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Abstract In this paper the problem of mathematical modelling of phonation is dis-
cussed. The main attention is paid to the treatment of vocal fold vibrations including
the periodical appearance of their contacts. A simplified mathematical model is pre-
sented, numerically analyzed and discussed. The Hertz impact forces are used in the
structural part. In order to treat the contact phenomena in the fluid model a strat-
egy based on fictitious porous media is introduced. The numerical discretization is
described and numerical results are presented.
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1 Introduction

The fluid-structure-acoustic interaction problems are usually associated with tech-
nical applications as aeroelasticity, see [1]. However, couplings between fluid flow,
elastic structure deformation and acoustics are involved also in biomechanics of
voice, see [2]. Voice production is a complex process, which involves airflow induced
vibrations of vocal folds generating a sound source. The fundamental sound is fur-
ther modified by the acoustic resonances in the vocal tract cavities. The vocal folds
start to oscillate at the so-called phonation onset (flutter instability) given by certain
airflow rate and a certain prephonatory vocal folds position, see [3]. For higher flow
rates, the glottis is closing during VFs vibration and the VFs collide loading the tis-
sue periodically by the contact stress. Consequently, the mathematical modelling of
phonation process is challenging task, it addresses flow field, structure deformation
as well as acoustics, see e.g. [4].
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In this paper an attention is paid the mathematical modelling of the voice pro-
duction. As during voice creation the airflow velocity in the human glottal region is
lower than 100m/s, one can use separately the incompressible Navier-Stokes model
for the fluid flow and the Lighthill’s acoustic analogy for the acoustic wave propaga-
tion, see [5]. The considered problem is characterized as a problem of fluid-structure
interaction and an attention is paid to the problem of glottis closure (glottis is the
narrowest part between the vibrating vocal folds).

Computational modelling can help with analysis of the physical background of
the phonation processes. These involve the interactions of the fluid flow with solid
body deformation, the contact problem and acoustics. One of the possible approaches
is using of a simplified model as the 2-mass model of the vocal folds of [6], where
a simplified air flow model is used. Such aeroelastic models [3] has applications in
simulation of vowels and in estimation of the vocal fold loading by impact stress and
inertial forces.

Here, a simplified lumped VF model with the Hertz contact model is considered
in order to more easily address the phenomena of fluid-structure interactions with the
contact of the vibrating structure similarly as in [7] and [8]. Due to the same reason a
suitablemodification of the inlet boundary condition is used. The novelty of this paper
lies in verification of the problem formulation with modified boundary conditions,
where a simplified stationary model problem is analyzed. Further, more consistent
formulation of the porous media term is used in the present paper compared to the
approach proposed in [7]. The applied numerical method is described and numerical
results are shown.

2 Mathematical Model

We consider two-dimensional model of incompressible fluid flow in an interaction
with a simplified model of vocal fold, whose deformation is described as motion of
an equivalent mechanical systems with two-degrees of freedom, see [3].

2.1 Flow Model

First, theflowmodel through the twodimensionalmodel of the computational domain
Ωt during the phonation onset phase is introduced. In this case only small amplitudes
of the vibrations of vocal folds appear and thus the flow in the domain Ωt can be
treated with the aid of Arbitrary Lagrangian Eulerian (ALE) method, see [9]. The
computational domain Ωt is shown at Fig. 1, where the additional assumption of a
symmetric flow and symmetric vibrations of vocal folds are made. The boundary
∂Ωt is assumed to consist of the inlet ΓI , the outlet ΓO , the axis of symmetry ΓS and
the time dependent part of boundary Γt consisting of its fixed ΓF and deformable
part ΓWt , which corresponds to the surface of the vibrating vocal fold.
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Fig. 1 The computational
domain Ωt with specification
of the boundary parts

The flow in the computational domain Ωt is modelled as incompressible fluid
flow described by the system of the incompressible Navier-Stokes equations (cf.
[10]) written in the ALE form.

DAu
Dt

+ ((u − wD) · ∇)u = divτ f ,

∇ · u = 0, (1)

where u denotes the fluid velocity vector u = (u1, u2), τ f = (τ
f
i j ) is the fluid stress

tensor given as τ f = −pI + ν
(∇u + ∇T u

)
, p is the kinematic pressure (means

pressure divided by the constant fluid density ρ) and ν > 0 denotes the constant
kinematic fluid viscosity (the viscosity divided by the density). Further, wD denotes
the domain velocity (i.e. the velocity of the point with a fixed reference), and DAu

Dt
is the ALE derivative, i.e. the derivative with respect to the reference configuration
Ωre f . Both the domain velocity wD as well as the ALE derivative depends on the
ALE mapping At describing the deformation of a reference domain Ωre f onto the
computational domain Ωt .

