
Computer
Vision
Statistical Models
for Marr’s Paradigm

Song-Chun Zhu · Ying Nian Wu

Computer Vision

Song-Chun Zhu • Ying Nian Wu

Computer Vision

Statistical Models for Marr’s Paradigm

Song-Chun Zhu
Beijing Institute for General Artificial
Intelligence
Peking and Tsinghua Universities jointly
Beijing, China

Ying Nian Wu
Department of Statistics
University of California, Los Angeles
Los Angeles, CA, USA

ISBN 978-3-030-96529-7 ISBN 978-3-030-96530-3 (eBook)
https://doi.org/10.1007/978-3-030-96530-3

© Springer Nature Switzerland AG 2023, corrected publication 2023
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Paper in this product is recyclable.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

 -2016 38044 a -2016 38044 a

Preface

The highest activity a human being can attain is learning for
understanding, because to understand is to be free.

—Baruch Spinoza, Philosopher, 1632–1677

Story of David Marr

This book is intended for researchers and graduate students in statistics, computer
science, and engineering. Based on contributions from multiple authors in the past
20+ years in the Department of Statistics and the Department of Computer Science
at the University of California, Los Angeles, it may be used as a reference in the
fields of computer vision and pattern recognition. As the first book of a three-part
series, this book is offered as a tribute to pioneers in vision, such as Béla Julesz,
David Marr, King-Sun Fu, Ulf Grenander, and David Mumford. In this book, the
authors hope to provide a mathematical framework and, perhaps more importantly,
further inspiration for continued research in vision.

An overarching goal of the three-book series is to provide a mathematical
framework for research on vision, cognition, and autonomy in artificial intelligence.
With the rise of deep learning, applications of neural networks continue to grow
but still very much at the expense of understanding how these models truly work or
generate their solutions. It is all too common to refer to neural networks as “black
boxes,” representing a common lack of understanding in the community. In an
effort to promote understanding of neural networks, and to promote the unification
of various artificial intelligence theories under a common framework, the vision
models in this book take inspiration from many authors in artificial intelligence and
other fields, such as statistics, physics, neuroscience, and psychology. Models in this
book may lead to more explicit understandings of neural networks, or in some cases
may help to modify or generalize existing neural networks, so that more explicit and
more efficient models, in terms of both data efficiency and computational efficiency,
may emerge.

David Marr is well known for pioneering a resurgence of interest in computa-
tional neuroscience and for integrating the fields of psychology, neurophysiology,
and artificial intelligence in his research on visual processing. After he passed away

v

vi Preface

at the age of 35, his work was published posthumously in 1982 in the book Vision: A
computational investigation into the human representation and processing of visual
information [169]. Although Marr published early works on the cerebellum in 1969,
neocortex in 1970, and hippocampus in 1971, he is most well-known for his research
on vision. He laid foundations for continued studies of vision for various fields, such
as computational neuroscience and computer vision.

Referred to as Marr’s tri-level hypothesis, Marr viewed vision as an information-
processing system that should be understood at three distinct, but complementary,
levels: the computational level, the algorithmic or representational level, and the
implementational or physical level. At the computational or mathematical level,
one seeks to understand the problems the visual system solves and, in a similar
sense, why it solves them. At the algorithmic or representational level, one seeks
to understand how the visual system solves its problems, i.e., the representations it
uses and the algorithmic processes it employs to manipulate those representations.
At the implementational or physical level, one seeks to understand how the visual
system is physically realized. In the same spirit as Marr’s tri-level hypothesis, in
this book, vision problems are addressed with respect to each of the computational,
representational, and implementational levels. Crucially, vision problems may
be studied at the computational and representational levels, independent of the
implementational level, which is often realized through neural networks [170].

Marr believed that a deep understanding of the brain entails an understanding of
the problems it encounters, i.e., the input, and how it solves them, i.e., the steps
taken to produce the output. As his interests gradually evolved from the brain
to visual processing, he began to treat vision similarly. He described vision as a
computational process that takes as input a two-dimensional array on the retina and
outputs a three-dimensional description of the world. His three stages of vision,
depicted in Fig. 1, include a primal sketch, a 2.5D sketch, and a 3D model. A 2.1D
sketch was also proposed by Nitzberg and Mumford [185].

A primal sketch extracts key components of a scene, such as simple edges
and regions. Textures and textons are constituent parts of a primal sketch, which
correspond to the early stages of human visual perception, i.e., the first visual
phenomena noticed by humans when viewing an object. A 2.5D sketch reflects
textures and depth. The 2.1D and 2.5D sketches correspond to mid-level vision. In
a complete 3D model, a scene is visualized in a continuous 3D map. The 3D model
corresponds to high-level vision and provides an object-centered perspective, while
the primal 2.1D and 2.5D sketches provide view-centered perspectives.

Various research influenced Marr’s book Vision, such as psychology experiments
by Béla Julesz on textures and textons, neuroscience discoveries in edge detection
and filters, the random dot stereopsis by Julesz, the shape-from-shading theory from
Berthold K. P. Horn, and research on generalized cylinders and 3D representations.
Various works facilitated the transitions from primal sketch to 2D sketch to
2.5D sketch to a complete 3D model. For a primal sketch formulation, work
on textures and textons paired with work on edge detection and filters provided
crucial foundations. For the 2.5D sketch, the random dot stereopsis from Julesz
and the shape-from-shading theory by K. P. Horn facilitated the modeling of

Preface vii

Fig. 1 Stages of vision according to Marr’s paradigm

textures and depth. Lastly, for the 3D model, work on generalized cylinders and
3D representations made it possible to model scenes in continuous, 3D maps.

As a whole, Marr’s work proposed a holistic framework for understanding vision
and touched on broader questions about how cognition may be studied. Thirty years
later, the main problems that occupied Marr remain fundamental, open problems in
the study of vision. This book may be understood as a bridge between Marr’s theory
of vision and the modern treatment of computer vision with statistical models. It
explores connections between Marr’s paradigm and neuroscience discoveries while
solidifying such discoveries with mathematical models.

The mathematical framework studied in this book also counteracts a “big data for
small tasks” paradigm that dominates the machine learning community today. This
paradigm refers to the practice of exploiting massive amounts of data for highly
specific tasks and essentially repeating this process for each new task. A great deal
of research readily falls susceptible to such a “task trap,” such that solutions often
do not contribute to a greater, unified framework for vision.

Given the wide variety of artificial intelligence methods used today on similar
problems, it is clear much effort is devoted by the community as a whole to
often entirely different research approaches. Undoubtedly, ingenuity and novelty
contribute greatly to research advancement, but the community as a whole could
work more in harmony and hence more efficiently if it adopted a common ground,
or overarching framework, for general-purpose research in vision. This type of
maturation for the field of vision is comparable to a process other academic fields
have undergone and is arguably long overdue.

Beyond David Marr’s Paradigm

This book provides mathematical frameworks and models for many of Marr’s con-
cepts. Notably not available during Marr’s time, they include Markov random fields;
the FRAME (Filters, Random fields, and Maximum Entropy) model [282], i.e., a

viii Preface

predecessor of the energy-based model (EBM); generative models; sparse coding
models [190]; various inference algorithms; and deep neural networks. Textures
and textons are fundamental elements of Marr’s paradigm, in particular for the
primal sketch. For textures, Markov random fields may be used to mathematically
formulate models for textures. For textons, generative models and sparse coding
models provide essential mathematical formulations.

Béla Julesz was a psychologist at Bell Labs and a professor at Rutgers best
known for his work on random dot stereo and texton theory. His work inspired
many thinkers, including Marr, to establish the field of computational vision. We
can mathematically define a texture by a Julesz ensemble, which is a population
of images defined on the infinite 2D image lattice, where all the images in this
ensemble share the same spatial statistics. Under the uniform distribution over this
ensemble of infinitely large images, the probability distribution of images on a finite
image patch follows a Markov random field model.

In general, a visual concept can be defined by an ensemble or population
of images, whose distribution can be mathematically defined by a probability
distribution or a probability density function. The goal of learning is to estimate
or approximate this probability distribution based on a finite number of examples
randomly sampled from this population.

For modeling textons, sparse coding models and active appearance models
(AAM) have found some success. Sparse coding states that objects may be
represented by the strong activation of a relatively small set of nodes, or neurons.
It is motivated in part by research in biological vision. For example, Huber and
Wiessel in the 1960s performed experiments on cats to record the activations of
cortical cells in the V1 section of the mammalian brain. It was observed that bars
of light oriented mostly vertical activated a particular set of neurons in the V1
section of the brain, while the same bar of light oriented in other directions failed
to activate the same neurons. In another neurophysiological experiment, a neuron
was recorded to selectively fire only to images of Jennifer Aniston, inspiring a
sparse coding scheme called grandmother cell coding. Furthermore, some neurons
referred to as mirror neurons fire not only when performing an action but also when
observing other subjects perform the same action. In general, one of the striking
observations about physiological recordings from sensory cortical areas of the brain
is the difficulty of finding stimuli that effectively activate some given neurons. These
difficulties reflect the narrow functionality of cortical neurons, which, given the
incredibly large number of them, suggests that a sparse coding system may be in
place in the brain.

Field [54] performed experiments on the primary visual cortex to suggest that
basis functions limited in both space and frequency domains, such as Gabor
functions, maximize sparseness when applied to natural images. Olhausen and Field
[187] gave examples of sparse coding in other brain regions. In [190], Olhausen
and Field defined an explicit objective function that promoted both high sparseness
and low reconstruction error. The minimization of this function on natural images
leads to a set of basis functions that resemble localized receptive fields of simple
cells in the primary visual cortex. Sparse coding is closely related to independent
component analysis [15].

Preface ix

Various inference algorithms and deep neural networks, also methods not
available during Marr’s time, are widely used throughout this book. Of course,
the vision community has seen incredible success in recent years due to advances
in deep learning, but as mentioned before, research efforts in vision are often
devoted to entirely different approaches. In an effort to recapture the main theme of
vision, this book carefully establishes mathematical frameworks for general-purpose
research in vision by examining theories in the literature, beginning with Marr’s
paradigm and progressing up to the most recent uses of neural networks.

Introducing the Book Series

The book series consists of three parts.
The first book, introduced here, covers David Marr’s paradigm and various

underlying statistical models for vision. The mathematical framework herein inte-
grates three regimes of models (low-, mid-, and high-entropy regimes) and lays
the ground for research in visual coding, recognition, cognition, and reasoning.
Concepts in this book are first explained for understanding and then supported
by findings in psychology and neuroscience, after which they are established by
statistical models and further linked to research in other fields. A reader of this book
will gain a unified, cross-disciplinary view of artificial intelligence research in vision
and will accrue knowledge spanning from psychology to neuroscience to statistics.

The second book defines stochastic grammar for parsing objects, scenes, and
events, posing computer vision as a joint parsing problem. It summarizes research
efforts over the past 20 years that have worked to extend King-Sun Fu’s paradigm
of syntactic pattern recognition. Similar to David Marr, King-Sun Fu was a pioneer
and influential figure in the vision and pattern recognition community.

The third book discusses visual commonsense reasoning, including subjects
such as functionality, physics, intentionality, causality, and values. The third book
connects vision to cognition and artificial intelligence.

The authors would like to thank many current and former Ph.D. students at
UCLA for their contributions to this book: Erik Nijkamp, Eric Fischer, Jonathan
Mitchell, Linqi Zhou, Mitchell Hill, Yaxuan Zhu, Ruiqi Gao, Yuxin Qiu, Chi Zhang,
Peiyu Yu, Sirui Xie, Dehong Xu, Deqian Kong, Adrian Barbu, and Tianfu Wu.
Erik Nijkamp and Eric Fischer, especially, have worked extensively on editing the
manuscript.

Beijing, China Song-Chun Zhu
Los Angeles, CA, USA Ying Nian Wu

The original version of the book has been revised. A correction to this book can be found at https://
doi.org/10.1007/978-3-030-96530-3_13

 32220 57269
a 32220 57269 a

https://doi.org/10.1007/978-3-030-96530-3_13
https://doi.org/10.1007/978-3-030-96530-3_13

Contents

1 Introduction . 1
1.1 Goal of Vision . 3
1.2 Seeing as Bayesian Inference . 7
1.3 Knowledge Representation . 9
1.4 Pursuit of Probabilistic Models . 14

2 Statistics of Natural Images . 19
2.1 Image Space and Distribution . 20
2.2 Information and Encoding . 22
2.3 Image Statistics and Power Law . 25
2.4 Kurtosis and Sparsity. 30
2.5 Scale Invariance . 34

3 Textures . 37
3.1 Julesz Quest . 37
3.2 Markov Random Fields . 39
3.3 Filters for Early Vision . 48
3.4 FRAME Model . 56
3.5 Texture Ensemble . 74
3.6 Reaction and Diffusion Equations . 86
3.7 Conclusion . 94

4 Textons . 97
4.1 Textons and Textures . 97
4.2 Sparse Coding . 100
4.3 Active Basis Model . 110
4.4 Sparse FRAME Model . 119
4.5 Compositional Sparse Coding . 124

5 Gestalt Laws and Perceptual Organization . 131
5.1 Gestalt Laws for Perceptual Organization . 131
5.2 Texton Process Embedding Gestalt Laws . 132

xi

xii Contents

6 Primal Sketch: Integrating Textures and Textons . 159
6.1 Marr’s Conjecture on Primal Sketch . 159
6.2 The Two-Layer Model . 160
6.3 Hybrid Image Templates . 167
6.4 HoG and SIFT Representations. 178

7 2.1D Sketch and Layered Representation . 183
7.1 Problem Formulation. 184
7.2 Variational Formulation by Nitzberg and Mumford 186
7.3 Mixed Markov Random Field Formulation . 187
7.4 2.1D Sketch with Layered Regions and Curves . 195

8 2.5D Sketch and Depth Maps . 205
8.1 Marr’s Definition . 205
8.2 Shape from Stereo . 208
8.3 Shape from Shading . 230

9 Learning by Information Projection . 237
9.1 Information Projection . 237
9.2 Minimax Learning Framework . 241

10 Information Scaling . 247
10.1 Image Scaling . 247
10.2 Perceptual Entropy . 258
10.3 Perceptual Scale Space . 262
10.4 Energy Landscape . 263

11 Deep Image Models . 271
11.1 Deep FRAME and Deep Energy-Based Model . 271
11.2 Generator Network . 285

12 A Tale of Three Families: Discriminative, Descriptive, and
Generative Models . 297
12.1 Introduction . 297
12.2 Descriptive Energy-Based Model . 303
12.3 Equivalence Between Discriminative and Descriptive

Models . 317
12.4 Generative Latent Variable Model . 322
12.5 Descriptive Model in Latent Space of Generative Model 328
12.6 Variational and Adversarial Learning . 334
12.7 Cooperative Learning via MCMC Teaching . 341

Correction to: Computer Vision . C1

Bibliography . 345

About the Authors

Song-Chun Zhu and Ying Nian Wu studied at
the University of Science and Technology of China
(USTC), Hefei, in the late 1980s, majoring in com-
puter science. They first met in April of 1992 at the
front gate of the US consulate in Shanghai, while
applying for their F1 student visas to attend Harvard
University. At the Harvard Graduate School of Arts
and Sciences, Zhu studied computer science under
Dr. David Mumford and Wu studied statistics under
Dr. Donald Rubin, and they became collaborators.
Their first joint project was the random field model
for texture and the minimax entropy learning method,
published in 1997. After graduation, Zhu and Wu
continued to carry out research on textures, textons,
and sparse coding models. They became colleagues
in 2002 as tenured faculty at the University of Cali-
fornia, Los Angeles (UCLA), continuing work on the
primal sketch model, information scaling phenomena,
and connecting these classical models and others to
deep neural network models.

Zhu started his search for a theory of intelligence
while in college, after encountering the book Vision:
A Computational Investigation into the Human Rep-
resentation and Processing of Visual Information,
written by MIT computational neuroscientist David
Marr. At the time in the late 1980s, Zhu was a student
helper at a cognitive science lab at USTC. Marr’s
book is considered the first attempt to outline a com-
putational paradigm for vision, and it inspired Zhu
to study computer vision with Dr. David Mumford,
who also had an interest in pursuing a mathematical

xiii

xiv About the Authors

framework for vision and intelligence. The 1990s
were characterized by a transition from models based
on logic and symbolic reasoning to models based on
statistical modeling and computing. During this time
and since then, Wu has brought expertise in statistics
to the team. Since the late 1990s, Zhu and Wu have
been working on statistical modeling and learning for
computer vision.

Notably, the pursuit of a unified framework for
computer vision dates back to Ulf Grenander, a pio-
neer who launched General Pattern Theory in the
1960–70s while at the Division of Applied Math at
Brown University. Zhu studied pattern theory as a
postdoc at Brown and benefitted greatly from inter-
actions with the Brown group. On this note, an under-
lying goal of this book is to apply the methodology
of general pattern theory to formulating concepts in
Marr’s paradigm.

At the Center for Vision, Cognition, Learning, and
Autonomy at UCLA, Zhu has supervised many Ph.D.
students and postdocs who have both contributed their
thesis work as examples in this book and assisted with
editing the book.

Chapter 1
Introduction

The primary aim of this book is to pursue knowledge representation for vision.
In a world in which technology generates immense amounts of data from a wide
spectrum of sources, it is of growing importance to establish a common framework
for knowledge representation, learning, and discovery. A current problem in arti-
ficial intelligence is how to acquire truly massive amounts of knowledge, akin to
the faculty of common sense in humans, from raw sensory signals and, moreover,
use this knowledge for inference and reasoning. In this book, the vision models
presented for acquiring such knowledge are based most fundamentally on statistical
properties discovered for natural images over the past several decades. Similar
to models in physics, models are advanced based on empirical grounds, such as
discovering additional patterns in data. In this way, models stay free of bias.

Discriminative modeling approaches are not discussed in this book in depth. In
statistical classification, two main approaches exist: discriminative and generative
modeling. In discriminative modeling, the conditional probability of a target y is
modeled, given an observation x, i.e., p(y|x). Often, the value of a target variable
y is determined by training a model on thousands of examples. A discriminative
classifier may perform well at discriminating between, e.g., chairs and non-chairs,
but does it truly understand the concept of a chair? Consider adversarial attacks
in the literature, in which an image that a discriminative classifier can otherwise
correctly classify with a high degree of certainty is injected with a small amount
of noise, in many cases barely perceptible to a human, and the predicted class is
entirely different, e.g., a bus instead of a chair. This behavior demonstrates that
a discriminative model does not actually learn the concept of a chair as a human
does—it only learns to discriminate between chairs and non-chairs using whatever
obscure image features it may prefer.

In cases in which discrimination is not the ultimate goal, generative modeling
approaches, explored in this book, facilitate the construction of models more
representative of human learning. In generative modeling, given an observable
variable x and a target variable y, the joint probability distribution p(x, y) is
modeled. From this, the conditional probability p(y|x), modeled directly in discrim-

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_1&domain=pdf

 12905
61494 a 12905 61494 a

2 1 Introduction

s

Fig. 1.1 One can observe, as an example of texture, the tree leaves in the background and, as an
example of textons, the edges created by tree trunks in the foreground

inative modeling, is computed. Generative modeling is not only more indirect but
also more probabilistic in comparison to discriminative modeling, allowing more
domain knowledge and probability theory to be applied. In this way, generative
models better represent human learning. For example, with prior domain knowledge
encoded, a generative model can generalize knowledge to new but related tasks. And
this is akin to human learning; a human may be able to intuit, for example, how to
make orange juice with the prior knowledge of how to make lemonade.

After discussing statistical properties discovered for natural images in Chap. 2,
the most basic units of visual perception, textures and textons, are introduced in
Chaps. 3 and 4, respectively. A texture could be sand, or the thousands of leaves
of a tree viewed from afar, as in Fig. 1.1, for which individual components in pre-
attentive vision are not disentangled. Pre-attentive vision is characterized as human
vision before focusing on any specific region of some visual stimuli. A texton,
or a “token” as referred to by Marr, can be thought of as a most basic element,
like a bar, edge, corner of an eye, or trunk of a tree as in Fig. 1.1. Textons form
the structural part of an image and object boundaries. Note that the same object
may be perceived as textons or texture, depending on potential viewing distance
or focal point, and in natural scenes, these two entities are seamlessly interwoven.
Following David Marr’s insight, these two modeling components may be integrated
to form a generative image representation called primal sketch, which he referred
to as a “symbolic” image representation in terms of image primitives. Primal sketch

1.1 Goal of Vision 3

is discussed further in Chap. 6, after a discussion of Gestalt laws and perceptual
organization, which naturally follows from Chap. 4 on textons.

Marr defined different stages of vision, starting from a 2D visual array on the
retina to a 3D description of the world. His stages of representation include a primal
sketch, a 2.1D sketch, a 2.5D sketch, and a 3D model. The first two stages perform
separation between four main factors known to influence perceived visual intensity:
geometry (shape and position), reflectance of visible surfaces, illumination, and
viewpoint. A primal sketch extracts fundamental components of the scene, like
edges and regions, and it looks like a pencil sketch. In a primal sketch, geometric
structures, pixel intensity changes, and illumination effects are detected. A primal
sketch captures spatial layout by using textons, such as edges, bars, and blobs. A
2.1D sketch introduces layered representations of the input image and is discussed
in Chap. 7. A 2.5D sketch, discussed in Chap. 8, represents orientation, depth, and
textures, considering the distance from the viewer and discontinuities in depth and
surface orientation. Both primal and 2.5D sketches are viewer-centered perceptions.
In a 3D model, the scene is visualized in a continuous 3D map, as an object-centered
perception. The 3D representation describes shapes and their organization using
a hierarchical organization of volumetric and surface primitives. Marr’s stages of
visual perception serve as a basis for further analyses in the book.

In Chap. 9, information projection is introduced as a framework for learning a
statistical model as an approximation to the true data distribution. In Chap. 10,
information scaling and regimes of models are discussed, including entropy,
metastability, and energy landscapes. In Chap. 11, image models with multilayer
neural networks, such as deep FRAME/energy-based model and the generator
model, are presented. In Chap. 12, three main families of machine learning models,
i.e., discriminative, generative, and descriptive models, are further examined.

1.1 Goal of Vision

In the parse graph in Fig. 1.2, there can be several types of nodes including scenes
and objects, minds and intents, hidden objects, actions, imagined actions, attributes,
and fluents, i.e., how objects change over time. Nodes are organized in a tree-
like hierarchical structure with potential connections between sibling nodes. Parse
graphs for knowledge representation in vision will be discussed in greater detail in
the second book, but for now, it may be understood that it involves parsing scenes
and events in a picture, or a video sequence, into nodes such as in Fig. 1.2.

These nodes may be represented with words one might use to describe them
in natural language, e.g., “backpack” or “vending machines,” or they may be
represented with “words” that are not really words at all—perhaps a symbol, a
number, some other character, an expression in sign language, or a facial expression.
Either way, for simplicity, the descriptors of these nodes are referred to as words.
They can be thought of as visual words in the sense that even a primate, for example,
could have a word for a node, even though it is not endowed with a capacity for

4 1 Introduction

Fig. 1.2 Scenes and events may be understood in terms of a parse graph. From a single
image, a dense 3D scene may be reconstructed, by estimating camera parameters, materials,
and illumination. The scene may be parsed hierarchically in terms of relations, intents, beliefs,
attributes, and fluents. The actions of agents may be predicted over time and hidden object states,
e.g., water boiling inside a metal kettle, which humans can naturally infer from the image, may
even be recovered

language. Sometimes in this book, words are referred to as symbols or concepts, but
this is only to aid with explanation depending on the context.

A common misconception is that concepts are encoded explicitly in pictures.
The raw pixel values of a given picture do not directly correlate to, or represent, any
concepts. Consider, for instance, a grayscale image of 1000×1000 pixels, which
may be represented as a 1000×1000 table, a portion of which would look similar to
Fig. 1.3. For a color image, each table entry would contain three numbers, indicating
the intensities of the colors red (R), green (G), and blue (B). Nowhere in this
collection of numbers can an explicit representation of a concept such as a person,
table, or chair be found. They have to be inferred in a sophisticated manner from
the collection of numbers representing the image. Visual computation is a daunting
task for computers, just the same as it is for humans. In fact, half of the human
brain is devoted to visual computation, and most of the brain’s activities that involve
cognition and reasoning are based on visual stimuli.

At this stage, researchers have yet to grasp how the so-called “signal to symbol”
transition is realized, i.e., how concepts are inferred and ultimately learned from
visual stimuli. In order to answer this question, the relationship between concepts
and image patches, such as the one shown in Fig. 1.3, needs to be better understood,

1.1 Goal of Vision 5

Fig. 1.3 An image is merely a collection of numbers indicating the intensity values of the pixels

as well as how different concepts relate to one another. The relationship between
images and concepts as it relates to modeling is explored in depth in Chap. 2.

In Vision, David Marr stated, “Vision is the process of discovering from images
what is present in the world, and where it is.” The parse graph in Fig. 1.2 depicts
“what” objects are present in the image and “where” they are spatially relative to
other objects. The distinction between “what” and “where” in vision is noteworthy.
The ventral pathway in the brain is thought to account for “what” objects humans
see and the dorsal pathway for “where” humans see them. The notion of a division
between a ventral and a dorsal visual stream has been an essential principle of visual
processing since David Milner and Melvyn Goodale published the two-streams
hypothesis in 1992.

The two-streams hypothesis argues that humans have two distinct visual systems.
After visual information exits the occipital lobe, it follows two pathways or streams.
The ventral pathway, or “vision-for-perception” pathway for “what” humans see,
leads to the temporal lobe, which is involved with object identification and

6 1 Introduction

Fig. 1.4 The dorsal pathway
is responsible for the spatial
aspect of vision, i.e., “where”
humans see objects. The
ventral pathway is
responsible for the main
content of vision, i.e., “what”
objects humans see

recognition. This pathway is believed to mainly identify and discriminate between
shapes and objects. The dorsal pathway, or “vision-for-action” pathway, leads to
the parietal lobe, which is involved with processing objects’ spatial locations. This
pathway has been tied to movements such as reaching and grasping, which are based
on evolving spatial locations, shapes, and orientations of objects. Understanding
the difference between the two visual pathways, the ventral pathway for perception
and the dorsal pathway for action, is useful knowledge for vision research and for
understanding the inspiration behind theories presented later on (Fig. 1.4).

Another consideration for vision research that must be accounted for is the fact
that human vision is often task-driven. After viewing an instructional video about
how to make watermelon juice, one could most likely reenact the process, including
chopping watermelon, blending it, and so forth. The physics and the functionality
of the objects, and potentially hundreds of other subtasks involved in making the
juice, may be easily understood. Humans additionally understand the causality and
how to, e.g., switch the order of the steps without affecting the final result. From a
small amount of data, i.e., the instructional video in this case, humans can absorb a
massive amount of information, forming what is actually just referred to as common
sense. Humans possess this remarkable ability because vision is incredibly task-
driven, absorbing specific information from complex visual stimuli.

Thus, the faculty of common sense, which forms part of the prior knowledge
each human possesses, ultimately entails an understanding of physics, functionality,
causality, intentionality, and utility, among other properties of a scene. Pursuing
holistic knowledge and learning reminiscent of prior knowledge and learning in
humans may be referred to as the “small data for big tasks” paradigm. This is where
efforts are concentrated in this book. Many avenues in machine learning today,
unlike human learning, depend on massive amounts of data to learn highly specific
tasks, such as the task of making watermelon juice or identifying a person from his
or her face in facial recognition. This assumes no prior knowledge and this type of
learning is not generalizable. As mentioned previously, this contrasting and all-to-
common paradigm in machine learning may be referred to as the “big data for small
tasks” paradigm.

As a given task or purpose very much influences the interpretation of visual
stimuli to form knowledge, similar behavior should be exhibited by vision models.
Accordingly, in this book the optimal model and knowledge representation of some
visual data depends not only on the data but also on the relevant task. Here, a contrast

1.2 Seeing as Bayesian Inference 7

may be made with the field of physics. In vision, there are subjective, in addition to
the objective, considerations that guide the formation of models. As a vision model
seeks structure in the data, i.e., an image space, the optimal structure or architecture
of the model depends on its given purpose. As an example, the hierarchical structure
of an And–Or graph depends on its purpose, such that it evolves as the purpose of
the model evolves.

As mentioned, vision models should also generalize well. Although excellent
for a specific task, discriminative modeling approaches clearly lack generalization,
which does not reflect human learning. Again, a human could likely infer how to
make orange juice after learning how to make lemonade or watermelon juice. Or
a human could infer how to crush a walnut with a book after observing someone
crushing it with a hammer. Humans have the ability to generalize knowledge to the
novel but similar tasks, often after learning from just one example. The generative
modeling approach offers the tools to begin to mimic this incredible learning ability.

Humans generalize knowledge well primarily due to prior knowledge and
imagination, among other faculties. From birth, humans continually gain a better
understanding of space, time, causality, functionality, and other features of the
world, utilizing that knowledge each time a new task is learned. As humans learn,
they add to their prior knowledge, in this way creating a continual accumulation
of it. With imagination, humans have the ability to extrapolate prior knowledge to
imagined future or hypothetical tasks, a powerful tool for generalizing knowledge.

1.2 Seeing as Bayesian Inference

Clearly, the way in which humans form and represent knowledge from visual
stimuli is complex and relies on more than just vision—it is dependent on prior
knowledge, imagination, and in general the mind, or agent, that perceives. In fact,
every image has literally infinite interpretations, and humans must derive only one
or two meaningful interpretations for each one. Vision, in this sense, is under-
constrained and necessitates some form of guessing by the agent, using prior
knowledge. Images, by themselves, lend minimal information. This is an important
point and essentially what it means for vision to be ill-posed and mostly an illusion.
Interpretation of visual stimuli is largely independent of the visual stimuli itself—it
depends on the agent’s prior knowledge and imagination.

It has been shown that a form of top-down processing performed by the visual
system also contributes greatly to visual interpretation. Top-down processing makes
use of global information propagation, exploiting high-level knowledge possessed
by the agent. The agent considers high-level contextual information and performs
top-down inferential reasoning based on prior knowledge, both innately acquired
through evolution and learned through experience. With top-down processing, the
agent may form an interpretation of visual stimuli, even if the stimuli were only
partially perceived or perceived poorly, e.g., due to poor lighting conditions or quick
movement. To give an example, top-down processing may help one intuit the object

8 1 Introduction

or scene of a partially completed puzzle, although only portions of what typically
represents the object or scene are present. With the role of top-down processing in
the visual system, top-down architectures have become paramount to the design of
learning and inference algorithms in vision.

Given prior knowledge, a basic assumption since the time of Helmholtz’s
research in the 1860s is that a given visual input may be represented as the most
probable computed interpretation of an image. To give a Bayesian formulation for
vision, let I be an image and pg be a semantic representation of the world, such
as a parse graph. The most probable representation pg∗ of the image is defined
as pg∗ = arg maxpg∈�p(pg|I) = arg maxpg∈�p(I|pg)p(pg). To obtain probable
interpretations, it is necessary to sample from the posterior p(pg|I) and obtain
candidates (pg1, pg2, ..., pgk) ∼ p(pg|I). This is a crucial point—sampling from
the posterior probability lends the possible visual interpretations. The result of this
process, pg∗, represents the most probable semantic representation of the image and
the visual interpretation of the agent.

The quality of the prior knowledge of a model may be judged using a method
referred to as analysis by synthesis, based on synthesized examples. Analysis by
synthesis can be compared to a Turing test as a way to judge the humanlike thinking
capability, or intelligent behavior, of an artificial intelligence model. In a Turing
test, a subject asks questions to two different agents, one a machine and the other
a human, and the machine is determined to be more humanlike the more uncertain
the subject is in identifying the human from the machine, based on each of their
responses. Thus, the machine does not need to have correct responses; it merely
needs to respond like a human, to perhaps fool the subject into thinking it is, in fact,
the human. The analysis by synthesis method may also be used to judge humanlike
thinking capability, but in a way that does not depend on the input, such as a subject
asking questions. This eliminates the possibility of any questionable input. The
analysis by synthesis method thus provides an unrestricted way to judge what a
machine knows, i.e., its prior knowledge—in a way, this is similar to dreaming in
humans. Dreaming, or the imagination, is also unrestricted in the sense that these
are perceptions, often of great visual detail, that also receive no input visual stimuli.
Interestingly, then, the analysis by synthesis method may be viewed as a way to
determine what a machine “imagines” or “dreams.” If one were to draw several
random samples meant to represent a dream from a completely untrained model that
possesses no prior knowledge of the world, the random samples would be akin to
white noise. A well-informed model, however, would produce a detailed, interesting
dream.

The fact that vision relies so heavily on prior knowledge and imagination signi-
fies that it is highly probabilistic. Accordingly, probability and Bayesian inference
play large roles in vision research. The probabilistic nature of vision is most obvious
with problems exhibiting imperceptibility, in which human vision jumps between
image interpretations often entirely different. In the bikini versus martini example,
a well-known example demonstrating ambiguity in visual perception, human vision
oscillates between interpretations of a bikini bathing suit and a martini drinking
glass, depending on how the visual system interprets the image. Mathematically, the

1.3 Knowledge Representation 9

fact that perception may jump between interpretations in some structured state space
poses a significant challenge for the design of learning and inference algorithms.
Ambiguities in the visual inference that occur with human vision are, in general,
difficult to model. Imperceptibility in vision is more formally introduced in Chap. 9,
which discusses information scaling regimes.

Imperceptibility may be formally defined as the complexity of an image sub-
tracted from the complexity of the world. As a measure of complexity, it may be
aptly modeled with entropy. Given a generative model such that pg ∼ p(pg) and
I = g(pg), in which pg is a semantic representation of the world and I is an
image, imperceptibility H(p(pg|I)) = H(p(pg)) − H(p(I)). Entropy measures
complexity or uncertainty, e.g., the image complexity H(p(I)) = E[− logp(I)] =
− ∫

p(I) log p(I)dI. Hence, as world complexity increases relative to the image
complexity, imperceptibility grows. When the posterior probability p(pg|I) exhibits
high imperceptibility, it means that certain variables in pg, the semantic representa-
tion of the world, cannot be inferred as the uncertainty is too high; hence, they are
imperceptible. In this case, the model’s representation of the world would need to
be reduced in complexity.

As the concept of imperceptibility explains ambiguities in inference, it has been
utilized in analyses of abstract art. Artists intentionally create imperceptible aspects
of a piece of artwork to induce ambiguous visual interpretations. Viewers may
proceed down different perceptual paths to interpret the artwork in various ways.

1.3 Knowledge Representation

To begin to understand the way knowledge may be represented in vision, first
consider the space of all image patches of natural scenes and of a fixed size, e.g.,
10 × 10 pixels. These image patches reside in an image space whose dimension is
the total size of the image patches, in this case, 10×10 = 100. Each image patch can
be treated as one point in the image space. Hence, the image patches together form
a population of points in the image space. One may consider an analogy between
this population and the 3D universe, as illustrated in Fig. 1.5. The distribution of
mass within the universe is highly uneven. There are high densities of mass at stars,
but there are low densities of mass across nebulas (clouds of dust and gas in outer
space), in which mass is spread out. The distribution of the population of natural
image patches in the image space is also highly uneven. To model this space, it
becomes necessary to identify, map out, and catalog high-density clusters such as
stars, as well as low-density regions such as nebulas.

Just as a representative in the United States Congress represents a subset of
the population, mathematically, a concept represents a subset or sub-population of
image patches within the entire universe of image patches. All the image patches
in this subset are perceived as the same pattern and hence are described by the
same symbol or “visual word.” The subset, or sub-population, of image patches
that correspond to a concept can be represented mathematically by a probability

10 1 Introduction

Fig. 1.5 Consider the complex distribution of mass in the universe, e.g., at stars (high-density
low-volume clusters) and over nebulas (low-density high-volume regions). Left: the universe with
galaxies, stars, and nebulas. Right: a zoomed-in view of a small part of the image

Fig. 1.6 The hope is that �p , the learned estimate of �f , approximates as closely as possible
�f . The better the approximation, the more closely the learned concept p approximates, and thus
accurately represents, the real concept f

distribution or a probability density function, which can be parametrized by a
statistical model. Hence, concepts can ultimately be represented by statistical
models, which are quite powerful.

Thus, there are two spaces: the image space of image patches (signals) and
the model space of concepts (symbols), depicted in Fig. 1.6. Each concept, which
corresponds to a set of image patches in the image space, is represented as just
one point in the model space. For example, in Fig. 1.6, the sub-population of image
patches �f in the image space corresponds to one concept f , a point in the model
space. All the image patches of a concept, despite having diverse pixel intensities,
correspond to the same concept because they are perceived as the same pattern or
object by the visual system.

1.3 Knowledge Representation 11

Suppose a number of image patch examples are randomly sampled from the
sub-population of image patches �f , and the goal is to learn a concept f in the
model space based on these examples. In other words, the goal is to recover the
sub-population �f to best learn the concept f . First and foremost, it is impossible
to fully recover the sub-population �f , since it is impossible to access all image
patches in the universe that belong to �f . All the image patches that correspond to
the concept of sand, for example, are clearly not somewhere in a dataset. However,
it is still possible to come up with an approximated estimate of �f . Call it �p,
which corresponds to a concept p in the model space. The hope is that the set �p
is close to the set �f in the image space so that the concept p will be as close as
possible to the concept f in the model space. For example, one might hope p is
within a distance ε of f , measured by some predefined metric. In machine learning,
identifying �f based on randomly sampled examples from �f is referred to simply
as learning, and these examples are training examples.

Concepts can differ greatly in their complexities. Some concepts may appear
to be very simple or regular, such as a line segment, a triangle, or even a human
face, while other concepts can appear quite complex or random, such as stochastic
textures like grasses or other foliage. Some concepts lie in between, such as the
face of a tiger. Ultimately, concepts may be defined as textures, textons, or some
composition of the two. Compositions of textures and textons are discussed in
the second book in the series. Figure 1.7 is a simple illustration of concepts with
different complexities. For each concept, such as a texture or the face of a tiger,
a number of examples are collected, which may then be aligned in the case of,
e.g., faces. The principal component analysis is performed and the eigenvalues are
plotted in descending order. For a simple concept such as a face, the eigenvalues
drop to 0 very quickly, indicating that the images lie in a very low-dimensional
space. For a complex concept such as a texture, the eigenvalues stay high for an
extended range, indicating that the images lie in a very high-dimensional space. For
the face of a tiger, the eigenvalues lie in between.

Fig. 1.7 Observe a plot of
eigenvalues, in decreasing
order, both for concepts of
low dimension (blue curve)
and high dimension (red
curve)

12 1 Introduction

Fig. 1.8 Simple geometric patterns like edges and bars have low entropy, while stochastic textures
like fur and carpet have high entropy

The complexity of a concept f in the model space can be measured by the
log volume of the corresponding subset �f in the image space if we assume a
uniform distribution. This log volume is called entropy in statistical physics and
information theory, and it is called intrinsic dimension in mathematics and coding
theory. As one can see in Fig. 1.8, entropy may be used as an axis on which to
map concepts. Geometric patterns belong to the low-entropy regime, while texture
patterns belong to the high-entropy regime. Many object patterns lie in the mid-
entropy regime. Textons are of low entropy, textures are of high entropy, and
many compositional structures in between are of mid-entropy. Textures, textons,
and compositions provide three ways to characterize a sub-population in the image
space that represents a concept in the model space. While patterns in the low-
entropy regime tend to be simple and patterns in the high-entropy regime tend to
be random, patterns in the mid-entropy regime tend to be quite informative. The
informativeness of a concept f can be measured by the number of parameters
needed to specify it in the model space. Central to the goal of this book is to establish
a mathematical framework and form of knowledge representation under which these
entropy regimes may be further studied and defined.

With the aim of unified knowledge representation, a natural question is how to
relate different types of knowledge. Vision models that lend knowledge representa-
tion can generally be categorized into three paradigms: logic models, probabilistic
models, and discriminative models, as shown in Fig. 1.9. In the 1960s and 1970s,
knowledge was mostly represented by logic formulas, i.e., propositions and pred-
icates, called well-formed formulas. In this paradigm, a concept is represented
by a set, which is in turn specified by well-formed formulas. As such, a concept
is ultimately equivalent to a set of states, from a joint state space, that satisfies
all the well-formed formulas. Propositional calculus, first-order predicate calculus,
situation calculus, and event calculus are all used to represent knowledge. In general,
the logic paradigm for knowledge representation is alive and well, and it is used

1.3 Knowledge Representation 13

Fig. 1.9 At the highest level of vision and cognition, one can discriminate between three types
of models: Knowledge Representation (U) models, Causal (C) models, and Value and Utility (V)
models. The last two types are discussed in the third book in the series, along with many other
more advanced artificial intelligence concepts. Knowledge representation models aim to describe
the world as intuitively and as accurately as possible. Causal models represent cause and effect
in the physical world. Value models compute how much value is placed on certain objects or
ideas; they involve morality. Causal (C) and Value (V) models together guide the creation of the
world. For example, chairs are created because they have a certain value (V) and satisfy some
causality (C) in physics, allowing an individual to rest when he or she sits down. Causal and
Value models, as they uncover knowledge, feed Knowledge Representation models. There are 3
paradigms for knowledge representation: logic models, probabilistic models, and discriminative
models. Probabilistic models have low- (e.g., textons), mid-, and high-dimension (e.g., textures)
regimes, each increasing in entropy. At the top right, one can see a 32× 32 image space, i.e., 1024
dimensions, in which part of the space is only 2D, while another part of the space is 990D. This
conveys that dimensionality often varies greatly in just one image, lending instances of each of the
low-, mid-, and high-dimension regimes

today to solve many problems in vision. For example, situation calculus is used
for causal reasoning in robot planning. A clear advantage of logic for knowledge
representation is that it is rigorous and enables pure reasoning; however, a clear
disadvantage is that it is inherently fragile in that it is not grounded on observational
data. Truths found by exercising logic alone are called a priori truths; they are
justified by reasoning that proceeds only from theoretical deduction, completely
independent of empirical data.

Beginning in the 1980s, based partly on a desire to ground knowledge represen-
tation on empirical data, there was more research into probabilistic models, which

14 1 Introduction

provided imperfect knowledge representation and the ability to make inferences
from observed signals with some degree of uncertainty. Note that “imperfect”
knowledge representation does not imply that knowledge is infused by noise; it
signifies that knowledge can be represented in a non-absolute way, with some
degree of uncertainty. The Bayesian Belief Network described by Judea Pearl in
1984 is an example of such a probabilistic model. In probabilistic models, concepts
are no longer regarded as deterministic sets but rather probabilistic distributions.
Two concepts may, for example, overlap in the set of instances they define. There
are two regimes of probabilistic graphical models: flat and hierarchical. The flat
regime includes descriptive or declarative models, such as constraint satisfaction
models, Markov random fields, and Gibbs models. The hierarchical regime includes
generative or compositional models, such as Markov trees, stochastic context-free
grammars, and sparse coding models. Integrating context into hierarchical models,
there are models such as primal sketch, And–Or graphs (spatial, temporal, causal,
and attributed), and stochastic context-sensitive grammars. All of these are reviewed
in this book.

The last paradigm for knowledge representation in vision, to go along with
logic and probabilistic modeling, is discriminative modeling. Discriminative models
include neural networks (e.g., convolutional neural networks, recurrent neural net-
works), boosting, logistic regression, and support vector machines. Discriminative
models often have different pipelines for each task in a problem, such as pipelines
for object classification, pose estimation, and attribute recognition. This actually
leads to non-unified knowledge representation, which is unhelpful for the aim of
this book. So, although discriminative models can be used to represent knowledge,
they are often used in such a way that does not contribute to a unified representation.
Discriminative models also require a huge number of parameters (on the order
of O(107)) and a very large amount of data for supervised training (on the order
of O(106)). Generally, among the three paradigms of knowledge representation,
discriminative models are very complex while logic is simple; probabilistic models
lie somewhere in between, simple enough to understand thoroughly and complex
enough to capture complex data distributions. A goal of this book is to integrate
these three paradigms providing knowledge representation: logic models, proba-
bilistic models, and discriminative models.

1.4 Pursuit of Probabilistic Models

So, broadly speaking, why are probabilistic or statistical models useful in computer
vision, and what is the origin of these models? Some assume that statistical
models and probability have a role in computer vision primarily due to the noise
and distortion present in natural images. This is truly a misunderstanding. With
the abundance of high-quality cameras that exist nowadays, there is rarely a
considerable amount of noise or distortion in images anymore. Rather, probability
and statistical models actually help capture more details in images, as opposed

1.4 Pursuit of Probabilistic Models 15

to helping represent fewer details, i.e., noise or distortion. Accordingly, statistical
models, which provide an intrinsic representation of visual knowledge, actually help
capture image regularities.

As discussed previously, a population of natural image patches can be viewed
as a cloud of points in the image space. The distribution of the cloud of points can
be described by a probability density function. Image patches of a certain pattern,
such as a face, form a sub-population in this cloud of points. If one randomly
samples an image patch from this face sub-population, then the density function
one assigns to the random image patch, naturally, should be the density function
of the sub-population from which it was sampled. In this way, each pattern, or
concept, corresponds to a probability distribution defining a sub-population of the
image space, and it can be defined by a probability density function and can be
parametrized by a statistical model.

In the literature, Grenander [84] and Fu [68] pioneered using statistical models
for various visual patterns. In the late 1980s and early 1990s, statistical models
become popular and then indispensable when the computer vision community rec-
ognized that problems, typically shape-from-X problems, are intrinsically ill-posed.
If interested, the reader is invited to explore the historical context more. Nowadays,
it is known that extra information is needed to account for the regularities in natural
images, and statistical models can help to encode or represent these regularities.
Crucially, statistical models also assist in learning and recognizing patterns or
objects in the first place.

Figure 1.10 illustrates two methods of pursuing a statistical model of a concept,
i.e., of learning a concept f by approaching �f with a sequence of models. In the
first method, starting from the entire image space, at each step, a new constraint is
added to shrink the image space. With more constraints continually added, �f is
captured from the outside. This method of pursuing a statistical model characterizes
descriptive or declarative models, which are flat. Descriptive models represent one
regime of probabilistic graphical models and include constraint satisfaction models,
Markov random fields, Gibbs models, Julesz ensembles, and other contextual
models. In the second method, starting from a single point or small ball inside
�f , at each step, some dimensions are expanded to gradually fill in �f from
the inside. This method of pursuing a statistical model characterizes generative or
compositional models, which are hierarchical. Generative or compositional models
represent another regime of probabilistic graphical models and include Markov
trees, stochastic context-free grammars, and sparse coding models. Integrating
contextual and hierarchical information is, e.g., primal sketch models, And–Or
graphs, and stochastic context-sensitive grammars.

The reason for choosing one of the two model pursuit strategies, descriptive
or generative, for a given problem is intuitive. Some sets may be of very high
dimensionality, and hence it is more efficient to capture them with a descriptive
model using constraints, gradually reducing the volume of the search space. These
sets are modeled through the description, hence the name “descriptive” models.
Other sets may be of much lower dimensionality, and hence it will be more efficient
to capture them with a generative model using expansion, gradually increasing

16 1 Introduction

Fig. 1.10 This illustrates two strategies for pursuing a statistical model for a concept. First, in
descriptive or declarative models, a set �f can be pursued through a sequence of models that
continually reduce the entire image space to capture �f from the outside. The image space is
gradually reduced by adding constraints. Second, in generative or compositional models, a set �f
can be pursued through a sequence of models that continually expand from a single point or small
ball to gradually fill in �f from the inside. In this case, the image space is gradually expanded by
adding dimensions

the volume of the search space by adding dimensions. These sets are modeled by
pursuing latent variables, which are meant to encode and explain training examples
and may be used to generate new examples, hence the name “generative” models.
Some sets may be of more middle dimensionality and hence require a more complex
combination of a generative and descriptive model.

By analogy, if a teacher is grading a final exam that has a full score of 100,
for a very strong student the teacher may start from 100 points and subtract points
occasionally for incorrect answers. For a very weak student, the teacher may start
from 0 and add points occasionally for correct answers. Accordingly, students at
both ends of the spectrum are easy to grade, but students near the exam average
require more work. Images for most vision problems are near the middle of an
analogous spectrum, making it necessary to capture challenging sets that form
complex, multimodal distributions of varying dimensionality.

1.4 Pursuit of Probabilistic Models 17

Fig. 1.11 Scanning from left to right, low-dimension, mid-dimension, and high-dimension
regimes may be observed for two images. There is a gradual transition from images that should be
fully modeled by a generative model, on the very left, to images that should be fully modeled by a
descriptive model, on the very right

Figure 1.11 illustrates use cases for the different regimes of models, using only
two images, one of the red maple leaves and the other of green leaves. Both images
are simply shown at five varying levels of magnification. On the very left of the
figure, the low-dimension regime may be observed. As the images are of low
dimension, it is easiest to generate or compose them through expansion with a
generative model, increasing the volume of the search space by adding dimensions.
On the very right of the figure, the high-dimension regime may be observed. As the
images are of high dimension, it is easiest to describe them with a descriptive model,
reducing the volume of the search space by introducing constraints. From the left
to the right of the figure, there is a gradual transition from images that should be
fully modeled by a generative model to images that should be fully modeled by a
descriptive model. In between, a combination of the two should be used to optimally
model the leaves. This is a powerful example because it shows that, even for the
same picture but at varying levels of magnification, there is a need for generative
and descriptive models and their combination.

Thus far, relatively small image patches have been discussed, e.g., 10 × 10
pixels. The concepts that arise from small image patches may be considered
“atomic concepts,” i.e., the simplest symbols, or descriptors, at the lowest layer
of perception. Atomic concepts can be further composed into larger patterns and
more abstract concepts. This leads to a hierarchy of concepts at multiple layers, as
illustrated in Fig. 1.12.

18 1 Introduction

Fig. 1.12 Concepts become increasingly abstract, moving up through the hierarchy from coding to
recognition to cognition to reasoning. However, concepts at all levels can be learned and described
by Spatial–Temporal–Causal And–Or graphs

At the bottom layer, there are concepts for image patches. High-entropy concepts
can be described by, e.g., Markov random fields, and low-entropy concepts can be
described by, e.g., sparse coding models. At the top layer, there is reasoning based on
logic and event calculus. In the middle layers, there are recognition and cognition,
which can be described by stochastic grammar allowing for recursive compositions.
As will be discussed, stochastic grammars in the form of Spatial–Temporal–Causal
And–Or graphs are actually well suited to learning and describing concepts at all
layers.

Chapter 2
Statistics of Natural Images

The population of natural images may be defined as all the images of the natural
world that have been observed by humans. Images and videos captured by humans
with cameras in modern civilization represent only a very small subset of this
population. Accordingly, the size of the natural image population far exceeds the
size of the set of images captured by cameras, although it is much smaller in
comparison to the size of the entire, unconstrained image space. Natural images
contain an overwhelming variety of structures and patterns resulting from a myriad
of physical processes. They exhibit hierarchical compositions of objects at a broad
continuum of scales.

It may be surprising to note that natural images, with their diverse array of
patterns and orientations, consistently share any statistical features. Indeed, they
do and so much so that they can be easily distinguished from non-natural images
based solely on these features. For example, most natural images contain simple
subcomponents such as flat surfaces, well-defined edges, and regular textures. The
common appearance of these structures suggests that concise but flexible models
can efficiently describe natural images at the most basic level by repeated instances
of similar patterns.

Barlow in 1961 [10] and Gibson in 1966 [79] were among the earliest researchers
to emphasize the role of ecology in visual perception, i.e., visual concepts are
learned and mentally categorized based on examples in the environment. Computer
vision, like human vision, consists of an agent that learns abstract representations
from many observed examples. The learned representations of vision models,
similar to concepts for humans, should be sufficiently generalizable so that the
model can adapt to new, unseen examples just as a human can.

Throughout this book, statistical phenomena associated with natural images
are discussed. This begins the process of establishing a common vocabulary
and grammar for vision supported by a unified mathematical foundation. In this
particular chapter, some initial statistical properties discovered for natural images
are examined, such as the 1/f -power law, high kurtosis, and scale invariance.
Manifolds in the image universe, image scaling in the image space, and impercep-

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_2&domain=pdf

 12905
61494 a 12905 61494 a

20 2 Statistics of Natural Images

tibility are discussed. There are many motivations for understanding natural image
statistics, but a few include potential optimizations in image/video compression due
to redundancy reduction and improved image/video coding, an understanding of
ecologic influences on neural receptive fields (e.g., how neurons in visual cortical
areas adapted to visual environments over time), and the knowledge to exploit image
regularities and prior models to solve ill-posed problems, such as image restoration
(e.g., denoising, inpainting), estimating surface from stereo, motion, texture, etc.,
and the development of concepts and generative models (as prior knowledge) for
scenes, objects, actions, events, and causality from images and video.

2.1 Image Space and Distribution

Beginning with a concrete description of image space, consider the population of all
grayscale image patches of size 10×10 pixels with each pixel intensity in the range
[0, 1]. Each possible image patch is a point in a high-dimensional space [0, 1]100.
This means that an image can be represented by a single vector with 100 elements
for the 100 pixel intensities. If the images are color instead of grayscale, each of
the three color channels (red, green, blue) has its own 10 × 10 image patch and,
accordingly, the image space is [0, 1]300. The population of natural image patches
forms a cloud of points, which is only a subset of the entire image space. The
distribution of this cloud of points exhibits a high-dimensional geometry reflecting
the various structures in natural images (Fig. 2.1).

The distribution of natural images, i.e., the cloud of points, can be described
by a probability density function, indicating the density of points at each position
in the image space. The density at a position in the image space indicates how
likely it is an image from that position would be chosen if it were sampled from
the distribution of natural images. The density of the distribution is very uneven.
In some positions of the image space, e.g., positions with image patches of forest
scenes, the density is high, while in other positions, e.g., one with a random
sample from a high-dimensional uniform distribution, the density of natural image
distribution is virtually zero. Simply put, this is because, among natural images,
image patches of a forest scene are relatively common, whereas image patches from
a uniform distribution are less common. The concentration of the density function
of natural image distribution around certain geometric regions is analogous to the
distribution of mass in the universe. The density of mass is high at a star and low
across nebulas, clouds of gas and dust in space. And the density is practically zero
over large spans of space.

Now some notation should be introduced. Let I(x) be an image patch defined
on a square or rectangular domain D, where x ∈ D indexes the location within
the image. The domain, or coordinate space, D for location x can be continuous
or discrete. An example of a continuous domain is D = [0, 1] × [0, 2], which
denotes a rectangular grayscale image with continuous axes. The coordinates for
location x are continuous, i.e., x ∈ ([0, 1], [0, 2]). An example of a discrete domain

2.1 Image Space and Distribution 21

Fig. 2.1 The natural image population is a subset of the entire image space, i.e., �nat ⊂ �I. Lines
are drawn from the four natural images below to their positions in �nat, a high-dimensional space.
Similar images lie on local manifolds of �nat, separated by relatively small geodesic distances.
The image of noise does not belong to the natural image space, �nat

is D = {1, . . . , 10} × {1, . . . , 10}, which denotes a 10 × 10 pixel grayscale image
with discrete axes. In this case, the image is composed of pixels. The coordinates
for location x are discrete, i.e., x ∈ ({1, . . . , 10}, {1, . . . , 10}). The coordinate
space Dcolor of a three-channel color image is simply the Cartesian product of the
grayscale coordinate spaceDgray and the set {1, 2, 3} that indexes the color channel,
i.e., Dcolor = Dgray × {1, 2, 3}. I(x) may be treated as a function I : D → V , which
gives the intensity values of each pixel in I. For continuous pixel intensities between
0 and 1, pixel values V = [0, 1], and for discrete integer-valued pixel intensities
between 0 and 255, pixel values V = {0, . . . , 255}.

When the coordinate space D is discrete and a finite set, i.e., for images with a
finite number of pixels, I may be treated as a vector if an ordering for the pixels
is fixed. As such, each I becomes a point in the image space �I = V |D|, in which
|D| is the total number of pixels in the image. (For color images, each channel has
its own separate pixels.) For example, every 10 × 10 pixel grayscale image patch I,
with pixel intensities between 0 and 1, is a point I ∈ �I = [0, 1]100. (The notation
�I = [0, 1]100 indicates that the sample space �I is made up of samples with 100
pixels that take a continuous value between 0 and 1.) Similarly, every 10× 10 pixel
color image, with pixel intensities for each channel between 0 and 1, is a point

22 2 Statistics of Natural Images

I ∈ �I = [0, 1]100×3 = [0, 1]300. A more technical definition of �I is needed for
the cases in which D is an infinite set, but for the majority of topics covered in this
book, this discrete, finite, pixel-based description is sufficient.

Now consider the cloud of points �nat ⊂ �I made up of natural image patches.
The distribution of �nat can be described by a density function f : �I → R, such
that f ≥ 0 and

∫
�I

f (I)dI = 1. Intuitively, for each point I ∈ �I, let N (I) be a
small neighborhood around I. Then f (I) is the limit of the proportion of points in
the population that belong to N (I) divided by the volume of N (I), as the volume
of N (I) → 0. This is simply the asymptotic extension of the common notion
of population density. For instance, the population density of Los Angeles is the
number of people in Los Angeles divided by the area of Los Angeles.

In the explanation above, there is nothing probabilistic. The density function f
is simply a deterministic description of a cloud of points in a high-dimensional
space. Now, however, the probability is introduced. If an image patch I is randomly
sampled from the population of natural image patches, i.e., a point from the cloud of
points described by density function f (I) is randomly sampled, then image patch I
is said to be a random sample, for example, from f (I). Accordingly, f (I) becomes
the density function for the random image patch I, and I ∼ f (I) is written. The goal
of learning, then, is to gain some knowledge about the density function f (I) based
on a set of examples {I1, . . . , IM } that are sampled from f (I) independently.

2.2 Information and Encoding

Recall that concepts (in the model space) are represented by, or correspond to,
populations (in the image space). They can be defined by a distribution or density
function f . A concept can be general, such as the concept of natural images, a
certain texture, or white noise, or it can be more specific, such as the concept of the
face of a tiger.

In high-dimensional image spaces, common to vision problems, a notable
phenomenon called concentration of measure may occur. The density function f (I)
is close to zero outside of a typical set �f . It is nearly uniform inside of the typical
set �f . So it can be roughly stated that f (I) = 1

|�f | for I ∈ �f and f (I) = 0 for
I /∈ �f . The high-dimensional nature of the data in many vision problems makes
it such that the image space �I is largely dominated by white noise. As a result,
a nearly uniform density exists over �I, as almost all of it is simply white noise.
The goal of learning a concept, then, is to identify which set �f , in the largely
meaningless, noise-dominated set �I, corresponds to the given concept, i.e., find a
probability density function f defining it.

Now consider two models, an “unfocused” model g(I) that has a uniform density
within �I and a “focused” model f (I) that has a uniform density within the subset
of natural images �nat and is approximately zero outside this set. The volume of the
subset �nat can be described using entropy. Entropy can be intuitively understood

2.2 Information and Encoding 23

as a measure of disorder. Deterministic variables (with perfect order) possess zero
entropy, while uniform random variables (with the perfect disorder) possess the
maximum entropy of all possible distributions over the support of the uniform
variable.

The fact that the volume of the subset �nat can be described using entropy is
an important point. It means the complexity of a concept f in the model space can
ultimately be expressed by the entropy, i.e., the log volume, of its corresponding
set �f in the image space. The entropy of an image set, by giving the disorder of
pixel information of that set, encodes the complexity of the corresponding concept.
In computer vision, entropy and entropy rate are both measured in pixels.

The entropy H of a distribution p(I) over a finite image space �I is

H(p) := −
∑

I∈�I

p(I) log2 p(I). (2.1)

The use of log2 gives a measurement of entropy in terms of bits, but, in general, any
base can be used for the logarithm, as different bases only scale H differently. For
a distribution q that is uniform over a set �q ⊆ �I and zero elsewhere, the entropy
is

H(q) = −
∑

I∈�q

1

|�q | log2
1

|�q | = log2 |�q |, (2.2)

in which the sum over �I reduces to a sum over �q , as density is zero outside
of �q . Therefore, the entropy of a uniform distribution q is a measure of the log
volume of the space �q . In particular, for the “unfocused” model that is uniform
over the entire image space �I, H(f) = log2 |�I|, and for the “focused” model
that is uniform over only the natural image space �nat and zero elsewhere, H(g) =
log2 |�nat|. Later chapters describe a more detailed relationship between entropy
and learning using information theory. For now, it is only important to note the
connection between entropy and the volume of image space.

The entropy of a subset of the image space encodes the amount of information
needed to represent members of the subset. Consider the space �h of grayscale
images that have the same fixed-width horizontal black bar against a white
background. Each image can be described by a single number that represents the
vertical position of the bar. Suppose that there are |�h| = nh possible positions for
the horizontal bar. Now consider the space �hv of grayscale images that have the
same fixed-width horizontal black bar and the same fixed-width vertical black bar
against a white background. All images from this set can be described by exactly
two numbers representing the locations of the two bars. Suppose that there are
nh positions for the horizontal bar and nv positions for the vertical bar, such that
|�hv| = nhnv . The amount of encoding information needed in the space of vertical
and horizontal bars is higher than that of horizontal bars alone, and this is reflected
in the difference log2 |�h| − log2 |�hv| = − log2 nv < 0.

24 2 Statistics of Natural Images

In the case of images with |D| pixels, e.g., |D| = n2 for a grayscale image with n
pixels for both its height and width, the entropy rate H̄ scales entropy relative to the
image size, lending a per-pixel entropy. For a density q uniformly distributed over
�q , the entropy is

H̄ (q) =
H(q)
|D| =

1

|D| log2 |�q |. (2.3)

For example, consider the space of n×n grayscale images where V = {0, . . . , 255},
indicating each pixel value is an integer from 0 to 255. In this case, there is the image
space �I = {0, . . . , 255}n2 and the log volume of the image space |�I| = 256n2 .
Therefore, the unfocused model g(I) with uniform density in �I has entropy rate

H̄ (g) =
1

n2
log2 |�I| =

n2 log2 256

n2
= 8 bits/pixel. (2.4)

This means that an image randomly sampled from �I can be encoded using an
average of 8 bits per pixel.

Now, considering a natural image I ∈ �nat sampled from f , the many
regularities found in natural images allow for a drastic reduction in the number of
bits needed for encoding the image. The empirical upper bound for the average bits
per pixel, i.e., the entropy rate, needed to encode natural images is 0.3:

H̄ (f) =
1

|D| log2 |�nat| ≤ 0.3 bits/pixel. (2.5)

For the unfocused model g(I) with uniform density in�I, 8 bits per pixel are needed
to encode any potential image that could be drawn from �I; it is not possible to
compress uniform random samples drawn from the entire image space�I. However,
for the unfocused model f (I) with uniform density within �nat and zero density
elsewhere, the reduction in entropy rate from 8 bits/pixel to 0.3 bits/pixel allows
for compression. This decreased entropy rate of 0.3 bits/pixel gives an intuitive
measure for the amount of compression possible when the regular features found
across previously observed natural images are used to encode new images.

Here the first statistical observation for natural images may be noted: redun-
dancy. The redundancy in real-world images allows for continual improvements to
image/video compression. Instead of needing 8 bits to encode a pixel, only an upper
bound of 0.3 bits is needed. Using any more bits than this to encode a pixel would
not take advantage of all the redundancies in natural images. Note that compression
methods work well on natural images but poorly, for example, on a noisy image
such as a QR code (a matrix barcode).

Now a rough estimate of the size of the observed natural image space �nat may
be given. Assume there are 10 billion people who have lived on the Earth, and each
person lived or will live to be 100 years old, and each person observed 20 images
per second. The volume of the natural image space, |�nat|, as seen by humans, may

2.3 Image Statistics and Power Law 25

be estimated as

|�nat| ≈ 107humans × 100years × 365days × 24hours × 3600sec × 20fps

≈ 6.3 × 1022images. (2.6)

The size of the total image universe |�I| = 256n2 discussed previously is much
larger than |�nat|, even for very small image spaces, e.g., image patches with n = 10
pixels for both height and width. Keep in mind that the models in this book are meant
to represent samples from the natural image space �nat and reflect the regularities
observed therein.

2.3 Image Statistics and Power Law

The universe is composed of an ensemble of structures at many different scales.
Using a coarse scale, a structure may be perceived as an atomic entity, while using
a finer scale, the same structure may be perceived as a compound entity with many
different parts. Structured ensembles that can be viewed as a singular entity are
commonly referred to as objects. In natural images, objects can be identified by
regularities (such as consistent color or texture or connected surfaces) that enable
the perception of them as distinct concepts. The regularities observed in natural
images reflect the hierarchically structured order of the universe. Noise images, on
the other hand, do not obey such laws. As a result, natural images and noise can
be distinguished based on numerical summaries of structural regularities. These
statistical properties form the foundation for a more detailed understanding of
images pursued in later chapters.

In natural images, nearby pixel intensities are typically similar in value, but occa-
sional jumps or discontinuities can be observed as well. As two neighboring cities
are not usually expected to have a large difference in elevation, two neighboring
pixels are not usually expected to have a large difference in intensity, i.e., pixel
values, or two neighboring patches to have a large difference in smoothness. A
simple measure of similarity between the intensities of two pixels is covariance or
correlation. For an image I ∈ V |D| ⊂ R|D| with |D| pixels, assume that the marginal
mean is normalized to be 0 and the marginal variance to be 1, i.e., 1

|D|
∑

x I(x) = 0
and 1

|D|
∑

x I(x)2 = 1. Then the covariance between pixel x = (x1, x2) and
x + d = (x1 + d1, x2 + d2) can be calculated as C(d) = 1

|D|
∑

x I(x)I(x + d). The
covariance C(d) is a function of the distance between pixels, d, and can be large
when |d| =

√
d2
1 + d2

2 is small and decays to 0 as |d| becomes large. An equivalent
measure of the similarity between the intensities of two pixels is the power spectrum,
or power spectral density, of the image in the Fourier domain. The power spectrum
of the image, A2(f), is simply the Fourier transform of the covariance function

26 2 Statistics of Natural Images

C(d), so the covariance and the power spectrum are simply two ways of capturing
the same statistical property: the second-order moment of the image distribution.

The power spectrum A2(f) is the square of the amplitude spectrum A(f).
The power spectrum provides a way to capture and represent these differences.
It describes how relations between image pixels are distributed for different
frequencies, i.e., how the image content fluctuates at different frequencies or scales.
In general, the power spectrum describes the distribution of power over frequency
components composing a given signal. As the relevant application is vision, the
signal is an image and the frequency is spatial, not temporal. Spatial frequency
is periodic across positions in space and a measure of how often sinusoidal
components (as determined by the Fourier transform) of the structure repeat per
unit of distance, in this case, pixels. According to the Fourier analysis, any physical
signal can be composed of a number of discrete frequencies or a spectrum of
frequencies over a continuous range. Accordingly, images may be composed of a
number of discrete spatial frequencies. The statistical average of a signal as analyzed
in terms of its frequency content is called its spectrum, and summation or integration
of the spectral components yields the total power (for a physical process) or variance
(for a statistical process).

As mentioned previously, it may be surprising to note that natural images, with
their diverse patterns and orientations, share any consistent statistical features at all,
but indeed they do. Natural images can easily be distinguished from non-natural
images, such as images of random patterns, by their amplitude spectra or power
spectra. In images of random patterns, such as white noise, the amplitude spectra
are flat. Natural images, however, display the greatest amplitude at low frequencies
(at the center of the plot in Fig. 2.2) and decreasing amplitude as the frequency
increases, regardless of the orientation of the image, as depicted in Fig. 2.2.

The Fourier transform decomposes a function of time, i.e., a signal, in the time
domain, into its constituent temporal frequencies in the frequency domain. In this
case, it decomposes a function of space, i.e., an image, in the spatial domain, into its
constituent spatial frequencies in the frequency domain. It is a linear transform that
projects an image, in the form of a vector, onto an eigenvector space, transforming
the image from a Euclidean basis to a Fourier basis. In many cases with discrete
signals, the Fourier transform is invertible, and no data is lost if the inverse Fourier
Transform is used to recover the original signal. Even when the original signal is
real-valued, frequency signals contain both real and imaginary components, so the
absolute value is used to represent the total power or energy of a signal. A Fast
Fourier Transform (FFT) may be performed on an image I ∈ R|D1|×|D2| using

Î(ξ, η) =
∑

(x,y)∈D1×D2

I(x, y)e−i2π(xξ
H + yη

W) , (2.7)

in which |D1| = H is the number of pixel rows, |D2| = W is the number of pixel
columns, and (ξ, η) represents the horizontal and vertical frequencies. The absolute
value of the resulting complex number

2.3 Image Statistics and Power Law 27

Fig. 2.2 From Field [54], two natural images display similar amplitude spectra. The center of the
plots represents 0 spatial frequency, and frequency increases as a function of distance from the
center. Orientation is represented by the angle from the horizontal. Note how amplitude decreases
sharply with increasing frequency at all orientations. To be precise, the amplitude decreases by a
factor of 1/f , and power decreases by a factor of 1/f 2, in which f is frequency [54]

A(ξ, η) = |Î(ξ, η)| (2.8)

is the Fourier amplitude, which gives the magnitude of the frequency (ξ, η) within
the image signal I. The Fourier powerA2(ξ, η) is the square of the Fourier amplitude
A(ξ, η). Intuitively, the Fourier power, for given horizontal and vertical frequencies
(ξ, η), encodes how much of the image vector is projected onto these frequencies at
a given orientation.

An interesting empirical observation for natural images is that, for all frequency
f = √

ξ2 + η2,

A(f) ∝ 1/f, (2.9)

logA(f) = constant − log f. (2.10)

Thus, the amplitude A of a Fourier coefficient is inversely related to the frequency
f . The inverse relationship between amplitude and frequency is referred to as the
inverse power law for natural images. Figure 2.3 plots the logA(f) over log f for
the four natural images from Fig. 2.1, and the curves can be fitted by straight lines
with a slope close to −1, showing the inverse relationship. Not all natural images

28 2 Statistics of Natural Images

Fig. 2.3 Note the log of the amplitude, log A(f), for a given log of the frequency, log f , for the
four natural images from Fig. 2.1. In natural images, it is observed that the amplitude A(f) is
inversely related to the frequency f , i.e., A(f) = 1/f . Accordingly, the power A2(f) = 1/f 2.
This property for natural images is referred to as the inverse power law

exhibit the inverse power law, e.g., natural images of fields of grass or the night sky,
but this can be expected for most natural images [54].

The inverse relationship between amplitude and frequency may be used to
calculate the total Fourier power A2(f) in the frequency band, or octave, [f, 2f]:

∫ ∫

f 2≤ξ2+η2≤(2f)2
|Î(ξ, η)|2dξdη = 2π

∫ 4f 2

f 2

1

f 2
df 2 = constant, ∀f.

(2.11)
As depicted in Fig. 2.4, as frequency increases, and hence the total area within
each frequency band increases, amplitude decreases. As a result, the power remains
constant overall, i.e., the power for a given frequency band [f, 2f] is equal to
the power for frequency bands [2f, 4f], [4f, 8f], and so forth. This is what is
communicated by Eq. (2.11). This observation that natural images contain equal
power across frequency bands reveals that they are scale-invariant, lending the same
power independent of frequency f , or scale, i.e., the viewing distance.

The second-order properties of the image distribution, captured by the covariance
C(d) and the power spectrum A2(f), can be fully reproduced by a multivariate
Gaussian distribution with a variance–covariance matrix that agrees with C(d) or
A2(f). For instance, a Gaussian model that accounts for the inverse power law
is surprisingly simple. It was shown by Mumford [175] that a Gaussian Markov
Random Field (GMRF) model, as in Eq. (2.12), has exactly 1/f -Fourier amplitude:

2.3 Image Statistics and Power Law 29

Fig. 2.4 Because amplitude decreases as the frequency (and hence the total area within each
frequency band) increases, natural images effectively exhibit constant power within each band
such as ω2. η and ξ represent the vertical and horizontal frequencies, respectively. 2Po indicates a
doubling of the frequency of the original image or image distribution, Po

p1/f(I; β) =
1

Z
exp

{

−
∑

x
β|∇I(x)|2

}

, (2.12)

in which |∇I(x)|2 = (∇xI(x))2 + (∇yI(x))2, and

∇x = I(x1 + 1, x2) − I(x1, x2) and ∇y = I(x1, x2 + 1) − I(x1, x2) (2.13)

are discrete approximations of the gradients.
Since p1/f (I; β) is a Gaussian model, one can easily draw a random sample

I ∼ p1/f(I; β). Figure 2.5 shows a typical sample image by Mumford [175]. This
model matches the local regularity of natural image statistics and nothing else. It
can be considered a natural image model with one constraint, making it only slightly
better than a random noise model. Large values of the parameter β lead to samples
with large regions of similar intensity, and small values of β lead to samples with
more variation in nearby pixels. The limiting case β → ∞ concentrates all mass on
the zero image I = 0. From this, it can be concluded that although certain statistics
like the covariance and power spectrum found in natural images are also captured
by this model, these statistics clearly do not contain sufficient complexity to capture
all key features needed for natural image modeling and inference.

The power spectrum can also be pooled by Gabor filters centered at different
frequencies. Gabor filters are sine and cosine waves multiplied by elongate Gaussian
functions, and the filter response is a localized Fourier transform. Let F be a Gabor
filter whose sine and cosine waves have frequency ω. Let [F ∗ I](x) be the Gabor
filter response at location x. Then, [F ∗ I](x) measures the frequency content of
I around frequency ω at location x. Due to the spatial localization of filter F , F

30 2 Statistics of Natural Images

Fig. 2.5 Observe a random
sample from the Gaussian
Markov Random Field model.
Note that it has very little
structure, a large number of
edges, and minimal flatness in
its energy landscape. Clearly,
second-order properties such
as covariance and spectrum
do not sufficiently capture key
features of natural images

also responds to sine and cosine waves whose frequencies are close to frequency
ω. Thus, if

∑
x |F ∗ I|2/|D| is pooled, it will be the average of the power spectrum

within the band of frequencies to which filter F responds. By the inverse power law,∑
x |F ∗ I|2/|D| remains scale-invariant, i.e., it is constant for different frequencies

ω.

2.4 Kurtosis and Sparsity

As mentioned above, second-order properties such as the covariance, power spec-
trum, or average of the squared filter responses can be fully reproduced by a
multivariate Gaussian distribution with a matching variance–covariance matrix.
The Gaussian distribution can be thought of as a cloud of points, which forms
an ellipsoid shape. The ellipsoid-shaped Gaussian distribution is rather dull. It
cannot be expected to capture the presumably highly complex shape of the natural
image distribution. For example, the distribution of natural images has many low-
dimensional spikes, as illustrated in Fig. 2.6. As a result, researchers have put
immense effort into finding patterns of deviation from the Gaussian distribution,
attempting to pinpoint non-Gaussian features. The study of natural image statistics
has leveraged many properties, from covariances to histograms of filter responses,
e.g., Gabor filters. While covariances only measure second-order moments, his-
tograms of filter responses include higher order information such as skewness and
kurtosis.

To define skewness and kurtosis, let X denote a random variable with mean μ
and variance σ 2, such that X can be normalized by the transform (X − μ)/σ .
Skewness is the third-order statistical moment E[((X − μ)/σ)3], and it measures
the asymmetry of the distribution. Kurtosis is the fourth-order statistical moment

2.4 Kurtosis and Sparsity 31

Fig. 2.6 The distribution of natural images has many low-dimensional spikes

E[((X − μ)/σ)4], and a histogram with heavy tails demonstrates high kurtosis. In
measuring skewness and kurtosis of a random variable, the first-order moment μ
and second-order moment σ 2 only serve to normalize the random variable, making
its mean equal to zero and variance equal to one.

With histograms, the idea of a 1D marginal projection is utilized in order to gain
an understanding of a high-dimensional space such as �nat. A histogram can be
regarded as a 1D marginal projection because it contains statistics in one dimension,
i.e., a line. Histograms allow peaking into a high-dimensional space�f and learning
about it by learning many 1D marginal densities of f (I). By learning these densities,
the idea is that a probability density could be constructed to represent �f in terms
of all of these learned 1D marginal densities of f (I).

The use of histograms leads to another statistical observation about natural
images: they exhibit high kurtosis. The histograms of Gabor filter responses to
natural images, found by Eq. (2.14), are highly kurtotic, i.e., heavy-tailed [55]. Here,
F is a Gabor filter and fn(I) is a “focused” model, which, recall, has zero density
outside of the space of natural images �nat. The fact that the histograms have tails
heavier than a Gaussian distribution reveals that natural images have high-order,
non-Gaussian structures. Gabor filters are primarily used to detect orientation, but
other filters are also used such as gradient filters, Haar filters, and so forth.

The histogram of the filter response is calculated by the following equation:

h(a) =
∫

�I

f (I)δ(〈F, I〉 − a)dI, (2.14)

32 2 Statistics of Natural Images

Fig. 2.7 Note how the
histograms or 1D marginal
projections, which capture the
filter responses of a filter F to
a natural image, display high
kurtosis. That is, they have a
heavy-tailed structure,
exhibiting great extremities of
deviations or outliers. An
important statistical
observation of natural images
is that they have a highly
kurtotic structure

where δ(r) is the Dirac δ function. The histograms defined by Eq. (2.14) can also be
visualized, as shown in Fig. 2.7. These histograms represent 1D statistical properties
for an image I, located in �nat ⊂ �I, a high-dimensional space. F is a local filter,
one that has different responses to different regions of image I that is represented
by the points; in linear algebra, the term “base” is often used instead of “filter.”
The inner product 〈F, I〉 is zero when F ⊥ I. The two filter responses illustrate
the binning operation performed in Eq. (2.14). High kurtosis is observed due to
the vast amount of orthogonality between filter F and image I. Remember that
kurtosis is associated with the tails of the distribution and not its peak. Accordingly,
it is the greater extremity of deviations, or outliers, displayed in the histograms in
Fig. 2.7, not the high peaks of these histograms, that portray the high kurtosis of the
natural image. Any filter F response would show the same highly kurtotic structure
(Fig. 2.8).

The high kurtosis in natural images is only marginal evidence for hidden
structures in natural scenes. A direct way to discover structures and reduce image
redundancy is to transform an image into a superposition of image components.
This can be done, for example, with Fourier transforms, wavelet transforms [166],
various image pyramids [218] for generic images, and principal component analysis
(PCA) for particular ensembles of images, such as face images. The transformation
from image pixels to a linear basis, such as a Fourier basis, wavelets basis, or PCA
basis, achieves two desirable properties. First, the transformation induces variable
decoupling; coefficients of these bases are less correlated or become independent in
an ideal case. Second, the transformation induces dimension reduction; the number
of basis vectors needed to approximately reconstruct an image is often much smaller
than the number of pixels.

If one treats an image I(x) as a function defined on the domain D, then one
may also use harmonic analysis to perform image dimension reduction. Harmonic

2.4 Kurtosis and Sparsity 33

Fig. 2.8 A natural image scaled through 1×, 2×, 4×, and 8× downsampling can be observed.
Although the fixed-size filter kernel (shown in red) captures more information for each downsam-
pled scale, the image statistics remain invariant

analysis decomposes various classes of functions (i.e., mathematical spaces) or
signals into a superposition of basic waves or basis systems. But the population
of natural images cannot be fully captured by such functional classes and so a
better solution is needed for image decomposition. From this, an inspiring idea
came about sparse coding with an over-complete basis, or dictionary, introduced
by Olshausen and Field in 1996 [190]. Sparse coding algorithms learn useful sparse
representations of data. Given a certain number of dimensions, they learn an over-
complete basis to represent the data. An over-complete basis signifies that there
is redundancy in the basis, as basis vectors “compete” to represent data more
efficiently. This means not all dimensions are needed to represent a data point; some
may be set to 0. With an over-complete basis, an image may be reconstructed by a
small, i.e., sparse, number of basis vectors in the dictionary. Olshausen and Field
then learned an over-complete dictionary from many natural images. This often
leads to 10 to 100 folds of potential dimension reduction. For example, an image
of 200 × 200 pixels can be approximately reconstructed by roughly 100–500 base
images.

The idea that natural images may be represented with sparse coding reflects the
nature of the point cloud formed by the population of natural images, which has
many low-dimensional spikes, as illustrated by Fig. 2.6. Indeed, as we will see in
the following, high kurtosis motivates sparse representations.

34 2 Statistics of Natural Images

2.5 Scale Invariance

In addition to the heavy-tailed histograms of Gabor filter responses, another
interesting observation reported by Ruderman (94) [210] and Zhu and Mumford
(97) [279] is that marginal histograms of gradient-filtered images are consistent
over a range of scales (see Fig. 2.9). This is yet another statistical observation for
natural images: scale invariance. Specifically, for a natural image I, a pyramid with
a number of n scales can be built, such that I = I(0) , I(1) , . . . , I(n), and I(s+1) is
obtained by averaging every block of 2×2 pixels in I(s). The histograms of gradients
∇1I(s) (x) for natural images (first two plots) and for Gaussian noise (last plot) are
shown in Fig. 2.9, for three scales s = 1, 2, 3 shown in Fig. 2.8. Note that, for natural
images, despite scaling down the image, roughly the same amount of kurtosis is
observed in the histograms for three different scales (Fig. 2.9).

To better illustrate the scale invariance property of natural images, here a toy
example is presented: a 2D invariant world consisting of only 1D line segments.
Figure 2.10a shows an image of the simulated world. In the image, each line segment
is determined uniquely by its center location (xi, yi), orientation θi , and length ri .
The lines are independently distributed in terms of geometric features. The center
of a line is selected from the image plane uniformly. Its orientation, measured as
the angle formed with the horizontal line, is also uniformly distributed over [0, π].
The length of a line follows a cubic probability density function, i.e., p(r) ∝ 1

r3
. In

reality, ri can be sampled from p(r) using inverse transform sampling. While the
lines are i.i.d. (independent and identically distributed) in geometric features, the
overall density of the segments is controlled by a Poisson distribution. That is, in
each unit area, the number of line segments has a constant mean. The toy world can
be constructed by the above rules, and it can be observed that it has a scale-invariant
property similar to that of natural images. To be more specific, Fig. 2.10a is of size
1024 × 1024 pixels. Figure 2.10b and c is obtained by down-sampling the original
image to 512 × 512 pixels and 256 × 256 pixels, respectively. Notice that in down-
sampling, the long lines are truncated and the lines shorter than a pixel are discarded.
Then, 128 × 128 pixel patches can be cropped from these three images. Indeed, the

Fig. 2.9 First two plots: histograms of gradient-filtered natural image from Fig. 2.8 at three
different scales. Last plot: log of the histograms of gradient-filtered Gaussian noise image at the
same three scales. From this, it can be observed that high kurtosis is a property of natural images
and not, e.g., Gaussian noise, and the level of kurtosis persists over different scales

2.5 Scale Invariance 35

Fig. 2.10 The top three figures represent the 2D toy world with different pixel sizes, and the
bottom ones are 128 × 128 pixel crops from the corresponding figures. (a) 1024 × 1024. (b)
512 × 512. (c) 256 × 256. (d) Crop from 1024 × 1024 world. (e) Crop from 512 × 512 world. (f)
Crop from 256 × 256 world

three crops are identical to one another and hard to tell apart. This shows that the 2D
toy world is scale-invariant in the sense that the image features are identical across
scales. In fact, parallels can be drawn between the geometric features of the line
segments and the gradient histograms of natural images. These statistics remain the
same no matter at which scales the images are viewed.

Chapter 3
Textures

Texture is an important characteristic of the appearance of objects in natural scenes
and is a crucial cue in visual perception. It plays an important role in computer
vision, graphics, and image encoding. Understanding texture is an essential part of
understanding human vision.

Texture analysis and synthesis has been an active research area, and a large num-
ber of methods have been proposed, with different objectives or assumptions about
the underlying texture formation processes. In computer vision and psychology,
instead of modeling specific texture formation processes, the goal is to search for
a general model which should be able to describe a wide variety of textures in a
common framework and which should also be consistent with the psychophysical
and physiological understanding of human texture perception.

3.1 Julesz Quest

Imagine a scenario in which you walk into a store to purchase marble tiles for your
new home. You search for the most consistent pattern, so your new floor looks
uniform and the pieces are indistinguishable from one another. Suddenly, you notice
a piece of marble, as shown in Fig. 3.1a,b, whose patterns you appreciate. However,
as you continue inspecting this piece of marble, you suddenly catch attention of
an area such as depicted in Fig. 3.1c. You ask yourself the question, “Is the texture
in this marble patch consistent with the rest of the marble?” “What features of a
texture make it distinguishable from another texture?” These questions may seem
ostensibly simple to answer, but it is fundamentally difficult to exactly define the
distinguishing features that set textures apart from one another.

Differentiating differences in texture patterns seems an intuitive and easy task
for humans, but why are we able to differentiate the textures so easily? “The defects
in the texture,” one may answer, but how are the raw visual signals converted so
that human brains can easily distinguish the defective patterns? How are texture

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_3&domain=pdf

 12905
61494 a 12905 61494 a

38 3 Textures

Fig. 3.1 (a) Presents a section of the marble you observe. (b) Presents another section of the same
marble piece. (c) Is a defective area of the marble

Fig. 3.2 Julesz texture pairs: the texture pattern formed by the+ signs pops out from the
surrounding pattern in the left panel, but it merges with the surrounding pattern in the right panel

patterns represented in human brains in general? This is a question that troubled
psychologists for many years until Julesz initiated formal research on texture
modeling.

In his seminal paper in 1962 [123], Julesz conducted research on textures
and asked the following fundamental question: What features and statistics are
characteristic of a texture pattern, so that texture pairs that share the same features
and statistics cannot be told apart by pre-attentive human visual perception?

As illustrated in Fig. 3.2, the texture pattern formed by the + signs pops out
from the surrounding pattern at first glance (so-called pre-attentive vision) in the
left panel, but it merges with the surrounding pattern in the right panel. We have to
examine the right panel attentively in order to tell the two texture patterns apart.

The first general texture model was proposed by Julesz in the 1960s. Julesz
suggested that texture perception might be explained by extracting the so-called
“k-th order” statistics, i.e., the co-occurrence statistics for intensities at k-tuples of
pixels [123]. A key drawback of this model is that, on the one hand, the amount of
data contained in the k-th order statistics is big and thus very hard to handle when

3.2 Markov Random Fields 39

k > 2. On the other hand, psychophysical experiments show that the human visual
system does extract at least some statistics of order higher than 2 [41].

In mathematical terms, a set of all texture images with the same features and
statistics can be written as

�I = {I : Hi (I) = hi , i = 1, . . . , K}, (3.1)

where I is a texture image, each Hi is a chosen feature statistics, and K is
the number of features chosen to be extracted such that texture patterns become
indistinguishable when all features are extracted and matched. The search for the
Hi has gone a long way beyond Julesz’s statistical conjecture. Methods employed
include co-occurrence matrices, run-length statistics, sizes and orientations of
various textons, cliques in Markov Random Fields, and dozens of other measures.
All these features have rather limited expressive power.

Here, it is worth noting that the modeling of texture not only concerns the
data and distributions in the image space but also depends on human perception
influenced by task or purpose. In Julesz’s quest, the criterion for judging whether
two texture images belong to the same category depends on the human visual
system, which is trained for various tasks. Julesz carefully reduces task dependence
by testing in a pre-attentive stage with no specific purpose; nevertheless, the human
visual system has been trained ahead of the experiments. Later experiments show
that human vision can learn and adapt to tell apart texture images after long training.
This task dependence sets apart models in vision from those in physics.

