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Preface

This Springer Nature includes the papers that have been accepted at Interna-
tional Conference on Mathematics and its Applications in Science and Engineering
(ICMASE 2021) which was held in Salamanca, Spain, in July 2021. This conference
was organized by the University of Salamanca (Spain) and the Ankara Hacı Bayram
Veli University (Turkey).

The aim of this conference is to exchange ideas, discuss new developments in
mathematics, promote collaborations and interact with professionals and researchers
from all over the world in the following interesting topics: Functional Analysis,
Approximation Theory, Real Analysis, Complex Analysis, Harmonic and non-
Harmonic Analysis, Applied Analysis, Numerical Analysis, Geometry, Topology
andAlgebra,ModernMethods inSummability andApproximation,OperatorTheory,
Fixed Point Theory and Applications, Sequence Spaces and Matrix Transformation,
Spectral Theory and Differential Operators, Boundary Value Problems, Ordinary
and Partial Differential Equations, Discontinuous Differential Equations, Convex
Analysis and its Applications, Optimization and its Application, Mathematics
Education, Application on Variable Exponent Lebesgue Spaces, Applications on
Differential Equations and Partial Differential Equations, Fourier Analysis, Wavelet
and Harmonic Analysis Methods in Function Spaces, Applications on Computer
Engineering, and Flow Dynamics.

After the peer-review process, the scientific committee selected 27 papers, from
authors from 11 different countries.

The invited speakers of the ICMASE 2021 conference were Miguel Ángel
González León from the University of Salamanca (Spain), Tin-Yau Tam from the
University of Nevada (USA), and Carla M. A. Pinto from the Polytechnic Institute
of Porto (Portugal).
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viii Preface

Thanks to all ICMASE 2021 committee members.

Salamanca, Spain

Ankara, Turkey

Araceli Queiruga-Dios
Organizing Chair

Fatih Yilmaz
Conference Chair
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Sylvester Sums on the Frobenius Set
in Arithmetic Progression

Takao Komatsu

Abstract Let a1, a2, . . . , ak be positive integers with gcd(a1, a2, . . . , ak) = 1. The
concept of the weighted sum

∑
n∈NR λnn is introduced in [1, 2], where NR =

NR(a1, a2, . . . , ak) denotes the set of positive integers nonrepresentable in terms of
a1, a2, . . . , ak . When λ = 1, such a sum is often called Sylvester sum. The main pur-
pose of this paper is to give explicit expressions of the Sylvester sum (λ = 1) and the
weighed sum (λ �= 1), where a1, a2, . . . , ak forms arithmetic progressions. As appli-
cations, various other cases are also considered, including weighted sums, almost
arithmetic sequences, arithmetic sequences with an additional term, and geometric-
like sequences. Several examples illustrate and confirm our results.

Keywords Frobenius problem · Weighted sums · Sylvester sums · Arithmetic
sequences

MR Subject Classifications: Primary 11D07 · Secondary 05A15 · 05A17 ·
05A19 · 11B68 · 11D04 · 11P81

1 Introduction

Given positive integers a1, . . . , ak with gcd(a1, . . . , ak) = 1, it is well-known that
all sufficiently large n can be represented as a nonnegative integer combination
of a1, . . . , ak . The Frobenius Problem is to determine the largest positive integer
that is NOT representable as a nonnegative integer combination of given positive
integers that are coprime (see [3] for general references). This number is denoted by
g(a1, . . . , ak) and often called Frobenius number. Let n(a1, . . . , ak) be the number
of positive integers with no nonnegative integer representation by a1, . . . , ak . It is
sometimes called Sylvester number. According to Sylvester, for positive integers a
and b with gcd(a, b) = 1,

T. Komatsu (B)
Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University,
Hangzhou 310018, China
e-mail: komatsu@zstu.edu.cn
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2 T. Komatsu

g(a, b) = (a − 1)(b − 1) − 1 [4] ,
n(a, b) = 1

2
(a − 1)(b − 1) [5] .

One of other famous characters is on the so-called Sylvester sums

s(a1, . . . , ak) :=
∑

n∈NR(a1,...,ak )
n

(see, e.g., [3, §5.5], [6] and references therein), where NR(a1, . . . , ak) denotes the
set of positive integers without nonnegative integer representation by a1, . . . , ak . In
addition, denote the set of positive integers with nonnegative integer representation
by a1, . . . , ak by R(a1, . . . , ak). For example,

R(4, 7, 11) = {0, 4, 7, 8, 11, 12, 14, 15, 16, 18, 19, 20, 21, . . .} (infinite) ,

NR(4, 7, 11) = {1, 2, 3, 5, 6, 9, 10, 13, 17} (finite) ,

so g(4, 7, 11) = 17. Brown and Shiue [7] found the exact value for positive integers
a and b with gcd(a, b) = 1,

s(a, b) = 1

12
(a − 1)(b − 1)(2ab − a − b − 1) . (1)

Rødseth [8] generalized Brown and Shiue’s result by giving a closed form for the
sum of powers.

When k = 2, there exist beautiful closed forms for Frobenius numbers, Sylvester
numbers and Sylvester sums, but when k ≥ 3, exact determination of these numbers
is difficult. The Frobenius number cannot be given by closed formulas of a certain
type [9], the problem to determine F(a1, . . . , ak) is NP-hard under Turing reduction
(see, e.g., [3]). One analytic approach to the Frobenius number can be seen in [10,
11]. The problems may be also solved from the aspects of the sum of integer powers
of values the gaps in numerical semigroups (e.g., [7, 12]). Recently in [1, 2], we
consider more general sums called (Sylvester) weighted sums, defined by

s(λ)(a1, a2, . . . , ak) :=
∑

n∈NR(a1,a2,...,ak )
λnn .

When λ = 1, s(a1, a2, . . . , ak) = s(1)(a1, a2, . . . , ak) is the usual Sylvester sum,
though the obtained formulas are not included in the case of λ �= 1. When λ �= 1,
s(−1)(a1, a2, . . . , ak) is the so-called alternate sum, which has been studied in [6,
13]. Notice that the case of two variables is given by using the Apostol-Bernoulli
numbers in [1].
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In fact, by introducing the other numbers, it is possible to determine the func-
tions g(A), n(A) and s(A) for the set of positive integers A := {a1, a2, . . . , ak} with
gcd(a1, a2, . . . , ak) = 1.

For each integer i with 1 ≤ i ≤ a1 − 1, there exists a least positive integermi ≡ i
(mod a1)withmi ∈ R(a1, a2, . . . , ak). For convenience, we setm0 = 0.With the aid
of such a congruence consideration modulo a1, very useful results are established.

Lemma 1 We have

g(a1, a2, . . . , ak) =
(

max
1≤i≤a1−1

mi

)

− a1 , [14]

n(a1, a2, . . . , ak) = 1

a1

a1−1∑

i=1

mi − a1 − 1

2
, [15]

s(a1, a2, . . . , ak) = 1

2a1

a1−1∑

i=1

m2
i − 1

2

a1−1∑

i=1

mi + a21 − 1

12
. [16]

Note that the third formula appeared with a typo in [16], and it has been corrected
in [17, 18].

When the number of variables is two, similarly to the case of Frobenius number,
Sylvester number and Sylvester sums, the results forweighted sumsmay be explicitly
given [1]. However, the results become complicated when the number of variables
is bigger than or equal to three. Nevertheless, if the sequence a1, a2, . . . , ak has
some good regularities, the results are possible to be expressed explicitly. In this
paper, we consider the weighted sum and (simple) sum of nonrepresentable numbers
where a1, a2, . . . , ak forms arithmetic progressions. Some more varieties case are
also given, including almost arithmetic sequences, arithmetic sequences with an
additional term, and geometric-like sequences.

2 Simple Sum

Let us begin from the simple sums.
Let a, d and k be positive integers with gcd(a, d) = 1 and 2 ≤ k ≤ a. Selmer

[15] generalized Roberts’ result ([19]; h = 1) and Brauer’s result ([20]; h = d = 1)
by giving a formula for almost arithmetic sequences. For a positive integer h,

n(a, ha + d, . . . , ha + (k − 1)d) =
(⌊

a − 2

k − 1

⌋

+ h − 1

)

a + (a − 1)d .
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Let a − 1 = q(k − 1) + r with 0 ≤ r < k − 1. Selmer [15] generalized Grant’s
result ([21]; h = 1) by giving a formula for almost arithmetic sequences. For a
positive integer h,

n(a, ha + d, . . . , ha + (k − 1)d) = 1

2

(
(a − 1)(hq + d + h − 1) + hr(q + 1)

)
.

Note that q > 0 because k ≤ a. The sum of nonrepresentable numbers in arithmetic
progression are given explicitly as follows.

Theorem 1 Let a, d and k be positive integers with gcd(a, d) = 1 and 2 ≤ k ≤ a.
Let q and r be nonnegative integers with a − 1 = q(k − 1) + r and 0 ≤ r < k − 1.
Then,

s(a, a + d, . . . , a + (k − 1)d)

= 1

12q

(

2aq3(a + 2r − 1) + q2
(
ad(4a + 4r − 5) − d(2r − 1)(r + 1) + 6ar

)

− q
(
3dr(r + 1) − (a − 1)((a − 1)(d2 − 1) + ad2) − 2ar(3d + 1)

) − d(a − r − 1)2
)

.

Substituting (2) and (3) in Lemma 2 below into the third formula in Lemma 1, we
can get Theorem 1.

Lemma 2 When a1 = a, a2 = a + d, . . ., ak = a + (k − 1)d with d > 0,
gcd(a, d) = 1 and k ≤ a1, we have

a−1∑

i=1

mi = a

2

(
(a − 1)(q + d + 1) + r(q + 1)

)
, (2)

a−1∑

i=1

m2
i = (q + 1)

(
(2q + 1)(a − r − 1) + 6r(q + 1)

)

6
a2 + (a − 1)a(2a − 1)

6
d2

+ 2ad(q + 1)

(
(a − r − 1)

(
q(4a − 4r − 1) − (a − r − 1)

)

12q
+ r(2a − r − 1)

2

)

. (3)
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Proof Since the minimal residue system {mi } (1 ≤ i ≤ a1 − 1) is given by

a2 a3 . . . . . . ak−1 ak
a2 + ak a3 + ak . . . . . . ak−1 + ak 2ak
. . . . . . . . . . . . . . . . . .

a2 + (q − 1)ak a3 + (q − 1)ak . . . . . . ak−1 + (q − 1)ak qak
a2 + qak a3 + qak . . . ar+1 + qak (4)

([15, (3.8)]), the summation of all the elements is

a−1∑

i=1

mi = (
1 + 2 + · · · + (q(k − 1) + r)

)
d

+ (
(k − 1)(1 + 2 + · · · + q) + r(q + 1)

)
a

= (q + 1)
(
q(k − 1) + 2r

)

2
a +

(
q(k − 1) + r

)(
q(k − 1) + r + 1

)

2
d . (5)

Since q(k − 1) + r = a − 1, we have

a−1∑

i=1

mi = (q + 1)(a − 1 + r)

2
a + (a − 1)a

2
d

= a

2

(
(a − 1)(q + d + 1) + r(q + 1)

)
.

Similarly, in order to obtain (3), we sum up all the elements

a22 a23 . . . . . . a2k−1 a2k

(a2 + ak)
2 (a3 + ak)

2 . . . . . . (ak−1 + ak)
2 (2ak)

2

. . . . . . . . . . . . . . . . . .
(
a2 + (q − 1)ak

)2 (
a3 + (q − 1)ak

)2
. . . . . .

(
ak−1 + (q − 1)ak

)2
(qak)

2

(a2 + qak)
2 (a3 + qak)

2 . . . (ar+1 + qak)
2
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Then, we have

a−1∑

i=1

m2
i = (

12 + 22 + · · · + (q(k − 1) + r)2
)
d2

+(
(k − 1)(12 + 22 + · · · + q2) + r(q + 1)2

)
a2

+2ad

(

1 + 2 + · · · + (k − 1) + 2
(
k + (k + 1) + · · · + (2k − 2)

)

+3
(
(2k − 1) + (2k) + · · · + (3k − 3)

) + · · · (6)

+q
(
((q − 1)k − q + 2) + · · · + (qk − q)

)

+(q + 1)
(
(qk − q + 1) + · · · + (qk − q + r)

)
)

=
(
q(k − 1) + r

)(
q(k − 1) + r + 1

)(
2q(k − 1) + 2r + 1

)

6
d2

+
(
(k − 1)q(q + 1)(2q + 1)

6
+ r(q + 1)2

)

a2

+2ad

(
k(k − 1)q(q + 1)

4
+ (k − 1)2(q − 1)q(q + 1)

3

+(q + 1)

(

(qk − q)r + r(r + 1)

2

))

. (7)

Since q(k − 1) + r = a − 1, we have

a−1∑

i=1

m2
i = (q + 1)

(
(2q + 1)(a − r − 1) + 6r(q + 1)

)

6
a2 + (a − 1)a(2a − 1)

6
d2

+ 2ad(q + 1)

(
(a − r − 1)

(
q(4a − 4r − 1) − (a − r − 1)

)

12q

+ r(2a − r − 1)

2

)

.

2.1 Examples

When a = 7, r = 2 and k = 3, we get q = 3 and r = 0. Hence, by Theorem 1, we
have s(7, 9, 11, 13) = 165. In fact, the sum of nonrepresentable numbers is

1 + 2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 13 + 15 + 17 + 19 + 24 + 26 = 165 .

When a = 6, r = 5 and k = 4, we get q = 1 and r = 2. Hence, s(6, 11, 16, 21) =
212. The sum of nonrepresentable numbers is

1 + 2 + 3 + 4 + 5 + 7 + 8 + 9 + 10 + 13 + 14 + 15 + 19 + 20 + 25 + 26 + 31 = 212 .
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2.2 Almost Arithmetic Progressions

Theorem 1 can be extended to that of almost arithmetic progressions. Nonnegative
integers q and r are similarly determined by a − 1 = q(k − 1) + r with 0 ≤ r <

k − 1.

Theorem 2 For a, d, h > 0 with gcd(a, d) = 1 and k ≤ a, we have

s(a, ha + d, . . . , ha + (k − 1)d)

= 1

12q

(

2 h2aq3(a + 2r − 1)

+ q2
(
3 h2a(a + 3r − 1) + h(ad(4a + 4r − 5) − d(2r − 1)(r + 1) − 3a(a + r − 1)

)

+ q
(
h2a(a + 5r − 1) + (a − 1)(d − 1)(2ad − a − d − 1)

+ 3 h((a + r − 1)(d(a + r) − a) − 2dr2)
) − hd(a − r − 1)2

)

.

This result is similarly proved from the following sums, which are analogous ones
of those in Lemma 2.

Lemma 3 When a1 = a, a2 = ha + d, . . . , ak = ha + (k − 1)d with d, h > 0,
gcd(a, d) = 1 and k ≤ a1, we have

a−1∑

i=1

mi = a

2

(
(a − 1)(h(q + 1) + d) + hr(q + 1)

)
,

a−1∑

i=1

m2
i = (q + 1)

(
(2q + 1)(a − r − 1) + 6r(q + 1)

)

6
h2a2 + (a − 1)a(2a − 1)

6
d2

+ 2 had(q + 1)

(
(a − r − 1)

(
q(4a − 4r − 1) − (a − r − 1)

)

12q
+ r(2a − r − 1)

2

)

.

3 Weighted Sums

In this section, we give a formula for the weighted sums

s(λ)(a, a + d, . . . , a + (k − 1)d) :=
∑

n∈NR(a,a+d,...,a+(k−1)d)

λnn .

As in the previous sections, let a1 = a, a2 = a + d, . . . , ak = a + (k − 1)d with
d > 0, gcd(a, d) = 1 and k ≤ a1. Let a − 1 = q(k − 1) + r with 0 ≤ r < k − 1.
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Theorem 3 For λ �= 0 with λd �= 1, λa �= 1 and λak �= 1, we have

s(λ)(a, a + d, . . . , a + (k − 1)d)

= 1

λa − 1

(
λd(λqak − λak )

λak − 1

(
akλak − aλa

λd − 1
− d(λak − λa)

(λd − 1)2

)

+ λd(λak − λa)

λd − 1

(
qakλqak

λak − 1
− akλak (λqak − 1)

(λak − 1)2

)

+ λqak+d

(
ar+1λ

ar+1 − aλa

λd − 1
− d(λar+1 − λa)

(λd − 1)2

)

+ qakλ
qak+d λar+1 − λa

λd − 1

)

− aλa

(λa − 1)2

(

1 + λd(λak − λa)

λd − 1

λqak − 1

λak − 1
+ λqak+d(λar+1 − λa)

λd − 1

)

+ λ

(λ − 1)2
.

The proof is based upon the following results.

Lemma 4

a1−1∑

i=1

miλ
mi = λd(λqak − λak )

λak − 1

(
akλak − aλa

λd − 1
− d(λak − λa)

(λd − 1)2

)

+ λd(λak − λa)

λd − 1

(
qakλqak

λak − 1
− akλak (λqak − 1)

(λak − 1)2

)

+ λqak+d

(
ar+1λ

ar+1 − aλa

λd − 1
− d(λar+1 − λa)

(λd − 1)2

)

+ qakλ
qak+d λar+1 − λa

λd − 1
, (8)

a1−1∑

i=1

λmi = λd(λak − λa)

λd − 1

λqak − 1

λak − 1
+ λqak+d(λar+1 − λa)

λd − 1
. (9)

Remark The last two terms in (8) and the last term in (9) are equal to 0 when r = 0.

Proof (Proof of Lemma 4.) (8) is obtained by summing up all the elements

a2λ
a2 . . . . . . ak−1λ

ak−1 akλ
ak

(a2 + ak)λ
a2+ak . . . . . . (ak−1 + ak)λ

ak−1+ak (2ak)λ
2ak

. . . . . . . . . . . . . . .
(
a2 + (q − 1)ak

)
λa2+(q−1)ak . . . . . .

(
ak−1 + (q − 1)ak

)
λak−1+(q−1)ak (qak)λ

qak

(a2 + qak)λ
a2+qak . . . (ar+1 + qak)λ

ar+1+qak
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Similarly, (9) is obtained by summing up all the elements

λa2 . . . . . . λak−1 λak

λa2+ak . . . . . . λak−1+ak λ2ak

. . . . . . . . . . . . . . .

λa2+(q−1)ak . . . . . . λak−1+(q−1)ak λqak

λa2+qak . . . λar+1+qak

We also need the following formula in [2].

Lemma 5 If λ �= 0 and λa1 �= 1, then

s(λ)(a1, a2, . . . , ak)

= 1

λa1 − 1

a1−1∑

i=0

miλ
mi − a1λa1

(λa1 − 1)2

a1−1∑

i=0

λmi + λ

(λ − 1)2
.

Proof (Proof of Theorem 3.) Substituting (8) and (9) in Lemma 4 into the formula
in Lemma 5, we get the desired result. Notice that we do need an additional quantity
λm0 = λ0 = 1 in the second term in Lemma 5.

3.1 Examples

When a = 7, r = 2 and k = 3, we get q = 3 and r = 0. If λ = 2 and d = 2, then
by Theorem 3, we have s(2)(7, 9, 11) = 2160333442. In fact, the sum of nonrepre-
sentable numbers is

2 · 1 + 22 · 2 + 23 · 3 + 24 · 4 + 25 · 5 + 26 · 6 + 28 · 8 + 210 · 10
+ 212 · 12 + 213 · 13 + 215 · 15 + 217 · 17 + 219 · 19 + 224 · 24 + 226 · 26

= 2160333442 .

When a = 6, r = 5 and k = 4, we get q = 1 and r = 2. If λ = √−1 and d = 5,
then s(

√−1)(6, 11, 16, 21) = −20 − 22
√−1.
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4 Arithmetic Sequences with an Additional Term

Consider the case

a1 = a, a2 = a + d, a3 = a + 2d, . . . , ak = a + (k − 1)d, ak+1 = a + Kd ,

where gcd(a, d) = 1, K > k and a ≥ k. Put

K − 1 = q(k − 1) + r, 0 ≤ r < k − 1 ,

a = αK + β, 0 ≤ β < K . (10)

In [15, (3.16)], as d = 1, it is shown that

n(a, a + 1, a + 2, . . . , a + k − 1, a + K )

= α
(
a + (q + 1)(r − 1) + qK + β+)

2
+ (γ + 1)(β + δ − 1)

2
.

Some more special cases of the number of nonrepresentable numbers are given in
[15].

The minimal residue system 1, 2, . . . , a − 1 (mod a), where all residues appear
once and only once, can be constructed as follows. The case d = 1 is illustrated in
[15], but we explain here again as the general d case.

The first line of this minimal residue system is the same as the whole numbers
in (4). There are totally (k − 1)q + r = K − 1 elements, which consist the residue
system {d, 2d, . . . , (K − 1)d} (mod a). The second line is of ak+1, and ak+1 plus
each number in (4), representing the residue system {Kd, (K + 1)d, . . . , (2K −
1)d} (mod a). Hence, there are totally K elements in the second line. Similarly,
the j th line (1 ≤ j ≤ α − 1) is of ( j − 1)ak+1, and ( j − 1)ak+1 plus each number
in (4), representing the residue system {( j − 1)Kd, (( j − 1)K + 1)d, . . . , ( j K −
1)d} (mod a). Hence, there are totally K elements in the j th line (2 ≤ j ≤ α − 1).
The αth line ends with the element

t
′ =

{
ar+1 + qak + (α − 1)ak+1 = (q + α + 1)a − (β + 1)d if r > 0;
qak + (α − 1)ak+1 = (q + α)a − (β + 1)d if r = 0 .

If β = 0, then we have already gotten the minimal residue system. Otherwise, put

β − 1 = γ(k − 1) + δ, 0 ≤ δ < k − 1 . (11)

The final line is of β elements and ends with the element

t
′′ =

{
aδ+1 + γak + αak+1 = (γ + α + 2)a − d if δ > 0;
γak + αak+1 = (γ + α + 1)a − d if δ = 0 .

In (5), set q(k − 1) + r = K − 1 instead of q(k − 1) + r = a − 1. Then we have
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S1 = S1(a, d, q, r)

:= (q + 1)(K − 1 + r)

2
a + (K − 1)K

2
d .

In (6), set q(k − 1) + r = K − 1 instead of q(k − 1) + r = a − 1. Then we have

S2 = S2(a, d, q, r)

:= (q + 1)
(
(2q + 1)(K − r − 1) + 6r(q + 1)

)

6
a2 + (K − 1)K (2 K − 1)

6
d2

+ 2ad(q + 1)

(
(K − r − 1)

(
q(4 K − 4r − 1) − (K − r − 1)

)

12q
+ r(2 K − r − 1)

2

)

.

When β = 0, the whole summation of the least elements modulo i (mod a) (1 ≤
i ≤ a − 1) is equal to

a−1∑

i=1

mi =
α∑

j=1

(
( j − 1)ak+1K + S1

)

= α(α − 1)K (a + Kd)

2
+ αS1 .

(When β > 0, we need more additional elements from the (α + 1)-st line, whose
sum is denoted by T1.) The whole square summation is equal to

a−1∑

i=1

m2
i =

α∑

j=1

(
( j − 1)2a2k+1 K + 2( j − 1)ak+1S1 + S2

)

= α(α − 1)(2α − 1)(a + Kd)2 K

6
+ α(α − 1)(a + Kd)S1 + αS2 .

(When β > 0, we need more additional elements from the (α + 1)-st line, whose
sum is denoted by T2.) Substituting them into the third formula in Lemma 1, by
α = aK , we get
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s(a, a + d, a + 2d, . . . , a + (k − 1)d, a + Kd)

= 1

2a

(
α(α − 1)(2α − 1)(a + Kd)2 K

6
+ α(α − 1)(a + Kd)S1 + αS2

)

− 1

2

(
α(α − 1)K (a + Kd)

2
+ αS1

)

+ a2 − 1

12

= α(α − 1)(a + Kd)K
(
2(α − 2)a + (2α − 1)Kd

)

12a

+ α
(
(α − 2)a + (α − 1)Kd

)

2a
S1 + αS2

2a
+ a2 − 1

12

= (a − K )(a + Kd)
(
2a2 + 2aK (d − 2) − K 2d

)

12 K 2 + a2 + aK (d − 2) − K 2d

2 K 2 S1

+ S2
2 K

+ a2 − 1

12
.

When β > 0, from (11) the sum of additional terms

αak+1

αak+1 + a2 αak+1 + a3 . . . αak+1 + ak
αak+1 + ak + a2 αak+1 + ak + a3 . . . αak+1 + 2ak
. . . . . . . . . . . .

αak+1 + (γ − 1)ak + a2 αak+1 + (γ − 1)ak + a3 . . . αak+1 + γak
αak+1 + γak + a2 . . . αak+1 + γak + aδ+1

is given by

T1 = T1(a, d, K ,α,β, δ, γ)

:= αβak+1 + γ(a2 + a3 + · · · + ak)

+ (k − 1)ak
(
1 + 2 + · · · + (γ − 1)

) + γδak + (a2 + · · · + aδ+1)

= αβ(a + Kd) + γ

(

(k − 1)a + (k − 1)k

2
d

)

+ (k − 1)
(
a + (k − 1)d

)γ(γ − 1)

2

+ γδ
(
a + (k − 1)d

) + δa + δ(δ + 1)

2
d

=
(

αβ + (β + δ − 1)(γ + 1)

2

)

a

+
(

αβK + (β − δ − 1)(β − δ)

2
+ δ(2β − δ − 1)

2

)

d .
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The sum of the square of additional terms is given by

T2 = T2(a, d, K ,β, δ, γ) := β(αak+1)
2 + 2αak+1(T1 − αβak+1) + T3 ,

where

T3 = γ(a22 + a23 + · · · + a2k )

+ 2ak
(
1 + 2 + · · · + (γ − 1)

)
(a2 + a3 + · · · + ak)

+ (k − 1)a2k
(
12 + 22 + · · · + (γ − 1)2

)

+ δγ2a2k + 2γak(a2 + a3 + · · · + aδ+1) + (a22 + a23 + · · · + a2δ+1)

= γ

(

(k − 1)a2 + (k − 1)kad + (k − 1)k(2k − 1)

6
d2

)

+ (
a + (k − 1)d

)
(γ − 1)γ

(

(k − 1)a + (k − 1)k

2
d

)

+ (k − 1)
(
a + (k − 1)d

)2 (γ − 1)γ(2γ − 1)

6

+ δγ2(a + (k − 1)d
)2 + 2γ

(
a + (k − 1)d

)
(

δa + δ(δ + 1)

2
d

)

+ δa2 + δ(δ + 1)ad + δ(δ + 1)(2δ + 1)

6
d2

=
(
(β − δ − 1)(γ + 1)(2γ + 1)

6
+ δ(γ + 1)2

)

a2

+
(
(β − δ − 1)

(
4(β − δ) − k

)

6
+ δ(2β − δ − 1)

)

(γ + 1)ad

+ (β − 1)β(2β − 1)

6
d2 .

