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Preface 

The highest activity a human being can attain is learning for 
understanding, because to understand is to be free. 

—Baruch Spinoza, Philosopher, 1632–1677 

Story of David Marr 

This book is intended for researchers and graduate students in statistics, computer 
science, and engineering. Based on contributions from multiple authors in the past 
20+ years in the Department of Statistics and the Department of Computer Science 
at the University of California, Los Angeles, it may be used as a reference in the 
fields of computer vision and pattern recognition. As the first book of a three-part 
series, this book is offered as a tribute to pioneers in vision, such as Béla Julesz, 
David Marr, King-Sun Fu, Ulf Grenander, and David Mumford. In this book, the 
authors hope to provide a mathematical framework and, perhaps more importantly, 
further inspiration for continued research in vision. 

An overarching goal of the three-book series is to provide a mathematical 
framework for research on vision, cognition, and autonomy in artificial intelligence. 
With the rise of deep learning, applications of neural networks continue to grow 
but still very much at the expense of understanding how these models truly work or 
generate their solutions. It is all too common to refer to neural networks as “black 
boxes,” representing a common lack of understanding in the community. In an 
effort to promote understanding of neural networks, and to promote the unification 
of various artificial intelligence theories under a common framework, the vision 
models in this book take inspiration from many authors in artificial intelligence and 
other fields, such as statistics, physics, neuroscience, and psychology. Models in this 
book may lead to more explicit understandings of neural networks, or in some cases 
may help to modify or generalize existing neural networks, so that more explicit and 
more efficient models, in terms of both data efficiency and computational efficiency, 
may emerge. 

David Marr is well known for pioneering a resurgence of interest in computa-
tional neuroscience and for integrating the fields of psychology, neurophysiology, 
and artificial intelligence in his research on visual processing. After he passed away 
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at the age of 35, his work was published posthumously in 1982 in the book Vision: A 
computational investigation into the human representation and processing of visual 
information [169]. Although Marr published early works on the cerebellum in 1969, 
neocortex in 1970, and hippocampus in 1971, he is most well-known for his research 
on vision. He laid foundations for continued studies of vision for various fields, such 
as computational neuroscience and computer vision. 

Referred to as Marr’s tri-level hypothesis, Marr viewed vision as an information-
processing system that should be understood at three distinct, but complementary, 
levels: the computational level, the algorithmic or representational level, and the 
implementational or physical level. At the computational or mathematical level, 
one seeks to understand the problems the visual system solves and, in a similar 
sense, why it solves them. At the algorithmic or representational level, one seeks 
to understand how the visual system solves its problems, i.e., the representations it 
uses and the algorithmic processes it employs to manipulate those representations. 
At the implementational or physical level, one seeks to understand how the visual 
system is physically realized. In the same spirit as Marr’s tri-level hypothesis, in 
this book, vision problems are addressed with respect to each of the computational, 
representational, and implementational levels. Crucially, vision problems may 
be studied at the computational and representational levels, independent of the 
implementational level, which is often realized through neural networks [170]. 

Marr believed that a deep understanding of the brain entails an understanding of 
the problems it encounters, i.e., the input, and how it solves them, i.e., the steps 
taken to produce the output. As his interests gradually evolved from the brain 
to visual processing, he began to treat vision similarly. He described vision as a 
computational process that takes as input a two-dimensional array on the retina and 
outputs a three-dimensional description of the world. His three stages of vision, 
depicted in Fig. 1, include a primal sketch, a 2.5D sketch, and a 3D model. A 2.1D 
sketch was also proposed by Nitzberg and Mumford [185]. 

A primal sketch extracts key components of a scene, such as simple edges 
and regions. Textures and textons are constituent parts of a primal sketch, which 
correspond to the early stages of human visual perception, i.e., the first visual 
phenomena noticed by humans when viewing an object. A 2.5D sketch reflects 
textures and depth. The 2.1D and 2.5D sketches correspond to mid-level vision. In 
a complete 3D model, a scene is visualized in a continuous 3D map. The 3D model 
corresponds to high-level vision and provides an object-centered perspective, while 
the primal 2.1D and 2.5D sketches provide view-centered perspectives. 

Various research influenced Marr’s book Vision, such as psychology experiments 
by Béla Julesz on textures and textons, neuroscience discoveries in edge detection 
and filters, the random dot stereopsis by Julesz, the shape-from-shading theory from 
Berthold K. P. Horn, and research on generalized cylinders and 3D representations. 
Various works facilitated the transitions from primal sketch to 2D sketch to 
2.5D sketch to a complete 3D model. For a primal sketch formulation, work 
on textures and textons paired with work on edge detection and filters provided 
crucial foundations. For the 2.5D sketch, the random dot stereopsis from Julesz 
and the shape-from-shading theory by K. P. Horn facilitated the modeling of
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Fig. 1 Stages of vision according to Marr’s paradigm 

textures and depth. Lastly, for the 3D model, work on generalized cylinders and 
3D representations made it possible to model scenes in continuous, 3D maps. 

As a whole, Marr’s work proposed a holistic framework for understanding vision 
and touched on broader questions about how cognition may be studied. Thirty years 
later, the main problems that occupied Marr remain fundamental, open problems in 
the study of vision. This book may be understood as a bridge between Marr’s theory 
of vision and the modern treatment of computer vision with statistical models. It 
explores connections between Marr’s paradigm and neuroscience discoveries while 
solidifying such discoveries with mathematical models. 

The mathematical framework studied in this book also counteracts a “big data for 
small tasks” paradigm that dominates the machine learning community today. This 
paradigm refers to the practice of exploiting massive amounts of data for highly 
specific tasks and essentially repeating this process for each new task. A great deal 
of research readily falls susceptible to such a “task trap,” such that solutions often 
do not contribute to a greater, unified framework for vision. 

Given the wide variety of artificial intelligence methods used today on similar 
problems, it is clear much effort is devoted by the community as a whole to 
often entirely different research approaches. Undoubtedly, ingenuity and novelty 
contribute greatly to research advancement, but the community as a whole could 
work more in harmony and hence more efficiently if it adopted a common ground, 
or overarching framework, for general-purpose research in vision. This type of 
maturation for the field of vision is comparable to a process other academic fields 
have undergone and is arguably long overdue. 

Beyond David Marr’s Paradigm 

This book provides mathematical frameworks and models for many of Marr’s con-
cepts. Notably not available during Marr’s time, they include Markov random fields; 
the FRAME (Filters, Random fields, and Maximum Entropy) model [282], i.e., a
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predecessor of the energy-based model (EBM); generative models; sparse coding 
models [190]; various inference algorithms; and deep neural networks. Textures 
and textons are fundamental elements of Marr’s paradigm, in particular for the 
primal sketch. For textures, Markov random fields may be used to mathematically 
formulate models for textures. For textons, generative models and sparse coding 
models provide essential mathematical formulations. 

Béla Julesz was a psychologist at Bell Labs and a professor at Rutgers best 
known for his work on random dot stereo and texton theory. His work inspired 
many thinkers, including Marr, to establish the field of computational vision. We 
can mathematically define a texture by a Julesz ensemble, which is a population 
of images defined on the infinite 2D image lattice, where all the images in this 
ensemble share the same spatial statistics. Under the uniform distribution over this 
ensemble of infinitely large images, the probability distribution of images on a finite 
image patch follows a Markov random field model. 

In general, a visual concept can be defined by an ensemble or population 
of images, whose distribution can be mathematically defined by a probability 
distribution or a probability density function. The goal of learning is to estimate 
or approximate this probability distribution based on a finite number of examples 
randomly sampled from this population. 

For modeling textons, sparse coding models and active appearance models 
(AAM) have found some success. Sparse coding states that objects may be 
represented by the strong activation of a relatively small set of nodes, or neurons. 
It is motivated in part by research in biological vision. For example, Huber and 
Wiessel in the 1960s performed experiments on cats to record the activations of 
cortical cells in the V1 section of the mammalian brain. It was observed that bars 
of light oriented mostly vertical activated a particular set of neurons in the V1 
section of the brain, while the same bar of light oriented in other directions failed 
to activate the same neurons. In another neurophysiological experiment, a neuron 
was recorded to selectively fire only to images of Jennifer Aniston, inspiring a 
sparse coding scheme called grandmother cell coding. Furthermore, some neurons 
referred to as mirror neurons fire not only when performing an action but also when 
observing other subjects perform the same action. In general, one of the striking 
observations about physiological recordings from sensory cortical areas of the brain 
is the difficulty of finding stimuli that effectively activate some given neurons. These 
difficulties reflect the narrow functionality of cortical neurons, which, given the 
incredibly large number of them, suggests that a sparse coding system may be in 
place in the brain. 

Field [54] performed experiments on the primary visual cortex to suggest that 
basis functions limited in both space and frequency domains, such as Gabor 
functions, maximize sparseness when applied to natural images. Olhausen and Field 
[187] gave examples of sparse coding in other brain regions. In [190], Olhausen 
and Field defined an explicit objective function that promoted both high sparseness 
and low reconstruction error. The minimization of this function on natural images 
leads to a set of basis functions that resemble localized receptive fields of simple 
cells in the primary visual cortex. Sparse coding is closely related to independent 
component analysis [15].
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Various inference algorithms and deep neural networks, also methods not 
available during Marr’s time, are widely used throughout this book. Of course, 
the vision community has seen incredible success in recent years due to advances 
in deep learning, but as mentioned before, research efforts in vision are often 
devoted to entirely different approaches. In an effort to recapture the main theme of 
vision, this book carefully establishes mathematical frameworks for general-purpose 
research in vision by examining theories in the literature, beginning with Marr’s 
paradigm and progressing up to the most recent uses of neural networks. 

Introducing the Book Series 

The book series consists of three parts. 
The first book, introduced here, covers David Marr’s paradigm and various 

underlying statistical models for vision. The mathematical framework herein inte-
grates three regimes of models (low-, mid-, and high-entropy regimes) and lays 
the ground for research in visual coding, recognition, cognition, and reasoning. 
Concepts in this book are first explained for understanding and then supported 
by findings in psychology and neuroscience, after which they are established by 
statistical models and further linked to research in other fields. A reader of this book 
will gain a unified, cross-disciplinary view of artificial intelligence research in vision 
and will accrue knowledge spanning from psychology to neuroscience to statistics. 

The second book defines stochastic grammar for parsing objects, scenes, and 
events, posing computer vision as a joint parsing problem. It summarizes research 
efforts over the past 20 years that have worked to extend King-Sun Fu’s paradigm 
of syntactic pattern recognition. Similar to David Marr, King-Sun Fu was a pioneer 
and influential figure in the vision and pattern recognition community. 

The third book discusses visual commonsense reasoning, including subjects 
such as functionality, physics, intentionality, causality, and values. The third book 
connects vision to cognition and artificial intelligence. 

The authors would like to thank many current and former Ph.D. students at 
UCLA for their contributions to this book: Erik Nijkamp, Eric Fischer, Jonathan 
Mitchell, Linqi Zhou, Mitchell Hill, Yaxuan Zhu, Ruiqi Gao, Yuxin Qiu, Chi Zhang, 
Peiyu Yu, Sirui Xie, Dehong Xu, Deqian Kong, Adrian Barbu, and Tianfu Wu. 
Erik Nijkamp and Eric Fischer, especially, have worked extensively on editing the 
manuscript. 

Beijing, China Song-Chun Zhu 
Los Angeles, CA, USA Ying Nian Wu 

The original version of the book has been revised. A correction to this book can be found at https:// 
doi.org/10.1007/978-3-030-96530-3_13
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Chapter 1 
Introduction 

The primary aim of this book is to pursue knowledge representation for vision. 
In a world in which technology generates immense amounts of data from a wide 
spectrum of sources, it is of growing importance to establish a common framework 
for knowledge representation, learning, and discovery. A current problem in arti-
ficial intelligence is how to acquire truly massive amounts of knowledge, akin to 
the faculty of common sense in humans, from raw sensory signals and, moreover, 
use this knowledge for inference and reasoning. In this book, the vision models 
presented for acquiring such knowledge are based most fundamentally on statistical 
properties discovered for natural images over the past several decades. Similar 
to models in physics, models are advanced based on empirical grounds, such as 
discovering additional patterns in data. In this way, models stay free of bias. 

Discriminative modeling approaches are not discussed in this book in depth. In 
statistical classification, two main approaches exist: discriminative and generative 
modeling. In discriminative modeling, the conditional probability of a target y is 
modeled, given an observation x, i.e., p(y|x). Often, the value of a target variable 
y is determined by training a model on thousands of examples. A discriminative 
classifier may perform well at discriminating between, e.g., chairs and non-chairs, 
but does it truly understand the concept of a chair? Consider adversarial attacks 
in the literature, in which an image that a discriminative classifier can otherwise 
correctly classify with a high degree of certainty is injected with a small amount 
of noise, in many cases barely perceptible to a human, and the predicted class is 
entirely different, e.g., a bus instead of a chair. This behavior demonstrates that 
a discriminative model does not actually learn the concept of a chair as a human 
does—it only learns to discriminate between chairs and non-chairs using whatever 
obscure image features it may prefer. 

In cases in which discrimination is not the ultimate goal, generative modeling 
approaches, explored in this book, facilitate the construction of models more 
representative of human learning. In generative modeling, given an observable 
variable x and a target variable y, the joint probability distribution p(x, y) is 
modeled. From this, the conditional probability p(y|x), modeled directly in discrim-
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s 

Fig. 1.1 One can observe, as an example of texture, the tree leaves in the background and, as an 
example of textons, the edges created by tree trunks in the foreground 

inative modeling, is computed. Generative modeling is not only more indirect but 
also more probabilistic in comparison to discriminative modeling, allowing more 
domain knowledge and probability theory to be applied. In this way, generative 
models better represent human learning. For example, with prior domain knowledge 
encoded, a generative model can generalize knowledge to new but related tasks. And 
this is akin to human learning; a human may be able to intuit, for example, how to 
make orange juice with the prior knowledge of how to make lemonade. 

After discussing statistical properties discovered for natural images in Chap. 2, 
the most basic units of visual perception, textures and textons, are introduced in 
Chaps. 3 and 4, respectively. A texture could be sand, or the thousands of leaves 
of a tree viewed from afar, as in Fig. 1.1, for which individual components in pre-
attentive vision are not disentangled. Pre-attentive vision is characterized as human 
vision before focusing on any specific region of some visual stimuli. A texton, 
or a “token” as referred to by Marr, can be thought of as a most basic element, 
like a bar, edge, corner of an eye, or trunk of a tree as in Fig. 1.1. Textons form 
the structural part of an image and object boundaries. Note that the same object 
may be perceived as textons or texture, depending on potential viewing distance 
or focal point, and in natural scenes, these two entities are seamlessly interwoven. 
Following David Marr’s insight, these two modeling components may be integrated 
to form a generative image representation called primal sketch, which he referred 
to as a “symbolic” image representation in terms of image primitives. Primal sketch
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is discussed further in Chap. 6, after a discussion of Gestalt laws and perceptual 
organization, which naturally follows from Chap. 4 on textons. 

Marr defined different stages of vision, starting from a 2D visual array on the 
retina to a 3D description of the world. His stages of representation include a primal 
sketch, a 2.1D sketch, a 2.5D sketch, and a 3D model. The first two stages perform 
separation between four main factors known to influence perceived visual intensity: 
geometry (shape and position), reflectance of visible surfaces, illumination, and 
viewpoint. A primal sketch extracts fundamental components of the scene, like 
edges and regions, and it looks like a pencil sketch. In a primal sketch, geometric 
structures, pixel intensity changes, and illumination effects are detected. A primal 
sketch captures spatial layout by using textons, such as edges, bars, and blobs. A 
2.1D sketch introduces layered representations of the input image and is discussed 
in Chap. 7. A 2.5D sketch, discussed in Chap. 8, represents orientation, depth, and 
textures, considering the distance from the viewer and discontinuities in depth and 
surface orientation. Both primal and 2.5D sketches are viewer-centered perceptions. 
In a 3D model, the scene is visualized in a continuous 3D map, as an object-centered 
perception. The 3D representation describes shapes and their organization using 
a hierarchical organization of volumetric and surface primitives. Marr’s stages of 
visual perception serve as a basis for further analyses in the book. 

In Chap. 9, information projection is introduced as a framework for learning a 
statistical model as an approximation to the true data distribution. In Chap. 10, 
information scaling and regimes of models are discussed, including entropy, 
metastability, and energy landscapes. In Chap. 11, image models with multilayer 
neural networks, such as deep FRAME/energy-based model and the generator 
model, are presented. In Chap. 12, three main families of machine learning models, 
i.e., discriminative, generative, and descriptive models, are further examined. 

1.1 Goal of Vision 

In the parse graph in Fig. 1.2, there can be several types of nodes including scenes 
and objects, minds and intents, hidden objects, actions, imagined actions, attributes, 
and fluents, i.e., how objects change over time. Nodes are organized in a tree-
like hierarchical structure with potential connections between sibling nodes. Parse 
graphs for knowledge representation in vision will be discussed in greater detail in 
the second book, but for now, it may be understood that it involves parsing scenes 
and events in a picture, or a video sequence, into nodes such as in Fig. 1.2. 

These nodes may be represented with words one might use to describe them 
in natural language, e.g., “backpack” or “vending machines,” or they may be 
represented with “words” that are not really words at all—perhaps a symbol, a 
number, some other character, an expression in sign language, or a facial expression. 
Either way, for simplicity, the descriptors of these nodes are referred to as words. 
They can be thought of as visual words in the sense that even a primate, for example, 
could have a word for a node, even though it is not endowed with a capacity for
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Fig. 1.2 Scenes and events may be understood in terms of a parse graph. From a single 
image, a dense 3D scene may be reconstructed, by estimating camera parameters, materials, 
and illumination. The scene may be parsed hierarchically in terms of relations, intents, beliefs, 
attributes, and fluents. The actions of agents may be predicted over time and hidden object states, 
e.g., water boiling inside a metal kettle, which humans can naturally infer from the image, may 
even be recovered 

language. Sometimes in this book, words are referred to as symbols or concepts, but 
this is only to aid with explanation depending on the context. 

A common misconception is that concepts are encoded explicitly in pictures. 
The raw pixel values of a given picture do not directly correlate to, or represent, any 
concepts. Consider, for instance, a grayscale image of 1000×1000 pixels, which 
may be represented as a 1000×1000 table, a portion of which would look similar to 
Fig. 1.3. For a color image, each table entry would contain three numbers, indicating 
the intensities of the colors red (R), green (G), and blue (B). Nowhere in this 
collection of numbers can an explicit representation of a concept such as a person, 
table, or chair be found. They have to be inferred in a sophisticated manner from 
the collection of numbers representing the image. Visual computation is a daunting 
task for computers, just the same as it is for humans. In fact, half of the human 
brain is devoted to visual computation, and most of the brain’s activities that involve 
cognition and reasoning are based on visual stimuli. 

At this stage, researchers have yet to grasp how the so-called “signal to symbol” 
transition is realized, i.e., how concepts are inferred and ultimately learned from 
visual stimuli. In order to answer this question, the relationship between concepts 
and image patches, such as the one shown in Fig. 1.3, needs to be better understood,
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Fig. 1.3 An image is merely a collection of numbers indicating the intensity values of the pixels 

as well as how different concepts relate to one another. The relationship between 
images and concepts as it relates to modeling is explored in depth in Chap. 2. 

In Vision, David Marr stated, “Vision is the process of discovering from images 
what is present in the world, and where it is.” The parse graph in Fig. 1.2 depicts 
“what” objects are present in the image and “where” they are spatially relative to 
other objects. The distinction between “what” and “where” in vision is noteworthy. 
The ventral pathway in the brain is thought to account for “what” objects humans 
see and the dorsal pathway for “where” humans see them. The notion of a division 
between a ventral and a dorsal visual stream has been an essential principle of visual 
processing since David Milner and Melvyn Goodale published the two-streams 
hypothesis in 1992. 

The two-streams hypothesis argues that humans have two distinct visual systems. 
After visual information exits the occipital lobe, it follows two pathways or streams. 
The ventral pathway, or “vision-for-perception” pathway for “what” humans see, 
leads to the temporal lobe, which is involved with object identification and



6 1 Introduction

Fig. 1.4 The dorsal pathway 
is responsible for the spatial 
aspect of vision, i.e., “where” 
humans see objects. The 
ventral pathway is 
responsible for the main 
content of vision, i.e., “what” 
objects humans see 

recognition. This pathway is believed to mainly identify and discriminate between 
shapes and objects. The dorsal pathway, or “vision-for-action” pathway, leads to 
the parietal lobe, which is involved with processing objects’ spatial locations. This 
pathway has been tied to movements such as reaching and grasping, which are based 
on evolving spatial locations, shapes, and orientations of objects. Understanding 
the difference between the two visual pathways, the ventral pathway for perception 
and the dorsal pathway for action, is useful knowledge for vision research and for 
understanding the inspiration behind theories presented later on (Fig. 1.4). 

Another consideration for vision research that must be accounted for is the fact 
that human vision is often task-driven. After viewing an instructional video about 
how to make watermelon juice, one could most likely reenact the process, including 
chopping watermelon, blending it, and so forth. The physics and the functionality 
of the objects, and potentially hundreds of other subtasks involved in making the 
juice, may be easily understood. Humans additionally understand the causality and 
how to, e.g., switch the order of the steps without affecting the final result. From a 
small amount of data, i.e., the instructional video in this case, humans can absorb a 
massive amount of information, forming what is actually just referred to as common 
sense. Humans possess this remarkable ability because vision is incredibly task-
driven, absorbing specific information from complex visual stimuli. 

Thus, the faculty of common sense, which forms part of the prior knowledge 
each human possesses, ultimately entails an understanding of physics, functionality, 
causality, intentionality, and utility, among other properties of a scene. Pursuing 
holistic knowledge and learning reminiscent of prior knowledge and learning in 
humans may be referred to as the “small data for big tasks” paradigm. This is where 
efforts are concentrated in this book. Many avenues in machine learning today, 
unlike human learning, depend on massive amounts of data to learn highly specific 
tasks, such as the task of making watermelon juice or identifying a person from his 
or her face in facial recognition. This assumes no prior knowledge and this type of 
learning is not generalizable. As mentioned previously, this contrasting and all-to-
common paradigm in machine learning may be referred to as the “big data for small 
tasks” paradigm. 

As a given task or purpose very much influences the interpretation of visual 
stimuli to form knowledge, similar behavior should be exhibited by vision models. 
Accordingly, in this book the optimal model and knowledge representation of some 
visual data depends not only on the data but also on the relevant task. Here, a contrast
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may be made with the field of physics. In vision, there are subjective, in addition to 
the objective, considerations that guide the formation of models. As a vision model 
seeks structure in the data, i.e., an image space, the optimal structure or architecture 
of the model depends on its given purpose. As an example, the hierarchical structure 
of an And–Or graph depends on its purpose, such that it evolves as the purpose of 
the model evolves. 

As mentioned, vision models should also generalize well. Although excellent 
for a specific task, discriminative modeling approaches clearly lack generalization, 
which does not reflect human learning. Again, a human could likely infer how to 
make orange juice after learning how to make lemonade or watermelon juice. Or 
a human could infer how to crush a walnut with a book after observing someone 
crushing it with a hammer. Humans have the ability to generalize knowledge to the 
novel but similar tasks, often after learning from just one example. The generative 
modeling approach offers the tools to begin to mimic this incredible learning ability. 

Humans generalize knowledge well primarily due to prior knowledge and 
imagination, among other faculties. From birth, humans continually gain a better 
understanding of space, time, causality, functionality, and other features of the 
world, utilizing that knowledge each time a new task is learned. As humans learn, 
they add to their prior knowledge, in this way creating a continual accumulation 
of it. With imagination, humans have the ability to extrapolate prior knowledge to 
imagined future or hypothetical tasks, a powerful tool for generalizing knowledge. 

1.2 Seeing as Bayesian Inference 

Clearly, the way in which humans form and represent knowledge from visual 
stimuli is complex and relies on more than just vision—it is dependent on prior 
knowledge, imagination, and in general the mind, or agent, that perceives. In fact, 
every image has literally infinite interpretations, and humans must derive only one 
or two meaningful interpretations for each one. Vision, in this sense, is under-
constrained and necessitates some form of guessing by the agent, using prior 
knowledge. Images, by themselves, lend minimal information. This is an important 
point and essentially what it means for vision to be ill-posed and mostly an illusion. 
Interpretation of visual stimuli is largely independent of the visual stimuli itself—it 
depends on the agent’s prior knowledge and imagination. 

It has been shown that a form of top-down processing performed by the visual 
system also contributes greatly to visual interpretation. Top-down processing makes 
use of global information propagation, exploiting high-level knowledge possessed 
by the agent. The agent considers high-level contextual information and performs 
top-down inferential reasoning based on prior knowledge, both innately acquired 
through evolution and learned through experience. With top-down processing, the 
agent may form an interpretation of visual stimuli, even if the stimuli were only 
partially perceived or perceived poorly, e.g., due to poor lighting conditions or quick 
movement. To give an example, top-down processing may help one intuit the object



8 1 Introduction

or scene of a partially completed puzzle, although only portions of what typically 
represents the object or scene are present. With the role of top-down processing in 
the visual system, top-down architectures have become paramount to the design of 
learning and inference algorithms in vision. 

Given prior knowledge, a basic assumption since the time of Helmholtz’s 
research in the 1860s is that a given visual input may be represented as the most 
probable computed interpretation of an image. To give a Bayesian formulation for 
vision, let I be an image and pg be a semantic representation of the world, such 
as a parse graph. The most probable representation pg∗ of the image is defined 
as pg∗ = arg maxpg∈�p(pg|I) = arg maxpg∈�p(I|pg)p(pg). To obtain probable 
interpretations, it is necessary to sample from the posterior p(pg|I) and obtain 
candidates (pg1, pg2, ..., pgk) ∼ p(pg|I). This is a crucial point—sampling from 
the posterior probability lends the possible visual interpretations. The result of this 
process, pg∗, represents the most probable semantic representation of the image and 
the visual interpretation of the agent. 

The quality of the prior knowledge of a model may be judged using a method 
referred to as analysis by synthesis, based on synthesized examples. Analysis by 
synthesis can be compared to a Turing test as a way to judge the humanlike thinking 
capability, or intelligent behavior, of an artificial intelligence model. In a Turing 
test, a subject asks questions to two different agents, one a machine and the other 
a human, and the machine is determined to be more humanlike the more uncertain 
the subject is in identifying the human from the machine, based on each of their 
responses. Thus, the machine does not need to have correct responses; it merely 
needs to respond like a human, to perhaps fool the subject into thinking it is, in fact, 
the human. The analysis by synthesis method may also be used to judge humanlike 
thinking capability, but in a way that does not depend on the input, such as a subject 
asking questions. This eliminates the possibility of any questionable input. The 
analysis by synthesis method thus provides an unrestricted way to judge what a 
machine knows, i.e., its prior knowledge—in a way, this is similar to dreaming in 
humans. Dreaming, or the imagination, is also unrestricted in the sense that these 
are perceptions, often of great visual detail, that also receive no input visual stimuli. 
Interestingly, then, the analysis by synthesis method may be viewed as a way to 
determine what a machine “imagines” or “dreams.” If one were to draw several 
random samples meant to represent a dream from a completely untrained model that 
possesses no prior knowledge of the world, the random samples would be akin to 
white noise. A well-informed model, however, would produce a detailed, interesting 
dream. 

The fact that vision relies so heavily on prior knowledge and imagination signi-
fies that it is highly probabilistic. Accordingly, probability and Bayesian inference 
play large roles in vision research. The probabilistic nature of vision is most obvious 
with problems exhibiting imperceptibility, in which human vision jumps between 
image interpretations often entirely different. In the bikini versus martini example, 
a well-known example demonstrating ambiguity in visual perception, human vision 
oscillates between interpretations of a bikini bathing suit and a martini drinking 
glass, depending on how the visual system interprets the image. Mathematically, the
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fact that perception may jump between interpretations in some structured state space 
poses a significant challenge for the design of learning and inference algorithms. 
Ambiguities in the visual inference that occur with human vision are, in general, 
difficult to model. Imperceptibility in vision is more formally introduced in Chap. 9, 
which discusses information scaling regimes. 

Imperceptibility may be formally defined as the complexity of an image sub-
tracted from the complexity of the world. As a measure of complexity, it may be 
aptly modeled with entropy. Given a generative model such that pg ∼ p(pg) and 
I = g(pg), in which pg is a semantic representation of the world and I is an 
image, imperceptibility H(p(pg|I)) = H(p(pg)) − H(p(I)). Entropy measures 
complexity or uncertainty, e.g., the image complexity H(p(I)) = E[− logp(I)] =  
− ∫

p(I) log p(I)dI. Hence, as world complexity increases relative to the image 
complexity, imperceptibility grows. When the posterior probability p(pg|I) exhibits 
high imperceptibility, it means that certain variables in pg, the semantic representa-
tion of the world, cannot be inferred as the uncertainty is too high; hence, they are 
imperceptible. In this case, the model’s representation of the world would need to 
be reduced in complexity. 

As the concept of imperceptibility explains ambiguities in inference, it has been 
utilized in analyses of abstract art. Artists intentionally create imperceptible aspects 
of a piece of artwork to induce ambiguous visual interpretations. Viewers may 
proceed down different perceptual paths to interpret the artwork in various ways. 

1.3 Knowledge Representation 

To begin to understand the way knowledge may be represented in vision, first 
consider the space of all image patches of natural scenes and of a fixed size, e.g., 
10 × 10 pixels. These image patches reside in an image space whose dimension is 
the total size of the image patches, in this case, 10×10 = 100. Each image patch can 
be treated as one point in the image space. Hence, the image patches together form 
a population of points in the image space. One may consider an analogy between 
this population and the 3D universe, as illustrated in Fig. 1.5. The distribution of 
mass within the universe is highly uneven. There are high densities of mass at stars, 
but there are low densities of mass across nebulas (clouds of dust and gas in outer 
space), in which mass is spread out. The distribution of the population of natural 
image patches in the image space is also highly uneven. To model this space, it 
becomes necessary to identify, map out, and catalog high-density clusters such as 
stars, as well as low-density regions such as nebulas. 

Just as a representative in the United States Congress represents a subset of 
the population, mathematically, a concept represents a subset or sub-population of 
image patches within the entire universe of image patches. All the image patches 
in this subset are perceived as the same pattern and hence are described by the 
same symbol or “visual word.” The subset, or sub-population, of image patches 
that correspond to a concept can be represented mathematically by a probability
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Fig. 1.5 Consider the complex distribution of mass in the universe, e.g., at stars (high-density 
low-volume clusters) and over nebulas (low-density high-volume regions). Left: the universe with 
galaxies, stars, and nebulas. Right: a zoomed-in view of a small part of the image 

Fig. 1.6 The hope is that �p , the learned estimate of �f , approximates as closely as possible
�f . The better the approximation, the more closely the learned concept p approximates, and thus 
accurately represents, the real concept f 

distribution or a probability density function, which can be parametrized by a 
statistical model. Hence, concepts can ultimately be represented by statistical 
models, which are quite powerful. 

Thus, there are two spaces: the image space of image patches (signals) and 
the model space of concepts (symbols), depicted in Fig. 1.6. Each concept, which 
corresponds to a set of image patches in the image space, is represented as just 
one point in the model space. For example, in Fig. 1.6, the sub-population of image 
patches �f in the image space corresponds to one concept f , a point in the model 
space. All the image patches of a concept, despite having diverse pixel intensities, 
correspond to the same concept because they are perceived as the same pattern or 
object by the visual system.
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Suppose a number of image patch examples are randomly sampled from the 
sub-population of image patches �f , and the goal is to learn a concept f in the 
model space based on these examples. In other words, the goal is to recover the 
sub-population �f to best learn the concept f . First and foremost, it is impossible 
to fully recover the sub-population �f , since it is impossible to access all image 
patches in the universe that belong to �f . All the image patches that correspond to 
the concept of sand, for example, are clearly not somewhere in a dataset. However, 
it is still possible to come up with an approximated estimate of �f . Call it �p, 
which corresponds to a concept p in the model space. The hope is that the set �p 
is close to the set �f in the image space so that the concept p will be as close as 
possible to the concept f in the model space. For example, one might hope p is 
within a distance ε of f , measured by some predefined metric. In machine learning, 
identifying �f based on randomly sampled examples from �f is referred to simply 
as learning, and these examples are training examples. 

Concepts can differ greatly in their complexities. Some concepts may appear 
to be very simple or regular, such as a line segment, a triangle, or even a human 
face, while other concepts can appear quite complex or random, such as stochastic 
textures like grasses or other foliage. Some concepts lie in between, such as the 
face of a tiger. Ultimately, concepts may be defined as textures, textons, or some 
composition of the two. Compositions of textures and textons are discussed in 
the second book in the series. Figure 1.7 is a simple illustration of concepts with 
different complexities. For each concept, such as a texture or the face of a tiger, 
a number of examples are collected, which may then be aligned in the case of, 
e.g., faces. The principal component analysis is performed and the eigenvalues are 
plotted in descending order. For a simple concept such as a face, the eigenvalues 
drop to 0 very quickly, indicating that the images lie in a very low-dimensional 
space. For a complex concept such as a texture, the eigenvalues stay high for an 
extended range, indicating that the images lie in a very high-dimensional space. For 
the face of a tiger, the eigenvalues lie in between. 

Fig. 1.7 Observe a plot of 
eigenvalues, in decreasing 
order, both for concepts of 
low dimension (blue curve) 
and high dimension (red  
curve)
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Fig. 1.8 Simple geometric patterns like edges and bars have low entropy, while stochastic textures 
like fur and carpet have high entropy 

The complexity of a concept f in the model space can be measured by the 
log volume of the corresponding subset �f in the image space if we assume a 
uniform distribution. This log volume is called entropy in statistical physics and 
information theory, and it is called intrinsic dimension in mathematics and coding 
theory. As one can see in Fig. 1.8, entropy may be used as an axis on which to 
map concepts. Geometric patterns belong to the low-entropy regime, while texture 
patterns belong to the high-entropy regime. Many object patterns lie in the mid-
entropy regime. Textons are of low entropy, textures are of high entropy, and 
many compositional structures in between are of mid-entropy. Textures, textons, 
and compositions provide three ways to characterize a sub-population in the image 
space that represents a concept in the model space. While patterns in the low-
entropy regime tend to be simple and patterns in the high-entropy regime tend to 
be random, patterns in the mid-entropy regime tend to be quite informative. The 
informativeness of a concept f can be measured by the number of parameters 
needed to specify it in the model space. Central to the goal of this book is to establish 
a mathematical framework and form of knowledge representation under which these 
entropy regimes may be further studied and defined. 

With the aim of unified knowledge representation, a natural question is how to 
relate different types of knowledge. Vision models that lend knowledge representa-
tion can generally be categorized into three paradigms: logic models, probabilistic 
models, and discriminative models, as shown in Fig. 1.9. In the 1960s and 1970s, 
knowledge was mostly represented by logic formulas, i.e., propositions and pred-
icates, called well-formed formulas. In this paradigm, a concept is represented 
by a set, which is in turn specified by well-formed formulas. As such, a concept 
is ultimately equivalent to a set of states, from a joint state space, that satisfies 
all the well-formed formulas. Propositional calculus, first-order predicate calculus, 
situation calculus, and event calculus are all used to represent knowledge. In general, 
the logic paradigm for knowledge representation is alive and well, and it is used
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Fig. 1.9 At the highest level of vision and cognition, one can discriminate between three types 
of models: Knowledge Representation (U) models, Causal (C) models, and Value and Utility (V) 
models. The last two types are discussed in the third book in the series, along with many other 
more advanced artificial intelligence concepts. Knowledge representation models aim to describe 
the world as intuitively and as accurately as possible. Causal models represent cause and effect 
in the physical world. Value models compute how much value is placed on certain objects or 
ideas; they involve morality. Causal (C) and Value (V) models together guide the creation of the 
world. For example, chairs are created because they have a certain value (V) and satisfy some 
causality (C) in physics, allowing an individual to rest when he or she sits down. Causal and 
Value models, as they uncover knowledge, feed Knowledge Representation models. There are 3 
paradigms for knowledge representation: logic models, probabilistic models, and discriminative 
models. Probabilistic models have low- (e.g., textons), mid-, and high-dimension (e.g., textures) 
regimes, each increasing in entropy. At the top right, one can see a 32× 32 image space, i.e., 1024 
dimensions, in which part of the space is only 2D, while another part of the space is 990D. This 
conveys that dimensionality often varies greatly in just one image, lending instances of each of the 
low-, mid-, and high-dimension regimes 

today to solve many problems in vision. For example, situation calculus is used 
for causal reasoning in robot planning. A clear advantage of logic for knowledge 
representation is that it is rigorous and enables pure reasoning; however, a clear 
disadvantage is that it is inherently fragile in that it is not grounded on observational 
data. Truths found by exercising logic alone are called a priori  truths; they are 
justified by reasoning that proceeds only from theoretical deduction, completely 
independent of empirical data. 

Beginning in the 1980s, based partly on a desire to ground knowledge represen-
tation on empirical data, there was more research into probabilistic models, which
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provided imperfect knowledge representation and the ability to make inferences 
from observed signals with some degree of uncertainty. Note that “imperfect” 
knowledge representation does not imply that knowledge is infused by noise; it 
signifies that knowledge can be represented in a non-absolute way, with some 
degree of uncertainty. The Bayesian Belief Network described by Judea Pearl in 
1984 is an example of such a probabilistic model. In probabilistic models, concepts 
are no longer regarded as deterministic sets but rather probabilistic distributions. 
Two concepts may, for example, overlap in the set of instances they define. There 
are two regimes of probabilistic graphical models: flat and hierarchical. The flat 
regime includes descriptive or declarative models, such as constraint satisfaction 
models, Markov random fields, and Gibbs models. The hierarchical regime includes 
generative or compositional models, such as Markov trees, stochastic context-free 
grammars, and sparse coding models. Integrating context into hierarchical models, 
there are models such as primal sketch, And–Or graphs (spatial, temporal, causal, 
and attributed), and stochastic context-sensitive grammars. All of these are reviewed 
in this book. 

The last paradigm for knowledge representation in vision, to go along with 
logic and probabilistic modeling, is discriminative modeling. Discriminative models 
include neural networks (e.g., convolutional neural networks, recurrent neural net-
works), boosting, logistic regression, and support vector machines. Discriminative 
models often have different pipelines for each task in a problem, such as pipelines 
for object classification, pose estimation, and attribute recognition. This actually 
leads to non-unified knowledge representation, which is unhelpful for the aim of 
this book. So, although discriminative models can be used to represent knowledge, 
they are often used in such a way that does not contribute to a unified representation. 
Discriminative models also require a huge number of parameters (on the order 
of O(107)) and a very large amount of data for supervised training (on the order 
of O(106)). Generally, among the three paradigms of knowledge representation, 
discriminative models are very complex while logic is simple; probabilistic models 
lie somewhere in between, simple enough to understand thoroughly and complex 
enough to capture complex data distributions. A goal of this book is to integrate 
these three paradigms providing knowledge representation: logic models, proba-
bilistic models, and discriminative models. 

1.4 Pursuit of Probabilistic Models 

So, broadly speaking, why are probabilistic or statistical models useful in computer 
vision, and what is the origin of these models? Some assume that statistical 
models and probability have a role in computer vision primarily due to the noise 
and distortion present in natural images. This is truly a misunderstanding. With 
the abundance of high-quality cameras that exist nowadays, there is rarely a 
considerable amount of noise or distortion in images anymore. Rather, probability 
and statistical models actually help capture more details in images, as opposed
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to helping represent fewer details, i.e., noise or distortion. Accordingly, statistical 
models, which provide an intrinsic representation of visual knowledge, actually help 
capture image regularities. 

As discussed previously, a population of natural image patches can be viewed 
as a cloud of points in the image space. The distribution of the cloud of points can 
be described by a probability density function. Image patches of a certain pattern, 
such as a face, form a sub-population in this cloud of points. If one randomly 
samples an image patch from this face sub-population, then the density function 
one assigns to the random image patch, naturally, should be the density function 
of the sub-population from which it was sampled. In this way, each pattern, or 
concept, corresponds to a probability distribution defining a sub-population of the 
image space, and it can be defined by a probability density function and can be 
parametrized by a statistical model. 

In the literature, Grenander [84] and Fu [68] pioneered using statistical models 
for various visual patterns. In the late 1980s and early 1990s, statistical models 
become popular and then indispensable when the computer vision community rec-
ognized that problems, typically shape-from-X problems, are intrinsically ill-posed. 
If interested, the reader is invited to explore the historical context more. Nowadays, 
it is known that extra information is needed to account for the regularities in natural 
images, and statistical models can help to encode or represent these regularities. 
Crucially, statistical models also assist in learning and recognizing patterns or 
objects in the first place. 

Figure 1.10 illustrates two methods of pursuing a statistical model of a concept, 
i.e., of learning a concept f by approaching �f with a sequence of models. In the 
first method, starting from the entire image space, at each step, a new constraint is 
added to shrink the image space. With more constraints continually added, �f is 
captured from the outside. This method of pursuing a statistical model characterizes 
descriptive or declarative models, which are flat. Descriptive models represent one 
regime of probabilistic graphical models and include constraint satisfaction models, 
Markov random fields, Gibbs models, Julesz ensembles, and other contextual 
models. In the second method, starting from a single point or small ball inside
�f , at each step, some dimensions are expanded to gradually fill in �f from 
the inside. This method of pursuing a statistical model characterizes generative or 
compositional models, which are hierarchical. Generative or compositional models 
represent another regime of probabilistic graphical models and include Markov 
trees, stochastic context-free grammars, and sparse coding models. Integrating 
contextual and hierarchical information is, e.g., primal sketch models, And–Or 
graphs, and stochastic context-sensitive grammars. 

The reason for choosing one of the two model pursuit strategies, descriptive 
or generative, for a given problem is intuitive. Some sets may be of very high 
dimensionality, and hence it is more efficient to capture them with a descriptive 
model using constraints, gradually reducing the volume of the search space. These 
sets are modeled through the description, hence the name “descriptive” models. 
Other sets may be of much lower dimensionality, and hence it will be more efficient 
to capture them with a generative model using expansion, gradually increasing
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Fig. 1.10 This illustrates two strategies for pursuing a statistical model for a concept. First, in 
descriptive or declarative models, a set �f can be pursued through a sequence of models that 
continually reduce the entire image space to capture �f from the outside. The image space is 
gradually reduced by adding constraints. Second, in generative or compositional models, a set �f 
can be pursued through a sequence of models that continually expand from a single point or small 
ball to gradually fill in �f from the inside. In this case, the image space is gradually expanded by 
adding dimensions 

the volume of the search space by adding dimensions. These sets are modeled by 
pursuing latent variables, which are meant to encode and explain training examples 
and may be used to generate new examples, hence the name “generative” models. 
Some sets may be of more middle dimensionality and hence require a more complex 
combination of a generative and descriptive model. 

By analogy, if a teacher is grading a final exam that has a full score of 100, 
for a very strong student the teacher may start from 100 points and subtract points 
occasionally for incorrect answers. For a very weak student, the teacher may start 
from 0 and add points occasionally for correct answers. Accordingly, students at 
both ends of the spectrum are easy to grade, but students near the exam average 
require more work. Images for most vision problems are near the middle of an 
analogous spectrum, making it necessary to capture challenging sets that form 
complex, multimodal distributions of varying dimensionality.
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Fig. 1.11 Scanning from left to right, low-dimension, mid-dimension, and high-dimension 
regimes may be observed for two images. There is a gradual transition from images that should be 
fully modeled by a generative model, on the very left, to images that should be fully modeled by a 
descriptive model, on the very right 

Figure 1.11 illustrates use cases for the different regimes of models, using only 
two images, one of the red maple leaves and the other of green leaves. Both images 
are simply shown at five varying levels of magnification. On the very left of the 
figure, the low-dimension regime may be observed. As the images are of low 
dimension, it is easiest to generate or compose them through expansion with a 
generative model, increasing the volume of the search space by adding dimensions. 
On the very right of the figure, the high-dimension regime may be observed. As the 
images are of high dimension, it is easiest to describe them with a descriptive model, 
reducing the volume of the search space by introducing constraints. From the left 
to the right of the figure, there is a gradual transition from images that should be 
fully modeled by a generative model to images that should be fully modeled by a 
descriptive model. In between, a combination of the two should be used to optimally 
model the leaves. This is a powerful example because it shows that, even for the 
same picture but at varying levels of magnification, there is a need for generative 
and descriptive models and their combination. 

Thus far, relatively small image patches have been discussed, e.g., 10 × 10 
pixels. The concepts that arise from small image patches may be considered 
“atomic concepts,” i.e., the simplest symbols, or descriptors, at the lowest layer 
of perception. Atomic concepts can be further composed into larger patterns and 
more abstract concepts. This leads to a hierarchy of concepts at multiple layers, as 
illustrated in Fig. 1.12.
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Fig. 1.12 Concepts become increasingly abstract, moving up through the hierarchy from coding to 
recognition to cognition to reasoning. However, concepts at all levels can be learned and described 
by Spatial–Temporal–Causal And–Or graphs 

At the bottom layer, there are concepts for image patches. High-entropy concepts 
can be described by, e.g., Markov random fields, and low-entropy concepts can be 
described by, e.g., sparse coding models. At the top layer, there is reasoning based on 
logic and event calculus. In the middle layers, there are recognition and cognition, 
which can be described by stochastic grammar allowing for recursive compositions. 
As will be discussed, stochastic grammars in the form of Spatial–Temporal–Causal 
And–Or graphs are actually well suited to learning and describing concepts at all 
layers.



Chapter 2 
Statistics of Natural Images 

The population of natural images may be defined as all the images of the natural 
world that have been observed by humans. Images and videos captured by humans 
with cameras in modern civilization represent only a very small subset of this 
population. Accordingly, the size of the natural image population far exceeds the 
size of the set of images captured by cameras, although it is much smaller in 
comparison to the size of the entire, unconstrained image space. Natural images 
contain an overwhelming variety of structures and patterns resulting from a myriad 
of physical processes. They exhibit hierarchical compositions of objects at a broad 
continuum of scales. 

It may be surprising to note that natural images, with their diverse array of 
patterns and orientations, consistently share any statistical features. Indeed, they 
do and so much so that they can be easily distinguished from non-natural images 
based solely on these features. For example, most natural images contain simple 
subcomponents such as flat surfaces, well-defined edges, and regular textures. The 
common appearance of these structures suggests that concise but flexible models 
can efficiently describe natural images at the most basic level by repeated instances 
of similar patterns. 

Barlow in 1961 [10] and Gibson in 1966 [79] were among the earliest researchers 
to emphasize the role of ecology in visual perception, i.e., visual concepts are 
learned and mentally categorized based on examples in the environment. Computer 
vision, like human vision, consists of an agent that learns abstract representations 
from many observed examples. The learned representations of vision models, 
similar to concepts for humans, should be sufficiently generalizable so that the 
model can adapt to new, unseen examples just as a human can. 

Throughout this book, statistical phenomena associated with natural images 
are discussed. This begins the process of establishing a common vocabulary 
and grammar for vision supported by a unified mathematical foundation. In this 
particular chapter, some initial statistical properties discovered for natural images 
are examined, such as the 1/f -power law, high kurtosis, and scale invariance. 
Manifolds in the image universe, image scaling in the image space, and impercep-
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tibility are discussed. There are many motivations for understanding natural image 
statistics, but a few include potential optimizations in image/video compression due 
to redundancy reduction and improved image/video coding, an understanding of 
ecologic influences on neural receptive fields (e.g., how neurons in visual cortical 
areas adapted to visual environments over time), and the knowledge to exploit image 
regularities and prior models to solve ill-posed problems, such as image restoration 
(e.g., denoising, inpainting), estimating surface from stereo, motion, texture, etc., 
and the development of concepts and generative models (as prior knowledge) for 
scenes, objects, actions, events, and causality from images and video. 

2.1 Image Space and Distribution 

Beginning with a concrete description of image space, consider the population of all 
grayscale image patches of size 10×10 pixels with each pixel intensity in the range 
[0, 1]. Each possible image patch is a point in a high-dimensional space [0, 1]100. 
This means that an image can be represented by a single vector with 100 elements 
for the 100 pixel intensities. If the images are color instead of grayscale, each of 
the three color channels (red, green, blue) has its own 10 × 10 image patch and, 
accordingly, the image space is [0, 1]300. The population of natural image patches 
forms a cloud of points, which is only a subset of the entire image space. The 
distribution of this cloud of points exhibits a high-dimensional geometry reflecting 
the various structures in natural images (Fig. 2.1). 

The distribution of natural images, i.e., the cloud of points, can be described 
by a probability density function, indicating the density of points at each position 
in the image space. The density at a position in the image space indicates how 
likely it is an image from that position would be chosen if it were sampled from 
the distribution of natural images. The density of the distribution is very uneven. 
In some positions of the image space, e.g., positions with image patches of forest 
scenes, the density is high, while in other positions, e.g., one with a random 
sample from a high-dimensional uniform distribution, the density of natural image 
distribution is virtually zero. Simply put, this is because, among natural images, 
image patches of a forest scene are relatively common, whereas image patches from 
a uniform distribution are less common. The concentration of the density function 
of natural image distribution around certain geometric regions is analogous to the 
distribution of mass in the universe. The density of mass is high at a star and low 
across nebulas, clouds of gas and dust in space. And the density is practically zero 
over large spans of space. 

Now some notation should be introduced. Let I(x) be an image patch defined 
on a square or rectangular domain D, where x ∈ D indexes the location within 
the image. The domain, or coordinate space, D for location x can be continuous 
or discrete. An example of a continuous domain is D = [0, 1] × [0, 2], which 
denotes a rectangular grayscale image with continuous axes. The coordinates for 
location x are continuous, i.e., x ∈ ([0, 1], [0, 2]). An example of a discrete domain
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Fig. 2.1 The natural image population is a subset of the entire image space, i.e., �nat ⊂ �I. Lines  
are drawn from the four natural images below to their positions in �nat, a high-dimensional space. 
Similar images lie on local manifolds of �nat, separated by relatively small geodesic distances. 
The image of noise does not belong to the natural image space, �nat 

is D = {1, . . . , 10} × {1, . . . , 10}, which denotes a 10 × 10 pixel grayscale image 
with discrete axes. In this case, the image is composed of pixels. The coordinates 
for location x are discrete, i.e., x ∈ ({1, . . . , 10}, {1, . . .  , 10}). The coordinate 
space Dcolor of a three-channel color image is simply the Cartesian product of the 
grayscale coordinate spaceDgray and the set {1, 2, 3} that indexes the color channel, 
i.e., Dcolor = Dgray × {1, 2, 3}. I(x) may be treated as a function I : D → V , which 
gives the intensity values of each pixel in I. For continuous pixel intensities between 
0 and 1, pixel values V = [0, 1], and for discrete integer-valued pixel intensities 
between 0 and 255, pixel values V = {0, . . . ,  255}. 

When the coordinate space D is discrete and a finite set, i.e., for images with a 
finite number of pixels, I may be treated as a vector if an ordering for the pixels 
is fixed. As such, each I becomes a point in the image space �I = V |D|, in which 
|D| is the total number of pixels in the image. (For color images, each channel has 
its own separate pixels.) For example, every 10 × 10 pixel grayscale image patch I, 
with pixel intensities between 0 and 1, is a point I ∈ �I = [0, 1]100. (The notation
�I = [0, 1]100 indicates that the sample space �I is made up of samples with 100 
pixels that take a continuous value between 0 and 1.) Similarly, every 10× 10 pixel 
color image, with pixel intensities for each channel between 0 and 1, is a point
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I ∈ �I = [0, 1]100×3 = [0, 1]300. A more technical definition of �I is needed for 
the cases in which D is an infinite set, but for the majority of topics covered in this 
book, this discrete, finite, pixel-based description is sufficient. 

Now consider the cloud of points �nat ⊂ �I made up of natural image patches. 
The distribution of �nat can be described by a density function f : �I → R, such 
that f ≥ 0 and

∫
�I 

f (I)dI = 1. Intuitively, for each point I ∈ �I, let  N (I) be a 
small neighborhood around I. Then f (I) is the limit of the proportion of points in 
the population that belong to N (I) divided by the volume of N (I), as the volume  
of N (I) → 0. This is simply the asymptotic extension of the common notion 
of population density. For instance, the population density of Los Angeles is the 
number of people in Los Angeles divided by the area of Los Angeles. 

In the explanation above, there is nothing probabilistic. The density function f 
is simply a deterministic description of a cloud of points in a high-dimensional 
space. Now, however, the probability is introduced. If an image patch I is randomly 
sampled from the population of natural image patches, i.e., a point from the cloud of 
points described by density function f (I) is randomly sampled, then image patch I 
is said to be a random sample, for example, from f (I). Accordingly, f (I) becomes 
the density function for the random image patch I, and I ∼ f (I) is written. The goal 
of learning, then, is to gain some knowledge about the density function f (I) based 
on a set of examples {I1, . . . , IM } that are sampled from f (I) independently. 

2.2 Information and Encoding 

Recall that concepts (in the model space) are represented by, or correspond to, 
populations (in the image space). They can be defined by a distribution or density 
function f . A concept can be general, such as the concept of natural images, a 
certain texture, or white noise, or it can be more specific, such as the concept of the 
face of a tiger. 

In high-dimensional image spaces, common to vision problems, a notable 
phenomenon called concentration of measure may occur. The density function f (I) 
is close to zero outside of a typical set �f . It is nearly uniform inside of the typical 
set �f . So it can be roughly stated that f (I) = 1 

|�f | for I ∈ �f and f (I) = 0 for  
I /∈ �f . The high-dimensional nature of the data in many vision problems makes 
it such that the image space �I is largely dominated by white noise. As a result, 
a nearly uniform density exists over �I, as almost all of it is simply white noise. 
The goal of learning a concept, then, is to identify which set �f , in the largely 
meaningless, noise-dominated set �I, corresponds to the given concept, i.e., find a 
probability density function f defining it. 

Now consider two models, an “unfocused” model g(I) that has a uniform density 
within �I and a “focused” model f (I) that has a uniform density within the subset 
of natural images �nat and is approximately zero outside this set. The volume of the 
subset �nat can be described using entropy. Entropy can be intuitively understood
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as a measure of disorder. Deterministic variables (with perfect order) possess zero 
entropy, while uniform random variables (with the perfect disorder) possess the 
maximum entropy of all possible distributions over the support of the uniform 
variable. 

The fact that the volume of the subset �nat can be described using entropy is 
an important point. It means the complexity of a concept f in the model space can 
ultimately be expressed by the entropy, i.e., the log volume, of its corresponding 
set �f in the image space. The entropy of an image set, by giving the disorder of 
pixel information of that set, encodes the complexity of the corresponding concept. 
In computer vision, entropy and entropy rate are both measured in pixels. 

The entropy H of a distribution p(I) over a finite image space �I is 

H(p)  := −
∑

I∈�I 

p(I) log2 p(I). (2.1) 

The use of log2 gives a measurement of entropy in terms of bits, but, in general, any 
base can be used for the logarithm, as different bases only scale H differently. For 
a distribution q that is uniform over a set �q ⊆ �I and zero elsewhere, the entropy 
is 

H(q)  = −
∑

I∈�q 

1 

|�q | log2 
1 

|�q | = log2 |�q |, (2.2) 

in which the sum over �I reduces to a sum over �q , as density is zero outside 
of �q . Therefore, the entropy of a uniform distribution q is a measure of the log 
volume of the space �q . In particular, for the “unfocused” model that is uniform 
over the entire image space �I, H(f  )  = log2 |�I|, and for the “focused” model 
that is uniform over only the natural image space �nat and zero elsewhere, H(g)  = 
log2 |�nat|. Later chapters describe a more detailed relationship between entropy 
and learning using information theory. For now, it is only important to note the 
connection between entropy and the volume of image space. 

The entropy of a subset of the image space encodes the amount of information 
needed to represent members of the subset. Consider the space �h of grayscale 
images that have the same fixed-width horizontal black bar against a white 
background. Each image can be described by a single number that represents the 
vertical position of the bar. Suppose that there are |�h| =  nh possible positions for 
the horizontal bar. Now consider the space �hv of grayscale images that have the 
same fixed-width horizontal black bar and the same fixed-width vertical black bar 
against a white background. All images from this set can be described by exactly 
two numbers representing the locations of the two bars. Suppose that there are 
nh positions for the horizontal bar and nv positions for the vertical bar, such that 
|�hv| =  nhnv . The amount of encoding information needed in the space of vertical 
and horizontal bars is higher than that of horizontal bars alone, and this is reflected 
in the difference log2 |�h| −  log2 |�hv| = − log2 nv < 0.
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In the case of images with |D| pixels, e.g., |D| =  n2 for a grayscale image with n 
pixels for both its height and width, the entropy rate H̄ scales entropy relative to the 
image size, lending a per-pixel entropy. For a density q uniformly distributed over
�q , the entropy is 

H̄ (q)  = 
H(q)  
|D| = 

1 

|D| log2 |�q |. (2.3) 

For example, consider the space of n×n grayscale images where V = {0, . . . , 255}, 
indicating each pixel value is an integer from 0 to 255. In this case, there is the image 
space �I = {0, . . . , 255}n2 and the log volume of the image space |�I| =  256n2 . 
Therefore, the unfocused model g(I) with uniform density in �I has entropy rate 

H̄ (g)  = 
1 

n2 
log2 |�I| =  

n2 log2 256 

n2 
= 8 bits/pixel. (2.4) 

This means that an image randomly sampled from �I can be encoded using an 
average of 8 bits per pixel. 

Now, considering a natural image I ∈ �nat sampled from f , the many  
regularities found in natural images allow for a drastic reduction in the number of 
bits needed for encoding the image. The empirical upper bound for the average bits 
per pixel, i.e., the entropy rate, needed to encode natural images is 0.3: 

H̄ (f  )  = 
1 

|D| log2 |�nat| ≤  0.3 bits/pixel. (2.5) 

For the unfocused model g(I) with uniform density in�I, 8 bits per pixel are needed 
to encode any potential image that could be drawn from �I; it is not possible to 
compress uniform random samples drawn from the entire image space�I. However, 
for the unfocused model f (I) with uniform density within �nat and zero density 
elsewhere, the reduction in entropy rate from 8 bits/pixel to 0.3 bits/pixel allows 
for compression. This decreased entropy rate of 0.3 bits/pixel gives an intuitive 
measure for the amount of compression possible when the regular features found 
across previously observed natural images are used to encode new images. 

Here the first statistical observation for natural images may be noted: redun-
dancy. The redundancy in real-world images allows for continual improvements to 
image/video compression. Instead of needing 8 bits to encode a pixel, only an upper 
bound of 0.3 bits is needed. Using any more bits than this to encode a pixel would 
not take advantage of all the redundancies in natural images. Note that compression 
methods work well on natural images but poorly, for example, on a noisy image 
such as a QR code (a matrix barcode). 

Now a rough estimate of the size of the observed natural image space �nat may 
be given. Assume there are 10 billion people who have lived on the Earth, and each 
person lived or will live to be 100 years old, and each person observed 20 images 
per second. The volume of the natural image space, |�nat|, as seen by humans, may
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be estimated as 

|�nat| ≈  107humans × 100years × 365days × 24hours × 3600sec × 20fps 

≈ 6.3 × 1022images. (2.6) 

The size of the total image universe |�I| =  256n2 discussed previously is much 
larger than |�nat|, even for very small image spaces, e.g., image patches with n = 10 
pixels for both height and width. Keep in mind that the models in this book are meant 
to represent samples from the natural image space �nat and reflect the regularities 
observed therein. 

2.3 Image Statistics and Power Law 

The universe is composed of an ensemble of structures at many different scales. 
Using a coarse scale, a structure may be perceived as an atomic entity, while using 
a finer scale, the same structure may be perceived as a compound entity with many 
different parts. Structured ensembles that can be viewed as a singular entity are 
commonly referred to as objects. In natural images, objects can be identified by 
regularities (such as consistent color or texture or connected surfaces) that enable 
the perception of them as distinct concepts. The regularities observed in natural 
images reflect the hierarchically structured order of the universe. Noise images, on 
the other hand, do not obey such laws. As a result, natural images and noise can 
be distinguished based on numerical summaries of structural regularities. These 
statistical properties form the foundation for a more detailed understanding of 
images pursued in later chapters. 

In natural images, nearby pixel intensities are typically similar in value, but occa-
sional jumps or discontinuities can be observed as well. As two neighboring cities 
are not usually expected to have a large difference in elevation, two neighboring 
pixels are not usually expected to have a large difference in intensity, i.e., pixel 
values, or two neighboring patches to have a large difference in smoothness. A 
simple measure of similarity between the intensities of two pixels is covariance or 
correlation. For an image I ∈ V |D| ⊂ R|D| with |D| pixels, assume that the marginal 
mean is normalized to be 0 and the marginal variance to be 1, i.e., 1 

|D|
∑

x I(x) = 0 
and 1 

|D|
∑

x I(x)2 = 1. Then the covariance between pixel x = (x1, x2) and 
x + d = (x1 + d1, x2 + d2) can be calculated as C(d) = 1 

|D|
∑

x I(x)I(x + d). The  
covariance C(d) is a function of the distance between pixels, d, and can be large 
when |d| =

√
d2 
1 + d2 

2 is small and decays to 0 as |d| becomes large. An equivalent 
measure of the similarity between the intensities of two pixels is the power spectrum, 
or power spectral density, of the image in the Fourier domain. The power spectrum 
of the image, A2(f ), is simply the Fourier transform of the covariance function
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C(d), so the covariance and the power spectrum are simply two ways of capturing 
the same statistical property: the second-order moment of the image distribution. 

The power spectrum A2(f ) is the square of the amplitude spectrum A(f ). 
The power spectrum provides a way to capture and represent these differences. 
It describes how relations between image pixels are distributed for different 
frequencies, i.e., how the image content fluctuates at different frequencies or scales. 
In general, the power spectrum describes the distribution of power over frequency 
components composing a given signal. As the relevant application is vision, the 
signal is an image and the frequency is spatial, not temporal. Spatial frequency 
is periodic across positions in space and a measure of how often sinusoidal 
components (as determined by the Fourier transform) of the structure repeat per 
unit of distance, in this case, pixels. According to the Fourier analysis, any physical 
signal can be composed of a number of discrete frequencies or a spectrum of 
frequencies over a continuous range. Accordingly, images may be composed of a 
number of discrete spatial frequencies. The statistical average of a signal as analyzed 
in terms of its frequency content is called its spectrum, and summation or integration 
of the spectral components yields the total power (for a physical process) or variance 
(for a statistical process). 

As mentioned previously, it may be surprising to note that natural images, with 
their diverse patterns and orientations, share any consistent statistical features at all, 
but indeed they do. Natural images can easily be distinguished from non-natural 
images, such as images of random patterns, by their amplitude spectra or power 
spectra. In images of random patterns, such as white noise, the amplitude spectra 
are flat. Natural images, however, display the greatest amplitude at low frequencies 
(at the center of the plot in Fig. 2.2) and decreasing amplitude as the frequency 
increases, regardless of the orientation of the image, as depicted in Fig. 2.2. 

The Fourier transform decomposes a function of time, i.e., a signal, in the time 
domain, into its constituent temporal frequencies in the frequency domain. In this 
case, it decomposes a function of space, i.e., an image, in the spatial domain, into its 
constituent spatial frequencies in the frequency domain. It is a linear transform that 
projects an image, in the form of a vector, onto an eigenvector space, transforming 
the image from a Euclidean basis to a Fourier basis. In many cases with discrete 
signals, the Fourier transform is invertible, and no data is lost if the inverse Fourier 
Transform is used to recover the original signal. Even when the original signal is 
real-valued, frequency signals contain both real and imaginary components, so the 
absolute value is used to represent the total power or energy of a signal. A Fast 
Fourier Transform (FFT) may be performed on an image I ∈ R|D1|×|D2| using 

Î(ξ, η) =
∑

(x,y)∈D1×D2 

I(x, y)e−i2π( xξ 
H + yη 

W ) , (2.7) 

in which |D1| =  H is the number of pixel rows, |D2| =  W is the number of pixel 
columns, and (ξ, η) represents the horizontal and vertical frequencies. The absolute 
value of the resulting complex number
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Fig. 2.2 From Field [54], two natural images display similar amplitude spectra. The center of the 
plots represents 0 spatial frequency, and frequency increases as a function of distance from the 
center. Orientation is represented by the angle from the horizontal. Note how amplitude decreases 
sharply with increasing frequency at all orientations. To be precise, the amplitude decreases by a 
factor of 1/f , and power decreases by a factor of 1/f 2, in which  f is frequency [54] 

A(ξ, η) = |Î(ξ, η)| (2.8) 

is the Fourier amplitude, which gives the magnitude of the frequency (ξ, η) within 
the image signal I. The Fourier powerA2(ξ, η) is the square of the Fourier amplitude 
A(ξ, η). Intuitively, the Fourier power, for given horizontal and vertical frequencies 
(ξ, η), encodes how much of the image vector is projected onto these frequencies at 
a given orientation. 

An interesting empirical observation for natural images is that, for all frequency 
f = √

ξ2 + η2, 

A(f ) ∝ 1/f, (2.9) 

logA(f ) = constant − log f. (2.10) 

Thus, the amplitude A of a Fourier coefficient is inversely related to the frequency 
f . The inverse relationship between amplitude and frequency is referred to as the 
inverse power law for natural images. Figure 2.3 plots the logA(f ) over log f for 
the four natural images from Fig. 2.1, and the curves can be fitted by straight lines 
with a slope close to −1, showing the inverse relationship. Not all natural images
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Fig. 2.3 Note the log of the amplitude, log A(f ), for a given log of the frequency, log f , for  the  
four natural images from Fig. 2.1. In natural images, it is observed that the amplitude A(f ) is 
inversely related to the frequency f , i.e., A(f ) = 1/f . Accordingly, the power A2(f ) = 1/f 2. 
This property for natural images is referred to as the inverse power law 

exhibit the inverse power law, e.g., natural images of fields of grass or the night sky, 
but this can be expected for most natural images [54]. 

The inverse relationship between amplitude and frequency may be used to 
calculate the total Fourier power A2(f ) in the frequency band, or octave, [f, 2f ]:

∫ ∫

f 2≤ξ2+η2≤(2f )2 
|Î(ξ, η)|2dξdη = 2π

∫ 4f 2 

f 2 

1 

f 2 
df 2 = constant, ∀f. 

(2.11) 
As depicted in Fig. 2.4, as frequency increases, and hence the total area within 
each frequency band increases, amplitude decreases. As a result, the power remains 
constant overall, i.e., the power for a given frequency band [f, 2f ] is equal to 
the power for frequency bands [2f, 4f ], [4f, 8f ], and so forth. This is what is 
communicated by Eq. (2.11). This observation that natural images contain equal 
power across frequency bands reveals that they are scale-invariant, lending the same 
power independent of frequency f , or scale, i.e., the viewing distance. 

The second-order properties of the image distribution, captured by the covariance 
C(d) and the power spectrum A2(f ), can be fully reproduced by a multivariate 
Gaussian distribution with a variance–covariance matrix that agrees with C(d) or 
A2(f ). For instance, a Gaussian model that accounts for the inverse power law 
is surprisingly simple. It was shown by Mumford [175] that a Gaussian Markov 
Random Field (GMRF) model, as in Eq. (2.12), has exactly 1/f -Fourier amplitude:
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Fig. 2.4 Because amplitude decreases as the frequency (and hence the total area within each 
frequency band) increases, natural images effectively exhibit constant power within each band 
such as ω2. η and ξ represent the vertical and horizontal frequencies, respectively. 2Po indicates a 
doubling of the frequency of the original image or image distribution, Po 

p1/f(I; β) = 
1 

Z 
exp

{

−
∑

x 
β|∇I(x)|2

}

, (2.12) 

in which |∇I(x)|2 = (∇xI(x))2 + (∇yI(x))2, and 

∇x = I(x1 + 1, x2) − I(x1, x2) and ∇y = I(x1, x2 + 1) − I(x1, x2) (2.13) 

are discrete approximations of the gradients. 
Since p1/f (I; β) is a Gaussian model, one can easily draw a random sample 

I ∼ p1/f(I; β). Figure 2.5 shows a typical sample image by Mumford [175]. This 
model matches the local regularity of natural image statistics and nothing else. It 
can be considered a natural image model with one constraint, making it only slightly 
better than a random noise model. Large values of the parameter β lead to samples 
with large regions of similar intensity, and small values of β lead to samples with 
more variation in nearby pixels. The limiting case β → ∞  concentrates all mass on 
the zero image I = 0. From this, it can be concluded that although certain statistics 
like the covariance and power spectrum found in natural images are also captured 
by this model, these statistics clearly do not contain sufficient complexity to capture 
all key features needed for natural image modeling and inference. 

The power spectrum can also be pooled by Gabor filters centered at different 
frequencies. Gabor filters are sine and cosine waves multiplied by elongate Gaussian 
functions, and the filter response is a localized Fourier transform. Let F be a Gabor 
filter whose sine and cosine waves have frequency ω. Let  [F ∗ I](x) be the Gabor 
filter response at location x. Then, [F ∗ I](x) measures the frequency content of 
I around frequency ω at location x. Due to the spatial localization of filter F , F
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Fig. 2.5 Observe a random 
sample from the Gaussian 
Markov Random Field model. 
Note that it has very little 
structure, a large number of 
edges, and minimal flatness in 
its energy landscape. Clearly, 
second-order properties such 
as covariance and spectrum 
do not sufficiently capture key 
features of natural images 

also responds to sine and cosine waves whose frequencies are close to frequency 
ω. Thus, if

∑
x |F ∗ I|2/|D| is pooled, it will be the average of the power spectrum 

within the band of frequencies to which filter F responds. By the inverse power law,∑
x |F ∗ I|2/|D| remains scale-invariant, i.e., it is constant for different frequencies 

ω. 

2.4 Kurtosis and Sparsity 

As mentioned above, second-order properties such as the covariance, power spec-
trum, or average of the squared filter responses can be fully reproduced by a 
multivariate Gaussian distribution with a matching variance–covariance matrix. 
The Gaussian distribution can be thought of as a cloud of points, which forms 
an ellipsoid shape. The ellipsoid-shaped Gaussian distribution is rather dull. It 
cannot be expected to capture the presumably highly complex shape of the natural 
image distribution. For example, the distribution of natural images has many low-
dimensional spikes, as illustrated in Fig. 2.6. As a result, researchers have put 
immense effort into finding patterns of deviation from the Gaussian distribution, 
attempting to pinpoint non-Gaussian features. The study of natural image statistics 
has leveraged many properties, from covariances to histograms of filter responses, 
e.g., Gabor filters. While covariances only measure second-order moments, his-
tograms of filter responses include higher order information such as skewness and 
kurtosis. 

To define skewness and kurtosis, let X denote a random variable with mean μ 
and variance σ 2, such that X can be normalized by the transform (X − μ)/σ . 
Skewness is the third-order statistical moment E[((X − μ)/σ)3], and it measures 
the asymmetry of the distribution. Kurtosis is the fourth-order statistical moment
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Fig. 2.6 The distribution of natural images has many low-dimensional spikes 

E[((X − μ)/σ)4], and a histogram with heavy tails demonstrates high kurtosis. In 
measuring skewness and kurtosis of a random variable, the first-order moment μ 
and second-order moment σ 2 only serve to normalize the random variable, making 
its mean equal to zero and variance equal to one. 

With histograms, the idea of a 1D marginal projection is utilized in order to gain 
an understanding of a high-dimensional space such as �nat. A histogram can be 
regarded as a 1D marginal projection because it contains statistics in one dimension, 
i.e., a line. Histograms allow peaking into a high-dimensional space�f and learning 
about it by learning many 1D marginal densities of f (I). By learning these densities, 
the idea is that a probability density could be constructed to represent �f in terms 
of all of these learned 1D marginal densities of f (I). 

The use of histograms leads to another statistical observation about natural 
images: they exhibit high kurtosis. The histograms of Gabor filter responses to 
natural images, found by Eq. (2.14), are highly kurtotic, i.e., heavy-tailed [55]. Here, 
F is a Gabor filter and fn(I) is a “focused” model, which, recall, has zero density 
outside of the space of natural images �nat. The fact that the histograms have tails 
heavier than a Gaussian distribution reveals that natural images have high-order, 
non-Gaussian structures. Gabor filters are primarily used to detect orientation, but 
other filters are also used such as gradient filters, Haar filters, and so forth. 

The histogram of the filter response is calculated by the following equation: 

h(a) =
∫

�I 

f (I)δ(〈F, I〉 − a)dI, (2.14)
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Fig. 2.7 Note how the 
histograms or 1D marginal 
projections, which capture the 
filter responses of a filter F to 
a natural image, display high 
kurtosis. That is, they have a 
heavy-tailed structure, 
exhibiting great extremities of 
deviations or outliers. An 
important statistical 
observation of natural images 
is that they have a highly 
kurtotic structure 

where δ(r) is the Dirac δ function. The histograms defined by Eq. (2.14) can also be 
visualized, as shown in Fig. 2.7. These histograms represent 1D statistical properties 
for an image I, located in �nat ⊂ �I, a high-dimensional space. F is a local filter, 
one that has different responses to different regions of image I that is represented 
by the points; in linear algebra, the term “base” is often used instead of “filter.” 
The inner product 〈F, I〉 is zero when F ⊥ I. The two filter responses illustrate 
the binning operation performed in Eq. (2.14). High kurtosis is observed due to 
the vast amount of orthogonality between filter F and image I. Remember that 
kurtosis is associated with the tails of the distribution and not its peak. Accordingly, 
it is the greater extremity of deviations, or outliers, displayed in the histograms in 
Fig. 2.7, not the high peaks of these histograms, that portray the high kurtosis of the 
natural image. Any filter F response would show the same highly kurtotic structure 
(Fig. 2.8). 

The high kurtosis in natural images is only marginal evidence for hidden 
structures in natural scenes. A direct way to discover structures and reduce image 
redundancy is to transform an image into a superposition of image components. 
This can be done, for example, with Fourier transforms, wavelet transforms [166], 
various image pyramids [218] for generic images, and principal component analysis 
(PCA) for particular ensembles of images, such as face images. The transformation 
from image pixels to a linear basis, such as a Fourier basis, wavelets basis, or PCA 
basis, achieves two desirable properties. First, the transformation induces variable 
decoupling; coefficients of these bases are less correlated or become independent in 
an ideal case. Second, the transformation induces dimension reduction; the number 
of basis vectors needed to approximately reconstruct an image is often much smaller 
than the number of pixels. 

If one treats an image I(x) as a function defined on the domain D, then one 
may also use harmonic analysis to perform image dimension reduction. Harmonic
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Fig. 2.8 A natural image scaled through 1×, 2×, 4×, and  8× downsampling can be observed. 
Although the fixed-size filter kernel (shown in red) captures more information for each downsam-
pled scale, the image statistics remain invariant 

analysis decomposes various classes of functions (i.e., mathematical spaces) or 
signals into a superposition of basic waves or basis systems. But the population 
of natural images cannot be fully captured by such functional classes and so a 
better solution is needed for image decomposition. From this, an inspiring idea 
came about sparse coding with an over-complete basis, or dictionary, introduced 
by Olshausen and Field in 1996 [190]. Sparse coding algorithms learn useful sparse 
representations of data. Given a certain number of dimensions, they learn an over-
complete basis to represent the data. An over-complete basis signifies that there 
is redundancy in the basis, as basis vectors “compete” to represent data more 
efficiently. This means not all dimensions are needed to represent a data point; some 
may be set to 0. With an over-complete basis, an image may be reconstructed by a 
small, i.e., sparse, number of basis vectors in the dictionary. Olshausen and Field 
then learned an over-complete dictionary from many natural images. This often 
leads to 10 to 100 folds of potential dimension reduction. For example, an image 
of 200 × 200 pixels can be approximately reconstructed by roughly 100–500 base 
images. 

The idea that natural images may be represented with sparse coding reflects the 
nature of the point cloud formed by the population of natural images, which has 
many low-dimensional spikes, as illustrated by Fig. 2.6. Indeed, as we will see in 
the following, high kurtosis motivates sparse representations.
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2.5 Scale Invariance 

In addition to the heavy-tailed histograms of Gabor filter responses, another 
interesting observation reported by Ruderman (94) [210] and Zhu and Mumford 
(97) [279] is that marginal histograms of gradient-filtered images are consistent 
over a range of scales (see Fig. 2.9). This is yet another statistical observation for 
natural images: scale invariance. Specifically, for a natural image I, a pyramid with 
a number of n scales can be built, such that I = I(0) , I(1) , . . . , I(n), and I(s+1) is 
obtained by averaging every block of 2×2 pixels in  I(s). The histograms of gradients 
∇1I(s) (x) for natural images (first two plots) and for Gaussian noise (last plot) are 
shown in Fig. 2.9, for three scales s = 1, 2, 3 shown in Fig. 2.8. Note that, for natural 
images, despite scaling down the image, roughly the same amount of kurtosis is 
observed in the histograms for three different scales (Fig. 2.9). 

To better illustrate the scale invariance property of natural images, here a toy 
example is presented: a 2D invariant world consisting of only 1D line segments. 
Figure 2.10a shows an image of the simulated world. In the image, each line segment 
is determined uniquely by its center location (xi, yi), orientation θi , and length ri . 
The lines are independently distributed in terms of geometric features. The center 
of a line is selected from the image plane uniformly. Its orientation, measured as 
the angle formed with the horizontal line, is also uniformly distributed over [0, π ]. 
The length of a line follows a cubic probability density function, i.e., p(r) ∝ 1 

r3
. In  

reality, ri can be sampled from p(r) using inverse transform sampling. While the 
lines are i.i.d. (independent and identically distributed) in geometric features, the 
overall density of the segments is controlled by a Poisson distribution. That is, in 
each unit area, the number of line segments has a constant mean. The toy world can 
be constructed by the above rules, and it can be observed that it has a scale-invariant 
property similar to that of natural images. To be more specific, Fig. 2.10a is of size  
1024 × 1024 pixels. Figure 2.10b and c is obtained by down-sampling the original 
image to 512 × 512 pixels and 256 × 256 pixels, respectively. Notice that in down-
sampling, the long lines are truncated and the lines shorter than a pixel are discarded. 
Then, 128 × 128 pixel patches can be cropped from these three images. Indeed, the 

Fig. 2.9 First two plots: histograms of gradient-filtered natural image from Fig. 2.8 at three 
different scales. Last plot: log of the histograms of gradient-filtered Gaussian noise image at the 
same three scales. From this, it can be observed that high kurtosis is a property of natural images 
and not, e.g., Gaussian noise, and the level of kurtosis persists over different scales
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Fig. 2.10 The top three figures represent the 2D toy world with different pixel sizes, and the 
bottom ones are 128 × 128 pixel crops from the corresponding figures. (a) 1024 × 1024. (b) 
512 × 512. (c) 256 × 256. (d) Crop from 1024 × 1024 world. (e) Crop from 512 × 512 world. (f) 
Crop from 256 × 256 world 

three crops are identical to one another and hard to tell apart. This shows that the 2D 
toy world is scale-invariant in the sense that the image features are identical across 
scales. In fact, parallels can be drawn between the geometric features of the line 
segments and the gradient histograms of natural images. These statistics remain the 
same no matter at which scales the images are viewed.



Chapter 3 
Textures 

Texture is an important characteristic of the appearance of objects in natural scenes 
and is a crucial cue in visual perception. It plays an important role in computer 
vision, graphics, and image encoding. Understanding texture is an essential part of 
understanding human vision. 

Texture analysis and synthesis has been an active research area, and a large num-
ber of methods have been proposed, with different objectives or assumptions about 
the underlying texture formation processes. In computer vision and psychology, 
instead of modeling specific texture formation processes, the goal is to search for 
a general model which should be able to describe a wide variety of textures in a 
common framework and which should also be consistent with the psychophysical 
and physiological understanding of human texture perception. 

3.1 Julesz Quest 

Imagine a scenario in which you walk into a store to purchase marble tiles for your 
new home. You search for the most consistent pattern, so your new floor looks 
uniform and the pieces are indistinguishable from one another. Suddenly, you notice 
a piece of marble, as shown in Fig. 3.1a,b, whose patterns you appreciate. However, 
as you continue inspecting this piece of marble, you suddenly catch attention of 
an area such as depicted in Fig. 3.1c. You ask yourself the question, “Is the texture 
in this marble patch consistent with the rest of the marble?” “What features of a 
texture make it distinguishable from another texture?” These questions may seem 
ostensibly simple to answer, but it is fundamentally difficult to exactly define the 
distinguishing features that set textures apart from one another. 

Differentiating differences in texture patterns seems an intuitive and easy task 
for humans, but why are we able to differentiate the textures so easily? “The defects 
in the texture,” one may answer, but how are the raw visual signals converted so 
that human brains can easily distinguish the defective patterns? How are texture 
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Fig. 3.1 (a) Presents a section of the marble you observe. (b) Presents another section of the same 
marble piece. (c) Is a defective area of the marble  

Fig. 3.2 Julesz texture pairs: the texture pattern formed by the+ signs pops out from the 
surrounding pattern in the left panel, but it merges with the surrounding pattern in the right panel 

patterns represented in human brains in general? This is a question that troubled 
psychologists for many years until Julesz initiated formal research on texture 
modeling. 

In his seminal paper in 1962 [123], Julesz conducted research on textures 
and asked the following fundamental question: What features and statistics are 
characteristic of a texture pattern, so that texture pairs that share the same features 
and statistics cannot be told apart by pre-attentive human visual perception? 

As illustrated in Fig. 3.2, the texture pattern formed by the + signs pops out 
from the surrounding pattern at first glance (so-called pre-attentive vision) in the 
left panel, but it merges with the surrounding pattern in the right panel. We have to 
examine the right panel attentively in order to tell the two texture patterns apart. 

