and fθ (x) is a free-form ConvNet to parameterize the correction.
The overall negative energy is fθ (x) + log qα(x).

In the latent space of z, let p(z) be the distribution of z under pθ(x); then

p(z)dz = pθ(x)dx = 1

Z(θ)
exp(fθ (x))qα(x)dx. (12.37)

Because qα(x)dx = q0(z)dz, we have

p(z) = 1

Z(θ)
exp(fθ (gα(z)))q0(z). (12.38)

p(z) is an exponential tilting of the prior noise distribution q0(z). It is a very simple
form that does not involve the Jacobian or inversion of gα(z).

Instead of sampling pθ(x), we can sample p(z) in Eq. (12.38). While qα(x)

is multi-modal, q0(z) is unimodal. Since pθ(x) is a correction of qα , p(z) is a
correction of p0(z) and can be much less multi-modal than pθ(x) that is in the
data space. After sampling z from p(z), we can generate x = gα(z).

The above MCMC sampling scheme is a special case of neutral transport MCMC
proposed by Hoffman et al. [104] for sampling from an EBM or the posterior
distribution of a generative model. The basic idea is to train a flow-based model
as a variational approximation to the target EBM and sample the EBM in the latent
space of the flow-based model. In our case, since pθ is a correction of qα , we can
simply use qα directly as the approximate flow-based model in the neural transport
sampler. The extra benefit is that the distribution p(z) is of an even simpler form
than pθ(x) because p(z) does not involve the inversion and Jacobian of gα . As a
result, we may use a flow-based backbone model of a more free form such as one

314 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

based on residual network [13]. We use HMC [179] to sample from p(z) and push
the samples forward to the data space through gα . We can then learn θ by MLE.

Diffusion Recovery Likelihood

Inspired by recent work on diffusion-based models [102, 222, 223], [72] propose
a diffusion recovery likelihood method to tackle the challenge of training the
descriptive models or energy-based models (EBMs) directly on a dataset by instead
learning a sequence of EBMs for the marginal distributions of the diffusion process.
Specifically, assume a sequence of noisy observations x0, x1, . . . , xT such that

x0 ∼ pdata(x); xt+1=
√
1−σ 2

t+1xt+σt+1εt+1, t=0, 1, . . . T −1. (12.39)

The scaling factor
√
1 − σ 2

t+1 ensures that the sequence is a spherical interpolation

between the observed sample and Gaussian white noise. Let yt =
√
1 − σ 2

t+1xt , and
we assume a sequence of marginal EBMs on the perturbed data

pθ(yt) = 1

Zθ,t

exp (fθ (yt , t)) , (12.40)

where fθ (yt , t) is defined by a neural network conditioned on t . The sequence of
marginal EBMs can be learned with recovery likelihoods that are defined as the
conditional distributions that invert the diffusion process, which can be derived by
Eqs. (12.39) and (12.40):

pθ (yt |xt+1) = 1

Z̃θ,t (xt+1)
exp

(
fθ (yt , t) − 1

2σ 2
t+1

‖xt+1 − yt‖2
)

, t = 0, 1, . . . , T − 1.

(12.41)

Compared to the standard maximum likelihood estimation (MLE) of EBMs,
learning marginal EBMs by diffusion recovery likelihood only requires sampling
from the conditional distributions in Eq. (12.41), which is much easier than sampling
from the marginal distributions due to the additional quadratic term, which makes
the conditional EBMs close to unimodal. After learning the marginal EBMs, we can
generate synthesized images by a sequence of conditional samples initialized from
the Gaussian white noise distribution using MCMC techniques such as Langevin
sampling:

yτ+1
t = yτ

t + b2σ 2
t

2
(∇yfθ (yτ

t , t) + 1

σ 2
t

(xt+1 − yτ
t)) + bσtε

τ . (12.42)

12.2 Descriptive Energy-Based Model 315

Fig. 12.8 Reprinted with permission from [72]. Illustration of diffusion recovery likelihood on
2D checkerboard example. Top: progressively generated samples. Bottom: estimated marginal
densities

Fig. 12.9 Reprinted with permission from [72]. Generated samples on LSUN 1282

church_outdoor (left), LSUN 1282 bedroom (center), and CelebA 642 (right)

The framework of recovery likelihood was originally proposed in [17]. Gao et
al. [72] adapt it to learning the sequence of marginal EBMs from the diffusion
data. Figure 12.8 shows an illustration on a 2D toy example. Figure 12.9 displays
uncurated samples generated from learned models on large image datasets.

Diffusion-Based Model

Diffusion-based models [102, 222, 223] prove to be exceedingly powerful in
generating photorealistic images. It learns a sampling process instead of an explicit
density. Thus it is on the side of the sampler (like a policy network), instead of
density (like a value network). The sampling process is similar to the short-run
Langevin dynamics for sampling from an energy-based model.

The key idea of the diffusion-based model of [222] is to continuously add noises
of infinitesimal variance to the clean image until the resulting image becomes a

316 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Gaussian white noise image. This is a forward diffusion process. Then we learn to
reverse this forward process by going from the Gaussian white noise distribution
back to the multi-modal data distribution of the clean images. This reverse diffusion
process is as if showing the movie of the forward diffusion process in reverse time,
and it was inspired by the non-equilibrium thermodynamics [222]. The reverse
diffusion process is a denoising process. Adding noises amounts to reducing the
precision of the pixel intensities.

There are two slightly different perspectives on the diffusion-based model. One is
based on the observation that the conditional distribution pθ(yt |xt+1) in Eq. (12.41)
is approximately Gaussian if σ 2

t+1 is infinitesimally small. The conditional Gaussian
distribution can be derived by the first-order Taylor expansion of the log density
of yt . Thus the reverse process can be decomposed into a Markov sequence of
conditional Gaussian models with infinitesimal variances, and they can be learned
within the maximum likelihood or variational inference framework. A single
conditional Gaussian model can be learned for the whole reverse process, with time
embedding being input to the model. In the learning of the conditional Gaussian
model, we can condition on the original clean image for the purpose of variance
reduction. More specifically, at each time step of the diffusion process, we can
predict the noise image that has been added to the original clean image, and then
we can move toward the clean image by removing a small amount of the predicted
noise image.

A closely related perspective is to estimate the derivative of the log density of the
noisy image at each time step of the diffusion process by score matching [114, 115]
via denoising auto-encoder [6, 227, 241]. The derivative of the log density or score
is related to the first-order Taylor expansion mentioned above. The derivative or the
score enables us to reverse the forward diffusion process via a stochastic differential
equation [223].

Intuitively, for a population of points that follow a certain density, if we add small
random noise to each point, the resulting population of perturbed points will have
a density that is more diffused than the original density. We can achieve the same
effect by perturbing each point deterministically via a gradient descent movement
on the log density so that the resulting population of the deterministically perturbed
points will have the same diffused density resulting from adding random noises.
Thus we can reverse the effect of the noise diffusion by deterministic gradient ascent
on the log density. This underlies the reversion of the forward diffusion process
mentioned above. It also underlies the Langevin dynamics where the gradient ascent
and the diffusion term balance each other.

The diffusion-based model is effective for modeling multi-modal data density
by the reverse diffusion process starting from a unimodal Gaussian white noise
density. The idea is related to simulated annealing [135], simulated tempering [168],
parallel tempering [48, 77], or replica exchange [226] for sampling from multi-
modal densities.

12.3 Equivalence Between Discriminative and Descriptive Models 317

12.3 Equivalence Between Discriminative and Descriptive
Models

Discriminative Model

Let x be an input example, e.g., an image or a text, and let y be a label or annotation
of x, e.g., the category that x belongs to in the case of classification. Let us focus on
the classification problem, and suppose there are C categories. The commonly used
soft-max classifier assumes that

pθ(y = c|x) = exp(fc,θ (x))∑C
c′=1 exp(fc′,θ (x))

, (12.43)

where fc,θ is a deep network, and θ denotes all the weight and bias parameters. For
different c, the networks fc,θ may share a common body and only differ in the head
layer.

We can write the above model as

pθ(y = c|x) = 1

Z(θ)(x)
exp(fc,θ (x)), (12.44)

where

Z(θ)(x) =
C∑

c=1

exp(fc,θ (x)). (12.45)

The discriminative model pθ(y|x) can be learned by maximum likelihood. The
log-likelihood is the average of

logpθ(y|x) = fy,θ (x) − logZ(θ)(x), (12.46)

where the average is over the training set {x, y}. The gradient of logpθ(y|x) with
respect to θ is

∇θ logpθ(y|x) = ∇θfy,θ (x) − Epθ (y|x)[∇θfy,θ (x)], (12.47)

where

∇θ logZ(θ)(x) = Epθ (y|x)[∇θfy,θ (x)]. (12.48)

Let pdata(x, y) be the data distribution of (x, y). The MLE minimizes
DKL(pdata(y|x)‖pθ(y|x)), where for two conditional distributions p(y|x) and
q(y|x), their KL-divergence is defined as

318 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

DKL(p(y|x)‖q(y|x)) = Ep(x,y)

[
log

p(y|x)

q(y|x)

]
, (12.49)

where the expectation is with respect to p(x, y) = p(x)p(y|x), i.e., we also average
over p(x) in addition to p(y|x).

