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Abstract. In this work, we describe our experiences trying to apply
recent machine learning (ML) advances to the Algebraic Multigrid
(AMG) method to predict better prolongation (interpolation) operators
and accelerate solver convergence. Published work often reports results
on small, unrepresentative problems, such as 1D equations or very small
computational grids. To better understand the performance of these
methods on more realistic data, we create a new, reusable dataset of
large, sparse matrices by leveraging the recently published Thingi10K
dataset of 3D geometries, along with the FTetWild mesher for creating
computational meshes that are valid for use in finite element method
(FEM) simulations. We run simple 3D Navier-Stokes simulations, and
capture the sparse linear systems that arise.

We consider the integration of ML approaches with established tools
and solvers that support distributed computation, such as HYPRE, but
achieve little success. The only approach suitable for use with unstruc-
tured grid data involves inference against a multi-layer message-passing
graph neural network, which is too memory-hungry for practical use,
and we find existing frameworks to be unsuitable for efficient distributed
inference. Furthermore, the model prediction times far exceed the com-
plete solver time of traditional approaches. While our focus is on inference
against trained models, we also note that retraining the proposed neural
networks using our dataset remains intractable.

We conclude that these ML approaches are not yet ready for general
use, and that much more research focus is required into how efficient dis-
tributed inference against such models can be incorporated into existing
HPC workflows.
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1 Introduction

In this paper, we describe our experience applying recently proposed machine
learning (ML) models to predict better interpolation operators for the algebraic
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multigrid (AMG) method, with the aim of reducing the number of iterations the
method takes to converge. Our interest lies in speeding up the solution of large,
sparse linear systems which arise during fluid simulations.

A common criticism of recent ML-based approaches to solving partial dif-
ferential equations (PDEs) or accelerate scientific simulations is that they are
typically demonstrated on small 1D or 2D structured grids. Yet industrial and
scientific simulations currently solve problems many orders of magnitude larger,
and existing tools are designed to support unstructured 3D meshes. To be use-
ful, ML acceleration approaches must be shown to work on these inputs. In this
work, we use the 10,000 3D geometries in the Thingi10K dataset, run a simple
3D Navier-Stokes FEM fluid simulation on each, and capture the sparse matrices
which result, to create a new dataset of sparse linear systems for evaluating such
ML approaches.

In 2020, Luz et al. reported using a graph neural network (GNN) approach
for accelerating AMG that is able to deal with unstructured data [24]. Since they
found good generalization to domains outside of their original training regime,
we use their implementation as a basis for our work.

Machine learning models such as the one in [24] learn good values for parame-
ters in a process called training. Training is much more computationally demand-
ing than inference against a trained model, so it attracts the bulk of research
attention today. However, the researcher wanting to use or deploy a trained
model for inference is left with a significant amount of software engineering
effort to make their model to run well, and this is not often discussed.

A disconnect exists between the way high-performance computing (HPC)
tools are designed to scale in over the distributed compute nodes in a super-
computer – typically using implementations of the Message Passing Interface
(MPI) to communicate over fast interconnects and are invoked via workload
managers such as Slurm – and the support for serving machine learning models
in the dominant ML frameworks, which favor a cloud-like distributed computing
setup. Model serving frameworks load trained, optimized models and make them
available to clients through an interface such as gRPC. They optimize for latency
and throughput, dynamically batching requests and scaling compute resources
to match demand, and allow optimized models to make use of acceleration hard-
ware, using hardware-specific frameworks such as NVIDIA’s TensorRT that opti-
mizes models to make use of TensorCores on NVIDIA accelerators. Alternatively,
one might wish to simply load a model locally in an application by integrating
modern machine learning frameworks directly in source code. Even so, the post-
training optimization process can involve serializing to a model interchange for-
mat like ONNX [25], sparsification, data-type reduction and quantization, and
running models through deep learning (DL) compilers such as TVM [5] to opti-
mize computation and data movement. This difficulty is reflected in the growth
of a software engineering trend called “MLOps” (Machine Learning Operations),
which recognizes that the devising and training models is only a small part of
the overall effort in making these models useful [22,26].
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Our attempt at using the approach in [24] with our dataset fails: the message-
passing graph neural network (GNN) model and the graph neural network frame-
work used for the implementation do not scale to support the size of matrices
in our dataset. An inference against the model – one small part of the problem
setup phase – runs longer than a traditional solver takes to complete the whole
solution, and uses huge amounts of memory even for modest problem sizes. In
addition, the model does not generalize well to even the smaller sparse matri-
ces in our dataset. We find that support for distributed exact inference using
large graphs in GNN frameworks today is limited, and difficult to integrate into
our workflow. The GNN nature of the model makes it difficult to optimize, and
support in the common ONNX interchange format is lacking.