In the subsequent chapters, let us illuminate the quest for features and statistics
describing texture patterns.

3.2 Markov Random Fields

One approach for pursuing texture features is statistical modeling, which character-
izes texture images as arising from probability distributions or random fields [30].
These modeling approaches involve only a small number of parameters and thus
provide concise representation for textures. More importantly, texture analysis can
be posed as a well-defined statistical inference problem. These statistical approaches
enable us to not only infer the parameters of underlying probability models of
texture images but also synthesize texture images by sampling from these models.
Checking whether the synthesized images have similar visual appearances to the
textures being modeled provides a way to test the model.

An issue, however, is that many of these statistical models, such as Markov
random fields and clique-based Gibbs models, are too simple and thus suffer from a
lack of expressive power to capture the fidelity of natural images.

40 3 Textures

Markov Random Field (MRF)

Markov Random Field (MRF) models were popularized by Besag in 1974 [19] for
modeling spatial interactions on lattice systems and were used by Cross and Jain
in 1983 [30] for texture modeling. An important characteristic of MRF modeling
is that global patterns are formed via stochastic propagation of local interactions,
which is particularly appropriate for modeling textures as they are characterized by
global but not predictable repetitions of similar local structures.

Concretely, a Markov random field is a probability distribution over random
variables X1, . . . , Xn defined by an undirected graph G = (V , E), where the nodes
in V correspond to the variables Xi . Before illustrating the special properties of
MRF models, we first introduce some notation to formalize graphs. In an undirected
graph G, two nodes s and t are called neighbors if there is an edge between
them. The neighborhood of a site s is defined as the set of all its neighbors, i.e.,
Ns = {t : (s, t) ∈ E, t ∈ V }. Moreover, the neighborhood system of G is the set of
all neighborhoods in the graph. We denote it as N = {Ns : s ∈ V }. For any patch
A in graph G, define XA as a window of observation. The boundary of patch A is
thus NA = {t : (s, t) ∈ E, s ∈ A, t /∈ A}. Also, we call C ⊂ V a clique of G if for
any two sites s, t ∈ C, we have (s, t) ∈ E. The depiction on the right-hand side of
Fig. 3.3 shows a simple general MRF, in which, for example, the neighbors of node
B are C, D, and E, and nodes B, D, and E form a three-node clique. A distinct
feature of MRF models is that the random variables defined on the nodes satisfy the
local Markov properties. That is, each variable Xi is conditionally independent of
all other variables given its neighbors. Therefore, MRF can be used to model a set
of local characteristics.

Based on the qualities of MRF models, we can consider a texture as a realization
from a random field I defined over a spatial configurationD. For example, D can be
an array or a lattice. We denote Is as the random variable at a location s ∈ D, and
let N = {Ns , s ∈ D} be the neighborhood system of D satisfying: (1) s /∈ Ns and
(2) s ∈ Nt ⇐⇒ t ∈ Ns . The pixels in Ns are the neighbors of s. A subset C of D

Fig. 3.3 On the left is an example lattice structure of an MRF. On the right is a toy example of a
general MRF in which A and C are neighbors of each other, thus forming a two-node clique, and
B, D, and E form a three-node clique

3.2 Markov Random Fields 41

is a clique if every pair of distinct pixels in C is neighbors of each other; C denotes
the set of all cliques.

Formally, the following gives a definition of MRF distributions on images.

Definition 1 p(I) is an MRF distribution with respect to N if p(Is | I−s) = p(Is |
INs), in which I−s denotes the values of all pixels other than s, and for A ⊂ D, IA
denotes the values of all pixels in A.

In addition, an MRF distribution is closely related to a Gibbs distribution, which
is defined below. In statistical mechanics, a Gibbs distribution gives the probability
that a system will be in a certain state as a function of the state’s local properties,
such as the energy and the temperature of the system. Consequently, the Gibbs
model can be viewed as a set of potentials defined on cliques.

Definition 2 p(I) is a Gibbs distribution with respect to N if

p(I) =
1

Z
exp

{
−

∑
C∈C

λC(I(C))

}
, (3.2)

where Z is the normalizing constant (or partition function), and λC(·) is a function
of intensities of pixels in clique C (called potential of C). Some constraints can be
imposed on λC for them to be uniquely determined.

In fact, an MRF distribution is equivalent to a Gibbs distribution. The
Hammersley–Clifford theorem establishes their equivalence [19]:

Theorem 1 For a given N , p(I) is an MRF distribution ⇐⇒ p(I) is a Gibbs
distribution.

This equivalence provides a general method for specifying an MRF on D, i.e.,
first choose an N , and then specify λC . The MRF is stationary if for every C ∈ C,
λC depends only on the relative positions of its pixels. This is often pre-assumed in
texture modeling.

Here the λC(·) function, which extracts statistics from an input image, can be
seen as the feature representation Hi of the image as introduced in Sect. 3.1.

Often enough, a texture is considered as an MRF on a lattice system with each
pixel represented by a node, as shown on the left of Fig. 3.3. The neighboring pixels
form a clique and pixels farther away have less effect on the pixel in question. This
paired system leads us to consider auto-models [19], which are MRF models with
pair potentials.

Ising and Potts Models

Two important instantiations of MRF models with pair potentials have emerged
throughout history, the Ising and the Potts model.

42 3 Textures

In general, auto-models with pair potentials have characteristics of λC ≡ 0 if
|C| > 2, where p(I) has the following form:

p(I) =
1

Z
exp

{∑
s

αsIs +
∑
t,s

βt−sIt Is

}
, (3.3)

in which β−t = βt and βt−s ≡ 0 unless t and s are neighbors. An MRF model
with pair potentials, as defined above, is commonly specified through conditional
distributions:

p(Is | I−s) ∝ exp

{
αsIs +

∑
t

βs−t It Is

}
, (3.4)

in which the neighborhood is usually of the order less than or equal to three pixels.
One of the classic MRF models with pair potentials is the Ising Model. The

Ising Model was first proposed by Ernst Ising to study ferromagnetism. Similar to
texture models, the Ising Model also considers lattice systems, in which each node
Is ∈ {+1,−1}. To attach physical meaning to this construction, each node, or site,
can be viewed as an electron having a particular “spin.” With Is = −1, electron s
points down, and with Is = +1, the electron points up. An Ising Model with all
positive spins is shown in Fig. 3.4.

How do the electrons in the lattice interact with each other? What is the energy
of the system? To answer these questions, the Ising Model considers two types of
interactions that affect the energy of the system: the external field and interaction
between neighboring electrons. Together, they form an energy function called a
Hamiltonian, written as

H(I) = −
∑
s∼t

βIsIt −
∑

t
αIt , (3.5)

where s ∼ t means that s and t are neighbors, β represents the strength of
magnetization and dictates electron interactions, and α represents the strength of
the external field on each electron.

Fig. 3.4 Graphical view of
the Ising Model with all
positive spins

3.2 Markov Random Fields 43

Fig. 3.5 Example sampling of Ising Model with different mean and variance. From left to right,
β is 0.35, 0.40, and 0.43, respectively

The entire configuration of the lattice system is, similar to a general MRF, given
by

p(I) =
1

Z
exp

{
−H(I)

kT

}
, (3.6)

in which k is the Boltzmann constant and T is the temperature. The higher the
temperature, the more random the particles become, and the more uniform the
probability distribution becomes. An example sampling of the Ising Model using
different β values is shown in Fig. 3.5.

The Potts Model is a generalization of the Ising Model on a lattice system.
Instead of binary states, each particle has n spin angles, i.e., Is ∈ {θ0, θ1, . . . , θn−1}.
Therefore, the energy Hamiltonian is given by

H(I) = −
∑
s∼t

βδ(Is , It)−
∑

t
αIt , (3.7)

in which δ(·, ·) is the Kronecker delta function. Its distribution is in the same form
as that of the Ising Model.

The advantage of pair-potential models such as the Ising and Potts models is that
the parameters in the models can be easily inferred by auto-regression. However,
these models are severely limited in the following two ways: (1) the cliques
are too small to capture features of texture, and (2) the statistics on the cliques
specify only first-order and second-order moments, i.e., mean and covariance,
respectively. Yet many textures have local structures much larger than three or
four pixels, and the covariance information, or equivalently the spectrum, cannot
adequately characterize textures, as suggested by the existence of distinguishable
texture pairs with identical second-order or even third-order moments, as well as
indistinguishable texture pairs with different second-order moments [41]. Moreover,
many textures are strongly non-Gaussian, regardless of neighborhood size.

The underlying reason for these limitations is that Eq. (3.2) involves too many
parameters if we increase the neighborhood size or the order of the statistics,

44 3 Textures

even for the simplest auto-models. This suggests that we need carefully designed
functional forms for λC(·) to efficiently characterize local interactions as well as the
statistics on local interactions.

Gaussian Markov Random Field (GMRF)

An early statistical model for texture patterns was the Gaussian Markov Random
Field (GMRF). This family of models satisfies the properties of an MRF model with
the additional restriction that the joint distribution of all nodes is multivariate nor-
mal. Important statistical properties of natural images can be observed in the GMRF
model, suggesting that certain basic features of natural images are represented by
this well-defined parametric family. The idea of matching fundamental features of
observed images to synthesized new images with the same appearance provides
inspiration for more complex models such as the FRAME model (see Sect. 3.4).

Formally, a GMRF is a graph G = (V, E) where each node corresponds to a
single dimension of a multivariate Gaussian x ∼ N(μ, Q−1) with a non-singular
precision matrix Q. Edges of G are determined by the relation

Qk,� 	= 0 ⇔ {k, �} ∈ E . (3.8)

Conditional independence satisfies xk ⊥ x� | x−k� ⇔ Qk,� = 0, as can be seen
from direct inspection of the multivariate Gaussian density. Therefore, xk | x−k ∼
xk |N (xk), in which N (xk) = {x� : Qk,� 	= 0, k 	= �} is the neighborhood of xk ,
i.e., the distribution of a single node xk given the rest of the nodes depends only
on a subset of nodes which are connected to xk in the GMRF graph. Note that the
edges often represent nodes that are spatially related, such as nearby pixels within
an image.

Consider an N ×M image I ∼ N(0, β−1Q−1), in which I(x, y) denotes pixel at
location (x, y) (note that this is different from the previous graph structure notation,
in which Is denotes node s in I), β > 0 is the coupling strength between pixels, and

Q(x1,y1),(x2,y2) =

⎧⎨

⎩

1 (x1, y1) = (x2, y2)
− 1

4 (x2, y2) ∈ N (I(x1, y1))
0 else

(3.9)

with neighborhood structure N (I(x, y)) = {I(x + 1, y), I(x − 1, y), I(x, y +
1), I(x, y − 1)}. Suppose that the torus boundary condition is used, so that I(x +
N, y) = I(x, y) and I(x, y + M) = I(x, y). This model has the density

3.2 Markov Random Fields 45

p(I) =
1

Z
exp

{
−β

∑
x

∑
y

(I(x + 1, y) − I(x, y))2 + (I(x, y + 1)− I(x, y))2

}
,

(3.10)
and the conditional expectation for each pixel

E[I(x, y)|N (I(x, y))] =
1

4
(I(x + 1, y)+ I(x − 1, y)+ I(x, y + 1)+ I(x, y − 1)) (3.11)

is the average of the neighboring pixels in the image. In the limiting case of
infinitesimally small pixels, the discrete GMRF model converges to the continuous
density

p(I) =
1

Z
exp

{
−β

∫
x

∫
y
(∇xI(x, y))2 + (∇yI(x, y))2dy dx

}
. (3.12)

Several important observations follow from the analysis of the continuous
analogue of the discrete GMRF density. First, the power law phenomenon observed
in natural images can be explicitly derived for the density in Eq. (3.12). Recall that
the Fourier transform Î(ξ, η) of an image I(x, y) is given by

F(I) = Î(ξ, η) =
∫

x

∫
y
I(x, y)e−i2π(xξ+yη) dy dx. (3.13)

Algebraic manipulation shows that F(∇xI) = 2πiξ Î and F(∇yI) = 2πiηÎ. The
well-known Plancherel Theorem states that a function g and its Fourier transform
G = F(g) satisfy the relation

∫
|g(t)|2 dt =

∫
|G(η)|2 dη, (3.14)

meaning that the L2 functional norm is preserved by the Fourier transform. Bringing
all this together shows

β

∫
x

∫
y
(∇xI(x, y))2 + (∇yI(x, y))2dy dx = 4π2β

∫
ξ

∫
η
(ξ2 + η2)|Î(ξ, η)|2 dηdξ, (3.15)

so that the potential function in Eq. (3.12) can be rewritten in terms of Î. Moreover,
the separable form of the right-hand side of the above equation shows

p(Î(ξ, η)) ∝ exp
{
−4π2β(ξ2 + η2)|Î(ξ, η)|2

}
. (3.16)

Hence, Î(ξ, η) is independent of other states of Î, and Î(ξ, η) is a Gaussian with
parameters

46 3 Textures

E[Î(ξ, η)] = 0 and Var[Î(ξ, η)] = 1

8π2β(ξ2 + η2)
. (3.17)

Therefore, E[|Î(f)|2]1/2 ∝ 1/f so that the GMRF model p(I) satisfies the scale
invariance observed in natural images, as discussed in Sect. 2.3.

A second important property of the GMRF model is its connection to the heat
equation. Considering again the potential function of a GMRF model

H(I(x, y)) = β
∫

x

∫
y
(∇xI(x, y))2 + (∇yI(x, y))2dy dx, (3.18)

we will show that generating an image according to the dynamics

dI(x, y, t)
dt

= −δH(I(x, y, t))
δI

, ∀(x, y), (3.19)

is equivalent to the heat diffusion equation

dI(x, y, t)
dt

= �I(x, y), (3.20)

in which � = ∂2

∂x2
+ ∂2

∂y2
is the Laplacian operator.

Using an Euler–Lagrangian equation for two variables,

δJ
δf

=
∂L
∂f

−
d
dx

(
∂L
∂fx

)
−

d
dy

(
∂L
∂fy

)
, (3.21)

in which J (f) = ∫
y

∫
x L(x, y, f, fx, fy)dxdy and f is a function of x and y.

Setting f = I, L = (∇xI)2 + (∇yI)2, and J = H , we obtain

dI(x, y, t)
dt

= − δH(I(x, y, t))
δI

= −
[

∂[(∇xI)2 + (∇yI)2]
∂I

−
d
dx

[
∂[(∇xI)2 + (∇yI)2]

∂(∇xI)

]
−

d
dy

[
∂[(∇xI)2 + (∇yI)2]

∂(∇yI)

]]

= 0+
d
dx

[2(∇xI)]+
d
dy

[
2(∇yI)

]

= 2
(

∂2I
∂x2

+
∂2I
∂y2

)

= 2�I. (3.22)

Ignoring the constant factor, we have shown that in fact, the learning dynamics
of an image modeled by a GMRF potential function is equivalent to the dynamics
modeled by the heat diffusion equation.

3.2 Markov Random Fields 47

Despite interesting connections to statistical properties of natural images and
the heat diffusion equation, the GMRF model is still quite restricted. Interesting
local structures exist but the joint pixel density is a unimodal Gaussian. The GMRF
model can capture aspects of the local regularity found in natural images but nothing
else. Therefore, the GMRF model from Eq. (3.10) is not capable of serving as a
probability density for even simple image patterns. The GMRF model can represent
certain properties of an image (specifically, the tendency of nearby pixels to have
similar intensity), but it cannot account for the formation of visual patterns. In the
following sections, we will see how the GMRF potential from Eq. (3.10) can be
adapted as one of many filters (in particular, a gradient filter) whose joint features
can be used to synthesize realistic images.

Advanced Models: Hierarchical MRF and Mumford–Shah
Model

In reality, we often encounter images with multiple types of textures, each occupy-
ing a set of regions in the image domain. In these situations, we need more powerful
models to deal with the interaction of distinct texture regions.

When several texture patterns are present in an image, the boundaries of different
regions need to be specified. Often, the simple MRF models, including the GMRF
model, are not expressive enough in encoding this kind of knowledge in images. For
example, we might expect long, straight edges to be penalized in some images, but
the pixel intensities alone do not accurately reflect the existence of edge elements.
Geman and Geman [74] introduce the hierarchical MRF model for the maximum a
posteriori (MAP) image restoration problem and describe the images by both pixel
intensities and edge continuity. Specifically, an image I = (F,L) is modeled as
an MRF of two processes. The intensity process F is a simple MRF of observable
pixel intensities as discussed in Sect. 3.2). The line process L is another MRF of
unobservable edge elements. We define a line site d as placed midway between each
vertical or horizontal pair of pixels. The set D of all line sites is thus all possible
locations of the edge elements. While F(x, y) measures the intensity at a pixel,
L(x, y) represents a lack or presence (and orientation) of an edge at this specific
site. The line process L can affect a pixel’s neighborhood. For instance, if an edge
is present at a line site, the potential over the pair-clique consisting of the pixels
separated by this line site is zero. Therefore, these two pixels will not influence the
other’s intensity, and the bonding between them is broken. The Gibbs distribution
used to define the hierarchical MRF is

p(F = f,L = l) =
1

Z
exp

{
−

∑
C∈C

λC(f, l)

}
. (3.23)

48 3 Textures

With the hierarchical MRF, we can model more complicated image structures
and define new types of tasks in computer vision, as it allows us to analyze the
discontinuity in images from a new perspective.

Another technique that facilitates the modeling of multiple textures is the
Mumford–Shah model. This model aims to segment an image into a few simple
regions, keeping the color of each region as smooth as possible. It utilizes the
Mumford–Shah energy functional to complete three tasks simultaneously. First, the
functional measures how well the model approximates the observed image. Second,
it asks that the model varies slowly except at boundaries. Third, it requires the set
of contours to be as short, and hence as simple and straight, as possible.

Selecting Filters and Learning Potential Functions

The models mentioned thus far have equipped us with the tools needed to describe
and generate a variety of textures, as long as we select appropriate image filters
and learn optimal potential functions and parameters for the learned probability
distributions. The questions then become, given one or a set of observed texture
images, how do we select filters that will most completely capture the image
statistics? And how do we learn the optimal potential functions and parameters?
These questions will be answered as we explain the FRAME model in Sect. 3.4.
First, though, it will be helpful to review some of the more well-known filters in
vision.

3.3 Filters for Early Vision

Due to the limitations of clique-based models, the researchers have also explored
feature extraction from the perspective of image filtering. In the various stages along
the visual pathway, from the retina to V1, to the extra-striate cortex, cells with
increasing sophistication and abstraction have been discovered: center-surround
isotropic retinal ganglion cells, frequency and orientation selective simple cells,
and complex cells that perform nonlinear operations. Here we focus on filtering
theory inspired by the multi-channel filtering mechanism discovered and generally
accepted in neurophysiology, which proposes that the visual system decomposes the
retinal image into a set of sub-bands. These sub-bands are computed by convolving
the image with a bank of linear filters, followed by some nonlinear procedures [18].
Considering again the definition �(h) = {I : Hi(I) = hi, i = 1, . . . , K}, it is now
natural, after convolving the image with a bank of linear filters, to use a marginal
statistic (e.g., a histogram) to represent a feature Hi of an image.

Filtering is a process that changes pixel values of a given image, in an effort
to extract valuable information such as clusters and edges. Figure 3.6 provides an
example of typical image filtering.

3.3 Filters for Early Vision 49

Fig. 3.6 (a) Presents an image and (b) presents a filtered version of the image

An integral part of image processing, filters provide biologically plausible ways
of extracting visual information from raw input signals. In the coming section, we
will explore different types of filters that extract different feature information from
images.

Correlation and Convolution

Before we introduce specific types of filters, it is important to understand how filters
are applied to images. One method of linear filtering is correlation, which uses filters
to obtain a weighted combination of all pixels in a small neighborhood. Suppose an
image I is defined on an N × N lattice D, and I(x, y) ∈ L is the intensity value of
an image I at location (x, y) and L is an interval on the real line or a set of integers
representing pixel intensity. Suppose also that filter F is defined on an M×M lattice
much smaller than the lattice of I. Correlation is computed as

I(x, y) ⊗ F =
∑
(k,l)

I(x + k, y + l)F (k, l) (3.24)

in which ⊗ denotes correlation and each F(k, l) is a filter coefficient. To maintain
the image size, we pad the boundary of the original image with enough zeros so that
the filtered output image is the same size.

Correlation measures similarity between a filtered region and the filter itself, but
to extract meaningful information, a more commonly used method is convolution.
Different from correlation, convolution is defined as

I(x, y) ∗ F =
∑
(k,l)

I(x − k, y − l)F (k, l), (3.25)

where ∗ denotes the convolution operation. It appears that convolution is correlation
with both axes flipped. The motivation for using convolution instead of correlation

50 3 Textures

is that it is associative, in addition to being commutative and distributive. This
means that if an image needs to be convolved with multiple filters, the filters can
be convolved with each other first before being applied to the image. A detailed
proof of the mathematical properties of convolution is not of our interest for this
book, but to intuit why convolution is associative, notice that the Fourier transform
of convolution is a product in the frequency domain, which is clearly associative.

Knowing some basic operations for image processing, let us introduce some
classical filters.

Edge Detection Filters

An edge in an image consists of a sudden change of pixel intensity, and to detect
them, a natural decision is to detect the change of pixel values throughout the image.
If an image exists on a continuous domain, we can represent the change in pixel
intensities by derivatives

∇I =
[

∂I
∂x

,
∂I
∂y

]
. (3.26)

To only account for horizontal edges or vertical edges, we can represent changes
in pixel intensities by [∂I

∂x , 0] or [0, ∂I ∂y
], respectively. The gradient direction θ , as in

calculus, is

θ = tan−1
(

∂I
∂y
∂I
∂x

)
, (3.27)

and the gradient strength is

‖∇I‖ =
√(

∂I
∂x

)2

+
(

∂I
∂y

)2

. (3.28)

In practice, however, images consist of discrete pixels, so we need a discrete
approximation of image derivatives. Note that the definition of the derivative with
respect to the x-coordinate is

∂I(x, y)
∂x

= lim
h→ 0

I(x + h, y) − I(x, y)
h

, (3.29)

and its discrete counterpart is

∂I(x, y)
∂x

≈
I(x + 1, y) − I(x, y)

1
. (3.30)

3.3 Filters for Early Vision 51

To implement this derivative using a convolution, we can use a simple filter

F = [−1 1
]
. (3.31)

However, a more commonly used 1D filter for edge detection is

F = [−1 0 1
]
, (3.32)

which corresponds to, in the continuous domain, a derivative definition that extends
by a small amount in both directions:

∂I(x, y)
∂x

= lim
h→ 0

I(x + h, y) − I(x − h, y)
2h

. (3.33)

Note that the constant factor 2 is neglected in the filter since applying the
unnormalized filter consistently will not affect the relative intensity of the resulting
image.

In the 2D case, three well-known edge detection filters are the Prewitt, Sobel,
and Roberts filters, which are displayed in the same order below:

⎡

⎣−1 0 1
−1 0 1
−1 0 1

⎤

⎦

⎡

⎣−1 0 1
−2 0 2
−1 0 1

⎤

⎦ [
0 1
−1 0

]
. (3.34)

Both the Prewitt and Sobel filters detect edges in the x-direction, and detection in
the y-direction is similar but with the filter weights transposed. However, the Sobel
filter is more commonly used between these two because it provides smoothing
in the direction perpendicular to the direction of the edge detection. Details on
smoothing will be provided in the next section. Images filtered by the Prewitt filter
may also suffer from any noise in the original image. The Roberts filter detects edges
in the diagonal direction instead. Figure 3.7 shows an image filtered by each filter.

Fig. 3.7 An image (a) filtered by Prewitt (b), Sobel (c), and Roberts (d) filters, respectively

52 3 Textures

Gaussian Filters

A Gaussian filter is used for smoothing and blurring. As indicated by its name,
the filter resembles a Gaussian density function. Note that a multivariate Gaussian
function can be written as

G(�x | �x0, �) =
1√

(2π)n|�| exp
{
−1

2
(�x − �x0)ᵀ�−1(�x − �x0)

}
(3.35)

in which G denotes a Gaussian function, �x is an n-dimensional variable centered at
�x0, and � is the covariance matrix. However, for the purpose of image smoothing, a
Gaussian filter is typically assumed to be independent among different coordinates.
That is, in two dimensions, the filter can be written as

G(x, y | x0, y0, σx, σy) = 1

2πσxσy
e−((x−x0)

2/2σ 2
x+(y−y0)

2/2σ 2
y) (3.36)

where by convention it is assumed that σx = σy = σ . Its discrete counterpart can
be represented by filter

1

16

⎡

⎣1 2 1
2 4 2
1 2 1

⎤

⎦ . (3.37)

Varying σ allows one to vary the width of the Gaussian distribution, controlling
the degree of smoothing. A larger σ corresponds to a larger filter size with each
convolution accounting for more neighboring pixels. Note that Gaussian filtering is a
form of a weighted sum with the highest weight at the center, effectively smoothing
out noises in a close vicinity. A Gaussian-smoothed image is shown in Fig. 3.8.

Fig. 3.8 An image (a) smoothed by a Gaussian filter (b)

3.3 Filters for Early Vision 53

Derivative of Gaussian and Laplacian of Gaussian Filters

Returning to edge detection, a major problem for Sobel and Prewitt filters is
that they are very sensitive to noise due to a hard subtraction of neighboring
values. It is therefore common to first conduct Gaussian smoothing before applying
image gradients. Since convolution is associative, we can directly apply gradient
operations to a Gaussian filter before applying them to the image itself.

This suggests that we need to calculate the first derivative of the Gaussian, and
Fig. 3.9 shows the first derivatives, with respect to both the x- and y-coordinates,
and their corresponding filters. Convolving a derivative of the Gaussian filter with
an image allows for both smoothing and edge detection, and it is less sensitive to
noise than Prewitt or Sobel filters.

For edge detection purposes, first derivatives of the Gaussian are commonly used,
but they are still somewhat undesirable due to the resulting thickness of detected
edges, induced by σ in the Gaussian function. Second derivatives, on the other
hand, represent edges with zero intensity, as the first derivative transforms edges
to max/min intensity after filtering. This infinitely thin line of zero-crossing is
more desirable for edge detection. To calculate the second derivative, the Laplacian

� = ∂2

∂x2
+ ∂2

∂y2
is most commonly used.

Similar to the derivation of image gradients, the second derivative in the x-
direction can be written as

∂2I(x, y)
∂x2 = lim

h→ 0

∂I(x+h,y)
∂x − ∂I(x−h,y)

∂x
2h

= lim
h → 0

limt → 0
I(x+h,y)−I(x+h−t,y)

t
− limt → 0

I(x−h+t,y)−I(x−h,y)
t

2h

Fig. 3.9 (a) Gaussian density. (b) Function of x-derivative of Gaussian. (c) Function of y-
derivative of Gaussian. (d) Filter visualization of x-derivative of Gaussian. (e) Filter visualization
of y-derivative of Gaussian

54 3 Textures

≈
I(x+1,y)−I(x,y)

1 − I(x,y)−I(x−1,y)
1

1

= I(x + 1, y) − 2I(x, y) + I(x − 1, y). (3.38)

This corresponds to an (unnormalized) discrete filter

[
1 −2 1

]
. (3.39)

In 2D, it is not difficult to see that a simple Laplacian filter becomes

⎡

⎣0 1 0
1 −4 1
0 1 0

⎤

⎦ . (3.40)

However, similar to image gradients, the Laplacian operator is extremely sensi-
tive to noise in the input. Therefore, Gaussian smoothing is usually applied before
a Laplacian operation. As the Laplacian can also be represented by a convolution
as shown above, it can be applied to a Gaussian filter before being applied to the
image. The resulting filter is named the Laplacian of Gaussian (LoG or LG). This
gives a continuous formulation

LoG(x, y | x0, y0, σx, σy) =

−
{

1

2πσ 3
x σy

[
1−

(x − x0)2

σ 2
x

]
+ 1

2πσxσ 3
y

[
1−

(y − y0)2

σ 2
y

]}
exp

{
−

(
(x − x0)2

2σ 2
x

+
(y − y0)2

2σ 2
y

)}
.

(3.41)

Figure 3.10 shows both the function of the Gaussian and the Laplacian of
Gaussian. For the Laplacian of Gaussian, the uphill area surrounding a “valley”
indicates that, by convolving it with an image, the low-intensity side of an edge in
the image will rise to have high intensity before dropping to zero intensity and even
lower, before then rising again to high intensity on the other side of the edge. An
example of filtering using the Laplacian of Gaussian is shown in Fig. 3.11.

Gabor Filters

Much effort has been spent on modeling radially symmetric center-surround retinal
ganglion cells. One such simple model for this purpose is the Laplacian of Gaussian
introduced above with σx = σy = σ .

3.3 Filters for Early Vision 55

Fig. 3.10 (a) Density plot of the Gaussian, and (b) the second derivative of the Gaussian

Fig. 3.11 An example of filtering using the Laplacian of Gaussian

Yet, as retinal ganglion cells respond to specific frequency bands, Gabor filters
also provide a good way to extract texture patterns from an image under specific
frequencies [35]. In addition to being frequency-selective, Gabor filters are also
directional-selective. Mathematically, a Gabor filter is a pair of cosine and sine
waves with angular frequency ω and η, respectively, and amplitude modulated by
the Gaussian function. Its general form is

Fω(x, y) = G(x, y | x0, y0, σx, σy) · S(x, y | ω, η), (3.42)

in which G(x, y | x0, y0, σx, σy) is a Gaussian function, S(x, y | ω, η) =
exp{−i(ωx + ηy)} is a wave function, and φ = arctan(η/ω) is the direction of
the wave.

Here Fω defines a Gabor filter that matches image regions with frequency ω in
the x-direction and frequency η in the y-direction. High-frequency filters will match
high-frequency patterns whereas low-frequency filters will match low-frequency
patterns.

56 3 Textures

Fig. 3.12 Gabor wavelets in different orientations and frequencies

Gabor filters are closely related to Gabor wavelets, which serve as basis functions
for a Fourier Transform of an image. Some examples of Gabor wavelets are shown
in Fig. 3.12.

The filters mentioned above are linear. Some functions are further applied to
these linear filters to model the nonlinear functions of the complex cells. One way
to model the complex cells is to use the power of each pair of Gabor filters, |(F ∗
I)(x, y)|2. In fact, |(F ∗ I)(x, y)|2 is the local spectrum of I at (x, y) smoothed by a
Gaussian function. Thus, it serves as a local spectrum analyzer.

Although these filters are very efficient in capturing local spatial features, some
problems are not well understood. First, given a bank of filters, how can we choose
the best set of filters, especially when some are linear while others are nonlinear, or
the filters are highly correlated with each other? Second, after selecting the filters,
how can we encapsulate the features they capture into a single texture model? These
questions will be answered in the remainder of the chapter.

3.4 FRAME Model

Markov Random Fields provide us with physical inspiration for modeling texture
patterns despite some notable limitations. Filters, on the other hand, afford a
powerful and biologically plausible way of extracting features. Is there a way to
combine the two classes of texture models? In this coming section, we propose
a modeling methodology that is built on and directly combines the above two
important themes for texture modeling. It is called the FRAME (Filters, Random
field, and Maximum Entropy) model [282]. Before continuing, however, you are
encouraged to go over Chap. 9 and understand Maximum Entropy, Minimum
Entropy, and Minimax Entropy Principles, as they will be employed in this chapter
in derivations.

3.4 FRAME Model 57

Intuition and the Big Picture

Let image I be defined on a domain D where each Is ∈ L is the intensity value
of image I at pixel s, and L is an interval on the real line or a set of integers
to represent pixel intensity. Without loss of generality, we denote a feature as
φ ∈ S = {φ(α) , α = 1, 2, . . . , K}, where K is the number of features in question.
In the FRAME model, each feature is typically a vector of histograms of activations
(normalized or unnormalized) that result from image I being convolved with a
selected filter. As a reminder, a filter can be seen as a low-dimensional space that
pierces through the higher dimensional image space. Accordingly, convolution of
the image I with the filter produces the projection of the image onto this low-
dimensional space. The set of projected histograms is a set of marginal distributions
for the image; our goal is to match “enough” marginal distributions that we can
accurately model the observed image. An intuitive drawing is presented as Fig. 3.13.

Now given a set of observed images {Iobs
i , i = 1, 2, . . . ,M} from a distribution

f (I), we define feature statistics of the observation as

μ (α)
obs =

1

M

M∑
i=1

φ(α) (Iobs
i), for α = 1, . . . , K, (3.43)

and the set of images that match the statistics of these features as

�I =
{
I : φ(α) (I) = μ (α)

obs, α = 1, . . . , K
}

. (3.44)

Fig. 3.13 Suppose each point is an image and the red dot represents the selected image. Two filters
are seen as axes piercing through the image space. The features described by these two filters are
represented by the image’s projection (i.e., convolution with a filter) against the two axes

58 3 Textures

Similarly, we can define the set of distributions that match the statistics as

�p =
{
p(I) : Ep[φ(α) (I)] = μ (α)

obs, α = 1, . . . , K
}

. (3.45)

We now have defined our feature statistics. The next task is to pursue a suitable
distribution p ∈ �p that matches the observed distributions.

This pursuit process is iterative and twofold. First, we select K suitable filters
from a given set of filters to completely describe the most distinctive features
of a texture. Second, we find the best-parameterized distribution to explain the
current statistics given a fixed set of filters. This parameterized distribution can be
written as p(I;�; S), where S denotes the set of selected filters, and � denotes
the distribution parameters. Filter selection and distribution matching is an iterative
process, reminiscent of coordinate descent, minimizing differences between the true
distribution and the model distribution. Note that as we try to model pre-attentive
processes (i.e., the subconscious accumulation and processing of environmental
information) in human brains when detecting textures, we generally neglect the
training of filters and simply use pre-trained filters.

We make use of the Maximum Entropy Principle to pursue the best parameters
� when the set of features (parameterized by a set of filters) to be matched is
fixed. The parameterized distribution is constrained to match histograms of the
filters’ activations generated from texture images. However, we do not want to
over-constrain our distribution since we should avoid adding extra information
that may change the feature statistics. That is, we only match statistics given by
the selected features and no more, meaning that we maximize the entropy of our
distribution while matching all the given features. More intuitively, we want to learn
the distribution of the texture, but not to learn each training texture image precisely,
so that we are able to generate new texture images that follow the same distribution
as texture images in our training dataset but not reproduce the same images that are
already in our training dataset. Figure 3.14 illustrates this intuition.

To match the statistics provided by the observed data, an extreme solution would
be a distribution that only concentrates on the data points themselves. However,
this solution over-shrinks the constrained image set, adding too many unnecessary
constraints, and it results in a highly overfitted model that can hardly generalize.
Instead, we seek a distribution that exhibits maximum capacity under the current
constraints. Remember in the earlier chapters, we discussed that the capacity of a
space is measured by the entropy of the distribution defined for it. Thus, maximizing
the entropy means finding the largest possible space.

As explained by the Maximum Entropy Principle, the solution to this constrained
problem is in the form of a Gibbs distribution:

p(I;�, S) =
1

Z(�)
exp

{
−

K∑
α=1

〈λ(α) , φ(α) (I)〉
}

, (3.46)

where λ(α) is the Lagrange multiplier associated with feature φ(α) controlling
the relative strength of activation, 〈· , ·〉 denotes inner product, and
� = (λ(α) , α = 1, . . . , K).

3.4 FRAME Model 59

Fig. 3.14 The Maximum Entropy Principle gives us the most general distribution that matches
the feature statistics we choose. Here �Ip1

and �Ip2
are two possible distributions we learned to

try to match the feature statistics of the observed data points. �Ip2
concentrates too much on the

observed data points, which is representative of overfitting and poor generalization, while �Ip1
is

the more general one by applying the Maximum Entropy Principle

Fig. 3.15 We can observe the min-max entropy process for training the FRAME model. Suppose
we are at �I0 and we have two filters we could select: F1 and F2. If either of them is selected,
we update our model based on the Maximum Entropy principle, which lends the largest capacity
based on the current constraint (e.g., preferring �IF1

to �I
F
′
1

). In choosing between F1 and F2, we

want the one that lends the largest reduction in the entropy of the parameterized distribution with
respect to the feature space

The Lagrange multipliers are unique. After the current distribution is found,
we proceed to find a new pre-trained filter to better model the texture pattern.
Intuitively, we select the best filter that minimizes the Kullback–Leibler (KL)
divergence from f (I) to p(I;�, S). As derived in the Minimum Entropy Principle
section, minimizing this KL divergence is equivalent to minimizing the entropy of
the parameterized distribution with respect to the feature space (Fig. 3.15).

This pursuit process can be visualized as below:

60 3 Textures

Fig. 3.16 Reduction of constrained set of distributions from those sampled from uniform distri-
bution, which corresponds to the entire pixel space, to an equivalence class of images that match
projected statistics of the true samples. Here �Ip1

represents the set of images drawn from p1,
which follows a Gibbs distribution by the Maximum Entropy Principle. We perform this model
pursuit process until images are close to images from f (I), the true distribution

Uniform = p(I;�0, S0) → p(I;�1, S1) → . . . → p(I;�K, SK) ∼ f (I). (3.47)

The matched statistics give an equivalence class of images �(h) = {I : Hi(I) =
hi, i = 1, . . . , K} in which each I ∈ �I(h) is similar in the sense that their
projected histogram statistics are similar. Therefore, the more filters are chosen,
the more constrained the distributions are, and the fewer images there will be in the
equivalence class of images. This model pursuit process is a process for gradually
constraining the image space to obtain a set of images that match the true data
distribution. The pursuit process is also shown in Fig. 3.16.

The figure can be interpreted as follows. We start from a random uniform distri-
bution and start selecting a filter according to Minimum Entropy Principle. Then we
use Maximum Entropy Principle to best match the selected feature statistics. This
gives �Ip1

described by distribution p(I;�1, S1). The set of equivalence class of
images also decreases, as indicated by the shrinking ellipse. This iterative process
continues until our distribution is constrained enough so that it is indistinguishable
from the observed distribution f (I).

An interesting analogy to this pursuit process is shepherding. At first, we can
imagine that sheep wander in an infinitely large area. At a certain time step,
shepherds start guiding the sheep into a newly constructed fenced area, which
defines a constrained space. Not wanting to be constrained further, the sheep push
back against the fence, trying to escape. Shepherds then construct a new, smaller
fenced area inside the last one and guide the sheep into this smaller area, with
the sheep again pushing back. This process is iterated until the shepherds stop
constructing fences.

3.4 FRAME Model 61

Fig. 3.17 A toy example pursuit process as described by FRAME

Figure 3.17 shows a toy example (images with 2 pixels) of this pursuit process.
As shown, f (x, y) is the true data distribution we try to model, and our distribution
p(x, y) starts from random uniform and a feature h1 is selected. Maximizing
entropy of the constrained distribution gives us the second distribution. We further
select the next best feature h2 and match our distribution against it. We can see that
now the p(x, y) is already very close to f (x, y) and the process is stopped.

In the coming section, we derive the FRAME model and how it can be learned.

Deriving the FRAME Model

With the bigger picture in mind, we now proceed to derive the FRAME model. We
first fix a set of filters and try to learn �.

To re-iterate our definition, let image I be defined on a discrete domain D, in
which D can be an N × N lattice. For each pixel s ∈ D, Is ∈ L, and L is an
interval of R or L ⊂ Z . For each texture, we assume that there exists a “true” joint
probability density f (I) over the image space L|D|, and f (I) should concentrate on
a subspace of L|D| (projection of I onto the subspace), which corresponds to texture
images that have perceptually similar texture appearances.

Learning Potential Functions

Given an image I and a filter F (α) with α = 1, 2, . . . , K for the indices of the filter,
we let I(α)

s = F (α) ∗ Is be the filter response at location s and I(α) the filtered image.
The marginal empirical distribution (histogram) of I(α) is

62 3 Textures

H(α) (z) =
1

|D|
∑
s∈D

δ(z − I(α)
s), (3.48)

where z is a specific filter response and δ(·) is the Dirac delta function. The marginal
distribution of f (I) with respect to F (α) at location s is denoted by

f (α)
s (z) =

∫
I(α)
s =z

f (I)dI = Ef [δ(z − I(α)
s)]. (3.49)

At first thought, it seems an intractable problem to estimate f (I) due to the
overwhelming dimensionality of image I. To reduce dimensions, we first introduce
the following theorem.

Theorem 1 Let f (I) be the |D|-dimensional continuous probability distribution of
a texture, then f (I) is a linear combination of f (ξ), the latter are the marginal
distributions on the linear filter response F (ξ) ∗ I.

Proof By the inverse Fourier transform, we have

f (I) = 1

(2π)|D|

∫
e2πi〈I, ξ 〉f̂ (ξ)dξ, (3.50)

where f̂ (ξ) is the characteristic function of f (I) and

f̂ (ξ) =
∫

e−2π i〈ξ, I〉f (I)dI

=
∫

e−2π iz

∫
〈ξ, I〉=z

f (I)dzdI

=
∫

e−2π iz

∫
δ(z − 〈ξ, I〉)f (I)dzdI

=
∫

e−2π iz f (ξ) (z)dz, (3.51)

where 〈·, ·〉 is the inner product, by definition f (ξ) (z) = ∫
δ(z − 〈ξ, I〉)f (I)dI is

the marginal distribution of F (ξ) ∗ I, and we define F (ξ) (s) = ξ(s) as a linear filter.
��

Theorem 1 transforms f (I) into a linear combination of its one-dimensional
marginal distributions. Thus, it motivates a new method for inferring f (I); namely,
construct a distribution p(I) so that p(I) has the same marginal distributions f (ξ). If
p(I) matches all marginal distributions of f (I), then p(I) = f (I). But this method
will involve an uncountable number of filters, and each filter F (ξ) is as large as
image I.

Our second motivation comes from psychophysical research on human texture
perception, which suggests that two homogeneous textures are often difficult to

3.4 FRAME Model 63

discriminate when they produce similar marginal distributions for responses from
a bank of filters [18]. This means that it is plausible to ignore some statistical
properties of f (I) which are not important for human texture discrimination.

To make texture modeling a tractable problem, we make the following assump-
tions to limit the number of filters and the window size of each filter for com-
putational reasons, though these assumptions are not necessary conditions for our
theory to hold true. First, we limit our model to homogeneous textures; thus, f (I) is
stationary with respect to location s. Second, for a given texture, all features which
concern texture perception can be captured by “locally” supported filters. In other
words, the sizes of filters should be smaller than the size of the image. For example,
the size of the image is 256× 256 pixels, and the sizes of filters we used are limited
to less than 33× 33 pixels. These filters can be linear or nonlinear as we discussed
in Sect. 3.3. Third, only a finite set of filters are used to estimate f (I).

The first and second assumptions are made because we often have access to
only one observed (training) texture image. For a given observed image Iobs and
a filter F (α), we let Iobs(α) denote the filtered image and Hobs(α) (z) the histogram
of Iobs(α). According to the first assumption, f (α)

s (z) = f (α) (z) is independent of
s. By ergodicity, Hobs(α) (z) makes a consistent estimator of f (α) (z). The second
assumption ensures that the image size is larger relative to the support of filters so
that ergodicity takes effect for Hobs(α) (z) to be an accurate estimate of f (α) (z).

Now for a specific texture, let SK = {F (α) , α = 1, . . . , K} be a finite set of
well-selected filters and f (α) (z), α = 1, . . . , K , be the corresponding marginal
distributions of f (I). We denote the probability distribution p(I) that matches these
marginal distributions as a set

�pK =
{
p(I) | Ep[δ(z − I(α)

s)] = f (α) (z) ∀z ∈ R, ∀α = 1, . . . , K, ∀s ∈ D
}

,
(3.52)

where Ep[δ(z−I(α)
s)] is the marginal distribution of p(I) with respect to filter F (α) at

location s. Thus according to the third assumption, any p(I) ∈ �pK is perceptually
an adequate model for the texture, provided that we have enough well-selected
filters. Then we choose from �pK a distribution p(I) which has the maximum
entropy:

p(I) = argmax

{
−

∫
p(I) log p(I)dI

}
, (3.53)

subject to Ep[δ(z − I(α)
s)] = f (α) (z), ∀z ∈ R, ∀α = 1, . . . , K, ∀s ∈ D,

and
∫

p(I)dI = 1. (3.54)

We can achieve the maximum entropy (ME) distribution by making p(I), while
it satisfies constraints in some dimensions, as random as possible in the other
unconstrained dimensions. This makes it such that p(I) is the most universal set
it could be given its constraints; it does not capture, or represent, any additional

64 3 Textures

constraints that are not explicitly defined by p(I). In this case, by not representing
more information than we have available, we say the ME distribution exhibits the
purest fusion of the extracted features.

Using Lagrange multipliers, solving the constrained optimization problem in
Eq. (3.53) is equal to solving the underlying unconstrained problem:

p(I) = argmax

{
−

∫
p(I) log p(I)dI

−
∑

s

K∑
a=1

∫
λ(α) (z)(Ep[δ(z − I(α)

s)] − f (α) (z))dz − λ(β)

(∫
p(I)dI− 1

)}
(3.55)

= argmax

{
−

∫
p(I) logp(I)dI

−
∑

s

K∑
a=1

∫
λ(α) (z)

(∫
δ(z − I(α)

s)p(I)dI− f (α) (z)

)
dz − λ(β)

(∫
p(I)dI− 1

)}
,

(3.56)

where λ(α) (z)α = 1, 2, . . . ,K and λ(β) are Lagrange multipliers we introduce. Note
that because the constraints on Eq. (3.53) differ from the ones given in Sect. 3.4
in that z takes continuous real values and there is an uncountable number of
constraints. Therefore, the Lagrange parameter λ takes the form of a function of
z. Also, since the constraints are the same for all locations s ∈ D, λ should be
independent of s. According to the Euler–Lagrange equation, if we want to find the
stationary point (maximum or minimum) for the functional

S(f (x)) =
∫ b

a
L(x, f (x), ˙f (x))dx, (3.57)

then the function f (x) should satisfy

∂L
∂f

−
d
dx

∂L
∂ ḟ

= 0. (3.58)

Applying this to Eq. (3.56), we can derive that the optimal p(I) should satisfy

− logp(I) − 1 −
∑

s

K∑
α=1

∫
λ(α) (z)δ(z − Iα

s)dz − λ(β) = 0,

p(I) = exp

{
−1− λ(β) −

∑
s

K∑
α=1

∫
λ(α) (z)δ(z − Iα

s)dz

}
. (3.59)

By reorganizing Eq. (3.59), we can get the following ME distribution:

3.4 FRAME Model 65

p(I;�K, SK) =
1

Z(�K)
exp

{
−

∑
s

K∑
α=1

∫
λ(α) (z)δ(z − Iα

s)dz

}
(3.60)

=
1

Z(�K)
exp

{
−

∑
s

K∑
α=1

λ(α) (I(α)
s)

}
, (3.61)

where SK = {F (1) , F (2) , . . . , F (K)} is a set of selected filters and �K =
(λ(1) (·), λ(2) (·), . . . , λ(K) (·)) is the Lagrange parameter. Z(�K) is the normalizing
constant that contains the term exp{−1−λ(β)}. Note that in Eq. (3.61), for each filter
F (α), λ(α) (·) takes the form as a continuous function of the filter response I(α)

s .
To proceed further, let us derive a discrete form of Eq. (3.61). Assume that

the filter response I(α)
s is discretized into L discrete gray levels, and as such z

takes values from {z (α)
1 , z (α)

2 , . . . , z (α)
L }. In general, the width of these bins does not

have to be equal, and the number of gray levels L for each filter response may
vary. As a result, the marginal distributions and histograms are approximated by
piecewise constant functions of L bins, and we denote these piecewise functions as
vectors. H(α) = (H (α)

1 ,H (α)
2 , . . . , H (α)

L) is the histogram of I(α), Hobs(α) denotes
the histogram of Iobs(α), and the potential function λ(α) (·) is approximated by vector
λ(α) = (λ (α)

1 , λ (α)
2 , . . . , λ (α)

L).
So Eq. (3.60) is rewritten as

p(I;�K, SK) =
1

Z(�K)
exp

{
−

∑
s

K∑
α=1

L∑
i=1

λ (α)
i δ(z (α)

i − I(α)
s)

}
, (3.62)

and by changing the order of summations:

p(I;�K, SK) =
1

Z(�K)
exp

{
−

K∑
α=1

L∑
i=1

λ (α)
i H (α)

i

}

=
1

Z(�K)
exp

{
−

K∑
α=1

〈λ(α) , H (α)〉
}

. (3.63)

The virtue of Eq. (3.63) is that it provides us with a simple parametric model for
the probability distribution on I, and this model has the following properties:

• p(I;�K, SK) is specified by �K = (λ(1) , λ(2) , . . . , λ(K)) and SK .
• Given an image I, its histograms H(1) ,H (2) , . . . , H (K) are sufficient statistics,

i.e., p(I;�K, SK) is a function of (H (1) ,H (2) , . . . , H (K)).

We plug Eq. (3.63) into the constraints of the ME distribution and solve for
λ(α) , α = 1, 2, . . . ,K iteratively by the following equations:

66 3 Textures

dλ(α)

dt
= Ep(I;�K,SK)

[
H(α)

]
− Hobs(α) . (3.64)

In Eq. (3.64), we have substituted Hobs(α) for f (α), and Ep(I;�K,SK)(H
(α)) is the

expected histogram of the filtered image I(α) where I follows p(I;�K, SK) with
the current �K . We converge to the unique solution at �K = �̂K , and �̂K is called
the ME-estimator.

It is worth mentioning that this ME-estimator is equivalent to the maximum
likelihood estimator (MLE):

�̂K = argmax
�K

log p(Iobs;�K, SK)

= argmax
�K

[
− log Z(�K)−

K∑
α=1

〈λ(α) , Hobs(α)〉
]

. (3.65)

By gradient ascent, maximizing the log-likelihood lends Eq. (3.64), following
the property of the partition function Z(�K). In Eq. (3.64), at each step, given �K
and hence p(I;�K, SK), the analytic form of Ep(I;�K,SK)(H

(α)) is not available;
instead, we propose the following method to estimate it, as we did for f (α)

before. We draw a typical sample from p(I;�K, SK) and thus synthesize a
texture image Isyn. Then we use the histogram Hsyn(α) of Isyn(α) to approximate
Ep(I;�K,SK)(H

(α)). This requires that the size of Isyn that we are synthesizing should
be large enough.

To draw a typical sample image from p(I;�K, SK), we use the Gibbs sampler
which simulates a Markov chain in the image space L|D|. The Markov chain starts
from any random image, e.g., a white noise image, and it converges to a stationary
process with distribution p(I;�K, SK). Thus, when the Gibbs sampler converges,
the images synthesized follow distribution p(I;�K, SK).

In summary, we propose Algorithm 1 for inferring the underlying probability
model p(I;�K, SK) and for synthesizing the texture according to p(I;�K, SK).
The algorithm stops when the sub-band histograms of the synthesized texture
closely match the corresponding histograms of the observed images (Fig. 3.18).1

In Algorithm 2, to compute p(Is = val | I−s), we set Is to val, and due to the
Markov property we only need to compute the changes of I(α) in the neighborhood
of s. The size of the neighborhood is determined by the size of filter F (α). With
the updated I(α), we calculate H(α), and the probability is normalized such that∑

val p(Is = val | I−s) = 1.

1 We assume the histogram of each sub-band I(α) is normalized such that
∑

i H (α)
i = 1, and

therefore all the {λ (α)
i , i = 1, . . . , L} computed in this algorithm have one extra degree of freedom

for each α, i.e., we can increase {λ (α)
i , i = 1, . . . , L} by a constant without changing p(I;�K, SK).

This constant will be absorbed by the partition function Z(�K).

3.4 FRAME Model 67

Input a texture image Iobs .
Select a group of K filters SK = {F (1) , F (2) , . . . , F (K)}.
Compute {Hobs(α) , α = 1, . . . , K}.
Initialize λ (α)

i ← 0, i = 1, 2, . . . , L, α = 1, 2, . . . ,K.
Initialize Isyn as a uniform white noise texture.2

Repeat
Calculate Hsyn(α) α = 1, 2, . . . , K from Isyn, use it for

Ep(I;�K,SK)(H
(α)) .

Update λ(α) α = 1, 2, . . . ,K by Equation 3.64), so p(I;�K, SK) is
updated.

Apply Gibbs sampler to flip Isyn for w sweeps under p(I;�K, SK)
Until 1 2

∑L
i | H obs(α)

i −H syn(α)
i | ≤ ε for α = 1, 2, . . . ,K .

Algorithm 1: The learning algorithm

Fig. 3.18 Algorithm 1: Given a texture image and K filters (after filter selection), perform
convolution to extract K histograms from the filtered response, denoting each as hobs(α).
Synthesize an image (initialized as white noise) that is of the same size as the input image, and
perform convolution to extract another K histograms from the filtered response, denoting each as
hsyn(α). Update the coefficient of the FRAME model λ by λα

t+1 = λα
t + η(hsyn(α) − hobs(α)). With

this new model, we can again use the Gibbs sampler for W sweeps to synthesize another image for
the next iteration

In the Gibbs sampler, flipping a pixel is a step of the Markov chain, and we
define flipping |D| pixels as a sweep, where |D| is the size of the synthesized image.
Then the overall iterative process becomes an inhomogeneous Markov chain. At the
beginning of the process, p(I;�K, SK) is a “hot” uniform distribution. By updating

2 The white noise image with uniform distribution is the samples from p(I;�K, SK)with λ (α)
i = 0.

68 3 Textures

the parameters, the process gets closer and closer to the target distribution, which is
much colder. So the algorithm is very much like a simulated annealing algorithm,
which is helpful for getting around local modes of the target distribution.

Given image Is , flip_counter← 0
Repeat
Randomly pick a location s under the uniform distribution.
For val = 0, . . . ,G− 1 with G being the number of grey levels of I
Calculate p(Is = val | I−s) by p(I;�K, SK).

Randomly flip Is ← val under p(val | I−s).
flip_counter← flip_counter + 1

Until flip_counter = w × M × N .

Algorithm 2: The Gibbs Sampler for w sweeps

In summary, the FRAME model incorporates and generalizes the attractive
properties of filtering theories and the random field models. Moreover, it interprets
many previous methods for texture modeling with a unifying perspective.

Filter Selection

After � is learned with the above algorithm, we can now proceed to select the
next filter to be added to the set. One way to choose SK from a filter bank B is to
search for all possible combinations of K filters in B and compute the corresponding
p(I;�K, SK). Then by comparing the synthesized texture images following each
p(I;�K, SK), we can see which set of filters is the best. Such a brute force search
is computationally infeasible, and for a specific texture, we often do not know what
K is. Instead, we propose a stepwise greedy strategy. We start from S0 = ∅ (hence
p(I;�0, S0) is a uniform distribution) and then sequentially introduce one filter at a
time. Namely, we want to find a filter that reduces KL(f ||p(I;�)) the most (by the
minimum entropy principle).

Suppose that at the k-th step we have chosen Sk = {F (1) , F (2) , . . . , F (k)} and
obtained a maximum entropy distribution

p(I;�k, Sk) =
1

Z(�k)
exp

{
−

k∑
α=1

〈λ(α) , H (α)〉
}

, (3.66)

so that Ep(I;�k,Sk)

[
H(α)

] = f (α) for α = 1, 2, . . . , k. Then at the (k + 1)-th step,
for each filter F (β) ∈ B/Sk , we denote by d(β) = D

(
Ep(I;�k,Sk)[H(β)], f (β)

)
the

distance between Ep(I;�k,Sk)

[
H(β)

]
and f (β), which are, respectively, the marginal

distributions of p(I;�k, Sk) and f (I) with respect to filter F (β). Intuitively, the

3.4 FRAME Model 69

bigger d(β) is, the more information F (β) carries, since it reports a big difference
between p(I;�k, Sk) and f (I). Therefore we should choose the filter which has the
maximal distance, i.e.,

Fk+1 = argmax
F (β)∈B/Sk

D
(
Ep(I;�k,Sk)[H(β)], f (β)

)
. (3.67)

More formally, define the Kullback–Leibler divergence between the data distri-
bution f and a model distribution p to be

KL(f ‖p) = Ef

[
log

f (I)
p(I)

]
, (3.68)

which measures the “distance” between f and p.
We can choose the next filter to be the one that maximizes reduction in

KL(f ‖p(I;�)), where p(I;�) is the maximum entropy distribution. This indicates
that we want to maximize

D
(
Ep(I;�k+1,Sk+1)[H(β)], f (β)

)
= KL(f ‖p(I;�k, Sk)) − KL(f ‖p(I;�k+1, Sk+1)).

(3.69)

A key observation is

Ef

[
log p(I;�k, Sk)

] = Ef

[
−

k∑
α=1

〈λ(α) , H (α)〉 − log Z(�k)

]
(3.70)

= Ep(I;�k,Sk)

[
−

k∑
α=1

〈λ(α) , H (α)〉 − log Z(�k)

]
(3.71)

= Ep(I;�k,Sk)

[
log p(I;�k, Sk)

]
, (3.72)

because Ef

[
H(α)

] = Ep(I;�k,Sk)

[
H(α)

]
.

For the same reason,

Ef

[
log p(I;�k+1, Sk+1)

] = Ep(I;�k+1,Sk+1)
[
log p(I;�k+1, Sk+1)

]
, (3.73)

and

Ep(I;�k+1,Sk+1)
[
log p(I;�k, Sk)

] = Ep(I;�k,Sk)

[
log p(I;�k, Sk)

]
, (3.74)

again due to the matching of marginal histograms.

70 3 Textures

Thus we have the following:

Proposition 1

KL(f ‖p(I;�k, Sk))− KL(f ‖p(I;�k+1, Sk+1))) = KL(p(I;�k+1, Sk+1))‖p(I;�k, Sk))
(3.75)

= entropy(p(I;�k, Sk)− entropy(p(I;�k+1, Sk+1)). (3.76)

Proof To simplify notation, we denote p(I;�k, Sk) as p and p(I;�k+1, Sk+1)) as
p+:

KL(f ‖p)− KL(f ‖p+) = Ef [log f (I)− log p(I)] − Ef [log f (I) − log p+(I)]
= Ef [− log p(I)] − Ef [− logp+(I)]
= Ep+[− logp(I)] − Ep+[− log p+(I)]
= KL(p+‖p)

= Ep[− log p(I)] − Ep+[− logp+(I)]
= entropy(p) − entropy(p+). (3.77)

��
Thus we want to select the next filter to maximally reduce the entropy of the
maximum entropy model.

Simplifying the distance measure as D(h), where h is the evaluated histogram
feature using the newly added filter, Lp-norm is a reasonable approximation to
D(h). Specifically, denote p as the distribution modeled prior to adding the new
filter, and then let h0 be the feature evaluated using the new filter on samples
from p and hobs be the feature evaluated using the new filter on samples from true
distribution f . Using Taylor expansion,

D(hobs) ≈ D(h)

∣∣∣
h=h0

+
∂D
∂h

∣∣∣
h=h0

(hobs − h0)+
1

2
(hobs − h0)�

∂2D
∂h2

∣∣∣
h=h0

(hobs − h0),

(3.78)

where ∂D
∂h = −λk+1 and ∂2D

∂h2
is the covariance matrix �hobs of each component of

hobs evaluated using the new filter. As λk+1 is typically initialized to 0, we also have
D(h)

∣∣∣
h=h0

= 0 and ∂D
∂h

∣∣∣
h=h0

(hobs − h0) = 0.
Furthermore, since we assume each component is independent of each other,

we can approximate the second order term by L2 distance. In general, Lp distance
metric is a good surrogate for D(h).

As Lp-norm is directly computable and an approximation to information gain,
we typically choose it to measure the distance d(β), which is also an approximation
of the reduction in bits, i.e.,

3.4 FRAME Model 71

Fk+1 = argmax
F (β)∈B/Sk

1

2

∣∣∣f (β) − Ep(I;�k,Sk)

[
H(β)

]∣∣∣
p

. (3.79)

For the following, we choose p = 1. To estimate f (β) and Ep(I;�k,Sk)[H(β)], we
applied F (β) to the observed image Iobs and the synthesized image Isyn sampled
from the p(I;�k, Sk) and substitute the histograms of the filtered images for f (β)

and Ep(I;�k,Sk)[H(β)], i.e.,

Fk+1 = argmax
F (β)∈B/Sk

1

2

∣∣∣Hobs(β) −Hsyn(β)
∣∣∣ . (3.80)

The filter selection procedure stops when the d(β) for all filters F (β) in the filter
bank is smaller than a constant ε. Due to fluctuation, various patches of the same
observed texture image often have a certain amount of histogram variance, and we
use such a variance for ε.

Finally, we propose Algorithm 3 for filter selection.

Let B be a bank of filters, S the set of selected filters, Iobs the observed texture
image,
and Isyn the synthesized texture image.

Initialize k = 0, S ← ∅, p(I) ← uniform dist. Isyn ← uniform noise.
For α = 1, . . . , |B| do
Compute Iobs(α) by applying F (α) to Iobs .
Compute histogram Hobs(α) of Iobs(α) .

Repeat
For each F (β) ∈ B/S do
Compute Isyn(β) by applying F (β) to Isyn

Compute histogram Hsyn(β) of Isyn(β)

d(β) = 1 2 | Hobs(β) − Hsyn(β) |,3
Choose Fk+1 so that d(k + 1) = max{d(β) : ∀F (β) ∈ B/S}
S ← S ∪ {Fk+1}, k ← k + 1.
Starting from p(I) and Isyn, run algorithm 1 to compute new p∗(I) and

Isyn.
p(I) ← p∗(I) and Isyn ← Isyn.

Until d(β) < ε.

Algorithm 3: Filter selection

3 Since both histograms are normalized to have sum = 1, then error ∈ [0, 1]. We note this
measure is robust with respect to the choice of the bin number L (e.g. we can take L = 16, 32, 64),
as well as the normalization of the filters.

72 3 Textures

Fig. 3.19 Synthesis of a fur texture: (a) is the observed texture; (b),(c),(d),(e),(f) are the
synthesized textures using K = 0, 1, 2, 4, 7 filters, respectively

Figure 3.19a is the observed image of animal fur. We start from the uniform
noise image in Fig. 3.19b. The first filter picked by the algorithm is a Laplacian
of Gaussian filter LG(1.0) and its window size is 5 × 5. It has the largest error
d(β) = 0.611 among all the filters in the filters bank. Then we synthesize texture
as shown in Fig. 3.19c, which has almost the same histogram at the sub-band of this
filter (the error d(β) drops to 0.035).

To provide a final insight into the pursuit process from a distribution point of
view, we refer to Fig. 3.20. Note that this is only a 2D view of the very high-
dimensional distribution space. First, selecting a filter gives a (high-dimensional)
constrained set of probability distributions satisfying a given feature statistic. Then
we try to look for a distribution in this constrained set that is the closest to the
random uniform distribution (by the Maximum Entropy Principle), as represented
by the right angle. In fact, we are minimizing KL(p‖p0), where p ∈ �p1 and p0 is
the starting distribution. This objective is equivalent to maximizing entropy if and
only if p0 is random uniform. We leave this proof as an exercise for the reader.
Second, we find the new filter that gives the largest reduction in KL(f ‖p) (by the
Minimum Entropy Principle), constraining the equivalence class of distributions
further to a lower dimensional set. It is important to note that �p2 has a lower
dimension than �p1 and every set after �p2 has a lower dimension due to additional
constraints. The true distribution f again also remains in each set, as it satisfies
each additional feature statistic. In each new constrained set, we start again from
the random uniform distribution and find a new closest distribution. The algorithm

3.4 FRAME Model 73

Fig. 3.20 A graphical view of the FRAME learning algorithm in distribution space

Fig. 3.21 Note the selected filter after each filter selection. Each time, we add the filter that reduces
KL(f ‖p(I;�)) the most

continues and we see from the solid line that our projected distribution “spirals” into
the true data distribution as more constraints are put onto the distribution. Further
details on information projection are presented in Chap. 9.

Figure 3.21 is the filter we selected and added into the filter set, which we use
it the model. As we can see in the figure, most of the filters we selected are Gabor
filters and we also need some other filters to help detect the edges and corners.

Figure 3.22 shows the curve of the weighted error per bin over the number of
filters used for synthesis. As it is shown in the plot, after about 10 iterations, the
weighted error is stable enough and can generate very reasonable images, which on
the other hand perfectly match the result that given in Fig. 3.19.

74 3 Textures

Fig. 3.22 The weighted error over the number of filters used

3.5 Texture Ensemble

The following section presents theoretical work on texture theories and establishes
connections between FRAME, Statistical Physics, and the Julesz Ensemble. This
section is highly technical and it is encouraged for interested readers to go through
the original works [258, 259].

Ensembles in Statistical Physics

We have developed the FRAME model based on the maximum entropy principle,
and in the following, we will show that there is a simpler and deeper way to derive
or justify the FRAME model. This insight again originates from Statistical Physics,
specifically the equivalence of ensembles.

Statistical physics is the subject of studying the macroscopic properties of a
system involving a large number of elements (see Chandler [24]). Figure 3.23
illustrates three types of physical systems which are interesting to us.
1. Micro-canonical ensembles. Figure 3.23.a is an insulated system of N elements.
The elements could be atoms, molecules, or electrons in systems such as gas,
ferromagnetic material, fluid, etc. N is big, say N = 1023, and is considered infinity.

3.5 Texture Ensemble 75

Fig. 3.23 Three types of ensembles in statistical physics. (a) Micro-canonical ensembles. (b)
Canonical ensembles. (c) Grand-Canonical ensembles

The system is decided by a configuration or state s = (xN , mN), where xN describes
the coordinates of the N elements and mN their momenta [24]. It is impractical to
study the exact motions of 6N vector s, and in fact, these microscopic states are less
relevant, and people are more interested in the macroscopic properties of the system
as a whole, say the number of elements N , the total energy E(s), and total volume
V . Other derivative properties are temperature, pressure, etc.

If we denote by h(s) = (N,E, V) the macroscopic properties, at thermodynamic
equilibrium all microscopic states that satisfy this property make up a micro-
canonical ensemble:

�mce(ho) = {s = (xN ,mN) : h(s) = ho = (N, V,E)}. (3.81)

s is an instance and h(s) is summary of the system state for practical purposes.
Obviously �mce is a deterministic set or an equivalence class for all states that
satisfy descriptive constraints h(s) = ho.

An essential assumption in statistical physics is, as a first principle,

all microscopic states are equally likely at thermodynamic equilibrium.

This is simply a maximum entropy assumption. Let � ! s be the space of all
possible states, then �mce ⊂ � is associated with a uniform probability,

punif(s;ho) =
{
1/|�mce(ho)| for s ∈ �mce(ho),
0 for s ∈ �/�mce(ho).

(3.82)

2. Canonical ensembles. The canonical ensemble refers to a small system (with
fixed volume V1 and elements N1) embedded in a micro-canonical ensemble (see
Fig. 3.23b). The canonical ensemble can exchange energy with the rest of the system
(called the heat bath or reservoir). The system is relatively small, e.g., N1 = 1010,
so the bath can be considered a micro-canonical ensemble itself.

At thermodynamic equilibrium, the microscopic state s1 for the small system
follows a Gibbs distribution,

pGib(s1; β) =
1

Z
exp{−βE(s1)}. (3.83)

76 3 Textures

The conclusion was stated as a general theorem by Gibbs [78],

If a system of a great number of degrees of freedom is micro-canonically distributed in
phase, any very small part of it may be regarded as canonically distributed.

In accordance with this theorem, the Gibbs model pGib is a conditional proba-
bility of the uniform model punif. This conclusion is extremely important because it
bridges a deterministic set �mce with a descriptive model pGib. We consider this is
an origin of probability in modeling visual patterns.
3. Grand-Canonical ensembles. When the small system with fixed volume V1 can
also exchange elements with the bath as in liquid and gas materials, then it is called
a grand-canonical ensemble (see Fig. 3.23c). The grand-canonical ensemble follows
a distribution,

pgce(s1; βo, β) =
1

Z
exp{−βoN1 − βE(s1)}, (3.84)

where an extra parameter βo controls the number of elements N1 in the ensemble. If
we replace the energy of the physical system with the feature statistics of the texture
image, then we will arrive at a mathematical model for textures.

Texture Ensemble

To study real-world textures, one needs to characterize the dependency between
pixels by extracting spatial features and calculating some statistics averaged over
the image. One main theme of texture research is to seek the essential ingredients
in terms of features and statistics h(I), which are the bases for human texture
perception. From now on, we use the bold font h to denote statistics of image
features.

In the literature, the search for h has converged to marginal histograms of Gabor
filter responses. We believe that some bins of joint statistics may also be important
as long as they can be reliably estimated from finite observations.

Given K Gabor filters as feature detectors {F (1) , . . . , F (K)}, we convolve the
filters with image I to obtain the sub-band filtered images {I(1) , . . . , I(K)}, where
I(k) = F (k) ∗ I. Let h(k) be the normalized intensity histogram of I(k); then the
feature statistics h collects the normalized histograms of these K sub-band images,

h(I) = (h(1) (I), . . . , h(K) (I)). (3.85)

We use H(I) = (H (1) (I), . . . , H (K) (I)) to denote the unnormalized histograms.
We assume that the boundary conditions of the images are properly handled (e.g.,
periodic boundary condition). It should be noted that the conclusions here hold
as long as h(I) can be expressed as spatial averages of local image features. The
marginal histograms of Gabor filter responses are only special cases.

3.5 Texture Ensemble 77

Given statistics h(I), one can partition the image space �D into equivalence
classes �D(h) = {I : h(I) = h}. For finite D, the exact constraint h(I) = h
may not be satisfied, so we relax this constraint and replace �D(h) by

�D(H) = {I : h(I) ∈ H}, (3.86)

with H being a small set around h. Then we can define the uniform counting
measure or the uniform probability distribution on �D(H) as

q(I;H) =
{
1/|�D(H)|, if I ∈ �D(H),
0, otherwise,

(3.87)

where |�D(H)| is the volume of or the number of images in �D(H). Now we can
define the Julesz ensemble as follows.

Definition 3 Given a set of feature statistics h(I) = (h(1) (I), . . . , h(K) (I)), a Julesz
ensemble of type h is a limit of q(I;H) as D → Z2 andH→ h with some boundary
condition.4

The Julesz ensemble is defined mathematically as the limit of a uniform counting
measure. It is always helpful to imagine the Julesz ensemble of type h as the image
set �D(h) on a large D. Also, in the later calculation, we shall often ignore the
minor complication that constraint h(I) = h may not be exactly satisfied.

Then, we are ready to give a mathematical definition for textures.

Definition 4 A texture pattern is a Julesz ensemble defined by a type h of the
feature statistics h(I) (Figs. 3.24 and 3.25).

Type Theory and Entropy Rate Functions

A Simple Independent Model

In this section, we introduce basic concepts, such as type, ensemble, entropy
function, typical images, and equivalence of ensembles, using a simple image model
where the pixel intensities are independently and identically distributed (i.i.d.).

Let I be an image defined on a finite lattice D ⊂ Z2, and the intensity at pixel
v ∈ D is denoted by I(v) ∈ G = {1, 2, . . . , g}. Thus �D = G|D| is the space of
images on D, with |D| being the number of pixels in D.

(1) The FRAME model for i.i.d. images. We consider a simple image model
where pixel intensities are independently and identically distributed according to

4 We assume D → Z2 in the sense of van Hove, i.e., the ratio between the boundary and the size
of D goes to 0.

78 3 Textures

Fig. 3.24 For each pair of texture images, the image on the left is the observed image, and the
image on the right is the image randomly sampled from the Julesz texture ensemble

Fig. 3.25 Julesz ensembles of different textures are disjoint in the space of infinite images. They
will overlap in the space of image patches of finite size

a probability p = (p1, . . . , pg) where
∑

i pi = 1. The distribution of I can be
written as a FRAME model

p(I;β) =
∏
v∈D

pI(v) =
g∏

i=1
p Hi(I)

i = exp{〈log p, H(I)〉} = exp{〈β, H(I)〉},
(3.88)

where H(I) = (H1(I), . . . , Hg(I)) is the unnormalized intensity histogram of I, i.e.,
Hi is the number of pixels whose intensities are equal to i. β = (log p1, . . . , log pg)
is the parameter of p(I; β)—a special case of the FRAME model.

(2) Type. Let h(I) = H(I)/|D| be the normalized intensity histogram. We call
h(I) the type of image I.

3.5 Texture Ensemble 79

Fig. 3.26 The partition of
the image space into
equivalence classes, and each
class corresponds to an h on
the probability simplex

(3) Equivalent class. Let �D(h) be the set of images with h(I) = h,5 i.e.,
�D(h) = {I : h(I) = h}. Then the image space is partitioned into equivalence
classes

�D = ∪h�D(h). (3.89)

As shown in Fig. 3.26, each equivalence class �D(h) is mapped into one type h on
a simplex—a plane defined by h1+ · · · + hg = 1 and hi ≥ 0,∀i in a g-dimensional
space.

(4) The Julesz ensemble for i.i.d. images. The hard constraint in defining the
equivalence class �D(h) makes sense only in the limit as D → Z2, where statistical
fluctuations vanish. Therefore, we may attempt to define the Julesz ensemble as the
limit of �D(h) as D → Z2, or even more directly, as the set of images I defined on
Z2 with h(I) = h.

Unfortunately, the above “definitions” are not mathematically well defined.
Instead, we need to define the Julesz ensemble in a slightly indirect way. First,
we associate with each equivalence class �D(h) a probability distribution q(I;h),
which is uniform over �D(h) and vanishes outside. Then, the Julesz ensemble of
type h is defined to be the limit of q(I; h) as D → Z2.

For finite D, the equivalence class �D(h) may be empty because |D|h may not
be integers. Thus, to be more rigorous, we should replace h by a small setH around
h, and let H go to h as D →∞. For simplicity, however, we shall neglect this minor
complication and simply treat |D|h as integers.

The uniform distribution q(I;h) only serves as a counting measure of the equiv-
alence class �D(h), i.e., all the images in �D(h) are counted equally. Therefore,
any probability statement under the uniform distribution q(I; h) is equivalent to a
frequency statement of images in �D(h). For example, the probability that image
I has a certain property under q(I; h) is actually the frequency or the proportion
of images in �D(h) that have this property. The limit of q(I; h) thus essentially
defines a counting measure of the set of infinitely large images (defined on Z2) with
histogram h. With a little abuse of language, we sometimes also call the equivalence
class �D(h) defined on a large lattice D a Julesz ensemble, and it is always helpful
to imagine a Julesz ensemble as such an equivalence class if the reader finds the
limit of probability measures too abstract.

5 We hope that the notation h(I) = h will not confuse the reader. The h on the left is a function of
I for extracting statistics, while the h on the right is a specific value of the statistics.

80 3 Textures

(5) Entropy function. We are interested in computing the volume of the Julesz
ensemble �D(h), i.e., the number of images in �D(h). We denote this volume by
|�D(h)|. Clearly

|�D(h)| =
|D|!∏g

i=1(hi |D|)!
. (3.90)

Using the Stirling formula, it can be easily shown that

lim
D→Z2

1

|D| log |�D(h)| = lim
D→Z2

1

|D| log
|D|!∏g

i=1(hi |D|)!
(3.91)

= −
g∑

i=1
hi log hi = entropy(h). (3.92)

Thus for a large enough lattice, the volume of �D(h) is said to be in the order of
entropy(h), i.e.,

|�D(h)| ∼ exp|D|entropy(h) . (3.93)

For notational simplicity, we denote the entropy function by s(h) = entropy(h).
(6) The probability rate function. Now we are ready to compute the total

probability mass that p(I; β) assigns to an equivalence class �D(h). We denote
this probability by p(�D(h); β). Because images in �D(h) all receive equal
probabilities, it can be shown that

lim
D→Z2

1

|D| log p(�D(h); β) = lim
D→Z2

1

|D| log
{
|�D(h)|

g∏
i=1

p
|D|hi
i

}
(3.94)

= −
g∑

i=1
hi log

hi
pi

= −KL(h‖p), (3.95)

where KL(h‖p) denotes the Kullback–Leibler distance from h to p. KL(h‖p) ≥ 0
for all h and p, with equality holding when h = p.

Thus, on a large enough lattice, the total probability mass of an equivalence class
�D(h) is said to be on the order of −KL(h‖p),

p(�D(h); β) ∼ exp−|D|KL(h‖p) , (3.96)

where −KL(h‖p) is the probability rate function and is denoted by sβ(h) =
−KL(h‖p).

(7) Typical vs. most likely images. Suppose among p1, . . . , pg , pm is the largest
probability. Consider one extreme type h, with hm = 1, and hi = 0,∀i 	= m.
Then the image in this �D(h) is the most likely image under model p(I; β), i.e.,

3.5 Texture Ensemble 81

it receives the highest probability. However, �D(h) has only one constant image,
and the probability that p(I;β) assigns to this �D(h) is essentially zero for large
lattice. Now consider the equivalence class �D(h = p). Each image in �D(h = p)
receives less probability than the most likely image, but overall, the total probability
received by the whole �D(h = p) is essentially 1 for large lattice. That is, if we
sample from the FRAME model p(I; β), we will almost always get an image I from
�D(h = p). Such images are called the typical images of the FRAME model.

Having introduced the basic concepts, we now explain the basic ideas of
ensemble equivalence in the next two subsections by going in both directions from
one to the other.

From FRAME Model to Julesz Ensemble on Infinite Lattice

We study the limit of the FRAME model p(I;β) as D → Z2. A simple fact will
be repeatedly used in this section. To see this fact, let us consider the following
example. Suppose we have two terms, one is e5n and the other is e3n. Consider their
sum e5n + e3n. As n →∞, the sum e5n + e3n is dominated by e5n, and the order of
this sum is still 5, i.e., limn→∞

1
n log(e

5n + e3n) = 5. This means that for the sum
of many terms, the term with the largest exponential order dominates the sum and
the order of the sum is the largest order among the individual terms.

Suppose H is a set of types and

�D(H) = {I; h(I) ∈ H} (3.97)

is the set of all images I whose type is within H. Then from Eq. (3.96), we have

p(I ∈ �D(H); β) =
∫
H

p(�D(h); β)dh (3.98)

∼
∫
H
exp−|D|KL(h‖p) dh ∼ exp−|D|KL(h∗‖p) , (3.99)

where h∗ is the type in H which has the minimum Kullback–Leibler divergence
to p,

h∗ = arg min
h∈H

KL(h‖p). (3.100)

That is, the total probability for �D(H) has an exponential order KL(h∗||p) and
is dominated by the heaviest type h∗. In a special case �D(H) = �D , i.e., the whole
image space, we have h∗ = p and KL(h∗‖p) = 0.

Clearly, as |D| → ∞, the FRAME model quickly concentrates its probability
mass on �D(h = p) and assigns equal probabilities to images in �D(h = p). For
other h 	= p, the probabilities will decrease to 0 at an exponential rate. Thus, the
FRAME model becomes a Julesz ensemble.

82 3 Textures

From Julesz Ensemble to FRAME Model on Finite Lattice

In this section, we tighten up the notation a little bit. We use ID to denote the image
defined on lattice D, and we use ID0 to denote the image patch defined on D0 ⊂ D.
For a fixed type h of feature statistics, consider the uniform distribution q(I; h)
on �D(h). Under q(I; h), the distribution of ID0 , denoted by q(ID0; h), is well
defined.6 We shall show that if we fix D0 and let D → Z2, then q(ID0; h) goes
to the FRAME model (see Eq. (3.88)) with p = h.

First, the number of images in �D(h) is

|�D(h)| =
|D|!∏m

i=1(hi |D|)! . (3.101)

Then, let us fix ID0 and calculate the number of images in �D(h) whose image
value (i.e., intensities) on D0 is ID0 . Clearly, for every such image, its image value
on the rest of the lattice D/D0, i.e., ID/D0 must satisfy

H(ID/D0) = h|D| − H(ID0), (3.102)

where H(ID0) = |D0|h(ID0) is the unnormalized histogram of ID0 . Therefore

ID/D0 ∈ �D/D0

(
h|D| −H(ID0)

|D/D0|
)

. (3.103)

So the number of such images is |�D/D0((h|D| − H(ID0))/|D/D0|)|. Thus,

q(ID0; h) =
|�D/D0(

h|D|−H(ID0)
|D/D0|)|

|�D(h)|

=
(|D| − |D0|)!/∏g

i=1(hi |D| − Hi(ID0))!
|D|!/∏g

i=1(hi |D|)!

=
∏g

i=1(hi |D|)(hi |D| − 1) . . . (hi |D| − Hi(ID0)+ 1)
|D|(|D| − 1) . . . (|D| − |D0| + 1)

=
∏g

i=1 hi(hi − 1/|D|) . . . (hi − (Hi(ID0)− 1)/|D|)
(1− 1/|D|) . . . (1− (|D0| − 1)/|D|)

→
g∏

i=1
h Hi(ID0)

i as |D| → ∞. (3.104)

6 In the i.i.d. case, q(ID0 ; h) is both the marginal distribution and the conditional distribution of
q(I; h), while in random fields, we only consider the conditional distribution.

3.5 Texture Ensemble 83

Therefore, the distribution of ID0 is the FRAME model (see Eq. (3.88)) with
p = h under the Julesz ensemble defined by h.

The above calculation can be easily interpreted in a non-probabilistic way. That
is, q(ID0; h) is the frequency or the proportion of images in �D(h) (on large D)
whose patches on D0 are ID0 . In other words, if we look at all the images in the
Julesz ensemble through D0, then we will find a population of images on D0, and
the distribution of this population is described by the FRAME model. The reason
that the FRAME model assigns probabilities to all images on D0 is also quite clear.
Under the hard constraint on h(ID), h(ID0) can still take any possible values.

Equivalence of FRAME and Julesz Ensemble

In this section, we show the equivalence between the Julesz ensembles and the
FRAME models, using the fundamental principle of equivalence of ensembles in
statistical mechanics.

From Julesz Ensemble to FRAME Model

In this subsection, we derive the local Markov property of the Julesz ensemble,
which is globally defined by type h. This derivation is adapted from a traditional
argument in statistical physics (e.g., [141]). It is not as rigorous as modern
treatments, but it is much more revealing.

Suppose the feature statistics are h(I) where I is defined on D. For a fixed value
of feature statistics h, consider the image set �D(h) = {I : h(I) = h}, and the
associated uniform distribution q(I;h). First, we fix D1 ⊂ D and then fix D0 ⊂ D1.
We are interested in the conditional distribution of the local patch ID0 given its local
environment ID1/D0 under the model q(I;h) as D → Z2. We assume that D0 is
sufficiently smaller than D1 so that the neighborhood of D0, ∂D0, is contained in
D1.

Let H0 = H(ID0 |I∂D0) be the unnormalized statistics computed for ID0 where
filtering takes place within D0∪∂D0. Let H01 be the statistics computed by filtering
inside the fixed environment D1/D0. Let D−1 = D/D1 be the big patch outside of
D1. Then the statistics computed for D−1 is h|D| − H0 − H01. Let h− = (h|D| −
H01)/|D−1|, then the normalized statistics for D−1 is h− − H0/|D−1|.

For a certain ID0 , the number of images in �D(h) with such a patch ID0 and
its local environment ID1/D0 is |�D−1(h− −H0/|D−1|)|. Therefore the conditional
probability, as a function of ID0 , is

q(ID0 | ID1/D0 ,h) ∝
∣∣∣∣�D−1(h− −

H0

|D−1|)
∣∣∣∣ . (3.105)

84 3 Textures

Unlike the simple i.i.d. case, however, the above volume cannot be computed
analytically. However, the volume |�D(h)| still shares the same asymptotic behavior
as that of the simple i.i.d. example, namely,

lim
D→Z2

1

|D| log |�D(h)| → s(h), (3.106)

where s(h) is a concave entropy function of h.
Like the simple i.i.d. case, in the above derivation, we ignore the minor technical

complication that �D(h) may be empty because the exact constraint may not be
satisfied on a finite lattice. A more careful treatment is to replace h by a small setH
around h, and let H → h as D → Z2. Let �D(H) = {I : h(I) ∈ H}, then we have
the following:

Proposition 2 The limit

lim
D→Z2

1

|D| log�D(H) = s(H) (3.107)

exists. Let s(h) = limH→h s(H), then s(h) is concave, and s(H) = suph∈H s(h).

See Lanford [142] for a detailed analysis of the above result. The s(h) is a
measure of the volume of the Julesz ensemble of type h. It defines the randomness
of the texture appearance of type h.

With such an estimate, we are ready to compute the conditional probability. Note
that the conditional distribution, q(ID0 | ID1/D0 ,h), as a function of ID0 , is decided
only by H0, which is the sufficient statistics. Therefore, we only need to trace H0
while leaving other terms as constants. For large D, a Taylor expansion at h− gives

log q(ID0 | ID1/D0 , h) = constant+ log
∣∣∣∣�D−1

(
h− −

H0

|D−1|
)∣∣∣∣

= constant+ |D−1| s
(
h− −

H0

|D−1|
)

= constant− 〈s′(h−), H0〉 + o
(

1

|D|
)

. (3.108)

Assuming the entropy function s has continuous derivative at h, and let β =
s′(h), then, as D → Z2, h− → h, and s′(h−) → β. Therefore,

log q(ID0 | ID1/D0 ,h) → const− 〈s′(h), H0〉
= const − 〈β, H0〉, (3.109)

so

3.5 Texture Ensemble 85

q(ID0 | ID1/D0 ,h) → 1

ZD0(β)
exp

{−〈β,H(ID0 | I∂D0)〉
}
, (3.110)

which is exactly the Markov property specified by the FRAME model. This
derivation shows that local computation using the FRAME model is justified under
the Julesz ensemble. It also reveals an important relationship, i.e., the parameter β
can be identified as the derivative of the entropy function s(h), β = s′(h).

As in the simple i.i.d. case, this result can be interpreted in a non-probabilistic
way in terms of frequencies.

From FRAME Model to Julesz Ensemble

In this subsection, we study the statistical properties of the FRAME models as
D → Z2.

Consider the FRAME model

p(I; β) =
1

Z(β)
exp {−|D|〈β,h(I)〉} , (3.111)

which assigns equal probabilities to the |�D(h)| images in �D(h). The probability
that p(I; β) assigns to �D(h) is

p(�D(h); β) =
1

ZD(β)
exp {−|D|〈β,h〉} |�D(h)|. (3.112)

The asymptotic behavior of this probability is

sβ(h) = lim
D→Z2

1

|D| log p(�D(h); β) (3.113)

= −〈β,h〉 + s(h)− lim
D→Z2

1

|D| logZD(β). (3.114)

For the last term, we have the following:

Proposition 3 The limit

ρ(β) = lim
D→Z2

1

|D| log ZD(β) (3.115)

exists and is independent of the boundary condition. ρ(β) is convex.

See Griffiths and Ruelle [86] for a proof. Therefore, we have the following:

Proposition 4 The probability rate function sβ(h) of the FRAME model p(I; β) is

86 3 Textures

sβ(h) = lim
D→Z2

1

|D| logp(�D(h); β) = s(h) − 〈β,h〉 − ρ(β). (3.116)

Therefore, the probability that the FRAME model puts on �D(h) behaves like
exp{|D|sβ(h)}, and clearly sβ(h) ≤ 0 for any h and any β (otherwise, the probability
will go unbounded). This sβ(h) can be identified with−KL(h‖p) in the simple i.i.d.
case.