The above calculations are analogous to the calculations for the descriptive
model. The difference is that for the discriminative model, the normalizing constant
Z and the expectation are summations over y, where y belongs to a finite set of
categories, whereas for the descriptive model, the normalizing constant Z and the
expectation are integral over x, where x belongs to a high-dimensional space. As a
result, the expectation in the descriptive model cannot be calculated in closed form
and has to be approximated by MCMC sampling such as Langevin dynamics.

A special case is binary classification, where y ∈ {0, 1}. It is usually assumed
that

f0,θ (x) = 0, f1,θ (x) = fθ (x), (12.50)

so that

pθ(y = 1|x) = 1

1 + exp(−fθ (x))
= sigmoid(fθ (x)), (12.51)

and y follows a nonlinear logistic regression on x.

Descriptive Model as Exponential Tilting of a Reference
Distribution

A more general version of the descriptive model is of the following form of
exponential tilting of a reference distribution [32, 253]:

pθ(x) = 1

Z(θ)
exp(fθ (x))q(x), (12.52)

where q(x) is a given reference measure, such as uniform measure or Gaussian
white noise distribution. The original form of the descriptive model corresponds to
q(x) being a uniform measure. If q(x) is a Gaussian white noise distribution, then
the energy function is −fθ (x) + ‖x‖2/2.

Although q(x) is usually taken to be a simple known distribution, q(x) can also
be a model in its own right. We may call it a base model or a backbone model, and
pθ(x) can be considered a correction of q(x), where fθ (x) is the correction term.
We may also call pθ(x) the energy-based correction of the base model q(x).

12.3 Equivalence Between Discriminative and Descriptive Models 319

Discriminative Model via Bayes Rule

The above exponential tilting leads to the following discriminative model. We can
treat pθ as the positive distribution, and q(x) the negative distribution. Let y ∈
{0, 1}, and the prior probability p(y = 1) = ρ, so that p(y = 0) = 1 − ρ. Let
p(x|y = 1) = pθ(x), p(x|y = 0) = q(x). Then according to the Bayes rule
[32, 121, 143, 149, 234, 253],

p(y = 1|x) = exp(fθ (x) + b)

1 + exp(fθ (x) + b)
, (12.53)

where b = log(ρ/(1 − ρ)) − logZ(θ). This leads to nonlinear logistic regression.
Sometimes, people call fθ (x) + b the logit or logit score because

log
p(y = 1|x)

p(y = 0|x)
= logit(p(y = 1|x)) = fθ (x) + b. (12.54)

More generally, suppose we have C categories, and

pc,θ (x) = 1

Zc,θ

exp(fc,θ (x))q(x), c = 1, . . . , C, (12.55)

where (fc,θ (x), c = 1, . . . , C) are C networks that may share the same body but
with different heads. Suppose the prior probability for category c is ρc, then

p(y = c|x) = exp(fc,θ (x) + bc)∑C
c=1 exp(fc,θ (x) + bc)

, (12.56)

where bc = log ρc − logZc,θ . The above is a conventional soft-max classifier.
Conversely, if p(y = c|x) is of the above form of soft-max classifier, then pc,θ (x)

is of the form of exponential tilting based on the logit score fc,θ (x) + bc. Thus the
discriminative model and the descriptive model are equivalent to each other.

Noise Contrastive Estimation

The above equivalence suggests that we can learn the descriptive model by fitting
a logistic regression. Specifically, suppose we want to learn a descriptive model
pθ(x) = 1

Z(θ)
exp(fθ (x))q(x), where q(x) is a noise distribution, such as Gaussian

white noise distribution. We can treat the observed examples as the positive
examples, so that for each positive x, y = 1, and we generate negative examples
from the noise distribution q(x), so that for each negative example x ∼ q(x),
y = 0. Then we learn a discriminator in the form of logistic regression to distinguish

320 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

between the positive and negative examples, and then logit(p(y = 1|x)) =
fθ (x) + b, where b = log(ρ/(1 − ρ)) − logZ(θ), where ρ is the proportion of
the positive examples. We can learn both θ and b by fitting a logistic regression,
where b is treated as an independent bias or intercept term, even though logZ(θ)

depends on θ . This enables us to learn fθ and estimate logZ(θ). This is called noise
contrastive estimation (NCE) [92].

The problem with the above scheme is that the noise distribution and the
data distribution usually do not have much overlap, especially if x is of high
dimensionality. As a result, fθ (x) cannot be well learned.

The introspective learning method [121, 234] tries to remedy the above problem
with sampling. After learning fθ (x) by noise contrastive estimation, we want to
inspect whether fθ (x) is well learned. We then treat the current pθ(x) as our new
q(x), and we draw negative samples from it. If it is well learned, then the negative
samples will be close to the positive examples. To check that, we fit a logistic
regression again on the positive examples and negative examples from the new q(x).
Then we learn a new�fθ(x) by the new logistic regression. This�fθ(x) can then be
added to the previous learned fθ (x) to obtain the new fθ (x). We can keep repeating
this process until �fθ(x) is small.

In general, while the descriptive model learns the probability density function,
the discriminative model learns the ratios between the probability densities of
different classes. If we know the density of a base class, such as the Gaussian white
noise, we can learn the densities of other classes by noise contrastive estimation.
Noise contrastive estimation is a form of self-supervised learning.

Noise contrastive estimation (NCE) based on diffusion sequence is explored in
[203].

Flow Contrastive Estimation

Gao et al. [71] propose an improvement of noise contrastive estimation (NCE) [92]
based on the flow-based model. The basic idea is to transform the noise so that
the resulting distribution is closer to the data distribution. This is exactly what the
flow model achieves. That is, a flow model transforms a known noise distribution
q0(z) by a composition of a sequence of invertible transformations gα(·). However,
in practice, we find that a pre-trained qα(x), such as learned by MLE, is not strong
enough for learning an EBM pθ(x) because the synthesized data from the MLE
of qα(x) can still be easily distinguished from the real data by an EBM. Thus, we
propose to iteratively train the EBM and flowmodel, in which case the flowmodel is
adaptively adjusted to become a stronger contrast distribution or a stronger training
opponent for EBM. This is achieved by a parameter estimation scheme similar to
GAN [81, 199], where pθ(x) and qα(x) play a minimax game with a unified value
function: minα maxθ V (θ, α),

12.3 Equivalence Between Discriminative and Descriptive Models 321

V (θ, α) = Epdata

[
log

pθ(x)

pθ (x) + qα(x)

]
+ Ez

[
log

qα(gα(z))

pθ (gα(z)) + qα(gα(z))

]
,

(12.57)

where Epdata is approximated by averaging over observed samples {xi, i =
1, . . . , n}, while Ez is approximated by averaging over negative samples {x̃i , i =
1, . . . , n} drawn from qα(x), with zi ∼ q0(z) independently for i = 1, . . . , n. In
the experiments, we choose Glow [131] as the flow-based model. The algorithm
can start from either a randomly initialized Glow model or a pre-trained one by
MLE. Here we assume equal prior probabilities for observed samples and negative
samples. It can be easily modified to the situation where we assign a higher prior
probability to the negative samples, given the fact we have access to an infinite
amount of free negative samples.

The objective function can be interpreted from the following perspectives:

(1) Noise contrastive estimation for EBM. The update of θ can be seen as noise
contrastive estimation of pθ(x), but with a flow-transformed noise distribution
qα(x) that is adaptively updated. The training is essentially a logistic regression.
However, unlike regular logistic regression for classification, for each xi or
x̃i , we must include log qα(xi) or log qα(x̃i) as an example-dependent bias
term. This forces pθ(x) to replicate qα(x) in addition to distinguishing between
pdata(x) and qα(x), so that pθ(xi) is in general larger than qα(xi), and pθ(x̃i) is
in general smaller than qα(x̃i).

(2) Minimization of Jensen–Shannon divergence for the flow model. If pθ(x) is
close to the data distribution, then the update of α is approximately minimizing
the Jensen–Shannon divergence between the flow model qα and data distribu-
tion pdata:

DJS(qα‖pdata) = DKL(pdata‖(pdata + qα)/2) + DKL(qα‖(pdata + qα)/2).
(12.58)

Its gradient w.r.t. α equals the gradient of −Epdata [log((pθ + qα)/2)] +
DKL(qα‖(pθ + qα)/2). The gradient of the first term resembles MLE, which
forces qα to cover the modes of data distribution, and tends to lead to an over-
dispersed model, which is also pointed out in [131]. The gradient of the second
term is similar to reverse Kullback–Leibler divergence between qα and pθ , or
variational approximation of pθ by qα , which forces qα to chase the modes of
pθ . This may help correct the over-dispersion of MLE.