The first general texture model was proposed by Julesz in the 1960s. Julesz 
suggested that texture perception might be explained by extracting the so-called 
“k-th order” statistics, i.e., the co-occurrence statistics for intensities at k-tuples of 
pixels [123]. A key drawback of this model is that, on the one hand, the amount of 
data contained in the k-th order statistics is big and thus very hard to handle when
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k >  2. On the other hand, psychophysical experiments show that the human visual 
system does extract at least some statistics of order higher than 2 [41]. 

In mathematical terms, a set of all texture images with the same features and 
statistics can be written as

�I = {I : Hi (I) = hi , i  = 1, . . . , K}, (3.1) 

where I is a texture image, each Hi is a chosen feature statistics, and K is 
the number of features chosen to be extracted such that texture patterns become 
indistinguishable when all features are extracted and matched. The search for the 
Hi has gone a long way beyond Julesz’s statistical conjecture. Methods employed 
include co-occurrence matrices, run-length statistics, sizes and orientations of 
various textons, cliques in Markov Random Fields, and dozens of other measures. 
All these features have rather limited expressive power. 

Here, it is worth noting that the modeling of texture not only concerns the 
data and distributions in the image space but also depends on human perception 
influenced by task or purpose. In Julesz’s quest, the criterion for judging whether 
two texture images belong to the same category depends on the human visual 
system, which is trained for various tasks. Julesz carefully reduces task dependence 
by testing in a pre-attentive stage with no specific purpose; nevertheless, the human 
visual system has been trained ahead of the experiments. Later experiments show 
that human vision can learn and adapt to tell apart texture images after long training. 
This task dependence sets apart models in vision from those in physics. 

In the subsequent chapters, let us illuminate the quest for features and statistics 
describing texture patterns. 

3.2 Markov Random Fields 

One approach for pursuing texture features is statistical modeling, which character-
izes texture images as arising from probability distributions or random fields [30]. 
These modeling approaches involve only a small number of parameters and thus 
provide concise representation for textures. More importantly, texture analysis can 
be posed as a well-defined statistical inference problem. These statistical approaches 
enable us to not only infer the parameters of underlying probability models of 
texture images but also synthesize texture images by sampling from these models. 
Checking whether the synthesized images have similar visual appearances to the 
textures being modeled provides a way to test the model. 

An issue, however, is that many of these statistical models, such as Markov 
random fields and clique-based Gibbs models, are too simple and thus suffer from a 
lack of expressive power to capture the fidelity of natural images.
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Markov Random Field (MRF) 

Markov Random Field (MRF) models were popularized by Besag in 1974 [19] for  
modeling spatial interactions on lattice systems and were used by Cross and Jain 
in 1983 [30] for texture modeling. An important characteristic of MRF modeling 
is that global patterns are formed via stochastic propagation of local interactions, 
which is particularly appropriate for modeling textures as they are characterized by 
global but not predictable repetitions of similar local structures. 

Concretely, a Markov random field is a probability distribution over random 
variables X1, . . . , Xn defined by an undirected graph G = (V , E), where the nodes 
in V correspond to the variables Xi . Before illustrating the special properties of 
MRF models, we first introduce some notation to formalize graphs. In an undirected 
graph G, two nodes s and t are called neighbors if there is an edge between 
them. The neighborhood of a site s is defined as the set of all its neighbors, i.e., 
Ns = {t : (s, t) ∈ E, t ∈ V }. Moreover, the neighborhood system of G is the set of 
all neighborhoods in the graph. We denote it as N = {Ns : s ∈ V }. For any patch 
A in graph G, define XA as a window of observation. The boundary of patch A is 
thus NA = {t : (s, t) ∈ E, s ∈ A, t /∈ A}. Also, we call C ⊂ V a clique of G if for 
any two sites s, t ∈ C, we have  (s, t) ∈ E. The depiction on the right-hand side of 
Fig. 3.3 shows a simple general MRF, in which, for example, the neighbors of node 
B are C, D, and E, and nodes B, D, and E form a three-node clique. A distinct 
feature of MRF models is that the random variables defined on the nodes satisfy the 
local Markov properties. That is, each variable Xi is conditionally independent of 
all other variables given its neighbors. Therefore, MRF can be used to model a set 
of local characteristics. 

Based on the qualities of MRF models, we can consider a texture as a realization 
from a random field I defined over a spatial configurationD. For example, D can be 
an array or a lattice. We denote Is as the random variable at a location s ∈ D, and 
let N = {Ns , s  ∈ D} be the neighborhood system of D satisfying: (1) s /∈ Ns and 
(2) s ∈ Nt ⇐⇒ t ∈ Ns . The pixels in Ns are the neighbors of s. A subset C of D 

Fig. 3.3 On the left is an example lattice structure of an MRF. On the right is a toy example of a 
general MRF in which A and C are neighbors of each other, thus forming a two-node clique, and 
B, D, and  E form a three-node clique
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is a clique if every pair of distinct pixels in C is neighbors of each other; C denotes 
the set of all cliques. 

Formally, the following gives a definition of MRF distributions on images. 

Definition 1 p(I) is an MRF distribution with respect to N if p(Is | I−s) = p(Is | 
INs ), in which I−s denotes the values of all pixels other than s, and for A ⊂ D, IA 
denotes the values of all pixels in A. 

In addition, an MRF distribution is closely related to a Gibbs distribution, which 
is defined below. In statistical mechanics, a Gibbs distribution gives the probability 
that a system will be in a certain state as a function of the state’s local properties, 
such as the energy and the temperature of the system. Consequently, the Gibbs 
model can be viewed as a set of potentials defined on cliques. 

Definition 2 p(I) is a Gibbs distribution with respect to N if 

p(I) = 
1 

Z 
exp

{
−

∑
C∈C 

λC(I(C))

}
, (3.2) 

where Z is the normalizing constant (or partition function), and λC(·) is a function 
of intensities of pixels in clique C (called potential of C). Some constraints can be 
imposed on λC for them to be uniquely determined. 

In fact, an MRF distribution is equivalent to a Gibbs distribution. The 
Hammersley–Clifford theorem establishes their equivalence [19]: 

Theorem 1 For a given N , p(I) is an MRF distribution ⇐⇒ p(I) is a Gibbs 
distribution. 

This equivalence provides a general method for specifying an MRF on D, i.e., 
first choose an N , and then specify λC . The MRF is  stationary if for every C ∈ C, 
λC depends only on the relative positions of its pixels. This is often pre-assumed in 
texture modeling. 

Here the λC(·) function, which extracts statistics from an input image, can be 
seen as the feature representation Hi of the image as introduced in Sect. 3.1. 

Often enough, a texture is considered as an MRF on a lattice system with each 
pixel represented by a node, as shown on the left of Fig. 3.3. The neighboring pixels 
form a clique and pixels farther away have less effect on the pixel in question. This 
paired system leads us to consider auto-models [19], which are MRF models with 
pair potentials. 

Ising and Potts Models 

Two important instantiations of MRF models with pair potentials have emerged 
throughout history, the Ising and the Potts model.
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In general, auto-models with pair potentials have characteristics of λC ≡ 0 if  
|C| > 2, where p(I) has the following form: 

p(I) = 
1 

Z 
exp

{∑
s 

αsIs +
∑
t,s 

βt−sIt Is

}
, (3.3) 

in which β−t = βt and βt−s ≡ 0 unless t and s are neighbors. An MRF model 
with pair potentials, as defined above, is commonly specified through conditional 
distributions: 

p(Is | I−s) ∝ exp

{
αsIs +

∑
t 

βs−t It Is

}
, (3.4) 

in which the neighborhood is usually of the order less than or equal to three pixels. 
One of the classic MRF models with pair potentials is the Ising Model. The 

Ising Model was first proposed by Ernst Ising to study ferromagnetism. Similar to 
texture models, the Ising Model also considers lattice systems, in which each node 
Is ∈ {+1,−1}. To attach physical meaning to this construction, each node, or site, 
can be viewed as an electron having a particular “spin.” With Is = −1, electron s 
points down, and with Is = +1, the electron points up. An Ising Model with all 
positive spins is shown in Fig. 3.4. 

How do the electrons in the lattice interact with each other? What is the energy 
of the system? To answer these questions, the Ising Model considers two types of 
interactions that affect the energy of the system: the external field and interaction 
between neighboring electrons. Together, they form an energy function called a 
Hamiltonian, written as 

H(I) = −
∑
s∼t 

βIsIt −
∑

t 
αIt , (3.5) 

where s ∼ t means that s and t are neighbors, β represents the strength of 
magnetization and dictates electron interactions, and α represents the strength of 
the external field on each electron. 

Fig. 3.4 Graphical view of 
the Ising Model with all 
positive spins
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Fig. 3.5 Example sampling of Ising Model with different mean and variance. From left to right, 
β is 0.35, 0.40, and 0.43, respectively 

The entire configuration of the lattice system is, similar to a general MRF, given 
by 

p(I) = 
1 

Z 
exp

{
−H(I) 

kT

}
, (3.6) 

in which k is the Boltzmann constant and T is the temperature. The higher the 
temperature, the more random the particles become, and the more uniform the 
probability distribution becomes. An example sampling of the Ising Model using 
different β values is shown in Fig. 3.5. 

The Potts Model is a generalization of the Ising Model on a lattice system. 
Instead of binary states, each particle has n spin angles, i.e., Is ∈ {θ0, θ1, . . . , θn−1}. 
Therefore, the energy Hamiltonian is given by 

H(I) = −
∑
s∼t 

βδ(Is , It )−
∑

t 
αIt , (3.7) 

in which δ(·, ·) is the Kronecker delta function. Its distribution is in the same form 
as that of the Ising Model. 

The advantage of pair-potential models such as the Ising and Potts models is that 
the parameters in the models can be easily inferred by auto-regression. However, 
these models are severely limited in the following two ways: (1) the cliques 
are too small to capture features of texture, and (2) the statistics on the cliques 
specify only first-order and second-order moments, i.e., mean and covariance, 
respectively. Yet many textures have local structures much larger than three or 
four pixels, and the covariance information, or equivalently the spectrum, cannot 
adequately characterize textures, as suggested by the existence of distinguishable 
texture pairs with identical second-order or even third-order moments, as well as 
indistinguishable texture pairs with different second-order moments [41]. Moreover, 
many textures are strongly non-Gaussian, regardless of neighborhood size. 

The underlying reason for these limitations is that Eq. (3.2) involves too many 
parameters if we increase the neighborhood size or the order of the statistics,
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even for the simplest auto-models. This suggests that we need carefully designed 
functional forms for λC(·) to efficiently characterize local interactions as well as the 
statistics on local interactions. 

Gaussian Markov Random Field (GMRF) 

An early statistical model for texture patterns was the Gaussian Markov Random 
Field (GMRF). This family of models satisfies the properties of an MRF model with 
the additional restriction that the joint distribution of all nodes is multivariate nor-
mal. Important statistical properties of natural images can be observed in the GMRF 
model, suggesting that certain basic features of natural images are represented by 
this well-defined parametric family. The idea of matching fundamental features of 
observed images to synthesized new images with the same appearance provides 
inspiration for more complex models such as the FRAME model (see Sect. 3.4). 

Formally, a GMRF is a graph G = (V, E) where each node corresponds to a 
single dimension of a multivariate Gaussian x ∼ N(μ, Q−1) with a non-singular 
precision matrix Q. Edges of G are determined by the relation 

Qk,� 	= 0 ⇔ {k, �} ∈ E . (3.8) 

Conditional independence satisfies xk ⊥ x� | x−k� ⇔ Qk,� = 0, as can be seen 
from direct inspection of the multivariate Gaussian density. Therefore, xk | x−k ∼ 
xk |N (xk), in which N (xk) = {x� : Qk,� 	= 0, k 	= �} is the neighborhood of xk , 
i.e., the distribution of a single node xk given the rest of the nodes depends only 
on a subset of nodes which are connected to xk in the GMRF graph. Note that the 
edges often represent nodes that are spatially related, such as nearby pixels within 
an image. 

Consider an N ×M image I ∼ N(0, β−1Q−1), in which I(x, y) denotes pixel at 
location (x, y) (note that this is different from the previous graph structure notation, 
in which Is denotes node s in I), β >  0 is the coupling strength between pixels, and 

Q(x1,y1),(x2,y2) = 

⎧⎨ 

⎩ 

1 (x1, y1) = (x2, y2) 
− 1 

4 (x2, y2) ∈ N (I(x1, y1)) 
0 else  

(3.9) 

with neighborhood structure N (I(x, y)) = {I(x + 1, y), I(x − 1, y), I(x, y + 
1), I(x, y − 1)}. Suppose that the torus boundary condition is used, so that I(x + 
N,  y)  = I(x, y) and I(x, y + M) = I(x, y). This model has the density
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p(I) = 
1 

Z 
exp

{
−β

∑
x

∑
y 

(I(x + 1, y)  − I(x, y))2 + (I(x, y + 1)− I(x, y))2

}
, 

(3.10) 
and the conditional expectation for each pixel 

E[I(x, y)|N (I(x, y))] =  
1 

4 
(I(x + 1, y)+ I(x − 1, y)+ I(x, y + 1)+ I(x, y − 1)) (3.11) 

is the average of the neighboring pixels in the image. In the limiting case of 
infinitesimally small pixels, the discrete GMRF model converges to the continuous 
density 

p(I) = 
1 

Z 
exp

{
−β

∫
x

∫
y 
(∇xI(x, y))2 + (∇yI(x, y))2dy dx

}
. (3.12) 

Several important observations follow from the analysis of the continuous 
analogue of the discrete GMRF density. First, the power law phenomenon observed 
in natural images can be explicitly derived for the density in Eq. (3.12). Recall that 
the Fourier transform Î(ξ, η) of an image I(x, y) is given by 

F(I) = Î(ξ, η) =
∫

x

∫
y 
I(x, y)e−i2π(xξ+yη) dy dx. (3.13) 

Algebraic manipulation shows that F(∇xI) = 2πiξ Î and F(∇yI) = 2πiηÎ. The  
well-known Plancherel Theorem states that a function g and its Fourier transform 
G = F(g)  satisfy the relation

∫
|g(t)|2 dt =

∫
|G(η)|2 dη, (3.14) 

meaning that the L2 functional norm is preserved by the Fourier transform. Bringing 
all this together shows 

β

∫
x

∫
y 
(∇xI(x, y))2 + (∇yI(x, y))2dy dx = 4π2β

∫
ξ

∫
η 
(ξ2 + η2)|Î(ξ, η)|2 dηdξ, (3.15) 

so that the potential function in Eq. (3.12) can be rewritten in terms of Î. Moreover, 
the separable form of the right-hand side of the above equation shows 

p(Î(ξ, η)) ∝ exp
{
−4π2β(ξ2 + η2)|Î(ξ, η)|2

}
. (3.16) 

Hence, Î(ξ, η) is independent of other states of Î, and Î(ξ, η) is a Gaussian with 
parameters
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E[Î(ξ, η)] = 0 and Var[Î(ξ, η)] = 1 

8π2β(ξ2 + η2) 
. (3.17) 

Therefore, E[|Î(f )|2]1/2 ∝ 1/f so that the GMRF model p(I) satisfies the scale 
invariance observed in natural images, as discussed in Sect. 2.3. 

A second important property of the GMRF model is its connection to the heat 
equation. Considering again the potential function of a GMRF model 

H(I(x, y)) = β
∫

x

∫
y 
(∇xI(x, y))2 + (∇yI(x, y))2dy dx, (3.18) 

we will show that generating an image according to the dynamics 

dI(x, y, t)  
dt 

= −δH(I(x, y, t))  
δI 

, ∀(x, y), (3.19) 

is equivalent to the heat diffusion equation 

dI(x, y, t)  
dt 

= �I(x, y), (3.20) 

in which � = ∂2 

∂x2 
+ ∂2 

∂y2 
is the Laplacian operator. 

Using an Euler–Lagrangian equation for two variables, 

δJ 
δf 

= 
∂L 
∂f 

− 
d 
dx

(
∂L 
∂fx

)
− 

d 
dy

(
∂L 
∂fy

)
, (3.21) 

in which J (f  )  = ∫
y

∫
x L(x, y, f, fx, fy)dxdy and f is a function of x and y. 

Setting f = I, L = (∇xI)2 + (∇yI)2, and J = H , we obtain 

dI(x, y, t) 
dt 

= − δH(I(x, y, t)) 
δI 

= −
[

∂[(∇xI)2 + (∇yI)2] 
∂I

− 
d 
dx

[
∂[(∇xI)2 + (∇yI)2] 

∂(∇xI)

]
− 

d 
dy

[
∂[(∇xI)2 + (∇yI)2] 

∂(∇yI)

]]

= 0+ 
d 
dx 

[2(∇xI)]+ 
d 
dy

[
2(∇yI)

]

= 2
(

∂2I 
∂x2 

+ 
∂2I 
∂y2

)

= 2�I. (3.22) 

Ignoring the constant factor, we have shown that in fact, the learning dynamics 
of an image modeled by a GMRF potential function is equivalent to the dynamics 
modeled by the heat diffusion equation.
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Despite interesting connections to statistical properties of natural images and 
the heat diffusion equation, the GMRF model is still quite restricted. Interesting 
local structures exist but the joint pixel density is a unimodal Gaussian. The GMRF 
model can capture aspects of the local regularity found in natural images but nothing 
else. Therefore, the GMRF model from Eq. (3.10) is not capable of serving as a 
probability density for even simple image patterns. The GMRF model can represent 
certain properties of an image (specifically, the tendency of nearby pixels to have 
similar intensity), but it cannot account for the formation of visual patterns. In the 
following sections, we will see how the GMRF potential from Eq. (3.10) can be 
adapted as one of many filters (in particular, a gradient filter) whose joint features 
can be used to synthesize realistic images. 

Advanced Models: Hierarchical MRF and Mumford–Shah 
Model 

In reality, we often encounter images with multiple types of textures, each occupy-
ing a set of regions in the image domain. In these situations, we need more powerful 
models to deal with the interaction of distinct texture regions. 

When several texture patterns are present in an image, the boundaries of different 
regions need to be specified. Often, the simple MRF models, including the GMRF 
model, are not expressive enough in encoding this kind of knowledge in images. For 
example, we might expect long, straight edges to be penalized in some images, but 
the pixel intensities alone do not accurately reflect the existence of edge elements. 
Geman and Geman [74] introduce the hierarchical MRF model for the maximum a 
posteriori (MAP) image restoration problem and describe the images by both pixel 
intensities and edge continuity. Specifically, an image I = (F,L) is modeled as 
an MRF of two processes. The intensity process F is a simple MRF of observable 
pixel intensities as discussed in Sect. 3.2). The line process L is another MRF of 
unobservable edge elements. We define a line site d as placed midway between each 
vertical or horizontal pair of pixels. The set D of all line sites is thus all possible 
locations of the edge elements. While F(x, y) measures the intensity at a pixel, 
L(x, y) represents a lack or presence (and orientation) of an edge at this specific 
site. The line process L can affect a pixel’s neighborhood. For instance, if an edge 
is present at a line site, the potential over the pair-clique consisting of the pixels 
separated by this line site is zero. Therefore, these two pixels will not influence the 
other’s intensity, and the bonding between them is broken. The Gibbs distribution 
used to define the hierarchical MRF is 

p(F = f,L = l) = 
1 

Z 
exp

{
−

∑
C∈C 

λC(f, l)

}
. (3.23)
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With the hierarchical MRF, we can model more complicated image structures 
and define new types of tasks in computer vision, as it allows us to analyze the 
discontinuity in images from a new perspective. 

Another technique that facilitates the modeling of multiple textures is the 
Mumford–Shah model. This model aims to segment an image into a few simple 
regions, keeping the color of each region as smooth as possible. It utilizes the 
Mumford–Shah energy functional to complete three tasks simultaneously. First, the 
functional measures how well the model approximates the observed image. Second, 
it asks that the model varies slowly except at boundaries. Third, it requires the set 
of contours to be as short, and hence as simple and straight, as possible. 

Selecting Filters and Learning Potential Functions 

The models mentioned thus far have equipped us with the tools needed to describe 
and generate a variety of textures, as long as we select appropriate image filters 
and learn optimal potential functions and parameters for the learned probability 
distributions. The questions then become, given one or a set of observed texture 
images, how do we select filters that will most completely capture the image 
statistics? And how do we learn the optimal potential functions and parameters? 
These questions will be answered as we explain the FRAME model in Sect. 3.4. 
First, though, it will be helpful to review some of the more well-known filters in 
vision. 

3.3 Filters for Early Vision 

Due to the limitations of clique-based models, the researchers have also explored 
feature extraction from the perspective of image filtering. In the various stages along 
the visual pathway, from the retina to V1, to the extra-striate cortex, cells with 
increasing sophistication and abstraction have been discovered: center-surround 
isotropic retinal ganglion cells, frequency and orientation selective simple cells, 
and complex cells that perform nonlinear operations. Here we focus on filtering 
theory inspired by the multi-channel filtering mechanism discovered and generally 
accepted in neurophysiology, which proposes that the visual system decomposes the 
retinal image into a set of sub-bands. These sub-bands are computed by convolving 
the image with a bank of linear filters, followed by some nonlinear procedures [18]. 
Considering again the definition �(h) = {I : Hi(I) = hi, i  = 1, . . . , K}, it is now  
natural, after convolving the image with a bank of linear filters, to use a marginal 
statistic (e.g., a histogram) to represent a feature Hi of an image. 

Filtering is a process that changes pixel values of a given image, in an effort 
to extract valuable information such as clusters and edges. Figure 3.6 provides an 
example of typical image filtering.
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Fig. 3.6 (a) Presents an image and (b) presents a filtered version of the image 

An integral part of image processing, filters provide biologically plausible ways 
of extracting visual information from raw input signals. In the coming section, we 
will explore different types of filters that extract different feature information from 
images. 

Correlation and Convolution 

Before we introduce specific types of filters, it is important to understand how filters 
are applied to images. One method of linear filtering is correlation, which uses filters 
to obtain a weighted combination of all pixels in a small neighborhood. Suppose an 
image I is defined on an N × N lattice D, and I(x, y) ∈ L is the intensity value of 
an image I at location (x, y) and L is an interval on the real line or a set of integers 
representing pixel intensity. Suppose also that filter F is defined on an M×M lattice 
much smaller than the lattice of I. Correlation is computed as 

I(x, y) ⊗ F =
∑
(k,l) 

I(x + k, y + l)F (k, l) (3.24) 

in which ⊗ denotes correlation and each F(k,  l)  is a filter coefficient. To maintain 
the image size, we pad the boundary of the original image with enough zeros so that 
the filtered output image is the same size. 

Correlation measures similarity between a filtered region and the filter itself, but 
to extract meaningful information, a more commonly used method is convolution. 
Different from correlation, convolution is defined as 

I(x, y) ∗ F =
∑
(k,l) 

I(x − k, y − l)F (k, l), (3.25) 

where ∗ denotes the convolution operation. It appears that convolution is correlation 
with both axes flipped. The motivation for using convolution instead of correlation
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is that it is associative, in addition to being commutative and distributive. This 
means that if an image needs to be convolved with multiple filters, the filters can 
be convolved with each other first before being applied to the image. A detailed 
proof of the mathematical properties of convolution is not of our interest for this 
book, but to intuit why convolution is associative, notice that the Fourier transform 
of convolution is a product in the frequency domain, which is clearly associative. 

Knowing some basic operations for image processing, let us introduce some 
classical filters. 

Edge Detection Filters 

An edge in an image consists of a sudden change of pixel intensity, and to detect 
them, a natural decision is to detect the change of pixel values throughout the image. 
If an image exists on a continuous domain, we can represent the change in pixel 
intensities by derivatives 

∇I =
[

∂I 
∂x 

, 
∂I 
∂y

]
. (3.26) 

To only account for horizontal edges or vertical edges, we can represent changes 
in pixel intensities by [ ∂I 

∂x , 0] or [0, ∂I ∂y
], respectively. The gradient direction θ , as in  

calculus, is 

θ = tan−1
(

∂I 
∂y 
∂I 
∂x

)
, (3.27) 

and the gradient strength is

‖∇I‖ =
√(

∂I 
∂x

)2 

+
(

∂I 
∂y

)2 

. (3.28) 

In practice, however, images consist of discrete pixels, so we need a discrete 
approximation of image derivatives. Note that the definition of the derivative with 
respect to the x-coordinate is 

∂I(x, y) 
∂x

= lim 
h→ 0 

I(x + h, y) − I(x, y) 
h 

, (3.29) 

and its discrete counterpart is 

∂I(x, y) 
∂x 

≈ 
I(x + 1, y)  − I(x, y) 

1 
. (3.30)
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To implement this derivative using a convolution, we can use a simple filter 

F = [−1 1
]
. (3.31) 

However, a more commonly used 1D filter for edge detection is 

F = [−1 0 1
]
, (3.32) 

which corresponds to, in the continuous domain, a derivative definition that extends 
by a small amount in both directions: 

∂I(x, y) 
∂x 

= lim 
h→ 0 

I(x + h, y) − I(x − h, y) 
2h 

. (3.33) 

Note that the constant factor 2 is neglected in the filter since applying the 
unnormalized filter consistently will not affect the relative intensity of the resulting 
image. 

In the 2D case, three well-known edge detection filters are the Prewitt, Sobel, 
and Roberts filters, which are displayed in the same order below: 

⎡ 

⎣−1 0 1  
−1 0 1  
−1 0 1  

⎤ 

⎦ 

⎡ 

⎣−1 0 1  
−2 0 2  
−1 0 1  

⎤ 

⎦ [
0 1  
−1 0

]
. (3.34) 

Both the Prewitt and Sobel filters detect edges in the x-direction, and detection in 
the y-direction is similar but with the filter weights transposed. However, the Sobel 
filter is more commonly used between these two because it provides smoothing 
in the direction perpendicular to the direction of the edge detection. Details on 
smoothing will be provided in the next section. Images filtered by the Prewitt filter 
may also suffer from any noise in the original image. The Roberts filter detects edges 
in the diagonal direction instead. Figure 3.7 shows an image filtered by each filter. 

Fig. 3.7 An image (a) filtered by Prewitt (b), Sobel (c), and Roberts (d) filters, respectively
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Gaussian Filters 

A Gaussian filter is used for smoothing and blurring. As indicated by its name, 
the filter resembles a Gaussian density function. Note that a multivariate Gaussian 
function can be written as 

G(�x | �x0, �)  = 
1√

(2π)n|�| exp
{
−1 

2 
(�x − �x0)ᵀ�−1(�x − �x0)

}
(3.35) 

in which G denotes a Gaussian function, �x is an n-dimensional variable centered at
�x0, and � is the covariance matrix. However, for the purpose of image smoothing, a 
Gaussian filter is typically assumed to be independent among different coordinates. 
That is, in two dimensions, the filter can be written as 

G(x, y | x0, y0, σx, σy) = 1 

2πσxσy 
e−((x−x0)

2/2σ 2 
x+(y−y0)

2/2σ 2 
y ) (3.36) 

where by convention it is assumed that σx = σy = σ . Its discrete counterpart can 
be represented by filter 

1 

16 

⎡ 

⎣1 2 1  
2 4 2  
1 2 1  

⎤ 

⎦ . (3.37) 

Varying σ allows one to vary the width of the Gaussian distribution, controlling 
the degree of smoothing. A larger σ corresponds to a larger filter size with each 
convolution accounting for more neighboring pixels. Note that Gaussian filtering is a 
form of a weighted sum with the highest weight at the center, effectively smoothing 
out noises in a close vicinity. A Gaussian-smoothed image is shown in Fig. 3.8. 

Fig. 3.8 An image (a) smoothed by a Gaussian filter (b)
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Derivative of Gaussian and Laplacian of Gaussian Filters 

Returning to edge detection, a major problem for Sobel and Prewitt filters is 
that they are very sensitive to noise due to a hard subtraction of neighboring 
values. It is therefore common to first conduct Gaussian smoothing before applying 
image gradients. Since convolution is associative, we can directly apply gradient 
operations to a Gaussian filter before applying them to the image itself. 

This suggests that we need to calculate the first derivative of the Gaussian, and 
Fig. 3.9 shows the first derivatives, with respect to both the x- and y-coordinates, 
and their corresponding filters. Convolving a derivative of the Gaussian filter with 
an image allows for both smoothing and edge detection, and it is less sensitive to 
noise than Prewitt or Sobel filters. 

For edge detection purposes, first derivatives of the Gaussian are commonly used, 
but they are still somewhat undesirable due to the resulting thickness of detected 
edges, induced by σ in the Gaussian function. Second derivatives, on the other 
hand, represent edges with zero intensity, as the first derivative transforms edges 
to max/min intensity after filtering. This infinitely thin line of zero-crossing is 
more desirable for edge detection. To calculate the second derivative, the Laplacian

� = ∂2 

∂x2 
+ ∂2 

∂y2 
is most commonly used. 

Similar to the derivation of image gradients, the second derivative in the x-
direction can be written as 

∂2I(x, y) 
∂x2 = lim 

h→ 0 

∂I(x+h,y) 
∂x − ∂I(x−h,y) 

∂x 
2h 

= lim 
h → 0 

limt → 0 
I(x+h,y)−I(x+h−t,y) 

t
− limt → 0 

I(x−h+t,y)−I(x−h,y) 
t 

2h 

Fig. 3.9 (a) Gaussian density. (b) Function of x-derivative of Gaussian. (c) Function of y-
derivative of Gaussian. (d) Filter visualization of x-derivative of Gaussian. (e) Filter visualization 
of y-derivative of Gaussian
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≈ 
I(x+1,y)−I(x,y) 

1 − I(x,y)−I(x−1,y) 
1 

1 

= I(x + 1, y)  − 2I(x, y) + I(x − 1, y). (3.38) 

This corresponds to an (unnormalized) discrete filter

[
1 −2 1

]
. (3.39) 

In 2D, it is not difficult to see that a simple Laplacian filter becomes 

⎡ 

⎣0 1 0  
1 −4 1  
0 1 0  

⎤ 

⎦ . (3.40) 

However, similar to image gradients, the Laplacian operator is extremely sensi-
tive to noise in the input. Therefore, Gaussian smoothing is usually applied before 
a Laplacian operation. As the Laplacian can also be represented by a convolution 
as shown above, it can be applied to a Gaussian filter before being applied to the 
image. The resulting filter is named the Laplacian of Gaussian (LoG or LG). This 
gives a continuous formulation 

LoG(x, y | x0, y0, σx, σy) = 

−
{

1 

2πσ 3 
x σy

[
1− 

(x − x0)2 

σ 2 
x

]
+ 1 

2πσxσ 3 
y

[
1− 

(y − y0)2 

σ 2 
y

]}
exp

{
−

(
(x − x0)2 

2σ 2 
x 

+ 
(y − y0)2 

2σ 2 
y

)}
. 

(3.41) 

Figure 3.10 shows both the function of the Gaussian and the Laplacian of 
Gaussian. For the Laplacian of Gaussian, the uphill area surrounding a “valley” 
indicates that, by convolving it with an image, the low-intensity side of an edge in 
the image will rise to have high intensity before dropping to zero intensity and even 
lower, before then rising again to high intensity on the other side of the edge. An 
example of filtering using the Laplacian of Gaussian is shown in Fig. 3.11. 

Gabor Filters 

Much effort has been spent on modeling radially symmetric center-surround retinal 
ganglion cells. One such simple model for this purpose is the Laplacian of Gaussian 
introduced above with σx = σy = σ .
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Fig. 3.10 (a) Density plot of the Gaussian, and (b) the second derivative of the Gaussian 

Fig. 3.11 An example of filtering using the Laplacian of Gaussian 

Yet, as retinal ganglion cells respond to specific frequency bands, Gabor filters 
also provide a good way to extract texture patterns from an image under specific 
frequencies [35]. In addition to being frequency-selective, Gabor filters are also 
directional-selective. Mathematically, a Gabor filter is a pair of cosine and sine 
waves with angular frequency ω and η, respectively, and amplitude modulated by 
the Gaussian function. Its general form is 

Fω(x, y) = G(x, y | x0, y0, σx, σy) · S(x, y | ω, η), (3.42) 

in which G(x, y | x0, y0, σx, σy) is a Gaussian function, S(x, y | ω, η) = 
exp{−i(ωx + ηy)} is a wave function, and φ = arctan(η/ω) is the direction of 
the wave. 

Here Fω defines a Gabor filter that matches image regions with frequency ω in 
the x-direction and frequency η in the y-direction. High-frequency filters will match 
high-frequency patterns whereas low-frequency filters will match low-frequency 
patterns.
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Fig. 3.12 Gabor wavelets in different orientations and frequencies 

Gabor filters are closely related to Gabor wavelets, which serve as basis functions 
for a Fourier Transform of an image. Some examples of Gabor wavelets are shown 
in Fig. 3.12. 

The filters mentioned above are linear. Some functions are further applied to 
these linear filters to model the nonlinear functions of the complex cells. One way 
to model the complex cells is to use the power of each pair of Gabor filters, |(F ∗ 
I)(x, y)|2. In fact, |(F ∗ I)(x, y)|2 is the local spectrum of I at (x, y) smoothed by a 
Gaussian function. Thus, it serves as a local spectrum analyzer. 

Although these filters are very efficient in capturing local spatial features, some 
problems are not well understood. First, given a bank of filters, how can we choose 
the best set of filters, especially when some are linear while others are nonlinear, or 
the filters are highly correlated with each other? Second, after selecting the filters, 
how can we encapsulate the features they capture into a single texture model? These 
questions will be answered in the remainder of the chapter. 

3.4 FRAME Model 

Markov Random Fields provide us with physical inspiration for modeling texture 
patterns despite some notable limitations. Filters, on the other hand, afford a 
powerful and biologically plausible way of extracting features. Is there a way to 
combine the two classes of texture models? In this coming section, we propose 
a modeling methodology that is built on and directly combines the above two 
important themes for texture modeling. It is called the FRAME (Filters, Random 
field, and Maximum Entropy) model [282]. Before continuing, however, you are 
encouraged to go over Chap. 9 and understand Maximum Entropy, Minimum 
Entropy, and Minimax Entropy Principles, as they will be employed in this chapter 
in derivations.
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Intuition and the Big Picture 

Let image I be defined on a domain D where each Is ∈ L is the intensity value 
of image I at pixel s, and L is an interval on the real line or a set of integers 
to represent pixel intensity. Without loss of generality, we denote a feature as 
φ ∈ S = {φ(α) , α  = 1, 2, . . . , K}, where K is the number of features in question. 
In the FRAME model, each feature is typically a vector of histograms of activations 
(normalized or unnormalized) that result from image I being convolved with a 
selected filter. As a reminder, a filter can be seen as a low-dimensional space that 
pierces through the higher dimensional image space. Accordingly, convolution of 
the image I with the filter produces the projection of the image onto this low-
dimensional space. The set of projected histograms is a set of marginal distributions 
for the image; our goal is to match “enough” marginal distributions that we can 
accurately model the observed image. An intuitive drawing is presented as Fig. 3.13. 

Now given a set of observed images {Iobs 
i , i  = 1, 2, . . .  ,M} from a distribution 

f (I), we define feature statistics of the observation as 

μ (α) 
obs = 

1 

M 

M∑
i=1 

φ(α) (Iobs 
i ), for α = 1, . . . , K, (3.43) 

and the set of images that match the statistics of these features as

�I =
{
I : φ(α) (I) = μ (α) 

obs, α  = 1, . . . , K
}

. (3.44) 

Fig. 3.13 Suppose each point is an image and the red dot represents the selected image. Two filters 
are seen as axes piercing through the image space. The features described by these two filters are 
represented by the image’s projection (i.e., convolution with a filter) against the two axes
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Similarly, we can define the set of distributions that match the statistics as

�p =
{
p(I) : Ep[φ(α) (I)] =  μ (α) 

obs, α  = 1, . . . , K
}

. (3.45) 

We now have defined our feature statistics. The next task is to pursue a suitable 
distribution p ∈ �p that matches the observed distributions. 

This pursuit process is iterative and twofold. First, we select K suitable filters 
from a given set of filters to completely describe the most distinctive features 
of a texture. Second, we find the best-parameterized distribution to explain the 
current statistics given a fixed set of filters. This parameterized distribution can be 
written as p(I;�; S), where S denotes the set of selected filters, and � denotes 
the distribution parameters. Filter selection and distribution matching is an iterative 
process, reminiscent of coordinate descent, minimizing differences between the true 
distribution and the model distribution. Note that as we try to model pre-attentive 
processes (i.e., the subconscious accumulation and processing of environmental 
information) in human brains when detecting textures, we generally neglect the 
training of filters and simply use pre-trained filters. 

We make use of the Maximum Entropy Principle to pursue the best parameters
� when the set of features (parameterized by a set of filters) to be matched is 
fixed. The parameterized distribution is constrained to match histograms of the 
filters’ activations generated from texture images. However, we do not want to 
over-constrain our distribution since we should avoid adding extra information 
that may change the feature statistics. That is, we only match statistics given by 
the selected features and no more, meaning that we maximize the entropy of our 
distribution while matching all the given features. More intuitively, we want to learn 
the distribution of the texture, but not to learn each training texture image precisely, 
so that we are able to generate new texture images that follow the same distribution 
as texture images in our training dataset but not reproduce the same images that are 
already in our training dataset. Figure 3.14 illustrates this intuition. 

To match the statistics provided by the observed data, an extreme solution would 
be a distribution that only concentrates on the data points themselves. However, 
this solution over-shrinks the constrained image set, adding too many unnecessary 
constraints, and it results in a highly overfitted model that can hardly generalize. 
Instead, we seek a distribution that exhibits maximum capacity under the current 
constraints. Remember in the earlier chapters, we discussed that the capacity of a 
space is measured by the entropy of the distribution defined for it. Thus, maximizing 
the entropy means finding the largest possible space. 

As explained by the Maximum Entropy Principle, the solution to this constrained 
problem is in the form of a Gibbs distribution: 

p(I;�, S) = 
1 

Z(�) 
exp

{
− 

K∑
α=1

〈λ(α) , φ(α) (I)〉
}

, (3.46) 

where λ(α) is the Lagrange multiplier associated with feature φ(α) controlling 
the relative strength of activation, 〈· , ·〉 denotes inner product, and
� = (λ(α) , α  = 1, . . . , K).



3.4 FRAME Model 59

Fig. 3.14 The Maximum Entropy Principle gives us the most general distribution that matches 
the feature statistics we choose. Here �Ip1 

and �Ip2 
are two possible distributions we learned to 

try to match the feature statistics of the observed data points. �Ip2 
concentrates too much on the 

observed data points, which is representative of overfitting and poor generalization, while �Ip1 
is 

the more general one by applying the Maximum Entropy Principle 

Fig. 3.15 We can observe the min-max entropy process for training the FRAME model. Suppose 
we are at �I0 and we have two filters we could select: F1 and F2. If either of them is selected, 
we update our model based on the Maximum Entropy principle, which lends the largest capacity 
based on the current constraint (e.g., preferring �IF1 

to �I
F
′
1 

). In choosing between F1 and F2, we  

want the one that lends the largest reduction in the entropy of the parameterized distribution with 
respect to the feature space 

The Lagrange multipliers are unique. After the current distribution is found, 
we proceed to find a new pre-trained filter to better model the texture pattern. 
Intuitively, we select the best filter that minimizes the Kullback–Leibler (KL) 
divergence from f (I) to p(I;�, S). As derived in the Minimum Entropy Principle 
section, minimizing this KL divergence is equivalent to minimizing the entropy of 
the parameterized distribution with respect to the feature space (Fig. 3.15). 

This pursuit process can be visualized as below:
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Fig. 3.16 Reduction of constrained set of distributions from those sampled from uniform distri-
bution, which corresponds to the entire pixel space, to an equivalence class of images that match 
projected statistics of the true samples. Here �Ip1 

represents the set of images drawn from p1, 
which follows a Gibbs distribution by the Maximum Entropy Principle. We perform this model 
pursuit process until images are close to images from f (I), the true distribution 

Uniform = p(I;�0, S0) → p(I;�1, S1) → . . .  → p(I;�K, SK) ∼ f (I). (3.47) 

The matched statistics give an equivalence class of images �(h) = {I : Hi(I) = 
hi, i  = 1, . . . , K} in which each I ∈ �I(h) is similar in the sense that their 
projected histogram statistics are similar. Therefore, the more filters are chosen, 
the more constrained the distributions are, and the fewer images there will be in the 
equivalence class of images. This model pursuit process is a process for gradually 
constraining the image space to obtain a set of images that match the true data 
distribution. The pursuit process is also shown in Fig. 3.16. 

The figure can be interpreted as follows. We start from a random uniform distri-
bution and start selecting a filter according to Minimum Entropy Principle. Then we 
use Maximum Entropy Principle to best match the selected feature statistics. This 
gives �Ip1 

described by distribution p(I;�1, S1). The set of equivalence class of 
images also decreases, as indicated by the shrinking ellipse. This iterative process 
continues until our distribution is constrained enough so that it is indistinguishable 
from the observed distribution f (I). 

An interesting analogy to this pursuit process is shepherding. At first, we can 
imagine that sheep wander in an infinitely large area. At a certain time step, 
shepherds start guiding the sheep into a newly constructed fenced area, which 
defines a constrained space. Not wanting to be constrained further, the sheep push 
back against the fence, trying to escape. Shepherds then construct a new, smaller 
fenced area inside the last one and guide the sheep into this smaller area, with 
the sheep again pushing back. This process is iterated until the shepherds stop 
constructing fences.
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Fig. 3.17 A toy example pursuit process as described by FRAME 

Figure 3.17 shows a toy example (images with 2 pixels) of this pursuit process. 
As shown, f (x, y) is the true data distribution we try to model, and our distribution 
p(x, y) starts from random uniform and a feature h1 is selected. Maximizing 
entropy of the constrained distribution gives us the second distribution. We further 
select the next best feature h2 and match our distribution against it. We can see that 
now the p(x, y) is already very close to f (x, y) and the process is stopped. 

In the coming section, we derive the FRAME model and how it can be learned. 

Deriving the FRAME Model 

With the bigger picture in mind, we now proceed to derive the FRAME model. We 
first fix a set of filters and try to learn �. 

To re-iterate our definition, let image I be defined on a discrete domain D, in  
which D can be an N × N lattice. For each pixel s ∈ D, Is ∈ L, and L is an 
interval of R or L ⊂ Z . For each texture, we assume that there exists a “true” joint 
probability density f (I) over the image space L|D|, and f (I) should concentrate on 
a subspace of L|D| (projection of I onto the subspace), which corresponds to texture 
images that have perceptually similar texture appearances. 

Learning Potential Functions 

Given an image I and a filter F (α) with α = 1, 2, . . . , K  for the indices of the filter, 
we let I(α) 

s = F (α) ∗ Is be the filter response at location s and I(α) the filtered image. 
The marginal empirical distribution (histogram) of I(α) is
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H(α) (z) = 
1 

|D|
∑
s∈D 

δ(z − I(α) 
s ), (3.48) 

where z is a specific filter response and δ(·) is the Dirac delta function. The marginal 
distribution of f (I) with respect to F (α) at location s is denoted by 

f (α) 
s (z) =

∫
I(α) 
s =z 

f (I)dI = Ef [δ(z − I(α) 
s )]. (3.49) 

At first thought, it seems an intractable problem to estimate f (I) due to the 
overwhelming dimensionality of image I. To reduce dimensions, we first introduce 
the following theorem. 

Theorem 1 Let f (I) be the |D|-dimensional continuous probability distribution of 
a texture, then f (I) is a linear combination of f (ξ), the latter are the marginal 
distributions on the linear filter response F (ξ) ∗ I. 

Proof By the inverse Fourier transform, we have 

f (I) = 1 

(2π)|D|

∫
e2πi〈I, ξ 〉f̂ (ξ)dξ, (3.50) 

where f̂ (ξ)  is the characteristic function of f (I) and 

f̂ (ξ)  =
∫

e−2π i〈ξ, I〉f (I)dI 

=
∫

e−2π iz

∫
〈ξ, I〉=z 

f (I)dzdI 

=
∫

e−2π iz

∫
δ(z − 〈ξ,  I〉)f (I)dzdI 

=
∫

e−2π iz  f (ξ) (z)dz, (3.51) 

where 〈·, ·〉 is the inner product, by definition f (ξ) (z) = ∫
δ(z − 〈ξ,  I〉)f (I)dI is 

the marginal distribution of F (ξ) ∗ I, and we define F (ξ) (s) = ξ(s) as a linear filter.
��

Theorem 1 transforms f (I) into a linear combination of its one-dimensional 
marginal distributions. Thus, it motivates a new method for inferring f (I); namely, 
construct a distribution p(I) so that p(I) has the same marginal distributions f (ξ). If  
p(I) matches all marginal distributions of f (I), then p(I) = f (I). But this method 
will involve an uncountable number of filters, and each filter F (ξ) is as large as 
image I. 

Our second motivation comes from psychophysical research on human texture 
perception, which suggests that two homogeneous textures are often difficult to
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discriminate when they produce similar marginal distributions for responses from 
a bank of filters [18]. This means that it is plausible to ignore some statistical 
properties of f (I) which are not important for human texture discrimination. 

To make texture modeling a tractable problem, we make the following assump-
tions to limit the number of filters and the window size of each filter for com-
putational reasons, though these assumptions are not necessary conditions for our 
theory to hold true. First, we limit our model to homogeneous textures; thus, f (I) is 
stationary with respect to location s. Second, for a given texture, all features which 
concern texture perception can be captured by “locally” supported filters. In other 
words, the sizes of filters should be smaller than the size of the image. For example, 
the size of the image is 256× 256 pixels, and the sizes of filters we used are limited 
to less than 33× 33 pixels. These filters can be linear or nonlinear as we discussed 
in Sect. 3.3. Third, only a finite set of filters are used to estimate f (I). 

The first and second assumptions are made because we often have access to 
only one observed (training) texture image. For a given observed image Iobs and 
a filter F (α), we let  Iobs(α) denote the filtered image and Hobs(α) (z) the histogram 
of Iobs(α). According to the first assumption, f (α) 

s (z) = f (α) (z) is independent of 
s. By ergodicity, Hobs(α) (z) makes a consistent estimator of f (α) (z). The second 
assumption ensures that the image size is larger relative to the support of filters so 
that ergodicity takes effect for Hobs(α) (z) to be an accurate estimate of f (α) (z). 

Now for a specific texture, let SK = {F (α) , α  = 1, . . . , K} be a finite set of 
well-selected filters and f (α) (z), α = 1, . . . , K , be the corresponding marginal 
distributions of f (I). We denote the probability distribution p(I) that matches these 
marginal distributions as a set

�pK =
{
p(I) | Ep[δ(z − I(α) 

s )] =  f (α) (z) ∀z ∈ R, ∀α = 1, . . . , K,  ∀s ∈ D
}

, 
(3.52) 

where Ep[δ(z−I(α) 
s )] is the marginal distribution of p(I) with respect to filter F (α) at 

location s. Thus according to the third assumption, any p(I) ∈ �pK is perceptually 
an adequate model for the texture, provided that we have enough well-selected 
filters. Then we choose from �pK a distribution p(I) which has the maximum 
entropy: 

p(I) = argmax

{
−

∫
p(I) log p(I)dI

}
, (3.53) 

subject to Ep[δ(z − I(α) 
s )] =  f (α) (z), ∀z ∈ R, ∀α = 1, . . . , K,  ∀s ∈ D, 

and
∫

p(I)dI = 1. (3.54) 

We can achieve the maximum entropy (ME) distribution by making p(I), while 
it satisfies constraints in some dimensions, as random as possible in the other 
unconstrained dimensions. This makes it such that p(I) is the most universal set 
it could be given its constraints; it does not capture, or represent, any additional



64 3 Textures

constraints that are not explicitly defined by p(I). In this case, by not representing 
more information than we have available, we say the ME distribution exhibits the 
purest fusion of the extracted features. 

Using Lagrange multipliers, solving the constrained optimization problem in 
Eq. (3.53) is equal to solving the underlying unconstrained problem: 

p(I) = argmax

{
−

∫
p(I) log p(I)dI 

−
∑

s 

K∑
a=1

∫
λ(α) (z)(Ep[δ(z − I(α) 

s )] −  f (α) (z))dz − λ(β)

(∫
p(I)dI− 1

)}
(3.55) 

= argmax

{
−

∫
p(I) logp(I)dI 

−
∑

s 

K∑
a=1

∫
λ(α) (z)

(∫
δ(z − I(α) 

s )p(I)dI− f (α) (z)

)
dz − λ(β)

(∫
p(I)dI− 1

)}
, 

(3.56) 

where λ(α) (z)α = 1, 2, . . .  ,K  and λ(β) are Lagrange multipliers we introduce. Note 
that because the constraints on Eq. (3.53) differ from the ones given in Sect. 3.4 
in that z takes continuous real values and there is an uncountable number of 
constraints. Therefore, the Lagrange parameter λ takes the form of a function of 
z. Also, since the constraints are the same for all locations s ∈ D, λ should be 
independent of s. According to the Euler–Lagrange equation, if we want to find the 
stationary point (maximum or minimum) for the functional 

S(f (x)) =
∫ b 

a 
L(x, f (x), ˙f (x))dx, (3.57) 

then the function f (x)  should satisfy 

∂L 
∂f 

− 
d 
dx 

∂L 
∂ ḟ 

= 0. (3.58) 

Applying this to Eq. (3.56), we can derive that the optimal p(I) should satisfy 

− logp(I) − 1 −
∑

s 

K∑
α=1

∫
λ(α) (z)δ(z − Iα 

s )dz − λ(β) = 0, 

p(I) = exp

{
−1− λ(β) −

∑
s 

K∑
α=1

∫
λ(α) (z)δ(z − Iα 

s )dz

}
. (3.59) 

By reorganizing Eq. (3.59), we can get the following ME distribution:
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p(I;�K, SK) = 
1 

Z(�K) 
exp

{
−

∑
s 

K∑
α=1

∫
λ(α) (z)δ(z − Iα 

s )dz

}
(3.60) 

= 
1 

Z(�K) 
exp

{
−

∑
s 

K∑
α=1 

λ(α) (I(α) 
s )

}
, (3.61) 

where SK = {F (1) , F (2) , . . . , F (K)} is a set of selected filters and �K = 
(λ(1) (·), λ(2) (·), . . . , λ(K) (·)) is the Lagrange parameter. Z(�K) is the normalizing 
constant that contains the term exp{−1−λ(β)}. Note that in Eq. (3.61), for each filter 
F (α), λ(α) (·) takes the form as a continuous function of the filter response I(α) 

s . 
To proceed further, let us derive a discrete form of Eq. (3.61). Assume that 

the filter response I(α) 
s is discretized into L discrete gray levels, and as such z 

takes values from {z (α) 
1 , z  (α) 

2 , . . . , z  (α) 
L }. In general, the width of these bins does not 

have to be equal, and the number of gray levels L for each filter response may 
vary. As a result, the marginal distributions and histograms are approximated by 
piecewise constant functions of L bins, and we denote these piecewise functions as 
vectors. H(α) = (H (α) 

1 ,H  (α) 
2 , . . . , H  (α) 

L ) is the histogram of I(α), Hobs(α) denotes 
the histogram of Iobs(α), and the potential function λ(α) (·) is approximated by vector 
λ(α) = (λ (α) 

1 , λ  (α) 
2 , . . . , λ  (α) 

L ). 
So Eq. (3.60) is rewritten as 

p(I;�K, SK) = 
1 

Z(�K) 
exp

{
−

∑
s 

K∑
α=1 

L∑
i=1 

λ (α) 
i δ(z (α) 

i − I(α) 
s )

}
, (3.62) 

and by changing the order of summations: 

p(I;�K, SK) = 
1 

Z(�K) 
exp

{
− 

K∑
α=1 

L∑
i=1 

λ (α) 
i H (α) 

i

}

= 
1 

Z(�K) 
exp

{
− 

K∑
α=1

〈λ(α) , H (α)〉
}

. (3.63) 

The virtue of Eq. (3.63) is that it provides us with a simple parametric model for 
the probability distribution on I, and this model has the following properties: 

• p(I;�K, SK) is specified by �K = (λ(1) , λ(2) , . . . , λ(K) ) and SK . 
• Given an image  I, its histograms H(1) ,H (2) , . . . , H (K) are sufficient statistics, 

i.e., p(I;�K, SK) is a function of (H (1) ,H (2) , . . . , H (K) ). 

We plug Eq. (3.63) into the constraints of the ME distribution and solve for 
λ(α) , α  = 1, 2, . . .  ,K  iteratively by the following equations:
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dλ(α) 

dt 
= Ep(I;�K,SK)

[
H(α)

]
− Hobs(α) . (3.64) 

In Eq. (3.64), we have substituted Hobs(α) for f (α), and Ep(I;�K,SK)(H
(α) ) is the 

expected histogram of the filtered image I(α) where I follows p(I;�K, SK) with 
the current �K . We converge to the unique solution at �K = �̂K , and �̂K is called 
the ME-estimator. 

It is worth mentioning that this ME-estimator is equivalent to the maximum 
likelihood estimator (MLE): 

�̂K = argmax
�K 

log p(Iobs;�K, SK) 

= argmax
�K

[
− log Z(�K)− 

K∑
α=1

〈λ(α) , Hobs(α)〉
]

. (3.65) 

By gradient ascent, maximizing the log-likelihood lends Eq. (3.64), following 
the property of the partition function Z(�K). In Eq. (3.64), at each step, given �K 
and hence p(I;�K, SK), the analytic form of Ep(I;�K,SK)(H

(α) ) is not available; 
instead, we propose the following method to estimate it, as we did for f (α) 

before. We draw a typical sample from p(I;�K, SK) and thus synthesize a 
texture image Isyn. Then we use the histogram Hsyn(α) of Isyn(α) to approximate 
Ep(I;�K,SK)(H

(α) ). This requires that the size of Isyn that we are synthesizing should 
be large enough. 

To draw a typical sample image from p(I;�K, SK), we use the Gibbs sampler 
which simulates a Markov chain in the image space L|D|. The Markov chain starts 
from any random image, e.g., a white noise image, and it converges to a stationary 
process with distribution p(I;�K, SK). Thus, when the Gibbs sampler converges, 
the images synthesized follow distribution p(I;�K, SK). 

In summary, we propose Algorithm 1 for inferring the underlying probability 
model p(I;�K, SK) and for synthesizing the texture according to p(I;�K, SK). 
The algorithm stops when the sub-band histograms of the synthesized texture 
closely match the corresponding histograms of the observed images (Fig. 3.18).1 

In Algorithm 2, to compute p(Is = val | I−s), we set  Is to val, and due to the 
Markov property we only need to compute the changes of I(α) in the neighborhood 
of s. The size of the neighborhood is determined by the size of filter F (α). With 
the updated I(α), we calculate H(α), and the probability is normalized such that∑

val p(Is = val | I−s) = 1.

1 We assume the histogram of each sub-band I(α) is normalized such that
∑

i H (α) 
i = 1, and  

therefore all the {λ (α) 
i , i  = 1, . . . , L} computed in this algorithm have one extra degree of freedom 

for each α, i.e., we can increase {λ (α) 
i , i  = 1, . . . , L} by a constant without changing p(I;�K, SK). 

This constant will be absorbed by the partition function Z(�K). 
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Input a texture image Iobs . 
Select a group of K filters SK = {F (1) , F (2) , . . . , F (K)}. 
Compute {Hobs(α) , α  = 1, . . . , K}. 
Initialize λ (α) 

i ← 0, i  = 1, 2, . . . , L,  α  = 1, 2, . . .  ,K.  
Initialize Isyn as a uniform white noise texture.2 

Repeat 
Calculate Hsyn(α) α = 1, 2, . . . , K  from Isyn, use it  for  

Ep(I;�K,SK)(H
(α) ) . 

Update λ(α) α = 1, 2, . . .  ,K  by Equation 3.64), so p(I;�K, SK) is 
updated. 

Apply Gibbs sampler to flip Isyn for w sweeps under p(I;�K, SK) 
Until 1 2

∑L 
i | H obs(α) 

i −H syn(α) 
i | ≤ ε for α = 1, 2, . . .  ,K . 

Algorithm 1: The learning algorithm 

Fig. 3.18 Algorithm 1: Given a texture image and K filters (after filter selection), perform 
convolution to extract K histograms from the filtered response, denoting each as hobs(α). 
Synthesize an image (initialized as white noise) that is of the same size as the input image, and 
perform convolution to extract another K histograms from the filtered response, denoting each as 
hsyn(α). Update the coefficient of the FRAME model λ by λα 

t+1 = λα 
t + η(hsyn(α) − hobs(α) ). With  

this new model, we can again use the Gibbs sampler for W sweeps to synthesize another image for 
the next iteration 

In the Gibbs sampler, flipping a pixel is a step of the Markov chain, and we 
define flipping |D| pixels as a sweep, where |D| is the size of the synthesized image. 
Then the overall iterative process becomes an inhomogeneous Markov chain. At the 
beginning of the process, p(I;�K, SK) is a “hot” uniform distribution. By updating

2 The white noise image with uniform distribution is the samples from p(I;�K, SK)with λ (α) 
i = 0. 
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the parameters, the process gets closer and closer to the target distribution, which is 
much colder. So the algorithm is very much like a simulated annealing algorithm, 
which is helpful for getting around local modes of the target distribution. 

Given image Is , flip_counter← 0 
Repeat 
Randomly pick a location s under the uniform distribution. 
For val = 0, . . . ,G− 1 with G being the number of grey levels of I 
Calculate p(Is = val | I−s) by p(I;�K, SK). 

Randomly flip Is ← val under p(val | I−s). 
flip_counter← flip_counter + 1 

Until flip_counter = w × M × N . 

Algorithm 2: The Gibbs Sampler for w sweeps 

In summary, the FRAME model incorporates and generalizes the attractive 
properties of filtering theories and the random field models. Moreover, it interprets 
many previous methods for texture modeling with a unifying perspective. 

Filter Selection 

After � is learned with the above algorithm, we can now proceed to select the 
next filter to be added to the set. One way to choose SK from a filter bank B is to 
search for all possible combinations of K filters in B and compute the corresponding 
p(I;�K, SK). Then by comparing the synthesized texture images following each 
p(I;�K, SK), we can see which set of filters is the best. Such a brute force search 
is computationally infeasible, and for a specific texture, we often do not know what 
K is. Instead, we propose a stepwise greedy strategy. We start from S0 = ∅  (hence 
p(I;�0, S0) is a uniform distribution) and then sequentially introduce one filter at a 
time. Namely, we want to find a filter that reduces KL(f ||p(I;�)) the most (by the 
minimum entropy principle). 

Suppose that at the k-th step we have chosen Sk = {F (1) , F (2) , . . . , F (k)} and 
obtained a maximum entropy distribution 

p(I;�k, Sk) = 
1 

Z(�k) 
exp

{
− 

k∑
α=1

〈λ(α) , H (α)〉
}

, (3.66) 

so that Ep(I;�k,Sk)

[
H(α)

] = f (α) for α = 1, 2, . . . , k. Then at the (k + 1)-th step, 
for each filter F (β) ∈ B/Sk , we denote by d(β) = D

(
Ep(I;�k,Sk)[H(β)], f  (β)

)
the 

distance between Ep(I;�k,Sk)

[
H(β)

]
and f (β), which are, respectively, the marginal 

distributions of p(I;�k, Sk) and f (I) with respect to filter F (β). Intuitively, the
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bigger d(β) is, the more information F (β) carries, since it reports a big difference 
between p(I;�k, Sk) and f (I). Therefore we should choose the filter which has the 
maximal distance, i.e., 

Fk+1 = argmax 
F (β)∈B/Sk 

D
(
Ep(I;�k,Sk)[H(β)], f  (β)

)
. (3.67) 

More formally, define the Kullback–Leibler divergence between the data distri-
bution f and a model distribution p to be 

KL(f ‖p) = Ef

[
log 

f (I) 
p(I)

]
, (3.68) 

which measures the “distance” between f and p. 
We can choose the next filter to be the one that maximizes reduction in 

KL(f ‖p(I;�)), where p(I;�) is the maximum entropy distribution. This indicates 
that we want to maximize 

D
(
Ep(I;�k+1,Sk+1)[H(β)], f  (β)

)
= KL(f ‖p(I;�k, Sk)) − KL(f ‖p(I;�k+1, Sk+1)). 

(3.69) 

A key observation is 

Ef

[
log p(I;�k, Sk)

] = Ef

[
− 

k∑
α=1

〈λ(α) , H (α)〉 − log Z(�k)

]
(3.70) 

= Ep(I;�k,Sk)

[
− 

k∑
α=1

〈λ(α) , H (α)〉 −  log Z(�k)

]
(3.71) 

= Ep(I;�k,Sk)

[
log p(I;�k, Sk)

]
, (3.72) 

because Ef

[
H(α)

] = Ep(I;�k,Sk)

[
H(α)

]
. 

For the same reason, 

Ef

[
log p(I;�k+1, Sk+1)

] = Ep(I;�k+1,Sk+1)
[
log p(I;�k+1, Sk+1)

]
, (3.73) 

and 

Ep(I;�k+1,Sk+1)
[
log p(I;�k, Sk)

] = Ep(I;�k,Sk)

[
log p(I;�k, Sk)

]
, (3.74) 

again due to the matching of marginal histograms.
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Thus we have the following: 

Proposition 1 

KL(f ‖p(I;�k, Sk))− KL(f ‖p(I;�k+1, Sk+1))) = KL(p(I;�k+1, Sk+1))‖p(I;�k, Sk)) 
(3.75) 

= entropy(p(I;�k, Sk)− entropy(p(I;�k+1, Sk+1)). (3.76) 

Proof To simplify notation, we denote p(I;�k, Sk) as p and p(I;�k+1, Sk+1)) as 
p+: 

KL(f ‖p)− KL(f ‖p+) = Ef [log f (I)− log p(I)] − Ef [log f (I) − log p+(I)] 
= Ef [− log p(I)] −  Ef [− logp+(I)] 
= Ep+[− logp(I)] −  Ep+[− log p+(I)] 
= KL(p+‖p) 

= Ep[− log p(I)] − Ep+[− logp+(I)] 
= entropy(p) − entropy(p+). (3.77)

��
Thus we want to select the next filter to maximally reduce the entropy of the 
maximum entropy model. 

Simplifying the distance measure as D(h), where h is the evaluated histogram 
feature using the newly added filter, Lp-norm is a reasonable approximation to 
D(h). Specifically, denote p as the distribution modeled prior to adding the new 
filter, and then let h0 be the feature evaluated using the new filter on samples 
from p and hobs be the feature evaluated using the new filter on samples from true 
distribution f . Using Taylor expansion, 

D(hobs ) ≈ D(h)

∣∣∣
h=h0 

+ 
∂D 
∂h

∣∣∣
h=h0 

(hobs − h0)+ 
1 

2 
(hobs − h0)�

∂2D 
∂h2

∣∣∣
h=h0 

(hobs − h0), 

(3.78) 

where ∂D 
∂h = −λk+1 and ∂2D 

∂h2 
is the covariance matrix �hobs of each component of 

hobs evaluated using the new filter. As λk+1 is typically initialized to 0, we also have 
D(h)

∣∣∣
h=h0 

= 0 and ∂D 
∂h

∣∣∣
h=h0 

(hobs − h0) = 0. 
Furthermore, since we assume each component is independent of each other, 

we can approximate the second order term by L2 distance. In general, Lp distance 
metric is a good surrogate for D(h). 

As Lp-norm is directly computable and an approximation to information gain, 
we typically choose it to measure the distance d(β), which is also an approximation 
of the reduction in bits, i.e.,
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Fk+1 = argmax 
F (β)∈B/Sk 

1 

2

∣∣∣f (β) − Ep(I;�k,Sk)

[
H(β)

]∣∣∣
p 

. (3.79) 

For the following, we choose p = 1. To estimate f (β) and Ep(I;�k,Sk)[H(β)], we  
applied F (β) to the observed image Iobs and the synthesized image Isyn sampled 
from the p(I;�k, Sk) and substitute the histograms of the filtered images for f (β) 

and Ep(I;�k,Sk)[H(β)], i.e., 

Fk+1 = argmax 
F (β)∈B/Sk 

1 

2

∣∣∣Hobs(β) −Hsyn(β)
∣∣∣ . (3.80) 

The filter selection procedure stops when the d(β) for all filters F (β) in the filter 
bank is smaller than a constant ε. Due to fluctuation, various patches of the same 
observed texture image often have a certain amount of histogram variance, and we 
use such a variance for ε. 

Finally, we propose Algorithm 3 for filter selection. 

Let B be a bank of filters, S the set of selected filters, Iobs the observed texture 
image, 
and Isyn the synthesized texture image. 

Initialize k = 0, S ← ∅, p(I) ← uniform dist. Isyn ← uniform noise. 
For α = 1, . . . , |B| do 
Compute Iobs(α) by applying F (α) to Iobs . 
Compute histogram Hobs(α) of Iobs(α) . 

Repeat 
For each F (β) ∈ B/S do 
Compute Isyn(β) by applying F (β) to Isyn 

Compute histogram Hsyn(β) of Isyn(β) 

d(β) = 1 2 | Hobs(β) − Hsyn(β) |,3 
Choose Fk+1 so that d(k + 1) = max{d(β) : ∀F (β) ∈ B/S} 
S ← S ∪ {Fk+1}, k ← k + 1. 
Starting from p(I) and Isyn, run algorithm 1 to compute new p∗(I) and 

Isyn. 
p(I) ← p∗(I) and Isyn ← Isyn. 

Until d(β) < ε. 

Algorithm 3: Filter selection

3 Since both histograms are normalized to have sum = 1, then error ∈ [0, 1]. We note this 
measure is robust with respect to the choice of the bin number L (e.g. we can take L = 16, 32, 64), 
as well as the normalization of the filters. 
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Fig. 3.19 Synthesis of a fur texture: (a) is the observed texture; (b),(c),(d),(e),(f) are  the  
synthesized textures using K = 0, 1, 2, 4, 7 filters, respectively 

Figure 3.19a is the observed image of animal fur. We start from the uniform 
noise image in Fig. 3.19b. The first filter picked by the algorithm is a Laplacian 
of Gaussian filter LG(1.0) and its window size is 5 × 5. It has the largest error 
d(β) = 0.611 among all the filters in the filters bank. Then we synthesize texture 
as shown in Fig. 3.19c, which has almost the same histogram at the sub-band of this 
filter (the error d(β) drops to 0.035). 

To provide a final insight into the pursuit process from a distribution point of 
view, we refer to Fig. 3.20. Note that this is only a 2D view of the very high-
dimensional distribution space. First, selecting a filter gives a (high-dimensional) 
constrained set of probability distributions satisfying a given feature statistic. Then 
we try to look for a distribution in this constrained set that is the closest to the 
random uniform distribution (by the Maximum Entropy Principle), as represented 
by the right angle. In fact, we are minimizing KL(p‖p0), where p ∈ �p1 and p0 is 
the starting distribution. This objective is equivalent to maximizing entropy if and 
only if p0 is random uniform. We leave this proof as an exercise for the reader. 
Second, we find the new filter that gives the largest reduction in KL(f ‖p) (by the 
Minimum Entropy Principle), constraining the equivalence class of distributions 
further to a lower dimensional set. It is important to note that �p2 has a lower 
dimension than �p1 and every set after �p2 has a lower dimension due to additional 
constraints. The true distribution f again also remains in each set, as it satisfies 
each additional feature statistic. In each new constrained set, we start again from 
the random uniform distribution and find a new closest distribution. The algorithm
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Fig. 3.20 A graphical view of the FRAME learning algorithm in distribution space 

Fig. 3.21 Note the selected filter after each filter selection. Each time, we add the filter that reduces 
KL(f ‖p(I;�)) the most 

continues and we see from the solid line that our projected distribution “spirals” into 
the true data distribution as more constraints are put onto the distribution. Further 
details on information projection are presented in Chap. 9. 

Figure 3.21 is the filter we selected and added into the filter set, which we use 
it the model. As we can see in the figure, most of the filters we selected are Gabor 
filters and we also need some other filters to help detect the edges and corners. 

Figure 3.22 shows the curve of the weighted error per bin over the number of 
filters used for synthesis. As it is shown in the plot, after about 10 iterations, the 
weighted error is stable enough and can generate very reasonable images, which on 
the other hand perfectly match the result that given in Fig. 3.19.
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Fig. 3.22 The weighted error over the number of filters used 

3.5 Texture Ensemble 

The following section presents theoretical work on texture theories and establishes 
connections between FRAME, Statistical Physics, and the Julesz Ensemble. This 
section is highly technical and it is encouraged for interested readers to go through 
the original works [258, 259]. 

Ensembles in Statistical Physics 

We have developed the FRAME model based on the maximum entropy principle, 
and in the following, we will show that there is a simpler and deeper way to derive 
or justify the FRAME model. This insight again originates from Statistical Physics, 
specifically the equivalence of ensembles. 

Statistical physics is the subject of studying the macroscopic properties of a 
system involving a large number of elements (see Chandler [24]). Figure 3.23 
illustrates three types of physical systems which are interesting to us. 
1. Micro-canonical ensembles. Figure 3.23.a is an insulated system of N elements. 
The elements could be atoms, molecules, or electrons in systems such as gas, 
ferromagnetic material, fluid, etc. N is big, say N = 1023, and is considered infinity.
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Fig. 3.23 Three types of ensembles in statistical physics. (a) Micro-canonical ensembles. (b) 
Canonical ensembles. (c) Grand-Canonical ensembles 

The system is decided by a configuration or state s = (xN , mN ), where xN describes 
the coordinates of the N elements and mN their momenta [24]. It is impractical to 
study the exact motions of 6N vector s, and in fact, these microscopic states are less 
relevant, and people are more interested in the macroscopic properties of the system 
as a whole, say the number of elements N , the total energy E(s), and total volume 
V . Other derivative properties are temperature, pressure, etc. 

If we denote by h(s) = (N,E, V  )  the macroscopic properties, at thermodynamic 
equilibrium all microscopic states that satisfy this property make up a micro-
canonical ensemble:

�mce(ho) = {s = (xN ,mN ) : h(s) = ho = (N, V,E)}. (3.81) 

s is an instance and h(s) is summary of the system state for practical purposes. 
Obviously �mce is a deterministic set or an equivalence class for all states that 
satisfy descriptive constraints h(s) = ho. 

An essential assumption in statistical physics is, as a first principle, 

all microscopic states are equally likely at thermodynamic equilibrium. 

This is simply a maximum entropy assumption. Let � ! s be the space of all 
possible states, then �mce ⊂ � is associated with a uniform probability, 

punif(s;ho) =
{
1/|�mce(ho)| for s ∈ �mce(ho), 
0 for  s ∈ �/�mce(ho). 

(3.82) 

2. Canonical ensembles. The canonical ensemble refers to a small system (with 
fixed volume V1 and elements N1) embedded in a micro-canonical ensemble (see 
Fig. 3.23b). The canonical ensemble can exchange energy with the rest of the system 
(called the heat bath or reservoir). The system is relatively small, e.g., N1 = 1010, 
so the bath can be considered a micro-canonical ensemble itself. 

At thermodynamic equilibrium, the microscopic state s1 for the small system 
follows a Gibbs distribution, 

pGib(s1; β) = 
1 

Z 
exp{−βE(s1)}. (3.83)
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The conclusion was stated as a general theorem by Gibbs [78], 

If a system of a great number of degrees of freedom is micro-canonically distributed in 
phase, any very small part of it may be regarded as canonically distributed. 

In accordance with this theorem, the Gibbs model pGib is a conditional proba-
bility of the uniform model punif. This conclusion is extremely important because it 
bridges a deterministic set �mce with a descriptive model pGib. We consider this is 
an origin of probability in modeling visual patterns. 
3. Grand-Canonical ensembles. When the small system with fixed volume V1 can 
also exchange elements with the bath as in liquid and gas materials, then it is called 
a grand-canonical ensemble (see Fig. 3.23c). The grand-canonical ensemble follows 
a distribution, 

pgce(s1; βo, β)  = 
1 

Z 
exp{−βoN1 − βE(s1)}, (3.84) 

where an extra parameter βo controls the number of elements N1 in the ensemble. If 
we replace the energy of the physical system with the feature statistics of the texture 
image, then we will arrive at a mathematical model for textures. 

Texture Ensemble 

To study real-world textures, one needs to characterize the dependency between 
pixels by extracting spatial features and calculating some statistics averaged over 
the image. One main theme of texture research is to seek the essential ingredients 
in terms of features and statistics h(I), which are the bases for human texture 
perception. From now on, we use the bold font h to denote statistics of image 
features. 

In the literature, the search for h has converged to marginal histograms of Gabor 
filter responses. We believe that some bins of joint statistics may also be important 
as long as they can be reliably estimated from finite observations. 

Given K Gabor filters as feature detectors {F (1) , . . . , F (K)}, we convolve the 
filters with image I to obtain the sub-band filtered images {I(1) , . . . , I(K)}, where 
I(k) = F (k) ∗ I. Let  h(k) be the normalized intensity histogram of I(k); then the 
feature statistics h collects the normalized histograms of these K sub-band images, 

h(I) = (h(1) (I), . . . , h(K) (I)). (3.85) 

We use H(I) = (H (1) (I), . . . , H (K) (I)) to denote the unnormalized histograms. 
We assume that the boundary conditions of the images are properly handled (e.g., 
periodic boundary condition). It should be noted that the conclusions here hold 
as long as h(I) can be expressed as spatial averages of local image features. The 
marginal histograms of Gabor filter responses are only special cases.
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Given statistics h(I), one can partition the image space �D into equivalence 
classes �D(h) = {I : h(I) = h}. For finite D, the exact constraint h(I) = h 
may not be satisfied, so we relax this constraint and replace �D(h) by

�D(H) = {I : h(I) ∈ H}, (3.86) 

with H being a small set around h. Then we can define the uniform counting 
measure or the uniform probability distribution on �D(H) as 

q(I;H) =
{
1/|�D(H)|, if I ∈ �D(H), 
0, otherwise, 

(3.87) 

where |�D(H)| is the volume of or the number of images in �D(H). Now we can 
define the Julesz ensemble as follows. 

Definition 3 Given a set of feature statistics h(I) = (h(1) (I), . . . , h(K) (I)), a Julesz 
ensemble of type h is a limit of q(I;H) as D → Z2 andH→ h with some boundary 
condition.4 

The Julesz ensemble is defined mathematically as the limit of a uniform counting 
measure. It is always helpful to imagine the Julesz ensemble of type h as the image 
set �D(h) on a large D. Also, in the later calculation, we shall often ignore the 
minor complication that constraint h(I) = h may not be exactly satisfied. 

Then, we are ready to give a mathematical definition for textures. 

Definition 4 A texture pattern is a Julesz ensemble defined by a type h of the 
feature statistics h(I) (Figs. 3.24 and 3.25). 

Type Theory and Entropy Rate Functions 

A Simple Independent Model 

In this section, we introduce basic concepts, such as type, ensemble, entropy 
function, typical images, and equivalence of ensembles, using a simple image model 
where the pixel intensities are independently and identically distributed (i.i.d.). 

Let I be an image defined on a finite lattice D ⊂ Z2, and the intensity at pixel 
v ∈ D is denoted by I(v) ∈ G = {1, 2, . . . , g}. Thus �D = G|D| is the space of 
images on D, with |D| being the number of pixels in D. 

(1) The FRAME model for i.i.d. images. We consider a simple image model 
where pixel intensities are independently and identically distributed according to

4 We assume D → Z2 in the sense of van Hove, i.e., the ratio between the boundary and the size 
of D goes to 0. 
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Fig. 3.24 For each pair of texture images, the image on the left is the observed image, and the 
image on the right is the image randomly sampled from the Julesz texture ensemble 

Fig. 3.25 Julesz ensembles of different textures are disjoint in the space of infinite images. They 
will overlap in the space of image patches of finite size 

a probability p = (p1, . . . , pg) where
∑

i pi = 1. The distribution of I can be 
written as a FRAME model 

p(I;β) =
∏
v∈D 

pI(v) = 
g∏

i=1 
p Hi(I) 

i = exp{〈log p, H(I)〉} = exp{〈β, H(I)〉}, 
(3.88) 

where H(I) = (H1(I), . . . , Hg(I)) is the unnormalized intensity histogram of I, i.e., 
Hi is the number of pixels whose intensities are equal to i. β = (log p1, . . . , log pg) 
is the parameter of p(I; β)—a special case of the FRAME model. 

(2) Type. Let  h(I) = H(I)/|D| be the normalized intensity histogram. We call 
h(I) the type of image I.
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Fig. 3.26 The partition of 
the image space into 
equivalence classes, and each 
class corresponds to an h on 
the probability simplex 

(3) Equivalent class. Let �D(h) be the set of images with h(I) = h,5 i.e.,
�D(h) = {I : h(I) = h}. Then the image space is partitioned into equivalence 
classes

�D = ∪h�D(h). (3.89) 

As shown in Fig. 3.26, each equivalence class �D(h) is mapped into one type h on 
a simplex—a plane defined by h1+ · · · +  hg = 1 and hi ≥ 0,∀i in a g-dimensional 
space. 

(4) The Julesz ensemble for i.i.d. images. The hard constraint in defining the 
equivalence class �D(h) makes sense only in the limit as D → Z2, where statistical 
fluctuations vanish. Therefore, we may attempt to define the Julesz ensemble as the 
limit of �D(h) as D → Z2, or even more directly, as the set of images I defined on 
Z2 with h(I) = h. 

Unfortunately, the above “definitions” are not mathematically well defined. 
Instead, we need to define the Julesz ensemble in a slightly indirect way. First, 
we associate with each equivalence class �D(h) a probability distribution q(I;h), 
which is uniform over �D(h) and vanishes outside. Then, the Julesz ensemble of 
type h is defined to be the limit of q(I; h) as D → Z2. 

For finite D, the equivalence class �D(h) may be empty because |D|h may not 
be integers. Thus, to be more rigorous, we should replace h by a small setH around 
h, and let H go to h as D →∞. For simplicity, however, we shall neglect this minor 
complication and simply treat |D|h as integers. 

The uniform distribution q(I;h) only serves as a counting measure of the equiv-
alence class �D(h), i.e., all the images in �D(h) are counted equally. Therefore, 
any probability statement under the uniform distribution q(I; h) is equivalent to a 
frequency statement of images in �D(h). For example, the probability that image 
I has a certain property under q(I; h) is actually the frequency or the proportion 
of images in �D(h) that have this property. The limit of q(I; h) thus essentially 
defines a counting measure of the set of infinitely large images (defined on Z2) with 
histogram h. With a little abuse of language, we sometimes also call the equivalence 
class �D(h) defined on a large lattice D a Julesz ensemble, and it is always helpful 
to imagine a Julesz ensemble as such an equivalence class if the reader finds the 
limit of probability measures too abstract.

5 We hope that the notation h(I) = h will not confuse the reader. The h on the left is a function of 
I for extracting statistics, while the h on the right is a specific value of the statistics. 
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(5) Entropy function. We are interested in computing the volume of the Julesz 
ensemble �D(h), i.e., the number of images in �D(h). We denote this volume by 
|�D(h)|. Clearly 

|�D(h)| =  
|D|!∏g 

i=1(hi |D|)!
. (3.90) 

Using the Stirling formula, it can be easily shown that 

lim 
D→Z2 

1 

|D| log |�D(h)| =  lim 
D→Z2 

1 

|D| log
|D|!∏g 

i=1(hi |D|)!
(3.91) 

= −  
g∑

i=1 
hi log hi = entropy(h). (3.92) 

Thus for a large enough lattice, the volume of �D(h) is said to be in the order of 
entropy(h), i.e., 

|�D(h)| ∼  exp|D|entropy(h) . (3.93) 

For notational simplicity, we denote the entropy function by s(h) = entropy(h). 
(6) The probability rate function. Now we are ready to compute the total 

probability mass that p(I; β) assigns to an equivalence class �D(h). We denote 
this probability by p(�D(h); β). Because images in �D(h) all receive equal 
probabilities, it can be shown that 

lim 
D→Z2 

1 

|D| log p(�D(h); β) = lim 
D→Z2 

1 

|D| log
{
|�D(h)| 

g∏
i=1 

p
|D|hi 
i

}
(3.94) 

= −  
g∑

i=1 
hi log 

hi 
pi 

= −KL(h‖p), (3.95) 

where KL(h‖p) denotes the Kullback–Leibler distance from h to p. KL(h‖p) ≥ 0 
for all h and p, with equality holding when h = p. 

Thus, on a large enough lattice, the total probability mass of an equivalence class
�D(h) is said to be on the order of −KL(h‖p), 

p(�D(h); β) ∼ exp−|D|KL(h‖p) , (3.96) 

where −KL(h‖p) is the probability rate function and is denoted by sβ(h) = 
−KL(h‖p). 

(7) Typical vs. most likely images. Suppose among p1, . . . , pg , pm is the largest 
probability. Consider one extreme type h, with hm = 1, and hi = 0,∀i 	= m. 
Then the image in this �D(h) is the most likely image under model p(I; β), i.e.,
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it receives the highest probability. However, �D(h) has only one constant image, 
and the probability that p(I;β) assigns to this �D(h) is essentially zero for large 
lattice. Now consider the equivalence class �D(h = p). Each image in �D(h = p) 
receives less probability than the most likely image, but overall, the total probability 
received by the whole �D(h = p) is essentially 1 for large lattice. That is, if we 
sample from the FRAME model p(I; β), we will almost always get an image I from
�D(h = p). Such images are called the typical images of the FRAME model. 

Having introduced the basic concepts, we now explain the basic ideas of 
ensemble equivalence in the next two subsections by going in both directions from 
one to the other. 

From FRAME Model to Julesz Ensemble on Infinite Lattice 

We study the limit of the FRAME model p(I;β) as D → Z2. A simple fact will 
be repeatedly used in this section. To see this fact, let us consider the following 
example. Suppose we have two terms, one is e5n and the other is e3n. Consider their 
sum e5n + e3n. As  n →∞, the  sum  e5n + e3n is dominated by e5n, and the order of 
this sum is still 5, i.e., limn→∞ 

1 
n log(e

5n + e3n ) = 5. This means that for the sum 
of many terms, the term with the largest exponential order dominates the sum and 
the order of the sum is the largest order among the individual terms. 