When β > 0, the whole summation of the least elements modulo i (mod a) (1 ≤
i ≤ a − 1) is equal to

a−1∑

i=1

mi =
α∑

j=1

(
( j − 1)ak+1K + S1

) + T1

= α(α − 1)K (a + Kd)

2
+ αS1 + T1 .

The whole square summation is equal to

a−1∑

i=1

m2
i =

α∑

j=1

(
( j − 1)2a2k+1 K + 2( j − 1)ak+1S1 + S2

) + T2

= α(α − 1)(2α − 1)(a + Kd)2 K

6
+ α(α − 1)(a + Kd)S1 + αS2 + T2 .
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Substituting them into the third formula in Lemma 1, we get

s(a, a + d, a + 2d, . . . , a + (k − 1)d, a + Kd)

= 1

2a

(
α(α − 1)(2α − 1)(a + Kd)2 K

6
+ α(α − 1)(a + Kd)S1 + αS2 + T2

)

− 1

2

(
α(α − 1)K (a + Kd)

2
+ αS1 + T1

)

+ a2 − 1

12

= α(α − 1)(a + Kd)K
(
2(α − 2)a + (2α − 1)Kd

)

12a

+ α
(
(α − 2)a + (α − 1)Kd

)

2a
S1 + αS2

2a
− T1

2
+ T2

2a
+ a2 − 1

12
.

Theorem 4 Assume that gcd(a, d) = 1, K > k and a ≥ k. Integers q, r , α, β, γ
and δ are decided as in (10) and (11). Then we have

s(a, a + d, a + 2d, . . . , a + (k − 1)d, a + Kd)

= α(α − 1)(a + Kd)K
(
2(α − 2)a + (2α − 1)Kd

)

12a

+ α
(
(α − 2)a + (α − 1)Kd

)

2a
S1 + αS2

2a
− T1

2
+ T2

2a
+ a2 − 1

12
,

where

S1 = (q + 1)(K − 1 + r)

2
a + (K − 1)K

2
d ,

S2 = (q + 1)
(
(2q + 1)(K − r − 1) + 6r(q + 1)

)

6
a2 + (K − 1)K (2 K − 1)

6
d2

+ 2ad(q + 1)

(
(K − r − 1)

(
q(4 K − 4r − 1) − (K − r − 1)

)

12q

+ r(2 K − r − 1)

2

)

.

When a | K, T1 = T2 = 0. When a � K,

T1 = T1(a, d, K ,α,β, δ, γ)

=
(

αβ + (β + δ − 1)(γ + 1)

2

)

a

+
(

αβK + (β − δ − 1)(β − δ)

2
+ δ(2β − δ − 1)

2

)

d
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and

T2 = T2(a, d, K ,β, δ, γ) := β(αak+1)
2 + 2αak+1(T1 − αβak+1) + T3 ,

where

T3 =
(
(β − δ − 1)(γ + 1)(2γ + 1)

6
+ δ(γ + 1)2

)

a2

+
(
(β − δ − 1)

(
4(β − δ) − k

)

6
+ δ(2β − δ − 1)

)

(γ + 1)ad

+ (β − 1)β(2β − 1)

6
d2 .

Remark When K = a and β = 0, by
∑a−1

i=1 mi = S1 and
∑a−1

i=1 m
2
i = S2, Theorem

4 is reduced to Theorem 1.
If α � K , then by a = αK + β, we have

s(a, a + d, a + 2d, . . . , a + (k − 1)d, a + Kd)

= (a − K )(a + Kd)
(
2a2 + 2aK (d − 2) − K 2d

)

12 K 2
+ a2 + aK (d − 2) − K 2d

2 K 2
S1

+ S2
2 K

+ a2 − 1

12

= (a − β)(a − β − K )(a + Kd)
(
2(a − β − 2 K )a + (2a − 2β − K )d

)

12aK 2

+ (a − β)
(
(a − β − 2 K )a + (a − β − K )d

)

2aK 2
S1

+ a − β

2aK
S2 − T1

2
+ T2

2a
+ a2 − 1

12
.

As a special case,

g(a, a + 1, a + 2, a + 4) = (a + 1)
⌊a

4

⌋
+

⌊
a + 1

4

⌋

+ 2

⌊
a + 2

4

⌋

− 1 , [22]

n(a, a + 1, a + 2, a + 4) =
⌊
a(a + 4)

8

⌋

[15]

are found, where 	x
 denotes the integer part of a real x . We can give the correspon-
dence summations.
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Corollary 1

s(a, a + 1, a + 2, a + 4) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
96 (a

4 + 8a3 + 26a2 + 16a) if a ≡ 0 (mod 4);
1
96 (a

4 + 8a3 + 11a2 − 38a + 18) if a ≡ 1 (mod 4);
1
96 (a

4 + 8a3 + 14a2 − 32a + 24) if a ≡ 2 (mod 4);
1
96 (a

4 + 8a3 + 11a2 − 50a + 42) if a ≡ 3 (mod 4) .

Proof Here,d = 1, k = 3, K = 4,q = r = 1andα = 	a/4
.Whena ≡ 0 (mod 4),
β = 0. When a ≡ 1 (mod 4), β = 1, γ = δ = 0. When a ≡ 2 (mod 4), β = 2,
γ = 0 and δ = 1.When a ≡ 3 (mod 4), β = 3, γ = 1 and δ = 0. The results follow
from Theorem 4.

In [22], some more special cases are found:

g(a, a + 1, a + 2, a + 5)

= a

⌊
a + 1

5

⌋

+
⌊a

5

⌋
+

⌊
a + 1

5

⌋

+
⌊
a + 2

5

⌋

+ 2

⌊
a + 3

5

⌋

− 1 ,

g(a, a + 1, a + 2, a + 6)

= a
⌊a

6

⌋
+ 2

⌊a

6

⌋
+ 2

⌊
a + 1

6

⌋

+ 5

⌊
a + 2

6

⌋

+
⌊
a + 3

6

⌋

+
⌊
a + 4

6

⌋

+
⌊
a + 5

6

⌋

− 1 .

We can similarly derive the correspondence result by Theorem 4.

Corollary 2

s(a, a + 1, a + 2, a + 5)

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1
150 (a

4 + 13a3 + 65a2 + 35a) if a ≡ 0 (mod 5);
1

150 (a
4 + 13a3 + 41a2 − 85a + 30) if a ≡ 1 (mod 5);

1
150 (a

4 + 13a3 + 41a2 − 97a + 60) if a ≡ 2 (mod 5);
1

150 (a
4 + 13a3 + 35a2 − 139a + 120) if a ≡ 3 (mod 5);

1
150 (a

4 + 13a3 + 53a2 − 19a + 90) if a ≡ 4 (mod 5) .

Corollary 3

s(a, a + 1, a + 2, a + 6)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
216 (a

4 + 21a3 + 189a2 + 126a) ifa ≡ 0 (mod 6);
1
216 (a

4 + 21a3 + 150a2 − 169a − 3) ifa ≡ 1 (mod 6);
1
216 (a

4 + 21a3 + 141a2 − 290a + 48) ifa ≡ 2 (mod 6);
1
216 (a

4 + 21a3 + 126a2 − 441a + 189) ifa ≡ 3 (mod 6);
1
216 (a

4 + 21a3 + 141a2 − 322a + 240) ifa ≡ 4 (mod 6);
1
216 (a

4 + 21a3 + 150a2 − 281a + 237) ifa ≡ 5 (mod 6) .
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4.1 Examples

Consider the sequence 14, 17, 20, 23, 38. Then, a = 14, d = 3 k = 4, K =
8, q = 2, r = 1, α = 1, β = 6, γ = 1 and δ = 2. By Theorem 4, we have
s(14, 17, 20, 23, 38) = 953. In fact, the sum of nonrepresentable numbers is

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 15 + 16 + 18

+ 19 + 21 + 22 + 24 + 25 + 26 + 27 + 29 + 30 + 32 + 33 + 35 + 36 + 39

+ 41 + 44 + 47 + 49 + 50 + 53 + 64 + 67

= 953 .

By Corollary 1, when a = 8, 9, 10, 11, we have

s(8, 9, 10, 12) = 104 ,

s(9, 10, 11, 13) = 135 ,

s(10, 11, 12, 14) = 199 ,

s(11, 12, 13, 15) = 272 .

For example, the first sum of nonrepresentable numbers is

1 + 2 + 3 + 4 + 5 + 6 + 7 + 11 + 13 + 14 + 15 + 23 = 104 .

5 Geometric-Like Sequence

Consider the case

a1 = a, a2 = a + 1, a3 = a + 2, a4 = a + 22, . . . , ak+2 = a + 2k (k ≥ 2) .

Put a = 2kq + r with 0 ≤ r < 2k . The first line is the sequence 1, 2, . . . , 2k − 1
(mod a), that is

a2 = a + 1, a3 = a + 2, a2 + a3 = 2a + 3, a4 = a + 4, . . . ,

a2 + a3 + · · · + ak+1 = ka + 2k − 1 . (12)

The second line is the sequence

ak+2, ak+2 + a2, ak+2 + a3, ak+2 + a2 + a3, ak+2 + a4, . . . , ak+2 + a2 + a3 + · · · + ak+1 .

Similarly, the qth line is the sequence
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(q − 1)ak+2, (q − 1)ak+2 + a2, (q − 1)ak+2 + a3, (q − 1)ak+2 + a2 + a3,

(q − 1)ak+2 + a4, . . . , (q − 1)ak+2 + a2 + a3 + · · · + ak+1 .

If r = 0, then the line is finished. If r > 0, then the (q + 1)th line consists from r
terms beginning from

qak+2, qak+2 + a2, qak+2 + a3, · · · .

In order to find the sumof the elements, consider the exact termwhich is congruent
to n modulo a (1 ≤ n ≤ 2k − 1) in the sequence (12). If s1(n) is the exponent of 2
in the canonical representation of n! and s2(n) is the number of ones in the binary
representation of n, then

s2(n) = n − s1(n)

= n −
∞∑

i=1

⌊ n

2i

⌋
= n −

	log2 n
∑

i=1

⌊ n

2i

⌋

(see, e.g., [23, Theorem 3.16]). Hence, the exact expression of the 2k − 1 terms in
the first line is given by

a + 1 = s2(1)a + 1, a + 2 = s2(2)a + 2, 2a + 3 = s2(3)a + 3, . . . ,

s2( j)a + j, . . . , s2(2
k − 1)a + 2k − 1 .

Since

⌊
2i

2i

⌋

= · · · =
⌊
2 · 2i − 1

2i

⌋

= 1,

⌊
2 · 2i
2i

⌋

= · · · =
⌊
3 · 2i − 1

2i

⌋

= 2 ,

⌊
3 · 2i
2i

⌋

= · · · =
⌊
4 · 2i − 1

2i

⌋

= 3, · · · ,
⌊
(2k−i − 1) · 2i

2i

⌋

= · · · =
⌊
2k − 1

2i

⌋

= 2k−i ,

the sum of all the elements in the first line is equal to

a2 + a3 + (a2 + a3) + · · · + (a2 + a3 + · · · + ak+1)

=
⎛

⎝
2k−1∑

j=1

s2( j)

⎞

⎠ a +
2k−1∑

j=1

j

=
⎛

⎝
2k−1∑

j=1

j −
2k−1∑

j=1

	log2 j
∑

i=1

⌊
j

2i

⌋
⎞

⎠ a + 2k−1(2k − 1)

= 2k−1ka + 2k−1(2k − 1) .
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In general, the sum of all the elements in the j th line (1 ≤ j ≤ q) is

( j − 1)ak+22
k + 2k−1ka + 2k−1(2k − 1)

= ( j − 1)(a + 2k)2k + 2k−1ka + 2k−1(2k − 1) .

Hence, if r = 0, then

a−1∑

i=1

mi =
q∑

j=1

( j − 1)(a + 2k)2k + q2k−1ka + q2k−1(2k − 1)

= 2k−1q
(
(q + k − 1)a + (2kq − 1)

)
.

Next, by

2k−1∑

j=1

js1( j) = 2k−1(2k − 1)(2k+2 − 3k − 5) ,

2k−1∑

j=1

(
s1( j)

)2 = 2k−2

3

(
2k+1(2k+1 − 3k − 6) + (3k2 + 9k + 8)

)
,

the sum of all the square of elements in the first line is

a22 + a23 + (a2 + a3)
2 + · · · + (a2 + a3 + · · · + ak+1)

2

= 2k−1

(
k(k + 1)

2
a2 + (2k − 1)(k + 1)a + (2k − 1)(2k+1 − 1)

3

)

.

The sum of all the square of elements in the j th line (1 ≤ j ≤ q) is

(
( j − 1)ak+2 + a2

)2 + (
( j − 1)ak+2 + a3

)2 + · · · + (
( j − 1)ak+2 + a2 + a3

)2

+ · · · + (
( j − 1)ak+2 + a2 + a3 + · · · + ak+1

)2

= ( j − 1)22k(a + 2k)2 + 2( j − 1)(a + 2k) × (sum of the first line)

+ (sum of square of the first line)

= ( j − 1)22k(a + 2k)2

+ 2( j − 1)(a + 2k)
(
2k−1ka + 2k−1(2k − 1)

)

+ 2k−1

(
k(k + 1)

2
a2 + (2k − 1)(k + 1)a + (2k − 1)(2k+1 − 1)

3

)

.

Hence, if r = 0, then
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a−1∑

i=1

m2
i =

q∑

j=1

( j − 1)22k(a + 2k)2 +
q∑

j=1

2( j − 1)(a + 2k)
(
2k−1ka + 2k−1(2k − 1)

)

+ q2k−1
(
k(k + 1)

2
a2 + (2k − 1)(k + 1)a + (2k − 1)(2k+1 − 1)

3

)

= 2k−2q

3

(
(
3k(2q + k − 1) + 2(q − 1)(2q − 1)

)
a2

+ 2
(
2k(4q2 + 3kq − 3q + 2) − 3(q + k)

)
a + 2(22k+1q2 − 3 · 2kq + 1)

)

.

Next, assume that r > 0. The exact expression of the r terms in the (q + 1)th line
is given by

qak+2, qak+2 + (a + 1), qak+2 + (a + 2), qak+2 + (2a + 3), . . .

qak+2 + (
s2( j)a + j

)
, . . . , qak+2 + (

s2(r − 1)a + r − 1
)
.

Thus, by a − r = 2kq, the sum of additional terms from the (q + 1)th line is

T1 := rqak+2 +
⎛

⎝
r−1∑

j=1

s2( j)

⎞

⎠ a +
r−1∑

j=1

j

=
⎛

⎝r(r + 2q + 1)

2
−

r−1∑

j=1

s1( j)

⎞

⎠ a − r(r + 1)

2
.

The sum of square of additional terms from the (q + 1)th line is

T2 := rq2a2k+2 + 2qak+2

r−1∑

j=1

(
s2( j)a + j

) +
r−1∑

j=1

((
s2( j)

)2
a2 + 2 js2( j)a + j2

)

= rq2(a + 2k)2 + 2q(a + 2k)

⎛

⎝
r−1∑

j=1

s2( j)

⎞

⎠ a + q(a + 2k)r(r − 1)

+
r−1∑

j=1

(
j2 − 2 js1( j) + (

s1( j)
)2

)
a2 + 2

⎛

⎝
r−1∑

j=1

j
(
j − s1( j)

)
⎞

⎠ a + r(r − 1)(2r − 1)

6

=
(r−1∑

j=1

(
(s1( j))

2 − 2 js1( j) − 2(q + 1)s1( j)
)

+ r
(
6q(q + r + 1) + (r + 1)(2r + 1)

)

6

)

a2

+
(

2
r−1∑

j=1

(r − j)s1( j) − r(r + 1)(3q + r + 2)

3

)

a + r(r + 1)(2r + 1)

6
.
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By using the third formula in Lemma 1, we get

s(a, a + 1, a + 2, a + 22, . . . , a + 2k)

= 1

2a

(
2k−2q

3

(
(
3k(2q + k − 1) + 2(q − 1)(2q − 1)

)
a2

+ 2
(
2k(4q2 + 3kq − 3q + 2) − 3(q + k)

)
a

+ 2(22k+1q2 − 3 · 2kq + 1) + T2

)

− 1

2

(

2k−1q
(
(q + k − 1)a − (2kq − 1)

) + T1

)

+ a2 − 1

12

= 2k−3q

3

(
4(q − 1)(q − 2) + 3k(2q + k − 3)

)
a

+ 1

12

(
22kq(4q2 + 3kq − 3q + 2) − 3 · 2kq(q + k − 2) − 6

)

+ 1

a
(22k+1q2 − 3 · 2kq + 1) − T1

2
+ T2

2a
+ a2 − 1

12
.

Theorem 5 For integers k ≥ 2, q and r, satisfying a = 2kq + r with 0 ≤ r < 2k ,

s(a, a + 1, a + 2, a + 22, . . . , a + 2k)

= 2k−3q

3

(
4(q − 1)(q − 2) + 3k(2q + k − 3)

)
a

+ 1

12

(
22kq(4q2 + 3kq − 3q + 2) − 3 · 2kq(q + k − 2) − 6

)

+ 1

a
(22k+1q2 − 3 · 2kq + 1) − T1

2
+ T2

2a
+ a2 − 1

12
,

where

T1 =
⎛

⎝r(r + 2q + 1)

2
−

r−1∑

j=1

s1( j)

⎞

⎠ a − r(r + 1)

2

and

T2 =
(r−1∑

j=1

(
(s1( j))

2 − 2 js1( j) − 2(q + 1)s1( j)
)

+ r
(
6q(q + r + 1) + (r + 1)(2r + 1)

)

6

)

a2

+
(

2
r−1∑

j=1

(r − j)s1( j) − r(r + 1)(3q + r + 2)

3

)

a + r(r + 1)(2r + 1)

6
.
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5.1 Examples

Consider the sequence 16, 17, 18, 20, 24. Then, a = 16, k = 3 q = 2 and r = 0. By
Theorem4,we have s(16, 17, 18, 20, 24) = 684. In fact, the sumof nonrepresentable
numbers is

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 19

+ 21 + 22 + 23 + 25 + 26 + 27 + 28 + 29 + 30 + 31 + 39 + 43 + 45

+ 46 + 47 + 63

= 684 .

Consider the sequence 25, 26, 27, 29, 33. Then, a = 25, k = 3 q = 3 and
r = 1. By Theorem 4, we have s(25, 26, 27, 29, 33) = 2557. If the sequence is
25, 26, 27, 29, 33, 41, then a = 25, k = 4 q = 1 and r = 9. By Theorem 4, we have
s(25, 26, 27, 29, 33, 41) = 1827.
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Lattice Structure of Some Closed Classes
for Non-binary Logic and Its
Applications

Elmira Yu. Kalimulina

Abstract The paper provides a brief overview of modern applications of multi-
valued logic models, where the design of heterogeneous computing systems with
small computing units based on three-valued logic gives the mathematically better
and more effective solution compared to binary models. It is necessary for applica-
tions to implement circuits comprised from chipsets, the operation of which is based
on three-valued logic. To be able to implement such schemes, a fundamentally impor-
tant theoretical problem must be solved: the problem of completeness of classes of
functions of three-valued logic. From a practical point of view, the completeness of
the classes of such functions ensures that circuits with the desired operations can
be produced from on an arbitrary (finite) set of chipsets. In this paper, the closure
operator on the set of functions of three-valued logic, that strengthens the usual sub-
stitution operator has been considered. It was shown that it is possible to recover the
sublattice of closed classes in the general case of closure of functions with respect
to the classical superposition operator. The problem of the lattice of closed classes
for the class of functions T2 preserving two is considered. The closure operator R1

for which functions that differ only by dummy variables are considered to be equiv-
alent is considered in this paper. A lattice is constructed for closed subclasses in
T2 = { f | f (2, . . . , 2) = 2} – class of functions preserving two
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1 Introduction

A ternary system is the most optimal from the point of view of information density
[9]. The generalization for multi-valued logic is the ternary logic [2, 3]. Further,
without loss of generality instead of multivalued case a ternary logic model may
be considered. In ternary logic, a statement is assigned one of three values: “true”,
“false”, “undefined” [2, 4, 9]; in binary logic—two: either “true” or “false”. Symmet-
ric form of number representation based on three-valued logic simplifies a processing
of negative numbers, since it requires an extra bit to store the sign [4].

Some features of the operation logic of a ternary computer, for example, the
representation of negative numbers, give possibilities for design more reliable and
high-performancemodern systems, that will be useful formanymodern applications.
Mathematically, ternary logic is more efficient than binary logic [2, 4, 9]. Research
and development of algorithms based on three-valued logic are very relevant [8], for
example, in telecommunications [7, 10], in the field of artificial intelligence (AI)
[6], quantum computing [7, 11–13], medicine, physics [14]. This is confirmed by
a significant increase of the number of scientific publications in leading scientific
journals related to various applications of three-valued logic over the past few years
[17].

1.1 A Brief Overview of Modern Applications of Multivalued
Logic

Here are examples of several applications where the construction of algorithms based
on three-valued logic provides greater efficiency and turns out to be preferable in
comparison with two-valued logic. For more detailed overview, you can read refer-
ences.

Reliability analysis of structural processes and factors assessment of technical
systemsMulti-valued logic allows to consider qualitative variables instead of quanti-
tative ones. Quantitative indicators (factors) are discretized bymapping into a certain
m-interval scale. This approach allows you to combine quantitative and qualitative
indicators within the single model. The reliability of the factors decreases minimally
with such discretisation. This allows to investigate themodel as fully as possible. This
is especially effective in situations where there is no way to quantify the impact of a
particular factor on the process. The use of qualitative variables provides additional
opportunities for assessing factors.

Simulation of processes andmoderndesign languagesSimulation is the only avail-
able way to check the quality and reliability of complicated and expensive technical
systems at their design stage. Automated design tools allow you to assess quality
based on real-world operating conditions. Temporary simulation of circuits in an
automated simulation system is often based on the principles of three-valued logic.
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Design of data transmission and processing systems Ternary logic is effective in
constructing computing units for equipment of data transmission networks. Poten-
tially, the transmission of three states instead of two bits at a time can increase the data
transfer rate by 1.5 times. With an increase of the number of trits (instead of bit) the
speed can grow exponentially [10, 18, 19]. It is possible to implement solutions for
data aggregation and transmission based on multivalued logic. These solutions will
provide a single high-dimensional space for network addressing—both for standard
purposes of data transmission [15] and for new tasks for controlling robotic devices
for the Internet Of Things [7].

Three-valued logic is also effective both for solving problems of image processing
[5] and for problems of cryptography. Quantum computing for data security is the
most effective method of protecting mobile robots, the Internet of Things (IoT) and
security of distributed applications. That also uses multi-valued logic models. With
the rapid growthof quantumcomputers, ternary computinghas become relevant again
[5, 12, 13]. The leading IT companies have introduced their quantum computers
operating on several dozen of qubits in the last decade: IBM quantum processors
consist of 65 qubits, Google has 72 [20]. The developers plan to release a 1112-qubit
processor called “Condor” by 2023, that should bring quantum technologies to a new
commercial level [20].

Also, at present, the multi-valued logic toolkit is widely used in tasks related
to data analysis and the construction of AI models, for example, in the tasks of
hierarchical data clustering for arbitrary complicated data sets [6, 7]. Interpretation
models via 3-valued logic allows to overcome exiting limitations on the ability to
create fully automatic program-analysis algorithms [1].

At the end of this short overview of multivalued logic models, the application
in economic research should be mentioned: models of collective behavior and the
problem of collective choice, where “cyclical logic” arises as a special case of k-
valued logic [21].

2 Theoretical Aspects of Designing of Computing Systems
Based on Three-Valued Logic

All applied problems considered above are reduced to the problem of determining
the factors that have an influence on the process and considering a countable set P3

of states of these factors. Any countable number of states can be approximated by
basically three states [23]: 0, 1, 2.

And for a decision making someone need to find the value of the output function
Y that depends on this set. Accordingly, the output function Y can be represented as a
combination of predicates on the set P3 [22]. For this purpose complicated predicates
and superpositions of these predicates on P3 will be considered.

These predicates can be implemented (from practical point of view) as circuits of
chips, the operation of which is based on three-valued logic.
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2.1 Completeness of Functions Classes of Three-Valued
Logic

A fundamentally important problem—the problem of completeness of classes of
functions of three-valued logic [22]—must be solved to make this implementation
possible. From the practical point of view, the completeness of the classes of functions
guarantees that a circuit with the desired functional diagram can be produced based
on an arbitrary finite number of chipsets. For two-valued logic, this problemwas also
solved by Emil Post, which led to the explosive growth of electronics [24].

Post’s classical theorem describes five precomplete classes in the set of Boolean
functions [24].

For the case of three-valued logic, the problem was solved by Yablonsky in 1958
[22, 23]. He proved that there are 18 precomplete classes for functions of three-
valued logic. In the papers [22, 23], the closure of the set of functions with respect
to the substitution operator was considered.

Unfortunately, for three-valued logic it was proved that this problem cannot be
solved in a general case [23]. If the lattice of closed classes is countable in the case
of two-valued logic, then it is exponential in the case of three-valued logic. However,
its closure operators on the set of three-valued logic functions can be considered,
which are a strength of the common substitution operator.

Solving the completeness problems for this new closure operator and finding the
structure of the lattice of closed classes will help not only to restore the sublattice of
closed classes in the general case of closure of functions with respect to the classical
superposition operator, but also will optimize the possible production of chips for
functional circuits for solving the problem described above in the Introduction.

Consider a variant of the closure operatorR∞, for which functions that differ only
in dummy variables are considered equivalent. Let us construct a lattice for closed
subclasses in T1 = { f | f (1, . . . , 1) = 1} — in the class of functions preserving two.