(3) Connection with GAN [81, 199]. Our parameter estimation scheme is closely
related to GAN. In GAN, the discriminator D and generator G play a minimax
game: minG maxD V (G,D),

V (G,D) = Epdata

[
logD(x)

] + Ez

[
log(1 − D(G(zi)))

]
. (12.59)

The discriminator D(x) is learning the probability ratio pdata(x)/(pdata(x) +
pG(x)), which is about the difference between pdata and pG [56]. pG is the

322 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

density of the generated data. In the end, if the generator G learns to perfectly
replicate pdata, then the discriminatorD ends up with a random guess. However,
in our method, the ratio is explicitly modeled by pθ and qα . pθ must contain
all the learned knowledge in qα , in addition to the difference between pdata
and qα . In the end, we learn two explicit probability distributions pθ and qα as
approximations to pdata.

12.4 Generative Latent Variable Model

Model and Origin

Both discriminative model and descriptive model are based on a bottom-up network
fθ (x). The generative model is based on top-down network with latent variables.
The prototype of such a model is factor analysis. Let x be the observed example,
which is a D-dimensional vector. We assume that x can be explained by a d-
dimensional latent vector, each element of which is called a factor. Given z, x is
generated by x = Wz + ε, where W is a D × d matrix, sometimes called loading
matrix. It is usually assumed that z ∼ N(0, Id), where Id is d-dimensional identity
matrix, ε ∼ N(0, σ 2ID), and ε is independent of z. The factor analysis model
originated from psychometrics, where x consists of a pupil’s scores on a number
of subjects, and z = (z1, z2), where z1 is verbal intelligence and z2 is analytical
intelligence.

A recent generalization [81, 133] is to keep the prior assumption about z, but
replace the linear model x = Wz + ε by a nonlinear model x = gθ (z) + ε, where
gθ (z) is parameterized by a top-down neural network where θ collects all the weight
and bias parameters. In the case of image modeling, gθ (z) is usually a convolutional
neural network, which is sometimes called deconvolutional network, due to its top-
down nature. The above model leads to a conditional or generation model pθ(x|z),
such that

logpθ(x, z) = log[p(z)pθ (x|z)] (12.60)

= −1

2

[
‖z‖2 + ‖x − gθ (z)‖2/σ 2

]
+ c, (12.61)

where c is a constant independent of θ . σ 2 is usually treated as a tuning parameter.
The model follows the manifold assumption, which assumes that the density of the
D-dimensional data focuses on a lower, d-dimensional manifold.

The joint distribution of (x, z) is pθ(x, z) = p(z)pθ (x|z). The marginal
distribution of x is pθ(x) = ∫

pθ(x, z)dz. The marginal distribution is analytically
intractable due to the integration of z. The model specifies a direct sampling method
for generating x, but it does not explicitly specify the density of x.

12.4 Generative Latent Variable Model 323

Given x, the inference of z can be based on the posterior distribution pθ(z|x) =
pθ(x, z)/pθ (x), which is also intractable due to the intractability of the marginal
pθ(x).

The above model is often referred to as the generator network in the literature.

Generative Model with Multi-layer Latent Variables

While it is computationally convenient to have a single latent noise vector at the top
layer, it does not account for the fact that patterns can appear at multiple layers of
compositions or abstractions (e.g., face → (eyes, nose, mouth) → (edges, corners)
→ pixels), where variations and randomness occur at multiple layers. To capture
such a hierarchical structure, it is desirable to introduce multiple layers of latent
variables organized in a top-down architecture [183]. Specifically, we have z =
(zl, l = 1, . . . , L), where layer L is the top layer, and layer 1 is the bottom layer
above x. For notational simplicity, we let x = z0. We can then specify pθ(z) as

pθ(z) = pθ(zL)

L−1∏
l=0

pθ(zl |zl+1). (12.62)

One concrete example is zL ∼ N(0, I), [zl |zl+1] ∼ N(μl(zl+1), σ
2
l (zl+1)), l =

0, . . . , L − 1, where μl() and σ 2
l () are the mean vector and the diagonal variance–

covariance matrix of zl , respectively, and they are functions of zl+1. θ collects all the
parameters in these functions. pθ(x, z) can be obtained similarly as in Eq. (12.61).

MLE Learning and Posterior Inference

Let pdata(x) be the data distribution that generates the example x. The learning of
parameters θ of pθ(x) can be based on minθ DKL(pdata(x)‖pθ(x)). If we observe
training examples {xi, i = 1, . . . , n} ∼ pdata(x), the above minimization can be
approximated by maximizing the log-likelihood

L(θ) = 1

n

n∑
i=1

logpθ(xi)
.= Epdata [logpθ(x)], (12.63)

which leads to MLE.
The gradient of the log-likelihood, L′(θ), can be computed according to the

following identity:

324 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

δθ (x) = ∇θ logpθ(x) = 1

pθ(x)
∇θpθ (x) (12.64)

= 1

pθ(x)

∫
∇θpθ (x, z)dz (12.65)

= Epθ (z|x)

[∇θ logpθ(x, z)
]
. (12.66)

Thus

L′(θ) = Epdata [δθ (x)] = Epdata(x)Epθ (z|x)

[∇θ logpθ(x, z)
]

(12.67)

.= 1

n

n∑
i=1

Epθ (zi |xi)

[∇θ logpθ(xi, zi)
]
. (12.68)

The expectation with respect to pθ(z|x) can be approximated by Monte Carlo
samples. Each learning iteration updates θ by θt+1 = θt + ηtL

′(θt).

Posterior Sampling

Sampling from pθ(z|x) usually requires MCMC. One convenient MCMC is
Langevin dynamics, which iterates

zt+1 = zt + s∇z logpθ(zt |x) + √
2set , (12.69)

where et ∼ N(0, I), t indexes the time step of the Langevin dynamics, and s

is the step size. The Langevin dynamics consists of a gradient descent term on
− logp(z|x). In the case of generator network, it amounts to gradient descent
on ‖z‖2/2 + ‖x − gθ (z)‖2/2σ 2, which is the penalized reconstruction error. The
Langevin dynamics also consists of a white noise diffusion term

√
2set to create

randomness for sampling from pθ(z|x).
For small step size s, the marginal distribution of zt will converge to pθ(z|x)

as t → ∞ regardless of the initial distribution of z0. More specifically, let
pt (z) be the marginal distribution of zt of the Langevin dynamics, and then
DKL(pt (z)‖pθ(z|x)) decreases monotonically to 0, that is, by increasing t , we
reduce DKL(pt (z)‖pθ(z|x)) monotonically.

Perturbation of KL-divergence

Again we understand the MLE learning algorithm by perturbing the KL-divergence
for MLE. Define D(θ) = DKL(pdata‖pθ). It is the objective function of MLE. Let
θt be the estimate at iteration t . Let us consider the following perturbation of D(θ):

12.4 Generative Latent Variable Model 325

Fig. 12.10 Reprinted with permission from [95]. The surrogate S majorizes (upper bounds) D,
and they touch each other at θt with the same tangent

S(θ) = D(θ) + DKL(pθt (z|x)‖pθ(z|x)) (12.70)

= DKL(pdata(x)‖pθ(x)) + DKL(pθt (z|x)‖pθ(z|x)) (12.71)

= DKL(pdata,θt (x, z)‖pθ(x, z)), (12.72)

where we define pdata,θt (x, z) = pdata(x)pθt (z|x). Again S(θ) is a surrogate
for D(θ) at θt , and S(θ) is simpler than D(θ) because S(θ) is based on the
joint distributions instead of the marginal distributions as in D(θ). Unlike the
joint distribution pθ(x, z) = p(z)pθ (x|z), the marginal distribution pθ(x) =∫

pθ(x, z)dz is implicit as it is an intractable integral (Fig. 12.10).
The perturbation term DKL(pθt (z|x)‖pθ(z|x)), as a function of θ , achieves its

minimum 0 at θ = θt , and its derivative at θ = θt is zero. Thus S(θ) and D(θ) touch
each other at θt , and they share the same gradient at θt .

− S(θ) = Epdata(x)Epθt (z|x)[logpθ(x, z)] − entropy(pdata,θt (x, z)). (12.73)

− S′(θ) = Epdata(x)Epθt (z|x)[∇θ logpθ(x, z)]. (12.74)

Thus, the learning gradient at θt is

−D′(θt) = −S′(θt) = Epdata [δθt (x)] = Epdata(x)Epθt (z|x)[∇θ logpθt (x, z)].
(12.75)

This provides another justification for the learning algorithm.
The above perturbation of KL-divergence can be compared to that in the

descriptive model, where the sign in front of the second KL-divergence is negative,
in order to cancel the intractable logZ(θ) term. For the generative model, the sign
in front of the second KL-divergence is positive, in order to change the marginal
distributions in the first KL-divergence, i.e., D(θ), into the joint distributions, so
that pθ(z, x) = p(z)pθ (x|z) is obtained in closed form.