The system (1) is then equipped with an initial condition and with the following
boundary conditions are prescribed

(a) u = wD on ΓWt ,

(b) u2 = 0,−τ
f
12 = 0 on ΓS, (2)

(c)
1

2
(u · n)−u − n · τ f = 1

ε
(u − uI ) on ΓI ,

(d)
1

2
(u · n)−u − n · τ f = pre f n on ΓO ,

where uI is a given reference inlet velocity, pre f is a reference outlet pressure, n
denotes the unit outward normal vector to ∂Ω

f
t , α− denotes the negative part of a

real number α. Here, the boundary condition (2c) weakly imposes the inlet velocity
uI using the penalization parameter ε > 0.
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2.2 Vocal Fold Vibrations

The vocal fold vibrations is modelled using the mechanically equivalent two degrees
of freedommodel characterized by three massesm1,m2 andm3. The two massesm1

and m2 are displaced by the length l = L/2 from the center of the vocal fold, where
the mass m3 is located. The three masses m1,m2,m3 were determined by

m1,2 = 1

2l2
(I + m e2 ± m e l), m = m1 + m2 + m3, (3)

with l = L/2 being the distance of the masses m1 and m2 from the center, m
denotes the total mass m = m1 + m2 + m3, e is the eccentricity and I is the iner-
tia moment, see Fig. 2. The parameters e, m and I are determined using the den-
sity ρV F = 1020 kg/m3, the length (depth of the channel in the third dimension)
h = 18mm and the (parabolic) shape of the surface of the vocal fold

am(x) = 1.858 x − 159.861 x2 [m] (4)

for x ∈ 〈0, L〉 [m] with L being the thickness of the vocal fold L = 6.8 mm.
The vibration of the vocal fold is modelled by two degrees of freedom, see Fig. 2,

which are the displacements w1(t) and w2(t) of the masses m1 and m2, respectively.
The governing equation of motion reads

Mẅ + Bẇ + Kw = −F, (5)

where M is the mass matrix of the system, K is the stiffness matrix of the system
characterized by the spring constants k1, k2, see [3] for details. Thematrices are given
by

M =
(
m1 + m3

4
m3
4

m3
4 m2 + m3

4

)
. K =

(
k1 0
0 k2

)
, B = ε1M + ε2K (6)

The vector F = Fimp + Faero consists of the impact forces Fimp and the aerodynam-
ical forces Faero = (F1, F2)

T (downward positive) acting at the masses m1 and m2

Fig. 2 Two degrees of
freedom model (with masses
m1, m2, m3) in displaced
position (displacements w1
and w2). The acting
aerodynamic forces F1 and
F2 are shown
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evaluated from the aerodynamical forces as surface integrals using the (kinematic)
pressure p and derivatives flow velocity u = (u1, u2), see [7].

Moreover, the displacement of the structure surface ΓWt determines the boundary
condition for the construction of the ALE mapping and the domain velocity wD at
ΓWt is determined using by time derivatives of w1, w2.

2.3 Contact Problem

The treatment of the contact the vocal folds in the flow model requires to address
not only the inlet boundary condition, but also the periodical topological changes
of the flow domain. It can be realized more easily for the simplified situation of the
symmetric domain, but this concept can be extended to a more complicated case.
First, in this section the computational domain Ωt is assumed to be formed of the
subdomain Ω

f
t , which is really occupied by the fluid(air), and the subdomain Ω

p
t ,

which is still part of the computational flow domain but it should be occupied the
elastic vocal fold ΩV F

t . In practical implementation, the domain Ω
p
t is determined

as the intersection of the domain Ωt with the deformed vocal fold domain ΩV F
t . The

geometricalmodification of themotion of the surfaceΓWt is based on the deformation
of the surface at the contact region, see Fig. 3, where the deformation is locally
modified not to violate the minimal gap condition. At these points the surface of
the vocal fold is shifted in order to guarantee the minimal gap (gmin) condition, see
Fig. 3.

The part of the fluid domain Ω
p
t is assumed to be domain of porous media, and

the flow is then assumed to be governed by the modified equations

DAu
Dt

+ ((u − wD) · ∇)u + σ Pu = divτ f , (7)

where the tensor coefficient σ P corresponds to the artificial porosity of the fictitious
porousmedia, see [11], or it can be understand as penalization, see [12]. Here the ten-
sor is chosen to act only the x-direction, i.e. the choice σ P = P

ν
e1 ⊗ e1χΩ

p
t
was used,

Fig. 3 The detail of the
porous media flow domain
Ω

p
t
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where P denotes the artificial porosity coefficient and χΩ
p
t
denotes the characteristic

function of the set Ω p
t which is equal to one on Ω

p
t and zero otherwise.