2.2 Lattice of Closed Subclasses T2 with Respect toR∞

Definition 1 Let f (x1, . . . , xi , . . . , xn) ∈ P3, |X f | = n, then xi called R∞-
essential for f, if there are sets αn

1 = (a1, . . . , ai−1, b1, ai+1, . . . , an), αn
2 =

(a1, . . . , ai−1, b2, ai+1, . . . , an) such that f (αn
1 ) ∼ f (αn

2 ).

Completeness in T2

Definition 2 Use the following notation T 02 def= { f |∃i ∈ {1, X f } : α =
(a1, . . . , aX f ), ai ∈ {0, 2} ⇒ f (α) = 2}

T 12 def= { f |∃i ∈ {1, X f } : α = (a1, . . . , aX f ), ai ∈ {1, 2} ⇒ f (α) = 2}
T 02 def= { f |α = (a1, . . . , aX f ); ai ∈ {0, 2}, i ∈ {1, X f } ⇒ f (α) = 2}
T 12 def= { f |α = (a1, . . . , aX f ); ai ∈ {1, 2}, i ∈ {1, X f } ⇒ f (α) = 2}
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Lemma 1 The class T 02− is R∞-closed.

Lemma 2 The class T 12− R∞ is closed.

Proof of Lemma1.Note that neither the permutation of variables nor identification
or addition of inessential (dummy) ones affect the property functions belong to class
T 02. This follows obviously from the class definitions.

It is also obvious that if f ∈ T 02, then for any function g( f ∼ g) it’s true that
g ∈ T 02.

Now show that the superposition of functions from the class T 02 will also lie in
class T 02.

Let f ∈ T 02, f = f (x1, . . . , xn). Consider the function h = f (g1, . . . , gn),

where gi− are either free variables or functions from the set T 02.

By contradiction, let h /∈ T 02, then there is a set α = (a1, . . . , a|Xh |), ai ∈
{0, 2}, 1 ≤ i ≤ |Xh |, such that it’s true that h(α) �= 2.

And by the construction of the function h, and under the condition that f ∈
T 02 there is such i that the function gi (β) �= , where β = (b1, . . . , b|Xgi |), 1 ≤ bi ≤
|Xgi |—projection of vector α on the coordinate axes corresponding to free variables
of the function gi .

Thus the function gi /∈ T 02, but that contradicts the choice of function gi . Thus
h ∈ T 02.

The lemma 1 is proved.
The Lemma 2 can be proved by repeating the sketch of the proof of lemma 1 (by

formal replacing of T 02 by T 12).

Lemma 3 The class T 02− R∞ is pre-complete in the class T2.

Proof Note that the class T2 = R∞({, }), where f (|X f | = 2)&( f (α) = 2 if and
only if when α = (2, 2)), g(|Xg| = 1)&(g ∈ T2)&(g /∈ T∼).

Let there be a function w(w /∈ T 02). Then by definition there is a set α =
(a1, . . . , a|Xw |), ai ∈ {0, 2}, 1 ≤ i ≤ |Xw| such that w(α) �= 2.

Let’s move on from the function w to function w′, derived from w by identifying
variables according to the set α.Namely, variables in the set α will be identified with
the same values. Thus, the whole set of variables of the function w may be split into
two groups: with respect to 0 and with respect to 2. By identification, that gives the
function w′(|Xw′ | = 2)&(w′ /∈ T 02).

Let without loss of generality w′(0, 2) = 1. If this is not true, then by rearranging
the variables and moving to function w′′(w′′ ∼ w′) the function with the specified
property can be obtained easily.

If the vector α does not contain elements equal to 2, then the function that ∼ a
function w′ and satisfies the required properties may be considered.

Note that a function g(g ∈ T 02)&(|Xg| = 1)&(g /∈ T∼) exists. Consider a func-
tion w′′(w′′ ∼ w) such that:

w′′(α) =
⎧
⎨

⎩

1, α = (2, 0)
2, w′(α) = 2
0, otherwise.
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Consider a functionv1(x, y) = g(w′′(x, y)).Thepropertyv1(α) = 1 for this func-
tion holds if and only if when α = (0, 2). Also consider a function v2 = v2(x, y) =
v1(y, x). It is easy to see that by construction it gives {v1, v2} ⊆ R∞(T ′∈ ∩ �).

Consider the function d such that:

d(α) =
{
2, ai ∈ {0, 2}, 1 ≤ i ≤ 2
1, otherwise.

, α = (a1, a2).

It’s obviously that d ∈ T 02. Let’s construct a function m:

m(x, y) = d(d(v1(x, y), d(x, y)), v2(x, y))

m(α) =
{
2, a1 = 1, 1 ≤ i ≤ 2
1, otherwise.

, α = (a1, a2).

By the fact that the function 2 ∈ T 02 a function f can be constructed such that:

f (x, y) = m(m(x, 2), m(y, 2))

f (α) =
{
2, ai = 2, 1 ≤ i ≤ 2
1, otherwise.

, α = (a1, a2).

It was mentioned above that R∞({{, }}) = T∈. But by construction it can be
obtained that f ∈ R∞(�) ⊆ R∞(�, T ′∈), and bydefinition g ∈ T 02, therefore T2 =
R∞(�, T ′∈).

The lemma is proved.

Lemma 4 Let f ∈ T2 and f /∈ T01. Then 2 ∈ R∞({)

Proof Consider the function h(x) = f (x, . . . , x). It is easy to show that if h /∈ T01,

then 2 ∈ R∞(〈).
Let h ∈ T01.Note that for any g(|Xg| = 1)&(g ∈ T01) it holds that g ∈ R∞(〈). by

condition f /∈ T01, hence there is a set α = (α1, . . . , αn), n = |X f |, αi ∈ {0, 1}, 1 ≤
i ≤ n such that f (α) = 2. Construct a function f ′ = f (g1, . . . , gn), |Xgi | = 1, gi ∈
T01, 1 ≤ i ≤ n, at thatgi (0) = αi .Note that {gi , h} ⊂ R∞({) therefore f ′ ∈ R∞({).

Consider a function h′(x) = f ′(x, . . . , x). By construction it can be obtained that
h′(0) = h′(2) = 2, and therefore according to the already considered case we have
2 ∈ R∞(〈′) ⊂ R∞({).

The lemma is proved.

Lemma 5 A class T∼ ∩ T2− is R∞−precomplete in T2.

Proof Let f /∈ T∼, f ∈ T2, |X f | = n. Let us show that R∞({{ ∪ T∼ ∩ T∈}) = T∈.

Note that, by definition, there are at least two sets α1 = (a1
1, . . . , a1

n) and α2 =
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(a2
1, . . . , a2

n) such that α1 ∼ α2, and f (α1) ∼ f (α2). Identify variables in f accord-
ing to the coincidence of identical pairs in vectors α1 and α2. Concretely if
(a1

i , a2
i ) = (a1

j , a2
j ), then i−th and j−th variables are identified. Thus the function

f ′ of five variables satisfying the following condition has been obtain

f ′(0, 1, 2, 0, 1) ∼ f ′(0, 1, 2, 1, 0)

Without loss of generality, it can be assumed that after identification variables the
function f ′ will have exactly this order variables. Otherwise, the variables will be
reordered. Also note that some of the variables of the function f ′ can be dummy.

Note that there is 2, g ∈ T∼ ∩ T2(g(0) = 1, g(1) = 0). Let’s move on from the
function f ′ to a function f ′′ = f ′(g(x1), x1, 2, x2, x3), f ′′ ∈ R∞(T∼ ∩ T∈).A func-
tion f ′′ satisfies the property

f ′′(0, 0, 1) ∼ f ′′(1, 0, 1)

Let without loss of generality f ′′(1, 0, 1) = 2.
There are functions f ∈ T∼ ∩ T2, such that f (α) = 2 if α = (2, . . . , 2). Denote

the set of such functions as N . Let us show by a construction thatR∞({{′′,N}) = T2.

Let h ∈ T2 – arbitrary function. Consider the functions g0, g1, g2 ∈ N (|Xgi | =
|Xh | = n).

g0(α) =
{
2, α = (2, . . . , 2)
0, otherwise.

g1(α) =
{
2, α = (2, . . . , 2)
1, otherwise.

g2(α) =
⎧
⎨

⎩

2, α = (2, . . . , 2)
1, h(α) = 2,
0, h(α) �= 2,

Consider the function h′(x1, . . . , xn) = f ′′(g2(x1, . . . , xn), g1(x1, . . . , xn),

g0(x1, . . . , xn)). By construction h′ ∼ h. Thereby R∞(〈′) = R∞(〈) ⊆
R∞({{′′,N }) ⊆ R∞({, T∼ ∩ T∈). Due to the arbitrariness of the function h ∈ T2

we get T2 ∈ R∞({{, T∼ ∩ T∈}).
The lemma is proved.

Lemma 6 A class T01 ∩ T2 – R∞-precomplete in T2.

Proof Consider the function f /∈ T01 ∩ T2, f ∈ T2. By Lemma 4 R∞(∈, T′∞ ∩
T∈) ⊆ R∞({, T′∞ ∩ T∈). Let h ∈ T2 — arbitrary function from T2. Note that there
is a function g ∈ T01 ∩ T2, satisfying the following property:

g(0, 2) ∼ g(1, 2)
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Without loss of generality g(1, 2) = 2.
Consider the function m ∈ T01 ∩ T2(|Xm | = |Xh| = n) such that:

m(α) =
⎧
⎨

⎩

2, α = (2, . . . , 2)
1, h(α) = 2,
0, h(α) �= 2,

The function h′(x1, . . . , xn) = g(m(x1, . . . , xn), 2) satisfies the property h ∼ h′
by construction. In this way h ∈ R∞(〈′) ⊆ R∞({∈, T′∞ ∩ T∈}) ⊆ R∞({{, T′∞ ∩
T∈}). By the arbitrary function h we have T2 ∈ R∞({, T′∞ ∩ T∈).

The lemma is proved.

Now it is possible to formulate the main result that follows from these lemmas

Theorem 1 (Completeness) There are five pre-complete classes in T2.

2.3 The Completeness Problem for the OperatorR∞

Let M be a given set of functions from P3. Denote the result of the closure of the set
of functions M with respect to operation of substitution and transition of the function
g to the equivalent function f ∼ g as R∞(M), where

f ∼ g ⇔ ∀x [ ( f (x) = g(x)) ∨ ( f (x), g(x) ∈ {0, 1}) ].

Consider classes: T01 — class of functions preserving the set {0, 1}, T2 — function
class preserving two, and class T∼ (also T{01},{2} (U (R))—function class, preserving
the relation ∼ .

It is easy to see that with passing from the function f to the function g property of
belonging to classes T2, T01, T∼ is preserved. In this way due to the fact that classes
T2, T01, T∼ are precomplete with respect to the substitution, and completion does
not add new functions, then the following lemma is obtained:

Lemma 7 Classes T2, T01, T∼ are R∞-precomplete.

Lemma 8 Let f /∈ T01, Then 2 ∈ R∞({).

Proof It is easy to check that if h(x) /∈ T01 is a 1-place function, then 2 ∈ R∞(〈).
Thus, if the function g(x) = f (x, . . . , x), g /∈ T01, then the lemma is proved.

Let g ∈ T01. By condition, there is a set α = (a1, . . . , an), ai ∈ {0, 1} such that
f (α) = 2. Consider a function f ′ such that

g′(x) = f (g1(x), . . . , gn(x))

where gi (gi (0) = ai )&(gi ∼ g). notice, that g′ ∈ R∞({) and g′(0) = 2, and then
2 ∈ R∞(}′) ⊆ R∞({).

The lemma is proved.

Theorem 2 (Completeness) There are three R∞−pre-complete classes T2.
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2.4 Conclusion

In this paper, the closure operators on the set of functions of three-valued logic, which
are a strength of the usual substitution operator was considered. It was proved that
the completeness problem for this operator has a solution; it is possible to recover the
sublattice of closed classes in the general case of closure of functions with respect
to the classical superposition operator, which will optimize possible production of
chipsets for new functional circuits for transmission and data processing tasks. Also
a brief overview of modern applications of three-valued logic models was given.
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Content Based Image Retrieval Using
HDMR Constant Term Based Clustering

Ayşegül Karcılı and Burcu Tunga

Abstract The studies related with the content-based image retrieval (CBIR) has
increased because of both necessity for efficient image retrieval and the limitations
in large-scale systems. Efficient image retrieval refers to finding accurate image from
the database with high speed. This paper presents a new efficient image retrieval
method using High Dimensional Model Representation (HDMR). The method has
two main steps, clustering and retrieval. In clustering part, we use k-means method
on HDMR constant term while in the subsequent part, we retrieve the most similar
images to a given query image from a relevant cluster. We experiment the efficiency
and effectiveness of the new algorithm on Columbia Object Image Library (COIL-
100) and get conspicuous results. These results are tabulated in the paper.

Keywords HDMR · Image retrieval · Image decomposition · Clustering ·
k-means

1 Introduction

Content Based ImageRetrieval (CBIR) is amethod for finding themost similar image
to a given query image. It uses mathematical representations of a digital image to
perform the retrieval task. Because the image itself is quite expensive to use and is
quite difficult in large-scale libraries, we use HDMR components instead of image
itself for image representation.

HDMR method uses divide-and-conquer philosophy. It decomposes a multivari-
ate function with N independent variables into 2N functions having low-variate
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terms. That is, HDMR can be referred as an algorithm based on divide-and-conquer
philosophy. These 2N number of functions are named as constant, univariate, bivari-
ate and higher variate ones. Although the given multivariate function can exactly
be re-obtained by summation of all these functions, this procedure is very expen-
sive. Consequently HDMR is considered as an approximation method and there are
many articles in the literature that include this subject [1–3]. HDMR is also used to
decompose a given multivariate dataset to the low variate datasets [4–8].

HDMR method has recently started to be used in image processing [9–11]. If a
digital image in RGB format is assumed as three dimensional array, HDMR decom-
poses the image into constant, univariate, bivariate components. There are certain
studies on different subjects in the literature using these components [12, 13].

In this study, we develop a new algorithm using these HDMR components in
image retrieval issue. This algorithm has two main step: The first step is based on
k-means clustering [14] and the usage of the constant term of HDMR. The second
step is to realize the retrieval process to find the most similar image to a given query
image and it uses different variations of univariate HDMR terms. Clustering part is
used to make the retrieval process faster.

The proposed algorithm is tested on Columbia Object Image Library (COIL-100)
to show its performance [15]. This library contains 7200 color images. These images
belong to 100 different objects. That is, there are 72 poses per object of 5 degrees.

This paper is organized as follows. The second section contains a brief explanation
of theHDMRmethod and itsmathematical expression.This section also includes how
HDMR is used for the image decomposition. The third section covers the clustering
methodwhich is used in order to speed up the system, while the new algorithm for the
retrieval process is given in the fourth section. The fifth section consists of obtained
results and comparisons. Certain concluding remarks are given in the last section.

2 Image Decomposition with HDMR

HDMR is a method used to decompose multivariate functions. The basic mathemat-
ical expression of the method, where N is the number of independent variables, is
given as follows

f (x1, . . . , xN ) = f0 +
N∑

i=1

fi (xi ) +
N∑

i1 ,i2=1
i1<i2

fi1,i2(xi1 , xi2) + · · ·

+ f12···N (x1, x2, · · · , xN ) (1)

The basic philosophy of this method is to write a multivariate function as the sum
of a finite number of less variable functions. So, the right hand side of the expansion
consists of a constant term, univariate terms, bivariate terms and the functions with
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increasing number of independent variables. When all these terms are added, the
multivariate function is exactly obtained.

To find the right hand side terms uniquely, some operators and conditions are
defined [1–3]. The following operator,I0 is utilized to determine the general structure
of the constant component

I0 f (x1, . . . , xN ) ≡
b1∫

a1

dx1W1(x1) · · ·
bN∫

aN

dxNWN (xN ) f (x1, . . . , xN ) (2)

while the following Im and Im1m2 operators (1 ≤ m ≤ N ), (1 ≤ m1 < m2 ≤ N ) are
used to determine the univariate and bivariate terms.

Im f (x1, . . . , xN ) ≡
b1∫

a1

dx1W1(x1) · · ·
bm−1∫

am−1

dxm−1Wm−1(xm−1) · · ·

×
bm+1∫

am+1

dxm+1Wm+1(xm+1) · · ·
bN∫

aN

dxNWN (xN ) f (x1, . . . , xN ) (3)

Im1m2 f (x1, . . . , xN ) ≡
b1∫

a1

dx1W1(x1) · · ·
bm1−1∫

am1−1

dxm1−1Wm1−1(xm1−1)

×
bm1+1∫

am1+1

dxm1+1Wm1+1(xm1+1) · · ·
bm2−1∫

am2−1

dxm2−1Wm2−1(xm2−1)

×
bm2+1∫

am2+1

dxm2+1Wm2+1(xm2+1) · · ·
bN∫

aN

dxNWN (xN ) f (x1, . . . , xN ) (4)

The following mathematical expressions called vanishing and normalization condi-
tions respectively

b1∫

a1

dx1 · · ·
bN∫

aN

dxNW (x1, . . . , xN ) fi (xi ) = 0. (5)

bi∫

ai

dxi Wi (xi ) = 1, 1 ≤ i ≤ N . (6)

where Wi (xi )s are named as weight factors and satisfy the following rule.
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W (x1, . . . , xN ) ≡
N∏

i=1

Wi (xi ), xi ∈ [ ai , bi ] , 1 ≤ i ≤ N (7)

If all these operators and conditions are applied to the both sides of the HDMR
expansion given in Eq. (1), then the constant, univariate and bivariate components
are obtained as follows

f0 = I0 f (x1, . . . , xN )

fm1(xm1) = Im1 f (x1, . . . , xN ) − f0
fm1m2(xm1 , xm2) = Im1m2 f (x1, . . . , xN ) − fm1(xm1) − fm2(xm2) − f0 (8)

where 1 ≤ m1 < m2 ≤ N . The higher variate components can be determined simi-
larly.

HDMR is also used for multivariate data problems by adapting the method to
the discrete data [4–7]. For this purpose, the weight factors located in the weight
function are taken as

Wj (x j ) ≡
n j∑

k j=1

α
( j)
k j

δ
(
x j − ξ

(k j )

j

)
, x j ∈ [

a j , b j
]
, 1 ≤ j ≤ N (9)

where δ is Dirac delta function and α’s are the parameters to give a different impor-
tance for each node of data set [4]. They have to satisfy the normalization condition
given in the Eq. (6). We chose these parameters equally in our study to give each
data point same importance. When these weight factors are placed into the Eq. (8)
by using the normalization and vanishing conditions all right hand side terms are
obtained uniquely. The constant component of multivariate data is obtained as fol-
lows.

f0 =
n1∑

k1=1

n2∑

k2=1

· · ·
nN∑

kN=1

(
N∏

i=1

α
(i)
ki

)
f (ξ (k1)

1 , . . . , ξ
(kN )
N ) (10)

Similarly univariate components can be written as

fm
(
ξ (km )
m

) =
n1∑

k1=1

n2∑

k2=1

· · ·
nm−1∑

km−1=1

nm+1∑

km+1=1

· · ·
nN∑

kN=1

⎛

⎜⎝
N∏

i=1
i �=m

α
(i)
ki

⎞

⎟⎠ f (ξ (k1)
1 , . . . , ξ

(kN )
N ) − f0, 1 ≤ km ≤ nm, 1 ≤ m ≤ N (11)

Finally, bivariate components are as follows
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fm1m2

(
ξ

(km1 )
m1 ξ

(km2 )
m2

)
=

n1∑

k1=1

n2∑

k2=1

· · ·
nm1−1∑

km1−1=1

nm1+1∑

km1+1=1

· · ·
nm2−1∑

km2−1=1

nm2+1∑

km2+1=1

· · ·

nN∑

kN=1

⎛

⎜⎝
N∏

i=1
i �=m1∧i �=m2

α
(i)
ki

⎞

⎟⎠ f (ξ (k1)
1 , . . . , ξ

(kN )
N ) − fm1

(
ξ

(km1 )
m1

)
− fm2

(
ξ

(km2 )
m2

)
− f0 (12)

Therefore a given N dimensional multivariate data set is decomposed into constant
univariate and bivariate data set.

In this study we deal with the image retrieval problem and an image with RGB
format is considered as a 3 dimensional data set. That is, when the concerned problem
is related to image processing then N is taken as 3 since RGB format. Taking this
situation into consideration we can simply write the constant term of image data as

f0 =
n1∑

k1=1

n2∑

k2=1

n3=3∑

k3=1

α
(1)
k1

α
(2)
k2

α
(3)
k3

f (ξ (k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) (13)

Here f (ξ (k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) is the pixel value of the image at the (k1, k2, k3) coordinates.

The αki coefficients are weight factor as previous mentioned and they are taken as
1
ni
, i = 1, 2, 3. These coefficients satisfy the normalization conditions given in (6).

For the univariate components, we can write the following 3 formulas.

f1
(
ξ

(k1)
1

)
=

n2∑

k2=1

3∑

k3=1

α
(2)
k2

α
(3)
k3

f (ξ (k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) − f0

f2
(
ξ

(k2)
2

)
=

n1∑

k1=1

3∑

k3=1

α
(1)
k1

α
(3)
k3

f (ξ (k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) − f0

f3
(
ξ

(k3)
3

)
=

n1∑

k1=1

n2∑

k2=1

α
(1)
k1

α
(2)
k2

f (ξ (k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) − f0 (14)

To determine the bivariate terms of the given image we derive the formulas given as

f12
(
ξ

(km1 )

1 , ξ
(km2 )

2

)
=

3∑

k3=1

α
(3)
k3

f (ξ (k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) − f1

(
ξ

(k1)
1

)
− f2

(
ξ

(k2)
2

)
− f0

f13
(
ξ

(km1 )

1 , ξ
(km3 )

3

)
=

n2∑

k2=1

α
(2)
k2

f (ξ (k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) − f1

(
ξ

(k1)
1

)
− f3

(
ξ

(k3)
3

)
− f0

f23
(
ξ

(km2 )

2 , ξ
(km3 )

3

)
=

n1∑

k1=1

α
(1)
k1

f (ξ (k1)
1 , ξ

(k2)
2 , ξ

(k3)
3 ) − f2

(
ξ

(k2)
2

)
− f3

(
ξ

(k3)
3

)
− f0

(15)
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Now, for an RGB image as a three-way array, the HDMR decomposition gives us one
constant value as constant term, three vectors as univariate terms and three matrices
as bivariate terms. We use the constant term and the univariate terms in our study.
The next sections will explain how we use these terms in our two-step algorithm.

3 Image Clustering Using k-Means

In this study, before starting the retrieval process we intend to apply k-means cluster-
ing to be able to search the query image in a determined small part of the large-scale
database instead of the whole database. Clustering approach leads to speed up the
image retrieval process. The k-means clusteringmethod is usedwith constant HDMR
component, f0. We choose this term to represent an image because it is even lower
dimensional than the other HDMR terms.

When applying the clustering process, constant terms for every images in the
database are calculated. These terms representing the images are clustered using k-
means to obtain sub-databases. K-means clustering needs starting centroids which
can be calculated by the following formula

centroid j = min(xi ) + (2 j − 1)
max(xi ) − min(xi )

2K
,

j = 1, · · · , K i = 1, · · · , n (16)

where K is the number of clusters n is the number of images. This formula constructs
starting centroids with equal intervals. These centroids are updated through the k-
means clustering and clusters are constructed around these centroids. Hence these
clusters are expected to contain uncertain number of similar images. They will be
used in retrieval step to speed up the process.

4 Image Retrieval Through Univariate HDMR Term

The aim of this study is to retrieve images. For this purpose we use HDMR since it
is an effective method in data partitioning and dimension reduction. Each image in
the database are represented by low dimensional terms through HDMR therefore an
efficient algorithm is constructed.

In retrieval process a query image which is not contained in the database is inves-
tigated by firstly determining the closest cluster by calculating its f0 component as
explained in the previous step. So we have a chance to work on only a small group of
images. We compute univariate HDMR terms of both query image and the images
in the determined cluster. Using these values, we calculate distances between the
query image and the cluster’s images and the images which gives the lowest distance
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according to squared Euclidean distance measure are retrieved expecting them to be
the most similar images. To be able to assess better, the retrieved images should be
ranked according to distance values.

In the retrieval algorithm, we use three different approaches based on univariate
HDMR terms, f1, f2, f3. These approaches include three different vectors generated
with these terms. The first vector is plain f1 while the second one is end-to-end
concatenation f1 − f2 − f3 and the third one is end-to-end concatenation f1 − f3.
The reason why these vectors are constructed is that they are significantly low in
dimension and good representers of high dimensional data.

To evaluate the performance of the proposed system, we use Discounted Cumu-
lative Gain (DCG) which is a measure of ranking quality [16]. This is a method of
accumulating gains of retrieved items by discounting each gain with respect to their
rank in the result list. The gain of each retrieved image is taken as 1 if the image
is of the same object with the query image and as 0 if it is a different object. To
report the results as success rate, we take average of DCG values obtained from all
the query experiments and we divided the average value by the value obtained for
hypothetical ideal case. The next section will give the experimental findings of the
proposed system.

5 Findings

Columbia Object Image Library COIL-100 is used for experiments to measure the
success rates and computation times. This library has 100 different objects and 72
images per object. So there are 7200 images in the library. Images of an object are
taken by rotating it 5 degrees around its own axis.

For experimental processwe divide the database into training and test sets. The test
set contains randomly selected 100 imageswhere each belongs to different object. All
the remaining images are reserved for training purpose. Before starting the retrieval
process, the constant HDMR term is calculated for each image in the training set.
Then the training set is divided into subsets by using the k-means clustering method
according to the constant HDMR term. Then the constant HDMR term is calculated
for each of the query images in the test set, and the image retrieval process is applied
in corresponding subset for each image in the test set.

For the retrieval process the HDMR components, f1, f1 − f2 − f3 and f1 − f3
are applied separately. For analysis purpose, the tests are run for different number
of clusters: 20, 30, 40, 50 and 60. Also for deep evaluation, different number of
retrieved images are examined, which are 6, 2 and 1 images.