Suppose H is a set of types and

�D(H) = {I; h(I) ∈ H} (3.97) 

is the set of all images I whose type is within H. Then from Eq. (3.96), we have  

p(I ∈ �D(H); β) =
∫
H 

p(�D(h); β)dh (3.98) 

∼
∫
H 
exp−|D|KL(h‖p) dh ∼ exp−|D|KL(h∗‖p) , (3.99) 

where h∗ is the type in H which has the minimum Kullback–Leibler divergence 
to p, 

h∗ = arg min 
h∈H 

KL(h‖p). (3.100) 

That is, the total probability for �D(H) has an exponential order KL(h∗||p) and 
is dominated by the heaviest type h∗. In a special case �D(H) = �D , i.e., the whole 
image space, we have h∗ = p and KL(h∗‖p) = 0. 

Clearly, as |D| → ∞, the FRAME model quickly concentrates its probability 
mass on �D(h = p) and assigns equal probabilities to images in �D(h = p). For  
other h 	= p, the probabilities will decrease to 0 at an exponential rate. Thus, the 
FRAME model becomes a Julesz ensemble.
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From Julesz Ensemble to FRAME Model on Finite Lattice 

In this section, we tighten up the notation a little bit. We use ID to denote the image 
defined on lattice D, and we use ID0 to denote the image patch defined on D0 ⊂ D. 
For a fixed type h of feature statistics, consider the uniform distribution q(I; h) 
on �D(h). Under q(I; h), the distribution of ID0 , denoted by q(ID0; h), is well  
defined.6 We shall show that if we fix D0 and let D → Z2, then q(ID0; h) goes 
to the FRAME model (see Eq. (3.88)) with p = h. 

First, the number of images in �D(h) is 

|�D(h)| =  
|D|!∏m 

i=1(hi |D|)! . (3.101) 

Then, let us fix ID0 and calculate the number of images in �D(h) whose image 
value (i.e., intensities) on D0 is ID0 . Clearly, for every such image, its image value 
on the rest of the lattice D/D0, i.e., ID/D0 must satisfy 

H(ID/D0) = h|D| −  H(ID0), (3.102) 

where H(ID0) = |D0|h(ID0) is the unnormalized histogram of ID0 . Therefore 

ID/D0 ∈ �D/D0

(
h|D| −H(ID0) 

|D/D0|
)

. (3.103) 

So the number of such images is |�D/D0((h|D| −  H(ID0))/|D/D0|)|. Thus, 

q(ID0; h) = 
|�D/D0( 

h|D|−H(ID0 ) 
|D/D0| )| 

|�D(h)| 

= 
(|D| − |D0|)!/∏g 

i=1(hi |D| −  Hi(ID0))! 
|D|!/∏g 

i=1(hi |D|)! 

=
∏g 

i=1(hi |D|)(hi |D| −  1) . . . (hi |D| −  Hi(ID0)+ 1) 
|D|(|D| − 1) . . . (|D| − |D0| +  1) 

=
∏g 

i=1 hi(hi − 1/|D|) . . . (hi − (Hi(ID0)− 1)/|D|) 
(1− 1/|D|) . . . (1− (|D0| −  1)/|D|) 

→ 
g∏

i=1 
h Hi(ID0 ) 

i as |D| → ∞. (3.104)

6 In the i.i.d. case, q(ID0 ; h) is both the marginal distribution and the conditional distribution of 
q(I; h), while in random fields, we only consider the conditional distribution. 
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Therefore, the distribution of ID0 is the FRAME model (see Eq. (3.88)) with 
p = h under the Julesz ensemble defined by h. 

The above calculation can be easily interpreted in a non-probabilistic way. That 
is, q(ID0; h) is the frequency or the proportion of images in �D(h) (on large D) 
whose patches on D0 are ID0 . In other words, if we look at all the images in the 
Julesz ensemble through D0, then we will find a population of images on D0, and 
the distribution of this population is described by the FRAME model. The reason 
that the FRAME model assigns probabilities to all images on D0 is also quite clear. 
Under the hard constraint on h(ID), h(ID0) can still take any possible values. 

Equivalence of FRAME and Julesz Ensemble 

In this section, we show the equivalence between the Julesz ensembles and the 
FRAME models, using the fundamental principle of equivalence of ensembles in 
statistical mechanics. 

From Julesz Ensemble to FRAME Model 

In this subsection, we derive the local Markov property of the Julesz ensemble, 
which is globally defined by type h. This derivation is adapted from a traditional 
argument in statistical physics (e.g., [141]). It is not as rigorous as modern 
treatments, but it is much more revealing. 

Suppose the feature statistics are h(I) where I is defined on D. For a fixed value 
of feature statistics h, consider the image set �D(h) = {I : h(I) = h}, and the 
associated uniform distribution q(I;h). First, we fix  D1 ⊂ D and then fix D0 ⊂ D1. 
We are interested in the conditional distribution of the local patch ID0 given its local 
environment ID1/D0 under the model q(I;h) as D → Z2. We assume that D0 is 
sufficiently smaller than D1 so that the neighborhood of D0, ∂D0, is contained in 
D1. 

Let H0 = H(ID0 |I∂D0) be the unnormalized statistics computed for ID0 where 
filtering takes place within D0∪∂D0. Let  H01 be the statistics computed by filtering 
inside the fixed environment D1/D0. Let  D−1 = D/D1 be the big patch outside of 
D1. Then the statistics computed for D−1 is h|D| −  H0 − H01. Let  h− = (h|D| −  
H01)/|D−1|, then the normalized statistics for D−1 is h− − H0/|D−1|. 

For a certain ID0 , the number of images in �D(h) with such a patch ID0 and 
its local environment ID1/D0 is |�D−1(h− −H0/|D−1|)|. Therefore the conditional 
probability, as a function of ID0 , is  

q(ID0 | ID1/D0 ,h) ∝
∣∣∣∣�D−1(h− − 

H0 

|D−1| )
∣∣∣∣ . (3.105)
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Unlike the simple i.i.d. case, however, the above volume cannot be computed 
analytically. However, the volume |�D(h)| still shares the same asymptotic behavior 
as that of the simple i.i.d. example, namely, 

lim 
D→Z2 

1 

|D| log |�D(h)| →  s(h), (3.106) 

where s(h) is a concave entropy function of h. 
Like the simple i.i.d. case, in the above derivation, we ignore the minor technical 

complication that �D(h) may be empty because the exact constraint may not be 
satisfied on a finite lattice. A more careful treatment is to replace h by a small setH 
around h, and let H → h as D → Z2. Let �D(H) = {I : h(I) ∈ H}, then we have 
the following: 

Proposition 2 The limit 

lim 
D→Z2 

1 

|D| log�D(H) = s(H) (3.107) 

exists. Let s(h) = limH→h s(H), then s(h) is concave, and s(H) = suph∈H s(h). 

See Lanford [142] for a detailed analysis of the above result. The s(h) is a 
measure of the volume of the Julesz ensemble of type h. It defines the randomness 
of the texture appearance of type h. 

With such an estimate, we are ready to compute the conditional probability. Note 
that the conditional distribution, q(ID0 | ID1/D0 ,h), as a function of ID0 , is decided 
only by H0, which is the sufficient statistics. Therefore, we only need to trace H0 
while leaving other terms as constants. For large D, a Taylor expansion at h− gives 

log q(ID0 | ID1/D0 , h) = constant+ log
∣∣∣∣�D−1

(
h− − 

H0 

|D−1|
)∣∣∣∣

= constant+ |D−1| s
(
h− − 

H0 

|D−1|
)

= constant− 〈s′(h−), H0〉 +  o
(

1 

|D|
)

. (3.108) 

Assuming the entropy function s has continuous derivative at h, and let β = 
s′(h), then, as D → Z2, h− → h, and s′(h−) → β. Therefore, 

log q(ID0 | ID1/D0 ,h) → const− 〈s′(h), H0〉
= const − 〈β, H0〉, (3.109) 

so
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q(ID0 | ID1/D0 ,h) → 1 

ZD0(β) 
exp

{−〈β,H(ID0 | I∂D0)〉
}
, (3.110) 

which is exactly the Markov property specified by the FRAME model. This 
derivation shows that local computation using the FRAME model is justified under 
the Julesz ensemble. It also reveals an important relationship, i.e., the parameter β 
can be identified as the derivative of the entropy function s(h), β = s′(h). 

As in the simple i.i.d. case, this result can be interpreted in a non-probabilistic 
way in terms of frequencies. 

From FRAME Model to Julesz Ensemble 

In this subsection, we study the statistical properties of the FRAME models as 
D → Z2. 

Consider the FRAME model 

p(I; β) = 
1 

Z(β) 
exp {−|D|〈β,h(I)〉} , (3.111) 

which assigns equal probabilities to the |�D(h)| images in �D(h). The probability 
that p(I; β) assigns to �D(h) is 

p(�D(h); β) = 
1 

ZD(β) 
exp {−|D|〈β,h〉} |�D(h)|. (3.112) 

The asymptotic behavior of this probability is 

sβ(h) = lim 
D→Z2 

1 

|D| log p(�D(h); β) (3.113) 

= −〈β,h〉 +  s(h)− lim 
D→Z2 

1 

|D| logZD(β). (3.114) 

For the last term, we have the following: 

Proposition 3 The limit 

ρ(β) = lim 
D→Z2 

1 

|D| log ZD(β) (3.115) 

exists and is independent of the boundary condition. ρ(β) is convex. 

See Griffiths and Ruelle [86] for a proof. Therefore, we have the following: 

Proposition 4 The probability rate function sβ(h) of the FRAME model p(I; β) is
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sβ(h) = lim 
D→Z2 

1 

|D| logp(�D(h); β) = s(h) − 〈β,h〉 −  ρ(β). (3.116) 

Therefore, the probability that the FRAME model puts on �D(h) behaves like 
exp{|D|sβ(h)}, and clearly sβ(h) ≤ 0 for any h and any β (otherwise, the probability 
will go unbounded). This sβ(h) can be identified with−KL(h‖p) in the simple i.i.d. 
case. 

The probability rate function sβ(h) tells us that p(I; β) will eventually concen-
trate on the  h∗ that maximizes sβ(h) = s(h) − 〈β,h〉 −  ρ(β), or  s(h) − 〈β,h〉. So  
we have the following: 

Theorem 2 If there is a unique h∗ where sβ(h) achieves its maximum 0, then 
p(I; β) eventually concentrates on h∗ as D → Z2. Therefore the FRAME model 
p(I; β) goes to a Julesz ensemble defined by h∗. If  s(h) is differentiable at h∗, then 
s′(h∗) = β. 

3.6 Reaction and Diffusion Equations 

In the previous sections, we have motivated feature extraction using filters and 
matching marginal distributions of observed data. This design of features has led 
to FRAME, a unified view of both clique-based and filter-based methods in texture 
modeling. Using Gibbs distribution as the probability distribution for textures, we 
further learn its potential function with dynamics 

dλ(α) 

dt 
= Ep(I;�K,SK)

[
H(α)

]
− Hobs(α) , (3.117) 

as in Eq. (3.64). 
Computing Ep(I;�K,SK)[H(α)] is difficult and it involves sampling synthetic 

images using the current model distribution. A class of methods for image synthesis 
involves nonlinear Partial Differential Equations (PDEs) in the form of 

dI 
dt 

= T (I), (3.118) 

where T is a function of current I. In this section, we connect Gibbs distribution to 
PDE paradigms for texture formation and derive a common framework under which 
many previous PDE methods can be similarly derived. 

We first introduce historical methods adopting PDEs for image processing 
inspired by physics and chemistry, and then we introduce our discovery of reaction-
diffusion functions as Gibbs potential functions, leading to Gibbs Reaction and 
Diffusion Equation (GRADE) as a family of PDEs for texture patterns formation.



3.6 Reaction and Diffusion Equations 87

Turing Diffusion-Reaction 

A set of nonlinear PDEs was first studied in [237] for modeling the formation of 
animal coat patterns by the diffusion and reaction of chemicals, which Turing called 
the “morphogens.” These equations were further explored by Murray in theoretical 
biology [178]. For example, let A(x, y, t) and B(x, y, t) be the concentrations 
of two morphogens at location (x, y) and time t , the typical reaction-diffusion 
equations are

{
∂A 
∂t = Da�A+ Ra(A, B) 
∂B 
∂t = Db�B + Rb(A, B), 

(3.119) 

where Da and Db are constraints, � = ∂2 

∂x2 
+ ∂2 

∂y2 
is the Laplace operator, and 

Ra(A, B)andRb(A, B) are nonlinear functions for the reaction of chemicals, e.g., 
Ra(A, B) = A ∗ B − A − 12 and Rb(A, B) = 16− A ∗ B. 

The morphogen theory provides a way for synthesizing some texture patterns. In 
the texture synthesis experiments, chemical concentrations are replaced by various 
colors, and the equations run for a finite number of steps with free boundary 
condition starting with some initial patterns. In some cases, both the initial patterns 
and the running processes have to be controlled manually in order to generate 
realistic textures. Two canonical textures synthesized by the Turing reaction-
diffusion equation are the leopard blobs and zebra stripes. 

In the reaction-diffusion equation above, the reaction terms are responsible for 
pattern formation, however, they also make the equations unstable or unbounded. 
Even for a small system, the existence and stability problems for these PDEs are 
intractable [87]. In fact, we believe that running any nonlinear PDEs for a finite 
number of steps will render some patterns, but it is unknown how to design a set of 
PDEs for a given texture pattern. 

Heat Diffusion 

As introduced in Sect. 3.2, generating an image according to the heat diffusion 
equation 

dI 
dt 

= �I(x, y) (3.120) 

is equivalent to minimizing the potential energy of GMRF and 

dI 
dt 

= −δU(I(x, y, t))  
δI 

, (3.121)
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where U(I(x, y)) = β
∫
x

∫
y (∇xI(x, y))2 + (∇yI(x, y))2dy dx. 

In the following, we show that anisotropic diffusion can also be written in a 
similar form of minimizing a potential energy. 

Anisotropic Diffusion 

Perona and Malik introduced a family of anisotropic diffusion equations for 
generating image scale space I(x, y, t)  [195]. Similar to the heat diffusion equation, 
their equation also simulates the “heat” diffusion process, 

dI 
dt 

= div(c(x, y, t)∇I), I(x, y, 0) = I0, (3.122) 

where ∇I = ( ∂I 
∂x , 

∂I 
∂y ) is the intensity gradient and div is the divergence operator, 

div( �V )  = ∇xP+∇yQ, for any vector �V = (P, Q). In practice, the heat conductivity 
c(x, y, t) is defined as a function of location gradients. For example, Perona and 
Malik [195] chose 

dI 
dt 

= ∇x

(
1 

1+ (∇xI/b)2
∇xI

)
+ ∇y

(
1 

1+ (∇yI/b)2
∇yI

)
, (3.123) 

where b is a scaling constant. It is easy to see that Eq. (3.123) minimizes the 
following energy function by gradient descent, just as in the heat diffusion process 
in the section above, 

U(I) =
∫ ∫

λ(∇xI)+ λ(∇yI)dxdy, (3.124) 

where λ(ξ) = const. log(1 + (ξ/b)2) and λ′(ξ) = const. ξ 
1+(ξ/b)2 

are plotted in 
Fig. 3.27. 

Although the anisotropic diffusion equations can be adopted for removing noise 
and enhancing edges [186], I(z, y, t)  converges to a flat image as t → ∞  in the 
Perona–Malik equation. 

GRADE: Gibbs Reaction and Diffusion Equations 

The above sections introduced (very similar) prior PDE paradigms in synthesizing 
textures. However, the methods mentioned above directly follow PDE models 
used in chemistry and physics. Directly following Gibbs distribution as used in 
FRAME, we derive a family of PDEs called Gibbs Reaction and Diffusion Equation
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Fig. 3.27 Reprinted with permission from [278]. On the left is λ(ξ) = const. log (1+ (ξ/b)2) 
and on the right is λ′(ξ) = const. ξ 

1+(ξ/b)2 

(GRADE). We also believe that many PDE paradigms for image processing can be 
unified under this common framework by using the same approach. 

Suppose image I is defined on anN×N latticeD. Consider the Gibbs distribution 
as derived in FRAME, 

p(I; λ, S) = 
1 

Z 
exp {−U(I;�, S)} , (3.125) 

where Z is the normalization constant independent of I, S = {F1, F2, . . . , Fn} 
is a set of filters to characterize the essential features of the images, and � = 
{λ1(·), . . . , λn(·)} is a set of potential functions on feature statistics extracted by 
S (using convolution). The potential is 

U(I;�, S) = 
n∑

i=1

∑
(x,y)∈D 

λi(Fi ∗ I(x, y)), (3.126) 

where Fi ∗ I(x, y) is the filter response of Fi at (x, y). 
In practice, S is chosen by minimizing the entropy of p(I) from a bank of filters 

such as the Gabor filters at various scales and orientations [4, 21] and wavelet 
Transform [13, 36]. In general, these filters can be nonlinear functions of the image 
intensities. In the rest of this section, we shall only study the following linear filters: 

1. An intensity filter δ(·) and gradient filters ∇x , ∇y 
2. The Laplacian of Gaussian filters 

LoG(x, y, s) = const.(x2 + y2 − s2)e−
x2+y2 

s2 , (3.127) 

where s = √
2σ stands for the scale of the filter. We denote these filters by LoG(s). 

A special filter is LoG( 
√
2 
2 ), which has a 3× 3 window [0, 1 4 , 0; 1 

4 , −1, 1 4 ; 0, 1 4 , 0].
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Fig. 3.28 Reprinted with permission from [278]. This figure shows two classes of functions. (a) 
Shows diffusion functions. (b) Shows reaction functions. Dotted lines show the fitted φ and ψ 
functions, respectively 

3. Gabor filters with both sine and cosine components: 

G(x, y, s, θ) = const. · Rot(θ) · e 
1 

2s2 
(4x2+y2) 

e−i 2π 
s x . (3.128) 

It is a sine wave at frequency 2π 
s modulated by an elongated Gaussian Function 

and rotated at angle θ . We denote the real and imaginary parts of G(z, y, s, θ) by 
G cos(s, θ) and G sin(s, θ). 

Using the filters above to learn the potential function in Eq. (3.126) in discretized 
bins using FRAME, we found that texture patterns generally exhibit two families of 
functions similar to reaction-diffusion in chemical processes as shown in Fig. 3.28. 
We use the following two families of functions to fit our discretized findings, and 
the fitted curves are shown as dashed lines in Fig. 3.28, 

φ(ξ)  = a

(
1− 1 

1 + (|ξ − ξ0|/b)γ

)
, a  >  0, (3.129) 

ψ(ξ)  = a
(
1− 1 

1 + (|ξ − ξ0|/b)γ

)
, a  <  0, (3.130) 

where ξ0 and b are the translation and scaling constants, respectively, and ‖a‖
weights the contribution of the filter. φ(ξ), the diffusion function, assigns the lowest 
energy (or highest probability) to filter responses around ξ0 (and ξ0 = 0 in most  
cases), and ψ(ξ), the reaction function, has the lowest energy at the two tails which 
represent salient image features such as object boundaries. These inverted potential 
functions are in contrast to all previous image models, and they are essential for 
modeling realistic images. The forming of the two potential functions is closely
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Fig. 3.29 Note the forming of the two types of potential functions. Suppose our current histogram 
of the synthesized image is more dispersed than the observed histogram (shown in the left image 
(a)). Then the updating of λ will push the λ on the tail to be bigger and push the λ in the center to 
be smaller, which forms a diffusion function (b). In the following sampling process, this diffusion 
function will push the corresponding feature to zero, making the synthesized histogram more 
concentrated to the center and thus closer to the observed one 

related to our training process. Recalling Eq. (3.64), we have shown the gradient of 
λ is equal to the difference between the histogram of the current synthesized image 
and the histogram of the observed image. Then if the synthesized image contains 
larger components of a certain feature than the original one, the update will shape 
the new λ to be more like the diffusion type so that the larger responses are inhibited. 
On the other hand, if the histogram of the synthesized image is too concentrated 
on a certain response, the λ will be shaped to reaction type so that this feature is 
encouraged to appear. This process is illustrated in Fig. 3.29. Recently, especially 
in the deep neural network cases, instead of learning a nonlinear potential function, 
people use the ReLU function to get similar results. The ReLU function has a linear 
response on the positive half axis and zero on the negative half axis. As shown in 
Fig. 3.30, by setting the coefficient of ReLU function to be greater or less than zero, 
we can get the same results of encouraging or preventing a certain feature to appear. 

Now we can design our potential function in Eq. (3.126) to be 

U(I;�, S) = 
nd∑
i=1

∑
(x,y)∈D 

φi(Fi ∗I(x, y))+ 
n∑

i=nd

∑
(x,y)∈D 

φi(Fi ∗I(x, y)). (3.131) 

Note that the filter set is divided into two parts S = Sd ∪ Sr , with Sd = {Fi, i  = 
1, 2, . . .  , nd} and Sr = {Fi, i  = nd + 1, . . . , n}. In most cases, Sd consists of 
filters such as gradient filters and Laplacian/Gaussian filters which capture general 
smoothness appearances of real-world images, and Sr contains filters such as Gabor 
filters at various orientations and scales which characterize salient features of 
images.
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Fig. 3.30 We can use the ReLU function to replace the original nonlinear diffusion (a) and  
reaction (b) functions 

Our PDE can therefore be designed by maximizing Gibbs distribution, which is 
equivalent to minimizing the above U(I;�, S) by gradient descent. We obtain the 
following nonlinear parabolic partial differential equation: 

dI 
dt 

= 
nd∑
i=1 

F− 
i ∗ φ′i (Fi ∗ I) + 

n∑
i=nd 

F− 
i ∗ ψ ′

i (Fi ∗ I), (3.132) 

where F− 
i (x, y) = −Fi(−x, −y). Thus starting from an input image I(x, y, t)  = I, 

the first term diffuses the image by reducing the gradients while the second term 
forms patterns as the reaction forces favor large filter responses. We call Eq. (3.132) 
the Gibbs Diffusion And Reaction Equation (GRADE). 

Properties of GRADE 

Property 1: A General Statistical Framework 

GRADE as in Eq. (3.132) can be considered as an extension to the heat diffusion 
equation, as in Eq. (3.122), on a discrete lattice by defining a vector field

�V = (φ′1(·), . . . , φ′nd (·), ψ ′
nd+1(·), . . . , ψ ′

n(·)), (3.133) 

and the divergence operator can be generalized to 

div = F− 
1 ∗ +  . . .  + F−

n ∗ . (3.134) 

Equation 3.132 can be written as 

dI 
dt 

= div( �V ). (3.135)
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Fig. 3.31 Reprinted with permission from [278]. Here φ(ξ)  = a(1− 1 
1+(|ξ−ξ0|/b)γ ), a > 0, and  

its derivative φ′(ξ) for (a), (c) is  γ = 2.0 and  (b), (d) γ = 0.8 

Compared to Eq. (3.122) which transfers “heat” among adjacent pixels, Eq. (3.135) 
transfers the “heat” in many directions on a graph and the conductivities are defined 
as functions of the local patterns instead of just the local gradients. Note that in the 
discrete lattice, choosing Sd = ∇x,∇y, Sr = ∅, we have  F1 = F− 

1 = ∇x, F2 = 
F− 
2 = ∇y and div = ∇x + ∇y , and thus Eqs. 3.122 and 3.123 are just special cases 

of Eq. (3.135). 

Property 2: Diffusion 

Figure 3.31a,b show two best-fit potential functions. Figure 3.31a shows a round 
tip at ξ = 0, and Fig. 3.31b shows a cusp at ξ = 0. Interestingly, real-world 
objects typically show potential function with a cusp. This is because large parts 
of real-world objects have flat intensity, encouraging piece-wisely constant regions. 
Intuitively, with γ <  1 and ξ = 0 at location (x, y), φ′(0) forms an attractive 
basin in the neighborhood Ni (x, y) specified by filter window Fi at (x, y). For a  
pixel (u, v) ∈ Ni (x, y), the depth of attractive basin is ‖ωF− 

i (u − x, v − y)‖. If  
a pixel is involved in multiple zero filter responses, it will accumulate the depth 
of the attractive basin generated by each filter. Thus unless the absolute value of



94 3 Textures

Fig. 3.32 Reprinted with permission from [278]. Generated texture patterns (a)–(f) 

the driving force from other well-defined terms is larger than the total depth of the 
attractive basin at (u, v), I(u, v) will stay unchanged. 

Property 3: Reaction 

The other class of potential function is the reaction function. We refer back to 
Fig. 3.28 where gradients of reaction function “push” activations away from origin. 
Different from the diffusion function, this class of potential function creates features 
and brings pixels out of local attraction basins set up by diffusion functions. 

With both reaction and diffusion, we can sample a wide variety of textures. 
Starting from random uniform noise, we use Langevin equations inspired by 
Brownian motion as below: 

dI = −∇U(I)dt +√
2T (t)dwt , (3.136) 

where dwt = 
√

dtN(0, 1), T is the “temperature” which controls magnitude of 
random fluctuations. In the above figure (Fig. 3.32), we use one diffusion filter, the 
Laplacian of Gaussian filter, and several reaction filters: isotropic center-surround 
filters and Gabor filters with different orientations. 

3.7 Conclusion 

In this chapter, we started by asking the question, 
What features and statistics are characteristic of a texture pattern, so that texture 

pairs that share the same features and statistics cannot be told apart by pre-attentive 
human visual perception? 

In finding suitable features for texture modeling, we have walked through several 
models in history including clique-based models and filter-based models. Clique-
based models specify their energy function as feature statistics but such models 
are shown to be inadequate in modeling texture patterns. Filter-based models more 
closely align with human vision as accepted in neurophysiology. Convolution of 
filters with an image (filter responses) and histograms of filter activations (marginal 
statistics projecting an image onto a filter) seems to be a reasonable choice for 
features.
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With features selected, we then introduced Filters, Random field, and Maximum 
Entropy (FRAME) model as a unifying view over both clique-based and filter-based 
models. We presented a pursuit process involving theMinimax Entropy Principle for 
pursuing a set of suitable filters and learning suitable potential functions under Gibbs 
distribution. Texture ensemble is then introduced and connected to statistical physics 
(micro-canonical ensembles and canonical ensembles). Equivalence between the 
FRAME model and Julesz ensemble on an infinite lattice is proved. 

Finally, we studied PDE paradigms in synthesizing images and presented two 
classes of potential functions empirically found in texture modeling—diffusion and 
reaction. Diffusion is found to destroy features while the reaction is found to create 
features. We also derived our PDE for texture synthesis, introducing Gibbs Reaction 
and Diffusion Equation (GRADE) as a general statistical framework under which 
lie many other PDEs used in texture formation.



Chapter 4 
Textons 

Textons refer to fundamental micro-structures in natural images and are considered 
the atoms of pre-attentive human visual perception (Julesz [124]). Unfortunately, 
the term “texton” remains a vague concept in the literature for lacking a good 
mathematical model. In this chapter, we present various generative image models 
for textons. 

4.1 Textons and Textures 

Julesz’s Discovery 

In psychophysics, Julesz [124] and colleagues discovered that pre-attentive vision 
is sensitive to some basic image features while ignoring other features. He conjec-
tured that pre-attentive human vision is sensitive to local patterns called textons. 
Figure 4.1 illustrates the first batch of experiments for texture discrimination. 

In the second batch of experiments, Julesz measured the response time of 
human subjects in detecting a target element among a number of distractors in the 
background. For example, Fig. 4.2 shows two pairs of elements in comparison. The 
response time for the upper pair is instantaneous (100–200 ms) and independent 
of the number of distractors. In contrast, for the lower pair, the response time 
increases linearly with the number of distractors. This discovery was very important 
in psychophysics and motivated Julesz to conjecture a pre-attentive stage that detects 
some atomic structures, such as elongated blobs, bars, crosses, and terminators, 
which he called “textons” for the first time. 

The early texton studies were limited by their exclusive focus on artificial texture 
patterns instead of natural images. It was shown that the perceptual textons could 
be adapted through training. Thus the dictionary of textons must be associated with 
or learned from the ensemble of natural images. Despite the significance of Julesz’s 
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Fig. 4.1 Pre-attentive vision is sensitive to local patterns called textons 

Fig. 4.2 Julesz textures show that pre-attentive vision is sensitive to local image structures such 
as edges, bars, and endpoints 

experiments, there have been no rigorous mathematical definitions for textons. Later 
in this chapter, we explain that textons can be defined in the context of a generative 
model of images. 

In natural images, textures and textons are often interwoven where the image 
patches are considered to be textures or textons which are, respectively, from 
manifolds of different dimensions in the image space. As we have discussed in the 
previous chapter, the texture patches are from high-dimensional manifolds defined
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by implicit functions, i.e., the statistical constraints. In this chapter, we will show 
that the texton patches are from low-dimensional manifolds defined by explicit 
functions, i.e., generative models. 

Neural Coding Schemes 

Julesz’s experiments are inherently related to how neurons respond to different 
kinds of stimuli. Studies in neuroscience reveal that neurons propagate signals by 
generating characteristic electrical pulses called action potentials. With the presence 
of external stimuli like light and specific image patterns, sensory neurons fire 
sequences of action potentials in various temporal patterns, in which information 
about the stimulus is encoded and transmitted to the brain. This process leads to 
the different perceptions of textures and textons and justifies the pre-attentive stage 
proposed by Julesz. Yet, how exactly the neurons represent the signals is still a topic 
of debate. Here, we present three hypothesized coding schemes and their relations 
to texton and texture modeling. 

Population coding is a method that represents stimuli with the joint activities 
of multiple neurons. In this coding scheme, each neuron has a distribution of 
responses over some set of inputs. The responses of many neurons are combined 
to determine a final value about the inputs, which triggers further reactions in the 
signal propagation process. In our discussion of image modeling, we can draw a 
parallel between the filters and the neurons. Indeed, the FRAME model combines 
the potentials of filter responses, i.e., the histogram statistics, and outputs a value 
to represent an image’s likelihood of belonging to a concept. In this sense, both the 
histograms and the neuron responses encode the impression that we have on certain 
visual stimuli. 

Another coding scheme is the grandmother cell coding scheme. In this formu-
lation, high-level concepts are represented by a single neuron. It activates when 
a person perceives a specific entity, such as one’s grandma. To be more concise, 
there is a single cell in your brain that responds multi-modally to your grandmother, 
granting you the percept of a single entity when you hear the sounds “grandmother,” 
“grandma,” and “grams,” capture the sight of her smiling, wrinkly face, and recall 
the tasty cookies she once made as well as the stories she once told you. The 
hypothesis is supported by an observation in 2004, when an epilepsy patient at the 
UCLA Medical Center whose brain was being monitored showed vigorous neural 
responses to several pictures of Jennifer Aniston, but not to other celebrities. Though 
the theory itself is still controversial, we can nonetheless incorporate it into our study 
of computer vision. Borrowing the idea of the grandmother cells, we can develop 
object templates that are invariant under various transformations. These templates, 
such as cars, represent high-level concepts as a whole rather than individual parts 
that make up the concept, such as the wheels and front doors of the cars.
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The last coding scheme that we are interested in is sparse coding, where an object 
is encoded by the strong activations of a relatively small set of neurons. In fact, this 
method is the foundation of the texton models that we will introduce later in this 
chapter. 

4.2 Sparse Coding 

Image Representation 

The purpose of vision, biological and machine, is to compute a hierarchy of 
increasingly abstract interpretations of the observed images (or image sequences). 
Therefore, it is of fundamental importance to know what are the descriptions used at 
each level of interpretation. By analogy to physics concepts, we wonder what are the 
visual “electrons,” visual “atoms,” and visual “molecules” for visual perception. The 
pursuit of basic images and perceptual elements is not just for intellectual curiosity 
but has important implications for a series of practical problems. For example, 

1. Dimension reduction. Decomposing an image into its constituent components 
reduces information redundancy and leads to lower dimensional representations. 
As we will show in later examples, an image of .256 × 256 pixels can be 
represented by about 500 basis functions (which are local image patches), which 
are, in turn, reduced to 50–80 texton elements. The dimension of representation 
is thus reduced by about 100 folds. Further reductions are achieved in motion 
sequences and lighting models. 

2. Variable decoupling. The decomposed image elements become more and more 
independent of each other and thus are spatially nearly decoupled. This facilitates 
image modeling which is necessary for visual tasks such as segmentation and 
recognition. 

3. Biologic modeling. Micro-structures in natural images provide ecological clues 
for understanding the functions of neurons in the early stages of biologic vision 
systems [10]. 

In the literature, there are several threads of research investigating fundamental 
image structures from different perspectives, with many questions left unanswered. 

First, in neurophysiology, the cells in the early visual pathway (retina, LGN, 
and V1) of primates are found to compute some basic image structures at various 
scales and orientations [113]. This motivated some image pyramid representations 
including Laplacian of Gaussians (LoGs), Gabor functions, and their variants. 
However, very little is known about how V1 cells are grouped into larger structures 
at higher levels (say, V2 and V4). Similarly, it is unclear what are the generic image 
representations beyond the image pyramids in image analysis. 

Second, in harmonic analysis, one treats images as 2D functions, and then it can 
be shown that some classes of functions (such as Sobolev, Hölder, Besov spaces) 
can be decomposed into basis functions, for example, Fourier basis and wavelets.
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But the natural image ensemble is known to be very different from those classic 
mathematical functional spaces. 

The third perspective, and the most direct attack on the problem, is the study 
of natural image statistics and image component analysis. The most important 
work was done by Olshausen and Field [190] who learned over-complete image 
basis from natural image patches (.12 × 12 pixels) based on the principle of sparse 
coding. In contrast to the orthogonal and complete basis in the Fourier analysis, 
the learned basis functions are highly correlated, and a given image is coded by a 
sparse population in the over-complete dictionary. Added to the sparse coding idea 
is independent component analysis (ICA) which decomposes images into a linear 
superposition of some basis functions minimizing a measure of dependence between 
the coefficients of these basis elements [15]. 

Basis and Frame 

In linear algebra, a set . B of vectors in a vector space V is called a basis if all elements 
in V can be written as a unique linear combination of vectors in . B. A vector space 
may have several different bases. Yet all the bases have the same number of elements 
equal to the dimension of the vector space. For a typical image with . 1024 × 1024
pixels, the dimension of the image space to which it belongs is . 220. Consequently, 
a basis must have .220 vectors to reconstruct any image of the same size. However, 
as we have learned earlier, natural images only occupy a small subset of the entire 
image space, making it trickier to select a set of vectors to represent natural images 
more efficiently. 

If the inner product operation is well defined in a vector space V , then V is an 
inner product space. We call a basis .B = {b1, b2, ..., bn} for V orthonormal if the 
elements are all unit vectors and orthogonal to each other. Parseval’s identity for 
orthonormal basis states that 

.∀x ∈ V, ‖x‖2 =
n∑

i=1

|〈x, bi〉|2 . (4.1) 

We can slightly loosen the constraint so that a collection of vectors . F =
{f1, . . . , fm} satisfies 

.∀x ∈ V, A ‖x‖2 ≤
n∑

i=1

|〈x, fi〉|2 ≤ B ‖x‖2 ; (4.2) 

then, we call . F a frame for the vector space with the corresponding frame bounds 
A and B. Furthermore, a frame is a tight frame if .A = B. In finite dimensional 
vector spaces, the frames are exactly the spanning sets. Therefore, a vector can be 
expressed as a linear combination of the frame vectors in a redundant way. Using



102 4 Textons

a frame, it is possible to create a simpler, more sparse representation of a signal 
compared to representing it strictly with linearly independent vectors. 

In general, if a set of vectors is still a basis after removing some elements, 
then it is called over-complete. In other words, the number of vectors for an 
over-complete basis is greater than the dimension of the input vector. Practically 
speaking, over-completeness can help us to achieve a more stable, robust, and 
compact decomposition of input vectors. We shall see its importance in the sparse 
coding model of texton representation. 

As a matter of terminology, if the input vector is an image, we may consider 
the image as a two-dimensional function, so that the basis vectors become basis 
functions. These basis functions form a basis to represent the input images. Thus 
we shall use the term “basis functions” when we talk about representing images. 

Olshausen–Field Model 

In image coding, one starts with a dictionary of basis functions 

.� = {ψ�(u, v), � = 1, . . . , Lψ }. (4.3) 

For example, some commonly used basis functions are Gabor, Laplacian of 
Gaussian (LoG), and other wavelets (Fig. 4.3). 

Let .A = (x, y, τ, σ ) denote the translation, rotation, and scaling transform of a 
basis function and .GA � A the orthogonal transform space (group), then we obtain 
a set of basis functions . �, 

.� = {ψ�(u, v,A) : A = (x, y, τ, σ ) ∈ GA, � = 1, . . . , Lψ }. (4.4) 

Fig. 4.3 Gabor wavelets are sine and cosine waves multiplied by Gaussian functions
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Fig. 4.4 The sparse coding 
model assumes that the 
observed signals lie on the 
low-dimensional subspaces 
spanned by the basis vectors 

A simple generative image model, adopted in almost all image coding schemes, 
assumes that an image . I is a linear superposition of some basis functions selected 
from . � plus a Gaussian noise image . n, 

.I =
nB∑

i

αi · ψ i + n, ψ i ∈ �, ∀i, (4.5) 

where . nB is the number of basis functions and . αi is the coefficient of the i-th base 
. ψ i (Fig. 4.4). 

As . � is over-complete,1 the variables (.�i, αi, xi, yi, τi , σi) indexing a basis func-
tion . ψi are treated as latent (hidden) variables and must be inferred probabilistically, 
in contrast to deterministic transforms such as the Fourier transform. All the hidden 
variables are summarized in a basis map, 

.B = (nB, {bi = (�i, αi, xi, yi, τi , σi) : i = 1, . . . , nB}). (4.6) 

If we view each . ψ i as an attributed point with attributes . bi = (�i, αi, xi, yi,

.τi, σi), then . B is an attributed spatial point process. 
In the image coding literature, the basis functions are assumed to be indepen-

dently and identically distributed (i.i.d.), and the locations, scales, and orientations 
are assumed to be uniformly distributed, so 

.p(B) = p(nB)

nB∏

i=1

p(bi), . (4.7) 

p(bi) = p(αi) · unif(�i) · unif(xi, yi) · unif(τi) · unif(σi). (4.8) 

It was well known that responses of image filters on natural images have high 
kurtosis histograms. This means that most of the time the filters have nearly 
zero responses (i.e., they are silent) and they are activated with large responses

1 The number of basis functions in . � is often 100 times larger than the number of pixels in an 
image. 
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Fig. 4.5 Reprinted with permission from [190]. The above image patches are the basis functions 
learned from natural image patches by the sparse coding model 

occasionally. This leads to the sparse coding idea by Olshausen and Field [190].2 

For example, .p(α) is chosen to be a Laplacian distribution or a mixture of two 
Gaussians with . σ1 close to zero. For all .i = 1, . . . , nB , 

.p(αi) ∼ exp{−|αi |/c} or p(αi) =
2∑

j=1

ωj N(0, σj ). (4.9) 

In fact, as long as .p(α) has high kurtosis, the exact form of .p(α) is not 
so crucial. For example, one can choose a mixture of two uniform distributions 
on a range .[−σj , σj ], j = 1, 2, respectively, with . σ1 close to zero, . p(αi) =∑2

j=1 ωj unif[−σj , σj ].
In the above image model, the basis map . B includes the hidden variables, and 

the dictionary . � are parameters. For example, Olshausen and Field used . Lψ = 144
base functions, each being a .12 × 12 image patch. Following an EM-like learning 
algorithm, they learned . � from a large number of natural image patches. Figure 4.5 
shows some of the 144 base functions. Such basis functions capture some image 
structures and are believed to bear resemblance to the responses of simple cells in 
V1 of primates. In their experiments, the training images are chopped into . 12 × 12
pixel patches, and therefore they did not really infer the hidden variables for the 
transformation . Ai . Thus the learned basis functions are not aligned at the centers. 

A Three-Level Generative Model 

We may extend the previously introduced simple form of a generative image model 
to a three-level generative model as shown in Fig. 4.6. In this model, an image . I is

2 Note that the filter responses are convolutions of a filter with image in a deterministic way and 
are different from the coefficients of the basis functions. 
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Fig. 4.6 Reprinted with permission from [277]. A three-level generative model: an image . I is a 
linear superposition of some basis functions selected from a base dictionary . 	, such as Gabor 
or Laplacian of Gaussians. The basis map is further generated by a smaller number of textons 
selected from a texton dictionary . 
. Each texton consists of a number of basis functions in certain 
deformable configurations 

generated by a basis map . B as in image coding, and the basis functions are selected 
from a dictionary . � with some transforms. 

The basis map . B is, in turn, generated by a texton map . T. The texton elements 
are selected from a texton dictionary . � with some transforms. Each texton element 
in . T consists of a few basis functions with a deformable geometric configuration. 
So we have 

.T
�−→ B

�−→ I, (4.10) 

with 

.� = {ψ�, � = 1, 2, . . . , Lψ }, and � = {π�; � = 1, 2, . . . ,Lπ }. (4.11) 

By analogy to the waveform–phoneme–word hierarchy in speech, the pixel– 
basis–texton hierarchy presents an increasingly abstract visual description. This 
representation leads to dimension reduction and the texton elements account for 
spatial co-occurrence of the basis functions. 

To clarify terminology, a basis function .ψ ∈ � is like a mother wavelet, and 
an image base . bi in the basis map . B is an instance under certain transforms of a 
basis function. Similarly, a “texton” in a texton dictionary .π ∈ � is a deformable 
template, while a “texton element” is an instance in the texton map . T which is a 
transformed and deformed version of a texton in . �. 

For natural images, it is reasonable to guess that the number of basis functions is 
about .|�| = O(10), and the number of textons is in the order of .|�| = O(103) for 
various combinations. Intuitively, textons are meaningful objects viewed at distance 
(i.e., small scale), such as stars, birds, cheetah blobs, snowflakes, beans, etc. 

In this chapter, we fix the basis dictionary to three common basis functions: 
Laplacian of Gaussian, Gabor cosine, and Gabor sine, i.e., 

.� = {ψ1, ψ2, ψ3} = {LoG, Gcos, Gsin}. (4.12) 

These basis functions are not enough for patterns like hair or water, etc. But 
we fix them for simplicity and focus on the learning of texton dictionary . �. This
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Fig. 4.7 Reprinted with permission from [277]. Reconstructing a star pattern by two layers of 
basis functions. An individual star is decomposed into a LoG basis function in the upper layer for 
the body of the star plus a few other basis functions (mostly Gcos, Gsin) in the lower layer for the 
angles 

chapter is also limited to learning textons for each individual texture pattern instead 
of generic natural images, and therefore .|�| is a small number for each texture. 

Before we formulate the problem, we show an example of a simple star pattern 
to illustrate the generative texton model. In Fig. 4.7, we first show the three basis 
functions in . � (the first row) and their symbolic sketches. Then for an input image, 
a matching pursuit algorithm is adopted to compute the basis map . B in a bottom-
up fashion. This map will be modified later by stochastic inference. It is generally 
observed that the map . B can be divided into two sub-layers. One sub-layer has 
relatively large (“heavy”) coefficients . αi and captures some larger image structures. 
For the star pattern, these are the LoG basis functions shown in the first column. 
We show both the symbolic sketch of these LoG basis functions (above) and the 
image generated by these basis functions (below). The heavy basis functions are 
usually surrounded by a number of “light” basis functions with relatively small 
coefficients . αi . We put these secondary basis functions in another sub-layer (see 
the second column of Fig. 4.7.) When these image basis functions are superposed, 
they generate a reconstructed image (see the third column in Fig. 4.7.) The residues 
of reconstruction are assumed to be Gaussian noise. 

By analogy to the physics model, we call the heavy basis functions the “nucleus 
basis functions” as they have heavy weights like protons and neutrons and the light 
basis functions the “electron basis functions.” Figure 4.7 displays an “atomic” model 
for the star texton. It is a LoG surrounded by 5 electron basis functions.
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Fig. 4.8 Reprinted with permission from [89]. The spatial arrangement of textons can be modeled 
by a point process model 

The three-level generative model is governed by a joint probability distribution 
specified with parameters .� = (�,�, κ). 

.p(I,B,T;�) = p(I|B;�)p(B|T;�)p(T; κ), (4.13) 

where . � and . � are dictionaries for two generating processes, and .p(T; κ) is a 
descriptive (Gibbs) model for the spatial distribution of the textons as a stochastic 
attributed point process (Fig. 4.8). 

We rewrite the basis map as 

.B = (nB, {bi = (�i, αi, xi, yi, τi , σi) : i = 1, 2, . . . , nB}). (4.14)
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Because we assume Gaussian distribution .N(0, σ 2
o ) for the reconstruction 

residues, we have 

. p(I|B;�) ∝ exp

⎧
⎨

⎩−
∑

(u,v)∈D

(I(u, v) −
nB∑

i=1

αiψ�i
(u, v; xi, yi, τi , σi))

2/2σ 2
o

⎫
⎬

⎭ .

(4.15) 
The . nB basis functions in map . B are divided into .nT + 1 groups (.nT < nB ). 

.{bi = (�i, αi, xi, yi, τi , σi) : i = 1, 2, . . . , nB} = 0 ∪ 1 ∪ · · · ∪ nT
.(4.16) 

The basis functions in .0 are “free electrons" which do not belong to any texton 
and are subject to the independent distribution .p(bj ) in Eq. (4.8). Basis functions in 
any other class form a texton element . Tj , and the texton map is 

.T = (nT , {Tj = (�j , αj , xj , yj , τj , σj , δj ) : j = 1, 2, . . . , nT }). (4.17) 

Each texton element . Tj is specified by its type . �j , photometric contrast . αj , 
translation .(xj , yj ), rotation . τj , scaling . σj , and deformation vector . δj . A texton 
.π ∈ � consists of m image basis functions with a certain deformable configuration 

. π = ( (�1, α1, τ1, σ1), (�2, α2, δx2, δy2, δτ2, δσ2), . . . , (�m, αm, δxm, δym, δτm, δσm) ).

(4.18) 

The .(δx, δy, δτ, δσ ) are the relative positions, orientations, and scales. There-
fore, we have 

.p(B|T;�) = p(|0|)
∏

bj ∈0

p(bj )

nT∏

c=1

p(c|Tc;π�c ). (4.19) 

.p(T; κ) is another distribution that accounts for the number of textons . nT and the 
spatial relationship among them. It can be a Gibbs model for the attributed point 
process. For simplicity, we assume the textons are independent at this moment as a 
special Gibbs model. 

By integrating out the hidden variables, we obtain the likelihood for any 
observable image . Iobs, 

.p(Iobs;�) =
∫

p(Iobs|B;�)p(B|T;�)p(T; κ) dB dT. (4.20) 

In .p(I;�) above, the parameters . � (dictionaries, etc.) characterize the entire image 
ensemble, like the vocabulary for English or Chinese languages. In contrast, the 
hidden variables . B and . T are associated with an individual image . I and correspond 
to the parsing tree in language.
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Our goal is to learn the parameters .� = (�,�, κ) by maximum likelihood 
estimation, or equivalently minimizing a Kullback–Leibler divergence between an 
underlying data distribution of images .f (I) and the model distribution . p(I;�)

. �∗ = (�,�, κ)∗ = arg min KL(f (I)‖p(I;�)) = arg max
∑

m

log p(Iobs
m ;�) + ε,

(4.21) 
where . ε is an approximation error that diminishes as sufficient data are available for 
training. In practice, . ε may decide the complexity of the model and thus the number 
of basis functions .Lψ and textons . Lπ . For simplicity, we use only one large .Iobs for 
training, because multiple images can be considered just patches of a larger image. 
For motion and lighting models, .Iobs is extended to image sequence and image set 
with illumination variations. 

By fitting the generative model to observed images, we can learn the texton 
dictionary as parameters of the generative model. 

With such a model, we may study the geometric, dynamic, and photometric 
structures of the texton representation by further extending the generative model 
to account for motion and illumination variations. (1) For the geometric structures, 
a texton consists of a number of basis functions with deformable spatial configu-
rations. The geometric structures are learned from static texture images (Figs. 4.9 
and 4.10). (2) For the dynamic structures, the motion of a texton is characterized by a 
Markov chain model in time which sometimes can switch geometric configurations 
during the movement. We call the moving textons as “motons.” The dynamic models 
are learned using the trajectories of the textons inferred from a video sequence 

Fig. 4.9 Reprinted with permission from [247]. A texton template is a deformable composition of 
basis functions
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Fig. 4.10 Reprinted with permission from [247]. A texton template is a deformable composition 
of basis functions 

Fig. 4.11 Reprinted with permission from [247]. The image can be decomposed into sub-bands at 
multiple scales 

(Fig. 4.11). (3) For photometric structures, a texton represents the set of images 
of a 3D surface element under varying illuminations and is called a “lighton.” We 
adopt an illumination cone representation where a lighton is a texton triplet. For a 
given light source, a lighton image is generated as a linear combination of the three 
texton basis functions (Fig. 4.12). 

4.3 Active Basis Model 

Olshausen–Field Model for Sparse Coding 

The active basis model is based on the sparse coding model of Olshausen and Field 
[188]. Olshausen and Field proposed that the role of simple V1 cells is to compute
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Fig. 4.12 Reprinted with permission from [277]. The concept of textons can also be generalized 
to incorporate lighting variations 

sparse representations of natural images. Let .{Im,m = 1, . . . ,M} be a set of small 
image patches. For example, they may be .12 × 12 patches, in which case . Im ∈
R12×12. We may think of each . Im as a two-dimensional function defined on the 
.12 × 12 lattice. The Olshausen–Field model seeks to represent these images by 

.Im =
N∑

i=1

cm,iBi + Um, (4.22) 

where .(Bi, i = 1, . . . , N) is a dictionary of basis functions defined on the same 
image lattice (e.g., . 12 × 12) as . Im and .cm,i are the coefficients, and .Um is the 
unexplained residual image. N is often assumed to be greater than the number of 
pixels in . Im, so the dictionary is said to be over-complete and is therefore redundant. 
However, the number of coefficients .(cm,i , i = 1, . . . , N) that are non-zero (or 
significantly different from zero) is assumed to be small (e.g., less than 10) for each 
image . Im. 

One may also assume that the basis functions in the dictionary are translated, 
rotated, and dilated versions of one another, so that each . Bi can be written as 
.Bx,s,α , where x is the location (a two-dimensional vector), s is the scale, and . α
is the orientation. We call such a dictionary self-similar, and we call .(x, s, α) the 
geometric attribute of .Bx,s,α . 

Model (4.22) then becomes 

.Im =
∑

x,s,α

cm,x,s,αBx,s,α + Um, (4.23) 

where .Bx,s,α are translated, rotated, and dilated copies of a single basis function, 
e.g., .B = Bx=0,s=1,α=0, and .(x, s, α) are properly discretized (default setting: . α
is discretized into 16 equally spaced orientations). B can be learned from training 
images .{Im}. 

From now on, we assume that the dictionary of basis functions is self-similar, 
and .{Bx,s,α,∀(x, s, α)} is already given. In the following, we assume that .Bx,s,α is 
a Gabor wavelet, and we also assume that .Bx,s,α is normalized to have unit . �2 norm 
so that .‖Bx,y,α‖2 = 1. .Bx,s,α may also be a pair of Gabor sine and cosine wavelets,
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so that for each Gabor wavelet B, .B = (B0, B1). The corresponding coefficient 
.c = (c0, c1), and .cB = c0B0 +c1B1. The projection .〈I, B〉 = (〈I, B0〉, 〈I, B1〉), and 
.|〈I, B〉|2 = 〈I, B0〉2 + 〈I, B1〉2. 

Given the dictionary .(Bx,s,α,∀(x, s, α)), the encoding of an image . Im amounts to 
inferring the coefficients .(cm,x,s,α,∀(x, s, α)) in (4.23) under the sparsity constraint, 
which means that only a small number of .(cm,x,s,α) are non-zero. That is, we seek 
to encode . Im by 

.Im =
n∑

i=1

cm,iBxm,i ,sm,i ,αm,i
+ Um, (4.24) 

where .n � N is a small number, and .(xm,i , sm,i , αm,i , i = 1, . . . , n) are the 
geometric attributes of the selected basis functions whose coefficients .(cm,i) are 
non-zero. The attributes .(xm,i , sm,i , αm,i , i = 1, . . . , n) form a spatial point process 
(we continue to use i to index the basis functions, but here i only runs through the 
n selected basis functions instead of all the N basis functions as in (4.22)). 

Active Basis Model for Shared Sparse Coding of Aligned Image 
Patches 

The active basis model was proposed for modeling deformable templates formed 
by basis functions. Suppose we have a set of training image patches . {Im,m =
1, . . . ,M}. This time we assume that they are defined on the same bounding box, 
and the objects in these images come from the same category. In addition, these 
objects appear at the same location, scale, and orientation, and in the same pose. 
See Fig. 4.13 for 9 image patches of deer. We call such image patches aligned. 

The active basis model is of the following form: 

.Im =
n∑

i=1

cm,iBxi+�xm,i ,s,αi+�αm,i
+ Um, (4.25) 

where .B = (Bxi,s,αi
, i = 1, . . . , n) forms the nominal template of an active basis 

model (sometimes we simply call . B an active basis template). Here we assume that 
the scale s is fixed and given. .Bm = (Bxi+�xm,i ,s,αi+�αm,i

, i = 1, . . . , n) is the 
deformed version of the nominal template . B for encoding . Im, where . (�xm,i,�αm,i)

are the perturbations of the location and orientation of the i-th basis function from its 
nominal location . xi and nominal orientation . αi , respectively. The perturbations are 
introduced to account for shape deformation. Both .�xm,i and .�αm,i are assumed 
to vary within limited ranges (default setting: .�xm,i ∈ [−3, 3] pixels, and . �αm,i ∈
{−1, 0, 1} × π/16).
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Fig. 4.13 First published in the Quarterly of Applied Mathematics in Volume 72:373–406, 2014, 
published by Brown University. Reprinted with permission from [107]. (a) An active basis model 
is a composition of a small number of basis functions, such as Gabor wavelets at selected locations 
and orientations. Each basis function can perturb its location and orientation within limited ranges. 
(b) Supervised learning of active basis model from aligned images. In this example, two active 
basis models are learned using Gabor wavelets at two different scales. The first row displays 
the 9 training images. The second row: the first plot is the nominal template formed by 50 basis 
functions. The rest of the plots are the deformed templates matched to the images by perturbing 
the basis functions. The third row: the same as the second row, except that the scale of the Gabor 
wavelets is about twice as large, and the number of wavelets is 14. The last row displays the linear 
reconstruction of each training image from 100 selected and perturbed basis functions 

Prototype Algorithm 

Given the dictionary of basis functions .{Bx,s,α,∀x, s, α}, the learning of the active 
basis model from the aligned image patches .{Im} involves the sequential selection of 
.Bxi,s,αi

and the inference of its perturbed version .Bxi+�xm,i ,s,αi+�αm,i
in each image 

. Im. We call the learning supervised because the bounding boxes of the objects are 
given and the images are aligned. See Fig. 4.13 for an illustration of the learning 
results. 

In this subsection, we consider a prototype version of the shared matching pursuit 
algorithm, which is to be revised in the following subsections. The reason we start 
from this prototype algorithm is that it is simple and yet captures the key features of 
the learning algorithm. 

We seek the maximal reduction of the least squares reconstruction error in each 
iteration (recall that the basis functions are normalized to have unit . �2 norm):
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.

M∑

m=1

∥∥∥∥∥Im −
n∑

i=1

cm,iBxi+�xm,i ,s,αi+�αm,I

∥∥∥∥∥

2

. (4.26) 

The prototype algorithm is a greedy algorithm that minimizes the reconstruction 
error: 

In Eq. (4.29), the perturbed basis function .Bxi+�xm,i ,s,αi+�αm,i
explains away 

part of . Um. As a result, nearby basis functions that overlap with . Bxi+�xm,i ,s,αi+�αm,i

tend not to be selected in future iterations. So the basis functions selected for each 
deformed template .Bm = (Bxi+�xm,i ,s,αi+�αm,i

, i = 1, · · · , n) usually have little 
overlap with each other. For computational and modeling convenience, we shall 
assume that these selected basis functions are orthogonal to each other, so that the 
coefficients can be obtained by projection: .cm,i = 〈Im,Bxi+�xm,i ,s,αi+�αm,i

〉. 
Correspondingly, the explaining-away step can then be carried out by 

local inhibition. Specifically, after we identify the perturbed basis function 
.Bxi+�xm,i ,s,αi+�αm,i

, we simply prohibit nearby basis functions that are correlated 
with .Bxi+�xm,i ,s,αi+�αm,i

from being included in the deformed template . Bm. In  
practice, we allow small correlations between the basis functions in each . Bm. 

0. Initialize i ← 0. For m = 1, . . . ,M , initialize the residual image 
Um ← Im. 

1. i ← i + 1. Select the next basis function by 

.(xi, αi) = arg max 
x,α 

M∑

m=1 

max
�x,�α

|〈Um,Bx+�x,s,α+�α〉|2, (4.27) 

where max�x,�α is the local maximum pooling within the small ranges of
�xm,i and �αm,i . 

2. For m = 1, . . . ,M , given  (xi, αi), infer the perturbations in location and 
orientation by retrieving the arg-max in the local maximum pooling of step 
1: 

.(�xm,i,�αm,i) = arg max
�x,�α 

|〈Um,Bxi+�x,s,αi+�α〉|2. (4.28) 

Let cm,i ← 〈Um,Bxi+�xm,i ,s,αi+�αm,i
〉, and update the residual image by 

explaining away: 

.Um ← Um − cm,iBxi+�xm,i ,s,αi+�αm,i . (4.29) 

3. Stop if i = n, else go back to step 1. 

Algorithm 4: Prototype Algorithm
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Statistical Modeling 

The above algorithm guided by (4.26) implicitly assumes that the unexplained 
background image .Um is Gaussian white noise. This assumption can be problematic 
because the unexplained background may contain salient structures such as edges, 
and the Gaussian white noise distribution clearly cannot account for such structures. 
This is why we need to revise the above algorithm which is based on the Gaussian 
white noise assumption. A better assumption is to assume that .Um follows the same 
distribution as that of natural images. 

More precisely, the distribution of .Im given the deformed template . Bm =
(Bxi+�xm,i ,s,αi+�αm,i

, i = 1, . . . , n), i.e., .p(Im | Bm), is obtained by modifying 
the distribution of natural images .q(Im) in such a way that we only change the 
distribution of .Cm = (cm,i = 〈Im,Bxi+�xm,i ,s,αi+�αm,i

〉, i = 1, . . . , n) from . q(Cm)

to .p(Cm), while leaving the conditional distribution of .Um given .Cm unchanged. 
Here .p(Cm) and .q(Cm) are the distributions of .Cm under .p(Im | Bm) and .q(Im), 
respectively. Thus the model is in the form of foreground .p(Cm) popping out from 
background .q(Im). Specifically, .p(Im | Bm) = q(Im)p(Cm)/q(Cm). 

The reason for such a form is as follows. .Cm is the projection of . Im into . Bm. Let  
.Um be the projection of . Im into the remaining subspace that is orthogonal to . Bm. 
Then .p(Im | Bm)/q(Im) = p(Cm,Um)/q(Cm,Um) = p(Cm)/q(Cm). The second 
equality follows from the assumption that .p(Um|Cm) = q(Um|Cm), i.e., we keep 
the conditional distribution of .Um given .Cm fixed. 

For computational simplicity, we further assume . (cm,i = 〈Im,

.Bxi+�xm,i ,s,αi+�αm,i
〉, i = 1, . . . , n) are independent given . Bm, under both p 

and q, so  

.p(Im | Bm) = q(Im)

n∏

i=1

pi(cm,i)

q(cm,i)
, (4.30) 

where .q(c) is assumed to be the same for .i = 1, . . . , n because .q(Im) is translation 
and rotation invariant. .q(c) can be pooled from natural images in the form of a 
histogram of Gabor filter responses. This histogram is heavy-tailed because of the 
edges in natural images. 

For parametric modeling, we model .pi(cm,i)/q(cm,i) in the form of exponential 
family model. Specifically, we assume the following exponential family model 
.pi(c) = p(c; λi), which is in the form of exponential tilting of the reference 
distribution .q(c): 

.p(c; λ) = 1

Z(λ)
exp{λh(|c|2)}q(c), (4.31) 

so that .p(c; λ)/q(c) is in the exponential form. We assume .λi > 0, and .h(r) is 
a sigmoid-like function of the response .r = |c|2 that saturates for large r (recall 
that the Gabor filter response .c = (c0, c1) consists of responses from the pair of
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Gabor sine and cosine wavelets, and .|c|2 = c2
0 + c2

1). Specifically, we assume that 
.h(r) = ξ [2/(1 + e−2r/ξ ) − 1], so .h(r) ≈ r for small r , and .h(r) → ξ as . r → ∞
(default setting: .ξ = 6). The reason we want .h(r) to approach a fixed constant for 
large r is that there can be strong edges in both the foreground and the background, 
albeit with different frequencies. .p(c; λ)/q(c) should approach the ratio between 
these two frequencies for large .r = |c|2. In (4.31), 

.Z(λ) =
∫

exp{λh(r)}q(c)dc = Eq [exp{λh(r)}] (4.32) 

is the normalizing constant. 

.μ(λ) = Eλ[h(r)] =
∫

h(r)p(c; λ)dc (4.33) 

is the mean parameter. Both .Z(λ) and .μ(λ) can be computed beforehand from a set 
of natural images. 

The exponential family model can be justified by the maximum entropy principle. 
Given the deformed template .Bm = (Bxi+�xm,i ,s,αi+�αm,i

, i = 1, . . . , n), consider 
the coefficients obtained by projection: . (cm,i(Im) = 〈Im,Bxi+�xm,i ,s,αi+�αm,i

〉, i =
1, . . . , n). Suppose we want to find a probability distribution .p(Im | Bm) so 
that .E[h(|cm,i(Im)|2)] = μi for some fixed . μi , .i = 1, . . . , n, where . μi can be 
estimated from the training images. Then among all the distributions that satisfy the 
constraints on .E[h(|cm,i(Im)|2)], the distribution that is closest to .q(Im) in terms of 
the Kullback–Leibler divergence is given by 

.p(Im | Bm) = 1

Z(�)
exp

{
n∑

i=1

λih(|cm,i(Im)|2)
}

q(Im), (4.34) 

where .� = (λi, i = 1, . . . , n), .Z(�) = Eq [exp{∑n
i=1 λih(|cm,i(Im)|2)] is the nor-

malizing constant, and . � is chosen to satisfy the constraints on .E[h(|cm,i(Im)|2)]. If  
we further assume that .cm,i(Im) are independent of each other for . i = 1, . . . , n

under .q(Im), then .cm,i(Im) are also independent under .p(Im | Bm), and their 
distributions are of the form (4.31). 

In order to choose the nominal template . B and the deformed templates . {Bm,m =
1, . . . ,M}, we want .p(Im | Bm) to be farthest from .q(Im) in terms of the Kullback– 
Leibler divergence. From a classification point of view, we want to choose . B and 
.{Bm} so that the features .{h(|cm,i |2), i = 1, . . . , n} lead to the maximal separation 
between training images (e.g., images of deer) and generic natural images. 

The log-likelihood ratio between the current model .p(Im|Bm) and the reference 
model .q(Im) is
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. l({Im} | B, {Bm},�) =
M∑

m=1

log
p(Im|Bm)

q(Im)
. (4.35) 

= 
M∑

m=1 

n∑

i=1

[
λih(|〈Im,Bxi+�xm,i ,s,αi+�αm,i

〉|2) − log Z(λi)
]
. (4.36) 

The expectation of the above log-likelihood ratio is the Kullback–Leibler divergence 
between .p(Im | Bm) and .q(Im). 

Given the training images .{Im,m = 1, . . . ,M}, .∑M
m=1 log q(Im) is a constant. 

Thus maximizing the log-likelihood ratio .
∑M

m=1 log p(Im | Bm,�)/q(Im) is 
equivalent to maximizing the log-likelihood .

∑M
i=1 log p(Im | Bm,�). 

Shared Matching Pursuit 

We revise the prototype algorithm in Sect. 4.3 so that each iteration seeks the 
maximal increase of the log-likelihood ratio (4.36) instead of the maximum 
reduction of the least squares reconstruction error (4.26) as in Sect. 4.3. The revised 
version of the shared matching pursuit algorithm is as follows. 

0. Initialize i ← 0. For m = 1, . . . , M , initialize the response maps 
Rm(x, α) ← 〈Im,Bx,s,α〉 for all (x, α). 

1. i ← i + 1. Select the next basis function by finding 

.(xi, αi) = arg max 
x,α 

M∑

m=1 

max
�x,�α 

h(|Rm(x + �x, α + �α)|2), (4.37) 

where max�x,�α is again the local maximum pooling. 
2. For m = 1, . . . , M , given  (xi, αi), infer the perturbations by retrieving the 

arg-max in the local maximum pooling of step 1: 

.(�xm,i,�αm,i) = arg max
�x,�α

|Rm(xi + �x, αi + �α)|2. (4.38) 

Let cm,i ← Rm(xi + �xm,i, αi + �αm,i), and update Rm(x, α) ← 0 if the  
correlation 

.corr[Bx,s,α, Bxi+�xm,i ,s,αi+�αm,i
] > ε (4.39) 

(default setting: ε = .1). Then compute λi by solving the maximum 
likelihood equation μ(λi) = ∑M 

m=1 h(|cm,i |2)/M . 
3. Stop if i = n, else go back to step 1. 

Algorithm 5: Revised Prototype Algorithm
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For each candidate .(xi, αi), the maximum likelihood equation . μ(λi) =∑M
m=1 h(|cm,i |2)/M is obtained by taking the derivative of the log-likelihood 

ratio, where .μ(λi) = Eλi
[h(|c|2)] = ∫

h(|c|2)p(c; λi)dc is the mean parameter 
and is a monotonically increasing function of .λi > 0. So its inverse .μ−1() is also a 
monotonically increasing function. . λi is solved so that .μ(λi) matches the empirical 
average of .h(|cm,i |2), .m = 1, . . . ,M . The function .μ() can be computed and stored 
over a discrete set of equal-spaced values so that . λi can be solved by looking up 
these values with linear interpolations between them. 

Because .h() is monotonically increasing, the maximized log-likelihood ratio 
is monotone in the estimated . λi . The estimated . λi is in turn monotone in the 
average .

∑M
m=1 h(|cm,i |2)/M . So the maximized log-likelihood ratio is monotone 

in .
∑M

m=1 h(|cm,i |2)/M . Therefore, in step [1], .(xi, αi) is chosen by maximizing the 
sum .

∑M
m=1 max�x,�α h(|Rm(x + �x, α + �α)|2) over all possible .(x, α). 

In step 2, the arg-max basis function inhibits nearby basis functions to enforce 
the approximate orthogonality constraint. The correlation is defined as the square 
of the inner product between the basis functions and can be computed and stored 
beforehand. 

After learning the template from training images .{Im}, we can use the learned 
template to detect the object in a testing image . I. 

1. For every pixel X, compute the log-likelihood ratio l(X), which serves as 
the template matching score at putative location X: 

.l(X) = 
n∑

i=1

[
λi max

�x,�α 
h(|〈I, BX+xi+�x,s,αi+�α〉|2) − log Z(λi)

]
. (4.40) 

2. Find maximum likelihood location X̂ = arg maxX l(X). For  i = 1, . . . , n, 
inferring perturbations by retrieving the arg-max in the local maximum 
pooling in step 1: 

.(�xi,�αi) = arg max
�x,�α

|〈I, B  ̂
X+xi+�x,s,αi+�α

〉|2. (4.41) 

3. Return the location X̂, and (B ̂
X+xi+�xi,s,αi+�αi 

, i  = 1, . . . , n), which is 
the translated and deformed template. 

Algorithm 6: Object detection 

We can rotate the template and scan the template over multiple resolutions of the 
original image, to account for uncertainties about the orientation and scale of the 
object in the testing image.
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4.4 Sparse FRAME Model 

One generalization of the FRAME model is a sparse FRAME model [261, 265] 
where the potential functions are location specific, and they are non-zero only at 
selected locations. This model is intended to model image patterns that are non-
stationary in the spatial domain, such as object patterns. The model can be written 
as a shared sparse coding model, where the observed images are represented by a 
commonly shared set of wavelets selected from a dictionary. In this shared sparse 
coding model, the original linear filters for bottom-up computation (from image to 
filter responses) become linear basis functions for top-down representation (from 
coefficients to image). 

Dense FRAME 

We start from the non-stationary or spatially inhomogeneous FRAME model [254, 
261, 265] based on a dictionary of basis functions or wavelets .{Bk,x,∀k, x} (we 
assume that the dictionary of wavelets, such as the Gabor and DoG wavelets, has 
been given or has been learned by sparse component analysis [3, 22, 190]). The 
model is a random field of the following form: 

.p(I;w) = 1

Z(w)
exp

{
K∑

k=1

∑

x∈D
wk,xh(〈I, Bk,x〉)

}
q(I). (4.42) 

The above model is a simple generalization of FRAME model, where .〈I, Bk,x〉 is 
the filter response, which can also be written as .[Fk ∗ I](x). The parameter . wk,x

depends on position x, so the model is non-stationary. .w = (wk,x,∀k, x). Again  
.Z(w) is the normalizing constant. .h() is a pre-specified rectification function. In 
[261], .h(r) = |r|, i.e., the model is insensitive to the signs of filter responses. . q(I)
is a reference distribution, such as the Gaussian white noise model 

.q(I) = 1

(2πσ 2)D/2 exp

{
− 1

2σ 2 ||I||2
}

, (4.43) 

where again D counts the number of pixels in the image domain . D. 

Sparse Representation 

Assume we are given a dictionary of wavelets or basis functions .{Bk,x}, where k 
may index a finite collection of prototype functions .{Bk, k = 1, . . . , K}, and where
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.Bk,x is a spatially translated copy of . Bk to position x. We can represent an image 

. I by 

.I =
∑

k,x

ck,xBk,x + ε, (4.44) 

where .ck,x are the coefficients, and . ε is the residual image. It is often assumed that 
the representation is sparse, i.e., most of the .ck,x are equal to zero. The resulting 
representation is also called sparse coding [49, 190]. 

The sparsification of .ck,x , i.e., the selection of the basis functions, can be 
accomplished by matching pursuit [167] or basis pursuit/Lasso [26, 230]. Using 
a Lasso-like objective function, the dictionary of basis functions .{Bk} can be 
learned from a collection of training images [3, 190]. It is sometimes called sparse 
component analysis [46]. It can be considered a generalization of factor analysis. For 
natural images, the learned basis functions resemble the Gabor and DoG wavelets. 

Maximum Likelihood Learning 

The basic learning algorithm estimates the parameters .w = (wk,x,∀k, x) from a 
set of aligned training images .{Ii , i = 1, . . . , n} that come from the same category, 
where n is the total number of training images. The algorithm can be extended to 
learn from non-aligned images from mixed categories. The basic learning algorithm 
seeks to maximize the log-likelihood 

.L(w) = 1

n

n∑

i=1

log p(Ii;w), (4.45) 

whose partial derivatives are 

.
∂L(w)

∂wk,x

= 1

n

n∑

i=1

h(〈Ii , Bk,x〉) − Ew

[
h(〈I, Bk,x〉)

]
, (4.46) 

where .Ew denotes expectation with respect to .p(I;w) in (4.42). This expectation 
can be approximated by the Monte Carlo integration. Thus, w can be computed by 
the stochastic gradient ascent algorithm [205, 274] 

. w
(t+1)
k,x = w

(t)
k,x + γt

⎡

⎣1

n

n∑

i=1

h(〈Ii , Bk,x〉) − 1

ñ

ñ∑

i=1

h(〈Ĩi , Bk,x〉)
⎤

⎦ , (4.47) 

where . γt is the step size or the learning rate, and .{Ĩi , i = 1, . . . , ñ} are the synthetic 
images sampled from .p(I;w(t)) using MCMC, such as Hamiltonian Monte Carlo 
[179] or the Gibbs sampler [74]. . ̃n is the total number of independent parallel 
Markov chains that sample from .p(I;w(t)).
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Generative Boosting 

Model (4.42) is a dense model in that all the wavelets (or filters) in the dictionary 
are included in the model. We can sparsify the model by forcing most of the .wk,x to 
be zero so that only a small number of wavelets are included in the model. This can 
be achieved by a generative version [265] of the epsilon-boosting algorithm [64, 67] 
(see also [37, 59, 250, 257]). The algorithm starts from .w = 0, the zero vector. At 
the t-th iteration, let 

.�k,x = 1

n

n∑

i=1

h(〈Ii , Bk,x〉) − 1

ñ

ñ∑

i=1

h(〈Ĩi , Bk,x〉) (4.48) 

be the Monte Carlo estimate of .∂L(w)/∂wk,x , where again .{Ĩi , i = 1, . . . , ñ} are 
the synthetic images sampled from the current model. We select 

.(k̂, x̂) = arg max
k,x

|�k,x | (4.49) 

and update .w
k̂,x̂

by 

.w
k̂,x̂

← w
k̂,x̂

+ γt�k̂,x̂
, (4.50) 

where . γt is the step size, assumed to be sufficiently small (thus the term “epsilon” in 
the epsilon-boosting algorithm). We call this algorithm generative epsilon boosting 
because the derivatives are estimated by images generated from the current model. 
See Fig. 4.14 for an illustration. 

The selected wavelet .B
k̂,x̂

reveals the dimension along which the current model 
is most conspicuously lacking in reproducing the statistical properties of the training 
images. By including .B

k̂,x̂
into the model and updating the corresponding parameter 

.w
k̂,x̂

, the model receives the most needed boost. The process is like an artist making 
a painting, where .B

k̂,x̂
is the stroke that is most needed to make the painting look 

more similar to the observed objects. 
The epsilon boosting algorithm [67, 96] has an interesting relationship with the 

. �1 regularization in the Lasso [230] and basis pursuit [26]. As pointed out by [206], 
under a monotonicity condition (e.g., the components of w keep increasing), such an 
algorithm approximately traces the solution path of the . �1 regularized minimization 
of 

. − L(w) + ρ‖w‖�1 , (4.51) 

where the regularization parameter . ρ starts from a big value so that all the 
components of w are zero and gradually lowers itself to allow more components 
to be non-zero so that more wavelets are induced into the model.
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Fig. 4.14 Reprinted with permission from [256]. Learning process of generative boosting. (a) 
Observed training images (.100 × 100 pixels) from which the random field model is learned. (b) 
A sequence of synthetic images generated by the learned model as more and more wavelets are 
induced into the model. The numbers of the selected wavelets are .1, 20, 65, 100, 200, 500, and  
800, respectively. (c) A sequence of sketch templates that illustrate the wavelets selected from 
the given dictionary. The dictionary includes 4 scales of Gabor wavelets, illustrated by bars of 
different sizes, and 2 scales of Difference of Gaussian (DoG) wavelets, illustrated by circles. In 
each template, smaller scale wavelets appear darker than larger ones. (d) More synthetic images 
independently generated from the final learned model 

Sparse Model 

After selecting m wavelets, we have the following sparse FRAME model: 

.p(I;B, w) = 1

Z(w)
exp

⎧
⎨

⎩

m∑

j=1

wjh(〈I, Bkj ,xj
〉)

⎫
⎬

⎭ q(I), (4.52) 

where .B = (Bj = Bkj ,xj
, j = 1, . . . , m) is the set of wavelets selected from the 

dictionary, and .wj = wkj ,xj
.
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In model (4.52), m is much smaller than D, the number of pixels. Thus, we can 
represent . I by 

.I =
m∑

j=1

cjBkj ,xj
+ ε, (4.53) 

where .C = (cj , j = 1, . . . , m)� are the least square regression coefficients of . I on 
.B = (Bj , j = 1, . . . , m), i.e., .C = (B�B)−1B�I, and . ε is the residual image. The 
distribution of C under .p(I;B, w) is 

.pC(C;w) = 1

Z(w)
exp

{
〈w, h(B�BC)〉

}
qC(C), (4.54) 

where .qC(C) is the distribution of C under .q(I), and the transformation .h() is 
applied element-wise. Thus, .p(I;B,w) in (4.52) can be written as a wavelet sparse 
coding model (4.53) and (4.54). The forms of (4.52) and (4.53) show that the 
selected wavelets .{Bj } serve both as filters and as basis functions. The sparse coding 
form of the model (4.53) and (4.54) is used for sampling .{Ĩi} from .p(I;B, w) by 
first sampling .C ∼ pC(C;w) using the Gibbs sampler [74] and then generating . ̃Ii
according to (4.53). 

Model (4.53) suggests that we can also select the wavelets by minimizing 

.

n∑

i=1

∥∥∥∥∥∥
Ii −

m∑

j=1

ci,jBkj ,xj

∥∥∥∥∥∥

2

, (4.55) 

using a shared matching pursuit method [261]. See Fig. 4.15 for an illustration. We 
can also allow the selected wavelets to perturb their locations and orientations to 
account for deformations [254]. 

The sparse FRAME model can be used for unsupervised learning tasks such 
as model-based clustering [57]. Extending the learning algorithm, one can learn a 
codebook of multiple sparse FRAME models from non-aligned images. The learned 
models can be used for tasks such as transfer learning [107, 261]. 

The sparse FRAME model merges two important research themes in image 
representation and modeling, namely, Markov random fields [19, 75] and wavelet 
sparse coding [3, 190]. 

The wavelets can be mapped to the first layer filters of a ConvNet [144] to be  
described later. The sparse FRAME models can be mapped to the second layer nodes 
of a ConvNet, except that the sparse FRAME versions of the second layer nodes are 
selectively and sparsely connected to the first layer nodes.
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Fig. 4.15 Reprinted with permission from [256]. The shared matching pursuit for the purpose of 
wavelet selection. (a) Sequence of sketch templates that illustrate the wavelets selected sequentially 
in order to reconstruct all the training images simultaneously. The selected wavelets are shared by 
all the training images (.100 × 100) in their reconstructions. The numbers of selected wavelets in 
the sequence are 2, 20, 60, 100, 200, 500, and 800, respectively. (b) Sequences of reconstructed 
images by the selected wavelets for the 1st and 3rd training images in Fig. 4.14a 

4.5 Compositional Sparse Coding 

Sparsity and Composition 

The goal of this section is to develop a compositional sparse code for natural 
images. Figure 4.16 illustrates the basic idea. We start with a dictionary of Gabor 
wavelets centered at a dense collection of locations and tuned to a collection of 
scales and orientations. In Fig. 4.16, each Gabor wavelet is illustrated by a bar at 
the same location and with the same length and orientation as the corresponding 
wavelet. Figure 4.16a displays the training image. (b) Displays a mini-dictionary 
of 2 compositional patterns of wavelets learned from the training image. Each 
compositional pattern is a template formed by a group of a small number of wavelets 
at selected locations and orientations. The learning is unsupervised in the sense that 
the images are not labeled or annotated. The number of templates in the dictionary 
is automatically determined by an adjusted Bayesian information criterion. The 
2 templates are displayed in different colors, so that it can be seen clearly how 
the translated, rotated, scaled, and deformed copies of the 2 templates are used to 
represent the training image, as shown in (b). In (c), the templates are overlaid on 
the original image. In our current implementation, we allow some overlap between 
the bounding boxes of the templates. The templates learned from the training image 
can be generalized to testing images, as shown in (d) and (e).
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Fig. 4.16 First published in the Quarterly of Applied Mathematics in Volume 72:373–406, 2014, 
published by Brown University. Reprinted with permission from [107]. Unsupervised learning of 
compositional sparse code (a,b,c) and using it for recognition and segmentation (d,e). (a) Training 
image of .480 × 768 pixels. (b) Above: 2 compositional patterns (twig and leaf) in the form of 
shape templates learned from the training image. Each constituent Gabor wavelet (basis function) 
of a template is illustrated by a bar at the same location and with the same orientation and length 
as the corresponding wavelet. The size of each template is .100 × 100 pixels. The number of basis 
functions in each template is no more than 40 and is automatically determined. Below: representing 
the training image by translated, rotated, scaled, and deformed copies of the 2 templates. (c) 
Superposing the deformed templates on the original image. (d) Testing image. (e) Representation 
(recognition) of the testing image by the 2 templates 

Fig. 4.17 First published in the Quarterly of Applied Mathematics in Volume 72:373–406, 2014, 
published by Brown University. Reprinted with permission from [107]. The compositional patterns 
(templates) are learned from 20 training images (only 6 of them are shown in this figure). The 
training images are not registered or otherwise annotated. The size of each template is . 100 × 100
pixels. The number of basis functions in each template is no more than 40 and is automatically 
determined 

Figure 4.17 shows another example, where part templates of egrets and templates 
of water waves and grasses are learned from 20 training images without supervision. 
That is, the training images are not registered, in that we do not assume that the 
objects in the training images appear at the same location and scale. It is interesting 
to observe that in this example, unsupervised learning also accomplishes image 
segmentation, object detection, and perceptual grouping (e.g., grass pattern), which 
are important tasks in vision.
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Our compositional sparse code combines two fundamental principles in image 
representation and computational vision, namely, sparsity and compositionality. We 
shall briefly review these two principles below and then give an overview of our 
methodology. 

The compositionality principle was proposed in the context of computer vision 
by Geman, Potter, and Chi [76] and Zhu et al. [280]. The principle holds that patterns 
in natural images are compositions of parts, which are in turn compositions of sub-
parts, and so on. An interesting example cited by Geman et al. is Laplace’s remark 
that one strongly prefers to view the string CONSTANTINOPLE as a single word, 
rather than 14 individual letters. This is also the case with the basis functions in the 
sparse coding of natural images. Like letters forming the words, the basis functions 
in the sparse representations of natural images also form various compositional 
patterns in terms of their spatial arrangements. We call such sparsity compositional 
sparsity, which is a special form of structured sparsity. 