Although this approach can be written generally, for the presented model problem
it can be described more specifically: The reference (undeformed) shape of the vocal
fold ΩV F

re f is given by

ΩV F
re f = {[x, y] ∈ R

2 : x ∈ (0, L),−H < y < am(x) − H}, (8)

where H = g0 + HV F denotes the half-height of the inlet channel given as sum of
the initial halfgap g0 and the height of the vocal fold HV F = maxx∈[0,L] am(x). The
deformation of the vocal fold ΩV F

t is described using w1, w2 by the Lagrangian
mapping Lt (x, y) = (x, ynew) with

ynew = y + w1 + w2

2
+ w2 − w1

L
x (9)

for [x, y] ∈ ΩV F
re f . In particularly, the position of the vocal fold surfaceΓ V F

t (interface
between the fluid and structure domain) is given as

Γ V F
t = {[x, y] ∈ R

2 : x ∈ [0, L], y = am(x) − H + w1 + w2

2
+ w2 − w1

L
x}.
(10)

The domainΩ P
t can be characterized as all points [x, y] ∈ ΩV F

t whichwould violate
the condition g(t) ≥ gmin or y > −gmin . Consequently, the porous media domain
can be specified as

Ω
p
t = {[x, y] ∈ R

2 : x ∈ (0, L), −gmin < y < am(x) − H + w1 + w2

2
+ w2 − w1

L
x},
(11)

see Fig. 3.
Let us mention, that for the half-gap g(t) (i.e. the oriented distance of the vocal

fold and the symmetry axis) satisfying g(t) ≥ gmin > 0 (phonation onset) such an
intersection is naturally empty and in this case the mathematical model is equivalent
to the mathematical model presented in [15] and the presented numerical method
then leads to the same results, which well determines the flutter velocity.

3 Existence and Uniqueness of a Stationary Solution

In order to discuss the penalization boundary condition we shall start with a sim-
plified stationary problem on two-dimensional domain Ω ⊂ R

2 with the Lipschitz-
continuous boundary ∂Ω . The system of Navier-Stokes equations is written in the
form
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− ν	ui + u · ∇ui + ∂p

∂xi
= fi , i = 1, 2, in Ω

∇ · u = 0, in Ω (12)

with the boundary conditions prescribed on the mutually disjoint parts ∂Ω = Γ0 ∪
Γ1 ∪ Γ2 ∪ ΓS, as

u = 0, on Γ0,

−ν
∂u
∂n

+ (p − pre f )n − 1

2
(u · n)− u = 0, on Γ1 ∪ Γ2, (13)

with pre f = pi on Γi , i = 1, 2.
The stationary problem of Navier-Stokes system of equations reads: Find u ∈ X

such that for all z ∈ X and q ∈ Q

ν
(
∇u,∇ z

)

Ω
+ c(u; u, z) −

(
p,∇ · z

)

Ω
+

(
q,∇ · u

)

Ω
+

+
∫

Γ1∪Γ2

1

2
(u · n)+u · zdS =

(
f , z

)

Ω
−

2∑

k=1

∫

Γk

pk(z · n)dS. (14)

In order to prove the existence and uniqueness of the solution let us consider the
subspace Xdiv ⊂ X defined as

Xdiv = {ϕ ∈ X ,∇ · ϕ = 0}.
Any solution u ∈ X of Equation (14) satisfies u ∈ Xdiv and moreover the equation

ν
(
∇u, ∇ z

)

Ω
+ c(u; u, z) +

∫

Γ1∪Γ2

1

2
(u · n)+u · zdS =

(
f , z

)

Ω
− (p1 − p2)

∫

Γ1

(z · n)dS.

(15)
holds for all z ∈ Xdiv .

Theorem 1 (Existence and uniqueness of the solution) Let CF‖ f ‖0,2,Ω + C1|p2 −
p1| < ν2

C̃
, where CF is the constant from Friedrichs inequality, C1 is the constant

from the trace theorem and C̃ is the constant from the continuity of the trilinear form
c. Then there exists an unique solution u ∈ Xdiv , which satisfies Equation (15) for
all z ∈ Xdiv .

Proof 1. First, we consider for any w ∈ Xdiv the problem: find u ∈ Xdiv

Aw(u, z) = L(z) for all z ∈ Xdiv.