The probability rate function sβ(h) tells us that p(I; β) will eventually concen-
trate on the h∗ that maximizes sβ(h) = s(h) − 〈β,h〉 − ρ(β), or s(h) − 〈β,h〉. So
we have the following:

Theorem 2 If there is a unique h∗ where sβ(h) achieves its maximum 0, then
p(I; β) eventually concentrates on h∗ as D → Z2. Therefore the FRAME model
p(I; β) goes to a Julesz ensemble defined by h∗. If s(h) is differentiable at h∗, then
s′(h∗) = β.

3.6 Reaction and Diffusion Equations

In the previous sections, we have motivated feature extraction using filters and
matching marginal distributions of observed data. This design of features has led
to FRAME, a unified view of both clique-based and filter-based methods in texture
modeling. Using Gibbs distribution as the probability distribution for textures, we
further learn its potential function with dynamics

dλ(α)

dt
= Ep(I;�K,SK)

[
H(α)

]
− Hobs(α) , (3.117)

as in Eq. (3.64).
Computing Ep(I;�K,SK)[H(α)] is difficult and it involves sampling synthetic

images using the current model distribution. A class of methods for image synthesis
involves nonlinear Partial Differential Equations (PDEs) in the form of

dI
dt

= T (I), (3.118)

where T is a function of current I. In this section, we connect Gibbs distribution to
PDE paradigms for texture formation and derive a common framework under which
many previous PDE methods can be similarly derived.

We first introduce historical methods adopting PDEs for image processing
inspired by physics and chemistry, and then we introduce our discovery of reaction-
diffusion functions as Gibbs potential functions, leading to Gibbs Reaction and
Diffusion Equation (GRADE) as a family of PDEs for texture patterns formation.

3.6 Reaction and Diffusion Equations 87

Turing Diffusion-Reaction

A set of nonlinear PDEs was first studied in [237] for modeling the formation of
animal coat patterns by the diffusion and reaction of chemicals, which Turing called
the “morphogens.” These equations were further explored by Murray in theoretical
biology [178]. For example, let A(x, y, t) and B(x, y, t) be the concentrations
of two morphogens at location (x, y) and time t , the typical reaction-diffusion
equations are

{
∂A
∂t = Da�A+ Ra(A, B)
∂B
∂t = Db�B + Rb(A, B),

(3.119)

where Da and Db are constraints, � = ∂2

∂x2
+ ∂2

∂y2
is the Laplace operator, and

Ra(A, B)andRb(A, B) are nonlinear functions for the reaction of chemicals, e.g.,
Ra(A, B) = A ∗ B − A − 12 and Rb(A, B) = 16− A ∗ B.

The morphogen theory provides a way for synthesizing some texture patterns. In
the texture synthesis experiments, chemical concentrations are replaced by various
colors, and the equations run for a finite number of steps with free boundary
condition starting with some initial patterns. In some cases, both the initial patterns
and the running processes have to be controlled manually in order to generate
realistic textures. Two canonical textures synthesized by the Turing reaction-
diffusion equation are the leopard blobs and zebra stripes.

In the reaction-diffusion equation above, the reaction terms are responsible for
pattern formation, however, they also make the equations unstable or unbounded.
Even for a small system, the existence and stability problems for these PDEs are
intractable [87]. In fact, we believe that running any nonlinear PDEs for a finite
number of steps will render some patterns, but it is unknown how to design a set of
PDEs for a given texture pattern.

Heat Diffusion

As introduced in Sect. 3.2, generating an image according to the heat diffusion
equation

dI
dt

= �I(x, y) (3.120)

is equivalent to minimizing the potential energy of GMRF and

dI
dt

= −δU(I(x, y, t))
δI

, (3.121)

88 3 Textures

where U(I(x, y)) = β
∫
x

∫
y (∇xI(x, y))2 + (∇yI(x, y))2dy dx.

In the following, we show that anisotropic diffusion can also be written in a
similar form of minimizing a potential energy.

Anisotropic Diffusion

Perona and Malik introduced a family of anisotropic diffusion equations for
generating image scale space I(x, y, t) [195]. Similar to the heat diffusion equation,
their equation also simulates the “heat” diffusion process,

dI
dt

= div(c(x, y, t)∇I), I(x, y, 0) = I0, (3.122)

where ∇I = (∂I
∂x ,

∂I
∂y) is the intensity gradient and div is the divergence operator,

div(�V) = ∇xP+∇yQ, for any vector �V = (P, Q). In practice, the heat conductivity
c(x, y, t) is defined as a function of location gradients. For example, Perona and
Malik [195] chose

dI
dt

= ∇x

(
1

1+ (∇xI/b)2
∇xI

)
+ ∇y

(
1

1+ (∇yI/b)2
∇yI

)
, (3.123)

where b is a scaling constant. It is easy to see that Eq. (3.123) minimizes the
following energy function by gradient descent, just as in the heat diffusion process
in the section above,

U(I) =
∫ ∫

λ(∇xI)+ λ(∇yI)dxdy, (3.124)

where λ(ξ) = const. log(1 + (ξ/b)2) and λ′(ξ) = const. ξ
1+(ξ/b)2

are plotted in
Fig. 3.27.

Although the anisotropic diffusion equations can be adopted for removing noise
and enhancing edges [186], I(z, y, t) converges to a flat image as t → ∞ in the
Perona–Malik equation.

GRADE: Gibbs Reaction and Diffusion Equations

The above sections introduced (very similar) prior PDE paradigms in synthesizing
textures. However, the methods mentioned above directly follow PDE models
used in chemistry and physics. Directly following Gibbs distribution as used in
FRAME, we derive a family of PDEs called Gibbs Reaction and Diffusion Equation

3.6 Reaction and Diffusion Equations 89

Fig. 3.27 Reprinted with permission from [278]. On the left is λ(ξ) = const. log (1+ (ξ/b)2)
and on the right is λ′(ξ) = const. ξ

1+(ξ/b)2

(GRADE). We also believe that many PDE paradigms for image processing can be
unified under this common framework by using the same approach.

Suppose image I is defined on anN×N latticeD. Consider the Gibbs distribution
as derived in FRAME,

p(I; λ, S) =
1

Z
exp {−U(I;�, S)} , (3.125)

where Z is the normalization constant independent of I, S = {F1, F2, . . . , Fn}
is a set of filters to characterize the essential features of the images, and � =
{λ1(·), . . . , λn(·)} is a set of potential functions on feature statistics extracted by
S (using convolution). The potential is

U(I;�, S) =
n∑

i=1

∑
(x,y)∈D

λi(Fi ∗ I(x, y)), (3.126)

where Fi ∗ I(x, y) is the filter response of Fi at (x, y).
In practice, S is chosen by minimizing the entropy of p(I) from a bank of filters

such as the Gabor filters at various scales and orientations [4, 21] and wavelet
Transform [13, 36]. In general, these filters can be nonlinear functions of the image
intensities. In the rest of this section, we shall only study the following linear filters:

1. An intensity filter δ(·) and gradient filters ∇x , ∇y
2. The Laplacian of Gaussian filters

LoG(x, y, s) = const.(x2 + y2 − s2)e−
x2+y2

s2 , (3.127)

where s = √
2σ stands for the scale of the filter. We denote these filters by LoG(s).

A special filter is LoG(
√
2
2), which has a 3× 3 window [0, 1 4 , 0; 1

4 , −1, 1 4 ; 0, 1 4 , 0].

90 3 Textures

Fig. 3.28 Reprinted with permission from [278]. This figure shows two classes of functions. (a)
Shows diffusion functions. (b) Shows reaction functions. Dotted lines show the fitted φ and ψ
functions, respectively

3. Gabor filters with both sine and cosine components:

G(x, y, s, θ) = const. · Rot(θ) · e
1

2s2
(4x2+y2)

e−i 2π
s x . (3.128)

It is a sine wave at frequency 2π
s modulated by an elongated Gaussian Function

and rotated at angle θ . We denote the real and imaginary parts of G(z, y, s, θ) by
G cos(s, θ) and G sin(s, θ).

Using the filters above to learn the potential function in Eq. (3.126) in discretized
bins using FRAME, we found that texture patterns generally exhibit two families of
functions similar to reaction-diffusion in chemical processes as shown in Fig. 3.28.
We use the following two families of functions to fit our discretized findings, and
the fitted curves are shown as dashed lines in Fig. 3.28,

φ(ξ) = a

(
1− 1

1 + (|ξ − ξ0|/b)γ

)
, a > 0, (3.129)

ψ(ξ) = a
(
1− 1

1 + (|ξ − ξ0|/b)γ

)
, a < 0, (3.130)

where ξ0 and b are the translation and scaling constants, respectively, and ‖a‖
weights the contribution of the filter. φ(ξ), the diffusion function, assigns the lowest
energy (or highest probability) to filter responses around ξ0 (and ξ0 = 0 in most
cases), and ψ(ξ), the reaction function, has the lowest energy at the two tails which
represent salient image features such as object boundaries. These inverted potential
functions are in contrast to all previous image models, and they are essential for
modeling realistic images. The forming of the two potential functions is closely

3.6 Reaction and Diffusion Equations 91

Fig. 3.29 Note the forming of the two types of potential functions. Suppose our current histogram
of the synthesized image is more dispersed than the observed histogram (shown in the left image
(a)). Then the updating of λ will push the λ on the tail to be bigger and push the λ in the center to
be smaller, which forms a diffusion function (b). In the following sampling process, this diffusion
function will push the corresponding feature to zero, making the synthesized histogram more
concentrated to the center and thus closer to the observed one

related to our training process. Recalling Eq. (3.64), we have shown the gradient of
λ is equal to the difference between the histogram of the current synthesized image
and the histogram of the observed image. Then if the synthesized image contains
larger components of a certain feature than the original one, the update will shape
the new λ to be more like the diffusion type so that the larger responses are inhibited.
On the other hand, if the histogram of the synthesized image is too concentrated
on a certain response, the λ will be shaped to reaction type so that this feature is
encouraged to appear. This process is illustrated in Fig. 3.29. Recently, especially
in the deep neural network cases, instead of learning a nonlinear potential function,
people use the ReLU function to get similar results. The ReLU function has a linear
response on the positive half axis and zero on the negative half axis. As shown in
Fig. 3.30, by setting the coefficient of ReLU function to be greater or less than zero,
we can get the same results of encouraging or preventing a certain feature to appear.

Now we can design our potential function in Eq. (3.126) to be

U(I;�, S) =
nd∑
i=1

∑
(x,y)∈D

φi(Fi ∗I(x, y))+
n∑

i=nd

∑
(x,y)∈D

φi(Fi ∗I(x, y)). (3.131)

Note that the filter set is divided into two parts S = Sd ∪ Sr , with Sd = {Fi, i =
1, 2, . . . , nd} and Sr = {Fi, i = nd + 1, . . . , n}. In most cases, Sd consists of
filters such as gradient filters and Laplacian/Gaussian filters which capture general
smoothness appearances of real-world images, and Sr contains filters such as Gabor
filters at various orientations and scales which characterize salient features of
images.

92 3 Textures

Fig. 3.30 We can use the ReLU function to replace the original nonlinear diffusion (a) and
reaction (b) functions

Our PDE can therefore be designed by maximizing Gibbs distribution, which is
equivalent to minimizing the above U(I;�, S) by gradient descent. We obtain the
following nonlinear parabolic partial differential equation:

dI
dt

=
nd∑
i=1

F−
i ∗ φ′i (Fi ∗ I) +

n∑
i=nd

F−
i ∗ ψ ′

i (Fi ∗ I), (3.132)

where F−
i (x, y) = −Fi(−x, −y). Thus starting from an input image I(x, y, t) = I,

the first term diffuses the image by reducing the gradients while the second term
forms patterns as the reaction forces favor large filter responses. We call Eq. (3.132)
the Gibbs Diffusion And Reaction Equation (GRADE).

Properties of GRADE

Property 1: A General Statistical Framework

GRADE as in Eq. (3.132) can be considered as an extension to the heat diffusion
equation, as in Eq. (3.122), on a discrete lattice by defining a vector field

�V = (φ′1(·), . . . , φ′nd (·), ψ ′
nd+1(·), . . . , ψ ′

n(·)), (3.133)

and the divergence operator can be generalized to

div = F−
1 ∗ + . . . + F−

n ∗ . (3.134)

Equation 3.132 can be written as

dI
dt

= div(�V). (3.135)

3.6 Reaction and Diffusion Equations 93

Fig. 3.31 Reprinted with permission from [278]. Here φ(ξ) = a(1− 1
1+(|ξ−ξ0|/b)γ), a > 0, and

its derivative φ′(ξ) for (a), (c) is γ = 2.0 and (b), (d) γ = 0.8

Compared to Eq. (3.122) which transfers “heat” among adjacent pixels, Eq. (3.135)
transfers the “heat” in many directions on a graph and the conductivities are defined
as functions of the local patterns instead of just the local gradients. Note that in the
discrete lattice, choosing Sd = ∇x,∇y, Sr = ∅, we have F1 = F−

1 = ∇x, F2 =
F−
2 = ∇y and div = ∇x + ∇y , and thus Eqs. 3.122 and 3.123 are just special cases

of Eq. (3.135).

Property 2: Diffusion

Figure 3.31a,b show two best-fit potential functions. Figure 3.31a shows a round
tip at ξ = 0, and Fig. 3.31b shows a cusp at ξ = 0. Interestingly, real-world
objects typically show potential function with a cusp. This is because large parts
of real-world objects have flat intensity, encouraging piece-wisely constant regions.
Intuitively, with γ < 1 and ξ = 0 at location (x, y), φ′(0) forms an attractive
basin in the neighborhood Ni (x, y) specified by filter window Fi at (x, y). For a
pixel (u, v) ∈ Ni (x, y), the depth of attractive basin is ‖ωF−

i (u − x, v − y)‖. If
a pixel is involved in multiple zero filter responses, it will accumulate the depth
of the attractive basin generated by each filter. Thus unless the absolute value of

94 3 Textures

Fig. 3.32 Reprinted with permission from [278]. Generated texture patterns (a)–(f)

the driving force from other well-defined terms is larger than the total depth of the
attractive basin at (u, v), I(u, v) will stay unchanged.

Property 3: Reaction

The other class of potential function is the reaction function. We refer back to
Fig. 3.28 where gradients of reaction function “push” activations away from origin.
Different from the diffusion function, this class of potential function creates features
and brings pixels out of local attraction basins set up by diffusion functions.

With both reaction and diffusion, we can sample a wide variety of textures.
Starting from random uniform noise, we use Langevin equations inspired by
Brownian motion as below:

dI = −∇U(I)dt +√
2T (t)dwt , (3.136)

where dwt =
√

dtN(0, 1), T is the “temperature” which controls magnitude of
random fluctuations. In the above figure (Fig. 3.32), we use one diffusion filter, the
Laplacian of Gaussian filter, and several reaction filters: isotropic center-surround
filters and Gabor filters with different orientations.

3.7 Conclusion

In this chapter, we started by asking the question,
What features and statistics are characteristic of a texture pattern, so that texture

pairs that share the same features and statistics cannot be told apart by pre-attentive
human visual perception?

In finding suitable features for texture modeling, we have walked through several
models in history including clique-based models and filter-based models. Clique-
based models specify their energy function as feature statistics but such models
are shown to be inadequate in modeling texture patterns. Filter-based models more
closely align with human vision as accepted in neurophysiology. Convolution of
filters with an image (filter responses) and histograms of filter activations (marginal
statistics projecting an image onto a filter) seems to be a reasonable choice for
features.

3.7 Conclusion 95

With features selected, we then introduced Filters, Random field, and Maximum
Entropy (FRAME) model as a unifying view over both clique-based and filter-based
models. We presented a pursuit process involving theMinimax Entropy Principle for
pursuing a set of suitable filters and learning suitable potential functions under Gibbs
distribution. Texture ensemble is then introduced and connected to statistical physics
(micro-canonical ensembles and canonical ensembles). Equivalence between the
FRAME model and Julesz ensemble on an infinite lattice is proved.

Finally, we studied PDE paradigms in synthesizing images and presented two
classes of potential functions empirically found in texture modeling—diffusion and
reaction. Diffusion is found to destroy features while the reaction is found to create
features. We also derived our PDE for texture synthesis, introducing Gibbs Reaction
and Diffusion Equation (GRADE) as a general statistical framework under which
lie many other PDEs used in texture formation.

Chapter 4
Textons

Textons refer to fundamental micro-structures in natural images and are considered
the atoms of pre-attentive human visual perception (Julesz [124]). Unfortunately,
the term “texton” remains a vague concept in the literature for lacking a good
mathematical model. In this chapter, we present various generative image models
for textons.

4.1 Textons and Textures

Julesz’s Discovery

In psychophysics, Julesz [124] and colleagues discovered that pre-attentive vision
is sensitive to some basic image features while ignoring other features. He conjec-
tured that pre-attentive human vision is sensitive to local patterns called textons.
Figure 4.1 illustrates the first batch of experiments for texture discrimination.

In the second batch of experiments, Julesz measured the response time of
human subjects in detecting a target element among a number of distractors in the
background. For example, Fig. 4.2 shows two pairs of elements in comparison. The
response time for the upper pair is instantaneous (100–200 ms) and independent
of the number of distractors. In contrast, for the lower pair, the response time
increases linearly with the number of distractors. This discovery was very important
in psychophysics and motivated Julesz to conjecture a pre-attentive stage that detects
some atomic structures, such as elongated blobs, bars, crosses, and terminators,
which he called “textons” for the first time.

The early texton studies were limited by their exclusive focus on artificial texture
patterns instead of natural images. It was shown that the perceptual textons could
be adapted through training. Thus the dictionary of textons must be associated with
or learned from the ensemble of natural images. Despite the significance of Julesz’s

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_4

97

 31368 2385 a 31368 2385 a

https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4
https://doi.org/10.1007/978-3-030-96530-3_4

98 4 Textons

Fig. 4.1 Pre-attentive vision is sensitive to local patterns called textons

Fig. 4.2 Julesz textures show that pre-attentive vision is sensitive to local image structures such
as edges, bars, and endpoints

experiments, there have been no rigorous mathematical definitions for textons. Later
in this chapter, we explain that textons can be defined in the context of a generative
model of images.

In natural images, textures and textons are often interwoven where the image
patches are considered to be textures or textons which are, respectively, from
manifolds of different dimensions in the image space. As we have discussed in the
previous chapter, the texture patches are from high-dimensional manifolds defined

4.1 Textons and Textures 99

by implicit functions, i.e., the statistical constraints. In this chapter, we will show
that the texton patches are from low-dimensional manifolds defined by explicit
functions, i.e., generative models.

Neural Coding Schemes

Julesz’s experiments are inherently related to how neurons respond to different
kinds of stimuli. Studies in neuroscience reveal that neurons propagate signals by
generating characteristic electrical pulses called action potentials. With the presence
of external stimuli like light and specific image patterns, sensory neurons fire
sequences of action potentials in various temporal patterns, in which information
about the stimulus is encoded and transmitted to the brain. This process leads to
the different perceptions of textures and textons and justifies the pre-attentive stage
proposed by Julesz. Yet, how exactly the neurons represent the signals is still a topic
of debate. Here, we present three hypothesized coding schemes and their relations
to texton and texture modeling.

Population coding is a method that represents stimuli with the joint activities
of multiple neurons. In this coding scheme, each neuron has a distribution of
responses over some set of inputs. The responses of many neurons are combined
to determine a final value about the inputs, which triggers further reactions in the
signal propagation process. In our discussion of image modeling, we can draw a
parallel between the filters and the neurons. Indeed, the FRAME model combines
the potentials of filter responses, i.e., the histogram statistics, and outputs a value
to represent an image’s likelihood of belonging to a concept. In this sense, both the
histograms and the neuron responses encode the impression that we have on certain
visual stimuli.

Another coding scheme is the grandmother cell coding scheme. In this formu-
lation, high-level concepts are represented by a single neuron. It activates when
a person perceives a specific entity, such as one’s grandma. To be more concise,
there is a single cell in your brain that responds multi-modally to your grandmother,
granting you the percept of a single entity when you hear the sounds “grandmother,”
“grandma,” and “grams,” capture the sight of her smiling, wrinkly face, and recall
the tasty cookies she once made as well as the stories she once told you. The
hypothesis is supported by an observation in 2004, when an epilepsy patient at the
UCLA Medical Center whose brain was being monitored showed vigorous neural
responses to several pictures of Jennifer Aniston, but not to other celebrities. Though
the theory itself is still controversial, we can nonetheless incorporate it into our study
of computer vision. Borrowing the idea of the grandmother cells, we can develop
object templates that are invariant under various transformations. These templates,
such as cars, represent high-level concepts as a whole rather than individual parts
that make up the concept, such as the wheels and front doors of the cars.

100 4 Textons

The last coding scheme that we are interested in is sparse coding, where an object
is encoded by the strong activations of a relatively small set of neurons. In fact, this
method is the foundation of the texton models that we will introduce later in this
chapter.

4.2 Sparse Coding

Image Representation

The purpose of vision, biological and machine, is to compute a hierarchy of
increasingly abstract interpretations of the observed images (or image sequences).
Therefore, it is of fundamental importance to know what are the descriptions used at
each level of interpretation. By analogy to physics concepts, we wonder what are the
visual “electrons,” visual “atoms,” and visual “molecules” for visual perception. The
pursuit of basic images and perceptual elements is not just for intellectual curiosity
but has important implications for a series of practical problems. For example,

1. Dimension reduction. Decomposing an image into its constituent components
reduces information redundancy and leads to lower dimensional representations.
As we will show in later examples, an image of .256 × 256 pixels can be
represented by about 500 basis functions (which are local image patches), which
are, in turn, reduced to 50–80 texton elements. The dimension of representation
is thus reduced by about 100 folds. Further reductions are achieved in motion
sequences and lighting models.

2. Variable decoupling. The decomposed image elements become more and more
independent of each other and thus are spatially nearly decoupled. This facilitates
image modeling which is necessary for visual tasks such as segmentation and
recognition.

3. Biologic modeling. Micro-structures in natural images provide ecological clues
for understanding the functions of neurons in the early stages of biologic vision
systems [10].

In the literature, there are several threads of research investigating fundamental
image structures from different perspectives, with many questions left unanswered.

First, in neurophysiology, the cells in the early visual pathway (retina, LGN,
and V1) of primates are found to compute some basic image structures at various
scales and orientations [113]. This motivated some image pyramid representations
including Laplacian of Gaussians (LoGs), Gabor functions, and their variants.
However, very little is known about how V1 cells are grouped into larger structures
at higher levels (say, V2 and V4). Similarly, it is unclear what are the generic image
representations beyond the image pyramids in image analysis.

Second, in harmonic analysis, one treats images as 2D functions, and then it can
be shown that some classes of functions (such as Sobolev, Hölder, Besov spaces)
can be decomposed into basis functions, for example, Fourier basis and wavelets.

4.2 Sparse Coding 101

But the natural image ensemble is known to be very different from those classic
mathematical functional spaces.

The third perspective, and the most direct attack on the problem, is the study
of natural image statistics and image component analysis. The most important
work was done by Olshausen and Field [190] who learned over-complete image
basis from natural image patches (.12 × 12 pixels) based on the principle of sparse
coding. In contrast to the orthogonal and complete basis in the Fourier analysis,
the learned basis functions are highly correlated, and a given image is coded by a
sparse population in the over-complete dictionary. Added to the sparse coding idea
is independent component analysis (ICA) which decomposes images into a linear
superposition of some basis functions minimizing a measure of dependence between
the coefficients of these basis elements [15].

Basis and Frame

In linear algebra, a set . B of vectors in a vector space V is called a basis if all elements
in V can be written as a unique linear combination of vectors in . B. A vector space
may have several different bases. Yet all the bases have the same number of elements
equal to the dimension of the vector space. For a typical image with . 1024 × 1024
pixels, the dimension of the image space to which it belongs is . 220. Consequently,
a basis must have .220 vectors to reconstruct any image of the same size. However,
as we have learned earlier, natural images only occupy a small subset of the entire
image space, making it trickier to select a set of vectors to represent natural images
more efficiently.

If the inner product operation is well defined in a vector space V , then V is an
inner product space. We call a basis .B = {b1, b2, ..., bn} for V orthonormal if the
elements are all unit vectors and orthogonal to each other. Parseval’s identity for
orthonormal basis states that

.∀x ∈ V, ‖x‖2 =
n∑

i=1

|〈x, bi〉|2 . (4.1)

We can slightly loosen the constraint so that a collection of vectors . F =
{f1, . . . , fm} satisfies

.∀x ∈ V, A ‖x‖2 ≤
n∑

i=1

|〈x, fi〉|2 ≤ B ‖x‖2 ; (4.2)

then, we call . F a frame for the vector space with the corresponding frame bounds
A and B. Furthermore, a frame is a tight frame if .A = B. In finite dimensional
vector spaces, the frames are exactly the spanning sets. Therefore, a vector can be
expressed as a linear combination of the frame vectors in a redundant way. Using

102 4 Textons

a frame, it is possible to create a simpler, more sparse representation of a signal
compared to representing it strictly with linearly independent vectors.

In general, if a set of vectors is still a basis after removing some elements,
then it is called over-complete. In other words, the number of vectors for an
over-complete basis is greater than the dimension of the input vector. Practically
speaking, over-completeness can help us to achieve a more stable, robust, and
compact decomposition of input vectors. We shall see its importance in the sparse
coding model of texton representation.

As a matter of terminology, if the input vector is an image, we may consider
the image as a two-dimensional function, so that the basis vectors become basis
functions. These basis functions form a basis to represent the input images. Thus
we shall use the term “basis functions” when we talk about representing images.

Olshausen–Field Model

In image coding, one starts with a dictionary of basis functions

.� = {ψ�(u, v), � = 1, . . . , Lψ }. (4.3)

For example, some commonly used basis functions are Gabor, Laplacian of
Gaussian (LoG), and other wavelets (Fig. 4.3).

Let .A = (x, y, τ, σ) denote the translation, rotation, and scaling transform of a
basis function and .GA � A the orthogonal transform space (group), then we obtain
a set of basis functions . �,

.� = {ψ�(u, v,A) : A = (x, y, τ, σ) ∈ GA, � = 1, . . . , Lψ }. (4.4)

Fig. 4.3 Gabor wavelets are sine and cosine waves multiplied by Gaussian functions

4.2 Sparse Coding 103

Fig. 4.4 The sparse coding
model assumes that the
observed signals lie on the
low-dimensional subspaces
spanned by the basis vectors

A simple generative image model, adopted in almost all image coding schemes,
assumes that an image . I is a linear superposition of some basis functions selected
from . � plus a Gaussian noise image . n,

.I =
nB∑

i

αi · ψ i + n, ψ i ∈ �, ∀i, (4.5)

where . nB is the number of basis functions and . αi is the coefficient of the i-th base
. ψ i (Fig. 4.4).

As . � is over-complete,1 the variables (.�i, αi, xi, yi, τi , σi) indexing a basis func-
tion . ψi are treated as latent (hidden) variables and must be inferred probabilistically,
in contrast to deterministic transforms such as the Fourier transform. All the hidden
variables are summarized in a basis map,

.B = (nB, {bi = (�i, αi, xi, yi, τi , σi) : i = 1, . . . , nB}). (4.6)

If we view each . ψ i as an attributed point with attributes . bi = (�i, αi, xi, yi,

.τi, σi), then . B is an attributed spatial point process.
In the image coding literature, the basis functions are assumed to be indepen-

dently and identically distributed (i.i.d.), and the locations, scales, and orientations
are assumed to be uniformly distributed, so

.p(B) = p(nB)

nB∏

i=1

p(bi), . (4.7)

p(bi) = p(αi) · unif(�i) · unif(xi, yi) · unif(τi) · unif(σi). (4.8)

It was well known that responses of image filters on natural images have high
kurtosis histograms. This means that most of the time the filters have nearly
zero responses (i.e., they are silent) and they are activated with large responses

1 The number of basis functions in . � is often 100 times larger than the number of pixels in an
image.

104 4 Textons

Fig. 4.5 Reprinted with permission from [190]. The above image patches are the basis functions
learned from natural image patches by the sparse coding model

occasionally. This leads to the sparse coding idea by Olshausen and Field [190].2

For example, .p(α) is chosen to be a Laplacian distribution or a mixture of two
Gaussians with . σ1 close to zero. For all .i = 1, . . . , nB ,

.p(αi) ∼ exp{−|αi |/c} or p(αi) =
2∑

j=1

ωj N(0, σj). (4.9)

In fact, as long as .p(α) has high kurtosis, the exact form of .p(α) is not
so crucial. For example, one can choose a mixture of two uniform distributions
on a range .[−σj , σj], j = 1, 2, respectively, with . σ1 close to zero, . p(αi) =∑2

j=1 ωj unif[−σj , σj].
In the above image model, the basis map . B includes the hidden variables, and

the dictionary . � are parameters. For example, Olshausen and Field used . Lψ = 144
base functions, each being a .12 × 12 image patch. Following an EM-like learning
algorithm, they learned . � from a large number of natural image patches. Figure 4.5
shows some of the 144 base functions. Such basis functions capture some image
structures and are believed to bear resemblance to the responses of simple cells in
V1 of primates. In their experiments, the training images are chopped into . 12 × 12
pixel patches, and therefore they did not really infer the hidden variables for the
transformation . Ai . Thus the learned basis functions are not aligned at the centers.

A Three-Level Generative Model

We may extend the previously introduced simple form of a generative image model
to a three-level generative model as shown in Fig. 4.6. In this model, an image . I is

2 Note that the filter responses are convolutions of a filter with image in a deterministic way and
are different from the coefficients of the basis functions.

4.2 Sparse Coding 105

Fig. 4.6 Reprinted with permission from [277]. A three-level generative model: an image . I is a
linear superposition of some basis functions selected from a base dictionary . 	, such as Gabor
or Laplacian of Gaussians. The basis map is further generated by a smaller number of textons
selected from a texton dictionary .
. Each texton consists of a number of basis functions in certain
deformable configurations

generated by a basis map . B as in image coding, and the basis functions are selected
from a dictionary . � with some transforms.

The basis map . B is, in turn, generated by a texton map . T. The texton elements
are selected from a texton dictionary . � with some transforms. Each texton element
in . T consists of a few basis functions with a deformable geometric configuration.
So we have

.T
�−→ B

�−→ I, (4.10)

with

.� = {ψ�, � = 1, 2, . . . , Lψ }, and � = {π�; � = 1, 2, . . . ,Lπ }. (4.11)

By analogy to the waveform–phoneme–word hierarchy in speech, the pixel–
basis–texton hierarchy presents an increasingly abstract visual description. This
representation leads to dimension reduction and the texton elements account for
spatial co-occurrence of the basis functions.

To clarify terminology, a basis function .ψ ∈ � is like a mother wavelet, and
an image base . bi in the basis map . B is an instance under certain transforms of a
basis function. Similarly, a “texton” in a texton dictionary .π ∈ � is a deformable
template, while a “texton element” is an instance in the texton map . T which is a
transformed and deformed version of a texton in . �.

For natural images, it is reasonable to guess that the number of basis functions is
about .|�| = O(10), and the number of textons is in the order of .|�| = O(103) for
various combinations. Intuitively, textons are meaningful objects viewed at distance
(i.e., small scale), such as stars, birds, cheetah blobs, snowflakes, beans, etc.

In this chapter, we fix the basis dictionary to three common basis functions:
Laplacian of Gaussian, Gabor cosine, and Gabor sine, i.e.,

.� = {ψ1, ψ2, ψ3} = {LoG, Gcos, Gsin}. (4.12)

These basis functions are not enough for patterns like hair or water, etc. But
we fix them for simplicity and focus on the learning of texton dictionary . �. This

106 4 Textons

Fig. 4.7 Reprinted with permission from [277]. Reconstructing a star pattern by two layers of
basis functions. An individual star is decomposed into a LoG basis function in the upper layer for
the body of the star plus a few other basis functions (mostly Gcos, Gsin) in the lower layer for the
angles

chapter is also limited to learning textons for each individual texture pattern instead
of generic natural images, and therefore .|�| is a small number for each texture.

Before we formulate the problem, we show an example of a simple star pattern
to illustrate the generative texton model. In Fig. 4.7, we first show the three basis
functions in . � (the first row) and their symbolic sketches. Then for an input image,
a matching pursuit algorithm is adopted to compute the basis map . B in a bottom-
up fashion. This map will be modified later by stochastic inference. It is generally
observed that the map . B can be divided into two sub-layers. One sub-layer has
relatively large (“heavy”) coefficients . αi and captures some larger image structures.
For the star pattern, these are the LoG basis functions shown in the first column.
We show both the symbolic sketch of these LoG basis functions (above) and the
image generated by these basis functions (below). The heavy basis functions are
usually surrounded by a number of “light” basis functions with relatively small
coefficients . αi . We put these secondary basis functions in another sub-layer (see
the second column of Fig. 4.7.) When these image basis functions are superposed,
they generate a reconstructed image (see the third column in Fig. 4.7.) The residues
of reconstruction are assumed to be Gaussian noise.

By analogy to the physics model, we call the heavy basis functions the “nucleus
basis functions” as they have heavy weights like protons and neutrons and the light
basis functions the “electron basis functions.” Figure 4.7 displays an “atomic” model
for the star texton. It is a LoG surrounded by 5 electron basis functions.

4.2 Sparse Coding 107

Fig. 4.8 Reprinted with permission from [89]. The spatial arrangement of textons can be modeled
by a point process model

The three-level generative model is governed by a joint probability distribution
specified with parameters .� = (�,�, κ).

.p(I,B,T;�) = p(I|B;�)p(B|T;�)p(T; κ), (4.13)

where . � and . � are dictionaries for two generating processes, and .p(T; κ) is a
descriptive (Gibbs) model for the spatial distribution of the textons as a stochastic
attributed point process (Fig. 4.8).

We rewrite the basis map as

.B = (nB, {bi = (�i, αi, xi, yi, τi , σi) : i = 1, 2, . . . , nB}). (4.14)

108 4 Textons

Because we assume Gaussian distribution .N(0, σ 2
o) for the reconstruction

residues, we have

. p(I|B;�) ∝ exp

⎧
⎨

⎩−
∑

(u,v)∈D

(I(u, v) −
nB∑

i=1

αiψ�i
(u, v; xi, yi, τi , σi))

2/2σ 2
o

⎫
⎬

⎭ .

(4.15)
The . nB basis functions in map . B are divided into .nT + 1 groups (.nT < nB).

.{bi = (�i, αi, xi, yi, τi , σi) : i = 1, 2, . . . , nB} = 0 ∪ 1 ∪ · · · ∪ nT
.(4.16)

The basis functions in .0 are “free electrons" which do not belong to any texton
and are subject to the independent distribution .p(bj) in Eq. (4.8). Basis functions in
any other class form a texton element . Tj , and the texton map is

.T = (nT , {Tj = (�j , αj , xj , yj , τj , σj , δj) : j = 1, 2, . . . , nT }). (4.17)

Each texton element . Tj is specified by its type . �j , photometric contrast . αj ,
translation .(xj , yj), rotation . τj , scaling . σj , and deformation vector . δj . A texton
.π ∈ � consists of m image basis functions with a certain deformable configuration

. π = ((�1, α1, τ1, σ1), (�2, α2, δx2, δy2, δτ2, δσ2), . . . , (�m, αm, δxm, δym, δτm, δσm)).

(4.18)

The .(δx, δy, δτ, δσ) are the relative positions, orientations, and scales. There-
fore, we have

.p(B|T;�) = p(|0|)
∏

bj ∈0

p(bj)

nT∏

c=1

p(c|Tc;π�c). (4.19)

.p(T; κ) is another distribution that accounts for the number of textons . nT and the
spatial relationship among them. It can be a Gibbs model for the attributed point
process. For simplicity, we assume the textons are independent at this moment as a
special Gibbs model.

By integrating out the hidden variables, we obtain the likelihood for any
observable image . Iobs,

.p(Iobs;�) =
∫

p(Iobs|B;�)p(B|T;�)p(T; κ) dB dT. (4.20)

In .p(I;�) above, the parameters . � (dictionaries, etc.) characterize the entire image
ensemble, like the vocabulary for English or Chinese languages. In contrast, the
hidden variables . B and . T are associated with an individual image . I and correspond
to the parsing tree in language.

4.2 Sparse Coding 109

Our goal is to learn the parameters .� = (�,�, κ) by maximum likelihood
estimation, or equivalently minimizing a Kullback–Leibler divergence between an
underlying data distribution of images .f (I) and the model distribution . p(I;�)

. �∗ = (�,�, κ)∗ = arg min KL(f (I)‖p(I;�)) = arg max
∑

m

log p(Iobs
m ;�) + ε,

(4.21)
where . ε is an approximation error that diminishes as sufficient data are available for
training. In practice, . ε may decide the complexity of the model and thus the number
of basis functions .Lψ and textons . Lπ . For simplicity, we use only one large .Iobs for
training, because multiple images can be considered just patches of a larger image.
For motion and lighting models, .Iobs is extended to image sequence and image set
with illumination variations.

By fitting the generative model to observed images, we can learn the texton
dictionary as parameters of the generative model.

With such a model, we may study the geometric, dynamic, and photometric
structures of the texton representation by further extending the generative model
to account for motion and illumination variations. (1) For the geometric structures,
a texton consists of a number of basis functions with deformable spatial configu-
rations. The geometric structures are learned from static texture images (Figs. 4.9
and 4.10). (2) For the dynamic structures, the motion of a texton is characterized by a
Markov chain model in time which sometimes can switch geometric configurations
during the movement. We call the moving textons as “motons.” The dynamic models
are learned using the trajectories of the textons inferred from a video sequence

Fig. 4.9 Reprinted with permission from [247]. A texton template is a deformable composition of
basis functions

110 4 Textons

Fig. 4.10 Reprinted with permission from [247]. A texton template is a deformable composition
of basis functions

Fig. 4.11 Reprinted with permission from [247]. The image can be decomposed into sub-bands at
multiple scales

(Fig. 4.11). (3) For photometric structures, a texton represents the set of images
of a 3D surface element under varying illuminations and is called a “lighton.” We
adopt an illumination cone representation where a lighton is a texton triplet. For a
given light source, a lighton image is generated as a linear combination of the three
texton basis functions (Fig. 4.12).

4.3 Active Basis Model

Olshausen–Field Model for Sparse Coding

The active basis model is based on the sparse coding model of Olshausen and Field
[188]. Olshausen and Field proposed that the role of simple V1 cells is to compute

4.3 Active Basis Model 111

Fig. 4.12 Reprinted with permission from [277]. The concept of textons can also be generalized
to incorporate lighting variations

sparse representations of natural images. Let .{Im,m = 1, . . . ,M} be a set of small
image patches. For example, they may be .12 × 12 patches, in which case . Im ∈
R12×12. We may think of each . Im as a two-dimensional function defined on the
.12 × 12 lattice. The Olshausen–Field model seeks to represent these images by

.Im =
N∑

i=1

cm,iBi + Um, (4.22)

where .(Bi, i = 1, . . . , N) is a dictionary of basis functions defined on the same
image lattice (e.g., . 12 × 12) as . Im and .cm,i are the coefficients, and .Um is the
unexplained residual image. N is often assumed to be greater than the number of
pixels in . Im, so the dictionary is said to be over-complete and is therefore redundant.
However, the number of coefficients .(cm,i , i = 1, . . . , N) that are non-zero (or
significantly different from zero) is assumed to be small (e.g., less than 10) for each
image . Im.

One may also assume that the basis functions in the dictionary are translated,
rotated, and dilated versions of one another, so that each . Bi can be written as
.Bx,s,α , where x is the location (a two-dimensional vector), s is the scale, and . α
is the orientation. We call such a dictionary self-similar, and we call .(x, s, α) the
geometric attribute of .Bx,s,α .

Model (4.22) then becomes

.Im =
∑

x,s,α

cm,x,s,αBx,s,α + Um, (4.23)

where .Bx,s,α are translated, rotated, and dilated copies of a single basis function,
e.g., .B = Bx=0,s=1,α=0, and .(x, s, α) are properly discretized (default setting: . α
is discretized into 16 equally spaced orientations). B can be learned from training
images .{Im}.

From now on, we assume that the dictionary of basis functions is self-similar,
and .{Bx,s,α,∀(x, s, α)} is already given. In the following, we assume that .Bx,s,α is
a Gabor wavelet, and we also assume that .Bx,s,α is normalized to have unit . �2 norm
so that .‖Bx,y,α‖2 = 1. .Bx,s,α may also be a pair of Gabor sine and cosine wavelets,

112 4 Textons

so that for each Gabor wavelet B, .B = (B0, B1). The corresponding coefficient
.c = (c0, c1), and .cB = c0B0 +c1B1. The projection .〈I, B〉 = (〈I, B0〉, 〈I, B1〉), and
.|〈I, B〉|2 = 〈I, B0〉2 + 〈I, B1〉2.

Given the dictionary .(Bx,s,α,∀(x, s, α)), the encoding of an image . Im amounts to
inferring the coefficients .(cm,x,s,α,∀(x, s, α)) in (4.23) under the sparsity constraint,
which means that only a small number of .(cm,x,s,α) are non-zero. That is, we seek
to encode . Im by

.Im =
n∑

i=1

cm,iBxm,i ,sm,i ,αm,i
+ Um, (4.24)

where .n � N is a small number, and .(xm,i , sm,i , αm,i , i = 1, . . . , n) are the
geometric attributes of the selected basis functions whose coefficients .(cm,i) are
non-zero. The attributes .(xm,i , sm,i , αm,i , i = 1, . . . , n) form a spatial point process
(we continue to use i to index the basis functions, but here i only runs through the
n selected basis functions instead of all the N basis functions as in (4.22)).

Active Basis Model for Shared Sparse Coding of Aligned Image
Patches

The active basis model was proposed for modeling deformable templates formed
by basis functions. Suppose we have a set of training image patches . {Im,m =
1, . . . ,M}. This time we assume that they are defined on the same bounding box,
and the objects in these images come from the same category. In addition, these
objects appear at the same location, scale, and orientation, and in the same pose.
See Fig. 4.13 for 9 image patches of deer. We call such image patches aligned.

The active basis model is of the following form:

.Im =
n∑

i=1

cm,iBxi+�xm,i ,s,αi+�αm,i
+ Um, (4.25)

where .B = (Bxi,s,αi
, i = 1, . . . , n) forms the nominal template of an active basis

model (sometimes we simply call . B an active basis template). Here we assume that
the scale s is fixed and given. .Bm = (Bxi+�xm,i ,s,αi+�αm,i

, i = 1, . . . , n) is the
deformed version of the nominal template . B for encoding . Im, where . (�xm,i,�αm,i)

are the perturbations of the location and orientation of the i-th basis function from its
nominal location . xi and nominal orientation . αi , respectively. The perturbations are
introduced to account for shape deformation. Both .�xm,i and .�αm,i are assumed
to vary within limited ranges (default setting: .�xm,i ∈ [−3, 3] pixels, and . �αm,i ∈
{−1, 0, 1} × π/16).

4.3 Active Basis Model 113

Fig. 4.13 First published in the Quarterly of Applied Mathematics in Volume 72:373–406, 2014,
published by Brown University. Reprinted with permission from [107]. (a) An active basis model
is a composition of a small number of basis functions, such as Gabor wavelets at selected locations
and orientations. Each basis function can perturb its location and orientation within limited ranges.
(b) Supervised learning of active basis model from aligned images. In this example, two active
basis models are learned using Gabor wavelets at two different scales. The first row displays
the 9 training images. The second row: the first plot is the nominal template formed by 50 basis
functions. The rest of the plots are the deformed templates matched to the images by perturbing
the basis functions. The third row: the same as the second row, except that the scale of the Gabor
wavelets is about twice as large, and the number of wavelets is 14. The last row displays the linear
reconstruction of each training image from 100 selected and perturbed basis functions

Prototype Algorithm

Given the dictionary of basis functions .{Bx,s,α,∀x, s, α}, the learning of the active
basis model from the aligned image patches .{Im} involves the sequential selection of
.Bxi,s,αi

and the inference of its perturbed version .Bxi+�xm,i ,s,αi+�αm,i
in each image

. Im. We call the learning supervised because the bounding boxes of the objects are
given and the images are aligned. See Fig. 4.13 for an illustration of the learning
results.

In this subsection, we consider a prototype version of the shared matching pursuit
algorithm, which is to be revised in the following subsections. The reason we start
from this prototype algorithm is that it is simple and yet captures the key features of
the learning algorithm.

We seek the maximal reduction of the least squares reconstruction error in each
iteration (recall that the basis functions are normalized to have unit . �2 norm):

114 4 Textons

.

M∑

m=1

∥∥∥∥∥Im −
n∑

i=1

cm,iBxi+�xm,i ,s,αi+�αm,I

∥∥∥∥∥

2

. (4.26)

The prototype algorithm is a greedy algorithm that minimizes the reconstruction
error:

In Eq. (4.29), the perturbed basis function .Bxi+�xm,i ,s,αi+�αm,i
explains away

part of . Um. As a result, nearby basis functions that overlap with . Bxi+�xm,i ,s,αi+�αm,i

tend not to be selected in future iterations. So the basis functions selected for each
deformed template .Bm = (Bxi+�xm,i ,s,αi+�αm,i

, i = 1, · · · , n) usually have little
overlap with each other. For computational and modeling convenience, we shall
assume that these selected basis functions are orthogonal to each other, so that the
coefficients can be obtained by projection: .cm,i = 〈Im,Bxi+�xm,i ,s,αi+�αm,i

〉.
Correspondingly, the explaining-away step can then be carried out by

local inhibition. Specifically, after we identify the perturbed basis function
.Bxi+�xm,i ,s,αi+�αm,i

, we simply prohibit nearby basis functions that are correlated
with .Bxi+�xm,i ,s,αi+�αm,i

from being included in the deformed template . Bm. In
practice, we allow small correlations between the basis functions in each . Bm.

0. Initialize i ← 0. For m = 1, . . . ,M , initialize the residual image
Um ← Im.

1. i ← i + 1. Select the next basis function by

.(xi, αi) = arg max
x,α

M∑

m=1

max
�x,�α

|〈Um,Bx+�x,s,α+�α〉|2, (4.27)

where max�x,�α is the local maximum pooling within the small ranges of
�xm,i and �αm,i .

2. For m = 1, . . . ,M , given (xi, αi), infer the perturbations in location and
orientation by retrieving the arg-max in the local maximum pooling of step
1:

.(�xm,i,�αm,i) = arg max
�x,�α

|〈Um,Bxi+�x,s,αi+�α〉|2. (4.28)

Let cm,i ← 〈Um,Bxi+�xm,i ,s,αi+�αm,i
〉, and update the residual image by

explaining away:

.Um ← Um − cm,iBxi+�xm,i ,s,αi+�αm,i . (4.29)

3. Stop if i = n, else go back to step 1.

Algorithm 4: Prototype Algorithm

4.3 Active Basis Model 115

Statistical Modeling

The above algorithm guided by (4.26) implicitly assumes that the unexplained
background image .Um is Gaussian white noise. This assumption can be problematic
because the unexplained background may contain salient structures such as edges,
and the Gaussian white noise distribution clearly cannot account for such structures.
This is why we need to revise the above algorithm which is based on the Gaussian
white noise assumption. A better assumption is to assume that .Um follows the same
distribution as that of natural images.

More precisely, the distribution of .Im given the deformed template . Bm =
(Bxi+�xm,i ,s,αi+�αm,i

, i = 1, . . . , n), i.e., .p(Im | Bm), is obtained by modifying
the distribution of natural images .q(Im) in such a way that we only change the
distribution of .Cm = (cm,i = 〈Im,Bxi+�xm,i ,s,αi+�αm,i

〉, i = 1, . . . , n) from . q(Cm)

to .p(Cm), while leaving the conditional distribution of .Um given .Cm unchanged.
Here .p(Cm) and .q(Cm) are the distributions of .Cm under .p(Im | Bm) and .q(Im),
respectively. Thus the model is in the form of foreground .p(Cm) popping out from
background .q(Im). Specifically, .p(Im | Bm) = q(Im)p(Cm)/q(Cm).

The reason for such a form is as follows. .Cm is the projection of . Im into . Bm. Let
.Um be the projection of . Im into the remaining subspace that is orthogonal to . Bm.
Then .p(Im | Bm)/q(Im) = p(Cm,Um)/q(Cm,Um) = p(Cm)/q(Cm). The second
equality follows from the assumption that .p(Um|Cm) = q(Um|Cm), i.e., we keep
the conditional distribution of .Um given .Cm fixed.

For computational simplicity, we further assume . (cm,i = 〈Im,

.Bxi+�xm,i ,s,αi+�αm,i
〉, i = 1, . . . , n) are independent given . Bm, under both p

and q, so

.p(Im | Bm) = q(Im)

n∏

i=1

pi(cm,i)

q(cm,i)
, (4.30)

where .q(c) is assumed to be the same for .i = 1, . . . , n because .q(Im) is translation
and rotation invariant. .q(c) can be pooled from natural images in the form of a
histogram of Gabor filter responses. This histogram is heavy-tailed because of the
edges in natural images.

For parametric modeling, we model .pi(cm,i)/q(cm,i) in the form of exponential
family model. Specifically, we assume the following exponential family model
.pi(c) = p(c; λi), which is in the form of exponential tilting of the reference
distribution .q(c):

.p(c; λ) = 1

Z(λ)
exp{λh(|c|2)}q(c), (4.31)

so that .p(c; λ)/q(c) is in the exponential form. We assume .λi > 0, and .h(r) is
a sigmoid-like function of the response .r = |c|2 that saturates for large r (recall
that the Gabor filter response .c = (c0, c1) consists of responses from the pair of

116 4 Textons

Gabor sine and cosine wavelets, and .|c|2 = c2
0 + c2

1). Specifically, we assume that
.h(r) = ξ [2/(1 + e−2r/ξ) − 1], so .h(r) ≈ r for small r , and .h(r) → ξ as . r → ∞
(default setting: .ξ = 6). The reason we want .h(r) to approach a fixed constant for
large r is that there can be strong edges in both the foreground and the background,
albeit with different frequencies. .p(c; λ)/q(c) should approach the ratio between
these two frequencies for large .r = |c|2. In (4.31),

.Z(λ) =
∫

exp{λh(r)}q(c)dc = Eq [exp{λh(r)}] (4.32)

is the normalizing constant.

.μ(λ) = Eλ[h(r)] =
∫

h(r)p(c; λ)dc (4.33)

is the mean parameter. Both .Z(λ) and .μ(λ) can be computed beforehand from a set
of natural images.

The exponential family model can be justified by the maximum entropy principle.
Given the deformed template .Bm = (Bxi+�xm,i ,s,αi+�αm,i

, i = 1, . . . , n), consider
the coefficients obtained by projection: . (cm,i(Im) = 〈Im,Bxi+�xm,i ,s,αi+�αm,i

〉, i =
1, . . . , n). Suppose we want to find a probability distribution .p(Im | Bm) so
that .E[h(|cm,i(Im)|2)] = μi for some fixed . μi , .i = 1, . . . , n, where . μi can be
estimated from the training images. Then among all the distributions that satisfy the
constraints on .E[h(|cm,i(Im)|2)], the distribution that is closest to .q(Im) in terms of
the Kullback–Leibler divergence is given by

.p(Im | Bm) = 1

Z(�)
exp

{
n∑

i=1

λih(|cm,i(Im)|2)
}

q(Im), (4.34)

where .� = (λi, i = 1, . . . , n), .Z(�) = Eq [exp{∑n
i=1 λih(|cm,i(Im)|2)] is the nor-

malizing constant, and . � is chosen to satisfy the constraints on .E[h(|cm,i(Im)|2)]. If
we further assume that .cm,i(Im) are independent of each other for . i = 1, . . . , n

under .q(Im), then .cm,i(Im) are also independent under .p(Im | Bm), and their
distributions are of the form (4.31).

In order to choose the nominal template . B and the deformed templates . {Bm,m =
1, . . . ,M}, we want .p(Im | Bm) to be farthest from .q(Im) in terms of the Kullback–
Leibler divergence. From a classification point of view, we want to choose . B and
.{Bm} so that the features .{h(|cm,i |2), i = 1, . . . , n} lead to the maximal separation
between training images (e.g., images of deer) and generic natural images.

The log-likelihood ratio between the current model .p(Im|Bm) and the reference
model .q(Im) is

4.3 Active Basis Model 117

. l({Im} | B, {Bm},�) =
M∑

m=1

log
p(Im|Bm)

q(Im)
. (4.35)

=
M∑

m=1

n∑

i=1

[
λih(|〈Im,Bxi+�xm,i ,s,αi+�αm,i

〉|2) − log Z(λi)
]
. (4.36)

The expectation of the above log-likelihood ratio is the Kullback–Leibler divergence
between .p(Im | Bm) and .q(Im).

Given the training images .{Im,m = 1, . . . ,M}, .∑M
m=1 log q(Im) is a constant.

Thus maximizing the log-likelihood ratio .
∑M

m=1 log p(Im | Bm,�)/q(Im) is
equivalent to maximizing the log-likelihood .

∑M
i=1 log p(Im | Bm,�).

Shared Matching Pursuit

We revise the prototype algorithm in Sect. 4.3 so that each iteration seeks the
maximal increase of the log-likelihood ratio (4.36) instead of the maximum
reduction of the least squares reconstruction error (4.26) as in Sect. 4.3. The revised
version of the shared matching pursuit algorithm is as follows.

0. Initialize i ← 0. For m = 1, . . . , M , initialize the response maps
Rm(x, α) ← 〈Im,Bx,s,α〉 for all (x, α).

1. i ← i + 1. Select the next basis function by finding

.(xi, αi) = arg max
x,α

M∑

m=1

max
�x,�α

h(|Rm(x + �x, α + �α)|2), (4.37)

where max�x,�α is again the local maximum pooling.
2. For m = 1, . . . , M , given (xi, αi), infer the perturbations by retrieving the

arg-max in the local maximum pooling of step 1:

.(�xm,i,�αm,i) = arg max
�x,�α

|Rm(xi + �x, αi + �α)|2. (4.38)

Let cm,i ← Rm(xi + �xm,i, αi + �αm,i), and update Rm(x, α) ← 0 if the
correlation

.corr[Bx,s,α, Bxi+�xm,i ,s,αi+�αm,i
] > ε (4.39)

(default setting: ε = .1). Then compute λi by solving the maximum
likelihood equation μ(λi) = ∑M

m=1 h(|cm,i |2)/M .
3. Stop if i = n, else go back to step 1.

Algorithm 5: Revised Prototype Algorithm

118 4 Textons

For each candidate .(xi, αi), the maximum likelihood equation . μ(λi) =∑M
m=1 h(|cm,i |2)/M is obtained by taking the derivative of the log-likelihood

ratio, where .μ(λi) = Eλi
[h(|c|2)] = ∫

h(|c|2)p(c; λi)dc is the mean parameter
and is a monotonically increasing function of .λi > 0. So its inverse .μ−1() is also a
monotonically increasing function. . λi is solved so that .μ(λi) matches the empirical
average of .h(|cm,i |2), .m = 1, . . . ,M . The function .μ() can be computed and stored
over a discrete set of equal-spaced values so that . λi can be solved by looking up
these values with linear interpolations between them.

Because .h() is monotonically increasing, the maximized log-likelihood ratio
is monotone in the estimated . λi . The estimated . λi is in turn monotone in the
average .

∑M
m=1 h(|cm,i |2)/M . So the maximized log-likelihood ratio is monotone

in .
∑M

m=1 h(|cm,i |2)/M . Therefore, in step [1], .(xi, αi) is chosen by maximizing the
sum .

∑M
m=1 max�x,�α h(|Rm(x + �x, α + �α)|2) over all possible .(x, α).

In step 2, the arg-max basis function inhibits nearby basis functions to enforce
the approximate orthogonality constraint. The correlation is defined as the square
of the inner product between the basis functions and can be computed and stored
beforehand.

After learning the template from training images .{Im}, we can use the learned
template to detect the object in a testing image . I.

1. For every pixel X, compute the log-likelihood ratio l(X), which serves as
the template matching score at putative location X:

.l(X) =
n∑

i=1

[
λi max

�x,�α
h(|〈I, BX+xi+�x,s,αi+�α〉|2) − log Z(λi)

]
. (4.40)

2. Find maximum likelihood location X̂ = arg maxX l(X). For i = 1, . . . , n,
inferring perturbations by retrieving the arg-max in the local maximum
pooling in step 1:

.(�xi,�αi) = arg max
�x,�α

|〈I, B ̂
X+xi+�x,s,αi+�α

〉|2. (4.41)

3. Return the location X̂, and (B ̂
X+xi+�xi,s,αi+�αi

, i = 1, . . . , n), which is
the translated and deformed template.

Algorithm 6: Object detection

We can rotate the template and scan the template over multiple resolutions of the
original image, to account for uncertainties about the orientation and scale of the
object in the testing image.

4.4 Sparse FRAME Model 119

4.4 Sparse FRAME Model

One generalization of the FRAME model is a sparse FRAME model [261, 265]
where the potential functions are location specific, and they are non-zero only at
selected locations. This model is intended to model image patterns that are non-
stationary in the spatial domain, such as object patterns. The model can be written
as a shared sparse coding model, where the observed images are represented by a
commonly shared set of wavelets selected from a dictionary. In this shared sparse
coding model, the original linear filters for bottom-up computation (from image to
filter responses) become linear basis functions for top-down representation (from
coefficients to image).

Dense FRAME

We start from the non-stationary or spatially inhomogeneous FRAME model [254,
261, 265] based on a dictionary of basis functions or wavelets .{Bk,x,∀k, x} (we
assume that the dictionary of wavelets, such as the Gabor and DoG wavelets, has
been given or has been learned by sparse component analysis [3, 22, 190]). The
model is a random field of the following form:

.p(I;w) = 1

Z(w)
exp

{
K∑

k=1

∑

x∈D
wk,xh(〈I, Bk,x〉)

}
q(I). (4.42)

The above model is a simple generalization of FRAME model, where .〈I, Bk,x〉 is
the filter response, which can also be written as .[Fk ∗ I](x). The parameter . wk,x

depends on position x, so the model is non-stationary. .w = (wk,x,∀k, x). Again
.Z(w) is the normalizing constant. .h() is a pre-specified rectification function. In
[261], .h(r) = |r|, i.e., the model is insensitive to the signs of filter responses. . q(I)
is a reference distribution, such as the Gaussian white noise model

.q(I) = 1

(2πσ 2)D/2 exp

{
− 1

2σ 2 ||I||2
}

, (4.43)

where again D counts the number of pixels in the image domain . D.

Sparse Representation

Assume we are given a dictionary of wavelets or basis functions .{Bk,x}, where k
may index a finite collection of prototype functions .{Bk, k = 1, . . . , K}, and where

120 4 Textons

.Bk,x is a spatially translated copy of . Bk to position x. We can represent an image

. I by

.I =
∑

k,x

ck,xBk,x + ε, (4.44)

where .ck,x are the coefficients, and . ε is the residual image. It is often assumed that
the representation is sparse, i.e., most of the .ck,x are equal to zero. The resulting
representation is also called sparse coding [49, 190].

The sparsification of .ck,x , i.e., the selection of the basis functions, can be
accomplished by matching pursuit [167] or basis pursuit/Lasso [26, 230]. Using
a Lasso-like objective function, the dictionary of basis functions .{Bk} can be
learned from a collection of training images [3, 190]. It is sometimes called sparse
component analysis [46]. It can be considered a generalization of factor analysis. For
natural images, the learned basis functions resemble the Gabor and DoG wavelets.

Maximum Likelihood Learning

The basic learning algorithm estimates the parameters .w = (wk,x,∀k, x) from a
set of aligned training images .{Ii , i = 1, . . . , n} that come from the same category,
where n is the total number of training images. The algorithm can be extended to
learn from non-aligned images from mixed categories. The basic learning algorithm
seeks to maximize the log-likelihood

.L(w) = 1

n

n∑

i=1

log p(Ii;w), (4.45)

whose partial derivatives are

.
∂L(w)

∂wk,x

= 1

n

n∑

i=1

h(〈Ii , Bk,x〉) − Ew

[
h(〈I, Bk,x〉)

]
, (4.46)

where .Ew denotes expectation with respect to .p(I;w) in (4.42). This expectation
can be approximated by the Monte Carlo integration. Thus, w can be computed by
the stochastic gradient ascent algorithm [205, 274]

. w
(t+1)
k,x = w

(t)
k,x + γt

⎡

⎣1

n

n∑

i=1

h(〈Ii , Bk,x〉) − 1

ñ

ñ∑

i=1

h(〈Ĩi , Bk,x〉)
⎤

⎦ , (4.47)

where . γt is the step size or the learning rate, and .{Ĩi , i = 1, . . . , ñ} are the synthetic
images sampled from .p(I;w(t)) using MCMC, such as Hamiltonian Monte Carlo
[179] or the Gibbs sampler [74]. . ̃n is the total number of independent parallel
Markov chains that sample from .p(I;w(t)).

4.4 Sparse FRAME Model 121

Generative Boosting

Model (4.42) is a dense model in that all the wavelets (or filters) in the dictionary
are included in the model. We can sparsify the model by forcing most of the .wk,x to
be zero so that only a small number of wavelets are included in the model. This can
be achieved by a generative version [265] of the epsilon-boosting algorithm [64, 67]
(see also [37, 59, 250, 257]). The algorithm starts from .w = 0, the zero vector. At
the t-th iteration, let

.�k,x = 1

n

n∑

i=1

h(〈Ii , Bk,x〉) − 1

ñ

ñ∑

i=1

h(〈Ĩi , Bk,x〉) (4.48)

be the Monte Carlo estimate of .∂L(w)/∂wk,x , where again .{Ĩi , i = 1, . . . , ñ} are
the synthetic images sampled from the current model. We select

.(k̂, x̂) = arg max
k,x

|�k,x | (4.49)

and update .w
k̂,x̂

by

.w
k̂,x̂

← w
k̂,x̂

+ γt�k̂,x̂
, (4.50)

where . γt is the step size, assumed to be sufficiently small (thus the term “epsilon” in
the epsilon-boosting algorithm). We call this algorithm generative epsilon boosting
because the derivatives are estimated by images generated from the current model.
See Fig. 4.14 for an illustration.

The selected wavelet .B
k̂,x̂

reveals the dimension along which the current model
is most conspicuously lacking in reproducing the statistical properties of the training
images. By including .B

k̂,x̂
into the model and updating the corresponding parameter

.w
k̂,x̂

, the model receives the most needed boost. The process is like an artist making
a painting, where .B

k̂,x̂
is the stroke that is most needed to make the painting look

more similar to the observed objects.
The epsilon boosting algorithm [67, 96] has an interesting relationship with the

. �1 regularization in the Lasso [230] and basis pursuit [26]. As pointed out by [206],
under a monotonicity condition (e.g., the components of w keep increasing), such an
algorithm approximately traces the solution path of the . �1 regularized minimization
of

. − L(w) + ρ‖w‖�1 , (4.51)

where the regularization parameter . ρ starts from a big value so that all the
components of w are zero and gradually lowers itself to allow more components
to be non-zero so that more wavelets are induced into the model.

122 4 Textons

Fig. 4.14 Reprinted with permission from [256]. Learning process of generative boosting. (a)
Observed training images (.100 × 100 pixels) from which the random field model is learned. (b)
A sequence of synthetic images generated by the learned model as more and more wavelets are
induced into the model. The numbers of the selected wavelets are .1, 20, 65, 100, 200, 500, and
800, respectively. (c) A sequence of sketch templates that illustrate the wavelets selected from
the given dictionary. The dictionary includes 4 scales of Gabor wavelets, illustrated by bars of
different sizes, and 2 scales of Difference of Gaussian (DoG) wavelets, illustrated by circles. In
each template, smaller scale wavelets appear darker than larger ones. (d) More synthetic images
independently generated from the final learned model

Sparse Model

After selecting m wavelets, we have the following sparse FRAME model:

.p(I;B, w) = 1

Z(w)
exp

⎧
⎨

⎩

m∑

j=1

wjh(〈I, Bkj ,xj
〉)

⎫
⎬

⎭ q(I), (4.52)

where .B = (Bj = Bkj ,xj
, j = 1, . . . , m) is the set of wavelets selected from the

dictionary, and .wj = wkj ,xj
.

4.4 Sparse FRAME Model 123

In model (4.52), m is much smaller than D, the number of pixels. Thus, we can
represent . I by

.I =
m∑

j=1

cjBkj ,xj
+ ε, (4.53)

where .C = (cj , j = 1, . . . , m)� are the least square regression coefficients of . I on
.B = (Bj , j = 1, . . . , m), i.e., .C = (B�B)−1B�I, and . ε is the residual image. The
distribution of C under .p(I;B, w) is

.pC(C;w) = 1

Z(w)
exp

{
〈w, h(B�BC)〉

}
qC(C), (4.54)

where .qC(C) is the distribution of C under .q(I), and the transformation .h() is
applied element-wise. Thus, .p(I;B,w) in (4.52) can be written as a wavelet sparse
coding model (4.53) and (4.54). The forms of (4.52) and (4.53) show that the
selected wavelets .{Bj } serve both as filters and as basis functions. The sparse coding
form of the model (4.53) and (4.54) is used for sampling .{Ĩi} from .p(I;B, w) by
first sampling .C ∼ pC(C;w) using the Gibbs sampler [74] and then generating . ̃Ii
according to (4.53).

Model (4.53) suggests that we can also select the wavelets by minimizing

.

n∑

i=1

∥∥∥∥∥∥
Ii −

m∑

j=1

ci,jBkj ,xj

∥∥∥∥∥∥

2

, (4.55)

using a shared matching pursuit method [261]. See Fig. 4.15 for an illustration. We
can also allow the selected wavelets to perturb their locations and orientations to
account for deformations [254].

The sparse FRAME model can be used for unsupervised learning tasks such
as model-based clustering [57]. Extending the learning algorithm, one can learn a
codebook of multiple sparse FRAME models from non-aligned images. The learned
models can be used for tasks such as transfer learning [107, 261].

The sparse FRAME model merges two important research themes in image
representation and modeling, namely, Markov random fields [19, 75] and wavelet
sparse coding [3, 190].

The wavelets can be mapped to the first layer filters of a ConvNet [144] to be
described later. The sparse FRAME models can be mapped to the second layer nodes
of a ConvNet, except that the sparse FRAME versions of the second layer nodes are
selectively and sparsely connected to the first layer nodes.

124 4 Textons

Fig. 4.15 Reprinted with permission from [256]. The shared matching pursuit for the purpose of
wavelet selection. (a) Sequence of sketch templates that illustrate the wavelets selected sequentially
in order to reconstruct all the training images simultaneously. The selected wavelets are shared by
all the training images (.100 × 100) in their reconstructions. The numbers of selected wavelets in
the sequence are 2, 20, 60, 100, 200, 500, and 800, respectively. (b) Sequences of reconstructed
images by the selected wavelets for the 1st and 3rd training images in Fig. 4.14a

4.5 Compositional Sparse Coding

Sparsity and Composition

The goal of this section is to develop a compositional sparse code for natural
images. Figure 4.16 illustrates the basic idea. We start with a dictionary of Gabor
wavelets centered at a dense collection of locations and tuned to a collection of
scales and orientations. In Fig. 4.16, each Gabor wavelet is illustrated by a bar at
the same location and with the same length and orientation as the corresponding
wavelet. Figure 4.16a displays the training image. (b) Displays a mini-dictionary
of 2 compositional patterns of wavelets learned from the training image. Each
compositional pattern is a template formed by a group of a small number of wavelets
at selected locations and orientations. The learning is unsupervised in the sense that
the images are not labeled or annotated. The number of templates in the dictionary
is automatically determined by an adjusted Bayesian information criterion. The
2 templates are displayed in different colors, so that it can be seen clearly how
the translated, rotated, scaled, and deformed copies of the 2 templates are used to
represent the training image, as shown in (b). In (c), the templates are overlaid on
the original image. In our current implementation, we allow some overlap between
the bounding boxes of the templates. The templates learned from the training image
can be generalized to testing images, as shown in (d) and (e).

4.5 Compositional Sparse Coding 125

Fig. 4.16 First published in the Quarterly of Applied Mathematics in Volume 72:373–406, 2014,
published by Brown University. Reprinted with permission from [107]. Unsupervised learning of
compositional sparse code (a,b,c) and using it for recognition and segmentation (d,e). (a) Training
image of .480 × 768 pixels. (b) Above: 2 compositional patterns (twig and leaf) in the form of
shape templates learned from the training image. Each constituent Gabor wavelet (basis function)
of a template is illustrated by a bar at the same location and with the same orientation and length
as the corresponding wavelet. The size of each template is .100 × 100 pixels. The number of basis
functions in each template is no more than 40 and is automatically determined. Below: representing
the training image by translated, rotated, scaled, and deformed copies of the 2 templates. (c)
Superposing the deformed templates on the original image. (d) Testing image. (e) Representation
(recognition) of the testing image by the 2 templates

Fig. 4.17 First published in the Quarterly of Applied Mathematics in Volume 72:373–406, 2014,
published by Brown University. Reprinted with permission from [107]. The compositional patterns
(templates) are learned from 20 training images (only 6 of them are shown in this figure). The
training images are not registered or otherwise annotated. The size of each template is . 100 × 100
pixels. The number of basis functions in each template is no more than 40 and is automatically
determined

Figure 4.17 shows another example, where part templates of egrets and templates
of water waves and grasses are learned from 20 training images without supervision.
That is, the training images are not registered, in that we do not assume that the
objects in the training images appear at the same location and scale. It is interesting
to observe that in this example, unsupervised learning also accomplishes image
segmentation, object detection, and perceptual grouping (e.g., grass pattern), which
are important tasks in vision.

126 4 Textons

Our compositional sparse code combines two fundamental principles in image
representation and computational vision, namely, sparsity and compositionality. We
shall briefly review these two principles below and then give an overview of our
methodology.

The compositionality principle was proposed in the context of computer vision
by Geman, Potter, and Chi [76] and Zhu et al. [280]. The principle holds that patterns
in natural images are compositions of parts, which are in turn compositions of sub-
parts, and so on. An interesting example cited by Geman et al. is Laplace’s remark
that one strongly prefers to view the string CONSTANTINOPLE as a single word,
rather than 14 individual letters. This is also the case with the basis functions in the
sparse coding of natural images. Like letters forming the words, the basis functions
in the sparse representations of natural images also form various compositional
patterns in terms of their spatial arrangements. We call such sparsity compositional
sparsity, which is a special form of structured sparsity.

Any hierarchical compositional model will necessarily end with constituent
elements that cannot be further decomposed, and such elements may be called
“atoms.” Interestingly, the basis functions are commonly referred to as atoms in
sparse coding literature, and the sparse representation based on atoms is usually
called “atomic decomposition.” Compositionality enables us to compose atoms
into composite representational units, which leads to much sparser and thus more
meaningful representations of the signals.

The current form of our model consists of two layers of representational units:
basis functions and shape templates. It is possible to extend it to multiple layers of
hierarchy.

Compositional Sparse Coding Model

We will write down our model in an analogous form as the Olshausen–Field model
.Im = ∑n

i=1 cm,iBxm,i ,sm,i ,αm,i
+ Um, by making the notation compact.

As the first step, let us slightly generalize the active basis model by assuming
that the template may appear at location .Xm in image . Im, and then we can write the
representation in the following form:

. Im =
n∑

i=1

cm,iBXm+xi+�xm,i ,s,αi+�αm,i
+ Um

= CmBXm + Um, (4.56)

where .BXm = (BXm+xi+�xm,i ,s,αi+�αm,i
, i = 1, . . . , n) is the deformed tem-

plate spatially translated to . Xm, .Cm = (cm,i , i = 1, . . . , n), and . CmBXm =∑n
i=1 cm,iBXm+xi+�xm,i ,s,αi+�αm,i

by definition.

4.5 Compositional Sparse Coding 127

.BXm explains the part of . Im that is covered by .BXm . For each image . Im and each
. Xm, we can define the log-likelihood ratio similar to (4.40)

. l(Im | BXm) = log
p(Im | BXm)

q(Im)

=
n∑

i=1

[
λi max

�x,�α
h(|〈Im,BXm+xi+�x,s,αi+�α〉|2) − log Z(λi)

]
.(4.57)

As the next step of this modeling procedure, in addition to spatial translation and
deformation, we can also rotate and scale the template. So a more general version
of (4.56) is

.Im = CmBXm,Sm,Am + Um, (4.58)

where .Xm is the location, . Sm is the scale, and .Am is the orientation of the translated,
rotated, scaled, and deformed template. The scaling of the template is implemented
by changing the resolution of the original image. We adopt the convention that
whenever the notation . B appears in image representation, it always means the
deformed template, where the perturbations of the basis functions can be inferred
by local max pooling. The log-likelihood ratio .l(Im | BXm,Sm,Am) can be similarly
defined as in (4.57). Figure 4.18 illustrates the basic idea of representation (4.58).
In addition to spatial translation, dilation, and rotation of the template, we may also
allow mirror reflection as well as the change of aspect ratio.

Fig. 4.18 First published in the Quarterly of Applied Mathematics in Volume 72:373–406, 2014,
published by Brown University. Reprinted with permission from [107]. Objects appear at different
locations, scales, and orientations in the training images. In each row, the first plot displays the
nominal active basis template. The rest of the row displays some examples of training images and
the suppositions of the spatially translated, scaled, rotated, and deformed versions of the nominal
template

128 4 Textons

Now suppose we have a dictionary of T active basis templates, . {B(t), t =
1, . . . , T }, where each .B(t) is a compositional pattern of basis functions. Then we
can represent the image . Im by .Km templates that are spatially translated, rotated,
scaled, and deformed versions of these T templates in the dictionary:

.Im =
Km∑

k=1

Cm,kB
(tm,k)

Xm,k,Sm,k,Am,k
+ Um, (4.59)

where each .B(tm,k)

Xm,k,Sm,k,Am,k
is obtained by translating the template of type .tm,k , i.e.,

.B(tm,k), to location .Xm,k , scaling it to scale .Sm,k , rotating it to orientation .Am,k , and
deforming it to match . Im. Note that according to (4.59), the images represented by
the dictionary are no longer assumed to be aligned.

If the .Km templates do not overlap with each other, then the log-likelihood ratio
is

.

M∑

m=1

Km∑

k=1

[
l(Im | B(tm,k)

Xm,k,Sm,k,Am,k
)
]
. (4.60)

The above representation is in analogy to model (4.24) in Sect. 4.3, which
we copy here: .Im = ∑n

i=1 cm,iBxm,i ,sm,i ,αm,i
+ Um. The difference is that each

.B(tm,k)

Xm,k,Sm,k,Am,k
is a composite representational unit, which is itself a group of basis

functions that follow a certain compositional pattern of type .tm,k . Because of such
grouping or packing, the number of templates .Km needed to encode . Im is expected
to be much smaller than the total number of basis functions needed to represent . Im,
thus resulting in sparser representation. Specifically, if each template is a group of
g basis functions, then the number of basis functions in the representation (4.59)
is .Kmg. In fact, we can unpack model (4.59) into the representation (4.24). The
reason that it is advantageous to pack the basis functions into groups is that these
groups exhibit T types of frequently occurring spatial grouping patterns, so that

when we encode the image . Im, for each selected group .B(tm,k)

Xm,k,Sm,k,Am,k
, we only need

to code the overall location, scale, orientation, and type of the group, instead of the
locations, scales, and orientations of the individual constituent basis functions.

It is desirable to allow some limited overlap between the bounding boxes of the
.Km templates that encode . Im. Even if the bounding boxes of two templates have
some overlap with each other, their constituent basis functions may not overlap
much. If we do not allow any overlap between the bounding boxes of the templates,
some salient structures of . Im may fall through the cracks between the templates.
Also, it is possible that the frequently occurring patterns may actually overlap with
each other. For instance, in a string “ABABABA,” the pattern “AB” is frequently
occurring, but at the same time, the pattern “BA” is as frequent as “AB,” and these
two patterns overlap with each other. So it can be desirable to allow some overlap
between the patterns in order to recover all the important recurring patterns. On
the other hand, we do not want to allow excessive overlap between the templates.

4.5 Compositional Sparse Coding 129

Otherwise, the learned templates will be too redundant, and we will need a lot of
them in order to describe the training images. In practice, we assume the following

limited overlap constraint: for each template .B(tm,k)

Xm,k,Sm,k,Am,k
centered at . Xm,k , let D

be the side length of its squared bounding box, then no other templates are allowed
to be centered within a distance of .ρD from .Xm,k (default setting: .ρ = .4).

Such an assumption naturally leads to an inhibition step when we use a dictionary
of templates to encode a training or testing image. Specifically, when a template is
chosen to encode an image, this template will prevent overlapping templates from
being selected. The template matching pursuit algorithm to be described below
adopts such an inhibition scheme.

The following are the details of the two steps.
Step (I): Image encoding by template matching pursuit. Suppose we are given the

current dictionary .{B(t), t = 1, . . . , T }. Then for each . Im, the template matching
pursuit process seeks to represent . Im by sequentially selecting a small number of
templates from the dictionary. Each selection seeks to maximally increase the log-
likelihood ratio (4.60).

[I.0] Initialize the maps of template matching scores for all .(X, S,A, t):

.R(t)
m (X, S,A) ← l(Im | B(t)

X,S,A) − n(t)γ, (4.61)

where .n(t) is the number of basis functions in the t-th template in the dictionary
and . γ is a constant controlling model complexity as explained above. This can be
accomplished by first rotating the template .B(t) to orientation A and then scanning
the rotated template over the image zoomed to the resolution that corresponds to
scale S. The larger the S is, the smaller the resolution is. Initialize .k ← 1.

[I.1] Select the translated, rotated, scaled, and deformed template by finding the
global maximum of the response maps:

.(Xm,k, Sm,k, Am,k, tm,k) = arg max
X,S,A,t

R(t)
m (X, S,A). (4.62)

[I.2] Let the selected arg-max template inhibit overlapping candidate templates
to enforce limited overlap constraint. Let D be the side length of the bounding box

of the selected template .B(tm,k)

Xm,k,Sm,k,Am,k
, then for all .(X, S,A, t), if X is within

a distance .ρD from .Xm,k , then set the response .R(t)
m (X, S,A) ← −∞ (default

setting: .ρ = .4).
[I.3] Stop if all .R(t)

m (X, S,A, t) < 0. Otherwise let .k ← k + 1, and go to [I.1].
The template matching pursuit algorithm implements a hard inhibition to enforce

the limited overlap constraint. In a more rigorous implementation, we may update

the residual image by .Um ← Um − CmB
(tm,k)

Xm,k,Sm,k,Am,k
as in the original version of

matching pursuit. But the current simplified version is more efficient.
Step (II): Dictionary re-learning by shared matching pursuit. For each . t =

1, . . . , T , we re-learn .B(t) from all the image patches that are currently covered
by .B(t).

130 4 Textons

[II.0] Image patch cropping. For each . Im, go through all the selected templates

.{B(tm,k)

Xm,k,Sm,k,Am,k
,∀k} that encode . Im. If .tm,k = t , then crop the image patch of . Im (at

the resolution that corresponds to .Sm,k) covered by the bounding box of the template

.B(tm,k)

Xm,k,Sm,k,Am,k
.

[II.1] Template re-learning. Re-learn template .B(t) from all the image patches
covered by .B(t) that are cropped in [II.0], with their bounding boxes aligned. The
learning is accomplished by the shared matching pursuit algorithm of Sect. 4.3.

This dictionary re-learning step re-learns each compositional pattern from the
re-aligned raw image patches, where the sparse representations and the correspon-
dences between the selected basis functions are obtained simultaneously by the
shared matching pursuit algorithm.

As mentioned above, the learning algorithm is initialized by learning from image
patches randomly cropped from the training images. As a result, the initially learned
templates are rather meaningless, but meaningful templates emerge very quickly
after a few iterations.

In the beginning, the differences among the initial templates are small. However,
as the algorithm proceeds, the small differences among the initial templates trigger
a polarizing or specializing process, so that the templates become more and more
different, and they specialize in encoding different types of image patches.

Chapter 5
Gestalt Laws and Perceptual
Organization

5.1 Gestalt Laws for Perceptual Organization

The word Gestalt, as used in Gestalt Psychology, is often understood as “pattern.”
The school of Gestaltism, which emerged in Austria and Germany in the early
twentieth century, focuses on the study of how organisms perceive entire patterns
or configurations from an image, rather than just individual components. As is
commonly cited, “the whole is more than the sum of its parts” best describes the
idea of Gestaltism.

Many people share the experience that when we look at the world, we tend
to decompose complex scenes into groups of objects against a background and
perceive the objects as a composition of parts, and sometimes even those parts
have sub-parts. But what actually enables us to do this? Does that surprise you
that we manage to do such a remarkable thing when what we see is, to some
extent, just a distribution of colored points? The Gestalt Psychology believes that
we are able to do it because our vision system favors a set of principles when we
understand the world. The set of principles is later formulated based on regularities
of wholes, sub-wholes, groups, or Gestalten and called Gestalt laws. Gestalt laws,
proximity, similarity, figure-ground, continuity, closure, and connection, determine
how humans perceive visuals in connection with different objects and environments.

Specifically, Gestalt laws include the following:

• Law of Similarity: The law of similarity suggests that similar things tend to show
up together. The grouping can occur in various modalities, including visual and
auditory stimuli.

• Law of Pragnanz: “Pragnanz” in German means “good figure.” Therefore, this
law is sometimes referred to as the law of good figure or the law of simplicity. It
states that we perceive figures in the simplest way possible, say a composition of
simple shapes.

• Law of Proximity: The law of proximity suggests that when we perceive an
image, closer objects tend to be grouped together. This law could be particularly

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_5

131

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_5&domain=pdf

 12905
61494 a 12905 61494 a

132 5 Gestalt Laws and Perceptual Organization

helpful when we describe a set of objects and explain how we separate them into
several smaller groups.

• Law of Continuity: We often have the impression that points connected by lines
or curves form a smooth path together instead of segmented lines and angles. The
Gestaltism explains this phenomenon using the law of continuity.

• Law of Closure: If things, when grouped as a whole, would become a simple
entity, we usually ignore contradictory evidence and choose to fill in the missing
pieces to treat it as a group. This law of closure helps us understand the
segmented arcs of a circle to be a whole.

• Law of Common Region: According to this law, elements in the same region of
space tend to be grouped together.

Gestalt laws provide a way for us to understand some important perception
heuristics and psychological research continues to offer insights into it. But from
a modeling point of view, despite long-standing observations in the psychology
literature, there were no explicit mathematical models that can account for these
Gestalt laws and weight them properly when multiple laws are working together or
in competition.

5.2 Texton Process Embedding Gestalt Laws

In this section, we discuss a way to model visual patterns based on Gestalt laws by
integrating descriptive and generative methods.

In particular, we present a mathematical framework for visual learning that
integrates two popular statistical learning paradigms in the literature:

1. Descriptive methods, such as Markov random fields and minimax entropy
learning [281].

2. Generative methods, such as principal component analysis, independent com-
ponent analysis [15], transformed component analysis [60], wavelet coding
[26, 165], and sparse coding [152, 188].

The integrated framework creates richer classes of probabilistic models for visual
patterns. In this section, we demonstrate the integrated framework by learning a
class of hierarchical models for texton patterns. At the bottom level of the model,
we assume that an observed texture image is generated by multiple hidden “texton
maps,” and textons on each map are translated, scaled, and oriented versions of a
window function, like mini-templates or wavelet basis function. The texton maps
generate the observed image by occlusion or linear superposition. This bottom
level of the model is generative in nature. At the top level of the model, the
spatial arrangements or global organizations of the textons in the texton maps are
characterized by the minimax entropy principle, which leads to the Gibbs point
process models [27]. The top level of the model is descriptive in nature.

The learning framework achieves four goals:

5.2 Texton Process Embedding Gestalt Laws 133

1. Computing the window functions (or appearances) of different types of textons.
2. Inferring the hidden texton maps that generate the image.
3. Learning Gibbs point process models for the texton maps.
4. Verifying the learned window functions and Gibbs models through texture

synthesis by stochastic sampling.

We use a stochastic gradient algorithm for inferential computation. We demonstrate
the learning framework through a set of experiments.

Introduction

What a vision algorithm can accomplish depends crucially upon how much it
“understands” the contents of the observed images. Thus in computer vision
and especially Bayesian image analysis, an important research theme is visual
learning whose objective is to construct parsimonious and general models that can
realistically characterize visual patterns in natural scenes. Due to the stochastic
nature of visual patterns, visual learning is posed as statistical modeling and
inference problem, and existing methods in the literature can be generally divided
into two categories. In this book, we call one category the descriptive methods and
the other category the generative methods.1

Descriptive methods model a visual pattern by imposing statistical constraints
on features extracted from signals. Descriptive methods include Markov random
fields, minimax entropy learning [281], deformable models, etc. For example, many
methods of texture modeling fall into this category [36, 98, 197, 281]. These models
are built on pixel intensities or some deterministic transforms of the original signals,
such as linear filtering. The shortcomings of descriptive methods are twofold. First,
they do not capture high-level semantics in visual patterns, which are often very
important in human perception. For example, a descriptive model of texture can
realize a cheetah skin pattern with impressive synthesis results, but it does not
have an explicit notion of individual blobs. Second, as descriptive models are built
directly on the original signals, the resulting probability densities are often of very
high dimensions and the sampling and inference are computationally expensive. It
is desirable to have dimension reduction so that the models can be built in a low-
dimensional space that often better reflects the intrinsic complexity of the pattern.

In contrast to descriptive methods, generative methods postulate hidden variables
as the causes for the complicated dependencies in raw signals, and thus the models
are hierarchical in nature. Generative methods are widely used in vision and
image analysis. For example, principal component analysis (PCA), independent
component analysis (ICA) [15], transformed component analysis (TCA) [60],

1 There is a third category of methods which are discriminative. The goal of discriminative methods
is not for modeling visual patterns explicitly but for classification. For example, pattern recognition,
feed-forward neural networks, and classification trees, etc.

134 5 Gestalt Laws and Perceptual Organization

wavelet image representation [26, 165], sparse coding [152, 188], and the random
collage model for generic natural images [146]. Despite their simplicity, these
generative models suffer from an over-simplified assumption that hidden variables
are independent and identically distributed (i.i.d.).2 As a result, they are not
sophisticated enough to generate realistic visual patterns. For example, a wavelet
image coding model can easily reconstruct an observed image, but it cannot
synthesize a texture pattern through i.i.d. random sampling because the spatial
relationships between the wavelet coefficients are not characterized.

The two learning paradigms were developed almost independently by somewhat
disjoint communities working on different problems, and their relationship has yet
to be studied. Therefore, we present a visual learning framework that integrates
both descriptive and generative methods and extends them to a richer class of
probabilistic models for computer vision.

The integrated learning framework makes contributions to visual learning in the
following four aspects.