Any hierarchical compositional model will necessarily end with constituent 
elements that cannot be further decomposed, and such elements may be called 
“atoms.” Interestingly, the basis functions are commonly referred to as atoms in 
sparse coding literature, and the sparse representation based on atoms is usually 
called “atomic decomposition.” Compositionality enables us to compose atoms 
into composite representational units, which leads to much sparser and thus more 
meaningful representations of the signals. 

The current form of our model consists of two layers of representational units: 
basis functions and shape templates. It is possible to extend it to multiple layers of 
hierarchy. 

Compositional Sparse Coding Model 

We will write down our model in an analogous form as the Olshausen–Field model 
.Im = ∑n

i=1 cm,iBxm,i ,sm,i ,αm,i
+ Um, by making the notation compact. 

As the first step, let us slightly generalize the active basis model by assuming 
that the template may appear at location .Xm in image . Im, and then we can write the 
representation in the following form: 

. Im =
n∑

i=1

cm,iBXm+xi+�xm,i ,s,αi+�αm,i
+ Um

= CmBXm + Um, (4.56) 

where .BXm = (BXm+xi+�xm,i ,s,αi+�αm,i
, i = 1, . . . , n) is the deformed tem-

plate spatially translated to . Xm, .Cm = (cm,i , i = 1, . . . , n), and . CmBXm =∑n
i=1 cm,iBXm+xi+�xm,i ,s,αi+�αm,i

by definition.
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.BXm explains the part of . Im that is covered by .BXm . For each image . Im and each 
. Xm, we can define the log-likelihood ratio similar to (4.40) 

. l(Im | BXm) = log
p(Im | BXm)

q(Im)

=
n∑

i=1

[
λi max

�x,�α
h(|〈Im,BXm+xi+�x,s,αi+�α〉|2) − log Z(λi)

]
.(4.57) 

As the next step of this modeling procedure, in addition to spatial translation and 
deformation, we can also rotate and scale the template. So a more general version 
of (4.56) is  

.Im = CmBXm,Sm,Am + Um, (4.58) 

where .Xm is the location, . Sm is the scale, and .Am is the orientation of the translated, 
rotated, scaled, and deformed template. The scaling of the template is implemented 
by changing the resolution of the original image. We adopt the convention that 
whenever the notation . B appears in image representation, it always means the 
deformed template, where the perturbations of the basis functions can be inferred 
by local max pooling. The log-likelihood ratio .l(Im | BXm,Sm,Am) can be similarly 
defined as in (4.57). Figure 4.18 illustrates the basic idea of representation (4.58). 
In addition to spatial translation, dilation, and rotation of the template, we may also 
allow mirror reflection as well as the change of aspect ratio. 

Fig. 4.18 First published in the Quarterly of Applied Mathematics in Volume 72:373–406, 2014, 
published by Brown University. Reprinted with permission from [107]. Objects appear at different 
locations, scales, and orientations in the training images. In each row, the first plot displays the 
nominal active basis template. The rest of the row displays some examples of training images and 
the suppositions of the spatially translated, scaled, rotated, and deformed versions of the nominal 
template
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Now suppose we have a dictionary of T active basis templates, . {B(t), t =
1, . . . , T }, where each .B(t) is a compositional pattern of basis functions. Then we 
can represent the image . Im by .Km templates that are spatially translated, rotated, 
scaled, and deformed versions of these T templates in the dictionary: 

.Im =
Km∑

k=1

Cm,kB
(tm,k)

Xm,k,Sm,k,Am,k
+ Um, (4.59) 

where each .B(tm,k)

Xm,k,Sm,k,Am,k
is obtained by translating the template of type .tm,k , i.e., 

.B(tm,k), to location .Xm,k , scaling it to scale .Sm,k , rotating it to orientation .Am,k , and 
deforming it to match . Im. Note that according to (4.59), the images represented by 
the dictionary are no longer assumed to be aligned. 

If the .Km templates do not overlap with each other, then the log-likelihood ratio 
is 

.

M∑

m=1

Km∑

k=1

[
l(Im | B(tm,k)

Xm,k,Sm,k,Am,k
)
]
. (4.60) 

The above representation is in analogy to model (4.24) in Sect. 4.3, which 
we copy here: .Im = ∑n

i=1 cm,iBxm,i ,sm,i ,αm,i
+ Um. The difference is that each 

.B(tm,k)

Xm,k,Sm,k,Am,k
is a composite representational unit, which is itself a group of basis 

functions that follow a certain compositional pattern of type .tm,k . Because of such 
grouping or packing, the number of templates .Km needed to encode . Im is expected 
to be much smaller than the total number of basis functions needed to represent . Im, 
thus resulting in sparser representation. Specifically, if each template is a group of 
g basis functions, then the number of basis functions in the representation (4.59) 
is .Kmg. In fact, we can unpack model (4.59) into the representation (4.24). The 
reason that it is advantageous to pack the basis functions into groups is that these 
groups exhibit T types of frequently occurring spatial grouping patterns, so that 

when we encode the image . Im, for each selected group .B(tm,k)

Xm,k,Sm,k,Am,k
, we only need 

to code the overall location, scale, orientation, and type of the group, instead of the 
locations, scales, and orientations of the individual constituent basis functions. 

It is desirable to allow some limited overlap between the bounding boxes of the 
.Km templates that encode . Im. Even if the bounding boxes of two templates have 
some overlap with each other, their constituent basis functions may not overlap 
much. If we do not allow any overlap between the bounding boxes of the templates, 
some salient structures of . Im may fall through the cracks between the templates. 
Also, it is possible that the frequently occurring patterns may actually overlap with 
each other. For instance, in a string “ABABABA,” the pattern “AB” is frequently 
occurring, but at the same time, the pattern “BA” is as frequent as “AB,” and these 
two patterns overlap with each other. So it can be desirable to allow some overlap 
between the patterns in order to recover all the important recurring patterns. On 
the other hand, we do not want to allow excessive overlap between the templates.
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Otherwise, the learned templates will be too redundant, and we will need a lot of 
them in order to describe the training images. In practice, we assume the following 

limited overlap constraint: for each template .B(tm,k)

Xm,k,Sm,k,Am,k
centered at . Xm,k , let  D 

be the side length of its squared bounding box, then no other templates are allowed 
to be centered within a distance of .ρD from .Xm,k (default setting: .ρ = .4). 

Such an assumption naturally leads to an inhibition step when we use a dictionary 
of templates to encode a training or testing image. Specifically, when a template is 
chosen to encode an image, this template will prevent overlapping templates from 
being selected. The template matching pursuit algorithm to be described below 
adopts such an inhibition scheme. 

The following are the details of the two steps. 
Step (I): Image encoding by template matching pursuit. Suppose we are given the 

current dictionary .{B(t), t = 1, . . . , T }. Then for each . Im, the template matching 
pursuit process seeks to represent . Im by sequentially selecting a small number of 
templates from the dictionary. Each selection seeks to maximally increase the log-
likelihood ratio (4.60). 

[I.0] Initialize the maps of template matching scores for all .(X, S,A, t): 

.R(t)
m (X, S,A) ← l(Im | B(t)

X,S,A) − n(t)γ, (4.61) 

where .n(t) is the number of basis functions in the t-th template in the dictionary 
and . γ is a constant controlling model complexity as explained above. This can be 
accomplished by first rotating the template .B(t) to orientation A and then scanning 
the rotated template over the image zoomed to the resolution that corresponds to 
scale S. The larger the S is, the smaller the resolution is. Initialize .k ← 1. 

[I.1] Select the translated, rotated, scaled, and deformed template by finding the 
global maximum of the response maps: 

.(Xm,k, Sm,k, Am,k, tm,k) = arg max
X,S,A,t

R(t)
m (X, S,A). (4.62) 

[I.2] Let the selected arg-max template inhibit overlapping candidate templates 
to enforce limited overlap constraint. Let D be the side length of the bounding box 

of the selected template .B(tm,k)

Xm,k,Sm,k,Am,k
, then for all .(X, S,A, t), if  X is within 

a distance .ρD from .Xm,k , then set the response .R(t)
m (X, S,A) ← −∞ (default 

setting: .ρ = .4). 
[I.3] Stop if all .R(t)

m (X, S,A, t) < 0. Otherwise let .k ← k + 1, and go to [I.1]. 
The template matching pursuit algorithm implements a hard inhibition to enforce 

the limited overlap constraint. In a more rigorous implementation, we may update 

the residual image by .Um ← Um − CmB
(tm,k)

Xm,k,Sm,k,Am,k
as in the original version of 

matching pursuit. But the current simplified version is more efficient. 
Step (II): Dictionary re-learning by shared matching pursuit. For each . t =

1, . . . , T , we re-learn .B(t) from all the image patches that are currently covered 
by .B(t).
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[II.0] Image patch cropping. For each . Im, go through all the selected templates 

.{B(tm,k)

Xm,k,Sm,k,Am,k
,∀k} that encode . Im. If .tm,k = t , then crop the image patch of . Im (at 

the resolution that corresponds to .Sm,k) covered by the bounding box of the template 

.B(tm,k)

Xm,k,Sm,k,Am,k
. 

[II.1] Template re-learning. Re-learn template .B(t) from all the image patches 
covered by .B(t) that are cropped in [II.0], with their bounding boxes aligned. The 
learning is accomplished by the shared matching pursuit algorithm of Sect. 4.3. 

This dictionary re-learning step re-learns each compositional pattern from the 
re-aligned raw image patches, where the sparse representations and the correspon-
dences between the selected basis functions are obtained simultaneously by the 
shared matching pursuit algorithm. 

As mentioned above, the learning algorithm is initialized by learning from image 
patches randomly cropped from the training images. As a result, the initially learned 
templates are rather meaningless, but meaningful templates emerge very quickly 
after a few iterations. 

In the beginning, the differences among the initial templates are small. However, 
as the algorithm proceeds, the small differences among the initial templates trigger 
a polarizing or specializing process, so that the templates become more and more 
different, and they specialize in encoding different types of image patches.



Chapter 5 
Gestalt Laws and Perceptual 
Organization 

5.1 Gestalt Laws for Perceptual Organization 

The word Gestalt, as used in Gestalt Psychology, is often understood as “pattern.” 
The school of Gestaltism, which emerged in Austria and Germany in the early 
twentieth century, focuses on the study of how organisms perceive entire patterns 
or configurations from an image, rather than just individual components. As is 
commonly cited, “the whole is more than the sum of its parts” best describes the 
idea of Gestaltism. 

Many people share the experience that when we look at the world, we tend 
to decompose complex scenes into groups of objects against a background and 
perceive the objects as a composition of parts, and sometimes even those parts 
have sub-parts. But what actually enables us to do this? Does that surprise you 
that we manage to do such a remarkable thing when what we see is, to some 
extent, just a distribution of colored points? The Gestalt Psychology believes that 
we are able to do it because our vision system favors a set of principles when we 
understand the world. The set of principles is later formulated based on regularities 
of wholes, sub-wholes, groups, or Gestalten and called Gestalt laws. Gestalt laws, 
proximity, similarity, figure-ground, continuity, closure, and connection, determine 
how humans perceive visuals in connection with different objects and environments. 

Specifically, Gestalt laws include the following:

• Law of Similarity: The law of similarity suggests that similar things tend to show 
up together. The grouping can occur in various modalities, including visual and 
auditory stimuli.

• Law of Pragnanz: “Pragnanz” in German means “good figure.” Therefore, this 
law is sometimes referred to as the law of good figure or the law of simplicity. It 
states that we perceive figures in the simplest way possible, say a composition of 
simple shapes.

• Law of Proximity: The law of proximity suggests that when we perceive an 
image, closer objects tend to be grouped together. This law could be particularly 

© Springer Nature Switzerland AG 2023 
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_5 

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_5&domain=pdf

 12905
61494 a 12905 61494 a
 


132 5 Gestalt Laws and Perceptual Organization

helpful when we describe a set of objects and explain how we separate them into 
several smaller groups.

• Law of Continuity: We often have the impression that points connected by lines 
or curves form a smooth path together instead of segmented lines and angles. The 
Gestaltism explains this phenomenon using the law of continuity.

• Law of Closure: If things, when grouped as a whole, would become a simple 
entity, we usually ignore contradictory evidence and choose to fill in the missing 
pieces to treat it as a group. This law of closure helps us understand the 
segmented arcs of a circle to be a whole.

• Law of Common Region: According to this law, elements in the same region of 
space tend to be grouped together. 

Gestalt laws provide a way for us to understand some important perception 
heuristics and psychological research continues to offer insights into it. But from 
a modeling point of view, despite long-standing observations in the psychology 
literature, there were no explicit mathematical models that can account for these 
Gestalt laws and weight them properly when multiple laws are working together or 
in competition. 

5.2 Texton Process Embedding Gestalt Laws 

In this section, we discuss a way to model visual patterns based on Gestalt laws by 
integrating descriptive and generative methods. 

In particular, we present a mathematical framework for visual learning that 
integrates two popular statistical learning paradigms in the literature: 

1. Descriptive methods, such as Markov random fields and minimax entropy 
learning [281]. 

2. Generative methods, such as principal component analysis, independent com-
ponent analysis [15], transformed component analysis [60], wavelet coding 
[26, 165], and sparse coding [152, 188]. 

The integrated framework creates richer classes of probabilistic models for visual 
patterns. In this section, we demonstrate the integrated framework by learning a 
class of hierarchical models for texton patterns. At the bottom level of the model, 
we assume that an observed texture image is generated by multiple hidden “texton 
maps,” and textons on each map are translated, scaled, and oriented versions of a 
window function, like mini-templates or wavelet basis function. The texton maps 
generate the observed image by occlusion or linear superposition. This bottom 
level of the model is generative in nature. At the top level of the model, the 
spatial arrangements or global organizations of the textons in the texton maps are 
characterized by the minimax entropy principle, which leads to the Gibbs point 
process models [27]. The top level of the model is descriptive in nature. 

The learning framework achieves four goals:
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1. Computing the window functions (or appearances) of different types of textons. 
2. Inferring the hidden texton maps that generate the image. 
3. Learning Gibbs point process models for the texton maps. 
4. Verifying the learned window functions and Gibbs models through texture 

synthesis by stochastic sampling. 

We use a stochastic gradient algorithm for inferential computation. We demonstrate 
the learning framework through a set of experiments. 

Introduction 

What a vision algorithm can accomplish depends crucially upon how much it 
“understands” the contents of the observed images. Thus in computer vision 
and especially Bayesian image analysis, an important research theme is visual 
learning whose objective is to construct parsimonious and general models that can 
realistically characterize visual patterns in natural scenes. Due to the stochastic 
nature of visual patterns, visual learning is posed as statistical modeling and 
inference problem, and existing methods in the literature can be generally divided 
into two categories. In this book, we call one category the descriptive methods and 
the other category the generative methods.1 

Descriptive methods model a visual pattern by imposing statistical constraints 
on features extracted from signals. Descriptive methods include Markov random 
fields, minimax entropy learning [281], deformable models, etc. For example, many 
methods of texture modeling fall into this category [36, 98, 197, 281]. These models 
are built on pixel intensities or some deterministic transforms of the original signals, 
such as linear filtering. The shortcomings of descriptive methods are twofold. First, 
they do not capture high-level semantics in visual patterns, which are often very 
important in human perception. For example, a descriptive model of texture can 
realize a cheetah skin pattern with impressive synthesis results, but it does not 
have an explicit notion of individual blobs. Second, as descriptive models are built 
directly on the original signals, the resulting probability densities are often of very 
high dimensions and the sampling and inference are computationally expensive. It 
is desirable to have dimension reduction so that the models can be built in a low-
dimensional space that often better reflects the intrinsic complexity of the pattern. 

In contrast to descriptive methods, generative methods postulate hidden variables 
as the causes for the complicated dependencies in raw signals, and thus the models 
are hierarchical in nature. Generative methods are widely used in vision and 
image analysis. For example, principal component analysis (PCA), independent 
component analysis (ICA) [15], transformed component analysis (TCA) [60],

1 There is a third category of methods which are discriminative. The goal of discriminative methods 
is not for modeling visual patterns explicitly but for classification. For example, pattern recognition, 
feed-forward neural networks, and classification trees, etc. 
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wavelet image representation [26, 165], sparse coding [152, 188], and the random 
collage model for generic natural images [146]. Despite their simplicity, these 
generative models suffer from an over-simplified assumption that hidden variables 
are independent and identically distributed (i.i.d.).2 As a result, they are not 
sophisticated enough to generate realistic visual patterns. For example, a wavelet 
image coding model can easily reconstruct an observed image, but it cannot 
synthesize a texture pattern through i.i.d. random sampling because the spatial 
relationships between the wavelet coefficients are not characterized. 

The two learning paradigms were developed almost independently by somewhat 
disjoint communities working on different problems, and their relationship has yet 
to be studied. Therefore, we present a visual learning framework that integrates 
both descriptive and generative methods and extends them to a richer class of 
probabilistic models for computer vision. 

The integrated learning framework makes contributions to visual learning in the 
following four aspects. 

First, it combines the advantages of both descriptive and generative methods 
and provides a general visual learning framework for modeling complex visual 
patterns. In computer vision, a fundamental observation, stated in Marr’s primal 
sketch paradigm [169], is that natural visual patterns consist of multiple layers 
of stochastic processes. For example, Fig. 5.1 displays two natural images. When 
we look at the ivy-wall image, we not only perceive the texture “impression” in 
terms of pixel intensities but also see the repeated elements in the ivy and bricks. 
To capture the hierarchical notion, we propose a multi-layer generative model as 
shown in Fig. 5.2. We assume that a texture image is generated by a few layers of 
stochastic processes and each layer consists of a finite number of distinct but similar 
elements, called “textons” (following the terminology of Julesz). In experiments, 
each texton covers more than 100 pixels on average, so the layered representation 

Fig. 5.1 Two examples of natural patterns

2 Interested readers are referred to the paper [208] for discussion of the problem with existing 
generative models. 
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Fig. 5.2 Reprinted with 
permission from [89]. A 
generative model for an 
image I consists of multiple 
layers of texton maps 
I(Tl; �l), l = 1, . . . , L  
superimposed with occlusion 
plus an additive noise 
image n 
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achieves a nearly 100-fold dimension reduction.3 The spatial arrangements of the 
textons at each layer are characterized by Markov random field (MRF) models 
through the minimax entropy learning [281], and previous MRF texture models can 
be considered special cases where the models have only one layer and each “texton” 
is just a pixel. 

It is our belief that descriptive models are precursors of generative models 
and both are ingredients of the integrated learning process. In visual learning, 
the model can be initially built on image intensities via some features computed 
deterministically from the image intensities. Then we can replace the features with 
hidden causes, and such a process would incrementally discover more abstract 
elements or concepts such as textons, curves, flows, and so on, where elements at 
the more abstract levels become causes for the elements of lower abstractions. For 
instance, the flows generate curves, and the curves generate textons, which in turn 
generate pixel intensities. At each stage, the elements at the most abstract level have 
no further hidden causes, and thus they have to be characterized by a descriptive 
model based on some deterministic features, and such models can be derived by the 
minimax entropy principle as demonstrated in [255]. When a new hidden level of 
elements is introduced, it replaces the current descriptive model with a simplified 
one. The learning process evolves until the descriptive model for the most abstract 
elements becomes simple enough for a certain vision purpose. By analogy, the 
learning process is very similar to the situation in physics, where experimental 
observations are explained by a hierarchy of elements (say from quarks, electrons, 
atoms, to molecules) and their interactions.

3 A texton has to be described by a few variables for location, scale, orientation, etc.
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Second, the integrated learning framework provides a representational definition 
of “textons.” Texton has been an important notion in texture perception and early 
vision. Unfortunately, it was only expressed vaguely in psychology [124], and a 
precise definition of texton has yet to be found. In this chapter, we argue that the 
definition of “texton” is possible in the context of a generative model. In contrast 
to the constraint-based clustering method by Malik, Leung, etc. [150, 151, 163], in 
this book, textons are naturally embedded in a generative model and are inferred as 
hidden variables of the generative model. This is consistent with the philosophy of 
ICA [15], TCA [60], and sparse coding [152, 188]. 

Third, we present a Gestalt ensemble to characterize the hidden texton maps as 
attributed point processes. The Gestalt ensemble corresponds to the grand canonical 
ensemble in statistical physics [24], and it differs from traditional Gibbs models by 
having an unknown number of textons whose neighborhood changes dynamically. 
The relationships between neighboring textons are captured by some Gestalt laws, 
such as proximity and continuity, etc. 

Fourth, we adopt a stochastic gradient algorithm [88] for effective learning 
and inference, in contrast to the conventional EM algorithm [38]. In the adapted 
algorithm, we simplify the original likelihood function and solve the simplified 
maximum likelihood problem first. Starting from the initial solution, we then use 
the stochastic gradient algorithm to find refined solutions. 

We demonstrate the proposed learning method on texture images. For an input 
texture image, the learning algorithm achieves the following four objectives: 

1. Learning the appearance of textons for each stochastic process. Textons of the 
same stochastic process are translated, scaled, and oriented versions of a window 
function, like mini-templates or wavelet basis functions. 

2. Inferring the hidden texton maps, each of which consists of an unknown number 
of similar textons which are related to each other by affine transformations. 

3. Learning the minimax entropy models for the stochastic processes that generate 
the textons maps. 

4. Verifying the learned window functions and generative models through stochastic 
sampling. 

Background on Descriptive and Generative Learning 

Given a set of images I = {Iobs 
1 , . . . , Iobs 

M }, where Iobs 
m ,m  = 1, . . . ,M  are consid-

ered realizations of some underlying stochastic process governed by a probability 
distribution f (I). The objective of visual learning is to estimate a probabilistic 
model p(I) based on I so that p(I) approaches f (I) by minimizing the Kullback– 
Leibler divergence KL(f ‖p) from f to p [29], 

KL(f ‖p) =
∫

f (I) log 
f (I) 
p(I) 

dI = Ef [log f (I)] −  Ef [log p(I)]. (5.1)
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In practice, the expectation Ef [log p(I)] is replaced by the sample average. Thus 
we have the standard maximum likelihood estimator (MLE), 

p∗ = arg min 
p∈�p 

KL(f ‖p) ≈ arg max 
p∈�p 

M∑
m=1 

log p(Iobs 
m ), (5.2) 

where �p is the family of distributions. One general procedure is to search for p in 
a sequence of nested probability families,

�0 ⊂ �1 ⊂ · · · ⊂ �K → �f � f, (5.3) 

where K indexes the dimensionality of the space. For example, K could be the 
number of free parameters in a model. As K increases, the probability family should 
be general enough to approach f to arbitrary precision. 

There are two choices of families for �p in the literature and both are general 
enough for approximating any distribution f . 

The first choice is the exponential family. The exponential family can be derived 
by the descriptive method through maximum entropy and has its root in statistical 
mechanics [24]. A descriptive method extracts a set of K feature statistics as 
deterministic transforms of an image I, denoted by φk(I), k = 1, . . . , K . Then it 
constructs a model p by imposing descriptive constraints so that p reproduces the 
observed statistics hobs 

k extracted from I , 

Ep[φk(I)] =  
1 

M 

M∑
m=1 

φk(Iobs 
m ) ≈ Ef [φk(I)] =  hk, k  = 1, . . . , K. (5.4) 

One may consider hk as a projected statistics of f (I), and thus when M is large 
enough, p and f will have the same projected (marginal) statistics on the K chosen 
dimensions. By the maximum entropy principle [120], this leads to the Gibbs model, 

p(I; β) = 
1 

Z(β) 
exp

{
− 

K∑
k=1 

βkφk(I)

}
. (5.5) 

The parameters β = (β1, . . . , βK) are Lagrange multipliers and they are computed 
by solving the constraint equations (5.4). The K features are chosen by a minimum 
entropy principle [281]. 

The descriptive learning method augments the dimension of the space �p by 
increasing the number of feature statistics and generates a sequence of exponential 
family models,

�d 
1 ⊂ �d 

2 ⊂ · · · �d 
K → �f . (5.6)
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This family includes all the MRF and minimax entropy models for texture [281]. For 
example, a type of descriptive model for texture chooses φj (I) as the histograms of 
responses from some Gabor filters. 

The second choice is the mixture family, which can be derived by integration or 
summation over some hidden variables W = (w1, . . . , wK), 

p(I;�) =
∫

p(I,W ;�)dW =
∫

p(I|W ;�)p(W ;β)dW. (5.7) 

The parameters of a generative model include two parts � = (�, β). It assumes a  
joint probability distribution p(I,W ;�), and that W generates I through a condi-
tional model p(I|W ;�) with parameters �. The hidden variables are characterized 
by a model p(W ; β). W should be inferred from I in a probabilistic manner, and 
this is in contrast to the deterministic features φk(I), k = 1, . . . , K  in descriptive 
models. The generative method incrementally adds hidden variables to augment the 
space �p and thus generates a sequence of mixture families,

�
g 
1 ⊂ �

g 
2 ⊂ · · · ⊂ �

g 
K → �f � f. (5.8) 

For example, principal component analysis, wavelet image coding [26, 165], and 
sparse coding [152, 188] all assume a linear additive model where an image I is the 
result of linear superposition of some window functions �k, k  = 1, . . . , K , plus a  
Gaussian noise process n. 

I = 
K∑

k=1 

ak�k + n, (5.9) 

where ak, k  = 1, . . . , K , are the coefficients, �i are the eigenvectors in PCA, 
wavelets in image coding, or over-complete basis for sparse coding. The hidden 
variables are the K coefficients of basis functions plus the noise, so W = 
(a1, . . . , aK, n).4 The coefficients are assumed to be independently and identically 
distributed, 

ak ∼ p(ak) ∝ exp−λo|ak |ρ , k  = 1, . . . , K. (5.10) 

The norm ρ = 1 for sparse coding [152, 188] and basis pursuit [26], and ρ = 2 for  
principal component analysis. Thus we have a simple distribution for W , 

p(W ; β) ∝ 
k∏

k=1 

exp−λo|ak |ρ ∏
(x,y) 

exp
− n2(x,y) 

2σ2 
o . (5.11)

4 In PCA, since the basis functions are orthogonal, ak can be computed as transform, but for an 
over-complete basis, the ak has to be inferred. 
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Fig. 5.3 Reprinted with permission from [89]. Texture images with texton processes 

In this model p(W ; β) is from the exponential family. However, in the literature, 
hidden variables ak, k  = 1, . . . , K , are assumed to be i.i.d. Gaussian or Laplacian 
distributed. Thus the concept of descriptive models is trivialized. 

A Multi-layered Generative Model for Images 

We focus on a multi-layer generative model for images with mainly texture content 
and we believe that the same learning framework can be applied to other patterns 
such as object shapes. An image I is assumed to be generated by L layers of 
stochastic processes, and each layer consists of a finite number of distinct but similar 
elements, called “textons.” Figure 5.3 shows three typical examples of texture 
images, and each texton is represented by a rectangular window. A layered model is 
shown in Fig. 5.2. 

Textons at layer l are image patches transformed from a square template �l . The  
j -th texton in layer l is identified by six transformation variables, 

tlj = (xlj , ylj , σlj , τlj , θlj , Alj ), (5.12) 

where (xlj , ylj ) represents the texton center location, σlj the scale (or size), τlj 
the “shear” (aspect ratio of height versus width), θlj the orientation, and Alj for 
photometric transforms such as lighting variability. 

tlj defines an affine transform denoted by G[tlj ], and the pixels covered by a 
texton tlj is denoted by Dlj . Thus the image patch IDlj of a texton tlj is 

IDlj = G[tlj ] � �l, ∀j, ∀l, (5.13) 

where � denotes the transformation operator. Texton examples of a circular 
template at different scales, shears, and orientations are shown in Fig. 5.4. 

We define the collection of all textons in layer l as a texton map, 

Tl = (nl, {tlj , j  = 1 . . . nl}), l = 1 . . . L, (5.14) 

where nl is the number of textons in layer l.
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scaleψ shear scale/shear/rotation 

Fig. 5.4 Reprinted with permission from [89]. A template � (leftmost) and its three transformed 
copies 

In each layer, the texton map Tl and the template �l generate an image Il = 
I(Tl;�l) deterministically. If several texton patches overlap at site (x, y) in Il , the  
pixel value is taken as average, 

Il (x, y) =
∑nl 

j=1 δ((x, y) ∈ Dlj )IDlj (x, y)∑nl 
j=1 δ((x, y) ∈ Dlj ) 

, (5.15) 

where δ(·) = 1 if • is true, otherwise δ(·) = 0. In image Il , pixels not covered by 
any texton patches are transparent. The image I is generated in the following way: 

I(T; �) = I(T1; �1)  I(T2; �2)  · · ·  I(TL; �L), and Iobs = I(T; �) + n. 
(5.16) 

The symbol  denotes occlusion (or linear addition), i.e., I1  I2 means I1 occludes 
I2. I(T; �) is called a reconstructed image and n is a Gaussian noise process 
n(x, y) ∼ N(0, σ 2 

0 ), ∀(x, y). Thus pixel value at site (x, y) in the image I is the same 
as the top layer image at that point, while uncovered pixels are only modeled by 
noises. 

In this generative model, the hidden variables are 

T = (L, {(Tl , dl) : l = 1, . . . , L}, n), (5.17) 

where dl indexes the order (or relative depth) of the l-th layer. 
To simplify computation, we assume that L = 2 and the two stochastic layers 

are called “background” and “foreground,” respectively. The two texton processes 
Tl , l  = 1, 2, are assumed to be independent of each other. We find that this 
assumption holds true for most of the texture patterns. Otherwise one has to treat L 
as an unknown complexity parameter in the model. 

Thus the likelihood for an observable image I can be computed 

p(I; �) =
∫

p(I|T; �)p(T; β)dT, (5.18) 

=
∫

p(I|T1, T2; �) 
2∏

l=1 

p(Tl; β l )dT1dT2. (5.19)
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Let � = (�1, �2) be texton templates, β = (β1, β2) the parameters for the 
two texton processes which we shall discuss in the next section, and σ 2 the 
variance of the noise. The generative part of the model is a conditional probability 
p(I|T1, T2; �), 

p(Iobs|T1, T2; �) ∝ exp

{
−∥∥Iobs − I(T1, T2; �)

∥∥2 

2σ 2

}
, (5.20) 

where I(T1, T2; �) is the reconstructed image from the two hidden layers without 
noise (see (5.16)). As the generative model is very simple, the texture pattern should 
be captured by the spatial arrangements of textons in models p(Tl; β l ), l = 1, 2, 
which are in much lower dimensional spaces and are more semantically meaningful 
than previous Gibbs models on pixels [281]. 

In the next section, we discuss the model p(Tl; β l ), l = 1, 2, for the texton 
processes. 

A Descriptive Model of Texton Processes 

As the texton processes Tl are not generated by further hidden layers in the 
model,5 they must be characterized by descriptive models in exponential families. 
In this section, we first review some background on three physical ensembles and 
then introduce a Gestalt ensemble for the texton process. Finally, we show some 
experiments for realizing the texton processes. 

Background: Physics Foundation for Visual Modeling 

There are two main differences between a texton process Tl and a conventional 
texture defined on a lattice D ⊂ Z2.

• A texton process has an unknown number of elements and each element has many 
attributes tlj , while a texture image has a fixed number of pixels and each pixel 
has only one variable for intensity.

• The neighborhood of a texton can change depending on their relative positions, 
scales, and orientations, while pixels always have fixed neighborhoods. 

Although a texton process is more complicated than a texture image, they share a 
common property that they all have a large number of elements and global patterns 
arise from simple local interactions between elements. Thus a well-suited theory

5 We may introduce additional layers of hidden variables for curve processes that render the 
textons. But our model stops at the texton level. 
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Fig. 5.5 Three typical ensembles in statistical mechanics. (a) Micro-canonical ensemble. (b) 
Canonical ensemble. (c) Grand-canonical ensemble 

for studying these patterns is statistical physics—a subject studying macroscopic 
properties of a system involving a huge number of elements [24]. 

To understand the intuitive ideas behind various texture and texton models, we 
find it revealing to discuss three physical ensembles which are shown in Fig. 5.5. 

1. Micro-canonical ensemble. Figure 5.5a is an insulated system of N elements. 
The elements could be atoms or molecules in systems such as solid ferromagnetic 
material, fluid, or gas. N is nearly infinity, say N = 1023. The system is decided 
by a configuration S = (xN , mN ), where xN describes the coordinates of the N 
elements and mN their momenta. The system is subject to some global constraints 
ho = (N, E, V ). That is, the number of elements N , the total system energy E, and 
the total volume V are fixed. When it reaches equilibrium, this insulated system is 
characterized by a so-called micro-canonical ensemble,

�mcn = {S : h(S) = ho, f  (S; ho) = 1/|�mcn|}. (5.21) 

S is a microscopic state or instance, and h(S) is the macroscopic summary of the 
system. The state S is assumed to be uniformly distributed within �mcn, and thus it 
is associated with a probability f (S; ho). The system is identified by ho. 

2. Canonical ensemble. Figure 5.5b illustrates a small subsystem embedded in 
a micro-canonical ensemble. The subsystem has n � N elements, fixed volume 
v � V , and energy e. It can exchange energy through the wall with the remaining 
elements which is called the “heat bath” or “reservoir.” At thermodynamic equilib-
rium, the microscopic state s = (xn , mn ) for the small system is characterized by a 
canonical ensemble with a Gibbs model p(s; β),

�cn = {s; p(s; β) = c · exp{−βe(s)}}. (5.22) 

In texture modeling [255], the micro-canonical ensemble is mapped to a Julesz 
ensemble where S = I is an infinite image on 2D plane Z2, and ho is a collection of 
Gabor filtered histograms. The canonical ensemble is mapped to a FRAME model 
[281] with s = ID being an image on a finite lattice D. Intuitively, s is a small patch 
of S viewed from a window D. The intrinsic relationship between the two ensembles 
is that the Gibbs model p(s; β) in �cn is derived as a conditional distribution of
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f (S; ho) in �mcn. There is a duality between ho and β (see [255] and the references 
therein). 

3. Grand-Canonical ensemble. Figure 5.5c illustrates a third system where the 
subsystem is open and can exchange not only energy but also elements with the 
bath. So v is fixed, but n and e may change. This models liquid or gas materials. 
At equilibrium, the microscopic state s for this small system is governed by a 
distribution p(s; βo, β) with βo controlling the density of elements in s. Thus a 
grand-canonical ensemble is

�gd = {s = (n, xn , mn ); p(s; βo, β)}. (5.23) 

The grand-canonical ensemble is a mathematical model for visual patterns with 
varying numbers of elements, thus laying the foundation for modeling texton 
processes. In the next subsection, we map the grand-canonical ensemble to a Gestalt 
ensemble in visual modeling. 

Gestalt Ensemble 

Without loss of generality, we represent a spatial pattern by a set of attributed 
elements called textons as was discussed in Sect. 5.2. To simplify notation, we 
consider only one texton layer on a lattice D, 

T = (n, {tj = (xj , yj , σj , τj , θj , Aj ), j = 1, . . . , n}). (5.24) 

For a texton map T, we define a neighborhood system ∂(T). 

∂(T) = {∂t : t ∈ T, ∂t  ⊂ T}, (5.25) 

where ∂t is a set of neighboring textons for each texton t . We find the nearest 
neighbors are often enough. Because each texton covers a 15 × 15 patch on average, 
a pair of adjacent textons captures image features at the scale of often more than 
30 × 30 pixels. 

There are a few different ways of defining ∂(T). One may treat each texton as a 
point and compute a Voronoi diagram or Delaunay triangularization which provides 
graph structures for the neighborhood. For example, a Voronoi neighborhood was 
used in [5] for grouping dot patterns. However, for textons, we need to consider 
other attributes such as orientation in defining the neighborhood. Figure 5.6a shows  
a texton t . The plane is separated into four quadrants relative to the two axes of the 
rectangle. In each quadrant, the nearest texton is considered the neighbor texton. 
Unlike the Markov random field on image lattice, the texton neighborhood is no 
longer translation invariant. 

The above neighborhood is defined deterministically. In more general settings, 
∂(T) shall be represented by a set of hidden variables that can be inferred from T. 
Thus a texton may have a varying number of neighbors referenced by some indexing
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Fig. 5.6 Reprinted with permission from [89]. Texton neighborhood. (a) A texton has four 
neighbors. (b) Four measurements between texton t1 and its neighbor t2, dc, dm, α, and  γ 

(or address) variables. These address variables could be decided probabilistically 
depending on the relative positions, orientations, and scales or intensities. This leads 
to the so-called mixed Markov random field and is beyond the scope of this section. 
Mumford and Fridman discussed such cases in another context (see [62]). 

For a texton t1 and its neighbor t2 ∈ ∂t , we measure five features shown in 
Fig. 5.6b, which capture various Gestalt properties: 

1. dc: Distance between two centers, which measures proximity. 
2. dm: Gap between two textons, which measures connectedness and continuation. 
3. α: Angle of a neighbor relative to the main axis of the reference texton. This is 

mostly useful in quadrants I and III. α/dc measures the curvature of possible 
curves formed by the textons or co-linearity and co-circularity in the Gestalt 
language. 

4. γ : Relative orientations between the two textons. This is mostly useful for 
neighbors in quadrants II and IV and measures parallelism. 

5. r: Size ratio that denotes the similarity of texton sizes. r is the width of t2 divided 
by the width of t1 for neighbors into quadrants I and III and r is the length of t2 

divided by the length of t1 for neighbors in quadrants II and IV. 

Thus a total of 4 × 5 = 20 pairwise features are computed for each texton plus 
two features of each texton itself: the orientation θj and a two-dimensional feature 
consisting of the scaling and shearing (σj , τj ). Following the notation of descriptive 
models in Sect. 5.2, we denote these features by 

φ(k) (t |∂t), for k = 1, . . . ,  22. (5.26) 

We compute 21 one-dimensional marginal histograms and one two-dimensional 
histogram for (σj , τj ), averaged over all textons. 

H(k) (z) = 
n∑

j=1 

δ(z − φ(k) (tj |∂tj )), ∀k. (5.27)
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We denote these histograms by 

H(T) = (H (1) , . . . , H (22) ), and h(T) = 
1 

n 
H(T). (5.28) 

The vector length of h(T) is the total number of bins in all histograms. One may 
choose other features and high-order statistics as well. In the vision literature, the 
work (Steven, 1978) was perhaps the earliest attempt for characterizing spatial 
patterns using histogram of attributes (see [169] for some examples). 

The distribution of T is characterized by a statistical ensemble in correspondence 
to the grand-canonical ensemble in Fig. 5.5c. We call it a Gestalt ensemble on a 
finite lattice D as it is the general representation for various Gestalt patterns, 

a Gestalt ensemble = �gst = {T : p(T; βo, β)}. (5.29) 

The Gestalt ensemble is governed by a Gibbs distribution, 

p(T; βo, β) = 
1 

Z 
exp

{−βon − 〈β, H(T)〉} . (5.30) 

Z is the partition function. βo is the parameter controlling texton density. We can 
rewrite the vector-valued potential functions β as energy functions β(k) (), and then 
we have 

p(T; βo, β) = 
1 

Z 
exp 

⎧⎨ 

⎩−βon − 
n∑

j=1 

K=22∑
k=1 

β(k) (φ(k) (tj |t∂j )) 
⎫⎬ 

⎭ . (5.31) 

This model provides a rigorous way for integrating multiple feature statistics into 
one probability model and generalizes existing point processes [27]. 

The probability p(T; βo, β) is derived from the Julesz ensemble (or micro-
canonical ensemble). We first define a close system with N � n elements on a 
lattice D, and we assume the density of textons is fixed 

lim 
N→∞ 

N 
|D| = ρ,  as N → ∞, and D → Z2. (5.32) 

Thus we obtain a Julesz ensemble on Z2 [255], 

a Julesz ensemble = �jlz  = {T∞ : h(T∞) = ho, N  → ∞, f (T∞; ho)}, (5.33) 

where ho = (ρ, h) is the macroscopic summary of the system state T∞. On any  
finite image, a texton process should be a conditional density of f (T∞; ho). There 
is a one-to-one correspondence between ho = (ρ, h) and the parameters (βo, β). 

We can learn the parameters (βo, β) and select effective features φ(k) when 
learning the descriptive method. In the following subsection, we discuss some
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computational issues and experiments for learning p(T; βo, β) and simulating the 
Gestalt ensembles. 

An Integrated Learning Framework 

After discussing the descriptive models for the hidden texton layers, we now return 
to the integrated framework presented in Sect. 5.2. 

Integrated Learning 

The generative model for an observed image Iobs is rewritten from Eq. (5.19), 

p(Iobs; �) =
∫

p(Iobs|T1, T2; �) 
2∏

l=1 

p(Tl; β l )dT1dT2. (5.34) 

We follow the maximum likelihood estimate in Eq. (5.2),

�∗ = arg max
�∈�

g 
K 

log p(Iobs; �). (5.35) 

The parameters � include the texton templates �l , the Lagrange multipliers β l , 
l = 1, 2, for two Gestalt ensembles, and the variance of the Gaussian noise, σ 2,

� = (�, β, σ), � = (�1, �2), and β = (β10, β1, β20, β2). (5.36) 

To maximize the log-likelihood, we take the derivative with respect to �. Let  
T = (T1, T2), 

∂ log p(Iobs; �) 
∂�

(5.37) 

=
∫

∂ log p(Iobs, T; �) 
∂�

p(T|Iobs; �)dT 

=
∫ [

∂ log p(Iobs|T;�) 
∂�

+ 
2∑

l=1 

∂ log p(Tl; β l ) 
∂β l

]
p(T|Iobs; �) dT 

= Ep(T|Iobs;�)

[
∂ log p(Iobs|T;�) 

∂�
+ 

2∑
l=1 

∂ log p(Tl; β l ) 
∂β l

]
. (5.38)
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In the literature, there are two well-known methods for computation. One is the 
EM algorithm [38], and the other is data augmentation [229] in the Bayesian context. 
We propose to use a stochastic gradient algorithm [88] which is more effective for 
our problem. 

A Stochastic Gradient Algorithm 
– Step 0. Initialize the hidden texton maps T and the templates � using a 

simplified likelihood as discussed in the next section. Set β = 0. 
Repeat Steps I and II below iteratively (like EM algorithm). 
– Step I. With the current � = (�, β, σ ), obtain a sample of texton maps from 

the posterior probability 

Tsyn 
m ∼ p(T|Iobs; �) ∝ p(Iobs|T1, T2;�)p(T1; β1o, β1)p(T2; β2o, β2), m = 1, . . . , M.  

(5.39) 
This is Bayesian inference. The sampling process is realized by a Monte Carlo 

Markov chain which simulates a random walk with two types of dynamics.

• (I.a) A diffusion dynamics realized by a Gibbs sampler—sampling (relaxing) the 
transform group for each texton, for example, moving textons, updating their 
scales and rotating them, etc.

• (I.b) A jump dynamics—adding or removing a texton (death/birth) by reversible 
jumps [83]. 

— Step II. We treat Tsyn 
m ,m  = 1, . . . , M, as “observations” and estimate the 

integration in (5.38) by importance sampling. Thus we have 

∂ log p(Iobs|T; �) 
∂�

+ 
2∑

l=1 

∂ log p(Tl; β l ) 
∂β l 

. (5.40) 

We learn � = (�, β, σ )  of the texton templates and Gibbs models, respectively, 
by gradient ascent:

• (II.a) Update the texton templates � by maximizing
∑M 

m=1 log p(Iobs|Tsyn 
m ; �); 

this is a fitting process. In our experiment, the texton templates �1 and �2 are 
represented by 15 × 15 windows, and thus there are 2 × 225 unknowns.6 

• (II.b) Update βlo, β l , l  = 1, 2, by maximizing
∑M 

m=1 log p(Tsyn 
m ; βlo, β l ). This is  

exactly the maximum entropy learning process in the descriptive method except 
that the texton processes are given by Step I.

• (II.c) Update σ for the noise process. 

In Step I, we choose to sample M = 1 example each time. If the learning rate in 
Steps (II.a) and (II.b) is slow enough, the expectation is estimated by importance 
sampling through samples Tsyn over time. It has been proved [88] that such an

6 Each point in the window can be transparent, and thus the shape of the texton can change during 
the learning process. 
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algorithm converges to the optimal � if the step size in Step II satisfies some mild 
conditions. 

The following are some useful observations: 
1. Descriptive models and learning is part of the integrated learning framework, 

in terms of both representation and computing (Step II.b)). 
2. Bayesian vision inference is a sub-task (Step I) of the integrated learning 

process. A vision system, machine or biological, evolves by learning generative 
models p(I;�) and makes an inference about the world T (or W in more general 
generative models) using the current imperfect knowledge �—the Bayesian view 
of vision. What is missing in this learning paradigm is the “discovery process” that 
introduces new hidden variables. 

Mathematical Definitions of Visual Patterns 

Any visual learning paradigm must answer the question of conceptualization: How 
do we define, mathematically, a visual concept or a pattern? for example, a human 
face, a wood grain texture, and so on. In this section, we show how the descriptive 
and generative methods conceptualize a visual pattern. 

The concept of a visual pattern is an abstraction (or summary) for an assembly 
of configurations (or instances) s that are not distinguished by human perception 
for a certain vision purpose. Because of the stochastic nature of the visual signal, 
instances in this assembly are governed by a frequency f (s), and an instance can 
then be considered a random sample from the probability distribution f (s). Thus a 
concept is said to be equal to an ensemble, 

a visual concept c = �c = {s : f (s)}. (5.41) 

By a descriptive method, the ensemble is defined through statistical constraints 
(see (5.4)), 

a descriptive concept c = �(hc) = {s : f (s; hc), Ef [h(s)] =  hc}. (5.42) 

For example, s could be a human face represented by a list of key points, or s = I 
could be a texture image. h(s) is the statistics extracted from s which are sufficient 
for a certain vision purpose. hc is the vector value that identifies this concept. hc 
corresponds to a Gibbs model p(s; β) with parameter β. It is accepted that two 
concepts may have overlapping ensembles. 

When the signal is homogeneous, such as texture or texton maps, the expectation 
Ef [h(s)] can be computed from a single instance through spatial average over a large 
enough lattice D, and thus we can define a concept as an equivalence class—called 
the Julesz ensemble in (Zhu et al. 2000) [224]. 

a descriptive concept c = �(hc) = {s : h(s) = hc D → Z2, f (s; hc)}. (5.43)
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For example, for defining a texture, hc is the sufficient and necessary statistics 
extracted in texture perception. The ensembles on large lattice D → Z2 are disjoint 
and deterministic as f (s; hc) is a uniform distribution. 

Though the pure descriptive concept and Julesz ensemble are technically sound, 
they are only a coarse or first-stage approximation to human perception in texture 
discrimination. Texture studies in psychology [119, 124] suggest that human vision 
is sensitive to the perception of some basic elements called textons, perhaps for 
some vision purpose. It was also argued and demonstrated by Malik et al. [150, 
163, 164] that the detection of individual textons plays an important role in texture 
discrimination, segmentation, and grouping. However, it was unclear what textons 
really are. 

We argue that the mathematical definition of textons can be guided by a 
generative model. So the integrated learning paradigm extends the Julesz ensemble 
definition to a generative concept with W being the hidden variables, 

a generative concept c = {s : f (s;�) =
∫

f (s|W ; �)f (W ; hw)dW }, (5.44) 

where W are instances of a descriptive ensemble, 

{W : h(W) = hw, D  → Z2, f (W ; hw)}. (5.45) 

Thus a concept is identified by the parameters � = (�, hw) (or � = (�, β) because 
of the duality between hw and β). In this definition, � is a mathematically sound 
definition of texton. 

Effective Inference by Simplified Likelihood 

In this section, we address some computational issues in the integrated learning 
paradigm and propose a method for initializing the stochastic gradient algorithm (in 
Step 0). 

Initialization by Likelihood Simplification and Clustering 

The stochastic algorithm presented in Sect. 5.2 needs a long “burn-in” period if it 
starts from an arbitrary condition. To accelerate the computation, we use a simplified 
likelihood in Step 0 of the stochastic gradient algorithm. Thus given an input image 
Iobs, our objective is to compute some good initial texton templates �1, �2 and 
hidden texton maps T1, T2, before the iterative process in Steps I and II. 

A close analysis reveals that the computational complexity is largely due to the 
complex coupling between the textons in both the generative model p(I|T1, T2;�)
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and the descriptive models p(T1; β1o, β1) and p(T2; β2o, β2). Thus we simplify both 
models by decoupling the textons. 

First, we decouple the textons in p(T1; β1o, β1) and p(T2; β2o, β2). We fix the  
total number of textons n1 + n2 to an excessive number, and thus we do not need to 
simulate the death–birth process. We set β1 and β2 to 0, and therefore p(Tl; βlo, βl) 
becomes a uniform distribution and the texton elements are decoupled from spatial 
interactions. 

Second, we decouple the textons in p(Iobs |T1, T2;�). Instead of using the image 
generating model in Eq. (5.16), which implicitly imposes couplings between texton 
elements through Eq. (5.20), we adopt a constraint-based model 

p(Iobs|T, �)  ∝ exp 

⎧⎨ 

⎩− 
2∑

l=1 

nl∑
j=1

‖Iobs 
Dlj 

− G[Tlj ] � �l‖2/2σ 2 

⎫⎬ 

⎭ , (5.46) 

where Iobs 
Dlj 

is the image patch of the domain Dlj in the observed image. For pixels 

in Iobs not covered by any textons, a uniform distribution is assumed to introduce a 
penalty. 

We run the stochastic gradient algorithm on the decoupled log-likelihood, which 
reduces to a conventional clustering problem. We start with two random texton maps 
and the algorithm iterates the following two steps. 

(I) Given �1 and �2, the algorithm runs a Gibbs sampler to change each texton 
tlj , respectively, by moving, rotating, scaling the rectangle, and changing the cluster 
into which each texton falls according to the simplified model of Eq. (5.46). Thus 
the texton windows intend to cover the entire observed image and at the same time 
try to form tight clusters around �. 

(II) Given T1 and T2, the algorithm updates the texton �1 and �2 by averaging

�l = 
1 

nl 

nl∑
j=1 

G−1[Tlj ] � Iobs 
Dlj 

, l  = 1, 2, (5.47) 

where G−1[Tlj ] is the inverse transformation. The layer orders d1 and d2 are not 
needed for the simplified model. 

This initialization algorithm for computing (T1, T2, �1, �2) resembles the trans-
formed component analysis [60]. It is also inspired by a clustering algorithm by 
Leung and Malik [151], which did not engage hidden variables and thus compute a 
variety of textons � at different scale and orientations. We also experimented with 
representing the texton template � by a set of Gabor basis functions instead of a 
15 × 15 window. However, the results were not as encouraging as in this generative 
model.
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Fig. 5.7 Reprinted with permission from [89]. Result of the initial clustering algorithm. (a) Input 
image. (b) Cluster 1 textons T1. (c) ψ1. (d) Cluster 2 textons T2. (e) ψ2. (f) Reconstructed image 

Experiment I: Texton Clustering 

In the following, we demonstrate experiments for initialization and clustering as 
Sect. 5.2 stated. 

Figure 5.7 shows an experiment on the initialization algorithm for a crack pattern. 
1055 textons are used with the template size of 15 × 15. The number of textons is 
as twice as necessary to cover the whole image. In optimizing the likelihood in 
Eq. (5.46), an annealing scheme is utilized with the temperature decreasing from 4 
to 0.5. The sampling process converges to a result shown in Fig. 5.7. 

Figure 5.7a is the input image; Fig. 5.7b,d are the texton maps T1 and T2, 
respectively. Figure 5.7c,e are the cluster centers �1 and �2, shown by rectangles, 
respectively. Figure 5.7f is the reconstructed image. The results demonstrate that the 
clustering method provides a rough but reasonable starting solution for generative 
modeling.
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Experiment II: Integrated Learning and Synthesis 

Next, we show experimental results obtained by the integrated learning paradigm. 
For an input image, we first do a clustering step as Sect. 5.2 showed. Then we run 
the stochastic gradient algorithm on the full models to refine the clustering results. 

Figure 5.8 shows the result for the crack image obtained by the stochastic 
gradient algorithm, which took about 80 iterations of the two steps (Step I and Step 
II), following the initial solution (Step 0) shown in Fig. 5.7. Figure 5.8b,d are the 
background and foreground texton maps T1 and T2, respectively. Figure 5.8c,e are 
the learned textons �1 and �2, respectively. Figure 5.8f is the reconstructed image 
from learned Texton maps and templates. Compared to the results in Fig. 5.7, the  
results in Fig. 5.8 have more precise texton maps and accurate texton templates due 
to an accurate generative model. The foreground texton �2 is a bar, and one pixel at 
corner of the left-top is transparent. 

The integrated learning results for a cheetah skin image are shown in Fig. 5.9. It  
can be seen that in the foreground template, the surrounding pixels are learned as 

Fig. 5.8 Reprinted with permission from [89]. Generative model learning result for the crack 
image. (a) Input image, (b) and (d) are background and foreground textons discovered by the 
generative model, (c) and (e) are the templates for the generative model, and (f) is the reconstructed 
image from the generative model
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Fig. 5.9 Reprinted with permission from [89]. Generative model learning result for a cheetah skin 
image. (a) Input image. (b) Background textons T1. (c) ψ1. (d) Forground textons T2. (e) ψ2. (f) 
Reconstructed image 

being transparent and the blob is exactly computed as the texton. Figure 5.10 shows 
the results for a brick image. No point in the template is transparent for the gap lines 
between bricks. 

Figure 5.11 shows the learning of another short crack pattern. Figure 5.12 
displays a pine corn pattern. The seeds and the black intervals are separated cleanly, 
and the reconstructed image keeps most of the pine structures. However, the pine 
corn seeds are learned as the background textons and the gaps between pine corns 
are treated as foreground textons. 

After the parameters � and β of the generative model are discovered for a type 
of texture images, new random samples can be drawn from the generative model. 
This proceeds in three steps: first, texton maps are sampled from the Gibbs models 
p(T1; β1) and p(T2; β2), respectively. Second, background and foreground images 
are synthesized from the texton maps and texton templates. Third, the final image is 
generated by combining these two images according the occlusion model. 

We show synthesis experiments on three patterns. 

1. Figures 5.13 and 5.14 are two synthesis examples of the two-layer model 
synthesis for the cheetah skin pattern. The templates used here are the learned 
results in Fig. 5.9. 

2. Figure 5.15 shows texture synthesis for the crack pattern computed in Fig. 5.11.
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Fig. 5.10 Reprinted with permission from [89]. Generative model learning result for a brick 
image. (a) Input image. (b) Background textons T1. (c) ψ1. (d) Forground textons T2. (e) ψ2. 
(f) Reconstructed image 

3. Figure 5.16 displays texture synthesis for the brick pattern in Fig. 5.10. 

Note that, in these texture synthesis experiments, the Markov chain operates with 
meaningful textons instead of pixels. 

Discussion 

We present a visual learning paradigm that integrates and extends descriptive and 
generative models and which also provides a framework for visual conceptualization 
and for defining textons. The hierarchical model for textures has advantages over the 
previous pure descriptive method with Markov random fields on pixel intensities. 

First, from the representational perspective, the neighborhood in the texton map 
is much smaller than the pixel neighborhood in a FRAME model [281]. The 
generative method captures more semantically meaningful elements on the texton 
maps. 

Second, from the computational perspective, the Markov chain operating on the 
texton maps can move textons according to affine transforms and can add or delete a 
texton by birth–death dynamics, and thus it is much more effective than the Markov



Fig. 5.11 Reprinted with permission from [89]. Generative model learning result for a crack 
image. (a) Input image. (b) Background textons T1. (c) ψ1. (d) Forground textons T2. (e) ψ2. 
(f) Reconstructed image 

Fig. 5.12 Reprinted with permission from [89]. Generative model learning result for a pine corn 
image. (a) Input image. (b) Background textons T1. (c) ψ1. (d) Forground textons T2. (e) ψ2. (f) 
Reconstructed image
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Fig. 5.13 Reprinted with permission from [89]. An example of a randomly synthesized cheetah 
skin image. (a) and (b) are the background and foreground texton maps sampled from p(Tl; βl), 
(d) and (e) are synthesized background and foreground images from the texton map and templates 
in (c), and (f) is the final random synthesized image from the generative model 

Fig. 5.14 Reprinted with permission from [89]. The second example of a randomly synthesized 
cheetah skin image. Notation is the same as in Fig. 5.13 

chain used in traditional Markov random fields which flips the intensity of one pixel 
at a time. 

We show that the integration of descriptive and generative methods is a natural 
path for visual learning. We argue that a vision system should evolve by pro-
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Fig. 5.15 Reprinted with permission from [89]. An example of a randomly synthesized crack 
image. Notations are the same as in Fig. 5.13 

Fig. 5.16 Reprinted with permission from [89]. An example of a randomly synthesized brick 
image. Notation is the same as in Fig. 5.13 

gressively replacing descriptive models with generative models, which realizes a 
transition from empirical and statistical models to physical and semantical models. 
The work presented here provides a step toward this goal.



Chapter 6 
Primal Sketch: Integrating Textures and 
Textons 

In his monumental book [169], Marr inherited Julesz’s texton [124] notion and 
proposed the concept of image primitives as basic perceptual tokens, such as edges, 
bars, junctions, and terminators. Inspired by the Nyquist sampling theorem in signal 
processing, Marr went a step further and asked for a token representation which he 
named “primal sketch” as a perceptually lossless conversion from the raw image. 
He tried to reconstruct the image with zero-crossings unsuccessfully and his effort 
was mostly limited by the lack of proper models of texture. 

6.1 Marr’s Conjecture on Primal Sketch 

In the early stage of visual perception, an image may be divided into two 
components—the structural part with noticeable elements called “textons” by Julesz 
or “image primitives” by Marr and the textural part without distinguishable elements 
in pre-attentive vision. The structural part is often composed of objects, such 
as tree twigs and trunks at a near distance whose positions and shapes can be 
clearly perceived. In contrast, the textural part is composed of objects at a far 
distance whose structures become indistinguishable and thus yield various texture 
impressions. 

The modeling of texture and structure has been a long-standing puzzle in the 
study of early vision. In the 1960s, Julesz first proposed a texture theory and 
conjectured that a texture is a set of images sharing some common statistics on 
some features related to human perception. Later he switched to a texton theory 
and identified bars, edges, and terminators as textons—the atomic elements in early 
vision. Marr summarized Julesz’s theories along with experimental results and pro-
posed a primal sketch model in his book as a “symbolic” or “token” representation 
in terms of image primitives. Marr argued that this symbolic representation should 
be parsimonious and sufficient to reconstruct the original image without much 
perceivable distortion. 
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In fact, Andrew Glennerster [42] shows that the primal sketch representation 
provides a stable coordinate frame under rapid eye rotation, which is biologically 
plausible. Once a certain task is defined, the visual system extracts “raw” visual 
information from the primal sketch representation to higher level information. 

Despite many inspiring observations, Marr’s description provided neither an 
explicit mathematical formulation nor a rigorous definition of the primal sketch 
model. 

Since the 1980s, the studies of early image modeling followed two distinct 
paths which represent two prevailing mathematical theories for generative image 
modeling, respectively. In fact, the two theories are two distinct ways of learning 
image manifolds residing in different entropy regimes, respectively. In the follow-
ing, we should briefly review the two theories. Interested readers are recommended 
to review the last chapter for a more complete account of generative and descriptive 
models. 

The first theory is a two-layer generative model originating from computational 
harmonic analysis which represents images by a linear superposition of basis 
functions selected from a dictionary—often over-complete like various wavelets, 
image pyramids, and sparse coding. Each image base is supposed to represent some 
image features with hidden variables describing their locations, orientations, scales, 
and intensity contrast. The image is reconstructed with minimum error on the pixel 
intensity. 

The second theory is the Markov random fields (MRFs) originated from statis-
tical mechanics. It represents a visual pattern by pooling the responses of a bank 
of filters over all locations into some statistical summary like the histograms which 
are supposed to represent our texture impressions. On large image lattices, a Julesz 
ensemble is defined as a perceptual equivalence class where all images in the set 
share identical statistics. The statistics or texture impression is the macroscopic 
properties and the differences between microscopic states (i.e., image instances in 
the Julesz ensemble) are ignored. In other words, all images in this equivalence 
class are perceptually the same, replacing one with the other does not cause 
perceivable distortion, although the two images have large differences in pixel-by-
pixel comparison. 

6.2 The Two-Layer Model 

According to the model, the image is generated as a mosaic as follows: the image 
lattice is divided into two disjoint parts: a structured domain, or a sketchable part, 
and a textured domain, or a non-sketchable part (Figs. 6.1 and 6.2), 

D = Dsk ∪ Dnsk,Dsk ∩ Dnsk = φ. (6.1) 

The image intensities on the structure domain are represented by a set of coding 
functions for edges and ridges. The image intensities on the texture domain are
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Fig. 6.1 Reprinted with permission from [90]. A sparse coding example is computed by matching 
pursuit. (b) is a symbolic representation where each base Bk is represented by a bar at the 
same location, with the same elongation and orientation. The isotropic LOG basis functions are 
represented by a circle. (a) Original image. (b) LoG and Gabor tokens. (c) Reconstructed image 

Fig. 6.2 Reprinted with permission from [91]. A collection of local structure elements employed 
by the model. There are eight types of elements: blobs, endpoints, edges, ridges, multi-ridges, cor-
ners, junctions, and crosses. (a) The symbolic representation. (b) The photometric representation 

characterized by Markov random fields that interpolate the structure domain of the 
image. See Figs. 6.3 and 6.4 for two examples of primal sketch model.
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Fig. 6.3 Reprinted with permission from [91]. Primal sketch model. (a) Observed image. (b) 
“Sketchable” part is described by a geometric sketch graph. (c) The texture regions of the image. 
(d) Fill in the “non-sketchable” part by matching feature statistics. (e) The sketchable part of the 
image. (f) The non-sketchable part of the image 

Fig. 6.4 Reprinted with permission from [91]. Examples of primal sketch model. (a) Observed  
image. (b) Sketch graph. (c) Synthesized image from the fitted model
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Fig. 6.5 In the space of image patches, there are simple shape primitives, and there are also 
stochastic texture patterns 

The motivation is that in the space of image patches, there are simple geometric 
primitives such as edges, but there are also stochastic texture patterns, as illustrated 
in Fig. 6.5. We need both to describe an image. 

Structure Domain 

The structured domain Dsk is further divided into a number of disjoint patches with 
each patch being fitted by an image primitive 

Dsk = ∪K 
i=1Dsk,i; Dsk,i ∩ Dsk,j = φ, i �= j. (6.2) 

Some examples of the image primitive are shown in Fig. 6.2. These primitives are 
aligned through their landmarks to form a sketch graph Ssk. Specifically, we index 
the selected image primitives by i = 1, . . . , n  and denote image patch for primitive 
i as B(x, y|θi). Here  

θi = (θtopological,i , θgeometric,i , θphotometric,i ), (6.3) 

where θtopological,i is the type (degree of arms) of the primitive (blob, terminator, 
corner, junctions, etc.), θgeometric,i collects the locations of the landmarks of the 
primitive, and θphotometric,i collects the intensity profiles of the arms of the primitive. 
The sketch graph is a layer of hidden representation, which has to be inferred from 
the image
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Ssk = ((Dsk,i , B(x, y|θi), ai), i = 1, . . . , n), (6.4) 

where Ssk decides the structure domain of the image, and ai is the address variable 
pointing to the neighbors of the vertex Ssk,i = (Dsk,i , B(x, y|θi)). 

The model for the structure domain of the image is 

I(x, y) = 
n∑

i=1 

B(x, y|θi) + ε(x, y), (x, y) ∈ Dsk, i  = 1, . . . , n, (6.5) 

where ε(x, y) denotes the noise term. Since the set of pixels coded by B(x, y | 
θi) does not overlap each other, B(x, y|θi) is similar to coding vectors in vector 
quantization. 

The Dictionary of Image Primitives 

An edge segment is modeled by a 2D function that is constant along the edge and 
has a profile across the edge. Specifically, 

B(x, y | θ)  = f (−(x − u) sin α + (y − v) cos α), (6.6) 

where 

− l <  (x  − u) cos α + (y − v) sin α ≤ l, (6.7) 

−w ≤ −(x − u) sin α + (y − v) cos α ≤ w. (6.8) 

That is, the function B(x, y | θ)  is supported on a rectangle centered at (u, v), with 
length 2l + 1, width 2w + 1, and orientation α. 

For the profile function f (x), let f0(x) = −1/2 for x <  0 and f0(x) = 1/2 for  
x ≥ 0, and let gs() be a Gaussian function of standard deviation s. Then f (x)  = 
a + bf0(x) ∗ gs(x). This is the model proposed by Elder and Zucker [52]. The 
convolution with Gaussian kernel is used to model the blurred transition of intensity 
values across the edge, caused by the three-dimensional shape of the underlying 
physical structure, as well as the resolution and focus of the camera. As proposed 
by Elder and Zucker, the parameter s can be determined by the distance between the 
two extrema of the second derivative f ′′(x). 

Thus in the coding function B(x, y | θ)  for an edge segment, θ = (t, u, v,  
α, l, w, s, a, b), namely, type (which is edge in this case), center, orientation, 
length, width, sharpness, average intensity, intensity jump. θ captures geometric 
and photometric aspects of an edge explicitly, and the coding function is nonlinear 
in θ . 

A ridge segment has the same functional form, where the profile f (x)  is a 
composition of two edge profiles. The profile of a multi-ridge is a composition
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of two or more ridge profiles. A blob function is modeled by rotating an edge 
profile, more specifically, B(x, y | θ)  = f (

√
(x − u)2 + (y − v)2 − r), where 

(x − u)2 + (y − v)2 ≤ R2, and again f (x)  = a + bf0(x) ∗ gs(x) being a step 
edge convolved with a Gaussian kernel. This function is supported on a disk area 
centered at (u, v) with radius R. The transition of intensity occurs at the circle of 
radius r <  R. 

The corners and junctions are important structures in images. They are modeled 
as compositions of edge or ridge functions. When a number of such coding functions 
join to form a corner or a junction, the image intensities of the small number of 
overlapping pixels are modeled as averages of these coding functions. The endpoint 
of a ridge is modeled by a half blob. 

See Fig. 6.2 for a sample of local structure elements, which are the coding func-
tions and their combinations. There are eight types of elements: blobs, endpoints, 
edges, ridges, multi-ridges, corners, junctions, and crosses. Figure 6.2a shows the  
symbolic representations of these elements. Figure 6.2b displays the image patches 
of these elements. 

Let Ssk be the sketch graph formed by these coding functions. The graph has a 
set of nodes or vertices V = ∪4 

d=0Vd , where Vd is the set of nodes with degree d, 
i.e., the nodes with d arms. For instance, a blob node has a degree 0, an endpoint 
has a degree 1, a corner has a degree 2, a T-junction has a degree 3, and across has 
a degree 4. We do not allow nodes with more than 4 arms. Ssk is regularized by a 
simple spatial prior model: 

p(Ssk) ∝ exp

{
− 

4∑

d=0 

λd |Vd |
}

, (6.9) 

where |Vd | is the number of nodes with d arms. The prior probability or the energy 
term γsk(Ssk) = ∑4 

d=0 λd |Vd | penalizes free endpoints by setting λsk at a large 
value. 

Texture Domain 

The texture domain Dnsk is segmented into m regions of homogenous texture 
patterns, 

Dnsk = ∪m 
j=1Dnsk,j ; Dnsk,i ∩ Dnsk,j = φ, i �= j. (6.10) 

Within each region j , we pool the marginal histograms of the responses from the K 
filters, hj = (hj,k, k  = 1, . . . , K), where
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hj,k,z = 1 

|Dnsk,j |
∑

(x,y)∈Dnsk,j 

δ(z; Fk ∗ I(x, y)), (6.11) 

where z indexes the histogram bins, and δ(z; x) = 1 if  x belongs to bin z, and 
δ(z; x) = 0 otherwise. This yields a Markov random field model, also known as the 
descriptive model, for each texture region: 

p(IDnsk,j ) ∝ exp 

⎧ 
⎨ 

⎩−
∑

(x,y)∈Dnsk,j 

K∑

k=1 

φj,k(Fk ∗ I(x, y)) 

⎫ 
⎬ 

⎭ . (6.12) 

These Markov random fields have the structure domain as boundary conditions, 
because when we apply filters Fk on the pixels in Dnsk, these filters may also cover 
some pixels in Dsk. These Markov random fields in-paint the texture domain Dnsk 
while interpolating the structure domain Dsk, and the in-painting is guided by the 
marginal histograms of linear filters within each region. 

Let Snsk = ((Dnsk,j , hj,k, φj,k), j = 1, . . . , m, k  = 1, . . . , K)  denote the 
segmentation of the texture domain. Snsk follows a prior model p(Snsk) ∝ 
exp{−γnsk(Snsk)}, for instance, γnsk(Snsk) = ρm to penalize the number of regions. 

Integrated Model 

Formally, we can integrate the structure model (6.5) and the texture model (6.12) 
into a probability distribution. Our inspiration for such integration comes from the 
model of Mumford and Shah [177]. In their method, the prior model for the noiseless 
image can be written as 

p(I, S)  = 
1 

Z 
exp 

⎧ 
⎨ 

⎩−
∑

(x,y)∈D/S 
λ|∇I(x, y)|2 − γ |S| 

⎫ 
⎬ 

⎭ , (6.13) 

where S is a set of pixels of discontinuity that correspond to the boundaries of 
objects and |S| is the number of pixels in S. In model (6.13), S is the structure 
domain of the image, and the remaining part is the texture domain. 

Our model can be viewed as an extension of the Mumford–Shah model. Let 
S = (Ssk, Snsk), and we have 

p(I, S)  = 
1 

Z 
exp

{
− 

n∑

i=1

∑

(x,y)∈Dsk,i 

1 

2σ 2 (I(x, y) − Bi(x, y | θi))
2 − γsk(Ssk)
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− 
m∑

j=1

∑

(x,y)∈Dnsk,j 

K∑

k=1 

φj,k(Fk ∗ I(x, y)) − γnsk(Snsk)
}
. (6.14) 

Compared to Mumford–Shah model, model (6.14) is more sophisticated in both the 
structure part and the texture part. 

The Sketch Pursuit Algorithm 

To learn the integrated model, the traditional maximum likelihood algorithm 
requires the MCMC method for global inference. Instead, a greedy algorithm, sketch 
pursuit algorithm, is proposed. It consists of the following phases: 

1. Phase 0: an edge and ridge detector based on linear filters are run to give an 
initialization for the sketch graph. 

2. Phase 1: a greedy algorithm is used to determine the sketch graph but without 
using the spatial prior model. 

3. Phase 2: a greedy algorithm based on a set of graph operators is used to edit the 
sketch graph to achieve good spatial organization as required by the spatial prior 
model. 

4. Phase 3: the remaining portion of the image is segmented into homogeneous 
texture regions by clustering the local marginal histograms of filter responses. 
The inference algorithm yields two outputs: 

(a) A sketch graph for the image, with edge and ridge segments, as well as 
corners and junctions. 

(b) A parameterized representation of the image which allows the image to be 
re-synthesized and to be encoded efficiently. 

6.3 Hybrid Image Templates 

The primal sketch model is developed for generic scenes. In this section, we study 
a more specific framework for learning representations for objects from images, the 
hybrid image templates (HITs). 

First, just as the primal sketch, the appearances of objects have two types of 
descriptors: local sketch and texture gradient. For instance, the image in Fig. 6.6 
consists of both the patches of geometric primitives on the object boundary and the 
patches of textures on the object surface. In addition to sketch features and texture 
features, we also add flatness features and color features, so that the templates 
give complete descriptions of the images. Figure 6.7 shows some examples of such
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Fig. 6.6 Reprinted with permission from [217]. An image of an object consists of patches of 
simple primitives and patches of textures 

templates, with local sketch (edge or bar), texture gradients (with orientation field), 
flatness regions (smooth surface and lighting), and colors. 

The modeling and learning strategy of the hybrid template is similar to the active 
basis. For each type of feature, we pool a background histogram q from natural 
images and then estimate the distribution p by exponential tilting. We select the 
features sequentially as in active basis. After each feature is selected, it will inhibit 
nearby features of the same type. 

Naturally, there are large variations in the representations of different classes, 
for example, teapots may have a common shape outline but do not have a common 
texture or color. The hedgehog in Fig. 6.6 has a distinct texture and shape, but its 
color is often less distinguishable from its background. The essence of our learning 
framework is to automatically select, in a principled way, informative patches from 
a large pool and compose them into a template with a normalized probability model. 

Representation 

Let D be the image lattice for the object template which is typically 150×150 pixels. 
This template will undergo a similarity transform to align with object instances in 
images. The lattice is decomposed into a set of K patches {Dk, k  = 1, 2 . . . , K} 
selected from a large pool in the learning process through feature pursuit. These 
patches belong to four bands: sketch, texture/gradient field, flatness, and color, 
respectively, and they do not form a partition of the lattice D for two reasons:
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Fig. 6.7 Reprinted with permission from [217]. The hybrid templates consist of sketch, texture, 
flatness, and color features 

• Certain pixels on D are left unexplained due to inconsistent image appearances 
at these positions.

• Two selected patches from different bands may overlap each other in position. 
For example, a sketch patch and a color patch can occupy the same region, but 
we make sure the sketch feature descriptor and color descriptor extracted from 
them would represent largely uncorrelated information. 

The hybrid image template consists of the following components: 

HIT = ({Dk, �k, {Bkorhk}, δk :, k  = 1, 2, . . .  ,K}, �), (6.15)
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where 

1. Dk ⊂ D is the k-th patch lattice described above. 
2. �k ∈ {  skt, txt, flt, clr} is the type of the patch. 
3. Bk or hk is the feature prototype for the k-th patch. If �k = skt, then the patch 

is described by a basis function Bk for the image primitive; otherwise, it is 
described by a histogram hk for texture gradients, flatness, or color, respectively. 

4. δk = (δkx, δky, δkθ): the latent variables for the local variabilities of the k-th 
patch, i.e., the local translations and rotations of selected patches. 

5. � = {λk, zk : k = 1, 2, . . . , K} are the parameters of the probabilistic model 
p (to be discussed in the later subsection). λk, zk are the linear coefficient and 
normalizing constant for the k-th patch. 

Prototypes, ε-Balls, and Saturation Function 

Let IDk be the image defined on the patch Dk ⊂ D. For �k = skt, the prototype Bk 
defines a subspace through an explicit function for IDk (a sparse coding model),

(Bk) = {IDk : IDk = ckBk + ε}. (6.16) 

For �k ∈ {txt, flt, clr}, the prototype defines a subspace through an implicit function 
for IDk which constrains the histogram (a Markov random field model),

(hk) = {IDk : H(IDk ) = hk + ε}. (6.17) 

H(IDk ) extracts the histogram (texture gradient, flatness, or color) from IDk
. 

In (Bk), the distance is measured in the image space, 

ρex(IDk ) = ‖IDk − cBk‖2, (6.18) 

while in (hk), the distance is measured in the projected histogram space with L1 
or L2 norms, 

ρim(IDk ) = ‖H(IDk ) − hk‖2. (6.19) 

Intuitively, we may view (Bk) and (hk) as ε-balls centered at the prototypes 
Bk and hk , respectively, with different metrics. Each ε-ball is a set of image patches 
that are perceptually equivalent. Thus the image space of HIT is the product space 
of these heterogeneous subspaces: (HIT ) = ∏K 

k=1 k, on which a probability 
model is concentrated. Due to statistical fluctuations in small patches, these ε-balls 
have soft boundaries. Thus we use a sigmoid function to indicate whether a patch 
IDk belongs to a ball (Bk) or (hk).
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r(IDk ) = S(ρ(IDk )), (6.20) 

where ρ can be either ρex or ρim. S(x) is a saturation function with maximum at 
x = 0: 

S(x) = τ
(

2 

1 + e−2(η−x)/τ − 1
)

, (6.21) 

with shape parameters τ and η. We set  τ = 6 and η is locally adaptive: η = ‖IDk
‖2, 

where IDk denotes the local image patch. We call r(IDk ) the response of the feature 
(prototype Bk or hk) on patch IDk

. 

Projecting Image Patches to 1D Responses 

Though the image patches are from heterogeneous subspaces of varying dimensions 
with different metrics, we project them into the one-dimensional feature response 
r(IDk ), on which we can calculate the statistics (expectation) of r(IDk ) over the 
training set regardless of the types of patches. This way it is easy to integrate them 
into a probabilistic model. 

In the following, we discuss the details of computing the responses for the four 
different image subspaces. 

Given an input color image I on lattice D, we first transform it into an HSV 
space with HS being the chromatic information and V the gray level image. We 
apply a common set of filters � to the gray level image. The dictionary � includes 
Gabor filters (sine and cosine) at 3 scales and 16 orientations. The Gabor filter of 
the canonical scale and orientation is of the form: F(x, y) ∝ exp{−(x/σ1)

2 − 
(y/σ2)

2}eix with σ1 = 5, σ2 = 10. 
1. Calculating responses on primitives. When a patch IDk contains a prominent 

primitive, such as an edge or a bar, it is dominated by a filter that inhibits all the 
other filters. Thus the whole patch is represented by a single filter, which is called 
a basis function Bk ∈ �. The response is calculated as the local maximum over the 
activity δk , 

rskt(IDk ) = max 
δx,δy,δθ 

S(‖I − cBx+δx,y+δy,o+δo‖2). (6.22) 

The local maximum pooling is proposed by [214] as a possible function of complex 
cells in V1. 

2. Calculating responses on texture. In contrast to the primitives, a texture patch 
usually contains many small elements, such as the patch on the hedgehog body 
in Fig. 6.6. As a result, many filters have medium responses on the image patch. 
Thus we pool a histogram of these filters collectively over the local patch to form a 
histogram descriptor H(I).
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The texture response is calculated by 

r txt(IDk ) = S(‖H(IDk ) − h‖2), (6.23) 

where h is a pre-computed histogram prototype (one may consider it as a cluster 
center of similar texture patches). More specifically, h is obtained by averaging 
the histograms at the same position of roughly aligned positive example images. 
For texture, we are only interested in the medium to strong strengths along certain 
directions. So we replace the indicator function, which is often used in histogram 
binning, by a continuous function a(x) = 12 

1+e−x/3 − 6. The histogram is then 
weighted into one bin for each filter, 

Ho(IDk ) = 
1 

|Dk|
∑

(x,y)∈Dk 

a(|Fo ∗ IDk
|2). (6.24) 

Thus, we obtain the oriented histogram for all filters as a vector, 

H(IDk ) = (H1, . . . , H|O|). (6.25) 

It measures the strengths in all orientations. 
3. Calculating responses on flat patch. By flat patch, we mean image areas that 

are void of structures, especially edges. Thus filters have near-zero responses. They 
are helpful for suppressing false alarms in cluttered areas. As a textureless measure, 
we choose a few small filters �flt = {∇x, ∇y, LoG} and further compress the texture 
histogram into a single scalar, 

H(IDk ) =
∑

F∈�flt

∑

(x,y)∈Dk 

b(|Fo ∗ IDk
|2). (6.26) 

b() is a function that measures the featureless responses. It takes the form of a 
sigmoid function like S() but with different shape parameters. In Fig. 6.8, we plot  
the four functions a(), b(), 1(), and S() for comparison. Then the flatness response 
is defined as 

rflt(IDk ) = S(H(IDk ) − h). (6.27) 

In the above h = 0 is a scalar for the flatness prototype. 
4. Calculating responses on color. The chromatic descriptors are informative for 

certain object categories. Similar to orientation histogram, we calculate a histogram 
H clr(IDk ) on the color space (we use the 2D HS space in the HSV format). Then the 
color patch response is defined as the saturated distance between the color histogram 
of the observed image and the prototype histogram h, 

rclr(IDk ) = S(‖H clr(IDk ) − h‖2). (6.28)
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Fig. 6.8 Reprinted with permission from [217]. Plotting the four functions. (a) a(x). (b) b(x). (c) 
1(x). (d) S(x) 

In summary, a HIT template consists of K prototypes {Bk or hk, k  = 1, · · ·  ,K} 
for sketch, texture/gradient, flatness, and color patches, respectively, which define 
K-subspaces (or ε-balls) (Bk) or (hk) of varying dimensions. These ε-balls 
quantize the image space with different metrics. An input image I on lattice D is 
then projected to the HIT and is represented by a vector of responses: 

I → (r1, r2, . . . , rK), (6.29) 

where rk is a soft measure for whether the image patch IDk belongs to the subspace 
defined by the corresponding prototype. In the next section, we will define a 
probability model on image I based on these responses. 

Template Pursuit by Information Projection 

We present an algorithm for learning the hybrid image templates automatically from 
a set of image examples. It pursues the image patches, calculates their prototypes, 
and derives a probability model sequentially until the information gain is within the 
statistical fluctuation. 

Let f (I) be the underlying probability distribution for an image category, and our 
objective is to learn a series of models that approach f from an initial or reference 
model q, 

q = p0 → p1 → p2 → · · · → pK ≈ f. (6.30) 

These models sequentially match the observed marginal statistics collected from the 
samples of f . With more marginal statistics matched between the model p and f , 
p will approach f in terms of reducing the Kullback–Leibler divergence KL(f ‖p) 
monotonically. 

The main input to the learning algorithm is a set of positive examples 

I+ = {I1, . . . , In} ∼  f, (6.31)
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where f is the underlying target image distribution and ∼ means sampled from. 
For simplicity, we may assume these images contain roughly aligned objects that 
can be explained by a common HIT template. When this alignment assumption is 
not satisfied, we can adopt an EM-like iterative procedure with the unknown object 
localization as missing data. We are also given a set of negative examples 

I− = {J1, . . . , JN } ∼  reference distribution q. (6.32) 

The negative examples are only used for pooling marginal histograms of one-
dimensional feature responses in a pre-computation step. 