The bilinear form Aw(·, ·) is defined by
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Aw(u, z) = ν
(
∇u,∇ z

)

Ω
+ c(u; u, z) +

∫

Γ1∪Γ2

1

2
(u · n)+|u|2dS,

and the form L(·) is defined by

L(z) =
(
f , z

)

Ω
− (p1 − p2)

∫

Γ1

(z · n)dS,

because for any z ∈ Xdiv holds

2∑

k=1

∫

Γk

pk(z · n)dS = (p1 − p2)
∫

Γ1

(z · n)dS.

The bilinear form Aw(·, ·) is continuous and coercive on Xdiv , the linear form
L(·) is continuous on Xdiv . Thus for any w∗ ∈ Xdiv there exists solution z∗ ∈
Xdiv such that

Aw∗(z∗, z) = L(z) for all z ∈ Xdiv.

With the choice of z = z∗ we get the following apriori bound

ν|z∗|21,Ω ≤ Aw(z∗, z∗) = L(z∗) ≤
(
CF‖ f ‖0,2,Ω + C1|p2 − p1|

)
|z∗|1,Ω

thus

|z∗|1,Ω ≤ 1

ν

(
CF‖ f ‖0,2,Ω + C1|p2 − p1|

)
.

2. We define the mapping Ψ : w → z from K onto K, where

K =
{
z ∈ Xdiv, |z|1,Ω ≤ 1

ν

(
CF‖ f ‖0,2,Ω + |p2 − p1|C1

)}
,

where C1 is the constant from the trace theorem. Further, we will show that the
mappingΨ is the contractive mapping onK. Let us takew1,w2 ∈ K and denote
z1 = Ψ (w1) and z2 = Ψ (w2). Thus the following equations are satisfied

Aw1(z1, z2 − z1) = L(z2 − z1),

Aw2(z2, z2 − z1) = L(z2 − z1).

Now by subtracting both equations we get from the continuity of the trilinear
form c

ν|z2 − z1|21,Ω = c(w2 − w1; z2, z2 − z1)

≤ C̃ |w2 − w1|1,Ω |z2|1,Ω |z2 − z1|1,Ω
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and with z2 ∈ K we have

|z2 − z1|21,Ω ≤ C̃
ν2

(
CF‖ f ‖0,2,Ω + |p2 − p1|C1

)
|w2 − w1|1,Ω .

Thus the mapping Ψ is a contractive mapping from K in K, and there exists a
fixed point of the mapping Ψ , which is the unique solution of the problem (15).

4 Numerical Approximation

In this section the numerical approximation of the flow model is introduced: an
equidistant partition t j = jΔt of the time interval I with a constant time stepΔt > 0
is considered. At time instants t j , j = 0, 1, . . . the approximations of velocity and
pressure are sought u j ≈ u(·, t j ) and p j ≈ p(·, t j ), respectively. The domain veloc-
ity at time instant t j is denoted byw

j
D . For the time discretization the formally second

order backward difference formula is used, i.e. the ALE derivative is approximated
at t = tn+1 as

DAu
Dt

|tn+1 ≈ 3un+1 − 4ũn + ũn−1

2Δt
(16)

where at a given time instant t = tn+1 by ũk the transformation of the velocity uk

defined on Ωtk onto Ωtn+1 is denoted.
In order to apply finite element method the weak form of Eqs. (1) is derived in a

standard form, where the ALE derivative is approximated using Eq. (16). The stabi-
lized weak at time instant tn+1 form then reads: find finite element approximations
U = (u, p) := (un+1, pn+1) such that u satisfy the boundary condition (2a) and

a(U ;U, V ) + aS(U ;U, V ) + PS(U, V ) = L(V ) + LS(V ) (17)

holds for any test functions V = (z, q) from the finite element spaces, [7] for details.
The Galerkin forms a and L are defined for any U = (u, p), U = (u, p) and V =
(z, q) by

a(U ;U, V ) =
∫

Ω

(
(

3

2Δt
+ σ P)u + ((w · ∇)u

)
· zdx −

∫

ΓI,O

1

2
(u · n)−u · zdS

+
∫

ΓI

1

ε
u · zdS +

∫

Ω

(2ν(∇u : ∇ z) − (∇ · z)p) dx (18)

and

L(V ) =
∫

Ω

4ũn − ũn−1

2Δt
· zdx +

∫

ΓI

1

ε
uI · zdS −

∫

ΓO

pre f (n · z)dS, (19)

where w = u − wn+1
D , Ω := Ωtn+1 .
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The terms aS(U ;U, V ) and LS(U ; V ) are the SUPG/PSPG stabilization terms
and the term PS denotes the div-div stabilization term. The stabilization terms are
defined locally on each element K of the employed triangulation TΔ and summed
together, i.e.

aS(U ;U, V ) =
∑

K∈TΔ

δK

(
(

3

2Δt
+ σ P )u − μ	u + (w · ∇) u + ∇ p, (w · ∇)z + ∇q

)

K

LS(U ; V ) =
∑

K∈TΔ

δK

(
4ũn − ũn−1

2Δt
, (w · ∇)z + ∇q

)

K

PS(U, V ) =
∑

K∈TΔ

τK

(
∇ · u, ∇ · z

)

K
,

where δK , τK are stabilization parameters chosen similarly as in [15].
The problem (17) is linearized, strongly coupled with the structural solver and

the described treatment of the contact problem is used.