Short-Run MCMC for Approximate Inference

We can use short-run MCMC as inference dynamics [183], with a fixed small K

(e.g., K = 25),

326 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

z0 ∼ p(z), zk+1 = zk + s∇z logpθ(zk|x) + √
2sek, k = 1, . . . , K, (12.76)

where p(z) is the prior noise distribution of z.
We can write the above short-run MCMC as

z0 ∼ p(z), zk+1 = zk + sR(zk) + √
2sek, k = 1, . . . , K, (12.77)

R(z) = ∇z logpθ(z|x), where we omit x and θ in R(z) for simplicity of notation.
To further simplify the notation, we may write the short-run MCMC as

z0 ∼ p(z), zK = F(z0, e), (12.78)

where e = (ek, k = 1, . . . , K), and F composes the K steps of Langevin updates.
Let the distribution of zK be p̃(z). Recall that the distribution of zK also depends

on x and θ and step size s, so that in full notation, we may write p̃(z) as p̃s,θ (z|x).
For each x, we define

δ̃θ (x) = Ep̃s,θ (z|x)

[∇θ logpθ(x, z)
]

(12.79)

and modify the learning algorithm to

θt+1 = θt + ηtEpdata [δ̃θt (x)] = θt + ηtEpdataEp̃s,θt (z|x)

[∇θ logpθt (x, z)
]
,

(12.80)

where ηt is the learning rate and Ep̃s,θt (zi |xi) (here we use the full notation p̃s,θ (z|x)

instead of the abbreviated notation q(z)) can be approximated by sampling from
p̃s,θt (zi |xi) using the noise initialized K-step Langevin dynamics.

Compared to MLE learning algorithm, we replace pθ(z|x) by p̃s,θ (z|x), and fair
Monte Carlo samples from p̃s,θ (z|x) can be obtained by short-run MCMC.

One major advantage of the proposed method is that it is simple and automatic.
For models with multiple layers of latent variables that may be organized in
complex top-down architectures, the gradient computation in Langevin dynamics is
automatic on modern deep learning platforms. Such dynamics naturally integrates
explaining-away competitions and bottom-up and top-down interactions between
multiple layers of latent variables. It thus enables researchers to explore flexible
generative models without dealing with the challenging task of designing and
learning the inference models. The short-run MCMC is automatic, natural, and
biologically plausible as it may be related to attractor dynamics [7, 108, 198].

Objective Function and Estimating Equation

The following are justifications for learning with short-run MCMC:

12.4 Generative Latent Variable Model 327

(1) Objective function. Again we use perturbation of KL-divergence. At iteration
t , with θt fixed, the learning algorithm follows the gradient of the following
perturbation of D(θ) at θ = θt :

S(θ) = D(θ) + DKL(p̃s,θt (z|x)‖pθ(z|x)) (12.81)

= DKL(pdata(x)‖pθ(x)) + DKL(p̃s,θt (z|x)‖pθ(z|x)), (12.82)

so that θt+1 = θt − ηtS
′(θt), where ηt is the step size, and

− S′(θ) = Epdata(x)Ep̃s,θt (z|x)[∇θ logpθ(x, z)]. (12.83)

− S′(θt) = Epdata [δ̃θt (x)] = Epdata(x)Ep̃s,θt (z|x)[∇θ logpθt (x, z)]. (12.84)

Compared to the perturbation of KL-divergence in MLE learning, we use
p̃s,θt (z|x) instead of pθt (z|x). While sampling pθt (z|x) can be impractical if it
is multi-modal, sampling p̃s,θt (z|x) is practical because it is a short-runMCMC.

(2) Estimating equation. The fixed point of the learning algorithm (12.80) solves
the following estimating equation:

1

n

n∑
i=1

Ep̃s,θ (zi |xi)

[∇θ logpθ(xi, zi)
] .= Epdata(x)Ep̃s,θ (z|x)

[∇θ logpθ(x, z)
] = 0.

(12.85)

If we approximate Ep̃s,θt (zi |xi) by Monte Carlo samples from p̃s,θt (zi |xi),
then the learning algorithm becomes Robbins–Monro algorithm for stochastic
approximation [205].

The bias of the learned θ based on short-run MCMC relative to the MLE depends
on the gap between p̃s,θ (z|x) and pθ(z|x). We suspect that this bias may actually
be beneficial in the following sense. The learning gradient seeks to decrease D(θ)

while decreasing DKL(p̃s,θt (zi |xi)‖pθ(zi |xi)). The latter tends to bias the learned
model so that its posterior distribution pθ(zi |xi) is close to the short-run MCMC
p̃s,θt (zi |xi), i.e., our learning method may bias the model to make inference by
short-run MCMC accurate.

We can optimize the step size s and other algorithmic parameters of the short-
run Langevin dynamics by minimizing DKL(p̃s,θt (zi |xi)‖pθ(zi |xi)) over s. This is
a variational optimization.

328 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

12.5 Descriptive Model in Latent Space of Generative Model

Top-Down and Bottom-Up

Top-down mapping Bottom-up mapping
hidden vector z energy − fθ (x)

⇓ ⇑
signal x ≈ gθ (z) signal x

(a) Generator model (b) Descriptive model

(12.86)

The above diagram compares the generative model and the descriptive model.
The former is based on top-down generation, whereas the latter is based on the
bottom-up description.

The top-down model is a very natural representation of knowledge, with its
multiple layers of latent variables representing concepts at multiple levels of abstrac-
tions. The top-down model is also called the directed acyclic graphical model.
It is characterized by independence or conditional independence assumptions of
the latent variables. Such assumptions limit the expressive power of the top-down
model.

For the special case of the generator network, there is a latent vector z at the top
layer, which generates the example x via the top-down generation mapping gθ (z).
The prior distribution of z is usually assumed to be a simple noise distribution,
e.g., the Gaussian white noise distribution z ∼ N(0, I). The top-down gθ (z) maps
this simple isotropic unimodal prior distribution to the multi-modal data distribution
pdata. However, the expressive power may be limited by the simple prior distribution
p(z) (as well as the simple Gaussian white noise distribution of ε in x = gθ (z)+ε).
The marginal distribution of pθ(x) = ∫

p(z)pθ (x|z)dz is implicit because of the
intractable integral over the latent z.

The bottom-up model only needs to specify a scalar-valued energy function
−fθ (x), instead of a vector-valued gθ (z), while leaving the generative task to
MCMC. It specifies the distribution pθ(x) = 1

Z(θ)
exp(fθ (x)) explicitly even though

the normalizing constant Z(θ) is intractable. Compared to the generator model, the
descriptive model tends to have stronger expressive power in terms of synthesis
ability.

However, because pdata tends to be highly multi-modal, the learned pθ can also
be highly multi-modal. As a result, MCMC sampling cannot mix. Even though we
can use short-run MCMC to learn the model and synthesize images, the model is
admittedly biased. One remedy is to use more sophisticated MCMC such as parallel
tempering [189] or replica exchange MCMC [226]. The other option is to move the
descriptive model to the latent space.

12.5 Descriptive Model in Latent Space of Generative Model 329

Descriptive Energy-Based Model in Latent Space

We follow the philosophy of empirical Bayes, that is, instead of assuming a given
prior distribution for the latent vector, as in the generator network, we learn a prior
model from empirical observations.

Specifically, we assume the latent vector follows a descriptive model or, more
specifically, an energy-based correction of the isotropic Gaussian white noise
prior distribution. We call this model the latent space descriptive model. Such a
model adds more expressive power to the generator model. In the latent space, the
descriptive model is close to unimodal as it is a correction of the unimodal Gaussian
distribution, and MCMC sampling is expected to mix well.

The MLE learning of the generative model with a latent space descriptive model
involves MCMC sampling of the latent vector from both the prior and posterior
distributions. Parameters of the prior model can then be updated based on the
statistical difference between samples from the two distributions. Parameters of
the top-down network can be updated based on the samples from the posterior
distribution as well as the observed data.

Let x ∈ R
D be an observed example such as an image or a piece of text, and let

z ∈ R
d be the latent variables, where D � d . The joint distribution of (x, z) is

pθ(x, z) = pα(z)pβ(x|z), (12.87)

where pα(z) is the prior model with parameters α, pβ(x|z) is the top-down
generation model with parameters β, and θ = (α, β).