The results of the first retrieval experiments with f1 term are given in Table 1. The
values in this table are average of the success values for 100 test images expressed as
percentage. As it is seen on the table, retrieval is considerably successful. Intra-table
comparison indicates that success is increasingwhen the number of clusters decrease.
Images of two randomly selected results from the first experiment are shown in Fig.
1.
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Table 1 Success rates for the k-means clustering and f1 retrieval

#Retrieved 20 Clusters 30 Clusters 40 Clusters 50 Clusters 60 Clusters

6 % 84.9 % 80.0 % 76.8 % 73.2 % 66.0

2 % 92.1 % 88.1 % 87.3 % 83.3 % 77.7

1 % 94.0 % 90.0 % 90.0 % 86.0 % 82.0

(a) Query (b) Retrieved images

Fig. 1 Two examples for the k-means clustering and f1 retrieval

Table 2 Success rates for the k-means clustering and f1 − f2 − f3 retrieval

#Retrieved 20 Clusters 30 Clusters 40 Clusters 50 Clusters 60 Clusters

6 % 82.9 % 79.0 % 74.2 % 70.8 % 64.8

2 % 93.7 % 88.5 % 86.7 % 82.4 % 76.6

1 % 96.0 % 92.0 % 91.0 % 87.0 % 82.0

(a) Query (b) Retrieved images

Fig. 2 Two examples for the k-means clustering and f1 − f2 − f3 retrieval
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Table 3 Success rates for the k-means clustering and f1 − f3 retrieval

#Retrieved 20 Clusters 30 Clusters 40 Clusters 50 Clusters 60 Clusters

6 % 85.7 % 80.7 % 77.6 % 74.1 % 66.9

2 % 94.1 % 89.5 % 87.9 % 83.9 % 78.4

1 % 96.0 % 93.0 % 91.0 % 87.0 % 83.0

(a) Query (b) Retrieved images

Fig. 3 Two examples for the k-means clustering and f− f3 retrieval

Second retrieval experiment is conducted using f1 − f2 − f3 term. This term is
tested with the expectation of better performance with respect to the previous one
since it contains more features using three different aspects of image. The obtained
results are given in Table 2 and two example retrieval results are shown in Fig. 2. Con-
trary to expectations f1 − f2 − f3 term does not perform much better than f1 term.
New features extracted using the same data do not contribute to the performance, on
the contrary they cause drawbacks with noise effect.

The last component of the proposed algorithms, which uses f1 − f3 term, also
experimented and the results are tabulated on Table 3. Arbitrary two experiment
results are illustrated in Fig. 3.

When we compare Tables 2 and 3, it is clearly seen that reducing the noise effect
of the additional features works well in terms of performance. When Tables 1 and 3
are compared, it is observed that the success rates obtained for all clustering types in
Table 3 is much higher than the rates given in Table 1. The three experiment results
with different numbers of clusters are also given in terms of computation time in
Table 4. In this case, f1 − f3 seems to be the best option at the image retrieval stage.
Because the term f1 − f3 is a vector containing much fewer elements than the term
f1 − f2 − f3, it increases the speed efficiency.
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Table 4 Computation time values in seconds

Retrieval 20 Clusters 30 Clusters 40 Clusters 50 Clusters 60 Clusters

f1 1.51 0.77 0.58 0.47 0.38

f1 − f2 − f3 1.24 0.92 0.69 0.57 0.46

f1 − f3 1.18 0.87 0.65 0.53 0.43

6 Conclusion

In this study, we tried to develop a new two-stage algorithm for image retrieval
method. We used the HDMR method in both stages. In the first stage, we obtained
the HDMR constant term then we use it in k-means method to be able to reach the
image in a determined small part of the database. In the second stage, we retrieved
the most similar images to a given query image from a cluster, which is determined
in the first stage, utilizing the univariate HDMR terms. We Columbia Object Image
Library to test the efficiency of the our algorithm.

Acknowledgements This work was supported by Research Fund of the Istanbul Technical Uni-
versity with project number 41411.

References

1. Demiralp, M.: High dimensional model representation and its application varieties. Mathemat-
ical Research. 9, 146–159 (2003).

2. Korkmaz E., DemiralpM.: Small scale High DimensionalModel Representation. NewAspects
of Microelectronics, Nanoelectronics, Optoelectronic. 232–236 (2008).

3. Tunga, B., Demiralp, M.: Constancy maximization based weight optimization in high dimen-
sional model representation. Numerical Algorithms. 52(3), 435–459 (2009).

4. Tunga, M.A., Demiralp, M.: A new approach for data partitioning through high dimensional
model representation. International Journal of Computer Mathematics. 85(12), 1779–1792
(2008).

5. Tunga,M.A.:Anapproximationmethod tomodelmultivariate interpolationproblems: Indexing
HDMR. Mathematical and Computer Modelling. 29, 743–765 (2012).

6. Tunga, B., Demiralp, M.: A novel approximation method for multivariate data partitioning
fluctuation free integration based HDMR. Engineering Computations. 29(7), 743–765 (2012).

7. Tunga, M.A.: A Matrix Based Indexing HDMR Method for Multivariate Data Modelling.
Journal of Mathematical Chemistry. 49(5), 1092–1114 (2011).

8. Kasap, Ö.Y., Tunga, M.A.: A polynomial modeling based algorithm in top-n recommendation.
Expert Systems with Applications. 79, 313–321 (2017).

9. Altın, E.M., Tunga, B.: High dimensional model representation in image processing, Proceed-
ings of the International Conference on Computational and Mathematical Methods in Science
and Engineering, 55–64. IEEE, Cadiz, Spain, 2014.
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Neutrosophic Soft e-Open Maps,
Neutrosophic Soft e-Closed Maps
and Neutrosophic Soft
e-Homeomorphisms in Neutrosophic Soft
Topological Spaces

Palaniswamy Revathi, Kulandaivelu Chitirakala, and Appachi Vadivel

Abstract In this article, the concepts of NsSe-open and NsSe-closed mappings
in neutrosophic soft topological spaces are introduced and their related proper-
ties are studied. Also, the work is developed to NsS homeomorphism, NsSe-
homeomorphism, NsSe-C homeomorphism and NsSeT 1

2
-space and some of their

characteristics are discussed.

Keywords NsSe-open map · NsSe-closed map · NsSe-homeomorphism ·
NsSeT 1

2
-space · NsSe-C homeomorphism

1 Introduction

In Mathematics, the concept of fuzzy set was first introduced by Zadeh [1] and
its topological structure was undertaken by Chang [2]. Atanassov [3–5] introduced
intuitionistic fuzzy set in 1983 and its topological structure was introduced by Coker
[6]. Molodstov [7] initiated the soft set theory as a new mathematical tool in 1999.
Shabir and Naz [8] presented soft topological spaces in soft sets.

Smarandache [9] introduced the concepts of neutrosophy and neutrosophic set
and its topological structure was given by Salama and Alblowi [10] in 2012. Maji
[11] defined the Neutrosophic soft sets and the same was modified by Deli and
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Broumi [12]. Its topological structures were presented by Bera [13]. δ-open sets
were defined by Saha [14] in fuzzy topological spaces and Vadivel et al. [15] in
neutrosophic topological spaces. In 2019, Ahu Acikgoz and Ferhat Esenbel [16]
defined neutrosophic soft δ-topology.

The notion of e-open sets were introduced by Ekici [17] in a general topology,
Seenivasan et. al. [18] in fuzzy topological spaces, Chandrasekar et al. [19] in intu-
itionistic fuzzy topological spaces, Vadivel et al. [20] in neutrosophic topological
spaces and recently, Revathi et al. [21] in neutrosophic soft topological spaces. In
2021, Vadivel et al. [22, 23] developed the concepts of neutrosophic e-Continuity,
e-Irresolute maps, e-Open maps, e-Closed maps and e-Homeomorphisms in neutro-
sophic topological spaces. Recently, Revathi et al. [24] developed the concepts of
neutrosophic soft e-Continuity and e-Irresolute maps.

The aim of this article is to introduce neutrosophic soft e-open and neutrosophic
soft e-closed mappings in neutrosophic soft topological spaces. Moreover, neutro-
sophic soft e-homeomorphism, neutrosophic soft e-C homeomorphism and neutro-
sophic soft eT 1

2
-space are introduced and their basic properties are obtained.

2 Preliminaries

The basic definitions and the properties of neutrosophic soft topological spaces are
discussed in this section.

Definition 1 ([12]) Let Y be an initial universe, Q be a set of parameters. Let P(Y )

denote the set of all neutrosophic sets ofY . Then aneutrosophic soft set (H̃ , Q)overY
(in short, NsSs) is defined by (H̃ , Q) = {(q, 〈y,μH̃ (q)(y),σH̃(q)(y), νH̃(q)(y)〉 : y ∈
Y ) : q ∈ Q}, where μH̃(q)(y),σH̃(q)(y), νH̃(q)(y) ∈ [0, 1] are respectively called the
degree of membership function, the degree of indeterminacy function and the degree
of non-membership function of H̃(q). Since the supremum of each μ,σ, ν is 1, the
inequality 0 ≤ μH̃(q)(y) + σH̃(q)(y) + νH̃(q)(y) ≤ 3 is obvious.

Definition 2 ([11, 13]) Let Y be an initial universe & the NsSs’s (H̃ , Q) & (G̃, Q)

are in the form (H̃ , Q) = {(q, 〈y,μH̃ (q)(y), σH̃(q)(y), νH̃(q)(y)〉 : y ∈ Y ) : q ∈ Q}
& (G̃, Q) = {(q, 〈y,μG̃(q)(y),σG̃(q)(y), νG̃(q)(y)〉 : y ∈ Y ) : q ∈ Q}, then
(i) 0(Y,Q) = {(q, 〈y, 0, 0, 1〉 : y ∈ Y ) : q ∈ Q} and 1(Y,Q) = {(q, 〈y, 1, 1, 0〉 : y ∈

Y ) : q ∈ Q}
(ii) (H̃ , Q) ⊆ (G̃, Q) iffμH̃(q)(y) ≤ μG̃(q)(y) ,σH̃(q)(y) ≤ σG̃(q)(y)& νH̃(q)(y) ≥

νG̃(q)(y) : y ∈ Y : q ∈ Q.

(iii) (H̃ , Q) = (G̃, Q) iff (H̃ , Q) ⊆ (G̃, Q) and (G̃, Q) ⊆ (H̃ , Q) .
(iv) (H̃ , Q)c = {(q, 〈y, νH̃ (q)(y), 1 − σH̃(q)(y),μH̃(q)(y)〉 : y ∈ Y ) : q ∈ Q}.
(v) (H̃ , Q) ∪ (G̃, Q) = {(q, 〈y,max(μH̃ (q)(y),μG̃(q)(y)),max(σH̃(q)(y),

σG̃(q)(y)), min(νH̃(q)(y), νG̃(q)(y))〉 : y ∈ Y ) : q ∈ Q}.
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(vi) (H̃ , Q) ∩ (G̃, Q) = {(q, 〈y,min(μH̃ (q)(y),μG̃(q)(y)),min(σH̃(q)(y),
σG̃(q)(y)), max(νH̃(q)(y), νG̃(q)(y))〉 : y ∈ Y ) : q ∈ Q}.

Definition 3 ([13]) A neutrosophic soft topology (in short, NsSt) on an initial uni-
verse Y is a family τ of neutrosophic soft subsets (H̃ , Q) of Y where Q is a set of
parameters, satisfying

(i) 0(Y,Q), 1(Y,Q) ∈ τ .
(ii) [(H̃ , Q) ∩ (G̃, Q)] ∈ τ for any (H̃ , Q), (G̃, Q) ∈ τ .
(iii)

⋃

ρ∈A
(H̃ , Q)ρ ∈ τ , ∀ (H̃ , Q)ρ : ρ ∈ A ⊆ τ .

Then (Y, τ , Q) is known as a neutrosophic soft topological space (in short, NsSts)
and the τ elements are known as neutrosophic soft open sets (in short, NsSos) in Y .
A NsSs (H̃ , Q) is known as a neutrosophic soft closed set (in short, NsScs) if its
complement (H̃ , Q)c is NsSos.

Definition 4 ([13]) Consider a NsSts (Y, τ , Q) and a NsSs (H̃ , Q) on Y . The neu-
trosophic soft interior of (H̃ , Q) (in short, NsSint (H̃ , Q)) and the neutrosophic soft
closure of (H̃ , Q) (in short, NsScl(H̃ , Q)) are defined as

NsSint (H̃ , Q) =
⋃

{(G̃, Q) : (G̃, Q) ⊆ (H̃ , Q) and (G̃, Q) is a NsSos in Y }
(1)

NsScl(H̃ , Q) =
⋂

{(G̃, Q) : (G̃, Q) ⊇ (H̃ , Q) and (G̃, Q) is a NsScs in Y }.
(2)

Definition 5 ([13, 25]) Consider a NsSts (Y, τ , Q) and a NsSs (H̃ , Q) on Y . Then
(H̃ , Q) is known as a neutrosophic soft regular (resp. pre & semi) open set (in
short, NsSros (resp. NsSPos, & NsSSos)) if (H̃ , Q) = NsSint (NsScl(H̃ , Q))

(resp. (H̃ , Q) ⊆ NsSint (NsScl(H̃ , Q)) & (H̃ , Q) ⊆ NsScl(NsSint (H̃ , Q))). The
complement of the respective open sets are their respective closed sets.

Definition 6 ([16]) A set (H̃ , Q) is known as a neutrosophic soft δ-open set (in
short, NsSδos) if (H̃ , Q) = NsSδint (H̃ , Q).

Definition 7 ([21]) A set (H̃ , Q) is known as a neutrosophic soft

(i) δ-pre open set (in short, NsSδPos) if (H̃ , Q) ⊆ NsSint (NsSδcl(H̃ , Q)).
(ii) δ-semi open set (in short, NsSδSos) if (H̃ , Q) ⊆ NsScl(NsSδint (H̃ , Q)).
(iii) e-open set (in short, NsSeos) if (H̃ , Q) ⊆ NsScl(NsSδint (H̃ , Q)) ∪

NsSint (NsSδcl(H̃ , Q)).
(iv) e∗-open set (in short, NsSe∗os) if (H̃ , Q) ⊆ NsScl(NsSint (NsSδcl(H̃ , Q))).

The complement of the respective open sets are their respective closed sets.
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Definition 8 ([24]) Consider any two NsSts’s (Y, τ , Q) and (Z ,σ, Q). A map f :
(Y, τ , Q) → (Z ,σ, Q) is called neutrosophic soft

(i) continuous (in short, NsSCts) (resp. δ-continuous, δS-continuous,
δP-continuous, e-continuous & e∗-continuous (in short, NsSδCts, NsSδSCts,
NsSδPCts, NsSeCts & NsSe∗Cts)) if the inverse image of every NsSos in
(Z ,σ, Q) is a NsSos (resp. NsSδos, NsSδSos, NsSδPos, NsSeos & NsSe∗os)
in (Y, τ , Q).

(ii) e-irresolute (in short, NsSeIrr ) if the inverse imageof every Ns Seos in (Z ,σ, Q)

is a NsSeos in (Y, τ , Q).

3 Neutrosophic Soft e-Open Mapping

Definition 9 A mapping f : (Y, τ , Q) → (Z ,σ, Q), is neutrosophic soft e-open
(resp. open, δ open, δ-semi open, δ-pre open & e∗-open) (in short, NsSeO (resp.
NsSO , NsSδO , NsSδSO , NsSδPO & NsSe∗O )) if the image of every NsS open
set of (Y, τ , Q) is NsSeo (resp. NsSo, NsSδo, NsSδSo, NsSδPo & NsSe∗o) set in
(Z ,σ, Q).

Theorem 1 The statements are hold but the converse need not be true. Every

(i) Ns SδO mapping is a Ns SO mapping.
(ii) Ns SO mapping is a Ns SδSO mapping.
(iii) Ns SO mapping is a Ns SδPO mapping.
(iv) Ns SδSO mapping is a Ns SeO mapping.
(v) Ns SδPO mapping is a Ns SeO mapping.
(vi) Ns SeO mapping is a Ns Se∗O mapping.

Example 1 Let Y = {y1, y2, y3} = {z1, z2, z3} = Z , Q = {q1, q2} and NsSs’s
(H̃1, Q) in Y and (G̃1, Q) & (G̃2, Q) in Z are defined as

(H̃1, q1) = {〈y1, (0.2, 0.5, 0.8)〉, 〈y2, (0.2, 0.5, 0.8)〉, 〈y3, (0.4, 0.5, 0.6)〉}
(H̃1, q2) = {〈y1, (0.3, 0.4, 0.7)〉, 〈y2, (0.4, 0.4, 0.6)〉, 〈y3, (0.4, 0.5, 0.5)〉}
(G̃1, q1) = {〈z1, (0.2, 0.5, 0.8)〉, 〈z2, (0.2, 0.5, 0.8)〉, 〈z3, (0.4, 0.5, 0.6)〉}
(G̃1, q2) = {〈z1, (0.3, 0.4, 0.7)〉, 〈z2, (0.4, 0.4, 0.6)〉, 〈z3, (0.4, 0.5, 0.5)〉}
(G̃2, q1) = {〈z1, (0.4, 0.5, 0.6)〉, 〈z2, (0.4, 0.5, 0.6)〉, 〈z3, (0.5, 0.5, 0.5)〉}
(G̃2, q2) = {〈z1, (0.4, 0.5, 0.6)〉, 〈z2, (0.5, 0.5, 0.6)〉, 〈z3, (0.5, 0.5, 0.5)〉}



Neutrosophic Soft e-Open Maps, Neutrosophic Soft e-Closed Maps … 51

Then we have τ = {0(Y,Q), 1(Y,Q), (H̃1, Q)} and σ = {0(Z ,Q), 1(Z ,Q), (G̃1, Q),

(G̃2, Q)}. Let f : (Y, τ , Q) → (Z ,σ, Q) be an identity mapping. Then, (H̃1, Q) is
NsSO (resp. NsSeO ) mapping in Y but not NsSδO (resp. NsSδSO ) mapping in Z .

Example 2 Let Y = {y1, y2, y3} = {z1, z2, z3} = Z , Q = {q1, q2} and NsSs’s
(H̃1, Q) in Y and (G̃1, Q), (G̃2, Q) & (G̃3, E) in Z are defined as

(H̃1, q1) = {〈y1, (0.2, 0.5, 0.8)〉, 〈y2, (0.4, 0.5, 0.6)〉, 〈y3, (0.4, 0.5, 0.6)〉}
(H̃1, q2) = {〈y1, (0.3, 0.4, 0.7)〉, 〈y2, (0.5, 0.5, 0.7)〉, 〈y3, (0.5, 0.5, 0.6)〉}
(G̃1, q1) = {〈z1, (0.2, 0.5, 0.8)〉, 〈z2, (0.3, 0.5, 0.7)〉, 〈z3, (0.4, 0.5, 0.6)〉}
(G̃1, q2) = {〈z1, (0.3, 0.4, 0.7)〉, 〈z2, (0.4, 0.5, 0.7)〉, 〈z3, (0.5, 0.4, 0.6)〉}
(G̃2, q1) = {〈z1, (0.1, 0.5, 0.9)〉, 〈z2, (0.1, 0.5, 0.9)〉, 〈z3, (0.4, 0.5, 0.6)〉}
(G̃2, q2) = {〈z1, (0.2, 0.3, 0.8)〉, 〈z2, (0.3, 0.5, 0.8)〉, 〈z3, (0.4, 0.4, 0.7)〉}
(G̃3, q1) = {〈z1, (0.2, 0.5, 0.8)〉, 〈z2, (0.4, 0.5, 0.6)〉, 〈z3, (0.4, 0.5, 0.6)〉}
(G̃3, q2) = {〈z1, (0.3, 0.4, 0.7)〉, 〈z2, (0.5, 0.5, 0.7)〉, 〈z3, (0.5, 0.5, 0.6)〉}

Then we have τ = {0(Y,Q), 1(Y,Q), (H̃1, Q)} and σ = {0(Z ,Q), 1(Z ,Q), (G̃1, Q),

(G̃2, Q)}. Let f : (Y, τ , Q) → (Z ,σ, Q) be an identity mapping. Then, (H̃1, Q) is
NsSδSO (resp. NsSδPO & NsSeO) mapping in Y but not NsSO (resp. NsSO &
NsSδPO) mapping in Z .

Example 3 Let Y = {y1, y2} = {z1, z2} = Z , Q = {q1, q2} and NsSs’s (H̃1, Q) in
Y and (G̃1, Q) & (G̃2, Q) in Z are defined as

(H̃1, q1) = {〈y1, (0.3, 0.5, 0.7)〉, 〈y2, (0.5, 0.5, 0.6)〉}
(H̃1, q2) = {〈y1, (0.4, 0.5, 0.6)〉, 〈y2, (0.4, 0.4, 0.6)〉}
(G̃1, q1) = {〈z1, (0.3, 0.5, 0.5)〉, 〈z2, (0.2, 0.5, 0.5)〉}
(G̃1, q2) = {〈z1, (0.4, 0.4, 0.5)〉, 〈z2, (0.3, 0.5, 0.6)〉}
(G̃2, q1) = {〈z1, (0.3, 0.5, 0.7)〉, 〈z2, (0.5, 0.5, 0.6)〉}
(G̃2, q2) = {〈z1, (0.4, 0.5, 0.6)〉, 〈z2, (0.4, 0.4, 0.6)〉}

Thenwehave τ = {0(Y,Q), 1(Y,Q), (H̃1, Q)} andσ = {0(Z ,Q), 1(Z ,Q), (G̃1, Q)}. Let f :
(Y, τ , Q) → (Z ,σ, Q) be an identity mapping. Then, (H̃1, Q) is NsSe∗O mapping
in Y but not NsSeO mapping in Z .
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Remark 1 The diagram shows NsSeO mapping’s in NsSts.

Theorem 2 A mapping f : (Y, τ , Q) → (Z ,σ, Q) is Ns SeO iff for every Ns Ss
(H̃ , Q) of (Y, τ , Q), f(NsSint (H̃ , Q)) ⊆ NsSeint (f(H̃ , Q)).

Theorem 3 Consider a Ns SeO mapping f : (Y, τ , Q) → (Z ,σ, Q). Then,
Ns Sint (f−1(H̃ , Q)) ⊆ f−1(NsSeint (H̃ , Q)) for every Ns Ss (H̃ , Q) of (Z ,σ, Q).

Theorem 4 A mapping f : (Y, τ , Q) → (Z ,σ, Q) is Ns SeO iff for each Ns Ss
(G̃, Q) of (Z ,σ, Q) and for each Ns Scs (H̃ , Q) of (Y, τ , Q) containing f−1(G̃, Q),
there is a Ns Secs ( Ã, Q) of (Z ,σ, Q) such that (G̃, Q) ⊆ (H̃ , Q) and f−1( Ã, Q) ⊆
(H̃ , Q).

Theorem 5 A mapping f : (Y, τ , Q) → (Z ,σ, Q) is Ns SeO iff f−1(NsS
ecl(G̃, Q)) ⊆ NsScl(f−1(G̃, Q)) for every Ns Ss (G̃, Q) of (Z ,σ, Q).

Theorem 6 Let f : (Y, τ , Q) → (Z ,σ, Q) and g : (Z ,σ, Q) → (P, ρ, Q) be two
neutrosophic soft mappings and g ◦ f : (Y, τ , Q) → (P, ρ, Q) be Ns SeO. If g :
(Z ,σ, Q) → (P, ρ, Q) is Ns SeIrr , then f : (Y, τ , Q) → (Z ,σ, Q) is Ns SeO map-
ping.

Theorem 7 If f : (Y, τ , Q) → (Z ,σ, Q) is Ns SO and g : (Z ,σ, Q) → (P, ρ, Q)

is Ns SeO mappings, then g ◦ f : (Y, τ , Q) → (P, ρ, Q) is Ns SeO.

4 Neutrosophic Soft e-Closed Mapping

Definition 10 A mapping f : (Y, τ , Q) → (Z ,σ, Q) is neutrosophic soft e-closed
(resp. closed, δ closed, δ-semi closed, δ-pre closed & e∗-closed) (in short, NsSeC
(resp.NsSC , NsSδC , NsSδSC , NsSδPC & NsSe∗C )) if the image of every NsS
closed set of (Y, τ , Q) is NsSec (resp. NsSc, NsSδc, NsSδSc, NsSδPc & NsSe∗c)
set in (Z ,σ, Q).
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Theorem 8 The statements are hold but the converse need not be true. Every

(i) Ns SδC mapping is a Ns SC mapping.
(ii) Ns SC mapping is a Ns SδSC mapping.
(iii) Ns SC mapping is a Ns SδPC mapping.
(iv) Ns SδSC mapping is a Ns SeC mapping.
(v) Ns SδPC mapping is a Ns SeC mapping.
(vi) Ns SeC mapping is a Ns Se∗C mapping.

Example 4 In Example 1, (H̃1, Q)c is NsSC (resp. NsSeC ) mapping in Y but not
NsSδC (resp. NsSδSC ) mapping in Z .

Example 5 In Example 2, (H̃1, Q)c is NsSδSC (resp. NsSδPC & NsSeC)mapping
in Y but not NsSC (resp. NsSC & NsSδPC) mapping in Z .

Example 6 In Example 3, (H̃1, Q)c is NsSe∗C mapping in Y but not NsSeC map-
ping in Z .

Remark 2 The diagram shows NsSeC mapping’s in NsSts.

Theorem 9 A mapping f : (Y, τ , Q) → (Z ,σ, Q) is Ns SeC iff for each Ns Ss
(G̃, Q) of (Z ,σ, Q) and for each Ns Sos (H̃ , Q) of (Y, τ , Q) containing f−1(G̃, Q),
there is a Ns Seos ( Ã, Q) of (Z ,σ, Q) such that (G̃, Q) ⊆ ( Ã, Q) and f−1( Ã, Q) ⊆
(H̃ , Q).

Theorem 10 If f : (Y, τ , Q) → (Z ,σ, Q) is Ns SC and g : (Z ,σ, Q) → (P, ρ, Q)

is Ns SeC. Then g ◦ f : (Y, τ , Q) → (P, ρ, Q) is Ns SeC.

Theorem 11 If f : (Y, τ , Q) → (Z ,σ, Q) is Ns SeC map, then Ns Secl(f(H̃ , Q)) ⊆
f(NsScl(H̃ , Q)).