First, it combines the advantages of both descriptive and generative methods
and provides a general visual learning framework for modeling complex visual
patterns. In computer vision, a fundamental observation, stated in Marr’s primal
sketch paradigm [169], is that natural visual patterns consist of multiple layers
of stochastic processes. For example, Fig. 5.1 displays two natural images. When
we look at the ivy-wall image, we not only perceive the texture “impression” in
terms of pixel intensities but also see the repeated elements in the ivy and bricks.
To capture the hierarchical notion, we propose a multi-layer generative model as
shown in Fig. 5.2. We assume that a texture image is generated by a few layers of
stochastic processes and each layer consists of a finite number of distinct but similar
elements, called “textons” (following the terminology of Julesz). In experiments,
each texton covers more than 100 pixels on average, so the layered representation

Fig. 5.1 Two examples of natural patterns

2 Interested readers are referred to the paper [208] for discussion of the problem with existing
generative models.

5.2 Texton Process Embedding Gestalt Laws 135

Fig. 5.2 Reprinted with
permission from [89]. A
generative model for an
image I consists of multiple
layers of texton maps
I(Tl; �l), l = 1, . . . , L
superimposed with occlusion
plus an additive noise
image n

ψ(T ;)1 1I
ψ2

T 2

(T ;)I ψ2 2
ψ1
T 1

.
.

.
..

.
..

...
.
.

..
.

... ..
. . .

.. .
.

.
....

.. n
+

I

achieves a nearly 100-fold dimension reduction.3 The spatial arrangements of the
textons at each layer are characterized by Markov random field (MRF) models
through the minimax entropy learning [281], and previous MRF texture models can
be considered special cases where the models have only one layer and each “texton”
is just a pixel.

It is our belief that descriptive models are precursors of generative models
and both are ingredients of the integrated learning process. In visual learning,
the model can be initially built on image intensities via some features computed
deterministically from the image intensities. Then we can replace the features with
hidden causes, and such a process would incrementally discover more abstract
elements or concepts such as textons, curves, flows, and so on, where elements at
the more abstract levels become causes for the elements of lower abstractions. For
instance, the flows generate curves, and the curves generate textons, which in turn
generate pixel intensities. At each stage, the elements at the most abstract level have
no further hidden causes, and thus they have to be characterized by a descriptive
model based on some deterministic features, and such models can be derived by the
minimax entropy principle as demonstrated in [255]. When a new hidden level of
elements is introduced, it replaces the current descriptive model with a simplified
one. The learning process evolves until the descriptive model for the most abstract
elements becomes simple enough for a certain vision purpose. By analogy, the
learning process is very similar to the situation in physics, where experimental
observations are explained by a hierarchy of elements (say from quarks, electrons,
atoms, to molecules) and their interactions.

3 A texton has to be described by a few variables for location, scale, orientation, etc.

136 5 Gestalt Laws and Perceptual Organization

Second, the integrated learning framework provides a representational definition
of “textons.” Texton has been an important notion in texture perception and early
vision. Unfortunately, it was only expressed vaguely in psychology [124], and a
precise definition of texton has yet to be found. In this chapter, we argue that the
definition of “texton” is possible in the context of a generative model. In contrast
to the constraint-based clustering method by Malik, Leung, etc. [150, 151, 163], in
this book, textons are naturally embedded in a generative model and are inferred as
hidden variables of the generative model. This is consistent with the philosophy of
ICA [15], TCA [60], and sparse coding [152, 188].

Third, we present a Gestalt ensemble to characterize the hidden texton maps as
attributed point processes. The Gestalt ensemble corresponds to the grand canonical
ensemble in statistical physics [24], and it differs from traditional Gibbs models by
having an unknown number of textons whose neighborhood changes dynamically.
The relationships between neighboring textons are captured by some Gestalt laws,
such as proximity and continuity, etc.

Fourth, we adopt a stochastic gradient algorithm [88] for effective learning
and inference, in contrast to the conventional EM algorithm [38]. In the adapted
algorithm, we simplify the original likelihood function and solve the simplified
maximum likelihood problem first. Starting from the initial solution, we then use
the stochastic gradient algorithm to find refined solutions.

We demonstrate the proposed learning method on texture images. For an input
texture image, the learning algorithm achieves the following four objectives:

1. Learning the appearance of textons for each stochastic process. Textons of the
same stochastic process are translated, scaled, and oriented versions of a window
function, like mini-templates or wavelet basis functions.

2. Inferring the hidden texton maps, each of which consists of an unknown number
of similar textons which are related to each other by affine transformations.

3. Learning the minimax entropy models for the stochastic processes that generate
the textons maps.

4. Verifying the learned window functions and generative models through stochastic
sampling.

Background on Descriptive and Generative Learning

Given a set of images I = {Iobs
1 , . . . , Iobs

M }, where Iobs
m ,m = 1, . . . ,M are consid-

ered realizations of some underlying stochastic process governed by a probability
distribution f (I). The objective of visual learning is to estimate a probabilistic
model p(I) based on I so that p(I) approaches f (I) by minimizing the Kullback–
Leibler divergence KL(f ‖p) from f to p [29],

KL(f ‖p) =
∫

f (I) log
f (I)
p(I)

dI = Ef [log f (I)] − Ef [log p(I)]. (5.1)

5.2 Texton Process Embedding Gestalt Laws 137

In practice, the expectation Ef [log p(I)] is replaced by the sample average. Thus
we have the standard maximum likelihood estimator (MLE),

p∗ = arg min
p∈�p

KL(f ‖p) ≈ arg max
p∈�p

M∑
m=1

log p(Iobs
m), (5.2)

where �p is the family of distributions. One general procedure is to search for p in
a sequence of nested probability families,

�0 ⊂ �1 ⊂ · · · ⊂ �K → �f � f, (5.3)

where K indexes the dimensionality of the space. For example, K could be the
number of free parameters in a model. As K increases, the probability family should
be general enough to approach f to arbitrary precision.

There are two choices of families for �p in the literature and both are general
enough for approximating any distribution f .

The first choice is the exponential family. The exponential family can be derived
by the descriptive method through maximum entropy and has its root in statistical
mechanics [24]. A descriptive method extracts a set of K feature statistics as
deterministic transforms of an image I, denoted by φk(I), k = 1, . . . , K . Then it
constructs a model p by imposing descriptive constraints so that p reproduces the
observed statistics hobs

k extracted from I ,

Ep[φk(I)] =
1

M

M∑
m=1

φk(Iobs
m) ≈ Ef [φk(I)] = hk, k = 1, . . . , K. (5.4)

One may consider hk as a projected statistics of f (I), and thus when M is large
enough, p and f will have the same projected (marginal) statistics on the K chosen
dimensions. By the maximum entropy principle [120], this leads to the Gibbs model,

p(I; β) =
1

Z(β)
exp

{
−

K∑
k=1

βkφk(I)

}
. (5.5)

The parameters β = (β1, . . . , βK) are Lagrange multipliers and they are computed
by solving the constraint equations (5.4). The K features are chosen by a minimum
entropy principle [281].

The descriptive learning method augments the dimension of the space �p by
increasing the number of feature statistics and generates a sequence of exponential
family models,

�d
1 ⊂ �d

2 ⊂ · · · �d
K → �f . (5.6)

138 5 Gestalt Laws and Perceptual Organization

This family includes all the MRF and minimax entropy models for texture [281]. For
example, a type of descriptive model for texture chooses φj (I) as the histograms of
responses from some Gabor filters.

The second choice is the mixture family, which can be derived by integration or
summation over some hidden variables W = (w1, . . . , wK),

p(I;�) =
∫

p(I,W ;�)dW =
∫

p(I|W ;�)p(W ;β)dW. (5.7)

The parameters of a generative model include two parts � = (�, β). It assumes a
joint probability distribution p(I,W ;�), and that W generates I through a condi-
tional model p(I|W ;�) with parameters �. The hidden variables are characterized
by a model p(W ; β). W should be inferred from I in a probabilistic manner, and
this is in contrast to the deterministic features φk(I), k = 1, . . . , K in descriptive
models. The generative method incrementally adds hidden variables to augment the
space �p and thus generates a sequence of mixture families,

�
g
1 ⊂ �

g
2 ⊂ · · · ⊂ �

g
K → �f � f. (5.8)

For example, principal component analysis, wavelet image coding [26, 165], and
sparse coding [152, 188] all assume a linear additive model where an image I is the
result of linear superposition of some window functions �k, k = 1, . . . , K , plus a
Gaussian noise process n.

I =
K∑

k=1

ak�k + n, (5.9)

where ak, k = 1, . . . , K , are the coefficients, �i are the eigenvectors in PCA,
wavelets in image coding, or over-complete basis for sparse coding. The hidden
variables are the K coefficients of basis functions plus the noise, so W =
(a1, . . . , aK, n).4 The coefficients are assumed to be independently and identically
distributed,

ak ∼ p(ak) ∝ exp−λo|ak |ρ , k = 1, . . . , K. (5.10)

The norm ρ = 1 for sparse coding [152, 188] and basis pursuit [26], and ρ = 2 for
principal component analysis. Thus we have a simple distribution for W ,

p(W ; β) ∝
k∏

k=1

exp−λo|ak |ρ ∏
(x,y)

exp
− n2(x,y)

2σ2
o . (5.11)

4 In PCA, since the basis functions are orthogonal, ak can be computed as transform, but for an
over-complete basis, the ak has to be inferred.

5.2 Texton Process Embedding Gestalt Laws 139

Fig. 5.3 Reprinted with permission from [89]. Texture images with texton processes

In this model p(W ; β) is from the exponential family. However, in the literature,
hidden variables ak, k = 1, . . . , K , are assumed to be i.i.d. Gaussian or Laplacian
distributed. Thus the concept of descriptive models is trivialized.

A Multi-layered Generative Model for Images

We focus on a multi-layer generative model for images with mainly texture content
and we believe that the same learning framework can be applied to other patterns
such as object shapes. An image I is assumed to be generated by L layers of
stochastic processes, and each layer consists of a finite number of distinct but similar
elements, called “textons.” Figure 5.3 shows three typical examples of texture
images, and each texton is represented by a rectangular window. A layered model is
shown in Fig. 5.2.

Textons at layer l are image patches transformed from a square template �l . The
j -th texton in layer l is identified by six transformation variables,

tlj = (xlj , ylj , σlj , τlj , θlj , Alj), (5.12)

where (xlj , ylj) represents the texton center location, σlj the scale (or size), τlj
the “shear” (aspect ratio of height versus width), θlj the orientation, and Alj for
photometric transforms such as lighting variability.

tlj defines an affine transform denoted by G[tlj], and the pixels covered by a
texton tlj is denoted by Dlj . Thus the image patch IDlj of a texton tlj is

IDlj = G[tlj] � �l, ∀j, ∀l, (5.13)

where � denotes the transformation operator. Texton examples of a circular
template at different scales, shears, and orientations are shown in Fig. 5.4.

We define the collection of all textons in layer l as a texton map,

Tl = (nl, {tlj , j = 1 . . . nl}), l = 1 . . . L, (5.14)

where nl is the number of textons in layer l.

140 5 Gestalt Laws and Perceptual Organization

scaleψ shear scale/shear/rotation

Fig. 5.4 Reprinted with permission from [89]. A template � (leftmost) and its three transformed
copies

In each layer, the texton map Tl and the template �l generate an image Il =
I(Tl;�l) deterministically. If several texton patches overlap at site (x, y) in Il , the
pixel value is taken as average,

Il (x, y) =
∑nl

j=1 δ((x, y) ∈ Dlj)IDlj (x, y)∑nl
j=1 δ((x, y) ∈ Dlj)

, (5.15)

where δ(·) = 1 if • is true, otherwise δ(·) = 0. In image Il , pixels not covered by
any texton patches are transparent. The image I is generated in the following way:

I(T; �) = I(T1; �1) I(T2; �2) · · · I(TL; �L), and Iobs = I(T; �) + n.
(5.16)

The symbol denotes occlusion (or linear addition), i.e., I1 I2 means I1 occludes
I2. I(T; �) is called a reconstructed image and n is a Gaussian noise process
n(x, y) ∼ N(0, σ 2

0), ∀(x, y). Thus pixel value at site (x, y) in the image I is the same
as the top layer image at that point, while uncovered pixels are only modeled by
noises.

In this generative model, the hidden variables are

T = (L, {(Tl , dl) : l = 1, . . . , L}, n), (5.17)

where dl indexes the order (or relative depth) of the l-th layer.
To simplify computation, we assume that L = 2 and the two stochastic layers

are called “background” and “foreground,” respectively. The two texton processes
Tl , l = 1, 2, are assumed to be independent of each other. We find that this
assumption holds true for most of the texture patterns. Otherwise one has to treat L
as an unknown complexity parameter in the model.

Thus the likelihood for an observable image I can be computed

p(I; �) =
∫

p(I|T; �)p(T; β)dT, (5.18)

=
∫

p(I|T1, T2; �)
2∏

l=1

p(Tl; β l)dT1dT2. (5.19)

5.2 Texton Process Embedding Gestalt Laws 141

Let � = (�1, �2) be texton templates, β = (β1, β2) the parameters for the
two texton processes which we shall discuss in the next section, and σ 2 the
variance of the noise. The generative part of the model is a conditional probability
p(I|T1, T2; �),

p(Iobs|T1, T2; �) ∝ exp

{
−∥∥Iobs − I(T1, T2; �)

∥∥2

2σ 2

}
, (5.20)

where I(T1, T2; �) is the reconstructed image from the two hidden layers without
noise (see (5.16)). As the generative model is very simple, the texture pattern should
be captured by the spatial arrangements of textons in models p(Tl; β l), l = 1, 2,
which are in much lower dimensional spaces and are more semantically meaningful
than previous Gibbs models on pixels [281].

In the next section, we discuss the model p(Tl; β l), l = 1, 2, for the texton
processes.

A Descriptive Model of Texton Processes

As the texton processes Tl are not generated by further hidden layers in the
model,5 they must be characterized by descriptive models in exponential families.
In this section, we first review some background on three physical ensembles and
then introduce a Gestalt ensemble for the texton process. Finally, we show some
experiments for realizing the texton processes.

Background: Physics Foundation for Visual Modeling

There are two main differences between a texton process Tl and a conventional
texture defined on a lattice D ⊂ Z2.

• A texton process has an unknown number of elements and each element has many
attributes tlj , while a texture image has a fixed number of pixels and each pixel
has only one variable for intensity.

• The neighborhood of a texton can change depending on their relative positions,
scales, and orientations, while pixels always have fixed neighborhoods.

Although a texton process is more complicated than a texture image, they share a
common property that they all have a large number of elements and global patterns
arise from simple local interactions between elements. Thus a well-suited theory

5 We may introduce additional layers of hidden variables for curve processes that render the
textons. But our model stops at the texton level.

142 5 Gestalt Laws and Perceptual Organization

h= (E, V, N) 23N=10 h= (E, V, N)

10

23N=10 h= (E, V, N) 23N=10

a). b). c).

n=10

Fig. 5.5 Three typical ensembles in statistical mechanics. (a) Micro-canonical ensemble. (b)
Canonical ensemble. (c) Grand-canonical ensemble

for studying these patterns is statistical physics—a subject studying macroscopic
properties of a system involving a huge number of elements [24].

To understand the intuitive ideas behind various texture and texton models, we
find it revealing to discuss three physical ensembles which are shown in Fig. 5.5.

1. Micro-canonical ensemble. Figure 5.5a is an insulated system of N elements.
The elements could be atoms or molecules in systems such as solid ferromagnetic
material, fluid, or gas. N is nearly infinity, say N = 1023. The system is decided
by a configuration S = (xN , mN), where xN describes the coordinates of the N
elements and mN their momenta. The system is subject to some global constraints
ho = (N, E, V). That is, the number of elements N , the total system energy E, and
the total volume V are fixed. When it reaches equilibrium, this insulated system is
characterized by a so-called micro-canonical ensemble,

�mcn = {S : h(S) = ho, f (S; ho) = 1/|�mcn|}. (5.21)

S is a microscopic state or instance, and h(S) is the macroscopic summary of the
system. The state S is assumed to be uniformly distributed within �mcn, and thus it
is associated with a probability f (S; ho). The system is identified by ho.

2. Canonical ensemble. Figure 5.5b illustrates a small subsystem embedded in
a micro-canonical ensemble. The subsystem has n � N elements, fixed volume
v � V , and energy e. It can exchange energy through the wall with the remaining
elements which is called the “heat bath” or “reservoir.” At thermodynamic equilib-
rium, the microscopic state s = (xn , mn) for the small system is characterized by a
canonical ensemble with a Gibbs model p(s; β),

�cn = {s; p(s; β) = c · exp{−βe(s)}}. (5.22)

In texture modeling [255], the micro-canonical ensemble is mapped to a Julesz
ensemble where S = I is an infinite image on 2D plane Z2, and ho is a collection of
Gabor filtered histograms. The canonical ensemble is mapped to a FRAME model
[281] with s = ID being an image on a finite lattice D. Intuitively, s is a small patch
of S viewed from a window D. The intrinsic relationship between the two ensembles
is that the Gibbs model p(s; β) in �cn is derived as a conditional distribution of

5.2 Texton Process Embedding Gestalt Laws 143

f (S; ho) in �mcn. There is a duality between ho and β (see [255] and the references
therein).

3. Grand-Canonical ensemble. Figure 5.5c illustrates a third system where the
subsystem is open and can exchange not only energy but also elements with the
bath. So v is fixed, but n and e may change. This models liquid or gas materials.
At equilibrium, the microscopic state s for this small system is governed by a
distribution p(s; βo, β) with βo controlling the density of elements in s. Thus a
grand-canonical ensemble is

�gd = {s = (n, xn , mn); p(s; βo, β)}. (5.23)

The grand-canonical ensemble is a mathematical model for visual patterns with
varying numbers of elements, thus laying the foundation for modeling texton
processes. In the next subsection, we map the grand-canonical ensemble to a Gestalt
ensemble in visual modeling.

Gestalt Ensemble

Without loss of generality, we represent a spatial pattern by a set of attributed
elements called textons as was discussed in Sect. 5.2. To simplify notation, we
consider only one texton layer on a lattice D,

T = (n, {tj = (xj , yj , σj , τj , θj , Aj), j = 1, . . . , n}). (5.24)

For a texton map T, we define a neighborhood system ∂(T).

∂(T) = {∂t : t ∈ T, ∂t ⊂ T}, (5.25)

where ∂t is a set of neighboring textons for each texton t . We find the nearest
neighbors are often enough. Because each texton covers a 15 × 15 patch on average,
a pair of adjacent textons captures image features at the scale of often more than
30 × 30 pixels.

There are a few different ways of defining ∂(T). One may treat each texton as a
point and compute a Voronoi diagram or Delaunay triangularization which provides
graph structures for the neighborhood. For example, a Voronoi neighborhood was
used in [5] for grouping dot patterns. However, for textons, we need to consider
other attributes such as orientation in defining the neighborhood. Figure 5.6a shows
a texton t . The plane is separated into four quadrants relative to the two axes of the
rectangle. In each quadrant, the nearest texton is considered the neighbor texton.
Unlike the Markov random field on image lattice, the texton neighborhood is no
longer translation invariant.

The above neighborhood is defined deterministically. In more general settings,
∂(T) shall be represented by a set of hidden variables that can be inferred from T.
Thus a texton may have a varying number of neighbors referenced by some indexing

144 5 Gestalt Laws and Perceptual Organization

Fig. 5.6 Reprinted with permission from [89]. Texton neighborhood. (a) A texton has four
neighbors. (b) Four measurements between texton t1 and its neighbor t2, dc, dm, α, and γ

(or address) variables. These address variables could be decided probabilistically
depending on the relative positions, orientations, and scales or intensities. This leads
to the so-called mixed Markov random field and is beyond the scope of this section.
Mumford and Fridman discussed such cases in another context (see [62]).

For a texton t1 and its neighbor t2 ∈ ∂t , we measure five features shown in
Fig. 5.6b, which capture various Gestalt properties:

1. dc: Distance between two centers, which measures proximity.
2. dm: Gap between two textons, which measures connectedness and continuation.
3. α: Angle of a neighbor relative to the main axis of the reference texton. This is

mostly useful in quadrants I and III. α/dc measures the curvature of possible
curves formed by the textons or co-linearity and co-circularity in the Gestalt
language.

4. γ : Relative orientations between the two textons. This is mostly useful for
neighbors in quadrants II and IV and measures parallelism.

5. r: Size ratio that denotes the similarity of texton sizes. r is the width of t2 divided
by the width of t1 for neighbors into quadrants I and III and r is the length of t2

divided by the length of t1 for neighbors in quadrants II and IV.

Thus a total of 4 × 5 = 20 pairwise features are computed for each texton plus
two features of each texton itself: the orientation θj and a two-dimensional feature
consisting of the scaling and shearing (σj , τj). Following the notation of descriptive
models in Sect. 5.2, we denote these features by

φ(k) (t |∂t), for k = 1, . . . , 22. (5.26)

We compute 21 one-dimensional marginal histograms and one two-dimensional
histogram for (σj , τj), averaged over all textons.

H(k) (z) =
n∑

j=1

δ(z − φ(k) (tj |∂tj)), ∀k. (5.27)

5.2 Texton Process Embedding Gestalt Laws 145

We denote these histograms by

H(T) = (H (1) , . . . , H (22)), and h(T) =
1

n
H(T). (5.28)

The vector length of h(T) is the total number of bins in all histograms. One may
choose other features and high-order statistics as well. In the vision literature, the
work (Steven, 1978) was perhaps the earliest attempt for characterizing spatial
patterns using histogram of attributes (see [169] for some examples).

The distribution of T is characterized by a statistical ensemble in correspondence
to the grand-canonical ensemble in Fig. 5.5c. We call it a Gestalt ensemble on a
finite lattice D as it is the general representation for various Gestalt patterns,

a Gestalt ensemble = �gst = {T : p(T; βo, β)}. (5.29)

The Gestalt ensemble is governed by a Gibbs distribution,

p(T; βo, β) =
1

Z
exp

{−βon − 〈β, H(T)〉} . (5.30)

Z is the partition function. βo is the parameter controlling texton density. We can
rewrite the vector-valued potential functions β as energy functions β(k) (), and then
we have

p(T; βo, β) =
1

Z
exp

⎧⎨

⎩−βon −
n∑

j=1

K=22∑
k=1

β(k) (φ(k) (tj |t∂j))
⎫⎬

⎭ . (5.31)

This model provides a rigorous way for integrating multiple feature statistics into
one probability model and generalizes existing point processes [27].

The probability p(T; βo, β) is derived from the Julesz ensemble (or micro-
canonical ensemble). We first define a close system with N � n elements on a
lattice D, and we assume the density of textons is fixed

lim
N→∞

N
|D| = ρ, as N → ∞, and D → Z2. (5.32)

Thus we obtain a Julesz ensemble on Z2 [255],

a Julesz ensemble = �jlz = {T∞ : h(T∞) = ho, N → ∞, f (T∞; ho)}, (5.33)

where ho = (ρ, h) is the macroscopic summary of the system state T∞. On any
finite image, a texton process should be a conditional density of f (T∞; ho). There
is a one-to-one correspondence between ho = (ρ, h) and the parameters (βo, β).

We can learn the parameters (βo, β) and select effective features φ(k) when
learning the descriptive method. In the following subsection, we discuss some

146 5 Gestalt Laws and Perceptual Organization

computational issues and experiments for learning p(T; βo, β) and simulating the
Gestalt ensembles.

An Integrated Learning Framework

After discussing the descriptive models for the hidden texton layers, we now return
to the integrated framework presented in Sect. 5.2.

Integrated Learning

The generative model for an observed image Iobs is rewritten from Eq. (5.19),

p(Iobs; �) =
∫

p(Iobs|T1, T2; �)
2∏

l=1

p(Tl; β l)dT1dT2. (5.34)

We follow the maximum likelihood estimate in Eq. (5.2),

�∗ = arg max
�∈�

g
K

log p(Iobs; �). (5.35)

The parameters � include the texton templates �l , the Lagrange multipliers β l ,
l = 1, 2, for two Gestalt ensembles, and the variance of the Gaussian noise, σ 2,

� = (�, β, σ), � = (�1, �2), and β = (β10, β1, β20, β2). (5.36)

To maximize the log-likelihood, we take the derivative with respect to �. Let
T = (T1, T2),

∂ log p(Iobs; �)
∂�

(5.37)

=
∫

∂ log p(Iobs, T; �)
∂�

p(T|Iobs; �)dT

=
∫ [

∂ log p(Iobs|T;�)
∂�

+
2∑

l=1

∂ log p(Tl; β l)
∂β l

]
p(T|Iobs; �) dT

= Ep(T|Iobs;�)

[
∂ log p(Iobs|T;�)

∂�
+

2∑
l=1

∂ log p(Tl; β l)
∂β l

]
. (5.38)

5.2 Texton Process Embedding Gestalt Laws 147

In the literature, there are two well-known methods for computation. One is the
EM algorithm [38], and the other is data augmentation [229] in the Bayesian context.
We propose to use a stochastic gradient algorithm [88] which is more effective for
our problem.

A Stochastic Gradient Algorithm
– Step 0. Initialize the hidden texton maps T and the templates � using a

simplified likelihood as discussed in the next section. Set β = 0.
Repeat Steps I and II below iteratively (like EM algorithm).
– Step I. With the current � = (�, β, σ), obtain a sample of texton maps from

the posterior probability

Tsyn
m ∼ p(T|Iobs; �) ∝ p(Iobs|T1, T2;�)p(T1; β1o, β1)p(T2; β2o, β2), m = 1, . . . , M.

(5.39)
This is Bayesian inference. The sampling process is realized by a Monte Carlo

Markov chain which simulates a random walk with two types of dynamics.

• (I.a) A diffusion dynamics realized by a Gibbs sampler—sampling (relaxing) the
transform group for each texton, for example, moving textons, updating their
scales and rotating them, etc.

• (I.b) A jump dynamics—adding or removing a texton (death/birth) by reversible
jumps [83].

— Step II. We treat Tsyn
m ,m = 1, . . . , M, as “observations” and estimate the

integration in (5.38) by importance sampling. Thus we have

∂ log p(Iobs|T; �)
∂�

+
2∑

l=1

∂ log p(Tl; β l)
∂β l

. (5.40)

We learn � = (�, β, σ) of the texton templates and Gibbs models, respectively,
by gradient ascent:

• (II.a) Update the texton templates � by maximizing
∑M

m=1 log p(Iobs|Tsyn
m ; �);

this is a fitting process. In our experiment, the texton templates �1 and �2 are
represented by 15 × 15 windows, and thus there are 2 × 225 unknowns.6

• (II.b) Update βlo, β l , l = 1, 2, by maximizing
∑M

m=1 log p(Tsyn
m ; βlo, β l). This is

exactly the maximum entropy learning process in the descriptive method except
that the texton processes are given by Step I.

• (II.c) Update σ for the noise process.

In Step I, we choose to sample M = 1 example each time. If the learning rate in
Steps (II.a) and (II.b) is slow enough, the expectation is estimated by importance
sampling through samples Tsyn over time. It has been proved [88] that such an

6 Each point in the window can be transparent, and thus the shape of the texton can change during
the learning process.

148 5 Gestalt Laws and Perceptual Organization

algorithm converges to the optimal � if the step size in Step II satisfies some mild
conditions.

The following are some useful observations:
1. Descriptive models and learning is part of the integrated learning framework,

in terms of both representation and computing (Step II.b)).
2. Bayesian vision inference is a sub-task (Step I) of the integrated learning

process. A vision system, machine or biological, evolves by learning generative
models p(I;�) and makes an inference about the world T (or W in more general
generative models) using the current imperfect knowledge �—the Bayesian view
of vision. What is missing in this learning paradigm is the “discovery process” that
introduces new hidden variables.

Mathematical Definitions of Visual Patterns

Any visual learning paradigm must answer the question of conceptualization: How
do we define, mathematically, a visual concept or a pattern? for example, a human
face, a wood grain texture, and so on. In this section, we show how the descriptive
and generative methods conceptualize a visual pattern.

The concept of a visual pattern is an abstraction (or summary) for an assembly
of configurations (or instances) s that are not distinguished by human perception
for a certain vision purpose. Because of the stochastic nature of the visual signal,
instances in this assembly are governed by a frequency f (s), and an instance can
then be considered a random sample from the probability distribution f (s). Thus a
concept is said to be equal to an ensemble,

a visual concept c = �c = {s : f (s)}. (5.41)

By a descriptive method, the ensemble is defined through statistical constraints
(see (5.4)),

a descriptive concept c = �(hc) = {s : f (s; hc), Ef [h(s)] = hc}. (5.42)

For example, s could be a human face represented by a list of key points, or s = I
could be a texture image. h(s) is the statistics extracted from s which are sufficient
for a certain vision purpose. hc is the vector value that identifies this concept. hc
corresponds to a Gibbs model p(s; β) with parameter β. It is accepted that two
concepts may have overlapping ensembles.

When the signal is homogeneous, such as texture or texton maps, the expectation
Ef [h(s)] can be computed from a single instance through spatial average over a large
enough lattice D, and thus we can define a concept as an equivalence class—called
the Julesz ensemble in (Zhu et al. 2000) [224].

a descriptive concept c = �(hc) = {s : h(s) = hc D → Z2, f (s; hc)}. (5.43)

5.2 Texton Process Embedding Gestalt Laws 149

For example, for defining a texture, hc is the sufficient and necessary statistics
extracted in texture perception. The ensembles on large lattice D → Z2 are disjoint
and deterministic as f (s; hc) is a uniform distribution.

Though the pure descriptive concept and Julesz ensemble are technically sound,
they are only a coarse or first-stage approximation to human perception in texture
discrimination. Texture studies in psychology [119, 124] suggest that human vision
is sensitive to the perception of some basic elements called textons, perhaps for
some vision purpose. It was also argued and demonstrated by Malik et al. [150,
163, 164] that the detection of individual textons plays an important role in texture
discrimination, segmentation, and grouping. However, it was unclear what textons
really are.

We argue that the mathematical definition of textons can be guided by a
generative model. So the integrated learning paradigm extends the Julesz ensemble
definition to a generative concept with W being the hidden variables,

a generative concept c = {s : f (s;�) =
∫

f (s|W ; �)f (W ; hw)dW }, (5.44)

where W are instances of a descriptive ensemble,

{W : h(W) = hw, D → Z2, f (W ; hw)}. (5.45)

Thus a concept is identified by the parameters � = (�, hw) (or � = (�, β) because
of the duality between hw and β). In this definition, � is a mathematically sound
definition of texton.

Effective Inference by Simplified Likelihood

In this section, we address some computational issues in the integrated learning
paradigm and propose a method for initializing the stochastic gradient algorithm (in
Step 0).

Initialization by Likelihood Simplification and Clustering

The stochastic algorithm presented in Sect. 5.2 needs a long “burn-in” period if it
starts from an arbitrary condition. To accelerate the computation, we use a simplified
likelihood in Step 0 of the stochastic gradient algorithm. Thus given an input image
Iobs, our objective is to compute some good initial texton templates �1, �2 and
hidden texton maps T1, T2, before the iterative process in Steps I and II.

A close analysis reveals that the computational complexity is largely due to the
complex coupling between the textons in both the generative model p(I|T1, T2;�)

150 5 Gestalt Laws and Perceptual Organization

and the descriptive models p(T1; β1o, β1) and p(T2; β2o, β2). Thus we simplify both
models by decoupling the textons.

First, we decouple the textons in p(T1; β1o, β1) and p(T2; β2o, β2). We fix the
total number of textons n1 + n2 to an excessive number, and thus we do not need to
simulate the death–birth process. We set β1 and β2 to 0, and therefore p(Tl; βlo, βl)
becomes a uniform distribution and the texton elements are decoupled from spatial
interactions.

Second, we decouple the textons in p(Iobs |T1, T2;�). Instead of using the image
generating model in Eq. (5.16), which implicitly imposes couplings between texton
elements through Eq. (5.20), we adopt a constraint-based model

p(Iobs|T, �) ∝ exp

⎧⎨

⎩−
2∑

l=1

nl∑
j=1

‖Iobs
Dlj

− G[Tlj] � �l‖2/2σ 2

⎫⎬

⎭ , (5.46)

where Iobs
Dlj

is the image patch of the domain Dlj in the observed image. For pixels

in Iobs not covered by any textons, a uniform distribution is assumed to introduce a
penalty.

We run the stochastic gradient algorithm on the decoupled log-likelihood, which
reduces to a conventional clustering problem. We start with two random texton maps
and the algorithm iterates the following two steps.

(I) Given �1 and �2, the algorithm runs a Gibbs sampler to change each texton
tlj , respectively, by moving, rotating, scaling the rectangle, and changing the cluster
into which each texton falls according to the simplified model of Eq. (5.46). Thus
the texton windows intend to cover the entire observed image and at the same time
try to form tight clusters around �.

(II) Given T1 and T2, the algorithm updates the texton �1 and �2 by averaging

�l =
1

nl

nl∑
j=1

G−1[Tlj] � Iobs
Dlj

, l = 1, 2, (5.47)

where G−1[Tlj] is the inverse transformation. The layer orders d1 and d2 are not
needed for the simplified model.

This initialization algorithm for computing (T1, T2, �1, �2) resembles the trans-
formed component analysis [60]. It is also inspired by a clustering algorithm by
Leung and Malik [151], which did not engage hidden variables and thus compute a
variety of textons � at different scale and orientations. We also experimented with
representing the texton template � by a set of Gabor basis functions instead of a
15 × 15 window. However, the results were not as encouraging as in this generative
model.

5.2 Texton Process Embedding Gestalt Laws 151

Fig. 5.7 Reprinted with permission from [89]. Result of the initial clustering algorithm. (a) Input
image. (b) Cluster 1 textons T1. (c) ψ1. (d) Cluster 2 textons T2. (e) ψ2. (f) Reconstructed image

Experiment I: Texton Clustering

In the following, we demonstrate experiments for initialization and clustering as
Sect. 5.2 stated.

Figure 5.7 shows an experiment on the initialization algorithm for a crack pattern.
1055 textons are used with the template size of 15 × 15. The number of textons is
as twice as necessary to cover the whole image. In optimizing the likelihood in
Eq. (5.46), an annealing scheme is utilized with the temperature decreasing from 4
to 0.5. The sampling process converges to a result shown in Fig. 5.7.

Figure 5.7a is the input image; Fig. 5.7b,d are the texton maps T1 and T2,
respectively. Figure 5.7c,e are the cluster centers �1 and �2, shown by rectangles,
respectively. Figure 5.7f is the reconstructed image. The results demonstrate that the
clustering method provides a rough but reasonable starting solution for generative
modeling.

152 5 Gestalt Laws and Perceptual Organization

Experiment II: Integrated Learning and Synthesis

Next, we show experimental results obtained by the integrated learning paradigm.
For an input image, we first do a clustering step as Sect. 5.2 showed. Then we run
the stochastic gradient algorithm on the full models to refine the clustering results.

Figure 5.8 shows the result for the crack image obtained by the stochastic
gradient algorithm, which took about 80 iterations of the two steps (Step I and Step
II), following the initial solution (Step 0) shown in Fig. 5.7. Figure 5.8b,d are the
background and foreground texton maps T1 and T2, respectively. Figure 5.8c,e are
the learned textons �1 and �2, respectively. Figure 5.8f is the reconstructed image
from learned Texton maps and templates. Compared to the results in Fig. 5.7, the
results in Fig. 5.8 have more precise texton maps and accurate texton templates due
to an accurate generative model. The foreground texton �2 is a bar, and one pixel at
corner of the left-top is transparent.

The integrated learning results for a cheetah skin image are shown in Fig. 5.9. It
can be seen that in the foreground template, the surrounding pixels are learned as

Fig. 5.8 Reprinted with permission from [89]. Generative model learning result for the crack
image. (a) Input image, (b) and (d) are background and foreground textons discovered by the
generative model, (c) and (e) are the templates for the generative model, and (f) is the reconstructed
image from the generative model

5.2 Texton Process Embedding Gestalt Laws 153

Fig. 5.9 Reprinted with permission from [89]. Generative model learning result for a cheetah skin
image. (a) Input image. (b) Background textons T1. (c) ψ1. (d) Forground textons T2. (e) ψ2. (f)
Reconstructed image

being transparent and the blob is exactly computed as the texton. Figure 5.10 shows
the results for a brick image. No point in the template is transparent for the gap lines
between bricks.

Figure 5.11 shows the learning of another short crack pattern. Figure 5.12
displays a pine corn pattern. The seeds and the black intervals are separated cleanly,
and the reconstructed image keeps most of the pine structures. However, the pine
corn seeds are learned as the background textons and the gaps between pine corns
are treated as foreground textons.

After the parameters � and β of the generative model are discovered for a type
of texture images, new random samples can be drawn from the generative model.
This proceeds in three steps: first, texton maps are sampled from the Gibbs models
p(T1; β1) and p(T2; β2), respectively. Second, background and foreground images
are synthesized from the texton maps and texton templates. Third, the final image is
generated by combining these two images according the occlusion model.

We show synthesis experiments on three patterns.

1. Figures 5.13 and 5.14 are two synthesis examples of the two-layer model
synthesis for the cheetah skin pattern. The templates used here are the learned
results in Fig. 5.9.

2. Figure 5.15 shows texture synthesis for the crack pattern computed in Fig. 5.11.

154 5 Gestalt Laws and Perceptual Organization

Fig. 5.10 Reprinted with permission from [89]. Generative model learning result for a brick
image. (a) Input image. (b) Background textons T1. (c) ψ1. (d) Forground textons T2. (e) ψ2.
(f) Reconstructed image

3. Figure 5.16 displays texture synthesis for the brick pattern in Fig. 5.10.

Note that, in these texture synthesis experiments, the Markov chain operates with
meaningful textons instead of pixels.

Discussion

We present a visual learning paradigm that integrates and extends descriptive and
generative models and which also provides a framework for visual conceptualization
and for defining textons. The hierarchical model for textures has advantages over the
previous pure descriptive method with Markov random fields on pixel intensities.

First, from the representational perspective, the neighborhood in the texton map
is much smaller than the pixel neighborhood in a FRAME model [281]. The
generative method captures more semantically meaningful elements on the texton
maps.

Second, from the computational perspective, the Markov chain operating on the
texton maps can move textons according to affine transforms and can add or delete a
texton by birth–death dynamics, and thus it is much more effective than the Markov

Fig. 5.11 Reprinted with permission from [89]. Generative model learning result for a crack
image. (a) Input image. (b) Background textons T1. (c) ψ1. (d) Forground textons T2. (e) ψ2.
(f) Reconstructed image

Fig. 5.12 Reprinted with permission from [89]. Generative model learning result for a pine corn
image. (a) Input image. (b) Background textons T1. (c) ψ1. (d) Forground textons T2. (e) ψ2. (f)
Reconstructed image

156 5 Gestalt Laws and Perceptual Organization

Fig. 5.13 Reprinted with permission from [89]. An example of a randomly synthesized cheetah
skin image. (a) and (b) are the background and foreground texton maps sampled from p(Tl; βl),
(d) and (e) are synthesized background and foreground images from the texton map and templates
in (c), and (f) is the final random synthesized image from the generative model

Fig. 5.14 Reprinted with permission from [89]. The second example of a randomly synthesized
cheetah skin image. Notation is the same as in Fig. 5.13

chain used in traditional Markov random fields which flips the intensity of one pixel
at a time.

We show that the integration of descriptive and generative methods is a natural
path for visual learning. We argue that a vision system should evolve by pro-

5.2 Texton Process Embedding Gestalt Laws 157

Fig. 5.15 Reprinted with permission from [89]. An example of a randomly synthesized crack
image. Notations are the same as in Fig. 5.13

Fig. 5.16 Reprinted with permission from [89]. An example of a randomly synthesized brick
image. Notation is the same as in Fig. 5.13

gressively replacing descriptive models with generative models, which realizes a
transition from empirical and statistical models to physical and semantical models.
The work presented here provides a step toward this goal.

Chapter 6
Primal Sketch: Integrating Textures and
Textons

In his monumental book [169], Marr inherited Julesz’s texton [124] notion and
proposed the concept of image primitives as basic perceptual tokens, such as edges,
bars, junctions, and terminators. Inspired by the Nyquist sampling theorem in signal
processing, Marr went a step further and asked for a token representation which he
named “primal sketch” as a perceptually lossless conversion from the raw image.
He tried to reconstruct the image with zero-crossings unsuccessfully and his effort
was mostly limited by the lack of proper models of texture.

6.1 Marr’s Conjecture on Primal Sketch

In the early stage of visual perception, an image may be divided into two
components—the structural part with noticeable elements called “textons” by Julesz
or “image primitives” by Marr and the textural part without distinguishable elements
in pre-attentive vision. The structural part is often composed of objects, such
as tree twigs and trunks at a near distance whose positions and shapes can be
clearly perceived. In contrast, the textural part is composed of objects at a far
distance whose structures become indistinguishable and thus yield various texture
impressions.

The modeling of texture and structure has been a long-standing puzzle in the
study of early vision. In the 1960s, Julesz first proposed a texture theory and
conjectured that a texture is a set of images sharing some common statistics on
some features related to human perception. Later he switched to a texton theory
and identified bars, edges, and terminators as textons—the atomic elements in early
vision. Marr summarized Julesz’s theories along with experimental results and pro-
posed a primal sketch model in his book as a “symbolic” or “token” representation
in terms of image primitives. Marr argued that this symbolic representation should
be parsimonious and sufficient to reconstruct the original image without much
perceivable distortion.

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_6

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_6&domain=pdf

 12905
61494 a 12905 61494 a

160 6 Primal Sketch: Integrating Textures and Textons

In fact, Andrew Glennerster [42] shows that the primal sketch representation
provides a stable coordinate frame under rapid eye rotation, which is biologically
plausible. Once a certain task is defined, the visual system extracts “raw” visual
information from the primal sketch representation to higher level information.

Despite many inspiring observations, Marr’s description provided neither an
explicit mathematical formulation nor a rigorous definition of the primal sketch
model.

Since the 1980s, the studies of early image modeling followed two distinct
paths which represent two prevailing mathematical theories for generative image
modeling, respectively. In fact, the two theories are two distinct ways of learning
image manifolds residing in different entropy regimes, respectively. In the follow-
ing, we should briefly review the two theories. Interested readers are recommended
to review the last chapter for a more complete account of generative and descriptive
models.

The first theory is a two-layer generative model originating from computational
harmonic analysis which represents images by a linear superposition of basis
functions selected from a dictionary—often over-complete like various wavelets,
image pyramids, and sparse coding. Each image base is supposed to represent some
image features with hidden variables describing their locations, orientations, scales,
and intensity contrast. The image is reconstructed with minimum error on the pixel
intensity.

The second theory is the Markov random fields (MRFs) originated from statis-
tical mechanics. It represents a visual pattern by pooling the responses of a bank
of filters over all locations into some statistical summary like the histograms which
are supposed to represent our texture impressions. On large image lattices, a Julesz
ensemble is defined as a perceptual equivalence class where all images in the set
share identical statistics. The statistics or texture impression is the macroscopic
properties and the differences between microscopic states (i.e., image instances in
the Julesz ensemble) are ignored. In other words, all images in this equivalence
class are perceptually the same, replacing one with the other does not cause
perceivable distortion, although the two images have large differences in pixel-by-
pixel comparison.

6.2 The Two-Layer Model

According to the model, the image is generated as a mosaic as follows: the image
lattice is divided into two disjoint parts: a structured domain, or a sketchable part,
and a textured domain, or a non-sketchable part (Figs. 6.1 and 6.2),

D = Dsk ∪ Dnsk,Dsk ∩ Dnsk = φ. (6.1)

The image intensities on the structure domain are represented by a set of coding
functions for edges and ridges. The image intensities on the texture domain are

6.2 The Two-Layer Model 161

Fig. 6.1 Reprinted with permission from [90]. A sparse coding example is computed by matching
pursuit. (b) is a symbolic representation where each base Bk is represented by a bar at the
same location, with the same elongation and orientation. The isotropic LOG basis functions are
represented by a circle. (a) Original image. (b) LoG and Gabor tokens. (c) Reconstructed image

Fig. 6.2 Reprinted with permission from [91]. A collection of local structure elements employed
by the model. There are eight types of elements: blobs, endpoints, edges, ridges, multi-ridges, cor-
ners, junctions, and crosses. (a) The symbolic representation. (b) The photometric representation

characterized by Markov random fields that interpolate the structure domain of the
image. See Figs. 6.3 and 6.4 for two examples of primal sketch model.

162 6 Primal Sketch: Integrating Textures and Textons

Fig. 6.3 Reprinted with permission from [91]. Primal sketch model. (a) Observed image. (b)
“Sketchable” part is described by a geometric sketch graph. (c) The texture regions of the image.
(d) Fill in the “non-sketchable” part by matching feature statistics. (e) The sketchable part of the
image. (f) The non-sketchable part of the image

Fig. 6.4 Reprinted with permission from [91]. Examples of primal sketch model. (a) Observed
image. (b) Sketch graph. (c) Synthesized image from the fitted model

6.2 The Two-Layer Model 163

Fig. 6.5 In the space of image patches, there are simple shape primitives, and there are also
stochastic texture patterns

The motivation is that in the space of image patches, there are simple geometric
primitives such as edges, but there are also stochastic texture patterns, as illustrated
in Fig. 6.5. We need both to describe an image.

Structure Domain

The structured domain Dsk is further divided into a number of disjoint patches with
each patch being fitted by an image primitive

Dsk = ∪K
i=1Dsk,i; Dsk,i ∩ Dsk,j = φ, i �= j. (6.2)

Some examples of the image primitive are shown in Fig. 6.2. These primitives are
aligned through their landmarks to form a sketch graph Ssk. Specifically, we index
the selected image primitives by i = 1, . . . , n and denote image patch for primitive
i as B(x, y|θi). Here

θi = (θtopological,i , θgeometric,i , θphotometric,i), (6.3)

where θtopological,i is the type (degree of arms) of the primitive (blob, terminator,
corner, junctions, etc.), θgeometric,i collects the locations of the landmarks of the
primitive, and θphotometric,i collects the intensity profiles of the arms of the primitive.
The sketch graph is a layer of hidden representation, which has to be inferred from
the image

164 6 Primal Sketch: Integrating Textures and Textons

Ssk = ((Dsk,i , B(x, y|θi), ai), i = 1, . . . , n), (6.4)

where Ssk decides the structure domain of the image, and ai is the address variable
pointing to the neighbors of the vertex Ssk,i = (Dsk,i , B(x, y|θi)).

The model for the structure domain of the image is

I(x, y) =
n∑

i=1

B(x, y|θi) + ε(x, y), (x, y) ∈ Dsk, i = 1, . . . , n, (6.5)

where ε(x, y) denotes the noise term. Since the set of pixels coded by B(x, y |
θi) does not overlap each other, B(x, y|θi) is similar to coding vectors in vector
quantization.

The Dictionary of Image Primitives

An edge segment is modeled by a 2D function that is constant along the edge and
has a profile across the edge. Specifically,

B(x, y | θ) = f (−(x − u) sin α + (y − v) cos α), (6.6)

where

− l < (x − u) cos α + (y − v) sin α ≤ l, (6.7)

−w ≤ −(x − u) sin α + (y − v) cos α ≤ w. (6.8)

That is, the function B(x, y | θ) is supported on a rectangle centered at (u, v), with
length 2l + 1, width 2w + 1, and orientation α.

For the profile function f (x), let f0(x) = −1/2 for x < 0 and f0(x) = 1/2 for
x ≥ 0, and let gs() be a Gaussian function of standard deviation s. Then f (x) =
a + bf0(x) ∗ gs(x). This is the model proposed by Elder and Zucker [52]. The
convolution with Gaussian kernel is used to model the blurred transition of intensity
values across the edge, caused by the three-dimensional shape of the underlying
physical structure, as well as the resolution and focus of the camera. As proposed
by Elder and Zucker, the parameter s can be determined by the distance between the
two extrema of the second derivative f ′′(x).

Thus in the coding function B(x, y | θ) for an edge segment, θ = (t, u, v,
α, l, w, s, a, b), namely, type (which is edge in this case), center, orientation,
length, width, sharpness, average intensity, intensity jump. θ captures geometric
and photometric aspects of an edge explicitly, and the coding function is nonlinear
in θ .

A ridge segment has the same functional form, where the profile f (x) is a
composition of two edge profiles. The profile of a multi-ridge is a composition

6.2 The Two-Layer Model 165

of two or more ridge profiles. A blob function is modeled by rotating an edge
profile, more specifically, B(x, y | θ) = f (

√
(x − u)2 + (y − v)2 − r), where

(x − u)2 + (y − v)2 ≤ R2, and again f (x) = a + bf0(x) ∗ gs(x) being a step
edge convolved with a Gaussian kernel. This function is supported on a disk area
centered at (u, v) with radius R. The transition of intensity occurs at the circle of
radius r < R.

The corners and junctions are important structures in images. They are modeled
as compositions of edge or ridge functions. When a number of such coding functions
join to form a corner or a junction, the image intensities of the small number of
overlapping pixels are modeled as averages of these coding functions. The endpoint
of a ridge is modeled by a half blob.

See Fig. 6.2 for a sample of local structure elements, which are the coding func-
tions and their combinations. There are eight types of elements: blobs, endpoints,
edges, ridges, multi-ridges, corners, junctions, and crosses. Figure 6.2a shows the
symbolic representations of these elements. Figure 6.2b displays the image patches
of these elements.

Let Ssk be the sketch graph formed by these coding functions. The graph has a
set of nodes or vertices V = ∪4

d=0Vd , where Vd is the set of nodes with degree d,
i.e., the nodes with d arms. For instance, a blob node has a degree 0, an endpoint
has a degree 1, a corner has a degree 2, a T-junction has a degree 3, and across has
a degree 4. We do not allow nodes with more than 4 arms. Ssk is regularized by a
simple spatial prior model:

p(Ssk) ∝ exp

{
−

4∑

d=0

λd |Vd |
}

, (6.9)

where |Vd | is the number of nodes with d arms. The prior probability or the energy
term γsk(Ssk) = ∑4

d=0 λd |Vd | penalizes free endpoints by setting λsk at a large
value.

Texture Domain

The texture domain Dnsk is segmented into m regions of homogenous texture
patterns,

Dnsk = ∪m
j=1Dnsk,j ; Dnsk,i ∩ Dnsk,j = φ, i �= j. (6.10)

Within each region j , we pool the marginal histograms of the responses from the K
filters, hj = (hj,k, k = 1, . . . , K), where

166 6 Primal Sketch: Integrating Textures and Textons

hj,k,z = 1

|Dnsk,j |
∑

(x,y)∈Dnsk,j

δ(z; Fk ∗ I(x, y)), (6.11)

where z indexes the histogram bins, and δ(z; x) = 1 if x belongs to bin z, and
δ(z; x) = 0 otherwise. This yields a Markov random field model, also known as the
descriptive model, for each texture region:

p(IDnsk,j) ∝ exp

⎧
⎨

⎩−
∑

(x,y)∈Dnsk,j

K∑

k=1

φj,k(Fk ∗ I(x, y))

⎫
⎬

⎭ . (6.12)

These Markov random fields have the structure domain as boundary conditions,
because when we apply filters Fk on the pixels in Dnsk, these filters may also cover
some pixels in Dsk. These Markov random fields in-paint the texture domain Dnsk
while interpolating the structure domain Dsk, and the in-painting is guided by the
marginal histograms of linear filters within each region.

Let Snsk = ((Dnsk,j , hj,k, φj,k), j = 1, . . . , m, k = 1, . . . , K) denote the
segmentation of the texture domain. Snsk follows a prior model p(Snsk) ∝
exp{−γnsk(Snsk)}, for instance, γnsk(Snsk) = ρm to penalize the number of regions.

Integrated Model

Formally, we can integrate the structure model (6.5) and the texture model (6.12)
into a probability distribution. Our inspiration for such integration comes from the
model of Mumford and Shah [177]. In their method, the prior model for the noiseless
image can be written as

p(I, S) =
1

Z
exp

⎧
⎨

⎩−
∑

(x,y)∈D/S
λ|∇I(x, y)|2 − γ |S|

⎫
⎬

⎭ , (6.13)

where S is a set of pixels of discontinuity that correspond to the boundaries of
objects and |S| is the number of pixels in S. In model (6.13), S is the structure
domain of the image, and the remaining part is the texture domain.

Our model can be viewed as an extension of the Mumford–Shah model. Let
S = (Ssk, Snsk), and we have

p(I, S) =
1

Z
exp

{
−

n∑

i=1

∑

(x,y)∈Dsk,i

1

2σ 2 (I(x, y) − Bi(x, y | θi))
2 − γsk(Ssk)

6.3 Hybrid Image Templates 167

−
m∑

j=1

∑

(x,y)∈Dnsk,j

K∑

k=1

φj,k(Fk ∗ I(x, y)) − γnsk(Snsk)
}
. (6.14)

Compared to Mumford–Shah model, model (6.14) is more sophisticated in both the
structure part and the texture part.

The Sketch Pursuit Algorithm

To learn the integrated model, the traditional maximum likelihood algorithm
requires the MCMC method for global inference. Instead, a greedy algorithm, sketch
pursuit algorithm, is proposed. It consists of the following phases:

1. Phase 0: an edge and ridge detector based on linear filters are run to give an
initialization for the sketch graph.

2. Phase 1: a greedy algorithm is used to determine the sketch graph but without
using the spatial prior model.

3. Phase 2: a greedy algorithm based on a set of graph operators is used to edit the
sketch graph to achieve good spatial organization as required by the spatial prior
model.

4. Phase 3: the remaining portion of the image is segmented into homogeneous
texture regions by clustering the local marginal histograms of filter responses.
The inference algorithm yields two outputs:

(a) A sketch graph for the image, with edge and ridge segments, as well as
corners and junctions.

(b) A parameterized representation of the image which allows the image to be
re-synthesized and to be encoded efficiently.

6.3 Hybrid Image Templates

The primal sketch model is developed for generic scenes. In this section, we study
a more specific framework for learning representations for objects from images, the
hybrid image templates (HITs).

First, just as the primal sketch, the appearances of objects have two types of
descriptors: local sketch and texture gradient. For instance, the image in Fig. 6.6
consists of both the patches of geometric primitives on the object boundary and the
patches of textures on the object surface. In addition to sketch features and texture
features, we also add flatness features and color features, so that the templates
give complete descriptions of the images. Figure 6.7 shows some examples of such

168 6 Primal Sketch: Integrating Textures and Textons

Fig. 6.6 Reprinted with permission from [217]. An image of an object consists of patches of
simple primitives and patches of textures

templates, with local sketch (edge or bar), texture gradients (with orientation field),
flatness regions (smooth surface and lighting), and colors.

The modeling and learning strategy of the hybrid template is similar to the active
basis. For each type of feature, we pool a background histogram q from natural
images and then estimate the distribution p by exponential tilting. We select the
features sequentially as in active basis. After each feature is selected, it will inhibit
nearby features of the same type.

Naturally, there are large variations in the representations of different classes,
for example, teapots may have a common shape outline but do not have a common
texture or color. The hedgehog in Fig. 6.6 has a distinct texture and shape, but its
color is often less distinguishable from its background. The essence of our learning
framework is to automatically select, in a principled way, informative patches from
a large pool and compose them into a template with a normalized probability model.

Representation

Let D be the image lattice for the object template which is typically 150×150 pixels.
This template will undergo a similarity transform to align with object instances in
images. The lattice is decomposed into a set of K patches {Dk, k = 1, 2 . . . , K}
selected from a large pool in the learning process through feature pursuit. These
patches belong to four bands: sketch, texture/gradient field, flatness, and color,
respectively, and they do not form a partition of the lattice D for two reasons:

6.3 Hybrid Image Templates 169

Fig. 6.7 Reprinted with permission from [217]. The hybrid templates consist of sketch, texture,
flatness, and color features

• Certain pixels on D are left unexplained due to inconsistent image appearances
at these positions.

• Two selected patches from different bands may overlap each other in position.
For example, a sketch patch and a color patch can occupy the same region, but
we make sure the sketch feature descriptor and color descriptor extracted from
them would represent largely uncorrelated information.

The hybrid image template consists of the following components:

HIT = ({Dk, �k, {Bkorhk}, δk :, k = 1, 2, . . . ,K}, �), (6.15)

170 6 Primal Sketch: Integrating Textures and Textons

where

1. Dk ⊂ D is the k-th patch lattice described above.
2. �k ∈ { skt, txt, flt, clr} is the type of the patch.
3. Bk or hk is the feature prototype for the k-th patch. If �k = skt, then the patch

is described by a basis function Bk for the image primitive; otherwise, it is
described by a histogram hk for texture gradients, flatness, or color, respectively.

4. δk = (δkx, δky, δkθ): the latent variables for the local variabilities of the k-th
patch, i.e., the local translations and rotations of selected patches.

5. � = {λk, zk : k = 1, 2, . . . , K} are the parameters of the probabilistic model
p (to be discussed in the later subsection). λk, zk are the linear coefficient and
normalizing constant for the k-th patch.

Prototypes, ε-Balls, and Saturation Function

Let IDk be the image defined on the patch Dk ⊂ D. For �k = skt, the prototype Bk
defines a subspace through an explicit function for IDk (a sparse coding model),

(Bk) = {IDk : IDk = ckBk + ε}. (6.16)

For �k ∈ {txt, flt, clr}, the prototype defines a subspace through an implicit function
for IDk which constrains the histogram (a Markov random field model),

(hk) = {IDk : H(IDk) = hk + ε}. (6.17)

H(IDk) extracts the histogram (texture gradient, flatness, or color) from IDk
.

In (Bk), the distance is measured in the image space,

ρex(IDk) = ‖IDk − cBk‖2, (6.18)

while in (hk), the distance is measured in the projected histogram space with L1
or L2 norms,

ρim(IDk) = ‖H(IDk) − hk‖2. (6.19)

Intuitively, we may view (Bk) and (hk) as ε-balls centered at the prototypes
Bk and hk , respectively, with different metrics. Each ε-ball is a set of image patches
that are perceptually equivalent. Thus the image space of HIT is the product space
of these heterogeneous subspaces: (HIT) = ∏K

k=1 k, on which a probability
model is concentrated. Due to statistical fluctuations in small patches, these ε-balls
have soft boundaries. Thus we use a sigmoid function to indicate whether a patch
IDk belongs to a ball (Bk) or (hk).

6.3 Hybrid Image Templates 171

r(IDk) = S(ρ(IDk)), (6.20)

where ρ can be either ρex or ρim. S(x) is a saturation function with maximum at
x = 0:

S(x) = τ
(

2

1 + e−2(η−x)/τ − 1
)

, (6.21)

with shape parameters τ and η. We set τ = 6 and η is locally adaptive: η = ‖IDk
‖2,

where IDk denotes the local image patch. We call r(IDk) the response of the feature
(prototype Bk or hk) on patch IDk

.

Projecting Image Patches to 1D Responses

Though the image patches are from heterogeneous subspaces of varying dimensions
with different metrics, we project them into the one-dimensional feature response
r(IDk), on which we can calculate the statistics (expectation) of r(IDk) over the
training set regardless of the types of patches. This way it is easy to integrate them
into a probabilistic model.

In the following, we discuss the details of computing the responses for the four
different image subspaces.

Given an input color image I on lattice D, we first transform it into an HSV
space with HS being the chromatic information and V the gray level image. We
apply a common set of filters � to the gray level image. The dictionary � includes
Gabor filters (sine and cosine) at 3 scales and 16 orientations. The Gabor filter of
the canonical scale and orientation is of the form: F(x, y) ∝ exp{−(x/σ1)

2 −
(y/σ2)

2}eix with σ1 = 5, σ2 = 10.
1. Calculating responses on primitives. When a patch IDk contains a prominent

primitive, such as an edge or a bar, it is dominated by a filter that inhibits all the
other filters. Thus the whole patch is represented by a single filter, which is called
a basis function Bk ∈ �. The response is calculated as the local maximum over the
activity δk ,

rskt(IDk) = max
δx,δy,δθ

S(‖I − cBx+δx,y+δy,o+δo‖2). (6.22)

The local maximum pooling is proposed by [214] as a possible function of complex
cells in V1.

2. Calculating responses on texture. In contrast to the primitives, a texture patch
usually contains many small elements, such as the patch on the hedgehog body
in Fig. 6.6. As a result, many filters have medium responses on the image patch.
Thus we pool a histogram of these filters collectively over the local patch to form a
histogram descriptor H(I).

172 6 Primal Sketch: Integrating Textures and Textons

The texture response is calculated by

r txt(IDk) = S(‖H(IDk) − h‖2), (6.23)

where h is a pre-computed histogram prototype (one may consider it as a cluster
center of similar texture patches). More specifically, h is obtained by averaging
the histograms at the same position of roughly aligned positive example images.
For texture, we are only interested in the medium to strong strengths along certain
directions. So we replace the indicator function, which is often used in histogram
binning, by a continuous function a(x) = 12

1+e−x/3 − 6. The histogram is then
weighted into one bin for each filter,

Ho(IDk) =
1

|Dk|
∑

(x,y)∈Dk

a(|Fo ∗ IDk
|2). (6.24)

Thus, we obtain the oriented histogram for all filters as a vector,

H(IDk) = (H1, . . . , H|O|). (6.25)

It measures the strengths in all orientations.
3. Calculating responses on flat patch. By flat patch, we mean image areas that

are void of structures, especially edges. Thus filters have near-zero responses. They
are helpful for suppressing false alarms in cluttered areas. As a textureless measure,
we choose a few small filters �flt = {∇x, ∇y, LoG} and further compress the texture
histogram into a single scalar,

H(IDk) =
∑

F∈�flt

∑

(x,y)∈Dk

b(|Fo ∗ IDk
|2). (6.26)

b() is a function that measures the featureless responses. It takes the form of a
sigmoid function like S() but with different shape parameters. In Fig. 6.8, we plot
the four functions a(), b(), 1(), and S() for comparison. Then the flatness response
is defined as

rflt(IDk) = S(H(IDk) − h). (6.27)

In the above h = 0 is a scalar for the flatness prototype.
4. Calculating responses on color. The chromatic descriptors are informative for

certain object categories. Similar to orientation histogram, we calculate a histogram
H clr(IDk) on the color space (we use the 2D HS space in the HSV format). Then the
color patch response is defined as the saturated distance between the color histogram
of the observed image and the prototype histogram h,

rclr(IDk) = S(‖H clr(IDk) − h‖2). (6.28)

6.3 Hybrid Image Templates 173

Fig. 6.8 Reprinted with permission from [217]. Plotting the four functions. (a) a(x). (b) b(x). (c)
1(x). (d) S(x)

In summary, a HIT template consists of K prototypes {Bk or hk, k = 1, · · · ,K}
for sketch, texture/gradient, flatness, and color patches, respectively, which define
K-subspaces (or ε-balls) (Bk) or (hk) of varying dimensions. These ε-balls
quantize the image space with different metrics. An input image I on lattice D is
then projected to the HIT and is represented by a vector of responses:

I → (r1, r2, . . . , rK), (6.29)

where rk is a soft measure for whether the image patch IDk belongs to the subspace
defined by the corresponding prototype. In the next section, we will define a
probability model on image I based on these responses.

Template Pursuit by Information Projection

We present an algorithm for learning the hybrid image templates automatically from
a set of image examples. It pursues the image patches, calculates their prototypes,
and derives a probability model sequentially until the information gain is within the
statistical fluctuation.

Let f (I) be the underlying probability distribution for an image category, and our
objective is to learn a series of models that approach f from an initial or reference
model q,

q = p0 → p1 → p2 → · · · → pK ≈ f. (6.30)

These models sequentially match the observed marginal statistics collected from the
samples of f . With more marginal statistics matched between the model p and f ,
p will approach f in terms of reducing the Kullback–Leibler divergence KL(f ‖p)
monotonically.

The main input to the learning algorithm is a set of positive examples

I+ = {I1, . . . , In} ∼ f, (6.31)

174 6 Primal Sketch: Integrating Textures and Textons

where f is the underlying target image distribution and ∼ means sampled from.
For simplicity, we may assume these images contain roughly aligned objects that
can be explained by a common HIT template. When this alignment assumption is
not satisfied, we can adopt an EM-like iterative procedure with the unknown object
localization as missing data. We are also given a set of negative examples

I− = {J1, . . . , JN } ∼ reference distribution q. (6.32)

The negative examples are only used for pooling marginal histograms of one-
dimensional feature responses in a pre-computation step.

The image lattice D is divided into overlapping patches for multiple scales by
a scanning window with a step size about 10% of the window size. Then we
calculate their corresponding prototypes and responses for all images in I+. The
sketch prototypes Bi are specified by the Gabor dictionary �, and the histogram
prototypes hk are obtained by computing the histograms for positive examples in
the same region of the template lattice and then taking the average. As a result, we
obtain an excessive number of candidate patches.

cand = {Dj, �j , {Bj or hj } : j = 1, 2, . . . , M}. (6.33)

From cand, we will select the most informative patches and their corresponding
prototypes for HIT.

By induction, at the k-th step, we have a HIT with k − 1 patches and a model
p = pk−1:

HITk−1 = ({Dj, �j , Bj or hj , δj , j = 1, . . . , k − 1}, �k−1). (6.34)

Consider a new candidate patch Dk in cand and its responses on n positive
examples and N negative examples:

{r+
k,i , i = 1, . . . , n} {r−

k,i , i = 1, . . . , N}. (6.35)

And let r̄+
k and r̄−

k be the sample means on the two sets.
The gain of adding this patch to the template is measured by the KL-divergence

between the target marginal distribution f (rk) and the current model pk−1(rk), as
this represents the new information in the training data that is not yet captured in the
model. Among all the candidate patches, the one with the largest gain is selected.

To estimate this gain, we use Monte Carlo methods with samples from f (rk)
and pk−1(rk). Obviously {r+

k,i} is a fair sample from f (rk). While to sample

from pk−1(rk), one may use importance sampling on {r−
k,i}, i.e., re-weighting the

examples by pk−1(rk)
q(rk) . Here we simplify the problem by a conditional independence

assumption as stated in the previous section. A feature response r1(ID1) is roughly
uncorrelated with r2(ID2) if one of the following holds: (i) the two patches D1 and
D2 have little overlap and (ii) D1 and D2 are from different scales. If at the k-th step

6.3 Hybrid Image Templates 175

we have removed from cand all the candidate patches that overlap with selected
patches, then rk is roughly uncorrelated with all the previously selected responses
r1, . . . , rk−1. As a result, pk−1(rk) = q(rk) and {r−

k,i} can be used as a sample of
pk−1(rk). The exact formula for estimating the gain (i.e., KL-divergence between
f (rk) and pk−1(rk)) is given, once we have derived the parametric form of p in the
following.

For a selected patch Dk , the new model p = pk is required to match certain
observed statistics (e.g., first moment), while it should be also close to the learned
model pk−1 to preserve the previous constraints.

p∗
k = arg min KL(pk‖pk−1) (6.36)

s.t. Epk
[rk] = Ef [rk]. (6.37)

By solving the Euler–Lagrange equation with Lagrange multipliers {λj } and γ ,

∂
∂pk

[
∑

I

pk(I) log
pk(I)

pk−1(I)
+ λk(Epk

[rj] − Ef [rj])

+γ

(
∑

I

pk(I) − 1

)]
= 0, (6.38)

we have

pk(I) = pk−1(I)
1

zk
exp{−λkrk(I)}. (6.39)

zk = Eq

[
exp{λkrk(IDk)}

]
is a normalizing constant. This can be estimated by the

negative samples,

zk ≈
1

N

N∑

i=1

eλkr(Ji,Dk) . (6.40)

λk is the parameter (Lagrange multiplier) to satisfy the constraint in Eq. (6.37),

Ep[rk] ≈
1

N

N∑

i=1

[
r(Ji,Dk)e

λkr(Ji,Dk)
] 1

zk
= r̄+

k . (6.41)

In computation, we can look up r̄+
k in the table to find the best λk . The importance

sampling is a good estimation in calculating λk and zk because in our model r is
one-dimensional.

By recursion, we have a factorized log-linear form,

176 6 Primal Sketch: Integrating Textures and Textons

pK(I) = q(I)
K∏

j=1

[
1

zj
exp{λj rj (IDj)}

]
. (6.42)

Example: Vector Fields for Human Hair Analysis and Synthesis

In this subsection, we demonstrate an example of applying the primal sketch model
to human hair analysis and synthesis [25]. Specifically, the hair images can be
treated as 2D piecewise smooth vector (flow) fields, and thus the representation
is view-based in contrast to the physically based 3D hair models in graphics. The
primal sketch model has three levels. The bottom level is the high-frequency band
of the hair image. The middle level is a piecewise smooth vector field for the hair
orientation, gradient strength, and growth directions. The top level is an attribute
sketch graph for representing the discontinuities in the vector field. Besides the
three-level representation, the shading effects, i.e., the low-frequency band of the
hair image, are modeled by a linear superposition of some Gaussian image basis
functions, and the hair color is encoded by a color map. Figure 6.9 shows an
example.

Let Iobs denote an observed color hair image. By a Luv transform, we obtain
an intensity image Iobs

Y and a color channel image Iobs
UV. The color channel Iobs

UV
is discretized into a small number of colors and represented by a color map
from the intensity [0, 255] of Iobs

Y to a color. The intensity image Iobs
Y is further

decomposed into a low-frequency band Iobs
L for illumination and shading with a

low-pass Gaussian filter and the remaining. The high-frequency band is the texture
for the hair pattern Iobs

H . The low-frequency band is simply represented by a linear
superposition of Gaussian image basis functions plus a mean intensity μ,

Iobs
L (x, y) = μ +

KL∑

i=1

αiG(x − xi, y − yi; θi, σxi, σyi) + noise. (6.43)

Usually KL = O(10). Each Gaussian basis function is represented symbolically
by an ellipse for editing and it has five parameters for the center, orientation, and
standard deviation along the two axes. The coefficients {αi} can be positive or
negative for highlights and shadows, respectively. The matching pursuit algorithm
is used to automatically extract the coefficients from the input image.

Our study is focused on the texture appearance Iobs
H with a three-level primal

sketch model. A hair texture IH on a lattice D is generated by a hidden layer V—
the vector field for hair growth flow, and V is in turn generated by an attribute hair
sketch S which is a number of sketch curves representing the boundaries of hair
strands and wisps with direction dS .

Sketch (S,dS)
�sk−→ Vector field V −→ hair image IH, (6.44)

6.3 Hybrid Image Templates 177

Fig. 6.9 Reprinted with permission from [25]. Example of hair model and inference. (a) is an
input color image Iobs. (b) is the computed sketch S with directions dS. (c) is the sketchable vector
field VDsk generated from (S,dS). (d) is the overall vector field V after filling in non-sketchable
part. (e) is the high-frequency hair texture image Isyn

H generated from the vector field. (f) is the
shading and lighting image. (g) is the synthesized color image Isyn after adding the shading and
color. We render an artistic sketch Jrnd in (h)

where �sk is a dictionary of sketch primitives shown in Fig. 6.10. Each primitive is
a rectangular window (say 5 × 7 pixels) and some examples are shown in Fig. 6.11.

For synthesizing hair images, we assume that (S,dS) is either inferred from a
hair image or edited manually through a simple user interface. From (S,dS), we
synthesize a hair image Isyn

H in three steps according to the generative model.
1. Synthesizing the vector field from the sketch Vsyn ∼ p(V|S,d).
2. Synthesizing the hair texture from the vector field Isyn

H ∼ p(IH|Vsyn).
3. Synthesizing color image Isyn by adding a shading image Isyn

L to Isyn
H and

then transferring the grey image to color by the color map. Figure 6.12 shows three
examples of hair synthesis.

The inference algorithm is divided into two stages: (i) compute the undirected
orientation field and sketch graph from an input image and (ii) compute the
hair growing direction for the sketch curves and the orientation field using a
Swendsen–Wang cut algorithm. Both steps maximize a joint Bayesian posterior
probability. This generative primal sketch model provides a straightforward way for
synthesizing realistic hair images and stylistic drawings (rendering) from a sketch
graph and a few Gaussian basis functions.

178 6 Primal Sketch: Integrating Textures and Textons

Fig. 6.10 Reprinted with permission from [25]. Five primitives for the orientation field and eleven
primitives for the directed vector field V in a dictionary �sk. (a) Side boundary. (b) Source (origin)
or sink (end) of hair strands. (c) Occluding boundary. (d) Dividing line. (e) Stream line. The line
segments and arrows in the primitive windows show the canonical orientations, and the angles may
change in [−π/6, π/6]

Fig. 6.11 Reprinted with permission from [25]. (a) Windows A-F are 6 primitive examples. (b)
Zoomed-in views of the six windows

6.4 HoG and SIFT Representations

In this section, we will draw some connections between the primal sketch and His-
togram of Oriented Gradients (HOGs) [34] and Scale-Invariant Feature Transform
(SIFT) [158, 159] representations, which were widely adopted in computer vision
as generic image features and object templates before deep neural networks.

Histogram of Oriented Gradient (HOG) [34] is based on evaluating normalized
local histograms of image gradient orientations in a dense grid. The basic idea is
that local object appearance and shape can often be characterized rather well by
the distribution of local intensity gradients or edge directions, even without precise
knowledge of the corresponding gradient or edge positions. In practice, this is
implemented by dividing the image window into small spatial regions (“cells”),

6.4 HoG and SIFT Representations 179

Fig. 6.12 Reprinted with permission from [25]. Three examples of hair drawing and synthesis. (a)
Manually input hair sketch S with directions dS . (b) Synthesized vector field Vsyn given (S,dS).
(c) Edited shading maps with a small number of ellipses. (d) Synthesized color images Isyn

for each cell accumulating a local 1D histogram of gradient directions or edge
orientations over the pixels of the cell (Fig. 6.13). The combined histogram entries
form the representation. For better invariance to illumination, shadowing, etc., it is
also useful to contrast-normalize the local responses before using them. This can
be done by accumulating a measure of local histogram “energy” over somewhat
larger spatial regions (“blocks”) and using the results to normalize all of the cells
in the block. The normalized descriptor blocks are usually referred to as Histogram
of Oriented Gradient (HOG) descriptors. A typical application of HOG descriptors
is human detection, which is achieved by tilting the detection window with a dense

180 6 Primal Sketch: Integrating Textures and Textons

Fig. 6.13 Feature extraction with the histogram of oriented gradients (HOGs) descriptors. The
image window is first divided into small spatial regions (“cells”), and then for each cell a local 1D
histogram of gradient directions or edge orientations over the pixels of the cell is accumulated

grid of HOG descriptors and using the combined feature vector in a conventional
SVM-based window classifier.

The connection between HOG and the primal sketch is as follows. If the cell
used for the HOG descriptor happens to be a fine-scale stochastic texture (like
the sky, wall, clothes, shading patch, with no visible sketchable structures), then
keeping the histogram of gradient corresponds to the FRAME model for texture in
the primal sketch model. If the cell has visible structures and is thus sketchable, its
HOG histogram will be highly picked and thus dominated by 1-2 bins. For this case,
we adopt an explicit representation by the sketches (structure) in the primal sketch
model.

Scale-Invariant Feature Transform (SIFT) [159] transforms an image into a large
collection of local feature vectors, each of which is invariant to image translation,
scaling, and rotation, and partially invariant to illumination changes and affine or
3D projection. It consists of four major stages: (1) scale-space peak selection, (2)
keypoint localization, (3) orientation assignment, and (4) keypoint descriptor. In the
first stage, potential interest points are identified by scanning the image over location
and scale. This is implemented efficiently by constructing a Gaussian pyramid and
searching for local peaks (termed keypoints) in a series of difference-of-Gaussian
(DoG) images. In the second stage, candidate keypoints are localized to sub-pixel
accuracy and eliminated if found to be unstable. The third stage identifies the
dominant orientations for each keypoint based on its local image patch. The assigned
orientation(s), scale, and location for each keypoint enable SIFT to construct a
canonical view for the keypoint that is invariant to similarity transforms. The final
stage builds a local image descriptor for each keypoint, based on a patch of pixels
in its local neighborhood.

6.4 HoG and SIFT Representations 181

Fig. 6.14 Reprinted with permission from [159]. The training images for two objects are shown
on the left. These can be recognized in a cluttered image with extensive occlusion, shown in
the middle. The results of recognition are shown on the right. A parallelogram is drawn around
each recognized object showing the boundaries of the original training image under the affine
transformation solved during recognition. Smaller squares indicate the keypoints that were used
for recognition

SIFT can be applied to object recognition, which is performed by first matching
each keypoint independently to the database of keypoints extracted from training
images. Many of these initial matches will be incorrect due to ambiguous features
or features that arise from background clutter. Therefore, clusters of at least 3
features are first identified that agree on an object and its pose, as these clusters
have a much higher probability of being correct than individual feature matches.
Then, each cluster is checked by performing a detailed geometric fit to the model,
and the result is used to accept or reject the interpretation. Figure 6.14 shows
an example of object recognition using SIFT for a cluttered and occluded image
containing 3D objects. The training images of a toy train and a frog are shown
on the left. The middle image contains instances of these objects hidden behind
others and with extensive background clutter so that detection of the objects may
not be immediate even for human vision. The image on the right shows the final
correct identification superimposed on a reduced contrast version of the image. The
keypoints that were used for recognition are shown as squares with an extra line to
indicate orientation. The sizes of the squares correspond to the image regions used to
construct the descriptor. An outer parallelogram is also drawn around each instance
of recognition, with its sides corresponding to the boundaries of the training images
projected under the final affine transformation determined during recognition.

The SIFT keys can be considered an extension to the keypoints in images, like
color or complex object patterns. It corresponds to a local sub-graph in the primal
sketch, with some scale invariance.

Chapter 7
2.1D Sketch and Layered Representation

Primal sketch is a generic two-layer 2D representation in terms of how image
content is explained away with respect to either explicit basis functions or feature
statistics. Primal sketch seeks to decompose an image domain into the texton
structural domain and the remaining texture domain. In this chapter, we shall
study how to decompose an input image into multiple layers with partial occluding
order relation inferred and the occluded contour completed if possible (Fig. 7.1).
In the pioneering work, the resulting representation is called the 2.1D sketch,
by Nitzberg and Mumford [185], to bridge low-level image primitives (including
textons such as edges and junctions and texture atomic regions) and middle-level
Marr’s 2.5D sketch (to be presented in the next chapter), and termed layered image
representation, by Adelson and Wang [2, 245, 246], in image coding and motion
analysis.

In practice, the idea of layered representation has been widely used for image
manipulation in image editing software such as Adobe’s Photoshop (e.g., adding
text to an image, or adding vector graphic shapes, or applying a layer style to add
a special effect such as a drop shadow or a glow). In the literature of computer
vision, the 2.1D sketch or layered image representation has also been studied from
other perspectives including line drawing interpretations [162, 243], segmentation
[53, 232], occlusion recovery [211, 251], contour illusory and completion [50, 51,
106, 200, 244], and figure–ground separation [201, 225].

The 2.1D sketch stems from the figure–ground separation–organization problem,
a type of perceptual grouping that contributes to visual object recognition. In Gestalt
psychology, the figure–ground separation problem is usually posed as identifying
a figure (such as the two girls in Fig. 7.1) from the background (such as the
dancing practice room in Fig. 7.1). Computing the figure–ground organization of
an input image can help resolve perceptual ambiguities in, for example, the face-
vase and martini-bikini drawings. The 2.1D sketch captures the partial occluding
order between multiple object surfaces/generic regions in a scene, representing
the rank information of relative depth among them, and thus providing a critical

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_7

183

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_7&domain=pdf

 12905
61494 a 12905 61494 a

184 7 2.1D Sketch and Layered Representation

Fig. 7.1 Illustration of the 2.1D sketch and layered image representation. From a 2D sketch to
a 2.1D layered representation by reconfiguring the bond relations between regions in different
layers. (a) is an input image from which a 2D primal sketch is computed. This is transferred to a
2.1D sketch representation with three layers shown in (d), (e), and (f), respectively. The inference
process reconfigures the bonds of the image primitives shown in red in (b) and (c)

representation scheme for addressing the multi-stable perception phenomenon in
vision.

In this chapter, we focus on the problem of computing the 2.1D sketch from
a monocular image under the variational formulation framework, the energy
minimization framework, and the Bayesian inference framework, respectively.

7.1 Problem Formulation

In this section, we introduce the notation and present a high-level formulation. We
will elaborate on different components in the sections followed.

Denote by D an image domain and I an image defined on the domain D. To infer
the 2.1D sketch, we will build up a three-layer model from the input image I, to its
2D representation, denoted by W2D , and to the 2.1D sketch, denoted by W2.1D . We
have

I ⇒ W2D ⇒ W2.1D. (7.1)

W2D represents a set of 2D elements to be layered, which can be 2D atomic regions
or 2D curves and curve groups, as well as the associated attributes if needed in
inference. For example, if we only consider 2D regions, we have

7.1 Problem Formulation 185

Fig. 7.2 Reprinted with
permission from [236]. A
Hasse diagram for a partial
order relation

W2D =
{
n, (Ri, li , θi)

n
i=1

}
, (7.2)

which consists of n regions, Ri , each of which is represented by a region model
indexed by li in a predefined model family with parameters θi .

W2.1D represents a set of surfaces, their partial occluding order, and contours
used to complete regions in different surfaces. A surface consists of one 2D region or
more than one 2D region with completed contours. Any 2D region in W2D belongs
to one and only one surface in the layered representation. We have

W2.1D = {m, {Si}m
i=1,PR}, (7.3)

which consists of m surfaces (m ≤ n) and ∪iSi = D. PR represents the partial
occluding order between the set of m surfaces. Consider a set A = {a, b, c, d, e, f },
and we define a partially ordered set, poset [220], PR = 〈A,�〉. b � c means that
surface b occludes surface c or b is on top of c. PR is represented by a directed
acyclic graph (DAG) called a Hasse diagram. Figure 7.2 shows an example of the
Hasse diagram for PR = {〈a, b〉, 〈b, d〉, 〈a, d〉, 〈a, c〉, 〈c, d〉, 〈e, f 〉} on the set A.

Denote the “visible” portion of a surface Si by

S′
i = Si \ ∪Sj �Si Sj . (7.4)

Then, the recovered curve(s) in the surface Si can be defined by

Ci = ∂Si \ ∂S′
i . (7.5)

Some Ci’s may be empty. For example, the front-most surface does not have
occluded parts, and the occluded parts in the background are usually left open.

To infer the 2.1D sketch, we will study two different formulations that cast
the inference under the energy minimization framework and under the Bayesian
framework, respectively. In either case, there are two different assumptions:

• Assume the 2D representation W2D has been computed already and will be fixed
in the inference of the 2.1D sketch. This is typically adopted in the literature.

• Compute the 2D representation W2D and the 2.1D sketch W2.1D jointly. This
leads to a much larger search space and usually requires more powerful search
algorithms such as DDMCMC [235].

186 7 2.1D Sketch and Layered Representation

7.2 Variational Formulation by Nitzberg and Mumford

In their seminal work [185], Nitzberg and Mumford proposed a variational for-
mulation for inferring the 2.1D sketch extended from the Mumford–Shah energy
functional [177]. This belongs to the energy minimization framework, and we
briefly introduce the formulation in this section.

The Energy Functional

We first overview the Mumford–Shah energy functional for low-level image
segmentation. It is a piecewise smooth model that aims to segment an image into as
few and simple regions as possible while keeping the color of each region as smooth
and/or slowly varying as possible. The functional is defined such that it takes its
minimum at an optimal piecewise smooth approximation to a given image I defined
on the domain D. An approximation function, denoted by f , is smooth except at
a finite set � of piecewise contours that meet the boundary of the image domain,
∂D, and meet each other only at their endpoints. So, the contours of � segment
the image domain into a finite set of disjoint regions, denoted by R1, · · · , Rn, i.e.,
the connected components of D \ �. The Mumford–Shah functional is defined to
measure the match between an image I and a segmentation f, �:

EM−S(f, �|I) = μ2
∫

D
(f − I)2dx +

∫

D\�
‖∇f ‖2dx + v

∫

�

ds, (7.6)

where on the right-hand side the first term measures how good f approximates I,
the second asks that f varies slowly except at boundaries, and the third asks the set
of contours to be as short, and hence as simple and straight as possible.

Similar in spirit to the Mumford–Shah functional, Nitzberg and Mumford
proposed an energy functional that achieves a minimum at the optimal overlapping
layering of surfaces. For simplicity, assume Si is a closed subset of D with piecewise
smooth boundary and connected interior. The energy functional is defined by

E2.1D({Si},PR|I) =
n∑

i=1

{

μ2
∫

S′
i

(I − mi)dx + ε

∫

Si
dx +

∫

∂Si\∂D
φ(κ)ds

}

,

(7.7)
where mi is the mean of the image I on S′

i and κ is the curvature of the boundary
∂Si . The function φ : R → R is defined by

φ(κ) =
{

v + ακ2, for |κ| < β/α
v + β|κ|, for |κ| ≥ β/α.

(7.8)

7.3 Mixed Markov Random Field Formulation 187

The functional above can only address inferring the 2.1D sketch from simple
input images, which is a reasonable assumption in the early day of computer vision.
First, the model does not allow self-overlapping “woven” surfaces such as what
a garden hose would project, nor folded surfaces such as that produced by an
image of a sleeve whose edge disappears around the back of an arm. Second,
the model is piecewise constant with a constant mean being used for the surface
model. Third, transparency and shadows are not handled. We will study more
expressive models with more powerful inference algorithms for handling those
issues frequently observed in modern real images.

The Euler Elastica for Completing Occluded Curves

To recover the occluded curves, Nitzberg and Mumford adopted the Euler Elastica
method to interpolate them. Suppose a surface Si disappears behind occluding
objects at a point P0 ∈ ∂Si and reappears at P1. Let t0 and t1 be the unit tangent
vectors to ∂Si at P0 and P1, respectively. Then, computing the occluded curve Ci
between P0 and P1 is posed as a minimization problem where the energy functional
is

E(Ci |Si, P0, t0, P1, t1) =
∫

Ci
(v + ακ2)ds. (7.9)

Computationally, the simplest way to solve the Elastica seems to be hill-climbing.
It starts with a convenient chain x0 = P0, x1, · · · , xN = P1 of points for which
x1 − x0 ∝ t0 and xN−1 − xN ∝ t1. Xi’s (i = 1, · · · , N − 1) are computed by letting
them evolve to decrease the Elastica functional.

7.3 Mixed Markov Random Field Formulation

In this section, we address the 2.1D sketch problem with the mixed Markov
random field (MRF) representation and under the Bayesian inference framework.
We consider 2D image regions only as layering primitives. As illustrated in Fig. 7.3,
given the set of segmented regions (in different colors) of an input image, our
objective consists of two components: region layering or coloring to divide the set
of regions into an unknown number of layers, and contour completion to recover
the occluded contours between regions in the same layer. In addition, we will
also fit the probability models of regions in different layers and preserve multiple
distinct interpretations accounting for the intrinsic ambiguities if needed. Two key
observations in modeling and computing the 2.1D sketch problem are as follows:

188 7 2.1D Sketch and Layered Representation

R2

a1

a4

R4

a2

a3

R3

a7

a8

R5

a5

a6

R1

R6

R1

R2

R3

R4

R5
R6

a4

a1

a8

a5

a7

a6

a2

a3

（a） （b）

Fig. 7.3 A simple example of the 2.1D sketch and the mixed MRF modeling. (a) is a set of 2D
regions to be layered; (b) is the initial reconfigurable graph with mixed MRF including two types
of nodes, region nodes and terminator nodes. See text for details

(i) Long-range interactions between 2D regions. In order to determine which 2D
regions are in the same layer and to complete the contour of occluded parts,
long-range interactions are entailed, which imposes different requirements in
modeling than traditional local relation modeling using Markov random field
(MRF) models. Consider regions 3 and 5 in Fig. 7.1. Whether they should merge
into a single surface or should remain independent in the same layer depends
on their compatibility across long-range interactions.