The structure of the rest of this paper is as follows: we give an overview
of AMG in Sect. 2.1 and discuss our evaluation dataset in Sect. 2.2. We review
of the recently proposed ML acceleration approaches for AMG in Sect. 3 with
special focus on the approaches of Greenfeld et al. [16] and Luz et al. [24]. We
discuss our results in Sect. 4 before concluding with some thoughts on future
work.

Our contributions in this work are

– A new dataset of 30,000 sparse linear systems representative of the fluid
mechanics simulations arising from FEM simulation complex 3D geometries.
The dataset is easy to modify for different problems and boundary conditions,
and useful for practically evaluating suggestions for ML-accelerated solvers.

– Findings from our experience with the model from Greenfeld et al. [16], which
demonstrate that much simpler models can also learn good interpolation oper-
ators, with corresponding benefits for integrating them into applications

– A description of our experience trying to apply a Graph Neural Network such
as the one in [24] to larger, 3D fluid dynamics problems.

2 Background

2.1 Overview of Algebraic Multigrid

In this section we give a very brief the AMG concepts which are important for
contextualizing the ML methods which follow. A thorough overview of AMG is
available in [29].

In this setting, we are interested in solving linear systems of the familiar
form:

Ax = b (1)

where A ∈ R
n×n is a very sparse matrix. These systems frequently arise in

scientific domains when solving partial differential equations (PDEs) that are
discretized on a computational grid, and then solved using techniques such as
FEM, or the Finite Difference Method (FDM) or Finite Volume Method (FVM).
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For example, in a typical fluid dynamics solver, such linear systems are solved at
each timestep when calculating the next grid values for the velocity and pressure
fields.

In real-world problems these linear systems are both very large (many mil-
lions of rows), and extremely sparse, encouraging the use of specialized solvers
which take advantage of these properties. Iterative relaxation methods are used,
which improve on an initial guess until the solution converges (i.e. until the
residual ei = ‖Axi − b‖ becomes sufficiently small).

Many relaxation methods have been developed over the last few decades,
including the well-known class of Krylov subspace methods such as the Conjugate
Gradient (CG) method and Generalized Minimal Residual Method (GMRES).

Relaxation methods are known to be good at reducing high-frequency errors
(associated with eigenvectors of A that have large eigenvalues), but poor at
reducing the smooth or low-frequency errors, and can need many iterations to
converge.

Multigrid methods improve on this situation by creating a hierarchy of
coarser (smaller) grid levels. At each level, residual errors after applying smooth-
ing at the fine grid level are projected to the next coarsest grid using a problem-
and level-specific ‘restriction operator’ R, before applying smoothing (relaxation)
at the coarser grid level. This process is repeated, resulting in smaller and smaller
linear systems, until eventually a system is small enough to solve directly. The
coarsest grid error is then interpolated back from coarse to fine grid levels using
problem- and level-specific ‘prolongation operators’ P and added back to the
post-smoothing guess as a correction, until finally a few relaxations are applied
to the finest system. This entire process forms one “V-cycle”, several iterations
of which are performed until the residual converges.

Coarse-grid correction smooths out the low-frequency errors, while relax-
ations at the finest grid level smooth out the high-frequency errors, resulting in
rapid convergence.

In the original Geometric Multigrid context, the problem geometry (‘grid’)
is available to the solver, but the Algebraic Multigrid method [28] extends this
multilevel idea to general linear systems in a ‘black-box’ fashion, using only the
entries of the matrix A and the target vector b as inputs. Coarsening strategies
in AMG use algebraic properties of the nodes in the matrix (such as the strength-
of-connection or energy-based properties) rather than the problem geometry to
select coarse nodes, and heuristic methods to select the weights in the prolonga-
tion operator.

AMG’s black-box approach may be less efficient than approaches which can
exploit the problem geometry, but it has an important software engineering
advantage: easily re-usable, optimized libraries for the solution of general linear
systems from different domains can be created which use standard matrix-vector
interfaces. Examples of such libraries in the HPC world are HYPRE’s Boomer-
AMG solver [11] and ML [13], which have developed parallel versions of AMG
algorithms that support distributed sparse matrices for very large systems, and
scale well over thousands of nodes.
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Coarsening Strategies. Several algorithms have been proposed to identify which
nodes of the grid are “coarse” (to be included in the next grid level), and which
are “fine”. This split is used to create the next grid level, but also forms vital
information in the construction of the operators which interpolate values back
between the coarse and fine grids.