5 Numerical Results

This section presents the numerical results for the described aeroelastic model. The
parabolic vocal fold shape am(x) given byEq. (4)was used and the computationswith
the initial half-gap chosen as g0 = 0.2mm and the inflow velocity U∞ = 0.65m/s
were performed. These conditions the phonation onset occurs, see [15]. The fol-
lowing parameters were used: the mass m = 4.812 × 10−4 kg, the inertia moment
I = 2.351 × 10−9 kg / m2 and the eccentricity e = 0.771 × 10−3 m. The stiffness
constants were chosen as k1 = 56N/m and k2 = 174.3N/m. The proportional damp-
ing constants were set to ε1 = 120.35 s−1 and ε2 = 6.12 × 10−5 s. The stiffness con-
stants give the natural frequencies of the structural model f1 = 100Hz, f2 = 160Hz,
see [13, 14]. The fluid density was ρ = 1.2 kg/m3 and the kinematic viscosity
ν = 1.58 × 10−5 m2/s.

The numerical results are shown in terms of a typical aeroelastic reponse for the
aeroelastically unstable system in Fig. 4. The vibration of the vocal fold is shown by
the graph of displacementsw1 andw2 in time domain. The graph Fig. 4a) corresponds
to the phonation onset case, the gap between the vocal folds at the glottis is still
wide opened and the modification of the mathematical model to treat the contact
phenomena is not needed.

The vocal fold vibrations grows further and the increase of amplitudes finally
leads to the almost periodical mutual contact of the vocal folds. The appearance of
the impact forces leads to almost a limit cycle of oscillations, see Fig. 4b).

The computations were performed either for the case of porosity coefficient P
equal zero (which corresponds to the open space flow) or a prescribed fixed value
(P = 106ν) of porosity. Figure6 shows the comparison of these two computations
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Fig. 4 The aeroelastic response of the structure for flow velocity U∞ = 0.65 m/s: a phonation
onset in terms of the displacements w1(t) and w2(t) (top), b phonation with the glottis closure in
terms of the displacements w1(t) (solid/black line) and w2(t) (dashed/green line) on the left and
the half-gap g(t) on the right

Fig. 5 The flow patterns in terms of flow velocity magnitude and instantenous streamlines during
the closing and the reopening phase. The axis show the non-dimensional coordinates x/L , y/L
with L being the width of the vocal fold (length in x-direction)

in terms of the inlet quantities. This graph confirms that use of this modified math-
ematical model also really well addresses the real gap closing similarly as in [7].
The use of the anisotropic porosity has almost no influence on the inlet values of
velocity or pressure, see Fig. 6, still the x-component of the gap velocity shown in
Fig. 7 becomes zero in the case of the fictitious porosity approach employed. This
is also confirmed in Fig. 5, where the flow stops during the closure period (see the
middle part of Fig. 5).
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Fig. 6 Inlet velocity (left) and pressure (right) - comparison of the quantities for zero porosity
(dashed/green line) and non-zero porosity (solid/black line). The dotted/blue line shows the (scaled)
half-gap in dependence on time

Fig. 7 The flow velocity x-component in the glottal area - comparison of the results for zero
porosity (dashed/blue line) and non-zero porosity (solid/black line). The dotted/green line shows
the (scaled) half-gap in dependence on time

6 Conclusion

This paper focuse on analysis and an improvement of the mathematical model of
human phonation process previously suggested in [7]. The mathematical model is
based on the incompressible flow model strongly coupled with a system of ordi-
nary equations describing the motion of the vocal fold model. In order to treat the
vocal folds contact the inlet boundary conditions are prescribed by the penalization
approach, the geometrical modification of the computational domain is made and
in the artificially created part of the computational domain the fictitious anisotropic
porous media flow model is used. The analysis of a stationary problem with cor-
responding boundary conditions is presented. The proposed concept of anisotropic
porous media flow is applied , the problem is numerically discretized by an in-house
software by the stabilized finite element method. Numerical results are shown prov-
ing that the suggested approach is applicable and robust.
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