The prior model pα(z) is formulated as a descriptive model or an energy-based
model

pα(z) = 1

Z(α)
exp(fα(z))p0(z), (12.88)

where p0(z) is a reference distribution, assumed to be isotropic Gaussian white
noise distribution. fα(z) is the negative energy and is parameterized by a small
multi-layer perceptron with parameters α. Z(α) = ∫

exp(fα(z))p0(z)dz =
Ep0 [exp(fα(z))] is the normalizing constant or partition function.

The prior model (12.88) can be interpreted as an energy-based correction or
exponential tilting of the original prior distribution p0, which is the prior distribution
in the generator model.

The generation model is the same as the top-down network in the generator
model. For image modeling,

x = gβ(z) + ε, (12.89)

where ε ∼ N(0, σ 2ID), so that pβ(x|z) ∼ N(gβ(z), σ 2ID). Usually, σ 2 takes an
assumed value. For text modeling, let x = (x(t), t = 1, . . . , T), where each x(t) is a

330 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

token. A commonly used model is to define pβ(x|z) as a conditional auto-regressive
model,

pβ(x|z) =
T∏

t=1

pβ(x(t)|x(1), . . . , x(t−1), z), (12.90)

which is often parameterized by a recurrent network with parameters β.
In the original generator model, the top-down network gβ maps the unimodal

prior distribution p0 to be close to the usually highly multi-modal data distribution.
The prior model in (12.88) refines p0 so that gβ maps the prior model pα to be closer
to the data distribution. The prior model pα does not need to be highly multi-modal
because of the expressiveness of gβ .

The marginal distribution is pθ(x) = ∫
pθ(x, z)dz = ∫

pα(z)pβ(x|z)dz. The
posterior distribution is pθ(z|x) = pθ(x, z)/pθ (x) = pα(z)pβ(x|z)/pθ (x).

In the above model, we exponentially tilt p0(z). We can also exponentially tilt
p0(x, z) = p0(z)pβ(x|z) to pθ(x, z) = 1

Z(θ)
exp(fα(x, z))p0(x, z). Equivalently,

we may also exponentially tilt p0(z, ε) = p0(z)p(ε), as the mapping from (z, ε)

to (z, x) is a change of variable. This leads to a descriptive model in both the latent
space and data space, which makes learning and sampling more complex. Therefore,
we choose to only tilt p0(z) and leave pβ(x|z) as a directed top-down generation
model.

Maximum Likelihood Learning

Suppose we observe training examples (xi, i = 1, . . . , n). The log-likelihood
function is

L(θ) = 1

n

n∑
i=1

logpθ(xi)
.= Epdata [logpθ(x)]. (12.91)

The learning gradient can be calculated according to

∇θ logpθ (x) = Epθ (z|x)

[∇θ logpθ (x, z)
] = Epθ (z|x)

[∇θ (logpα(z) + logpβ(x|z))] .

(12.92)

For the prior model, ∇α logpα(z) = ∇αfα(z) − Epα(z)[∇αfα(z)]. Thus the
learning gradient for an example x is

δα(x) = ∇α logpθ(x) = Epθ (z|x)[∇αfα(z)] − Epα(z)[∇αfα(z)]. (12.93)

12.5 Descriptive Model in Latent Space of Generative Model 331

The above equation has an empirical Bayes nature. pθ(z|x) is based on the empirical
observation x, while pα is the prior model. α is updated based on the difference
between z inferred from empirical observation x and z sampled from the current
prior.

For the generation model,

δβ(x) = ∇β logpθ(x) = Epθ (z|x)[∇β logpβ(x|z)], (12.94)

where logpβ(x|z) = −‖x−gβ(z)‖2/(2σ 2)+constant or
∑T

t=1 logpβ(x(t)|x(1), . . . ,

x(t−1), z) for image and text modeling, respectively, which is about the
reconstruction error.

Writing δθ (x) = (δα(x), δβ(x)), we have L′(θ) = Epdata[δθ (x)], and the learning
algorithm is θt+1 = θt + ηtEpdata [δθt (x)].

Expectations in (12.93) and (12.94) require MCMC sampling of the prior model
pα(z) and the posterior distribution pθ(z|x). We can use Langevin dynamics. For a
target distribution π(z), the dynamics iterates

zk+1 = zk + s∇z logπ(zk) + √
2sek, (12.95)

where k indexes the time step of the Langevin dynamics, s is a small step size, and
ek ∼ N(0, Id) is the Gaussian white noise. π(z) can be either pα(z) or pθ(z|x). In
either case, ∇z logπ(z) can be efficiently computed by back-propagation.

Short-Run MCMC for Synthesis and Inference

We use short-run MCMC for approximate sampling. This is in agreement with
the philosophy of variational inference [133], which accepts the intractability of
the target distribution and seeks to approximate it by a simpler distribution. The
difference is that we adopt short-run Langevin dynamics instead of learning a
separate network for approximation.

The short-run Langevin dynamics is always initialized from the fixed initial
distribution p0 and only runs a fixed number of K steps, e.g., K = 20,

z0 ∼ p0(z), zk+1 = zk + s∇z logπ(zk) + √
2sek, k = 1, . . . , K. (12.96)

Denote the distribution of zK to be π̃(z). Because of fixed p0(z) and fixed K and
s, the distribution π̃ is well defined. In this section, we put ˜ sign on top of the
symbols to denote distributions or quantities produced by short-run MCMC, and for
simplicity, we omit the dependence on K and s in notation. The Kullback–Leibler
divergence DKL(π̃‖π) decreases to zero monotonically as K → ∞.

Specifically, denote the distribution of zK to be p̃α(z) if the target π(z) = pα(z),
and denote the distribution of zK to be p̃θ (z|x) if π(z) = pθ(z|x). We can then

332 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.11 Reprinted with permission from [191]. Generated images for CelebA (128×128×3)

replace pα(z) by p̃α(z) and replace pθ(z|x) by p̃θ (z|x) in Eqs. (12.93) and (12.94),
so that the learning gradients in Eqs. (12.93) and (12.94) are modified to

δ̃α(x) = Ep̃θ (z|x)[∇αfα(z)] − Ep̃α(z)[∇αfα(z)], (12.97)

δ̃β(x) = Ep̃θ (z|x)[∇β logpβ(x|z)]. (12.98)

We then update α and β based on (12.97) and (12.98), where the expectations
can be approximated by Monte Carlo samples. Specifically, writing δ̃θ (x) =
(δ̃α(x), δ̃β(x)), the learning algorithm is θt+1 = θt + ηtEpdata[δ̃θt (x)].

The short-run MCMC sampling is always initialized from the same initial
distribution p0(z) and always runs a fixed number of K steps. This is the case for
both training and testing stages, which share the same short-run MCMC sampling
(Figs. 12.11, 12.12, and 12.13).

Divergence Perturbation

The learning algorithm based on short-run MCMC sampling is a modification or
perturbation of maximum likelihood learning, where we replace pα(z) and pθ(z|x)

by p̃α(z) and p̃θ (z|x), respectively. For theoretical underpinning, we should also
understand this perturbation in terms of the objective function and estimating
equation:

(1) Objective function. In terms of objective function, the MLE loss function is
D(θ) = DKL(pdata‖pθ). At iteration t , with fixed θt = (αt , βt), we perturb
D(θ) to S(θ):

12.5 Descriptive Model in Latent Space of Generative Model 333

Fig. 12.12 Reprinted with permission from [191]. Transition of Markov chains initialized from
p0(z) toward p̃α(z) for 100 Langevin dynamics steps. Top: Trajectory in the CelebA data space.
Bottom: Energy profile over time

Fig. 12.13 Reprinted with permission from [191]. Transition of Markov chains initialized from
p0(z) toward p̃α(z) for 2500 Langevin dynamics steps. Top: Trajectory in the CelebA data space
for every 100 steps. Bottom: Energy profile over time

S(θ) = DKL(pdata‖pθ) + DKL(p̃θt (z|x)‖pθ(z|x)) − DKL(p̃αt (z)‖pα(z)),

(12.99)

where

DKL(p̃θt (z|x)‖pθ(z|x)) = Epdata(x)Ep̃θt (z|x)

[
log

p̃θt (z|x)

pθ (z|x)

]
, (12.100)

i.e., the KL-divergence between conditional distributions of z given x also
integrates over the marginal distribution x as defined before.

The learning algorithm based on short-run MCMC is θt+1 = θt − ηtS
′(θt)

because

S′(θt) = Epdata [δ̃θt (x)]. (12.101)

334 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Thus the updating rule of the learning algorithm follows the stochastic
gradient (i.e., Monte Carlo approximation of the gradient) of a perturbation of
the log-likelihood.

S(θ) is in the form of a divergence triangle, which consists of two pertur-
bations. DKL(p̃θt (z|x)‖pθ(z|x)) is for inference, and DKL(p̃αt (z)‖pα(z)) is for
synthesis. It is a combination of the perturbations for the descriptive model and
generative model, respectively.