Theorem 12 Let f : (Y, τ , Q) → (Z ,σ, Q) and g : (Z ,σ, Q) → (P, ρ, Q) are
Ns SeC mappings. If every Ns Secs of (Z ,σ, Q) is Ns Scs, then g ◦ f : (Y, τ , Q) →
(P, ρ, Q) is Ns SeC.
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Theorem 13 Let f : (Y, τ , Q) → (Z ,σ, Q) be a bijective mapping. Then the fol-
lowing statements are equivalent:

(i) f is a Ns SeO mapping.
(ii) f is a Ns SeC mapping.
(iii) f−1 is Ns SeCts mapping.

5 Neutrosophic Soft e-Homeomorphism

Definition 11 A bijection f : (Y, τ , Q) → (Z ,σ, Q) is called a NsS homeomor-
phism (in short NsSHom) if f and f−1 are NsSCts mappings.

Definition 12 A bijection f : (Y, τ , Q) → (Z ,σ, Q) is called a
NsSe-homeomorphism (in short NsSeHom) if f and f−1 are NsSeCts.

Theorem 14 Each Ns SHom is a Ns SeHom. But not conversely.

Example 7 Let Y = {y1, y2, y3} = {z1, z2, z3} = Z , Q = {q1, q2} and NsSs’s
(H̃1, Q), (H̃2, Q) & (H̃3, Q) in Y and (G̃1, Q) in Z are defined as

(H̃1, q1) = {〈y1, (0.2, 0.5, 0.8)〉, 〈y2, (0.3, 0.5, 0.7)〉, 〈y3, (0.4, 0.5, 0.6)〉}
(H̃1, q2) = {〈y1, (0.3, 0.5, 0.7)〉, 〈y2, (0.2, 0.5, 0.6)〉, 〈y3, (0.4, 0.4, 0.6)〉}
(H̃2, q1) = {〈y1, (0.1, 0.5, 0.9)〉, 〈y2, (0.1, 0.5, 0.9)〉, 〈y3, (0.4, 0.5, 0.6)〉}
(H̃2, q2) = {〈y1, (0.2, 0.4, 0.8)〉, 〈y2, (0.2, 0.5, 0.7)〉, 〈y3, (0.3, 0.4, 0.7)〉}
(H̃3, q1) = {〈y1, (0.2, 0.5, 0.8)〉, 〈y2, (0.4, 0.5, 0.6)〉, 〈y3, (0.4, 0.5, 0.6)〉}
(H̃3, q2) = {〈y1, (0.3, 0.5, 0.6)〉, 〈y2, (0.3, 0.5, 0.6)〉, 〈y3, (0.5, 0.4, 0.5)〉}
(G̃1, q1) = {〈z1, (0.2, 0.5, 0.8)〉, 〈z2, (0.4, 0.5, 0.6)〉, 〈z3, (0.4, 0.5, 0.6)〉}
(G̃1, q2) = {〈z1, (0.3, 0.5, 0.6)〉, 〈z2, (0.3, 0.5, 0.6)〉, 〈z3, (0.5, 0.4, 0.5)〉}

Then we have τ = {0(Y,Q), 1(Y,Q), (H̃1, Q), (H̃2, Q)} and σ = {0(Z ,Q), 1(Z ,Q),

(G̃1, Q)}. Let f : (Y, τ , Q) → (Z ,σ, Q)be an identitymapping.Then f is Ns SeHom
but not NsSHom.

Theorem 15 Consider a bijective mapping f : (Y, τ , Q) → (Z ,σ, Q). If f is
Ns SeCts, then the following statements are equivalent:

(i) f is a Ns SeC mapping.
(ii) f is a Ns SeO mapping.
(iii) f−1 is a Ns SeHom.

Definition 13 A NsSts (Y, τ , Q) is known as a neutrosophic soft eT 1
2
(in short,

NsSeT 1
2
)-space if every NsSecs is NsSc in (Y, τ , Q).
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Theorem 16 Let f : (Y, τ , Q) → (Z ,σ, Q) be a Ns SeHom. Then f is a Ns SHom
if (Y, τ , Q) and (Z ,σ, Q) are Ns SeT 1

2
-space.

Theorem 17 Let f : (Y, τ , Q) → (Z ,σ, Q) be a Ns Sts. If (Z ,σ, Q) is a Ns SeT 1
2
-

space, Then the following statements are equivalent:

(i) f is Ns SeC mapping.
(ii) If (H̃ , Q) is a Ns Sos in (Y, τ , Q), then f(H̃ , Q) is Ns Seos in (Z ,σ, Q).
(iii) f(NsSint (H̃ , Q)) ⊆ NsScl(NsSint (f(H̃ , Q))) for every Ns Ss (H̃ , Q) in

(Y, τ , Q).

Theorem 18 Let f : (Y, τ , Q) → (Z ,σ, Q) and g : (Z ,σ, Q) → (P, ρ, Q) be
Ns SeC, where (Y, τ , Q) and (P, ρ, Q) are two Ns Sts’s and (Z ,σ, Q) a Ns SeT 1

2
-

space, then the composition g ◦ f is Ns SeC.

Theorem 19 Let f : (Y, τ , Q) → (Z ,σ, Q) and g : (Z ,σ, Q) → (P, ρ, Q) be two
Ns Sts’s. Then the following are true:

(i) If g ◦ f is Ns SeO and f is Ns SCts, then g is Ns SeO.
(ii) If g ◦ f is Ns SO and g is Ns SeCts, then f is Ns SeO.

6 Neutrosophic Soft e-C Homeomorphism

Definition 14 Abijection f : (Y, τ , Q) → (Z ,σ, Q) is called a NsSe-C homeomor-
phism (in short, NsSeCHom) if f and f−1 are NsSeIrr mappings.

Theorem 20 Each Ns SeCHom is a Ns SeHom. But not conversely.

Example 8 Let Y = {y1, y2, y3} = {z1, z2, z3} = Z , Q = {q1, q2} and NsSs’s
(H̃1, Q), (H̃2, Q) & (H̃3, Q) in Y and (G̃1, Q) in Z are defined as

(H̃1, q1) = {〈y1, (0.2, 0.5, 0.8)〉, 〈y2, (0.3, 0.5, 0.7)〉, 〈y3, (0.4, 0.5, 0.6)〉}
(H̃1, q2) = {〈y1, (0.3, 0.5, 0.8)〉, 〈y2, (0.2, 0.5, 0.8)〉, 〈y3, (0.4, 0.5, 0.5)〉}
(H̃2, q1) = {〈y1, (0.1, 0.5, 0.9)〉, 〈y2, (0.1, 0.5, 0.9)〉, 〈y3, (0.4, 0.5, 0.6)〉}
(H̃2, q2) = {〈y1, (0.2, 0.5, 0.8)〉, 〈y2, (0.2, 0.5, 0.9)〉, 〈y3, (0.3, 0.5, 0.7)〉}
(H̃3, q1) = {〈y1, (0.2, 0.5, 0.8)〉, 〈y2, (0.2, 0.5, 0.6)〉, 〈y3, (0.3, 0.5, 0.6)〉}
(H̃3, q2) = {〈y1, (0.1, 0.5, 0.9)〉, 〈y2, (0.2, 0.5, 0.7)〉, 〈y3, (0.3, 0.5, 0.6)〉}
(G̃1, q1) = {〈z1, (0.2, 0.5, 0.8)〉, 〈z2, (0.2, 0.5, 0.8)〉, 〈z3, (0.4, 0.5, 0.6)〉}
(G̃1, q2) = {〈z1, (0.3, 0.5, 0.8)〉, 〈z2, (0.3, 0.5, 0.8)〉, 〈z3, (0.4, 0.5, 0.5)〉}

Then we have τ = {0(Y,Q), 1(Y,Q), (H̃1, Q), (H̃2, Q)} and σ = {0(Z ,Q), 1(Z ,Q),

(G̃1, Q)}. Let f : (Y, τ , Q) → (Z ,σ, Q) be amapping defined as f(y1) = z1, f(y2) =
z1 & f(y3) = z3. Then f is NsSeHom but not NsSeCHom.
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Theorem 21 If f : (Y, τ , Q) → (Z ,σ, Q) is a Ns SeCHom, then Ns Secl(f−1

(G̃, Q)) ⊆ f−1(NsScl(G̃, Q)) (resp. Ns Secl(f−1(G̃, Q)) = f−1(NsSecl(G̃, Q))) for
each Ns Ss (G̃, Q) in (Z ,σ, Q).

Theorem 22 If f : (Y, τ , Q) → (Z ,σ, Q) and g : (Z ,σ, Q) → (P, ρ, Q) are
Ns SeCHom’s, then g ◦ f is a Ns SeCHom.

7 Conclusion

In this paper, the concepts of NsSeO and NsSeC mappings in NsSts were dis-
cussed. Furthermore, the work was extended to include NsSHom, NsSeHom and
NsSeT 1

2
-space. In addition, the study demonstrated NsSeCHom and derived some

of its related characteristics. This work can be used to investigate neutrosophic soft
e-compactness, neutrosophic soft e-connectedness and neutrosophic soft contra e-
continuous functions in future.
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Jointly Type-II Censored Length-Biased
Exponential Distributions

Çağatay Çetinkaya

Abstract This paper deals with the jointly Type-II censored length-biased exponen-
tial populations. In this study, after introducing the jointly Type-II censoring scheme,
we first obtained the maximum likelihood estimations of the unknown scale param-
eters with their asymptotic confidence intervals. Then, the Bayesian estimations of
the parameters are obtained by using the importance sampling method. Further, the
highest posterior density credible intervals of the Bayesian estimations are provided.
The simulation studies are performed to evaluate the performances of the estimation
methods. Finally, a numerical example is used to illustrate the theoretical outcomes.

Keywords Bayesian inference · Jointly censoring · Length-biased exponential
distribution · Maximum likelihood estimation

1 Introduction

Inmany reliability studies, the lifetimes of the components/units may not be recorded
exactly. Since the components or units are lost or removed from the experiments
before they fail, the censored data sets occur. Censoring schemes (CSs) are preferable
for the experimenters to provide time and cost-efficiency. The censoring schemes are
constructedbasedon themain twoclassifications, Type I andType II censoring.While
the number of uncensored observations is a random variable in the Type-I censoring,
the number of uncensored observations is fixed in Type-II censoring.

In the literature, most of the conventional censoring schemes deal with one sample
problem. However, experimenters may need joint censoring schemes to decide for
conducting comparative life tests of units. For this purpose, joint censoring schemes
have been suggested in the literature. Balakrishnan and Rasouli [8] considered two
exponential populations under joint Type-II censoring. Then, Rasouli and Balakrish-
nan [16] considered the joint progressive Type-II censored exponential populations.
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The Type-II censoring scheme is the most common censoring scheme in life
testing experiments. In this scheme, r units in a random sample of size n (r < n)

are observed and the test terminates with r -th failure. In the same manner, let’s
suppose two independent samples of size n and m are placed on the life testing
experiment. Following recording the successive failure times and their corresponding
product types, the experiment terminates with the r -th failure. This censoring plan is
named a jointly Type-II censoring scheme. The jointly censored samples are handled
in various studies by Ashour and Abo-Kasem [3, 6], Balakrishnan and Feng [9],
Balakrishnan et al. [7], Doostparast et al. [13], Abo-Kasem et al. [1], Krishna and
Goel [15]. In these studies, mostly Type-II and related CSs are handled.

On the other hand, length-biased distributions have a great importance in relia-
bility since they provide greater flexibility in modeling data. Dara and Ahmed [12]
proposed a newextension of exponential distribution denoted bymoment exponential
distribution. Then, it is named as the length-biased exponential (LBE) distribution by
some authors such as Akhter et al. [2]. The probability density (pdf) and distribution
(cdf) function of the LBE distribution are given as

f (t) = t

θ2
exp

{
− t

θ

}
, x > 0, θ > 0 (1)

F(t) = 1 −
[
1 + t

θ

]
exp

{
− t

θ

}
(2)

where θ is the scale parameter. Dara andAhmad [12] proved that the LBEdistribution
is more flexible than the exponential distribution. Unlike the exponential distribution
with a constant failure rate, the LBE distribution is an increasing failure rate (IFR)
class of distribution. It is known that an IFR component has a better chance of
surviving any shorter period and the worse chance of surviving any longer period.

In this paper, we deal with the jointly Type-II censored length-biased exponential
populations. For this purpose, we first consider the maximum likelihood estimators
(MLE) of the unknown scale parameters along with their asymptotic confidence
intervals. Then, the Bayesian inference procedure is provided with the highest poste-
rior density credible intervals. In Bayesian estimations, importance samplingmethod
is used. The whole theoretical studies are illustrated with simulation and real data
studies.

2 Model Description and Parameter Estimation

Let’s suppose that lifetimes of n test units X1, X2, . . . , Xn and m test units
Y1,Y2, . . . ,Ym be independently and identically distributed (i.i.d.) random variables
(r.v.) having LBE distributions with scale parameters θ and λ, respectively with the
density and distribution functions which are given in the following
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f (x) = x

θ2
exp

{
− x

θ

}
, F(x) = 1 −

[
1 + x

θ

]
exp

{
− x

θ

}

g(y) = y

λ2
exp

{
− y

λ

}
, G(y) = 1 −

[
1 + y

λ

]
exp

{
− y

λ

} (3)

where x > 0, y > 0, θ > 0,λ > 0.
Then, it is assumed thatW(1),W(2), . . . ,W(N ) where N = n + m, denote the com-

bined order form of test samples (X1, X2, . . . , Xn; Y1,Y2, . . . , Ym). Then, the exper-
iment stops with the r−th failure, namely at the time pointW(r). Further, let’s define
an indicator variable, Zi (∀ i = 1, 2, . . . , r) that takes two values either 1 or 0
depending on whether W(i) is an X or Y failure, respectively.

We will prefer to use the ranking notation Wi instead of W(i) for simplicity in the
following of the study.

2.1 Maximum Likelihood Estimation

In this subsection, we consider the maximum likelihood estimations of unknown
scale parameters of the LBE distributions under jointly censoring. The likelihood
function of the observed sample can be obtained by using the Eq. (3) as given in the
following

L (w, z, θ,λ) = C ×
r∏

i=1

{ f (wi )}zi {g (wi )}(1−zi )
{
F̄ (wr )

}n−nr {
Ḡ (wr )

}m−mr (4)

where F̄ = 1 − F , Ḡ = 1 − G, C = n!m!
(n−nr )!(m−mr )! , nr = ∑r

i=1 zi and mr =∑r
i=1(1 − zi ). Thus, by using Eq. (3), the likelihood function defined in Eq. (4)

becomes

L (w, z, θ,λ) = C×
r∏

i=1

[
wi

θ2
e− wi

θ

]zi [wi

λ2
e− wi

λ

]1−zi [
1 + wr

θ

]n−nr

e− wr
θ (n−nr )

×
[
1 + wr

λ

]m−mr

e− wr
λ (m−mr )

(5)

and equally

L (w, z, θ,λ) ∝ 1

θ2nr
1

λ2mr

( r∏
i=1

wi

)
e− ξ1

θ − ξ2
λ

[
1 + wr

θ

]n−nr [
1 + wr

λ

]m−mr

(6)

where ξ1 = ∑r
i=1 ziwi + (n − nr )wr and ξ2 = ∑r

i=1(1 − zi )wi + (m − mr )wr .
Thus, the log-likelihood function is obtained as
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� (θ,λ) ∝ −2nr log(θ) − 2mr log(λ) +
r∑

i=1

logwi − ξ1

θ
− ξ2

λ

× +(n − nr ) log(1 + wr/θ) + (m − mr ) log(1 + wr/λ)

(7)

The partial derivates of � (θ,λ) should be equated to zero with respect to θ and λ to
obtain the MLEs of the parameters. The MLEs of the parameters are denoted by θ̂

and λ̂ by solving the Equations

ξ1

θ
− 2nr − (n − nr )wr

θ + wr
= 0 (8)

ξ2

λ
− 2mr − (m − mr )wr

λ + wr
= 0 (9)

These equations can be solved using iterative methods such as Newton-Raphson.
The approximate confidence intervals forMLEs of the parameters can be obtained

by using the inverse of the asymptotic Fisher information matrix. The observed
inverse Fisher information matrix is given as follows

I
(
θ̂, λ̂

)
= −

[
∂2�(θ,λ)

∂θ2
∂2�(θ,λ)

∂θ∂λ
∂2�(θ,λ)

∂λ∂θ
∂2�(θ,λ)

∂λ2

]
θ=θ̂,λ=λ̂

(10)

where
∂2� (θ,λ)

∂θ2
= 2nr

θ2
− 2ξ1

θ3
+ (n − nr )wr (2θ + wr )

θ2(θ + wr )2

∂2� (θ,λ)

∂λ2
= 2mr

λ2
− 2ξ2

λ3
+ (m − mr )wr (2λ + wr )

λ2(λ + wr )2

∂2� (θ,λ)

∂θ∂λ
= ∂2� (θ,λ)

∂λ∂θ
= 0

The estimated variances of the θ̂ and λ̂ can be obtained as

Var(θ̂) = −
(

∂2� (θ,λ)

∂θ2

)−1

θ=θ̂

and Var(λ̂) = −
(

∂2� (θ,λ)

∂λ2

)−1

λ=λ̂

It is known that the MLEs are consistent and asymptotically normally distributed
under some regularity conditions [14]. Thus, the 100(1 − δ)%asymptotic confidence
intervals of λ and θ can be constructed by

θ̂ ∓ Z δ
2

√
Var(θ̂) and λ̂ ∓ Z δ

2

√
Var(λ̂)



Jointly Type-II Censored Length-Biased Exponential Distributions 63

where Zδ is 100 δth percentile of standard normal distribution N (0, 1).

2.2 Bayesian Estimation

In this subsection, we obtained the Bayesian estimations of the unknown parameters
and the corresponding credible intervals based on the jointly censoring scheme.
Since θ and λ are both unknown, we may choose any specific forms of the priors.
In this study, we considered inverse gamma distributions conjugate priors as π(θ) ∼
IG(a1, b1) and π(λ) ∼ IG(a2, b2). The joint density function of the priors is given
by

π(θ,λ) ∝ θ−a1−1e− b1
θ λ−a2−1e− b2

λ

where θ,λ > 0 and the hyper-parameters a1, b1, a2, b2 > 0. Then, by using the
observed censored samples and the prior distributions for the parameters, the joint
posterior density function of parameters θ and λ are obtained as

π(θ,λ|w,z) ∝ θ−2nr−a1−1e− ξ1+b1
θ λ−2mr−a2−1e− ξ2+b2

λ

×
[
1 + wr

θ

]n−nr [
1 + wr

λ

]m−mr (11)

The joint posterior density can be written as

π(θ,λ|w,z) ∝ π1(θ)π2(λ)H(θ,λ)

where

H(θ,λ) =
[
1 + wr

θ

]n−nr [
1 + wr

λ

]m−mr

and

π1(θ) ∝ IG(2nr + a1, ξ1 + b1)

π2(λ) ∝ IG(2mr + a2, ξ2 + b2)
(12)

Therefore one can easily generate samples from the distribution of θ and λ given in
(12). Now we would like to provide the importance sampling procedure to compute
theBayes estimates and also to construct the highest posterior density (HPD) credible
intervals by using the following algorithm

Step 1: Generate θ from π1(θ; a1, b1).
Step 2: Generate λ from π2(λ; a2, b2).
Step 3: Compute H = H(θ,λ).
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Step 4: Repeat steps 1–3 M times, and generate M estimates of θ j , λ j and Hj , for
j = 1, 2, . . . , M .

Thus, an approximate Bayes estimate of θ under a squared error loss function can
be obtained as

θ̂B =
1
M

∑M
i=1 θi H (θi ,λi )

1
M

∑M
i=1 H (θi ,λi )

(13)

Bayesian estimate of λ can be obtained similarly. Then, the credible interval of
θ and λ can be obtained by using the idea of Chen and Shao [10]. Let’s assume
that Ui = H

(
θ(i),λ(i)

)
where θ(i) and λ(i) for i = 1, 2, . . . , M is posterior samples

generated respectively from (12) for θ and λ. LetUi be the ordered values ofUi and
define

ωi = H(θi ,λi )∑M
i=1 H(θi ,λi )

Then, the p-th quantile of Û = (θ̂B, λ̂B) can be estimated as

Û (p) =
{
U(1), p = 0
U(i),

∑i−1
j=1 ω j < p ≤ ∑i

j=1 ω j

The 100(1 − δ)% HPD credible intervals are obtained as

{
Û

(
j
M

)
, Û

(
j+[(1−γ)M]

M

)}

for j = 1, 2, . . . , M where [.] is the greatest integer function.

3 Simulation Studies

In this section, some simulation studies are performed for evaluating the per-
formance of estimation methods which are developed in the previous sections.
We considered different sample sizes for the two populations such as (n,m) =
(15, 15), (20, 25), (35, 30), (50, 50) and the corresponding different number of fail-
ure for each sample sizes as r = (22, 26), (36, 40), (52, 60) and (80, 90), respec-
tively. These failure numbers are determined as providing %80 and %90 observed
samples in each case. We considered three sets of parameter values such as (θ,λ) =
(0.75, 0.75), (1.00, 1.50), (1.25, 0.75). In each cases of parameters, we determined
the hyperparameter values that provide these actual values as a1 = a2 = 5, b1 =
b2 = 3 for (θ,λ) = (0.75, 0.75), a1 = 4, a2 = 2, b1 = 3, b2 = 1.5 for (θ,λ) =
(1.00, 1.50) and a1 = 2, a2 = 5, b1 = 1.25, b2 = 3 for (θ,λ) = (1.25, 0.75). The
simulations were repeated 2000 times. In the MCMC, we used 3500 samples and
discard the first 500 values as burn-in period and take every third variate in thinning
procedure. Then, the algorithm is performed for 2000 replications. The significant
level was taken as δ = 0.05.
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Table 1 The biases and MSEs (in parentheses) of the estimates with the corresponding average
lengths and coverage probabilities (in parentheses) of their ACI and HPD intervals in the case of
θ = 0.75, λ = 0.75
n,m r θ̂ λ̂

MLE Bayes ACI HPD MLE Bayes ACI HPD

15, 15 22 0.00612 0.00503 0.60969 0.57467 0.01220 0.01030 0.61497 0.57818

(0.02493) (0.01829) (93.15) (95.90) (0.02518) (0.01845) (93.50) (95.95)

26 −0.00422 −0.00376 0.56320 0.53193 −0.00177 −0.00161 0.56458 0.53313

(0.01979) (0.01504) (93.25) (96.65) (0.02026) (0.01539) (93.60) (96.40)

20, 25 36 0.00661 0.00570 0.51013 0.48912 0.00212 0.00204 0.45200 0.43930

(0.01718) (0.01384) (93.95) (95.55) (0.01271) (0.01068) (94.35) (96.25)

40 −0.00290 −0.00287 0.48336 0.46385 −0.00089 −0.00078 0.43317 0.41957

(0.01513) (0.01236) (93.95) (95.85) (0.01174) (0.00999) (94.05) (95.65)

35, 30 52 0.00244 0.00226 0.38181 0.37572 0.00462 0.00445 0.41459 0.40476

(0.00950) (0.00835) (94.35) (94.50) (0.01171) (0.01007) (93.60) (92.95)

60 0.00165 0.00150 0.37134 0.36462 0.00097 0.00086 0.40072 0.39143

(0.00864) (0.00765) (94.10) (95.90) (0.01010) (0.00876) (94.75) (95.95)

50, 50 80 0.00305 0.00333 0.31972 0.31507 0.00258 0.00291 0.31943 0.31392

(0.00671) (0.00618) (94.85) (95.26) (0.00631) (0.00580) (95.25) (95.80)

90 0.00310 0.00309 0.30627 0.30244 0.00405 0.00396 0.30654 0.30300

(0.00625) (0.00576) (93.95) (95.25) (0.00611) (0.00563) (94.50) (95.20)

The performances of the estimators are evaluated with their biases and mean
squared error (MSE) values in each case. We also evaluated the performances of
the approximate confidence intervals according to their average lengths (AL) and
coverage probabilities (CP). The whole results are presented in Tables 1, 2 and 3.

We observed that the MSEs and biases decrease with increasing sample sizes
as expected. The Bayes estimates have smaller MSEs than MLEs. The difference
between performances of the estimators decreases with increasing sample size. Espe-
cially in large samples, both estimation methods give almost equal estimations. In
parallel to estimates, confidence intervals show similar performances. TheHPDcred-
ible interval is satisfactorily better than ACI in small samples. Both methods show
similar ALs and CPS with the increasing sample sizes. The confidence intervals are
mostly obtained very close to their actual values, 0.95, in all cases.