Examples are the “classical” Ruge-Stüben coarsening [28], Cleary-Luby-
Jones-Plassman (CLJP) [6], and parallel coarsenings which lead to lower opera-
tor complexity, such as Parallel Modified Independent Set (PMIS) and HMIS [7].
The aggressiveness of the coarsening influences the size of the next-coarsest grid
(and thus the run-time of the final algorithm), but also impacts the subsequent
choice of interpolation operators.

Interpolation and the Construction of the Prolongation Operator. Between two
grid levels, the error propagation matrix is given by

M = Sσ2(I − P [PT AP ]−1PT A)Sσ1 (2)

where the S terms represent error propagation matrices of the pre- and post-
smoothing relaxation sweeps.

The asymptotic convergence rate of AMG is determined by the spectral
radius of this error propagation matrix ρ(M). After the pre- and post-smoother
are chosen, ρ(M) depends only on P . While a good P is one that results in a
small spectral radius for M , it should also be sparse for computational efficiency.

We note that the restriction operator which maps from fine to coarse grids
is often chosen such that R = PT .

The methods we consider in Sect. 3 will aim to improve on the weights in a
candidate P .

Use of AMG as a Preconditioner. The multilevel nature of AMG means that each
iteration is much more expensive to execute than an iteration of a single-level
Krylov solver. As a result, instead of being used as a standalone solver, AMG
is frequently used as a preconditioner to improve the convergence of Krylov
subspace methods. In this task, only a few AMG iterations are run to get an
approximate solution, and the setup cost of AMG (including building P ) becomes
more important than the cost of AMG iterations to solve the system.

2.2 A Dataset of Sparse Systems from 3D Unstructured Meshes

To evaluate the usefulness of newly proposed methods, we build a large dataset
of sparse matrices captured from simple FEM fluid simulations on a diverse set
of geometries. Our search for existing open datasets of geometries to leverage
as a starting point led us to Zhou and Jacobson’s 2016 Thingi10K dataset [38],
which contains 10,000 3D printing models. Similar sources of 3D shape datasets
exist in the ModelNet [34] and ShapeNet [4] datasets. However, Thingi10K was
chosen since it has already been used as an evaluation set for the FTetWild
mesher [19], which transforms “triangle soup” input meshes into high quality
tetrahedral meshes that are valid for use with FEM simulations.
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To generate our dataset, we use the FEniCS [23] framework with the 10,000
high quality versions of the Thingi10K meshes after FTetWild processing, and
implement a simple 3D Navier-Stokes simulation using P2-P1 (Taylor-Hood)
finite elements with a time-varying pressure condition, and Dirichlet boundary
conditions. At each timestep, the solver must solve three large linear systems
representing the velocity update, pressure correction, and velocity correction
steps. After a few timesteps, we capture these linear systems to files, giving us
30,000 test matrices.

This process can be re-run with a variety of boundary and initial conditions,
different PDEs with various coefficients, different FTetWild triangle densities,
and different solvers (e.g. finite volume method simulations) to easily generate
many other candidate sparse linear systems to evaluate the accuracy of acceler-
ation methods.

An example of a mesh from the Thingi10K dataset is shown in Fig. 1. Here
we show Item 47251 (“Living Brain Right Part”). The geometry is transformed
using FTetWild then used as the basis for a simple FEM simulation with 438,897
degrees of freedom. We show a rendering of the original mesh (252,204 faces),
and a visualization of the corresponding sparse matrix from the velocity update
step of our simulation. The square matrix is challenging at 2,995,242 rows, but is
also 99.997% sparse. While this is still orders of magnitude smaller than problem
sizes in industrial applications, it is more representative of the problems we wish
to solve than the small test problems used in [24] (64–400,000 rows).

Fig. 1. Item 47251 Living Brain Right Part from the Thingi10K dataset, with a visu-
alisation of the corresponding sparse matrix from a FEM fluid simulation using this
geometry.

Figure 2 gives an overview of the matrix sizes and sparsity of the matrices in
the dataset (using the default FTetWild triangle density). As we will discuss in
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Sect. 3.2, these sparse matrices are also much larger than those used in bench-
mark datasets for common graph neural network frameworks.