The image lattice D is divided into overlapping patches for multiple scales by 
a scanning window with a step size about 10% of the window size. Then we 
calculate their corresponding prototypes and responses for all images in I+. The  
sketch prototypes Bi are specified by the Gabor dictionary �, and the histogram 
prototypes hk are obtained by computing the histograms for positive examples in 
the same region of the template lattice and then taking the average. As a result, we 
obtain an excessive number of candidate patches.

cand = {Dj, �j , {Bj or hj } :  j = 1, 2, . . . , M}. (6.33) 

From cand, we will select the most informative patches and their corresponding 
prototypes for HIT. 

By induction, at the k-th step, we have a HIT with k − 1 patches and a model 
p = pk−1: 

HITk−1 = ( {Dj, �j , Bj or hj , δj , j  = 1, . . . , k  − 1}, �k−1). (6.34) 

Consider a new candidate patch Dk in cand and its responses on n positive 
examples and N negative examples: 

{r+ 
k,i , i  = 1, . . . , n} {r− 

k,i , i  = 1, . . . , N}. (6.35) 

And let r̄+ 
k and r̄− 

k be the sample means on the two sets. 
The gain of adding this patch to the template is measured by the KL-divergence 

between the target marginal distribution f (rk) and the current model pk−1(rk), as  
this represents the new information in the training data that is not yet captured in the 
model. Among all the candidate patches, the one with the largest gain is selected. 

To estimate this gain, we use Monte Carlo methods with samples from f (rk) 
and pk−1(rk). Obviously {r+ 

k,i} is a fair sample from f (rk). While to sample 

from pk−1(rk), one may use importance sampling on {r− 
k,i}, i.e., re-weighting the 

examples by pk−1(rk) 
q(rk) . Here we simplify the problem by a conditional independence 

assumption as stated in the previous section. A feature response r1(ID1) is roughly 
uncorrelated with r2(ID2) if one of the following holds: (i) the two patches D1 and 
D2 have little overlap and (ii) D1 and D2 are from different scales. If at the k-th step



6.3 Hybrid Image Templates 175

we have removed from cand all the candidate patches that overlap with selected 
patches, then rk is roughly uncorrelated with all the previously selected responses 
r1, . . . , rk−1. As a result, pk−1(rk) = q(rk) and {r− 

k,i} can be used as a sample of 
pk−1(rk). The exact formula for estimating the gain (i.e., KL-divergence between 
f (rk) and pk−1(rk)) is given, once we have derived the parametric form of p in the 
following. 

For a selected patch Dk , the new model p = pk is required to match certain 
observed statistics (e.g., first moment), while it should be also close to the learned 
model pk−1 to preserve the previous constraints. 

p∗
k = arg min KL(pk‖pk−1) (6.36) 

s.t. Epk
[rk] = Ef [rk]. (6.37) 

By solving the Euler–Lagrange equation with Lagrange multipliers {λj } and γ , 

∂ 
∂pk

[
∑

I 

pk(I) log 
pk(I) 

pk−1(I) 
+ λk(Epk

[rj ] −  Ef [rj ]) 

+γ

(
∑

I 

pk(I) − 1

)]
= 0, (6.38) 

we have 

pk(I) = pk−1(I) 
1 

zk 
exp{−λkrk(I)}. (6.39) 

zk = Eq

[
exp{λkrk(IDk )}

]
is a normalizing constant. This can be estimated by the 

negative samples, 

zk ≈ 
1 

N 

N∑

i=1 

eλkr(Ji,Dk ) . (6.40) 

λk is the parameter (Lagrange multiplier) to satisfy the constraint in Eq. (6.37), 

Ep[rk] ≈  
1 

N 

N∑

i=1

[
r(Ji,Dk )e

λkr(Ji,Dk )
] 1 

zk 
= r̄+ 

k . (6.41) 

In computation, we can look up r̄+ 
k in the table to find the best λk . The importance 

sampling is a good estimation in calculating λk and zk because in our model r is 
one-dimensional. 

By recursion, we have a factorized log-linear form,
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pK(I) = q(I) 
K∏

j=1

[
1 

zj 
exp{λj rj (IDj )}

]
. (6.42) 

Example: Vector Fields for Human Hair Analysis and Synthesis 

In this subsection, we demonstrate an example of applying the primal sketch model 
to human hair analysis and synthesis [25]. Specifically, the hair images can be 
treated as 2D piecewise smooth vector (flow) fields, and thus the representation 
is view-based in contrast to the physically based 3D hair models in graphics. The 
primal sketch model has three levels. The bottom level is the high-frequency band 
of the hair image. The middle level is a piecewise smooth vector field for the hair 
orientation, gradient strength, and growth directions. The top level is an attribute 
sketch graph for representing the discontinuities in the vector field. Besides the 
three-level representation, the shading effects, i.e., the low-frequency band of the 
hair image, are modeled by a linear superposition of some Gaussian image basis 
functions, and the hair color is encoded by a color map. Figure 6.9 shows an 
example. 

Let Iobs denote an observed color hair image. By a Luv transform, we obtain 
an intensity image Iobs 

Y and a color channel image Iobs 
UV. The color channel Iobs 

UV 
is discretized into a small number of colors and represented by a color map 
from the intensity [0, 255] of Iobs 

Y to a color. The intensity image Iobs 
Y is further 

decomposed into a low-frequency band Iobs 
L for illumination and shading with a 

low-pass Gaussian filter and the remaining. The high-frequency band is the texture 
for the hair pattern Iobs 

H . The low-frequency band is simply represented by a linear 
superposition of Gaussian image basis functions plus a mean intensity μ, 

Iobs 
L (x, y) = μ + 

KL∑

i=1 

αiG(x − xi, y  − yi; θi, σxi, σyi) + noise. (6.43) 

Usually KL = O(10). Each Gaussian basis function is represented symbolically 
by an ellipse for editing and it has five parameters for the center, orientation, and 
standard deviation along the two axes. The coefficients {αi} can be positive or 
negative for highlights and shadows, respectively. The matching pursuit algorithm 
is used to automatically extract the coefficients from the input image. 

Our study is focused on the texture appearance Iobs 
H with a three-level primal 

sketch model. A hair texture IH on a lattice D is generated by a hidden layer V— 
the vector field for hair growth flow, and V is in turn generated by an attribute hair 
sketch S which is a number of sketch curves representing the boundaries of hair 
strands and wisps with direction dS . 

Sketch (S,dS)
�sk−→ Vector field V −→ hair image IH, (6.44)
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Fig. 6.9 Reprinted with permission from [25]. Example of hair model and inference. (a) is an  
input color image Iobs. (b) is the computed sketch S with directions dS. (c) is the sketchable vector 
field VDsk generated from (S,dS). (d) is the overall vector field V after filling in non-sketchable 
part. (e) is the high-frequency hair texture image Isyn 

H generated from the vector field. (f) is the  
shading and lighting image. (g) is the synthesized color image Isyn after adding the shading and 
color. We render an artistic sketch Jrnd in (h) 

where �sk is a dictionary of sketch primitives shown in Fig. 6.10. Each primitive is 
a rectangular window (say 5 × 7 pixels) and some examples are shown in Fig. 6.11. 

For synthesizing hair images, we assume that (S,dS) is either inferred from a 
hair image or edited manually through a simple user interface. From (S,dS), we  
synthesize a hair image Isyn 

H in three steps according to the generative model. 
1. Synthesizing the vector field from the sketch Vsyn ∼ p(V|S,d). 
2. Synthesizing the hair texture from the vector field Isyn 

H ∼ p(IH|Vsyn). 
3. Synthesizing color image Isyn by adding a shading image Isyn 

L to Isyn 
H and 

then transferring the grey image to color by the color map. Figure 6.12 shows three 
examples of hair synthesis. 

The inference algorithm is divided into two stages: (i) compute the undirected 
orientation field and sketch graph from an input image and (ii) compute the 
hair growing direction for the sketch curves and the orientation field using a 
Swendsen–Wang cut algorithm. Both steps maximize a joint Bayesian posterior 
probability. This generative primal sketch model provides a straightforward way for 
synthesizing realistic hair images and stylistic drawings (rendering) from a sketch 
graph and a few Gaussian basis functions.
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Fig. 6.10 Reprinted with permission from [25]. Five primitives for the orientation field and eleven 
primitives for the directed vector field V in a dictionary �sk. (a) Side boundary. (b) Source (origin) 
or sink (end) of hair strands. (c) Occluding boundary. (d) Dividing line. (e) Stream line. The line 
segments and arrows in the primitive windows show the canonical orientations, and the angles may 
change in [−π/6, π/6] 

Fig. 6.11 Reprinted with permission from [25]. (a) Windows A-F are 6 primitive examples. (b) 
Zoomed-in views of the six windows 

6.4 HoG and SIFT Representations 

In this section, we will draw some connections between the primal sketch and His-
togram of Oriented Gradients (HOGs) [34] and Scale-Invariant Feature Transform 
(SIFT) [158, 159] representations, which were widely adopted in computer vision 
as generic image features and object templates before deep neural networks. 

Histogram of Oriented Gradient (HOG) [34] is based on evaluating normalized 
local histograms of image gradient orientations in a dense grid. The basic idea is 
that local object appearance and shape can often be characterized rather well by 
the distribution of local intensity gradients or edge directions, even without precise 
knowledge of the corresponding gradient or edge positions. In practice, this is 
implemented by dividing the image window into small spatial regions (“cells”),
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Fig. 6.12 Reprinted with permission from [25]. Three examples of hair drawing and synthesis. (a) 
Manually input hair sketch S with directions dS . (b) Synthesized vector field Vsyn given (S,dS). 
(c) Edited shading maps with a small number of ellipses. (d) Synthesized color images Isyn 

for each cell accumulating a local 1D histogram of gradient directions or edge 
orientations over the pixels of the cell (Fig. 6.13). The combined histogram entries 
form the representation. For better invariance to illumination, shadowing, etc., it is 
also useful to contrast-normalize the local responses before using them. This can 
be done by accumulating a measure of local histogram “energy” over somewhat 
larger spatial regions (“blocks”) and using the results to normalize all of the cells 
in the block. The normalized descriptor blocks are usually referred to as Histogram 
of Oriented Gradient (HOG) descriptors. A typical application of HOG descriptors 
is human detection, which is achieved by tilting the detection window with a dense
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Fig. 6.13 Feature extraction with the histogram of oriented gradients (HOGs) descriptors. The 
image window is first divided into small spatial regions (“cells”), and then for each cell a local 1D 
histogram of gradient directions or edge orientations over the pixels of the cell is accumulated 

grid of HOG descriptors and using the combined feature vector in a conventional 
SVM-based window classifier. 

The connection between HOG and the primal sketch is as follows. If the cell 
used for the HOG descriptor happens to be a fine-scale stochastic texture (like 
the sky, wall, clothes, shading patch, with no visible sketchable structures), then 
keeping the histogram of gradient corresponds to the FRAME model for texture in 
the primal sketch model. If the cell has visible structures and is thus sketchable, its 
HOG histogram will be highly picked and thus dominated by 1-2 bins. For this case, 
we adopt an explicit representation by the sketches (structure) in the primal sketch 
model. 

Scale-Invariant Feature Transform (SIFT) [159] transforms an image into a large 
collection of local feature vectors, each of which is invariant to image translation, 
scaling, and rotation, and partially invariant to illumination changes and affine or 
3D projection. It consists of four major stages: (1) scale-space peak selection, (2) 
keypoint localization, (3) orientation assignment, and (4) keypoint descriptor. In the 
first stage, potential interest points are identified by scanning the image over location 
and scale. This is implemented efficiently by constructing a Gaussian pyramid and 
searching for local peaks (termed keypoints) in a series of difference-of-Gaussian 
(DoG) images. In the second stage, candidate keypoints are localized to sub-pixel 
accuracy and eliminated if found to be unstable. The third stage identifies the 
dominant orientations for each keypoint based on its local image patch. The assigned 
orientation(s), scale, and location for each keypoint enable SIFT to construct a 
canonical view for the keypoint that is invariant to similarity transforms. The final 
stage builds a local image descriptor for each keypoint, based on a patch of pixels 
in its local neighborhood.
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Fig. 6.14 Reprinted with permission from [159]. The training images for two objects are shown 
on the left. These can be recognized in a cluttered image with extensive occlusion, shown in 
the middle. The results of recognition are shown on the right. A parallelogram is drawn around 
each recognized object showing the boundaries of the original training image under the affine 
transformation solved during recognition. Smaller squares indicate the keypoints that were used 
for recognition 

SIFT can be applied to object recognition, which is performed by first matching 
each keypoint independently to the database of keypoints extracted from training 
images. Many of these initial matches will be incorrect due to ambiguous features 
or features that arise from background clutter. Therefore, clusters of at least 3 
features are first identified that agree on an object and its pose, as these clusters 
have a much higher probability of being correct than individual feature matches. 
Then, each cluster is checked by performing a detailed geometric fit to the model, 
and the result is used to accept or reject the interpretation. Figure 6.14 shows 
an example of object recognition using SIFT for a cluttered and occluded image 
containing 3D objects. The training images of a toy train and a frog are shown 
on the left. The middle image contains instances of these objects hidden behind 
others and with extensive background clutter so that detection of the objects may 
not be immediate even for human vision. The image on the right shows the final 
correct identification superimposed on a reduced contrast version of the image. The 
keypoints that were used for recognition are shown as squares with an extra line to 
indicate orientation. The sizes of the squares correspond to the image regions used to 
construct the descriptor. An outer parallelogram is also drawn around each instance 
of recognition, with its sides corresponding to the boundaries of the training images 
projected under the final affine transformation determined during recognition. 

The SIFT keys can be considered an extension to the keypoints in images, like 
color or complex object patterns. It corresponds to a local sub-graph in the primal 
sketch, with some scale invariance.



Chapter 7 
2.1D Sketch and Layered Representation 

Primal sketch is a generic two-layer 2D representation in terms of how image 
content is explained away with respect to either explicit basis functions or feature 
statistics. Primal sketch seeks to decompose an image domain into the texton 
structural domain and the remaining texture domain. In this chapter, we shall 
study how to decompose an input image into multiple layers with partial occluding 
order relation inferred and the occluded contour completed if possible (Fig. 7.1). 
In the pioneering work, the resulting representation is called the 2.1D sketch, 
by Nitzberg and Mumford [185], to bridge low-level image primitives (including 
textons such as edges and junctions and texture atomic regions) and middle-level 
Marr’s 2.5D sketch (to be presented in the next chapter), and termed layered image 
representation, by Adelson and Wang [2, 245, 246], in image coding and motion 
analysis. 

In practice, the idea of layered representation has been widely used for image 
manipulation in image editing software such as Adobe’s Photoshop (e.g., adding 
text to an image, or adding vector graphic shapes, or applying a layer style to add 
a special effect such as a drop shadow or a glow). In the literature of computer 
vision, the 2.1D sketch or layered image representation has also been studied from 
other perspectives including line drawing interpretations [162, 243], segmentation 
[53, 232], occlusion recovery [211, 251], contour illusory and completion [50, 51, 
106, 200, 244], and figure–ground separation [201, 225]. 

The 2.1D sketch stems from the figure–ground separation–organization problem, 
a type of perceptual grouping that contributes to visual object recognition. In Gestalt 
psychology, the figure–ground separation problem is usually posed as identifying 
a figure (such as the two girls in Fig. 7.1) from the background (such as the 
dancing practice room in Fig. 7.1). Computing the figure–ground organization of 
an input image can help resolve perceptual ambiguities in, for example, the face-
vase and martini-bikini drawings. The 2.1D sketch captures the partial occluding 
order between multiple object surfaces/generic regions in a scene, representing 
the rank information of relative depth among them, and thus providing a critical 
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Fig. 7.1 Illustration of the 2.1D sketch and layered image representation. From a 2D sketch to 
a 2.1D layered representation by reconfiguring the bond relations between regions in different 
layers. (a) is an input image from which a 2D primal sketch is computed. This is transferred to a 
2.1D sketch representation with three layers shown in (d), (e), and (f), respectively. The inference 
process reconfigures the bonds of the image primitives shown in red in (b) and (c) 

representation scheme for addressing the multi-stable perception phenomenon in 
vision. 

In this chapter, we focus on the problem of computing the 2.1D sketch from 
a monocular image under the variational formulation framework, the energy 
minimization framework, and the Bayesian inference framework, respectively. 

7.1 Problem Formulation 

In this section, we introduce the notation and present a high-level formulation. We 
will elaborate on different components in the sections followed. 

Denote by D an image domain and I an image defined on the domain D. To infer 
the 2.1D sketch, we will build up a three-layer model from the input image I, to its 
2D representation, denoted by W2D , and to the 2.1D sketch, denoted by W2.1D . We  
have 

I ⇒ W2D ⇒ W2.1D. (7.1) 

W2D represents a set of 2D elements to be layered, which can be 2D atomic regions 
or 2D curves and curve groups, as well as the associated attributes if needed in 
inference. For example, if we only consider 2D regions, we have
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Fig. 7.2 Reprinted with 
permission from [236]. A 
Hasse diagram for a partial 
order relation 

W2D =
{
n, (Ri, li , θi)

n 
i=1

}
, (7.2) 

which consists of n regions, Ri , each of which is represented by a region model 
indexed by li in a predefined model family with parameters θi . 

W2.1D represents a set of surfaces, their partial occluding order, and contours 
used to complete regions in different surfaces. A surface consists of one 2D region or 
more than one 2D region with completed contours. Any 2D region in W2D belongs 
to one and only one surface in the layered representation. We have 

W2.1D = {m, {Si}m 
i=1,PR}, (7.3) 

which consists of m surfaces (m ≤ n) and ∪iSi = D. PR represents the partial 
occluding order between the set of m surfaces. Consider a set A = {a, b, c, d, e, f }, 
and we define a partially ordered set, poset [220], PR = 〈A,�〉. b � c means that 
surface b occludes surface c or b is on top of c. PR is represented by a directed 
acyclic graph (DAG) called a Hasse diagram. Figure 7.2 shows an example of the 
Hasse diagram for PR = {〈a, b〉, 〈b, d〉, 〈a, d〉, 〈a, c〉, 〈c, d〉, 〈e, f 〉} on the set A. 

Denote the “visible” portion of a surface Si by 

S′
i = Si \ ∪Sj �Si Sj . (7.4) 

Then, the recovered curve(s) in the surface Si can be defined by 

Ci = ∂Si \ ∂S′
i . (7.5) 

Some Ci’s may be empty. For example, the front-most surface does not have 
occluded parts, and the occluded parts in the background are usually left open. 

To infer the 2.1D sketch, we will study two different formulations that cast 
the inference under the energy minimization framework and under the Bayesian 
framework, respectively. In either case, there are two different assumptions:

• Assume the 2D representation W2D has been computed already and will be fixed 
in the inference of the 2.1D sketch. This is typically adopted in the literature.

• Compute the 2D representation W2D and the 2.1D sketch W2.1D jointly. This 
leads to a much larger search space and usually requires more powerful search 
algorithms such as DDMCMC [235].



186 7 2.1D Sketch and Layered Representation

7.2 Variational Formulation by Nitzberg and Mumford 

In their seminal work [185], Nitzberg and Mumford proposed a variational for-
mulation for inferring the 2.1D sketch extended from the Mumford–Shah energy 
functional [177]. This belongs to the energy minimization framework, and we 
briefly introduce the formulation in this section. 

The Energy Functional 

We first overview the Mumford–Shah energy functional for low-level image 
segmentation. It is a piecewise smooth model that aims to segment an image into as 
few and simple regions as possible while keeping the color of each region as smooth 
and/or slowly varying as possible. The functional is defined such that it takes its 
minimum at an optimal piecewise smooth approximation to a given image I defined 
on the domain D. An approximation function, denoted by f , is smooth except at 
a finite set � of piecewise contours that meet the boundary of the image domain, 
∂D, and meet each other only at their endpoints. So, the contours of � segment 
the image domain into a finite set of disjoint regions, denoted by R1, · · ·  , Rn, i.e., 
the connected components of D \ �. The Mumford–Shah functional is defined to 
measure the match between an image I and a segmentation f, �: 

EM−S(f, �|I) = μ2
∫

D 
(f − I)2dx +

∫

D\�
‖∇f ‖2dx + v

∫

�

ds, (7.6) 

where on the right-hand side the first term measures how good f approximates I, 
the second asks that f varies slowly except at boundaries, and the third asks the set 
of contours to be as short, and hence as simple and straight as possible. 

Similar in spirit to the Mumford–Shah functional, Nitzberg and Mumford 
proposed an energy functional that achieves a minimum at the optimal overlapping 
layering of surfaces. For simplicity, assume Si is a closed subset of D with piecewise 
smooth boundary and connected interior. The energy functional is defined by 

E2.1D({Si},PR|I) = 
n∑

i=1

{

μ2
∫

S′
i 

(I − mi)dx + ε

∫

Si 
dx +

∫

∂Si\∂D 
φ(κ)ds

}

, 

(7.7) 
where mi is the mean of the image I on S′

i and κ is the curvature of the boundary 
∂Si . The function φ : R → R is defined by 

φ(κ)  =
{

v + ακ2, for |κ| < β/α  
v + β|κ|, for |κ| ≥  β/α. 

(7.8)
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The functional above can only address inferring the 2.1D sketch from simple 
input images, which is a reasonable assumption in the early day of computer vision. 
First, the model does not allow self-overlapping “woven” surfaces such as what 
a garden hose would project, nor folded surfaces such as that produced by an 
image of a sleeve whose edge disappears around the back of an arm. Second, 
the model is piecewise constant with a constant mean being used for the surface 
model. Third, transparency and shadows are not handled. We will study more 
expressive models with more powerful inference algorithms for handling those 
issues frequently observed in modern real images. 

The Euler Elastica for Completing Occluded Curves 

To recover the occluded curves, Nitzberg and Mumford adopted the Euler Elastica 
method to interpolate them. Suppose a surface Si disappears behind occluding 
objects at a point P0 ∈ ∂Si and reappears at P1. Let t0 and t1 be the unit tangent 
vectors to ∂Si at P0 and P1, respectively. Then, computing the occluded curve Ci 
between P0 and P1 is posed as a minimization problem where the energy functional 
is 

E(Ci |Si, P0, t0, P1, t1) =
∫

Ci 
(v + ακ2)ds. (7.9) 

Computationally, the simplest way to solve the Elastica seems to be hill-climbing. 
It starts with a convenient chain x0 = P0, x1, · · ·  , xN = P1 of points for which 
x1 − x0 ∝ t0 and xN−1 − xN ∝ t1. Xi’s (i = 1, · · ·  , N  − 1) are computed by letting 
them evolve to decrease the Elastica functional. 

7.3 Mixed Markov Random Field Formulation 

In this section, we address the 2.1D sketch problem with the mixed Markov 
random field (MRF) representation and under the Bayesian inference framework. 
We consider 2D image regions only as layering primitives. As illustrated in Fig. 7.3, 
given the set of segmented regions (in different colors) of an input image, our 
objective consists of two components: region layering or coloring to divide the set 
of regions into an unknown number of layers, and contour completion to recover 
the occluded contours between regions in the same layer. In addition, we will 
also fit the probability models of regions in different layers and preserve multiple 
distinct interpretations accounting for the intrinsic ambiguities if needed. Two key 
observations in modeling and computing the 2.1D sketch problem are as follows:
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Fig. 7.3 A simple example of the 2.1D sketch and the mixed MRF modeling. (a) is a set of 2D  
regions to be layered; (b) is the initial reconfigurable graph with mixed MRF including two types 
of nodes, region nodes and terminator nodes. See text for details 

(i) Long-range interactions between 2D regions. In order to determine which 2D 
regions are in the same layer and to complete the contour of occluded parts, 
long-range interactions are entailed, which imposes different requirements in 
modeling than traditional local relation modeling using Markov random field 
(MRF) models. Consider regions 3 and 5 in Fig. 7.1. Whether they should merge 
into a single surface or should remain independent in the same layer depends 
on their compatibility across long-range interactions. 

(ii) Dynamic neighborhood system. In the contour completion process, given a 
current layering assignment, the neighborhood of any endpoint on an occluded 
contour looking for its corresponding point is constrained to match among the 
set of points in the same layer. This means the neighborhood system changes 
according to different layering assignments at each step in the inference, which 
is different from the fixed neighborhood system in the traditional MRF. 

The two properties stated above lead traditional MRFs to fail to model the 2.1D 
sketch problem and call for new methods, such as the mixed Markov random field 
[61, 63] to be used in this chapter. Both MRF and mixed MRF can be presented 
by graphical models. A mixed MRF differs from traditional MRFs in its definition 
of its neighborhood system, which is static in the latter but dynamic in the former 
due to the introduction of a new type of nodes in the graph. Concretely speaking, a 
mixed MRF has the following two characteristics: 

(i) Nodes are inhomogeneous with different degrees of connections, which are 
inferred from images on the fly. 

(ii) The neighborhood of each node is no longer fixed but inferred as open bonds or 
address variables, which reconfigures the graph structure. 

Following Eq. (7.1), we adopt a three-layer generative image model consisting 
of the input image, the 2D representation, and the 2.1D sketch. We use 3-degree 
junctions such as T-junctions, Y-junctions, or arrow junctions as cues for occlusion.
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The 2D representation consists of a set of 2D regions (see R1, R2, · · ·  , R6 in 
Fig. 7.3a) and a set of terminators (see a1, a2, · · ·  , a8) broken from detected 
T-, Y-, or arrow junctions during the process of layering and, if possible, to be 
completed in the inferred layered representation. So, in the graphical representation 
(see Fig. 7.3b), there are two types of nodes: one consists of the region nodes and 
the other terminator nodes. Region nodes constitute the region adjacency graph to 
be partitioned during the process of layering. The terminator nodes make the graph 
reconfigurable since the neighborhood system of terminator nodes is not static and 
depends on the current assignment of layering. For such reconfigurable graphical 
models, it has been shown that a probability model defined on them still observes a 
suitable form of the Hammersley–Clifford theorem and can be simulated by Gibbs 
sampling [61]. 

Definition of W2D and W2.1D 

For the clarity of the presentation, we mainly focus on inferring the 2.1D sketch 
with the 2D representation given and fixed. 

The 2D Representation W2D consists of a set of 2D regions, VR , and a set of 
3-degree junctions, VT , such as T-, Y-, or arrow junctions: 

W2D = (VR, VT ) (7.10) 

VR = (R1, R2, . . . , RN) (7.11) 

VT = (T1, T2, . . . , TM). (7.12) 

VR is the regions set, which can be many atomic regions or composed of a few 
image patches. VT consists of those junctions selected from the detected 3-degree 
junctions [252] that are assigned to the corresponding regions. 

Open Bonds or Address Variables 3-degree junctions will be broken into a set 
of terminators, illustrated in Fig. 7.4a and b for a T-junction, as the open bonds, 
or address variables, VB , of corresponding regions during the inference. The open 
bonds are like pointers to regions, initially kept open but to be assigned an address 
variable and completed during inference. In practice, each bond has a set of 
attributes, AB , including those belonging to itself and those inherited from the 
region. These attributes often include geometric transformation features, such as 
location, orientation, and length, and some appearance features such as features 
computed from region models. They are used to test the compatibility of any two 
bonds, deciding whether or not to link together. Often, besides the foreground and 
background regions, each region has two or more (assumed no more than m ≤ M ) 
open bonds with their ownerships defined, denoted as B(Ri),∀i ≤ N .
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Fig. 7.4 The open bounds or 
address variable. A T-junction 
is shown in (a); it is broken 
into a terminator in (b) as an  
open bound described as an 
address variable including 
location (x, y), the  
orientation of the terminator, 
and appearance information 
inherited from the region it 
belongs to; (c) is the Elastica 
computed using two 
terminators in the process of 
contour completion 

(x , y) 

(a) (b) 

(c) 

a1 a2 

VB = (a1, a2, . . . , aM) (7.13) 

AB = (Aa1, Aa2, . . . , AaM), ai ∈ VB,∀i ≤ M (7.14) 

B(Ri) = (ai1, ai2, . . . , aim), aij ∈ VB,∀i ≤ N,∀j ≤ m. (7.15) 

Generative Models of Regions We adopt generative models for each region. Let 
R ⊂ 
 denote a 2D region and IR the intensities in R or color values in (r, g, b)  
color space. The model assumes constant intensity or color value with additive noise 
η modeled by a non-parametric histogram H . The model can be learned offline, and 
more sophisticated models can easily be added to the algorithm. 

J(x, y, θ)  = μ, IR(x, y) = J(x, y, ; θ)  + η, η ∼ H. (7.16) 

With a slight abuse of notation, we denote the parameters used in a region by θ = 
(μ, H). Here  μ is the mean of a region R or a connected component CP . The  
likelihood is 

p(IR|R, θ) ∝
∏

(x,y∈R) 
H(IR(x, y) − J(x, y, θ)). (7.17) 

The prior for a region R assumes a short boundary length ∂R. This is to encourage 
smoothness, and a compact area |R|, 

p(R) ∝ exp

{
−γr |R|ρ − 

1 

2 
λ|∂R|

}
, (7.18) 

where ρ and λ are fixed constants and γ is a fixed scale factor for regions.
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Terminator Representation and the Elastica When a terminator ai is broken 
from a junction, it is represented by its attributes Aai = (x, y; ori, κ, pf ), where 
(x, y) is the location, ori is the orientation of the terminator, κ is the curvature, and 
pf is the profile or some attributes inherited from the region. 

Given two terminators, ai and aj , the contour to be completed between them, 
denoted by �∗, is decided by minimizing the Elastica cost function in a contour 
space �� [110, 129, 177, 185]

�∗ = arg min
�∈��

E(�; ai, aj ) 

= arg min
�∈��

∫

�

[(
ν1 + α1κ

2 
1

)
+

(
ν2 + α2κ

2 
2

)]
ds, 

(7.19) 

where κ1 is the curvature of a1, κ2 is the curvature of a2, ν1 and ν2 are constants, and 
α1 and α2 are scalable coefficients. The parameters ν1, ν2, α1, and α2 are learned 
from an image dataset [273]. 

The 2.1D Sketch W2.1D is represented by a set of labels, X, for the layer 
information of regions and a set of variables, Y , describing address variable 
assignments. Both of them are inferred from the image. In addition, according to 
the layering labels and assignments of address variables, a set of surfaces, Sf , is  
formed, which consists of one or more regions merged through a set of recovered 
contours, Ct . 

W2.1D = (X, Y ; Sf , Ct ) (7.20) 

X = (xR1 , xR2 , . . . , xRN
) (7.21) 

Y = (ya1 , ya2 , . . . , yaM
) (7.22) 

where xRi ≤ K , ∀i ∈ [1, N], yaj ∈ VB , aj ∈ VB , ∀j ∈ [1,M], K is an unknown 
number of layers to be inferred. 

X represents the partition of VR into K layers with the partial occlusion relations 
represented in a Hasse diagram along with Y . The assignments among address 
variables indicate to whom the open bonds ai are connected or assigned. Each 
terminator has the same label for its layer information as the region to which it 
is assigned. 

Because the surface is merged from regions so that its generative model includes 
two constraints: one is appearance defined as the region model and the other shape 
constrained by some generic shape priors (Elastica in this chapter) or some specific 
object templates. Recovered contours are computed using Elastica based on the 
results of assignments.
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The Mixed MRF and Its Graphical Representation 

Given the 2D representation defined above, there are two kinds of nodes in its 
graphical representation: region nodes (the nodes found in a traditional MRF) and 
terminator nodes (a newly introduced set of address nodes). Terminator nodes are 
dynamically broken from 3-degree junctions in the process of region layering, which 
means that their neighborhood systems are determined on the fly. According to the 
discussion stated above, we know that this will build up a reconfigurable graph with 
a mixed MRF as illustrated in Fig. 7.3b. We clarify some definitions in this section. 

Let G = 〈V,  E〉 be the graph for the 2D representation, where V = VR ∪ VB is 
the set of vertices and E = ER ∪ EB the set of edges. ER is the set of edges linking 
regions into a region adjacency graph, and EB is the dynamic set of edges linking 
open bonds. 

The edges decide the topology of the graph and can link, generally speaking, 
any two vertices. In a mixed MRF, the introduction of address variables makes the 
neighborhood system dynamic and different from traditional graphical models. 

A mixed MRF can be defined in the same way that an MRF is defined as a 
probability distribution that is factorized into a product of local terms, the only 
difference being in what “local” means after introducing address variables. The 
idea of “locality” in a mixed MRF can handle long-range interactions through open 
bonds, meaning that a clique denoted by C in a mixed MRF may contain both 
standard region nodes and address nodes. 

Definition 1 (Mixed Neighbor Potential) Let C denote the set of cliques in G. A  
family of nonnegative functions λC is called a mixed neighbor potential if for any 
pair of configurations x and y, xC = yC and xxa = yya , ∀a ∈ C

⋂
VB . Thus a 

mixed potential function λC depends on both the values of the standard nodes in C 
and that of those pointed to by open bonds in C. 

Definition 2 (MixedMarkov Random Field) A probability distribution P defined 
on G is a mixed MRF if P can be factorized into a product of mixed potential 
functions over the cliques: P(I) ∝ ∏

C λC(IC, IIC ), where IIC is the vector of states 
of those standard variables pointed to from within the clique C. 

Equivalence Between the Mixed MRF and the Gibbs Distribution It was shown 
that the originally established equivalence between MRFs and the Gibbs distribution 
by Hammersley–Clifford theorem is also applicable for mixed MRFs so that the 
probability models defined on a mixed MRF can be simulated by Gibbs sampling 
[61] or SW cuts [9] according to Friedman’s proof in [61]. 

Given a region Ri , its neighborhood is 

N(Ri) = Nadjacency(Ri) ∪ Npointer(RI ), (7.23)
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where Nadjacency(Ri) = {Rj : ∀Rj ∈ VR adjacent to Ri} represents the usual 
definition of a neighborhood found in MRF models and defines an adjacency graph. 
At the same time, open bonds of Ri will cause it to link to those regions that are 
not locally adjacent, that is, Npointer(Ri) = {Rj : B(Rj ) and B(Ri) are connected}. 
Then ER is 

ER = {〈Ri, Rj 〉,∀Ri ∈ VR and Rj ∈ N(Ri)}. (7.24) 

Given an open bond ai ∈ VB , its neighborhood is 

N(ai) = {aj : aj and ai are in the same layer}. (7.25) 

Hence, EB = 〈ai, aj 〉,∀ai ∈ VT and aj ∈ N(ai). At the initial stage, all the open 
bonds are open. 

Bayesian Formulation 

In the Bayesian framework, the three-layer model in Eq. (7.1) is described as 

p(I,W2D,W2.1D) = p(I|W2D,W2.1D)p(W2D|W2.1D)p(W2.1D), (7.26) 

where p(I|W2D,W2.1D) is the likelihood model. We want to maximize the posterior 
joint probability of W2.1D given W2D in a solution space �W2.1D 

W ∗
2.1D = arg max

�W2.1D 
p(W2.1D|W2D; I) 

= arg max
�W2.1D 

p(W2D|W2.1D)p(W2.1D). 
(7.27) 

Graph Partition Perspective Given the graphical representation G defined with 
a mixed MRF, we are interested in a partitioning, or coloring, of the vertex, i.e., 
V = VR ∪ VB , in  G. An  n-partition is denoted by 

πn = (V1, V2, . . . , Vn), 
n⋃

i=1 

Vi = V,  Vi

⋂
Vj =,∀i �= j. (7.28) 

Each subset Vi, i  = 1, 2, . . . , n  (that is a surface in 2.1D representation), is assigned 
a color ci that represents its model. For region nodes, this model consists of layering 
information, and for open bonds, the model consists of the connected contours. Let
�πn(πn ∈ �πn) be the space of all possible n-partitions of V , �lr the set of types 
of region models, �θr  the model parameter family, �lc the set of types of Elastica, 
and �θc  the Elastica parameter space. Thus, the solution space for W2.1D is
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� = 
N⋃

n=1

{
�πn × �n 

lr × �θr1 × . . . × �θrn × �n 
lc × �θc1 × . . . × �θcn

}
. (7.29) 

This leads us to extend the Swendsen–Wang Cuts algorithm [9] to perform the 
inference. In the formulation, the prior model is 

p(W2.1D) = p(K)p(X)p(Y ) 
N∏

i=1 

p(Ri), (7.30) 

where p(K) is an exponential model p(K) ∝ exp(−λ0K), p(X) = ∏N 
i=1 p(XRi ) 

and p(Y ) ∝ exp −β0
∑

∀ai ,aj ,i �=j 1(yai = yaj ) penalize the situation that more than 
one terminator is assigned to the same junction and p(Ri) is defined in Eq. (7.18). 

The likelihood is 

p(W2D|W2.1D) ∝ 
K∏

i=1 

K(i)∏

j=1

∏

(x,y)∈sj 

H(I(x, y) − J(x, y; θj )) 

× 
M∏

i=1 

exp{−λ0E}, 
(7.31) 

where J(x, y; θj ) is defined in Eq. (7.16) and λ0 is a scalable factor and also 
learned from the dataset [273]. The first term in the likelihood handles the region 
coloring/layering problem, and the second term handles the contour completion 
problem. They are solved jointly. 

Inference Algorithm Based on the graphical representation with a mixed MRF, the 
presented inference algorithm proceeds in two ways: (1) region coloring/layering 
based on the Swendsen–Wang Cuts algorithm [9] for the partitioning of the region 
adjacency graph to obtain partial occluding order relations; (2) address variable 
assignments based on Gibbs sampling for the completion of open bonds. The basic 
goal is to realize a reversible jump between any two successive states π and π0 in 
the Metropolis–Hastings method. 

Experiments We first demonstrate the inference algorithm using the Kanizsa 
image. Figure 7.5 shows the 2D representation and the graphical representation with 
mixed MRF. Figure 7.6 shows the inference procedure.
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Fig. 7.5 Reprinted with permission from [73]. A running example of inferring the 2.1D sketch. 
(a) is the original image, Kanizsa figure. (b) is the sketch graph computed by the primal sketch 
model after interactively labeling. There are 8 atomic regions and 12 terminators broken from T-
junctions. (c) is the 2.1D sketch. There are 4 layers, and the contour completion is performed using 
Elastica rules. (d) is the Hasse diagram for partial order relation, such as 〈7, 1〉 means region 7 
occludes region 1. (e) is the graph representation with a mixed Markov random field. Each big 
circle denotes a vertex of the atomic region, each red bar denotes one terminator, and each little 
circle denotes a vertex of open bound described as address variable. Each region may have two 
or more terminators. The blue line segments connect the two neighboring regions. The green two-
way arrows connect two terminators, and each terminator is assigned another terminator’s address 
variable 

7.4 2.1D Sketch with Layered Regions and Curves 

In this section, we handle images with both regions and curves that are frequently 
observed in natural images as illustrated in Fig. 7.7. Given an input image, our 
objective is to infer an unknown number of regions, free curves, parallel groups, 
and trees, with recovered occlusion relation and their probability models selected 
and fitted—all in the process of maximizing (or simulating) a Bayesian posterior 
probability. This algorithm searches for optimal solutions in a complex state space 
that contains a large number of subspaces of varying dimensions for the possible 
combinations of regions, curves, and curve groups.
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Fig. 7.6 Reprinted with permission from [73]. Illustration of the Gibbs inference procedure. Each 
red node denotes a region, the black line segment denotes the terminator, and the green line segment 
shows the inferred connection or assignment of address variables. Inference starts from an initial 
temperature T = 20, and (a) ∼ (h) are the results in different temperatures. After T = 1, the 
result is right as in the figure
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Fig. 7.7 Reprinted with permission from [236]. Illustration of the 2.1D sketch with a layered 
representation of regions and curves. (a) is an input image that is decomposed into two layers—(b) 
a layer of regions and (c) a layer of curves. These curves are further divided into (d) free curves, (e) 
a parallel curve group for the fence, and (f) trees. Curves observe a partial order occlusion relation 

Fig. 7.8 Reprinted with permission from [236]. Representations of curves and curve groups. (a) 
A free curve in continuous representation. (b) A free curve is discretized into a chain of “bars.” (c) 
Curves for a parallel group. (d) Curves for a Markov tree 

Generative Models and Bayesian Formulation 

In this section, we present generative models for both regions and curve structures. 

Generative Models of Curves 

We consider three types of curve models that are illustrated in Fig. 7.8 and described 
as follows. 

1. Free curves. A free curve, denoted by C, is represented by its medial axis 
cm(s) = (xm(s), ym(s)) and its width 2w(s) for s = [0, L]. L is the curve 
length. In a continuous representation, a free curve C occupies an elongated
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area or domain D(C) bounded by the left and right side boundaries denoted, 
respectively, by cl (s) = (xl(s), yl(s)) and cr = (xr (s), yr(s)). Figure 7.8a shows  
the boundaries in dashed lines. 

cl (s) = cm(s) − w(s)n(s), cr (s) = cm(s) + w(s)n(s), (7.32) 

where n(s) is the unit normal of cm(s). Intuitively, a curve is a degenerated region 
parameterized by its 1D medial axis. Usually, w(s) is only 1 − 3 pixels wide and 
w � L. This causes major topology problems in image segmentation where the 
two boundaries cl (s) and cr (s) could often intersect generating numerous trivial 
regions. This problem will be resolved with the explicit 1D representation. The 
intensities of a curve often exhibit globally smooth shading patterns, for example, 
the curves in Fig. 7.8. Thus we adopt a quadratic function for curve intensities 

J(x, y; θ0) = ax2 + bxy + cy2 + dx + ey + f, (x, y) ∈ D(C), (7.33) 

with parameters θ0 = (a, b, c, d, e, f  ). The validation of choosing an inhomo-
geneous model to capture the smoothly changing intensity patterns can be found 
in [235]. Therefore, a free curve is described by the following variables in the 
continuous representation 

C =
(
L, cm(s)L 

s=0, w(s)L 
s=0, θ0, σ

)
, (7.34) 

where σ is the variance of the intensity noise. While this continuous represen-
tation is a convenient model, we should also work on a discrete representation. 
Then the domain D(C) is a set of pixels in a lattice, and C is a chain of elongated 
bars as Fig. 7.8b illustrates. 

The prior model for p(C) prefers smooth medial axes, narrow and uniform 
width, and it also has a term for the area of the curve in order to match with the 
region prior. 

p(C) ∝ p(D(C))p(c(s))p(w(s)) ∝ e−E(C) . (7.35) 

The energy E(C) is the sum of three terms 

E(C) = γc|D(C)|ρ + λL + Eo(w), (7.36) 

where ρ,  λ  are the constants and are fixed in our experiments, and γc is a scale 
factor that can be adjusted to control the number of curves. Eo(w) is a term that 
constrains width w(s) to be small. We denote the intensities inside the curve 
domain by ID(C) and assume the reconstruction residue follows i.i.d. Gaussian 
N (0; σ 2). The image likelihood therefore is 

p(ID(C)|C) =
∏

(x,y)∈D(C) 
N (I(x, y) − J(x, y; θ0); σ 2). (7.37)
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2. Parallel curve groups. A parallel curve group consists of a number of nearly 
parallel curves as Fig. 7.8c shows. Each curve Ci, i  = 1, 2, . . . , n, is summarized 
by a short line segment connecting its endpoints. They represent curve structures, 
such as zebra stripes, grids, and railings shown in the experiments. Grouping 
curves into a parallel group is encouraged in the model as it reduces the coding 
length, and it is useful for perceiving an object, for example, a zebra. We denote 
a parallel curve group by 

pg = (n, {C1, C2, . . . , Cn}, {α1, α2, . . . , αn}), (7.38) 

where αi ∈ {1, . . . , n} is the index to the curve preceding Ci in the chain. 
The prior model for a pg is a first-order Markov model in a Gibbs form with 

singleton energy on an individual curve and pairwise energy for two consecutive 
curves as 

p(pg) ∝ exp

{

−λ0n − 
n∑

i=1 

E(Ci) − 
n∑

i=2 

Epg(Ci, Cαi )

}

. (7.39) 

The singleton E(Ci) is inherited from the free curve model. For the pair energy, 
we summarize each curve Ci by five attributes: center (xi, yi), orientation θi of 
its associate line segment, length Li of the line segment, curve average width 
(thickness) w̄i , and average intensity μi . Epg(Ci, Cαi ) measures the differences 
between these attributes. 

3. Markov trees. Figure 7.8d shows a number of curves in a Markov tree structure. 
We denote it by 

T = (n, {C1, C2, . . . ., Cn}, {β1, β2, . . . , βn}). (7.40) 

βi ∈ {1, . . . , n} is the index to the parent curve of Ci . Thus the prior probability 
is 

p(T ) ∝ exp 

⎧ 
⎨ 

⎩
−λ0n − 

n∑

i=1 

E(Ci) −
∑

αi �=∅ 
ET (Ci, Cβi ) 

⎫ 
⎬ 

⎭ . (7.41) 

Again, E(Ci) is inherited from the free curve. The term for Ci and its parent 
Cαi

, ET (Ci, Cαi ), measure the compatibilities such as endpoint gap, orientation 
continuity, thickness, and intensity between the parent and child curves. 

The parallel group pg and tree T inherit the areas from the free curve, thus 

D(pg) = ∪n 
i=1D(Ci), and D(T ) = ∪n 

i=1D(Ci). (7.42)
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It also inherits the intensity function J(x, y; θi) from each free curve Ci, i  = 
1, 2, . . . , n. In summary, the intensity models for C, pg, T are all generative for 
image I as 

I(x, y) = J(x, y; θ)  + N (0; σ 2), (x, y) ∈ D(Ci),D(pg), or D(T ). (7.43) 

Generative Models of Regions 

Once the curves explain away the elongated patterns, what is left within each 
image are the regions in the background. We adopt two simple region models in 
comparison to the four models in [235]. We denote a 2D region by R ⊂ D and IR 
the intensities inside R. 

The first model assumes constant intensity with additive noise modeled by a non-
parametric histogram H, 

J(x, y; 1, θ)  = μ, I(x, y) = J(x, y) + η, η ∼ H, (x, y) ∈ R. (7.44) 

With a slight abuse of notation, we denote by θ = (μ,H) the parameters used in a 
region. 

The second model assumes a 2D Bezier spline function with additive noise. The 
spline accounts for global smooth shadings, 

J(x, y; 2, θ)  = B ′(x)MB(y), I(x, y) = J(x, y; θ2) + η, η ∼ H, (x, y) ∈ R, 
(7.45) 

where B(x) = ((1 − x)3, 3x(1 − x)2, 3x2(1 − x), x3) is the basis and M is a 
4 × 4 control matrix. This is to impose an inhomogeneous model for capturing 
the gradually changing intensity patterns, e.g., the sky. This model is important 
since regions with shading effects will be segmented into separate pieces with 
homogeneous models. The parameters are θ = (M, H), and more details with a 
validation can be found in [235], where we compare different models for different 
types of images. 

The likelihood is 

p(IR|R, θ) ∝
∏

(x,y)∈D(R) 
H(I(x, y) − J(x, y; �, θ)), � ∈ {1, 2}. (7.46) 

The prior for a region R assumes short boundary length ∂R (smoothness) and 
compact area |D(R)|, 

p(R) ∝ exp

{
−γr |D(R)|ρ − 

1 

2 
λ|∂R|

}
, (7.47)
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where ρ and λ are constants that are fixed for all the experiments in this section, 
and γr is a scale factor that can be adjusted to control the number of regions in the 
segmentation. 

Bayesian Formulation for Probabilistic Inference 

Given an image I, our objective is to compute a representation of the scene (world 
W ) in terms of a number of regions Wr , free curves Wc, parallel curve groups Wpg , 
trees Wt , and a partial order PR. We denote the representation by variables 

W = (Wr ,Wc ,Wpg ,W t ,PR). (7.48) 

The region representation Wr includes the number of regions Kr , and each region 
Ri has a label �i ∈ {1, 2} and parameter θi for its intensity model 

Wr = (Kr , {(Ri, �i, θi) : i = 1, 2, . . . , Kr}). (7.49) 

Similarly, we have Wc = (Kc , C1, . . . , CKc), Wpg = (Kpg , pg1, pg2, . . . , pgKpg ), 
and Wt = (Kt , T1, T2, . . . , TKt ). In this model, there is no need to define the 
background since each pixel either belongs to a region or is explained by a 
curve/curve group. 

The problem is posed as Bayesian inference in a solution space �, 

W ∗ = arg max 
W∈�

p(I|W)p(W). (7.50) 

By assuming mutual independence between Wr ,Wc ,Wpg ,W t , we have the prior 
model 

p(W) = 

⎛ 

⎝p(Kr ) 
Kr
∏

i=1 

p(Ri) 

⎞ 

⎠ 

⎛ 

⎝p(Kc ) 
Kc
∏

i=1 

p(Ci) 

⎞ 

⎠ 

⎛ 

⎝p(Kpg ) 
Kpg
∏

i=1 

p(pgi) 

⎞ 

⎠ 

⎛ 

⎝p(Kt ) 
Kt
∏

i=1 

p(Ti) 

⎞ 

⎠ . 

(7.51) 

The priors for individuals p(R), p(C), p(pg), p(T ) are given in the previous 
subsections. 

As there are N curves in total including the free curves, and curves in the parallel 
groups and trees, then the likelihood follows the lattice partition and Eqs. (7.37) 
and (7.46). 

p(I|W)  = 
Kr∏

i=1

∏

(x,y)∈DRi 

H((I(x, y) − J(x, y; �i, θi))
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· 
N∏

j=1

∏

(x,y)∈DCj 

N ((I(x, y) − J(x, y; θj ); σ 2 
j ). (7.52) 

Since all objects use generative models for reconstructing I, these models are 
directly comparable and they compete to explain the image. This property is crucial 
for the integration of region segmentation and curve grouping. 

Inference Algorithm Here we briefly summarize the design of the algorithm. 
The goal is to design an algorithm to make inference of the W ∗ that maximizes 
the posterior p(W | I) by sampling W in the solution space with a fast simulated 
annealing procedure. Since W ∗ is usually highly peaked, we hope that it will most 
likely be sampled if the algorithm converges to the target distribution. This poses 
rather serious challenges even though we have simplified the image models above. 
The main difficulty is dealing with objects with different structures and exploring a 
large number of possible combinations of regions, curves, and curve groups in an 
image. Especially our objective is to achieve automatic and nearly globally optimal 
solutions. The following are three basic considerations in our MCMC design. 

First, the Markov chain should be irreducible so that it can traverse the entire 
solution space. This is done by designing a number of pairs of jumps to form an 
ergodic Markov chain. The resulting Markov chain can reach any state from an 
arbitrary initialization. 

Second, each jump operates on 1 − 2 curves or curve elements. We study the 
scopes of the jumps within which the algorithm proposes the next state according to 
a conditional probability. This is like a Gibbs sampler. The proposal is then accepted 
in a Metropolis–Hastings step, hence its name the Metropolized Gibbs Sampler 
(MGS [157]). 

Third, the computational cost at each jump step should be small. The proposal 
probability ratios in our design are factorized and computed by discriminative 
probability ratios. These discriminative probabilities are computed in bottom-up 
processes that are then used to activate the generative models in a top-down process. 
As Fig. 7.9 illustrates, each jump maintains a list of “particles” that are weighted 
hypotheses with the weights expressing the discriminative probability ratios. Then a 
particle is proposed at a probability proportional to its weight within the list (scope). 
The higher the weight is, the more likely a particle will be chosen. 

Experiments 

The proposed algorithm searches for the optimal solution W ∗ by sampling p(W | I). 
It starts from a segmentation with regions obtained at a coarse level by the Canny 
edge detector. Our method does not rely much on the initial solution due to the use of 
various MCMC dynamics guided by bottom-up proposals, which help the algorithm 
to jump out of local minimums. However, we do use an annealing strategy to allow
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Fig. 7.9 Reprinted with permission from [236]. The 6 simple jumps maintain 10 sets of “particles” 
whose sizes illustrate their weights. The sets are updated and re-weighted in each jump step, and 
they encode the proposal probabilities in a non-parametric representation 

large change of W at high temperatures and to focus more on local modes with 
the temperature gradually cooling down. The optimal solution W ∗ is found when 
the algorithm converges since p(W ∗|I )  is in general highly peaked for many vision 
problems, especially at a low temperature. 

Experiment A: Computing Regions and Free Curves 

An example is shown in Fig. 7.10. For each example, the first row displays the 
input image Iobs, the computed free curves Wc, and the region segmentations Wr 

in the background. The second row shows the synthesized image according to the 
generative models for the regions Ir syn ∼ p(I|Wr ), the curves Ic 

syn ∼ p(I|Wc ), and 
the overall synthesis Isyn by occluding Ic 

syn on Ir syn. 
We construct a synthesis image to verify how an input image is represented in 

W ∗. In the experiment, two parameters in the prior models are adjustable: (1) γr 
in Eq. (7.47) and (2) γc in Eq. (7.36). The two parameters control the extent of the 
segmentation, i.e., the number of regions and curves. Therefore, they decide how 
detailed we like the parsing to be. Usually, we set γr = 5.0 and γc = 3.5, and other 
parameters are fixed. 

In the second experiment, we further compute the parallel groups and trees by 
turning on the two composite jumps J7, J8. Figure 7.11 shows an example: The
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Fig. 7.10 Reprinted with permission from [236]. Experiment A: parsing images into regions and 
free curves 

Fig. 7.11 Reprinted with permission from [236]. Experiment B: parsing an image into regions, 
curves, and parallel curve groups 

top row shows the parallel groups or trees grouped from the simple curves. The 
second and third rows are displayed as before. From the results, we can see that 
the algorithm successfully segments, detects, and groups regions, curves, and curve 
groups, respectively.



Chapter 8 
2.5D Sketch and Depth Maps 

In previous chapters, we discuss the first stage of early visual processing, i.e., 
representing the changes and structures in the image with the primal sketch and 
2.1D sketch. In general, the primal sketch is a generic two-layer 2D representation 
describing image features such as intensity changes, local geometrical structures, 
and illumination effects such as light sources, highlights, and transparency. Based on 
the primal sketch, the 2.1D sketch, a layered representation, is analyzed to describe 
the surfaces with occluding relations, defining the visibility of surfaces and contours 
in the given image. However, such rough descriptions of the spatial relations in 
images are not sufficient for our overall goal to thoroughly understand the vision. 
To understand how to obtain descriptions of the world efficiently and reliably from 
images, we need to go one step further. In this chapter, we introduce the 2.5D sketch, 
which aims to analyze the depth information that describes the relative positions of 
surfaces in a more precise way. 

The idea of the 2.5D sketch first appeared in Marr and Nishihara’s research [170], 
whose original goal is to provide a viewer-centered representation of the visible 
surfaces. As shown in Fig. 8.1, the 2.5D sketch construction is considered to be a 
significant part of the mid-level vision, the last step before surface interpretation, 
and the end, perhaps, of pure perception. We start with Marr’s definition of 2.5D 
sketch and the viewer-centered representation, to analyze the vision process from 
the primal sketch to 2.5D sketch from a relatively intuitive perspective. Besides, 
we introduce some methods to reconstruct the 2.5D presentation, i.e., the depth 
information, for image analysis, including the shape from stereo, shape from 
shading, and direct estimation. 

8.1 Marr’s Definition 

As introduced by Marr in [169], the distances from the observed objects to the 
human’s two eyes are different, making the two eyes form different images of the 
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Fig. 8.1 Representation in Marr’s paradigm. The 2.1D sketch was proposed by Nitzberg and 
Mumford [185] 

world. The disparities in the two images help human brains estimate the relative 
distances of the objects from the observer. Marr divides this account into two parts, 
the first is concerned with measuring disparity and the second is concerned with 
using it. Marr separates both parts into three levels, i.e., computational theory, 
representation and algorithm, and hardware implementation. More specifically, the 
three steps involved in measuring stereo disparities are: (1) selecting a particular 
location on a surface in the scene from one image; (2) identifying the same location 
in the other image, and (3) measuring the disparity between the two corresponding 
image points. Before making use of the measured disparity, we need to solve another 
fundamental problem in binocular fusion, i.e., the elimination or avoidance of false 
targets. The abundance of matchable features and the disparities between these 
matches lead to difficulties in deciding which pair is false and useless. With the 
validated measured disparities, we can compute the distance from the viewer to 
surfaces in the images and also analyze the surface orientations from the disparity 
changes. 

According to Marr, constructing the orientation-and-depth map of the visible sur-
faces around a viewer is one of the most critical goals of early visual processing. In 
this map, information is combined from several different and probably independent 
processes to interpret disparity, motion, shading, texture, and contour information. 
These ideas are called 2.5D sketch by Marr and Nishihara [170]. The full 2.5D 
sketch would include rough distances to the surfaces as well as their orientations. 
Besides, the places where surface orientations change sharply and where depth is 
discontinuous can be labeled as contours, which are informative for further analysis. 

Many types of information can be extracted from images by different kinds 
of early visual processes. For example, the stereopsis outputs disparity, hence the 
continuous or small local changes in relative depth. At the same time, the optical 
flow generates the relative depth and the local surface orientation. Although in 
principle processes such as stereopsis and motion can directly deliver depth-related 
information, they are more likely to deliver local changes of depth by measuring
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Fig. 8.2 Reprinted with 
permission from [170]. 
Example of a 2.5D Sketch 
described in [169]. The 
surface orientation is 
represented by arrows, as 
explained in the text. 
Occluding contours are 
shown with full lines, and 
surface orientation 
discontinuities with dotted 
lines. Depth is not shown in 
the figure, though it is thought 
that rough depth is available 
in the representation 

local disparities in practice. However, the main function of the visual representation 
we seek should not be limited to making explicit information about depth, local 
surface orientations, and discontinuities in these quantities. We want to create and 
maintain a global representation of depth that is consistent with the local cues 
obtained from these sources. Such a representation is called the 2.5D sketch. 

To prepare for a more thorough discussion, we first describe the original 
definition for a viewer-centered representation that uses surface primitives of small 
size as described in [169]. Figure 8.2 illustrates such a representation, which is like 
having a gradient space at each point in the visual field. It includes a representation 
of contours of surface discontinuity. It has enough internal computational structure 
to maintain its descriptions of depth, surface orientation, and surface discontinuity 
in a consistent state. Depth may be represented by a scalar quantity r , the distance 
from the viewer of a point on a surface, and the surface discontinuities may be 
represented by oriented line elements. Surface orientation may be represented as 
a vector (p, q) in two-dimensional space, equivalent to covering the image with 
needles. The length of each needle defines the surface slant (or dip) at the point. 
Here, zero length corresponds to a surface that is perpendicular to the vector from 
the viewer to that point. The length of the needle increases as the surface slants away 
from the viewer. The needle orientation defines the tilt, that is, the direction of the 
surface’s slant. In principle, the relationship between depth and surface orientation is 
straightforward—one is simply the integral of the other, taking over regions bounded 
by surface discontinuities. Therefore, it is possible to devise a representation with 
intrinsic computational facilities that can maintain the two variables of depth and 
surface orientation in a consistent state. 

We will discuss the approaches to generate the 2.5D sketch in the following 
sections, including two generative methods (in applications of shape from stereo 
and shape from shading) that generate the 2.5D sketch from the primal sketch and a 
recent discriminative approach in deep learning.
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8.2 Shape from Stereo 

In this section, we introduce two works related to shape from stereo. We first briefly 
introduce the stereopsis work proposed by Peter Belhumeur in [14]. After that, we 
introduce the visual knowledge representation applied in the stereo reconstruction 
work proposed by Barbu and Zhu [4]. 

A pair of stereo images have been known to encode the information detailing 
the scene geometry since at least the time of Leonardo da Vinci [31]. The animal 
brain has known this for millions of years and has developed yet barely understood 
neuronal mechanisms for decoding it. Everywhere animals gaze, they are aware of 
the relative depths of the observed objects. Even though stereo vision is not the only 
cue to depth, monocular cues are still less exact and often ambiguous in determining 
the depth and 3D spatial relations. 

Binocular stereopsis algorithms use the data in a pair of images taken from 
slightly different viewpoints to construct a depth map of the 3D surfaces captured 
within the images [14]. The 3D surfaces are estimated by first matching pixels in the 
images that correspond to the same point on a 3D surface and then computing the 
point’s depth as a function of its displacement (or disparity) in the two images. The 
task of matching points between the two images is known as the correspondence 
problem. 

In the last 50 years, researchers have tried to reconstruct the scene geometry 
from a pair of stereo images. Unfortunately, like most computer vision problems, 
the stereo problem has proven to be more difficult than initially anticipated. Argued 
by Belhumeur [14], the solutions for properly handling occluded regions and 
salient features in the scene geometry have been largely overlooked. Generally 
speaking, there are the following four major problems in matching the two images 
in binocular stereopsis: (1) Handling the feature noise in the left/right images caused 
by quantization error, imperfect optics, imaging system, lighting variation between 
images, specular reflection, etc. (2) Handling the indistinct image features near 
pixels where the matching is ambiguous. (3) Preserving the salient features, such as 
depth discontinuities at object boundaries, in the 3D scene geometry to produce an 
accurate reconstruction. (4) Correctly handling the half-occlusion regions by first 
matching half-occluded points to mutually visible points and then estimating the 
depth at these points. 

For years, people have offered solutions to the correspondence problem without 
adequately addressing all of these complications. In the early area-based algorithms, 
the disparity was assumed to be constant within a fixed-sized window. Other 
methods integrate a type of smoothness (flatness) constraint into the matching 
process, again biasing toward reconstructions with persistent disparity. Although 
algorithms using smoothness constraints show effectiveness in handling the first 
two problems, their performance deteriorated at salient features in the scene 
geometry. These algorithms generally over-smooth the depth discontinuities at 
object boundaries (“breaks”) and in surface orientation (“creases”). Sometimes 
erratic results would be produced. Line processes were introduced to solve the image
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segmentation problem. While this method helps preserve the boundaries of objects, 
it overlooks three critical complications. First, the introduction of line processes 
to model object boundaries gave rise to highly nonlinear optimization problems. 
Second, no prescription was given for preserving the other salient features in the 
scene geometry. Third, it is challenging to identify whole regions of half-occlusion 
caused by discontinuity. 

Facing the previous challenges, [14] developed a computational model for 
stereopsis by making explicit all of the assumptions about the nature of image 
coding and the structure of the world. In designing computer vision models, 
researchers often skip this step and, consequently, have no way of testing whether 
the underlying assumptions are valid. The developed model in [14] is designed 
within a Bayesian framework and attempts to explain the process by which the 
information detailing the 3D geometry of object surfaces is encoded in a pair of 
stereo images. Belhumeur [14] starts by deriving the model for image formation, 
introducing a definition of half-occluded regions, and deriving simple equations 
relating these regions to the disparity function. In this chapter, the author shows 
that the disparity function alone contains enough information to determine the half-
occluded regions. These relations are utilized to derive a model for image formation 
in which the half-occluded regions are explicitly represented and computed. The 
prior model is presented in a series of three stages, or “worlds,” where each world 
considers an additional complication to the prior, constructed from all of the local 
quantities in the scene geometry, i.e., depth, surface orientation, object boundaries, 
and surface creases. 

For computer vision problems, the Bayesian paradigm seeks to extract scene 
information from an image or a sequence of images by balancing the content of 
the observed image with prior expectations about the observed scene’s content. 
This method is general and can be applied to a wide range of vision problems, 
including binocular stereopsis. Let S indicate the scene geometry given the left 
and the right images by Il and Ir . Within the Bayesian paradigm, one infers S by 
considering P(S|Il , Ir ), the posterior probability of the state of the world given the 
measurement. From Bayes theorem, we have 

P(S|Il , Ir ) = 
P(Il , Ir |S)P (S) 

P(Il , Ir ) 
. (8.1) 

Sometimes P(Il , Ir |S) is referred to as the “image formation model,” which 
measures how well S matches the observed images. P(S) is usually referred to as 
the “prior model” that measures how probable a particular S is a priori before the 
images are observed. We denote the maximum a posteriori (MAP) estimate Ŝ. For  
notational convenience, we define the energy functional as below 

E(S) = − log(P (Il , Ir |S)P (S)) = ED + EP , (8.2) 

where ED = − log(P (Il , Ir |S)) is referred as the “data term,” and EP = 
− log(P (S) is referred as the “prior term.” To employ these energy functionals
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with the underlying assumptions taken into consideration, one must be careful in 
choosing random variables to be estimated and in the assumed relations between 
these random variables in developing a Bayesian formulation of a vision problem. 

The Image Formation Model 

In this subsection, we introduce the image formation model proposed by Belhumeur 
[14]. Besides, the definition of the epipolar line will be mentioned. 

In deriving the model for image formation, we choose the simplest possible 
geometry: pinhole cameras with parallel optical axes. Assume the cameras are 
calibrated and the epipolar geometry is known, we define disparity relative to 
an imaginary cyclopean image plane placed halfway between the left and right 
cameras. Here we derive explicit relations between disparity and depth, as well 
as disparity and half-occlusion, showing that the disparity function correctly 
determines the half-occluded regions in the left and right image planes. We then 
use these relations to derive our image formation model. 

Assume that we have two pinhole cameras whose optical axes are parallel and 
separated by a distance of w. The cameras each have focal length l, with fl the focal 
point of the left image, and fr the right. Then we create an imaginary cyclopean 
camera in the same manner, placing its focal point f halfway along the baseline, 
i.e., the line connecting the left and right focal points. Then we restrict the cameras’ 
placement so that the baseline is parallel to the image planes and perpendicular 
to the optical axes, as shown in Fig. 8.3. A point p on the surface of an object in 
3D space that is visible to all three cameras is projected through the focal points 
onto the image planes. Each image plane has a 2D coordinate system with its 
origin determined by the intersection of its optical axis with the image plane. The 
brightness of each point projected onto the image planes creates image luminance 
functions Il , Ir , and I in the left, right, and cyclopean planes, respectively. 

A horizontal plane through the baseline intersects the three image planes in what 
are called epipolar lines, which we denote by Xl , Xr , and X, with coordinates xl ∈ 
Xl , xr ∈ Xr , and x ∈ X, respectively. The coordinates of the epipolar lines run from 
right to left, so that when a point in the world moves from left to right, its coordinates 
in the image planes increase. When the same point is visible from all three eyes, 
it is easy to check that x = (xl + xr)/2. Thus, we can relate the coordinates of 
points projected onto all three image planes by a positive disparity function d(x) via 
xl = x + d(x) and a negative one via xr = x − d(x). Thus we have d(x) = xl−xr 

2 . 
Suppose z(x) represents the perpendicular distance from a line connecting the focal 
points to the point p on the surface of the object, then the disparity d(x) can be 
related to the distance z(x) by d(x) = lw 

2z(x)
. 

Some early work assumed that none of the points in either of the left or right 
images is half-occluded (visible in one camera, but not in the other). However, the 
vast majority of the millions of images we view every day contains large regions of 
half-occluded points, and half-occlusion is also a positive cue for the human visual
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Fig. 8.3 Reprinted with permission from [14]. Camera geometries: The figure shows the left and 
right image planes, plus an imaginary cyclopean image plane. Both the disparity and distance 
functions are defined relative to the cyclopean image plane 

system to determine depth. Thus, computer vision systems must take advantage of 
the cues provided by half-occlusion as human visual system [14]. 

Here we give the definition of the mutually visible point as proposed in [14]. A 
point p is mutually visible to both eyes if the triangle formed by p, fi , and fr is free 
of obstructing objects, as shown in Fig. 8.4. Note that according to this definition, 
if any object is contained within the triangle formed by p, fi , and fr , then the 
point p is not considered mutually visible, even though the point may be visible to 
all three eyes. To determine from the disparity function when a point is mutually 
visible, it is convenient to introduce a morphologically filtered version d∗(x) of 
d(x), d∗(x) = maxa(d(x +a)−|a|). d∗(x) = d(x) if and only if the point p visible 
to the cyclopean eye in direction x is mutually visible to the left and right eyes. 
Thus, the function d∗(x) tracks the mutually visible points. Then we can define the 
half-occluded points as the points that are not mutually visible as in [14]. The half-
occluded points O ∈ X are the closure of the set of points x such that d∗(x) > d(x). 

Before further derivations, we must define the previous quantities in a discrete 
manner. Take the fixed interval [−a, a] of the cyclopean epipolar line X and 
sample it at n evenly spaced points represented by X = x1 . . . ..XN such that 
x1 = −a, xi+1 − xi = δ and xN = a. Let the disparities at the sampled 
points be represented by D = d(x1) . . . d(xN) = d1 . . . dN . We define the half-
occluded points O ∈ X as O = {xi |dj − di | > |j − i| for some xj }. Finally, 
we discretize the range of possible disparity values with sub-pixel fineness, so that 
di ∈ 0, 1 

k , 
2 
k , . . . , 1, 1 + 1 

k , . . . , dmax for some k specifying the disparity resolution.
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Fig. 8.4 Reprinted with permission from [14]. Mutually visible points: A mutually visible point 
has no object within the triangle specified by p, fl , and  fr 

Since it is not possible to distinguish between jumps in the disparity along a sloping 
surface and jumps in disparity at the boundaries of objects unless using sub-pixel 
resolution, these methods will falsely assume that the jumps along sloping surfaces 
produce half-occluded points. Yet, all surfaces visible to both the left and right eyes 
have [di+1 − di] < 1 as pointed out in [14]. 

Keeping within the Bayesian framework, a probabilistic model needs to be 
developed for the joint distribution P(Il , Ir |S). To do this, assume we are given 
a scene of objects in 3D space with Lambertian illumination (i.e., an object’s 
brightness is independent of the viewing angle). Label points on the surfaces of 
objects by elements of a set �. To each point p ∈ �, there is a brightness γ (p). 
Define

∏
l and

∏
r to be the maps that take points in the image planes to the point 

on the surface of the closest visible object, i.e.,
∏

l : Xl → � and
∏

r : Xr → �. 
The brightness of a visible point once projected into the image plane is corrupted 
by noise. Assuming additive Gaussian white noise, image functions can be written 
as Il (xl) = γ (

∏
l (xl)) + ηl(xl) and Ir (xr ) = y(

∏
r (xr )) + ηr(xr ), where ηl and 

ηr are independent and identically distributed (i.i.d.) Gaussian noise processes with 
mean zero and variance ν2. For notational convenience, we only consider the image 
functions Il and Ir along corresponding epipolar lines. The joint density for any set 
of N samples, which we denote by xl1, . . . , xlN , from the left image function Il , 
given γ , is  

P(Il (xl1), . . . , Il (xlN )|γ )  = P(Il |γ )  = 1 

(2πν2)N/2 

N∏

i=1 

e
− η2 

l (xli ) 
2ν2 , (8.3) 

where ηl(xli) = Il(xli) − γ (
∏

l (xli)). Likewise, we can get the joint density from 
the right image function Ir . Using the fact that ηl and ηr are independent, we can
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write the combined joint density as 

P(Il , Ir |γ )  = 1 

(2πν2)N 

N∏

i=1 

e
− η2 

l (xli )+η2 r (xri ) 
2ν2 . (8.4) 

Choose the N samples from the left and right epipolar lines that correspond to the 
evenly spaced points x1 . . . ..xN on the cyclopean epipolar line. So we choose xli = 
xi +di and xri = xi −di . Because the brightness function γ is unknown, we approx-
imate γ , with its maximum likelihood estimator γ̂ (

∏
l (xli)) = γ̂ (

∏
r (xri)) = 

Il (xli )+Ir (xri ) 
2 . This approximation yields η2 l (xli) + η2 r (xri) ≈ (Il (xli )−Ir (xri ))

2 

2 ; then 

we will have the joint density P(Il , Ir |γ̂ )  = 1 
(2πν2)N

∏N 
i=1 e

− (Il (xli )−Ir (xri ))
2 

4ν2 . In this  
way, we can compute this quantity from the data if the point xi is mutually visible. 
However, if the xi is half-occluded, such formulation is not feasible. 

To solve for the half-occluded points, we approximate the squared difference 
(Il (xli) − Ir (xri))

2/2 by its expected value ν2. Then we have the combined joint 
density as below 

P(Il , Ir |γ̂ )  = 1 

(2πν2)N 

N∏

i=1,xi /∈O 
e
− (Il (xli )−Ir (xri ))

2 

4ν2 

N∏

i=1,xi∈O 
e− 1 

2 . (8.5) 

Or equivalently, the combined joint distribution can be rewritten in terms of the 
cyclopean epipolar points X and the corresponding disparities D as 

P(Il , Ir |γ̂ ,  D)  = 
1 

(2πν2)N e
−ED , ED = 

1 

4ν2
∑

X−O 
(Il (xi+di)−Ir (xi−di))

2+
∑

O 

1 

2 
, 

(8.6) 
with ED being the data term in the model. 

We have introduced the data model under the assumption of Lambertian illumi-
nation so far. Let us generalize the above equation so that the data term considers, 
as simply opposed to image intensity, other, possibly more viewpoint invariant, 
features (e.g., edges, texture, filtered intensity, etc.). In doing this, we rewrite the 
above equation by replacing the intensity functions Il and Ir with general feature 
functions Fl and Fr . Thus, the data term becomes ED = 1 

4ν2
∑

X−O(Fl(xi + di) − 
Fr(xi − di))

2 + ∑
O 

1 
2 . 

Furthermore, [14] derives the prior model for the Bayesian estimator, arguing that 
to capture the quantities in the scene geometry, namely depth, surface orientation, 
object boundaries, and surface creases, one should explicitly represent these quan-
tities as random variables or continuous time random processes in the prior model. 
The derivation is broken up into three stages, or worlds, with each succeeding world 
considering additional complications in the scene geometry. 

The first world, i.e., World I, is  surface smoothness. As shown in  [14], we assume 
a simple world in which the scenes captured in a stereo pair contain only one object.
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On the surface of this object, we further assume that the 2D distance function of the 
cyclopean coordinate system is everywhere continuous, so a particular epipolar line 
has both a distance function D and a disparity function d that are also everywhere 
continuous. Because the relation between disparity and depth is known, we do not 
explicitly represent the depth, but rather the disparity in the derivation of the prior 
model. In the second world, i.e., World II—Object Boundaries, we assume a slightly 
more complicated world than World I: here we consider the possibility of more 
than one object in a scene. For this world, the assumption is that the disparity 
function d is a sample path of the sum of a scaled Brownian motion process and 
a compound Poisson process with i.i.d., uniform random variables. In this way, we 
were able to consider multiple objects in a scene by introducing random variables 
that explicitly represent the discontinuities in disparity at the boundaries of objects. 
The third world, World III, is a more complicated one, which is the world for Surface 
Slope and Creases. In this world, not only do we consider more than one object in a 
scene, but we also consider that the surfaces of objects may be steeply sloping and 
may have creases. We recommend [14] for further implementation details about the 
proposed model. 

In the rest of this section, we present a two-level generative model that incorpo-
rates generic visual knowledge for dense stereo reconstruction introduced by Barbu 
and Zhu [4]. In this chapter, the visual knowledge is represented by a dictionary 
of surface primitives including various categories of boundary discontinuities and 
junctions in parametric form. The work takes advantage of the fact that depth 
discontinuities usually happen at object boundaries and that depth maps have much 
less complexity than color images. In stereo, textured areas contain a trove of depth 
information, while textureless areas are the most difficult and their depth must be 
propagated from far away via priors. So here the 2D sketch comes into play to 
capture the potential depth boundaries, and the inference algorithm propagates the 
depth information along the sketch to obtain a 3D consistent representation, which 
is a 3D sketch. 

Given a stereo pair, we first compute a primal sketch representation that 
decomposes the image into a structural part for object boundaries and high-intensity 
contrast represented by a 2D sketch graph, and a structureless part represented by 
Markov random field (MRF) on pixels. Then we label the sketch graph and compute 
the 3D sketch (like a wireframe) by fitting the dictionary of primitives to the sketch 
graph. The surfaces between the 3D sketches are filled in by computing the depth 
of the MRF model on the structureless part using conventional stereo methods. 
These two levels interact closely with the primitives acting as boundary conditions 
for MRF and the MRF propagating information between the primitives. The two 
processes maximize a Bayesian posterior probability jointly. Barbu and Zhu [4] 
propose an MCMC algorithm that simultaneously infers the 3D primitive types and 
parameters and estimate the depth (2.5D sketch) of the scene. The experiments show 
that this representation can infer the depth map with sharp boundaries and junctions 
for textureless images, curve objects, and free-form shapes. 

The overall data flow of the algorithm is illustrated in Fig. 8.5. Given a stereo pair 
of images, [4] first compute a primal sketch representation [90] that decomposes the
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Fig. 8.5 Reprinted with permission from [4]. The flow diagram of the algorithm 

image into two layers: (i) A structural layer for object boundaries and high-intensity 
contrast represented by a 2D sketch graph and (ii) a structureless layer represented 
by Markov random field on pixels. The sketch graph in the structural layer consists 
of a number of isolated points, line segments, and junctions that are considered 
vertices of different degrees of connection. 

Barbu and Zhu [4] then study the 3D structures for these points, line segments, 
and junctions and develop a dictionary for different configurations. The boundary 
primitives correspond to places where the depth map is not smooth, namely the 
boundaries between objects in the scene (first-order discontinuities) and the places 
where the surface normally experiences large changes in direction (second-order 
discontinuities). The curve primitives describe thin curves of different intensities 
from the background and usually represent wire-like 3D objects such as thin 
branches of a tree or electric cables, etc. The point primitives represent feature points 
in the image that have reliable depth information. The valid combinations of these 
3D primitives are summarized in a dictionary of junctions. Figures 8.8 and 8.9 show 
the dictionaries of line segments and junctions, respectively. Each is a 3D surface 
primitive specified by a number of variables. The number of variables is reduced for 
degenerated (accidental) cases. 

Barbu and Zhu [4] adopt a probability model in a Bayesian framework, where 
the likelihood is described in terms of the matching cost of the primitives to images, 
while the prior has terms for continuity and consistency between the primitives, 
and a Markov random field (MRF) that is used to fill in the depth information 
in the structureless areas. This Markov random field together with the labeling 
of the edges can be thought of as a mixed Markov model [63], in which the 
neighborhood structure of the MRF depends upon the types of the primitives, and 
changes dynamically during the computation. 

The inference algorithm simultaneously finds the types of the 3D primitives, their 
parameters, and the full depth map (2.5D sketch). To make up for the slow-down 
given by the long-range interactions between the primitives through the MRF, the 
algorithm makes use of data- driven techniques to propose local changes (updates) 
in the structureless areas.
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Fig. 8.6 Reprinted with permission from [4]. The algorithm proposed in [4] starts from a two-
layer sketch representation. (a) Input image, (b) region layer, (c) curve layer 

The model proposed in [4] is different from other models existent in the literature 
in the close relationship between the MRF and the boundary primitives. The non-
horizontal boundary primitives serve as control points for the MRF, while the 
horizontal primitives and the occluded sides of the primitives have their disparity 
determined by the MRF. 

In the following subsections, we introduce more details about the work in [4]. 

Two-Layer Representation 

Given a stereo pair Il , Ir of images, we would like to find the depth of all pixels in 
Il . Assuming that the camera parameters are known, this is equivalent to finding for 
each pixel, the horizontal disparity that matches it to a corresponding pixel in Ir . Let  
D be the disparity map that needs to be inferred and � be the pixel lattice. 

We assume the disparity map D is generally continuous and differentiable, with 
the exception of a number of curves �sk where the continuity or differentiability 
assumption does not hold. These curves are augmented with disparity values and 
are considered to form a 3D sketch Ds that acts as boundary conditions for the 
MRF modeling the disparity on �nsk = � \ �sk. 

A. The Sketch Layer—from 2D to 3D  Assume that the places where the 
disparity is discontinuous or non-differentiable are among the places of intensity 
discontinuity. The intensity discontinuities are given in the form of a sketch S 
consisting of a region layer SR and a curve layer SC , as illustrated in Fig. 8.6. 
The curve layer is assumed to occlude the region layer. These sketches can be 
obtained as in [90, 236]. The sketch edges are approximated with line segments 
S = {si, i  = 1, .., ne}. The segments that originated from the region layer si ∈ SR 
will be named edge segments, while the segments originating from the curve layer 
si ∈ SC will be named curve segments. 

Each edge segment si ∈ SR from the region layer is assigned two 5-pixel-wide 
edge regions li , ri , on the left and on the right of si , respectively, as shown in Fig. 8.7, 
left. Each curve segment sj ∈ SC is assigned a curve region rj along the segment,
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Fig. 8.7 Reprinted with permission from [4]. Division of the image in Fig. 8.6 into sketch 
primitives and 6 × 6 pixel square regions. Region layer (left) and curve layer (right) 

of width equal to the width of the curve, as shown in Fig. 8.7, right. Denote the 
pixels covered by the edge and curve regions by �R,�C , respectively. 

Because away from the places of discontinuity, the surfaces are in general very 
smooth, and to reduce the dimensionality of the problem, the pixels of � \ �R are 
grouped into square regions of size 6 × 6 pixels, by intersecting � \ �R with a 
6× 6 rectangular grid. Small regions at the boundary between the edge regions and 
the rectangular grid are merged into the edge regions. This way, the entire lattice
� is divided into atomic regions that either are along the sketch SC or are on the 
rectangular grid, as shown in Fig. 8.7. This structure allows the use of the thin plate 
spline model for the MRF and also enables the implementation of good boundary 
conditions by the 3D primitives. 

Then all line segments si ∈ S are augmented with parameters to become 3D 
sketch primitives, as shown in Fig. 8.8. Depending on the type of segments they 
originated from, there are boundary primitives and curve primitives. 