4 Numerical Example

In this section, we provide a numerical example by using the generated datasets
by Akhter et al. [2]. They generated some datasets from the LBE distributions and
used them to evaluate the usefulness of coefficients of BLUEs of location and scale
parameters. In the purpose of the jointly censoring scheme, we take the first two data
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Table 2 The biases and MSEs (in parentheses) of the estimates with the corresponding average
lengths and coverage probabilities (in parentheses) of their ACI and HPD intervals in the case of
θ = 1, λ = 1.5
n,m r θ̂ λ̂

MLE Bayes ACI HPD MLE Bayes ACI HPD

15, 15 22 0.00898 0.00808 0.77465 0.74331 0.01834 0.01967 1.29660 1.29513

(0.03854) (0.03095) (93.90) (96.15) (0.11067) (0.10170) (93.10) (95.05)

26 0.00120 0.00085 0.73361 0.70308 0.02049 0.02081 1.18446 1.18075

(0.03373) (0.02762) (93.30) (95.85) (0.08692) (0.08108) (94.15) (95.45)

20, 25 36 0.00333 0.00280 0.64767 0.62881 0.00556 0.00684 0.94006 0.95478

(0.02643) (0.02260) (93.70) (95.65) (0.05693) (0.05458) (94.00) (95.11)

40 0.00355 0.00317 0.63291 0.61369 −0.00213 −0.00176 0.88441 0.88602

(0.02620) (0.02261) (93.95) (95.75) (0.05379) (0.05171) (93.55) (94.55)

35, 30 52 −0.00056 −0.00032 0.48946 0.48312 0.01039 0.01138 0.87035 0.86768

(0.01598) (0.01474) (94.35) (94.84) (0.04806) (0.04635) (94.75) (95.07)

60 0.00308 0.00294 0.47523 0.46651 0.00244 0.00249 0.79832 0.80045

(0.01482) (0.01364) (94.70) (95.50) (0.04046) (0.03908) (94.95) (95.80)

50, 50 80 0.00059 0.00090 0.40886 0.40516 0.00442 0.00627 0.66696 0.64280

(0.01109) (0.01044) (94.35) (94.92) (0.02783) (0.02768) (94.70) (93.88)

90 0.00213 0.00201 0.39873 0.39379 0.00087 0.00137 0.62454 0.63339

(0.01042) (0.00983) (94.45) (95.00) (0.02401) (0.02364) (95.10) (96.05)

Table 3 The biases and MSEs (in parentheses) of the estimates with the corresponding average
lengths and coverage probabilities (in parentheses) of their ACI and HPD intervals in the case of
θ = 1.25, λ = 0.75
n,m r θ̂ λ̂

MLE Bayes ACI HPD MLE Bayes ACI HPD

15, 15 22 0.01281 0.01483 1.09438 1.09150 0.00688 0.00584 0.57516 0.54279

(0.07797) (0.07184) (93.45) (94.71) (0.02307) (0.01749) (92.40) (95.80)

26 0.00125 0.00171 0.97951 0.97794 −0.00184 −0.00170 0.54606 0.51621

(0.06116) (0.05667) (93.55) (95.00) (0.01949) (0.01508) (93.30) (96.05)

20, 25 36 0.00969 0.01116 0.90480 0.91106 0.00339 0.00319 0.43401 0.41914

(0.05334) (0.05067) (93.90) (94.92) (0.01259) (0.01070) (93.85) (94.95)

40 0.00387 0.00452 0.84179 0.84310 −0.00124 −0.00121 0.42143 0.40716

(0.04547) (0.04310) (94.15) (95.95) (0.01100) (0.00939) (95.05) (96.35)

35, 30 52 0.00878 0.00952 0.67072 0.66917 0.00393 0.00376 0.39406 0.38227

(0.02878) (0.02807) (94.05) (94.82) (0.00976) (0.00854) (95.45) (96.25)

60 0.00194 0.00230 0.61458 0.61647 0.00235 0.00213 0.38337 0.37193

(0.02560) (0.02490) (94.05) (95.00) (0.00980) (0.00861) (94.90) (95.75)

50, 50 80 0.00087 0.00231 0.56073 0.52834 −0.00174 −0.00149 0.30324 0.29652

(0.01950) (0.01947) (95.50) (94.84) (0.00612) (0.00569) (93.40) (94.29)

90 −0.00006 0.00009 0.52281 0.53156 0.00173 0.00167 0.29783 0.29267

(0.01770) (0.01737) (93.85) (94.34) (0.00598) (0.00551) (94.50) (94.80)
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(actual parameter values equal to 0.5) sets with sample sizes n = 7 and m = 10 as
given in the following

Data Set I (X): 0.184522, 0.647899, 0.693491, 0.863154, 0.918599, 1.543884,
2.296143.

Data Set II (Y): 0.281766, 0.311408, 0.507578, 0.578070, 0.670802, 1.048554,
1.147288, 1.500197, 1.565101, 2.267506.

We considered two different values of failures as r = 10 and r = 14 and used
informative hyper-parameters as a1 = a2 = 3, b1 = b2 = 1 to provide actual param-
eter values 0.5 for both parameters. In MCMC method, we used 101 000 iterations,
we discard the first 1000 values in burn-in period and we take every tenth variate in
thinning procedure.

In the case of r = 10, we obtained θ̂ = 0.45374 and its corresponding ACI
is obtained as (0.18433, 0.72316) with length 0.53883. The Bayes estimate is
obtained as θ̂B = 0.46136 and its corresponding HPD credible interval is obtained
as (0.26759, 0.79871) with length 0.53113. On the other hand, we obtained λ̂ =
0.52682 and its corresponding ACI is obtained as (0.22901, 0.82464) with length
0.59563. The Bayes estimate is obtained as λ̂B = 0.52349 and its corresponding
HPD credible interval is obtained as (0.31035, 0.88076) with length 0.57041.

In the case of r = 14, we obtained θ̂ = 0.50142 and its corresponding ACI
is obtained as (0.22422, 0.77863) with length 0.55441. The Bayes estimate is
obtained as θ̂B = 0.50197 and its corresponding HPD credible interval is obtained
as (0.30263, 0.82543) with length 0.52280. On the other hand, we obtained λ̂ =
0.52209 and its corresponding ACI is obtained as (0.27475, 0.76943) with length
0.49468. The Bayes estimate is obtained as λ̂B = 52085 and its corresponding HPD
credible interval is obtained as (0.27475, 0.76943) with length 0.47682.

It is observed that the estimates are getting closer to their actual values with
parallel to the increasing size of the observed sample. The Bayes HPD credible
intervals perform slightly better than ACI. We also assessed the convergence of the
simulated Markov chains by graphical methods effectively. For this purpose, the
trace plot which is a plot of the iteration number, t , against the value of the θ(t)

and λ(t) at each iteration and density plot of the posterior distributions of θ and
λ are used. Also, the running mean (ergodic average) plot which draws the mean
of sampled values up to iteration t is used. For each sample size in the simulation
schemes, with their higher failure numbers, we evaluated the convergence of the
Markov chains and draw all graphics and reported in Figs. 1 and 2. We observed
that overall convergences of the Markov chains are satisfactory by the evaluations
and observations as expectations. The trace plots fluctuate around their center with
similar variation and ranges are decreasing with increasing sample sizes. The density
plots seem symmetric, unimodal and the bandwidth of the densities becomes narrow
with increasing sample size. Also, the running mean plot shows that the chain has
achieved stationarity. All plots to check the convergence can be drawn by using
mcmcplots package [11] in R software.
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Fig. 1 The trace plots of the posterior distributions of θ and λ in the case of r = 14
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Fig. 2 The running mean and the density plots of the posterior distributions of θ and λ in the case
of r = 14

5 Conslusions

This study deals with inference for two length-biased populations under a joint Type-
II censoring scheme. We obtained the MLE and Bayes estimates with corresponding
asymptotic and Bayesian HPD credible intervals. Simulations and numerical exam-
ples show that theoretical findings perform quite well. Both estimation methods
provide good results with a satisfactory small MSE value. In small samples, the
Bayes estimation method performs better than MLE as expected. Both estimates are
getting very close in parallel to increasing sample sizes. Further, the estimations per-
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form well even if the observed sample sizes level decrease. There is not any previous
study for the LBE distribution under a jointly censoring scheme. It can be considered
under more complex jointly censoring schemes for further studies.
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Fuzzy θ∗S-open and Closed Mappings
in Ŝostak’s Fuzzy Topological Spaces

Odayappan Uma Maheswari, Appachi Vadivel, Arivazhagan Mughil,
and Gurusamy Saravanakumar

Abstract We introduce and investigate some new classes of mappings called fuzzy
θ∗S-open map and fuzzy θ∗S-closed map to the fuzzy topological spaces in Ŝostaks
sense. Also, some of their fundamental properties are studied. Moreover, we inves-
tigate the relationships between some other existing mappings.

Keywords Fuzzy open · Fuzzy θ∗-semiopen mappings · f θ∗S-T1 space,
f θ∗S-T2 space, fuzzy θ∗S-connected and fuzzy θ∗S-compact

AMS (2000) subject classification: 03E05 · 54A05 · 54A40

1 Introduction

Ŝostak [23] introduced the fuzzy topology as an extension of Chang’s fuzzy topology
[6]. It has been developed in many directions [11, 12, 22]. Weaker forms of fuzzy
continuity between fuzzy topological spaces have been considered by many authors
[1, 4, 10] using the concepts of fuzzy semi-open sets [1], fuzzy regular open sets
[1], fuzzy preopen sets, fuzzy strongly semiopen sets [4], fuzzy γ -open sets [10],
fuzzy δ-semiopen sets [3], fuzzy δ-preopen sets [3] and fuzzy semi δ-preopen sets
[24]. Ganguly and Saha [9] introduced the notions of fuzzy δ-cluster points in fuzzy
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topological spaces in the sense ofChang [6].KimandPark [13] introduced ı-δ-cluster
points and δ-closure operators in fuzzy topological spaces in view of the definition of
Ŝostak. It is a good extension of the notions of Ganguly and Saha [9]. Park et al. [17]
introduced the concept of fuzzy semi-preopen sets which is weaker than any of the
concepts of fuzzy semi-open or fuzzy preopen sets. In 1968, Velicko exhibited and
studied some new types of open sets called θ -open sets [25] and δ-open sets which
are stronger than open sets in order to investigate the characterizations of H -closed
topological spaces. Levine in 1963 initiated a new type of open set called semi-open
set [14]. In 1993, Raychaudhuri andMukherjee defined δ-preopen sets [21]. In 1997,
δ-semiopen sets was obtained by Park [18] and Caldas obtained θ -semi-open sets
in 2008 [5]. Shafei introduced fuzzy θ -closed [8] and fuzzy θ -open sets in 2006.
Maghrabi et al. [7] introduced the notion of θ∗-semiopen sets in topological spaces
in 2014. Recently, Mughil et al. [15, 16] introduced ı-fuzzy θ∗-semiopen (resp.
ı-fuzzy θ∗-semiclosed) sets and maps in fuzzy topological spaces in the sense of
Ŝostak’s. In this paper, we introduce the concept of fuzzy θ∗-semi open mappings in
fuzzy topological spaces in the sense of Ŝostak’s. Also, some characterizations and
properties of these notions are presented.

2 Preliminaries

Nonempty sets shall be indicated by U, V , I = [0, 1], and I0 = (0, 1] throughout
this article. For ρ ∈ I, ρ(u) = ρ ∀ u ∈ U . A fuzzy point ut for t ∈ I0 is an element of

IU � ut (v) =
{
t if v = u

0 if v �= u.
Pt (U ) denotes the set of all fuzzy points inU . A fuzzy

point ut ∈ β iff t < β(u). A fuzzy set β is quasi-coincident with δ, denoted by βqδ,

if u ∈ U ∃ � β(u) + δ(u) > 1. If β is not quasi-coincident with δ, we call it βq̄δ. If

A ⊂ U , we define the characteristic function χA on U by χA(u) =
{
1 if u ∈ A,

0 if u /∈ A.

Definition 1 ([23]) A function S : IU → I is called a fuzzy topology on U if it
satisfies the following conditions:

(O1) S(0) = S(1) = 1,
(O2) S(

∨
j∈� γi ) ≥ ∧

j∈� S(γ j ), for any {γ j } j∈� ⊂ IU ,
(O3) S(γ1 ∧ γ2) ≥ S(γ1) ∧ S(γ2), for any γ1, γ2 ∈ IU .

The pair (U, S) is called a Ŝostak’s fuzzy topological space (for short, sfts).

Remark 1 ([19]) Let (U, S) be a sfts. Then, ∀ ı ∈ I0, Sı = {δ ∈ IU : S(δ) ≥ ı}
is a Change’s fuzzy topology on U .
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Theorem 1 ([22]) Let (U, S) be a sfts. Then ∀ β ∈ IU , ı ∈ I0 we define an oper-
ator ClS (resp. I ntS) : IU × I0 → IU as follows: ClS(β, ı) = ∧{δ ∈ IU : β ≤
δ, S(1 − δ) ≥ ı} (resp. I ntS(β, ı) = ∨{δ ∈ IU : β ≥ δ, S(δ) ≥ ı}).
For β, δ ∈ IU and ı, j ∈ I0, the operator ClS & IntS satisfies the conditions:

(1) ClS(0, ı) = 0,
(2) β ≤ ClS(β, ı),
(3) ClS(β, ı) ∨ ClS(δ, ı) = ClS(β ∨ δ, ı),
(4) ClS(β, ı) ≤ ClS(β, j) if ı ≤ j ,
(5) ClS(ClS(β, ı), ı) = ClS(β, ı).
(6) I ntS(1, ı) = 1,
(7) β ≥ I ntS(β, ı),
(8) I ntS(β, ı) ∧ I ntS(δ, ı) = I ntS(β ∧ δ, ı),
(9) I ntS(β, ı) ≤ I ntS(β, j) if j ≤ ı ,
(10) I ntS(I ntS(β, ı), ı) = I ntS(β, ı),
(11) I ntS(1 − β, ı) = 1 − ClS(β, ı) and ClS(1 − β, ı) = 1 − I ntS(β, ı)

Definition 2 Let (U, S) be a sfts. β, δ ∈ IU & ı ∈ I0, then

(i) θ I ntS(β, ı) = ∨{I ntS(δ, ı) : β ≥ δ, S(1 − δ) ≥ ı} is called the ı-fuzzy θ -
interior of β [26].

(ii) θClS(β, ı) = ∧{ClS(δ, ı) : β ≤ δ, S(δ) ≥ ı} is called the ı-fuzzy θ -closure
of β [26].

(iii) ı-fuzzy θ -open (resp. ı-fuzzy θ -closed) (briefly, ı- f θo (resp. ı- f θc)) [26] set
if β = θ I ntS(β, ı) (resp. β = θClS(β, ı)).

(iv) ı-fuzzy θ -semiopen (resp. ı-fuzzy θ -semiclosed) (briefly, ı- f θSo (resp. ı-
f θSc)) set [26] ifβ ≤ ClS(θ I ntS(β, ı), ı) (resp. I ntS(θClS(β, ı), ı) ≤ β).

(v) ı-fuzzy α-open (resp. ı-fuzzy semiopen [20] & ı-fuzzy γ -open [20]) (briefly,
ı- f αo (resp. ı- f So& ı- f γ o )) set if β ≤ I ntS(ClS(I ntS(β, ı), ı), ı) (resp.
β ≤ ClS(I ntS(β, ı), ı)) & β ≤ ClS(I ntS(β, ı), ı) ∨ I ntS(ClS(β, ı), ı).

Definition 3 ([15]) In a fts (U,S), β ∈ IU is called an ı-fuzzy

(i) θ∗-semiopen (resp. θ∗-semiclosed) (briefly ı- f θ∗So (resp. ı- f θ∗Sc))
set if β ≤ I ntS(ClS(I ntS (β, ı), ı), ı) ∨ ClS(θ I ntS(β, ı), ı) (resp. β ≥
ClS(I ntS (ClS(β, ı), ı), ı) ∧ I ntS(θClS(β, ı), ı)).

(ii) Z open (briefly ı- f Zo) set if β ≤ ClS(δ I ntS(β, ı), ı) ∨ I ntS(ClS(β, ı), ı).
(iii) Y open (briefly ı- f Y o) set if β ≤ ClS(θ I ntS(β, ı), ı) ∨ I ntS(ClS(β, ı), ı).
(iv) θ∗ semi closed (resp. Z closed & ı-fuzzy Y closed) (briefly ı- f θ∗Sc (resp.

ı- f Zc & ı- f Y c )) set if 1 − β is an ı- f θ∗So (resp. ı- f Zo & ı- f Y o) set.

Definition 4 ([15]) Let (U,S) be a fts, then the

(i) union of all ı- f θ∗So (resp. ı- f Y o, ı- f θSo & ı- f Zo) sets contained in β is
called the ı- f θ∗S (resp. ı- f Y , ı- f θS & ı- f Z ) interior of β (briefly, θ∗S I ntS
(β, ı) (resp. Y IntS(β, ı), θS I ntS(β, ı) & Z IntS(β, ı))).
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(ii) intersection of all ı- f θ∗Sc (resp. ı- f Y c, ı- f θSc & ı- f Zc) sets containing
β is called the ı- f θ∗S (resp. ı- f Y , ı- f θS & ı- f Z ) closure of β (briefly,
θ∗SClS(β, ı) (resp. YClS(β, ı), θSClS(β, ı) & ZClS(β, ı))).

Theorem 2 ([15]) Let (U, S) be a fts. Let β ∈ IU and ı ∈ Io.

(i) β is ı - f θ∗So iff β = θ∗S I ntS(β, ı).
(ii) β is ı - f θ∗Sc iff β = θ∗SClS(β, ı).

Theorem 2 is satisfied by YClS(β, ı) & ZClS(β, ı).

Definition 5 ([16]) Let (U, S1) and (U, S2) be fts’s and k : (U, S1) → (V, S2) a
mapping. k is called fuzzy θ∗-semicontinuous (resp. Y -continuous & Z -continuous)
(briefly, f θ∗SCts (resp. f YCts & f ZCts )) if k−1(δ) is ı- f θ∗So (resp. ı- f Y o &
ı- f Zo) ∀ δ ∈ IU , ı ∈ I0 with S2(δ) ≥ ı .

3 Fuzzy θ∗S-open and Closed Mappings

Definition 6 Let (U, S1), (V, S2) be sfts’s and k : (U, S1) → (V, S2) be a
mapping. Then k is called fuzzy

(i) θ∗S-open (briefly, f θ∗SO ) mapping if k(β) is ı- f θ∗So set of V for each β ∈ IU ,

ı ∈ I0 with S1(β) ≥ ı .
(ii) θ∗S-closed (briefly, f θ∗SC) mapping if k(β) is ı- f θ∗Sc set of V for each β ∈ IU ,

ı ∈ I0 with S1(1 − β) ≥ ı .

Theorem 3 Let (U, S) be a fts and ı ∈ I0, then

1. Every f θO (resp. f θC) map is f O (resp. f C).
2. Every f θO (resp. f θC) map is f θSO (resp. f θSC).
3. Every f O (resp. f C) map is f αO (resp. f αC).
4. Every f αO (resp. f αC) map is f θ∗SO (resp. f θ∗SC).
5. Every f θSO (resp. f θSC) map is f θ∗SO (resp. f θ∗SC).
6. Every f θ∗SO (resp. f θ∗SC) map is f Y O (resp. f YC).
7. Every f θ∗SO (resp. f θ∗SC) map is f SO (resp. f SC).
8. Every f SO (resp. f SC) map is f γ O (resp. f γC).
9. Every f Y O (resp. f YC) map is f ZO (resp. f ZC).
10. Every f ZO (resp. f ZC) map is f γ O (resp. f γC).

Remark 2 It is clear from the preceding definitions that the following consequences
are true for ı ∈ I0. But not converse are shown in the following examples.
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fO fαO fSO fγO

fθO fθSO fY O fZO

fθ SO

Example 1 Let U = V = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ1(k) = 0.5,
ρ1(l) = 0.6, ρ1(m) = 0.4; ρ2(k) = 0.5, ρ2(l) = 0.4, ρ2(m) = 0.4. Then Si :
IU → I, defined as

S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1,

0 ow.

and S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1, ρ2,

0 ow.

Then iU : (U, S1) → (V, S2) is f O (resp. f θ�SO)-map but not f θO (resp.
f θSO)-map.

Example 2 Let U = V = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ1(k) = 0.5,
ρ1(l) = 0.6, ρ1(m) = 0.4; ρ2(k) = 0.5, ρ2(l) = 0.4, ρ2(m) = 0.4; ρ3(k) = 0.5,
ρ3(l) = 0.4, ρ3(m) = 0.6 Let Si : IU → I, defined as

S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ3,

0 ow.

and S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1, ρ2,

0 ow.

Then iU : (U, S1) → (V, S2) is f θSO (resp. f SO & f Y O)-map but not f θO
(resp. f θ�SO)-map.

Example 3 Let U = V = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ1(k) = 0.5,
ρ1(l) = 0.6, ρ1(m) = 0.4; ρ2(k) = 0.5, ρ2(l) = 0.4, ρ2(m) = 0.4; ρ4(k) = 0.5,
ρ4(l) = 0.4, ρ4(m) = 0.5 Let Si : IU → I,defined as

S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ4,

0 ow.

and S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1, ρ2,

0 ow.

Then iU : (U, S1) → (V, S2) is f ZO-map but not f Y O-map.

Example 4 Let U = V = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ1(k) = 0.5,
ρ1(l) = 0.6, ρ1(m) = 0.4; ρ2(k) = 0.5, ρ2(l) = 0.4, ρ2(m) = 0.4; ρ5(k) = 0.5,
ρ5(l) = 0.5, ρ5(m) = 0.5 Let Si : IU → I, defined as
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S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ5,

0 ow.

and S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1, ρ2,

0 ow.

Then iU : (U, S1) → (V, S2) is f θ�SO-map but not f αO-map.

Example 5 Let U = V = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ6(k) = 0.5,
ρ6(l) = 0.5, ρ6(m) = 0.4; ρ7(k) = 0.5, ρ7(l) = 0.5, ρ7(m) = 0.9; ρ8(k) = 0.5,
ρ8(l) = 0.5, ρ8(m) = 0. Let Si : IU → I, defined as

S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ8,

0 ow.

and S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ6, ρ7,

0 ow.

Then iU : (U, S1) → (V, S2) is f γ O-map but not f ZO (resp. f SO)-map.

Example 6 Let U = V = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ9(k) = 0.5,
ρ9(l) = 0.5, ρ9(m) = 0.4; ρ10(k) = 0.5, ρ10(l) = 0.5, ρ10(m) = 0.1; ρ11(k) =
0.5, ρ11(l) = 0.5, ρ11(m) = 0.2 Let Si : IU → I,

S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ11,

0 ow.

and S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ9, ρ10,

0 ow.

Then iU : (U, S1) → (V, S2) is f αO-map but not f 0-map.

Theorem 4 Let (U, S1), (V, S2) be sfts’s and k : U → V be a mapping. The
statements are identical in this case:

(i) k is a f θ∗SO mapping.
(ii) k(IS1(β, ı)) ≤ θ∗S IS2(k(β), ı) for each β ∈ IU and ı ∈ I0.
(iii) IS1(k

−1(μ), ı) ≤ k−1(θ∗S IS2(μ, ı)) for each μ ∈ I V and ı ∈ I0.

Proof (i)⇒(ii) For all β ∈ IU , ı ∈ I0 since S1(IS1(β, ı)) ≥ ı , we see that
k(IS1(β, ı)) is ı- f θ∗So in V . From Theorem 2, k(IS1(β, ı)) = θ∗S IS2(k(IS1(β,

ı)), ı) ≤ θ∗S IS2(k(β), ı).
(ii)⇒(iii) Let μ ∈ I V , ı ∈ I0. By (ii) we have k(IS1(k

−1(μ), ı)) ≤ θ∗S IS2

(kk−1(μ), ı) ≤ θ∗S IS2(μ, ı) ⇒ IS1(k
−1(μ), ı)) ≤ k−1(θ∗S IS2(μ, ı)).

(iii)⇒(i) For each β ∈ IU , ı ∈ I0 withS1(β) ≥ ı , since IS1(β, ı) = β, k(β) ≤
θ∗S IS2(k(β), ı) ≤ k(β). Thus k(β) = θ∗S IS2(k(β), ı). By Theorem 2, k(β) is
ı- f θ∗So in V .

Theorem 5 Let (U, S1) and (V, S2) be sfts’s and k : (U, S1) → (V, S2) be
a f θ∗SO mapping. If μ ∈ I V and β ∈ IU , S1(1 − β) ≥ r, ı ∈ I0 � k−1(μ) ≤ β,
then there exists an ı- f θ∗Sc set ν of V � μ ≤ ν, k−1(ν) ≤ β.
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Proof Let ν = 1 − k(1 − β). Since k−1(μ) ≤ β, we have k(1 − β) ≤ 1 − μ. since
k is f θ∗SO map, then ν is ı- f θ∗Sc in V and k−1(ν) = 1 − k−1(k(1 − β)) ≤ 1 −
(1 − β) = β.

Theorem 6 If k : (U, S1) → (V, S2) be a f θ∗SO mapping. Then for each μ ∈
I V , ı ∈ I0,

k−1(CS2(θ IS2(μ, ı), ı) ∧ k−1(IS2(CS2(IS2(μ, ı), ı), ı)) ≤ CS1(k
−1(μ), ı).

Theorem 7 If k : (U, S1) → (V, S2) be a bijective mapping such that

k−1(CS2(IS2(CS2(μ, ı), ı), ı)) ∧ k−1(IS2(θCS2(μ, ı), ı)) ≤ CS1(k
−1(μ), ı).

for each μ ∈ I V , ı ∈ I0, then k is f θ∗SO map.

Theorem 8 Let (U, S), (V, P) be sfts’s and let k : U → V be a f θ∗SC mapping.
The statements are identical in this case:

(i) If k is a surjective map and k−1(α) q k−1(ρ) in U, then there exists α, ρ ∈ I V

� α q ρ.

(ii) θ∗S Iη(θ∗SCη(k(β), ı), ı) ≤ k(CS(β, ı)), for each β ∈ IU and ı ∈ I0.

Theorem 9 Let (U, S), (V, P) be sfts’s and let k : U → V be a mapping. The
statements are identical in this case:

(i) k is called f θ∗SC map.
(ii) θ∗SCη(k(β), ı) ≤ k(CS(β, ı)), for each β ∈ IU and ı ∈ I0.
(iii) If k is surjective, then for each subsetμ of V and each ı- f o setα inU containing

k−1(μ), ∃ ı - f θ∗So set ρ of V containing μ � k−1(ρ) ≤ α.

Theorem 4 to 9 are satisfied by YCO & ZCO maps.

Definition 7 A sfts (U, S) is called fuzzy

(i) θ∗S-T1 (resp. T1 [2], YT1 & ZT1) (briefly, f θ∗S-T1 (resp. f T1, f Y T1 & f ZT1) )
space if for every two distinct fuzzy points u, v of U , there exists two ı- f θ∗So (resp.
ı- f o, ı- f Y o & ı- f Zo) sets β, μ � u ∈ β, v /∈ β and v ∈ μ, u /∈ μ.

(ii) θ∗S-T2 (resp. T2 [2] YT2 & ZT2) (briefly, f θ∗S-T2 (resp. f T2, f Y T2 & f ZT2) ) space
if for every two distinct fuzzy points u, v ofU , there exists two disjoint ı- f θ∗So (resp.
ı- f o, ı- f Y o & ı- f Zo) sets β, μ � u ∈ β, v ∈ μ.

(iii) θ∗S-connected (resp. connected [2], Y -connected & Z -connected ) (briefly,
f θ∗S-con (resp. f con, f Y con & f Zcon) ) if it cannot be expressed as the
union of two disjoint non-empty ı- f θ∗So (resp. ı- f o, ı- f Y o& ı- f Zo) sets of
X. If U is not f θ∗S-con (resp. not f con, f Y con & f Zcon), then it is fuzzy
θ∗S-disconnected (resp. fuzzy disconnected, fuzzy Y -disconnected & fuzzy
Z -disconnected).