Fig. 2. Distribution of matrix sizes and sparsities in the dataset (velocity projection
step only)

3 Overview of the Recently Proposed Methods

The earliest work we are aware of which tries to predict better prolongation
operators for AMG using machine learning is the Deep Multigrid Method pro-
posed by Katrutsa, Daulbaev and Oseledets [21], which they demonstrate only
on small structured grid problems for PDEs in 1D. The method is not practical
because it requires training a new deep neural network for every new matrix A.
We did not apply it in our work.

For our work, we were specifically attracted to the approaches in Luz et al.
[24] and the work preceding it in Greenfeld et al. [16], which try improving on
the values in a candidate P produced by some existing method. Since these
methods use previously computed coarsening and prolongation sparsities, they
can leverage the decades of work in existing AMG solvers.

Learning to Minimize ρ(M). In all three of these works, the problem of predicting
a good P is recast as a learning problem where the aim is to minimize ρ(M),
the spectral radius of the two-grid error matrix from Eq. 2.

Any algorithm that tries to minimise ρ(M) directly faces a difficult time:
evaluating ρ(M) means inverting the large (PT AP )−1 term in Eq. 2, and sub-
sequently performing a very expensive (O(n3)) eigen-decomposition with n
extremely large. To make matters worse, neither TensorFlow nor PyTorch (the
two dominant DL frameworks today) currently support sparse matrix inversion,
and converting to dense representations is infeasible for problems of this size.
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Instead, Katrutsa, Daulbaev and Oseledets approximate the spectral radius
using Gelfand’s formula [21], and develop an efficient, unbiased stochastic esti-
mator for this approximation. It still requires evaluating norms of M , and thus
computing the expensive (PT AP )−1 term.

In contrast, both [24] and [16] choose a proxy loss function: they minimize the
upper bound for the spectral radius given by the Frobenius norm ‖M‖2F . To avoid
the large cost of evaluating the (PT AP )−1 term directly, they restrict their train-
ing data distribution to specially synthesized block-circulant, block-diagonalized
matrices, where the norm is the sum of the small diagonal blocks’ norms. This
allows efficient and stable calculation of the loss function, but severely restricts
the distribution of input matrices available for training.

3.1 Deep Residual Feed-Forward Network for 2D Structured Grid
Problems (Greenfeld et al. [16])

Our interest is in methods that work for 3D unstructured grids, but in this
section we briefly discuss the work of Greenfeld et al. [16]. Their neural network
model is for a 2D structured grid discretized using a 3 × 3 stencil. However, it
lays important groundwork for the unstructured grid method which follows.

Input and Output. The proposed deep neural network aims to improve on values
in a candidate prolongation matrix as determined by an existing interpolation
algorithm, by only using information local to each coarse point. The same net-
work is used to predict P at all levels of the grid.

In addition to inference against the model, there is non-trivial pre- and post-
processing to assemble the inputs and interpret the neural network’s outputs.

As input, for each coarse point in the grid, we pass to the network the equiv-
alent point in the fine grid and its four nearest neighbors, using the 3× 3 stencil
of each of these 5 points, resulting in 45 real values which are concatenated and
flattened to build an input in R

45.
The output of the network is fixed to be in R

4 and represents the weightings
of the coarse point to the fine grid points to the north, south, east and west.
Remaining directions’ weightings are then solved algebraically. In the specific
problem formulation the authors choose, the sparsity of the columns in P is
fixed to allow at most 9 non-zeros, and the maximum distance to which coarse
points can contribute to fine points is fixed at 1.

Despite its limitations, this network is more flexible than earlier proposals for
PDE solvers such as the one in Tang [30]: it works for grids of any size without
re-training, as long as the stencil size of the problem is the same. The authors
also show some generalization capability when used with different boundary
conditions and distributions of coefficients for the underlying PDE.

However, this approach involves very tight integration with the problem being
solved, and means training entirely different networks for different discretizations
(consider that when using a 3D 27-point stencil instead of a 2D 9-point stencil,
the concatenated, flattened inputs will be in R

189 instead of R45), and needs an
entirely different formulation to use longer-range interpolation strategies. It is
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also limited to structured grids. So we look to another proposal to tackle the
unstructured problems of interest in our dataset.

3.2 Graph Neural Networks for Unstructured Problems (Luz et al.
[24])

Seeking to extend the work of Greenfeld et al. to unstructured problems, Luz et
al. develop an approach in [24] which uses the Graph Neural Network shown in
Fig. 3.