B. A Dictionary of Primitives Let 

V1 = {πi = (si, [li , ol 
i], ri , or 

i , ti , pi, di, wi[, fi]), i = 1, .., ne} (8.7) 

be the set of all primitives, where the parameters in brackets might be missing, 
depending on the primitive type. The variables of each primitive are: 

1. The edge segment si ∈ SR or curve segment si ∈ SC . 
2. The left and right regions (wings) li , ri in case of an edge segment, or the curve 

as a region ri in case of a curve segment. 
3. An occlusion label ol 

i , o
r 
i for each of the regions li , ri , representing whether the 

region is occluded (value 0) or not (value 1). 
4. The label ti = t (πi) ∈ {1, .., 8} indexing the type of the primitive from the 

primitive dictionary with the restriction that edge segments si ∈ SR can only be
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Fig. 8.8 Reprinted with permission from [4]. Each sketch segment is augmented to a primitive 
from the dictionary, ordered by generality

assigned types from {1, .., 6}, while curve segments si ∈ SC can only be assigned 
types from {1, 7, 8}. These types are illustrated in Fig. 8.8: 
• Type 1 represents edges or curves that are on the surface of the objects. 
• Type 2 represents first-order discontinuities, i.e., places where the surface is 

continuous, but the normal is discontinuous. 
• Types 3, 4, 5, 6 represent occluding edges where the occluded surface is on 

the left (types 3, 4) or on the right (types 5, 6) of the edge. 
• Types 7, 8 represent 3D curves, either connected with one end to the surface 

behind or totally disconnected. 

5. A label pi specifying whether this primitive is a control point (value 1) of the 
thin plate spline or not (value 0). All horizontal edges have pi = 0 at all times. 

6. The disparities di = d(πi) = (d0 
i , d

1 
i ) at the endpoints of the segment or the 

disparity di = d(πi) at the center of the segment if the segment is short (less 
than 6 pixels long). 

7. The left and right control arms wi = w(πi) = (wl 
i , w

r 
i ) representing the slope of 

the disparity map D in the direction perpendicular to the line segment. 
8. For types 3–6, the disparity fi = f (πi) = (f 0 i , f  1 i ) of the occluded surface at 

the ends of the segment, or the disparity fi = f (πi) at the center of the edge 
segment if the segment is short (less than 6 pixels long). 
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Fig. 8.9 Reprinted with permission from [4]. These are the main types of junctions between 
boundary and curve primitives 

Each of the regions li , ri of the primitive πi = (si, [li , ol 
i], ri , or 

i , ti , pi, di, 
wi[, fi]) is assigned a matching cost where for each pixel v ∈ ri , the disparity 
dv(πi) is the linear interpolation based on the parameter d representing the disparity 
at the ends of the region, in the assumption that w = 0. 

c(ri, d)  = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0 if  ri intersects the curve sketch SC
∑

v∈ri 
|Il (v) − Ir (v − dv(πi))| if or 

i = 1 
α else 

. 

(8.8) 
Then the matching cost of the primitive πi is 

c(πi) = c(ri, [li], ti , di , [fi]) = 

⎧ 
⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

c(ri, di) if ti = 7, 8, 1(curve) 
c(li , di) + c(ri, di) if ti = 2, 1(region) 
c(li , fi) + c(ri, di) if ti = 3, 4 
c(li , di) + c(ri, fi) if ti = 5, 6. 

(8.9) 
The primitives form a graph by the natural adjacency relation between the 

underlying edge segments. 

C. Modeling Junctions Between the Primitives To increase the model accuracy, 
the junction points of two or more primitives are modeled. Similar to [212], certain 
types of possible junctions depending on the degree (the number of primitives) of the 
junction are introduced below and illustrated in Fig. 8.9. These junctions include:
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• Junctions of 2 boundary primitives have three main types: surface junctions, the 
beginning of occlusion, and occlusion junctions. 

• Junctions of 3 boundary primitives have three main types: surface junctions, Y-
junctions, and T-junctions. 

• Junctions of 4 or more boundary primitives are accidental and are assumed to be 
all surface junctions. 

• No junctions between one or two curve primitives and one boundary primitive. 
• Junctions of 1 curve primitive with two boundary primitives have three main 

types: curve beginning, Y-junctions, and T-junctions. 
• Junctions of 2 curve primitives have only one type. 
• Junctions of 3 curve primitives have only one type, namely bifurcation. 
• Junctions of 4 curve primitives have two types, namely curve crossing or curve 

overlapping. In both cases, the opposite primitives can be seen as part of the same 
3D curve. 

Let J = {φi = (t, k, πi1 , . . . , πik ), πi1 , . . . , πik ∈ V1, i  = 1, . . . , nJ } be the set of 
junctions, each containing the list of primitives that are adjacent to it. The variable 
t is the junction type and restricts the types of the primitives πi1 , . . . , πik to be 
compatible with it. 

Each junction φi ∈ J imposes a prior model that depends on the junction 
type, and the types and directions of the 3D primitives πi1 , . . . , πik meeting in this 
junction. This prior is composed of a 3D geometric prior on the primitives and a 2D 
occurrence prior on each particular junction type. 

Thus 

P(φ)  ∝ P(πi1 , . . . , πik |t, φ2D )P (φ2D , t)  = P(φ3D|t, φ2D )P (t |φ2D ) (8.10) 

since the 2d geometry φ2D of the junction is fixed. 
We will now discuss P(φ3D|t, φ2D ) for each junction type. To simplify the 

notation, we define two continuity priors: 

pc(πi, πj ) = 
1 

Zc 
exp

{
−βc|d φ 

i − d φ 
j |2

}
, 

ps(πi, πj ) = 
1 

Zs 
exp

{

−βc|d φ 
i − d φ 

j |2 − βs

(

|d φ 
i − 2d φ 

i + d φ 
j |2 − |d φ 

i − 2d φ 
j + d φ 

j |2
)}

, 

(8.11) 

where di = (d φ 
i , d  φ 

i ) is the disparity of the primitive πi , with d φ 
j being the disparity 

at the junction φ endpoint: 

(1) All the surface junctions of 3 or more boundary primitives and the curve 
bifurcation or crossing have a prior that prefers the same disparity for all 
primitives meeting at this junction. 

P(φ3D |t, φ2D ) = 
1 

Z1

∏

πj ,πk∈φ 
pc(πj , πk). (8.12)
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Fig. 8.10 Reprinted with permission from [4]. Left: The prior of the junction between two 
boundary or curve primitives depends on the angle θ between the primitives. Right: The prior 
of the curve overlapping junction encourages continuity of each pair of opposite curves 

(2) The prior of junctions of two boundary or two curve primitives depends on the 
angle θ between the primitives at the junction. 

P(φ3D |t, φ2D ) = 
1 

Z2 

⎧ 
⎨ 

⎩ 
pc(πj , πk) if |θ − π | > π/6 

ps(πj , πk) else 
, (8.13) 

as shown in Fig. 8.10, left.  
(3) For the curve overlapping junction involving four curve primitives, the prior is 

defined in terms of the continuity of each pair of opposite curves. 

P(φ3D |t, φ2D ) = ps(πi, πk)ps(πj , πl), (8.14) 

as shown in Fig. 8.10, right. 
(4) For the Y-junctions of 3 boundary primitives and for the curve beginning, the 

prior encourages all three primitives to be adjacent, and the primitives πi, πj 
(refer to Fig. 8.9) to have a good continuation as in case (2). 

P(φ3D |t, φ2D ) = 
1 

Z4 
ps(πi, πj )

∏

πu,πv∈φ,{u,v}�={i,j} 
pc(πu, πv). (8.15) 

(5) For the T-junctions, the prior encourages continuity of the occluding edge. 

P(φ3D |t, φ2D ) = ps(πi, πj ). (8.16) 

Since the disparity space of each primitive is discretized, the normalizing 
constant for each junction can be computed effectively.
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The prior P(t |φ2D) can be learned from hand-labeled data, independently for 
each degree (the number of primitives) k of the junction. 

Based on the matching cost, a saliency map 

ψπi (d, [f ]) = exp(−c(ri , [li ], ti , d,  [f ])/10) (8.17) 

toward all possible values of d, f is computed for each primitive πi ∈ V1. This  
information will be used to find the disparities di of the sketch primitives. 

We also compute a saliency map toward the three main types of boundary 
primitives, namely surface (types 1, 2), occluding left (types 3, 4), occluding right 
(types 5, 6), based on the feature 

ξ(πi) = 
mind c(li , d)  

|li | − 
mind [c(li , d) + c(ri , d)] 

|li | + |ri | , (8.18) 

which measures how well both wings of the primitive fit the same disparity, as 
compared to the left wing alone. 

From hand-labeled data, we obtained histograms H12, H34, H56 of the values of 
ξ for each of the three main types of boundary primitives. We fit these histograms 
with Gaussians to even out the small amount of training data and eliminate the need 
for histogram bins. From here, we obtain a likelihood Lπ(t) toward the three main 
types of boundary primitives. 

Lπ(t) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

60e−ξ2/2 if t = 1, 2 

4.4e−(ξ+1.18)2/1.42 + 3.67e−(ξ+8.21)2/6 if t = 3, 4 

9.18e−(ξ−0.58)2/0.87 + 3.06e−(ξ−7.36)2/7.5 if t = 5, 6. 

(8.19) 

Using the intensity-driven likelihood for the boundary primitives, we construct a 
likelihood, driven simultaneously by the image intensity and the geometry (relative 
position of primitives), for each junction φ = {π1, . . . , πk}: 

Lφ(t) = P(φ)Lπ1(t1) . . . Lπk (tk). (8.20) 

D. The Free-Form Layer The primitives π ∈ V1 discussed in the previous 
section are elongated primitives corresponding to line segments, so they can be 
considered of dimension 1. Other sketch primitives that are involved in the free-
form layer are the zero-dimensional primitives corresponding to feature points with 
reliable disparity information, i.e., point primitives. These primitives are a subset 
of the rectangular atomic regions and together with the one-dimensional boundary 
primitives are the control points of the thin plate spline. The curve primitives are not 
involved in the MRF computation. 

Let R be the set of all rectangular atomic regions. For each region r ∈ R, we  
compute a saliency map
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ρr(d) ∝ exp

{

−
∑

v∈r 
|Il (v) − Ir (v − d))|/10

}

(8.21) 

to all possible disparities d ∈ [dmin, dmax]. Then the square regions 

R =
{
ri =

(
di, oi, pi, μi, σ

2 
i

)
, i  = 1, .., nr

}
(8.22) 

have the following parameters: 

1. The disparity di = d(ri) of the center of the region 
2. A label oi specifying whether this region is occluded (value 0) or not (value 1) 
3. A label pi = p(ri) ∈ {0, 1} representing whether the region is a point primitive 

(i.e., control point for the thin plate spline) or not 
4. The mean μi and variance σ 2 

i of the saliency map ρri 

Following [14], all regions (edge regions, curve regions, and square regions) will 
have their occlusion labels deterministically assigned based on the disparities of the 
boundary and curve primitives. For example, for an occlusion primitive πi of type 4, 
the left region li and other regions horizontally to the left of the edge at a horizontal 
distance less than the disparity difference between the right and left wings of πi will 
be labeled as occluded. 

The matching cost for each region ri ∈ R is 

c(ri) =
{

α if oi = 0
∑

v∈ri 
|Il (v) − Ir (v − di))| if oi = 1. 

(8.23) 

The set of point primitives is denoted by 

V0 = {ri ∈ R, si = 1}. (8.24) 

Figure 8.11 shows the labeled graph, i.e., primitive types (middle), and the point 
and boundary primitives that act as control points for the �nsk part (right). The 

Fig. 8.11 Reprinted with permission from [4]. Left image of a stereo sequence, the graph labeling, 
and the control points (point and boundary primitives) of the thin plate spline
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depth and disparity maps obtained this way are shown in Fig. 8.15. Observe that the 
horizontal edges are not control points. 

The dense disparity map D is obtained from V1 and R by interpolation. By using 
the boundary primitives to model the places of discontinuity, the obtained disparity 
map has crisp discontinuities at the object boundaries and is smooth everywhere 
else, as shown in Fig. 8.15. 

E. Bayesian Formulation We formulate our model using the Bayes rule: 

P(V1, R|Il , Ir ) ∝ P(Il |Ir , V1, R)P (R − V0|V0, V1)P (V0, V1). (8.25) 

The likelihood P(Il |Ir , V1, R)  is expressed in terms of the likelihood Lπi (ti) and 
matching cost c(rj ) of the sketch primitives. 

P(Il |Ir , V1, R)  ∝ 
ne∏

i=1 

Lπi (ti) exp[−
∑

rj ∈R 
c(rj )]. (8.26) 

The prior 

P(R  − V0|V0, V1) ∝ exp {−Ec(R) − βbEb(R, V1)} (8.27) 

is defined in terms of the energy of the soft control points: 

Ec(R) =
∑

rj ∈V0 

(dj − μj )/2σ
2 
j , (8.28) 

and the thin plate bending energy: 

Eb(R, V1) =
∑

(x,y)∈G

[
d2 
xx(x, y) + 2dxy(x, y)2 + d2 

yy(x, y)
]
, (8.29) 

which is computed on a 6×6 grid  G containing the centers of all the square regions 
and neighboring grid points on the boundary primitives. For example, if the point 
(x, y) ∈ G is the center of rj ∈ R and rN , rNW , rW , rSW , rS, rSE, rE, rNE  are the 
8 neighbors of rj , then 

dxx(x, y) = dW − 2dj + dE 

dyy(x, y) = dN − 2dj + dS 

dxy(x, y) = (dNE  + dSW − dNW  − dSE)/4. 

Similar terms in the bending energy Eb(R, V1) can be written for cases where one 
or many of the neighbors are boundary primitives. However, there are no terms
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involving the left and right atomic regions li , ri ∈ πi belonging to the same edge 
primitive πi . 

The prior P(V0, V1) = P(V0)P (V1) assumes a uniform prior on V0, while 
P(V1) is defined in terms of the junction priors P(φi) defined above, P(V1) =∏

φi∈J P(φi). 

The Inference Algorithm 

In our problem formulation, there are two types of variables, discrete and continu-
ous. The discrete variables are

� = V d 
1 ∪ Rd (8.30) 

consisting of V d 
1 = {(t (π), ol (π), or (π), p(π)),∀π ∈ V1} and Rd = 

{(s(r), o(r), p(r)),∀ r ∈ R}. All other variables are continuous variables, namely 
V c 
1 = V1 \ V d 

1 and R
c = R − Rd , and can be divided into the boundary conditions

� = V c 
0 ∪ {d(π),∀π ∈ V1, p(π)  = 1}, (8.31) 

and the fill-in variables

� = {([w(π)], [f (π)]),∀ π ∈ V1} ∪ {d(π),∀π ∈ V1, p(π)  = 0} ∪  Rc − V c 
0 . 

(8.32) 

The posterior probability can then be written as 

p(V1, R|Il , Ir ) = p(�,�,�|Il , Ir ). (8.33) 

In a MAP formulation, our algorithm needs to perform the following three tasks: 

1. Reconstruct the 3D sketch to infer the parameters � of the primitives. 
2. Label the primitive graph to infer the discrete parameters �, i.e., associate the 

primitives with the appropriate types. This represents the detection of surface 
boundaries and of the feature points of the image. 

3. Perform “fill in” of the remaining parts of the image, using the MRF and �,� as 
boundary conditions, to infer � and obtain a dense disparity map D. 

The algorithm will proceed as follows. In an initialization phase, the first two 
steps will be performed to compute an approximate initial solution. Then steps (2) 
and (3) will be performed to obtain the final result. 

A. Initialization Initializing the system purely based on the local depth ψπ and 
likelihood Lπ(t) information existent at the primitives π ∈ V1 results in an
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Fig. 8.12 Reprinted with permission from [4]. Left: An initialization purely based on local 
information is not satisfactory. Right: By propagating the junction priors along the sketch, a much 
better initialization can be quickly obtained 

inconsistent initial solution that is valid only at places with reliable local depth 
information, as shown in Fig. 8.12left. 

A major improvement can be achieved by using the junction prior P(φ)  that has 
been defined in Sect. 8.2C, which provides a way to propagate depth information 
quickly along the edges of the sketch, from the places where it is available. This 
is why we use an approximation of the posterior probability that only takes into 
account the matching cost of the edge regions πi ∈ V1 and the junction prior. 

P(V1|Il , Ir ) ∝ 
ne∏

i=1 

Lπi (ti)
∏

φi∈J 
P(φi). (8.34) 

At this stage, the variables that highly depend on the thin plate spline prior will 
be assigned some default values. Thus, the wing parameters wi, ∀πi ∈ V1 will be 
assigned value 0 (i.e., all wings will be horizontal), while the occlusion labels oi 
will be assigned value 1 (not occluded). 

The initialization algorithm alternates the following MCMC steps: 

• A single node move that changes one variable di at a time. 
• A move that simultaneously shifts all di at the same junction φ by the same value. 

This move is capable of adjusting the disparity of primitives at a junction at times 
when changing the disparity of only one primitive will be rejected because of the 
continuity prior.
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• A labeling move as described in the MCMC algorithm below, which proposes a 
new labeling for a set of primitives and junctions. The move is accepted using the 
Metropolis–Hastings method based on the posterior probability from Eq. (8.34). 

The algorithm is run for 10|V1| steps and obtains the initialization result shown 
in Fig. 8.12, right in about 10 s. The initialization algorithm is very fast because 
the fill-in of the interior pixels is not performed, eliminating the expensive MRF 
computation. 

The 3D reconstruction of the curve primitives is performed separately in a similar 
manner. The labeling move is much simpler since the curve primitives basically 
accept two labels, surface/non-surface. The rectangular regions with low matching 
cost and small variance (less than 1) will initially be labeled as control points for the 
thin plate spline. 

B. Updating the Fill-in Variables � Observe that in our formulation of the energy, 
if�,� are fixed, the conditional− log(P (�|�,�)) is a quadratic function in all the 
variables�, so it can be minimized analytically. This implies that� can be regarded 
as a function on �,�, � = �(�,�). This restricts the problem to maximizing the 
probability P(�,�,�(�,�)|Il , Ir ), of much smaller dimensionality. 

Inside each of the regions C bounded by the control point sketch primitives, 
the variables depend only on the control points inside and on the boundary 
of this region. So the computation can be localized to each of these regions 
independently, as shown in Fig. 8.13. Additional speedups can be obtained following 
the approximate thin plate spline methods from [45]. 

Observe that the update can affect some non-control point edges, such as the 
horizontal edges from Fig. 8.13. 

For each such region C, we define relative labels lC of the edges adjacent to C 
that only take into account the side of the edge that belongs to C. For example, an 
occluding edge of type 4 and an edge of type 1 will have the same label relative to 
the region C containing the right wing of the edge. Using these relative labels, we 
reduce the computation expense by defining the energy of the region 

Fig. 8.13 Reprinted with permission from [4]. The fill-in can be restricted to the connected 
components bounded by control point boundary primitives. In a few steps, the initial 3D 
reconstruction before graph labeling is obtained. Shown are the 3D reconstructions after 0, 1, and 
5 connected components have been updated. The horizontal edges change the disparity at the same 
time as the interior because they are not control points
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Fig. 8.14 Reprinted with permission from [4]. Each graph labeling move changes the types of 
a set of primitives in a consistent manner. First, a primitive π is chosen and its type is sampled 
from the likelihood Lπ(t); then the adjacent junctions change their type conditional on the chosen 
type of π , which in turn determines the types of the other primitives of the junctions, etc. The 
labeling move is accepted based on the Metropolis–Hastings method. Illustrated is the left side of 
the umbrella image 

E(C, lC) = Ec(C) + μbEb(C) +
∑

r∈C∩R 
c(r). (8.35) 

The full posterior probability can be recovered from the energy of the regions 
and the junction prior: 

P(V1, R|Il , Ir ) ∝ 
ne∏

i=1 

Lπi (ti) exp

[

−
∑

C 
E(C, lC)

]
∏

φ∈J 
P(φ). (8.36) 

C. The MCMC Optimization Algorithm After the initialization, the 3D sketch 
variables � = �0 will be fixed. The algorithm will only update the primitive types
� and the fill-in variables �. 

To maximize P(�,�0, �(�,�0)|Il , Ir ), we will use a Markov chain Monte 
Carlo algorithm that will sample P(�,�0, �(�,�0)|Il , Ir ) and obtain the most 
probable solutions. 

At each step, the algorithm proposes, as shown in Fig. 8.14, new types for a set 
of primitives N and junctions J in one move, as follows: 

1. Grow a set N of primitives as follows: 

1. Choose a random non-horizontal primitive π . 
2. Initialize N = {π} and J = {φ1, φ2} where φ1, φ2 are the two junctions 

adjacent to π . 
3. Sample the primitive type t (π)  from the local likelihood Lπ(t). 
4. Sample the type of φ ∈ J from Lφ(t), conditional on the primitive type t (π). 

This determines the types of all primitives of Nn = {π ′ �∈ N,  π ′ ∼ 
φ for some φ ∈ J }, 
where π ∼ φ means π is adjacent to φ. 

5. Set N ← N ∪ Nn. 
6. Initialize Jn = ∅.
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7. For each π ∈ Nn, pick the adjacent junction φ �∈ J . If  π changed its type at 
step 4, set 
Jn ← Jn ∪ {φ}, else set  Jn ← Jn ∪ {φ} with probability 0.5. 

8. Set J ← J ∪ Jn. 
9. Repeat steps 4–8 for each π ∈ Nn and each φ ∈ Jn, π  ∼ φ. 

2. Update the fill-in variables �(�,�) for the connected components C where it is 
necessary. 

3. Accept the labeling move based on the full posterior probability, computed using 
Eq. (8.36). 

Example Results 

Experiments are presented in Fig. 8.15 where four typical images for stereo match-
ing are shown. The first two have textureless surfaces, and the most information is 
from the surface boundaries. The fourth image has curves (twigs). For these images, 

Fig. 8.15 Reprinted with permission from [4]. Results obtained using our method. (a) Left image  
of the stereo pair, (b) 3D sketch using the primitives, (c) 3D depth map, (d) disparity map
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it is not a surprise to see that the graph cut method with simple MRF models on 
pixels produces unsatisfactory results. The second and fourth images have free-
form surfaces with or without textures from [153]) and [213]. On the teddy-bear 
sequence, the percentage of pixels with an error of at least 1, as compared to the 
ground truth, is 3.3%. In comparison, the graph cuts result observes a 7.3% error 
rate. We have also shown the interactions of the two layers in Fig. 8.13 and the 
effects of sketch labeling in Fig. 8.14. 

8.3 Shape from Shading 

In this section, we first briefly introduce the Lambertian model and the classic 
Horn’s shape-from-shading, or in short SFS, work. Then we briefly present a two-
level generative model for representing the images and surface depth maps of 
drapery and clothes. 

In computer vision, the techniques to recover shape are called shape-from-
X techniques, where X can be shading, stereo, motion, texture, etc. Shape from 
shading (SFS) deals with the recovery of shape from a gradual variation of shading 
in the image. Artists have long exploited lighting and shading to convey vivid 
illusions of depth in paintings. It is essential to study how the images are formed 
in order to solve the SFS problem. A simple model of image formation is the 
Lambertian model, in which the gray level at a pixel in the image depends on the 
light source direction and the surface normal. In SFS, given a gray level image, 
the aim is to recover the light source and the surface shape at each pixel in the 
image. However, real images do not always follow the Lambertian model. Even 
if we assume Lambertian reflectance and known light source direction, and if the 
brightness can be described as a function of surface shape and light source direction, 
it is still not straightforward. The reason is that if the surface shape is described in 
terms of the surface normal, we have a linear equation with three unknowns, and if 
the surface shape is described in terms of the surface gradient, we have a nonlinear 
equation with two unknowns. Therefore, finding a unique solution to SFS is difficult; 
it requires additional constraints. 

Shading plays an essential role in the human perception of surface shape. 
Researchers in human vision have attempted to understand and simulate the 
mechanisms by which our eyes and brains use the shading information to recover 
the 3D shapes. The extraction of SFS by the visual system is also strongly affected 
by stereoscopic processing. Barrow and Tenenbaum discovered that it is the line 
drawing of the shading pattern that seems to play a central role in interpreting shaded 
patterns [12]. Mingolla and Todd’s study of the human visual system based on the 
perception of solid shape [173] indicated that the traditional assumptions in SFS— 
Lambertian reflectance, known light source direction, and local shape recovery—are 
not valid from a psychological point of view. From the above discussion, one can 
observe that the human visual system uses SFS differently than computer vision 
does typically.
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In the 1990s, Horn et al. [112] discovered that some impossibly shaded images 
exist, which could not be shading images of any smooth surface under the 
assumption of uniform reflectance properties and lighting. For this kind of image, 
SFS will not provide a correct solution, so it is necessary to detect impossibly shaded 
images. 

SFS techniques can be divided into four groups: minimization approaches, 
propagation approaches, local approaches, and linear approaches. Minimization 
approaches obtain the solution by minimizing an energy function. Propagation 
approaches propagate the shape information from a set of surface points (e.g., 
singular points) to the whole image. Local approaches derive shape based on the 
assumption of surface type. Linear approaches compute the solution based on the 
linearization of the reflectance map. 

One of the earlier minimization approaches, which recovered the surface gradi-
ents, was by Ikeuchi and Horn [117]. Since each surface point has two unknowns 
for the surface gradient, and each pixel in the image provides one gray value, we 
have an underdetermined system. To overcome this, they introduced two constraints: 
the brightness constraint and the smoothness constraint. The brightness constraint 
requires that the reconstructed shape produces the same brightness as the input 
image at each surface point, while the smoothness constraint ensures a smooth 
surface reconstruction. The shape was computed by minimizing an energy function 
that consists of the above two constraints. In general, the shape at the occluding 
boundary was given for the initialization to ensure a correct convergence. Since 
the gradient at the occluding boundary has at least one infinite component, the 
stereographic projection was used to transform the error function to a different 
space. Additionally, Brooks and Horn [23] minimized the same energy function in 
terms of the surface normal using these two constraints. For further improvements, 
Frankot and Chellappa [58] enforced integrability in Brooks and Horn’s algorithm to 
recover integrable surfaces (surfaces for which zxy = zyx). Surface slope estimates 
from the iterative scheme were expressed in terms of a linear combination of a 
finite set of orthogonal Fourier basis functions. The enforcement of integrability was 
done by projecting the non-integrable surface slope estimates onto the nearest (in 
terms of distance) integrable surface slopes. This projection was fulfilled by finding 
the closest set of coefficients that satisfy integrability in the linear combination. 
Their results showed improvements in both accuracy and efficiency over Brooks 
and Horn’s algorithm [23]. Later, Horn [111] replaced the smoothness constraint 
in his approach with an integrability constraint. The major problem with Horn’s 
method is its slow convergence. Szeliski [228] sped it up using a hierarchical basis 
pre-conditioned conjugate gradient descent algorithm. Based on the geometrical 
interpretation of Brooks and Horn’s algorithm, Vega and Yang [240] applied 
heuristics to the variational approach in an attempt to improve the stability of Brooks 
and Horn’s algorithm. 

As for traditional propagation approaches, Horn proposed the characteristic 
strip method [109]. A characteristic strip is a line in the image along which the 
surface depth and orientation can be computed if these quantities are known at the 
starting point of the line. Horn’s method constructs initial surface curves around



232 8 2.5D Sketch and Depth Maps

the neighborhoods of singular points (singular points are the points with maximum 
intensity) using a spherical approximation. The shape information is propagated 
simultaneously along the characteristic strips outward, assuming no crossover of 
adjacent strips. The direction of characteristic strips is identified as the direction of 
intensity gradients. To get a dense shape map, new strips have to be interpolated 
when neighboring strips are not close to each other. 

Examples for local approaches are [194] and [147]. Pentland’s local approach 
[194] recovered shape information from the intensity and its first and second 
derivatives. He used the assumption that the surface is locally spherical at each 
point. Under the same spherical assumption, Lee and Rosenfeld [147] computed 
the slant and tilt of the surface in the light source coordinate system using the first 
derivative of the intensity. 

The approaches by Pentland and Tsai and Shah are linear approaches that 
linearize the reflectance map and solve for shape. Pentland [147] used the linear 
approximation of the reflectance function in terms of the surface gradient and 
applied a Fourier transform to the linear function to get a closed-form solution 
for the depth at each point. Tsai and Shah [196] applied the gradient’s discrete 
approximation first and then employed the linear approximation of the reflectance 
function in terms of the depth directly. Their algorithm recovered the depth at each 
point using a Jacobi iterative scheme. 

Except for the traditional SFS work, we show in the following sections a 
two-level generative model for representing the images and surface depth maps 
of drapery and clothes. The upper level consists of a number of folds that will 
generate the high-contrast (ridge) areas with a dictionary of shading primitives 
(for 2D images) and fold primitives (for 3D depth maps). These primitives are 
represented in parametric forms and are learned in a supervised learning phase using 
3D surfaces of clothes acquired through the photometric stereo. The lower level 
consists of the remaining flat areas that fill between the folds with a smoothness 
prior (Markov random field). We show that the classical ill-posed problem— 
shape from shading (SFS)—can be much improved by this two-level model for its 
reduced dimensionality and incorporation of middle-level visual knowledge, i.e., the 
dictionary of primitives. Given an input image, we first infer the folds and compute 
a sketch graph using a sketch pursuit algorithm as in the primal sketch [90, 91]. The 
3D folds are estimated by parameter fitting using the fold dictionary, and they form 
the “skeleton” of the drapery/cloth surfaces. Then the lower level is computed by 
the conventional SFS method using the fold areas as boundary conditions. The two 
levels interact at the final stage by optimizing a joint Bayesian posterior probability 
on the depth map. We show a number of experiments that demonstrate robust results. 
In a broader scope, our representation can be viewed as a two-level inhomogeneous 
MRF model that is applicable to general shape-from-X problems. Our study is an 
attempt to revisit Marr’s idea [169] of computing the 2.5D sketch from primal 
sketch.
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Overview of Two-Layer Generation Model 

The dataflow of our method is illustrated in Fig. 8.16, and a running example is 
shown in Fig. 8.17. The problem is formulated in a Bayesian framework, and we 
adopt a stepwise greedy algorithm by minimizing various energy terms sequentially. 
Given an input image I on a lattice �, we first compute a sketch graph G for the 
folds by a greedy sketch pursuit algorithm. Figure 8.17b is an exemplary graph G. 
The graph G has attributes for the shading and fold primitives. G decomposes the 
image domain into two disjoint parts: the fold part Ifd for pixels along the sketch and 
non-fold part Infd for the remaining flat areas. We estimate the 3D surface Ŝfd for 
the fold part by fitting the 3D fold primitives in a fold dictionary �fd. Figure 8.17c 
shows an example of Sfd. This will yield gradient maps (pfd, qfd) for the fold 
surface. Then we compute the gradient maps (pnfd, qnfd) for the non-fold part by 
the traditional shape-from-shading method on the lower-level pixels, using gradient 
maps in the fold area as boundary conditions. Then we compute the joint surface 
S = (Sfd, Snfd) from the gradient maps (p, q) of both fold part and non-fold part. 
Therefore, the computation of the upper-level fold surfaces Sfd and the lower-level 
flat surface Snfd is coupled. Intuitively, the folds provide the global “skeleton” and 
therefore boundary conditions for non-fold areas, and the non-fold areas propagate 
information to infer the relative depth of the folds and to achieve a seamless surface 
S. The two-level generative model reduces to the traditional smoothness MRFmodel 
when the graph G is null. Since the two-layer generative model is similar to the 
one described in the previous section, we skip the formulation part and show some 
qualitative results. 

fd 

nfd 

fold part 

non-fold part

 fold surfaces 

cloth surface 
fill-inadjust 

sketch graphinput  image 

sketch 

pursuit 

folds reconstruction 

and fitting

 learning  dictionary 

shape-from-shading 

generic prior 

fd 

nfd 

non-fold surface 

training 
images 

photometric 
stereo  of 3D fold primitives

   \ 

Fig. 8.16 Reprinted with permission from [93]. The data flow of our method for computing the 
3D surface S of drapery/cloth from a single image I using the two-layer generative model. See text 
for interpretation
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Fig. 8.17 Reprinted with permission from [93]. (a) A drapery image under approximately parallel 
light. (b) The sketch graph for the computed folds. (c) The reconstructed surface for the folds. (d) 
The drapery surface after filling in the non-fold part. It is viewed at a slightly different angle and 
lighting direction 

Results 

We test our whole algorithm on a number of images. Figure 8.18 shows the results 
for three images of drapery hung on wall and a cloth image (last column) on 
some people. The lighting direction and surface albedos for all the testing cloth 
are estimated by the method in [275]. 

In the experimental results, the first row are input images, the second row are the 
sketches of folds in the input images and their domains, and the third row are the 
syntheses for Ifd based on the generative sketch model for the fold areas, the fourth 
row are the 3D reconstruction results Sfd for the fold areas, while the fifth and sixth 
rows are the final reconstruction results of the whole cloth surface S shown in two 
novel views. 

In these results, the folds in row (d) have captured most of the perceptually salient 
information in the input images, and they can reconstruct the surface without too 
much skewing effect. It makes sense to compute them before the non-fold part. We 
observe that the SFS for the non-fold parts indeed provides useful information for 
the 3D positions of the folds.
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Fig. 8.18 Reprinted with permission from [93]. (a) Input cloth image. (b) 2D folds and their image 
domains. (c) Synthesis for 2D fold sketches Ifd. (d) 3D reconstruction Sfd for fold areas. (e)–(f) 
Final reconstructed surface S in novel views



Chapter 9 
Learning by Information Projection 

In this chapter, a general framework [37, 281] for learning a statistical model as an 
approximation to the true distribution that generates images is considered. 

9.1 Information Projection 

Suppose training images {Im,m  = 1, . . . ,M} ∼  f (I) are observed. The goal is 
to find a good approximation to the unknown true distribution f that generates 
the training examples. Suppose M is large so that it is feasible to estimate the 
expectations with respect to f accurately from the training examples. 

Consider starting from a reference distribution q(I), e.g., the white noise 
distribution. Suppose there is a set of features H(I) = (Hk(I), k = 1, . . . , K). 
The following may be estimated: 

Ef [H(I)] ≈  
1 

M 

M∑

m=1 

H(Im). (9.1) 

Ef [H(I)] is all that is known about the unknown f as far as the feature H is 
concerned. 

Again, the goal is to find a distribution p to be an approximation to the unknown 
distribution f . Such a distribution should better reproduce the feature statistics, i.e., 

Ep[H(I)] = Ef [H(I)]. (9.2) 

Call p such an eligible distribution. Let

� = {p : Ep[H(I)] =  Ef [H(I)]} (9.3) 
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Fig. 9.1 In the above illustration, each point is a probability distribution. f is the true distribution 
that generates the training examples. q is the reference distribution or the null model. The curve �

consists of all the distributions that reproduce the feature statistics of f . p∗ is the projection of q 
onto �

be the family of all the eligible distributions. Clearly, f ∈ �. See Fig. 9.1 for an 
illustration, in which each point is a probability distribution. f is the true distribution 
that generates the training examples. q is the reference distribution or the null model. 
The curve� consists of all the distributions that reproduce the feature statistics of f . 

So starting from q, the updated goal is to find a distribution in � so that it has the 
minimum distance from q, i.e., an eligible distribution that can be obtained from a 
minimum modification of q, so that artificial features beyond H are not introduced. 
Let p∗ be such a distribution. p∗ may be thought of as the projection of q onto the 
family �, and it is hence called the information projection. More specifically, the 
objective is to find 

p∗ = argmin 
p∈�

KL(p‖q). (9.4) 

Orthogonality and Duality 

In order to solve for p∗ = argminp∈� KL(p‖q), the Langevin multiplier may be 
used as it was for the FRAME model. In this chapter, an approach is adopted that 
is less direct but is more geometrically meaningful. A dual minimization problem 
may be found by introducing another family of distributions that is called the model 
family. Specifically, the following exponential family models are defined: 

p(I; λ) = 
1 

Z(λ) 
exp {〈λ, H(I)〉} q(I), (9.5) 

in which λ = (λk, k  = 1, . . . , K), 〈λ, H(I)〉 = ∑K 
k=1 λkHk(I), and 

Z(λ) =
∫

exp {〈λ, H(I)〉} q(I) = Eq [exp {〈λ, H(I)〉}] (9.6) 

is the normalizing constant. For simplicity, p(I; λ) as pλ is written. Let

� = {pλ,∀λ} (9.7)
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Fig. 9.2 The eligible family � and the model family � are orthogonal, � ⊥ �, because for any 
p ∈ �, pλ ∈ �, KL(p‖pλ) = KL(p‖p∗) +KL(p∗‖pλ), in which  p∗ = � ∩ � is the intersection 

be the model family. Clearly, q ∈ � with λ = 0. See Fig. 9.2 for an illustration, in 
which the model family � is illustrated by the vertical curve. 

Let p∗ = p(I; λ∗) = � ∩ � be the intersection between the eligible family and 
the model family. It shall be shown that p∗ = argminp∈� KL(p‖q), which is the 
projection that is sought after. The key is that � ⊥ �; that is, � is orthogonal to �, 
in the sense of the following Pythagorean theorem [37]: 

Theorem 1 For any pλ ∈ � and any p ∈ �: 

KL(p‖pλ) = KL(p‖p�) + KL(p�‖pλ). (9.8) 

Proof 

KL(p‖pλ) = Ep[log p(I)] −  Ep[log p(I; λ)]. (9.9) 

KL(p‖p�) = Ep[log p(I)] −  Ep[log p(I; λ�)]. (9.10) 

KL(p�‖pλ) = Ep� [log p(I; λ�]] − Ep� [log p(I; λ)]. (9.11) 

Meanwhile, Ep[log p(I; λ�)] =  Ep� [log p(I; λ�]], and Ep[log p(I; λ)] =  
Ep� [log p(I; λ)], because Ep[H(I)] =  Ep� [H(I)], as both p and p� belong to
�. Thus, the result follows. �

The above result leads to the following duality result: 

p∗ = argmin 
p∈�

KL(p‖q) = arg min 
pλ∈�

KL(f ‖pλ). (9.12) 

Thus, it is seen that p∗ = argminp∈� KL(p‖q) by finding p∗ = argminpλ∈�

KL(f ‖pλ). Since KL(f ‖pλ) = Ef [log f (I)] −  Ef [logp(I; λ)], 

p∗ = arg min 
pλ∈�

KL(f ‖pλ) = arg max 
pλ∈�

Ef [log p(I; λ)]. (9.13) 

Ef [logp(I; λ)] is actually the log-likelihood in the limit.
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Maximum Likelihood Implementation 

If {Im,m  = 1, . . . , M} ∼  f (I) is observed, then 

Ef [log p(I; λ)] ≈  
1 

M 

M∑

m=1 

log p(Im; λ), (9.14) 

so λ∗ can be approximated by the maximum likelihood estimate λ̂ = argmaxλ L(λ), 
in which 

L(λ) = 
1 

M 

M∑

m=1 

log p(Im; λ) = 
1 

M 

M∑

m=1

〈λ, H(Im)〉 −  log Z(λ) (9.15) 

is the log-likelihood function of the exponential family model (9.5). 
It can be shown that 

∂ 
∂λ 

log Z(λ) = Eλ[H(I)], (9.16) 

in which Eλ denotes the expectation with respect to p(I; λ). 

∂2 

∂λ2 
log Z(λ) = Varλ[H(I)], (9.17) 

in which Varλ denotes the variance with respect to p(I; λ). Thus, 

∂ 
∂λ 

L(λ) = 
1 

M 

M∑

m=1 

H(Im) − Eλ[H(I)], (9.18) 

and 

∂2 

∂λ2 
L(λ) = Varλ[H(I)]. (9.19) 

That is, L(λ) is a concave function with a unique maximum, provided that Var[H(I)] 
is positive definite, which is the case if the components of H(I) are linearly 
independent. At the maximum λ̂, 

E
λ̂
[H(I)] =  

1 

M 

M∑

m=1 

H(Im), (9.20) 

in which Eλ denotes the expectation with respect to p(I; λ). Thus, at the maximum 
likelihood estimate, the model reproduces the observed feature statistics.
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If M → ∞, L(λ) → Ef [log p(I; λ)], and at the maximum, Ef [H(I)] =  
Eλ� [H(I)], i.e., p

λ̂ → p∗ = � ∩ �. 
Crucially, the information projection viewpoint is deeper than the maximum 

likelihood estimation of the exponential family model (9.5). The former provides 
a justification for the latter, and the latter is to implement the former. 

9.2 Minimax Learning Framework 

Suppose there are two different sets of features H(I) and H̃ (I); then, there are two 
different eligible families � and �̃. If the same reference distribution q is projected 
onto� and �̃, respectively, p∗ and p̃∗ will be the results, respectively. In Fig. 9.3, the  
solid curve illustrates�, while the dotted curve illustrates �̃. Due to the Pythagorean 
theorem, 

KL(f ‖q) = KL(f ‖p∗) + KL(p∗‖q) = KL(f ‖p̃∗) + KL( p̃∗‖q). (9.21) 

Thus, if the desire is to make KL(f ‖p∗) small, KL(p∗‖q) needs to be made large. 
So if there are many different choices of H , then the one that maximizes KL(p∗‖q) 
should be chosen. Recall that p∗ = argminp∈� KL(p‖q); thus, the goal is to solve 
the following max–min problem: 

max 
H 

min 
p∈�(H) 

KL(p‖q), (9.22) 

in which �(H) is the eligible family defined by the set of features H . Because of 
the duality, the above problem is equivalent to the maximum likelihood problem, 

max 
H 

min 
λ 

KL(f ‖pH,λ), (9.23) 

in which pH,λ is the exponential family model defined by H in Eq. (9.5). Here H is 
made explicit in pH,λ because different sets of features are being considered. Thus, 
the log-likelihood L in (9.15) can be maximized over both λ and H . 

Fig. 9.3 The solid curve and the dotted curve illustrate two eligible families defined by two 
different sets of feature statistics. q should be projected onto the solid curve instead of the dotted 
curve in order to get closer to the target distribution f
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Fig. 9.4 Learning a sequence 
of distributions pk to 
approach the target 
distribution f . Each time, the 
current distribution pk−1 is 
projected onto the eligible 
family defined by Hk to 
obtain pk 

Intuitively, for a given set of features H that defines an eligible family �(H), the  
goal is to choose p that is closest to q to avoid adding artificial features that are not 
in H . Meanwhile, for different sets of features, the set of features so that the change 
from q to the corresponding p∗ is the largest should be chosen. 

The minimax entropy learning [281] is a special case of the above learning 
scheme, in which the reference distribution q is the uniform measure. 

Model Pursuit Strategies 

H(I) = (Hk(I), k = 1, . . . , K)  may be obtained by selecting each Hk sequentially 
to pursue a sequence of models pk that get closer and closer to the target distribution 
f . Figure 9.4 illustrates the idea of sequential projection. The starting point is p0 = 
q, the reference distribution or the null model. After selecting the first feature H1, the  
eligible family �(H1) that consists of all the distributions that reproduce Ef [H1(I)] 
is obtained. Then, p0 is projected onto �(H1) to obtain p1. Then, the second feature 
H2 is selected, and p1 is projected onto �(H2) to obtain p2, and so forth. Because 
of the Pythagorean theorem, each iteration approaches the target f . 

Sequential projection leads to the following greedy strategy to choose Hk 
sequentially. At each step, the maximum reduction in the distance from the current 
model to the target distribution is sought. Specifically, let pk−1 be the current model. 
Hk = argmaxKL(pk‖pk−1) is chosen, which can be implemented by the maximum 
likelihood of the following exponential family model: 

pk(I) = 
1 

Zk(λk) 
exp {λkHk(I)} pk−1(I), (9.24) 

in which pk−1 plays the role of the current reference distribution, and both Hk and 
λk are obtained by maximizing the likelihood function of (9.24) as a function of Hk 
and λk . In the end, a model of the form (9.5) is obtained. 

In the above discussion, it is assumed that there is a large dictionary of features 
{Hi, i  = 1, . . . , N}, and a small number of them from this large dictionary may 
be selected. A related strategy for feature selection is via �1 regularization, as in 
basis pursuit [26] or Lasso [230]. Specifically, the following full model is assumed, 
instead of the final selected model:
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p(I; λ) = 
1 

Z(λ) 
exp

{
N∑

i=1 

λiHi(I)

}
q(I), (9.25) 

in which λ = (λi, i  = 1, . . . , N)  is a long vector. The vector λ is assumed to 
be sparse, i.e., only a small number of its components are different from zero. 
Let L(λ) be the log-likelihood of the above full model; model selection can be 
performed by maximizing the �1-regularized log-likelihood, L(λ) + ρ|λ|, in which 
|λ| = ∑N 

i=1 |λi | is the �1 norm of λ, and ρ is a tuning constant. The maximization 
of the penalized log-likelihood L(λ) + ρ|λ| can be accomplished by an epsilon-
boosting algorithm [67, 206], in which at each step, the component of L′(λ) is 
chosen that has the maximum magnitude, and then this component is updated by 
a small amount ε. 

It is also possible that the dictionary of the features is parameterized by some 
continuous parameters γ , so the model is 

p(I; θ)  = 
1 

Z(θ) 
exp

{
N∑

i=1 

λiHi(I; γ )

}
q(I), (9.26) 

in which θ = (λ, γ ). Both  λ and γ may be learned by maximum likelihood. 

2D Toy Example 

So far, not much detail has been given about the features. In this section, the idea 
of information projection using concrete examples of learning two-dimensional 
distributions, in which the feature statistics are linear projections or filter responses, 
shall be elaborated. 

Figure 9.5 illustrates two examples of information projection. The training exam-
ples {Im,m  = 1, . . . ,M}, are two-dimensional, i.e., they are images of different 
two-dimensional points. The scatterplot of the data forms a two-dimensional cloud 
of points. The features are of the form Hk(I) = h(〈I, Bk〉), in which Bk is also a 
two-dimensional vector, just like I. 〈I, Bk〉 is the projection of I on Bk . One may  
also call it a filter response, in which Bk plays the role of a filter. h(r) is a one-hot 
indicator vector. Specifically, the range of 〈I, Bk〉 is divided into a finite number of 
L bins, so that h(r) = (hl(r), l = 1, . . . , L). hl(r) = 1 if  r falls into the l-th bin, 
and hl(r) = 0 otherwise. Thus,

∑M 
m=1 Hk(Im)/M = ∑M 

m=1 h(〈Im,Bk〉)/M is the 
histogram of the projected points {〈Im,Bk〉,m  = 1, . . . , M} projected onto Bk . It  
may be assumed that the squared length |Bk|2 = 1 and that the direction Bk may be 
discretized in the two-dimensional domain. 

Consider starting from the uniform distribution over the two-dimensional domain 
of I, assumed to be the unit square. Then, apply the model pursuit strategy by
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Fig. 9.5 Reprinted with permission from [155]. This is an example of learning two-dimensional 
distributions by information projection. In each step, the marginal distribution of the data points 
projected onto a selected vector is matched 

selecting Bk , k = 1, . . . , K . Each time, a Bk is selected, and the marginal histogram 
of the projected points is matched. After a number of steps, a model 

p(I;B, λ)  = 
1 

Z 
exp

{
K∑

k=1 

λkh(〈I, Bk〉)
}

q(I) (9.27) 

is pursued, in which λ = (λk, k  = 1, . . . , K)  and B = (Bk, k  = 1, . . . , K)  is the 
learned dictionary of projections or filters. 

Figure 9.5 illustrates the learning process. In each example, the first row displays 
the target distribution f , as well as the selected direction or filter Bk for each k. The  
second row displays the learned model p as more directions are added. After adding 
only a small number of filters, the learned model p is very similar to f . The learning 
method is related to projection pursuit [65]. 

In Fig. 9.5, the starting point is the uniform distribution. One can also start from 
a Gaussian white noise model with a small variance. 

In addition to the pursuit strategy, the dictionary B may also be learned directly 
by maximum likelihood, by taking derivatives with respect to both λ and B. In  
order to take the derivative with respect to Bk , h needs to be made continuous and
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differentiable. A possible choice is the rectified linear unit h(r) = max(0, r  − b), in  
which b is the threshold, which can also be estimated by maximum likelihood. 

Although the two toy examples are simple, they are very illustrative and have 
deep implications. The model (9.27) can be extended to model large images by 
making the filters Bk convolutional, i.e., Bk is a localized image patch (e.g., 7 × 7) 
and Bk is applied around each pixel. If this model is learned from natural images, 
Gabor filters and differences of Gaussian filters will be learned. Model (9.27) is the  
simplest FRAME model. 

Learning Shape Patterns 

In addition to learning image appearance patterns, shape patterns may also be 
learned by information projection. Figure 9.6 illustrates an example of learning 

Fig. 9.6 Reprinted with permission from [276]. This is an example of learning a sequence of 
models for shapes by adding shape statistics
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Fig. 9.7 Reprinted with permission from [155]. This is an example of learning a sequence of 
models for face shapes by adding shape statistics 

generic object shapes by adding shape statistics. Figure 9.7 illustrates an example 
of learning specific face shapes by adding relevant statistics. 

Relation to Discriminative Learning 

Suppose negative examples from the reference distribution q(I) are observed, and 
positive examples from the model p(I; λ) in (9.5) are observed. Let α be the prior 
probability that a positive example is observed. Then the posterior probability that 
an example I is a positive example is 

p(+|I) = 1 

1 + exp
{
−∑K 

k=1 λkHk(I) − b
} , (9.28) 

in which b = log[α/(1 − α)]. This is a logistic regression model. If examples from 
multiple categories are observed, a multinomial logistic regression will be obtained. 

The learning method in the previous section can be considered a generative 
version of AdaBoost [59].
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Information Scaling 

One important property of natural image data that distinguishes vision from other 
sensory tasks such as speech recognition is that scale plays an important role 
in image formation and interpretation. Specifically, visual objects can appear at 
a wide range of scales in the images due to the change of viewing distance as 
well as camera resolution. The same objects appearing at different scales produce 
different image data with different statistical properties. Figure 10.1 shows two 
examples of information scaling, where the change of scale causes the change of 
image properties, which may trigger the change of the modeling scheme for image 
representation. 

In this section, we study the change of statistical properties, in particular, some 
information theoretical properties, of the image data over scale. We show that the 
entropy rate, defined as entropy per pixel, of the image data changes over scale. 
Moreover, the inferential uncertainty of the outside scene that generates the image 
data also changes with scale. We call these changes information scaling. 

10.1 Image Scaling 

To give the reader some concrete ideas, we first study information scaling empiri-
cally by experimenting with the so-called dead leaves model. 

Model and Assumptions 

The dead leaves model [171] was used by Lee et al. [145] in their investigation 
in image statistics of natural scenes, which was also previously used to model 
natural images. For our purpose, we may consider that the model describes an ivy 
wall covered by a large number of leaves of similar sizes. See Fig. 10.2 for some 
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Fig. 10.1 Images of the same objects can appear very different at different viewing distances or 
camera resolution, a phenomenon we call information scaling 

Fig. 10.2 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008, 
published by Brown University. Reprinted with permission from [257]. Pictures of the simulated 
ivy wall taken at 8 viewing distances. The viewing distance of the i + 1-st image is twice that of 
the i-th image 

examples. We assume that the leaves are of a squared shape and are uniformly 
colored. Each leaf is represented by: 

1. Its length or width r , which follows a distribution f (r)  ∝ 1/r3 over a finite range 
[rmin, rmax]. 

2. Its color or shade a, which follows a uniform distribution over [amin, amax]. 
3. Its position (x, y, z), where the wall serves as the (x, y) plane, and z ∈ [0, zmax] 

is the distance between the leaf and the wall. We assume that zmax is very small 
so that z matters only for deciding the occlusions among the leaves. 

For the collection of leaves {(rk, ak, xk, yk, zk)}, we assume that rk are inde-
pendent of each other, and so are ak . (xk, yk, zk) follows a Poisson process in
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R2 × [0, zmax]. We assume that the intensity of the Poisson process λ is large 
enough so that the leaves completely cover the wall. As noted by Lee et al. 
[146], {(rk, ak, xk, yk, zk)} is a Poisson process in the joint domain [rmin, rmax] ×  
[amin, amax] ×  R2 × [0, zmax] with respect to the measure f (r)drdaλdxdydz. 

Lee et al. [146] show that this Poisson process is scale-invariant under the 
assumption that [rmin, rmax] → [0,∞]. Specifically, under the scaling transforma-
tion x′ = x/s and y′ = y/s, where s is a scaling parameter, we have r ′ = r/s, 
and the Poisson process will be distributed in [rmin/s, rmax/s] × [amin, amax] ×  
R2 × [0, zmax] with respect to the measure f (sr ′)sdr ′daλsdx′sdy′dz, which is 
equal to f (r ′)dr ′daλdx′dy′dz′ because f (r)  ∝ 1/r3. As  [rmin, rmax] → [0,∞], 
[rmin/s, rmax/s] → [0,∞] too, so the Poisson process is invariant under the scaling 
transformation. The assumption of Lee et al. [145] appears to hold for most of the 
studies of natural image statistics. 

However, in our experiment, [rmin, rmax] is assumed to be a relatively narrow 
range. Under the scaling transformation, this range will change to [rmin/s, rmax/s], 
which is far from being invariant. From this perspective, we may consider that Lee 
et al. [146] and the papers cited above are concerned with the marginal statistics 
by integrating over the whole range of scale. Our work, however, is concerned with 
conditional statistics given a narrow range of scale, especially how such conditional 
statistics change under the scaling transformation. While it is important to look 
at the marginal statistics over the whole range of scales, it is perhaps even more 
important to study the conditional statistics at different scales in order to model 
different image patterns. Moreover, the conditional statistics at different scales may 
have to be accounted for by different regimes of statistical models. 

Image Formation and Scaling 

Let Ok ⊂ R2 be the squared area covered by leaf k in the (x, y) domain of the ivy 
wall. Then the scene of the ivy wall can be represented by a function W(x, y) = 
ak(x,y), where k(x, y) = argmaxk:(x,y)∈Ok zk , i.e., the most forefront leaf that covers 
(x, y). W(x, y) is a piecewise constant function defined on R2. 

Now let us see what happens if we take a picture of W(x, y) from a distance d. 
Suppose the scope of the domain covered by the camera is Ω ⊂ R2, where Ω is 
a finite rectangular region. As noted by Mumford and Gidas [176], a camera or a 
human eye only has a finite array of sensors or photoreceptors. Each sensor receives 
light from a small neighborhood of Ω . As a simple model of the image formation 
process, we may divide the continuous domain Ω into a rectangular array of squared 
windows of length or width σd, where σ is decided by the resolution of the camera. 
Let {Ωij } be these squared windows, with (i, j) ∈ D, where D is a rectangular 
lattice. 

The image I is defined on D. Let  s = dσ be the scale parameter of the image 
formation process; then
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Is(i, j) = 
1 

s2

∫
Ωij 

W(x, y)dxdy, (i, j) ∈ D, (10.1) 

which is the average of W(x, y) within window Ωij . Equation (10.1) can also be 
written as 

ws(x, y) = 
1 

s2

∫
W(x′, y′)g((x − x′)/s, (y − y′)/s)dx′dy′ = W ∗ gs;(10.2) 

Is(i, j) = ws(u + is, v + js), (10.3) 

where g is a uniform density function within the window [−1/2, 1/2]×[−1/2, 1/2], 
and gs(x, y) = g(x/s, y/s)/s2. (u, v) ∈ [0, s)2 denotes the small shifting of the 
rectangular lattice. There are two operations involved. Equation (10.2) is smoothing: 
ws is a smoothed version of W . Equation (10.3) is subsampling: Is is a discrete 
sampling of ws . To be more general, g in Eq. (10.2) can be any density function, for 
instance, Gaussian density function. 

The scale parameter s can be changed by either changing the viewing distance 
d or the camera resolution σ . If we increase s by increasing the viewing distance 
or zooming out the camera, then both the size of the scope Ω and the size of the 
windows Ωij will increase proportionally. So the resulting image Is will change. 
For example, if we double s to 2s, then I2s will cover a scope 4 times as large as the 
scope of Is . Because each squared window of size 2s contains 4 squared windows of 
size s, if we look within the portion of I2s that corresponds to Is , then the intensity 
of a pixel in I2s is the block average of the intensities of the corresponding 2 × 2 
pixels in Is . 

If g is a Gaussian kernel, then the set of {ws(x, y), s > 0} forms a scale space. 
The scale space theory can account for the change of image intensities due to 
scaling. But it does not explain the change of statistical properties of the image 
data under the scaling transformation. 

Empirical Observations on Information Scaling 

Figure 10.2 shows a sequence of 8 images of W taken at 8 viewing distances. The 
images are generated according to Eq. (10.1). The viewing distance of the i + 1-
st image is twice that of the i-th image. So the viewing distance of the last image 
is 128 times that of the first image. Within this wide range of viewing distance, 
the images display markedly different statistical properties even though they are 
generated by the same W . The reason is that the square leaves appear at different 
scales in different images: 

(1) For an image taken at a near distance, such as image (1), the window size 
of a pixel is much less than the average size of the leaves, i.e., s 	 r . The  
image can be represented deterministically by a relatively small number of
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occluding squares, or by local geometric structures such as edges, corners, 
etc. The constituent elements of the image are squares or local geometrical 
structures, instead of pixels. 

(2) For an image at an intermediate distance, the window size of a pixel becomes 
comparable to the average size of leaves, i.e., s ≈ r . The image becomes 
more complex. For images (4) and (5), they cannot be represented by a small 
number of geometrical structures anymore. The basic elements have to be 
pixels themselves. If a simple interpretation of the image is sought after, this 
interpretation has to be some sort of simple summary that cannot code the image 
intensities deterministically. The summary can be in the form of some spatial 
statistics of image intensities. 

(3) For an image at a far distance, the window size of a pixel can be much larger 
than the average size of the squares, i.e., s � r . Each pixel covers a large 
number of leaves, and its intensity value is the average of many leaves. The 
image is approaching the white noise. 

Computer vision algorithms always start from the analysis of local image 
patches, often at multiple resolutions. We take some local 7 × 7 image patches 
from the images at different scales shown in Fig. 10.3. These local image patches 
exhibit very different characteristics. Patches from near-distance images are highly 
structured, corresponding to simple regular structures such as edges and corners, 
etc. As the distance increases, the patches become more irregular and random. So 
the local analysis in a computer vision system should be prepared to deal with such 
local image patches with different regularities and randomness. 

Change of Compression Rate 

We perform some empirical studies on the change of statistical properties of the 
image data over scale. What we care about most is the complexity or randomness 
of the image, and we measure the complexity rate or randomness empirically 
by JPEG 2000 compression rate. Generally speaking, for a simple and regular 
image, there are a lot of redundancies in the image intensities. So only a small 
number of bits are needed to store the image without any loss of information up to 
the discretization precision. For a complex and random image, there is not much 
regularity or redundancy in the data. Therefore, a large number of bits are required 
to store the image. The reason we use JPEG 2000 to measure the complexity rate is 
two folded. First, JPEG 2000 is the state-of-the-art image compression standard 
and currently gives the best approximation to image complexity. Second, given 
the popularity of JPEG 2000, our results should also be interesting to the image 
compression community. 

When the image is compressed by JPEG 2000, the size of the compressed image 
file is recorded in terms of the number of bits. This number is then divided by the 
number of pixels to give the compression rate in terms of bits per pixel. Figure 10.4a
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Fig. 10.3 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008, 
published by Brown University. Reprinted with permission from [257]. The 7 × 7 local patches 
taken from the images at different scales 

plots this measurement in the order of viewing distance for images in Fig. 10.2. At  
a close distance, the randomness is small, meaning that the image is quite regular. 
Then the randomness starts to increase over distance because more and more leaves 
are covered by the scope of the camera. At a far distance, however, the randomness 
begins to decrease because the local averaging operation reduces the marginal 
variance and eventually smoothes the image into a constant image because of the 
law of large number. In this plot, there are three curves. They correspond to three 
different rmin in our simulation study, while rmax is always fixed at the same value. 
For smaller rmin, the corresponding curve shifts to the left because the average size 
of the leaves is smaller. 

We also use a simple measure of smoothness as an indicator of randomness or 
complexity rate. We compute pairwise differences between intensities of adjacent 
pixels∇xI(i, j) = I(i, j)−I(i−1, j) and∇yI(i, j) = I(i, j)−I(i, j−1).∇I(i, j) = 
(∇xI(i, j),∇yI(i, j)) is the gradient of I at (i, j). The gradient is a very useful 
local feature that can be used for edge detection [257]. It is also extensively used
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Fig. 10.4 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008, 
published by Brown University. Reprinted with permission from [257]. The change of statistical 
properties over scale. (a) JPEG compression rate. (b) Entropy of marginal histogram of ∇xI 

in image processing. We make a marginal histogram of {∇xI(i, j), (i, j) ∈ D} and 
compute the entropy of the histogram. Figure 10.4b plots this entropy over the order 
of distance for images in Fig. 10.2. The plot behaves similarly to the plot of the 
JPEG 2000 compression rate. 

Variance Normalization 

The local averaging operation in Eq. (10.1) reduces the marginal variance of the 
image intensities. A more appropriate measurement of randomness should be the 
compression rate of variance-normalized image, which is invariant of linear trans-
formations of image intensities. Specifically, for an image I, let  σ 2 be the marginal 
variance of I. Let  I′(i, j) = I(i, j)/σ . Then I′ is the variance-normalized version of 
I, and the marginal variance of I′ is 1. We compute the JPEG compression rates of 
variance-normalized versions of the images in Fig. 10.2. Figure 10.5a displays the 
variance-normalized JPEG compression rate over the order of distance for the three 
runs of the simulation study. The compression rate increases monotonically toward 
an upper bound represented by the horizontal line. This suggests that the scaling 
process increases the randomness and transforms a regular image to a random 
image. The upper bound is the JPEG compression rate of the Gaussian white noise 
process with variance 1. 

The convergence of the compression rate of the variance-normalized image 
to that of the Gaussian white noise image is due to the effect of the central 
limit theorem. As another illustration, we compute the kurtosis of the marginal 
distribution of {∇xI(x), x ∈ D}. The kurtosis decreases monotonically toward 0, 
meaning that the image feature becomes closer to Gaussian distribution.
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Fig. 10.5 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008, 
published by Brown University. Reprinted with permission from [257]. (a) The change of JPEG 
compression rate of the variance-normalized versions of the images in Fig. 10.2. (b) The change of 
kurtosis 

Basic Information Theoretical Concepts 

Let I(x, y) be an image with (x, y) ∈ D, where D is the discrete lattice of pixels (in 
what follows, we use (x, y) instead of (i, j) to denote discrete pixels). Let p(I) be 
the distribution of I. We are interested in the following statistical properties [29]: 

(1) Entropy and entropy rate: The entropy of p is defined as 

H(p) = Ep[− logp(I)] = −
∫

p(I) logp(I)dI, (10.4) 

and the entropy rate of p is defined as H̄(p) = H(p)/|D|, where |D| is the 
number of pixels in lattice D. 

(2) Relative entropy and relative entropy rate: For two distributions p and q, the  
relative entropy or the Kullback–Leibler divergence between p and q is defined 
as 

KL(p‖q) = Ep

[
log 

p(I) 
q(I)

]
= −H(p) − Ep[log q(I)] ≥  0. (10.5) 

The relative entropy rate is k̂(p‖q) = KL(p‖q)/|D|. 
(3) Relative entropy with respect to Gaussian white noise: For an image distribution 

p, let  

1 

|D|
∑

(x,y)∈D 
E[I(x, y)2] = σ 2 (10.6) 

be the marginal variance. Let q be the Gaussian white noise distribution with 
mean 0 and variance σ 2, i.e., I(x, y) ∼ N(0, σ 2) independently. Then
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KL(p‖q) = −H(p) − Ep[log q(I)] = H(q) − H(p) ≥ 0. (10.7) 

The second equation in (10.7) follows from Ep[log q(I)] =  Eq [log q(I)] 
because log q(I) is linear in

∑
x,y I(x, y)2, which has the same expectations 

under both p and q. Because H(q) ≥ H(p) according to (10.7), the Gaussian 
white noise distribution has the maximum entropy among all the image 
distributions with the same marginal variance. 

(4) Entropy rate of variance-normalized image: Continue from (10.7) and calculate 
the entropy rate of Gaussian white noise explicitly, we obtain the relative 
entropy rate 

k̂(p‖q) = log
√
2πe  − [  ̄H(p(I)) − log σ ] =  log

√
2πe  − H̄(p(I′)),(10.8) 

where I′ = I/σ is the variance-normalized version of image I, and p(I′) denotes 
the distribution of I′. So the entropy rate of the variance-normalized image 
H̄(p(I′)) determines the relative entropy rate k̂(p‖q) of p(I) with respect to 
the Gaussian white noise q(I). In other words, H̄(p(I′)) measures the departure 
of p from the Gaussian white noise hypothesis. 

Change of Entropy Rate 

For simplicity, let us study what happens if we double the viewing distance or zoom 
out the image by a factor of 2. Suppose the current image is I(x, y), (x, y) ∈ D. 
If we double the viewing distance, the window covered by a pixel will double its 
size. So the original I will be reduced to a smaller image I− defined on a reduced 
lattice D−, and each pixel of I− will be the block average of four pixels of I. More  
specifically, the process can be accounted for by two steps, similar to Eqs. (10.2) 
and (10.3): 

(1) Local smoothing: Let the smoothed image be J; then J(x, y) = ∑
u,v I(x + 

u, y+v)/4, where (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. We can write J = I∗g, 
where g is the uniform distribution over {(0, 0), (0,−1), (−1, 0), (−1,−1)}. In  
general, g can be any kernel with appropriate bandwidth, such as a Gaussian 
distribution function. 

(2) Subsampling: I(u,v) 
− (x, y) = J(2x + u, 2y + v), where, again, (u, v) ∈ 

{(0, 0), (0, 1), (1, 0), (1, 1)}. Any of the four I(u,v) 
− can be regarded as a 

subsampled version of J. 

Theorem 2 Smoothing effect: Let D be an M × N lattice, and I is defined on D. 
Let J = I ∗ g, where g is a local averaging kernel or a probability distribution. As 
min(M, N) → ∞,
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H̄(p(J)) − H̄(p(I)) → 
1 

4π2

∫ 2π 

0

∫ 2π 

0 
log |ĝ(ω)|dω ≤ 0, (10.9) 

where ω = (ωx, ωy) is the spatial frequency, and ĝ(ω) = ∑
x,y g(x, y) 

exp{−i(ωxx + ωyy)} is the Fourier transform of the kernel g, where the sum 
is over the support of g. 

Proof Let I be the image defined on the integer lattice [0,M  −1]× [0, N  −1]. The  
discrete Fourier transform of I is 

Î(ω) = 
M−1∑
x=0 

N−1∑
y=0 

I(x, y) exp{−i(ωxx + ωyy)}, (10.10) 

where ωx ∈ {2πm/M,  m  = 0, ..., M−1} and ωy ∈ {2πn/N,  n  = 0, ..., N−1}. The  
Fourier transforms of J and g can be similarly defined. Because Î and Ĵ are obtained 
from I and J, respectively, by the same linear transformation,H(p(Ĵ))−H(p(Î)) = 
H(p(J)) − H(p(I)). 

For convolution with periodic boundary condition, Ĵ(ω) = Î(ω)ĝ(ω). So  

H̄(p(J)) − H̄(p(I)) = 
1 

|D|
[
H(p(Ĵ)) − H(p(Î))

]
(10.11) 

= 
1 

MN

∑
ω 

log |ĝ(ω)| =  
1 

4π2

∑
ω 

log |ĝ(ω)|Δω(10.12) 

→ 
1 

4π2

∫ 2π 

0

∫ 2π 

0 
log |ĝ(ω)|dω, (10.13) 

as min(M, N) → ∞, where Δω = (2π/M) × (2π/N). 
A smoothing kernel g is a probability distribution function, ĝ is the characteristic 

function of g, and 

ĝ(ω) =
∑
x,y 

g(x, y) exp{−i(ωxx + ωyy)} (10.14) 

= Eg

[
exp{−i(ωxX + ωyY )}] , (10.15) 

where (X, Y ) ∼ g(x, y). Then, 

|ĝ(ω)|2 = ∣∣Eg

[
exp{−i(ωxX + ωyY )}]∣∣2 (10.16) 

≤ Eg

[
| exp{−i(ωxX + ωyY )}|2

]
= 1. (10.17) 

Thus,
∫
log |ĝ(ω)|dω ≤ 0 QED.



10.1 Image Scaling 257

The above theorem tells us that there is always loss of information under the 
smoothing operation. This is consistent with the intuition in scale space theory, 
where the increase in scale results in the loss of fine details in the image. The 
change of entropy rate under linear filtering was first derived in the classical paper 
of Shannon [215, 216]. 

Next, let us study the effect of subsampling. There are four subsampled versions 
I(u,v) 
− (x, y) = J(2x + u, 2y + v), where (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Each 
I(u,v) 
− is defined on a subsampled lattice D−, with |D−| = |D|/4. ��

Theorem 3 Subsampling effect: The average entropy rate of I(u,v) 
− is no less than 

the entropy rate of J, 

1 

4

∑
u,v 

H̄(p(I(u,v) 
− )) − H̄(p(J)) = M̄(I(u,v) 

− ,∀(u, v)) ≥ 0, (10.18) 

where M(I(u,v) 
− ,∀(u, v)) = KL(p(J)‖∏

u,v p(I(u,v) 
− )) is defined as the mutual 

information among the four subsampled versions, and M̄ = M/|D|. 
Proof

∑
u,v 

H(p(I(u,v) 
− )) − H(p(J)) = E

[
log 

p(J)∏
u,v p(I(u,v) 

− )

]
(10.19) 

= KL(p(J)‖
∏
u,v 

p(I(u,v) 
− )) (10.20) 

= M(I(u,v) 
− ,∀(u, v)) ≥ 0, (10.21) 

where the expectation is with respect to the distribution of J, which is also the joint 
distribution of I(u,v) 

− QED. ��
The scaling of the entropy rate is a combination of Eqs. (10.9) and (10.18):

{
1 

4

∑
u,v 

H̄(p(I(u,v) 
− )) − H̄(p(I))

}
−

{
M̄(I(u,v) 

− ) + 
1 

4π2

∫
log |ĝ(ω)|dω

}
→ 0. 

(10.22) 

For regular image patterns, the mutual information per pixel can be much greater 
than − ∫

log |ĝ(ω)|dω/4π2, so the entropy rate increases with distance, or in other 
words, the image becomes more random. For very random patterns, the reverse is 
true. When the mutual information rate equals− ∫

log |ĝ(ω)|dω/4π2, we have scale 
invariance. More careful analysis is needed to determine when this is true. 

Next, we study the change of entropy rate of variance-normalized image 
H̄(p(I′)). For simplicity, let us assume that p(I) comes from a stationary process,
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and I− can be any subsampled version of J = I ∗ g, which is also stationary. Let 
σ 2 = Var[I(x, y)] and σ 2− = Var[I−(x, y)] be the marginal variances of I and I−, 
respectively. Let I′ = I/σ and I′− = I−/σ− be the variance-normalized versions of 
I and I−, respectively. It is easy to show that 

ρ2 = 
σ 2− 
σ 2 = 

1 

4

∑
u,v 

corr(I(x, y), I(x + u, y + v)) ≤ 1, (u,  v)  ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},(10.23) 

so the smoothing operation reduces the marginal variance. Therefore, we can 
modify (10.22) into  

H̄(p(I
′
−)) − H̄(p(I′)) ≈ M̄(I(u,v) 

− ) − log ρ + 
1 

4π2

∫
log |ĝ(ω)|dω, (10.24) 

where the difference between the left-hand side and right-hand side converges to 0 
as |D| → ∞. In (10.24), the term − log ρ is positive, and it compensates for the loss 
of entropy rate caused by smoothing, i.e.,

∫
log |ĝ(ω)|dω/4π2, which is negative. 

As a matter of fact, the first two terms, i.e., the mutual information term and the 
− log ρ term on the right- hand side of (10.24), balance each other, in the sense 
that if one is small, then the other tends to be large. However, we have not been 
able to identify conditions under which the right-hand side of (10.24) is always 
positive, which would have established the monotone increase of the entropy rate of 
variance-normalized image or monotone decrease of the departure from Gaussian 
white noise. 

10.2 Perceptual Entropy 

The above analysis of entropy rate is only about the observed image I alone. The 
goal of computer vision is to interpret the observed image in order to recognize the 
objects in the outside world. In this subsection, we shall go beyond the statistical 
properties of the observed image itself and study the interaction between the 
observed image and the outside scene that produces the image. 

Again, we would like to use the dead leaves model to convey the basic idea. 
Suppose our attention is restricted to a finite scope Ω ⊂ R2, and let W = 
((xi, yi, ri , ai), i = 1, ..., N) be the leaves in Ω that are not completely occluded by 
other leaves. Then we have W ∼ p(W) and I = γ (W), where p(W) comes from the 
Poisson process that generates the dead leaves, and γ represents the transformation 
defined by Eq. (10.1) for a scale parameter s. 

For convenience, we assume that both W and I are properly discretized. For any 
joint distribution p(W, I), the conditional entropy H(p(W | I)) is defined as
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H(p(W | I)) = −
∑
W,I 

p(W, I) log p(W | I). (10.25) 

H(p(W | I)) measures the inferential uncertainty or the imperceptibility of W from 
the image I. 

Proposition 1 If W ∼ p(W) and I = γ (W), then H(p(W |I)) = H(p(W)) − 
H(p(I)). That is, imperceptibility = scene entropy - image entropy. 

This proposition is easy to prove. The marginal distribution of I is p(I) =∑
W :γ (W)=I p(W). The posterior distribution of W given I is p(W |I) = 

p(W, I)/p(I) = p(W)/p(I). Here, p(W, I) = p(W) because I is determined by 
W . Following the definition in (10.25), H(p(W | I)) = −∑

W p(W)(log p(W) − 
log p(I)) = H(p(W)) − H(p(I)). Here  EW [log p(I)] =  EI[log p(I)] since I is 
determined by W . 

If we increase the viewing distance or equivalently zoom out the camera while 
fixing the scope Ω ⊂ R2, i.e., fixing W , then we obtain a zoomed-out version 
I− = R(I), where R represents the zooming-out operation of smoothing and 
subsampling and is a many-to-one transformation. During the process of zooming 
out, the total entropy of the image will decrease, i.e., H(p(I−)) ≤ H(p(I)), 
even though the entropy per pixel can increase as we have shown in the previous 
subsection. Therefore, we have the following result. 

Proposition 2 If W ∼ p(W), I = γ (W), and I− = R(I), where R is a many-to-
one mapping, then H(p(W |I−)) ≥ H(p(W |I)), i.e., the imperceptibility increases 
as the image is reduced. 

What does this result tell us in terms of interpreting image I or I−? Although the 
model W ∼ p(W) and I = γ (W)  is the right physical model for all the scale s, this  
model is meaningful in interpreting I only within a limited range, say s ≤ sbound, so  
that the imperceptibility H(p(W | I)) is below a small threshold. In this regime, the 
representation I = γ (W)  is good for both recognition and coding. For recognition, 
H(p(W | I)) is small, so W can be accurately determined from I. For coding, we 
can first code W according to p(W), with a coding cost H(p(W)). Then we code 
I using I = γ (W)  without any coding cost. The total coding cost would be just 
H(p(W)). If the imperceptibility H(p(W | I)) is small, H(p(W)) ≈ H(p(I)), so  
coding W will not incur coding overhead. 

But if s is very large, the imperceptibility H(p(W | I)) can be large according 
to Proposition 2. In this case, the representation I = γ (W)  is not good for either 
recognition or coding. For recognition, W cannot be estimated with much certainty. 
For coding, if we still code W first and code I by I = γ (W), this will not be 
an efficient coding, since H(p(W)) can be much larger than H(p(I)), and the 
difference is imperceptibility H(p(W | I)). 

Then what should we do? The regime of s >  sbound is quite puzzling for vision 
modeling. Our knowledge of geometry, optics, and mechanics enables us to model 
every phenomenon in our physical environment. Such models may be sufficient for
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computer graphics as far as generating physically realistic images is concerned. For 
instance, a garden scene can be constructed by simulating billions of leaves and 
grass strands, and the image can be produced by projecting these billions of objects 
onto the image with perspective geometry. A river scene, a fire scene, or a smoke 
scene can be obtained using computational fluid dynamics. A piece of cloth can be 
generated using a dense set of particles that follow the law of mechanics. Realistic 
lighting can be simulated by ray tracing and optics. But such models are hardly 
meaningful for vision because the imperceptibilities of the underlying elements or 
variables are intolerable. When we look at a garden scene, we never really perceive 
every leaf or every strand of grass. When we look at a river scene, we do not perceive 
the constituent elements used in fluid dynamics. When we look at a scene with 
sophisticated lighting and reflection, we do not trace back the light rays. In those 
situations where physical variables are not perceptible due to scaling or other aspects 
of the image formation process, it is quite a challenge to come up with good models 
for the observed images. Such models do not have to be physically realistic, but 
they should generate visually realistic images so that such models can be employed 
to interpret the observed image at a level of sophistication that is comparable to 
human vision. 

Suppose the image I is reduced to an image I− = R(I), so that W cannot be 
reliably inferred. Then, instead of pursuing a detailed description W from I−, we  
may choose to estimate some aspects of W from I−. For instance, in the simulated 
ivy wall example, we may estimate properties of the overall distribution of colors 
of leaves, as well as the overall distribution of their sizes, etc. Let us call it W− = 
ρ(W), with ρ being a many-to-one reduction function. It is possible that we can 
estimate W− from I− because of the following result. 

Proposition 3 Let W ∼ p(W), I = γ (W), and W− = ρ(W), I− = R(I), where 
both ρ and R are many-to-one mappings; we have 

(1) H(p(W−|I−)) ≤ H(p(W |I−)). (10.26) 

(2) p(I−|W−) =
∑

W :ρ(W)=W−;R(γ (W))=I− p(W)∑
W :ρ(W)=W− p(W) 

. (10.27) 

Result (1) tells us that even if W is imperceptible from I−, W− may still be 
perceptible. Result (2) tells us that although W defines I deterministically via I = 
γ (W), W− may only define I− statistically via a probability distribution p(I−|W−). 
While W represents deterministic structures, W− may only represent some texture 
properties. Thus, we have a transition from a deterministic representation of the 
image intensities I = γ (W)  to a statistical characterization I− ∼ p(I−|W−). See 
Fig. 10.6 for an illustration. 

For an image I, we may extract F(I), which can be a dimension reduction or a 
statistical summary, so that F(I) contains as much information about I as possible as 
far as W or W− is concerned. In the following proposition, we shall not distinguish 
between (W, I) and (W−, I−) for notational uniformity.
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Fig. 10.6 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008, 
published by Brown University. Reprinted with permission from [257]. The transition from 
deterministic representation to statistical description 

Proposition 4 Let F F(I):= 

(1) If W ∼ p(W), I = γ (W), then KL(p(W |I)‖p(W |F))  = H(p(I|F)). 
(2) If W ∼ p(W) and [I|W ] ∼  p(I|W), then KL(p(W |I)‖p(W |F))  = 

M(W, I|F), whereM(W, I|F)  = EW,I {log[p(W, I|F)/(p(W |F)p(I|F))]} is 
the mutual information between W and I given F . 

Result (1) tells us that for F(I) to contain as much information about W as 
possible, we want to make H(p(I|F))  to be as small as possible, so that F can 
be used to reconstruct I accurately. Result (2) tells us that if we want to estimate 
W , we want F to be sufficient about I as far as W is concerned. M(W, I|F)  can be 
considered a measurement of sufficiency. 

Now let us study this issue from the coding perspective. Suppose the image 
I follows a true distribution f (I), and we use a model w ∼ p(w), and [I | 
w] ∼  p(I | w) to code I ∼ f (I). Here the variable w is augmented solely 
for the purpose of coding. It might be some w = W− = ρ(W), or it may not 
have any correspondence to the reality W . In the coding scheme, for an image 
I, we first estimate  w by a sample from the posterior distribution p(w|I), and 
then we code w by p(w) with coding length − log p(w). After that, we code 
I by p(I|w) with coding length − log p(I|w). So the average coding length is 
−Ef

[
Ep(w|I)(log p(w) + log p(I|w))

]
. 

Proposition 5 The average coding length is Ef [H(p(w|I))] +  KL(f (I)‖p(I)) + 
H(f ), where p(I) = ∑

w p(w)p(I | w) is the marginal distribution of I under the 
model. So, coding redundancy = imperceptibility + model bias. 

The above proposition provides a selection criterion for models with latent 
variables. The imperceptibility term comes up because we assume a coding scheme 
where w must be coded first, and then I is coded based on w. Given the latent 
variable structure of the model, it is very natural to assume such a coding scheme
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Fig. 10.7 The image contains patterns of different complexities, from very simple patterns such 
as geometric patterns to very random patterns such as leaves at far distance 

A Continuous Spectrum 

Image patterns of different entropy regimes are not only connected by image scaling, 
they co-exist and blend seamlessly in a single image (Fig. 10.7). For instance, 
imagine we are in the wood of maple trees and taking a picture. The patterns 
displayed in Fig. 10.1 may appear together in the picture we take because the maple 
leaves can appear at different distances from the camera when the picture is taken. In 
addition, even for the same objects in a fixed image, when we analyze this image in 
multiple resolutions, we may recognize patterns from different regimes. The close 
connection between different regimes calls for a common theoretical framework for 
modeling patterns in these regimes. In particular, it calls for the integration of the 
MRFs and sparse coding models that work well in the high-entropy regime and 
low-entropy regime, respectively. 

10.3 Perceptual Scale Space 

When an image is viewed at varying resolutions, it is known to create discrete 
perceptual jumps or transitions amid the continuous intensity changes. Wang and 
Zhu [248] studied a perceptual scale space theory that differs from the traditional 
image scale space theory in two aspects: (i) In representation, the perceptual scale 
space adopts a full generative model. From a Gaussian pyramid, it computes a 
sketch pyramid where each layer is a primal sketch representation—an attribute 
graph whose elements are image primitives for the image structures. Each primal 
sketch graph generates the image in the Gaussian pyramid, and the changes between 
the primal sketch graphs in adjacent layers are represented by a set of basic and
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Fig. 10.8 Reprinted with permission from [248]. Scale space of a 1D signal. (a) A toaster image 
from which a line is taken as the 1D signal. (b) Trajectories of zero-crossings of the 2nd derivative 
of the 1D signal. The finest scale is at the bottom. (c) The 1D signal at different scales. The black 
segments on the curves correspond to primal sketch primitives (step edge or bar). (d) A symbolic 
representation of the sketch in scale space with three types of transitions 

composite graph operators to account for the perceptual transitions. (ii) In computa-
tion, the sketch pyramid and graph operators are inferred, as hidden variables, from 
the images through Bayesian inference by stochastic algorithm, in contrast to the 
deterministic transforms or feature extraction, such as computing zero-crossings, 
extremal points, and inflection points in the image scale space. Studying the 
perceptual transitions under the Bayesian framework makes it convenient to use the 
statistical modeling and learning tools for (a) modeling the Gestalt properties of the 
sketch graph, such as continuity and parallelism, etc.; (b) learning the most frequent 
graph operators, i.e., perceptual transitions, in image scaling; and (c) learning the 
prior probabilities of the graph operators conditioning on their local neighboring 
sketch graph structures (Fig. 10.8). 