(ii) Dynamic neighborhood system. In the contour completion process, given a
current layering assignment, the neighborhood of any endpoint on an occluded
contour looking for its corresponding point is constrained to match among the
set of points in the same layer. This means the neighborhood system changes
according to different layering assignments at each step in the inference, which
is different from the fixed neighborhood system in the traditional MRF.

The two properties stated above lead traditional MRFs to fail to model the 2.1D
sketch problem and call for new methods, such as the mixed Markov random field
[61, 63] to be used in this chapter. Both MRF and mixed MRF can be presented
by graphical models. A mixed MRF differs from traditional MRFs in its definition
of its neighborhood system, which is static in the latter but dynamic in the former
due to the introduction of a new type of nodes in the graph. Concretely speaking, a
mixed MRF has the following two characteristics:

(i) Nodes are inhomogeneous with different degrees of connections, which are
inferred from images on the fly.

(ii) The neighborhood of each node is no longer fixed but inferred as open bonds or
address variables, which reconfigures the graph structure.

Following Eq. (7.1), we adopt a three-layer generative image model consisting
of the input image, the 2D representation, and the 2.1D sketch. We use 3-degree
junctions such as T-junctions, Y-junctions, or arrow junctions as cues for occlusion.

7.3 Mixed Markov Random Field Formulation 189

The 2D representation consists of a set of 2D regions (see R1, R2, · · · , R6 in
Fig. 7.3a) and a set of terminators (see a1, a2, · · · , a8) broken from detected
T-, Y-, or arrow junctions during the process of layering and, if possible, to be
completed in the inferred layered representation. So, in the graphical representation
(see Fig. 7.3b), there are two types of nodes: one consists of the region nodes and
the other terminator nodes. Region nodes constitute the region adjacency graph to
be partitioned during the process of layering. The terminator nodes make the graph
reconfigurable since the neighborhood system of terminator nodes is not static and
depends on the current assignment of layering. For such reconfigurable graphical
models, it has been shown that a probability model defined on them still observes a
suitable form of the Hammersley–Clifford theorem and can be simulated by Gibbs
sampling [61].

Definition of W2D and W2.1D

For the clarity of the presentation, we mainly focus on inferring the 2.1D sketch
with the 2D representation given and fixed.

The 2D Representation W2D consists of a set of 2D regions, VR , and a set of
3-degree junctions, VT , such as T-, Y-, or arrow junctions:

W2D = (VR, VT) (7.10)

VR = (R1, R2, . . . , RN) (7.11)

VT = (T1, T2, . . . , TM). (7.12)

VR is the regions set, which can be many atomic regions or composed of a few
image patches. VT consists of those junctions selected from the detected 3-degree
junctions [252] that are assigned to the corresponding regions.

Open Bonds or Address Variables 3-degree junctions will be broken into a set
of terminators, illustrated in Fig. 7.4a and b for a T-junction, as the open bonds,
or address variables, VB , of corresponding regions during the inference. The open
bonds are like pointers to regions, initially kept open but to be assigned an address
variable and completed during inference. In practice, each bond has a set of
attributes, AB , including those belonging to itself and those inherited from the
region. These attributes often include geometric transformation features, such as
location, orientation, and length, and some appearance features such as features
computed from region models. They are used to test the compatibility of any two
bonds, deciding whether or not to link together. Often, besides the foreground and
background regions, each region has two or more (assumed no more than m ≤ M)
open bonds with their ownerships defined, denoted as B(Ri),∀i ≤ N .

190 7 2.1D Sketch and Layered Representation

Fig. 7.4 The open bounds or
address variable. A T-junction
is shown in (a); it is broken
into a terminator in (b) as an
open bound described as an
address variable including
location (x, y), the
orientation of the terminator,
and appearance information
inherited from the region it
belongs to; (c) is the Elastica
computed using two
terminators in the process of
contour completion

(x , y)

(a) (b)

(c)

a1 a2

VB = (a1, a2, . . . , aM) (7.13)

AB = (Aa1, Aa2, . . . , AaM), ai ∈ VB,∀i ≤ M (7.14)

B(Ri) = (ai1, ai2, . . . , aim), aij ∈ VB,∀i ≤ N,∀j ≤ m. (7.15)

Generative Models of Regions We adopt generative models for each region. Let
R ⊂
 denote a 2D region and IR the intensities in R or color values in (r, g, b)
color space. The model assumes constant intensity or color value with additive noise
η modeled by a non-parametric histogram H . The model can be learned offline, and
more sophisticated models can easily be added to the algorithm.

J(x, y, θ) = μ, IR(x, y) = J(x, y, ; θ) + η, η ∼ H. (7.16)

With a slight abuse of notation, we denote the parameters used in a region by θ =
(μ, H). Here μ is the mean of a region R or a connected component CP . The
likelihood is

p(IR|R, θ) ∝
∏

(x,y∈R)
H(IR(x, y) − J(x, y, θ)). (7.17)

The prior for a region R assumes a short boundary length ∂R. This is to encourage
smoothness, and a compact area |R|,

p(R) ∝ exp

{
−γr |R|ρ −

1

2
λ|∂R|

}
, (7.18)

where ρ and λ are fixed constants and γ is a fixed scale factor for regions.

7.3 Mixed Markov Random Field Formulation 191

Terminator Representation and the Elastica When a terminator ai is broken
from a junction, it is represented by its attributes Aai = (x, y; ori, κ, pf), where
(x, y) is the location, ori is the orientation of the terminator, κ is the curvature, and
pf is the profile or some attributes inherited from the region.

Given two terminators, ai and aj , the contour to be completed between them,
denoted by �∗, is decided by minimizing the Elastica cost function in a contour
space �� [110, 129, 177, 185]

�∗ = arg min
�∈��

E(�; ai, aj)

= arg min
�∈��

∫

�

[(
ν1 + α1κ

2
1

)
+

(
ν2 + α2κ

2
2

)]
ds,

(7.19)

where κ1 is the curvature of a1, κ2 is the curvature of a2, ν1 and ν2 are constants, and
α1 and α2 are scalable coefficients. The parameters ν1, ν2, α1, and α2 are learned
from an image dataset [273].

The 2.1D Sketch W2.1D is represented by a set of labels, X, for the layer
information of regions and a set of variables, Y , describing address variable
assignments. Both of them are inferred from the image. In addition, according to
the layering labels and assignments of address variables, a set of surfaces, Sf , is
formed, which consists of one or more regions merged through a set of recovered
contours, Ct .

W2.1D = (X, Y ; Sf , Ct) (7.20)

X = (xR1 , xR2 , . . . , xRN
) (7.21)

Y = (ya1 , ya2 , . . . , yaM
) (7.22)

where xRi ≤ K , ∀i ∈ [1, N], yaj ∈ VB , aj ∈ VB , ∀j ∈ [1,M], K is an unknown
number of layers to be inferred.

X represents the partition of VR into K layers with the partial occlusion relations
represented in a Hasse diagram along with Y . The assignments among address
variables indicate to whom the open bonds ai are connected or assigned. Each
terminator has the same label for its layer information as the region to which it
is assigned.

Because the surface is merged from regions so that its generative model includes
two constraints: one is appearance defined as the region model and the other shape
constrained by some generic shape priors (Elastica in this chapter) or some specific
object templates. Recovered contours are computed using Elastica based on the
results of assignments.

192 7 2.1D Sketch and Layered Representation

The Mixed MRF and Its Graphical Representation

Given the 2D representation defined above, there are two kinds of nodes in its
graphical representation: region nodes (the nodes found in a traditional MRF) and
terminator nodes (a newly introduced set of address nodes). Terminator nodes are
dynamically broken from 3-degree junctions in the process of region layering, which
means that their neighborhood systems are determined on the fly. According to the
discussion stated above, we know that this will build up a reconfigurable graph with
a mixed MRF as illustrated in Fig. 7.3b. We clarify some definitions in this section.

Let G = 〈V, E〉 be the graph for the 2D representation, where V = VR ∪ VB is
the set of vertices and E = ER ∪ EB the set of edges. ER is the set of edges linking
regions into a region adjacency graph, and EB is the dynamic set of edges linking
open bonds.

The edges decide the topology of the graph and can link, generally speaking,
any two vertices. In a mixed MRF, the introduction of address variables makes the
neighborhood system dynamic and different from traditional graphical models.

A mixed MRF can be defined in the same way that an MRF is defined as a
probability distribution that is factorized into a product of local terms, the only
difference being in what “local” means after introducing address variables. The
idea of “locality” in a mixed MRF can handle long-range interactions through open
bonds, meaning that a clique denoted by C in a mixed MRF may contain both
standard region nodes and address nodes.

Definition 1 (Mixed Neighbor Potential) Let C denote the set of cliques in G. A
family of nonnegative functions λC is called a mixed neighbor potential if for any
pair of configurations x and y, xC = yC and xxa = yya , ∀a ∈ C

⋂
VB . Thus a

mixed potential function λC depends on both the values of the standard nodes in C
and that of those pointed to by open bonds in C.

Definition 2 (MixedMarkov Random Field) A probability distribution P defined
on G is a mixed MRF if P can be factorized into a product of mixed potential
functions over the cliques: P(I) ∝ ∏

C λC(IC, IIC), where IIC is the vector of states
of those standard variables pointed to from within the clique C.

Equivalence Between the Mixed MRF and the Gibbs Distribution It was shown
that the originally established equivalence between MRFs and the Gibbs distribution
by Hammersley–Clifford theorem is also applicable for mixed MRFs so that the
probability models defined on a mixed MRF can be simulated by Gibbs sampling
[61] or SW cuts [9] according to Friedman’s proof in [61].

Given a region Ri , its neighborhood is

N(Ri) = Nadjacency(Ri) ∪ Npointer(RI), (7.23)

7.3 Mixed Markov Random Field Formulation 193

where Nadjacency(Ri) = {Rj : ∀Rj ∈ VR adjacent to Ri} represents the usual
definition of a neighborhood found in MRF models and defines an adjacency graph.
At the same time, open bonds of Ri will cause it to link to those regions that are
not locally adjacent, that is, Npointer(Ri) = {Rj : B(Rj) and B(Ri) are connected}.
Then ER is

ER = {〈Ri, Rj 〉,∀Ri ∈ VR and Rj ∈ N(Ri)}. (7.24)

Given an open bond ai ∈ VB , its neighborhood is

N(ai) = {aj : aj and ai are in the same layer}. (7.25)

Hence, EB = 〈ai, aj 〉,∀ai ∈ VT and aj ∈ N(ai). At the initial stage, all the open
bonds are open.

Bayesian Formulation

In the Bayesian framework, the three-layer model in Eq. (7.1) is described as

p(I,W2D,W2.1D) = p(I|W2D,W2.1D)p(W2D|W2.1D)p(W2.1D), (7.26)

where p(I|W2D,W2.1D) is the likelihood model. We want to maximize the posterior
joint probability of W2.1D given W2D in a solution space �W2.1D

W ∗
2.1D = arg max

�W2.1D
p(W2.1D|W2D; I)

= arg max
�W2.1D

p(W2D|W2.1D)p(W2.1D).
(7.27)

Graph Partition Perspective Given the graphical representation G defined with
a mixed MRF, we are interested in a partitioning, or coloring, of the vertex, i.e.,
V = VR ∪ VB , in G. An n-partition is denoted by

πn = (V1, V2, . . . , Vn),
n⋃

i=1

Vi = V, Vi

⋂
Vj =,∀i �= j. (7.28)

Each subset Vi, i = 1, 2, . . . , n (that is a surface in 2.1D representation), is assigned
a color ci that represents its model. For region nodes, this model consists of layering
information, and for open bonds, the model consists of the connected contours. Let
�πn(πn ∈ �πn) be the space of all possible n-partitions of V , �lr the set of types
of region models, �θr the model parameter family, �lc the set of types of Elastica,
and �θc the Elastica parameter space. Thus, the solution space for W2.1D is

194 7 2.1D Sketch and Layered Representation

� =
N⋃

n=1

{
�πn × �n

lr × �θr1 × . . . × �θrn × �n
lc × �θc1 × . . . × �θcn

}
. (7.29)

This leads us to extend the Swendsen–Wang Cuts algorithm [9] to perform the
inference. In the formulation, the prior model is

p(W2.1D) = p(K)p(X)p(Y)
N∏

i=1

p(Ri), (7.30)

where p(K) is an exponential model p(K) ∝ exp(−λ0K), p(X) = ∏N
i=1 p(XRi)

and p(Y) ∝ exp −β0
∑

∀ai ,aj ,i �=j 1(yai = yaj) penalize the situation that more than
one terminator is assigned to the same junction and p(Ri) is defined in Eq. (7.18).

The likelihood is

p(W2D|W2.1D) ∝
K∏

i=1

K(i)∏

j=1

∏

(x,y)∈sj

H(I(x, y) − J(x, y; θj))

×
M∏

i=1

exp{−λ0E},
(7.31)

where J(x, y; θj) is defined in Eq. (7.16) and λ0 is a scalable factor and also
learned from the dataset [273]. The first term in the likelihood handles the region
coloring/layering problem, and the second term handles the contour completion
problem. They are solved jointly.

Inference Algorithm Based on the graphical representation with a mixed MRF, the
presented inference algorithm proceeds in two ways: (1) region coloring/layering
based on the Swendsen–Wang Cuts algorithm [9] for the partitioning of the region
adjacency graph to obtain partial occluding order relations; (2) address variable
assignments based on Gibbs sampling for the completion of open bonds. The basic
goal is to realize a reversible jump between any two successive states π and π0 in
the Metropolis–Hastings method.

Experiments We first demonstrate the inference algorithm using the Kanizsa
image. Figure 7.5 shows the 2D representation and the graphical representation with
mixed MRF. Figure 7.6 shows the inference procedure.

7.4 2.1D Sketch with Layered Regions and Curves 195

Fig. 7.5 Reprinted with permission from [73]. A running example of inferring the 2.1D sketch.
(a) is the original image, Kanizsa figure. (b) is the sketch graph computed by the primal sketch
model after interactively labeling. There are 8 atomic regions and 12 terminators broken from T-
junctions. (c) is the 2.1D sketch. There are 4 layers, and the contour completion is performed using
Elastica rules. (d) is the Hasse diagram for partial order relation, such as 〈7, 1〉 means region 7
occludes region 1. (e) is the graph representation with a mixed Markov random field. Each big
circle denotes a vertex of the atomic region, each red bar denotes one terminator, and each little
circle denotes a vertex of open bound described as address variable. Each region may have two
or more terminators. The blue line segments connect the two neighboring regions. The green two-
way arrows connect two terminators, and each terminator is assigned another terminator’s address
variable

7.4 2.1D Sketch with Layered Regions and Curves

In this section, we handle images with both regions and curves that are frequently
observed in natural images as illustrated in Fig. 7.7. Given an input image, our
objective is to infer an unknown number of regions, free curves, parallel groups,
and trees, with recovered occlusion relation and their probability models selected
and fitted—all in the process of maximizing (or simulating) a Bayesian posterior
probability. This algorithm searches for optimal solutions in a complex state space
that contains a large number of subspaces of varying dimensions for the possible
combinations of regions, curves, and curve groups.

196 7 2.1D Sketch and Layered Representation

Fig. 7.6 Reprinted with permission from [73]. Illustration of the Gibbs inference procedure. Each
red node denotes a region, the black line segment denotes the terminator, and the green line segment
shows the inferred connection or assignment of address variables. Inference starts from an initial
temperature T = 20, and (a) ∼ (h) are the results in different temperatures. After T = 1, the
result is right as in the figure

7.4 2.1D Sketch with Layered Regions and Curves 197

Fig. 7.7 Reprinted with permission from [236]. Illustration of the 2.1D sketch with a layered
representation of regions and curves. (a) is an input image that is decomposed into two layers—(b)
a layer of regions and (c) a layer of curves. These curves are further divided into (d) free curves, (e)
a parallel curve group for the fence, and (f) trees. Curves observe a partial order occlusion relation

Fig. 7.8 Reprinted with permission from [236]. Representations of curves and curve groups. (a)
A free curve in continuous representation. (b) A free curve is discretized into a chain of “bars.” (c)
Curves for a parallel group. (d) Curves for a Markov tree

Generative Models and Bayesian Formulation

In this section, we present generative models for both regions and curve structures.

Generative Models of Curves

We consider three types of curve models that are illustrated in Fig. 7.8 and described
as follows.

1. Free curves. A free curve, denoted by C, is represented by its medial axis
cm(s) = (xm(s), ym(s)) and its width 2w(s) for s = [0, L]. L is the curve
length. In a continuous representation, a free curve C occupies an elongated

198 7 2.1D Sketch and Layered Representation

area or domain D(C) bounded by the left and right side boundaries denoted,
respectively, by cl (s) = (xl(s), yl(s)) and cr = (xr (s), yr(s)). Figure 7.8a shows
the boundaries in dashed lines.

cl (s) = cm(s) − w(s)n(s), cr (s) = cm(s) + w(s)n(s), (7.32)

where n(s) is the unit normal of cm(s). Intuitively, a curve is a degenerated region
parameterized by its 1D medial axis. Usually, w(s) is only 1 − 3 pixels wide and
w � L. This causes major topology problems in image segmentation where the
two boundaries cl (s) and cr (s) could often intersect generating numerous trivial
regions. This problem will be resolved with the explicit 1D representation. The
intensities of a curve often exhibit globally smooth shading patterns, for example,
the curves in Fig. 7.8. Thus we adopt a quadratic function for curve intensities

J(x, y; θ0) = ax2 + bxy + cy2 + dx + ey + f, (x, y) ∈ D(C), (7.33)

with parameters θ0 = (a, b, c, d, e, f). The validation of choosing an inhomo-
geneous model to capture the smoothly changing intensity patterns can be found
in [235]. Therefore, a free curve is described by the following variables in the
continuous representation

C =
(
L, cm(s)L

s=0, w(s)L
s=0, θ0, σ

)
, (7.34)

where σ is the variance of the intensity noise. While this continuous represen-
tation is a convenient model, we should also work on a discrete representation.
Then the domain D(C) is a set of pixels in a lattice, and C is a chain of elongated
bars as Fig. 7.8b illustrates.

The prior model for p(C) prefers smooth medial axes, narrow and uniform
width, and it also has a term for the area of the curve in order to match with the
region prior.

p(C) ∝ p(D(C))p(c(s))p(w(s)) ∝ e−E(C) . (7.35)

The energy E(C) is the sum of three terms

E(C) = γc|D(C)|ρ + λL + Eo(w), (7.36)

where ρ, λ are the constants and are fixed in our experiments, and γc is a scale
factor that can be adjusted to control the number of curves. Eo(w) is a term that
constrains width w(s) to be small. We denote the intensities inside the curve
domain by ID(C) and assume the reconstruction residue follows i.i.d. Gaussian
N (0; σ 2). The image likelihood therefore is

p(ID(C)|C) =
∏

(x,y)∈D(C)
N (I(x, y) − J(x, y; θ0); σ 2). (7.37)

7.4 2.1D Sketch with Layered Regions and Curves 199

2. Parallel curve groups. A parallel curve group consists of a number of nearly
parallel curves as Fig. 7.8c shows. Each curve Ci, i = 1, 2, . . . , n, is summarized
by a short line segment connecting its endpoints. They represent curve structures,
such as zebra stripes, grids, and railings shown in the experiments. Grouping
curves into a parallel group is encouraged in the model as it reduces the coding
length, and it is useful for perceiving an object, for example, a zebra. We denote
a parallel curve group by

pg = (n, {C1, C2, . . . , Cn}, {α1, α2, . . . , αn}), (7.38)

where αi ∈ {1, . . . , n} is the index to the curve preceding Ci in the chain.
The prior model for a pg is a first-order Markov model in a Gibbs form with

singleton energy on an individual curve and pairwise energy for two consecutive
curves as

p(pg) ∝ exp

{

−λ0n −
n∑

i=1

E(Ci) −
n∑

i=2

Epg(Ci, Cαi)

}

. (7.39)

The singleton E(Ci) is inherited from the free curve model. For the pair energy,
we summarize each curve Ci by five attributes: center (xi, yi), orientation θi of
its associate line segment, length Li of the line segment, curve average width
(thickness) w̄i , and average intensity μi . Epg(Ci, Cαi) measures the differences
between these attributes.

3. Markov trees. Figure 7.8d shows a number of curves in a Markov tree structure.
We denote it by

T = (n, {C1, C2,, Cn}, {β1, β2, . . . , βn}). (7.40)

βi ∈ {1, . . . , n} is the index to the parent curve of Ci . Thus the prior probability
is

p(T) ∝ exp

⎧
⎨

⎩
−λ0n −

n∑

i=1

E(Ci) −
∑

αi �=∅
ET (Ci, Cβi)

⎫
⎬

⎭ . (7.41)

Again, E(Ci) is inherited from the free curve. The term for Ci and its parent
Cαi

, ET (Ci, Cαi), measure the compatibilities such as endpoint gap, orientation
continuity, thickness, and intensity between the parent and child curves.

The parallel group pg and tree T inherit the areas from the free curve, thus

D(pg) = ∪n
i=1D(Ci), and D(T) = ∪n

i=1D(Ci). (7.42)

200 7 2.1D Sketch and Layered Representation

It also inherits the intensity function J(x, y; θi) from each free curve Ci, i =
1, 2, . . . , n. In summary, the intensity models for C, pg, T are all generative for
image I as

I(x, y) = J(x, y; θ) + N (0; σ 2), (x, y) ∈ D(Ci),D(pg), or D(T). (7.43)

Generative Models of Regions

Once the curves explain away the elongated patterns, what is left within each
image are the regions in the background. We adopt two simple region models in
comparison to the four models in [235]. We denote a 2D region by R ⊂ D and IR
the intensities inside R.

The first model assumes constant intensity with additive noise modeled by a non-
parametric histogram H,

J(x, y; 1, θ) = μ, I(x, y) = J(x, y) + η, η ∼ H, (x, y) ∈ R. (7.44)

With a slight abuse of notation, we denote by θ = (μ,H) the parameters used in a
region.

The second model assumes a 2D Bezier spline function with additive noise. The
spline accounts for global smooth shadings,

J(x, y; 2, θ) = B ′(x)MB(y), I(x, y) = J(x, y; θ2) + η, η ∼ H, (x, y) ∈ R,
(7.45)

where B(x) = ((1 − x)3, 3x(1 − x)2, 3x2(1 − x), x3) is the basis and M is a
4 × 4 control matrix. This is to impose an inhomogeneous model for capturing
the gradually changing intensity patterns, e.g., the sky. This model is important
since regions with shading effects will be segmented into separate pieces with
homogeneous models. The parameters are θ = (M, H), and more details with a
validation can be found in [235], where we compare different models for different
types of images.

The likelihood is

p(IR|R, θ) ∝
∏

(x,y)∈D(R)
H(I(x, y) − J(x, y; �, θ)), � ∈ {1, 2}. (7.46)

The prior for a region R assumes short boundary length ∂R (smoothness) and
compact area |D(R)|,

p(R) ∝ exp

{
−γr |D(R)|ρ −

1

2
λ|∂R|

}
, (7.47)

7.4 2.1D Sketch with Layered Regions and Curves 201

where ρ and λ are constants that are fixed for all the experiments in this section,
and γr is a scale factor that can be adjusted to control the number of regions in the
segmentation.

Bayesian Formulation for Probabilistic Inference

Given an image I, our objective is to compute a representation of the scene (world
W) in terms of a number of regions Wr , free curves Wc, parallel curve groups Wpg ,
trees Wt , and a partial order PR. We denote the representation by variables

W = (Wr ,Wc ,Wpg ,W t ,PR). (7.48)

The region representation Wr includes the number of regions Kr , and each region
Ri has a label �i ∈ {1, 2} and parameter θi for its intensity model

Wr = (Kr , {(Ri, �i, θi) : i = 1, 2, . . . , Kr}). (7.49)

Similarly, we have Wc = (Kc , C1, . . . , CKc), Wpg = (Kpg , pg1, pg2, . . . , pgKpg),
and Wt = (Kt , T1, T2, . . . , TKt). In this model, there is no need to define the
background since each pixel either belongs to a region or is explained by a
curve/curve group.

The problem is posed as Bayesian inference in a solution space �,

W ∗ = arg max
W∈�

p(I|W)p(W). (7.50)

By assuming mutual independence between Wr ,Wc ,Wpg ,W t , we have the prior
model

p(W) =

⎛

⎝p(Kr)
Kr
∏

i=1

p(Ri)

⎞

⎠

⎛

⎝p(Kc)
Kc
∏

i=1

p(Ci)

⎞

⎠

⎛

⎝p(Kpg)
Kpg
∏

i=1

p(pgi)

⎞

⎠

⎛

⎝p(Kt)
Kt
∏

i=1

p(Ti)

⎞

⎠ .

(7.51)

The priors for individuals p(R), p(C), p(pg), p(T) are given in the previous
subsections.

As there are N curves in total including the free curves, and curves in the parallel
groups and trees, then the likelihood follows the lattice partition and Eqs. (7.37)
and (7.46).

p(I|W) =
Kr∏

i=1

∏

(x,y)∈DRi

H((I(x, y) − J(x, y; �i, θi))

202 7 2.1D Sketch and Layered Representation

·
N∏

j=1

∏

(x,y)∈DCj

N ((I(x, y) − J(x, y; θj); σ 2
j). (7.52)

Since all objects use generative models for reconstructing I, these models are
directly comparable and they compete to explain the image. This property is crucial
for the integration of region segmentation and curve grouping.

Inference Algorithm Here we briefly summarize the design of the algorithm.
The goal is to design an algorithm to make inference of the W ∗ that maximizes
the posterior p(W | I) by sampling W in the solution space with a fast simulated
annealing procedure. Since W ∗ is usually highly peaked, we hope that it will most
likely be sampled if the algorithm converges to the target distribution. This poses
rather serious challenges even though we have simplified the image models above.
The main difficulty is dealing with objects with different structures and exploring a
large number of possible combinations of regions, curves, and curve groups in an
image. Especially our objective is to achieve automatic and nearly globally optimal
solutions. The following are three basic considerations in our MCMC design.

First, the Markov chain should be irreducible so that it can traverse the entire
solution space. This is done by designing a number of pairs of jumps to form an
ergodic Markov chain. The resulting Markov chain can reach any state from an
arbitrary initialization.

Second, each jump operates on 1 − 2 curves or curve elements. We study the
scopes of the jumps within which the algorithm proposes the next state according to
a conditional probability. This is like a Gibbs sampler. The proposal is then accepted
in a Metropolis–Hastings step, hence its name the Metropolized Gibbs Sampler
(MGS [157]).

Third, the computational cost at each jump step should be small. The proposal
probability ratios in our design are factorized and computed by discriminative
probability ratios. These discriminative probabilities are computed in bottom-up
processes that are then used to activate the generative models in a top-down process.
As Fig. 7.9 illustrates, each jump maintains a list of “particles” that are weighted
hypotheses with the weights expressing the discriminative probability ratios. Then a
particle is proposed at a probability proportional to its weight within the list (scope).
The higher the weight is, the more likely a particle will be chosen.

Experiments

The proposed algorithm searches for the optimal solution W ∗ by sampling p(W | I).
It starts from a segmentation with regions obtained at a coarse level by the Canny
edge detector. Our method does not rely much on the initial solution due to the use of
various MCMC dynamics guided by bottom-up proposals, which help the algorithm
to jump out of local minimums. However, we do use an annealing strategy to allow

7.4 2.1D Sketch with Layered Regions and Curves 203

Fig. 7.9 Reprinted with permission from [236]. The 6 simple jumps maintain 10 sets of “particles”
whose sizes illustrate their weights. The sets are updated and re-weighted in each jump step, and
they encode the proposal probabilities in a non-parametric representation

large change of W at high temperatures and to focus more on local modes with
the temperature gradually cooling down. The optimal solution W ∗ is found when
the algorithm converges since p(W ∗|I) is in general highly peaked for many vision
problems, especially at a low temperature.

Experiment A: Computing Regions and Free Curves

An example is shown in Fig. 7.10. For each example, the first row displays the
input image Iobs, the computed free curves Wc, and the region segmentations Wr

in the background. The second row shows the synthesized image according to the
generative models for the regions Ir syn ∼ p(I|Wr), the curves Ic

syn ∼ p(I|Wc), and
the overall synthesis Isyn by occluding Ic

syn on Ir syn.
We construct a synthesis image to verify how an input image is represented in

W ∗. In the experiment, two parameters in the prior models are adjustable: (1) γr
in Eq. (7.47) and (2) γc in Eq. (7.36). The two parameters control the extent of the
segmentation, i.e., the number of regions and curves. Therefore, they decide how
detailed we like the parsing to be. Usually, we set γr = 5.0 and γc = 3.5, and other
parameters are fixed.

In the second experiment, we further compute the parallel groups and trees by
turning on the two composite jumps J7, J8. Figure 7.11 shows an example: The

204 7 2.1D Sketch and Layered Representation

Fig. 7.10 Reprinted with permission from [236]. Experiment A: parsing images into regions and
free curves

Fig. 7.11 Reprinted with permission from [236]. Experiment B: parsing an image into regions,
curves, and parallel curve groups

top row shows the parallel groups or trees grouped from the simple curves. The
second and third rows are displayed as before. From the results, we can see that
the algorithm successfully segments, detects, and groups regions, curves, and curve
groups, respectively.

Chapter 8
2.5D Sketch and Depth Maps

In previous chapters, we discuss the first stage of early visual processing, i.e.,
representing the changes and structures in the image with the primal sketch and
2.1D sketch. In general, the primal sketch is a generic two-layer 2D representation
describing image features such as intensity changes, local geometrical structures,
and illumination effects such as light sources, highlights, and transparency. Based on
the primal sketch, the 2.1D sketch, a layered representation, is analyzed to describe
the surfaces with occluding relations, defining the visibility of surfaces and contours
in the given image. However, such rough descriptions of the spatial relations in
images are not sufficient for our overall goal to thoroughly understand the vision.
To understand how to obtain descriptions of the world efficiently and reliably from
images, we need to go one step further. In this chapter, we introduce the 2.5D sketch,
which aims to analyze the depth information that describes the relative positions of
surfaces in a more precise way.

The idea of the 2.5D sketch first appeared in Marr and Nishihara’s research [170],
whose original goal is to provide a viewer-centered representation of the visible
surfaces. As shown in Fig. 8.1, the 2.5D sketch construction is considered to be a
significant part of the mid-level vision, the last step before surface interpretation,
and the end, perhaps, of pure perception. We start with Marr’s definition of 2.5D
sketch and the viewer-centered representation, to analyze the vision process from
the primal sketch to 2.5D sketch from a relatively intuitive perspective. Besides,
we introduce some methods to reconstruct the 2.5D presentation, i.e., the depth
information, for image analysis, including the shape from stereo, shape from
shading, and direct estimation.

8.1 Marr’s Definition

As introduced by Marr in [169], the distances from the observed objects to the
human’s two eyes are different, making the two eyes form different images of the

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_8

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_8&domain=pdf

 12905 61494 a 12905 61494
a

206 8 2.5D Sketch and Depth Maps

Fig. 8.1 Representation in Marr’s paradigm. The 2.1D sketch was proposed by Nitzberg and
Mumford [185]

world. The disparities in the two images help human brains estimate the relative
distances of the objects from the observer. Marr divides this account into two parts,
the first is concerned with measuring disparity and the second is concerned with
using it. Marr separates both parts into three levels, i.e., computational theory,
representation and algorithm, and hardware implementation. More specifically, the
three steps involved in measuring stereo disparities are: (1) selecting a particular
location on a surface in the scene from one image; (2) identifying the same location
in the other image, and (3) measuring the disparity between the two corresponding
image points. Before making use of the measured disparity, we need to solve another
fundamental problem in binocular fusion, i.e., the elimination or avoidance of false
targets. The abundance of matchable features and the disparities between these
matches lead to difficulties in deciding which pair is false and useless. With the
validated measured disparities, we can compute the distance from the viewer to
surfaces in the images and also analyze the surface orientations from the disparity
changes.

According to Marr, constructing the orientation-and-depth map of the visible sur-
faces around a viewer is one of the most critical goals of early visual processing. In
this map, information is combined from several different and probably independent
processes to interpret disparity, motion, shading, texture, and contour information.
These ideas are called 2.5D sketch by Marr and Nishihara [170]. The full 2.5D
sketch would include rough distances to the surfaces as well as their orientations.
Besides, the places where surface orientations change sharply and where depth is
discontinuous can be labeled as contours, which are informative for further analysis.

Many types of information can be extracted from images by different kinds
of early visual processes. For example, the stereopsis outputs disparity, hence the
continuous or small local changes in relative depth. At the same time, the optical
flow generates the relative depth and the local surface orientation. Although in
principle processes such as stereopsis and motion can directly deliver depth-related
information, they are more likely to deliver local changes of depth by measuring

8.1 Marr’s Definition 207

Fig. 8.2 Reprinted with
permission from [170].
Example of a 2.5D Sketch
described in [169]. The
surface orientation is
represented by arrows, as
explained in the text.
Occluding contours are
shown with full lines, and
surface orientation
discontinuities with dotted
lines. Depth is not shown in
the figure, though it is thought
that rough depth is available
in the representation

local disparities in practice. However, the main function of the visual representation
we seek should not be limited to making explicit information about depth, local
surface orientations, and discontinuities in these quantities. We want to create and
maintain a global representation of depth that is consistent with the local cues
obtained from these sources. Such a representation is called the 2.5D sketch.

To prepare for a more thorough discussion, we first describe the original
definition for a viewer-centered representation that uses surface primitives of small
size as described in [169]. Figure 8.2 illustrates such a representation, which is like
having a gradient space at each point in the visual field. It includes a representation
of contours of surface discontinuity. It has enough internal computational structure
to maintain its descriptions of depth, surface orientation, and surface discontinuity
in a consistent state. Depth may be represented by a scalar quantity r , the distance
from the viewer of a point on a surface, and the surface discontinuities may be
represented by oriented line elements. Surface orientation may be represented as
a vector (p, q) in two-dimensional space, equivalent to covering the image with
needles. The length of each needle defines the surface slant (or dip) at the point.
Here, zero length corresponds to a surface that is perpendicular to the vector from
the viewer to that point. The length of the needle increases as the surface slants away
from the viewer. The needle orientation defines the tilt, that is, the direction of the
surface’s slant. In principle, the relationship between depth and surface orientation is
straightforward—one is simply the integral of the other, taking over regions bounded
by surface discontinuities. Therefore, it is possible to devise a representation with
intrinsic computational facilities that can maintain the two variables of depth and
surface orientation in a consistent state.

We will discuss the approaches to generate the 2.5D sketch in the following
sections, including two generative methods (in applications of shape from stereo
and shape from shading) that generate the 2.5D sketch from the primal sketch and a
recent discriminative approach in deep learning.

208 8 2.5D Sketch and Depth Maps

8.2 Shape from Stereo

In this section, we introduce two works related to shape from stereo. We first briefly
introduce the stereopsis work proposed by Peter Belhumeur in [14]. After that, we
introduce the visual knowledge representation applied in the stereo reconstruction
work proposed by Barbu and Zhu [4].

A pair of stereo images have been known to encode the information detailing
the scene geometry since at least the time of Leonardo da Vinci [31]. The animal
brain has known this for millions of years and has developed yet barely understood
neuronal mechanisms for decoding it. Everywhere animals gaze, they are aware of
the relative depths of the observed objects. Even though stereo vision is not the only
cue to depth, monocular cues are still less exact and often ambiguous in determining
the depth and 3D spatial relations.

Binocular stereopsis algorithms use the data in a pair of images taken from
slightly different viewpoints to construct a depth map of the 3D surfaces captured
within the images [14]. The 3D surfaces are estimated by first matching pixels in the
images that correspond to the same point on a 3D surface and then computing the
point’s depth as a function of its displacement (or disparity) in the two images. The
task of matching points between the two images is known as the correspondence
problem.

In the last 50 years, researchers have tried to reconstruct the scene geometry
from a pair of stereo images. Unfortunately, like most computer vision problems,
the stereo problem has proven to be more difficult than initially anticipated. Argued
by Belhumeur [14], the solutions for properly handling occluded regions and
salient features in the scene geometry have been largely overlooked. Generally
speaking, there are the following four major problems in matching the two images
in binocular stereopsis: (1) Handling the feature noise in the left/right images caused
by quantization error, imperfect optics, imaging system, lighting variation between
images, specular reflection, etc. (2) Handling the indistinct image features near
pixels where the matching is ambiguous. (3) Preserving the salient features, such as
depth discontinuities at object boundaries, in the 3D scene geometry to produce an
accurate reconstruction. (4) Correctly handling the half-occlusion regions by first
matching half-occluded points to mutually visible points and then estimating the
depth at these points.

For years, people have offered solutions to the correspondence problem without
adequately addressing all of these complications. In the early area-based algorithms,
the disparity was assumed to be constant within a fixed-sized window. Other
methods integrate a type of smoothness (flatness) constraint into the matching
process, again biasing toward reconstructions with persistent disparity. Although
algorithms using smoothness constraints show effectiveness in handling the first
two problems, their performance deteriorated at salient features in the scene
geometry. These algorithms generally over-smooth the depth discontinuities at
object boundaries (“breaks”) and in surface orientation (“creases”). Sometimes
erratic results would be produced. Line processes were introduced to solve the image

8.2 Shape from Stereo 209

segmentation problem. While this method helps preserve the boundaries of objects,
it overlooks three critical complications. First, the introduction of line processes
to model object boundaries gave rise to highly nonlinear optimization problems.
Second, no prescription was given for preserving the other salient features in the
scene geometry. Third, it is challenging to identify whole regions of half-occlusion
caused by discontinuity.

Facing the previous challenges, [14] developed a computational model for
stereopsis by making explicit all of the assumptions about the nature of image
coding and the structure of the world. In designing computer vision models,
researchers often skip this step and, consequently, have no way of testing whether
the underlying assumptions are valid. The developed model in [14] is designed
within a Bayesian framework and attempts to explain the process by which the
information detailing the 3D geometry of object surfaces is encoded in a pair of
stereo images. Belhumeur [14] starts by deriving the model for image formation,
introducing a definition of half-occluded regions, and deriving simple equations
relating these regions to the disparity function. In this chapter, the author shows
that the disparity function alone contains enough information to determine the half-
occluded regions. These relations are utilized to derive a model for image formation
in which the half-occluded regions are explicitly represented and computed. The
prior model is presented in a series of three stages, or “worlds,” where each world
considers an additional complication to the prior, constructed from all of the local
quantities in the scene geometry, i.e., depth, surface orientation, object boundaries,
and surface creases.

For computer vision problems, the Bayesian paradigm seeks to extract scene
information from an image or a sequence of images by balancing the content of
the observed image with prior expectations about the observed scene’s content.
This method is general and can be applied to a wide range of vision problems,
including binocular stereopsis. Let S indicate the scene geometry given the left
and the right images by Il and Ir . Within the Bayesian paradigm, one infers S by
considering P(S|Il , Ir), the posterior probability of the state of the world given the
measurement. From Bayes theorem, we have

P(S|Il , Ir) =
P(Il , Ir |S)P (S)

P(Il , Ir)
. (8.1)

Sometimes P(Il , Ir |S) is referred to as the “image formation model,” which
measures how well S matches the observed images. P(S) is usually referred to as
the “prior model” that measures how probable a particular S is a priori before the
images are observed. We denote the maximum a posteriori (MAP) estimate Ŝ. For
notational convenience, we define the energy functional as below

E(S) = − log(P (Il , Ir |S)P (S)) = ED + EP , (8.2)

where ED = − log(P (Il , Ir |S)) is referred as the “data term,” and EP =
− log(P (S) is referred as the “prior term.” To employ these energy functionals

210 8 2.5D Sketch and Depth Maps

with the underlying assumptions taken into consideration, one must be careful in
choosing random variables to be estimated and in the assumed relations between
these random variables in developing a Bayesian formulation of a vision problem.

The Image Formation Model

In this subsection, we introduce the image formation model proposed by Belhumeur
[14]. Besides, the definition of the epipolar line will be mentioned.

In deriving the model for image formation, we choose the simplest possible
geometry: pinhole cameras with parallel optical axes. Assume the cameras are
calibrated and the epipolar geometry is known, we define disparity relative to
an imaginary cyclopean image plane placed halfway between the left and right
cameras. Here we derive explicit relations between disparity and depth, as well
as disparity and half-occlusion, showing that the disparity function correctly
determines the half-occluded regions in the left and right image planes. We then
use these relations to derive our image formation model.

Assume that we have two pinhole cameras whose optical axes are parallel and
separated by a distance of w. The cameras each have focal length l, with fl the focal
point of the left image, and fr the right. Then we create an imaginary cyclopean
camera in the same manner, placing its focal point f halfway along the baseline,
i.e., the line connecting the left and right focal points. Then we restrict the cameras’
placement so that the baseline is parallel to the image planes and perpendicular
to the optical axes, as shown in Fig. 8.3. A point p on the surface of an object in
3D space that is visible to all three cameras is projected through the focal points
onto the image planes. Each image plane has a 2D coordinate system with its
origin determined by the intersection of its optical axis with the image plane. The
brightness of each point projected onto the image planes creates image luminance
functions Il , Ir , and I in the left, right, and cyclopean planes, respectively.

A horizontal plane through the baseline intersects the three image planes in what
are called epipolar lines, which we denote by Xl , Xr , and X, with coordinates xl ∈
Xl , xr ∈ Xr , and x ∈ X, respectively. The coordinates of the epipolar lines run from
right to left, so that when a point in the world moves from left to right, its coordinates
in the image planes increase. When the same point is visible from all three eyes,
it is easy to check that x = (xl + xr)/2. Thus, we can relate the coordinates of
points projected onto all three image planes by a positive disparity function d(x) via
xl = x + d(x) and a negative one via xr = x − d(x). Thus we have d(x) = xl−xr

2 .
Suppose z(x) represents the perpendicular distance from a line connecting the focal
points to the point p on the surface of the object, then the disparity d(x) can be
related to the distance z(x) by d(x) = lw

2z(x)
.

Some early work assumed that none of the points in either of the left or right
images is half-occluded (visible in one camera, but not in the other). However, the
vast majority of the millions of images we view every day contains large regions of
half-occluded points, and half-occlusion is also a positive cue for the human visual

8.2 Shape from Stereo 211

Fig. 8.3 Reprinted with permission from [14]. Camera geometries: The figure shows the left and
right image planes, plus an imaginary cyclopean image plane. Both the disparity and distance
functions are defined relative to the cyclopean image plane

system to determine depth. Thus, computer vision systems must take advantage of
the cues provided by half-occlusion as human visual system [14].

Here we give the definition of the mutually visible point as proposed in [14]. A
point p is mutually visible to both eyes if the triangle formed by p, fi , and fr is free
of obstructing objects, as shown in Fig. 8.4. Note that according to this definition,
if any object is contained within the triangle formed by p, fi , and fr , then the
point p is not considered mutually visible, even though the point may be visible to
all three eyes. To determine from the disparity function when a point is mutually
visible, it is convenient to introduce a morphologically filtered version d∗(x) of
d(x), d∗(x) = maxa(d(x +a)−|a|). d∗(x) = d(x) if and only if the point p visible
to the cyclopean eye in direction x is mutually visible to the left and right eyes.
Thus, the function d∗(x) tracks the mutually visible points. Then we can define the
half-occluded points as the points that are not mutually visible as in [14]. The half-
occluded points O ∈ X are the closure of the set of points x such that d∗(x) > d(x).

Before further derivations, we must define the previous quantities in a discrete
manner. Take the fixed interval [−a, a] of the cyclopean epipolar line X and
sample it at n evenly spaced points represented by X = x1XN such that
x1 = −a, xi+1 − xi = δ and xN = a. Let the disparities at the sampled
points be represented by D = d(x1) . . . d(xN) = d1 . . . dN . We define the half-
occluded points O ∈ X as O = {xi |dj − di | > |j − i| for some xj }. Finally,
we discretize the range of possible disparity values with sub-pixel fineness, so that
di ∈ 0, 1

k ,
2
k , . . . , 1, 1 + 1

k , . . . , dmax for some k specifying the disparity resolution.

212 8 2.5D Sketch and Depth Maps

Fig. 8.4 Reprinted with permission from [14]. Mutually visible points: A mutually visible point
has no object within the triangle specified by p, fl , and fr

Since it is not possible to distinguish between jumps in the disparity along a sloping
surface and jumps in disparity at the boundaries of objects unless using sub-pixel
resolution, these methods will falsely assume that the jumps along sloping surfaces
produce half-occluded points. Yet, all surfaces visible to both the left and right eyes
have [di+1 − di] < 1 as pointed out in [14].

Keeping within the Bayesian framework, a probabilistic model needs to be
developed for the joint distribution P(Il , Ir |S). To do this, assume we are given
a scene of objects in 3D space with Lambertian illumination (i.e., an object’s
brightness is independent of the viewing angle). Label points on the surfaces of
objects by elements of a set �. To each point p ∈ �, there is a brightness γ (p).
Define

∏
l and

∏
r to be the maps that take points in the image planes to the point

on the surface of the closest visible object, i.e.,
∏

l : Xl → � and
∏

r : Xr → �.
The brightness of a visible point once projected into the image plane is corrupted
by noise. Assuming additive Gaussian white noise, image functions can be written
as Il (xl) = γ (

∏
l (xl)) + ηl(xl) and Ir (xr) = y(

∏
r (xr)) + ηr(xr), where ηl and

ηr are independent and identically distributed (i.i.d.) Gaussian noise processes with
mean zero and variance ν2. For notational convenience, we only consider the image
functions Il and Ir along corresponding epipolar lines. The joint density for any set
of N samples, which we denote by xl1, . . . , xlN , from the left image function Il ,
given γ , is

P(Il (xl1), . . . , Il (xlN)|γ) = P(Il |γ) = 1

(2πν2)N/2

N∏

i=1

e
− η2

l (xli)
2ν2 , (8.3)

where ηl(xli) = Il(xli) − γ (
∏

l (xli)). Likewise, we can get the joint density from
the right image function Ir . Using the fact that ηl and ηr are independent, we can

8.2 Shape from Stereo 213

write the combined joint density as

P(Il , Ir |γ) = 1

(2πν2)N

N∏

i=1

e
− η2

l (xli)+η2 r (xri)
2ν2 . (8.4)

Choose the N samples from the left and right epipolar lines that correspond to the
evenly spaced points x1xN on the cyclopean epipolar line. So we choose xli =
xi +di and xri = xi −di . Because the brightness function γ is unknown, we approx-
imate γ , with its maximum likelihood estimator γ̂ (

∏
l (xli)) = γ̂ (

∏
r (xri)) =

Il (xli)+Ir (xri)
2 . This approximation yields η2 l (xli) + η2 r (xri) ≈ (Il (xli)−Ir (xri))

2

2 ; then

we will have the joint density P(Il , Ir |γ̂) = 1
(2πν2)N

∏N
i=1 e

− (Il (xli)−Ir (xri))
2

4ν2 . In this
way, we can compute this quantity from the data if the point xi is mutually visible.
However, if the xi is half-occluded, such formulation is not feasible.

To solve for the half-occluded points, we approximate the squared difference
(Il (xli) − Ir (xri))

2/2 by its expected value ν2. Then we have the combined joint
density as below

P(Il , Ir |γ̂) = 1

(2πν2)N

N∏

i=1,xi /∈O
e
− (Il (xli)−Ir (xri))

2

4ν2

N∏

i=1,xi∈O
e− 1

2 . (8.5)

Or equivalently, the combined joint distribution can be rewritten in terms of the
cyclopean epipolar points X and the corresponding disparities D as

P(Il , Ir |γ̂ , D) =
1

(2πν2)N e
−ED , ED =

1

4ν2
∑

X−O
(Il (xi+di)−Ir (xi−di))

2+
∑

O

1

2
,

(8.6)
with ED being the data term in the model.

We have introduced the data model under the assumption of Lambertian illumi-
nation so far. Let us generalize the above equation so that the data term considers,
as simply opposed to image intensity, other, possibly more viewpoint invariant,
features (e.g., edges, texture, filtered intensity, etc.). In doing this, we rewrite the
above equation by replacing the intensity functions Il and Ir with general feature
functions Fl and Fr . Thus, the data term becomes ED = 1

4ν2
∑

X−O(Fl(xi + di) −
Fr(xi − di))

2 + ∑
O

1
2 .

Furthermore, [14] derives the prior model for the Bayesian estimator, arguing that
to capture the quantities in the scene geometry, namely depth, surface orientation,
object boundaries, and surface creases, one should explicitly represent these quan-
tities as random variables or continuous time random processes in the prior model.
The derivation is broken up into three stages, or worlds, with each succeeding world
considering additional complications in the scene geometry.

The first world, i.e., World I, is surface smoothness. As shown in [14], we assume
a simple world in which the scenes captured in a stereo pair contain only one object.

214 8 2.5D Sketch and Depth Maps

On the surface of this object, we further assume that the 2D distance function of the
cyclopean coordinate system is everywhere continuous, so a particular epipolar line
has both a distance function D and a disparity function d that are also everywhere
continuous. Because the relation between disparity and depth is known, we do not
explicitly represent the depth, but rather the disparity in the derivation of the prior
model. In the second world, i.e., World II—Object Boundaries, we assume a slightly
more complicated world than World I: here we consider the possibility of more
than one object in a scene. For this world, the assumption is that the disparity
function d is a sample path of the sum of a scaled Brownian motion process and
a compound Poisson process with i.i.d., uniform random variables. In this way, we
were able to consider multiple objects in a scene by introducing random variables
that explicitly represent the discontinuities in disparity at the boundaries of objects.
The third world, World III, is a more complicated one, which is the world for Surface
Slope and Creases. In this world, not only do we consider more than one object in a
scene, but we also consider that the surfaces of objects may be steeply sloping and
may have creases. We recommend [14] for further implementation details about the
proposed model.

In the rest of this section, we present a two-level generative model that incorpo-
rates generic visual knowledge for dense stereo reconstruction introduced by Barbu
and Zhu [4]. In this chapter, the visual knowledge is represented by a dictionary
of surface primitives including various categories of boundary discontinuities and
junctions in parametric form. The work takes advantage of the fact that depth
discontinuities usually happen at object boundaries and that depth maps have much
less complexity than color images. In stereo, textured areas contain a trove of depth
information, while textureless areas are the most difficult and their depth must be
propagated from far away via priors. So here the 2D sketch comes into play to
capture the potential depth boundaries, and the inference algorithm propagates the
depth information along the sketch to obtain a 3D consistent representation, which
is a 3D sketch.

Given a stereo pair, we first compute a primal sketch representation that
decomposes the image into a structural part for object boundaries and high-intensity
contrast represented by a 2D sketch graph, and a structureless part represented by
Markov random field (MRF) on pixels. Then we label the sketch graph and compute
the 3D sketch (like a wireframe) by fitting the dictionary of primitives to the sketch
graph. The surfaces between the 3D sketches are filled in by computing the depth
of the MRF model on the structureless part using conventional stereo methods.
These two levels interact closely with the primitives acting as boundary conditions
for MRF and the MRF propagating information between the primitives. The two
processes maximize a Bayesian posterior probability jointly. Barbu and Zhu [4]
propose an MCMC algorithm that simultaneously infers the 3D primitive types and
parameters and estimate the depth (2.5D sketch) of the scene. The experiments show
that this representation can infer the depth map with sharp boundaries and junctions
for textureless images, curve objects, and free-form shapes.

The overall data flow of the algorithm is illustrated in Fig. 8.5. Given a stereo pair
of images, [4] first compute a primal sketch representation [90] that decomposes the

8.2 Shape from Stereo 215

Fig. 8.5 Reprinted with permission from [4]. The flow diagram of the algorithm

image into two layers: (i) A structural layer for object boundaries and high-intensity
contrast represented by a 2D sketch graph and (ii) a structureless layer represented
by Markov random field on pixels. The sketch graph in the structural layer consists
of a number of isolated points, line segments, and junctions that are considered
vertices of different degrees of connection.

Barbu and Zhu [4] then study the 3D structures for these points, line segments,
and junctions and develop a dictionary for different configurations. The boundary
primitives correspond to places where the depth map is not smooth, namely the
boundaries between objects in the scene (first-order discontinuities) and the places
where the surface normally experiences large changes in direction (second-order
discontinuities). The curve primitives describe thin curves of different intensities
from the background and usually represent wire-like 3D objects such as thin
branches of a tree or electric cables, etc. The point primitives represent feature points
in the image that have reliable depth information. The valid combinations of these
3D primitives are summarized in a dictionary of junctions. Figures 8.8 and 8.9 show
the dictionaries of line segments and junctions, respectively. Each is a 3D surface
primitive specified by a number of variables. The number of variables is reduced for
degenerated (accidental) cases.

Barbu and Zhu [4] adopt a probability model in a Bayesian framework, where
the likelihood is described in terms of the matching cost of the primitives to images,
while the prior has terms for continuity and consistency between the primitives,
and a Markov random field (MRF) that is used to fill in the depth information
in the structureless areas. This Markov random field together with the labeling
of the edges can be thought of as a mixed Markov model [63], in which the
neighborhood structure of the MRF depends upon the types of the primitives, and
changes dynamically during the computation.

The inference algorithm simultaneously finds the types of the 3D primitives, their
parameters, and the full depth map (2.5D sketch). To make up for the slow-down
given by the long-range interactions between the primitives through the MRF, the
algorithm makes use of data- driven techniques to propose local changes (updates)
in the structureless areas.

216 8 2.5D Sketch and Depth Maps

Fig. 8.6 Reprinted with permission from [4]. The algorithm proposed in [4] starts from a two-
layer sketch representation. (a) Input image, (b) region layer, (c) curve layer

The model proposed in [4] is different from other models existent in the literature
in the close relationship between the MRF and the boundary primitives. The non-
horizontal boundary primitives serve as control points for the MRF, while the
horizontal primitives and the occluded sides of the primitives have their disparity
determined by the MRF.

In the following subsections, we introduce more details about the work in [4].

Two-Layer Representation

Given a stereo pair Il , Ir of images, we would like to find the depth of all pixels in
Il . Assuming that the camera parameters are known, this is equivalent to finding for
each pixel, the horizontal disparity that matches it to a corresponding pixel in Ir . Let
D be the disparity map that needs to be inferred and � be the pixel lattice.

We assume the disparity map D is generally continuous and differentiable, with
the exception of a number of curves �sk where the continuity or differentiability
assumption does not hold. These curves are augmented with disparity values and
are considered to form a 3D sketch Ds that acts as boundary conditions for the
MRF modeling the disparity on �nsk = � \ �sk.

A. The Sketch Layer—from 2D to 3D Assume that the places where the
disparity is discontinuous or non-differentiable are among the places of intensity
discontinuity. The intensity discontinuities are given in the form of a sketch S
consisting of a region layer SR and a curve layer SC , as illustrated in Fig. 8.6.
The curve layer is assumed to occlude the region layer. These sketches can be
obtained as in [90, 236]. The sketch edges are approximated with line segments
S = {si, i = 1, .., ne}. The segments that originated from the region layer si ∈ SR
will be named edge segments, while the segments originating from the curve layer
si ∈ SC will be named curve segments.

Each edge segment si ∈ SR from the region layer is assigned two 5-pixel-wide
edge regions li , ri , on the left and on the right of si , respectively, as shown in Fig. 8.7,
left. Each curve segment sj ∈ SC is assigned a curve region rj along the segment,

8.2 Shape from Stereo 217

Fig. 8.7 Reprinted with permission from [4]. Division of the image in Fig. 8.6 into sketch
primitives and 6 × 6 pixel square regions. Region layer (left) and curve layer (right)

of width equal to the width of the curve, as shown in Fig. 8.7, right. Denote the
pixels covered by the edge and curve regions by �R,�C , respectively.

Because away from the places of discontinuity, the surfaces are in general very
smooth, and to reduce the dimensionality of the problem, the pixels of � \ �R are
grouped into square regions of size 6 × 6 pixels, by intersecting � \ �R with a
6× 6 rectangular grid. Small regions at the boundary between the edge regions and
the rectangular grid are merged into the edge regions. This way, the entire lattice
� is divided into atomic regions that either are along the sketch SC or are on the
rectangular grid, as shown in Fig. 8.7. This structure allows the use of the thin plate
spline model for the MRF and also enables the implementation of good boundary
conditions by the 3D primitives.

Then all line segments si ∈ S are augmented with parameters to become 3D
sketch primitives, as shown in Fig. 8.8. Depending on the type of segments they
originated from, there are boundary primitives and curve primitives.

B. A Dictionary of Primitives Let

V1 = {πi = (si, [li , ol
i], ri , or

i , ti , pi, di, wi[, fi]), i = 1, .., ne} (8.7)

be the set of all primitives, where the parameters in brackets might be missing,
depending on the primitive type. The variables of each primitive are:

1. The edge segment si ∈ SR or curve segment si ∈ SC .
2. The left and right regions (wings) li , ri in case of an edge segment, or the curve

as a region ri in case of a curve segment.
3. An occlusion label ol

i , o
r
i for each of the regions li , ri , representing whether the

region is occluded (value 0) or not (value 1).
4. The label ti = t (πi) ∈ {1, .., 8} indexing the type of the primitive from the

primitive dictionary with the restriction that edge segments si ∈ SR can only be

218 8 2.5D Sketch and Depth Maps

Fig. 8.8 Reprinted with permission from [4]. Each sketch segment is augmented to a primitive
from the dictionary, ordered by generality

assigned types from {1, .., 6}, while curve segments si ∈ SC can only be assigned
types from {1, 7, 8}. These types are illustrated in Fig. 8.8:
• Type 1 represents edges or curves that are on the surface of the objects.
• Type 2 represents first-order discontinuities, i.e., places where the surface is

continuous, but the normal is discontinuous.
• Types 3, 4, 5, 6 represent occluding edges where the occluded surface is on

the left (types 3, 4) or on the right (types 5, 6) of the edge.
• Types 7, 8 represent 3D curves, either connected with one end to the surface

behind or totally disconnected.

5. A label pi specifying whether this primitive is a control point (value 1) of the
thin plate spline or not (value 0). All horizontal edges have pi = 0 at all times.

6. The disparities di = d(πi) = (d0
i , d

1
i) at the endpoints of the segment or the

disparity di = d(πi) at the center of the segment if the segment is short (less
than 6 pixels long).

7. The left and right control arms wi = w(πi) = (wl
i , w

r
i) representing the slope of

the disparity map D in the direction perpendicular to the line segment.
8. For types 3–6, the disparity fi = f (πi) = (f 0 i , f 1 i) of the occluded surface at

the ends of the segment, or the disparity fi = f (πi) at the center of the edge
segment if the segment is short (less than 6 pixels long).

8.2 Shape from Stereo 219

Fig. 8.9 Reprinted with permission from [4]. These are the main types of junctions between
boundary and curve primitives

Each of the regions li , ri of the primitive πi = (si, [li , ol
i], ri , or

i , ti , pi, di,
wi[, fi]) is assigned a matching cost where for each pixel v ∈ ri , the disparity
dv(πi) is the linear interpolation based on the parameter d representing the disparity
at the ends of the region, in the assumption that w = 0.

c(ri, d) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if ri intersects the curve sketch SC
∑

v∈ri
|Il (v) − Ir (v − dv(πi))| if or

i = 1
α else

.

(8.8)
Then the matching cost of the primitive πi is

c(πi) = c(ri, [li], ti , di , [fi]) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

c(ri, di) if ti = 7, 8, 1(curve)
c(li , di) + c(ri, di) if ti = 2, 1(region)
c(li , fi) + c(ri, di) if ti = 3, 4
c(li , di) + c(ri, fi) if ti = 5, 6.

(8.9)
The primitives form a graph by the natural adjacency relation between the

underlying edge segments.

C. Modeling Junctions Between the Primitives To increase the model accuracy,
the junction points of two or more primitives are modeled. Similar to [212], certain
types of possible junctions depending on the degree (the number of primitives) of the
junction are introduced below and illustrated in Fig. 8.9. These junctions include:

220 8 2.5D Sketch and Depth Maps

• Junctions of 2 boundary primitives have three main types: surface junctions, the
beginning of occlusion, and occlusion junctions.

• Junctions of 3 boundary primitives have three main types: surface junctions, Y-
junctions, and T-junctions.

• Junctions of 4 or more boundary primitives are accidental and are assumed to be
all surface junctions.

• No junctions between one or two curve primitives and one boundary primitive.
• Junctions of 1 curve primitive with two boundary primitives have three main

types: curve beginning, Y-junctions, and T-junctions.
• Junctions of 2 curve primitives have only one type.
• Junctions of 3 curve primitives have only one type, namely bifurcation.
• Junctions of 4 curve primitives have two types, namely curve crossing or curve

overlapping. In both cases, the opposite primitives can be seen as part of the same
3D curve.

Let J = {φi = (t, k, πi1 , . . . , πik), πi1 , . . . , πik ∈ V1, i = 1, . . . , nJ } be the set of
junctions, each containing the list of primitives that are adjacent to it. The variable
t is the junction type and restricts the types of the primitives πi1 , . . . , πik to be
compatible with it.

Each junction φi ∈ J imposes a prior model that depends on the junction
type, and the types and directions of the 3D primitives πi1 , . . . , πik meeting in this
junction. This prior is composed of a 3D geometric prior on the primitives and a 2D
occurrence prior on each particular junction type.

Thus

P(φ) ∝ P(πi1 , . . . , πik |t, φ2D)P (φ2D , t) = P(φ3D|t, φ2D)P (t |φ2D) (8.10)

since the 2d geometry φ2D of the junction is fixed.
We will now discuss P(φ3D|t, φ2D) for each junction type. To simplify the

notation, we define two continuity priors:

pc(πi, πj) =
1

Zc
exp

{
−βc|d φ

i − d φ
j |2

}
,

ps(πi, πj) =
1

Zs
exp

{

−βc|d φ
i − d φ

j |2 − βs

(

|d φ
i − 2d φ

i + d φ
j |2 − |d φ

i − 2d φ
j + d φ

j |2
)}

,

(8.11)

where di = (d φ
i , d φ

i) is the disparity of the primitive πi , with d φ
j being the disparity

at the junction φ endpoint:

(1) All the surface junctions of 3 or more boundary primitives and the curve
bifurcation or crossing have a prior that prefers the same disparity for all
primitives meeting at this junction.

P(φ3D |t, φ2D) =
1

Z1

∏

πj ,πk∈φ
pc(πj , πk). (8.12)

8.2 Shape from Stereo 221

Fig. 8.10 Reprinted with permission from [4]. Left: The prior of the junction between two
boundary or curve primitives depends on the angle θ between the primitives. Right: The prior
of the curve overlapping junction encourages continuity of each pair of opposite curves

(2) The prior of junctions of two boundary or two curve primitives depends on the
angle θ between the primitives at the junction.

P(φ3D |t, φ2D) =
1

Z2

⎧
⎨

⎩
pc(πj , πk) if |θ − π | > π/6

ps(πj , πk) else
, (8.13)

as shown in Fig. 8.10, left.
(3) For the curve overlapping junction involving four curve primitives, the prior is

defined in terms of the continuity of each pair of opposite curves.

P(φ3D |t, φ2D) = ps(πi, πk)ps(πj , πl), (8.14)

as shown in Fig. 8.10, right.
(4) For the Y-junctions of 3 boundary primitives and for the curve beginning, the

prior encourages all three primitives to be adjacent, and the primitives πi, πj
(refer to Fig. 8.9) to have a good continuation as in case (2).

P(φ3D |t, φ2D) =
1

Z4
ps(πi, πj)

∏

πu,πv∈φ,{u,v}�={i,j}
pc(πu, πv). (8.15)

(5) For the T-junctions, the prior encourages continuity of the occluding edge.

P(φ3D |t, φ2D) = ps(πi, πj). (8.16)

Since the disparity space of each primitive is discretized, the normalizing
constant for each junction can be computed effectively.

222 8 2.5D Sketch and Depth Maps

The prior P(t |φ2D) can be learned from hand-labeled data, independently for
each degree (the number of primitives) k of the junction.

Based on the matching cost, a saliency map

ψπi (d, [f]) = exp(−c(ri , [li], ti , d, [f])/10) (8.17)

toward all possible values of d, f is computed for each primitive πi ∈ V1. This
information will be used to find the disparities di of the sketch primitives.

We also compute a saliency map toward the three main types of boundary
primitives, namely surface (types 1, 2), occluding left (types 3, 4), occluding right
(types 5, 6), based on the feature

ξ(πi) =
mind c(li , d)

|li | −
mind [c(li , d) + c(ri , d)]

|li | + |ri | , (8.18)

which measures how well both wings of the primitive fit the same disparity, as
compared to the left wing alone.

From hand-labeled data, we obtained histograms H12, H34, H56 of the values of
ξ for each of the three main types of boundary primitives. We fit these histograms
with Gaussians to even out the small amount of training data and eliminate the need
for histogram bins. From here, we obtain a likelihood Lπ(t) toward the three main
types of boundary primitives.

Lπ(t) =

⎧
⎪⎪⎨

⎪⎪⎩

60e−ξ2/2 if t = 1, 2

4.4e−(ξ+1.18)2/1.42 + 3.67e−(ξ+8.21)2/6 if t = 3, 4

9.18e−(ξ−0.58)2/0.87 + 3.06e−(ξ−7.36)2/7.5 if t = 5, 6.

(8.19)

Using the intensity-driven likelihood for the boundary primitives, we construct a
likelihood, driven simultaneously by the image intensity and the geometry (relative
position of primitives), for each junction φ = {π1, . . . , πk}:

Lφ(t) = P(φ)Lπ1(t1) . . . Lπk (tk). (8.20)

D. The Free-Form Layer The primitives π ∈ V1 discussed in the previous
section are elongated primitives corresponding to line segments, so they can be
considered of dimension 1. Other sketch primitives that are involved in the free-
form layer are the zero-dimensional primitives corresponding to feature points with
reliable disparity information, i.e., point primitives. These primitives are a subset
of the rectangular atomic regions and together with the one-dimensional boundary
primitives are the control points of the thin plate spline. The curve primitives are not
involved in the MRF computation.

Let R be the set of all rectangular atomic regions. For each region r ∈ R, we
compute a saliency map

8.2 Shape from Stereo 223

ρr(d) ∝ exp

{

−
∑

v∈r
|Il (v) − Ir (v − d))|/10

}

(8.21)

to all possible disparities d ∈ [dmin, dmax]. Then the square regions

R =
{
ri =

(
di, oi, pi, μi, σ

2
i

)
, i = 1, .., nr

}
(8.22)

have the following parameters:

1. The disparity di = d(ri) of the center of the region
2. A label oi specifying whether this region is occluded (value 0) or not (value 1)
3. A label pi = p(ri) ∈ {0, 1} representing whether the region is a point primitive

(i.e., control point for the thin plate spline) or not
4. The mean μi and variance σ 2

i of the saliency map ρri

Following [14], all regions (edge regions, curve regions, and square regions) will
have their occlusion labels deterministically assigned based on the disparities of the
boundary and curve primitives. For example, for an occlusion primitive πi of type 4,
the left region li and other regions horizontally to the left of the edge at a horizontal
distance less than the disparity difference between the right and left wings of πi will
be labeled as occluded.

The matching cost for each region ri ∈ R is

c(ri) =
{

α if oi = 0
∑

v∈ri
|Il (v) − Ir (v − di))| if oi = 1.

(8.23)

The set of point primitives is denoted by

V0 = {ri ∈ R, si = 1}. (8.24)

Figure 8.11 shows the labeled graph, i.e., primitive types (middle), and the point
and boundary primitives that act as control points for the �nsk part (right). The

Fig. 8.11 Reprinted with permission from [4]. Left image of a stereo sequence, the graph labeling,
and the control points (point and boundary primitives) of the thin plate spline

224 8 2.5D Sketch and Depth Maps

depth and disparity maps obtained this way are shown in Fig. 8.15. Observe that the
horizontal edges are not control points.

The dense disparity map D is obtained from V1 and R by interpolation. By using
the boundary primitives to model the places of discontinuity, the obtained disparity
map has crisp discontinuities at the object boundaries and is smooth everywhere
else, as shown in Fig. 8.15.

E. Bayesian Formulation We formulate our model using the Bayes rule:

P(V1, R|Il , Ir) ∝ P(Il |Ir , V1, R)P (R − V0|V0, V1)P (V0, V1). (8.25)

The likelihood P(Il |Ir , V1, R) is expressed in terms of the likelihood Lπi (ti) and
matching cost c(rj) of the sketch primitives.

P(Il |Ir , V1, R) ∝
ne∏

i=1

Lπi (ti) exp[−
∑

rj ∈R
c(rj)]. (8.26)

The prior

P(R − V0|V0, V1) ∝ exp {−Ec(R) − βbEb(R, V1)} (8.27)

is defined in terms of the energy of the soft control points:

Ec(R) =
∑

rj ∈V0

(dj − μj)/2σ
2
j , (8.28)

and the thin plate bending energy:

Eb(R, V1) =
∑

(x,y)∈G

[
d2
xx(x, y) + 2dxy(x, y)2 + d2

yy(x, y)
]
, (8.29)

which is computed on a 6×6 grid G containing the centers of all the square regions
and neighboring grid points on the boundary primitives. For example, if the point
(x, y) ∈ G is the center of rj ∈ R and rN , rNW , rW , rSW , rS, rSE, rE, rNE are the
8 neighbors of rj , then

dxx(x, y) = dW − 2dj + dE

dyy(x, y) = dN − 2dj + dS

dxy(x, y) = (dNE + dSW − dNW − dSE)/4.

Similar terms in the bending energy Eb(R, V1) can be written for cases where one
or many of the neighbors are boundary primitives. However, there are no terms

8.2 Shape from Stereo 225

involving the left and right atomic regions li , ri ∈ πi belonging to the same edge
primitive πi .

The prior P(V0, V1) = P(V0)P (V1) assumes a uniform prior on V0, while
P(V1) is defined in terms of the junction priors P(φi) defined above, P(V1) =∏

φi∈J P(φi).

The Inference Algorithm

In our problem formulation, there are two types of variables, discrete and continu-
ous. The discrete variables are

� = V d
1 ∪ Rd (8.30)

consisting of V d
1 = {(t (π), ol (π), or (π), p(π)),∀π ∈ V1} and Rd =

{(s(r), o(r), p(r)),∀ r ∈ R}. All other variables are continuous variables, namely
V c
1 = V1 \ V d

1 and R
c = R − Rd , and can be divided into the boundary conditions

� = V c
0 ∪ {d(π),∀π ∈ V1, p(π) = 1}, (8.31)

and the fill-in variables

� = {([w(π)], [f (π)]),∀ π ∈ V1} ∪ {d(π),∀π ∈ V1, p(π) = 0} ∪ Rc − V c
0 .

(8.32)

The posterior probability can then be written as

p(V1, R|Il , Ir) = p(�,�,�|Il , Ir). (8.33)

In a MAP formulation, our algorithm needs to perform the following three tasks:

1. Reconstruct the 3D sketch to infer the parameters � of the primitives.
2. Label the primitive graph to infer the discrete parameters �, i.e., associate the

primitives with the appropriate types. This represents the detection of surface
boundaries and of the feature points of the image.

3. Perform “fill in” of the remaining parts of the image, using the MRF and �,� as
boundary conditions, to infer � and obtain a dense disparity map D.

The algorithm will proceed as follows. In an initialization phase, the first two
steps will be performed to compute an approximate initial solution. Then steps (2)
and (3) will be performed to obtain the final result.

A. Initialization Initializing the system purely based on the local depth ψπ and
likelihood Lπ(t) information existent at the primitives π ∈ V1 results in an

226 8 2.5D Sketch and Depth Maps

Fig. 8.12 Reprinted with permission from [4]. Left: An initialization purely based on local
information is not satisfactory. Right: By propagating the junction priors along the sketch, a much
better initialization can be quickly obtained

inconsistent initial solution that is valid only at places with reliable local depth
information, as shown in Fig. 8.12left.

A major improvement can be achieved by using the junction prior P(φ) that has
been defined in Sect. 8.2C, which provides a way to propagate depth information
quickly along the edges of the sketch, from the places where it is available. This
is why we use an approximation of the posterior probability that only takes into
account the matching cost of the edge regions πi ∈ V1 and the junction prior.

P(V1|Il , Ir) ∝
ne∏

i=1

Lπi (ti)
∏

φi∈J
P(φi). (8.34)

At this stage, the variables that highly depend on the thin plate spline prior will
be assigned some default values. Thus, the wing parameters wi, ∀πi ∈ V1 will be
assigned value 0 (i.e., all wings will be horizontal), while the occlusion labels oi
will be assigned value 1 (not occluded).

The initialization algorithm alternates the following MCMC steps:

• A single node move that changes one variable di at a time.
• A move that simultaneously shifts all di at the same junction φ by the same value.

This move is capable of adjusting the disparity of primitives at a junction at times
when changing the disparity of only one primitive will be rejected because of the
continuity prior.

8.2 Shape from Stereo 227

• A labeling move as described in the MCMC algorithm below, which proposes a
new labeling for a set of primitives and junctions. The move is accepted using the
Metropolis–Hastings method based on the posterior probability from Eq. (8.34).

The algorithm is run for 10|V1| steps and obtains the initialization result shown
in Fig. 8.12, right in about 10 s. The initialization algorithm is very fast because
the fill-in of the interior pixels is not performed, eliminating the expensive MRF
computation.

The 3D reconstruction of the curve primitives is performed separately in a similar
manner. The labeling move is much simpler since the curve primitives basically
accept two labels, surface/non-surface. The rectangular regions with low matching
cost and small variance (less than 1) will initially be labeled as control points for the
thin plate spline.

B. Updating the Fill-in Variables � Observe that in our formulation of the energy,
if�,� are fixed, the conditional− log(P (�|�,�)) is a quadratic function in all the
variables�, so it can be minimized analytically. This implies that� can be regarded
as a function on �,�, � = �(�,�). This restricts the problem to maximizing the
probability P(�,�,�(�,�)|Il , Ir), of much smaller dimensionality.

Inside each of the regions C bounded by the control point sketch primitives,
the variables depend only on the control points inside and on the boundary
of this region. So the computation can be localized to each of these regions
independently, as shown in Fig. 8.13. Additional speedups can be obtained following
the approximate thin plate spline methods from [45].

Observe that the update can affect some non-control point edges, such as the
horizontal edges from Fig. 8.13.

For each such region C, we define relative labels lC of the edges adjacent to C
that only take into account the side of the edge that belongs to C. For example, an
occluding edge of type 4 and an edge of type 1 will have the same label relative to
the region C containing the right wing of the edge. Using these relative labels, we
reduce the computation expense by defining the energy of the region

Fig. 8.13 Reprinted with permission from [4]. The fill-in can be restricted to the connected
components bounded by control point boundary primitives. In a few steps, the initial 3D
reconstruction before graph labeling is obtained. Shown are the 3D reconstructions after 0, 1, and
5 connected components have been updated. The horizontal edges change the disparity at the same
time as the interior because they are not control points

228 8 2.5D Sketch and Depth Maps

Fig. 8.14 Reprinted with permission from [4]. Each graph labeling move changes the types of
a set of primitives in a consistent manner. First, a primitive π is chosen and its type is sampled
from the likelihood Lπ(t); then the adjacent junctions change their type conditional on the chosen
type of π , which in turn determines the types of the other primitives of the junctions, etc. The
labeling move is accepted based on the Metropolis–Hastings method. Illustrated is the left side of
the umbrella image

E(C, lC) = Ec(C) + μbEb(C) +
∑

r∈C∩R
c(r). (8.35)

The full posterior probability can be recovered from the energy of the regions
and the junction prior:

P(V1, R|Il , Ir) ∝
ne∏

i=1

Lπi (ti) exp

[

−
∑

C
E(C, lC)

]
∏

φ∈J
P(φ). (8.36)

C. The MCMC Optimization Algorithm After the initialization, the 3D sketch
variables � = �0 will be fixed. The algorithm will only update the primitive types
� and the fill-in variables �.

To maximize P(�,�0, �(�,�0)|Il , Ir), we will use a Markov chain Monte
Carlo algorithm that will sample P(�,�0, �(�,�0)|Il , Ir) and obtain the most
probable solutions.

At each step, the algorithm proposes, as shown in Fig. 8.14, new types for a set
of primitives N and junctions J in one move, as follows:

1. Grow a set N of primitives as follows:

1. Choose a random non-horizontal primitive π .
2. Initialize N = {π} and J = {φ1, φ2} where φ1, φ2 are the two junctions

adjacent to π .
3. Sample the primitive type t (π) from the local likelihood Lπ(t).
4. Sample the type of φ ∈ J from Lφ(t), conditional on the primitive type t (π).

This determines the types of all primitives of Nn = {π ′ �∈ N, π ′ ∼
φ for some φ ∈ J },
where π ∼ φ means π is adjacent to φ.

5. Set N ← N ∪ Nn.
6. Initialize Jn = ∅.

8.2 Shape from Stereo 229

7. For each π ∈ Nn, pick the adjacent junction φ �∈ J . If π changed its type at
step 4, set
Jn ← Jn ∪ {φ}, else set Jn ← Jn ∪ {φ} with probability 0.5.

8. Set J ← J ∪ Jn.
9. Repeat steps 4–8 for each π ∈ Nn and each φ ∈ Jn, π ∼ φ.

2. Update the fill-in variables �(�,�) for the connected components C where it is
necessary.

3. Accept the labeling move based on the full posterior probability, computed using
Eq. (8.36).

Example Results

Experiments are presented in Fig. 8.15 where four typical images for stereo match-
ing are shown. The first two have textureless surfaces, and the most information is
from the surface boundaries. The fourth image has curves (twigs). For these images,

Fig. 8.15 Reprinted with permission from [4]. Results obtained using our method. (a) Left image
of the stereo pair, (b) 3D sketch using the primitives, (c) 3D depth map, (d) disparity map

230 8 2.5D Sketch and Depth Maps

it is not a surprise to see that the graph cut method with simple MRF models on
pixels produces unsatisfactory results. The second and fourth images have free-
form surfaces with or without textures from [153]) and [213]. On the teddy-bear
sequence, the percentage of pixels with an error of at least 1, as compared to the
ground truth, is 3.3%. In comparison, the graph cuts result observes a 7.3% error
rate. We have also shown the interactions of the two layers in Fig. 8.13 and the
effects of sketch labeling in Fig. 8.14.

8.3 Shape from Shading

In this section, we first briefly introduce the Lambertian model and the classic
Horn’s shape-from-shading, or in short SFS, work. Then we briefly present a two-
level generative model for representing the images and surface depth maps of
drapery and clothes.

In computer vision, the techniques to recover shape are called shape-from-
X techniques, where X can be shading, stereo, motion, texture, etc. Shape from
shading (SFS) deals with the recovery of shape from a gradual variation of shading
in the image. Artists have long exploited lighting and shading to convey vivid
illusions of depth in paintings. It is essential to study how the images are formed
in order to solve the SFS problem. A simple model of image formation is the
Lambertian model, in which the gray level at a pixel in the image depends on the
light source direction and the surface normal. In SFS, given a gray level image,
the aim is to recover the light source and the surface shape at each pixel in the
image. However, real images do not always follow the Lambertian model. Even
if we assume Lambertian reflectance and known light source direction, and if the
brightness can be described as a function of surface shape and light source direction,
it is still not straightforward. The reason is that if the surface shape is described in
terms of the surface normal, we have a linear equation with three unknowns, and if
the surface shape is described in terms of the surface gradient, we have a nonlinear
equation with two unknowns. Therefore, finding a unique solution to SFS is difficult;
it requires additional constraints.

Shading plays an essential role in the human perception of surface shape.
Researchers in human vision have attempted to understand and simulate the
mechanisms by which our eyes and brains use the shading information to recover
the 3D shapes. The extraction of SFS by the visual system is also strongly affected
by stereoscopic processing. Barrow and Tenenbaum discovered that it is the line
drawing of the shading pattern that seems to play a central role in interpreting shaded
patterns [12]. Mingolla and Todd’s study of the human visual system based on the
perception of solid shape [173] indicated that the traditional assumptions in SFS—
Lambertian reflectance, known light source direction, and local shape recovery—are
not valid from a psychological point of view. From the above discussion, one can
observe that the human visual system uses SFS differently than computer vision
does typically.

8.3 Shape from Shading 231

In the 1990s, Horn et al. [112] discovered that some impossibly shaded images
exist, which could not be shading images of any smooth surface under the
assumption of uniform reflectance properties and lighting. For this kind of image,
SFS will not provide a correct solution, so it is necessary to detect impossibly shaded
images.

SFS techniques can be divided into four groups: minimization approaches,
propagation approaches, local approaches, and linear approaches. Minimization
approaches obtain the solution by minimizing an energy function. Propagation
approaches propagate the shape information from a set of surface points (e.g.,
singular points) to the whole image. Local approaches derive shape based on the
assumption of surface type. Linear approaches compute the solution based on the
linearization of the reflectance map.

One of the earlier minimization approaches, which recovered the surface gradi-
ents, was by Ikeuchi and Horn [117]. Since each surface point has two unknowns
for the surface gradient, and each pixel in the image provides one gray value, we
have an underdetermined system. To overcome this, they introduced two constraints:
the brightness constraint and the smoothness constraint. The brightness constraint
requires that the reconstructed shape produces the same brightness as the input
image at each surface point, while the smoothness constraint ensures a smooth
surface reconstruction. The shape was computed by minimizing an energy function
that consists of the above two constraints. In general, the shape at the occluding
boundary was given for the initialization to ensure a correct convergence. Since
the gradient at the occluding boundary has at least one infinite component, the
stereographic projection was used to transform the error function to a different
space. Additionally, Brooks and Horn [23] minimized the same energy function in
terms of the surface normal using these two constraints. For further improvements,
Frankot and Chellappa [58] enforced integrability in Brooks and Horn’s algorithm to
recover integrable surfaces (surfaces for which zxy = zyx). Surface slope estimates
from the iterative scheme were expressed in terms of a linear combination of a
finite set of orthogonal Fourier basis functions. The enforcement of integrability was
done by projecting the non-integrable surface slope estimates onto the nearest (in
terms of distance) integrable surface slopes. This projection was fulfilled by finding
the closest set of coefficients that satisfy integrability in the linear combination.
Their results showed improvements in both accuracy and efficiency over Brooks
and Horn’s algorithm [23]. Later, Horn [111] replaced the smoothness constraint
in his approach with an integrability constraint. The major problem with Horn’s
method is its slow convergence. Szeliski [228] sped it up using a hierarchical basis
pre-conditioned conjugate gradient descent algorithm. Based on the geometrical
interpretation of Brooks and Horn’s algorithm, Vega and Yang [240] applied
heuristics to the variational approach in an attempt to improve the stability of Brooks
and Horn’s algorithm.

As for traditional propagation approaches, Horn proposed the characteristic
strip method [109]. A characteristic strip is a line in the image along which the
surface depth and orientation can be computed if these quantities are known at the
starting point of the line. Horn’s method constructs initial surface curves around

232 8 2.5D Sketch and Depth Maps

the neighborhoods of singular points (singular points are the points with maximum
intensity) using a spherical approximation. The shape information is propagated
simultaneously along the characteristic strips outward, assuming no crossover of
adjacent strips. The direction of characteristic strips is identified as the direction of
intensity gradients. To get a dense shape map, new strips have to be interpolated
when neighboring strips are not close to each other.

Examples for local approaches are [194] and [147]. Pentland’s local approach
[194] recovered shape information from the intensity and its first and second
derivatives. He used the assumption that the surface is locally spherical at each
point. Under the same spherical assumption, Lee and Rosenfeld [147] computed
the slant and tilt of the surface in the light source coordinate system using the first
derivative of the intensity.

The approaches by Pentland and Tsai and Shah are linear approaches that
linearize the reflectance map and solve for shape. Pentland [147] used the linear
approximation of the reflectance function in terms of the surface gradient and
applied a Fourier transform to the linear function to get a closed-form solution
for the depth at each point. Tsai and Shah [196] applied the gradient’s discrete
approximation first and then employed the linear approximation of the reflectance
function in terms of the depth directly. Their algorithm recovered the depth at each
point using a Jacobi iterative scheme.

Except for the traditional SFS work, we show in the following sections a
two-level generative model for representing the images and surface depth maps
of drapery and clothes. The upper level consists of a number of folds that will
generate the high-contrast (ridge) areas with a dictionary of shading primitives
(for 2D images) and fold primitives (for 3D depth maps). These primitives are
represented in parametric forms and are learned in a supervised learning phase using
3D surfaces of clothes acquired through the photometric stereo. The lower level
consists of the remaining flat areas that fill between the folds with a smoothness
prior (Markov random field). We show that the classical ill-posed problem—
shape from shading (SFS)—can be much improved by this two-level model for its
reduced dimensionality and incorporation of middle-level visual knowledge, i.e., the
dictionary of primitives. Given an input image, we first infer the folds and compute
a sketch graph using a sketch pursuit algorithm as in the primal sketch [90, 91]. The
3D folds are estimated by parameter fitting using the fold dictionary, and they form
the “skeleton” of the drapery/cloth surfaces. Then the lower level is computed by
the conventional SFS method using the fold areas as boundary conditions. The two
levels interact at the final stage by optimizing a joint Bayesian posterior probability
on the depth map. We show a number of experiments that demonstrate robust results.
In a broader scope, our representation can be viewed as a two-level inhomogeneous
MRF model that is applicable to general shape-from-X problems. Our study is an
attempt to revisit Marr’s idea [169] of computing the 2.5D sketch from primal
sketch.

8.3 Shape from Shading 233

Overview of Two-Layer Generation Model

The dataflow of our method is illustrated in Fig. 8.16, and a running example is
shown in Fig. 8.17. The problem is formulated in a Bayesian framework, and we
adopt a stepwise greedy algorithm by minimizing various energy terms sequentially.
Given an input image I on a lattice �, we first compute a sketch graph G for the
folds by a greedy sketch pursuit algorithm. Figure 8.17b is an exemplary graph G.
The graph G has attributes for the shading and fold primitives. G decomposes the
image domain into two disjoint parts: the fold part Ifd for pixels along the sketch and
non-fold part Infd for the remaining flat areas. We estimate the 3D surface Ŝfd for
the fold part by fitting the 3D fold primitives in a fold dictionary �fd. Figure 8.17c
shows an example of Sfd. This will yield gradient maps (pfd, qfd) for the fold
surface. Then we compute the gradient maps (pnfd, qnfd) for the non-fold part by
the traditional shape-from-shading method on the lower-level pixels, using gradient
maps in the fold area as boundary conditions. Then we compute the joint surface
S = (Sfd, Snfd) from the gradient maps (p, q) of both fold part and non-fold part.
Therefore, the computation of the upper-level fold surfaces Sfd and the lower-level
flat surface Snfd is coupled. Intuitively, the folds provide the global “skeleton” and
therefore boundary conditions for non-fold areas, and the non-fold areas propagate
information to infer the relative depth of the folds and to achieve a seamless surface
S. The two-level generative model reduces to the traditional smoothness MRFmodel
when the graph G is null. Since the two-layer generative model is similar to the
one described in the previous section, we skip the formulation part and show some
qualitative results.

fd

nfd

fold part

non-fold part

 fold surfaces

cloth surface
fill-inadjust

sketch graphinput image

sketch

pursuit

folds reconstruction

and fitting

 learning dictionary

shape-from-shading

generic prior

fd

nfd

non-fold surface

training
images

photometric
stereo of 3D fold primitives

 \

Fig. 8.16 Reprinted with permission from [93]. The data flow of our method for computing the
3D surface S of drapery/cloth from a single image I using the two-layer generative model. See text
for interpretation

234 8 2.5D Sketch and Depth Maps

Fig. 8.17 Reprinted with permission from [93]. (a) A drapery image under approximately parallel
light. (b) The sketch graph for the computed folds. (c) The reconstructed surface for the folds. (d)
The drapery surface after filling in the non-fold part. It is viewed at a slightly different angle and
lighting direction

Results

We test our whole algorithm on a number of images. Figure 8.18 shows the results
for three images of drapery hung on wall and a cloth image (last column) on
some people. The lighting direction and surface albedos for all the testing cloth
are estimated by the method in [275].