Fig. 3. The graph neural network used in [24].

GNNs are a recent kind of machine learning model that can deal with general
unstructured input. A common unifying framework for reasoning about graph
networks is presented by Bataglia et al. in [1], who also developed the DeepMind
GraphNets library that Luz et al. used for the implementation of this model.

Luz et al. learn to predict P using a non-recurrent encode-process-decode
architecture, in which

– the encode block learns a representation of the input edge and node features in
a higher-dimensional latent space (R64). It has two 4-layer dense feed-forward
neural networks to learn this function for edges and nodes independently.

– the process block consists of 3 message-passing layers. In graph networks,
message passing layers (Gilmer et al. [14]) are a graph generalization of spatial
convolution, and are essential for learning representations. Message passing
layers produce a “message” for each edge by evaluating some learned function
φ, taking as input the edge feature and the node features of the edge’s incident
nodes. Then, for each node, we aggregate the messages from its edges using
another learned function ψ which takes as input the sum reduction of the
incoming messages. In graph neural networks, the learnable functions φ and
ψ are implemented using some choice of neural network. Luz, et al. use 4-layer
dense feed-forward networks, but also choose to concatenate each message
layer’s input with the previous layer’s input1.

1 Plus we note that a bug in the original authors’ implementation results in a super-
fluous concatenation of the encoded input with itself before being fed to any message
passing layers.
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– the decode block translates the high-dimensional latent node and edge repre-
sentations back into a single real value per edge using two independent 4-layer
feed-forward networks.

This model has 286,146 learnable parameters.
In addition to the model, there are non-trivial pre-processing and post-

processing tasks to translate between the sparse tensors in the problem domain
and the data structure (a “GraphsTuple”) used by the GraphNets framework.

Similar to the Greenfeld et al. model in Sect. 3.1, to prepare the input to the
network we need: the list of coarse nodes from an existing coarsening method, a
candidate prolongation matrix from an existing method, and the sparse matrix
A. These are transformed into a GraphsTuple structure in which nodes are one-
hot encoded to indicate whether they are coarse or fine, and edge values are
concatenated with a one-hot encoding indicating whether they are included in
the candidate P ’s sparsity pattern. Note that the size of the graph structure
depends on both the size and the sparsity of A.

The output from the graph network is another GraphsTuple, from which the
final P must be reconstructed. The original coarse nodes list is used to select
the columns of P , and the baseline P is used to re-impose the sparsity pattern
(i.e. only selecting those edge values from the graph network output).

The current implementation uses the DeepMind GraphNets library, which in
turn is based on the Sonnet library that builds on the well-known TensorFlow ML
framework, allowing the implementation to use TensorFlow’s optimised kernels
for sparse and dense Tensor operations on various devices, and benefiting from
TensorFlow’s extensive ecosystem of tooling. However, we note that other graph
network libraries exist which are more actively maintained and report better
performance, such as DGL [31].

4 Results

4.1 For the Model in Greenfeld et al.

Faster Training with Simpler Models. The authors of [16] choose a 100-wide,
100-deep residual feed-forward network with over 106 trainable parameters to
learn the f : R

45 → R
4 mapping, without justifying why such an expressive

network might be necessary (although they state in their conclusions that future
work should consider simpler models). The network as proposed in [16] took
almost a day to train on a high-end (Intel Xeon 8168 48-core) CPU, or several
hours on a GPU – a prohibitive upfront cost for a method so tightly integrated
with the specific problem being solved, considering that the problem sizes in [16]
only take seconds to solve using a traditional solver.

Pursuing simpler, shallower neural network models is attractive because they
would not only allow for a faster forward pass and much less computation during
inference, but also consume less memory, and require fewer weights to be loaded
from a serialized description of the model.
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We retrained two much simpler network architectures: a simple 4-layer
encoder-decoder network (layer widths 100, 50, 30, 50 with ReLu activations)
with 12,998 learnable parameters and a shallow 2-layer multi-layer perceptron
(layer widths 20, 10 with ReLu activations) with 1,038 learnable parameters.
Layer widths were chosen to result in networks with approximately two and
three orders of magnitude fewer learnable parameters than that proposed in
[16], respectively.