(iv) θ∗S-Lindeloff ( Lindeloff [2], Y -Lindeloff & Z -Lindeloff) if every ı- f θ∗So
(resp. ı- f o, ı- f Y o & ı- f Zo) cover of U has a countable subcover.
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(v) θ∗S-compact (resp. compact [2], Y -compact & Z -compact) (briefly, f θ∗S-
com (resp. f com, f Y com & f Zcom) ) if for every ı- f θ∗So (resp. ı- f o,
ı- f Y o & ı- f Zo) cover of U has a finite subcover.

Definition 8 Let (U, S) be a sfts and ı ∈ I0. A fuzzy set μ ∈ IU is called fuzzy
compact [2] (briefly f com ) in (U, S) iff for each family {βi ∈ IU |S(βi ) ≥ r,
i ∈ �} � μ ≤ ∨

i∈�

βi there exists a finite index set �0 ⊂ � � μ ≤ ∨
i∈�0

βi .(U, S) is

called f com iff 1 is f com in (U, S).

Definition 9 Let (U, S) be a sfts and ı ∈ I0. A fuzzy set μ ∈ IU is called fuzzy
θ∗S (resp. Y & Z )-compact (briefly, f θ∗S-com, f Y -com & f Z -com) in (U, S) if
for each family {βi ∈ IU |βi is ı- f θ∗So (resp. ı- f Y o& ı- f Zo ), i ∈ �} � μ ≤ ∨

i∈�

βi

there exists a finite index set �0 ⊂ � � μ ≤ ∨
i∈�0

βi . (U, S) is called f θ∗S (resp. Y

& Z )-com if 1 is f θ∗S-com (resp. f Y -com & f Z -com) in (U,S).

Theorem 10 Let (U, S), (V, P) be sfts’s and let k : U → V be a bijective f θ∗SO
(resp. f Y O & f ZO) mapping. The statements are identical in this case:

(i) If U is a f Ti -space, then V is f θ∗S-Ti (resp. f Y -Ti & f Z-Ti ) where i = 1, 2.
(ii) If V is an f θ∗S-com (resp. f Y -com & f Z-com ) (resp. fuzzy θ∗S (resp. Y &

Z)-Lindeloff ) space, then U is f com (resp. fuzzy Lindeloff).

Theorem 11 Let (U, S1) and (V, S2) be sfts’s. If k : U → V is a surjective
f θ∗SO (resp. f Y O & f ZO) mapping and V is f θ∗S-con (resp. f Y -con & f Z-
con) space, then U is f con.

Remark 3 Let (U, S1) and (V, S2) be sfts’s and k : U → V be a mapping. The
composition of two f θ∗SO (resp. f Y O & f ZO ) mappings need not be f θ∗SO
(resp. f Y O & f ZO ) map as shown by the following example.

Example 7 Let U = V = W = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ1(k) =
0.5, ρ1(l) = 0.6, ρ1(m) = 0.4; ρ2(k) = 0.5, ρ2(l) = 0.4, ρ2(m) = 0.4; ρ3(k) =
0.5, ρ3(l) = 0.4, ρ3(m) = 0.6 Let Si : IU → I, defined as

S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ3,

0 ow.

S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1,

0 ow.

and S3(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1, ρ2,

0 ow.

Then the identity mapping k : (U, S1) → (V, S2)&g : (V, S2) → (W, S3) are
f θ�SO-map but g ◦ k is not f θSO-map, since the image under g ◦ k of the set ρ3

is not f θ�So in (W, S3).
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Example 8 Let U = V = W = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ1(k) =
0.5, ρ1(l) = 0.6, ρ1(m) = 0.4; ρ2(k) = 0.5, ρ2(l) = 0.4, ρ2(m) = 0.4; ρ4(k) =
0.5, ρ4(l) = 0.4, ρ4(m) = 0.5 Let Si : IU → I, defined as

S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ4,

0 ow.

S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1,

0 ow.

and S3(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1, ρ2,

0 ow.

Then the identity mapping k : (U, S1) → (V, S2)&g : (V, S2) → (W, S3) are
f Y O-map but g ◦ k is not f Y O-map, since the image under g ◦ k of the set ρ4 is
not f Y o in (Z , S3).

Example 9 Let U = V = W = {k, l, m} and ρ1, ρ2 ∈ IU defined as ρ1(k) =
0.5, ρ1(l) = 0.5, ρ1(m) = 0.4; ρ2(k) = 0.5, ρ2(l) = 0.5, ρ2(m) = 0.9; ρ5(k) =
0.5, ρ5(l) = 0.5, ρ5(m) = 0. Let Si : IU → I, defined as

S1(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ5,

0 ow.

S2(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1,

0 ow.

and S3(β) =

⎧⎪⎨
⎪⎩
1 ifβ ∈ {0, 1},
1
2 ifβ = ρ1, ρ2,

0 ow.

Then the identity mapping k : (U, S1) → (V, S2)&g : (V, S2) → (Z , S3) are
f ZO-map but g ◦ k is not f ZO-map, since the image under g ◦ k of the set ρ5 is
not f Y o in (W, S3).

Theorem 12 Let (U, S1), (V, S2) and (W, S3) be sfts’s. If k : (U, S1) →
(V, S2) and g : (V, S2) → (W, S3) are mappings, then

(i) If k is f O map and g is f θ∗SO (resp. f Y O & f ZO )map, then g ◦ k is f θ∗SO
(resp. f Y O & f ZO ) mapping.

(ii) If g ◦ k is f θ∗SO (resp. f Y O & f ZO )mapping and k is a surjective continuous
map, then g is f θ∗SO (resp. f Y O & f ZO ) map.

(ii) If g ◦ k is f O mapping and g is an injective f θ∗SCts (resp. f YCts & f ZCts
) map, then k is f θ∗SO (resp. f Y O & f ZO ) map.
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Proof (i) Let μ ∈ S1. Since k is f O map, then k(μ) is an ı- f o set in (V, S2).

Since g is f θ∗SO (resp. f Y O & f ZO ) map, then g(k(μ)) = (g ◦ k)(μ) is
ı- f θ∗So (resp. ı- f Y o& ı- f Zo) set in (W, S3). Hence g ◦ k is f θ∗SO (resp.
f Y O & f ZO ) map.

(ii) Let μ ∈ S2. Since k is f Cts, then k−1(μ) is an ı- f o set in (U, S1). But g ◦ k
is f θ∗SO (resp. f Y O & f ZO ) map, then (g ◦ k)(k−1(μ)) is ı- f θ∗So (resp.
ı- f Y o & ı- f Zo) set in (W, S3). Hence by surjective of k, we have g(μ) is
ı- f θ∗So set of (W, S3). Hence, g is f θ∗SO (resp. f Y O & f ZO ) map.

(iii) Let μ ∈ S1 and g ◦ k be an f O map. Then (g ◦ k)(μ) = g(k(μ)) ∈ S3. Since
g is an injective f θ∗SCts (resp. f YCts& f ZCts )map, hence k(μ) is f θ∗SO
(resp. f Y O & f ZO ) map in (V, S2). Therefore k is f θ∗SO (resp. f Y O &
f ZO ).

4 Conclusion

In this paper, we introduce and investigate some new classes of mappings called
f θ∗SO (resp. f Y O & f ZO ) map and f θ∗SC (resp. f YC & f ZC ) map to the
fuzzy topological spaces in Ŝostak’s sense. These open and closed mappings are
extended to their contra open and contra closed mappings of f θ∗So (resp. f Y o &
f Zo ) set in future. Also, these mappings can be extended to some of their functions
such as homeomorphism, continuous function, irresolute functions in f θ∗So (resp.
f Y o & f Zo ) set.
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Nano Z Seperation Axioms

Xavier Arul Selvaraj and Ushakoyala Balakrishna

Abstract Based on nano Z open set, we discuss and study about separation axioms,
connectedness and compactness in a nano topological spaces. In this paper, the types
of separation axioms such as NZT0, NZT1 and NZT2 spaces are introduced and
discuss in nano topological spaces. Also, nano Z regular space and nano Z normal
space of nano Z open sets are established in nano topological spaces. Finally, nano
Z compactness and nano Z connectedness are study and dealt with some properties
in nano topological spaces.

Keywords NZT0 · NZT1 · NZT2 · NZreg · NZnor spaces · nano Z
compactness · nano Z connectedness

AMS (2000) subject classification: 54A05 · 54A40 · 54B05

1 Introduction

Lellis Thivagar [6] introduced the concept of Nano topology, which was defined
in terms of approximations and boundary region of a subset of a universe using
an equivalence relation on it, as well as Nano closed sets, Nano-interior, and Nano-
closure. Magharabi andMubarki [3] in 2011 developed the concept of Z -open sets in
topological spaces and examined someof their features. Because of their applicability
in numerous domains of mathematics and other real fields, the class of sets known
as Z -open sets is becoming more relevant in topological spaces. InNts, Khalaf and
Ahmed Elmoasry [4] explored nano separation axioms. We offer the notion of nano
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Z -open sets [1] and investigate their features in nano topological space based on
these motives.

The purpose of this paper is to discuss the types of separation axioms such as
NZT0, NZT1 and NZT2 spaces are introduced in nano topological spaces. Also,
nano Z regular and nano Z normal spaces are established in nano topological spaces.
Also, the concept of nano Z compactness and nano Z connectedness by usingNZo
sets in Nts’s are discussed.

2 Preliminaries

Definition 1 ([1]) Let (U,TR(A)) be aNts. Let K be anNs in (U,TR(A)). Then
K is said to be a nano

(i) Z -open (briefly, NZo) set if K ⊆ Ncl(Nintδ(K )) ∪ Nint (Ncl(K )),
(ii) Z -closed (briefly, NZc) set ifNint (Nclδ(K )) ∩ Ncl(Nint (K )) ⊆ K .

The family of allNZo (resp.NZc) sets of a space (U,TR(A)) will be as always
denoted by NZO(U, A) (resp. NZC(U, A)).

Definition 2 ([1]) Let (U,TR(A)) be a Nts and let K ⊆ U then the

(i) nano Z -interior of K is the union of all NZo sets contained in K and denoted
by NZint (K ).

(ii) nano Z -closure of K is the intersection of allNZc sets containing K and denoted
by NZcl(K ).

Definition 3 ([2]) A function h : (P1,TR(A)) → (P2,SR′(B)) is said to be Nano
Z continuous (briefly, NZCts), if for each N1vc set M of P2, the set h−1(M) is
NZc set of P1.

Definition 4 [2] A function h : (P1,TR(A)) → (P2,SR′(B)) is called Nano Z
irresolute (briefly,NZ Irr ) function, if for eachNZc subset M of Q, the set h−1(M)

is NZc subset of P.

All other undefined definitions and properties in this paper are from [1, 2, 5–9].
Throughout this paper, (P,TR(A)) is a Nts with respect to A where A ⊆ P, R

is an equivalence relation on P. Then P/R denotes the family of equivalence classes
of P by R.

3 Nano Z Separation Axioms

Definition 5 A Nts (P,TR(A)) is called Nano Z -T0 (briefly, NZT0) space, if for
any two points l1 �= l2, ∃ NZo set containing one of them but not the other.



Nano Z Seperation Axioms 85

Clearly, every NT0 space isNZT0 space.

Example 1 Let U = {Za, Zb, Zc, Zd , Ze} with U/R = {{Zc}, {Za, Zb}, {Zd , Ze}}
and P = {Za, Zc}. TheNt TR(P) = {U, φ, {Zc}, {Za, Zb}, {Za, Zb, Zc}}. If Za �=
Zc, then {Za} and {Zc} areNZo sets but {Za} is notNo set. So, it isNZT0 space is
NT0 space.

Theorem 1 Let NZC(P, A) is closed under arbitrary intersection and a Nts
(P,TR(A)) is a NZT0 space iffNZ closures of distinct points are distinct.

Proof Let l1, l2 be distinct points of P . Since P is a NZT0 space, ∃NZo μ 	
l1 ∈ μ&l2 /∈ μ. Consequently, P − μ is a NZc set containing l2 but not l1. But
NZcl({l2}) is the intersection of allNZc sets containing l2. Hence l2 ∈ NZcl({l2})
but l1 /∈ NZcl({l2}) as l1 /∈ P − μ. Therefore NZcl({l1}) �= NZcl({l2}).

Conversely, let NZcl({l1}) �= NZcl({l2}) for l1 �= l2. Then there exist at
least one point l3 ∈ P 	 l3 ∈ NZcl({l1}) but l3 /∈ NZcl({l2}). Suppose l1 /∈
NZcl({l2}) because if l1 ∈ NZcl({l2}) then {l1} ⊂ NZcl({l2}) implies NZcl
({l1}) ⊂ NZcl({l2}). So l3 ∈ NZcl({l2}) which is a contradiction. Hence l1 /∈
NZcl({l2}) which implies l1 ∈ P − NZcl({l2}) which is a NZo set containing l1
but not l2. Hence P is a NZT0 space.

Theorem 2 If h : (P,TR(A)) → (Q,SR′(B)) is a injective, NZirr function and
Q is a NZT0 then P is a NZT0.

Proof Suppose Q is aNZT0 space. Let l1 & l2 be any two distinct points in P . Since
h is injective h(l1)& h(l2) are distinct points in Q. Since Q is aNZT0 space, ∃NZo
μ in Q ∈ h(l1) but not h(l2). Again since h is NZirr , h−1(μ) is a NZo set in P ∈
l1 but not l2. Therefore P is a NZT0 space.

Theorem 3 If h : (P,TR(A)) → (Q,SR′(B)) is a injective,NZCts mapping and
Q is a NT0 space then P is a NZT0 space.

Proof Let l1 & l2 be any two distinct points in P . Since h is injective h(l1) & h(l2)
are distinct points in Q. Since Q is a NT0 space, ∃ No set μ in Q ∈ h(l1) but not
h(l2). Again since h is NZCts, h−1(μ) is a NZo set in P ∈ l1 but not l2. Hence P
is a NZT0 space.

Definition 6 A Nts (P,TR(A)) is called Nano Z -T1 (briefly, NZT1) space, if for
any two points l1 �= l2, ∃ NZo sets μ & H with l1 ∈ μ, l2 /∈ μ & l1 /∈ H , l2 ∈ H .

Clearly, every NT1 space isNZT1 space.

Example 2 Let U = {Za, Zb, Zc, Zd , Ze} with U/R = {{Zc}, {Za, Zb}, {Zd , Ze}}
and P = {Za, Zc}. TheNt TR(P) = {U, φ, {Zc}, {Za, Zb}, {Za, Zb, Zc}}. If Za �=
Zc, then {Za, Zb} and {Zb, Zc} areNZo sets and {Za} ∈ {Za, Zb}, {Zc} /∈ {Za, Zb}
and {Za} /∈ {Zb, Zc}, {Zc} /∈ {Zb, Zc}. But {Za} is not No set. So, it is NZT1 space
is NT1 space.
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Theorem 4 LetNZO(P, A) is closed under a. u. then aNts (P,TR(A)) is aNZT1
space iff every singleton subset {l1} of P is a NZc set.

Proof Let P be a NZT1 space & l1 ∈ P . Let l2 ∈ P − {l1}. Then for l1 �= l2 there
exist aNZo setμl2 	 l2 ∈ μl2 & l1 /∈ μl2 . Consequently, l2 ∈ μl2 ⊂ P − {l1}. That is
P − {l1} = ⋃{μl2 : l2 ∈ P − {l1}}, which is the union ofNZo sets, soNZo. Hence
{l1} is a NZc set.

Conversely, suppose {p1} is aNZc set ∀ p1 ∈ P . Let p1 & p2 ∈ P with p1 �= p2.
Now p1 �= p2 implies p2 ∈ P − {p1}. Hence P − {p1} is a NZo set ∈ p2 but not
p1. Similarly P − {p2} is aNZo set ∈ p1 but not p2. Therefore, P is aNZT1 space.

Theorem 5 If k : (P,TR(A)) → (Q,SR′(B)) is a injective, NZirr function and
Q is a NZT1 space then P is also a NZT1 space.

Proof Let p1 & p2 be pair of distinct points in P . Since k is injective, there exist
two distinct points m1 & m2 of Q 	 k(p1) = m1 & k(p2) = m2. Since Q is aNZT1
space, ∃ NZo sets ρ & η in Q 	 m1 ∈ ρ, m2 /∈ ρ & m1 /∈ η, m2 ∈ η. That is
p1 ∈ k−1(ρ), p1 /∈ k−1(η)& p2 ∈ k−1(η), p2 /∈ k−1(ρ). Since k isNZirr function,
k−1(ρ)& k−1(η) areNZo sets in P . Thus for two distinct points p1 & p2 of P there
existsNZo sets k−1(ρ)& k−1(η) 	 p1 ∈ k−1(ρ), p1 /∈ k−1(η)& p2 ∈ k−1(η), p2 /∈
k−1(ρ). Therefore P is NZT1 space.

Theorem 6 If k : (P,TR(A)) → (Q,SR′(B)) is a NZCts injection and Q is a
NT1 space then P is a NZT1 space.

Proof For any two distinct points p1 & p2 of P , there exist two distinct pointsm1 &
m2 of Q 	 k(p1) = m1 & k(p2) = m2. Since Q is aNT1 space, there exist aNo sets ρ

& ν in Q 	m1 ∈ ρ, m2 /∈ ρ &m1 /∈ ν, m2 ∈ ν. That is p1 ∈ k−1(ρ), p1 /∈ k−1(ν)&
p2 ∈ k−1(ν), p2 /∈ k−1(ρ). Since k is aNZCts function, k−1(ρ)& k−1(ν) areNZo
sets in P . Thus for two distinct points p1 & p2 of P there exists NZo sets k−1(ρ)

& k−1(ν) 	 p1 ∈ k−1(ρ), p1 /∈ k−1(ν) & p2 ∈ k−1(ν), p2 /∈ k−1(ρ). Therefore P
is NZT1 space.

Definition 7 A Nts (P,TR(A)) is called Nano ZT2 (briefly, NZT2) space, if for
any two points l �= l2, ∃ disjoint NZo sets μ & ν with l ∈ μ & m ∈ ν.

Clearly, every NT2 space isNZT2.

Example 3 Let U = {Za, Zb, Zc, Zd , Ze} with U/R = {{Zc}, {Za, Zb}, {Zd , Ze}}
and P = {Za, Zc}. TheNt TR(P) = {U, φ, {Zc}, {Za, Zb}, {Za, Zb, Zc}}. If Za �=
Zc, then {Za} and {Zc} are NZo sets and {Za} ∩ {Zc} �= ∅. But {Za} is not No set.
So, it is NZT2 space isNT2 space.

Theorem 7 If k : (P,TR(A)) → (Q,SR′(B)) is a NZCts injection and Q is a
NT2 space then P is a NZT2 space.
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Proof For any two distinct points l1 & l2 of P , there exist two distinct points m1

& m2 of Q 	 k(l1) = m1 & k(l2) = m2. Since Q is a NT2 space, ∃ disjoint No
sets ρ & η in Q 	 m1 ∈ ρ & m2 ∈ η. That is l1 ∈ k−1(ρ) & l2 ∈ k−1(η). Since k
is a NZCts function, k−1(ρ)& k−1(η) are NZo sets in P . Further as k is injective
k−1(ρ) ∩ k−1(η) = k−1(ρ ∩ η) = k−1(∅) = ∅. Thus for two distinct points l1 & l2
of P there existsNZo sets k−1(ρ)& k−1(η) 	 l1 ∈ k−1(ρ)& l2 ∈ k−1(η). Therefore
P is NZT2 space.

Theorem 8 If k : (P,TR(A)) → (Q,SR′(B)) is a injective, NZirr function and
Q is a NZT2 space then P is also a NZT2 space.

Proof Let l1 & l2 be a pair of distinct points in P . Since k is injective, ∃ two distinct
points m1 & m2 of Q 	 k(l1) = m1 & k(l2) = m2. Since Q is a NZT2 space, there
exist a disjoint NZo sets ρ & η in Q 	 m1 ∈ ρ & m2 ∈ η. That is l1 ∈ k−1(ρ) &
l2 ∈ k−1(η). Since k is a NZirr function, k−1(ρ)& k−1(η) are disjoint NZo sets in
P . Thus for two distinct points l1 & l2 of P there exists disjointNZo sets k−1(ρ) &
k−1(η) 	 l1 ∈ k−1(ρ) & l2 ∈ k−1(η). Therefore P is NZT2 space.

Theorem 9 ANts (P,TR(A)) is aNZT2 space iff for each l1 �= l2,∃ NZo set ρ 	
l1 ∈ ρ & l2 /∈ NZcl(ρ).

Proof Assume that P is a NZT2 space. Let l1, l2 ∈ P & l1 �= l2, then there exists
disjoint NZo sets ρ & η 	 l1 ∈ ρ & l2 ∈ η. Clearly, P − η is NZc set. Since ρ ∩
η = ∅, ρ ⊂ P − η. Therefore NZcl(ρ) ⊂ NZcl(P − η) = P − η. Now l2 /∈ P −
η =⇒ l2 /∈ NZcl(ρ).

Conversely, let l1, l2 ∈ P & l1 �= l2. By hypothesis ∃ NZo set ρ 	 l1 ∈ ρ &
l2 /∈ NZcl(ρ). This implies ∃ NZc set η 	 l2 /∈ η. Therefore l2 ∈ P − η is a NZo
set. Thus ∃ two disjointNZo sets ρ and P − η 	 l1 ∈ ρ & l2 ∈ P − η. Therefore P
is a NZT2 space.

4 Nano Z Regular Spaces

Definition 8 A Nts (P,TR(A)) is called Nano Z regular (briefly, NZreg) space,
if for any point η & Nc set κ /∈ η, ∃ disjoint NZo sets μ & ν with η ∈ μ & κ ⊂ ν.

Clearly, every Nreg space isNZreg space.

Theorem 10 If h : (P,TR(A)) → (Q,SR′(B)) is NCts bijective, NZo function
and P is a Nreg space then Q isNZreg.

Proof Let κ be aNc set in Q & l2 /∈ κ . Take l2 = h(l1) for some l1 ∈ P . Since h is
NCts, h−1(κ) isNc in P 	 l1 /∈ h−1(κ). Now P is aNreg space, ∃ disjointNo sets
μ & ν 	 l1 ∈ μ & h−1(κ) ⊂ ν. That is l2 = h(l1) ∈ h(μ) & κ ⊂ h(ν). Since h is
NZof , h(μ)& h(ν) areNZo sets in Q & h is bijective, h(μ) ∩ h(ν) = h(μ ∩ ν) =
h(∅) = ∅. Therefore Q is a NZreg space.
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Theorem 11 If h : (P,TR(A)) → (Q,SR′(B)) is NZCts, Nc injection and Q is
a Nreg space then P is NZreg.

Proof Let κ be a Nc set in P & η /∈ κ . Since h is Nc injection, h(κ) is Nc in
Q 	 h(η) /∈ h(κ). Now Q is a Nreg space, ∃ disjoint No sets ρ & η 	 h(η) ∈ ρ

& h(κ) ⊂ η. This implies η ∈ h−1(ρ) & κ ⊂ h−1(η). Since h is NZCts function,
h−1(ρ)& h−1(η) are NZo sets in P . Further, h−1(ρ) ∩ h−1(η) = ∅. Hence P is a
NZreg space.

Theorem 12 If h : (P,TR(A)) → (Q,SR′(B)) is NZirr , Nc injection and Q is
a NZreg space then P is also a NZreg space.

Proof Let κ be a Nc set in P & η /∈ κ . Since h is Nc injection, h(κ) is Nc
in Q 	 h(η) /∈ h(κ). Now Q is a NZreg space, ∃ disjoint NZo sets ρ & η 	
h(η) ∈ ρ & h(κ) ⊂ η. This implies η ∈ h−1(ρ) & κ ⊂ h−1(η). Since h is NZirr ,
h−1(ρ)& h−1(η) are NZo sets in P . Further, h−1(ρ) ∩ h−1(η) = ∅. Hence P is a
NZreg space.

Theorem 13 LetNZC(P, A) is closed under arbitrary intersection and in anyNts
(P,TR(A)), then the statement

(i) P is NZreg.
(ii) For every point η ∈ P &No set μ ⊆ η ∃ NZo set ν 	 η ∈ ν ⊂ NZcl(ν) ⊂ μ.
(iii) For every Nc set κ , κ = ∩{NZcl(μ) : κ ⊂ μ & μ ∈ NZO(P, A)}.
(iv) For every set � & No set Φ 	 � ∩ Φ �= ∅, ∃ NZo set O 	 � ∩ O �= ∅ &

NZcl(O) ⊂ Φ.
(v) For every non empty set � & Nc set Φ 	 � ∩ Φ �= ∅, ∃ disjoint NZo sets L1

& L2 	 � ∩ L1 �= ∅ & Φ ⊂ L2

are equivalent.

Proof (i) ⇒ (ii): Let μ be a No set ⊆ η. Then P − μ is Nc set � η. Since P
is NZreg, ∃ NZo sets S & ν 	 η ∈ ν, P − μ ⊂ S & ν ∩ S = ∅. This implies
ν ⊂ P − S. ThereforeNZcl(ν) ⊂ NZcl(P − S) = P − S, because P − S isNZc.
Hence η ∈ ν ⊂ NZcl(ν) ⊂ P − S ⊂ μ. That is η ∈ NZcl(ν) ⊂ μ.

(ii) ⇒ (iii): Let κ be aNc set & η /∈ κ . Then P − κ is aNo set ⊆ η. By (ii) there
is aNZo set ν 	 η ∈ ν ⊂ NZcl(ν) ⊂ P − κ . And so, κ ⊂ P − NZcl(ν) ⊂ P − ν.
Consequently, P − ν is NZc set not containing η. Put μ = P − NZcl(ν). This
implies κ ⊂ μ & μ is NZo set of P & η /∈ NZcl(μ), implies ∩{NZcl(μ) : κ ⊂ μ

& μ ∈ NZO(P, A)} ⊂ κ . But κ is Nc & every Nc set is NZc. Therefore κ ⊂
∩{NZcl(μ) : κ ⊂ μ & μ ∈ NZO(P, A)} is always true. Thus κ = ∩{NZcl(μ) :
κ ⊂ μ&μ ∈ NZO(P, A)}.

(iii)⇒ (iv): Let� ∩ Φ �= ∅&Φ isNo. Let η ∈ � ∩ Φ. Then P − Φ is aNc set�
η. By (iii) ∃NZo setμ of P 	 P − Φ ⊂ μ& η /∈ NZcl(μ). Put O = P − NZcl(μ),
then O isNZo set of P , η ∈ � ∩ O &NZcl(O) ⊂ NZcl(P − μ) = P − μ ⊂ Φ.
Hence NZcl(O) ⊂ Φ.