In the experimental results, the first row are input images, the second row are the
sketches of folds in the input images and their domains, and the third row are the
syntheses for Ifd based on the generative sketch model for the fold areas, the fourth
row are the 3D reconstruction results Sfd for the fold areas, while the fifth and sixth
rows are the final reconstruction results of the whole cloth surface S shown in two
novel views.

In these results, the folds in row (d) have captured most of the perceptually salient
information in the input images, and they can reconstruct the surface without too
much skewing effect. It makes sense to compute them before the non-fold part. We
observe that the SFS for the non-fold parts indeed provides useful information for
the 3D positions of the folds.

8.3 Shape from Shading 235

Fig. 8.18 Reprinted with permission from [93]. (a) Input cloth image. (b) 2D folds and their image
domains. (c) Synthesis for 2D fold sketches Ifd. (d) 3D reconstruction Sfd for fold areas. (e)–(f)
Final reconstructed surface S in novel views

Chapter 9
Learning by Information Projection

In this chapter, a general framework [37, 281] for learning a statistical model as an
approximation to the true distribution that generates images is considered.

9.1 Information Projection

Suppose training images {Im,m = 1, . . . ,M} ∼ f (I) are observed. The goal is
to find a good approximation to the unknown true distribution f that generates
the training examples. Suppose M is large so that it is feasible to estimate the
expectations with respect to f accurately from the training examples.

Consider starting from a reference distribution q(I), e.g., the white noise
distribution. Suppose there is a set of features H(I) = (Hk(I), k = 1, . . . , K).
The following may be estimated:

Ef [H(I)] ≈
1

M

M∑

m=1

H(Im). (9.1)

Ef [H(I)] is all that is known about the unknown f as far as the feature H is
concerned.

Again, the goal is to find a distribution p to be an approximation to the unknown
distribution f . Such a distribution should better reproduce the feature statistics, i.e.,

Ep[H(I)] = Ef [H(I)]. (9.2)

Call p such an eligible distribution. Let

� = {p : Ep[H(I)] = Ef [H(I)]} (9.3)

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_9

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_9&domain=pdf

 12905 61494 a 12905 61494
a

238 9 Learning by Information Projection

Fig. 9.1 In the above illustration, each point is a probability distribution. f is the true distribution
that generates the training examples. q is the reference distribution or the null model. The curve �

consists of all the distributions that reproduce the feature statistics of f . p∗ is the projection of q
onto �

be the family of all the eligible distributions. Clearly, f ∈ �. See Fig. 9.1 for an
illustration, in which each point is a probability distribution. f is the true distribution
that generates the training examples. q is the reference distribution or the null model.
The curve� consists of all the distributions that reproduce the feature statistics of f .

So starting from q, the updated goal is to find a distribution in � so that it has the
minimum distance from q, i.e., an eligible distribution that can be obtained from a
minimum modification of q, so that artificial features beyond H are not introduced.
Let p∗ be such a distribution. p∗ may be thought of as the projection of q onto the
family �, and it is hence called the information projection. More specifically, the
objective is to find

p∗ = argmin
p∈�

KL(p‖q). (9.4)

Orthogonality and Duality

In order to solve for p∗ = argminp∈� KL(p‖q), the Langevin multiplier may be
used as it was for the FRAME model. In this chapter, an approach is adopted that
is less direct but is more geometrically meaningful. A dual minimization problem
may be found by introducing another family of distributions that is called the model
family. Specifically, the following exponential family models are defined:

p(I; λ) =
1

Z(λ)
exp {〈λ, H(I)〉} q(I), (9.5)

in which λ = (λk, k = 1, . . . , K), 〈λ, H(I)〉 = ∑K
k=1 λkHk(I), and

Z(λ) =
∫

exp {〈λ, H(I)〉} q(I) = Eq [exp {〈λ, H(I)〉}] (9.6)

is the normalizing constant. For simplicity, p(I; λ) as pλ is written. Let

� = {pλ,∀λ} (9.7)

9.1 Information Projection 239

Fig. 9.2 The eligible family � and the model family � are orthogonal, � ⊥ �, because for any
p ∈ �, pλ ∈ �, KL(p‖pλ) = KL(p‖p∗) +KL(p∗‖pλ), in which p∗ = � ∩ � is the intersection

be the model family. Clearly, q ∈ � with λ = 0. See Fig. 9.2 for an illustration, in
which the model family � is illustrated by the vertical curve.

Let p∗ = p(I; λ∗) = � ∩ � be the intersection between the eligible family and
the model family. It shall be shown that p∗ = argminp∈� KL(p‖q), which is the
projection that is sought after. The key is that � ⊥ �; that is, � is orthogonal to �,
in the sense of the following Pythagorean theorem [37]:

Theorem 1 For any pλ ∈ � and any p ∈ �:

KL(p‖pλ) = KL(p‖p�) + KL(p�‖pλ). (9.8)

Proof

KL(p‖pλ) = Ep[log p(I)] − Ep[log p(I; λ)]. (9.9)

KL(p‖p�) = Ep[log p(I)] − Ep[log p(I; λ�)]. (9.10)

KL(p�‖pλ) = Ep� [log p(I; λ�]] − Ep� [log p(I; λ)]. (9.11)

Meanwhile, Ep[log p(I; λ�)] = Ep� [log p(I; λ�]], and Ep[log p(I; λ)] =
Ep� [log p(I; λ)], because Ep[H(I)] = Ep� [H(I)], as both p and p� belong to
�. Thus, the result follows. �

The above result leads to the following duality result:

p∗ = argmin
p∈�

KL(p‖q) = arg min
pλ∈�

KL(f ‖pλ). (9.12)

Thus, it is seen that p∗ = argminp∈� KL(p‖q) by finding p∗ = argminpλ∈�

KL(f ‖pλ). Since KL(f ‖pλ) = Ef [log f (I)] − Ef [logp(I; λ)],

p∗ = arg min
pλ∈�

KL(f ‖pλ) = arg max
pλ∈�

Ef [log p(I; λ)]. (9.13)

Ef [logp(I; λ)] is actually the log-likelihood in the limit.

240 9 Learning by Information Projection

Maximum Likelihood Implementation

If {Im,m = 1, . . . , M} ∼ f (I) is observed, then

Ef [log p(I; λ)] ≈
1

M

M∑

m=1

log p(Im; λ), (9.14)

so λ∗ can be approximated by the maximum likelihood estimate λ̂ = argmaxλ L(λ),
in which

L(λ) =
1

M

M∑

m=1

log p(Im; λ) =
1

M

M∑

m=1

〈λ, H(Im)〉 − log Z(λ) (9.15)

is the log-likelihood function of the exponential family model (9.5).
It can be shown that

∂
∂λ

log Z(λ) = Eλ[H(I)], (9.16)

in which Eλ denotes the expectation with respect to p(I; λ).

∂2

∂λ2
log Z(λ) = Varλ[H(I)], (9.17)

in which Varλ denotes the variance with respect to p(I; λ). Thus,

∂
∂λ

L(λ) =
1

M

M∑

m=1

H(Im) − Eλ[H(I)], (9.18)

and

∂2

∂λ2
L(λ) = Varλ[H(I)]. (9.19)

That is, L(λ) is a concave function with a unique maximum, provided that Var[H(I)]
is positive definite, which is the case if the components of H(I) are linearly
independent. At the maximum λ̂,

E
λ̂
[H(I)] =

1

M

M∑

m=1

H(Im), (9.20)

in which Eλ denotes the expectation with respect to p(I; λ). Thus, at the maximum
likelihood estimate, the model reproduces the observed feature statistics.

9.2 Minimax Learning Framework 241

If M → ∞, L(λ) → Ef [log p(I; λ)], and at the maximum, Ef [H(I)] =
Eλ� [H(I)], i.e., p

λ̂ → p∗ = � ∩ �.
Crucially, the information projection viewpoint is deeper than the maximum

likelihood estimation of the exponential family model (9.5). The former provides
a justification for the latter, and the latter is to implement the former.

9.2 Minimax Learning Framework

Suppose there are two different sets of features H(I) and H̃ (I); then, there are two
different eligible families � and �̃. If the same reference distribution q is projected
onto� and �̃, respectively, p∗ and p̃∗ will be the results, respectively. In Fig. 9.3, the
solid curve illustrates�, while the dotted curve illustrates �̃. Due to the Pythagorean
theorem,

KL(f ‖q) = KL(f ‖p∗) + KL(p∗‖q) = KL(f ‖p̃∗) + KL(p̃∗‖q). (9.21)

Thus, if the desire is to make KL(f ‖p∗) small, KL(p∗‖q) needs to be made large.
So if there are many different choices of H , then the one that maximizes KL(p∗‖q)
should be chosen. Recall that p∗ = argminp∈� KL(p‖q); thus, the goal is to solve
the following max–min problem:

max
H

min
p∈�(H)

KL(p‖q), (9.22)

in which �(H) is the eligible family defined by the set of features H . Because of
the duality, the above problem is equivalent to the maximum likelihood problem,

max
H

min
λ

KL(f ‖pH,λ), (9.23)

in which pH,λ is the exponential family model defined by H in Eq. (9.5). Here H is
made explicit in pH,λ because different sets of features are being considered. Thus,
the log-likelihood L in (9.15) can be maximized over both λ and H .

Fig. 9.3 The solid curve and the dotted curve illustrate two eligible families defined by two
different sets of feature statistics. q should be projected onto the solid curve instead of the dotted
curve in order to get closer to the target distribution f

242 9 Learning by Information Projection

Fig. 9.4 Learning a sequence
of distributions pk to
approach the target
distribution f . Each time, the
current distribution pk−1 is
projected onto the eligible
family defined by Hk to
obtain pk

Intuitively, for a given set of features H that defines an eligible family �(H), the
goal is to choose p that is closest to q to avoid adding artificial features that are not
in H . Meanwhile, for different sets of features, the set of features so that the change
from q to the corresponding p∗ is the largest should be chosen.

The minimax entropy learning [281] is a special case of the above learning
scheme, in which the reference distribution q is the uniform measure.

Model Pursuit Strategies

H(I) = (Hk(I), k = 1, . . . , K) may be obtained by selecting each Hk sequentially
to pursue a sequence of models pk that get closer and closer to the target distribution
f . Figure 9.4 illustrates the idea of sequential projection. The starting point is p0 =
q, the reference distribution or the null model. After selecting the first feature H1, the
eligible family �(H1) that consists of all the distributions that reproduce Ef [H1(I)]
is obtained. Then, p0 is projected onto �(H1) to obtain p1. Then, the second feature
H2 is selected, and p1 is projected onto �(H2) to obtain p2, and so forth. Because
of the Pythagorean theorem, each iteration approaches the target f .

Sequential projection leads to the following greedy strategy to choose Hk
sequentially. At each step, the maximum reduction in the distance from the current
model to the target distribution is sought. Specifically, let pk−1 be the current model.
Hk = argmaxKL(pk‖pk−1) is chosen, which can be implemented by the maximum
likelihood of the following exponential family model:

pk(I) =
1

Zk(λk)
exp {λkHk(I)} pk−1(I), (9.24)

in which pk−1 plays the role of the current reference distribution, and both Hk and
λk are obtained by maximizing the likelihood function of (9.24) as a function of Hk
and λk . In the end, a model of the form (9.5) is obtained.

In the above discussion, it is assumed that there is a large dictionary of features
{Hi, i = 1, . . . , N}, and a small number of them from this large dictionary may
be selected. A related strategy for feature selection is via �1 regularization, as in
basis pursuit [26] or Lasso [230]. Specifically, the following full model is assumed,
instead of the final selected model:

9.2 Minimax Learning Framework 243

p(I; λ) =
1

Z(λ)
exp

{
N∑

i=1

λiHi(I)

}
q(I), (9.25)

in which λ = (λi, i = 1, . . . , N) is a long vector. The vector λ is assumed to
be sparse, i.e., only a small number of its components are different from zero.
Let L(λ) be the log-likelihood of the above full model; model selection can be
performed by maximizing the �1-regularized log-likelihood, L(λ) + ρ|λ|, in which
|λ| = ∑N

i=1 |λi | is the �1 norm of λ, and ρ is a tuning constant. The maximization
of the penalized log-likelihood L(λ) + ρ|λ| can be accomplished by an epsilon-
boosting algorithm [67, 206], in which at each step, the component of L′(λ) is
chosen that has the maximum magnitude, and then this component is updated by
a small amount ε.

It is also possible that the dictionary of the features is parameterized by some
continuous parameters γ , so the model is

p(I; θ) =
1

Z(θ)
exp

{
N∑

i=1

λiHi(I; γ)

}
q(I), (9.26)

in which θ = (λ, γ). Both λ and γ may be learned by maximum likelihood.

2D Toy Example

So far, not much detail has been given about the features. In this section, the idea
of information projection using concrete examples of learning two-dimensional
distributions, in which the feature statistics are linear projections or filter responses,
shall be elaborated.

Figure 9.5 illustrates two examples of information projection. The training exam-
ples {Im,m = 1, . . . ,M}, are two-dimensional, i.e., they are images of different
two-dimensional points. The scatterplot of the data forms a two-dimensional cloud
of points. The features are of the form Hk(I) = h(〈I, Bk〉), in which Bk is also a
two-dimensional vector, just like I. 〈I, Bk〉 is the projection of I on Bk . One may
also call it a filter response, in which Bk plays the role of a filter. h(r) is a one-hot
indicator vector. Specifically, the range of 〈I, Bk〉 is divided into a finite number of
L bins, so that h(r) = (hl(r), l = 1, . . . , L). hl(r) = 1 if r falls into the l-th bin,
and hl(r) = 0 otherwise. Thus,

∑M
m=1 Hk(Im)/M = ∑M

m=1 h(〈Im,Bk〉)/M is the
histogram of the projected points {〈Im,Bk〉,m = 1, . . . , M} projected onto Bk . It
may be assumed that the squared length |Bk|2 = 1 and that the direction Bk may be
discretized in the two-dimensional domain.

Consider starting from the uniform distribution over the two-dimensional domain
of I, assumed to be the unit square. Then, apply the model pursuit strategy by

244 9 Learning by Information Projection

Fig. 9.5 Reprinted with permission from [155]. This is an example of learning two-dimensional
distributions by information projection. In each step, the marginal distribution of the data points
projected onto a selected vector is matched

selecting Bk , k = 1, . . . , K . Each time, a Bk is selected, and the marginal histogram
of the projected points is matched. After a number of steps, a model

p(I;B, λ) =
1

Z
exp

{
K∑

k=1

λkh(〈I, Bk〉)
}

q(I) (9.27)

is pursued, in which λ = (λk, k = 1, . . . , K) and B = (Bk, k = 1, . . . , K) is the
learned dictionary of projections or filters.

Figure 9.5 illustrates the learning process. In each example, the first row displays
the target distribution f , as well as the selected direction or filter Bk for each k. The
second row displays the learned model p as more directions are added. After adding
only a small number of filters, the learned model p is very similar to f . The learning
method is related to projection pursuit [65].

In Fig. 9.5, the starting point is the uniform distribution. One can also start from
a Gaussian white noise model with a small variance.

In addition to the pursuit strategy, the dictionary B may also be learned directly
by maximum likelihood, by taking derivatives with respect to both λ and B. In
order to take the derivative with respect to Bk , h needs to be made continuous and

9.2 Minimax Learning Framework 245

differentiable. A possible choice is the rectified linear unit h(r) = max(0, r − b), in
which b is the threshold, which can also be estimated by maximum likelihood.

Although the two toy examples are simple, they are very illustrative and have
deep implications. The model (9.27) can be extended to model large images by
making the filters Bk convolutional, i.e., Bk is a localized image patch (e.g., 7 × 7)
and Bk is applied around each pixel. If this model is learned from natural images,
Gabor filters and differences of Gaussian filters will be learned. Model (9.27) is the
simplest FRAME model.

Learning Shape Patterns

In addition to learning image appearance patterns, shape patterns may also be
learned by information projection. Figure 9.6 illustrates an example of learning

Fig. 9.6 Reprinted with permission from [276]. This is an example of learning a sequence of
models for shapes by adding shape statistics

246 9 Learning by Information Projection

Fig. 9.7 Reprinted with permission from [155]. This is an example of learning a sequence of
models for face shapes by adding shape statistics

generic object shapes by adding shape statistics. Figure 9.7 illustrates an example
of learning specific face shapes by adding relevant statistics.

Relation to Discriminative Learning

Suppose negative examples from the reference distribution q(I) are observed, and
positive examples from the model p(I; λ) in (9.5) are observed. Let α be the prior
probability that a positive example is observed. Then the posterior probability that
an example I is a positive example is

p(+|I) = 1

1 + exp
{
−∑K

k=1 λkHk(I) − b
} , (9.28)

in which b = log[α/(1 − α)]. This is a logistic regression model. If examples from
multiple categories are observed, a multinomial logistic regression will be obtained.

The learning method in the previous section can be considered a generative
version of AdaBoost [59].

Chapter 10
Information Scaling

One important property of natural image data that distinguishes vision from other
sensory tasks such as speech recognition is that scale plays an important role
in image formation and interpretation. Specifically, visual objects can appear at
a wide range of scales in the images due to the change of viewing distance as
well as camera resolution. The same objects appearing at different scales produce
different image data with different statistical properties. Figure 10.1 shows two
examples of information scaling, where the change of scale causes the change of
image properties, which may trigger the change of the modeling scheme for image
representation.

In this section, we study the change of statistical properties, in particular, some
information theoretical properties, of the image data over scale. We show that the
entropy rate, defined as entropy per pixel, of the image data changes over scale.
Moreover, the inferential uncertainty of the outside scene that generates the image
data also changes with scale. We call these changes information scaling.

10.1 Image Scaling

To give the reader some concrete ideas, we first study information scaling empiri-
cally by experimenting with the so-called dead leaves model.

Model and Assumptions

The dead leaves model [171] was used by Lee et al. [145] in their investigation
in image statistics of natural scenes, which was also previously used to model
natural images. For our purpose, we may consider that the model describes an ivy
wall covered by a large number of leaves of similar sizes. See Fig. 10.2 for some

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_10

247

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_10&domain=pdf

 12783 61494 a 12783 61494 a

248 10 Information Scaling

Fig. 10.1 Images of the same objects can appear very different at different viewing distances or
camera resolution, a phenomenon we call information scaling

Fig. 10.2 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008,
published by Brown University. Reprinted with permission from [257]. Pictures of the simulated
ivy wall taken at 8 viewing distances. The viewing distance of the i + 1-st image is twice that of
the i-th image

examples. We assume that the leaves are of a squared shape and are uniformly
colored. Each leaf is represented by:

1. Its length or width r , which follows a distribution f (r) ∝ 1/r3 over a finite range
[rmin, rmax].

2. Its color or shade a, which follows a uniform distribution over [amin, amax].
3. Its position (x, y, z), where the wall serves as the (x, y) plane, and z ∈ [0, zmax]

is the distance between the leaf and the wall. We assume that zmax is very small
so that z matters only for deciding the occlusions among the leaves.

For the collection of leaves {(rk, ak, xk, yk, zk)}, we assume that rk are inde-
pendent of each other, and so are ak . (xk, yk, zk) follows a Poisson process in

10.1 Image Scaling 249

R2 × [0, zmax]. We assume that the intensity of the Poisson process λ is large
enough so that the leaves completely cover the wall. As noted by Lee et al.
[146], {(rk, ak, xk, yk, zk)} is a Poisson process in the joint domain [rmin, rmax] ×
[amin, amax] × R2 × [0, zmax] with respect to the measure f (r)drdaλdxdydz.

Lee et al. [146] show that this Poisson process is scale-invariant under the
assumption that [rmin, rmax] → [0,∞]. Specifically, under the scaling transforma-
tion x′ = x/s and y′ = y/s, where s is a scaling parameter, we have r ′ = r/s,
and the Poisson process will be distributed in [rmin/s, rmax/s] × [amin, amax] ×
R2 × [0, zmax] with respect to the measure f (sr ′)sdr ′daλsdx′sdy′dz, which is
equal to f (r ′)dr ′daλdx′dy′dz′ because f (r) ∝ 1/r3. As [rmin, rmax] → [0,∞],
[rmin/s, rmax/s] → [0,∞] too, so the Poisson process is invariant under the scaling
transformation. The assumption of Lee et al. [145] appears to hold for most of the
studies of natural image statistics.

However, in our experiment, [rmin, rmax] is assumed to be a relatively narrow
range. Under the scaling transformation, this range will change to [rmin/s, rmax/s],
which is far from being invariant. From this perspective, we may consider that Lee
et al. [146] and the papers cited above are concerned with the marginal statistics
by integrating over the whole range of scale. Our work, however, is concerned with
conditional statistics given a narrow range of scale, especially how such conditional
statistics change under the scaling transformation. While it is important to look
at the marginal statistics over the whole range of scales, it is perhaps even more
important to study the conditional statistics at different scales in order to model
different image patterns. Moreover, the conditional statistics at different scales may
have to be accounted for by different regimes of statistical models.

Image Formation and Scaling

Let Ok ⊂ R2 be the squared area covered by leaf k in the (x, y) domain of the ivy
wall. Then the scene of the ivy wall can be represented by a function W(x, y) =
ak(x,y), where k(x, y) = argmaxk:(x,y)∈Ok zk , i.e., the most forefront leaf that covers
(x, y). W(x, y) is a piecewise constant function defined on R2.

Now let us see what happens if we take a picture of W(x, y) from a distance d.
Suppose the scope of the domain covered by the camera is Ω ⊂ R2, where Ω is
a finite rectangular region. As noted by Mumford and Gidas [176], a camera or a
human eye only has a finite array of sensors or photoreceptors. Each sensor receives
light from a small neighborhood of Ω . As a simple model of the image formation
process, we may divide the continuous domain Ω into a rectangular array of squared
windows of length or width σd, where σ is decided by the resolution of the camera.
Let {Ωij } be these squared windows, with (i, j) ∈ D, where D is a rectangular
lattice.

The image I is defined on D. Let s = dσ be the scale parameter of the image
formation process; then

250 10 Information Scaling

Is(i, j) =
1

s2

∫
Ωij

W(x, y)dxdy, (i, j) ∈ D, (10.1)

which is the average of W(x, y) within window Ωij . Equation (10.1) can also be
written as

ws(x, y) =
1

s2

∫
W(x′, y′)g((x − x′)/s, (y − y′)/s)dx′dy′ = W ∗ gs;(10.2)

Is(i, j) = ws(u + is, v + js), (10.3)

where g is a uniform density function within the window [−1/2, 1/2]×[−1/2, 1/2],
and gs(x, y) = g(x/s, y/s)/s2. (u, v) ∈ [0, s)2 denotes the small shifting of the
rectangular lattice. There are two operations involved. Equation (10.2) is smoothing:
ws is a smoothed version of W . Equation (10.3) is subsampling: Is is a discrete
sampling of ws . To be more general, g in Eq. (10.2) can be any density function, for
instance, Gaussian density function.

The scale parameter s can be changed by either changing the viewing distance
d or the camera resolution σ . If we increase s by increasing the viewing distance
or zooming out the camera, then both the size of the scope Ω and the size of the
windows Ωij will increase proportionally. So the resulting image Is will change.
For example, if we double s to 2s, then I2s will cover a scope 4 times as large as the
scope of Is . Because each squared window of size 2s contains 4 squared windows of
size s, if we look within the portion of I2s that corresponds to Is , then the intensity
of a pixel in I2s is the block average of the intensities of the corresponding 2 × 2
pixels in Is .

If g is a Gaussian kernel, then the set of {ws(x, y), s > 0} forms a scale space.
The scale space theory can account for the change of image intensities due to
scaling. But it does not explain the change of statistical properties of the image
data under the scaling transformation.

Empirical Observations on Information Scaling

Figure 10.2 shows a sequence of 8 images of W taken at 8 viewing distances. The
images are generated according to Eq. (10.1). The viewing distance of the i + 1-
st image is twice that of the i-th image. So the viewing distance of the last image
is 128 times that of the first image. Within this wide range of viewing distance,
the images display markedly different statistical properties even though they are
generated by the same W . The reason is that the square leaves appear at different
scales in different images:

(1) For an image taken at a near distance, such as image (1), the window size
of a pixel is much less than the average size of the leaves, i.e., s 	 r . The
image can be represented deterministically by a relatively small number of

10.1 Image Scaling 251

occluding squares, or by local geometric structures such as edges, corners,
etc. The constituent elements of the image are squares or local geometrical
structures, instead of pixels.

(2) For an image at an intermediate distance, the window size of a pixel becomes
comparable to the average size of leaves, i.e., s ≈ r . The image becomes
more complex. For images (4) and (5), they cannot be represented by a small
number of geometrical structures anymore. The basic elements have to be
pixels themselves. If a simple interpretation of the image is sought after, this
interpretation has to be some sort of simple summary that cannot code the image
intensities deterministically. The summary can be in the form of some spatial
statistics of image intensities.

(3) For an image at a far distance, the window size of a pixel can be much larger
than the average size of the squares, i.e., s � r . Each pixel covers a large
number of leaves, and its intensity value is the average of many leaves. The
image is approaching the white noise.

Computer vision algorithms always start from the analysis of local image
patches, often at multiple resolutions. We take some local 7 × 7 image patches
from the images at different scales shown in Fig. 10.3. These local image patches
exhibit very different characteristics. Patches from near-distance images are highly
structured, corresponding to simple regular structures such as edges and corners,
etc. As the distance increases, the patches become more irregular and random. So
the local analysis in a computer vision system should be prepared to deal with such
local image patches with different regularities and randomness.

Change of Compression Rate

We perform some empirical studies on the change of statistical properties of the
image data over scale. What we care about most is the complexity or randomness
of the image, and we measure the complexity rate or randomness empirically
by JPEG 2000 compression rate. Generally speaking, for a simple and regular
image, there are a lot of redundancies in the image intensities. So only a small
number of bits are needed to store the image without any loss of information up to
the discretization precision. For a complex and random image, there is not much
regularity or redundancy in the data. Therefore, a large number of bits are required
to store the image. The reason we use JPEG 2000 to measure the complexity rate is
two folded. First, JPEG 2000 is the state-of-the-art image compression standard
and currently gives the best approximation to image complexity. Second, given
the popularity of JPEG 2000, our results should also be interesting to the image
compression community.

When the image is compressed by JPEG 2000, the size of the compressed image
file is recorded in terms of the number of bits. This number is then divided by the
number of pixels to give the compression rate in terms of bits per pixel. Figure 10.4a

252 10 Information Scaling

Fig. 10.3 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008,
published by Brown University. Reprinted with permission from [257]. The 7 × 7 local patches
taken from the images at different scales

plots this measurement in the order of viewing distance for images in Fig. 10.2. At
a close distance, the randomness is small, meaning that the image is quite regular.
Then the randomness starts to increase over distance because more and more leaves
are covered by the scope of the camera. At a far distance, however, the randomness
begins to decrease because the local averaging operation reduces the marginal
variance and eventually smoothes the image into a constant image because of the
law of large number. In this plot, there are three curves. They correspond to three
different rmin in our simulation study, while rmax is always fixed at the same value.
For smaller rmin, the corresponding curve shifts to the left because the average size
of the leaves is smaller.

We also use a simple measure of smoothness as an indicator of randomness or
complexity rate. We compute pairwise differences between intensities of adjacent
pixels∇xI(i, j) = I(i, j)−I(i−1, j) and∇yI(i, j) = I(i, j)−I(i, j−1).∇I(i, j) =
(∇xI(i, j),∇yI(i, j)) is the gradient of I at (i, j). The gradient is a very useful
local feature that can be used for edge detection [257]. It is also extensively used

10.1 Image Scaling 253

Fig. 10.4 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008,
published by Brown University. Reprinted with permission from [257]. The change of statistical
properties over scale. (a) JPEG compression rate. (b) Entropy of marginal histogram of ∇xI

in image processing. We make a marginal histogram of {∇xI(i, j), (i, j) ∈ D} and
compute the entropy of the histogram. Figure 10.4b plots this entropy over the order
of distance for images in Fig. 10.2. The plot behaves similarly to the plot of the
JPEG 2000 compression rate.

Variance Normalization

The local averaging operation in Eq. (10.1) reduces the marginal variance of the
image intensities. A more appropriate measurement of randomness should be the
compression rate of variance-normalized image, which is invariant of linear trans-
formations of image intensities. Specifically, for an image I, let σ 2 be the marginal
variance of I. Let I′(i, j) = I(i, j)/σ . Then I′ is the variance-normalized version of
I, and the marginal variance of I′ is 1. We compute the JPEG compression rates of
variance-normalized versions of the images in Fig. 10.2. Figure 10.5a displays the
variance-normalized JPEG compression rate over the order of distance for the three
runs of the simulation study. The compression rate increases monotonically toward
an upper bound represented by the horizontal line. This suggests that the scaling
process increases the randomness and transforms a regular image to a random
image. The upper bound is the JPEG compression rate of the Gaussian white noise
process with variance 1.

The convergence of the compression rate of the variance-normalized image
to that of the Gaussian white noise image is due to the effect of the central
limit theorem. As another illustration, we compute the kurtosis of the marginal
distribution of {∇xI(x), x ∈ D}. The kurtosis decreases monotonically toward 0,
meaning that the image feature becomes closer to Gaussian distribution.

254 10 Information Scaling

Fig. 10.5 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008,
published by Brown University. Reprinted with permission from [257]. (a) The change of JPEG
compression rate of the variance-normalized versions of the images in Fig. 10.2. (b) The change of
kurtosis

Basic Information Theoretical Concepts

Let I(x, y) be an image with (x, y) ∈ D, where D is the discrete lattice of pixels (in
what follows, we use (x, y) instead of (i, j) to denote discrete pixels). Let p(I) be
the distribution of I. We are interested in the following statistical properties [29]:

(1) Entropy and entropy rate: The entropy of p is defined as

H(p) = Ep[− logp(I)] = −
∫

p(I) logp(I)dI, (10.4)

and the entropy rate of p is defined as H̄(p) = H(p)/|D|, where |D| is the
number of pixels in lattice D.

(2) Relative entropy and relative entropy rate: For two distributions p and q, the
relative entropy or the Kullback–Leibler divergence between p and q is defined
as

KL(p‖q) = Ep

[
log

p(I)
q(I)

]
= −H(p) − Ep[log q(I)] ≥ 0. (10.5)

The relative entropy rate is k̂(p‖q) = KL(p‖q)/|D|.
(3) Relative entropy with respect to Gaussian white noise: For an image distribution

p, let

1

|D|
∑

(x,y)∈D
E[I(x, y)2] = σ 2 (10.6)

be the marginal variance. Let q be the Gaussian white noise distribution with
mean 0 and variance σ 2, i.e., I(x, y) ∼ N(0, σ 2) independently. Then

10.1 Image Scaling 255

KL(p‖q) = −H(p) − Ep[log q(I)] = H(q) − H(p) ≥ 0. (10.7)

The second equation in (10.7) follows from Ep[log q(I)] = Eq [log q(I)]
because log q(I) is linear in

∑
x,y I(x, y)2, which has the same expectations

under both p and q. Because H(q) ≥ H(p) according to (10.7), the Gaussian
white noise distribution has the maximum entropy among all the image
distributions with the same marginal variance.

(4) Entropy rate of variance-normalized image: Continue from (10.7) and calculate
the entropy rate of Gaussian white noise explicitly, we obtain the relative
entropy rate

k̂(p‖q) = log
√
2πe − [̄H(p(I)) − log σ] = log

√
2πe − H̄(p(I′)),(10.8)

where I′ = I/σ is the variance-normalized version of image I, and p(I′) denotes
the distribution of I′. So the entropy rate of the variance-normalized image
H̄(p(I′)) determines the relative entropy rate k̂(p‖q) of p(I) with respect to
the Gaussian white noise q(I). In other words, H̄(p(I′)) measures the departure
of p from the Gaussian white noise hypothesis.

Change of Entropy Rate

For simplicity, let us study what happens if we double the viewing distance or zoom
out the image by a factor of 2. Suppose the current image is I(x, y), (x, y) ∈ D.
If we double the viewing distance, the window covered by a pixel will double its
size. So the original I will be reduced to a smaller image I− defined on a reduced
lattice D−, and each pixel of I− will be the block average of four pixels of I. More
specifically, the process can be accounted for by two steps, similar to Eqs. (10.2)
and (10.3):

(1) Local smoothing: Let the smoothed image be J; then J(x, y) = ∑
u,v I(x +

u, y+v)/4, where (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. We can write J = I∗g,
where g is the uniform distribution over {(0, 0), (0,−1), (−1, 0), (−1,−1)}. In
general, g can be any kernel with appropriate bandwidth, such as a Gaussian
distribution function.

(2) Subsampling: I(u,v)
− (x, y) = J(2x + u, 2y + v), where, again, (u, v) ∈

{(0, 0), (0, 1), (1, 0), (1, 1)}. Any of the four I(u,v)
− can be regarded as a

subsampled version of J.

Theorem 2 Smoothing effect: Let D be an M × N lattice, and I is defined on D.
Let J = I ∗ g, where g is a local averaging kernel or a probability distribution. As
min(M, N) → ∞,

256 10 Information Scaling

H̄(p(J)) − H̄(p(I)) →
1

4π2

∫ 2π

0

∫ 2π

0
log |ĝ(ω)|dω ≤ 0, (10.9)

where ω = (ωx, ωy) is the spatial frequency, and ĝ(ω) = ∑
x,y g(x, y)

exp{−i(ωxx + ωyy)} is the Fourier transform of the kernel g, where the sum
is over the support of g.

Proof Let I be the image defined on the integer lattice [0,M −1]× [0, N −1]. The
discrete Fourier transform of I is

Î(ω) =
M−1∑
x=0

N−1∑
y=0

I(x, y) exp{−i(ωxx + ωyy)}, (10.10)

where ωx ∈ {2πm/M, m = 0, ..., M−1} and ωy ∈ {2πn/N, n = 0, ..., N−1}. The
Fourier transforms of J and g can be similarly defined. Because Î and Ĵ are obtained
from I and J, respectively, by the same linear transformation,H(p(Ĵ))−H(p(Î)) =
H(p(J)) − H(p(I)).

For convolution with periodic boundary condition, Ĵ(ω) = Î(ω)ĝ(ω). So

H̄(p(J)) − H̄(p(I)) =
1

|D|
[
H(p(Ĵ)) − H(p(Î))

]
(10.11)

=
1

MN

∑
ω

log |ĝ(ω)| =
1

4π2

∑
ω

log |ĝ(ω)|Δω(10.12)

→
1

4π2

∫ 2π

0

∫ 2π

0
log |ĝ(ω)|dω, (10.13)

as min(M, N) → ∞, where Δω = (2π/M) × (2π/N).
A smoothing kernel g is a probability distribution function, ĝ is the characteristic

function of g, and

ĝ(ω) =
∑
x,y

g(x, y) exp{−i(ωxx + ωyy)} (10.14)

= Eg

[
exp{−i(ωxX + ωyY)}] , (10.15)

where (X, Y) ∼ g(x, y). Then,

|ĝ(ω)|2 = ∣∣Eg

[
exp{−i(ωxX + ωyY)}]∣∣2 (10.16)

≤ Eg

[
| exp{−i(ωxX + ωyY)}|2

]
= 1. (10.17)

Thus,
∫
log |ĝ(ω)|dω ≤ 0 QED.

10.1 Image Scaling 257

The above theorem tells us that there is always loss of information under the
smoothing operation. This is consistent with the intuition in scale space theory,
where the increase in scale results in the loss of fine details in the image. The
change of entropy rate under linear filtering was first derived in the classical paper
of Shannon [215, 216].

Next, let us study the effect of subsampling. There are four subsampled versions
I(u,v)
− (x, y) = J(2x + u, 2y + v), where (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}. Each
I(u,v)
− is defined on a subsampled lattice D−, with |D−| = |D|/4. ��

Theorem 3 Subsampling effect: The average entropy rate of I(u,v)
− is no less than

the entropy rate of J,

1

4

∑
u,v

H̄(p(I(u,v)
−)) − H̄(p(J)) = M̄(I(u,v)

− ,∀(u, v)) ≥ 0, (10.18)

where M(I(u,v)
− ,∀(u, v)) = KL(p(J)‖∏

u,v p(I(u,v)
−)) is defined as the mutual

information among the four subsampled versions, and M̄ = M/|D|.
Proof

∑
u,v

H(p(I(u,v)
−)) − H(p(J)) = E

[
log

p(J)∏
u,v p(I(u,v)

−)

]
(10.19)

= KL(p(J)‖
∏
u,v

p(I(u,v)
−)) (10.20)

= M(I(u,v)
− ,∀(u, v)) ≥ 0, (10.21)

where the expectation is with respect to the distribution of J, which is also the joint
distribution of I(u,v)

− QED. ��
The scaling of the entropy rate is a combination of Eqs. (10.9) and (10.18):

{
1

4

∑
u,v

H̄(p(I(u,v)
−)) − H̄(p(I))

}
−

{
M̄(I(u,v)

−) +
1

4π2

∫
log |ĝ(ω)|dω

}
→ 0.

(10.22)

For regular image patterns, the mutual information per pixel can be much greater
than − ∫

log |ĝ(ω)|dω/4π2, so the entropy rate increases with distance, or in other
words, the image becomes more random. For very random patterns, the reverse is
true. When the mutual information rate equals− ∫

log |ĝ(ω)|dω/4π2, we have scale
invariance. More careful analysis is needed to determine when this is true.

Next, we study the change of entropy rate of variance-normalized image
H̄(p(I′)). For simplicity, let us assume that p(I) comes from a stationary process,

258 10 Information Scaling

and I− can be any subsampled version of J = I ∗ g, which is also stationary. Let
σ 2 = Var[I(x, y)] and σ 2− = Var[I−(x, y)] be the marginal variances of I and I−,
respectively. Let I′ = I/σ and I′− = I−/σ− be the variance-normalized versions of
I and I−, respectively. It is easy to show that

ρ2 =
σ 2−
σ 2 =

1

4

∑
u,v

corr(I(x, y), I(x + u, y + v)) ≤ 1, (u, v) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)},(10.23)

so the smoothing operation reduces the marginal variance. Therefore, we can
modify (10.22) into

H̄(p(I
′
−)) − H̄(p(I′)) ≈ M̄(I(u,v)

−) − log ρ +
1

4π2

∫
log |ĝ(ω)|dω, (10.24)

where the difference between the left-hand side and right-hand side converges to 0
as |D| → ∞. In (10.24), the term − log ρ is positive, and it compensates for the loss
of entropy rate caused by smoothing, i.e.,

∫
log |ĝ(ω)|dω/4π2, which is negative.

As a matter of fact, the first two terms, i.e., the mutual information term and the
− log ρ term on the right- hand side of (10.24), balance each other, in the sense
that if one is small, then the other tends to be large. However, we have not been
able to identify conditions under which the right-hand side of (10.24) is always
positive, which would have established the monotone increase of the entropy rate of
variance-normalized image or monotone decrease of the departure from Gaussian
white noise.

10.2 Perceptual Entropy

The above analysis of entropy rate is only about the observed image I alone. The
goal of computer vision is to interpret the observed image in order to recognize the
objects in the outside world. In this subsection, we shall go beyond the statistical
properties of the observed image itself and study the interaction between the
observed image and the outside scene that produces the image.

Again, we would like to use the dead leaves model to convey the basic idea.
Suppose our attention is restricted to a finite scope Ω ⊂ R2, and let W =
((xi, yi, ri , ai), i = 1, ..., N) be the leaves in Ω that are not completely occluded by
other leaves. Then we have W ∼ p(W) and I = γ (W), where p(W) comes from the
Poisson process that generates the dead leaves, and γ represents the transformation
defined by Eq. (10.1) for a scale parameter s.

For convenience, we assume that both W and I are properly discretized. For any
joint distribution p(W, I), the conditional entropy H(p(W | I)) is defined as

10.2 Perceptual Entropy 259

H(p(W | I)) = −
∑
W,I

p(W, I) log p(W | I). (10.25)

H(p(W | I)) measures the inferential uncertainty or the imperceptibility of W from
the image I.

Proposition 1 If W ∼ p(W) and I = γ (W), then H(p(W |I)) = H(p(W)) −
H(p(I)). That is, imperceptibility = scene entropy - image entropy.

This proposition is easy to prove. The marginal distribution of I is p(I) =∑
W :γ (W)=I p(W). The posterior distribution of W given I is p(W |I) =

p(W, I)/p(I) = p(W)/p(I). Here, p(W, I) = p(W) because I is determined by
W . Following the definition in (10.25), H(p(W | I)) = −∑

W p(W)(log p(W) −
log p(I)) = H(p(W)) − H(p(I)). Here EW [log p(I)] = EI[log p(I)] since I is
determined by W .

If we increase the viewing distance or equivalently zoom out the camera while
fixing the scope Ω ⊂ R2, i.e., fixing W , then we obtain a zoomed-out version
I− = R(I), where R represents the zooming-out operation of smoothing and
subsampling and is a many-to-one transformation. During the process of zooming
out, the total entropy of the image will decrease, i.e., H(p(I−)) ≤ H(p(I)),
even though the entropy per pixel can increase as we have shown in the previous
subsection. Therefore, we have the following result.

Proposition 2 If W ∼ p(W), I = γ (W), and I− = R(I), where R is a many-to-
one mapping, then H(p(W |I−)) ≥ H(p(W |I)), i.e., the imperceptibility increases
as the image is reduced.

What does this result tell us in terms of interpreting image I or I−? Although the
model W ∼ p(W) and I = γ (W) is the right physical model for all the scale s, this
model is meaningful in interpreting I only within a limited range, say s ≤ sbound, so
that the imperceptibility H(p(W | I)) is below a small threshold. In this regime, the
representation I = γ (W) is good for both recognition and coding. For recognition,
H(p(W | I)) is small, so W can be accurately determined from I. For coding, we
can first code W according to p(W), with a coding cost H(p(W)). Then we code
I using I = γ (W) without any coding cost. The total coding cost would be just
H(p(W)). If the imperceptibility H(p(W | I)) is small, H(p(W)) ≈ H(p(I)), so
coding W will not incur coding overhead.

But if s is very large, the imperceptibility H(p(W | I)) can be large according
to Proposition 2. In this case, the representation I = γ (W) is not good for either
recognition or coding. For recognition, W cannot be estimated with much certainty.
For coding, if we still code W first and code I by I = γ (W), this will not be
an efficient coding, since H(p(W)) can be much larger than H(p(I)), and the
difference is imperceptibility H(p(W | I)).

Then what should we do? The regime of s > sbound is quite puzzling for vision
modeling. Our knowledge of geometry, optics, and mechanics enables us to model
every phenomenon in our physical environment. Such models may be sufficient for

260 10 Information Scaling

computer graphics as far as generating physically realistic images is concerned. For
instance, a garden scene can be constructed by simulating billions of leaves and
grass strands, and the image can be produced by projecting these billions of objects
onto the image with perspective geometry. A river scene, a fire scene, or a smoke
scene can be obtained using computational fluid dynamics. A piece of cloth can be
generated using a dense set of particles that follow the law of mechanics. Realistic
lighting can be simulated by ray tracing and optics. But such models are hardly
meaningful for vision because the imperceptibilities of the underlying elements or
variables are intolerable. When we look at a garden scene, we never really perceive
every leaf or every strand of grass. When we look at a river scene, we do not perceive
the constituent elements used in fluid dynamics. When we look at a scene with
sophisticated lighting and reflection, we do not trace back the light rays. In those
situations where physical variables are not perceptible due to scaling or other aspects
of the image formation process, it is quite a challenge to come up with good models
for the observed images. Such models do not have to be physically realistic, but
they should generate visually realistic images so that such models can be employed
to interpret the observed image at a level of sophistication that is comparable to
human vision.

Suppose the image I is reduced to an image I− = R(I), so that W cannot be
reliably inferred. Then, instead of pursuing a detailed description W from I−, we
may choose to estimate some aspects of W from I−. For instance, in the simulated
ivy wall example, we may estimate properties of the overall distribution of colors
of leaves, as well as the overall distribution of their sizes, etc. Let us call it W− =
ρ(W), with ρ being a many-to-one reduction function. It is possible that we can
estimate W− from I− because of the following result.

Proposition 3 Let W ∼ p(W), I = γ (W), and W− = ρ(W), I− = R(I), where
both ρ and R are many-to-one mappings; we have

(1) H(p(W−|I−)) ≤ H(p(W |I−)). (10.26)

(2) p(I−|W−) =
∑

W :ρ(W)=W−;R(γ (W))=I− p(W)∑
W :ρ(W)=W− p(W)

. (10.27)

Result (1) tells us that even if W is imperceptible from I−, W− may still be
perceptible. Result (2) tells us that although W defines I deterministically via I =
γ (W), W− may only define I− statistically via a probability distribution p(I−|W−).
While W represents deterministic structures, W− may only represent some texture
properties. Thus, we have a transition from a deterministic representation of the
image intensities I = γ (W) to a statistical characterization I− ∼ p(I−|W−). See
Fig. 10.6 for an illustration.

For an image I, we may extract F(I), which can be a dimension reduction or a
statistical summary, so that F(I) contains as much information about I as possible as
far as W or W− is concerned. In the following proposition, we shall not distinguish
between (W, I) and (W−, I−) for notational uniformity.

10.2 Perceptual Entropy 261

Fig. 10.6 First published in the Quarterly of Applied Mathematics in Volume 66:81–122, 2008,
published by Brown University. Reprinted with permission from [257]. The transition from
deterministic representation to statistical description

Proposition 4 Let F F(I):=

(1) If W ∼ p(W), I = γ (W), then KL(p(W |I)‖p(W |F)) = H(p(I|F)).
(2) If W ∼ p(W) and [I|W] ∼ p(I|W), then KL(p(W |I)‖p(W |F)) =

M(W, I|F), whereM(W, I|F) = EW,I {log[p(W, I|F)/(p(W |F)p(I|F))]} is
the mutual information between W and I given F .

Result (1) tells us that for F(I) to contain as much information about W as
possible, we want to make H(p(I|F)) to be as small as possible, so that F can
be used to reconstruct I accurately. Result (2) tells us that if we want to estimate
W , we want F to be sufficient about I as far as W is concerned. M(W, I|F) can be
considered a measurement of sufficiency.

Now let us study this issue from the coding perspective. Suppose the image
I follows a true distribution f (I), and we use a model w ∼ p(w), and [I |
w] ∼ p(I | w) to code I ∼ f (I). Here the variable w is augmented solely
for the purpose of coding. It might be some w = W− = ρ(W), or it may not
have any correspondence to the reality W . In the coding scheme, for an image
I, we first estimate w by a sample from the posterior distribution p(w|I), and
then we code w by p(w) with coding length − log p(w). After that, we code
I by p(I|w) with coding length − log p(I|w). So the average coding length is
−Ef

[
Ep(w|I)(log p(w) + log p(I|w))

]
.

Proposition 5 The average coding length is Ef [H(p(w|I))] + KL(f (I)‖p(I)) +
H(f), where p(I) = ∑

w p(w)p(I | w) is the marginal distribution of I under the
model. So, coding redundancy = imperceptibility + model bias.

The above proposition provides a selection criterion for models with latent
variables. The imperceptibility term comes up because we assume a coding scheme
where w must be coded first, and then I is coded based on w. Given the latent
variable structure of the model, it is very natural to assume such a coding scheme

262 10 Information Scaling

Fig. 10.7 The image contains patterns of different complexities, from very simple patterns such
as geometric patterns to very random patterns such as leaves at far distance

A Continuous Spectrum

Image patterns of different entropy regimes are not only connected by image scaling,
they co-exist and blend seamlessly in a single image (Fig. 10.7). For instance,
imagine we are in the wood of maple trees and taking a picture. The patterns
displayed in Fig. 10.1 may appear together in the picture we take because the maple
leaves can appear at different distances from the camera when the picture is taken. In
addition, even for the same objects in a fixed image, when we analyze this image in
multiple resolutions, we may recognize patterns from different regimes. The close
connection between different regimes calls for a common theoretical framework for
modeling patterns in these regimes. In particular, it calls for the integration of the
MRFs and sparse coding models that work well in the high-entropy regime and
low-entropy regime, respectively.

10.3 Perceptual Scale Space

When an image is viewed at varying resolutions, it is known to create discrete
perceptual jumps or transitions amid the continuous intensity changes. Wang and
Zhu [248] studied a perceptual scale space theory that differs from the traditional
image scale space theory in two aspects: (i) In representation, the perceptual scale
space adopts a full generative model. From a Gaussian pyramid, it computes a
sketch pyramid where each layer is a primal sketch representation—an attribute
graph whose elements are image primitives for the image structures. Each primal
sketch graph generates the image in the Gaussian pyramid, and the changes between
the primal sketch graphs in adjacent layers are represented by a set of basic and

10.4 Energy Landscape 263

Fig. 10.8 Reprinted with permission from [248]. Scale space of a 1D signal. (a) A toaster image
from which a line is taken as the 1D signal. (b) Trajectories of zero-crossings of the 2nd derivative
of the 1D signal. The finest scale is at the bottom. (c) The 1D signal at different scales. The black
segments on the curves correspond to primal sketch primitives (step edge or bar). (d) A symbolic
representation of the sketch in scale space with three types of transitions

composite graph operators to account for the perceptual transitions. (ii) In computa-
tion, the sketch pyramid and graph operators are inferred, as hidden variables, from
the images through Bayesian inference by stochastic algorithm, in contrast to the
deterministic transforms or feature extraction, such as computing zero-crossings,
extremal points, and inflection points in the image scale space. Studying the
perceptual transitions under the Bayesian framework makes it convenient to use the
statistical modeling and learning tools for (a) modeling the Gestalt properties of the
sketch graph, such as continuity and parallelism, etc.; (b) learning the most frequent
graph operators, i.e., perceptual transitions, in image scaling; and (c) learning the
prior probabilities of the graph operators conditioning on their local neighboring
sketch graph structures (Fig. 10.8).

In experiments, they learn the parameters and decision thresholds through human
experiments, and they show that the sketch pyramid is a more parsimonious repre-
sentation than a multi-resolution Gaussian/Wavelet pyramid. They also demonstrate
an application on adaptive image display—showing a large image on a small screen
(say PDA) through a selective tour of its image pyramid. In this application, the
sketch pyramid provides a means for calculating information gain in zooming-in
different areas of an image by counting a number of operators expanding the primal
sketches, such that the maximum information is displayed in a given number of
frames.

10.4 Energy Landscape

The distribution of images in the image space ΩI ⊂ RN defined by an energy
function U : ΩI → R can be understood as a manifold, or landscape, of dimension
RN in the high-dimensional space RN+1. The energy function is given by U =

264 10 Information Scaling

− log f , where f is a density over ΩI . High-probability states of f are low-energy
(stable) states of U , and low-probability states of f are high-energy (unstable) states
of U . The energy function is analogous to an elevation function that maps latitude
and longitude coordinates in R2 to an elevation in R. The surface of the landscape
given by the elevation map is a 2D manifold in 3D space, and the same intuition
extends to higher dimensions. The energy function U defines a geodesic distance
measure and non-Euclidean geometry over ΩI that incorporates the “elevation”
information given by U to alter the usual Euclidean measure of distance on RN . This
characterization of the distribution of images leads to a geometric understanding of
perceptibility based on the physical idea of metastability [99].

In a broad sense, a metastable system is a system that appears to be in equilibrium
when viewed over short time periods but which deviates substantially from the
short-scale quasi-equilibrium over long time periods. The concept of metastability
provides a framework for understanding the structure of a density f by observing
quasi-equilibrium behavior in the physical system associated with the landscape
of U .

One can computationally simulate a diffusion process in the physical system of
U by obtaining MCMC samples with a steady state f . In virtually all situations,
the MCMC sampler is theoretically ergodic with respect to ΩI , meaning that the
sampling process on f will eventually visit every image I in the image space with
probability 1 if the sampling is continued for a sufficient number of steps. On the
other hand, it is well known that local MCMC samplers have difficulty mixing
between separate modes, which is usually considered a major drawback of MCMC
methods. However, the slow mixing and high autocorrelation of local MCMC
samples is actually a manifestation of metastable phenomena in the landscape of
U that provide a means of understanding f .

A density f that models realistic images will have an astronomical abundance
of local modes that represent the diverse variety of possible appearances along the
data manifold in the image space. On the other hand, groups of related minima that
represent similar images often merge in the landscape of U to form macroscopic
basins or funnels that capture consistent clusters or concepts of images found
in the training data. The macroscopic basins are contained regions that permit
diffusion interiorly but are separated by energy barriers that dramatically decrease
the probability of cross-basin diffusion. Therefore, one can identify concepts within
an image density f by identifying the metastable regions of the energy landscape. It
is important to remember that metastable behavior often exists across a continuous
spectrum of time scales, so there is no ground truth for the correct metastable
structure and/or conceptual clustering of f . Instead, the metastable description
provides a natural way to explore the concepts within a density at a range of degrees
of visual similarity, permitting “coarser” or “finer” mappings depending on the
context.

We can intuitively understand the structure of the energy landscape of natural
images by considering ΩI as a “universe” of images. The high-energy/low-

10.4 Energy Landscape 265

Fig. 10.9 The meaningful structures of image density can be intuitively understood as high-
density regions in our universe. The majority of the image universe consists of empty space that
represents appearances not observed within the training set. Texton-scale images are analogous
to star clusters with a stable substructure that enables the recognition of a distinct appearance.
Texture-scale images are analogous to nebulae whose mass covers a wide area but which contain
little recognizable substructure. The gravitational pull of these structures is analogous to the
metastable behavior of MCMC chains, which enables efficient mapping of macroscopic energy
features

probability regions of U are empty space, which accounts for the vast majority of the
volume of ΩI . The low-energy regions and local modes of U represent high-density
regions. Low-energy regions that represent texton-scale images are concentrated
structures such as stars, while low-energy regions representing texture are more
diffused and loose structures such as nebulas. Groups of related stars and nebulae
form galaxies that represent general concepts within the image data, as in Fig. 10.9.

The discussion above reveals an important connection between visual percepti-
bility of difference among a population of images with density f and metastable
structures in the energy landscape U . A realistic image following f will have
its own associated local minima region that captures a single stable appearance.
The barriers between realistic images should depend on the degree of similarity
between images. Images that share a similar appearance will be separated by
lower energy barriers because it is possible to smoothly transit between similar
images without encountering low-probability/high-energy/unrealistic images along

266 10 Information Scaling

the interpolation path. Images with dramatically different appearances should be
separated by much higher barriers because it will be necessary to encounter low-
probability/high-energy/unrealistic images while smoothly transforming between
differing appearances.

For example, it is possible to smoothly transit between two images of the digit 1
while still maintaining the appearance of the digit 1 throughout the interpolation
path, but it is not possible to transition from the digit 1 to the digit 0 (or any
other digit) without encountering an image that does not resemble a digit at all.
Groups of similar images separated by low-energy barriers form metastable regions
of U , establishing the connection between visual perception of differences between
images and metastable structure in the energy landscape.

Metastable phenomena are a natural way of representing both structure and
variation in complex concepts, but actually detecting metastable behavior in a given
energy landscape is a challenging task. Intuitively, two MCMC samples initialized
from the same energy basin should meet much more quickly than two MCMC
samples initialized from separate energy basins. However, the “short” mixing time
of two chains in the same metastable basin is still far too long for efficient simulation
in high-dimensional spaces. No chains, either from the same or separate energy
basins, are likely to meet in feasible time scales. Therefore, direct observation of
membership in a metastable basin is not possible with MCMC simulation.

To overcome the difficulty of detecting metastable phenomena in their natural
state, we perturb the energy landscape in a way that will accelerate mixing within
a metastable basin while preserving the long mixing times between separate energy
basins. If the perturbation is sufficiently small, then it is reasonable to expect
metastable phenomena in the original and altered landscape will be very similar. On
the other hand, the perturbation must be strong enough to overcome shallow energy
barriers that exist within a metastable basin to encourage fast mixing between modes
within the same macroscopic basin.

Drawing inspiration from the magnetized Ising model, we modify the original
energy landscape with an L2 penalty toward a known low-energy image. The target
of the L2 penalty acts as a “representative” of the energy basin to which it belongs.
Given a candidate mode x0 and a target mode x∗, initialize an MCMC sample X
from x0 and update the sample using the magnetized energy

Umag(x) = U(x) + α‖x − x∗‖2, (10.28)

where U is the original energy function and α is the strength of magnetization.
Sampling is continued until either the MCMC sample X comes with a small
Euclidean distance ε of the target state x∗ or until an upper limit on the number of
steps is reached. Since d

dx
‖x − x∗‖2 = x−x∗

‖x−x∗‖2 , the gradient of the magnetization
penalty α‖x −x∗‖2 is a vector with magnitude α pointing toward x∗ for every point
x �= x∗. This shows that the gradient of Umag differs from the gradient of U by a
magnitude of at most α throughout the state space, allowing us to uniformly control
the degree of landscape perturbation in a single parameter. We call this method
attraction–diffusion (AD) (Fig. 10.10).

10.4 Energy Landscape 267

Fig. 10.10 Illustration of
attraction-diffusion

It is clear that in the limiting case α → 0, sampling on Umag is identical to
sampling on U , and that X will never come within a close distance of x∗ even
when x0 and x∗ are in the same metastable basin. On the other hand, in the limiting
case, α → ∞, all probability mass is focused on x∗ and X will quickly reach
the target state. In between these limiting cases, there exists a spectrum of values
for α for which the gradients from the original energy U and the magnetization
penalty α‖x − x∗‖2 affect sampling at approximately the same magnitude. Within
this spectrum, one observes that sometimes the diffusion paths reach their target
x∗ and sometimes the diffusion paths never reach their target. If we consider
successful travel in the magnetized landscape to approximately represent metastable
membership in the original landscape, then it becomes possible to reason about
metastable structures in the original landscape based on the finite-step behavior of
MCMC samples in the magnetized landscape. We note that metastable structures at
finer resolutions can be detected when α is relatively small, while larger values of
α will only preserve the most prominent barriers in the landscape. Like real-world
concepts, metastable concepts only exist within a certain spectrum of identity or
difference depending on the context of the situation.

Now that we are equipped with a method for determining whether two minima
belong to the same metastable basin, it becomes possible to efficiently identify the
different metastable structures in an arbitrary high-dimensional energy landscape
using computational methods. This process allows to extend techniques for mapping

268 10 Information Scaling

Fig. 10.11 First published in the Quarterly of Applied Mathematics in Volume 77:269–321,
2019, published by Brown University. Reprinted with permission from [99]. Construction of a
disconnectivity graph (right) from a 1D energy landscape (left). The DG encodes the depth of local
minima and the energy at which basins merge. The same procedure can be used to hierarchically
cluster image concepts using an energy function U over the image space

and visualizing energy landscapes from the chemical physics literature to energy
functions defined over the image space. The physical system defined by a low-
temperature diffusion process has metastable structures that correspond to concepts
learned by the energy function.

The analogy between stable states of a physical system (e.g., states with predom-
inantly aligned spins in the Ising model) and recognizable concepts within groups
of images allows us to hierarchically cluster the image space by first identifying
metastable regions and then grouping regions based on the energy spectrum at
which basins merge. The results can be displayed in a tree diagram known as a
disconnectivity graph (DG). A disconnectivity graph displays: (1) the minimum
energy within each basin (leaves of the tree), (2) the energy level at which basins
merge in the energy landscape, also called the energy barrier (branches of the tree),
as shown in Fig. 10.11. The key concept underlying this procedure is the idea that
perceptibility can be grounded in metastable phenomena in an energy landscape that
represents perceptual memory (Fig. 10.12).

We demonstrate the principles of the above discussion by mapping a learned
energy landscape U that has been trained to model MNIST. It is important to note
that the true density of an image concept is never known and that mapping must
be done on a learned density. U is a computational representation of a large set of
observed images, much like our memory creates perceptual models of structured
images that we regularly observe. The macroscopic energy structures of U can
effectively distinguish between different image groups (digits) that are recognizable
to humans. Each digit has at least one stable basin that represents the digit’s
appearance, and relations between image basins follow visually intuitive relations
between images.

10.4 Energy Landscape 269

Fig. 10.12 First published in the Quarterly of Applied Mathematics in Volume 77:269–321, 2019,
published by Brown University. Reprinted with permission from [99]. Map of the energy landscape
of an image density trained with image patches from an ivy texture at four scales. The closest two
scales develop recognizable and separate basins in the landscape that represent distinguishable
patterns. The furthest two scales do not contain perceptible subgroups and form flat nebula-like
basins that encode texture appearance

Scale
1
2

3

4

Fig. 10.13 First published in the Quarterly of Applied Mathematics in Volume 77:269–321, 2019,
published by Brown University. Reprinted with permission from [99]. Ivy texture image and image
patches from four scales. The first two scales contain images that can be clustered by a human.
The images cross the perceptibility threshold from texton representation to texture representation
between Scale 2 and Scale 3

The link between perceptibility and metastability can also be clearly observed
when mapping the density of image patches from a single texture at a variety of
different scales. The density f models 32 × 32 pixel image patches of the same
ivy texture image from four different scales (see Fig. 10.13). At the closest scale,
the images are composed of simple bar and stripe features. The second-closest scale
features the composition of about 2 or 3 leaves in different arrangements. At the
furthest two scales, it is difficult to distinguish distinct image groups, and images
from these scales are perceived as textures by a human.

270 10 Information Scaling

Fig. 10.14 First published in the Quarterly of Applied Mathematics in Volume 77:269–321, 2019,
published by Brown University. Reprinted with permission from [99]. Map of the energy landscape
of an image density trained with image patches from an ivy texture at four scales. The closest two
scales develop recognizable and separate basins in the landscape that represent distinguishable
patterns. The furthest two scales do not contain perceptible subgroups and form flat nebula-like
basins that encode texture appearance

The metastable structure of U = − log f shares many similarities with human
perceptibility (see Fig. 10.14). Image groups from the closest scale are easiest
to recognize, and the landscape forms a handful of strong basins that represent
the different bar and stripe configurations found at close range. A rich variety of
separate metastable basins appear at Scale 2 to encode many distinct compositions
of a few leaves. The landscape represents images from Scales 3 and 4 with a
large macroscopic basin with little substructure. Between Scale 2 and Scale 3, a
phase transition occurs where the identifiability of leaf compositions changes from
distinguishable (texton scale) to indistinguishable (texture scale). The behaviors of
human perceptibility and image landscape metastability are therefore quite similar
across multi-scale image data.

Chapter 11
Deep Image Models

In this chapter, we will present the deep FRAME model or deep energy-based model
as a recursive multi-layer generalization of the original FRAME model. We shall
also present the generator model that can be considered a nonlinear multi-layer
generalization of the factor analysis model. Such multi-layer models capture the
fact that visual patterns and concepts appear at multiple layers of abstractions.

11.1 Deep FRAME and Deep Energy-Based Model

The original FRAME (Filters, Random fields, And Maximum Entropy) model
[259, 279, 281] is a Markov random field model of stationary spatial processes
such as stochastic textures. The log probability density function of the model is the
sum of translation invariant potential functions that are point-wise one-dimensional
nonlinear transformations of linear filter responses.

The deep generalization of the FRAME model is inspired by the successes of
deep convolutional neural networks [138, 144], and as the name suggests, it can
be considered a deep version of the FRAME model. The filters used in the original
FRAME model are linear filters that capture local image features. In [161], the linear
filters are replaced by the nonlinear filters at a certain convolutional layer of a pre-
trained deep ConvNet. Such filters can capture more complex patterns, and the deep
FRAME model built on such filters can be more expressive.

Furthermore, instead of using filters from a pre-trained ConvNet, we can also
learn the filters from scratch. The resulting model is also known as a deep
convolutional energy-based model [32, 180, 266]. Such a model can be considered
a recursive multi-layer generalization of the original FRAME model. The log
probability density function of the original FRAME model consists of nonlinear
transformations of linear filter responses. If we repeat this structure recursively,
we get the deep convolutional energy-based model with multiple layers of linear

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_11

271

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_11&domain=pdf

 12783
61494 a 12783 61494 a

272 11 Deep Image Models

filtering followed by point-wise nonlinear transformations. Xie et al. [266] show
that it is possible to learn such a model from natural images.

The deep FRAME model can be written as an exponential tilting of a reference
distribution such as the uniform measure or the Gaussian white noise model. If the
reference distribution is the Gaussian white noise model, the local modes of the
probability density follow an auto-encoder. We call it the Hopfield auto-encoder
because it defines the local energy minima of the model [108]. In the Hopfield auto-
encoder, the bottom-up filters detect the patterns corresponding to the filters, and
then the detection results are used as the coefficients in the top-down representation
where the filters play the role of basis functions.

The learning of the deep FRAMEmodel and deep energy-based model follows an
analysis by synthesis scheme [85]. We can use Markov chain Monte Carlo (MCMC)
such as the Langevin dynamics to sample from the current model to generate
synthetic images, which runs gradient descent on the energy function of the model
while adding Gaussian white noises for Brownian motion or diffusion. For deep
FRAME models, the gradient can be efficiently computed by back-propagation.
Then we update the model parameters based on the statistical difference between
the observed images and the synthetic images so that the model shifts its probability
density function from the synthetic images to the observed images. In the zero-
temperature limit, this learning and sampling algorithm admits an adversarial
interpretation, where the learning step and the sampling step play a minimax game
based on a value function.

ConvNet Filters

The convolutional neural network (CNN or ConvNet) [144] is a specialized neural
network devised for analyzing data such as images, where the linear transformations
take place around each pixel, i.e., they are filters or convolutions. See Fig. 11.1 for
an illustration.

A ConvNet consists of multiple layers of linear filtering and point-wise nonlinear
transformation, as expressed by the following recursive formula:

[
F (l) j ∗ I

]
(y) = h

⎛

⎝
Nl−1∑
k=1

∑
x∈Sl

w (l,j)
k,x

[
F (l−1)

k ∗ I
]
(y + x) + bl,j

⎞

⎠ , (11.1)

or

I(l) j (y) = h

⎛

⎝
Nl−1∑
k=1

∑
x∈Sl

w (l,j)
k,x I

(l−1)
k (y + x) + bl,j

⎞

⎠ , (11.2)

11.1 Deep FRAME and Deep Energy-Based Model 273

Fig. 11.1 Reprinted with permission from [160]. Convolutional neural networks consist of
multiple layers of filtering and subsampling operations for bottom-up feature extraction, resulting
in multiple layers of feature maps and their subsampled versions. The top layer features are used
for classification via multinomial logistic regression. The discriminative direction is from image to
category, whereas the generative direction is from category to image

where l = 1, . . . , L indexes the layer, and I(l) j = F (l) j ∗ I are filtered images or
feature maps at layer l. In Fig. 11.1, the feature maps are illustrated by the square
shapes. Each [F (l) j ∗ I](x) is called a filter response or a feature extracted at layer l.

{F (l) j , j = 1, . . . , Nl} are the filters at layer l, and {F (l−1)
k , k = 1, . . . , Nl−1}

are the filters at layer l − 1. j and k are used to index the filters at layers l and
l − 1, respectively, and Nl and Nl−1 are the numbers of filters at layers l and
l − 1, respectively. The filters are locally supported, so the range of I in

∑
x is

within local support Sl (such as a 7 × 7 image patch). We let I(0) = I. The filter
responses at layer l are computed from the filter responses at layer l − 1, by linear
filtering defined by the weights w (l,j)

k,x as well as the bias term bl,j , followed by the
nonlinear transformation h(·). The most commonly used nonlinear transformation
in the modern ConvNets is the rectified linear unit (ReLU), h(r) = max(0, r) [138].
{F (l) j } are nonlinear filters because we incorporate h(·) in the computation of the

filter responses. We call I(l) j = F (l) j ∗ I the filtered image or the feature map of filter

j at layer l. We denote I(l) = (I(l) j , j = 1, . . . , Nl), which consists of a total of Nl

feature maps at layer l, and j = 1, . . . , Nl . Sometimes, people call I(l) as a whole
feature map or filtered image with Nl channels, where each I

(l)
j corresponds to one

channel. For a colored image, I(0) = I has 3 channels for RGB.
The filtering operations are often followed by subsampling and local max pooling

(e.g., I(x1, x2) ← max(s1,s2)∈{0,1}2 I(2x1 + s1, 2x2 + s2)). See Fig. 11.1 for an
illustration of subsampling. After a number of layers with subsampling, the filtered
images or feature maps are reduced to 1× 1 at the top layer. These features are then
used for classification (e.g., does the image contain a hummingbird or a seagull or a
dog?) via multinomial logistic regression.

274 11 Deep Image Models

FRAME with ConvNet Filters

Instead of using linear filters as in the original FRAME model, we can use the filters
at a certain convolutional layer of a pre-trained ConvNet. We call such a model the
deep FRAME model.

Suppose there exists a bank of filters {F (l) k , k = 1, . . . , K} at a certain
convolutional layer l of a pre-trained ConvNet, as recursively defined by (11.1).
For an image I defined on the image domain D, let F (l) k ∗ I be the feature map of

filter F (l) k , and let [F (l) k ∗I](x) be the filter response of I to F (l) k at position x (x is the
two-dimensional coordinate). We assume that [F (l) k ∗ I](x) is the response obtained
after applying the nonlinear transformation or rectification function h(·). Then the
non-stationary deep FRAME model becomes

p(I; θ) =
1

Z(θ)
exp

{
K∑

k=1

∑
x∈D

wk,x[F (l) k ∗ I](x)

}
q(I), (11.3)

where q(I) is the Gaussian white noise model (4.43), and θ = (wk,x,∀k, x) are the
unknown parameters to be learned from the training data. Model (11.3) shares the
same form as model (4.42) with linear filters, except that the rectification function
h(r) = max(0, r) in model (4.42) is already absorbed in the ConvNet filters {F (l) k }
in model (11.3). We can also make model (11.3) stationary by letting wk,x = wk for
all x.

Learning and Sampling

The basic learning algorithm estimates the unknown parameters θ from a set of
aligned training images {Ii , i = 1, . . . , n} that come from the same object category.
Again the weight parameters can be estimated by maximizing the log-likelihood
function and can be computed by the stochastic gradient ascent algorithm [274]:

w (t+1)
k,x = w (t) k,x + γt

⎡

⎣1

n

n∑
i=1

[
F (l) k ∗ Ii

]
(x) −

1

ñ

ñ∑
i=1

[
F (l) k ∗ Ĩi

]
(x)

⎤

⎦ ,

(11.4)
for every k ∈ {1, . . . , K} and x ∈ D, where γt is the learning rate, and {Ĩi , i =
1, . . . , ̃n} are the synthetic images sampled from p(I; θ(t)) using MCMC. This is an
analysis by synthesis scheme that seeks to match the average filter responses of the
synthetic images to those of the observed images.

In order to sample from p(I; θ), we adopt the Langevin dynamics [80, 157].
Writing the energy function

11.1 Deep FRAME and Deep Energy-Based Model 275

Fig. 11.2 Reprinted with permission from [161]. Generating object patterns. In each row, the left
half displays 4 of the training images (224 × 224), and the right half displays 4 of the synthetic
images. In the last row, the learned model generates hybrid patterns of lion and tiger

U(I, θ) = −
K∑

k=1

∑
x∈D

wk,x

[
F (l) k ∗ I

]
(x) +

1

2σ 2
‖I‖2, (11.5)

the Langevin dynamics iterates

Iτ+1 = Iτ − sU ′(Iτ , θ) + √
2seτ , (11.6)

where U ′(I, θ) = ∂U(I, θ)/∂I. This gradient can be computed by back-
propagation. In (11.6), s is a small step size, and eτ ∼ N(0, ID), independently
across τ , where ID is the identity matrix of dimension D = |D|, i.e., the
dimensionality of I. eτ is a Gaussian white noise image whose pixel values follow
N(0, 1) independently. Here we use τ to denote the time steps of the Langevin
sampling process because t is used for the time steps of the learning process. The
Langevin sampling process (11.6) is an inner loop within the learning process (11.4).
Between every two consecutive updates of θ in the learning process, we run a finite
number of steps of the Langevin dynamics starting from the images generated by
the previous iteration of the learning algorithm.

The Langevin dynamics was first applied to the FRAME model by Zhu and
Mumford [279], where the gradient descent component is interpreted as the Gibbs
Reaction And Diffusion Equation (GRADE), and the patterns are formed via the
reactions and diffusions controlled by different types of filters.

We first learn a non-stationary FRAME model (11.3) from images of aligned
objects. The images were collected from the Internet. For each category, the number
of training images was around 10. We used ñ = 16 parallel chains for Langevin
sampling with 100 Langevin steps between every two consecutive updates of
the parameters. Figure 11.2 shows some experiments using filters from the 3rd
convolutional layer of the VGG ConvNet [219], a commonly used pre-trained

276 11 Deep Image Models

Fig. 11.3 Reprinted with permission from [161]. Generating texture patterns. For each category,
the first image (224 × 224) is the training image, and the next 2 images are generated images,
except for the last 3 images, where the first 2 are the training images, and the last one is the
generated image that mixes brick wall and ivy

ConvNet trained on ImageNet ILSVRC2012 dataset [39]. For each experiment on
each row, the left half displays 4 of the training images, and the right half displays 4
of the synthetic images generated by the Langevin dynamics. The last experiment is
about learning the hybrid pattern of lion and tiger. The model re-mixes local image
patterns seamlessly.

Figure 11.3 shows results from experiments on the stationary model for texture
images. The model does not require image alignment. It re-shuffles the local patterns
seamlessly. Each experiment is illustrated by 3 images, where the first image is the
training image, and the other 2 images are generated by the learning algorithm.
In the last 3 images, the first 2 images are training images, and the last image is
generated by the learned model that mixes the patterns of brick wall and ivy.

Learning a New Layer of Filters

On top of the existing pre-trained convolutional layer of filters {F (l) k , k = 1, . . . , K},
we can build another layer of filters {F (l+1)

j , j = 1, . . . , J }, according to the
recursive formula (11.1), so that

[
F (l+1)

j ∗ I
]
(y) = h

⎛

⎝∑
k,x

w (j)
k,x

[
F (l) k ∗ I

]
(y + x) + bj

⎞

⎠ , (11.7)

where h(r) = max(0, r). The set {F (l+1)
j } is like a dictionary of “words” to describe

different types of objects or patterns in the training images.
Due to the recursive nature of ConvNet, the deep FRAME model (11.3) based

on filters {F (l) k } corresponds to a single filter in {F (l+1)
j } at a particular position y

(e.g., the origin y = 0) where we assume that the object appears. In [32], we show
that the rectification function h(r) = max(0, r) can be justified by a mixture model

11.1 Deep FRAME and Deep Energy-Based Model 277

where the object can either appear at a position or not. The bias term is related to
− logZ(θ).

Model (11.3) is used to model images where the objects are aligned and are of
the same category. For images of non-aligned objects from multiple categories, we
can extend the model (11.3) to a convolutional version with a whole new layer of
multiple filters

p(I; θ) =
1

Z(θ)
exp

⎧
⎨

⎩

J∑
j=1

∑
x∈D

[
F (l+1)

j ∗ I
]
(x)

⎫
⎬

⎭ q(I), (11.8)

where {F (l+1)
j } are defined by (11.7), and θ = (w (j)

k,x, ∀j, k, x). This model is a

product of experts model [100, 207], where each [F (l+1)
j ∗ I](x) is an expert about

a mixture of an activation or inactivation of a pattern of type j at position x. The
stationary model for textures is a special case of this model.

Suppose we observe images of non-aligned objects from multiple categories
{Ii , i = 1, . . . , n}, and we want to learn a new layer of filters {F (l+1)

j , j = 1, . . . , J }
by fitting the model (11.8) with (11.7) to the observed images, where {F (l+1)

j } model
different types of objects in these images. This is an unsupervised learning problem
because we do not know where the objects are. The model can still be learned by
the analysis by synthesis scheme as before.

Let L(θ) = 1
n

∑n
i=1 log p(Ii; θ) be the log-likelihood where p(I; θ) is defined

by (11.8) and (11.7). Then the gradient ascent learning algorithm is based on

∂L(θ)

∂w (j)
k,x

=
1

n

n∑
i=1

∑

y∈D
sj,y(Ii)

[
F (l)

k ∗ Ii
]
(y + x) − Eθ

⎡

⎣ ∑

y∈D
sj,y(I)

[
F (l)

k ∗ I
]
(y + x)

⎤

⎦ ,

(11.9)
where

sj,y(I) = h′
⎛

⎝∑
k,x

w (j)
k,x

[
F (l)

k ∗ I
]
(y + x) + bj

⎞

⎠ (11.10)

is a binary on/off detector of object j at position y on image I, because for h(r) =
max(0, r), h′(r) = 0 if r ≤ 0, and h′(r) = 1 if r > 0. The gradient (11.9) admits an EM
[38] interpretation that is typical in unsupervised learning algorithms that involve
hidden variables. Specifically, sj,y() detects the object of type j that is modeled

by F (l+1)
j

at location y. This step can be considered a hard-decision E-step. With

the objects detected, the parameters of F (l+1)
j

are then refined in a similar way as

in (11.4), which can be considered the M-step. That is, we learn F (l+1)
j

only from
image patches where objects of type j are detected.

Figure 11.4 displays two experiments. In each experiment, the first image
(224 × 224) is the training image, and the rest 2 images are generated by the learned

278 11 Deep Image Models

Fig. 11.4 Reprinted with permission from [161]. Learning a new layer of filters without requiring
object bounding boxes or image alignment. For each experiment, the first image (224 × 224) is the
training image, and the next 2 images are generated by the learned model

model. In the first scenery experiment, we learn 10 filters at the 4th convolutional
layer, based on the pre-trained VGG filters at the 3rd layer. The size of each Conv4
filter to be learned is 11× 11× 256. In the second sunflower experiment, we learn 20
filters of size 7 × 7 × 256. Clearly, these learned filters capture the local objects or
patterns and re-shuffle them seamlessly.

Deep Convolutional Energy-Based Model

Instead of relying on the pre-trained filters from an existing ConvNet, we can also
learn the filters {F (l)

k , k = 1, . . . , K} from scratch. The resulting model is a deep
convolutional energy-based model (EBM) [32, 180, 266],

p(I; θ) =
1

Z(θ)
exp{f (I; θ)}q(I), (11.11)

where f (I; θ) is defined by a ConvNet, and θ collects all the weight and bias
parameters of the ConvNet. In model (11.8) with (11.7), we have

11.1 Deep FRAME and Deep Energy-Based Model 279

f (I; θ) =
J∑

j=1

∑

x∈D

[
F (l+1)

j ∗ I
]
(x). (11.12)

Using more compact notation, we can define f (I; θ) recursively by

I(l) = h(wlI
(l−1) + bl), (11.13)

for l = 1, . . . , L, where h(·) is applied element-wise. I(0) = I, and f (I; θ) = I(L).
I(l) consists of all the filtered images or feature maps at layer l, and the rows of wl
consist of all the filters as well as all the locations where the filters operate on I(l−1)

to extract the features in I(l). We assume that at the final layer L, I(L) is reduced to
a number (i.e., a 1 × 1 feature map). θ = (wl, bl, l = 1, . . . , L). We can compare the
compact Eq. (11.13) with the more detailed Eq. (11.2).

For piecewise linear h(·), such as h(r) = max(0, r), the function f (I; θ) is
piecewise linear [174, 192]. Specifically, h(r) = max(0, r) = 1(r > 0)r, where
1(r > 0) is the indicator function that returns 1 if r > 0 and 0 otherwise. Then

I(l) = sl(I; θ)(wlI
(l−1) + bl), (11.14)

where

sl(I; θ) = diag(1(wlI
(l−1) + bl > 0)), (11.15)

i.e., a diagonal matrix of binary indicators (the indicator function is applied element-
wise) [192]. Let s = (sl , l = 1, . . . , L) consist of indicators at all the layers; then

f (I; θ) = Bs(I;θ)I + as(I;θ) (11.16)

is piecewise linear, where

Bs =
1∏

l=L
slwl, (11.17)

and as can be similarly calculated. s(I; θ) partitions the image space of I into
exponentially many pieces [192] according to the value of s(I; θ). The partition is
recursive because sl(I; θ) depends on sl−1(I; θ). The boundaries between the pieces
are all linear. On each piece with s(I; θ) = s, where s on the right-hand side denotes
a particular value of s(I; θ), f (I; θ) is a linear function f (I; θ) = BsI+as . The binary
switches in s(I; θ) reconfigure the linear transformation according to (11.17).

f (I; θ) generalizes three familiar structures in statistics:

(1) Generalized linear model (GLM). A GLM structure is a composition of a linear
combination of the input variables and a nonlinear link function. A ConvNet

280 11 Deep Image Models

can be viewed as a recursion of this structure, where each component of I(l) is
a GLM transformation of I(l−1), with h being the link function.

(2) Linear spline. A one-dimensional linear spline is of the form y = β0 +∑d
k=1 βk max(0, x − ak), where ak are the knots. The ConvNet f (I; θ) can be

viewed as a multi-dimensional linear spline. The number of linear pieces is
exponential in the number of layers [192]. Such a structure can approximate
any continuous nonlinear function by a large number of linear pieces.

(3) CART [21] and MARS [66]. In the classification and regression tree (CART)
and the multivariate adaptive regression splines (MARS), the input domain is
recursively partitioned. The linear pieces mentioned above are also recursively
partitioned according to the values of sl(I; θ) for l = 1, . . . , L. Moreover, MARS
also makes use of the hinge function max(0, r).

For Gaussian reference q(I), the energy function is

U(I; θ) = −f (I; θ) +
1

2σ 2
‖I‖2. (11.18)

We can continue to use Langevin dynamics (12.96) to sample from p(I; θ).
The parameter θ can be learned by the stochastic gradient ascent algorithm [274]

θ(t+1) = θ(t) + γt

[
1

n

n∑
i=1

∂
∂θ

f (Ii; θ(t)) −
1

ñ

ñ∑
i=1

∂
∂θ

f (Ĩi; θ(t))
]
, (11.19)

where again γt is the learning rate, and {Ĩi , i = 1, . . . , ̃n} are the synthetic images
sampled from p(I; θ(t)). This is again an analysis by synthesis scheme. This
step shifts the probability density function p(I; θ), or more specifically, the high-
probability regions or the low-energy regions, from the synthetic images {Ĩi} to the
observed images {Ii}.

In the sampling step, we need to compute ∂f (I; θ)/∂I. In the learning step, we
need to compute ∂f (I; θ)/∂θ . Both derivatives can be calculated by the chain rule
back-propagation, and they share the computations of ∂I(l)/∂I(l−1).

Our experiments show that the model is quite expressive. For example, we learn
a 3-layer model. The first layer has 100 15 × 15 filters with a subsampling size of 3
pixels. The second layer has 64 5 × 5 filters with a subsampling size of 1. The third
layer has 30 3 × 3 filters with a subsampling size of 1. We learn a model (11.11)
for each texture category from a single training image. Figure 11.5 displays some
results. For each category, the first image is the training image, and the rest are
2 of the images generated by the learning algorithm. We use ñ = 16 parallel
chains for Langevin sampling. The number of Langevin iterations between every
two consecutive updates of parameters is 10. The training images are of the size
224 × 224, whose intensities are within [0, 255]. We fix σ 2 = 1 in the reference
distribution q.

11.1 Deep FRAME and Deep Energy-Based Model 281

Fig. 11.5 Reprinted with permission from [266]. Generating texture patterns. For each category,
the first image (224 × 224) is the training image, and the rest are 2 of the images generated by the
learning algorithm

While the sparse FRAME model is interpretable in terms of the symbolic sketch
of the images, the deep FRAME model is not interpretable with its multiple layers
of dense connections in linear filtering.

Hopfield Auto-Encoder

Consider the sparse FRAME model. Let us assume that the reference distribution
q(I) is white noise with mean 0 and variance σ 2 = 1. The energy function is

U(I) =
1

2
‖I‖2 −

m∑
j=1

wjh(〈I, Bkj ,xj
〉). (11.20)

282 11 Deep Image Models

This energy function can be multi-modal, and each local minimum Î satisfies U ′(Î) =
0. Thus,

Î =
m∑

j=1

wih
′(〈Î, Bkj ,xj

〉)Bkj ,xj . (11.21)

This reveals an auto-encoder [16, 242] hidden in the local modes:

Encoding : cj = wjh′(〈Î, Bkj ,xj
〉), (11.22)

Decoding : Î =
n∑

i=1

cjBkj ,xj , (11.23)

where (11.22) encodes Î by (cj), and (11.23) reconstructs Î from (cj). Bkj ,xj serves
as both bottom-up filter in (11.22) and top-down basis function in (11.23). We call
this auto-encoder the Hopfield auto-encoder because Î is a local minimum of the
energy function (11.20). Hopfield [108] proposes that the local energy minima may
be used for content-addressable memory.

The Hopfield auto-encoder also presents itself in the deep convolutional energy-
based model (11.11) [266]. The energy function of the model is ‖I‖2/2−f (I; θ). The
local minima satisfy the Hopfield auto-encoder Î = f ′(Î; θ), or more specifically,

Encoding : s = s(Î; θ), (11.24)

Decoding : Î = Bs . (11.25)

The encoding process is a bottom-up computation of the indicators at different
layers sl = sl(I; θ), for l = 1, . . . , L, where wl plays the role of filters, see Eq. (11.15).
The decoding process is a top-down computation for reconstruction, where sl plays
the role of coefficients, and wl plays the role of basis functions. See Eq. (11.17).
The encoding process detects the patterns corresponding to the filters, and then
the decoding process reconstructs the image using the detected filters as the basis
functions.

Multi-grid Sampling and Modeling

In the high-dimensional space, e.g., image space, the model can be highly multi-
modal. The MCMC in general and the Langevin dynamics in particular may
have difficulty traversing different modes, and it may be very time-consuming to
converge. A simple and popular modification of the maximum likelihood learning
is the contrastive divergence (CD) learning [100], where we obtain the synthesized
example by initializing a finite-step MCMC from the observed example. The
CD learning is related to score matching estimator [114, 115] and auto-encoder

11.1 Deep FRAME and Deep Energy-Based Model 283

[6, 227, 241]. Such a method has the ability to handle large training datasets
via mini-batch training. However, bias may be introduced in the learned model
parameters in that the synthesized images can be far from the fair examples of the
current model. A further modification of CD is persistent CD [231], where at the
initial learning epoch the MCMC is still initialized from the observed examples,
while in each subsequent learning epoch, the finite-step MCMC is initialized from
the synthesized example of the previous epoch. The resulting synthesized examples
can be less biased by the observed examples. However, the persistent chains may
still have difficulty traversing different modes of the learned model.