(2) Estimating equation. In terms of estimating equation, the stochastic gradient
descent learning is a Robbins–Monro stochastic approximation algorithm [205]
that solves the following estimating equation:

1

n

n∑
i=1

δ̃α(xi) = 1

n

n∑
i=1

Ep̃θ (zi |xi)[∇αfα(zi)] − Ep̃α(z)[∇αfα(z)] = 0,

(12.102)

1

n

n∑
i=1

δ̃β(xi) = 1

n

n∑
i=1

Ep̃θ (zi |xi)[∇β logpβ(xi |zi)] = 0. (12.103)

The solution to the above estimating equation defines an estimator of the
parameters. The learning algorithm converges to this estimator under the usual
regularity conditions of Robbins–Monro. If we replace p̃α(z) by pα(z), and
p̃θ (z|x) by pθ(z|x), then the above estimating equation is the maximum
likelihood estimating equation.

12.6 Variational and Adversarial Learning

From Short-Run MCMC to Learned Sampling Computations

In both the descriptive model and the generative model, we use short-run MCMC
[183, 184] for the sampling computations of synthesis and inference. In this
section, we shall study learning methods that replace short-run MCMC by learned
computations for synthesis and inference sampling.

One popular learning method is variational auto-encoder (VAE) [133] for the
generator model, where the short-run MCMC for inference is replaced by an
inference model. The other popular learning method is generative adversarial
networks (GAN) [81, 199], which is related to the descriptive model, where we
replace short-run MCMC for synthesis by a generator model.

Both learning methods can be theoretically understood by the divergence triangle
framework [95].

12.6 Variational and Adversarial Learning 335

VAE: Learned Computation for Inference Sampling

For the generator model pθ(x, z) = p(z)pθ (x|z) studied in the previous sections,
the VAE [133] approximates the posterior pθ(z|x) by a tractable qφ(z|x), such as

qφ(z|x) ∼ N(μφ(x), diag(vφ(x))), (12.104)

where both μφ and vφ are bottom-up networks that map x to d-dimensional vectors,
with φ collecting all the weight and bias parameters of the bottom-up networks. For
z ∼ qφ(z|x), we can write z = μφ(x)+ diag(vφ(x))1/2e, where e ∼ N(0, Id). Thus
expectation with respect to z ∼ qφ(z|x) can be written as expectation with respect
to e. This reparameterization trick [133] helps reduce the variance in Monte Carlo
integration. We may consider qφ(z|x) as an approximation to the iterative MCMC
sampling of pθ(z|x). In other words, qφ(z|x) is the learned inferential computation
that approximately samples from pθ(z|x).

The VAE objective is a modification of the maximum likelihood estimation
(MLE) objective D(θ) = DKL(pdata(x)‖pθ(x)):

S(θ, φ) = D(θ) + DKL(qφ(z|x)‖pθ(z|x)) (12.105)

= DKL(pdata(x)‖pθ(x)) + DKL(qφ(z|x)‖pθ(z|x)) (12.106)

= DKL(pdata(x)qφ(z|x)‖pθ(z, x)). (12.107)

We define the conditional KL-divergence

DKL(qφ(z|x)‖pθ(z|x)) = EpdataEqφ(z|x)

[
log

qφ(z|x)

pθ (z|x)

]
, (12.108)

where we also average over pdata.
We estimate θ and φ jointly by

min
θ

min
φ

S(θ, φ), (12.109)

which can be accomplished by gradient descent.
Define Q(z, x) = pdata(x)qφ(z|x). Define P(z, x) = p(z)pθ (x|z). Q is the

distribution of the complete data (z, x), where qφ(z|x) can be interpreted as an
imputer that imputes the missing data z. P is the distribution of the complete-data
model. Then S(θ, φ) = DKL(Q‖P). The VAE is minθ minφ DKL(Q‖P).

We may interpret the VAE as an alternating projection between Q and P .
Figure 12.14 provides an illustration. The wake–sleep algorithm [101] is similar
to the VAE, except that it updates φ by minφ DKL(P ‖Q), where the order is flipped.

In the VAE, the model qφ(z|x) and the parameter φ are shared by all the training
examples x, so that μφ(x) and vφ(x) in Eq. (12.104) can be computed directly for
each x given φ. This is different from traditional variational inference [20, 122],

336 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.14 Reprinted with permission from [95]. Variational auto-encoder as joint minimization
by alternating projection. P = p(z)pθ (x|z) is the distribution of the complete-data model, where
p(z) is the prior distribution of hidden vector z and pθ (x|z) is the conditional distribution of x

given z. Q = pd(x)qφ(z|x) is the distribution of the complete data (z, x), where pd(x) refers to
the data distribution pdata and qφ(z|x) is the learned inferential computation that approximately
samples from the posterior distribution pθ (x|z). (Left) Interaction between the models. (Right)
Alternating projection. The two models run toward each other

where for each x, a model qμ,v(z) is learned by minimizing DKL(qμ,v(z)‖pθ(z|x))

with x fixed, so that (μ, v) is computed by an iterative algorithm for each x, which
is an inner loop of the learning algorithm. This is similar to maximum likelihood
learning, except that in maximum likelihood learning, the inner loop is an iterative
algorithm that samples pθ(z|x) instead of minimizing over (μ, v). The learned
networks μφ(x) and vφ(d) in the VAE are to approximate the iterative minimization
algorithm by direct mappings.

GAN: Joint Learning of Generator and Discriminator

The generator model learned by MLE or the VAE usually cannot generate very
realistic images. Both MLE and the VAE target DKL(pdata‖pθ), though the VAE
only minimizes an upper bound of DKL(pdata‖pθ). Consider minimizing DKL(q‖p)

over p within a certain model class. If q is multi-modal, then p is obliged to fit all
the major modes of q because DKL(q‖p) is an expectation with respect to q. Thus,
p tends to interpolate the major modes of q if p cannot fit the modes of q closely.
As a result, pθ learned by MLE or the VAE tends to generate images that are not as
sharp as the observed images.

The behavior of minimizing DKL(q‖p) over p is different from minimizing
DKL(q‖p) over q. If p is multi-modal, q tends to capture some major modes of
p while ignoring the other modes of p, because DKL(q‖p) is an expectation with
respect to q. In other words, minq DKL(q‖p) encourages mode chasing, whereas
minp DKL(q‖p) encourages mode covering.

Sharp synthesis can be achieved by GAN [81, 199], which pairs a generator
model G with a discriminator model D. For an image x, D(x) is the probability
that x is an observed (real) image instead of a generated (faked) image. It can be

12.6 Variational and Adversarial Learning 337

parameterized by a bottom-up network fα(x), so that D(x) = 1/(1+ exp(−fα(x)),
i.e., logistic regression. We can train the pair of (G,D) by an adversarial, zero-sum
game. Specifically, let G(z) = gθ (z) be a generator. Let

V (D,G) = Epdata [logD(x)] + Ez∼p(z)[log(1 − D(G(z))], (12.110)

where Epdata can be approximated by averaging over the observed examples, and Ez

can be approximated by Monte Carlo average over the faked examples generated
by the generator model. We learn D and G by minG maxD V (D,G). V (D,G) is
the log-likelihood for D, i.e., the log probability of the real and faked examples.
However, V (D,G) is not a very convincing objective for G. In practice, the
training of G is usually modified into maximizing Ez∼p(z)[logD(G(z))] to avoid
the vanishing gradient problem.

For a given θ , let pθ be the distribution of gθ (z) with z ∼ p(z). Assume a perfect
discriminator. Then, according to the Bayes theorem, D(x) = pdata(x)/(pdata(x) +
pθ(x)) (assuming equal numbers of real and faked examples). Then θ minimizes
the Jensen–Shannon (JS) divergence

DJS(pdata‖pθ) = DKL(pθ‖pmix) + DKL(pdata‖pmix), (12.111)

where pmix = (pdata + pθ)/2.
In JS divergence, the model pθ also appears on the left-hand side of KL-

divergence. This encourages pθ to fit some major modes of pdata while ignoring
others. As a result, GAN learning suffers from the mode collapsing problem, i.e.,
the learned pθ may miss some modes of pdata. However, the pθ learned by GAN
tends to generate sharper images than the pθ learned by MLE or the VAE.

Joint Learning of Descriptive and Generative Models

We can also learn the descriptive model and the generative model jointly, similar to
GAN. In this joint learning scheme, we seek to learn the descriptive model by MLE,
following the analysis by synthesis scheme. But we recruit the generator model
as an approximate sampler, i.e., in this context, the generator model is the learned
computation for synthesis sampling.