In experiments, they learn the parameters and decision thresholds through human 
experiments, and they show that the sketch pyramid is a more parsimonious repre-
sentation than a multi-resolution Gaussian/Wavelet pyramid. They also demonstrate 
an application on adaptive image display—showing a large image on a small screen 
(say PDA) through a selective tour of its image pyramid. In this application, the 
sketch pyramid provides a means for calculating information gain in zooming-in 
different areas of an image by counting a number of operators expanding the primal 
sketches, such that the maximum information is displayed in a given number of 
frames. 

10.4 Energy Landscape 

The distribution of images in the image space ΩI ⊂ RN defined by an energy 
function U : ΩI → R can be understood as a manifold, or landscape, of dimension 
RN in the high-dimensional space RN+1. The energy function is given by U =
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− log f , where f is a density over ΩI . High-probability states of f are low-energy 
(stable) states of U , and low-probability states of f are high-energy (unstable) states 
of U . The energy function is analogous to an elevation function that maps latitude 
and longitude coordinates in R2 to an elevation in R. The surface of the landscape 
given by the elevation map is a 2D manifold in 3D space, and the same intuition 
extends to higher dimensions. The energy function U defines a geodesic distance 
measure and non-Euclidean geometry over ΩI that incorporates the “elevation” 
information given by U to alter the usual Euclidean measure of distance on RN . This  
characterization of the distribution of images leads to a geometric understanding of 
perceptibility based on the physical idea of metastability [99]. 

In a broad sense, a metastable system is a system that appears to be in equilibrium 
when viewed over short time periods but which deviates substantially from the 
short-scale quasi-equilibrium over long time periods. The concept of metastability 
provides a framework for understanding the structure of a density f by observing 
quasi-equilibrium behavior in the physical system associated with the landscape 
of U . 

One can computationally simulate a diffusion process in the physical system of 
U by obtaining MCMC samples with a steady state f . In virtually all situations, 
the MCMC sampler is theoretically ergodic with respect to ΩI , meaning that the 
sampling process on f will eventually visit every image I in the image space with 
probability 1 if the sampling is continued for a sufficient number of steps. On the 
other hand, it is well known that local MCMC samplers have difficulty mixing 
between separate modes, which is usually considered a major drawback of MCMC 
methods. However, the slow mixing and high autocorrelation of local MCMC 
samples is actually a manifestation of metastable phenomena in the landscape of 
U that provide a means of understanding f . 

A density f that models realistic images will have an astronomical abundance 
of local modes that represent the diverse variety of possible appearances along the 
data manifold in the image space. On the other hand, groups of related minima that 
represent similar images often merge in the landscape of U to form macroscopic 
basins or funnels that capture consistent clusters or concepts of images found 
in the training data. The macroscopic basins are contained regions that permit 
diffusion interiorly but are separated by energy barriers that dramatically decrease 
the probability of cross-basin diffusion. Therefore, one can identify concepts within 
an image density f by identifying the metastable regions of the energy landscape. It 
is important to remember that metastable behavior often exists across a continuous 
spectrum of time scales, so there is no ground truth for the correct metastable 
structure and/or conceptual clustering of f . Instead, the metastable description 
provides a natural way to explore the concepts within a density at a range of degrees 
of visual similarity, permitting “coarser” or “finer” mappings depending on the 
context. 

We can intuitively understand the structure of the energy landscape of natural 
images by considering ΩI as a “universe” of images. The high-energy/low-
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Fig. 10.9 The meaningful structures of image density can be intuitively understood as high-
density regions in our universe. The majority of the image universe consists of empty space that 
represents appearances not observed within the training set. Texton-scale images are analogous 
to star clusters with a stable substructure that enables the recognition of a distinct appearance. 
Texture-scale images are analogous to nebulae whose mass covers a wide area but which contain 
little recognizable substructure. The gravitational pull of these structures is analogous to the 
metastable behavior of MCMC chains, which enables efficient mapping of macroscopic energy 
features 

probability regions of U are empty space, which accounts for the vast majority of the 
volume of ΩI . The low-energy regions and local modes of U represent high-density 
regions. Low-energy regions that represent texton-scale images are concentrated 
structures such as stars, while low-energy regions representing texture are more 
diffused and loose structures such as nebulas. Groups of related stars and nebulae 
form galaxies that represent general concepts within the image data, as in Fig. 10.9. 

The discussion above reveals an important connection between visual percepti-
bility of difference among a population of images with density f and metastable 
structures in the energy landscape U . A realistic image following f will have 
its own associated local minima region that captures a single stable appearance. 
The barriers between realistic images should depend on the degree of similarity 
between images. Images that share a similar appearance will be separated by 
lower energy barriers because it is possible to smoothly transit between similar 
images without encountering low-probability/high-energy/unrealistic images along
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the interpolation path. Images with dramatically different appearances should be 
separated by much higher barriers because it will be necessary to encounter low-
probability/high-energy/unrealistic images while smoothly transforming between 
differing appearances. 

For example, it is possible to smoothly transit between two images of the digit 1 
while still maintaining the appearance of the digit 1 throughout the interpolation 
path, but it is not possible to transition from the digit 1 to the digit 0 (or any 
other digit) without encountering an image that does not resemble a digit at all. 
Groups of similar images separated by low-energy barriers form metastable regions 
of U , establishing the connection between visual perception of differences between 
images and metastable structure in the energy landscape. 

Metastable phenomena are a natural way of representing both structure and 
variation in complex concepts, but actually detecting metastable behavior in a given 
energy landscape is a challenging task. Intuitively, two MCMC samples initialized 
from the same energy basin should meet much more quickly than two MCMC 
samples initialized from separate energy basins. However, the “short” mixing time 
of two chains in the same metastable basin is still far too long for efficient simulation 
in high-dimensional spaces. No chains, either from the same or separate energy 
basins, are likely to meet in feasible time scales. Therefore, direct observation of 
membership in a metastable basin is not possible with MCMC simulation. 

To overcome the difficulty of detecting metastable phenomena in their natural 
state, we perturb the energy landscape in a way that will accelerate mixing within 
a metastable basin while preserving the long mixing times between separate energy 
basins. If the perturbation is sufficiently small, then it is reasonable to expect 
metastable phenomena in the original and altered landscape will be very similar. On 
the other hand, the perturbation must be strong enough to overcome shallow energy 
barriers that exist within a metastable basin to encourage fast mixing between modes 
within the same macroscopic basin. 

Drawing inspiration from the magnetized Ising model, we modify the original 
energy landscape with an L2 penalty toward a known low-energy image. The target 
of the L2 penalty acts as a “representative” of the energy basin to which it belongs. 
Given a candidate mode x0 and a target mode x∗, initialize an MCMC sample X 
from x0 and update the sample using the magnetized energy 

Umag(x) = U(x) + α‖x − x∗‖2, (10.28) 

where U is the original energy function and α is the strength of magnetization. 
Sampling is continued until either the MCMC sample X comes with a small 
Euclidean distance ε of the target state x∗ or until an upper limit on the number of 
steps is reached. Since d 

dx
‖x − x∗‖2 = x−x∗

‖x−x∗‖2 , the gradient of the magnetization 
penalty α‖x −x∗‖2 is a vector with magnitude α pointing toward x∗ for every point 
x �= x∗. This shows that the gradient of Umag differs from the gradient of U by a 
magnitude of at most α throughout the state space, allowing us to uniformly control 
the degree of landscape perturbation in a single parameter. We call this method 
attraction–diffusion (AD) (Fig. 10.10).
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Fig. 10.10 Illustration of 
attraction-diffusion 

It is clear that in the limiting case α → 0, sampling on Umag is identical to 
sampling on U , and that X will never come within a close distance of x∗ even 
when x0 and x∗ are in the same metastable basin. On the other hand, in the limiting 
case, α → ∞, all probability mass is focused on x∗ and X will quickly reach 
the target state. In between these limiting cases, there exists a spectrum of values 
for α for which the gradients from the original energy U and the magnetization 
penalty α‖x − x∗‖2 affect sampling at approximately the same magnitude. Within 
this spectrum, one observes that sometimes the diffusion paths reach their target 
x∗ and sometimes the diffusion paths never reach their target. If we consider 
successful travel in the magnetized landscape to approximately represent metastable 
membership in the original landscape, then it becomes possible to reason about 
metastable structures in the original landscape based on the finite-step behavior of 
MCMC samples in the magnetized landscape. We note that metastable structures at 
finer resolutions can be detected when α is relatively small, while larger values of 
α will only preserve the most prominent barriers in the landscape. Like real-world 
concepts, metastable concepts only exist within a certain spectrum of identity or 
difference depending on the context of the situation. 

Now that we are equipped with a method for determining whether two minima 
belong to the same metastable basin, it becomes possible to efficiently identify the 
different metastable structures in an arbitrary high-dimensional energy landscape 
using computational methods. This process allows to extend techniques for mapping
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Fig. 10.11 First published in the Quarterly of Applied Mathematics in Volume 77:269–321, 
2019, published by Brown University. Reprinted with permission from [99]. Construction of a 
disconnectivity graph (right) from a 1D energy landscape (left). The DG encodes the depth of local 
minima and the energy at which basins merge. The same procedure can be used to hierarchically 
cluster image concepts using an energy function U over the image space 

and visualizing energy landscapes from the chemical physics literature to energy 
functions defined over the image space. The physical system defined by a low-
temperature diffusion process has metastable structures that correspond to concepts 
learned by the energy function. 

The analogy between stable states of a physical system (e.g., states with predom-
inantly aligned spins in the Ising model) and recognizable concepts within groups 
of images allows us to hierarchically cluster the image space by first identifying 
metastable regions and then grouping regions based on the energy spectrum at 
which basins merge. The results can be displayed in a tree diagram known as a 
disconnectivity graph (DG). A disconnectivity graph displays: (1) the minimum 
energy within each basin (leaves of the tree), (2) the energy level at which basins 
merge in the energy landscape, also called the energy barrier (branches of the tree), 
as shown in Fig. 10.11. The key concept underlying this procedure is the idea that 
perceptibility can be grounded in metastable phenomena in an energy landscape that 
represents perceptual memory (Fig. 10.12). 

We demonstrate the principles of the above discussion by mapping a learned 
energy landscape U that has been trained to model MNIST. It is important to note 
that the true density of an image concept is never known and that mapping must 
be done on a learned density. U is a computational representation of a large set of 
observed images, much like our memory creates perceptual models of structured 
images that we regularly observe. The macroscopic energy structures of U can 
effectively distinguish between different image groups (digits) that are recognizable 
to humans. Each digit has at least one stable basin that represents the digit’s 
appearance, and relations between image basins follow visually intuitive relations 
between images.
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Fig. 10.12 First published in the Quarterly of Applied Mathematics in Volume 77:269–321, 2019, 
published by Brown University. Reprinted with permission from [99]. Map of the energy landscape 
of an image density trained with image patches from an ivy texture at four scales. The closest two 
scales develop recognizable and separate basins in the landscape that represent distinguishable 
patterns. The furthest two scales do not contain perceptible subgroups and form flat nebula-like 
basins that encode texture appearance 

Scale 
1 
2 

3 

4 

Fig. 10.13 First published in the Quarterly of Applied Mathematics in Volume 77:269–321, 2019, 
published by Brown University. Reprinted with permission from [99]. Ivy texture image and image 
patches from four scales. The first two scales contain images that can be clustered by a human. 
The images cross the perceptibility threshold from texton representation to texture representation 
between Scale 2 and Scale 3 

The link between perceptibility and metastability can also be clearly observed 
when mapping the density of image patches from a single texture at a variety of 
different scales. The density f models 32 × 32 pixel image patches of the same 
ivy texture image from four different scales (see Fig. 10.13). At the closest scale, 
the images are composed of simple bar and stripe features. The second-closest scale 
features the composition of about 2 or 3 leaves in different arrangements. At the 
furthest two scales, it is difficult to distinguish distinct image groups, and images 
from these scales are perceived as textures by a human.
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Fig. 10.14 First published in the Quarterly of Applied Mathematics in Volume 77:269–321, 2019, 
published by Brown University. Reprinted with permission from [99]. Map of the energy landscape 
of an image density trained with image patches from an ivy texture at four scales. The closest two 
scales develop recognizable and separate basins in the landscape that represent distinguishable 
patterns. The furthest two scales do not contain perceptible subgroups and form flat nebula-like 
basins that encode texture appearance 

The metastable structure of U = − log f shares many similarities with human 
perceptibility (see Fig. 10.14). Image groups from the closest scale are easiest 
to recognize, and the landscape forms a handful of strong basins that represent 
the different bar and stripe configurations found at close range. A rich variety of 
separate metastable basins appear at Scale 2 to encode many distinct compositions 
of a few leaves. The landscape represents images from Scales 3 and 4 with a 
large macroscopic basin with little substructure. Between Scale 2 and Scale 3, a 
phase transition occurs where the identifiability of leaf compositions changes from 
distinguishable (texton scale) to indistinguishable (texture scale). The behaviors of 
human perceptibility and image landscape metastability are therefore quite similar 
across multi-scale image data.



Chapter 11 
Deep Image Models 

In this chapter, we will present the deep FRAME model or deep energy-based model 
as a recursive multi-layer generalization of the original FRAME model. We shall 
also present the generator model that can be considered a nonlinear multi-layer 
generalization of the factor analysis model. Such multi-layer models capture the 
fact that visual patterns and concepts appear at multiple layers of abstractions. 

11.1 Deep FRAME and Deep Energy-Based Model 

The original FRAME (Filters, Random fields, And Maximum Entropy) model 
[259, 279, 281] is a Markov random field model of stationary spatial processes 
such as stochastic textures. The log probability density function of the model is the 
sum of translation invariant potential functions that are point-wise one-dimensional 
nonlinear transformations of linear filter responses. 

The deep generalization of the FRAME model is inspired by the successes of 
deep convolutional neural networks [138, 144], and as the name suggests, it can 
be considered a deep version of the FRAME model. The filters used in the original 
FRAME model are linear filters that capture local image features. In [161], the linear 
filters are replaced by the nonlinear filters at a certain convolutional layer of a pre-
trained deep ConvNet. Such filters can capture more complex patterns, and the deep 
FRAME model built on such filters can be more expressive. 

Furthermore, instead of using filters from a pre-trained ConvNet, we can also 
learn the filters from scratch. The resulting model is also known as a deep 
convolutional energy-based model [32, 180, 266]. Such a model can be considered 
a recursive multi-layer generalization of the original FRAME model. The log 
probability density function of the original FRAME model consists of nonlinear 
transformations of linear filter responses. If we repeat this structure recursively, 
we get the deep convolutional energy-based model with multiple layers of linear 
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filtering followed by point-wise nonlinear transformations. Xie et al. [266] show  
that it is possible to learn such a model from natural images. 

The deep FRAME model can be written as an exponential tilting of a reference 
distribution such as the uniform measure or the Gaussian white noise model. If the 
reference distribution is the Gaussian white noise model, the local modes of the 
probability density follow an auto-encoder. We call it the Hopfield auto-encoder 
because it defines the local energy minima of the model [108]. In the Hopfield auto-
encoder, the bottom-up filters detect the patterns corresponding to the filters, and 
then the detection results are used as the coefficients in the top-down representation 
where the filters play the role of basis functions. 

The learning of the deep FRAMEmodel and deep energy-based model follows an 
analysis by synthesis scheme [85]. We can use Markov chain Monte Carlo (MCMC) 
such as the Langevin dynamics to sample from the current model to generate 
synthetic images, which runs gradient descent on the energy function of the model 
while adding Gaussian white noises for Brownian motion or diffusion. For deep 
FRAME models, the gradient can be efficiently computed by back-propagation. 
Then we update the model parameters based on the statistical difference between 
the observed images and the synthetic images so that the model shifts its probability 
density function from the synthetic images to the observed images. In the zero-
temperature limit, this learning and sampling algorithm admits an adversarial 
interpretation, where the learning step and the sampling step play a minimax game 
based on a value function. 

ConvNet Filters 

The convolutional neural network (CNN or ConvNet) [144] is a specialized neural 
network devised for analyzing data such as images, where the linear transformations 
take place around each pixel, i.e., they are filters or convolutions. See Fig. 11.1 for 
an illustration. 

A ConvNet consists of multiple layers of linear filtering and point-wise nonlinear 
transformation, as expressed by the following recursive formula:

[
F (l) j ∗ I

]
(y) = h 

⎛ 

⎝ 
Nl−1∑
k=1

∑
x∈Sl 
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Fig. 11.1 Reprinted with permission from [160]. Convolutional neural networks consist of 
multiple layers of filtering and subsampling operations for bottom-up feature extraction, resulting 
in multiple layers of feature maps and their subsampled versions. The top layer features are used 
for classification via multinomial logistic regression. The discriminative direction is from image to 
category, whereas the generative direction is from category to image 

where l = 1, . . . , L  indexes the layer, and I(l) j = F (l) j ∗ I are filtered images or 
feature maps at layer l. In Fig. 11.1, the feature maps are illustrated by the square 
shapes. Each [F (l) j ∗ I](x) is called a filter response or a feature extracted at layer l. 

{F (l) j , j  = 1, . . . , Nl} are the filters at layer l, and {F (l−1) 
k , k  = 1, . . . , Nl−1} 

are the filters at layer l − 1. j and k are used to index the filters at layers l and 
l − 1, respectively, and Nl and Nl−1 are the numbers of filters at layers l and 
l − 1, respectively. The filters are locally supported, so the range of I in

∑
x is 

within local support Sl (such as a 7 × 7 image patch). We let I(0) = I. The filter 
responses at layer l are computed from the filter responses at layer l − 1, by linear 
filtering defined by the weights w (l,j) 

k,x as well as the bias term bl,j , followed by the  
nonlinear transformation h(·). The most commonly used nonlinear transformation 
in the modern ConvNets is the rectified linear unit (ReLU), h(r) = max(0, r)  [138]. 
{F (l) j } are nonlinear filters because we incorporate h(·) in the computation of the 

filter responses. We call I(l) j = F (l) j ∗ I the filtered image or the feature map of filter 

j at layer l. We denote I(l) = (I(l) j , j  = 1, . . . , Nl), which consists of a total of Nl 

feature maps at layer l, and j = 1, . . . , Nl . Sometimes, people call I(l) as a whole 
feature map or filtered image with Nl channels, where each I

(l) 
j corresponds to one 

channel. For a colored image, I(0) = I has 3 channels for RGB. 
The filtering operations are often followed by subsampling and local max pooling 

(e.g., I(x1, x2) ← max(s1,s2)∈{0,1}2 I(2x1 + s1, 2x2 + s2)). See Fig. 11.1 for an 
illustration of subsampling. After a number of layers with subsampling, the filtered 
images or feature maps are reduced to 1× 1 at the top layer. These features are then 
used for classification (e.g., does the image contain a hummingbird or a seagull or a 
dog?) via multinomial logistic regression.
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FRAME with ConvNet Filters 

Instead of using linear filters as in the original FRAME model, we can use the filters 
at a certain convolutional layer of a pre-trained ConvNet. We call such a model the 
deep FRAME model. 

Suppose there exists a bank of filters {F (l) k , k  = 1, . . . , K} at a certain 
convolutional layer l of a pre-trained ConvNet, as recursively defined by (11.1). 
For an image I defined on the image domain D, let  F (l) k ∗ I be the feature map of 

filter F (l) k , and let [F (l) k ∗I](x) be the filter response of I to F (l) k at position x (x is the 
two-dimensional coordinate). We assume that [F (l) k ∗ I](x) is the response obtained 
after applying the nonlinear transformation or rectification function h(·). Then the 
non-stationary deep FRAME model becomes 

p(I; θ)  = 
1 

Z(θ) 
exp

{
K∑

k=1

∑
x∈D 

wk,x[F (l) k ∗ I](x)

}
q(I), (11.3) 

where q(I) is the Gaussian white noise model (4.43), and θ = (wk,x,∀k, x) are the 
unknown parameters to be learned from the training data. Model (11.3) shares the 
same form as model (4.42) with linear filters, except that the rectification function 
h(r) = max(0, r)  in model (4.42) is already absorbed in the ConvNet filters {F (l) k } 
in model (11.3). We can also make model (11.3) stationary by letting wk,x = wk for 
all x. 

Learning and Sampling 

The basic learning algorithm estimates the unknown parameters θ from a set of 
aligned training images {Ii , i  = 1, . . . , n} that come from the same object category. 
Again the weight parameters can be estimated by maximizing the log-likelihood 
function and can be computed by the stochastic gradient ascent algorithm [274]: 
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⎡ 

⎣1 

n 

n∑
i=1

[
F (l) k ∗ Ii

]
(x) − 

1 

ñ 

ñ∑
i=1

[
F (l) k ∗ Ĩi

]
(x) 

⎤ 

⎦ , 

(11.4) 
for every k ∈ {1, . . . , K} and x ∈ D, where γt is the learning rate, and {Ĩi , i  = 
1, . . . ,  ̃n} are the synthetic images sampled from p(I; θ(t) ) using MCMC. This is an 
analysis by synthesis scheme that seeks to match the average filter responses of the 
synthetic images to those of the observed images. 

In order to sample from p(I; θ), we adopt the Langevin dynamics [80, 157]. 
Writing the energy function
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Fig. 11.2 Reprinted with permission from [161]. Generating object patterns. In each row, the left 
half displays 4 of the training images (224 × 224), and the right half displays 4 of the synthetic 
images. In the last row, the learned model generates hybrid patterns of lion and tiger 

U(I, θ)  = −  
K∑

k=1

∑
x∈D 

wk,x

[
F (l) k ∗ I

]
(x) + 

1 

2σ 2
‖I‖2, (11.5) 

the Langevin dynamics iterates 

Iτ+1 = Iτ − sU ′(Iτ , θ) + √
2seτ , (11.6) 

where U ′(I, θ)  = ∂U(I, θ)/∂I. This gradient can be computed by back-
propagation. In (11.6), s is a small step size, and eτ ∼ N(0, ID), independently 
across τ , where ID is the identity matrix of dimension D = |D|, i.e., the 
dimensionality of I. eτ is a Gaussian white noise image whose pixel values follow 
N(0, 1) independently. Here we use τ to denote the time steps of the Langevin 
sampling process because t is used for the time steps of the learning process. The 
Langevin sampling process (11.6) is an inner loop within the learning process (11.4). 
Between every two consecutive updates of θ in the learning process, we run a finite 
number of steps of the Langevin dynamics starting from the images generated by 
the previous iteration of the learning algorithm. 

The Langevin dynamics was first applied to the FRAME model by Zhu and 
Mumford [279], where the gradient descent component is interpreted as the Gibbs 
Reaction And Diffusion Equation (GRADE), and the patterns are formed via the 
reactions and diffusions controlled by different types of filters. 

We first learn a non-stationary FRAME model (11.3) from images of aligned 
objects. The images were collected from the Internet. For each category, the number 
of training images was around 10. We used ñ = 16 parallel chains for Langevin 
sampling with 100 Langevin steps between every two consecutive updates of 
the parameters. Figure 11.2 shows some experiments using filters from the 3rd 
convolutional layer of the VGG ConvNet [219], a commonly used pre-trained
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Fig. 11.3 Reprinted with permission from [161]. Generating texture patterns. For each category, 
the first image (224 × 224) is the training image, and the next 2 images are generated images, 
except for the last 3 images, where the first 2 are the training images, and the last one is the 
generated image that mixes brick wall and ivy 

ConvNet trained on ImageNet ILSVRC2012 dataset [39]. For each experiment on 
each row, the left half displays 4 of the training images, and the right half displays 4 
of the synthetic images generated by the Langevin dynamics. The last experiment is 
about learning the hybrid pattern of lion and tiger. The model re-mixes local image 
patterns seamlessly. 

Figure 11.3 shows results from experiments on the stationary model for texture 
images. The model does not require image alignment. It re-shuffles the local patterns 
seamlessly. Each experiment is illustrated by 3 images, where the first image is the 
training image, and the other 2 images are generated by the learning algorithm. 
In the last 3 images, the first 2 images are training images, and the last image is 
generated by the learned model that mixes the patterns of brick wall and ivy. 

Learning a New Layer of Filters 

On top of the existing pre-trained convolutional layer of filters {F (l) k , k  = 1, . . . , K}, 
we can build another layer of filters {F (l+1) 

j , j  = 1, . . . , J }, according to the 
recursive formula (11.1), so that

[
F (l+1) 

j ∗ I
]
(y) = h 

⎛ 

⎝∑
k,x 

w (j) 
k,x

[
F (l) k ∗ I

]
(y + x) + bj 

⎞ 

⎠ , (11.7) 

where h(r) = max(0, r). The  set {F (l+1) 
j } is like a dictionary of “words” to describe 

different types of objects or patterns in the training images. 
Due to the recursive nature of ConvNet, the deep FRAME model (11.3) based 

on filters {F (l) k } corresponds to a single filter in {F (l+1) 
j } at a particular position y 

(e.g., the origin y = 0) where we assume that the object appears. In [32], we show 
that the rectification function h(r) = max(0, r)  can be justified by a mixture model
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where the object can either appear at a position or not. The bias term is related to 
− logZ(θ). 

Model (11.3) is used to model images where the objects are aligned and are of 
the same category. For images of non-aligned objects from multiple categories, we 
can extend the model (11.3) to a convolutional version with a whole new layer of 
multiple filters 

p(I; θ)  = 
1 

Z(θ) 
exp 

⎧
⎨ 

⎩ 

J∑
j=1

∑
x∈D

[
F (l+1) 

j ∗ I
]
(x) 

⎫
⎬ 

⎭ q(I), (11.8) 

where {F (l+1) 
j } are defined by (11.7), and θ = (w (j) 

k,x, ∀j, k, x). This model is a 

product of experts model [100, 207], where each [F (l+1) 
j ∗ I](x) is an expert about 

a mixture of an activation or inactivation of a pattern of type j at position x. The  
stationary model for textures is a special case of this model. 

Suppose we observe images of non-aligned objects from multiple categories 
{Ii , i  = 1, . . . , n}, and we want to learn a new layer of filters {F (l+1) 

j , j  = 1, . . . , J } 
by fitting the model (11.8) with (11.7) to the observed images, where {F (l+1) 

j } model 
different types of objects in these images. This is an unsupervised learning problem 
because we do not know where the objects are. The model can still be learned by 
the analysis by synthesis scheme as before. 

Let L(θ) = 1 
n

∑n 
i=1 log p(Ii; θ)  be the log-likelihood where p(I; θ)  is defined 

by (11.8) and (11.7). Then the gradient ascent learning algorithm is based on 

∂L(θ) 

∂w (j) 
k,x 

= 
1 

n 

n∑
i=1

∑

y∈D 
sj,y(Ii )

[
F (l) 

k ∗ Ii
]
(y + x) − Eθ 

⎡ 

⎣ ∑

y∈D 
sj,y(I)

[
F (l) 

k ∗ I
]
(y + x) 

⎤ 

⎦ , 

(11.9) 
where 

sj,y(I) = h′
⎛ 

⎝∑
k,x 

w (j) 
k,x

[
F (l) 

k ∗ I
]
(y + x) + bj 

⎞ 

⎠ (11.10) 

is a binary on/off detector of object j at position y on image I, because for h(r) = 
max(0, r), h′(r) = 0 if r ≤ 0, and h′(r) = 1 if r >  0. The gradient (11.9) admits an EM 
[38] interpretation that is typical in unsupervised learning algorithms that involve 
hidden variables. Specifically, sj,y() detects the object of type j that is modeled 

by F (l+1) 
j

at location y. This step can be considered a hard-decision E-step. With 

the objects detected, the parameters of F (l+1) 
j

are then refined in a similar way as 

in (11.4), which can be considered the M-step. That is, we learn F (l+1) 
j

only from 
image patches where objects of type j are detected. 

Figure 11.4 displays two experiments. In each experiment, the first image 
(224 × 224) is the training image, and the rest 2 images are generated by the learned
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Fig. 11.4 Reprinted with permission from [161]. Learning a new layer of filters without requiring 
object bounding boxes or image alignment. For each experiment, the first image (224 × 224) is the 
training image, and the next 2 images are generated by the learned model 

model. In the first scenery experiment, we learn 10 filters at the 4th convolutional 
layer, based on the pre-trained VGG filters at the 3rd layer. The size of each Conv4 
filter to be learned is 11× 11× 256. In the second sunflower experiment, we learn 20 
filters of size 7 × 7 × 256. Clearly, these learned filters capture the local objects or 
patterns and re-shuffle them seamlessly. 

Deep Convolutional Energy-Based Model 

Instead of relying on the pre-trained filters from an existing ConvNet, we can also 
learn the filters {F (l) 

k , k  = 1, . . . , K} from scratch. The resulting model is a deep 
convolutional energy-based model (EBM) [32, 180, 266], 

p(I; θ)  = 
1 

Z(θ) 
exp{f (I; θ)}q(I), (11.11) 

where f (I; θ)  is defined by a ConvNet, and θ collects all the weight and bias 
parameters of the ConvNet. In model (11.8) with (11.7), we have
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f (I; θ)  = 
J∑

j=1

∑

x∈D

[
F (l+1) 

j ∗ I
]
(x). (11.12) 

Using more compact notation, we can define f (I; θ)  recursively by 

I(l) = h(wlI
(l−1) + bl), (11.13) 

for l = 1, . . . , L, where h(·) is applied element-wise. I(0) = I, and f (I; θ)  = I(L). 
I(l) consists of all the filtered images or feature maps at layer l, and the rows of wl 
consist of all the filters as well as all the locations where the filters operate on I(l−1) 

to extract the features in I(l). We assume that at the final layer L, I(L) is reduced to 
a number (i.e., a 1 × 1 feature map). θ = (wl, bl, l  = 1, . . . , L). We can compare the 
compact Eq. (11.13) with the more detailed Eq. (11.2). 

For piecewise linear h(·), such as h(r) = max(0, r), the function f (I; θ)  is 
piecewise linear [174, 192]. Specifically, h(r) = max(0, r)  = 1(r > 0)r, where 
1(r > 0) is the indicator function that returns 1 if r >  0 and 0 otherwise. Then 

I(l) = sl(I; θ)(wlI
(l−1) + bl), (11.14) 

where 

sl(I; θ)  = diag(1(wlI
(l−1) + bl > 0)), (11.15) 

i.e., a diagonal matrix of binary indicators (the indicator function is applied element-
wise) [192]. Let s = (sl , l  = 1, . . . , L)  consist of indicators at all the layers; then 

f (I; θ)  = Bs(I;θ)I + as(I;θ) (11.16) 

is piecewise linear, where 

Bs = 
1∏

l=L 
slwl, (11.17) 

and as can be similarly calculated. s(I; θ)  partitions the image space of I into 
exponentially many pieces [192] according to the value of s(I; θ). The partition is 
recursive because sl(I; θ)  depends on sl−1(I; θ). The boundaries between the pieces 
are all linear. On each piece with s(I; θ)  = s, where s on the right-hand side denotes 
a particular value of s(I; θ), f (I; θ)  is a linear function f (I; θ)  = BsI+as . The binary 
switches in s(I; θ)  reconfigure the linear transformation according to (11.17). 

f (I; θ)  generalizes three familiar structures in statistics: 

(1) Generalized linear model (GLM). A GLM structure is a composition of a linear 
combination of the input variables and a nonlinear link function. A ConvNet
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can be viewed as a recursion of this structure, where each component of I(l) is 
a GLM transformation of I(l−1), with h being the link function. 

(2) Linear spline. A one-dimensional linear spline is of the form y = β0 +∑d 
k=1 βk max(0, x  − ak), where ak are the knots. The ConvNet f (I; θ)  can be 

viewed as a multi-dimensional linear spline. The number of linear pieces is 
exponential in the number of layers [192]. Such a structure can approximate 
any continuous nonlinear function by a large number of linear pieces. 

(3) CART [21] and MARS [66]. In the classification and regression tree (CART) 
and the multivariate adaptive regression splines (MARS), the input domain is 
recursively partitioned. The linear pieces mentioned above are also recursively 
partitioned according to the values of sl(I; θ)  for l = 1, . . . , L. Moreover, MARS 
also makes use of the hinge function max(0, r). 

For Gaussian reference q(I), the energy function is 

U(I; θ)  = −f (I; θ)  + 
1 

2σ 2
‖I‖2. (11.18) 

We can continue to use Langevin dynamics (12.96) to sample from p(I; θ). 
The parameter θ can be learned by the stochastic gradient ascent algorithm [274] 

θ(t+1) = θ(t) + γt

[
1 

n 

n∑
i=1 

∂ 
∂θ 

f (Ii; θ(t) ) − 
1 

ñ 

ñ∑
i=1 

∂ 
∂θ 

f (Ĩi; θ(t) )
]
, (11.19) 

where again γt is the learning rate, and {Ĩi , i  = 1, . . . ,  ̃n} are the synthetic images 
sampled from p(I; θ(t)). This is again an analysis by synthesis scheme. This 
step shifts the probability density function p(I; θ), or more specifically, the high-
probability regions or the low-energy regions, from the synthetic images {Ĩi} to the 
observed images {Ii}. 

In the sampling step, we need to compute ∂f (I; θ)/∂I. In the learning step, we 
need to compute ∂f (I; θ)/∂θ . Both derivatives can be calculated by the chain rule 
back-propagation, and they share the computations of ∂I(l)/∂I(l−1). 

Our experiments show that the model is quite expressive. For example, we learn 
a 3-layer model. The first layer has 100 15 × 15 filters with a subsampling size of 3 
pixels. The second layer has 64 5 × 5 filters with a subsampling size of 1. The third 
layer has 30 3 × 3 filters with a subsampling size of 1. We learn a model (11.11) 
for each texture category from a single training image. Figure 11.5 displays some 
results. For each category, the first image is the training image, and the rest are 
2 of the images generated by the learning algorithm. We use ñ = 16 parallel 
chains for Langevin sampling. The number of Langevin iterations between every 
two consecutive updates of parameters is 10. The training images are of the size 
224 × 224, whose intensities are within [0, 255]. We fix  σ 2 = 1 in the reference 
distribution q.
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Fig. 11.5 Reprinted with permission from [266]. Generating texture patterns. For each category, 
the first image (224 × 224) is the training image, and the rest are 2 of the images generated by the 
learning algorithm 

While the sparse FRAME model is interpretable in terms of the symbolic sketch 
of the images, the deep FRAME model is not interpretable with its multiple layers 
of dense connections in linear filtering. 

Hopfield Auto-Encoder 

Consider the sparse FRAME model. Let us assume that the reference distribution 
q(I) is white noise with mean 0 and variance σ 2 = 1. The energy function is 

U(I) = 
1 

2
‖I‖2 − 

m∑
j=1 

wjh(〈I, Bkj ,xj
〉). (11.20)
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This energy function can be multi-modal, and each local minimum Î satisfies U ′(Î) = 
0. Thus, 

Î = 
m∑

j=1 

wih
′(〈Î, Bkj ,xj

〉)Bkj ,xj . (11.21) 

This reveals an auto-encoder [16, 242] hidden in the local modes: 

Encoding : cj = wjh′(〈Î, Bkj ,xj
〉), (11.22) 

Decoding : Î = 
n∑

i=1 

cjBkj ,xj , (11.23) 

where (11.22) encodes Î by (cj ), and (11.23) reconstructs Î from (cj ). Bkj ,xj serves 
as both bottom-up filter in (11.22) and top-down basis function in (11.23). We call 
this auto-encoder the Hopfield auto-encoder because Î is a local minimum of the 
energy function (11.20). Hopfield [108] proposes that the local energy minima may 
be used for content-addressable memory. 

The Hopfield auto-encoder also presents itself in the deep convolutional energy-
based model (11.11) [266]. The energy function of the model is ‖I‖2/2−f (I; θ). The  
local minima satisfy the Hopfield auto-encoder Î = f ′(Î; θ), or more specifically, 

Encoding : s = s(Î; θ), (11.24) 

Decoding : Î = Bs . (11.25) 

The encoding process is a bottom-up computation of the indicators at different 
layers sl = sl(I; θ), for  l = 1, . . . , L, where wl plays the role of filters, see Eq. (11.15). 
The decoding process is a top-down computation for reconstruction, where sl plays 
the role of coefficients, and wl plays the role of basis functions. See Eq. (11.17). 
The encoding process detects the patterns corresponding to the filters, and then 
the decoding process reconstructs the image using the detected filters as the basis 
functions. 

Multi-grid Sampling and Modeling 

In the high-dimensional space, e.g., image space, the model can be highly multi-
modal. The MCMC in general and the Langevin dynamics in particular may 
have difficulty traversing different modes, and it may be very time-consuming to 
converge. A simple and popular modification of the maximum likelihood learning 
is the contrastive divergence (CD) learning [100], where we obtain the synthesized 
example by initializing a finite-step MCMC from the observed example. The 
CD learning is related to score matching estimator [114, 115] and auto-encoder
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[6, 227, 241]. Such a method has the ability to handle large training datasets 
via mini-batch training. However, bias may be introduced in the learned model 
parameters in that the synthesized images can be far from the fair examples of the 
current model. A further modification of CD is persistent CD [231], where at the 
initial learning epoch the MCMC is still initialized from the observed examples, 
while in each subsequent learning epoch, the finite-step MCMC is initialized from 
the synthesized example of the previous epoch. The resulting synthesized examples 
can be less biased by the observed examples. However, the persistent chains may 
still have difficulty traversing different modes of the learned model. 

A multi-grid sampling and learning method is developed in [69] to address the 
above challenges under the constraint of finite budget MCMC. Specifically, each 
training image is repeatedly downscaled to get its multi-grid versions. A separate 
energy-based model is learned at each grid. Within each iteration of the learning 
algorithm, for each observed training image, the corresponding synthesized images 
are generated at multiple grids. We can initialize the finite-step MCMC sampling 
from the minimal 1 × 1 version of the training image, and the synthesized image at 
each grid serves to initialize the finite-step MCMC that samples from the model 
of the subsequent finer grid. See Fig. 11.6 for an illustration, where the images 
are sampled sequentially at 3 grids, with 30 steps of Langevin dynamics at each 
grid. After obtaining the synthesized images at the multiple grids, the models at the 
multiple grids are updated separately and simultaneously based on the differences 
between the synthesized images and the observed training images at different grids. 

Unlike the original CD or persistent CD, the learned models are capable of gener-
ating new synthesized images from scratch with a fixed budget MCMC because we 
only need to initialize the MCMC by sampling from the one-dimensional histogram 
of the 1× 1 versions of the training images. See Fig. 11.7 for generated examples by 
models learned from large image datasets. 

The learned energy-based model is a bottom-up ConvNet that consists of 
multiple layers of features. These features can be used for subsequent tasks such 
as classification. The learned models can also be used as a prior distribution for 
inpainting, as illustrated by Fig. 11.8. See [69] for experiment details and numerical 
evaluations. 

Adversarial Interpretation 

The deep convolutional energy-based model (11.11) can be written as 

p(I; θ)  = 
1 

Z(θ) 
exp[−U(I; θ)], (11.26) 

where the energy function U(I; θ)  = −f (I; θ)+ 1 
2σ 2 ‖I‖2. The update of θ is based on 

L′(θ) that can be approximated by
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Fig. 11.6 Reprinted with permission from [69]. Synthesized images at multi-grids. From left to 
right: 4 × 4 grid, 16 × 16 grid, and 64 × 64 grid. A synthesized image at each grid is obtained 
by 30-step Langevin sampling initialized from the synthesized image at the previous coarser grid, 
beginning with the 1 × 1 grid  

Fig. 11.7 Reprinted with permission from [69]. Synthesized images from models learned by 
multi-grid method from 4 categories of MIT places205 datasets 

1 

ñ 

ñ∑
i=1 

∂ 
∂θ 

U(Ĩi; θ) − 
1 

n 

n∑
i=1 

∂ 
∂θ 

U(Ii; θ), (11.27) 

where {Ĩi , i  = 1, . . . ,  ̃n} are the synthetic images that are generated by the Langevin 
dynamics. At the zero-temperature limit, the Langevin dynamics becomes gradient 
descent: 

Ĩτ+1 = Ĩτ − δ 
∂ 
∂ Ĩ 

U(Ĩτ ; θ). (11.28) 

Consider the value function
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Fig. 11.8 Reprinted with permission from [69]. Inpainting examples on CelebA dataset. In each 
block from left to right: the original image, masked input, inpainted image by the multi-grid method 

V (Ĩi , i  = 1, . . . ,  ̃n; θ)  = 
1 

ñ 

ñ∑
i=1 

U(Ĩi; θ) − 
1 

n 

n∑
i=1 

U(Ii; θ). (11.29) 

The updating of θ is to increase V by shifting the low-energy regions from 
the synthetic images {Ĩi} to the observed images {Ii}, whereas the updating of 
{Ĩi , i  = 1, . . . ,  ̃n} is to decrease V by moving the synthetic images toward the low-
energy regions. This is an adversarial interpretation of the learning and sampling 
algorithm. It can also be considered a generalization of the herding method [249] 
from exponential family models to general energy-based models. 

11.2 Generator Network 

This section studies the problem of learning and inference in the generator network 
[81]. The generator network is based on a top-down ConvNet. It is a nonlinear 
generalization of the factor analysis model. We develop the alternating back-
propagation algorithm for maximum likelihood learning of the generator network. 

Factor Analysis 

Let I be a D-dimensional observed example, such as an image. Let z be the 
d-dimensional vector of continuous latent factors, z = (zk, k  = 1, . . . , d). The  
traditional factor analysis model is I = Wz  + ε, where W is D × d matrix, and
ε is a D-dimensional error vector or the observational noise. We assume that 
z ∼ N(0, Id ), where Id stands for the d-dimensional identity matrix. We also assume 
that ε ∼ N(0, σ 2ID), i.e., the observational errors are Gaussian white noises, and ε is 
independent of z. There are three perspectives to view W : 

(1) Basis vectors. Write W = (W1, . . . , Wd), where each Wk is a D-dimensional 
column vector. Then I = ∑d 

k=1 zkWk + ε, i.e., Wk are the basis vectors and 
zk are the coefficients.
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(2) Loading matrix. Write W = (w1, . . . , wD), where w
j is the j-th row of W . 

Then Ij = 〈wj , z〉 + εj , where Ij and εj are the j-th components of I and ε, 
respectively. Each Ij is a loading of the d factors, where wj is a vector of loading 
weights, indicating which factors are important for determining Ij . W is called 
the loading matrix. 

(3) Matrix factorization. Suppose we observe I = (I1, . . . , In), whose factors are Z = 
(z1, . . . , zn); then I ≈ WZ. 

The factor analysis model can be learned by the Rubin–Thayer EM algorithm, 
which involves alternating regressions of z on I in the E-step and of I on z in the 
M-step [154, 209]. 

The factor analysis model is the prototype of many subsequent models that 
generalize the prior model of z: 

(1) Independent component analysis. [116] d = D, ε = 0, and zk are assumed to follow  
independent heavy-tailed distributions. 

(2) Sparse coding. [190] d >  D, and z is assumed to be a redundant but sparse vector, 
i.e., only a small number of zk are non-zero or significantly different from zero. 

(3) Nonnegative matrix factorization. [148] It is assumed that zk ≥ 0. 

Nonlinear Factor Analysis 

The generator network is a nonlinear generalization of factor analysis. It generalizes 
the linear mapping in factor analysis to a nonlinear mapping that is defined by a 
convolutional neural network (ConvNet or CNN) [47, 138, 144]. It has been shown 
that the generator network is capable of generating realistic images [40, 199]. 

The generator network has the following properties: 

(1) Analysis: The model disentangles the variations in the observed examples into 
independent variations of latent factors. 

(2) Synthesis: The model can synthesize new examples by sampling the factors from 
the known prior distribution and transforming the factors into the synthesized 
examples. 

(3) Embedding: The model embeds the high-dimensional non-Euclidean manifold 
formed by the observed examples into the low-dimensional Euclidean space of 
the latent factors so that linear interpolation in the low-dimensional factor space 
results in nonlinear interpolation in the data space. 

Specifically, the generator network model [81] retains the assumptions that d <  
D, z ∼ N(0, Id ), and ε ∼ N(0, σ 2ID) as in traditional factor analysis but generalizes 
the linear mapping Wz  to a nonlinear mapping g(z; θ), where g is a ConvNet, and θ 
collects all the connection weights and bias terms of the ConvNet. Then the model 
becomes 

I = g(z; θ)  + ε,
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z ∼ N(0, Id ), ε ∼ N(0, σ 2ID), d < D. (11.30) 

The reconstruction error is ‖I − g(z; θ)‖2. 
Although g(z; θ)  can be any nonlinear mapping, the ConvNet parameterization 

of g(z; θ)  makes it particularly close to the original factor analysis. Specifically, we 
can write the top-down ConvNet as follows: 

z(l−1) = gl(Wlz
(l) + bl), (11.31) 

where gl is element-wise nonlinearity at layer l, Wl is the weight matrix, bl is the 
vector of bias terms at layer l, and θ = (Wl, bl, l  = 1, . . . , L). z(0) = g(z; θ), and z(L) = 
z. The top-down ConvNet (11.31) can be considered a recursion of the original 
factor analysis model, where the factors at the layer l − 1 are obtained by the linear 
superposition of the basis vectors or basis functions that are column vectors of Wl , 
with the factors at the layer l serving as the coefficients of the linear superposition. In 
the case of ConvNet, the basis functions are shift-invariant versions of one another, 
like wavelets. 

Learning by Alternating Back-Propagation 

The factor analysis model can be learned by the Rubin–Thayer EM algorithm 
[38, 209], where both the E-step and the M-step are based on multivariate linear 
regression. Inspired by this algorithm, we propose an alternating back-propagation 
algorithm for learning the generator network that iterates the following two steps: 

(1) Inferential back-propagation: For each training example, infer the continuous 
latent factors by Langevin dynamics. 

(2) Learning back-propagation: Update the parameters given the inferred latent 
factors by gradient descent. 

The Langevin dynamics [179] is a stochastic sampling counterpart of gradient 
descent. The gradient computations in both steps are based on back-propagation. 
Because of the ConvNet structure, the gradient computation in step (1) is actually a 
by-product of the gradient computation in step (2). 

The alternating back-propagation algorithm follows the tradition of alternating 
operations in unsupervised learning, such as alternating linear regression in the 
EM algorithm for factor analysis, alternating least squares algorithm for matrix 
factorization [127, 136], and alternating gradient descent algorithm for sparse 
coding [190]. All these unsupervised learning algorithms alternate an inference step 
and a learning step, as is the case with alternating back-propagation. 

Specifically, the joint density is p(z, I; θ)  = p(z)p(I|z; θ), and
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log p(z, I; θ)  = −  
1 

2σ 2
‖I − g(z; θ)‖2 − 

1 

2
‖z‖2 + constant, (11.32) 

where the constant term is independent of z and θ . 
The marginal density is obtained by integrating out the latent factors z, i.e., 

p(I; θ)  = ∫
p(z, I; θ)dz. The inference of z given I is based on the posterior density 

p(z|I; θ)  = p(z, I; θ)/p(I; θ)  ∝ p(z, I; θ)  as a function of z. 
For the training data {Ii , i  = 1, . . . , n}, the generator model can be trained by 

maximizing the log-likelihood 

L(θ) = 
1 

n 

n∑
i=1 

log p(Ii; θ). (11.33) 

The gradient of L(θ) is obtained according to the following identity: 

∂ 
∂θ 

logp(I; θ)  = 
1 

p(I; θ)  
∂ 
∂θ

∫
p(I, z; θ)dz (11.34) 

= 
1 

p(I; θ)

∫ [
∂ 
∂θ 

log p(I, z; θ)

]
p(I, z; θ)dz (11.35) 

=
∫ [

∂ 
∂θ 

log p(I, z; θ)

]
p(I, z; θ)  
p(I; θ)  

dz (11.36) 

= Ep(z|I;θ)

[
∂ 
∂θ 

log p(z, I; θ)

]
. (11.37) 

The above identity underlies the EM algorithm, where Ep(z|I;θ)  is the expectation 
with respect to the posterior distribution of the latent factors p(z|I; θ), and is 
computed in the E-step. The usefulness of identity (11.37) lies in the fact that the 
derivative of the complete-data log-likelihood log p(z, I; θ)  on the right-hand side 
can be obtained in closed form. In the EM algorithm, the M-step maximizes the 
expectation of logp(z, I; θ)  with respect to the current posterior distribution of the 
latent factors. In general, the expectation in (11.37) is analytically intractable and 
has to be approximated by MCMC that samples from the posterior p(z|I; θ), such as 
the Langevin inference dynamics, which iterates 

zτ+1 = zτ + s 
∂ 
∂z 

log p(zτ , I; θ) + √
2seτ , (11.38) 

where τ indexes the time step, s is the step size, and eτ denotes the noise term, 
eτ ∼ N(0, Id ). 

We take the derivative of log p(z, I; θ)  in (11.38) because this derivative is the 
same as the derivative of the log-posterior log p(z|I; θ)  since p(z|I; θ)  is proportional 
to p(z, I; θ)  as a function of z. 

The Langevin inference solves a 
2 penalized nonlinear least squares problem 
so that zi can reconstruct Ii given the current θ . The Langevin inference process
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performs explaining-away reasoning, where the latent factors in z compete with 
each other to explain I. 

The stochastic gradient algorithm of [274] can be used for learning, where in each 
iteration, for each zi , only a single copy of zi is sampled from p(zi |Ii , θ)  by running 
a finite number of steps of Langevin dynamics starting from the current value of zi , 
i.e., the warm start. With zi sampled from p(zi | Ii , θ)  for each observation Ii by the 
Langevin inference process, the Monte Carlo approximation to L′(θ) is 

L′(θ) ≈ 
1 

n 

n∑
i=1 

∂ 
∂θ 

log p(zi , Ii; θ)  

= 
1 

n 

n∑
i=1 

1 

σ 2 
(Ii − g(zi; θ)) 

∂ 
∂θ 

g(zi; θ). (11.39) 

The updating of θ solves a nonlinear regression problem so that the learned θ enables 
better reconstruction of Ii by the inferred zi . Given the inferred zi , the learning of θ 
is a supervised learning problem [47]. 

Han et al. [94] describe the training algorithm that iterates the following two 
steps: (1) Inference back-propagation: update zi by running a finite number of steps 
of Langevin dynamics. (2) Learning back-propagation: update θ by one step of 
gradient descent. 

Both the inferential back-propagation and the learning back-propagation are 
guided by the residual Ii − g(zi; θ). The inferential back-propagation is based on 
∂g(z; θ)/∂z, whereas the learning back-propagation is based on ∂g(z; θ)/∂θ . 

The Langevin dynamics can be extended to Hamiltonian Monte Carlo [179] or  
more sophisticated versions [80]. 

Figure 11.9 illustrates the results of modeling textures where we learn a separate 
model from each texture image. The factors z at the top layer form a 

√
d × √

d 
image, with each pixel following N(0, 1) independently. The 

√
d × √

d image z is 
then transformed into I by the top-down ConvNet. In order to obtain the synthesized 
image, we randomly sample a 7 × 7 image z from N(0, I )  and then expand the 
learned network to generate the 448 × 448 synthesized image. 

Figure 11.10 illustrates the learned D-dimensional manifold. We learn a model 
where z = (z1, . . . , zd ) has d = 100 components from 1000 face images randomly 
selected from the CelebA dataset [156]. The left panel of Fig. 11.10 displays the 
images generated by the learned model. The right panel displays the interpolation 
results. The images at the four corners are generated by the z vectors of four images 
randomly selected from the training set. The images in the middle are obtained by 
first interpolating the z’s of the four corner images using the sphere interpolation 
[44] and then generating the images by the learned ConvNet. 

Figure 11.11 depicts the reconstructions of face images by linear PCA and 
nonlinear generator model. For PCA, we learn the d eigenvectors from the train-
ing images and then project the testing images on the learned eigenvectors for 
reconstruction. The generator is learned by alternating back-propagation. We infer
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Fig. 11.9 Reprinted with permission from [94]. Modeling texture patterns. For each example, 
Left: the 224 × 224 observed image. Right: the 448 × 448 generated image 

Fig. 11.10 Reprinted with permission from [94]. Modeling object patterns. Left: each image is 
obtained by first sampling z ∼ N(0, I100) and then generating the image by g(z; θ)  with the learned 
θ . Right: interpolation. The images at the four corners are reconstructed from the inferred z vectors 
of four images randomly selected from the training set. Each image in the middle is obtained by 
first interpolating the z vectors of the four corner images and then generating the image by g(z; θ)
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Fig. 11.11 Reprinted with permission from [94]. Comparison between generator as nonlinear and 
PCA as linear factor analysis. Row 1: original testing images. Row 2: reconstructions by PCA 
eigenvectors learned from training images. Row 3: reconstructions by the generator learned from 
training images 

the d-dimensional latent factors z using inferential back-propagation and then 
reconstruct the testing image by g(z; θ)  using the inferred z and the learned θ . 

Nonlinear Generalization of AAM Model 

Active appearance models (AAMs) [28, 137] use a linear model to jointly capture 
the appearance and geometric variations in an image. For the face images, the 
appearance information mainly includes colors, illuminations, and identities, while 
the geometric information mainly includes the shapes and viewing angles. Given 
a set of landmark points, the AAM model can learn the eigenvectors from these 
landmarks to extract the geometric information. With the known landmark points, 
the faces can be aligned into a canonical shape and view, by warping the faces 
with the mean landmarks. Under this canonical geometric state, the appearance 
information can be extracted by the principal component analysis. 

Can we extract the appearance and geometric knowledge from the images with-
out any landmarks or any supervised information? Moreover, can we disentangle the 
appearance and geometric information by an unsupervised method? The deformable 
generator model can solve this problem. 

The deformable generator model [271, 272] disentangles the appearance and 
geometric information of an image into two independent latent vectors with two 
generator networks: one appearance generator and one geometric generator. The 
appearance generator produces the appearance details, including color, illumination, 
identity, or category, of an image. The geometric generator produces a displacement 
of the coordinates of each pixel and performs geometric warping, such as stretching 
and rotation, on the image generated by the appearance generator to obtain the final 
generated image, as shown in Fig. 11.12. The geometric operation only modifies 
the positions of pixels in an image without changing the color and illumination. 
Therefore, the color and illumination information and the geometric information
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Fig. 11.12 Reprinted with permission from [271]. An illustration of the proposed model. The 
model contains two generator networks: one appearance generator and one geometric generator. 
The two generators are connected with a warping function to produce the final image. The warping 
function includes a geometric transformation operation for image coordinates and a differentiable 
interpolation operation. The refining operation is optional for improving the warping function 

are disentangled by the geometric generator and the appearance generator in the 
model. 

The model can be expressed as 

I = G(za , zg; θ) + ε

= Fw(ga(za; θa), gg(zg; θg)) + ε, (11.40) 

where za ∼ N(0, Ida ), z
g ∼ N(0, Idg ), and ε ∼ N(0, σ 2ID) are independent. Fw is 

the warping function, which uses the deformation field generated by the geometric 
generator gg(zg; θg) to warp the image generated by the appearance generator 
ga(za; θa) to synthesize the final output image I. This deformable generator model 
can be learned by extending the alternating back-propagation algorithm. 

The abstracted geometric knowledge can be transferred. For the unseen images 
as in Fig. 11.13, we can first infer their appearance and geometric latent vectors, 
and then the geometric knowledge can be transferred by recombining the inferred 
geometric latent vector from the target image with the inferred appearance latent 
vector from the source image. 

For high-resolution images, we train the deformable generator with 40K faces 
from FFHQ [126], which are cropped to 256 × 256 pixels. Similar results corre-
sponding to Fig. 11.13 are demonstrated in Fig. 11.14.
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Fig. 11.13 Reprinted with permission from [271]. Transferring and recombining geometric and 
appearance vectors. The first row shows seven faces from the CelebA dataset. The second row 
shows the faces generated by transferring and recombining the second through seventh faces’ 
geometric vectors zg with the first face’s appearance vector za in the first row. The third row shows 
the faces generated by transferring and recombining the second through seventh faces’ appearance 
vectors za with the first face’s geometric vector zg in the first row. The deformable generator model 
is trained on the 10,000 face images from the CelebA dataset, which are cropped to 64×64 pixels, 
and the faces in the training data have a diverse variety of colors, illuminations, identities, viewing 
angles, shapes, and expressions 

Fig. 11.14 Reprinted with permission from [271]. Transferring and recombining the abstracted 
geometric and appearance knowledge. The first row shows 8 unseen faces from FFHQ. The second 
row shows the generated faces by transferring and recombining the 2nd–8th faces’ geometric 
vectors with the first face’s appearance vector. The third row shows the generated faces by 
recombining the 2nd–8th faces’ appearance vectors with the first face’s geometric vector in the 
first row. The deformable generator model is trained on the 40,000 face images randomly selected 
from the FFHQ dataset [126]. The training images are cropped to 256 × 256 pixels, and the faces 
have different colors, illuminations, identities, viewing angles, shapes, and expressions 

Dynamic Generator Model 

Let I = (It , t  = 1, . . . , T  )  be the observed video sequence, where It is a frame at time 
t . The dynamic generator model consists of the following two components:
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zt = Fα(zt−1, ut ), (11.41) 

It = Gβ(zt ) + εt , (11.42) 

where t = 1, . . . , T  (11.41) is the transition model, and (11.42) is the emission 
model. zt is the d-dimensional hidden state vector. ut ∼ N(0, I )  is the noise vector 
of a certain dimensionality. The Gaussian noise vectors (ut , t  = 1, . . . , T  )  are 
independent of each other. The sequence of (zt , t  = 1, . . . , T  )  follows a nonlinear 
auto-regressive model, where the noise vector ut encodes the randomness in the 
transition from zt−1 to zt in the d-dimensional state space. Fα is a feedforward neural 
network or multi-layer perceptron, where α denotes the weight and bias parameters 
of the network. We can adopt a residual form [97] for  Fα to model the change of the 
state vector. It is the D-dimensional image, which is generated by the d-dimensional 
hidden state vector zt . Gβ is a top-down convolutional network (sometimes also 
called deconvolution network), where β denotes the weight and bias parameters of 
this top-down network. εt ∼ N(0, σ 2ID) is the residual error. We let θ = (α, β) denote 
all the model parameters. 

Let u = (ut , t  = 1, . . . , T  ). u consists of the latent random vectors that need to be 
inferred from I. Although It is generated by the state vector zt , z = (zt , t  = 1, . . . , T  )  
are generated by u. In fact, we can write I = Hθ(u) + ε, where Hθ composes Fα and 
Gβ over time, and ε = (εt , t  = 1, . . . , T  )  denotes the observation noises. 

Let p(u) be the prior distribution of u. Let  pθ (I|u) ∼ N(Hθ (u), σ 2I )  be the 
conditional distribution of I given u, where I is the identity matrix whose dimension 
matches that of I. The marginal distribution is pθ (I) = ∫

p(u)pθ (I|u)du with the 
latent variable u integrated out. We estimate the model parameter θ by the maximum 
likelihood method that maximizes the observed data log-likelihood log pθ (I). 

We learn the model for dynamic textures, which are sequences of images of 
moving scenes that exhibit stationarity in time. We learn a separate model from 
each example. Each observed video clip is prepared to be of the size 64 pixels 
× 64 pixels × 60 frames. The transition model is a feedforward neural network 
with three layers. The network takes a 100-dimensional state vector st−1 and a 100-
dimensional noise vector ut as input and produces a 100-dimensional vector rt , so  
that zt = tanh(zt−1+rt ). The numbers of nodes in the three layers of the feedforward 
neural network are {20, 20, 100}. The emission model is a top-down deconvolution 
neural network or generator model that maps the 100-dimensional state vector (i.e., 
1 × 1 × 100) to the image frame of size 64 × 64 × 3 by 6 layers of deconvolutions 
with a kernel size of 4 and up-sampling factor of 2 from top to bottom. The numbers 
of channels at different layers of the generator are {512, 512, 256, 128, 64, 3}. Batch 
normalization [118] and ReLU layers are added between deconvolution layers, 
and tanh activation function is used at the bottom layer to make the output image 
intensities fall within [−1, 1]. Once the model is learned, we can synthesize dynamic 
textures from the learned model. 

To speed up the training process and relieve the burden of computer memory, we 
can use truncated back-propagation through time in training the model. That is, we 
divide the whole training sequence into different non-overlapped chunks and run
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Fig. 11.15 Reprinted with permission from [260]. Generating dynamic textures. For each cate-
gory, the first row displays 6 frames of the observed sequence, and the second and third rows 
show the corresponding frames of two synthesized sequences generated by the learned model, (a) 
burning fire heating a pot, (b) flapping flag, (c) waterfall, (d) flashing lights 

forward and backward passes through chunks of the sequence instead of the whole 
sequence. We carry hidden states zt forward in time forever, but only back-propagate 
for the length (the number of image frames) of the chunk. In this experiment, the 
length of the chunk is set to be 30 image frames. 

An “infinite length” dynamic texture can be synthesized from a typically “short” 
input sequence by just drawing “infinite” i.i.d. samples from Gaussian distribution. 
Figure 11.15 shows five results. For each example, the first row displays 6 frames of 
the observed 60-frame sequence, while the second and third rows display 6 frames 
of two synthesized sequences of 120 frames in length, which are generated by the 
learned model.



Chapter 12 
A Tale of Three Families: Discriminative, 
Descriptive, and Generative Models 

12.1 Introduction 

Three Families of Probabilistic Models 

This chapter gives a general introduction to three families of probabilistic models 
and their connections. Most of the models studied in the previous chapters, as well 
as most of the models in the current machine learning and deep learning literature, 
belong to these three families of models. 

The first class consists of discriminative models or classifiers that are commonly 
used in supervised learning. The second class consists of descriptive models— 
also known as energy-based models—that define unnormalized probability density 
functions in the data space. These models are generalizations of the FRAME model 
introduced in the previous chapters. The third class consists of generative models 
that are directed top-down models that involve latent variables. The generative 
models are generalizations of factor analysis and its variants. They are also called 
directed graphical models. 

About the names of the models, we use the term “generative models” in a much 
narrower sense than in the current literature. They refer to top-down models that 
consist of latent variables that follow simple prior distributions so that the examples 
can be directly generated. As to the “descriptive models,” they refer to the energy-
based models or deep FRAME model introduced in the previous chapter. They only 
describe the examples in terms of their probability densities, but they cannot directly 
generate the examples. The generative task is left to iterative MCMC sampling 
algorithms. Therefore, these models are not literally generative as they do not 
explicitly define a generative process, and that is why we call them descriptive. 
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Top-down mapping Bottom-up mapping Bottom-up mapping 

latent variables z log density fθ (x) logit score (density ratio) 
⇓ ⇑ ⇑  

example x ≈ gθ (z) example x example x 
(a) Generative (sampler) (b) Descriptive (density) (b) Discriminative (classifier) 

(12.1) 

Density vs. Sampler A descriptive model specifies the probability density function 
explicitly, up to a normalizing constant. A discriminative model specifies the ratios 
between two or more densities via the Bayes rule. A generative model, on the other 
hand, does not specify a data density explicitly. It specifies a sampler or a sampling 
process that transforms latent variables with a known distribution, e.g., Gaussian 
white noise variables, to the observed example. By analogy to reinforcement 
learning, a density is like a value network or a critic, and a sampler is like a policy 
network or an actor. 

The above diagram illustrates the three families of probabilistic models. A 
generative model is based on a top-down mapping from the latent variables z to 
the example x. A descriptive model is based on a bottom-up mapping from the 
example x to the log of the unnormalized density. A discriminative model is based 
on a bottom-up mapping from the example x to the logit score that is also the ratio 
between the densities of positive and negative classes in the binary classification 
situation (which can be easily generalized to the multi-class situation). All the 
mappings can be parameterized by deep neural networks. 

In the previous chapter, we introduced the descriptive models and generative 
models for image and video data and the associated maximum likelihood learning 
algorithms. This chapter will give a more general treatment. We shall still emphasize 
the maximum likelihood learning algorithm. Meanwhile, we shall also present 
various joint training schemes, such as variational learning and adversarial learning. 
We shall make this chapter self-contained so that readers who are interested in the 
development in the deep learning era can read this chapter in isolation. 

Notation We shall adopt the notation commonly used in the current literature. We 
use x to denote the training example, e.g., an image or a sentence. We use z to 
denote the latent variables in the generative model. We use y to denote the output 
in the discriminative model, e.g., image category. We use θ to denote the model 
parameters. We use the notations ∇x and ∇θ to denote ∂ 

∂x and 
∂ 
∂θ , respectively. For 

a function h(θ), its derivative at a fixed value, say, θt , is denoted ∇θh(θt ). We use  
DKL to denote the Kullback–Leibler divergence. 

Supervised, Unsupervised, and Self-supervised Learning 

Supervised learning refers to the situation where both the input x and the output 
y are given, and we want to learn to predict y based on x. More formally, we
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learn a discriminative or predictive model p(y|x) by maximum likelihood, i.e., we 
maximize the average of log p(y|x) over the model parameters where the average 
is over the training set {x, y}. The limitation of supervised learning is that it can be 
expensive and time-consuming to obtain y in the form of label or annotation. 

Unsupervised learning refers to the situation where only the input x is given, 
but the output y is unavailable. In that case, we can learn a descriptive model or a 
generative model, again by maximum likelihood, but we maximize the average of 
log p(x) over the model parameters, where the average is over the training set {x}, 
instead of the average of logp(y|x), as  y is not available. The descriptive model 
specifies p(x) up to an unknown normalizing constant, and it is closely related to 
the discriminative model through the Bayes rule. For the generative model, p(x) is 
implicit because it involves integrating out the latent variables z. The latent z can be 
inferred from the input x. 

Semi-supervised learning refers to the situation between supervised and unsuper-
vised learning, where there are a small number of labeled examples where both x 
and y are given, and there are a large number of unlabeled examples where only x 
is given. In that case, we can again learn the model by maximum likelihood, where 
we maximize the sum of log p(y|x) over the labeled examples and log p(x) over 
the unlabeled examples. Thus probabilistic modeling provides a unified likelihood-
based framework for supervised, unsupervised, and semi-supervised learning. 

There is also self-supervised learning, which is to translate unsupervised learning 
into supervised learning. Specifically, even if we are only given x without y, we can 
nonetheless create a task where we artificially introduce y for a modification of x 
that depends on y, and we then learn p(y|x) instead of p(x). This type of learning 
can be more formally treated as learning descriptive model by various conditional 
likelihoods. 

MCMC for Synthesis and Inference 

Although likelihood-based learning with probabilistic models is a principled frame-
work for supervised, unsupervised, and semi-supervised learning, the bottleneck for 
likelihood-based learning for unsupervised learning is that the derivative of the log-
likelihood function log p(x) usually involves intractable integrals or expectations, 
which require expensive MCMC sampling. A lot of effort has been spent on getting 
around this obstacle. 

We may use short-run MCMC, i.e., running MCMC such as Langevin dynamics 
or Hamiltonian Monte Carlo (HMC) [179] from a fixed initial noise distribution 
for a fixed number of steps, for inference and synthesis computations. This is 
affordable on modern computing platforms. It can also be justified as a modification 
or perturbation of the maximum likelihood learning. 

Short-run MCMC is convenient for learning models with multiple layers of latent 
variables organized in complex architectures because top-down feedback and lateral 
inhibition between the latent variables at different layers can automatically emerge 
in short-run MCMC. The short-run Langevin dynamics can also be compared with
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attractor dynamics that is a commonly assumed framework for modeling neural 
computations [7, 108, 198]. One can also run persistent Markov chains, i.e., in each 
learning iteration, we initialize finite-step MCMC from the samples generated in the 
previous learning iteration. 

Deep Networks as Function Approximators 

All three classes of models can be parameterized by deep neural networks [138, 
144], which are compositions of multiple layers of linear transformations and 
coordinate-wise nonlinear transformations. 

Specifically, consider a nonlinear transformation f (x)  that can be decomposed 
recursively as sl = Wlhl−1 + bl , and hl = rl(sl), for  l = 1, . . . , L, with f (x)  = hL 
and h0 = x. Wl is the weight matrix at layer l, and bl is the bias vector at layer l. 
Both sl and hl are vectors of the same dimensionality, and rl is a one-dimensional 
nonlinear function, or rectification function, that is applied coordinate-wise or 
element-wise. 

The nonlinear rectification is crucial for f (x)  to approximate nonlinear mapping. 
In the past, the nonlinear rectification rl() is usually sigmoid transformation, which 
is approximately a two-piece constant function. This makes f (x)  approximately 
piecewise constant function. Modern deep networks usually use rl(s) = max(0, s), 
the rectified linear unit or ReLU, which makes f (x)  piecewise linear. 

There are two special classes of neural networks. One consists of convolutional 
neural networks [138, 144], which are commonly applied to images, where the same 
linear transformations are applied around each pixel locally. The other class consists 
of recurrent neural networks [103], which are commonly applied to sequence data 
such as speech and natural language. Recently, the transformer model [239] has 
become the most prominent architecture. 

Deep neural networks are powerful function approximators that can approximate 
highly nonlinear high-dimensional continuous functions by interpolating training 
examples. Modern deep networks are highly overparameterized, meaning that the 
number of parameters greatly exceeds the number of training examples. Thus 
they have enough capacity to fit the training data, yet they tend not to overfit 
the training data because the networks are learned by stochastic gradient descent 
algorithm where the gradient is computed via back-propagation. The stochastic 
gradient descent algorithm provides implicit regularization [11, 221]. 

Learned Computation 

Because of the strong approximation capacity, the boundary between representation 
and computation is rather blurred because a deep network can approximate an 
iterative algorithm. Sometimes this is called learned computation.
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In fact, the residual network [97] can be considered a finite-step iterative 
algorithm. It is of the form xl+1 = xl +fl(xl), where l indexes the layer. Meanwhile, 
l may also be interpreted as time step of an iterative algorithm, i.e., we can also write 
xt+1 = xt + ft (xt ), which is to model iterative updating or refinement. In general, 
it can be interpreted as a mixture of both, i.e., there is actually a small number of 
layers, and each layer is computed by a finite-step iterative algorithm. 

The transformer model [239] can also be considered a finite-step iterative 
algorithm that iteratively updates the vector representations of the words of an input 
sentence through the self-attention mechanism where the words pay attention to 
and gather information from each other. The graph convolutional network [134] can 
learn the iterative message passing mechanism where the nodes of the graph send 
messages to each other. 

In the above iterative updating mechanisms, there is no need to know the 
objective functions of these iterative mechanisms. They can be embedded into a 
classifier and be trained by the classification loss via back-propagation through time. 

Amortized Computation for Synthesis and Inference 
Sampling 

Even if there is an objective function, we can still learn a deep network that directly 
maps the input to an approximate solution. Sometimes this is called amortized 
computation, which seeks to approximate an iterative algorithm of multiple time 
steps. 

In the case of the generative model, recall that we can use short-run MCMC as an 
approximate sampler for synthesis and inference. We can also learn a network that 
produces the samples directly. In the case of posterior sampling, this is referred to as 
variational inference model [133]. In fact, the short-run MCMC can be considered 
a noise-injected residual network. 

When there are multiple layers of latent variables, designing a network for 
approximate inference sampling can be a non-trivial task, whereas short-run MCMC 
remains automatic. 

Distributed Representation and Embedding 

Deep neural networks are based on continuous vectors and weight matrices. They 
are highly interpolative and amendable to gradient-based computations. On the other 
hand, high-level reasoning can also be highly symbolic, with symbols, logic, and 
grammar. For a dictionary of symbols, each symbol can be represented by a one-hot 
vector, and a small subset of symbols selected from the dictionary can be represented 
by a sparse vector. This is in contrast to the vectors in deep networks, which are
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continuous and dense. Such vectors are called distributed representations. They are 
also commonly referred to as embeddings. For instance, the word2vec model [172, 
193] represents each word by a dense vector, and this means we embed the words in 
a continuous Euclidean space. A modern deep network such as transformer [239] or  
graph neural network [134] can be viewed as a team of vectors, which are operated 
on by learned matrices so that they can pass on messages to each other. For discrete 
or symbolic inputs or outputs such as words or tokens, they can be encoded into 
vectors or decoded from the vectors. 

It is still unclear how to unify symbolic and dense representations. Sometimes 
this is referred to as the contrast between symbolism and connectionism. It is likely 
that there is a duality or complementarity between sparse vectors and dense vectors, 
and each is more convenient and efficient than the other depending on the scenario. 

Perturbations of Kullback–Leibler Divergence 

A unifying theoretical device for studying various learning methods is to perturb the 
Kullback–Leibler divergence for maximum likelihood by other Kullback–Leibler 
divergences. This scheme consists of three Kullback–Leibler divergences: (1) KL-
divergence underlying maximum likelihood learning. This is the target of the 
perturbations. (2) KL-divergence underlying synthesis sampling. (3) KL-divergence 
underlying inference sampling. (2) and (3) are perturbations that are applied to (1). 
The sign in front of (2) is negative, and the sign in front of (3) is positive. 

The above theoretical framework explains the following learning algorithms: (1) 
The maximum likelihood learning algorithm. (2) The learning algorithm based on 
short-run MCMC for synthesis and inference. (3) The learning methods based on 
learned networks for synthesis and inference, including adversarial learning [81] 
and variational learning [133]. 

Kullback–Leibler Divergence in Two Directions 

To be more specific, recall that for two probability densities p(x) and q(x), we  
define 

DKL(p‖q) = Ep

[
log 

p(x) 
q(x)

]
=

∫
p(x) log 

p(x) 
q(x) 

dx. (12.2) 

The KL-divergence appears in two scenarios: 

(1) Maximum likelihood learning. Suppose the training examples xi ∼ pdata(x) 
are independent for i = 1, . . . , n. Suppose we want to learn a model pθ(x). The  
log-likelihood function is
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L(θ) = 
1 

n 

n∑
i=1 

log pθ(xi) → Epdata [log pθ(x)]. (12.3) 

Thus for big n, maximizing L(θ) is equivalent to minimizing 

DKL(pdata‖pθ ) = −entropy(pdata) − Epdata [logpθ (x)] .= −entropy(pdata) − L(θ), 
(12.4) 

where Epdata can be approximated by averaging over {xi}. We can think of it as 
projecting pdata onto the model space {pθ ,∀θ}. 

For the rest of this chapter, for notational simplicity, we will not distinguish 
between Epdata and sample average over {xi}, and we will treat DKL(pdata‖pθ) 
as the loss function for maximum likelihood learning. 

(2) Variational approximation. Suppose we have a target distribution ptarget, and 
we know ptarget up to a normalizing constant, e.g., ptarget(x) = exp(f (x))/Z, 
where we know f (x)  but the normalizing constant Z = ∫

exp(f (x))dx is 
analytically intractable. Suppose we want to approximate it by a distribution 
qφ . We can find φ by minimizing 

DKL(qφ‖ptarget) = Eqφ [log qφ(x)] −  Eqφ [f (x)] +  log Z. (12.5) 

This time, we place qφ on the left-hand side and ptarget on the right-hand side of 
the KL-divergence, because ptarget is accessible only through f (x). The above 
minimization does not require knowledge of log Z. 

The behaviors of minθ DKL(pdata‖pθ) in (1) and minφ DKL(qφ‖ptarget) in (2) are 
different. In (1), pθ tends to cover all the modes of pdata because DKL(pdata‖pθ) 
is the expectation with respect to pdata. In (2),  qφ tends to focus on some major 
modes of ptarget, while ignoring the minor modes, because DKL(qφ‖ptarget) is the 
expectation with respect to qφ . 

In the perturbation scheme mentioned in the previous subsection, the KL-
divergence for maximum likelihood is (12.4). The perturbations are of the form 
in (12.5). 

12.2 Descriptive Energy-Based Model 

Model and Origin 

Let x be a training example, e.g., an image or a sentence. A descriptive model 
specifies an unnormalized probability density function
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pθ(x) = 
1 

Z(θ) 
exp(fθ (x)), (12.6) 

where fθ (x) is parameterized by a deep network, with θ collecting all the weight 
and bias parameters. Z(θ) = ∫

exp(fθ (x))dx is the normalizing constant. 
Such a model originated from statistical mechanics and is called the Gibbs 

distribution, where x is the state or configuration of a physical system, and −fθ (x) 
is the energy function of the state so that the lower energy states are more likely 
to be observed. For that reason, the above model is also called energy-based model 
(EBM) in the literature [32, 70, 99, 161, 180, 182, 184, 266, 269, 270]. 

In classical mechanics, the configuration x(t) evolves deterministically over 
time t according to a partial differential equation. Then where does the probability 
distribution come from? We may consider the ensemble or population (x(t), t ∈ 
[t0, t1]), for a long enough burn-in time t0 and long enough duration t1 − t0. For  a  
random time t ∼ Uniform[t0, t1], x(t) follows a probability distribution p(x), and 
it can be modeled by a Gibbs distribution. 

The quantity Z(θ) is called the partition function in statistical mechanics. An 
important identity is 

∇θ log Z(θ) = Epθ [∇θfθ (x)]. (12.7) 

The non-differentiability of log Z(θ) underlies the phase transition phenomena in 
statistical physics. 

The descriptive model has strong expressive power because it only needs to 
specify a scalar-valued function fθ (x). fθ (x) is like an objective function (or value 
function, or constraints, or rules). The descriptive model is only responsible for 
specifying the objective function and is not responsible for optimizing the objective 
function or providing near-optimal solutions. The latter task is left to MCMC 
sampling. As a result, a simple descriptive model pθ(x) or the objective function 
fθ (x) can explain rich patterns and complex behaviors. 

The descriptive model has been used for inverse reinforcement learning, where 
−fθ (x) serves as the cost function [283]. It has also been used for Markov logic 
network [204], where fθ (x) combines logical rules. 

Gradient-Based Sampling 

For high-dimensional x, such as image, sampling from pθ(x) requires MCMC, such 
as Langevin dynamics or HamiltonianMonte Carlo. The Langevin dynamics iterates 

xt+1 = xt + s∇xfθ (xt ) +
√
2set , (12.8)
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where s is the step size and et ∼ N(0, I )  is the Gaussian white noise term. The 
Langevin dynamics has a gradient ascent term ∇xfθ (xt ), and et is the diffusion 
term for randomness. As s → 0 and t → ∞, the distribution of xt converges to 
pθ(x). 

We can write the Langevin dynamics in continuous time as 

xt+�t = xt + 
1 

2
∇xfθ (xt )�t + √

�tet , (12.9) 

or more formally, 

dxt = 
1 

2
∇xfθ (xt )dt + dBt , (12.10) 

where dBt plays the role of
√

�tet . 
Let pt be the distribution of xt . Then according to the Fokker–Planck equation, 

we have 

∇tpt (x) = 
1 

2
[∇x(fθ (x)pt (x)) + ∇2 

xpt (x)]. (12.11) 

pθ(x) is the solution to ∇tpt (x) = 0, i.e., the stationary distribution. In terms of 
variational approximation, 

DKL(pt‖pθ) = −entropy(pt ) − Ept [fθ (x)] + log Z(θ) → 0 (12.12) 

monotonically as t → ∞  under fairly general conditions. The gradient term in the 
Langevin dynamics increases fθ (x) or decreases energy, while the noise term et 
increases the entropy of pt . 

Intuitively, imagine a population of x’s that are distributed according to pθ(x). 
The deterministic gradient ascent term in the Langevin dynamics pushes the points 
toward the local modes of the log density, making the distribution of the points more 
focused on the local modes of the density. Meanwhile, the random diffusion term in 
the Langevin dynamics adds random noises to the points, making the distribution of 
the points more diffused from the local modes of the density. The two terms balance 
each other so that the overall distribution of the points after each Langevin iteration 
remains unchanged. 

Hamiltonian Monte Carlo (HMC) [105, 179] is a more powerful gradient-based 
MCMC sampling method. Similar to gradient descent with momentum, it can 
navigate the high curvature regions of the energy landscape more smoothly and 
efficiently. The step size in HMC can be adaptively selected based on the acceptance 
rate calculated from the energy function [105]. 

In order to traverse local modes and facilitate fast mixing of the Markov chain, 
one can add a temperature parameter to interpolate the multi-modal target density 
and a simple unimodal reference density such as Gaussian white noise distribution. 
One can then use simulated annealing [135] or more principled and effectiveMCMC
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schemes such as simulated tempering [168], parallel tempering [48, 77], or replica 
exchange [226] to sample from multi-modal density. 

Maximum Likelihood Estimation (MLE) 

The descriptive model pθ(x) can be learned by maximum likelihood estimation 
(MLE). The log-likelihood is the average of 

log pθ(x) = fθ (x) − log Z(θ), (12.13) 

where the average is over the training set {x}. The gradient of log pθ(x) with respect 
to θ is 

δθ (x) = ∇θ log pθ(x) = ∇θfθ (x) − Epθ (x)[∇θfθ (x)], (12.14) 

where 

∇θ log Z(θ) = Epθ (x)[∇θfθ (x)]. (12.15) 

Suppose we observe training examples {xi, i  = 1, . . . , n} ∼  pdata, where pdata 
is the data distribution. For large n, the sample average over {xi} approximates the 
expectation with respect to pdata. For notational convenience, we treat the sample 
average and the expectation as the same. 