A multi-grid sampling and learning method is developed in [69] to address the
above challenges under the constraint of finite budget MCMC. Specifically, each
training image is repeatedly downscaled to get its multi-grid versions. A separate
energy-based model is learned at each grid. Within each iteration of the learning
algorithm, for each observed training image, the corresponding synthesized images
are generated at multiple grids. We can initialize the finite-step MCMC sampling
from the minimal 1 × 1 version of the training image, and the synthesized image at
each grid serves to initialize the finite-step MCMC that samples from the model
of the subsequent finer grid. See Fig. 11.6 for an illustration, where the images
are sampled sequentially at 3 grids, with 30 steps of Langevin dynamics at each
grid. After obtaining the synthesized images at the multiple grids, the models at the
multiple grids are updated separately and simultaneously based on the differences
between the synthesized images and the observed training images at different grids.

Unlike the original CD or persistent CD, the learned models are capable of gener-
ating new synthesized images from scratch with a fixed budget MCMC because we
only need to initialize the MCMC by sampling from the one-dimensional histogram
of the 1× 1 versions of the training images. See Fig. 11.7 for generated examples by
models learned from large image datasets.

The learned energy-based model is a bottom-up ConvNet that consists of
multiple layers of features. These features can be used for subsequent tasks such
as classification. The learned models can also be used as a prior distribution for
inpainting, as illustrated by Fig. 11.8. See [69] for experiment details and numerical
evaluations.

Adversarial Interpretation

The deep convolutional energy-based model (11.11) can be written as

p(I; θ) =
1

Z(θ)
exp[−U(I; θ)], (11.26)

where the energy function U(I; θ) = −f (I; θ)+ 1
2σ 2 ‖I‖2. The update of θ is based on

L′(θ) that can be approximated by

284 11 Deep Image Models

Fig. 11.6 Reprinted with permission from [69]. Synthesized images at multi-grids. From left to
right: 4 × 4 grid, 16 × 16 grid, and 64 × 64 grid. A synthesized image at each grid is obtained
by 30-step Langevin sampling initialized from the synthesized image at the previous coarser grid,
beginning with the 1 × 1 grid

Fig. 11.7 Reprinted with permission from [69]. Synthesized images from models learned by
multi-grid method from 4 categories of MIT places205 datasets

1

ñ

ñ∑
i=1

∂
∂θ

U(Ĩi; θ) −
1

n

n∑
i=1

∂
∂θ

U(Ii; θ), (11.27)

where {Ĩi , i = 1, . . . , ̃n} are the synthetic images that are generated by the Langevin
dynamics. At the zero-temperature limit, the Langevin dynamics becomes gradient
descent:

Ĩτ+1 = Ĩτ − δ
∂
∂ Ĩ

U(Ĩτ ; θ). (11.28)

Consider the value function

11.2 Generator Network 285

Fig. 11.8 Reprinted with permission from [69]. Inpainting examples on CelebA dataset. In each
block from left to right: the original image, masked input, inpainted image by the multi-grid method

V (Ĩi , i = 1, . . . , ̃n; θ) =
1

ñ

ñ∑
i=1

U(Ĩi; θ) −
1

n

n∑
i=1

U(Ii; θ). (11.29)

The updating of θ is to increase V by shifting the low-energy regions from
the synthetic images {Ĩi} to the observed images {Ii}, whereas the updating of
{Ĩi , i = 1, . . . , ̃n} is to decrease V by moving the synthetic images toward the low-
energy regions. This is an adversarial interpretation of the learning and sampling
algorithm. It can also be considered a generalization of the herding method [249]
from exponential family models to general energy-based models.

11.2 Generator Network

This section studies the problem of learning and inference in the generator network
[81]. The generator network is based on a top-down ConvNet. It is a nonlinear
generalization of the factor analysis model. We develop the alternating back-
propagation algorithm for maximum likelihood learning of the generator network.

Factor Analysis

Let I be a D-dimensional observed example, such as an image. Let z be the
d-dimensional vector of continuous latent factors, z = (zk, k = 1, . . . , d). The
traditional factor analysis model is I = Wz + ε, where W is D × d matrix, and
ε is a D-dimensional error vector or the observational noise. We assume that
z ∼ N(0, Id), where Id stands for the d-dimensional identity matrix. We also assume
that ε ∼ N(0, σ 2ID), i.e., the observational errors are Gaussian white noises, and ε is
independent of z. There are three perspectives to view W :

(1) Basis vectors. Write W = (W1, . . . , Wd), where each Wk is a D-dimensional
column vector. Then I = ∑d

k=1 zkWk + ε, i.e., Wk are the basis vectors and
zk are the coefficients.

286 11 Deep Image Models

(2) Loading matrix. Write W = (w1, . . . , wD), where w
j is the j-th row of W .

Then Ij = 〈wj , z〉 + εj , where Ij and εj are the j-th components of I and ε,
respectively. Each Ij is a loading of the d factors, where wj is a vector of loading
weights, indicating which factors are important for determining Ij . W is called
the loading matrix.

(3) Matrix factorization. Suppose we observe I = (I1, . . . , In), whose factors are Z =
(z1, . . . , zn); then I ≈ WZ.

The factor analysis model can be learned by the Rubin–Thayer EM algorithm,
which involves alternating regressions of z on I in the E-step and of I on z in the
M-step [154, 209].

The factor analysis model is the prototype of many subsequent models that
generalize the prior model of z:

(1) Independent component analysis. [116] d = D, ε = 0, and zk are assumed to follow
independent heavy-tailed distributions.

(2) Sparse coding. [190] d > D, and z is assumed to be a redundant but sparse vector,
i.e., only a small number of zk are non-zero or significantly different from zero.

(3) Nonnegative matrix factorization. [148] It is assumed that zk ≥ 0.

Nonlinear Factor Analysis

The generator network is a nonlinear generalization of factor analysis. It generalizes
the linear mapping in factor analysis to a nonlinear mapping that is defined by a
convolutional neural network (ConvNet or CNN) [47, 138, 144]. It has been shown
that the generator network is capable of generating realistic images [40, 199].

The generator network has the following properties:

(1) Analysis: The model disentangles the variations in the observed examples into
independent variations of latent factors.

(2) Synthesis: The model can synthesize new examples by sampling the factors from
the known prior distribution and transforming the factors into the synthesized
examples.

(3) Embedding: The model embeds the high-dimensional non-Euclidean manifold
formed by the observed examples into the low-dimensional Euclidean space of
the latent factors so that linear interpolation in the low-dimensional factor space
results in nonlinear interpolation in the data space.

Specifically, the generator network model [81] retains the assumptions that d <
D, z ∼ N(0, Id), and ε ∼ N(0, σ 2ID) as in traditional factor analysis but generalizes
the linear mapping Wz to a nonlinear mapping g(z; θ), where g is a ConvNet, and θ
collects all the connection weights and bias terms of the ConvNet. Then the model
becomes

I = g(z; θ) + ε,

11.2 Generator Network 287

z ∼ N(0, Id), ε ∼ N(0, σ 2ID), d < D. (11.30)

The reconstruction error is ‖I − g(z; θ)‖2.
Although g(z; θ) can be any nonlinear mapping, the ConvNet parameterization

of g(z; θ) makes it particularly close to the original factor analysis. Specifically, we
can write the top-down ConvNet as follows:

z(l−1) = gl(Wlz
(l) + bl), (11.31)

where gl is element-wise nonlinearity at layer l, Wl is the weight matrix, bl is the
vector of bias terms at layer l, and θ = (Wl, bl, l = 1, . . . , L). z(0) = g(z; θ), and z(L) =
z. The top-down ConvNet (11.31) can be considered a recursion of the original
factor analysis model, where the factors at the layer l − 1 are obtained by the linear
superposition of the basis vectors or basis functions that are column vectors of Wl ,
with the factors at the layer l serving as the coefficients of the linear superposition. In
the case of ConvNet, the basis functions are shift-invariant versions of one another,
like wavelets.

Learning by Alternating Back-Propagation

The factor analysis model can be learned by the Rubin–Thayer EM algorithm
[38, 209], where both the E-step and the M-step are based on multivariate linear
regression. Inspired by this algorithm, we propose an alternating back-propagation
algorithm for learning the generator network that iterates the following two steps:

(1) Inferential back-propagation: For each training example, infer the continuous
latent factors by Langevin dynamics.

(2) Learning back-propagation: Update the parameters given the inferred latent
factors by gradient descent.

The Langevin dynamics [179] is a stochastic sampling counterpart of gradient
descent. The gradient computations in both steps are based on back-propagation.
Because of the ConvNet structure, the gradient computation in step (1) is actually a
by-product of the gradient computation in step (2).

The alternating back-propagation algorithm follows the tradition of alternating
operations in unsupervised learning, such as alternating linear regression in the
EM algorithm for factor analysis, alternating least squares algorithm for matrix
factorization [127, 136], and alternating gradient descent algorithm for sparse
coding [190]. All these unsupervised learning algorithms alternate an inference step
and a learning step, as is the case with alternating back-propagation.

Specifically, the joint density is p(z, I; θ) = p(z)p(I|z; θ), and

288 11 Deep Image Models

log p(z, I; θ) = −
1

2σ 2
‖I − g(z; θ)‖2 −

1

2
‖z‖2 + constant, (11.32)

where the constant term is independent of z and θ .
The marginal density is obtained by integrating out the latent factors z, i.e.,

p(I; θ) = ∫
p(z, I; θ)dz. The inference of z given I is based on the posterior density

p(z|I; θ) = p(z, I; θ)/p(I; θ) ∝ p(z, I; θ) as a function of z.
For the training data {Ii , i = 1, . . . , n}, the generator model can be trained by

maximizing the log-likelihood

L(θ) =
1

n

n∑
i=1

log p(Ii; θ). (11.33)

The gradient of L(θ) is obtained according to the following identity:

∂
∂θ

logp(I; θ) =
1

p(I; θ)
∂
∂θ

∫
p(I, z; θ)dz (11.34)

=
1

p(I; θ)

∫ [
∂
∂θ

log p(I, z; θ)

]
p(I, z; θ)dz (11.35)

=
∫ [

∂
∂θ

log p(I, z; θ)

]
p(I, z; θ)
p(I; θ)

dz (11.36)

= Ep(z|I;θ)

[
∂
∂θ

log p(z, I; θ)

]
. (11.37)

The above identity underlies the EM algorithm, where Ep(z|I;θ) is the expectation
with respect to the posterior distribution of the latent factors p(z|I; θ), and is
computed in the E-step. The usefulness of identity (11.37) lies in the fact that the
derivative of the complete-data log-likelihood log p(z, I; θ) on the right-hand side
can be obtained in closed form. In the EM algorithm, the M-step maximizes the
expectation of logp(z, I; θ) with respect to the current posterior distribution of the
latent factors. In general, the expectation in (11.37) is analytically intractable and
has to be approximated by MCMC that samples from the posterior p(z|I; θ), such as
the Langevin inference dynamics, which iterates

zτ+1 = zτ + s
∂
∂z

log p(zτ , I; θ) + √
2seτ , (11.38)

where τ indexes the time step, s is the step size, and eτ denotes the noise term,
eτ ∼ N(0, Id).

We take the derivative of log p(z, I; θ) in (11.38) because this derivative is the
same as the derivative of the log-posterior log p(z|I; θ) since p(z|I; θ) is proportional
to p(z, I; θ) as a function of z.

The Langevin inference solves a
2 penalized nonlinear least squares problem
so that zi can reconstruct Ii given the current θ . The Langevin inference process

11.2 Generator Network 289

performs explaining-away reasoning, where the latent factors in z compete with
each other to explain I.

The stochastic gradient algorithm of [274] can be used for learning, where in each
iteration, for each zi , only a single copy of zi is sampled from p(zi |Ii , θ) by running
a finite number of steps of Langevin dynamics starting from the current value of zi ,
i.e., the warm start. With zi sampled from p(zi | Ii , θ) for each observation Ii by the
Langevin inference process, the Monte Carlo approximation to L′(θ) is

L′(θ) ≈
1

n

n∑
i=1

∂
∂θ

log p(zi , Ii; θ)

=
1

n

n∑
i=1

1

σ 2
(Ii − g(zi; θ))

∂
∂θ

g(zi; θ). (11.39)

The updating of θ solves a nonlinear regression problem so that the learned θ enables
better reconstruction of Ii by the inferred zi . Given the inferred zi , the learning of θ
is a supervised learning problem [47].

Han et al. [94] describe the training algorithm that iterates the following two
steps: (1) Inference back-propagation: update zi by running a finite number of steps
of Langevin dynamics. (2) Learning back-propagation: update θ by one step of
gradient descent.

Both the inferential back-propagation and the learning back-propagation are
guided by the residual Ii − g(zi; θ). The inferential back-propagation is based on
∂g(z; θ)/∂z, whereas the learning back-propagation is based on ∂g(z; θ)/∂θ .

The Langevin dynamics can be extended to Hamiltonian Monte Carlo [179] or
more sophisticated versions [80].

Figure 11.9 illustrates the results of modeling textures where we learn a separate
model from each texture image. The factors z at the top layer form a

√
d × √

d
image, with each pixel following N(0, 1) independently. The

√
d × √

d image z is
then transformed into I by the top-down ConvNet. In order to obtain the synthesized
image, we randomly sample a 7 × 7 image z from N(0, I) and then expand the
learned network to generate the 448 × 448 synthesized image.

Figure 11.10 illustrates the learned D-dimensional manifold. We learn a model
where z = (z1, . . . , zd) has d = 100 components from 1000 face images randomly
selected from the CelebA dataset [156]. The left panel of Fig. 11.10 displays the
images generated by the learned model. The right panel displays the interpolation
results. The images at the four corners are generated by the z vectors of four images
randomly selected from the training set. The images in the middle are obtained by
first interpolating the z’s of the four corner images using the sphere interpolation
[44] and then generating the images by the learned ConvNet.

Figure 11.11 depicts the reconstructions of face images by linear PCA and
nonlinear generator model. For PCA, we learn the d eigenvectors from the train-
ing images and then project the testing images on the learned eigenvectors for
reconstruction. The generator is learned by alternating back-propagation. We infer

290 11 Deep Image Models

Fig. 11.9 Reprinted with permission from [94]. Modeling texture patterns. For each example,
Left: the 224 × 224 observed image. Right: the 448 × 448 generated image

Fig. 11.10 Reprinted with permission from [94]. Modeling object patterns. Left: each image is
obtained by first sampling z ∼ N(0, I100) and then generating the image by g(z; θ) with the learned
θ . Right: interpolation. The images at the four corners are reconstructed from the inferred z vectors
of four images randomly selected from the training set. Each image in the middle is obtained by
first interpolating the z vectors of the four corner images and then generating the image by g(z; θ)

11.2 Generator Network 291

Fig. 11.11 Reprinted with permission from [94]. Comparison between generator as nonlinear and
PCA as linear factor analysis. Row 1: original testing images. Row 2: reconstructions by PCA
eigenvectors learned from training images. Row 3: reconstructions by the generator learned from
training images

the d-dimensional latent factors z using inferential back-propagation and then
reconstruct the testing image by g(z; θ) using the inferred z and the learned θ .

Nonlinear Generalization of AAM Model

Active appearance models (AAMs) [28, 137] use a linear model to jointly capture
the appearance and geometric variations in an image. For the face images, the
appearance information mainly includes colors, illuminations, and identities, while
the geometric information mainly includes the shapes and viewing angles. Given
a set of landmark points, the AAM model can learn the eigenvectors from these
landmarks to extract the geometric information. With the known landmark points,
the faces can be aligned into a canonical shape and view, by warping the faces
with the mean landmarks. Under this canonical geometric state, the appearance
information can be extracted by the principal component analysis.

Can we extract the appearance and geometric knowledge from the images with-
out any landmarks or any supervised information? Moreover, can we disentangle the
appearance and geometric information by an unsupervised method? The deformable
generator model can solve this problem.

The deformable generator model [271, 272] disentangles the appearance and
geometric information of an image into two independent latent vectors with two
generator networks: one appearance generator and one geometric generator. The
appearance generator produces the appearance details, including color, illumination,
identity, or category, of an image. The geometric generator produces a displacement
of the coordinates of each pixel and performs geometric warping, such as stretching
and rotation, on the image generated by the appearance generator to obtain the final
generated image, as shown in Fig. 11.12. The geometric operation only modifies
the positions of pixels in an image without changing the color and illumination.
Therefore, the color and illumination information and the geometric information

292 11 Deep Image Models

Fig. 11.12 Reprinted with permission from [271]. An illustration of the proposed model. The
model contains two generator networks: one appearance generator and one geometric generator.
The two generators are connected with a warping function to produce the final image. The warping
function includes a geometric transformation operation for image coordinates and a differentiable
interpolation operation. The refining operation is optional for improving the warping function

are disentangled by the geometric generator and the appearance generator in the
model.

The model can be expressed as

I = G(za , zg; θ) + ε

= Fw(ga(za; θa), gg(zg; θg)) + ε, (11.40)

where za ∼ N(0, Ida), z
g ∼ N(0, Idg), and ε ∼ N(0, σ 2ID) are independent. Fw is

the warping function, which uses the deformation field generated by the geometric
generator gg(zg; θg) to warp the image generated by the appearance generator
ga(za; θa) to synthesize the final output image I. This deformable generator model
can be learned by extending the alternating back-propagation algorithm.

The abstracted geometric knowledge can be transferred. For the unseen images
as in Fig. 11.13, we can first infer their appearance and geometric latent vectors,
and then the geometric knowledge can be transferred by recombining the inferred
geometric latent vector from the target image with the inferred appearance latent
vector from the source image.

For high-resolution images, we train the deformable generator with 40K faces
from FFHQ [126], which are cropped to 256 × 256 pixels. Similar results corre-
sponding to Fig. 11.13 are demonstrated in Fig. 11.14.

11.2 Generator Network 293

Fig. 11.13 Reprinted with permission from [271]. Transferring and recombining geometric and
appearance vectors. The first row shows seven faces from the CelebA dataset. The second row
shows the faces generated by transferring and recombining the second through seventh faces’
geometric vectors zg with the first face’s appearance vector za in the first row. The third row shows
the faces generated by transferring and recombining the second through seventh faces’ appearance
vectors za with the first face’s geometric vector zg in the first row. The deformable generator model
is trained on the 10,000 face images from the CelebA dataset, which are cropped to 64×64 pixels,
and the faces in the training data have a diverse variety of colors, illuminations, identities, viewing
angles, shapes, and expressions

Fig. 11.14 Reprinted with permission from [271]. Transferring and recombining the abstracted
geometric and appearance knowledge. The first row shows 8 unseen faces from FFHQ. The second
row shows the generated faces by transferring and recombining the 2nd–8th faces’ geometric
vectors with the first face’s appearance vector. The third row shows the generated faces by
recombining the 2nd–8th faces’ appearance vectors with the first face’s geometric vector in the
first row. The deformable generator model is trained on the 40,000 face images randomly selected
from the FFHQ dataset [126]. The training images are cropped to 256 × 256 pixels, and the faces
have different colors, illuminations, identities, viewing angles, shapes, and expressions

Dynamic Generator Model

Let I = (It , t = 1, . . . , T) be the observed video sequence, where It is a frame at time
t . The dynamic generator model consists of the following two components:

294 11 Deep Image Models

zt = Fα(zt−1, ut), (11.41)

It = Gβ(zt) + εt , (11.42)

where t = 1, . . . , T (11.41) is the transition model, and (11.42) is the emission
model. zt is the d-dimensional hidden state vector. ut ∼ N(0, I) is the noise vector
of a certain dimensionality. The Gaussian noise vectors (ut , t = 1, . . . , T) are
independent of each other. The sequence of (zt , t = 1, . . . , T) follows a nonlinear
auto-regressive model, where the noise vector ut encodes the randomness in the
transition from zt−1 to zt in the d-dimensional state space. Fα is a feedforward neural
network or multi-layer perceptron, where α denotes the weight and bias parameters
of the network. We can adopt a residual form [97] for Fα to model the change of the
state vector. It is the D-dimensional image, which is generated by the d-dimensional
hidden state vector zt . Gβ is a top-down convolutional network (sometimes also
called deconvolution network), where β denotes the weight and bias parameters of
this top-down network. εt ∼ N(0, σ 2ID) is the residual error. We let θ = (α, β) denote
all the model parameters.

Let u = (ut , t = 1, . . . , T). u consists of the latent random vectors that need to be
inferred from I. Although It is generated by the state vector zt , z = (zt , t = 1, . . . , T)
are generated by u. In fact, we can write I = Hθ(u) + ε, where Hθ composes Fα and
Gβ over time, and ε = (εt , t = 1, . . . , T) denotes the observation noises.

Let p(u) be the prior distribution of u. Let pθ (I|u) ∼ N(Hθ (u), σ 2I) be the
conditional distribution of I given u, where I is the identity matrix whose dimension
matches that of I. The marginal distribution is pθ (I) = ∫

p(u)pθ (I|u)du with the
latent variable u integrated out. We estimate the model parameter θ by the maximum
likelihood method that maximizes the observed data log-likelihood log pθ (I).

We learn the model for dynamic textures, which are sequences of images of
moving scenes that exhibit stationarity in time. We learn a separate model from
each example. Each observed video clip is prepared to be of the size 64 pixels
× 64 pixels × 60 frames. The transition model is a feedforward neural network
with three layers. The network takes a 100-dimensional state vector st−1 and a 100-
dimensional noise vector ut as input and produces a 100-dimensional vector rt , so
that zt = tanh(zt−1+rt). The numbers of nodes in the three layers of the feedforward
neural network are {20, 20, 100}. The emission model is a top-down deconvolution
neural network or generator model that maps the 100-dimensional state vector (i.e.,
1 × 1 × 100) to the image frame of size 64 × 64 × 3 by 6 layers of deconvolutions
with a kernel size of 4 and up-sampling factor of 2 from top to bottom. The numbers
of channels at different layers of the generator are {512, 512, 256, 128, 64, 3}. Batch
normalization [118] and ReLU layers are added between deconvolution layers,
and tanh activation function is used at the bottom layer to make the output image
intensities fall within [−1, 1]. Once the model is learned, we can synthesize dynamic
textures from the learned model.

To speed up the training process and relieve the burden of computer memory, we
can use truncated back-propagation through time in training the model. That is, we
divide the whole training sequence into different non-overlapped chunks and run

11.2 Generator Network 295

Fig. 11.15 Reprinted with permission from [260]. Generating dynamic textures. For each cate-
gory, the first row displays 6 frames of the observed sequence, and the second and third rows
show the corresponding frames of two synthesized sequences generated by the learned model, (a)
burning fire heating a pot, (b) flapping flag, (c) waterfall, (d) flashing lights

forward and backward passes through chunks of the sequence instead of the whole
sequence. We carry hidden states zt forward in time forever, but only back-propagate
for the length (the number of image frames) of the chunk. In this experiment, the
length of the chunk is set to be 30 image frames.

An “infinite length” dynamic texture can be synthesized from a typically “short”
input sequence by just drawing “infinite” i.i.d. samples from Gaussian distribution.
Figure 11.15 shows five results. For each example, the first row displays 6 frames of
the observed 60-frame sequence, while the second and third rows display 6 frames
of two synthesized sequences of 120 frames in length, which are generated by the
learned model.

Chapter 12
A Tale of Three Families: Discriminative,
Descriptive, and Generative Models

12.1 Introduction

Three Families of Probabilistic Models

This chapter gives a general introduction to three families of probabilistic models
and their connections. Most of the models studied in the previous chapters, as well
as most of the models in the current machine learning and deep learning literature,
belong to these three families of models.

The first class consists of discriminative models or classifiers that are commonly
used in supervised learning. The second class consists of descriptive models—
also known as energy-based models—that define unnormalized probability density
functions in the data space. These models are generalizations of the FRAME model
introduced in the previous chapters. The third class consists of generative models
that are directed top-down models that involve latent variables. The generative
models are generalizations of factor analysis and its variants. They are also called
directed graphical models.

About the names of the models, we use the term “generative models” in a much
narrower sense than in the current literature. They refer to top-down models that
consist of latent variables that follow simple prior distributions so that the examples
can be directly generated. As to the “descriptive models,” they refer to the energy-
based models or deep FRAME model introduced in the previous chapter. They only
describe the examples in terms of their probability densities, but they cannot directly
generate the examples. The generative task is left to iterative MCMC sampling
algorithms. Therefore, these models are not literally generative as they do not
explicitly define a generative process, and that is why we call them descriptive.

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_12

297

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_12&domain=pdf

 12783 61494 a 12783 61494 a

298 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Top-down mapping Bottom-up mapping Bottom-up mapping

latent variables z log density fθ (x) logit score (density ratio)
⇓ ⇑ ⇑

example x ≈ gθ (z) example x example x
(a) Generative (sampler) (b) Descriptive (density) (b) Discriminative (classifier)

(12.1)

Density vs. Sampler A descriptive model specifies the probability density function
explicitly, up to a normalizing constant. A discriminative model specifies the ratios
between two or more densities via the Bayes rule. A generative model, on the other
hand, does not specify a data density explicitly. It specifies a sampler or a sampling
process that transforms latent variables with a known distribution, e.g., Gaussian
white noise variables, to the observed example. By analogy to reinforcement
learning, a density is like a value network or a critic, and a sampler is like a policy
network or an actor.

The above diagram illustrates the three families of probabilistic models. A
generative model is based on a top-down mapping from the latent variables z to
the example x. A descriptive model is based on a bottom-up mapping from the
example x to the log of the unnormalized density. A discriminative model is based
on a bottom-up mapping from the example x to the logit score that is also the ratio
between the densities of positive and negative classes in the binary classification
situation (which can be easily generalized to the multi-class situation). All the
mappings can be parameterized by deep neural networks.

In the previous chapter, we introduced the descriptive models and generative
models for image and video data and the associated maximum likelihood learning
algorithms. This chapter will give a more general treatment. We shall still emphasize
the maximum likelihood learning algorithm. Meanwhile, we shall also present
various joint training schemes, such as variational learning and adversarial learning.
We shall make this chapter self-contained so that readers who are interested in the
development in the deep learning era can read this chapter in isolation.

Notation We shall adopt the notation commonly used in the current literature. We
use x to denote the training example, e.g., an image or a sentence. We use z to
denote the latent variables in the generative model. We use y to denote the output
in the discriminative model, e.g., image category. We use θ to denote the model
parameters. We use the notations ∇x and ∇θ to denote ∂

∂x and
∂
∂θ , respectively. For

a function h(θ), its derivative at a fixed value, say, θt , is denoted ∇θh(θt). We use
DKL to denote the Kullback–Leibler divergence.

Supervised, Unsupervised, and Self-supervised Learning

Supervised learning refers to the situation where both the input x and the output
y are given, and we want to learn to predict y based on x. More formally, we

12.1 Introduction 299

learn a discriminative or predictive model p(y|x) by maximum likelihood, i.e., we
maximize the average of log p(y|x) over the model parameters where the average
is over the training set {x, y}. The limitation of supervised learning is that it can be
expensive and time-consuming to obtain y in the form of label or annotation.

Unsupervised learning refers to the situation where only the input x is given,
but the output y is unavailable. In that case, we can learn a descriptive model or a
generative model, again by maximum likelihood, but we maximize the average of
log p(x) over the model parameters, where the average is over the training set {x},
instead of the average of logp(y|x), as y is not available. The descriptive model
specifies p(x) up to an unknown normalizing constant, and it is closely related to
the discriminative model through the Bayes rule. For the generative model, p(x) is
implicit because it involves integrating out the latent variables z. The latent z can be
inferred from the input x.

Semi-supervised learning refers to the situation between supervised and unsuper-
vised learning, where there are a small number of labeled examples where both x
and y are given, and there are a large number of unlabeled examples where only x
is given. In that case, we can again learn the model by maximum likelihood, where
we maximize the sum of log p(y|x) over the labeled examples and log p(x) over
the unlabeled examples. Thus probabilistic modeling provides a unified likelihood-
based framework for supervised, unsupervised, and semi-supervised learning.

There is also self-supervised learning, which is to translate unsupervised learning
into supervised learning. Specifically, even if we are only given x without y, we can
nonetheless create a task where we artificially introduce y for a modification of x
that depends on y, and we then learn p(y|x) instead of p(x). This type of learning
can be more formally treated as learning descriptive model by various conditional
likelihoods.

MCMC for Synthesis and Inference

Although likelihood-based learning with probabilistic models is a principled frame-
work for supervised, unsupervised, and semi-supervised learning, the bottleneck for
likelihood-based learning for unsupervised learning is that the derivative of the log-
likelihood function log p(x) usually involves intractable integrals or expectations,
which require expensive MCMC sampling. A lot of effort has been spent on getting
around this obstacle.

We may use short-run MCMC, i.e., running MCMC such as Langevin dynamics
or Hamiltonian Monte Carlo (HMC) [179] from a fixed initial noise distribution
for a fixed number of steps, for inference and synthesis computations. This is
affordable on modern computing platforms. It can also be justified as a modification
or perturbation of the maximum likelihood learning.

Short-run MCMC is convenient for learning models with multiple layers of latent
variables organized in complex architectures because top-down feedback and lateral
inhibition between the latent variables at different layers can automatically emerge
in short-run MCMC. The short-run Langevin dynamics can also be compared with

300 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

attractor dynamics that is a commonly assumed framework for modeling neural
computations [7, 108, 198]. One can also run persistent Markov chains, i.e., in each
learning iteration, we initialize finite-step MCMC from the samples generated in the
previous learning iteration.

Deep Networks as Function Approximators

All three classes of models can be parameterized by deep neural networks [138,
144], which are compositions of multiple layers of linear transformations and
coordinate-wise nonlinear transformations.

Specifically, consider a nonlinear transformation f (x) that can be decomposed
recursively as sl = Wlhl−1 + bl , and hl = rl(sl), for l = 1, . . . , L, with f (x) = hL
and h0 = x. Wl is the weight matrix at layer l, and bl is the bias vector at layer l.
Both sl and hl are vectors of the same dimensionality, and rl is a one-dimensional
nonlinear function, or rectification function, that is applied coordinate-wise or
element-wise.

The nonlinear rectification is crucial for f (x) to approximate nonlinear mapping.
In the past, the nonlinear rectification rl() is usually sigmoid transformation, which
is approximately a two-piece constant function. This makes f (x) approximately
piecewise constant function. Modern deep networks usually use rl(s) = max(0, s),
the rectified linear unit or ReLU, which makes f (x) piecewise linear.

There are two special classes of neural networks. One consists of convolutional
neural networks [138, 144], which are commonly applied to images, where the same
linear transformations are applied around each pixel locally. The other class consists
of recurrent neural networks [103], which are commonly applied to sequence data
such as speech and natural language. Recently, the transformer model [239] has
become the most prominent architecture.

Deep neural networks are powerful function approximators that can approximate
highly nonlinear high-dimensional continuous functions by interpolating training
examples. Modern deep networks are highly overparameterized, meaning that the
number of parameters greatly exceeds the number of training examples. Thus
they have enough capacity to fit the training data, yet they tend not to overfit
the training data because the networks are learned by stochastic gradient descent
algorithm where the gradient is computed via back-propagation. The stochastic
gradient descent algorithm provides implicit regularization [11, 221].

Learned Computation

Because of the strong approximation capacity, the boundary between representation
and computation is rather blurred because a deep network can approximate an
iterative algorithm. Sometimes this is called learned computation.

12.1 Introduction 301

In fact, the residual network [97] can be considered a finite-step iterative
algorithm. It is of the form xl+1 = xl +fl(xl), where l indexes the layer. Meanwhile,
l may also be interpreted as time step of an iterative algorithm, i.e., we can also write
xt+1 = xt + ft (xt), which is to model iterative updating or refinement. In general,
it can be interpreted as a mixture of both, i.e., there is actually a small number of
layers, and each layer is computed by a finite-step iterative algorithm.

The transformer model [239] can also be considered a finite-step iterative
algorithm that iteratively updates the vector representations of the words of an input
sentence through the self-attention mechanism where the words pay attention to
and gather information from each other. The graph convolutional network [134] can
learn the iterative message passing mechanism where the nodes of the graph send
messages to each other.

In the above iterative updating mechanisms, there is no need to know the
objective functions of these iterative mechanisms. They can be embedded into a
classifier and be trained by the classification loss via back-propagation through time.

Amortized Computation for Synthesis and Inference
Sampling

Even if there is an objective function, we can still learn a deep network that directly
maps the input to an approximate solution. Sometimes this is called amortized
computation, which seeks to approximate an iterative algorithm of multiple time
steps.

In the case of the generative model, recall that we can use short-run MCMC as an
approximate sampler for synthesis and inference. We can also learn a network that
produces the samples directly. In the case of posterior sampling, this is referred to as
variational inference model [133]. In fact, the short-run MCMC can be considered
a noise-injected residual network.

When there are multiple layers of latent variables, designing a network for
approximate inference sampling can be a non-trivial task, whereas short-run MCMC
remains automatic.

Distributed Representation and Embedding

Deep neural networks are based on continuous vectors and weight matrices. They
are highly interpolative and amendable to gradient-based computations. On the other
hand, high-level reasoning can also be highly symbolic, with symbols, logic, and
grammar. For a dictionary of symbols, each symbol can be represented by a one-hot
vector, and a small subset of symbols selected from the dictionary can be represented
by a sparse vector. This is in contrast to the vectors in deep networks, which are

302 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

continuous and dense. Such vectors are called distributed representations. They are
also commonly referred to as embeddings. For instance, the word2vec model [172,
193] represents each word by a dense vector, and this means we embed the words in
a continuous Euclidean space. A modern deep network such as transformer [239] or
graph neural network [134] can be viewed as a team of vectors, which are operated
on by learned matrices so that they can pass on messages to each other. For discrete
or symbolic inputs or outputs such as words or tokens, they can be encoded into
vectors or decoded from the vectors.

It is still unclear how to unify symbolic and dense representations. Sometimes
this is referred to as the contrast between symbolism and connectionism. It is likely
that there is a duality or complementarity between sparse vectors and dense vectors,
and each is more convenient and efficient than the other depending on the scenario.

Perturbations of Kullback–Leibler Divergence

A unifying theoretical device for studying various learning methods is to perturb the
Kullback–Leibler divergence for maximum likelihood by other Kullback–Leibler
divergences. This scheme consists of three Kullback–Leibler divergences: (1) KL-
divergence underlying maximum likelihood learning. This is the target of the
perturbations. (2) KL-divergence underlying synthesis sampling. (3) KL-divergence
underlying inference sampling. (2) and (3) are perturbations that are applied to (1).
The sign in front of (2) is negative, and the sign in front of (3) is positive.

The above theoretical framework explains the following learning algorithms: (1)
The maximum likelihood learning algorithm. (2) The learning algorithm based on
short-run MCMC for synthesis and inference. (3) The learning methods based on
learned networks for synthesis and inference, including adversarial learning [81]
and variational learning [133].

Kullback–Leibler Divergence in Two Directions

To be more specific, recall that for two probability densities p(x) and q(x), we
define

DKL(p‖q) = Ep

[
log

p(x)
q(x)

]
=

∫
p(x) log

p(x)
q(x)

dx. (12.2)

The KL-divergence appears in two scenarios:

(1) Maximum likelihood learning. Suppose the training examples xi ∼ pdata(x)
are independent for i = 1, . . . , n. Suppose we want to learn a model pθ(x). The
log-likelihood function is

12.2 Descriptive Energy-Based Model 303

L(θ) =
1

n

n∑
i=1

log pθ(xi) → Epdata [log pθ(x)]. (12.3)

Thus for big n, maximizing L(θ) is equivalent to minimizing

DKL(pdata‖pθ) = −entropy(pdata) − Epdata [logpθ (x)] .= −entropy(pdata) − L(θ),
(12.4)

where Epdata can be approximated by averaging over {xi}. We can think of it as
projecting pdata onto the model space {pθ ,∀θ}.

For the rest of this chapter, for notational simplicity, we will not distinguish
between Epdata and sample average over {xi}, and we will treat DKL(pdata‖pθ)
as the loss function for maximum likelihood learning.

(2) Variational approximation. Suppose we have a target distribution ptarget, and
we know ptarget up to a normalizing constant, e.g., ptarget(x) = exp(f (x))/Z,
where we know f (x) but the normalizing constant Z = ∫

exp(f (x))dx is
analytically intractable. Suppose we want to approximate it by a distribution
qφ . We can find φ by minimizing

DKL(qφ‖ptarget) = Eqφ [log qφ(x)] − Eqφ [f (x)] + log Z. (12.5)

This time, we place qφ on the left-hand side and ptarget on the right-hand side of
the KL-divergence, because ptarget is accessible only through f (x). The above
minimization does not require knowledge of log Z.

The behaviors of minθ DKL(pdata‖pθ) in (1) and minφ DKL(qφ‖ptarget) in (2) are
different. In (1), pθ tends to cover all the modes of pdata because DKL(pdata‖pθ)
is the expectation with respect to pdata. In (2), qφ tends to focus on some major
modes of ptarget, while ignoring the minor modes, because DKL(qφ‖ptarget) is the
expectation with respect to qφ .

In the perturbation scheme mentioned in the previous subsection, the KL-
divergence for maximum likelihood is (12.4). The perturbations are of the form
in (12.5).

12.2 Descriptive Energy-Based Model

Model and Origin

Let x be a training example, e.g., an image or a sentence. A descriptive model
specifies an unnormalized probability density function

304 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

pθ(x) =
1

Z(θ)
exp(fθ (x)), (12.6)

where fθ (x) is parameterized by a deep network, with θ collecting all the weight
and bias parameters. Z(θ) = ∫

exp(fθ (x))dx is the normalizing constant.
Such a model originated from statistical mechanics and is called the Gibbs

distribution, where x is the state or configuration of a physical system, and −fθ (x)
is the energy function of the state so that the lower energy states are more likely
to be observed. For that reason, the above model is also called energy-based model
(EBM) in the literature [32, 70, 99, 161, 180, 182, 184, 266, 269, 270].

In classical mechanics, the configuration x(t) evolves deterministically over
time t according to a partial differential equation. Then where does the probability
distribution come from? We may consider the ensemble or population (x(t), t ∈
[t0, t1]), for a long enough burn-in time t0 and long enough duration t1 − t0. For a
random time t ∼ Uniform[t0, t1], x(t) follows a probability distribution p(x), and
it can be modeled by a Gibbs distribution.

The quantity Z(θ) is called the partition function in statistical mechanics. An
important identity is

∇θ log Z(θ) = Epθ [∇θfθ (x)]. (12.7)

The non-differentiability of log Z(θ) underlies the phase transition phenomena in
statistical physics.

The descriptive model has strong expressive power because it only needs to
specify a scalar-valued function fθ (x). fθ (x) is like an objective function (or value
function, or constraints, or rules). The descriptive model is only responsible for
specifying the objective function and is not responsible for optimizing the objective
function or providing near-optimal solutions. The latter task is left to MCMC
sampling. As a result, a simple descriptive model pθ(x) or the objective function
fθ (x) can explain rich patterns and complex behaviors.

The descriptive model has been used for inverse reinforcement learning, where
−fθ (x) serves as the cost function [283]. It has also been used for Markov logic
network [204], where fθ (x) combines logical rules.

Gradient-Based Sampling

For high-dimensional x, such as image, sampling from pθ(x) requires MCMC, such
as Langevin dynamics or HamiltonianMonte Carlo. The Langevin dynamics iterates

xt+1 = xt + s∇xfθ (xt) +
√
2set , (12.8)

12.2 Descriptive Energy-Based Model 305

where s is the step size and et ∼ N(0, I) is the Gaussian white noise term. The
Langevin dynamics has a gradient ascent term ∇xfθ (xt), and et is the diffusion
term for randomness. As s → 0 and t → ∞, the distribution of xt converges to
pθ(x).

We can write the Langevin dynamics in continuous time as

xt+�t = xt +
1

2
∇xfθ (xt)�t + √

�tet , (12.9)

or more formally,

dxt =
1

2
∇xfθ (xt)dt + dBt , (12.10)

where dBt plays the role of
√

�tet .
Let pt be the distribution of xt . Then according to the Fokker–Planck equation,

we have

∇tpt (x) =
1

2
[∇x(fθ (x)pt (x)) + ∇2

xpt (x)]. (12.11)

pθ(x) is the solution to ∇tpt (x) = 0, i.e., the stationary distribution. In terms of
variational approximation,

DKL(pt‖pθ) = −entropy(pt) − Ept [fθ (x)] + log Z(θ) → 0 (12.12)

monotonically as t → ∞ under fairly general conditions. The gradient term in the
Langevin dynamics increases fθ (x) or decreases energy, while the noise term et
increases the entropy of pt .

Intuitively, imagine a population of x’s that are distributed according to pθ(x).
The deterministic gradient ascent term in the Langevin dynamics pushes the points
toward the local modes of the log density, making the distribution of the points more
focused on the local modes of the density. Meanwhile, the random diffusion term in
the Langevin dynamics adds random noises to the points, making the distribution of
the points more diffused from the local modes of the density. The two terms balance
each other so that the overall distribution of the points after each Langevin iteration
remains unchanged.

Hamiltonian Monte Carlo (HMC) [105, 179] is a more powerful gradient-based
MCMC sampling method. Similar to gradient descent with momentum, it can
navigate the high curvature regions of the energy landscape more smoothly and
efficiently. The step size in HMC can be adaptively selected based on the acceptance
rate calculated from the energy function [105].

In order to traverse local modes and facilitate fast mixing of the Markov chain,
one can add a temperature parameter to interpolate the multi-modal target density
and a simple unimodal reference density such as Gaussian white noise distribution.
One can then use simulated annealing [135] or more principled and effectiveMCMC

306 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

schemes such as simulated tempering [168], parallel tempering [48, 77], or replica
exchange [226] to sample from multi-modal density.

Maximum Likelihood Estimation (MLE)

The descriptive model pθ(x) can be learned by maximum likelihood estimation
(MLE). The log-likelihood is the average of

log pθ(x) = fθ (x) − log Z(θ), (12.13)

where the average is over the training set {x}. The gradient of log pθ(x) with respect
to θ is

δθ (x) = ∇θ log pθ(x) = ∇θfθ (x) − Epθ (x)[∇θfθ (x)], (12.14)

where

∇θ log Z(θ) = Epθ (x)[∇θfθ (x)]. (12.15)

Suppose we observe training examples {xi, i = 1, . . . , n} ∼ pdata, where pdata
is the data distribution. For large n, the sample average over {xi} approximates the
expectation with respect to pdata. For notational convenience, we treat the sample
average and the expectation as the same.

The log-likelihood is

L(θ) =
1

n

n∑
i=1

log pθ(xi)
.= Epdata [log pθ(x)]. (12.16)

The derivative of the log-likelihood is

L′(θ) = Epdata [δθ (x)] = Epdata [∇θfθ (x)] − Epθ [∇θfθ (x)] (12.17)

.=
1

n

n∑
i=1

∇θfθ (xi) −
1

n

n∑
i=1

∇θfθ (x
−
i), (12.18)

where x−
i ∼ pθ(x) for i = 1, . . . , n are the generated examples from the current

model pθ(x).
The above equation leads to the “analysis by synthesis” learning algorithm. At

iteration t , let θt be the current model parameters. We generate synthesized examples
x−
i ∼ pθt (x) for i = 1, . . . , n. Then we update θt+1 = θt + ηtL

′(θt), where ηt is
the learning rate, and L′(θt) is the statistical difference between the synthesized
examples and observed examples (Fig. 12.1).

12.2 Descriptive Energy-Based Model 307

Fig. 12.1 Reprinted with permission from [266]. Learning the descriptive model by maximum
likelihood: (a) goose, (b) tiger. For each category, the first row displays four of the training images,
and the second row displays four of the images generated by the learning algorithm. fα(x) is
parameterized by a four-layer bottom-up deep network, where the first layer has 100 7 × 7 filters
with subsampling size 2, the second layer has 64 5 × 5 filters with subsampling size 1, the third
layer has 20 3×3 filters with subsampling size 1, and the fourth layer is a fully connected layer with
a single filter that covers the whole image. The number of parallel chains for Langevin sampling is
16, and the number of Langevin iterations between every two consecutive updates of parameters is
10. The training images are 224 × 224 pixels

Objective Function and Estimating Equation of MLE

The maximum likelihood learning minimizes the Kullback–Leibler divergence
DKL(pdata‖pθ) over θ . Geometrically, it is to project pdata onto the manifold formed
by {pθ ,∀θ}.

The maximum likelihood learning algorithm converges to the solution to the
following estimating equation:

Epθ [∇θfθ (x)] = Epdata [∇θfθ (x)] , (12.19)

where the model matches the data in terms of the expectation of ∇θfθ (x).
For the FRAME model or in general the exponential family model,

fθ (x) = 〈θ, h(x)〉 for feature vector h(x); hence, ∇θfθ (x) = h(x) and
L′(θ) = Epdata [h(x)] − Epθ [h(x)]. The maximum likelihood estimating equation
is Epθ [h(x)] = Epdata [h(x)], i.e., matching feature statistics. For general fθ (x), we
may still consider ∇θfθ (x) as a feature vector.

Perturbation of KL-divergence

Define D(θ) = DKL(pdata‖pθ). It is the loss function of MLE. To understand the
MLE learning algorithm, let θt be the estimate at iteration t . Let us consider the
following perturbation of D(θ):

S(θ) = D(θ) − DKL(pθt ‖pθ) = DKL(pdata‖pθ) − DKL(pθt ‖pθ). (12.20)

308 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.2 Reprinted with permission from [95]. The surrogate S minorizes (lower bounds) D, and
they touch each other at θt with the same tangent

S(θ) is the surrogate objective function for D(θ) at iteration t . It is simpler than
D(θ), because the log Z(θ) term gets canceled, and the gradient can be more easily
computed (Fig. 12.2).

The perturbation term DKL(pθt ‖pθ), as a function of θ , with θt fixed, has the
following properties: (1) It achieves minimum zero at θ = θt . (2) Its derivative is
zero at θ = θt . As a result, S(θt) = D(θt), and S′(θt) = D′(θt). Geometrically,
S(θ) and D(θ) touch each other at θt , and they are co-tangent at θt . Since

S(θ) = −Epdata [fθ (x)] + Epθt
[fθ (x)] − entropy(pdata) + entropy(pθt), (12.21)

where log Z(θ) gets canceled, we have

− S′(θ) = Epdata [∇θfθ (x)] − Epθt
[∇θfθ (x)]. (12.22)

Thus

−D′(θt) = −S′(θt) = Epdata[δθt (x)] = Epdata [∇θfθt (x)] − Epθt
[∇θfθt (x)].

(12.23)

This justifies the MLE learning algorithm.
We shall use this perturbation scheme repeatedly, where we perturb the MLE loss

function D(θ) = DKL(pdata‖pθ) to a simpler surrogate objective function S(θ) by
subtracting or adding other KL-divergence terms. This enables us to theoretically
understand other learning methods that are modifications of MLE learning.

Self-adversarial Interpretation

S(θ) = DKL(pdata‖pθ)−DKL(pθt ‖pθ) leads to an adversarial interpretation. When
we update θ by following the gradient of S(θ) at θ = θt , we want pθ to move away
from pθt and move toward pdata. That is, the model pθ criticizes its current version
pθt by comparing pθt to pdata. The model serves as both generator and discriminator
if we compare it to GAN (generative adversarial networks). In contrast to GAN
[8, 81, 199], the learning algorithm is MLE, which in general does not suffer from

12.2 Descriptive Energy-Based Model 309

issues such as mode collapsing and instability, as it does not involve the competition
between two separate networks.

Short-Run MCMC for Synthesis

We now consider the learning algorithm based on short-run MCMC [184].
The short-run MCMC is

x0 ∼ p0(x), xk+1 = xk + s∇xfθ (xk) + √
2sek, k = 1, . . . , K, (12.24)

where we initialize the Langevin dynamics from a fixed diffused noise distribution
p0(x), and we run a fixed number of K steps. Let p̃θ (x) be the distribution of xK . We
use xK as the synthesized example for approximate maximum likelihood learning
(Figs. 12.3 and 12.4).

For each x, we define

δ̃θ (x) = ∇θfθ (x) − Ep̃θ (x)[∇θfθ (x)] (12.25)

and modify the learning algorithm to

θt+1 = θt + ηtEpdata [δ̃θt (x)] = θt + ηt

(
Epdata [∇θfθ (x)] − Ep̃θ

[∇θfθ (x)]) . (12.26)

Fig. 12.3 Reprinted with permission from [184]. Synthesis by short-run MCMC: Generating
synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise
for CelebA (64 × 64)

Fig. 12.4 Reprinted with permission from [184]. Synthesis by short-run MCMC: Generating
synthesized examples by running 100 steps of Langevin dynamics initialized from uniform noise
for CelebA (128 × 128)

310 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Objective Function and Estimating Equation with Short-Run
MCMC

The following are justifications for the learning algorithm based on short-run
MCMC synthesis:

(1) Objective function. Again we use perturbation of KL-divergence. At iteration
t , with θt fixed, the learning algorithm follows the gradient of the following
perturbation of D(θ) at θ = θt :

S(θ) = D(θ)−DKL(p̃θt ‖pθ)=DKL(pdata‖pθ)−DKL(p̃θt ‖pθ), (12.27)

so that θt+1 = θt + ηtS
′(θt), where ηt is the step size, and

− S′(θ) = Epdata [∇θfθ (x)] − Ep̃θt
[∇θfθ (x)]. (12.28)

− S′(θt) = Epdata [δ̃θt (x)] = Epdata[∇θfθt (x)] − Ep̃θt
[∇θfθt (x)]. (12.29)

Compared to the perturbation of KL-divergence in MLE learning, we use p̃θt
instead of pθt . While sampling pθt can be impractical if it is multi-modal,
sampling p̃θt is practical and exact because it is a short-run MCMC.

Note that S′(θt) �= D′(θt), because p̃θt �= pθt . Thus the learning gradient
based on short-run MCMC is biased from that of MLE. As a result, the learned
pθ based on short-run MCMC may be biased from MLE.

S(θ) indicates that we need to minimize DKL(p̃θ‖pθ) in order to minimize
the bias relative to the maximum likelihood learning. We can do that by
increasing K because DKL(p̃θ‖pθ) decreases monotonically to zero as K
increases. For fixed K , we can also employ more efficient MCMC, especially
those that can traverse local modes, such as parallel tempering [48, 77] or replica
exchange [226].

(2) Estimating equation. The learning algorithm converges to the solution to the
following estimating equation:

Ep̃θ [∇θfθ (x)] = Epdata [∇θfθ (x)] , (12.30)

which is a perturbation of the maximum likelihood estimating equation where
we replace pθ by p̃θ (Fig. 12.5).

Thus even if the learned pθ may be biased from MLE, the resulting short-run
MCMC p̃θ can nonetheless be considered a valid model, in that it matches pdata
in terms of expectations of ∇θfθ (x). Recall in the case of FRAME model where
fθ (x) = 〈θ, h(x)〉, ∇θfθ (x) = h(x), i.e., the learned short-run MCMC p̃θ matches
pdata in terms of expectations of h(x). In general, ∇θfθ (x) may be considered a

12.2 Descriptive Energy-Based Model 311

Fig. 12.5 Reprinted with permission from [184]. The blue curve illustrates the model distributions
corresponding to different values of parameter θ . The black curve illustrates all the distributions
that match pdata (black dot) in terms of E[h(x)]. The MLE p

θ̂MLE
(green dot) is the intersection

between 	 (blue curve) and
 (black curve). The MCMC (red dotted line) starts from p0 (hollow
blue dot) and runs toward p

θ̂MME
(hollow red dot), but the MCMC stops after K step, reaching

p̃
θ̂MME

(red dot), which is the learned short-run MCMC

Fig. 12.6 Reprinted with permission from [184]. Interpolation by short-run MCMC resembling a
generator or flow model: The transition depicts the sequence F(zρ) with interpolated noise zρ =
ρz1 +

√
1 − ρ2z2, where ρ ∈ [0, 1] on CelebA (64 × 64). Left: F(z1). Right: F(z2)

Fig. 12.7 Reprinted with permission from [184]. Reconstruction by short-run MCMC resembling
a generator or flow model: The transition depicts F(zt) over time t from random initialization
t = 0 to reconstruction t = 200 on CelebA (64×64). Left: Random initialization. Right: Observed
examples

generalized version of feature vector h(x). Thus we may justify the learned short-
run MCMC p̃θ as a generalized moment matching estimator θ̂MME. The generalized
moment matching explains the synthesis ability of the descriptive model and various
learning schemes in general.

The short-run Langevin dynamics can be considered a noise-injected RNN or
noise-injected residual network. Specifically, we can write xK = F(x0, e), where
e = (ek, k = 1, . . . , K). We can use it to reconstruct the observed image x by
minimizing ‖x − F(x0, e)‖ over x0 and e. As a simple approximation, we can set
ek = 0 and write xK = F(x0) (Figs. 12.6 and 12.7).

312 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Flow-Based Model

A flow-based model is of the form

x = gα(z); z ∼ q0(z), (12.31)

where q0 is a known noise distribution. gα is a composition of a sequence of
invertible transformations where the log determinants of the Jacobians of the
transformations can be explicitly obtained. α denotes the parameters. Let qα(x) be
the probability density of the model at a data point x with parameter α. Then under
the change of variables, qα(x) can be expressed as

qα(x) = q0(g−1
α (x))| det(∂g−1

α (x)/∂x)|. (12.32)

More specifically, suppose gα is composed of a sequence of transformations
gα = gα1 ◦ · · · ◦ gαm . The relation between z and x can be written as z ↔ h1 ↔
· · · ↔ hm−1 ↔ x. And thus we have

qα(x) = q0(g−1
α (x))�m

t=1| det(∂ht−1/∂ht)|, (12.33)

where we define z := h0 and x := hm for conciseness. With carefully designed
transformations, as explored in flow-based methods, the determinant of the Jacobian
matrix (∂ht−1/∂ht) can be computed exactly. The key idea is to choose transforma-
tions whose Jacobian is a triangle matrix so that the determinant becomes

| det(∂ht−1/∂ht)| = �|diag(∂ht−1/∂ht)|. (12.34)

The following are the two scenarios for estimating qα:

(1) Generative modeling by MLE [13, 43, 44, 82, 131, 139, 233], by minα DKL
(pdata‖qα), where Epdata can be approximated by average over observed exam-
ples.

(2) Variational approximation to an unnormalized target density p [130, 132, 202],
based on minα DKL(qα‖p), where

DKL(qα‖p) = Eqα [log qα(x)] − Eqα [log p(x)]
= Ez[log q0(z)− log |det(g′

α(z))|]−Eqα [log p(x)]. (12.35)

DKL(qα‖p) is the difference between energy and entropy, i.e., we want qα
to have low energy but high entropy. DKL(qα‖p) can be calculated without
inversion of gα .

When qα appears on the right of KL-divergence, as in (1), it is forced to cover
most of the modes of pdata. When qα appears on the left of KL-divergence, as in (2),
it tends to chase the major modes of p while ignoring the minor modes.

12.2 Descriptive Energy-Based Model 313

The flow-based model has explicit normalized density and can be sampled
directly. It is both a density and a sampler.

Flow-Based Reference and Latent Space Sampling

[181] propose to use a flow-based model as the reference distribution for the
descriptive model or the energy-based model (EBM) and perform MCMC sampling
in latent space.

Instead of using uniform or Gaussian white noise distribution for the reference
distribution q(x) in the descriptive model, we can use a flow-based model qα as the
reference model. qα can be pre-trained by MLE and serves as the backbone of the
model so that the model is of the following form:

pθ(x) =
1

Z(θ)
exp(fθ (x))qα(x). (12.36)

The resulting model pθ(x) is a correction or refinement of qα or an exponential
tilting of qα(x), and fθ (x) is a free-form ConvNet to parameterize the correction.
The overall negative energy is fθ (x) + log qα(x).

In the latent space of z, let p(z) be the distribution of z under pθ(x); then

p(z)dz = pθ(x)dx =
1

Z(θ)
exp(fθ (x))qα(x)dx. (12.37)

Because qα(x)dx = q0(z)dz, we have

p(z) =
1

Z(θ)
exp(fθ (gα(z)))q0(z). (12.38)

p(z) is an exponential tilting of the prior noise distribution q0(z). It is a very simple
form that does not involve the Jacobian or inversion of gα(z).

Instead of sampling pθ(x), we can sample p(z) in Eq. (12.38). While qα(x)
is multi-modal, q0(z) is unimodal. Since pθ(x) is a correction of qα , p(z) is a
correction of p0(z) and can be much less multi-modal than pθ(x) that is in the
data space. After sampling z from p(z), we can generate x = gα(z).

The above MCMC sampling scheme is a special case of neutral transport MCMC
proposed by Hoffman et al. [104] for sampling from an EBM or the posterior
distribution of a generative model. The basic idea is to train a flow-based model
as a variational approximation to the target EBM and sample the EBM in the latent
space of the flow-based model. In our case, since pθ is a correction of qα , we can
simply use qα directly as the approximate flow-based model in the neural transport
sampler. The extra benefit is that the distribution p(z) is of an even simpler form
than pθ(x) because p(z) does not involve the inversion and Jacobian of gα . As a
result, we may use a flow-based backbone model of a more free form such as one

314 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

based on residual network [13]. We use HMC [179] to sample from p(z) and push
the samples forward to the data space through gα . We can then learn θ by MLE.

Diffusion Recovery Likelihood

Inspired by recent work on diffusion-based models [102, 222, 223], [72] propose
a diffusion recovery likelihood method to tackle the challenge of training the
descriptive models or energy-based models (EBMs) directly on a dataset by instead
learning a sequence of EBMs for the marginal distributions of the diffusion process.
Specifically, assume a sequence of noisy observations x0, x1, . . . , xT such that

x0 ∼ pdata(x); xt+1=
√
1−σ 2

t+1xt+σt+1εt+1, t=0, 1, . . . T −1. (12.39)

The scaling factor
√
1 − σ 2

t+1 ensures that the sequence is a spherical interpolation

between the observed sample and Gaussian white noise. Let yt =
√
1 − σ 2

t+1xt , and
we assume a sequence of marginal EBMs on the perturbed data

pθ(yt) =
1

Zθ,t
exp (fθ (yt , t)) , (12.40)

where fθ (yt , t) is defined by a neural network conditioned on t . The sequence of
marginal EBMs can be learned with recovery likelihoods that are defined as the
conditional distributions that invert the diffusion process, which can be derived by
Eqs. (12.39) and (12.40):

pθ (yt |xt+1) = 1

Z̃θ,t (xt+1)
exp

(
fθ (yt , t) −

1

2σ 2
t+1

‖xt+1 − yt‖2
)

, t = 0, 1, . . . , T − 1.

(12.41)

Compared to the standard maximum likelihood estimation (MLE) of EBMs,
learning marginal EBMs by diffusion recovery likelihood only requires sampling
from the conditional distributions in Eq. (12.41), which is much easier than sampling
from the marginal distributions due to the additional quadratic term, which makes
the conditional EBMs close to unimodal. After learning the marginal EBMs, we can
generate synthesized images by a sequence of conditional samples initialized from
the Gaussian white noise distribution using MCMC techniques such as Langevin
sampling:

yτ+1
t = yτ

t +
b2σ 2

t
2

(∇yfθ (yτ
t , t) +

1

σ 2
t

(xt+1 − yτ
t)) + bσtε

τ . (12.42)

12.2 Descriptive Energy-Based Model 315

Fig. 12.8 Reprinted with permission from [72]. Illustration of diffusion recovery likelihood on
2D checkerboard example. Top: progressively generated samples. Bottom: estimated marginal
densities

Fig. 12.9 Reprinted with permission from [72]. Generated samples on LSUN 1282

church_outdoor (left), LSUN 1282 bedroom (center), and CelebA 642 (right)

The framework of recovery likelihood was originally proposed in [17]. Gao et
al. [72] adapt it to learning the sequence of marginal EBMs from the diffusion
data. Figure 12.8 shows an illustration on a 2D toy example. Figure 12.9 displays
uncurated samples generated from learned models on large image datasets.

Diffusion-Based Model

Diffusion-based models [102, 222, 223] prove to be exceedingly powerful in
generating photorealistic images. It learns a sampling process instead of an explicit
density. Thus it is on the side of the sampler (like a policy network), instead of
density (like a value network). The sampling process is similar to the short-run
Langevin dynamics for sampling from an energy-based model.

The key idea of the diffusion-based model of [222] is to continuously add noises
of infinitesimal variance to the clean image until the resulting image becomes a

316 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Gaussian white noise image. This is a forward diffusion process. Then we learn to
reverse this forward process by going from the Gaussian white noise distribution
back to the multi-modal data distribution of the clean images. This reverse diffusion
process is as if showing the movie of the forward diffusion process in reverse time,
and it was inspired by the non-equilibrium thermodynamics [222]. The reverse
diffusion process is a denoising process. Adding noises amounts to reducing the
precision of the pixel intensities.

There are two slightly different perspectives on the diffusion-based model. One is
based on the observation that the conditional distribution pθ(yt |xt+1) in Eq. (12.41)
is approximately Gaussian if σ 2

t+1 is infinitesimally small. The conditional Gaussian
distribution can be derived by the first-order Taylor expansion of the log density
of yt . Thus the reverse process can be decomposed into a Markov sequence of
conditional Gaussian models with infinitesimal variances, and they can be learned
within the maximum likelihood or variational inference framework. A single
conditional Gaussian model can be learned for the whole reverse process, with time
embedding being input to the model. In the learning of the conditional Gaussian
model, we can condition on the original clean image for the purpose of variance
reduction. More specifically, at each time step of the diffusion process, we can
predict the noise image that has been added to the original clean image, and then
we can move toward the clean image by removing a small amount of the predicted
noise image.

A closely related perspective is to estimate the derivative of the log density of the
noisy image at each time step of the diffusion process by score matching [114, 115]
via denoising auto-encoder [6, 227, 241]. The derivative of the log density or score
is related to the first-order Taylor expansion mentioned above. The derivative or the
score enables us to reverse the forward diffusion process via a stochastic differential
equation [223].

Intuitively, for a population of points that follow a certain density, if we add small
random noise to each point, the resulting population of perturbed points will have
a density that is more diffused than the original density. We can achieve the same
effect by perturbing each point deterministically via a gradient descent movement
on the log density so that the resulting population of the deterministically perturbed
points will have the same diffused density resulting from adding random noises.
Thus we can reverse the effect of the noise diffusion by deterministic gradient ascent
on the log density. This underlies the reversion of the forward diffusion process
mentioned above. It also underlies the Langevin dynamics where the gradient ascent
and the diffusion term balance each other.

The diffusion-based model is effective for modeling multi-modal data density
by the reverse diffusion process starting from a unimodal Gaussian white noise
density. The idea is related to simulated annealing [135], simulated tempering [168],
parallel tempering [48, 77], or replica exchange [226] for sampling from multi-
modal densities.

12.3 Equivalence Between Discriminative and Descriptive Models 317

12.3 Equivalence Between Discriminative and Descriptive
Models

Discriminative Model

Let x be an input example, e.g., an image or a text, and let y be a label or annotation
of x, e.g., the category that x belongs to in the case of classification. Let us focus on
the classification problem, and suppose there are C categories. The commonly used
soft-max classifier assumes that

pθ(y = c|x) =
exp(fc,θ (x))∑C

c′=1 exp(fc′,θ (x))
, (12.43)

where fc,θ is a deep network, and θ denotes all the weight and bias parameters. For
different c, the networks fc,θ may share a common body and only differ in the head
layer.

We can write the above model as

pθ(y = c|x) =
1

Z(θ)(x)
exp(fc,θ (x)), (12.44)

where

Z(θ)(x) =
C∑

c=1

exp(fc,θ (x)). (12.45)

The discriminative model pθ(y|x) can be learned by maximum likelihood. The
log-likelihood is the average of

log pθ(y|x) = fy,θ (x) − log Z(θ)(x), (12.46)

where the average is over the training set {x, y}. The gradient of log pθ(y|x) with
respect to θ is

∇θ log pθ(y|x) = ∇θfy,θ (x) − Epθ (y|x)[∇θfy,θ (x)], (12.47)

where

∇θ log Z(θ)(x) = Epθ (y|x)[∇θfy,θ (x)]. (12.48)

Let pdata(x, y) be the data distribution of (x, y). The MLE minimizes
DKL(pdata(y|x)‖pθ(y|x)), where for two conditional distributions p(y|x) and
q(y|x), their KL-divergence is defined as

318 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

DKL(p(y|x)‖q(y|x)) = Ep(x,y)

[
log

p(y|x)
q(y|x)

]
, (12.49)

where the expectation is with respect to p(x, y) = p(x)p(y|x), i.e., we also average
over p(x) in addition to p(y|x).

The above calculations are analogous to the calculations for the descriptive
model. The difference is that for the discriminative model, the normalizing constant
Z and the expectation are summations over y, where y belongs to a finite set of
categories, whereas for the descriptive model, the normalizing constant Z and the
expectation are integral over x, where x belongs to a high-dimensional space. As a
result, the expectation in the descriptive model cannot be calculated in closed form
and has to be approximated by MCMC sampling such as Langevin dynamics.

A special case is binary classification, where y ∈ {0, 1}. It is usually assumed
that

f0,θ (x) = 0, f1,θ (x) = fθ (x), (12.50)

so that

pθ(y = 1|x) = 1

1 + exp(−fθ (x))
= sigmoid(fθ (x)), (12.51)

and y follows a nonlinear logistic regression on x.

Descriptive Model as Exponential Tilting of a Reference
Distribution

A more general version of the descriptive model is of the following form of
exponential tilting of a reference distribution [32, 253]:

pθ(x) =
1

Z(θ)
exp(fθ (x))q(x), (12.52)

where q(x) is a given reference measure, such as uniform measure or Gaussian
white noise distribution. The original form of the descriptive model corresponds to
q(x) being a uniform measure. If q(x) is a Gaussian white noise distribution, then
the energy function is −fθ (x) + ‖x‖2/2.

Although q(x) is usually taken to be a simple known distribution, q(x) can also
be a model in its own right. We may call it a base model or a backbone model, and
pθ(x) can be considered a correction of q(x), where fθ (x) is the correction term.
We may also call pθ(x) the energy-based correction of the base model q(x).

12.3 Equivalence Between Discriminative and Descriptive Models 319

Discriminative Model via Bayes Rule

The above exponential tilting leads to the following discriminative model. We can
treat pθ as the positive distribution, and q(x) the negative distribution. Let y ∈
{0, 1}, and the prior probability p(y = 1) = ρ, so that p(y = 0) = 1 − ρ. Let
p(x|y = 1) = pθ(x), p(x|y = 0) = q(x). Then according to the Bayes rule
[32, 121, 143, 149, 234, 253],

p(y = 1|x) =
exp(fθ (x) + b)

1 + exp(fθ (x) + b)
, (12.53)

where b = log(ρ/(1 − ρ)) − log Z(θ). This leads to nonlinear logistic regression.
Sometimes, people call fθ (x) + b the logit or logit score because

log
p(y = 1|x)
p(y = 0|x)

= logit(p(y = 1|x)) = fθ (x) + b. (12.54)

More generally, suppose we have C categories, and

pc,θ (x) =
1

Zc,θ
exp(fc,θ (x))q(x), c = 1, . . . , C, (12.55)

where (fc,θ (x), c = 1, . . . , C) are C networks that may share the same body but
with different heads. Suppose the prior probability for category c is ρc, then

p(y = c|x) = exp(fc,θ (x) + bc)∑C
c=1 exp(fc,θ (x) + bc)

, (12.56)

where bc = log ρc − log Zc,θ . The above is a conventional soft-max classifier.
Conversely, if p(y = c|x) is of the above form of soft-max classifier, then pc,θ (x)
is of the form of exponential tilting based on the logit score fc,θ (x) + bc. Thus the
discriminative model and the descriptive model are equivalent to each other.

Noise Contrastive Estimation

The above equivalence suggests that we can learn the descriptive model by fitting
a logistic regression. Specifically, suppose we want to learn a descriptive model
pθ(x) = 1

Z(θ) exp(fθ (x))q(x), where q(x) is a noise distribution, such as Gaussian
white noise distribution. We can treat the observed examples as the positive
examples, so that for each positive x, y = 1, and we generate negative examples
from the noise distribution q(x), so that for each negative example x ∼ q(x),
y = 0. Then we learn a discriminator in the form of logistic regression to distinguish

320 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

between the positive and negative examples, and then logit(p(y = 1|x)) =
fθ (x) + b, where b = log(ρ/(1 − ρ)) − log Z(θ), where ρ is the proportion of
the positive examples. We can learn both θ and b by fitting a logistic regression,
where b is treated as an independent bias or intercept term, even though log Z(θ)
depends on θ . This enables us to learn fθ and estimate log Z(θ). This is called noise
contrastive estimation (NCE) [92].

The problem with the above scheme is that the noise distribution and the
data distribution usually do not have much overlap, especially if x is of high
dimensionality. As a result, fθ (x) cannot be well learned.

The introspective learning method [121, 234] tries to remedy the above problem
with sampling. After learning fθ (x) by noise contrastive estimation, we want to
inspect whether fθ (x) is well learned. We then treat the current pθ(x) as our new
q(x), and we draw negative samples from it. If it is well learned, then the negative
samples will be close to the positive examples. To check that, we fit a logistic
regression again on the positive examples and negative examples from the new q(x).
Then we learn a new�fθ(x) by the new logistic regression. This�fθ(x) can then be
added to the previous learned fθ (x) to obtain the new fθ (x). We can keep repeating
this process until �fθ(x) is small.

In general, while the descriptive model learns the probability density function,
the discriminative model learns the ratios between the probability densities of
different classes. If we know the density of a base class, such as the Gaussian white
noise, we can learn the densities of other classes by noise contrastive estimation.
Noise contrastive estimation is a form of self-supervised learning.

Noise contrastive estimation (NCE) based on diffusion sequence is explored in
[203].

Flow Contrastive Estimation

Gao et al. [71] propose an improvement of noise contrastive estimation (NCE) [92]
based on the flow-based model. The basic idea is to transform the noise so that
the resulting distribution is closer to the data distribution. This is exactly what the
flow model achieves. That is, a flow model transforms a known noise distribution
q0(z) by a composition of a sequence of invertible transformations gα(·). However,
in practice, we find that a pre-trained qα(x), such as learned by MLE, is not strong
enough for learning an EBM pθ(x) because the synthesized data from the MLE
of qα(x) can still be easily distinguished from the real data by an EBM. Thus, we
propose to iteratively train the EBM and flow model, in which case the flow model is
adaptively adjusted to become a stronger contrast distribution or a stronger training
opponent for EBM. This is achieved by a parameter estimation scheme similar to
GAN [81, 199], where pθ(x) and qα(x) play a minimax game with a unified value
function: minα maxθ V (θ, α),

12.3 Equivalence Between Discriminative and Descriptive Models 321

V (θ, α) = Epdata

[
log

pθ(x)
pθ(x) + qα(x)

]
+ Ez

[
log

qα(gα(z))
pθ(gα(z)) + qα(gα(z))

]
,

(12.57)

where Epdata is approximated by averaging over observed samples {xi, i =
1, . . . , n}, while Ez is approximated by averaging over negative samples {x̃i , i =
1, . . . , n} drawn from qα(x), with zi ∼ q0(z) independently for i = 1, . . . , n. In
the experiments, we choose Glow [131] as the flow-based model. The algorithm
can start from either a randomly initialized Glow model or a pre-trained one by
MLE. Here we assume equal prior probabilities for observed samples and negative
samples. It can be easily modified to the situation where we assign a higher prior
probability to the negative samples, given the fact we have access to an infinite
amount of free negative samples.

The objective function can be interpreted from the following perspectives:

(1) Noise contrastive estimation for EBM. The update of θ can be seen as noise
contrastive estimation of pθ(x), but with a flow-transformed noise distribution
qα(x) that is adaptively updated. The training is essentially a logistic regression.
However, unlike regular logistic regression for classification, for each xi or
x̃i , we must include log qα(xi) or log qα(x̃i) as an example-dependent bias
term. This forces pθ(x) to replicate qα(x) in addition to distinguishing between
pdata(x) and qα(x), so that pθ(xi) is in general larger than qα(xi), and pθ(x̃i) is
in general smaller than qα(x̃i).

(2) Minimization of Jensen–Shannon divergence for the flow model. If pθ(x) is
close to the data distribution, then the update of α is approximately minimizing
the Jensen–Shannon divergence between the flow model qα and data distribu-
tion pdata:

DJS(qα‖pdata) = DKL(pdata‖(pdata + qα)/2) + DKL(qα‖(pdata + qα)/2).
(12.58)

Its gradient w.r.t. α equals the gradient of −Epdata [log((pθ + qα)/2)] +
DKL(qα‖(pθ + qα)/2). The gradient of the first term resembles MLE, which
forces qα to cover the modes of data distribution, and tends to lead to an over-
dispersed model, which is also pointed out in [131]. The gradient of the second
term is similar to reverse Kullback–Leibler divergence between qα and pθ , or
variational approximation of pθ by qα , which forces qα to chase the modes of
pθ . This may help correct the over-dispersion of MLE.

(3) Connection with GAN [81, 199]. Our parameter estimation scheme is closely
related to GAN. In GAN, the discriminator D and generator G play a minimax
game: minG maxD V (G, D),

V (G, D) = Epdata

[
log D(x)

] + Ez

[
log(1 − D(G(zi)))

]
. (12.59)

The discriminator D(x) is learning the probability ratio pdata(x)/(pdata(x) +
pG(x)), which is about the difference between pdata and pG [56]. pG is the

322 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

density of the generated data. In the end, if the generator G learns to perfectly
replicate pdata, then the discriminator D ends up with a random guess. However,
in our method, the ratio is explicitly modeled by pθ and qα . pθ must contain
all the learned knowledge in qα , in addition to the difference between pdata
and qα . In the end, we learn two explicit probability distributions pθ and qα as
approximations to pdata.

12.4 Generative Latent Variable Model

Model and Origin

Both discriminative model and descriptive model are based on a bottom-up network
fθ (x). The generative model is based on top-down network with latent variables.
The prototype of such a model is factor analysis. Let x be the observed example,
which is a D-dimensional vector. We assume that x can be explained by a d-
dimensional latent vector, each element of which is called a factor. Given z, x is
generated by x = Wz + ε, where W is a D × d matrix, sometimes called loading
matrix. It is usually assumed that z ∼ N(0, Id), where Id is d-dimensional identity
matrix, ε ∼ N(0, σ 2ID), and ε is independent of z. The factor analysis model
originated from psychometrics, where x consists of a pupil’s scores on a number
of subjects, and z = (z1, z2), where z1 is verbal intelligence and z2 is analytical
intelligence.

A recent generalization [81, 133] is to keep the prior assumption about z, but
replace the linear model x = Wz + ε by a nonlinear model x = gθ (z) + ε, where
gθ (z) is parameterized by a top-down neural network where θ collects all the weight
and bias parameters. In the case of image modeling, gθ (z) is usually a convolutional
neural network, which is sometimes called deconvolutional network, due to its top-
down nature. The above model leads to a conditional or generation model pθ(x|z),
such that

log pθ(x, z) = log[p(z)pθ (x|z)] (12.60)

= −1

2

[
‖z‖2 + ‖x − gθ (z)‖2/σ 2

]
+ c, (12.61)

where c is a constant independent of θ . σ 2 is usually treated as a tuning parameter.
The model follows the manifold assumption, which assumes that the density of the
D-dimensional data focuses on a lower, d-dimensional manifold.

The joint distribution of (x, z) is pθ(x, z) = p(z)pθ (x|z). The marginal
distribution of x is pθ(x) = ∫

pθ(x, z)dz. The marginal distribution is analytically
intractable due to the integration of z. The model specifies a direct sampling method
for generating x, but it does not explicitly specify the density of x.

12.4 Generative Latent Variable Model 323

Given x, the inference of z can be based on the posterior distribution pθ(z|x) =
pθ(x, z)/pθ (x), which is also intractable due to the intractability of the marginal
pθ(x).

The above model is often referred to as the generator network in the literature.

Generative Model with Multi-layer Latent Variables

While it is computationally convenient to have a single latent noise vector at the top
layer, it does not account for the fact that patterns can appear at multiple layers of
compositions or abstractions (e.g., face → (eyes, nose, mouth) → (edges, corners)
→ pixels), where variations and randomness occur at multiple layers. To capture
such a hierarchical structure, it is desirable to introduce multiple layers of latent
variables organized in a top-down architecture [183]. Specifically, we have z =
(zl, l = 1, . . . , L), where layer L is the top layer, and layer 1 is the bottom layer
above x. For notational simplicity, we let x = z0. We can then specify pθ(z) as

pθ(z) = pθ(zL)
L−1∏
l=0

pθ(zl |zl+1). (12.62)

One concrete example is zL ∼ N(0, I), [zl |zl+1] ∼ N(μl(zl+1), σ 2
l (zl+1)), l =

0, . . . , L − 1, where μl() and σ 2
l () are the mean vector and the diagonal variance–

covariance matrix of zl , respectively, and they are functions of zl+1. θ collects all the
parameters in these functions. pθ(x, z) can be obtained similarly as in Eq. (12.61).

MLE Learning and Posterior Inference

Let pdata(x) be the data distribution that generates the example x. The learning of
parameters θ of pθ(x) can be based on minθ DKL(pdata(x)‖pθ(x)). If we observe
training examples {xi, i = 1, . . . , n} ∼ pdata(x), the above minimization can be
approximated by maximizing the log-likelihood

L(θ) =
1

n

n∑
i=1

log pθ(xi)
.= Epdata [log pθ(x)], (12.63)

which leads to MLE.
The gradient of the log-likelihood, L′(θ), can be computed according to the

following identity:

324 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

δθ (x) = ∇θ log pθ(x) =
1

pθ(x)
∇θpθ (x) (12.64)

=
1

pθ(x)

∫
∇θpθ (x, z)dz (12.65)

= Epθ (z|x)

[∇θ log pθ(x, z)
]
. (12.66)

Thus

L′(θ) = Epdata [δθ (x)] = Epdata(x)Epθ (z|x)

[∇θ log pθ(x, z)
]

(12.67)

.=
1

n

n∑
i=1

Epθ (zi |xi)

[∇θ logpθ(xi, zi)
]
. (12.68)

The expectation with respect to pθ(z|x) can be approximated by Monte Carlo
samples. Each learning iteration updates θ by θt+1 = θt + ηtL

′(θt).

Posterior Sampling

Sampling from pθ(z|x) usually requires MCMC. One convenient MCMC is
Langevin dynamics, which iterates

zt+1 = zt + s∇z log pθ(zt |x) + √
2set , (12.69)

where et ∼ N(0, I), t indexes the time step of the Langevin dynamics, and s
is the step size. The Langevin dynamics consists of a gradient descent term on
− log p(z|x). In the case of generator network, it amounts to gradient descent
on ‖z‖2/2 + ‖x − gθ (z)‖2/2σ 2, which is the penalized reconstruction error. The
Langevin dynamics also consists of a white noise diffusion term

√
2set to create

randomness for sampling from pθ(z|x).
For small step size s, the marginal distribution of zt will converge to pθ(z|x)

as t → ∞ regardless of the initial distribution of z0. More specifically, let
pt (z) be the marginal distribution of zt of the Langevin dynamics, and then
DKL(pt (z)‖pθ(z|x)) decreases monotonically to 0, that is, by increasing t , we
reduce DKL(pt (z)‖pθ(z|x)) monotonically.

Perturbation of KL-divergence

Again we understand the MLE learning algorithm by perturbing the KL-divergence
for MLE. Define D(θ) = DKL(pdata‖pθ). It is the objective function of MLE. Let
θt be the estimate at iteration t . Let us consider the following perturbation of D(θ):

12.4 Generative Latent Variable Model 325

Fig. 12.10 Reprinted with permission from [95]. The surrogate S majorizes (upper bounds) D,
and they touch each other at θt with the same tangent

S(θ) = D(θ) + DKL(pθt (z|x)‖pθ(z|x)) (12.70)

= DKL(pdata(x)‖pθ(x)) + DKL(pθt (z|x)‖pθ(z|x)) (12.71)

= DKL(pdata,θt (x, z)‖pθ(x, z)), (12.72)

where we define pdata,θt (x, z) = pdata(x)pθt (z|x). Again S(θ) is a surrogate
for D(θ) at θt , and S(θ) is simpler than D(θ) because S(θ) is based on the
joint distributions instead of the marginal distributions as in D(θ). Unlike the
joint distribution pθ(x, z) = p(z)pθ (x|z), the marginal distribution pθ(x) =∫

pθ(x, z)dz is implicit as it is an intractable integral (Fig. 12.10).
The perturbation term DKL(pθt (z|x)‖pθ(z|x)), as a function of θ , achieves its

minimum 0 at θ = θt , and its derivative at θ = θt is zero. Thus S(θ) and D(θ) touch
each other at θt , and they share the same gradient at θt .

− S(θ) = Epdata(x)Epθt (z|x)[log pθ(x, z)] − entropy(pdata,θt (x, z)). (12.73)

− S′(θ) = Epdata(x)Epθt (z|x)[∇θ logpθ(x, z)]. (12.74)

Thus, the learning gradient at θt is

−D′(θt) = −S′(θt) = Epdata [δθt (x)] = Epdata(x)Epθt (z|x)[∇θ logpθt (x, z)].
(12.75)

This provides another justification for the learning algorithm.
The above perturbation of KL-divergence can be compared to that in the

descriptive model, where the sign in front of the second KL-divergence is negative,
in order to cancel the intractable log Z(θ) term. For the generative model, the sign
in front of the second KL-divergence is positive, in order to change the marginal
distributions in the first KL-divergence, i.e., D(θ), into the joint distributions, so
that pθ(z, x) = p(z)pθ (x|z) is obtained in closed form.

Short-Run MCMC for Approximate Inference

We can use short-run MCMC as inference dynamics [183], with a fixed small K
(e.g., K = 25),

326 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

z0 ∼ p(z), zk+1 = zk + s∇z log pθ(zk|x) + √
2sek, k = 1, . . . , K, (12.76)

where p(z) is the prior noise distribution of z.
We can write the above short-run MCMC as

z0 ∼ p(z), zk+1 = zk + sR(zk) +
√
2sek, k = 1, . . . , K, (12.77)

R(z) = ∇z logpθ(z|x), where we omit x and θ in R(z) for simplicity of notation.
To further simplify the notation, we may write the short-run MCMC as

z0 ∼ p(z), zK = F(z0, e), (12.78)

where e = (ek, k = 1, . . . , K), and F composes the K steps of Langevin updates.
Let the distribution of zK be p̃(z). Recall that the distribution of zK also depends

on x and θ and step size s, so that in full notation, we may write p̃(z) as p̃s,θ (z|x).
For each x, we define

δ̃θ (x) = Ep̃s,θ (z|x)

[∇θ log pθ(x, z)
]

(12.79)

and modify the learning algorithm to

θt+1 = θt + ηtEpdata [δ̃θt (x)] = θt + ηtEpdataEp̃s,θt (z|x)

[∇θ logpθt (x, z)
]
,
(12.80)

where ηt is the learning rate and Ep̃s,θt (zi |xi) (here we use the full notation p̃s,θ (z|x)
instead of the abbreviated notation q(z)) can be approximated by sampling from
p̃s,θt (zi |xi) using the noise initialized K-step Langevin dynamics.

Compared to MLE learning algorithm, we replace pθ(z|x) by p̃s,θ (z|x), and fair
Monte Carlo samples from p̃s,θ (z|x) can be obtained by short-run MCMC.

One major advantage of the proposed method is that it is simple and automatic.
For models with multiple layers of latent variables that may be organized in
complex top-down architectures, the gradient computation in Langevin dynamics is
automatic on modern deep learning platforms. Such dynamics naturally integrates
explaining-away competitions and bottom-up and top-down interactions between
multiple layers of latent variables. It thus enables researchers to explore flexible
generative models without dealing with the challenging task of designing and
learning the inference models. The short-run MCMC is automatic, natural, and
biologically plausible as it may be related to attractor dynamics [7, 108, 198].

Objective Function and Estimating Equation

The following are justifications for learning with short-run MCMC:

12.4 Generative Latent Variable Model 327

(1) Objective function. Again we use perturbation of KL-divergence. At iteration
t , with θt fixed, the learning algorithm follows the gradient of the following
perturbation of D(θ) at θ = θt :

S(θ) = D(θ) + DKL(p̃s,θt (z|x)‖pθ(z|x)) (12.81)

= DKL(pdata(x)‖pθ(x)) + DKL(p̃s,θt (z|x)‖pθ(z|x)), (12.82)

so that θt+1 = θt − ηtS
′(θt), where ηt is the step size, and

− S′(θ) = Epdata(x)Ep̃s,θt (z|x)[∇θ log pθ(x, z)]. (12.83)

− S′(θt) = Epdata [δ̃θt (x)] = Epdata(x)Ep̃s,θt (z|x)[∇θ log pθt (x, z)]. (12.84)

Compared to the perturbation of KL-divergence in MLE learning, we use
p̃s,θt (z|x) instead of pθt (z|x). While sampling pθt (z|x) can be impractical if it
is multi-modal, sampling p̃s,θt (z|x) is practical because it is a short-run MCMC.

(2) Estimating equation. The fixed point of the learning algorithm (12.80) solves
the following estimating equation:

1

n

n∑
i=1

Ep̃s,θ (zi |xi)

[∇θ log pθ(xi, zi)
] .= Epdata(x)Ep̃s,θ (z|x)

[∇θ log pθ(x, z)
] = 0.

(12.85)

If we approximate Ep̃s,θt (zi |xi) by Monte Carlo samples from p̃s,θt (zi |xi),
then the learning algorithm becomes Robbins–Monro algorithm for stochastic
approximation [205].

The bias of the learned θ based on short-run MCMC relative to the MLE depends
on the gap between p̃s,θ (z|x) and pθ(z|x). We suspect that this bias may actually
be beneficial in the following sense. The learning gradient seeks to decrease D(θ)
while decreasing DKL(p̃s,θt (zi |xi)‖pθ(zi |xi)). The latter tends to bias the learned
model so that its posterior distribution pθ(zi |xi) is close to the short-run MCMC
p̃s,θt (zi |xi), i.e., our learning method may bias the model to make inference by
short-run MCMC accurate.

We can optimize the step size s and other algorithmic parameters of the short-
run Langevin dynamics by minimizing DKL(p̃s,θt (zi |xi)‖pθ(zi |xi)) over s. This is
a variational optimization.

328 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

12.5 Descriptive Model in Latent Space of Generative Model

Top-Down and Bottom-Up

Top-down mapping Bottom-up mapping
hidden vector z energy − fθ (x)

⇓ ⇑
signal x ≈ gθ (z) signal x

(a) Generator model (b) Descriptive model

(12.86)

The above diagram compares the generative model and the descriptive model.
The former is based on top-down generation, whereas the latter is based on the
bottom-up description.

The top-down model is a very natural representation of knowledge, with its
multiple layers of latent variables representing concepts at multiple levels of abstrac-
tions. The top-down model is also called the directed acyclic graphical model.
It is characterized by independence or conditional independence assumptions of
the latent variables. Such assumptions limit the expressive power of the top-down
model.