We continue to use pθ(x, z) = p(z)pθ (x|z) to denote the generative model, and
we denote the descriptive model by

πα(x) = 1

Z(α)
exp(fα(x)), (12.112)

so that we will not confuse the notation.
To avoid MCMC sampling of πα , we may approximate it by a generator model

pθ , which can generate synthesized examples directly (i.e., sampling z from p(z),

338 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

and transforming z to x by x = gθ (z)). We may consider pθ an approximation to
the iterative MCMC sampling of πα . In other words, pθ is the learned computation
that approximately samples from πα . It is an approximate direct sampler of πα .

The MLE learning objective is D(α) = DKL(pdata‖πα). We can learn both πα

and pθ using the following objective function [33, 128]:

S(α, θ)=D(α)−DKL(pθ‖πα) = DKL(pdata‖πα)−DKL(pθ‖πα). (12.113)

We learn α and θ by

min
α

max
θ

S(α, θ), (12.114)

which defines a minimax game.
The gradient for updating α becomes

∇αS(α, θ) = ∇α[Epdata(fα(x)) − Epθ (fα(x))], (12.115)

where the intractable logZ(α) term is canceled.
Because of the negative sign in front of the second KL-divergence in

Eq. (12.113), we need maxθ in Eq. (12.114), so that the learning becomes adversarial
(illustrated in Fig. 12.15). Inspired by Hinton [100], Han et al. [95] called
Eq. (12.114) the adversarial contrastive divergence (ACD). It underlies the work
of [33, 128].

The adversarial form (Eq. (12.114) or (12.113)) defines a chasing game with
the following dynamics: The generator pθ chases the energy-based model πα in
minθ DKL(pθ‖πα), while the energy-based model πα seeks to get closer to pdata
and away from pθ . The red arrow in Fig. 12.15 illustrates this chasing game.
The result is that πα lures pθ toward pdata. In the idealized case, pθ always
catches up with πα , and then πα will converge to the maximum likelihood estimate
minα DKL(pdata‖πα), and pθ converges to πα .

Fig. 12.15 Reprinted with permission from [95]. Adversarial contrastive divergence where the
energy-based model favors real data against the generator. (Left) Interaction between the models.
The red arrow indicates a chasing game, where the red arrow pointing to � indicates that � seeks
to move away from P . The blue arrow pointing from P to � indicates that P seeks to move close
to �. (Right) Contrastive divergence

12.6 Variational and Adversarial Learning 339

This chasing game is different from the VAE minθ minφ DKL(Q‖P), which
defines a cooperative game where qφ and pθ run toward each other.

Even though the above chasing game is adversarial, both models are running
toward the data distribution. While the generator model runs after the energy-based
model, the energy-based model runs toward the data distribution. As a consequence,
the energy-based model guides or leads the generator model toward the data
distribution. It is different from GAN [81], in which the discriminator eventually
becomes confused because the generated data become similar to the real data. In the
above chasing game, the energy-based model becomes close to the data distribution.

The updating of α by Eq. (12.115) is similar to Wasserstein GAN (WGAN) [8],
but unlike WGAN, fα defines a probability distribution πα , and the learning of θ

is based on minθ DKL(pθ‖πα), which is a variational approximation to πα . This
variational approximation only requires knowing fα(x), without knowing Z(α).
However, unlike qφ(z|x), pθ(x) is still intractable; in particular, its entropy does not
have a closed form. Thus, we can again use variational approximation, by changing
the problem minθ DKL(pθ‖πα) to

min
θ

min
φ

DKL(p(z)pθ (x|z)‖πα(x)qφ(z|x)). (12.116)

Define �(z, x) = πα(x)qφ(z|x), and then the problem is minθ minφ DKL(P ‖�),
which is analytically tractable and underlies the work of [33]. In fact,

DKL(P ‖�) = DKL(pθ (x)‖πα(x)) + DKL(pθ (z|x)‖qφ(z|x)). (12.117)

Thus, we can use maxα minθ minφ[DKL(P ‖�) − DKL(Q‖�)] because
DKL(Q‖�) = DKL(pdata‖πα).

Note that in the VAE (Eq. (12.107)), the objective function is in the form of
KL + KL, whereas in ACD (Eq. (12.113)), it is in the form of KL − KL. In both
Eqs. (12.107) and (12.113), the first KL is about maximum likelihood. The KL +
KL form of the VAE makes the computation tractable by changing the marginal
distribution of x to the joint distribution of (z, x). The KL−KL form of ACDmakes
the computation tractable by canceling the intractable logZ(α) term. Because of the
negative sign in Eq. (12.113), the ACD objective function becomes an adversarial
one or a minimax game.

Also note that in the VAE, pθ appears on the right-hand side of KL, whereas in
ACD, pθ appears on the left-hand side of KL. Thus in ACD, pθ may exhibit mode
chasing behavior, i.e., fitting the major modes of πα , while ignoring other modes.

Divergence Triangle: Integrating VAE and ACD

We can combine the VAE and ACD into a divergence triangle, which involves the
following three joint distributions on (z, x) defined above:

340 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.16 Reprinted with permission from [95]. Divergence triangle is based on the Kullback–
Leibler divergences between three joint distributions, Q, P , and �, of (z, x). The blue arrow
indicates the “running toward” behavior, and the red arrow indicates the “running away” behavior

1. Q distribution: Q(z, x) = pdata(x)qφ(z|x).
2. P distribution: P(z, x) = p(z)pθ (x|z).
3. � distribution: �(z, x) = πα(x)qφ(z|x).

Han et al. [95] proposed to learn the three models pθ , πα , and qφ by the following
divergence triangle loss functional S:

max
α

min
θ

min
φ

S(α, θ, φ),

S = DKL(Q‖P) + DKL(P ‖�) − DKL(Q‖�). (12.118)

See Fig. 12.16 for an illustration. The divergence triangle is based on the three KL-
divergences between the three joint distributions on (z, x). It has a symmetric and
anti-symmetric form, where the anti-symmetry is due to the negative sign in front
of the last KL-divergence and the maximization over α. Compared to the VAE and
ACD objective functions in the previous subsections, DKL(Q‖P) is the VAE part,
and DKL(P ‖�) − DKL(Q‖�) is the ACD part.

The divergence triangle leads to the following dynamics between the three
models: (a) Q and P seek to get close to each other. (b) P seeks to get close to
�. (c) π seeks to get close to pdata, but it seeks to get away from P , as indicated by
the red arrow. Note that DKL(Q‖�) = DKL(pdata‖πα) because qφ(z|x) is canceled
out. The effect of (b) and (c) is that π gets close to pdata while inducing P to get
close to pdata as well, or in other words, P chases πα toward pdata.

[95] also employed the layer-wise training scheme of [125] to learn models by
divergence triangle from the CelebA-HQ dataset [125], including 30,000 celebrity
face images with resolutions of up to 1024 × 1024 pixels. The learning algorithm
converges stably, without extra tricks, to obtain realistic results as shown in
Fig. 12.17.

Figure 12.17a displays a few 1024 × 1024 images generated by the learned
generator model with 512-dimensional latent vector. Figure 12.17b shows an
example of interpolation. The two images at the two ends are generated by two
different latent vectors. The images in between are generated by the vectors that

12.7 Cooperative Learning via MCMC Teaching 341

Fig. 12.17 Reprinted with permission from [95]. Learning generator model by divergence triangle
from the CelebA-HQ dataset [125] that includes 30,000 high-resolution celebrity face images. (a)
Generated face images with 1024×1024 resolution sampled from the learned generator model with
512-dimensional latent vector. (b) Linear interpolation of the vector representations. The images
at the two ends are generated from latent vectors randomly sampled from a Gaussian distribution.
Each image in the middle is obtained by first interpolating the two vectors of the two end images
and then generating the image using the generator

are linear interpolations of the two vectors at the two ends. Even though the
interpolation is linear in the latent vector space, the nonlinear mapping leads to a
highly nonlinear interpolation in the image space. We first do a linear interpolation
between the latent vectors at the two ends, i.e., (1−α)z0 +αz1, where z0 and z1 are
two latent vectors at two ends, respectively, and α is in the closed unit interval [0,
1]. The images in between are generated by mapping those interpolated vectors to
image space via the learned generator. The interpolation experiment shows that the
algorithm can learn a smooth generator model that traces the manifold of the data
distribution.

12.7 Cooperative Learning via MCMC Teaching

Joint Training of Descriptive and Generative Models

In ACD, the generator model pθ is used to approximate the energy-based model
πα , and we treat the examples generated by pθ as if they are generated from πα

for the sake of updating α. The gap between pθ and πα can cause bias in learning.
In the work of [262, 263], we proposed to bring back MCMC to bridge the gap.
Instead of running MCMC from scratch, we run a finite-step MCMC toward πα ,
initialized from the examples generated by pθ . We then use the examples produced
by the finite-step MCMC as the synthesized examples from πα for updating α.
Meanwhile, we update pθ based on how the finite-step MCMC revises the initial
examples generated by pθ ; in other words, the energy-based model (as a teacher)
πα distills the MCMC into the generator (as a student) pθ . We call this scheme
cooperative learning.