The log-likelihood is 

L(θ) = 
1 

n 

n∑
i=1 

log pθ(xi) 
.= Epdata [log pθ(x)]. (12.16) 

The derivative of the log-likelihood is 

L′(θ) = Epdata [δθ (x)] =  Epdata [∇θfθ (x)] − Epθ [∇θfθ (x)] (12.17) 

.= 
1 

n 

n∑
i=1 

∇θfθ (xi) − 
1 

n 

n∑
i=1 

∇θfθ (x
− 
i ), (12.18) 

where x− 
i ∼ pθ(x) for i = 1, . . . , n  are the generated examples from the current 

model pθ(x). 
The above equation leads to the “analysis by synthesis” learning algorithm. At 

iteration t , let  θt be the current model parameters. We generate synthesized examples 
x− 
i ∼ pθt (x) for i = 1, . . . , n. Then we update θt+1 = θt + ηtL

′(θt ), where ηt is 
the learning rate, and L′(θt ) is the statistical difference between the synthesized 
examples and observed examples (Fig. 12.1).
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Fig. 12.1 Reprinted with permission from [266]. Learning the descriptive model by maximum 
likelihood: (a) goose, (b) tiger. For each category, the first row displays four of the training images, 
and the second row displays four of the images generated by the learning algorithm. fα(x) is 
parameterized by a four-layer bottom-up deep network, where the first layer has 100 7 × 7 filters  
with subsampling size 2, the second layer has 64 5 × 5 filters with subsampling size 1, the third 
layer has 20 3×3 filters with subsampling size 1, and the fourth layer is a fully connected layer with 
a single filter that covers the whole image. The number of parallel chains for Langevin sampling is 
16, and the number of Langevin iterations between every two consecutive updates of parameters is 
10. The training images are 224 × 224 pixels 

Objective Function and Estimating Equation of MLE 

The maximum likelihood learning minimizes the Kullback–Leibler divergence 
DKL(pdata‖pθ) over θ . Geometrically, it is to project pdata onto the manifold formed 
by {pθ ,∀θ}. 

The maximum likelihood learning algorithm converges to the solution to the 
following estimating equation: 

Epθ [∇θfθ (x)] = Epdata [∇θfθ (x)] , (12.19) 

where the model matches the data in terms of the expectation of ∇θfθ (x). 
For the FRAME model or in general the exponential family model, 

fθ (x) = 〈θ,  h(x)〉 for feature vector h(x); hence, ∇θfθ (x) = h(x) and 
L′(θ) = Epdata [h(x)] −  Epθ [h(x)]. The maximum likelihood estimating equation 
is Epθ [h(x)] =  Epdata [h(x)], i.e., matching feature statistics. For general fθ (x), we  
may still consider ∇θfθ (x) as a feature vector. 

Perturbation of KL-divergence 

Define D(θ) = DKL(pdata‖pθ). It is the loss function of MLE. To understand the 
MLE learning algorithm, let θt be the estimate at iteration t . Let us consider the 
following perturbation of D(θ): 

S(θ) = D(θ) − DKL(pθt ‖pθ) = DKL(pdata‖pθ) − DKL(pθt ‖pθ). (12.20)
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Fig. 12.2 Reprinted with permission from [95]. The surrogate S minorizes (lower bounds) D, and  
they touch each other at θt with the same tangent 

S(θ) is the surrogate objective function for D(θ) at iteration t . It is simpler than 
D(θ), because the log Z(θ) term gets canceled, and the gradient can be more easily 
computed (Fig. 12.2). 

The perturbation term DKL(pθt ‖pθ), as a function of θ , with θt fixed, has the 
following properties: (1) It achieves minimum zero at θ = θt . (2) Its derivative is 
zero at θ = θt . As a result, S(θt ) = D(θt ), and S′(θt ) = D′(θt ). Geometrically, 
S(θ) and D(θ) touch each other at θt , and they are co-tangent at θt . Since 

S(θ) = −Epdata [fθ (x)] +  Epθt
[fθ (x)] −  entropy(pdata) + entropy(pθt ), (12.21) 

where log Z(θ) gets canceled, we have 

− S′(θ) = Epdata [∇θfθ (x)] −  Epθt
[∇θfθ (x)]. (12.22) 

Thus 

−D′(θt ) = −S′(θt ) = Epdata[δθt (x)] =  Epdata [∇θfθt (x)] −  Epθt
[∇θfθt (x)]. 

(12.23) 

This justifies the MLE learning algorithm. 
We shall use this perturbation scheme repeatedly, where we perturb the MLE loss 

function D(θ) = DKL(pdata‖pθ) to a simpler surrogate objective function S(θ) by 
subtracting or adding other KL-divergence terms. This enables us to theoretically 
understand other learning methods that are modifications of MLE learning. 

Self-adversarial Interpretation 

S(θ) = DKL(pdata‖pθ)−DKL(pθt ‖pθ) leads to an adversarial interpretation. When 
we update θ by following the gradient of S(θ) at θ = θt , we want pθ to move away 
from pθt and move toward pdata. That is, the model pθ criticizes its current version 
pθt by comparing pθt to pdata. The model serves as both generator and discriminator 
if we compare it to GAN (generative adversarial networks). In contrast to GAN 
[8, 81, 199], the learning algorithm is MLE, which in general does not suffer from
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issues such as mode collapsing and instability, as it does not involve the competition 
between two separate networks. 

Short-Run MCMC for Synthesis 

We now consider the learning algorithm based on short-run MCMC [184]. 
The short-run MCMC is 

x0 ∼ p0(x), xk+1 = xk + s∇xfθ (xk) + √
2sek, k  = 1, . . . , K,  (12.24) 

where we initialize the Langevin dynamics from a fixed diffused noise distribution 
p0(x), and we run a fixed number of K steps. Let p̃θ (x) be the distribution of xK . We  
use xK as the synthesized example for approximate maximum likelihood learning 
(Figs. 12.3 and 12.4). 

For each x, we define 

δ̃θ (x) = ∇θfθ (x) − Ep̃θ (x)[∇θfθ (x)] (12.25) 

and modify the learning algorithm to 

θt+1 = θt + ηtEpdata [δ̃θt (x)] =  θt + ηt

(
Epdata [∇θfθ (x)] − Ep̃θ

[∇θfθ (x)]) . (12.26) 

Fig. 12.3 Reprinted with permission from [184]. Synthesis by short-run MCMC: Generating 
synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise 
for CelebA (64 × 64) 

Fig. 12.4 Reprinted with permission from [184]. Synthesis by short-run MCMC: Generating 
synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise 
for CelebA (128 × 128)
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Objective Function and Estimating Equation with Short-Run 
MCMC 

The following are justifications for the learning algorithm based on short-run 
MCMC synthesis: 

(1) Objective function. Again we use perturbation of KL-divergence. At iteration 
t , with θt fixed, the learning algorithm follows the gradient of the following 
perturbation of D(θ) at θ = θt : 

S(θ) = D(θ)−DKL( p̃θt ‖pθ)=DKL(pdata‖pθ)−DKL( p̃θt ‖pθ), (12.27) 

so that θt+1 = θt + ηtS
′(θt ), where ηt is the step size, and 

− S′(θ) = Epdata [∇θfθ (x)] −  Ep̃θt
[∇θfθ (x)]. (12.28) 

− S′(θt ) = Epdata [δ̃θt (x)] =  Epdata[∇θfθt (x)] − Ep̃θt
[∇θfθt (x)]. (12.29) 

Compared to the perturbation of KL-divergence in MLE learning, we use p̃θt 
instead of pθt . While sampling pθt can be impractical if it is multi-modal, 
sampling p̃θt is practical and exact because it is a short-run MCMC. 

Note that S′(θt ) �= D′(θt ), because p̃θt �= pθt . Thus the learning gradient 
based on short-run MCMC is biased from that of MLE. As a result, the learned 
pθ based on short-run MCMC may be biased from MLE. 

S(θ) indicates that we need to minimize DKL( p̃θ‖pθ) in order to minimize 
the bias relative to the maximum likelihood learning. We can do that by 
increasing K because DKL( p̃θ‖pθ) decreases monotonically to zero as K 
increases. For fixed K , we can also employ more efficient MCMC, especially 
those that can traverse local modes, such as parallel tempering [48, 77] or replica  
exchange [226]. 

(2) Estimating equation. The learning algorithm converges to the solution to the 
following estimating equation: 

Ep̃θ [∇θfθ (x)] = Epdata [∇θfθ (x)] , (12.30) 

which is a perturbation of the maximum likelihood estimating equation where 
we replace pθ by p̃θ (Fig. 12.5). 

Thus even if the learned pθ may be biased from MLE, the resulting short-run 
MCMC p̃θ can nonetheless be considered a valid model, in that it matches pdata 
in terms of expectations of ∇θfθ (x). Recall in the case of FRAME model where 
fθ (x) = 〈θ,  h(x)〉, ∇θfθ (x) = h(x), i.e., the learned short-run MCMC p̃θ matches 
pdata in terms of expectations of h(x). In general, ∇θfθ (x) may be considered a
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Fig. 12.5 Reprinted with permission from [184]. The blue curve illustrates the model distributions 
corresponding to different values of parameter θ . The black curve illustrates all the distributions 
that match pdata (black dot) in terms of E[h(x)]. The MLE p

θ̂MLE 
(green dot) is the intersection 

between 	 (blue curve) and 
 (black curve). The MCMC (red dotted line) starts from p0 (hollow 
blue dot) and runs toward p

θ̂MME 
(hollow red dot), but the MCMC stops after K step, reaching 

p̃
θ̂MME 

(red dot), which is the learned short-run MCMC 

Fig. 12.6 Reprinted with permission from [184]. Interpolation by short-run MCMC resembling a 
generator or flow model: The transition depicts the sequence F(zρ) with interpolated noise zρ = 
ρz1 +

√
1 − ρ2z2, where  ρ ∈ [0, 1] on CelebA (64 × 64). Left: F(z1). Right: F(z2) 

Fig. 12.7 Reprinted with permission from [184]. Reconstruction by short-run MCMC resembling 
a generator or flow model: The transition depicts F(zt ) over time t from random initialization 
t = 0 to reconstruction t = 200 on CelebA (64×64). Left: Random initialization. Right: Observed 
examples 

generalized version of feature vector h(x). Thus we may justify the learned short-
run MCMC p̃θ as a generalized moment matching estimator θ̂MME. The generalized 
moment matching explains the synthesis ability of the descriptive model and various 
learning schemes in general. 

The short-run Langevin dynamics can be considered a noise-injected RNN or 
noise-injected residual network. Specifically, we can write xK = F(x0, e), where 
e = (ek, k  = 1, . . . , K). We can use it to reconstruct the observed image x by 
minimizing ‖x − F(x0, e)‖ over x0 and e. As a simple approximation, we can set 
ek = 0 and write xK = F(x0) (Figs. 12.6 and 12.7).
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Flow-Based Model 

A flow-based model is of the form 

x = gα(z); z ∼ q0(z), (12.31) 

where q0 is a known noise distribution. gα is a composition of a sequence of 
invertible transformations where the log determinants of the Jacobians of the 
transformations can be explicitly obtained. α denotes the parameters. Let qα(x) be 
the probability density of the model at a data point x with parameter α. Then under 
the change of variables, qα(x) can be expressed as 

qα(x) = q0(g−1 
α (x))| det(∂g−1 

α (x)/∂x)|. (12.32) 

More specifically, suppose gα is composed of a sequence of transformations 
gα = gα1 ◦ · · · ◦ gαm . The relation between z and x can be written as z ↔ h1 ↔ 
· · · ↔  hm−1 ↔ x. And thus we have 

qα(x) = q0(g−1 
α (x))�m 

t=1| det(∂ht−1/∂ht )|, (12.33) 

where we define z := h0 and x := hm for conciseness. With carefully designed 
transformations, as explored in flow-based methods, the determinant of the Jacobian 
matrix (∂ht−1/∂ht ) can be computed exactly. The key idea is to choose transforma-
tions whose Jacobian is a triangle matrix so that the determinant becomes 

| det(∂ht−1/∂ht )| = �|diag(∂ht−1/∂ht )|. (12.34) 

The following are the two scenarios for estimating qα: 

(1) Generative modeling by MLE [13, 43, 44, 82, 131, 139, 233], by minα DKL 
(pdata‖qα), where Epdata can be approximated by average over observed exam-
ples. 

(2) Variational approximation to an unnormalized target density p [130, 132, 202], 
based on minα DKL(qα‖p), where 

DKL(qα‖p) = Eqα [log qα(x)] −  Eqα [log p(x)] 
= Ez[log q0(z)− log |det(g′

α(z))|]−Eqα [log p(x)]. (12.35) 

DKL(qα‖p) is the difference between energy and entropy, i.e., we want qα 
to have low energy but high entropy. DKL(qα‖p) can be calculated without 
inversion of gα . 

When qα appears on the right of KL-divergence, as in (1), it is forced to cover 
most of the modes of pdata. When qα appears on the left of KL-divergence, as in (2), 
it tends to chase the major modes of p while ignoring the minor modes.
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The flow-based model has explicit normalized density and can be sampled 
directly. It is both a density and a sampler. 

Flow-Based Reference and Latent Space Sampling 

[181] propose to use a flow-based model as the reference distribution for the 
descriptive model or the energy-based model (EBM) and perform MCMC sampling 
in latent space. 

Instead of using uniform or Gaussian white noise distribution for the reference 
distribution q(x) in the descriptive model, we can use a flow-based model qα as the 
reference model. qα can be pre-trained by MLE and serves as the backbone of the 
model so that the model is of the following form: 

pθ(x) = 
1 

Z(θ) 
exp(fθ (x))qα(x). (12.36) 

The resulting model pθ(x) is a correction or refinement of qα or an exponential 
tilting of qα(x), and fθ (x) is a free-form ConvNet to parameterize the correction. 
The overall negative energy is fθ (x) + log qα(x). 

In the latent space of z, let  p(z) be the distribution of z under pθ(x); then 

p(z)dz = pθ(x)dx = 
1 

Z(θ) 
exp(fθ (x))qα(x)dx. (12.37) 

Because qα(x)dx = q0(z)dz, we have  

p(z) = 
1 

Z(θ) 
exp(fθ (gα(z)))q0(z). (12.38) 

p(z) is an exponential tilting of the prior noise distribution q0(z). It is a very  simple  
form that does not involve the Jacobian or inversion of gα(z). 

Instead of sampling pθ(x), we can sample p(z) in Eq. (12.38). While qα(x) 
is multi-modal, q0(z) is unimodal. Since pθ(x) is a correction of qα , p(z) is a 
correction of p0(z) and can be much less multi-modal than pθ(x) that is in the 
data space. After sampling z from p(z), we can generate x = gα(z). 

The above MCMC sampling scheme is a special case of neutral transport MCMC 
proposed by Hoffman et al. [104] for sampling from an EBM or the posterior 
distribution of a generative model. The basic idea is to train a flow-based model 
as a variational approximation to the target EBM and sample the EBM in the latent 
space of the flow-based model. In our case, since pθ is a correction of qα , we can 
simply use qα directly as the approximate flow-based model in the neural transport 
sampler. The extra benefit is that the distribution p(z) is of an even simpler form 
than pθ(x) because p(z) does not involve the inversion and Jacobian of gα . As a  
result, we may use a flow-based backbone model of a more free form such as one
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based on residual network [13]. We use HMC [179] to sample from p(z) and push 
the samples forward to the data space through gα . We can then learn θ by MLE. 

Diffusion Recovery Likelihood 

Inspired by recent work on diffusion-based models [102, 222, 223], [72] propose 
a diffusion recovery likelihood method to tackle the challenge of training the 
descriptive models or energy-based models (EBMs) directly on a dataset by instead 
learning a sequence of EBMs for the marginal distributions of the diffusion process. 
Specifically, assume a sequence of noisy observations x0, x1, . . . , xT such that 

x0 ∼ pdata(x); xt+1=
√
1−σ 2 

t+1xt+σt+1εt+1, t=0, 1, . . . T −1. (12.39) 

The scaling factor
√
1 − σ 2 

t+1 ensures that the sequence is a spherical interpolation 

between the observed sample and Gaussian white noise. Let yt =
√
1 − σ 2 

t+1xt , and 
we assume a sequence of marginal EBMs on the perturbed data 

pθ(yt ) = 
1 

Zθ,t  
exp (fθ (yt , t)) , (12.40) 

where fθ (yt , t)  is defined by a neural network conditioned on t . The sequence of 
marginal EBMs can be learned with recovery likelihoods that are defined as the 
conditional distributions that invert the diffusion process, which can be derived by 
Eqs. (12.39) and (12.40): 

pθ (yt |xt+1) = 1 

Z̃θ,t (xt+1) 
exp

(
fθ (yt , t)  − 

1 

2σ 2 
t+1

‖xt+1 − yt‖2
)

, t  = 0, 1, . . . , T  − 1. 

(12.41) 

Compared to the standard maximum likelihood estimation (MLE) of EBMs, 
learning marginal EBMs by diffusion recovery likelihood only requires sampling 
from the conditional distributions in Eq. (12.41), which is much easier than sampling 
from the marginal distributions due to the additional quadratic term, which makes 
the conditional EBMs close to unimodal. After learning the marginal EBMs, we can 
generate synthesized images by a sequence of conditional samples initialized from 
the Gaussian white noise distribution using MCMC techniques such as Langevin 
sampling: 

yτ+1 
t = yτ 

t + 
b2σ 2 

t 
2 

(∇yfθ (yτ 
t , t) + 

1 

σ 2 
t 

(xt+1 − yτ 
t )) + bσtε

τ . (12.42)



12.2 Descriptive Energy-Based Model 315

Fig. 12.8 Reprinted with permission from [72]. Illustration of diffusion recovery likelihood on 
2D checkerboard example. Top: progressively generated samples. Bottom: estimated marginal 
densities 

Fig. 12.9 Reprinted with permission from [72]. Generated samples on LSUN 1282 

church_outdoor (left), LSUN 1282 bedroom (center), and CelebA 642 (right) 

The framework of recovery likelihood was originally proposed in [17]. Gao et 
al. [72] adapt it to learning the sequence of marginal EBMs from the diffusion 
data. Figure 12.8 shows an illustration on a 2D toy example. Figure 12.9 displays 
uncurated samples generated from learned models on large image datasets. 

Diffusion-Based Model 

Diffusion-based models [102, 222, 223] prove to be exceedingly powerful in 
generating photorealistic images. It learns a sampling process instead of an explicit 
density. Thus it is on the side of the sampler (like a policy network), instead of 
density (like a value network). The sampling process is similar to the short-run 
Langevin dynamics for sampling from an energy-based model. 

The key idea of the diffusion-based model of [222] is to continuously add noises 
of infinitesimal variance to the clean image until the resulting image becomes a
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Gaussian white noise image. This is a forward diffusion process. Then we learn to 
reverse this forward process by going from the Gaussian white noise distribution 
back to the multi-modal data distribution of the clean images. This reverse diffusion 
process is as if showing the movie of the forward diffusion process in reverse time, 
and it was inspired by the non-equilibrium thermodynamics [222]. The reverse 
diffusion process is a denoising process. Adding noises amounts to reducing the 
precision of the pixel intensities. 

There are two slightly different perspectives on the diffusion-based model. One is 
based on the observation that the conditional distribution pθ(yt |xt+1) in Eq. (12.41) 
is approximately Gaussian if σ 2 

t+1 is infinitesimally small. The conditional Gaussian 
distribution can be derived by the first-order Taylor expansion of the log density 
of yt . Thus the reverse process can be decomposed into a Markov sequence of 
conditional Gaussian models with infinitesimal variances, and they can be learned 
within the maximum likelihood or variational inference framework. A single 
conditional Gaussian model can be learned for the whole reverse process, with time 
embedding being input to the model. In the learning of the conditional Gaussian 
model, we can condition on the original clean image for the purpose of variance 
reduction. More specifically, at each time step of the diffusion process, we can 
predict the noise image that has been added to the original clean image, and then 
we can move toward the clean image by removing a small amount of the predicted 
noise image. 

A closely related perspective is to estimate the derivative of the log density of the 
noisy image at each time step of the diffusion process by score matching [114, 115] 
via denoising auto-encoder [6, 227, 241]. The derivative of the log density or score 
is related to the first-order Taylor expansion mentioned above. The derivative or the 
score enables us to reverse the forward diffusion process via a stochastic differential 
equation [223]. 

Intuitively, for a population of points that follow a certain density, if we add small 
random noise to each point, the resulting population of perturbed points will have 
a density that is more diffused than the original density. We can achieve the same 
effect by perturbing each point deterministically via a gradient descent movement 
on the log density so that the resulting population of the deterministically perturbed 
points will have the same diffused density resulting from adding random noises. 
Thus we can reverse the effect of the noise diffusion by deterministic gradient ascent 
on the log density. This underlies the reversion of the forward diffusion process 
mentioned above. It also underlies the Langevin dynamics where the gradient ascent 
and the diffusion term balance each other. 

The diffusion-based model is effective for modeling multi-modal data density 
by the reverse diffusion process starting from a unimodal Gaussian white noise 
density. The idea is related to simulated annealing [135], simulated tempering [168], 
parallel tempering [48, 77], or replica exchange [226] for sampling from multi-
modal densities.
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12.3 Equivalence Between Discriminative and Descriptive 
Models 

Discriminative Model 

Let x be an input example, e.g., an image or a text, and let y be a label or annotation 
of x, e.g., the category that x belongs to in the case of classification. Let us focus on 
the classification problem, and suppose there are C categories. The commonly used 
soft-max classifier assumes that 

pθ(y = c|x) = 
exp(fc,θ (x))∑C 

c′=1 exp(fc′,θ (x)) 
, (12.43) 

where fc,θ is a deep network, and θ denotes all the weight and bias parameters. For 
different c, the networks fc,θ may share a common body and only differ in the head 
layer. 

We can write the above model as 

pθ(y = c|x) = 
1 

Z(θ)(x) 
exp(fc,θ (x)), (12.44) 

where 

Z(θ)(x) = 
C∑

c=1 

exp(fc,θ (x)). (12.45) 

The discriminative model pθ(y|x) can be learned by maximum likelihood. The 
log-likelihood is the average of 

log pθ(y|x) = fy,θ (x) − log Z(θ)(x), (12.46) 

where the average is over the training set {x, y}. The gradient of log pθ(y|x) with 
respect to θ is 

∇θ log pθ(y|x) = ∇θfy,θ (x) − Epθ (y|x)[∇θfy,θ (x)], (12.47) 

where 

∇θ log Z(θ)(x) = Epθ (y|x)[∇θfy,θ (x)]. (12.48) 

Let pdata(x, y) be the data distribution of (x, y). The MLE minimizes 
DKL(pdata(y|x)‖pθ(y|x)), where for two conditional distributions p(y|x) and 
q(y|x), their KL-divergence is defined as
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DKL(p(y|x)‖q(y|x)) = Ep(x,y)

[
log 

p(y|x) 
q(y|x)

]
, (12.49) 

where the expectation is with respect to p(x, y) = p(x)p(y|x), i.e., we also average 
over p(x) in addition to p(y|x). 

The above calculations are analogous to the calculations for the descriptive 
model. The difference is that for the discriminative model, the normalizing constant 
Z and the expectation are summations over y, where y belongs to a finite set of 
categories, whereas for the descriptive model, the normalizing constant Z and the 
expectation are integral over x, where x belongs to a high-dimensional space. As a 
result, the expectation in the descriptive model cannot be calculated in closed form 
and has to be approximated by MCMC sampling such as Langevin dynamics. 

A special case is binary classification, where y ∈ {0, 1}. It is usually assumed 
that 

f0,θ (x) = 0, f1,θ (x) = fθ (x), (12.50) 

so that 

pθ(y = 1|x) = 1 

1 + exp(−fθ (x)) 
= sigmoid(fθ (x)), (12.51) 

and y follows a nonlinear logistic regression on x. 

Descriptive Model as Exponential Tilting of a Reference 
Distribution 

A more general version of the descriptive model is of the following form of 
exponential tilting of a reference distribution [32, 253]: 

pθ(x) = 
1 

Z(θ) 
exp(fθ (x))q(x), (12.52) 

where q(x) is a given reference measure, such as uniform measure or Gaussian 
white noise distribution. The original form of the descriptive model corresponds to 
q(x) being a uniform measure. If q(x) is a Gaussian white noise distribution, then 
the energy function is −fθ (x) + ‖x‖2/2. 

Although q(x) is usually taken to be a simple known distribution, q(x) can also 
be a model in its own right. We may call it a base model or a backbone model, and 
pθ(x) can be considered a correction of q(x), where fθ (x) is the correction term. 
We may also call pθ(x) the energy-based correction of the base model q(x).
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Discriminative Model via Bayes Rule 

The above exponential tilting leads to the following discriminative model. We can 
treat pθ as the positive distribution, and q(x) the negative distribution. Let y ∈ 
{0, 1}, and the prior probability p(y = 1) = ρ, so that p(y = 0) = 1 − ρ. Let  
p(x|y = 1) = pθ(x), p(x|y = 0) = q(x). Then according to the Bayes rule 
[32, 121, 143, 149, 234, 253], 

p(y = 1|x) = 
exp(fθ (x) + b) 

1 + exp(fθ (x) + b) 
, (12.53) 

where b = log(ρ/(1 − ρ)) − log Z(θ). This leads to nonlinear logistic regression. 
Sometimes, people call fθ (x) + b the logit or logit score because 

log 
p(y = 1|x) 
p(y = 0|x) 

= logit(p(y = 1|x)) = fθ (x) + b. (12.54) 

More generally, suppose we have C categories, and 

pc,θ (x) = 
1 

Zc,θ 
exp(fc,θ (x))q(x), c = 1, . . . , C, (12.55) 

where (fc,θ (x), c = 1, . . . , C)  are C networks that may share the same body but 
with different heads. Suppose the prior probability for category c is ρc, then 

p(y = c|x) = exp(fc,θ (x) + bc)∑C 
c=1 exp(fc,θ (x) + bc) 

, (12.56) 

where bc = log ρc − log Zc,θ . The above is a conventional soft-max classifier. 
Conversely, if p(y = c|x) is of the above form of soft-max classifier, then pc,θ (x) 
is of the form of exponential tilting based on the logit score fc,θ (x) + bc. Thus the 
discriminative model and the descriptive model are equivalent to each other. 

Noise Contrastive Estimation 

The above equivalence suggests that we can learn the descriptive model by fitting 
a logistic regression. Specifically, suppose we want to learn a descriptive model 
pθ(x) = 1 

Z(θ) exp(fθ (x))q(x), where q(x) is a noise distribution, such as Gaussian 
white noise distribution. We can treat the observed examples as the positive 
examples, so that for each positive x, y = 1, and we generate negative examples 
from the noise distribution q(x), so that for each negative example x ∼ q(x), 
y = 0. Then we learn a discriminator in the form of logistic regression to distinguish
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between the positive and negative examples, and then logit(p(y = 1|x)) = 
fθ (x) + b, where b = log(ρ/(1 − ρ)) − log Z(θ), where ρ is the proportion of 
the positive examples. We can learn both θ and b by fitting a logistic regression, 
where b is treated as an independent bias or intercept term, even though log Z(θ) 
depends on θ . This enables us to learn fθ and estimate log Z(θ). This is called noise 
contrastive estimation (NCE) [92]. 

The problem with the above scheme is that the noise distribution and the 
data distribution usually do not have much overlap, especially if x is of high 
dimensionality. As a result, fθ (x) cannot be well learned. 

The introspective learning method [121, 234] tries to remedy the above problem 
with sampling. After learning fθ (x) by noise contrastive estimation, we want to 
inspect whether fθ (x) is well learned. We then treat the current pθ(x) as our new 
q(x), and we draw negative samples from it. If it is well learned, then the negative 
samples will be close to the positive examples. To check that, we fit a logistic 
regression again on the positive examples and negative examples from the new q(x). 
Then we learn a new�fθ(x) by the new logistic regression. This�fθ(x) can then be 
added to the previous learned fθ (x) to obtain the new fθ (x). We can keep repeating 
this process until �fθ(x) is small. 

In general, while the descriptive model learns the probability density function, 
the discriminative model learns the ratios between the probability densities of 
different classes. If we know the density of a base class, such as the Gaussian white 
noise, we can learn the densities of other classes by noise contrastive estimation. 
Noise contrastive estimation is a form of self-supervised learning. 

Noise contrastive estimation (NCE) based on diffusion sequence is explored in 
[203]. 

Flow Contrastive Estimation 

Gao et al. [71] propose an improvement of noise contrastive estimation (NCE) [92] 
based on the flow-based model. The basic idea is to transform the noise so that 
the resulting distribution is closer to the data distribution. This is exactly what the 
flow model achieves. That is, a flow model transforms a known noise distribution 
q0(z) by a composition of a sequence of invertible transformations gα(·). However, 
in practice, we find that a pre-trained qα(x), such as learned by MLE, is not strong 
enough for learning an EBM pθ(x) because the synthesized data from the MLE 
of qα(x) can still be easily distinguished from the real data by an EBM. Thus, we 
propose to iteratively train the EBM and flow model, in which case the flow model is 
adaptively adjusted to become a stronger contrast distribution or a stronger training 
opponent for EBM. This is achieved by a parameter estimation scheme similar to 
GAN [81, 199], where pθ(x) and qα(x) play a minimax game with a unified value 
function: minα maxθ V (θ,  α),
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V (θ,  α)  = Epdata

[
log 

pθ(x) 
pθ(x) + qα(x)

]
+ Ez

[
log 

qα(gα(z)) 
pθ(gα(z)) + qα(gα(z))

]
, 

(12.57) 

where Epdata is approximated by averaging over observed samples {xi, i  = 
1, . . . , n}, while Ez is approximated by averaging over negative samples {x̃i , i  = 
1, . . . , n} drawn from qα(x), with zi ∼ q0(z) independently for i = 1, . . . , n. In  
the experiments, we choose Glow [131] as the flow-based model. The algorithm 
can start from either a randomly initialized Glow model or a pre-trained one by 
MLE. Here we assume equal prior probabilities for observed samples and negative 
samples. It can be easily modified to the situation where we assign a higher prior 
probability to the negative samples, given the fact we have access to an infinite 
amount of free negative samples. 

The objective function can be interpreted from the following perspectives: 

(1) Noise contrastive estimation for EBM. The update of θ can be seen as noise 
contrastive estimation of pθ(x), but with a flow-transformed noise distribution 
qα(x) that is adaptively updated. The training is essentially a logistic regression. 
However, unlike regular logistic regression for classification, for each xi or 
x̃i , we must include log qα(xi) or log qα(x̃i) as an example-dependent bias 
term. This forces pθ(x) to replicate qα(x) in addition to distinguishing between 
pdata(x) and qα(x), so that pθ(xi) is in general larger than qα(xi), and pθ(x̃i) is 
in general smaller than qα(x̃i). 

(2) Minimization of Jensen–Shannon divergence for the flow model. If pθ(x) is 
close to the data distribution, then the update of α is approximately minimizing 
the Jensen–Shannon divergence between the flow model qα and data distribu-
tion pdata: 

DJS(qα‖pdata) = DKL(pdata‖(pdata + qα)/2) + DKL(qα‖(pdata + qα)/2). 
(12.58) 

Its gradient w.r.t. α equals the gradient of −Epdata [log((pθ + qα)/2)] +  
DKL(qα‖(pθ + qα)/2). The gradient of the first term resembles MLE, which 
forces qα to cover the modes of data distribution, and tends to lead to an over-
dispersed model, which is also pointed out in [131]. The gradient of the second 
term is similar to reverse Kullback–Leibler divergence between qα and pθ , or  
variational approximation of pθ by qα , which forces qα to chase the modes of 
pθ . This may help correct the over-dispersion of MLE. 

(3) Connection with GAN [81, 199]. Our parameter estimation scheme is closely 
related to GAN. In GAN, the discriminator D and generator G play a minimax 
game: minG maxD V (G,  D), 

V (G,  D)  = Epdata

[
log D(x)

] + Ez

[
log(1 − D(G(zi)))

]
. (12.59) 

The discriminator D(x) is learning the probability ratio pdata(x)/(pdata(x) + 
pG(x)), which is about the difference between pdata and pG [56]. pG is the



322 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

density of the generated data. In the end, if the generator G learns to perfectly 
replicate pdata, then the discriminator D ends up with a random guess. However, 
in our method, the ratio is explicitly modeled by pθ and qα . pθ must contain 
all the learned knowledge in qα , in addition to the difference between pdata 
and qα . In the end, we learn two explicit probability distributions pθ and qα as 
approximations to pdata. 

12.4 Generative Latent Variable Model 

Model and Origin 

Both discriminative model and descriptive model are based on a bottom-up network 
fθ (x). The generative model is based on top-down network with latent variables. 
The prototype of such a model is factor analysis. Let x be the observed example, 
which is a D-dimensional vector. We assume that x can be explained by a d-
dimensional latent vector, each element of which is called a factor. Given z, x is 
generated by x = Wz  + ε, where W is a D × d matrix, sometimes called loading 
matrix. It is usually assumed that z ∼ N(0, Id), where Id is d-dimensional identity 
matrix, ε ∼ N(0, σ 2ID), and ε is independent of z. The factor analysis model 
originated from psychometrics, where x consists of a pupil’s scores on a number 
of subjects, and z = (z1, z2), where z1 is verbal intelligence and z2 is analytical 
intelligence. 

A recent generalization [81, 133] is to keep the prior assumption about z, but  
replace the linear model x = Wz  + ε by a nonlinear model x = gθ (z) + ε, where 
gθ (z) is parameterized by a top-down neural network where θ collects all the weight 
and bias parameters. In the case of image modeling, gθ (z) is usually a convolutional 
neural network, which is sometimes called deconvolutional network, due to its top-
down nature. The above model leads to a conditional or generation model pθ(x|z), 
such that 

log pθ(x, z) = log[p(z)pθ (x|z)] (12.60) 

= −1 

2

[
‖z‖2 + ‖x − gθ (z)‖2/σ 2

]
+ c, (12.61) 

where c is a constant independent of θ . σ 2 is usually treated as a tuning parameter. 
The model follows the manifold assumption, which assumes that the density of the 
D-dimensional data focuses on a lower, d-dimensional manifold. 

The joint distribution of (x, z) is pθ(x, z) = p(z)pθ (x|z). The marginal 
distribution of x is pθ(x) = ∫

pθ(x, z)dz. The marginal distribution is analytically 
intractable due to the integration of z. The model specifies a direct sampling method 
for generating x, but it does not explicitly specify the density of x.
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Given x, the inference of z can be based on the posterior distribution pθ(z|x) = 
pθ(x, z)/pθ (x), which is also intractable due to the intractability of the marginal 
pθ(x). 

The above model is often referred to as the generator network in the literature. 

Generative Model with Multi-layer Latent Variables 

While it is computationally convenient to have a single latent noise vector at the top 
layer, it does not account for the fact that patterns can appear at multiple layers of 
compositions or abstractions (e.g., face → (eyes, nose, mouth) → (edges, corners) 
→ pixels), where variations and randomness occur at multiple layers. To capture 
such a hierarchical structure, it is desirable to introduce multiple layers of latent 
variables organized in a top-down architecture [183]. Specifically, we have z = 
(zl, l  = 1, . . . , L), where layer L is the top layer, and layer 1 is the bottom layer 
above x. For notational simplicity, we let x = z0. We can then specify pθ(z) as 

pθ(z) = pθ(zL) 
L−1∏
l=0 

pθ(zl |zl+1). (12.62) 

One concrete example is zL ∼ N(0, I ), [zl |zl+1] ∼  N(μl(zl+1), σ 2 
l (zl+1)), l = 

0, . . . , L  − 1, where μl() and σ 2 
l () are the mean vector and the diagonal variance– 

covariance matrix of zl , respectively, and they are functions of zl+1. θ collects all the 
parameters in these functions. pθ(x, z) can be obtained similarly as in Eq. (12.61). 

MLE Learning and Posterior Inference 

Let pdata(x) be the data distribution that generates the example x. The learning of 
parameters θ of pθ(x) can be based on minθ DKL(pdata(x)‖pθ(x)). If we observe 
training examples {xi, i  = 1, . . . , n} ∼  pdata(x), the above minimization can be 
approximated by maximizing the log-likelihood 

L(θ) = 
1 

n 

n∑
i=1 

log pθ(xi) 
.= Epdata [log pθ(x)], (12.63) 

which leads to MLE. 
The gradient of the log-likelihood, L′(θ), can be computed according to the 

following identity:
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δθ (x) = ∇θ log pθ(x) = 
1 

pθ(x)
∇θpθ (x) (12.64) 

= 
1 

pθ(x)

∫
∇θpθ (x, z)dz (12.65) 

= Epθ (z|x)

[∇θ log pθ(x, z)
]
. (12.66) 

Thus 

L′(θ) = Epdata [δθ (x)] =  Epdata(x)Epθ (z|x)

[∇θ log pθ(x, z)
]

(12.67) 

.= 
1 

n 

n∑
i=1 

Epθ (zi |xi )

[∇θ logpθ(xi, zi)
]
. (12.68) 

The expectation with respect to pθ(z|x) can be approximated by Monte Carlo 
samples. Each learning iteration updates θ by θt+1 = θt + ηtL

′(θt ). 

Posterior Sampling 

Sampling from pθ(z|x) usually requires MCMC. One convenient MCMC is 
Langevin dynamics, which iterates 

zt+1 = zt + s∇z log pθ(zt |x) + √
2set , (12.69) 

where et ∼ N(0, I ), t indexes the time step of the Langevin dynamics, and s 
is the step size. The Langevin dynamics consists of a gradient descent term on 
− log p(z|x). In the case of generator network, it amounts to gradient descent 
on ‖z‖2/2 + ‖x − gθ (z)‖2/2σ 2, which is the penalized reconstruction error. The 
Langevin dynamics also consists of a white noise diffusion term 

√
2set to create 

randomness for sampling from pθ(z|x). 
For small step size s, the marginal distribution of zt will converge to pθ(z|x) 

as t → ∞  regardless of the initial distribution of z0. More specifically, let 
pt (z) be the marginal distribution of zt of the Langevin dynamics, and then 
DKL(pt (z)‖pθ(z|x)) decreases monotonically to 0, that is, by increasing t , we  
reduce DKL(pt (z)‖pθ(z|x)) monotonically. 

Perturbation of KL-divergence 

Again we understand the MLE learning algorithm by perturbing the KL-divergence 
for MLE. Define D(θ) = DKL(pdata‖pθ). It is the objective function of MLE. Let 
θt be the estimate at iteration t . Let us consider the following perturbation of D(θ):
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Fig. 12.10 Reprinted with permission from [95]. The surrogate S majorizes (upper bounds) D, 
and they touch each other at θt with the same tangent 

S(θ) = D(θ) + DKL(pθt (z|x)‖pθ(z|x)) (12.70) 

= DKL(pdata(x)‖pθ(x)) + DKL(pθt (z|x)‖pθ(z|x)) (12.71) 

= DKL(pdata,θt (x, z)‖pθ(x, z)), (12.72) 

where we define pdata,θt (x, z) = pdata(x)pθt (z|x). Again  S(θ) is a surrogate 
for D(θ) at θt , and S(θ) is simpler than D(θ) because S(θ) is based on the 
joint distributions instead of the marginal distributions as in D(θ). Unlike the 
joint distribution pθ(x, z) = p(z)pθ (x|z), the marginal distribution pθ(x) =∫

pθ(x, z)dz is implicit as it is an intractable integral (Fig. 12.10). 
The perturbation term DKL(pθt (z|x)‖pθ(z|x)), as a function of θ , achieves its 

minimum 0 at θ = θt , and its derivative at θ = θt is zero. Thus S(θ) and D(θ) touch 
each other at θt , and they share the same gradient at θt . 

− S(θ) = Epdata(x)Epθt (z|x)[log pθ(x, z)] −  entropy(pdata,θt (x, z)). (12.73) 

− S′(θ) = Epdata(x)Epθt (z|x)[∇θ logpθ(x, z)]. (12.74) 

Thus, the learning gradient at θt is 

−D′(θt ) = −S′(θt ) = Epdata [δθt (x)] = Epdata(x)Epθt (z|x)[∇θ logpθt (x, z)]. 
(12.75) 

This provides another justification for the learning algorithm. 
The above perturbation of KL-divergence can be compared to that in the 

descriptive model, where the sign in front of the second KL-divergence is negative, 
in order to cancel the intractable log Z(θ) term. For the generative model, the sign 
in front of the second KL-divergence is positive, in order to change the marginal 
distributions in the first KL-divergence, i.e., D(θ), into the joint distributions, so 
that pθ(z, x) = p(z)pθ (x|z) is obtained in closed form. 

Short-Run MCMC for Approximate Inference 

We can use short-run MCMC as inference dynamics [183], with a fixed small K 
(e.g., K = 25),
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z0 ∼ p(z), zk+1 = zk + s∇z log pθ(zk|x) + √
2sek, k  = 1, . . . , K, (12.76) 

where p(z) is the prior noise distribution of z. 
We can write the above short-run MCMC as 

z0 ∼ p(z), zk+1 = zk + sR(zk) +
√
2sek, k  = 1, . . . , K, (12.77) 

R(z) = ∇z logpθ(z|x), where we omit  x and θ in R(z) for simplicity of notation. 
To further simplify the notation, we may write the short-run MCMC as 

z0 ∼ p(z), zK = F(z0, e), (12.78) 

where e = (ek, k  = 1, . . . , K), and F composes the K steps of Langevin updates. 
Let the distribution of zK be p̃(z). Recall that the distribution of zK also depends 

on x and θ and step size s, so that in full notation, we may write p̃(z) as p̃s,θ (z|x). 
For each x, we define 

δ̃θ (x) = Ep̃s,θ (z|x)

[∇θ log pθ(x, z)
]

(12.79) 

and modify the learning algorithm to 

θt+1 = θt + ηtEpdata [δ̃θt (x)] =  θt + ηtEpdataEp̃s,θt (z|x)

[∇θ logpθt (x, z)
]
, 
(12.80) 

where ηt is the learning rate and Ep̃s,θt (zi |xi ) (here we use the full notation p̃s,θ (z|x) 
instead of the abbreviated notation q(z)) can be approximated by sampling from 
p̃s,θt (zi |xi) using the noise initialized K-step Langevin dynamics. 

Compared to MLE learning algorithm, we replace pθ(z|x) by p̃s,θ (z|x), and fair 
Monte Carlo samples from p̃s,θ (z|x) can be obtained by short-run MCMC. 

One major advantage of the proposed method is that it is simple and automatic. 
For models with multiple layers of latent variables that may be organized in 
complex top-down architectures, the gradient computation in Langevin dynamics is 
automatic on modern deep learning platforms. Such dynamics naturally integrates 
explaining-away competitions and bottom-up and top-down interactions between 
multiple layers of latent variables. It thus enables researchers to explore flexible 
generative models without dealing with the challenging task of designing and 
learning the inference models. The short-run MCMC is automatic, natural, and 
biologically plausible as it may be related to attractor dynamics [7, 108, 198]. 

Objective Function and Estimating Equation 

The following are justifications for learning with short-run MCMC:
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(1) Objective function. Again we use perturbation of KL-divergence. At iteration 
t , with θt fixed, the learning algorithm follows the gradient of the following 
perturbation of D(θ) at θ = θt : 

S(θ) = D(θ) + DKL( p̃s,θt (z|x)‖pθ(z|x)) (12.81) 

= DKL(pdata(x)‖pθ(x)) + DKL( p̃s,θt (z|x)‖pθ(z|x)), (12.82) 

so that θt+1 = θt − ηtS
′(θt ), where ηt is the step size, and 

− S′(θ) = Epdata(x)Ep̃s,θt (z|x)[∇θ log pθ(x, z)]. (12.83) 

− S′(θt ) = Epdata [δ̃θt (x)] =  Epdata(x)Ep̃s,θt (z|x)[∇θ log pθt (x, z)]. (12.84) 

Compared to the perturbation of KL-divergence in MLE learning, we use 
p̃s,θt (z|x) instead of pθt (z|x). While sampling pθt (z|x) can be impractical if it 
is multi-modal, sampling p̃s,θt (z|x) is practical because it is a short-run MCMC. 

(2) Estimating equation. The fixed point of the learning algorithm (12.80) solves  
the following estimating equation: 

1 

n 

n∑
i=1 

Ep̃s,θ (zi |xi )

[∇θ log pθ(xi, zi)
] .= Epdata(x)Ep̃s,θ (z|x)

[∇θ log pθ(x, z)
] = 0. 

(12.85) 

If we approximate Ep̃s,θt (zi |xi ) by Monte Carlo samples from p̃s,θt (zi |xi), 
then the learning algorithm becomes Robbins–Monro algorithm for stochastic 
approximation [205]. 

The bias of the learned θ based on short-run MCMC relative to the MLE depends 
on the gap between p̃s,θ (z|x) and pθ(z|x). We suspect that this bias may actually 
be beneficial in the following sense. The learning gradient seeks to decrease D(θ) 
while decreasing DKL( p̃s,θt (zi |xi)‖pθ(zi |xi)). The latter tends to bias the learned 
model so that its posterior distribution pθ(zi |xi) is close to the short-run MCMC 
p̃s,θt (zi |xi), i.e., our learning method may bias the model to make inference by 
short-run MCMC accurate. 

We can optimize the step size s and other algorithmic parameters of the short-
run Langevin dynamics by minimizing DKL( p̃s,θt (zi |xi)‖pθ(zi |xi)) over s. This is  
a variational optimization.
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12.5 Descriptive Model in Latent Space of Generative Model 

Top-Down and Bottom-Up 

Top-down mapping Bottom-up mapping 
hidden vector z energy − fθ (x) 

⇓ ⇑  
signal x ≈ gθ (z) signal x 

(a) Generator model (b) Descriptive model 

(12.86) 

The above diagram compares the generative model and the descriptive model. 
The former is based on top-down generation, whereas the latter is based on the 
bottom-up description. 

The top-down model is a very natural representation of knowledge, with its 
multiple layers of latent variables representing concepts at multiple levels of abstrac-
tions. The top-down model is also called the directed acyclic graphical model. 
It is characterized by independence or conditional independence assumptions of 
the latent variables. Such assumptions limit the expressive power of the top-down 
model. 

For the special case of the generator network, there is a latent vector z at the top 
layer, which generates the example x via the top-down generation mapping gθ (z). 
The prior distribution of z is usually assumed to be a simple noise distribution, 
e.g., the Gaussian white noise distribution z ∼ N(0, I ). The top-down gθ (z) maps 
this simple isotropic unimodal prior distribution to the multi-modal data distribution 
pdata. However, the expressive power may be limited by the simple prior distribution 
p(z) (as well as the simple Gaussian white noise distribution of ε in x = gθ (z)+ε). 
The marginal distribution of pθ(x) = ∫

p(z)pθ (x|z)dz is implicit because of the 
intractable integral over the latent z. 

The bottom-up model only needs to specify a scalar-valued energy function 
−fθ (x), instead of a vector-valued gθ (z), while leaving the generative task to 
MCMC. It specifies the distribution pθ(x) = 1 

Z(θ) exp(fθ (x)) explicitly even though 
the normalizing constant Z(θ) is intractable. Compared to the generator model, the 
descriptive model tends to have stronger expressive power in terms of synthesis 
ability. 

However, because pdata tends to be highly multi-modal, the learned pθ can also 
be highly multi-modal. As a result, MCMC sampling cannot mix. Even though we 
can use short-run MCMC to learn the model and synthesize images, the model is 
admittedly biased. One remedy is to use more sophisticated MCMC such as parallel 
tempering [189] or replica exchange MCMC [226]. The other option is to move the 
descriptive model to the latent space.
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Descriptive Energy-Based Model in Latent Space 

We follow the philosophy of empirical Bayes, that is, instead of assuming a given 
prior distribution for the latent vector, as in the generator network, we learn a prior 
model from empirical observations. 

Specifically, we assume the latent vector follows a descriptive model or, more 
specifically, an energy-based correction of the isotropic Gaussian white noise 
prior distribution. We call this model the latent space descriptive model. Such a 
model adds more expressive power to the generator model. In the latent space, the 
descriptive model is close to unimodal as it is a correction of the unimodal Gaussian 
distribution, and MCMC sampling is expected to mix well. 

The MLE learning of the generative model with a latent space descriptive model 
involves MCMC sampling of the latent vector from both the prior and posterior 
distributions. Parameters of the prior model can then be updated based on the 
statistical difference between samples from the two distributions. Parameters of 
the top-down network can be updated based on the samples from the posterior 
distribution as well as the observed data. 

Let x ∈ RD be an observed example such as an image or a piece of text, and let 
z ∈ Rd be the latent variables, where D � d . The joint distribution of (x, z) is 

pθ(x, z) = pα(z)pβ(x|z), (12.87) 

where pα(z) is the prior model with parameters α, pβ(x|z) is the top-down 
generation model with parameters β, and θ = (α, β). 

The prior model pα(z) is formulated as a descriptive model or an energy-based 
model 

pα(z) = 
1 

Z(α) 
exp(fα(z))p0(z), (12.88) 

where p0(z) is a reference distribution, assumed to be isotropic Gaussian white 
noise distribution. fα(z) is the negative energy and is parameterized by a small 
multi-layer perceptron with parameters α. Z(α) = ∫

exp(fα(z))p0(z)dz = 
Ep0 [exp(fα(z))] is the normalizing constant or partition function. 

The prior model (12.88) can be interpreted as an energy-based correction or 
exponential tilting of the original prior distribution p0, which is the prior distribution 
in the generator model. 

The generation model is the same as the top-down network in the generator 
model. For image modeling, 

x = gβ(z) + ε, (12.89) 

where ε ∼ N(0, σ 2ID), so that pβ(x|z) ∼ N(gβ(z), σ 2ID). Usually, σ 2 takes an 
assumed value. For text modeling, let x = (x(t) , t  = 1, . . . , T  ), where each x(t) is a
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token. A commonly used model is to define pβ(x|z) as a conditional auto-regressive 
model, 

pβ(x|z) = 
T∏

t=1 

pβ(x(t)|x(1) , . . . , x(t−1) , z), (12.90) 

which is often parameterized by a recurrent network with parameters β. 
In the original generator model, the top-down network gβ maps the unimodal 

prior distribution p0 to be close to the usually highly multi-modal data distribution. 
The prior model in (12.88) refines p0 so that gβ maps the prior model pα to be closer 
to the data distribution. The prior model pα does not need to be highly multi-modal 
because of the expressiveness of gβ . 

The marginal distribution is pθ(x) = ∫
pθ(x, z)dz = ∫

pα(z)pβ(x|z)dz. The 
posterior distribution is pθ(z|x) = pθ(x, z)/pθ (x) = pα(z)pβ(x|z)/pθ (x). 

In the above model, we exponentially tilt p0(z). We can also exponentially tilt 
p0(x, z) = p0(z)pβ(x|z) to pθ(x, z) = 1 

Z(θ) exp(fα(x, z))p0(x, z). Equivalently, 
we may also exponentially tilt p0(z, ε) = p0(z)p(ε), as the mapping from (z, ε) 
to (z, x) is a change of variable. This leads to a descriptive model in both the latent 
space and data space, which makes learning and sampling more complex. Therefore, 
we choose to only tilt p0(z) and leave pβ(x|z) as a directed top-down generation 
model. 

Maximum Likelihood Learning 

Suppose we observe training examples (xi, i  = 1, . . . , n). The log-likelihood 
function is 

L(θ) = 
1 

n 

n∑
i=1 

log pθ(xi) 
.= Epdata [log pθ(x)]. (12.91) 

The learning gradient can be calculated according to 

∇θ log pθ (x) = Epθ (z|x)

[∇θ logpθ (x, z)
] = Epθ (z|x)

[∇θ (logpα(z) + log pβ(x|z))] . 
(12.92) 

For the prior model, ∇α logpα(z) = ∇αfα(z) − Epα(z)[∇αfα(z)]. Thus the 
learning gradient for an example x is 

δα(x) = ∇α log pθ(x) = Epθ (z|x)[∇αfα(z)] −  Epα(z)[∇αfα(z)]. (12.93)
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The above equation has an empirical Bayes nature. pθ(z|x) is based on the empirical 
observation x, while pα is the prior model. α is updated based on the difference 
between z inferred from empirical observation x and z sampled from the current 
prior. 

For the generation model, 

δβ(x) = ∇β log pθ(x) = Epθ (z|x)[∇β log pβ(x|z)], (12.94) 

where logpβ(x|z) = −‖x−gβ(z)‖2/(2σ 2)+constant or
∑T 

t=1 log pβ(x(t)|x(1) , . . . ,  
x(t−1) , z)  for image and text modeling, respectively, which is about the 
reconstruction error. 

Writing δθ (x) = (δα(x), δβ(x)), we have  L′(θ) = Epdata[δθ (x)], and the learning 
algorithm is θt+1 = θt + ηtEpdata [δθt (x)]. 

Expectations in (12.93) and (12.94) require MCMC sampling of the prior model 
pα(z) and the posterior distribution pθ(z|x). We can use Langevin dynamics. For a 
target distribution π(z), the dynamics iterates 

zk+1 = zk + s∇z log π(zk) + √
2sek, (12.95) 

where k indexes the time step of the Langevin dynamics, s is a small step size, and 
ek ∼ N(0, Id) is the Gaussian white noise. π(z) can be either pα(z) or pθ(z|x). In  
either case, ∇z logπ(z) can be efficiently computed by back-propagation. 

Short-Run MCMC for Synthesis and Inference 

We use short-run MCMC for approximate sampling. This is in agreement with 
the philosophy of variational inference [133], which accepts the intractability of 
the target distribution and seeks to approximate it by a simpler distribution. The 
difference is that we adopt short-run Langevin dynamics instead of learning a 
separate network for approximation. 

The short-run Langevin dynamics is always initialized from the fixed initial 
distribution p0 and only runs a fixed number of K steps, e.g., K = 20, 

z0 ∼ p0(z), zk+1 = zk + s∇z log π(zk) + √
2sek, k  = 1, . . . , K. (12.96) 

Denote the distribution of zK to be π̃(z). Because of fixed p0(z) and fixed K and 
s, the distribution π̃ is well defined. In this section, we put ˜ sign on top of the 
symbols to denote distributions or quantities produced by short-run MCMC, and for 
simplicity, we omit the dependence on K and s in notation. The Kullback–Leibler 
divergence DKL(π̃‖π)  decreases to zero monotonically as K → ∞. 

Specifically, denote the distribution of zK to be p̃α(z) if the target π(z) = pα(z), 
and denote the distribution of zK to be p̃θ (z|x) if π(z) = pθ(z|x). We can then
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Fig. 12.11 Reprinted with permission from [191]. Generated images for CelebA (128×128×3) 

replace pα(z) by p̃α(z) and replace pθ(z|x) by p̃θ (z|x) in Eqs. (12.93) and (12.94), 
so that the learning gradients in Eqs. (12.93) and (12.94) are modified to 

δ̃α(x) = Ep̃θ (z|x)[∇αfα(z)] −  Ep̃α(z)[∇αfα(z)], (12.97) 

δ̃β(x) = Ep̃θ (z|x)[∇β log pβ(x|z)]. (12.98) 

We then update α and β based on (12.97) and (12.98), where the expectations 
can be approximated by Monte Carlo samples. Specifically, writing δ̃θ (x) = 
(δ̃α(x), δ̃β (x)), the learning algorithm is θt+1 = θt + ηtEpdata[δ̃θt (x)]. 

The short-run MCMC sampling is always initialized from the same initial 
distribution p0(z) and always runs a fixed number of K steps. This is the case for 
both training and testing stages, which share the same short-run MCMC sampling 
(Figs. 12.11, 12.12, and 12.13). 

Divergence Perturbation 

The learning algorithm based on short-run MCMC sampling is a modification or 
perturbation of maximum likelihood learning, where we replace pα(z) and pθ(z|x) 
by p̃α(z) and p̃θ (z|x), respectively. For theoretical underpinning, we should also 
understand this perturbation in terms of the objective function and estimating 
equation: 

(1) Objective function. In terms of objective function, the MLE loss function is 
D(θ) = DKL(pdata‖pθ). At iteration t , with fixed θt = (αt , βt ), we perturb 
D(θ) to S(θ):
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Fig. 12.12 Reprinted with permission from [191]. Transition of Markov chains initialized from 
p0(z) toward p̃α(z) for 100 Langevin dynamics steps. Top: Trajectory in the CelebA data space. 
Bottom: Energy profile over time 

Fig. 12.13 Reprinted with permission from [191]. Transition of Markov chains initialized from 
p0(z) toward p̃α(z) for 2500 Langevin dynamics steps. Top: Trajectory in the CelebA data space 
for every 100 steps. Bottom: Energy profile over time

S(θ) = DKL(pdata‖pθ) + DKL( p̃θt (z|x)‖pθ(z|x)) − DKL( p̃αt (z)‖pα(z)), 
(12.99) 

where 

DKL( p̃θt (z|x)‖pθ(z|x)) = Epdata(x)Ep̃θt (z|x)

[
log 

p̃θt (z|x) 
pθ(z|x)

]
, (12.100) 

i.e., the KL-divergence between conditional distributions of z given x also 
integrates over the marginal distribution x as defined before. 

The learning algorithm based on short-run MCMC is θt+1 = θt − ηtS
′(θt ) 

because 

S′(θt ) = Epdata [δ̃θt (x)]. (12.101)
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Thus the updating rule of the learning algorithm follows the stochastic 
gradient (i.e., Monte Carlo approximation of the gradient) of a perturbation of 
the log-likelihood. 

S(θ) is in the form of a divergence triangle, which consists of two pertur-
bations. DKL( p̃θt (z|x)‖pθ(z|x)) is for inference, and DKL( p̃αt (z)‖pα(z)) is for 
synthesis. It is a combination of the perturbations for the descriptive model and 
generative model, respectively. 

(2) Estimating equation. In terms of estimating equation, the stochastic gradient 
descent learning is a Robbins–Monro stochastic approximation algorithm [205] 
that solves the following estimating equation:

1 

n 

n∑
i=1 

δ̃α(xi) = 
1 

n 

n∑
i=1 

Ep̃θ (zi |xi )[∇αfα(zi)] −  Ep̃α(z)[∇αfα(z)] =  0, 

(12.102) 

1 

n 

n∑
i=1 

δ̃β(xi) = 
1 

n 

n∑
i=1 

Ep̃θ (zi |xi )[∇β log pβ(xi |zi)] =  0. (12.103) 

The solution to the above estimating equation defines an estimator of the 
parameters. The learning algorithm converges to this estimator under the usual 
regularity conditions of Robbins–Monro. If we replace p̃α(z) by pα(z), and 
p̃θ (z|x) by pθ(z|x), then the above estimating equation is the maximum 
likelihood estimating equation.

12.6 Variational and Adversarial Learning 

From Short-Run MCMC to Learned Sampling Computations 

In both the descriptive model and the generative model, we use short-run MCMC 
[183, 184] for the sampling computations of synthesis and inference. In this 
section, we shall study learning methods that replace short-run MCMC by learned 
computations for synthesis and inference sampling. 

One popular learning method is variational auto-encoder (VAE) [133] for the  
generator model, where the short-run MCMC for inference is replaced by an 
inference model. The other popular learning method is generative adversarial 
networks (GAN) [81, 199], which is related to the descriptive model, where we 
replace short-run MCMC for synthesis by a generator model. 

Both learning methods can be theoretically understood by the divergence triangle 
framework [95].
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VAE: Learned Computation for Inference Sampling 

For the generator model pθ(x, z) = p(z)pθ (x|z) studied in the previous sections, 
the VAE [133] approximates the posterior pθ(z|x) by a tractable qφ(z|x), such as 

qφ(z|x) ∼ N(μφ(x), diag(vφ(x))), (12.104) 

where both μφ and vφ are bottom-up networks that map x to d-dimensional vectors, 
with φ collecting all the weight and bias parameters of the bottom-up networks. For 
z ∼ qφ(z|x), we can write z = μφ(x)+ diag(vφ(x))1/2e, where e ∼ N(0, Id). Thus 
expectation with respect to z ∼ qφ(z|x) can be written as expectation with respect 
to e. This reparameterization trick [133] helps reduce the variance in Monte Carlo 
integration. We may consider qφ(z|x) as an approximation to the iterative MCMC 
sampling of pθ(z|x). In other words, qφ(z|x) is the learned inferential computation 
that approximately samples from pθ(z|x). 

The VAE objective is a modification of the maximum likelihood estimation 
(MLE) objective D(θ) = DKL(pdata(x)‖pθ(x)): 

S(θ, φ) = D(θ) + DKL(qφ(z|x)‖pθ(z|x)) (12.105) 

= DKL(pdata(x)‖pθ(x)) + DKL(qφ(z|x)‖pθ(z|x)) (12.106) 

= DKL(pdata(x)qφ(z|x)‖pθ(z, x)). (12.107) 

We define the conditional KL-divergence 

DKL(qφ(z|x)‖pθ(z|x)) = EpdataEqφ(z|x)

[
log 

qφ(z|x) 
pθ(z|x)

]
, (12.108) 

where we also average over pdata. 
We estimate θ and φ jointly by 

min 
θ 

min 
φ 

S(θ, φ), (12.109) 

which can be accomplished by gradient descent. 
Define Q(z, x) = pdata(x)qφ(z|x). Define P(z,  x)  = p(z)pθ (x|z). Q is the 

distribution of the complete data (z, x), where qφ(z|x) can be interpreted as an 
imputer that imputes the missing data z. P is the distribution of the complete-data 
model. Then S(θ, φ) = DKL(Q‖P). The VAE is  minθ minφ DKL(Q‖P). 

We may interpret the VAE as an alternating projection between Q and P . 
Figure 12.14 provides an illustration. The wake–sleep algorithm [101] is similar 
to the VAE, except that it updates φ by minφ DKL(P ‖Q), where the order is flipped. 

In the VAE, the model qφ(z|x) and the parameter φ are shared by all the training 
examples x, so that μφ(x) and vφ(x) in Eq. (12.104) can be computed directly for 
each x given φ. This is different from traditional variational inference [20, 122],
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Fig. 12.14 Reprinted with permission from [95]. Variational auto-encoder as joint minimization 
by alternating projection. P = p(z)pθ (x|z) is the distribution of the complete-data model, where 
p(z) is the prior distribution of hidden vector z and pθ (x|z) is the conditional distribution of x 
given z. Q = pd(x)qφ(z|x) is the distribution of the complete data (z, x), where  pd(x) refers to 
the data distribution pdata and qφ(z|x) is the learned inferential computation that approximately 
samples from the posterior distribution pθ (x|z). (Left) Interaction between the models. (Right) 
Alternating projection. The two models run toward each other 

where for each x, a model qμ,v(z) is learned by minimizing DKL(qμ,v(z)‖pθ(z|x)) 
with x fixed, so that (μ, v) is computed by an iterative algorithm for each x, which 
is an inner loop of the learning algorithm. This is similar to maximum likelihood 
learning, except that in maximum likelihood learning, the inner loop is an iterative 
algorithm that samples pθ(z|x) instead of minimizing over (μ, v). The learned 
networks μφ(x) and vφ(d) in the VAE are to approximate the iterative minimization 
algorithm by direct mappings. 

GAN: Joint Learning of Generator and Discriminator 

The generator model learned by MLE or the VAE usually cannot generate very 
realistic images. Both MLE and the VAE target DKL(pdata‖pθ), though the VAE 
only minimizes an upper bound of DKL(pdata‖pθ). Consider minimizing DKL(q‖p) 
over p within a certain model class. If q is multi-modal, then p is obliged to fit all 
the major modes of q because DKL(q‖p) is an expectation with respect to q. Thus, 
p tends to interpolate the major modes of q if p cannot fit the modes of q closely. 
As a result, pθ learned by MLE or the VAE tends to generate images that are not as 
sharp as the observed images. 

The behavior of minimizing DKL(q‖p) over p is different from minimizing 
DKL(q‖p) over q. If  p is multi-modal, q tends to capture some major modes of 
p while ignoring the other modes of p, because DKL(q‖p) is an expectation with 
respect to q. In other words, minq DKL(q‖p) encourages mode chasing, whereas 
minp DKL(q‖p) encourages mode covering. 

Sharp synthesis can be achieved by GAN [81, 199], which pairs a generator 
model G with a discriminator model D. For an image x, D(x) is the probability 
that x is an observed (real) image instead of a generated (faked) image. It can be
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parameterized by a bottom-up network fα(x), so that D(x) = 1/(1+ exp(−fα(x)), 
i.e., logistic regression. We can train the pair of (G, D) by an adversarial, zero-sum 
game. Specifically, let G(z) = gθ (z) be a generator. Let 

V (D,  G)  = Epdata [log D(x)] + Ez∼p(z)[log(1 − D(G(z))], (12.110) 

where Epdata can be approximated by averaging over the observed examples, and Ez 
can be approximated by Monte Carlo average over the faked examples generated 
by the generator model. We learn D and G by minG maxD V (D,  G). V (D,  G)  is 
the log-likelihood for D, i.e., the log probability of the real and faked examples. 
However, V (D,  G)  is not a very convincing objective for G. In practice, the 
training of G is usually modified into maximizing Ez∼p(z)[log D(G(z))] to avoid 
the vanishing gradient problem. 

For a given θ , let  pθ be the distribution of gθ (z) with z ∼ p(z). Assume a perfect 
discriminator. Then, according to the Bayes theorem, D(x) = pdata(x)/(pdata(x) + 
pθ(x)) (assuming equal numbers of real and faked examples). Then θ minimizes 
the Jensen–Shannon (JS) divergence 

DJS(pdata‖pθ) = DKL(pθ‖pmix) + DKL(pdata‖pmix), (12.111) 

where pmix = (pdata + pθ)/2. 
In JS divergence, the model pθ also appears on the left-hand side of KL-

divergence. This encourages pθ to fit some major modes of pdata while ignoring 
others. As a result, GAN learning suffers from the mode collapsing problem, i.e., 
the learned pθ may miss some modes of pdata. However, the pθ learned by GAN 
tends to generate sharper images than the pθ learned by MLE or the VAE. 

Joint Learning of Descriptive and Generative Models 

We can also learn the descriptive model and the generative model jointly, similar to 
GAN. In this joint learning scheme, we seek to learn the descriptive model by MLE, 
following the analysis by synthesis scheme. But we recruit the generator model 
as an approximate sampler, i.e., in this context, the generator model is the learned 
computation for synthesis sampling. 

We continue to use pθ(x, z) = p(z)pθ (x|z) to denote the generative model, and 
we denote the descriptive model by 

πα(x) = 
1 

Z(α) 
exp(fα(x)), (12.112) 

so that we will not confuse the notation. 
To avoid MCMC sampling of πα , we may approximate it by a generator model 

pθ , which can generate synthesized examples directly (i.e., sampling z from p(z),
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and transforming z to x by x = gθ (z)). We may consider pθ an approximation to 
the iterative MCMC sampling of πα . In other words, pθ is the learned computation 
that approximately samples from πα . It is an approximate direct sampler of πα . 

The MLE learning objective is D(α) = DKL(pdata‖πα). We can learn both πα 
and pθ using the following objective function [33, 128]: 

S(α, θ)=D(α)−DKL(pθ‖πα) = DKL(pdata‖πα)−DKL(pθ‖πα). (12.113) 

We learn α and θ by 

min 
α 

max 
θ 

S(α, θ), (12.114) 

which defines a minimax game. 
The gradient for updating α becomes 

∇αS(α, θ) = ∇α[Epdata(fα(x)) − Epθ (fα(x))], (12.115) 

where the intractable logZ(α) term is canceled. 
Because of the negative sign in front of the second KL-divergence in 

Eq. (12.113), we need maxθ in Eq. (12.114), so that the learning becomes adversarial 
(illustrated in Fig. 12.15). Inspired by Hinton [100], Han et al. [95] called 
Eq. (12.114) the adversarial contrastive divergence (ACD). It underlies the work 
of [33, 128]. 

The adversarial form (Eq. (12.114) or (12.113)) defines a chasing game with 
the following dynamics: The generator pθ chases the energy-based model πα in 
minθ DKL(pθ‖πα), while the energy-based model πα seeks to get closer to pdata 
and away from pθ . The  red arrow in Fig. 12.15 illustrates this chasing game. 
The result is that πα lures pθ toward pdata. In the idealized case, pθ always 
catches up with πα , and then πα will converge to the maximum likelihood estimate 
minα DKL(pdata‖πα), and pθ converges to πα . 

Fig. 12.15 Reprinted with permission from [95]. Adversarial contrastive divergence where the 
energy-based model favors real data against the generator. (Left) Interaction between the models. 
The red arrow indicates a chasing game, where the red arrow pointing to � indicates that � seeks 
to move away from P . The blue arrow pointing from P to � indicates that P seeks to move close 
to �. (Right) Contrastive divergence
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This chasing game is different from the VAE minθ minφ DKL(Q‖P), which 
defines a cooperative game where qφ and pθ run toward each other. 

Even though the above chasing game is adversarial, both models are running 
toward the data distribution. While the generator model runs after the energy-based 
model, the energy-based model runs toward the data distribution. As a consequence, 
the energy-based model guides or leads the generator model toward the data 
distribution. It is different from GAN [81], in which the discriminator eventually 
becomes confused because the generated data become similar to the real data. In the 
above chasing game, the energy-based model becomes close to the data distribution. 

The updating of α by Eq. (12.115) is similar to Wasserstein GAN (WGAN) [8], 
but unlike WGAN, fα defines a probability distribution πα , and the learning of θ 
is based on minθ DKL(pθ‖πα), which is a variational approximation to πα . This  
variational approximation only requires knowing fα(x), without knowing Z(α). 
However, unlike qφ(z|x), pθ(x) is still intractable; in particular, its entropy does not 
have a closed form. Thus, we can again use variational approximation, by changing 
the problem minθ DKL(pθ‖πα) to 

min 
θ 

min 
φ 

DKL(p(z)pθ (x|z)‖πα(x)qφ(z|x)). (12.116) 

Define �(z, x) = πα(x)qφ(z|x), and then the problem is minθ minφ DKL(P ‖�), 
which is analytically tractable and underlies the work of [33]. In fact, 

DKL(P ‖�) = DKL(pθ (x)‖πα(x)) + DKL(pθ (z|x)‖qφ(z|x)). (12.117) 

Thus, we can use maxα minθ minφ[DKL(P ‖�) − DKL(Q‖�)] because 
DKL(Q‖�) = DKL(pdata‖πα). 

Note that in the VAE (Eq. (12.107)), the objective function is in the form of 
KL + KL, whereas in ACD (Eq. (12.113)), it is in the form of KL − KL. In both 
Eqs. (12.107) and (12.113), the first KL is about maximum likelihood. The KL + 
KL form of the VAE makes the computation tractable by changing the marginal 
distribution of x to the joint distribution of (z, x). The  KL− KL form of ACD makes 
the computation tractable by canceling the intractable log Z(α) term. Because of the 
negative sign in Eq. (12.113), the ACD objective function becomes an adversarial 
one or a minimax game. 

Also note that in the VAE, pθ appears on the right-hand side of KL, whereas in 
ACD, pθ appears on the left-hand side of KL. Thus in ACD, pθ may exhibit mode 
chasing behavior, i.e., fitting the major modes of πα , while ignoring other modes. 

Divergence Triangle: Integrating VAE and ACD 

We can combine the VAE and ACD into a divergence triangle, which involves the 
following three joint distributions on (z, x) defined above:
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Fig. 12.16 Reprinted with permission from [95]. Divergence triangle is based on the Kullback– 
Leibler divergences between three joint distributions, Q, P , and �, of  (z, x). The blue arrow 
indicates the “running toward” behavior, and the red arrow indicates the “running away” behavior 

1. Q distribution: Q(z, x) = pdata(x)qφ(z|x). 
2. P distribution: P(z,  x)  = p(z)pθ (x|z). 
3. � distribution: �(z, x) = πα(x)qφ(z|x). 

Han et al. [95] proposed to learn the three models pθ , πα , and qφ by the following 
divergence triangle loss functional S: 

max 
α 

min 
θ 

min 
φ 

S(α, θ, φ), 

S = DKL(Q‖P) + DKL(P ‖�) − DKL(Q‖�). (12.118) 

See Fig. 12.16 for an illustration. The divergence triangle is based on the three KL-
divergences between the three joint distributions on (z, x). It has a symmetric and 
anti-symmetric form, where the anti-symmetry is due to the negative sign in front 
of the last KL-divergence and the maximization over α. Compared to the VAE and 
ACD objective functions in the previous subsections, DKL(Q‖P)  is the VAE part, 
and DKL(P ‖�) − DKL(Q‖�) is the ACD part. 

The divergence triangle leads to the following dynamics between the three 
models: (a) Q and P seek to get close to each other. (b) P seeks to get close to
�. (c)  π seeks to get close to pdata, but it seeks to get away from P , as indicated by 
the red arrow. Note that DKL(Q‖�) = DKL(pdata‖πα) because qφ(z|x) is canceled 
out. The effect of (b) and (c) is that π gets close to pdata while inducing P to get 
close to pdata as well, or in other words, P chases πα toward pdata. 

[95] also employed the layer-wise training scheme of [125] to learn models by 
divergence triangle from the CelebA-HQ dataset [125], including 30,000 celebrity 
face images with resolutions of up to 1024 × 1024 pixels. The learning algorithm 
converges stably, without extra tricks, to obtain realistic results as shown in 
Fig. 12.17. 

Figure 12.17a displays a few 1024 × 1024 images generated by the learned 
generator model with 512-dimensional latent vector. Figure 12.17b shows an 
example of interpolation. The two images at the two ends are generated by two 
different latent vectors. The images in between are generated by the vectors that
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Fig. 12.17 Reprinted with permission from [95]. Learning generator model by divergence triangle 
from the CelebA-HQ dataset [125] that includes 30,000 high-resolution celebrity face images. (a) 
Generated face images with 1024×1024 resolution sampled from the learned generator model with 
512-dimensional latent vector. (b) Linear interpolation of the vector representations. The images 
at the two ends are generated from latent vectors randomly sampled from a Gaussian distribution. 
Each image in the middle is obtained by first interpolating the two vectors of the two end images 
and then generating the image using the generator 

are linear interpolations of the two vectors at the two ends. Even though the 
interpolation is linear in the latent vector space, the nonlinear mapping leads to a 
highly nonlinear interpolation in the image space. We first do a linear interpolation 
between the latent vectors at the two ends, i.e., (1−α)z0 +αz1, where z0 and z1 are 
two latent vectors at two ends, respectively, and α is in the closed unit interval [0, 
1]. The images in between are generated by mapping those interpolated vectors to 
image space via the learned generator. The interpolation experiment shows that the 
algorithm can learn a smooth generator model that traces the manifold of the data 
distribution. 

12.7 Cooperative Learning via MCMC Teaching 

Joint Training of Descriptive and Generative Models 

In ACD, the generator model pθ is used to approximate the energy-based model 
πα , and we treat the examples generated by pθ as if they are generated from πα 
for the sake of updating α. The gap between pθ and πα can cause bias in learning. 
In  the work of [262, 263], we proposed to bring back MCMC to bridge the gap. 
Instead of running MCMC from scratch, we run a finite-step MCMC toward πα , 
initialized from the examples generated by pθ . We then use the examples produced 
by the finite-step MCMC as the synthesized examples from πα for updating α. 
Meanwhile, we update pθ based on how the finite-step MCMC revises the initial 
examples generated by pθ ; in other words, the energy-based model (as a teacher) 
πα distills the MCMC into the generator (as a student) pθ . We call this scheme 
cooperative learning.
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Specifically, we first generate ẑi ∼ N(0, Id) and then generate x̂i = gθ (ẑi) + εi , 
for i = 1, . . . ,  ̃n. Starting from {x̂i , i  = 1, . . . ,  ̃n}, we run MCMC such as Langevin 
dynamics for a finite number of steps toward πα to get {x̃i , i  = 1, . . . ,  ̃n}, which 
are revised versions of {x̂i}. {x̃i} are used as the synthesized examples from the 
descriptive model. 

The descriptive model can teach the generator via MCMC. The key is that in the 
generated examples, the latent z is known. In order to update θ of the generator 
model, we treat {x̃i , i  = 1, . . . ,  ̃n} as the training data for the generator. Since 
these {x̃i} are obtained by the Langevin dynamics initialized from {x̂i}, which are 
generated by the generator model with known latent factors {ẑi}, we can update θ 
by learning from the complete data {(ẑi , x̃i ); i = 1, . . . ,  ̃n}, which is a supervised 
learning problem, or more specifically, a nonlinear regression of x̃i on ẑi . At  θ(t), the  
latent factors ẑi generate and thus reconstruct the initial example x̂i . After updating 
θ , we want ẑi to reconstruct the revised example x̃i . That  is, we revise  θ to absorb 
the MCMC transition from x̂i to x̃i . The left panel of diagram (12.119) illustrates 
the basic idea. 

(12.119) 

In the two diagrams in (12.119), the double-line arrows indicate generation 
and reconstruction by the generator model, while the dashed-line arrows indicate 
Langevin dynamics for MCMC sampling and inference in the two models. The right 
panel of diagram (12.119) illustrates a more rigorous method, where we initialize 
the MCMC for inferring {z̃i} from the known {ẑi} and then update θ based on 
{(z̃i , x̃i ), i = 1, . . . ,  ̃n}. 

The theoretical understanding of the cooperative learning scheme is given below: 

(1) Modified contrastive divergence for the energy-based model. In the traditional 
contrastive divergence [100], x̂i is taken to be the observed xi . In cooperative 
learning, x̂i is generated by pθ(t) . Let  Mα be the Markov transition kernel 
of finite steps of Langevin dynamics that samples πα . Let  (Mαpθ )(x) =∫

Mα(x′, x)pθ (x
′)dx′ be the marginal distribution by running Mα initialized 

from pθ . Then similar to the traditional contrastive divergence, the learning gra-
dient of the energy-based model α at iteration t is the gradient of DKL(pdata ‖
πα) − DKL(Mα(t)pθ(t) ‖ πα) with respect to α. In the traditional contrastive 
divergence, pdata takes the place of pθ(t) in the second KL-divergence. 

(2) MCMC teaching of the generator model. The learning gradient of the generator 
θ in the right panel of diagram (12.119) is the gradient of DKL(Mα(t)pθ(t) ‖ pθ) 
with respect to θ . Here  π(t+1) = Mα(t)pθ(t) takes the place of pdata as the data to
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Fig. 12.18 Reprinted with permission from [264]. TheMCMC teaching of the generator alternates 
between Markov transition and projection. The family of the generator models G is illustrated by 
the black curve, and each distribution is illustrated by a point. pθ is a generator model, and πα is a 
descriptive model 

train the generator model. It is much easier to minimize DKL(Mα(t)pθ(t) ‖ pθ) 
than to minimize DKL(pdata ‖ pθ) because the latent variables are essentially 
known in the former, so the learning is supervised. The MCMC teaching 
alternates between Markov transition from pθ(t) to π(t+1), and projection from 
π(t+1) to pθ(t+1) , as illustrated by Fig. 12.18. 

Conditional Learning via Fast Thinking Initializer and Slow 
Thinking Solver 

Xie et al. [267] extended the cooperative learning scheme to the conditional learning 
problem by jointly learning a conditional energy-based model and a conditional 
generator model. The conditional energy-based model is of the following form: 

πα(x|c) = 
1 

Z(c, α) 
exp[fα(x, c)], (12.120) 

where x is the input signal and c is the condition. Z(c, α) is the normalizing constant 
conditioned on c. fα(x, c) can be defined by a bottom-up ConvNet where α collects 
all the weight and bias parameters. Fixing the condition c, fα(x, c) defines the value 
of x for the condition c, and −fα(x, c) defines the conditional energy function. 
πα(x|c) is also a deep generalization of conditional random fields [140]. Both the 
conditional generator model and the conditional energy-based model can be learned 
jointly by the cooperative learning scheme in Sect. 12.7. 

Figure 12.19 shows some examples of pattern completion on the CMP (Center 
for Machine Perception) Facades dataset [238] by learning a mapping from an 
occluded image (256× 256 pixels), where a mask of the size of 128× 128 pixels is 
centrally placed onto the original version, to the original image. In this case, c is the 
observed part of the signal, and x is the unobserved part of the signal.
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Fig. 12.19 Reprinted with permission from [268]. Pattern completion by conditional learning. 
Each row displays one example. The first image is the testing image (256 × 256 pixels) with a 
hole of 128 × 128 that needs to be recovered, the second image shows the ground truth, and the 
third image shows the result recovered by the initializer (i.e., conditional generator model), the 
fourth image shows the result recovered by the solver (i.e., the MCMC sampler of the conditional 
energy-based model, initialized from the result of the initializer), and the last image shows the 
result recovered by the conditional GAN as a comparison 

The cooperative learning of the conditional generator model and conditional 
energy-based model can be interpreted as follows. The conditional energy function 
defines the objective function or value function, i.e., it defines what solutions are 
desirable given the condition or the problem. The solutions can then be obtained 
by an iterative optimization or sampling algorithm such as MCMC. In other words, 
the conditional energy-based model leads to a solver in the form of an iterative 
algorithm, and this iterative algorithm is a slow thinking process. In contrast, the 
conditional generator model defines a direct mapping from condition or problem to 
solutions, and it is a fast thinking process. We can use the fast thinking generator 
as an initializer to generate the initial solution and then use the slow thinking solver 
to refine the fast thinking initialization by the iterative algorithm. The cooperative 
learning scheme enables us to learn both the fast thinking initializer and slow 
thinking solver. Unlike conditional GAN, the cooperative learning scheme has a 
slow thinking refining process, which can be important if the fast thinking initializer 
is not optimal. 

In terms of inverse reinforcement learning [1, 283], the conditional energy-based 
model defines the reward or value function, and the iterative solver defines an 
optimal control or planning algorithm. The conditional generator model defines a 
policy. The fast thinking policy is about habitual, reflexive, or impulsive behaviors, 
while the slow thinking solver is about deliberation and planning. Compared with 
the policy, the value is usually simpler and more generalizable, because it is in 
general easier to specify what one wants than to specify how to produce what one 
wants.
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