For the special case of the generator network, there is a latent vector z at the top
layer, which generates the example x via the top-down generation mapping gθ (z).
The prior distribution of z is usually assumed to be a simple noise distribution,
e.g., the Gaussian white noise distribution z ∼ N(0, I). The top-down gθ (z) maps
this simple isotropic unimodal prior distribution to the multi-modal data distribution
pdata. However, the expressive power may be limited by the simple prior distribution
p(z) (as well as the simple Gaussian white noise distribution of ε in x = gθ (z)+ε).
The marginal distribution of pθ(x) = ∫

p(z)pθ (x|z)dz is implicit because of the
intractable integral over the latent z.

The bottom-up model only needs to specify a scalar-valued energy function
−fθ (x), instead of a vector-valued gθ (z), while leaving the generative task to
MCMC. It specifies the distribution pθ(x) = 1

Z(θ) exp(fθ (x)) explicitly even though
the normalizing constant Z(θ) is intractable. Compared to the generator model, the
descriptive model tends to have stronger expressive power in terms of synthesis
ability.

However, because pdata tends to be highly multi-modal, the learned pθ can also
be highly multi-modal. As a result, MCMC sampling cannot mix. Even though we
can use short-run MCMC to learn the model and synthesize images, the model is
admittedly biased. One remedy is to use more sophisticated MCMC such as parallel
tempering [189] or replica exchange MCMC [226]. The other option is to move the
descriptive model to the latent space.

12.5 Descriptive Model in Latent Space of Generative Model 329

Descriptive Energy-Based Model in Latent Space

We follow the philosophy of empirical Bayes, that is, instead of assuming a given
prior distribution for the latent vector, as in the generator network, we learn a prior
model from empirical observations.

Specifically, we assume the latent vector follows a descriptive model or, more
specifically, an energy-based correction of the isotropic Gaussian white noise
prior distribution. We call this model the latent space descriptive model. Such a
model adds more expressive power to the generator model. In the latent space, the
descriptive model is close to unimodal as it is a correction of the unimodal Gaussian
distribution, and MCMC sampling is expected to mix well.

The MLE learning of the generative model with a latent space descriptive model
involves MCMC sampling of the latent vector from both the prior and posterior
distributions. Parameters of the prior model can then be updated based on the
statistical difference between samples from the two distributions. Parameters of
the top-down network can be updated based on the samples from the posterior
distribution as well as the observed data.

Let x ∈ RD be an observed example such as an image or a piece of text, and let
z ∈ Rd be the latent variables, where D � d . The joint distribution of (x, z) is

pθ(x, z) = pα(z)pβ(x|z), (12.87)

where pα(z) is the prior model with parameters α, pβ(x|z) is the top-down
generation model with parameters β, and θ = (α, β).

The prior model pα(z) is formulated as a descriptive model or an energy-based
model

pα(z) =
1

Z(α)
exp(fα(z))p0(z), (12.88)

where p0(z) is a reference distribution, assumed to be isotropic Gaussian white
noise distribution. fα(z) is the negative energy and is parameterized by a small
multi-layer perceptron with parameters α. Z(α) = ∫

exp(fα(z))p0(z)dz =
Ep0 [exp(fα(z))] is the normalizing constant or partition function.

The prior model (12.88) can be interpreted as an energy-based correction or
exponential tilting of the original prior distribution p0, which is the prior distribution
in the generator model.

The generation model is the same as the top-down network in the generator
model. For image modeling,

x = gβ(z) + ε, (12.89)

where ε ∼ N(0, σ 2ID), so that pβ(x|z) ∼ N(gβ(z), σ 2ID). Usually, σ 2 takes an
assumed value. For text modeling, let x = (x(t) , t = 1, . . . , T), where each x(t) is a

330 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

token. A commonly used model is to define pβ(x|z) as a conditional auto-regressive
model,

pβ(x|z) =
T∏

t=1

pβ(x(t)|x(1) , . . . , x(t−1) , z), (12.90)

which is often parameterized by a recurrent network with parameters β.
In the original generator model, the top-down network gβ maps the unimodal

prior distribution p0 to be close to the usually highly multi-modal data distribution.
The prior model in (12.88) refines p0 so that gβ maps the prior model pα to be closer
to the data distribution. The prior model pα does not need to be highly multi-modal
because of the expressiveness of gβ .

The marginal distribution is pθ(x) = ∫
pθ(x, z)dz = ∫

pα(z)pβ(x|z)dz. The
posterior distribution is pθ(z|x) = pθ(x, z)/pθ (x) = pα(z)pβ(x|z)/pθ (x).

In the above model, we exponentially tilt p0(z). We can also exponentially tilt
p0(x, z) = p0(z)pβ(x|z) to pθ(x, z) = 1

Z(θ) exp(fα(x, z))p0(x, z). Equivalently,
we may also exponentially tilt p0(z, ε) = p0(z)p(ε), as the mapping from (z, ε)
to (z, x) is a change of variable. This leads to a descriptive model in both the latent
space and data space, which makes learning and sampling more complex. Therefore,
we choose to only tilt p0(z) and leave pβ(x|z) as a directed top-down generation
model.

Maximum Likelihood Learning

Suppose we observe training examples (xi, i = 1, . . . , n). The log-likelihood
function is

L(θ) =
1

n

n∑
i=1

log pθ(xi)
.= Epdata [log pθ(x)]. (12.91)

The learning gradient can be calculated according to

∇θ log pθ (x) = Epθ (z|x)

[∇θ logpθ (x, z)
] = Epθ (z|x)

[∇θ (logpα(z) + log pβ(x|z))] .
(12.92)

For the prior model, ∇α logpα(z) = ∇αfα(z) − Epα(z)[∇αfα(z)]. Thus the
learning gradient for an example x is

δα(x) = ∇α log pθ(x) = Epθ (z|x)[∇αfα(z)] − Epα(z)[∇αfα(z)]. (12.93)

12.5 Descriptive Model in Latent Space of Generative Model 331

The above equation has an empirical Bayes nature. pθ(z|x) is based on the empirical
observation x, while pα is the prior model. α is updated based on the difference
between z inferred from empirical observation x and z sampled from the current
prior.

For the generation model,

δβ(x) = ∇β log pθ(x) = Epθ (z|x)[∇β log pβ(x|z)], (12.94)

where logpβ(x|z) = −‖x−gβ(z)‖2/(2σ 2)+constant or
∑T

t=1 log pβ(x(t)|x(1) , . . . ,
x(t−1) , z) for image and text modeling, respectively, which is about the
reconstruction error.

Writing δθ (x) = (δα(x), δβ(x)), we have L′(θ) = Epdata[δθ (x)], and the learning
algorithm is θt+1 = θt + ηtEpdata [δθt (x)].

Expectations in (12.93) and (12.94) require MCMC sampling of the prior model
pα(z) and the posterior distribution pθ(z|x). We can use Langevin dynamics. For a
target distribution π(z), the dynamics iterates

zk+1 = zk + s∇z log π(zk) + √
2sek, (12.95)

where k indexes the time step of the Langevin dynamics, s is a small step size, and
ek ∼ N(0, Id) is the Gaussian white noise. π(z) can be either pα(z) or pθ(z|x). In
either case, ∇z logπ(z) can be efficiently computed by back-propagation.

Short-Run MCMC for Synthesis and Inference

We use short-run MCMC for approximate sampling. This is in agreement with
the philosophy of variational inference [133], which accepts the intractability of
the target distribution and seeks to approximate it by a simpler distribution. The
difference is that we adopt short-run Langevin dynamics instead of learning a
separate network for approximation.

The short-run Langevin dynamics is always initialized from the fixed initial
distribution p0 and only runs a fixed number of K steps, e.g., K = 20,

z0 ∼ p0(z), zk+1 = zk + s∇z log π(zk) + √
2sek, k = 1, . . . , K. (12.96)

Denote the distribution of zK to be π̃(z). Because of fixed p0(z) and fixed K and
s, the distribution π̃ is well defined. In this section, we put ˜ sign on top of the
symbols to denote distributions or quantities produced by short-run MCMC, and for
simplicity, we omit the dependence on K and s in notation. The Kullback–Leibler
divergence DKL(π̃‖π) decreases to zero monotonically as K → ∞.

Specifically, denote the distribution of zK to be p̃α(z) if the target π(z) = pα(z),
and denote the distribution of zK to be p̃θ (z|x) if π(z) = pθ(z|x). We can then

332 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.11 Reprinted with permission from [191]. Generated images for CelebA (128×128×3)

replace pα(z) by p̃α(z) and replace pθ(z|x) by p̃θ (z|x) in Eqs. (12.93) and (12.94),
so that the learning gradients in Eqs. (12.93) and (12.94) are modified to

δ̃α(x) = Ep̃θ (z|x)[∇αfα(z)] − Ep̃α(z)[∇αfα(z)], (12.97)

δ̃β(x) = Ep̃θ (z|x)[∇β log pβ(x|z)]. (12.98)

We then update α and β based on (12.97) and (12.98), where the expectations
can be approximated by Monte Carlo samples. Specifically, writing δ̃θ (x) =
(δ̃α(x), δ̃β (x)), the learning algorithm is θt+1 = θt + ηtEpdata[δ̃θt (x)].

The short-run MCMC sampling is always initialized from the same initial
distribution p0(z) and always runs a fixed number of K steps. This is the case for
both training and testing stages, which share the same short-run MCMC sampling
(Figs. 12.11, 12.12, and 12.13).

Divergence Perturbation

The learning algorithm based on short-run MCMC sampling is a modification or
perturbation of maximum likelihood learning, where we replace pα(z) and pθ(z|x)
by p̃α(z) and p̃θ (z|x), respectively. For theoretical underpinning, we should also
understand this perturbation in terms of the objective function and estimating
equation:

(1) Objective function. In terms of objective function, the MLE loss function is
D(θ) = DKL(pdata‖pθ). At iteration t , with fixed θt = (αt , βt), we perturb
D(θ) to S(θ):

12.5 Descriptive Model in Latent Space of Generative Model 333

Fig. 12.12 Reprinted with permission from [191]. Transition of Markov chains initialized from
p0(z) toward p̃α(z) for 100 Langevin dynamics steps. Top: Trajectory in the CelebA data space.
Bottom: Energy profile over time

Fig. 12.13 Reprinted with permission from [191]. Transition of Markov chains initialized from
p0(z) toward p̃α(z) for 2500 Langevin dynamics steps. Top: Trajectory in the CelebA data space
for every 100 steps. Bottom: Energy profile over time

S(θ) = DKL(pdata‖pθ) + DKL(p̃θt (z|x)‖pθ(z|x)) − DKL(p̃αt (z)‖pα(z)),
(12.99)

where

DKL(p̃θt (z|x)‖pθ(z|x)) = Epdata(x)Ep̃θt (z|x)

[
log

p̃θt (z|x)
pθ(z|x)

]
, (12.100)

i.e., the KL-divergence between conditional distributions of z given x also
integrates over the marginal distribution x as defined before.

The learning algorithm based on short-run MCMC is θt+1 = θt − ηtS
′(θt)

because

S′(θt) = Epdata [δ̃θt (x)]. (12.101)

334 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Thus the updating rule of the learning algorithm follows the stochastic
gradient (i.e., Monte Carlo approximation of the gradient) of a perturbation of
the log-likelihood.

S(θ) is in the form of a divergence triangle, which consists of two pertur-
bations. DKL(p̃θt (z|x)‖pθ(z|x)) is for inference, and DKL(p̃αt (z)‖pα(z)) is for
synthesis. It is a combination of the perturbations for the descriptive model and
generative model, respectively.

(2) Estimating equation. In terms of estimating equation, the stochastic gradient
descent learning is a Robbins–Monro stochastic approximation algorithm [205]
that solves the following estimating equation:

1

n

n∑
i=1

δ̃α(xi) =
1

n

n∑
i=1

Ep̃θ (zi |xi)[∇αfα(zi)] − Ep̃α(z)[∇αfα(z)] = 0,

(12.102)

1

n

n∑
i=1

δ̃β(xi) =
1

n

n∑
i=1

Ep̃θ (zi |xi)[∇β log pβ(xi |zi)] = 0. (12.103)

The solution to the above estimating equation defines an estimator of the
parameters. The learning algorithm converges to this estimator under the usual
regularity conditions of Robbins–Monro. If we replace p̃α(z) by pα(z), and
p̃θ (z|x) by pθ(z|x), then the above estimating equation is the maximum
likelihood estimating equation.

12.6 Variational and Adversarial Learning

From Short-Run MCMC to Learned Sampling Computations

In both the descriptive model and the generative model, we use short-run MCMC
[183, 184] for the sampling computations of synthesis and inference. In this
section, we shall study learning methods that replace short-run MCMC by learned
computations for synthesis and inference sampling.

One popular learning method is variational auto-encoder (VAE) [133] for the
generator model, where the short-run MCMC for inference is replaced by an
inference model. The other popular learning method is generative adversarial
networks (GAN) [81, 199], which is related to the descriptive model, where we
replace short-run MCMC for synthesis by a generator model.

Both learning methods can be theoretically understood by the divergence triangle
framework [95].

12.6 Variational and Adversarial Learning 335

VAE: Learned Computation for Inference Sampling

For the generator model pθ(x, z) = p(z)pθ (x|z) studied in the previous sections,
the VAE [133] approximates the posterior pθ(z|x) by a tractable qφ(z|x), such as

qφ(z|x) ∼ N(μφ(x), diag(vφ(x))), (12.104)

where both μφ and vφ are bottom-up networks that map x to d-dimensional vectors,
with φ collecting all the weight and bias parameters of the bottom-up networks. For
z ∼ qφ(z|x), we can write z = μφ(x)+ diag(vφ(x))1/2e, where e ∼ N(0, Id). Thus
expectation with respect to z ∼ qφ(z|x) can be written as expectation with respect
to e. This reparameterization trick [133] helps reduce the variance in Monte Carlo
integration. We may consider qφ(z|x) as an approximation to the iterative MCMC
sampling of pθ(z|x). In other words, qφ(z|x) is the learned inferential computation
that approximately samples from pθ(z|x).

The VAE objective is a modification of the maximum likelihood estimation
(MLE) objective D(θ) = DKL(pdata(x)‖pθ(x)):

S(θ, φ) = D(θ) + DKL(qφ(z|x)‖pθ(z|x)) (12.105)

= DKL(pdata(x)‖pθ(x)) + DKL(qφ(z|x)‖pθ(z|x)) (12.106)

= DKL(pdata(x)qφ(z|x)‖pθ(z, x)). (12.107)

We define the conditional KL-divergence

DKL(qφ(z|x)‖pθ(z|x)) = EpdataEqφ(z|x)

[
log

qφ(z|x)
pθ(z|x)

]
, (12.108)

where we also average over pdata.
We estimate θ and φ jointly by

min
θ

min
φ

S(θ, φ), (12.109)

which can be accomplished by gradient descent.
Define Q(z, x) = pdata(x)qφ(z|x). Define P(z, x) = p(z)pθ (x|z). Q is the

distribution of the complete data (z, x), where qφ(z|x) can be interpreted as an
imputer that imputes the missing data z. P is the distribution of the complete-data
model. Then S(θ, φ) = DKL(Q‖P). The VAE is minθ minφ DKL(Q‖P).

We may interpret the VAE as an alternating projection between Q and P .
Figure 12.14 provides an illustration. The wake–sleep algorithm [101] is similar
to the VAE, except that it updates φ by minφ DKL(P ‖Q), where the order is flipped.

In the VAE, the model qφ(z|x) and the parameter φ are shared by all the training
examples x, so that μφ(x) and vφ(x) in Eq. (12.104) can be computed directly for
each x given φ. This is different from traditional variational inference [20, 122],

336 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.14 Reprinted with permission from [95]. Variational auto-encoder as joint minimization
by alternating projection. P = p(z)pθ (x|z) is the distribution of the complete-data model, where
p(z) is the prior distribution of hidden vector z and pθ (x|z) is the conditional distribution of x
given z. Q = pd(x)qφ(z|x) is the distribution of the complete data (z, x), where pd(x) refers to
the data distribution pdata and qφ(z|x) is the learned inferential computation that approximately
samples from the posterior distribution pθ (x|z). (Left) Interaction between the models. (Right)
Alternating projection. The two models run toward each other

where for each x, a model qμ,v(z) is learned by minimizing DKL(qμ,v(z)‖pθ(z|x))
with x fixed, so that (μ, v) is computed by an iterative algorithm for each x, which
is an inner loop of the learning algorithm. This is similar to maximum likelihood
learning, except that in maximum likelihood learning, the inner loop is an iterative
algorithm that samples pθ(z|x) instead of minimizing over (μ, v). The learned
networks μφ(x) and vφ(d) in the VAE are to approximate the iterative minimization
algorithm by direct mappings.

GAN: Joint Learning of Generator and Discriminator

The generator model learned by MLE or the VAE usually cannot generate very
realistic images. Both MLE and the VAE target DKL(pdata‖pθ), though the VAE
only minimizes an upper bound of DKL(pdata‖pθ). Consider minimizing DKL(q‖p)
over p within a certain model class. If q is multi-modal, then p is obliged to fit all
the major modes of q because DKL(q‖p) is an expectation with respect to q. Thus,
p tends to interpolate the major modes of q if p cannot fit the modes of q closely.
As a result, pθ learned by MLE or the VAE tends to generate images that are not as
sharp as the observed images.

The behavior of minimizing DKL(q‖p) over p is different from minimizing
DKL(q‖p) over q. If p is multi-modal, q tends to capture some major modes of
p while ignoring the other modes of p, because DKL(q‖p) is an expectation with
respect to q. In other words, minq DKL(q‖p) encourages mode chasing, whereas
minp DKL(q‖p) encourages mode covering.

Sharp synthesis can be achieved by GAN [81, 199], which pairs a generator
model G with a discriminator model D. For an image x, D(x) is the probability
that x is an observed (real) image instead of a generated (faked) image. It can be

12.6 Variational and Adversarial Learning 337

parameterized by a bottom-up network fα(x), so that D(x) = 1/(1+ exp(−fα(x)),
i.e., logistic regression. We can train the pair of (G, D) by an adversarial, zero-sum
game. Specifically, let G(z) = gθ (z) be a generator. Let

V (D, G) = Epdata [log D(x)] + Ez∼p(z)[log(1 − D(G(z))], (12.110)

where Epdata can be approximated by averaging over the observed examples, and Ez
can be approximated by Monte Carlo average over the faked examples generated
by the generator model. We learn D and G by minG maxD V (D, G). V (D, G) is
the log-likelihood for D, i.e., the log probability of the real and faked examples.
However, V (D, G) is not a very convincing objective for G. In practice, the
training of G is usually modified into maximizing Ez∼p(z)[log D(G(z))] to avoid
the vanishing gradient problem.

For a given θ , let pθ be the distribution of gθ (z) with z ∼ p(z). Assume a perfect
discriminator. Then, according to the Bayes theorem, D(x) = pdata(x)/(pdata(x) +
pθ(x)) (assuming equal numbers of real and faked examples). Then θ minimizes
the Jensen–Shannon (JS) divergence

DJS(pdata‖pθ) = DKL(pθ‖pmix) + DKL(pdata‖pmix), (12.111)

where pmix = (pdata + pθ)/2.
In JS divergence, the model pθ also appears on the left-hand side of KL-

divergence. This encourages pθ to fit some major modes of pdata while ignoring
others. As a result, GAN learning suffers from the mode collapsing problem, i.e.,
the learned pθ may miss some modes of pdata. However, the pθ learned by GAN
tends to generate sharper images than the pθ learned by MLE or the VAE.

Joint Learning of Descriptive and Generative Models

We can also learn the descriptive model and the generative model jointly, similar to
GAN. In this joint learning scheme, we seek to learn the descriptive model by MLE,
following the analysis by synthesis scheme. But we recruit the generator model
as an approximate sampler, i.e., in this context, the generator model is the learned
computation for synthesis sampling.

We continue to use pθ(x, z) = p(z)pθ (x|z) to denote the generative model, and
we denote the descriptive model by

πα(x) =
1

Z(α)
exp(fα(x)), (12.112)

so that we will not confuse the notation.
To avoid MCMC sampling of πα , we may approximate it by a generator model

pθ , which can generate synthesized examples directly (i.e., sampling z from p(z),

338 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

and transforming z to x by x = gθ (z)). We may consider pθ an approximation to
the iterative MCMC sampling of πα . In other words, pθ is the learned computation
that approximately samples from πα . It is an approximate direct sampler of πα .

The MLE learning objective is D(α) = DKL(pdata‖πα). We can learn both πα
and pθ using the following objective function [33, 128]:

S(α, θ)=D(α)−DKL(pθ‖πα) = DKL(pdata‖πα)−DKL(pθ‖πα). (12.113)

We learn α and θ by

min
α

max
θ

S(α, θ), (12.114)

which defines a minimax game.
The gradient for updating α becomes

∇αS(α, θ) = ∇α[Epdata(fα(x)) − Epθ (fα(x))], (12.115)

where the intractable logZ(α) term is canceled.
Because of the negative sign in front of the second KL-divergence in

Eq. (12.113), we need maxθ in Eq. (12.114), so that the learning becomes adversarial
(illustrated in Fig. 12.15). Inspired by Hinton [100], Han et al. [95] called
Eq. (12.114) the adversarial contrastive divergence (ACD). It underlies the work
of [33, 128].

The adversarial form (Eq. (12.114) or (12.113)) defines a chasing game with
the following dynamics: The generator pθ chases the energy-based model πα in
minθ DKL(pθ‖πα), while the energy-based model πα seeks to get closer to pdata
and away from pθ . The red arrow in Fig. 12.15 illustrates this chasing game.
The result is that πα lures pθ toward pdata. In the idealized case, pθ always
catches up with πα , and then πα will converge to the maximum likelihood estimate
minα DKL(pdata‖πα), and pθ converges to πα .

Fig. 12.15 Reprinted with permission from [95]. Adversarial contrastive divergence where the
energy-based model favors real data against the generator. (Left) Interaction between the models.
The red arrow indicates a chasing game, where the red arrow pointing to � indicates that � seeks
to move away from P . The blue arrow pointing from P to � indicates that P seeks to move close
to �. (Right) Contrastive divergence

12.6 Variational and Adversarial Learning 339

This chasing game is different from the VAE minθ minφ DKL(Q‖P), which
defines a cooperative game where qφ and pθ run toward each other.

Even though the above chasing game is adversarial, both models are running
toward the data distribution. While the generator model runs after the energy-based
model, the energy-based model runs toward the data distribution. As a consequence,
the energy-based model guides or leads the generator model toward the data
distribution. It is different from GAN [81], in which the discriminator eventually
becomes confused because the generated data become similar to the real data. In the
above chasing game, the energy-based model becomes close to the data distribution.

The updating of α by Eq. (12.115) is similar to Wasserstein GAN (WGAN) [8],
but unlike WGAN, fα defines a probability distribution πα , and the learning of θ
is based on minθ DKL(pθ‖πα), which is a variational approximation to πα . This
variational approximation only requires knowing fα(x), without knowing Z(α).
However, unlike qφ(z|x), pθ(x) is still intractable; in particular, its entropy does not
have a closed form. Thus, we can again use variational approximation, by changing
the problem minθ DKL(pθ‖πα) to

min
θ

min
φ

DKL(p(z)pθ (x|z)‖πα(x)qφ(z|x)). (12.116)

Define �(z, x) = πα(x)qφ(z|x), and then the problem is minθ minφ DKL(P ‖�),
which is analytically tractable and underlies the work of [33]. In fact,

DKL(P ‖�) = DKL(pθ (x)‖πα(x)) + DKL(pθ (z|x)‖qφ(z|x)). (12.117)

Thus, we can use maxα minθ minφ[DKL(P ‖�) − DKL(Q‖�)] because
DKL(Q‖�) = DKL(pdata‖πα).

Note that in the VAE (Eq. (12.107)), the objective function is in the form of
KL + KL, whereas in ACD (Eq. (12.113)), it is in the form of KL − KL. In both
Eqs. (12.107) and (12.113), the first KL is about maximum likelihood. The KL +
KL form of the VAE makes the computation tractable by changing the marginal
distribution of x to the joint distribution of (z, x). The KL− KL form of ACD makes
the computation tractable by canceling the intractable log Z(α) term. Because of the
negative sign in Eq. (12.113), the ACD objective function becomes an adversarial
one or a minimax game.

Also note that in the VAE, pθ appears on the right-hand side of KL, whereas in
ACD, pθ appears on the left-hand side of KL. Thus in ACD, pθ may exhibit mode
chasing behavior, i.e., fitting the major modes of πα , while ignoring other modes.

Divergence Triangle: Integrating VAE and ACD

We can combine the VAE and ACD into a divergence triangle, which involves the
following three joint distributions on (z, x) defined above:

340 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.16 Reprinted with permission from [95]. Divergence triangle is based on the Kullback–
Leibler divergences between three joint distributions, Q, P , and �, of (z, x). The blue arrow
indicates the “running toward” behavior, and the red arrow indicates the “running away” behavior

1. Q distribution: Q(z, x) = pdata(x)qφ(z|x).
2. P distribution: P(z, x) = p(z)pθ (x|z).
3. � distribution: �(z, x) = πα(x)qφ(z|x).

Han et al. [95] proposed to learn the three models pθ , πα , and qφ by the following
divergence triangle loss functional S:

max
α

min
θ

min
φ

S(α, θ, φ),

S = DKL(Q‖P) + DKL(P ‖�) − DKL(Q‖�). (12.118)

See Fig. 12.16 for an illustration. The divergence triangle is based on the three KL-
divergences between the three joint distributions on (z, x). It has a symmetric and
anti-symmetric form, where the anti-symmetry is due to the negative sign in front
of the last KL-divergence and the maximization over α. Compared to the VAE and
ACD objective functions in the previous subsections, DKL(Q‖P) is the VAE part,
and DKL(P ‖�) − DKL(Q‖�) is the ACD part.

The divergence triangle leads to the following dynamics between the three
models: (a) Q and P seek to get close to each other. (b) P seeks to get close to
�. (c) π seeks to get close to pdata, but it seeks to get away from P , as indicated by
the red arrow. Note that DKL(Q‖�) = DKL(pdata‖πα) because qφ(z|x) is canceled
out. The effect of (b) and (c) is that π gets close to pdata while inducing P to get
close to pdata as well, or in other words, P chases πα toward pdata.

[95] also employed the layer-wise training scheme of [125] to learn models by
divergence triangle from the CelebA-HQ dataset [125], including 30,000 celebrity
face images with resolutions of up to 1024 × 1024 pixels. The learning algorithm
converges stably, without extra tricks, to obtain realistic results as shown in
Fig. 12.17.

Figure 12.17a displays a few 1024 × 1024 images generated by the learned
generator model with 512-dimensional latent vector. Figure 12.17b shows an
example of interpolation. The two images at the two ends are generated by two
different latent vectors. The images in between are generated by the vectors that

12.7 Cooperative Learning via MCMC Teaching 341

Fig. 12.17 Reprinted with permission from [95]. Learning generator model by divergence triangle
from the CelebA-HQ dataset [125] that includes 30,000 high-resolution celebrity face images. (a)
Generated face images with 1024×1024 resolution sampled from the learned generator model with
512-dimensional latent vector. (b) Linear interpolation of the vector representations. The images
at the two ends are generated from latent vectors randomly sampled from a Gaussian distribution.
Each image in the middle is obtained by first interpolating the two vectors of the two end images
and then generating the image using the generator

are linear interpolations of the two vectors at the two ends. Even though the
interpolation is linear in the latent vector space, the nonlinear mapping leads to a
highly nonlinear interpolation in the image space. We first do a linear interpolation
between the latent vectors at the two ends, i.e., (1−α)z0 +αz1, where z0 and z1 are
two latent vectors at two ends, respectively, and α is in the closed unit interval [0,
1]. The images in between are generated by mapping those interpolated vectors to
image space via the learned generator. The interpolation experiment shows that the
algorithm can learn a smooth generator model that traces the manifold of the data
distribution.

12.7 Cooperative Learning via MCMC Teaching

Joint Training of Descriptive and Generative Models

In ACD, the generator model pθ is used to approximate the energy-based model
πα , and we treat the examples generated by pθ as if they are generated from πα
for the sake of updating α. The gap between pθ and πα can cause bias in learning.
In the work of [262, 263], we proposed to bring back MCMC to bridge the gap.
Instead of running MCMC from scratch, we run a finite-step MCMC toward πα ,
initialized from the examples generated by pθ . We then use the examples produced
by the finite-step MCMC as the synthesized examples from πα for updating α.
Meanwhile, we update pθ based on how the finite-step MCMC revises the initial
examples generated by pθ ; in other words, the energy-based model (as a teacher)
πα distills the MCMC into the generator (as a student) pθ . We call this scheme
cooperative learning.

342 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Specifically, we first generate ẑi ∼ N(0, Id) and then generate x̂i = gθ (ẑi) + εi ,
for i = 1, . . . , ̃n. Starting from {x̂i , i = 1, . . . , ̃n}, we run MCMC such as Langevin
dynamics for a finite number of steps toward πα to get {x̃i , i = 1, . . . , ̃n}, which
are revised versions of {x̂i}. {x̃i} are used as the synthesized examples from the
descriptive model.

The descriptive model can teach the generator via MCMC. The key is that in the
generated examples, the latent z is known. In order to update θ of the generator
model, we treat {x̃i , i = 1, . . . , ̃n} as the training data for the generator. Since
these {x̃i} are obtained by the Langevin dynamics initialized from {x̂i}, which are
generated by the generator model with known latent factors {ẑi}, we can update θ
by learning from the complete data {(ẑi , x̃i); i = 1, . . . , ̃n}, which is a supervised
learning problem, or more specifically, a nonlinear regression of x̃i on ẑi . At θ(t), the
latent factors ẑi generate and thus reconstruct the initial example x̂i . After updating
θ , we want ẑi to reconstruct the revised example x̃i . That is, we revise θ to absorb
the MCMC transition from x̂i to x̃i . The left panel of diagram (12.119) illustrates
the basic idea.

(12.119)

In the two diagrams in (12.119), the double-line arrows indicate generation
and reconstruction by the generator model, while the dashed-line arrows indicate
Langevin dynamics for MCMC sampling and inference in the two models. The right
panel of diagram (12.119) illustrates a more rigorous method, where we initialize
the MCMC for inferring {z̃i} from the known {ẑi} and then update θ based on
{(z̃i , x̃i), i = 1, . . . , ̃n}.

The theoretical understanding of the cooperative learning scheme is given below:

(1) Modified contrastive divergence for the energy-based model. In the traditional
contrastive divergence [100], x̂i is taken to be the observed xi . In cooperative
learning, x̂i is generated by pθ(t) . Let Mα be the Markov transition kernel
of finite steps of Langevin dynamics that samples πα . Let (Mαpθ)(x) =∫

Mα(x′, x)pθ (x
′)dx′ be the marginal distribution by running Mα initialized

from pθ . Then similar to the traditional contrastive divergence, the learning gra-
dient of the energy-based model α at iteration t is the gradient of DKL(pdata ‖
πα) − DKL(Mα(t)pθ(t) ‖ πα) with respect to α. In the traditional contrastive
divergence, pdata takes the place of pθ(t) in the second KL-divergence.

(2) MCMC teaching of the generator model. The learning gradient of the generator
θ in the right panel of diagram (12.119) is the gradient of DKL(Mα(t)pθ(t) ‖ pθ)
with respect to θ . Here π(t+1) = Mα(t)pθ(t) takes the place of pdata as the data to

12.7 Cooperative Learning via MCMC Teaching 343

Fig. 12.18 Reprinted with permission from [264]. TheMCMC teaching of the generator alternates
between Markov transition and projection. The family of the generator models G is illustrated by
the black curve, and each distribution is illustrated by a point. pθ is a generator model, and πα is a
descriptive model

train the generator model. It is much easier to minimize DKL(Mα(t)pθ(t) ‖ pθ)
than to minimize DKL(pdata ‖ pθ) because the latent variables are essentially
known in the former, so the learning is supervised. The MCMC teaching
alternates between Markov transition from pθ(t) to π(t+1), and projection from
π(t+1) to pθ(t+1) , as illustrated by Fig. 12.18.

Conditional Learning via Fast Thinking Initializer and Slow
Thinking Solver

Xie et al. [267] extended the cooperative learning scheme to the conditional learning
problem by jointly learning a conditional energy-based model and a conditional
generator model. The conditional energy-based model is of the following form:

πα(x|c) =
1

Z(c, α)
exp[fα(x, c)], (12.120)

where x is the input signal and c is the condition. Z(c, α) is the normalizing constant
conditioned on c. fα(x, c) can be defined by a bottom-up ConvNet where α collects
all the weight and bias parameters. Fixing the condition c, fα(x, c) defines the value
of x for the condition c, and −fα(x, c) defines the conditional energy function.
πα(x|c) is also a deep generalization of conditional random fields [140]. Both the
conditional generator model and the conditional energy-based model can be learned
jointly by the cooperative learning scheme in Sect. 12.7.

Figure 12.19 shows some examples of pattern completion on the CMP (Center
for Machine Perception) Facades dataset [238] by learning a mapping from an
occluded image (256× 256 pixels), where a mask of the size of 128× 128 pixels is
centrally placed onto the original version, to the original image. In this case, c is the
observed part of the signal, and x is the unobserved part of the signal.

344 12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models

Fig. 12.19 Reprinted with permission from [268]. Pattern completion by conditional learning.
Each row displays one example. The first image is the testing image (256 × 256 pixels) with a
hole of 128 × 128 that needs to be recovered, the second image shows the ground truth, and the
third image shows the result recovered by the initializer (i.e., conditional generator model), the
fourth image shows the result recovered by the solver (i.e., the MCMC sampler of the conditional
energy-based model, initialized from the result of the initializer), and the last image shows the
result recovered by the conditional GAN as a comparison

The cooperative learning of the conditional generator model and conditional
energy-based model can be interpreted as follows. The conditional energy function
defines the objective function or value function, i.e., it defines what solutions are
desirable given the condition or the problem. The solutions can then be obtained
by an iterative optimization or sampling algorithm such as MCMC. In other words,
the conditional energy-based model leads to a solver in the form of an iterative
algorithm, and this iterative algorithm is a slow thinking process. In contrast, the
conditional generator model defines a direct mapping from condition or problem to
solutions, and it is a fast thinking process. We can use the fast thinking generator
as an initializer to generate the initial solution and then use the slow thinking solver
to refine the fast thinking initialization by the iterative algorithm. The cooperative
learning scheme enables us to learn both the fast thinking initializer and slow
thinking solver. Unlike conditional GAN, the cooperative learning scheme has a
slow thinking refining process, which can be important if the fast thinking initializer
is not optimal.

In terms of inverse reinforcement learning [1, 283], the conditional energy-based
model defines the reward or value function, and the iterative solver defines an
optimal control or planning algorithm. The conditional generator model defines a
policy. The fast thinking policy is about habitual, reflexive, or impulsive behaviors,
while the slow thinking solver is about deliberation and planning. Compared with
the policy, the value is usually simpler and more generalizable, because it is in
general easier to specify what one wants than to specify how to produce what one
wants.

Correction to: Computer Vision

Correction to:
S.-C. Zhu, Y. N. Wu, Computer Vision,
https://doi.org/10.1007/978-3-030-96530-3

The name of author “Ying Nian Wu” was inadvertently published as “Ying Wu”.
The initially published version has now been corrected.

The updated original version for this book can be found at
https://doi.org/10.1007/978-3-030-96530-3

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3_13

C1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96530-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-96530-3

 -2016 57841 a -2016
57841 a

 12905
61494 a 12905 61494 a

Bibliography

1. Abbeel, P., & Ng, A. Y. (2004). Apprenticeship learning via inverse reinforcement learning.
In International Conference on Machine Learning (pp. 1–8). ACM.

2. Adelson, E. H. (1995). Layered representations for vision and video. In In Representation of
Visual Scenes, Proceedings IEEE Workshop on International Conference on Computer Vision
(ICCV), pp. 3–9.

3. Aharon, M., Elad, M., Bruckstein, A. M. (2006). The K-SVD: An algorithm for designing
of overcomplete dictionaries for sparse representations. IEEE Transactions On Signal
Processing, 15(12), 3736–3745.

4. Barbu, A. & Zhu, S.-C. (2005). Incorporating visual knowledge representation in stereo
reconstruction. In Tenth IEEE International Conference on Computer Vision (ICCV’05)
Volume 1 (Vol. 1, pp. 572–579).

5. Ahuja, N., & Tuceryan, M. (1989). Extraction of early perceptual structure in dot patterns.
Computer Vision, Graphics, and Image Processing, 48(3), 304–356.

6. Alain, G., & Bengio, Y. (2014). What regularized auto-encoders learn from the data-
generating distribution. The Journal of Machine Learning Research, 15(1), 3563–3593.

7. Amit, D. J. (1989). Modeling brain function: The world of attractor neural networks. In
Modeling Brain Function.

8. Arjovsky, M., Chintala, S., & Bottou, L. (2017). Wasserstein gan. arXiv preprint
arXiv:1701.07875.

9. Barbu, A., & Zhu, S.-C. (2005). Generalizing swendsen-wang to sampling arbitrary posterior
probabilities. IEEE Transaction on Pattern Analysis and Machine Intelligence, 27(8), 1239–
1253.

10. Barlow, H. B. (1961). Possible principles underlying the transformation of sensory messages.
Sensory communication, 1(01).

11. Barrett, D. G., & Dherin, B. (2020). Implicit gradient regularization. arXiv preprint
arXiv:2009.11162.

12. Barrow, H. G., & Tenenbaum, J. M. (1993). Retrospective on “interpreting line drawings as
three-dimensional surfaces”. Artificial Intelligence, 59(1–2), 71–80.

13. Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J.-H. (2018). Invertible
residual networks. arXiv preprint arXiv:1811.00995.

14. Belhumeur, P. N. (1996). A bayesian approach to binocular steropsis. International Journal
of Computer Vision, 19(3), 237–260.

15. Bell, A. J., & Sejnowski, T. J. (1997). The independent components of natural scenes are edge
filters. Vision Research, 37(23), 3327–3338.

16. Bengio, Y., Goodfellow, I. J., & Courville, A. (2015). Deep learning. Book in preparation for
MIT Press.

© Springer Nature Switzerland AG 2023
S.-C. Zhu, Y. N. Wu, Computer Vision, https://doi.org/10.1007/978-3-030-96530-3

345

 12905
61494 a 12905 61494 a

346 Bibliography

17. Bengio, Y., Yao, L., Alain, G., & Vincent, P. (2013). Generalized denoising auto-encoders as
generative models. In Advances in neural information processing systems, pp. 899–907.

18. Bergen, J. R., & Adelson, E. (1991). Theories of visual texture perception. Spatial Vision, 10,
114–134.

19. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of
the Royal Statistical Society: Series B (Methodological), 36(2), 192–225.

20. Blei, D. M., Kucukelbir, A., & McAuliffe, J. D. (2017). Variational inference: a review for
statisticians. Journal of the American Statistical Association, 112(518), 859–877.

21. Breiman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (1984). Classification and regression
trees.

22. Bristow, H., Eriksson, A., & Lucey, S. (2013). Fast convolutional sparse coding. In IEEE
Conference on Computer Vision and Pattern Recognition (pp. 391–398). IEEE.

23. Brooks, M. J., & Horn, B. K. (1985). Shape and source from shading.
24. Chandler, D. (1987). Introduction to modern statistical mechanics. In D. Chandler (Ed.)

Introduction to Modern Statistical Mechanics (pp. 288). Foreword by D. Chandler. Oxford
University Press. ISBN-10: 0195042778. ISBN-13: 9780195042771, 1.

25. Chen, H., & Zhu, S.-C. (2006). A generative sketch model for human hair analysis and
synthesis. IEEE transactions on pattern analysis and machine intelligence, 28(7), 1025–1040.

26. Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61.

27. Chiu, S. N., Stoyan, D., Kendall, W. S., & Mecke, J. (2013). Stochastic geometry and its
applications. Wiley.

28. Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681–685.

29. Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Wiley.
30. Cross, G. R., & Jain, A. K. (1983). Markov random field texture models. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 1, 25–39.
31. Da Vinci, L., Kemp, M., & Walker, M. (1989). Leonardo on painting: Anthology of writings.

In L. da Vinci (Ed.), With a selection of documents relating to his career as an artist. Yale
Nota Bene.

32. Dai, J., Lu, Y., & Wu, Y. N. (2014). Generative modeling of convolutional neural networks.
arXiv preprint arXiv:1412.6296.

33. Dai, Z., Almahairi, A., Bachman, P., Hovy, E., & Courville, A. (2017). Calibrating
energy-based generative adversarial networks. In International Conference on Learning
Representations.

34. Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005
IEEE computer society conference on computer vision and pattern recognition (CVPR’05)
(Vol. 1, pp. 886–893). IEEE.

35. Daugman, J. G. (1985). Uncertainty relation for resolution in space, spatial frequency, and
orientation optimized by two-dimensional visual cortical filters. JOSA A, 2(7), 1160–1169.

36. De Bonet, J., & Viola, P. (1997). A non-parametric multi-scale statistical model for natural
images. Advances in Neural Information Processing Systems, 10.

37. Della Pietra, S., Della Pietra, V., & Lafferty, J. (1997). Inducing features of random fields.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4), 380–393.

38. Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete
data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodologi-
cal), 39(1), 1–38.

39. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (pp. 248–255). IEEE.

40. Denton, E. L., Chintala, S., Fergus, R., et al. (2015). Deep generative image models using
a laplacian pyramid of adversarial networks. In Advances in neural information processing
systems (pp. 1486–1494).

Bibliography 347

41. Diaconis, P., & Freedman, D. (1981). On the statistics of vision: the julesz conjecture. Journal
of Mathematical Psychology, 24(2), 112–138.

42. Dickinson, S., & Pizlo, Z. (2015). Shape perception in human and computer vision. Springer.
43. Dinh, L., Krueger, D., & Bengio, Y. (2014). NICE: Non-linear independent components

estimation. arXiv preprint arXiv:1410.8516.
44. Dinh, L., Sohl-Dickstein, J., & Bengio, S. (2017). Density estimation using real NVP. In

International Conference on Learning Representations, abs/1605.08803.
45. Donato, G., & Belongie, S. (2002). Approximate thin plate spline mappings. In European

conference on computer vision (pp. 21–31). Springer.
46. Donoho, D. L. (2001). Sparse components of images and optimal atomic decompositions.

Constructive Approximation, 17(3), 353–382.
47. Dosovitskiy, A., Springenberg, J. T., & Brox, T. (2015). Learning to generate chairs with

convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1538–1546).

48. Earl, D. J., & Deem, M. W. (2005). Parallel tempering: Theory, applications, and new
perspectives. Physical Chemistry Chemical Physics, 7(23), 3910–3916.

49. Elad, M. (2010). Sparse and redundant representations: From theory to applications in signal
and image processing. Springer.

50. Elder, J. H., Krupnik, A., & Johnston, L. A. (2002). Contour grouping with prior models.
Journal of Vision, 2(4), 324–353.

51. Elder, J. H., Krupnik, A., & Johnston, L. A. (2003). Contour grouping with prior models.
IEEE Transaction on Pattern Analysis and Machine Intelligence, 25(6), 661–674.

52. Elder, J. H., & Zucker, S. W. (1998). Local scale control for edge detection and blur
estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(7), 699–
716.

53. Esedoglu, S., & March, R. (2003). Segmentation with depth butwithout detecting junctions.
Journal of Mathematical Imaging and Vision, 18(1), 7–15.

54. Field, D. J. (1987). Relations between the statistics of natural images and the response
properties of cortical cells. JOSA A, 4(12), 2379–2394.

55. Field, D. J. (1994). What is the goal of sensory coding? Neural Computation, 6(4), 559–601.
56. Finn, C., Christiano, P., Abbeel, P., & Levine, S. (2016). A connection between genera-

tive adversarial networks, inverse reinforcement learning, and energy-based models. arXiv
preprint arXiv:1611.03852.

57. Fraley, C., & Raftery, A. E. (2002). Model-based clustering, discriminant analysis, and density
estimation. Journal of the American statistical Association, 97(458), 611–631.

58. Frankot, R. T., & Chellappa, R. (1988). A method for enforcing integrability in shape from
shading algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4),
439–451.

59. Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1), 119–139.

60. Frey, B. J., & Jojic, N. (1999). Transformed component analysis: joint estimation of spatial
transforms and image components. In G. Corfu (Ed.) Proceedings of the 7th ICCV.

61. Fridman, A. (2000a). Mixed Markov Field.
62. Fridman, A. (2000b). Mixed Markov Models. PhD thesis, Division of Applied Math, Brown

University.
63. Fridman, A. (2003). Mixed markov models, applied mathematics. Proceedings of the National

Academy of Sciences, 100(14), 8092–8096.
64. Friedman, J., Hastie, T., Tibshirani, R., et al. (2000). Additive logistic regression: a statistical

view of boosting (with discussion and a rejoinder by the authors). The Annals of Statistics,
28(2), 337–407.

65. Friedman, J. H. (1987). Exploratory projection pursuit. Journal of the American Statistical
Association, 82(397), 249–266.

66. Friedman, J. H. (1991). Multivariate adaptive regression splines. The Annals of Statistics,
19(1), 1–67.

348 Bibliography

67. Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals
of Statistics, 29(5), 1189–1232.

68. Fu, K.-S., & Bhargava, B. K. (1973). Tree systems for syntactic pattern recognition. IEEE
Transactions on Computers, 100(12), 1087–1099.

69. Gao, R., Lu, Y., Zhou, J., Zhu, S.-C., & Wu, Y. N. (2017). Learning multi-grid generative
convnets by minimal contrastive divergence. arXiv preprint arXiv:1709.08868.

70. Gao, R., Lu, Y., Zhou, J., Zhu, S.-C., & Wu, Y. N. (2018). Learning generative ConvNets
via multi-grid modeling and sampling. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (pp. 9155–9164).

71. Gao, R., Nijkamp, E., Kingma, D. P., Xu, Z., Dai, A. M., & Wu, Y. N. (2020a). Flow
contrastive estimation of energy-based models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (pp. 7518–7528).

72. Gao, R., Song, Y., Poole, B., Wu, Y. N., & Kingma, D. P. (2020b). Learning energy-based
models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125.

73. Gao, R.-X., Wu, T.-F., Zhu, S.-C., & Sang, N. (2007). Bayesian inference for layer represen-
tation with mixed markov random field. In International Workshop on Energy Minimization
Methods in Computer Vision and Pattern Recognition (pp. 213–224). Springer.

74. Geman, S., & Geman, D. (1997). Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(4),
380–393.

75. Geman, S., & Graffigne, C. (1986). Markov random field image models and their applications
to computer vision. In Proceedings of the International Congress of Mathematicians (Vol. 1,
p. 2).

76. Geman, S., Potter, D. F., & Chi, Z. (2002). Composition systems. Quarterly of Applied
Mathematics, 60(4), 707–736.

77. Geyer, C. J., & Thompson, E. A. (1995). Annealing markov chain monte carlo with
applications to ancestral inference. Journal of the American Statistical Association, 90(431),
909–920.

78. Gibbs, J. W. (1902). Elementary principles in statistical mechanics: Developed with especial
reference to the rational foundations of thermodynamics. C. Scribner’s sons.

79. Gibson, J. J. (1950). The perception of the visual world.
80. Girolami, M., & Calderhead, B. (2011). Riemann manifold langevin and hamiltonian monte

carlo methods. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
73(2), 123–214.

81. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A., & Bengio, Y. (2014). Generative adversarial nets. In Advances in Neural Information
Processing Systems (pp. 2672–2680).

82. Grathwohl, W., Chen, R. T., Betterncourt, J., Sutskever, I., & Duvenaud, D. (2019). FFJORD:
Free-form continuous dynamics for scalable reversible generative models. In International
Conference on Learning Representations.

83. Green, P. J. (1995). Reversible jump markov chain monte carlo computation and Bayesian
model determination. Biometrika, 82, 711–732.

84. Grenander, U. (1970). A unified approach to pattern analysis. Advances in Computers, 10,
175–216.

85. Grenander, U., & Miller, M. I. (2007). Pattern theory: from representation to inference.
Oxford University Press.

86. Griffiths, R. B., & Ruelle, D. (1971). Strict convexity (“continuity”) of the pressure in lattice
systems. Communications in Mathematical Physics, 23(3), 169–175

87. Grindrod, P. (1996). The theory and applications of reaction-diffusion equations: patterns
and waves. Clarendon Press.

88. Gu, M. G., & Kong, F. H. (1998). A stochastic approximation algorithm with mcmc method
for incomplete data estimation problems. Preprint, Department of Mathematics & Statistics,
McGill University.

Bibliography 349

89. Guo, C.-E., Zhu, S.-C., & Wu, Y. N. (2003a). Modeling visual patterns by integrating
descriptive and generative methods. International Journal of Computer Vision, 53(1), 5–29.

90. Guo, C.-e., Zhu, S.-C., & Wu, Y. N. (2003b). Towards a mathematical theory of primal sketch
and sketchability. In Proceedings of the Ninth IEEE International Conference on Computer
Vision, 2003 (pp. 1228–1235). IEEE.

91. Guo, C.-e., Zhu, S.-C., & Wu, Y. N. (2007). Primal sketch: Integrating structure and texture.
Computer Vision and Image Understanding, 106(1), 5–19.

92. Gutmann, M., & Hyvärinen, A. (2010). Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics (pp. 297–304). JMLR Workshop and
Conference Proceedings.

93. Han, F., & Zhu, S.-C. (2007). A two-level generative model for cloth representation and shape
from shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(7), 1230–
1243.

94. Han, T., Lu, Y., Zhu, S.-C., & Wu, Y. N. (2017). Alternating back-propagation for generator
network. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 3, p. 13).

95. Han, T., Nijkamp, E., Fang, X., Hill, M., Zhu, S.-C., & Wu, Y. N. (2018). Divergence
triangle for joint training of generator model, energy-based model, and inference model. arXiv
preprint arXiv:1812.10907, pp. 8670–8679.

96. Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data
mining, inference and prediction. Springer.

97. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp.
770–778).

98. Heeger, D. J., & Bergen, J. R. (1995). Pyramid-based texture analysis/synthesis. In Proceed-
ings of the 22nd annual conference on Computer graphics and interactive techniques (pp.
229–238). ACM.

99. Hill, M., Nijkamp, E., & Zhu, S.-C. (2019). Building a telescope to look into high-dimensional
image spaces. Quarterly of Applied Mathematics, 77(2), 269–321.

100. Hinton, G. E. (2002). Training products of experts by minimizing contrastive divergence.
Neural Computation, 14(8), 1771–1800.

101. Hinton, G. E., Dayan, P., Frey, B. J., & Neal, R. M. (1995). The wake-sleep algorithm for
unsupervised neural networks. Science, 268(5214), 1158–1161.

102. Ho, J., Jain, A., & Abbeel, P. (2020). Denoising diffusion probabilistic models. arXiv preprint
arXiv:2006.11239.

103. Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation,
9(8), 1735–1780.

104. Hoffman, M., Sountsov, P., Dillon, J. V., Langmore, I., Tran, D., & Vasudevan, S. (2019).
Neutra-lizing bad geometry in hamiltonian monte carlo using neural transport. arXiv preprint
arXiv:1903.03704.

105. Hoffman, M. D., Gelman, A., et al. (2014). The No-U-Turn sampler: Adaptively setting path
lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1), 1593–
1623.

106. Hoiem, D., Stein, A. N., Efros, A. A., & Hebert, M. (2007). Recovering occlusion boundaries
from a single image. In International Conference on Computer Vision (ICCV) (pp. 1–8).

107. Hong, Y., Si, Z., Hu, W., Zhu, S.-C., & Wu, Y. N. (2013). Unsupervised learning of compo-
sitional sparse code for natural image representation. Quarterly of Applied Mathematics, 72,
373–406.

108. Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proceedings of the National Academy of Sciences, 79(8), 2554–2558.

109. Horn, B. K. (1970). Shape from shading: A method for obtaining the shape of a smooth
opaque object from one view.

110. Horn, B. K. (1983). The curve of least energy. CACM Transactions on Mathematical Software,
9(4), 441–460.

350 Bibliography

111. Horn, B. K. (1990). Height and gradient from shading. International Journal of Computer
Vision, 5(1), 37–75.

112. Horn, B. K. P., Szeliski, R. S., & Yuille, A. L. (1993). Impossible shaded images. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15(2), 166–170.

113. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. The Journal of Physiology, 160(1), 106.

114. Hyvärinen, A. (2005). Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(Apr), 695–709.

115. Hyvarinen, A. (2007). Connections between score matching, contrastive divergence, and
pseudolikelihood for continuous-valued variables. IEEE Transactions on Neural Networks,
18(5), 1529–1531.

116. Hyvärinen, A., Karhunen, J., & Oja, E. (2004). Independent component analysis (Vol. 46).
Wiley.

117. Ikeuchi, K., & Horn, B. K. (1981). Numerical shape from shading and occluding boundaries.
Artificial Intelligence, 17(1–3), 141–184.

118. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167.

119. Bergen, J. R., & Adelson, E. H. (1988). Early vision and texture perception. Nature, 333,
363–364.

120. Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review, 106(4),
620.

121. Jin, L., Lazarow, J., & Tu, Z. (2017). Introspective classification with convolutional nets. In
Advances in Neural Information Processing Systems (pp. 823–833).

122. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., & Saul, L. K. (1999). An introduction to
variational methods for graphical models. Machine Learning, 37(2), 183–233.

123. Julesz, B. (1962). Visual pattern discrimination. IRE Transactions on Information Theory,
8(2), 84–92.

124. Julesz, B. et al. (1981). Textons, the elements of texture perception, and their interactions.
Nature, 290(5802), 91–97.

125. Karras, T., Aila, T., Laine, S., & Lehtinen, J. (2017). Progressive growing of gans for improved
quality, stability, and variation. In International Conference on Learning Representations.

126. Karras, T., Laine, S., & Aila, T. (2019). A style-based generator architecture for generative
adversarial networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition (pp. 4401–4410).

127. Kim, H., & Park, H. (2008). Nonnegative matrix factorization based on alternating nonnega-
tivity constrained least squares and active set method. SIAM Journal on Matrix Analysis and
Applications, 30(2), 713–730.

128. Kim, T., & Bengio, Y. (2016). Deep directed generative models with energy-based probability
estimation. In ICLR Workshop.

129. Kimia, B. B., Frankel, I., & Popescu, A.-M. (2003). Euler spiral for shape completion.
International Journal of Computer Vision, 54(1–3), 159–182.

130. Kingma, D., & Welling, M. (2014a). Efficient gradient-based inference through transforma-
tions between bayes nets and neural nets. In International Conference on Machine Learning
(pp. 1782–1790).

131. Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1 × 1
convolutions. In Advances in Neural Information Processing Systems (pp. 10215–10224).

132. Kingma, D. P., Salimans, T., Jozefowicz, R., Chen, X., Sutskever, I., & Welling, M. (2016).
Improved variational inference with inverse autoregressive flow. In Advances in Neural
Information Processing Systems (pp. 4743–4751).

133. Kingma, D. P., & Welling, M. (2014b). Auto-encoding variational bayes. In International
Conference for Learning Representations.

134. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations.

Bibliography 351

135. Kirkpatrick, S., Gelatt Jr, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
Science, 220(4598), 671–680.

136. Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recommender
systems. Computer, 42(8), 30–37.

137. Kossaifi, J., Tzimiropoulos, G., & Pantic, M. (2017). Fast and exact newton and bidirectional
fitting of active appearance models. IEEE Transactions on Image Processing, 26(2), 1040–
1053.

138. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep
convolutional neural networks. In Advances in Neural Information Processing Systems (pp.
1097–1105).

139. Kumar, M., Babaeizadeh, M., Erhan, D., Finn, C., Levine, S., Dinh, L., & Kingma, D. (2019).
Videoflow: A flow-based generative model for video. arXiv preprint arXiv:1903.01434.

140. Lafferty, J., McCallum, A., & Pereira, F. C. (2001). Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In International Conference on Machine
Learning (pp. 282–289).

141. Landau, L. D., & Lifshitz, E. M. (1959). Statistical physics, 5, 482.
142. Lanford, O. E. (1973). Statistical mechanics and mathematical problems. In Entropy and

equilibrium states in classical statistical mechanics (pp. 1–113).
143. Lazarow, J., Jin, L., & Tu, Z. (2017). Introspective neural networks for generative modeling.

In IEEE International Conference on Computer Vision (pp. 2774–2783).
144. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al. (1998). Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.
145. Lee, A. B., Mumford, D., & Huang, J. (2001). Occlusion models for natural images: A

statistical study of a scale-invariant dead leaves model. International Journal of Computer
Vision, 41(1), 35–59.

146. Lee, A. B., Mumford, D. B., & Huang, J. G. (2001). Occlusion models for natural images:
A statistical study of a scale-invariant dead leaves model. International Journal of Computer
Vision, 41(1), 35–59.

147. Lee, C.-H., & Rosenfeld, A. (1985). Improved methods of estimating shape from shading
using the light source coordinate system. Artificial Intelligence, 26(2), 125–143.

148. Lee, D. D., & Seung, H. S. (2001). Algorithms for non-negative matrix factorization. In
Advances in Neural Information Processing Systems (pp. 556–562).

149. Lee, K., Xu, W., Fan, F., & Tu, Z. (2018). Wasserstein introspective neural networks. In IEEE
Conference on Computer Vision and Pattern Recognition (pp. 3702–3711).

150. Leung, T., & Malik, J. (1996). Detecting, localizing and grouping repeated scene elements
from an image. In Proceedings of the 4th European Conference on Computer Vision, UK.

151. Leung, T., & Malik, J. (1999). Recognizing surface using three-dimensional textons. In G.
Corfu (Ed.), Proceedings of 7th International Conference on Computer Vision.

152. Lewicki, M. S., & Olshausen, B. A. (1999). A probabilistic framework for the adaptation and
comparison of image codes. JOSA, 16(7), 1587–1601.

153. Lin, M. H., & Tomasi, C. (2003). Surfaces with occlusions from layered stereo. In Pro-
ceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2003 (Vol. 1, pp. I–I). IEEE.

154. Liu, C., Rubin, D. B., & Wu, Y. N. (1998). Parameter expansion to accelerate EM: The PX-
EM algorithm. Biometrika, 85(4), 755–770.

155. Liu, C., Zhu, S.-C., & Shum, H.-Y. (2001). Learning inhomogeneous gibbs model of faces
by minimax entropy. In International Conference on Computer Vision (Vol. 1, pp. 281–287).
IEEE.

156. Liu, F., Shen, C., & Lin, G. (2015). Deep convolutional neural fields for depth estimation
from a single image. In Proceedings of the IEEE conference on computer vision and pattern
recognition.

157. Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer.
158. Lowe, D. G. (1999). Object recognition from local scale-invariant features. In Proceedings of

the seventh IEEE international conference on computer vision (Vol. 2, pp. 1150–1157). IEEE.

352 Bibliography

159. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International
Journal of Computer Vision, 60(2), 91–110.

160. Lu, Y., Gao, R., Zhu, S.-C., & Wu, Y. N. (2018). Exploring generative perspective of
convolutional neural networks by learning random field models. Statistics and Its Interface,
11(3), 515–529.

161. Lu, Y., Zhu, S.-C., & Wu, Y. N. (2016). Learning FRAME models using CNN filters. Thirtieth
AAAI Conference on Artificial Intelligence.

162. Malik, J. (1986). Interpreting line drawings of curved objects. International Journal of
Computer Vision, 1(1), 73–103.

163. Malik, J., Belongie, S., Shi, J., & Leung, T. (1999). Textons, contours and regions: Cue
integration in image segmentation. In G. Corfu (Ed.), Proceedings of the Seventh IEEE
International Conference on Computer Vision, (Vol. 2). IEEE.

164. Malik, J., & Perona, P. (1990). Preattentive texture discrimination with early vision mecha-
nisms. Journal of Optical Society of America A, 7(5), 923–932.

165. Mallat, S., & Zhang, Z. (1993a). Matching pursuit in a time-frequency dictionary. IEEE
Transactions on Signal Processing, 41, 3397–3415.

166. Mallat, S. G. (1989). A theory for multiresolution signal decomposition: The wavelet
representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 674–
693.

167. Mallat, S. G., & Zhang, Z. (1993b). Matching pursuits with time-frequency dictionaries. IEEE
Transactions on Signal Processing, 41(12), 3397–3415.

168. Marinari, E., & Parisi, G. (1992). Simulated tempering: a new monte carlo scheme. EPL
(Europhysics Letters), 19(6), 451.

169. Marr, D. (2010). Vision: A computational investigation into the human representation and
processing of visual information. MIT press.

170. Marr, D., & Nishihara, H. K. (1978). Representation and recognition of the spatial organi-
zation of three-dimensional shapes. Proceedings of the Royal Society London B, 200(1140),
269–294.

171. Matheron, G. (1975). Random sets and integral geometry. Wiley.
172. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word

representations in vector space. In ICLR Workshop.
173. Mingolla, E., & Todd, J. T. (1986). Perception of solid shape from shading. Biological

Cybernetics, 53(3), 137–151.
174. Montufar, G. F., Pascanu, R., Cho, K., & Bengio, Y. (2014). On the number of linear regions

of deep neural networks. In Advances in Neural Information Processing Systems (pp. 2924–
2932).

175. Mumford, D. (1996). The statistical description of visual signals. Mathematical Research, 87,
233–256.

176. Mumford, D., & Gidas, B. (2001). Stochastic models for generic images. Quarterly of Applied
Mathematics, 59(1), 85–111.

177. Mumford, D., & Shah, J. (1989). Optimal approximations by piecewise smooth functions and
associated variational problems. Communications on Pure and Applied Mathematics, 42(5),
577–685.

178. Murray, J. D. (1981). A pre-pattern formation mechanism for animal coat markings. Journal
of Theoretical Biology, 88(1), 161–199.

179. Neal, R. M. et al. (2011). MCMC using hamiltonian dynamics. Handbook of Markov Chain
Monte Carlo, 2(11), 2.

180. Ngiam, J., Chen, Z., Koh, P. W., & Ng, A. Y. (2011). Learning deep energy models (pp.
1105–1112).

181. Nijkamp, E., Gao, R., Sountsov, P., Vasudevan, S., Pang, B., Zhu, S.-C., & Wu, Y. N. (2021).
MCMC should mix: Learning energy-based model with neural transport latent space MCMC.
In International Conference on Learning Representations.

182. Nijkamp, E., Hill, M., Han, T., Zhu, S.-C., & Wu, Y. N. (2019a). On the anatomy of MCMC-
based maximum likelihood learning of energy-based models. arXiv.

Bibliography 353

183. Nijkamp, E., Pang, B., Han, T., Zhou, L., Zhu, S.-C., & Wu, Y. N. (2020). Learning multi-
layer latent variable model via variational optimization of short run mcmc for approximate
inference. In European Conference on Computer Vision (pp. 361–378). Springer.

184. Nijkamp, E., Zhu, S.-C., & Wu, Y. N. (2019b). Learning non-convergent short-run MCMC
toward energy-based model. In NeurIPS.

185. Nitzberg, M., & Mumford, D. (1990). The 2.1-d sketch. In International Conference on
Computer Vision (ICCV) (pp. 138–144).

186. Nitzberg, M., & Shiota, T. (1992). Nonlinear image filtering with edge and corner enhance-
ment. IEEE Transactions on Pattern Analysis & Machine Intelligence, 14(8), 826–833.

187. Olshausen, B. A. (2003). Learning sparse, overcomplete representations of time-varying
natural images. In Proceedings of the 2003 International Conference on Image Processing,
2003 (ICIP 2003) (Vol. 1, pp. I–41). IEEE.

188. Olshausen, B. A., & Field, D. J. (1996a). Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381, 607–609.

189. Olshausen, B. A., & Field, D. J. (1996b). Emergence of simple-cell receptive field properties
by learning a sparse code for natural images. Nature, 381(6583), 607.

190. Olshausen, B. A., & Field, D. J. (1997). Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision Research, 37(23), 3311–3325.

191. Pang, B., Han, T., Nijkamp, E., Zhu, S.-C., & Wu, Y. N. (2020). Learning latent space energy-
based prior model. arXiv preprint arXiv:2006.08205.

192. Pascanu, R., Montufar, G., & Bengio, Y. (2013). On the number of response regions of deep
feed forward networks with piece-wise linear activations. arXiv preprint arXiv:1312.6098.

193. Pennington, J., Socher, R., & Manning, C. (2014). Glove: Global vectors for word representa-
tion. In Conference on Empirical Methods in Natural Language Processing (pp. 1532–1543).

194. Pentland, A. P. (1984). Local shading analysis. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2, 170–187.

195. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.

196. Ping-Sing, T., & Shah, M. (1994). Shape from shading using linear approximation. Image and
Vision Computing, 12(8), 487–498.

197. Portilla, J., & Simoncelli, E. P. (2000). A parametric texture model based on joint statistics of
complex wavelet coefficients. International Journal of Computer Vision, 40, 1.

198. Poucet, B., & Save, E. (2005). Attractors in memory. Science, 308(5723), 799–800.
199. Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning with deep

convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434.
200. Ren, X., Fowlkes, C. C., & Malik, J. (2005). Scale-invariant contour completion using

conditional random fields. In International Conference on Computer Vision (ICCV) (pp.
1214–1221).

201. Ren, X., Fowlkes, C. C., & Malik, J. (2006). Figure/ground assignment in natural images. In
In European Conference on Computer Vision (ECCV) (pp. 614–627).

202. Rezende, D. J., & Mohamed, S. (2015). Variational inference with normalizing flows. In
International Conference on Machine Learning.

203. Rhodes, B., Xu, K., & Gutmann, M. U. (2020). Telescoping density-ratio estimation.
Advances in Neural Information Processing Systems, 33, 4905–4916.

204. Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62(1),
107–136.

205. Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of
Mathematical Statistics, pp. 400–407.

206. Rosset, S., Zhu, J., & Hastie, T. (2004). Boosting as a regularized path to a maximum margin
classifier. The Journal of Machine Learning Research, 5, 941–973.

354 Bibliography

207. Roth, S., & Black, M. J. (2005). Fields of experts: A framework for learning image priors.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (Vol. 2,
pp. 860–867). IEEE.

208. Roweis, S., & Ghahramani, Z. (1999). A unifying review of linear gaussian models. Neural
Computation, 11, 2.

209. Rubin, D. B., & Thayer, D. T. (1982). EM algorithms for ML factor analysis. Psychometrika,
47(1), 69–76.

210. Ruderman, D. L. (1994). The statistics of natural images. Network: Computation in Neural
Systems, 5(4), 517–548.

211. Saund, E. (1999a). Perceptual organization of occluding contours generated by opaque
surfaces. In Computer Vision and Pattern Recognition (CVPR) (pp. 624–630).

212. Saund, E. (1999b). Perceptual organization of occluding contours of opaque surfaces.
Computer Vision and Image Understanding, 76(1), 70–82.

213. Scharstein, D., & Szeliski, R. (2003). High-accuracy stereo depth maps using structured light.
In Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, 2003 (Vol. 1, pp. I–I). IEEE.

214. Serre, T., Wolf, L., Bileschi, S., Riesenhuber, M., & Poggio, T. (2007). Robust object recog-
nition with cortex-like mechanisms. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29(3), 411–426.

215. Shannon, C. E. (1948). A mathematical theory of communication. The Bell System Technical
Journal, 27(3), 379–423.

216. Shannon, C. E. (2001). A mathematical theory of communication. ACM SIGMOBILE Mobile
Computing and Communications Review, 5(1), 3–55.

217. Si, Z., & Zhu, S.-C. (2011). Learning hybrid image templates (hit) by information projection.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 99(7), 1354–1367.

218. Simoncelli, E. P., Freeman, W. T., Adelson, E. H., & Heeger, D. J. (1992). Shiftable multiscale
transforms. IEEE Transactions on Information Theory, 38(2), 587–607.

219. Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale
image recognition. In ICLR.

220. Skiena, S. (1990). Combinatorics and graph theory with mathematica.
221. Smith, S. L., Dherin, B., Barrett, D. G., & De, S. (2021). On the origin of implicit

regularization in stochastic gradient descent. arXiv preprint arXiv:2101.12176.
222. Sohl-Dickstein, J., Weiss, E. A., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsuper-

vised learning using nonequilibrium thermodynamics. arXiv preprint arXiv:1503.03585.
223. Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., & Poole, B. (2020).

Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456.

224. Zhu, S.-C., Liu, X., & Wu, Y. N. (2000). Exploring julesz texture ensemble by effective
markov chain monte carlo. PAMI, 22, 6.

225. Yu, S. X., Lee, T. S., & Kanade, T. (2002). A hierarchical markov random field model for
figure-ground segregation. In Proceedings of the 4th International Conference on Energy
Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR) (pp. 118–
131).

226. Sugita, Y., & Okamoto, Y. (1999). Replica-exchange molecular dynamics method for protein
folding. Chemical Physics Letters, 314(1–2), 141–151.

227. Swersky, K., Ranzato, M., Buchman, D., Marlin, B., & Freitas, N. (2011). On autoencoders
and score matching for energy based models. In Getoor, L., & Scheffer, T. (Eds.) Proceedings
of the 28th international conference on machine learning (ICML-11) (pp. 1201–1208). ACM.

228. Szeliski, R. (1991). Fast shape from shading. Computer Vision, Graphics, and Image
Processing: Image Understanding, 53(2), 129–153.

229. Tanner, M. A. (1996). Tools for Statistical Inference. Springer.
230. Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1), 267–288.

Bibliography 355

231. Tieleman, T. (2008). Training restricted Boltzmann machines using approximations to the
likelihood gradient. In International Conference on Machine Learning (pp. 1064–1071).
ACM.

232. Torralba, A., & Oliva, A. (2002). Depth estimation from image structure. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 24(9), 1226–1238.

233. Tran, D., Vafa, K., Agrawal, K. K., Dinh, L., & Poole, B. (2019). Discrete flows: Invertible
generative models of discrete data. arXiv preprint arXiv:1905.10347.

234. Tu, Z. (2007). Learning generative models via discriminative approaches. In IEEE Conference
on Computer Vision and Pattern Recognition (pp. 1–8). IEEE.

235. Tu, Z., & Zhu, S.-C. (2002). Image segmentation by data-driven markov chain monte carlo.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(5), 657–673.

236. Tu, Z., & Zhu, S.-C. (2006). Parsing images into regions, curves and curve groups.
International Journal of Computer Vision, 69(2), 223–249.

237. Turing, A. M. (1990). The chemical basis of morphogenesis. Bulletin of Mathematical
Biology, 52(1–2), 153–197.

238. Tyleček, R., & Šára, R. (2013). Spatial pattern templates for recognition of objects with
regular structure. In German Conference on Pattern Recognition (pp. 364–374). Springer.

239. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
& Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information
Processing Systems (pp. 5998–6008).

240. Vega, O. E., & Yang, Y.-H. (1993). Shading logic: A heuristic approach to recover shape from
shading. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(6), 592–597.

241. Vincent, P. (2010). A connection between score matching and denoising autoencoders. Neural
Computation, 23(7), 1661–1674.

242. Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing
robust features with denoising autoencoders. In International Conference on Machine
Learning (pp. 1096–1103). ACM.

243. Waltz, D. (1975). Understanding line drawings of scenes with shadows.
244. Wang, J., Betke, M., & Gu, E. (2005). Mosaicshape: Stochastic region grouping with shape

prior. In Computer Vision and Pattern Recognition (CVPR) (pp. 902–908).
245. Wang, J. Y., & Adelson, E. H. (1993). Layered representation for motion analysis. In

Computer Vision and Pattern Recognition (CVPR) (pp. 361–366).
246. Wang, J. Y., & Adelson, E. H. (1994). Representing moving images with layers. IEEE

Transactions on Image Processing, 3(5), 625–638.
247. Wang, Y., & Zhu, S.-C. (2004). Analysis and synthesis of textured motion: Particles and

waves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(10), 1348–1363.
248. Wang, J., & Zhu, S.-C. (2008). Perceptual scale-space and its applications. International

Journal of Computer Vision, 80(1), 143–165.
249. Welling, M. (2009). Herding dynamical weights to learn. In International Conference on

Machine Learning (pp. 1121–1128). ACM.
250. Welling, M., Zemel, R. S., & Hinton, G. E. (2002). Self supervised boosting. In Advances in

Neural Information Processing Systems (pp. 665–672).
251. Willianms, L. R., & Hanson, A. R. (1996). Perceptual completion of occluded surfaces.

Computer Vision and Image Understanding (CVIU), 64(1), 1–20.
252. Wu, T.-F., Xia, G.-S., & Zhu, S.-C. (2007). Compositional boosting for computing hierarchi-

cal image structures. In IEEE conf. on Computer Vision and Pattern Recognition (CVPR) (pp.
1–8).

253. Wu, Y. N., Gao, R., Han, T., & Zhu, S.-C. (2019). A tale of three probabilistic families:
Discriminative, descriptive and generative models. Quarterly of Applied Mathematics, 77(2),
423–465.

254. Wu, Y. N., Si, Z., Gong, H., & Zhu, S.-C. (2010). Learning active basis model for object
detection and recognitio. International Journal of Computer Vision, 90, 198–235.

255. Wu, Y. N., Zhu, S.-C., & Liu, X. (1999a). Equivalence of Julesz and Gibbs Ensembles. ICCV.

356 Bibliography

256. Wu, Y. N., Xie, J., Lu, Y., & Zhu, S.-C. (2018). Sparse and deep generalizations of the frame
model. Annals of Mathematical Sciences and Applications, 3(1), 211–254.

257. Wu, Y. N., Zhu, S.-C., & Guo, C.-E. (2008). From information scaling of natural images to
regimes of statistical models. Quarterly of Applied Mathematics, 66, 81–122.

258. Wu, Y. N., Zhu, S.-C., & Liu, X. (1999b). Equivalence of julesz and gibbs texture ensembles.
In Proceedings of the Seventh IEEE International Conference on Computer Vision (Vol. 2,
pp. 1025–1032). IEEE.

259. Wu, Y. N., Zhu, S. C., & Liu, X. (2000). Equivalence of julesz ensembles and frame models.
International Journal of Computer Vision, 38(3), 247–265.

260. Xie, J., Gao, R., Zheng, Z., Zhu, S.-C., & Wu, Y. N. (2019a). Learning dynamic generator
model by alternating back-propagation through time. In Proceedings of the AAAI Conference
on Artificial Intelligence (Vol. 33(01)).

261. Xie, J., Hu, W., Zhu, S.-C., & Wu, Y. N. (2014). Learning sparse frame models for natural
image patterns. International Journal of Computer Vision, 114, 1–22.

262. Xie, J., Lu, Y., Gao, R., & Wu, Y. N. (2018a). Cooperative learning of energy-based model and
latent variable model via MCMC teaching. In The AAAI Conference on Artificial Intelligence.

263. Xie, J., Lu, Y., Gao, R., Zhu, S.-C., & Wu, Y. N. (2018b). Cooperative training of descriptor
and generator networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
(preprints).

264. Xie, J., Lu, Y., Gao, R., Zhu, S.-C., & Wu, Y. N. (2018c). Cooperative training of descriptor
and generator networks. IEEE Transactions on Pattern Analysis and Machine Intelligence,
42(1), 27–45.

265. Xie, J., Lu, Y., Zhu, S.-C., & Wu, Y. N. (2016a). Inducing wavelets into random fields via
generative boosting. Journal of Applied and Computational Harmonic Analysis, 41, 4–25.

266. Xie, J., Lu, Y., Zhu, S.-C., & Wu, Y. N. (2016b). A theory of generative ConvNet. In
International Conference on Machine Learning (pp. 2635–2644).

267. Xie, J., Zheng, Z., Fang, X., Zhu, S.-C., & Wu, Y. N. (2019b). Multimodal conditional
learning with fast thinking policy-like model and slow thinking planner-like model. arXiv
preprint arXiv:1902.02812.

268. Xie, J., Zheng, Z., Fang, X., Zhu, S.-C., & Wu, Y. N. (2021). Cooperative training of fast
thinking initializer and slow thinking solver for conditional learning. In IEEE Transactions
on Pattern Analysis and Machine Intelligence.

269. Xie, J., Zheng, Z., Gao, R., Wang, W., Zhu, S.-C., & Wu, Y. N. (2018d). Learning descriptor
networks for 3D shape synthesis and analysis (pp. 8629–8638).

270. Xie, J., Zhu, S.-C., & Nian Wu, Y. (2017). Synthesizing dynamic patterns by spatial-temporal
generative ConvNet (pp. 7093–7101).

271. Xing, X., Gao, R., Han, T., Zhu, S.-C., & Wu, Y. N. (2020). Deformable generator networks:
Unsupervised disentanglement of appearance and geometry. In IEEE Transactions on Pattern
Analysis and Machine Intelligence (pp. 1–1).

272. Xing, X., Han, T., Gao, R., Zhu, S.-C., & Wu, Y. N. (2019). Unsupervised disentangling
of appearance and geometry by deformable generator network. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) (pp. 10354–10363).

273. Yao, B., Yang, X., & Zhu, S.-C. (2007). An integrated image annotation tool and large
scale ground truth database. In Proceeding of the 6th International Conference on Energy
Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR) (pp. 169–
183).

274. Younes, L. (1999). On the convergence of markovian stochastic algorithms with rapidly
decreasing ergodicity rates. Stochastics: An International Journal of Probability and Stochas-
tic Processes, 65(3-4), 177–228.

275. Zheng, Q., & Chellappa, R. (1991). Estimation of illumination direction, albedo, and shape
from shading. In IEEE Transactions on PAMI.

276. Zhu, S. C. (1999). Embedding gestalt laws in markov random fields. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 21(11), 1170–1187.

Bibliography 357

277. Zhu, S.-C., Guo, C.-E., Wang, Y., & Xu, Z. (2005). What are textons? International Journal
of Computer Vision, 62(1–2), 121–143.

278. Zhu, S.-C., & Mumford, D. (1998). Grade: Gibbs reaction and diffusion equations. In Sixth
International Conference on Computer Vision (ICCV) (pp. 847–854). IEEE.

279. Zhu, S.-C., & Mumford, D. B. (1997). Prior learning and gibbs reaction-diffusion. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 19(11), 1236–1250.

280. Zhu, S.-C., Mumford, D., et al. (2007). A stochastic grammar of images. Foundations and
Trends� in Computer Graphics and Vision, 2(4), 259–362.

281. Zhu, S.-C., Wu, Y. N., & Mumford, D. (1997). Minimax entropy principle and its application
to texture modeling. Neural Computation, 9(8), 1627–1660.

282. Zhu, S.-C., Wu, Y. N., & Mumford, D. (1998). Filters, random fields and maximum entropy
(frame): Toward a unified theory for texture modeling. International Journal of Computer
Vision, 27(2), 107–126.

283. Ziebart, B. D., Maas, A. L., Bagnell, J. A., & Dey, A. K. (2008). Maximum entropy inverse
reinforcement learning. In The AAAI Conference on Artificial Intelligence.

	Preface
	Story of David Marr
	Beyond David Marr's Paradigm
	Introducing the Book Series

	Contents
	About the Authors
	1 Introduction
	1.1 Goal of Vision
	1.2 Seeing as Bayesian Inference
	1.3 Knowledge Representation
	1.4 Pursuit of Probabilistic Models

	2 Statistics of Natural Images
	2.1 Image Space and Distribution
	2.2 Information and Encoding
	2.3 Image Statistics and Power Law
	2.4 Kurtosis and Sparsity
	2.5 Scale Invariance

	3 Textures
	3.1 Julesz Quest
	3.2 Markov Random Fields
	Markov Random Field (MRF)
	Ising and Potts Models
	Gaussian Markov Random Field (GMRF)
	Advanced Models: Hierarchical MRF and Mumford–Shah Model
	Selecting Filters and Learning Potential Functions

	3.3 Filters for Early Vision
	Correlation and Convolution
	Edge Detection Filters
	Gaussian Filters
	Derivative of Gaussian and Laplacian of Gaussian Filters
	Gabor Filters

	3.4 FRAME Model
	Intuition and the Big Picture
	Deriving the FRAME Model
	Learning Potential Functions
	Filter Selection

	3.5 Texture Ensemble
	Ensembles in Statistical Physics
	Texture Ensemble
	Type Theory and Entropy Rate Functions
	A Simple Independent Model
	From FRAME Model to Julesz Ensemble on Infinite Lattice
	From Julesz Ensemble to FRAME Model on Finite Lattice

	Equivalence of FRAME and Julesz Ensemble
	From Julesz Ensemble to FRAME Model
	From FRAME Model to Julesz Ensemble

	3.6 Reaction and Diffusion Equations
	Turing Diffusion-Reaction
	Heat Diffusion
	Anisotropic Diffusion
	GRADE: Gibbs Reaction and Diffusion Equations
	Properties of GRADE
	Property 1: A General Statistical Framework
	Property 2: Diffusion
	Property 3: Reaction

	3.7 Conclusion

	4 Textons
	4.1 Textons and Textures
	Julesz's Discovery
	Neural Coding Schemes

	4.2 Sparse Coding
	Image Representation
	Basis and Frame
	Olshausen–Field Model
	A Three-Level Generative Model

	4.3 Active Basis Model
	Olshausen–Field Model for Sparse Coding
	Active Basis Model for Shared Sparse Coding of Aligned Image Patches
	Prototype Algorithm
	Statistical Modeling
	Shared Matching Pursuit

	4.4 Sparse FRAME Model
	Dense FRAME
	Sparse Representation
	Maximum Likelihood Learning
	Generative Boosting
	Sparse Model

	4.5 Compositional Sparse Coding
	Sparsity and Composition
	Compositional Sparse Coding Model

	5 Gestalt Laws and Perceptual Organization
	5.1 Gestalt Laws for Perceptual Organization
	5.2 Texton Process Embedding Gestalt Laws
	Introduction
	Background on Descriptive and Generative Learning
	A Multi-layered Generative Model for Images
	A Descriptive Model of Texton Processes
	Background: Physics Foundation for Visual Modeling
	Gestalt Ensemble

	An Integrated Learning Framework
	Integrated Learning
	Mathematical Definitions of Visual Patterns

	Effective Inference by Simplified Likelihood
	Initialization by Likelihood Simplification and Clustering
	Experiment I: Texton Clustering
	Experiment II: Integrated Learning and Synthesis

	Discussion

	6 Primal Sketch: Integrating Textures and Textons
	6.1 Marr's Conjecture on Primal Sketch
	6.2 The Two-Layer Model
	Structure Domain
	The Dictionary of Image Primitives
	Texture Domain
	Integrated Model
	The Sketch Pursuit Algorithm

	6.3 Hybrid Image Templates
	Representation
	Prototypes, ε-Balls, and Saturation Function
	Projecting Image Patches to 1D Responses
	Template Pursuit by Information Projection
	Example: Vector Fields for Human Hair Analysis and Synthesis

	6.4 HoG and SIFT Representations

	7 2.1D Sketch and Layered Representation
	7.1 Problem Formulation
	7.2 Variational Formulation by Nitzberg and Mumford
	The Energy Functional
	The Euler Elastica for Completing Occluded Curves

	7.3 Mixed Markov Random Field Formulation
	Definition of W2D and W2.1D
	The Mixed MRF and Its Graphical Representation
	Bayesian Formulation

	7.4 2.1D Sketch with Layered Regions and Curves
	Generative Models and Bayesian Formulation
	Generative Models of Curves
	Generative Models of Regions

	Bayesian Formulation for Probabilistic Inference
	Experiments
	Experiment A: Computing Regions and Free Curves

	8 2.5D Sketch and Depth Maps
	8.1 Marr's Definition
	8.2 Shape from Stereo
	The Image Formation Model
	Two-Layer Representation
	The Inference Algorithm
	Example Results

	8.3 Shape from Shading
	Overview of Two-Layer Generation Model
	Results

	9 Learning by Information Projection
	9.1 Information Projection
	Orthogonality and Duality
	Maximum Likelihood Implementation

	9.2 Minimax Learning Framework
	Model Pursuit Strategies
	2D Toy Example
	Learning Shape Patterns
	Relation to Discriminative Learning

	10 Information Scaling
	10.1 Image Scaling
	Model and Assumptions
	Image Formation and Scaling
	Empirical Observations on Information Scaling
	Change of Compression Rate
	Variance Normalization
	Basic Information Theoretical Concepts
	Change of Entropy Rate

	10.2 Perceptual Entropy
	A Continuous Spectrum

	10.3 Perceptual Scale Space
	10.4 Energy Landscape

	11 Deep Image Models
	11.1 Deep FRAME and Deep Energy-Based Model
	ConvNet Filters
	FRAME with ConvNet Filters
	Learning and Sampling
	Learning a New Layer of Filters
	Deep Convolutional Energy-Based Model
	Hopfield Auto-Encoder
	Multi-grid Sampling and Modeling
	Adversarial Interpretation

	11.2 Generator Network
	Factor Analysis
	Nonlinear Factor Analysis
	Learning by Alternating Back-Propagation
	Nonlinear Generalization of AAM Model
	Dynamic Generator Model

	12 A Tale of Three Families: Discriminative, Descriptive, and Generative Models
	12.1 Introduction
	Three Families of Probabilistic Models
	Supervised, Unsupervised, and Self-supervised Learning
	MCMC for Synthesis and Inference
	Deep Networks as Function Approximators
	Learned Computation
	Amortized Computation for Synthesis and InferenceSampling
	Distributed Representation and Embedding
	Perturbations of Kullback–Leibler Divergence
	Kullback–Leibler Divergence in Two Directions

	12.2 Descriptive Energy-Based Model
	Model and Origin
	Gradient-Based Sampling
	Maximum Likelihood Estimation (MLE)
	Objective Function and Estimating Equation of MLE
	Perturbation of KL-divergence
	Self-adversarial Interpretation
	Short-Run MCMC for Synthesis
	Objective Function and Estimating Equation with Short-Run MCMC
	Flow-Based Model
	Flow-Based Reference and Latent Space Sampling
	Diffusion Recovery Likelihood
	Diffusion-Based Model

	12.3 Equivalence Between Discriminative and DescriptiveModels
	Discriminative Model
	Descriptive Model as Exponential Tilting of a Reference Distribution
	Discriminative Model via Bayes Rule
	Noise Contrastive Estimation
	Flow Contrastive Estimation

	12.4 Generative Latent Variable Model
	Model and Origin
	Generative Model with Multi-layer Latent Variables
	MLE Learning and Posterior Inference
	Posterior Sampling
	Perturbation of KL-divergence
	Short-Run MCMC for Approximate Inference
	Objective Function and Estimating Equation

	12.5 Descriptive Model in Latent Space of Generative Model
	Top-Down and Bottom-Up
	Descriptive Energy-Based Model in Latent Space
	Maximum Likelihood Learning
	Short-Run MCMC for Synthesis and Inference
	Divergence Perturbation

	12.6 Variational and Adversarial Learning
	From Short-Run MCMC to Learned Sampling Computations
	VAE: Learned Computation for Inference Sampling
	GAN: Joint Learning of Generator and Discriminator
	Joint Learning of Descriptive and Generative Models
	Divergence Triangle: Integrating VAE and ACD

	12.7 Cooperative Learning via MCMC Teaching
	Joint Training of Descriptive and Generative Models
	Conditional Learning via Fast Thinking Initializer and Slow Thinking Solver

	Correction to: Computer Vision
	Correction to:S.-C. Zhu, Y. N. Wu, Computer Vision,https://doi.org/10.1007/978-3-030-96530-3

	Bibliography