342 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Specifically, we first generate ẑi ∼ N(0, Id) and then generate x̂i = gθ (ẑi) + εi ,
for i = 1, . . . , ñ. Starting from {x̂i , i = 1, . . . , ñ}, we run MCMC such as Langevin
dynamics for a finite number of steps toward πα to get {x̃i , i = 1, . . . , ñ}, which
are revised versions of {x̂i}. {x̃i} are used as the synthesized examples from the
descriptive model.

The descriptive model can teach the generator via MCMC. The key is that in the
generated examples, the latent z is known. In order to update θ of the generator
model, we treat {x̃i , i = 1, . . . , ñ} as the training data for the generator. Since
these {x̃i} are obtained by the Langevin dynamics initialized from {x̂i}, which are
generated by the generator model with known latent factors {ẑi}, we can update θ

by learning from the complete data {(ẑi , x̃i); i = 1, . . . , ñ}, which is a supervised
learning problem, or more specifically, a nonlinear regression of x̃i on ẑi . At θ(t), the
latent factors ẑi generate and thus reconstruct the initial example x̂i . After updating
θ , we want ẑi to reconstruct the revised example x̃i . That is, we revise θ to absorb
the MCMC transition from x̂i to x̃i . The left panel of diagram (12.119) illustrates
the basic idea.

(12.119)

In the two diagrams in (12.119), the double-line arrows indicate generation
and reconstruction by the generator model, while the dashed-line arrows indicate
Langevin dynamics for MCMC sampling and inference in the two models. The right
panel of diagram (12.119) illustrates a more rigorous method, where we initialize
the MCMC for inferring {z̃i} from the known {ẑi} and then update θ based on
{(z̃i , x̃i), i = 1, . . . , ñ}.

The theoretical understanding of the cooperative learning scheme is given below:

(1) Modified contrastive divergence for the energy-based model. In the traditional
contrastive divergence [100], x̂i is taken to be the observed xi . In cooperative
learning, x̂i is generated by pθ(t) . Let Mα be the Markov transition kernel
of finite steps of Langevin dynamics that samples πα . Let (Mαpθ)(x) =∫

Mα(x′, x)pθ (x
′)dx′ be the marginal distribution by running Mα initialized

from pθ . Then similar to the traditional contrastive divergence, the learning gra-
dient of the energy-based model α at iteration t is the gradient of DKL(pdata ‖
πα) − DKL(Mα(t)pθ(t) ‖ πα) with respect to α. In the traditional contrastive
divergence, pdata takes the place of pθ(t) in the second KL-divergence.

(2) MCMC teaching of the generator model. The learning gradient of the generator
θ in the right panel of diagram (12.119) is the gradient of DKL(Mα(t)pθ(t) ‖ pθ)

with respect to θ . Here π(t+1) = Mα(t)pθ(t) takes the place of pdata as the data to

12.7 Cooperative Learning via MCMC Teaching 343

Fig. 12.18 Reprinted with permission from [264]. TheMCMC teaching of the generator alternates
between Markov transition and projection. The family of the generator models G is illustrated by
the black curve, and each distribution is illustrated by a point. pθ is a generator model, and πα is a
descriptive model

train the generator model. It is much easier to minimize DKL(Mα(t)pθ(t) ‖ pθ)

than to minimize DKL(pdata ‖ pθ) because the latent variables are essentially
known in the former, so the learning is supervised. The MCMC teaching
alternates between Markov transition from pθ(t) to π(t+1), and projection from
π(t+1) to pθ(t+1) , as illustrated by Fig. 12.18.

Conditional Learning via Fast Thinking Initializer and Slow
Thinking Solver

Xie et al. [267] extended the cooperative learning scheme to the conditional learning
problem by jointly learning a conditional energy-based model and a conditional
generator model. The conditional energy-based model is of the following form:

πα(x|c) = 1

Z(c, α)
exp[fα(x, c)], (12.120)

where x is the input signal and c is the condition.Z(c, α) is the normalizing constant
conditioned on c. fα(x, c) can be defined by a bottom-up ConvNet where α collects
all the weight and bias parameters. Fixing the condition c, fα(x, c) defines the value
of x for the condition c, and −fα(x, c) defines the conditional energy function.
πα(x|c) is also a deep generalization of conditional random fields [140]. Both the
conditional generator model and the conditional energy-based model can be learned
jointly by the cooperative learning scheme in Sect. 12.7.

Figure 12.19 shows some examples of pattern completion on the CMP (Center
for Machine Perception) Facades dataset [238] by learning a mapping from an
occluded image (256× 256 pixels), where a mask of the size of 128× 128 pixels is
centrally placed onto the original version, to the original image. In this case, c is the
observed part of the signal, and x is the unobserved part of the signal.

344 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.19 Reprinted with permission from [268]. Pattern completion by conditional learning.
Each row displays one example. The first image is the testing image (256 × 256 pixels) with a
hole of 128 × 128 that needs to be recovered, the second image shows the ground truth, and the
third image shows the result recovered by the initializer (i.e., conditional generator model), the
fourth image shows the result recovered by the solver (i.e., the MCMC sampler of the conditional
energy-based model, initialized from the result of the initializer), and the last image shows the
result recovered by the conditional GAN as a comparison

The cooperative learning of the conditional generator model and conditional
energy-based model can be interpreted as follows. The conditional energy function
defines the objective function or value function, i.e., it defines what solutions are
desirable given the condition or the problem. The solutions can then be obtained
by an iterative optimization or sampling algorithm such as MCMC. In other words,
the conditional energy-based model leads to a solver in the form of an iterative
algorithm, and this iterative algorithm is a slow thinking process. In contrast, the
conditional generator model defines a direct mapping from condition or problem to
solutions, and it is a fast thinking process. We can use the fast thinking generator
as an initializer to generate the initial solution and then use the slow thinking solver
to refine the fast thinking initialization by the iterative algorithm. The cooperative
learning scheme enables us to learn both the fast thinking initializer and slow
thinking solver. Unlike conditional GAN, the cooperative learning scheme has a
slow thinking refining process, which can be important if the fast thinking initializer
is not optimal.

In terms of inverse reinforcement learning [1, 283], the conditional energy-based
model defines the reward or value function, and the iterative solver defines an
optimal control or planning algorithm. The conditional generator model defines a
policy. The fast thinking policy is about habitual, reflexive, or impulsive behaviors,
while the slow thinking solver is about deliberation and planning. Compared with
the policy, the value is usually simpler and more generalizable, because it is in
general easier to specify what one wants than to specify how to produce what one
wants.

	12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models
	12.1 Introduction
	Three Families of Probabilistic Models
	Supervised, Unsupervised, and Self-supervised Learning
	MCMC for Synthesis and Inference
	Deep Networks as Function Approximators
	Learned Computation
	Amortized Computation for Synthesis and InferenceSampling
	Distributed Representation and Embedding
	Perturbations of Kullback–Leibler Divergence
	Kullback–Leibler Divergence in Two Directions

	12.2 Descriptive Energy-Based Model
	Model and Origin
	Gradient-Based Sampling
	Maximum Likelihood Estimation (MLE)
	Objective Function and Estimating Equation of MLE
	Perturbation of KL-divergence
	Self-adversarial Interpretation
	Short-Run MCMC for Synthesis
	Objective Function and Estimating Equation with Short-Run MCMC
	Flow-Based Model
	Flow-Based Reference and Latent Space Sampling
	Diffusion Recovery Likelihood
	Diffusion-Based Model

	12.3 Equivalence Between Discriminative and DescriptiveModels
	Discriminative Model
	Descriptive Model as Exponential Tilting of a Reference Distribution
	Discriminative Model via Bayes Rule
	Noise Contrastive Estimation
	Flow Contrastive Estimation

	12.4 Generative Latent Variable Model
	Model and Origin
	Generative Model with Multi-layer Latent Variables
	MLE Learning and Posterior Inference
	Posterior Sampling
	Perturbation of KL-divergence
	Short-Run MCMC for Approximate Inference
	Objective Function and Estimating Equation

	12.5 Descriptive Model in Latent Space of Generative Model
	Top-Down and Bottom-Up
	Descriptive Energy-Based Model in Latent Space
	Maximum Likelihood Learning
	Short-Run MCMC for Synthesis and Inference
	Divergence Perturbation

	12.6 Variational and Adversarial Learning
	From Short-Run MCMC to Learned Sampling Computations
	VAE: Learned Computation for Inference Sampling
	GAN: Joint Learning of Generator and Discriminator
	Joint Learning of Descriptive and Generative Models
	Divergence Triangle: Integrating VAE and ACD

	12.7 Cooperative Learning via MCMC Teaching
	Joint Training of Descriptive and Generative Models
	Conditional Learning via Fast Thinking Initializer and Slow Thinking Solver