Informed by results showing that incorporating large learning rates aids rapid
learning convergence (Wilson et al. [32]), we also introduced an exponentially
decaying learning rate schedule with a large initial value (ε = 0.1, decay rate
0.95) to replace the authors’ approach of only setting a small initial learning
rate (ε = 1.2 × 10−5). When used with the common “early-stopping” technique
[27], these changes can reduce training from hours to minutes on a CPU, yet
we still achieve very good prediction accuracy. The simple networks continue
to outperform the classical Ruge-Stüben interpolation the authors of [16] use
as a baseline comparison, although not as well as the original network, and the
simplest network’s results do not generalize to larger matrix sizes (see Table 1).

Table 1. Performance of simpler network architectures applied to the work in [16],
indicating the percentage of cases where the model’s predicted P resulted in conver-
gence in fewer AMG V-cycles than a baseline Ruge-Stüben solver to solve the 2D FEM
problem.

Grid size Original from [16] 4 layer enc-dec 2-layer MLP

32× 32 83% 93% 96%

64× 64 92% 90% 88%

128× 128 91% 88% 78%

256× 256 84% 82% 78%

512× 512 81% 86% 68%

1024× 1024 83% 80% 52%

Integration and Parallelization. The design of the model in [16] allows it to be
used in a parallel, distributed-memory setting. Gathering the stencil of surround-
ing nodes uses mostly local values and communication patterns very similar to
those required during coarsening and classical interpolation, and allows extensive
re-use of values already in a distributed node’s memory. Similarly, since the net-
work considers each input in isolation, it is possible to have several distributed
instances of the model to query (e.g. one per compute node), and we can batch
inputs to the network for efficient computation. Finally, the simplest network
we found has a very light computational profile (two layers of matrix multiplica-
tion and activation function computation) and not many weights to load during
model deserialization, making it feasible to use the model on the same compute
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nodes where the coarsening and interpolation work happen. Models are agnostic
to the size of the input grid, making them re-usable. Even though a different
model may be needed for each problem (distribution, boundary conditions),
having pre-trained model weights for a variety of problem settings available for
download in a ‘model zoo’ might be feasible.

4.2 For the Model in Luz et al.

Scalability of Inference. First, we try to evaluate how well a model trained as
described in [24] copes with the matrices in our dataset without modification.

A problem quickly becomes apparent: as shown in Fig. 4, when performing
inference on a single node, the execution time of the forward pass of the graph
network quickly becomes problematic for larger matrices, e.g. taking almost
5 min for a medium-sized 800, 445 × 800, 445 matrix in our test set on a 48-core
Intel Skylake CPU. This inference represents only the first level of the grid’s
setup of P – in a real problem setting, subsequent levels still would need to
make inferences in serial (for progressively smaller graphs) during the problem
setup phase. For comparison the single-core pyAMG [2] solver using a classical
direct framework for this same problem takes just 71.1s for the whole problem
setup phase and 50.5s for the iterations, i.e. the traditional approach using a
single core can solve the whole system in less time than just a small portion of
the setup phase takes using the GNN model.

The time complexity of the GNN inference is linear in the size of the input
network. Wu [35] derives the time complexity of similar message-passing Graph
Convolutinal Network (GCN) layers as O(Kmd + Knd2) with K the number of
layers in the network, m the number of edges and n the number of nodes d is a
fixed constant denoting the size of the hidden features. This is borne out by the
linear scaling seen in Fig. 4, where deviation from the ideal slope is attributable
to the slightly different sparsities of the matrices affecting the number of edges
in the graph.

While the runtime is already problematic, a bigger problem is the memory
usage of this network. In the default implementation, modest compute nodes
with only 16GiB of RAM (or smaller GPUs) run out of memory at inputs of
about 20, 000 nodes. The largest matrix we were able to use as input (800, 000
nodes) on a more powerful compute node used approximately 400GiB of RAM
to perform the query.

As with run-time, the memory required for inference in this network also
grows linearly with the size of the network. Specifically, for the message passing
layers we look to a result in Wu [35] which demonstrates the memory complexity
for graph convolutional layers as O(Knd+Kd2), with K the number of layers in
the network, n the number of nodes and d a fixed constant denoting the size of the
hidden features. However, since the network architecture in [24] also concatenates
outputs of each message passing layer as inputs to the next layer, this size of
the latent space grows with each layer, with each edge feature consisting of 384
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Fig. 4. Inference time against the graph network model in seconds on a 48 core Intel
Xeon (Skylake) 8168 (2.7 GHz) CPU, for increasing graph sizes (excluding input and
output processing). The largest problem size for which inference succeeded had 800,445
nodes and 49,609,863 edges. Larger problems ran out of memory (using in excess of
391 GiB of RAM)

float64’s after the last message passing layer! Luz et al. perform an ablation
study which shows that omitting this concatenation slightly hurts the accuracy
of the network.

Memory usage for exact inference in Graph Neural Networks today is known
to be problematic [35]. Intermediate layers store the values for all nodes, making
memory usage highly sensitive to the size of input graphs. The typical approach
is to resort to stochastic sampling of a limited number of nodes or edges in a
neighborhood [17], but our problem setting for predicting P makes this impos-
sible (we need the edge values of all elements of P in our output). For exact
inference against large networks on GPUs, it is possible to loop over the nodes
and edges per layer in batches, and copy intermediate layer values back to CPU
memory. But this approach requires a manual, device-specific implementation
that reduces portability [8], and still assumes that the data fits in CPU memory.

Our situation is not unusual: we see other recent works reporting out-of-
memory errors (OOMs) on modest network sizes (e.g. the performance com-
parison of various frameworks in [31]), and note that benchmarks for GNNs
typically use small (<20,000 node) problem sizes, focus on training times and
report single-node inference [10,33]. This unrepresentative state of affairs is being
addressed by initiatives such as the recent Open Graph Benchmark dataset [18].

Of course, we can use further tricks to squeeze more performance from a
single node, such as using mixed precision (float32 accumulation and float16
weights in the network) or reduced precision datatypes for the intermediate
vectors instead of the float64 widths used by Luz et al. (although we note that
these are not supported by the versions of the frameworks used in their original
implementation), and possibly reducing the dimensionality of the latent space
(not tested in the authors’ ablation study). Skillful application of techniques such
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as inducing sparsity in the model through pruning, and the use of a DL compiler
such as TVM [5] may reduce the computation and memory usage to allow for
much larger single-node inferences. In addition, alternative frameworks like DGL
have much better memory use owing to their use of fused message passing kernels
that do not store the intermediate message values [31]. However, even with such
mitigations, scaling to the large problem sizes with billions of nodes as required
by industrial-scale problems is not feasible on a single inference node.

Distributed Inference. Industrial use cases involving billion-scale graphs, such as
that reported by Ying et al. [37] on 18-billion edge graphs at Pinterest, have led
to the development of large-scale frameworks. A survey of leading GNN frame-
works (PyTorch Geometric [12], DGL [31], GraphNets [1], Spektral [15], Angel
[20], Graph-Learn [36]) shows widespread support for distributed training, espe-
cially using data-parallel rather then model-parallel techniques, but distributed
inference (where a single large input graph is distributed over many nodes)
remains poorly supported. Our survey found support for distributed inference in
recent versions of DGL, Angel, and Graph-Learn but the heavyweight process
for initializing the servers and workers, determining graph partitions, and load-
ing the distributed data efficiently (from shared storage) to build the distributed
graph is overkill given that we only need to make a single inference during the
AMG problem setup phase per multigrid level. We have not re-implemented the
model in these frameworks as part of our work.

Model Input and Output Processing. In our integrations with scalable solvers
such as HYPRE, we face the problem that the large sparse matrix A is par-
titioned over distributed compute nodes’ memories. The transformation from
this sparse matrix into a single “GraphsTuple” input for inference against the
model using some standard serving framework can easily be implemented in a
parallel, distributed fashion, but the interface between this distributed represen-
tation and the model framework is awkward: when using a serving framework,
e.g. by initiating a request using the gRPC framework, we still need to send the
whole graph, and by implication have gathered it into a single originating node’s
memory. Similarly, the response must be unmarshalled, the sparsity pattern of
P re-imposed, and the resulting elements of P repartitioned to their distributed
locations to continue with solver setup.

Testing Small-Graph Generalization Without Retraining. Despite training on a
limited class of matrices that allow for cheap evaluation of the loss function, Luz
et al. show some generalization capability of this network to other distributions
and even different PDEs problems without retraining, including to a simple 2D
FEM problem.

However, we note that the inputs to the network are also shaped by the
coarsening strategies and interpolation methods used (they are used in the pre-
processing and post-processing stages to impose a sparsity pattern). The authors
of [24] choose classical Ruge-Stüben direct interpolation with the CLJP [6] coars-
ening and no Krylov acceleration as their baseline – a choice which sets the bar
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for comparison quite low (it produces many more iterations and deeper hierar-
chies than a more aggressive coarsening and longer-range interpolation).

Classical AMG is designed for Hermitian positive definite matrices, and our
FEM simulations are not guaranteed to produce these. Before testing how well
a pre-trained model can generalize to our dataset, it is important to establish
whether a baseline (non-ML) classical Ruge-Stüben solver, as configured with
the coarsening and interpolation [24] used during training, can solve our systems.
As a test, we use those “velocity projection” matrices with fewer than 25,000
rows, comprising 1,624 matrices from the dataset.

The solver is configured as in [24] to perform V-cycles using CLJP coarsening,
a classical algebraic strength metric with θ = 0.25, a single symmetric sweep of
Gauss-Seidel pre- and post-smoothing, and a limit of 12 on the maximum number
of levels. With this solver configuration, only 69.2% of the linear systems in the
sampled dataset converge in under 500 iterations. Better results can be expected
by using other options, such as smoothed aggregation coarsening with GMRES
acceleration.

In contrast, when using the model from [24] to predict values of P , we find
that only 17.7% of these systems converge in under 500 iterations. Even in cases
where both the model and the baseline converge, the model’s predictions result
in fewer iterations to convergence only 1.2% of the time. It has not been able to
generalize to the PDE and shapes in our dataset, even for the smallest matrices.

Infeasibility of Retraining or Fine-Tuning with Our Dataset. Lastly, we note
that the prohibitive cost of evaluating the loss function on large matrices means
we cannot use our dataset to retrain or fine-tune the network as it is currently
proposed. Since TensorFlow does not currently support sparse inversion of matri-
ces, the large PT AP matrices must be converted to dense matrices before matrix
inversion, for which they are infeasibly large.

5 Conclusion

To date, the work of Luz, et al. [24] remains the only work we are aware of
in this domain that supports unstructured grid problems. The proposed model
has appealing ‘black box’ properties that mean the solver implementation is
separated from the problem discretization, and the model can be used to com-
plement the decades of work optimizing AMG solvers. However, we find that the
model (as currently implemented) cannot scale usefully to even moderately sized
matrices in our dataset. Although the situation may be improved by more opti-
mization and re-implementation in a more performant framework, single-node
inference cannot scale to the billions of nodes required for current applications.
Yet unfortunately the current heavyweight setup for distributed graph inference
frameworks is not suitable for this problem either: the nature of AMG means
that inferences are infrequent (once per level per linear system) and necessarily
sequential (cannot be batched for all the levels). But our work with the proposal
from Greenfeld et al. shows that there may be hope for simpler models to achieve
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good results on these problems, and these simpler networks are currently more
amenable to deployment for inference in a distributed setting.

Computation for the coarsening and the classical interpolation must be car-
ried out in addition and strictly prior to invoking the ML methods we considered,
i.e. the run-time for the setup phase is guaranteed to be substantially longer.
This only pays off if the cost of the additional inferences is recovered by run-time
savings from substantially fewer iterations. For the small subset of our dataset
with reasonable run-times, this was not the case.

Our hope had been to extend this approach to testing some of the very
large models we are considering (with billions of degrees of freedom), but given
the limitations of scaling the Graph Neural Network approach with existing
implementations, we terminated our investigation early. Future work is required
before these methods are ready for general application to real-world problems.

Future Work. We are investigating the use of DLPack [9], a proposal for an
in-memory tensor structure that allows no-copy tensor sharing between DL net-
works. It already has support in PyTorch, TensorFlow, DGL and PetSc, poten-
tially enabling easier integration of traditional HPC and DL tools.

Re-implementing the model of Luz et al. in a more actively developed frame-
work such as DGL will allow more scope for optimization using techniques such
as reduced precision and weight quantization, and can allow evaluating whether
stochastic neighborhood sampling can be made to work with this problem and
relieve memory pressure.

Adapting the model in [24] for smoothed aggregation and longer-range inter-
polation, and perhaps combining it with preconditioners for FEM such as AMGe
[3], may prove to be more successful for the problems in our dataset.

Lastly, we are considering a hybrid of the approaches in [16] and [24], in which
the distance-4 neighborhoods for each point are gathered at their distributed
nodes and passed to local, simpler graph networks which operate only on the
small subgraphs, allowing the GNN approach to scale better.

A Dataset

Code and instructions for reproducing our dataset and training the models can
be found at https://github.com/UoB-HPC/scaling-ml-approaches-to-amg.
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28. Ruge, J.W., Stüben, K.: Algebraic multigrid. In: Multigrid Methods, pp. 73–130.
SIAM (1987)
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