(iv) ⇒ (v): If � ∩ Φ �= ∅, where � is non empty and Φ is Nc, then � ∩ (P −
Φ) �= ∅& P − Φ isNo. By (iv), ∃NZo set L1 	 � ∩ L1 �= ∅& L1 ⊂ NZcl(L1) ⊂
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P − Φ. Put P − NZcl(L1) = L2, then L2 is NZo set of P , P − Φ ⊂ L1 &
NZcl(P − L1) ⊂ L2, P − L1 ⊂ L2. Hence Φ ⊂ L2.

(v) ⇒ (i): Let κ be aNc set 	 η /∈ κ , then {η} ∩ κ = ∅. By (v), ∃ disjointNo sets
L1 & L2 	 {η} ∩ L1 = ∅ & κ ⊂ L2, hence P is NZreg.

5 Nano Z Normal Spaces

Definition 9 A Nts (P,TR(A)) is called Nano Z normal (briefly, NZnor ) space,
if for any two disjointNc sets ι & κ , there exists disjointNZo sets μ & ν with ι ⊂ μ

& κ ⊂ ν.

Clearly, every Nnor space isNZnor space.

Theorem 14 If h : (P,TR(A)) → (Q,SR′(B)) is NCts bijective, NZo function
from a Nnor space P to Q then Q is NZnor.

Proof Let ι& κ be disjointNc sets in Q. Since h isNCts bijective, h−1(ι)& h−1(κ)

are disjointNc sets in P . Now P is aNnor space, ∃ disjointNo setsμ& ν 	 h−1(ι) ⊂
μ & h−1(κ) ⊂ ν. That is ι ⊂ h(μ) & κ ⊂ h(ν). Since h is NZof , h(μ)& h(ν) are
NZo sets in Q & h is injective, h(μ) ∩ h(ν) = h(μ ∩ ν) = h(∅) = ∅. Therefore Q
is a NZnor space.

Theorem 15 If h : (P,TR(A)) → (Q,SR′(B)) is NZCts, Nc injection & Q is a
Nnor space then P is NZnor.

Proof Let ι & κ be disjoint Nc sets in Q. Since h is Nc injection, h(ι) & h(κ)

are disjoint Nc sets in Q. Now Q is a Nnor space, ∃ disjoint No sets ρ & η 	
h(ι) ⊂ ρ & h(κ) ⊂ η. That is ι ⊂ h−1(ρ)& κ ⊂ h−1(η). Since h isNZCts function,
h−1(ρ)& h−1(η) are NZo sets in P . Further h−1(ρ) ∩ h−1(η) = ∅. Therefore P is
a NZnor space.

Theorem 16 If h : (P,TR(A)) → (Q,SR′(B)) is NZirr , Nc injection and Q is
a NZnor then P is NZnor.

Proof Let ι & κ be disjoint Nc sets in Q. Since h is Nc injection, h(ι) & h(κ) are
disjointNc sets in Q. Now Q is aNnor space, ∃ disjointNZo sets ρ & η 	 h(ι) ⊂ ρ

& h(κ) ⊂ η. That is ι ⊂ h−1(ρ) & κ ⊂ h−1(η). Since h isNZirr , h−1(ρ)& h−1(η)

are NZo sets in P . Further h−1(ρ) ∩ h−1(η) = ∅. Therefore P is a NZnor space.

Theorem 17 The statements are identical for a Nts (P,TR(A)).

(i) P is NZnor.
(ii) For each Nc set Φ and for each No set μ ⊆ Φ, ∃ a NZo set S ⊆ Φ 	

NZcl(S) ⊂ μ

(iii) For each pair of disjointNc setsΦ &� ∃NZo setμ⊆Φ 	NZcl(μ) ∩ � = ∅.
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Proof (i) ⇒ (ii): Let Φ be a Nc set and μ be a No set ⊆ Φ. Then Φ ∩ (P − μ) =
∅. They are disjoint Nc sets in P . Since P is NZnor , ∃ disjoint NZo sets S &
ν 	 Φ ⊂ S, P − μ ⊂ ν that is P − ν ⊂ μ. Now S ∩ ν = ∅, implies S ⊂ P − ν.
Therefore NZcl(S) ⊂ NZcl(P − ν) = P − ν, because P − ν is NZc set. Thus,
Φ ⊂ S ⊂ NZcl(S) = P − ν ⊂ μ, That isNZcl(S) ⊂ μ.

(ii) ⇒ (iii): Let Φ & � be disjoint Nc sets in P , then Φ ⊂ P − � & P − � is
No set ⊆ Φ. By (ii) there existsNZo set μ 	 Φ ⊂ μ &NZcl(μ) ⊂ P − �, which
implies NZcl(μ) ∩ � = ∅.

(iii) ⇒ (i): Let Φ & � be disjoint Nc sets in P . By (iii), ∃ NZo set μ 	 Φ ⊂ μ

& NZcl(μ) ∩ � = ∅ or � ⊂ P − NZcl(μ). Now μ & P − NZcl(μ) are disjoint
NZo sets of P 	 Φ ⊂ μ & � ⊂ P − NZcl(μ). Hence P is NZnor .

6 Nano Z Compactness

Definition 10 A collection {μi : i ∈ ν} of NZo sets in Nts (P,TR(A)) is called
Nano Z open cover (briefly,NZocov) of a subset � of (P,TR(A)), if � ⊂ ⋃{μi :
i ∈ ν}.
Definition 11 A Nts (P,TR(A)) is called Nano Z compact (briefly, NZcomp) if
every NZocov of P has a finite subcover.

Definition 12 A subset � of Nts (P,TR(A)) is called NZcomp relative to P if
for every collection {μi : i ∈ ν} ofNZo subsets of P 	 � ⊂ ⋃{μi : i ∈ ν}, ∃ finite
subset ν0 of ν 	 � ⊂ ⋃{μi : i ∈ ν0}.
Definition 13 A subset � of Nts (P,TR(A)) is called NZcomp if � is NZcomp
as a subspace of P .

Theorem 18 Every NZc subset of NZcomp space is NZc relative to P, if
NZO(P, A) is closed under arbitrary union.

Proof Let P be NZcomp space and μ is NZc subset of P . Then P − μ is NZo
in P . Let Q = {μi : i ∈ ν} be NZocov of μ by NZo subsets in P . Then Q∗ =
Q ∪ (P − μ) is a NZocov of P . Qince P is NZcomp, Q∗ is reducible to a finite
subcover of P say P = μi1 ∪ μi2 ∪ · · · ∪ μin , μik ∈ Q. But μ & P − μ are disjoint.
Hence μ ⊂ μi1 ∪ μi2 ∪ · · · ∪ μin ∈ Q. =⇒ any NZocov Q of μ contains a finite
subcover. Hence, μ is NZcomp relative to P .

Theorem 19 If h : (P,TR(A)) → (Q,SR′(B)) is surjective,NZCts function and
P is NZcomp then Q is Ncomp.

Proof Let h : (P,TR(A)) → (Q,SR′(B)) is surjective, NZCts from NZcomp
space (P,TR(A)) to (Q,SR′(B)). Let {μi : i ∈ ν} be Nocov of Q. Since h is
NZCts, {h−1(μi ) : i ∈ ν} is NZocov of P . Since P is NZcomp implies NZocov
{h−1(μi ) : i ∈ ν} has a finite subcover say {h−1(μ1), h−1(μ2), · · · , h−1(μn)}. Since
h is surjective {μ1, μ2, · · · , μn} is aNocov of Q, which is finite. Hence Q isNcomp.
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Theorem 20 If h : (P,TR(A)) → (Q,SR′(B)) is NZirr and a subset � of P is
NZcomp subset relative to P, then the image h(�) is NZcomp relative to Q.

Proof Let {μi : i ∈ ν} be any collection ofNZo subsets of Q 	 h(�) ⊂ ⋃{μi : i ∈
ν}. Then � ⊂ ⋃{h−1(μi ) : i ∈ ν} where {h−1(μi ) : i ∈ ν} is family ofNZo sets in
P . Since� isNZcomp relative to P , theNZocov {h−1(μi ) : i ∈ ν} of P has a finite
subcover say {h−1(μi ) : i ∈ ν0}, where ν0 is a finite subset of ν 	 � ⊂ ⋃{h−1(μi ) :
i ∈ ν0}. Therefore h(�) ⊂ ⋃{μi : i ∈ ν0}. Hence h(�) is NZcomp relative to Q.

7 Nano Z Connectedness

Definition 14 A Nts (P,TR(A)) is called Nano Z connected (briefly, NZcon) if
P is not the disjoint union of two nonempty NZo subsets.

Theorem 21 If h : (P,TR(A)) → (Q,SR′(B)) is NZCts, surjection and P is
NZcon then Q is Ncon.

Proof Suppose Q is notNcon. Then Q = μ ∪ ν that is,μ& ν are disjoint nonempty
No sets in Q. Since h isNZCts surjection, P = h−1(μ) ∪ h−1(ν) where h−1(μ) &
h−1(ν) are disjoint nonemptyNZo subsets of P =⇒ P is notNZcon space. This
is a contradiction. Hence Q is Ncon.

Theorem 22 If k : (P,TR(A)) → (Q,SR′(B)) is NZirr , surjection and P is
NZcon then Q is also NZcon.

Proof SupposeQ is notNZcon. ThenQ = ρ ∪ ηwhereρ&η are disjoint nonempty
NZo sets in Q. Since k isNZirr surjection, P = k−1(ρ) ∪ k−1(η) where k−1(ρ) &
k−1(η) are disjoint nonempty NZo subsets of P =⇒ P is notNZcon space. This
is a contradiction. Hence Q is NZcon.

Corollary 1 If h : (P,TR(A)) → (Q,SR′(B)) is bijectiveNZof and Q isNZcon
then Q is Ncon.

Theorem 23 For a Nts (U,TR(P), the statements are equivalent.

(i) P is NZcon.
(ii) The only subsets of P which are both NZo & NZc are the empty set ∅ & P.
(iii) Each NZCts function of P into a discrete space Q with at least two points is

a constant function.

Proof (i) ⇒ (ii): Suppose (i) holds and κ is a proper subset of P which is both
NZo&NZc. Then P − κ is also bothNZo&NZc. Therefore P = κ ∪ (P − κ) is
disjoint union of two nonemptyNZo sets. This contradicts to P isNZcon. Therefore
κ = ∅ or P .

(ii) ⇒ (i): Suppose (ii) holds. If possible P is notNZcon, then P = μ ∪ ν where
μ & ν are disjoint non empty NZo sets in P . Since μ = P − ν, μ is NZc set. But
by assumption, μ = ∅ or P which is contradiction. Hence (i) hold.
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(ii) ⇒ (iii): Let h beNZCts function, where Q is discrete space with at least two
points. Then h−1({η}) is bothNZo&NZc for each η ∈ Q& P = ⋃{h−1({η}) : η ∈
Q}. By assumption, h−1({η}) = P or ∅. If h−1({η}) = ∅ for all η ∈ Q, then h will
not be function. Also there cannot exist more than one point η ∈ Q 	 h−1({η}) = P
& h−1(η1) = ∅ where η �= η1 ∈ Q. That is, h is constant function.

(iii) ⇒ (ii): Let κ be both NZo & NZc in P . Suppose κ �= ∅ & h be a NZCts
function defined by h(κ) = {η} & h(P − κ) = {η1} for some distinct points η & η1
in Q. We know, h is constant function. Hence κ = P .

8 Conclusion

In this paper, many interesting notions on nano separation axioms viaNZo sets and
their respective NZ compactness and NZ connectedness are studied. This can be
extended to locally nano Z compactness and locally nano Z connectedness in a nano
topological spaces in future. Also, the notions may be extended to mappings such as
open, closed, contra open, contra closed, continuous, strongly continuous, perfectly
continuous and irresoluteness of nano Z open sets in a nano topological spaces.
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OnWovenness of K-Fusion Frames

Animesh Bhandari and Saikat Mukherjee

Abstract In frame theory literature, there are several generalizations of frame, K -
fusion frame presents a flavour of one such generalization, basically it is an inter-
twined replica of K -frame and fusion frame. K -fusion frames come naturally, hav-
ing significant applications, when one needs to reconstruct functions (signals) from
a large data in the range of a bounded linear operator. Motivated by the concept of
weaving frames, in this paper we study wovenness of K -fusion frames. This article
presents characterizations of weaving K -fusion frames. Paley-Wiener type pertur-
bations and conditions on erasure of frame components are discussed to examine
wovenness.

Keywords Frame · K -fusion frame · Weaving

1 Introduction

The notion of Hilbert frameswas first introduced byDuffin and Schaeffer [8] in 1952.
After several decades, in 1986, frame theory was popularized by the groundbreaking
work by Daubechies, Grossman and Meyer [6] by showing its practical significance
in distributed signal processing. Since then frame theory has been widely applicable
by mathematicians and engineers in various fields.

Frame theory literature became familiarized through several generalizations, one
such generalization is K -fusion frame, K -fusion frame was first studied by Liu et
al. [13]. After that Neyshaburi et al. [14] and Bhandari et al. [2] produced several
results on K -fusion frame.

In a sensor networking system, a frame provides a stable reconstruction of signals.
If there are two frames, having similar characteristics, then absence of one or more
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frame elements from one of the frames still may lead to a perfect reconstruction
on account of substitution by the corresponding frame elements by the other frame.
In this context, basically one can think of the intertwinedness between two sets of
sensors, or in general between two frames, which leads to the idea of weaving frames.
Weaving frames or woven frames were first introduced by Bemrose et al. [1]. Later
the concept of wovenness was studied by Deepshikha et al. [7], Bhandari et al. [3].
Furthermore, Garg et al. [10] studied weaving K -fusion frames.

This article focuses on study and characterization of wovenness of K -fusion
frames. The outline of this article is organized as follows. Section2 is devoted to the
definitions and results related to K -fusion frames and woven frames. Main results
of this article on weaving K -fusion frames are discussed in Sect. 3.

Throughout this paper H is a separable Hilbert space, L(H1,H2) is the space of
all bounded linear operators fromH1 intoH2, L(H) represents L(H,H), PA is the
orthogonal projection on A, I is countable index set, R(T ) is denoted as range of a
bounded linear operator T and T † is the Moore-Penrose pseudo inverse of T .

2 Preliminaries

In this section we discuss some important results that aid us to develop the rest of
this article.

Definition 1 Let K ∈ L(H) for which a weighted collection Ww = {(Wi , wi )}i∈I
of closed subspaces inH is said to be a K-fusion frame forH if there exist constants
0 < A, B < ∞ so that for every f ∈ H we have,

A‖K ∗ f ‖2 ≤
∑

i∈I
w2

i ‖PWi f ‖2 ≤ B‖ f ‖2. (1)

A and B are called lower and upper K -fusion frame bounds, respectively. If only the
right inequality is satisfied, Ww is said to be a K -fusion Bessel sequence or simply
a fusion Bessel sequence with Bessel bound B.

Definition 2 ([10])Let K ∈ L(H) and consider two K -fusion frames {(Wi , wi )}i∈I ,
{(Vi , vi )}i∈I . Then they are said to be woven if there are universal constants A, B so
that for every σ ⊂ I and for every f ∈ H we have,

A‖K ∗ f ‖2 ≤
∑

i∈σ

w2
i ‖PWi f ‖2 +

∑

i∈σ c

v2
i ‖PVi f ‖2 ≤ B‖ f ‖2. (2)

Proposition 1 ([10]) Let K ∈ L(H) for which Ww = {(Wi , wi )}i∈I and Vv =
{(Vi , vi )}i∈I be two K-fusion Bessel sequences in H with Bessel bounds B1, B2

respectively. Then for every σ ⊂ I, the associated weaving between them also forms
a K -fusion Bessel sequence inH with the universal Bessel bound B1 + B2.
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The following Lemma provides a discussion regarding Moore-Penrose pseudo-
inverse. For detailed discussion regarding the same we refer [5, 11].

Lemma 1 LetH and K be two Hilbert spaces and T ∈ L(H,K) be a closed range
operator, then the followings hold:

1. T T † = PR(T ), T †T = PR(T ∗)
2. ‖ f ‖

‖T †‖ ≤ ‖T ∗ f ‖ for all f ∈ R(T ).

3. T T †T = T , T †T T † = T †, (T T †)∗ = T T †, (T †T )∗ = T †T .

Lemma 2 ([9, 12]) Suppose H and K are two Hilbert spaces and T ∈ L(H,K).
Consider W be a closed subspace of H and V be a closed subspace of K. Then the
following results are satisfied:

1. PWT ∗PTW = PWT ∗.
2. PWT ∗PV = PWT ∗ if and only if TW ⊂ V .

Applying the foregoing Lemma we fabricate an analogous result.

Lemma 3 LetH1,H2 be twoHilbert spaces and T ∈ L(H1,H2) be one-one, closed
rangeoperator. SupposeW is a closed subspaceofH1 and T (W) is a closed subspace
of H2. Then the following holds:

PT (W)T
†∗PT †T (W) = PT (W)T

†∗PW = PT (W)T
†∗.

3 Main Results

We begin this section by providing two intertwining results on K -fusion frames
between two separable Hilbert spaces.

Lemma 4 Let K ∈ L(H1) for whichWw = {(Wi , wi )}i∈I be a K- fusion frame for
H1. Suppose T ∈ L(H1,H2) is a closed range operator with T †T (Wi ) ⊂ Wi , for
all i ∈ I and

∑
i∈I w2

i < ∞. Then {(TWi , wi )}i∈I forms a T KT ∗-fusion frame for
H2.

Proof First we prove for all i ∈ I, T (Wi ) is a closed subspace in H2. Since
T †T (Wi ) ⊂ Wi , then T T †T (Wi ) ⊂ T (Wi ). But applying Lemma 2.5.2 of [5] we
have T †

∣∣
R(T )

= T ∗(T T ∗)−1 and hence T (Wi ) ⊂ T (Wi ). Therefore, for every i ∈ I,
T (Wi ) is a closed subspace inH2. Since {(Wi , wi )}i∈I is a K -fusion frame forH1,
there exist A, B > 0 so that for every f ∈ H1 we have,

A‖K ∗ f ‖2 ≤
∑

i∈I
w2

i ‖PWi f ‖2 ≤ B‖ f ‖2. (3)

Again applying Lemma 2 and using Eq. (3), for every f ∈ H2 we obtain,
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A

‖T ‖2 ‖(T KT ∗)∗ f ‖2 ≤ A‖K ∗(T ∗ f )‖2 ≤
∑

i∈I
w2

i ‖PWi T
∗ f ‖2

=
∑

i∈I
w2

i ‖PWi T
∗PTWi

f ‖2

=
∑

i∈I
w2

i ‖PWi T
∗PTWi f ‖2

≤ ‖T ‖2
∑

i∈I
w2

i ‖PTWi f ‖2

andhence
∑

i∈I w2
i ‖PTWi f ‖2 ≥ A

‖T ‖4 ‖(T KT ∗)∗ f ‖2. Furthermore, since
∑

i∈I w2
i <

∞, for every f ∈ H2 we get,
∑

i∈I w2
i ‖PTWi f ‖2 ≤ (∑

i∈I w2
i

) ‖ f ‖2.
Lemma 5 Let {(Wi , wi )}i∈I be a weighted collection of closed subspaces inH1 and
T ∈ L(H1,H2) be one-one, closed range operator so that for some K ∈ L(H2),

{(TWi , wi )}i∈I be a K -fusion frame for R(T ). Then
{(

Wi ,
wi
‖T ‖

)}

i∈I
forms a

T †KT -fusion frame forH1.

Proof Since {(TWi , wi )}i∈I is a K -fusion frame for R(T ), there exist A, B > 0 so
that for every h(1)

2 ∈ R(T ) we have,

A‖K ∗h(1)
2 ‖2 ≤

∑

i∈I
w2

i ‖PTWi h
(1)
2 ‖2 ≤ B‖h(1)

2 ‖2. (4)

NowsinceT is one-one and R(T ) is closed, for everyh1 ∈ H1 there existsh2 ∈ H2

so that h1 = T ∗h2 and for every h2 ∈ H2 we have h2 = h(1)
2 + h(2)

2 , where h(1)
2 ∈

R(T ) and h(2)
2 ∈ R(T )⊥.

Therefore, h(1)
2 = T ∗†(h1 − T ∗h(2)

2 ) = T ∗†h1. Hence applying Lemma 3 we get,

∑

i∈I
w2

i ‖PTWi h
(1)
2 ‖2 =

∑

i∈I
w2

i ‖PTWi T
†∗h1‖2 =

∑

i∈I
w2

i ‖PTWi T
†∗PWi h1‖2

≤ ‖T †‖2
∑

i∈I
w2

i ‖PWi h1‖2.

Consequently, using Eq. (4) for every h1 ∈ H1 we obtain,

∑

i∈I

(
wi

‖T ‖
)2

‖PWi h1‖2 ≥ A

‖T ‖2‖T †‖2 ‖(T †K )∗h1‖2

≥ A

‖T ‖4‖T †‖2 ‖(T †KT )∗h1‖2.

Furthermore, applying Lemma 2 and using Eq. (4) for every h1 ∈ H1 we get,
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∑

i∈I

(
wi

‖T ‖
)2

‖PWi h1‖2 =
∑

i∈I

(
wi

‖T ‖
)2

‖PWi T
∗h2‖2

=
∑

i∈I

(
wi

‖T ‖
)2

‖PWi T
∗PTWi h2‖2

≤
∑

i∈I
w2

i ‖PTWi h2‖2

=
∑

i∈I
w2

i ‖PTWi (h
(1)
2 + h(2)

2 )‖2

=
∑

i∈I
w2

i ‖PTWi h
(1)
2 ‖2

≤ B‖h(1)
2 ‖2

≤ B‖T †‖2‖h1‖2.

Hence our assertion is tenable.

As a consequence of Lemmas 4 and 5, the following two propositions show that
K -wovenness is preserved under bounded linear operators.

Proposition 2 Let K ∈ L(H1) for which Ww = {(Wi , wi )}i∈I and Vv =
{(Vi , vi )}i∈I be K -fusion frames forH1. Further let us consider a closed range oper-
ator T ∈ L(H1,H2) with T †T (Wi ) ⊂ Wi and T †T (Vi ) ⊂ Vi , for all i ∈ I for all
i ∈ I. SupposeWw andVv areweavingK-fusion frames forH1, then {(TWi , wi )}i∈I
and {(TVi , vi )}i∈I are weaving T KT ∗-fusion frames forH2.

Proof Applying Lemma 4, our assertion is tenable.

Proposition 3 Let {(Wi , wi )}i∈I and {(Vi , vi )}i∈I be two weighted collections of
closed subspaces inH1. Suppose T ∈ L(H1,H2) to be one-one, closed range oper-
ator so that for some K ∈ L(H2), {(TWi , wi )}i∈I and {(TVi , vi )}i∈I are weaving

K -fusion frames for R(T ) with the universal bounds A, B. Then
{(

Wi ,
wi
‖T ‖

)}

i∈I
and

{(
Vi ,

vi
‖T ‖

)}

i∈I
are weaving T †KT -fusion frames for H1 with the universal

bounds A
‖T ‖4‖T ‖2 , B‖T †‖2.

Proof The proof will be followed from Lemmas 1 and 5.

In the following result we discuss images of weaving fusion frames under
bounded, linear operator preserve their wovenness with respect to the said opera-
tor.

Proposition 4 Let {(Wi , wi )}i∈I and {(Vi , vi )}i∈I be weaving fusion frames forH.
Then for every K ∈ L(H), {(KWi , wi )}i∈I and {(KVi , vi )}i∈I areweaving K -fusion
frames for H.
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Proof Let {(Wi , wi )}i∈I and {(Vi , vi )}i∈I be weaving fusion frames forH with the
universal bounds A, B. Then for every σ ⊂ I and f ∈ H we have,

A‖ f ‖2 ≤
∑

i∈σ

w2
i ‖PWi f ‖2 +

∑

i∈σ c

v2
i ‖PVi f ‖2 ≤ B‖ f ‖2. (5)

Therefore, using Eq. (5) and applying Lemma 2, for every K ∈ L(H), σ ⊂ I and
f ∈ H we obtain,

∑

i∈σ

w2
i ‖PKWi

f ‖2 +
∑

i∈σ c

v2
i ‖PKVi

f ‖2 ≥ A

‖K‖2 ‖K ∗ f ‖2.

The universal upper bound of the respective weaving will achieved by Proposition 1.

Next result provides a characterization of weaving fusion frames by means of
weaving K -fusion frames and conversely.

Proposition 5 Let K ∈ L(H) and consider two weighted collections Ww, Vv of
closed subspaces of H. Then

1. Ww andVv are weaving K -fusion frames forHwhenever they are weaving fusion
frames for H.

2. If R(K ) is closed, thenWw andVv formweaving fusion frames for R(K )whenever
they are weaving K -fusion frames for R(K ).

Proof 1. LetWw and Vv be weaving fusion frames forH with the universal bounds
A, B. Then for every σ ⊂ I and f ∈ H we get,

A

‖K‖2 ‖K ∗ f ‖2 ≤ A‖ f ‖2 ≤
∑

i∈σ

w2
i ‖PWi f ‖2 +

∑

i∈σ c

v2
i ‖PVi f ‖2 ≤ B‖ f ‖2.

2. Suppose Ww and Vv are weaving K -fusion frames for R(K ) with the universal
bounds C, D. Then for every σ ⊂ I and f ∈ H we have,

C‖K ∗ f ‖2 ≤
∑

i∈σ

w2
i ‖PWi f ‖2 +

∑

i∈σ c

v2
i ‖PVi f ‖2 ≤ D‖ f ‖2. (6)

Again using closed range property for every f ∈ R(K ) we have, ‖K ∗ f ‖2 ≥
1

‖K †‖2 ‖ f ‖2. Therefore, using Eq. (6) we obtain,

C

‖K †‖2 ‖ f ‖2 ≤
∑

i∈σ

w2
i ‖PWi f ‖2 +

∑

i∈σ c

v2
i ‖PVi f ‖2 ≤ D‖ f ‖2.

In the following results we discuss stability of wovenness of K -fusion frames
under perturbation and erasures. Analogous erasure result for frame can be observed
in [4].
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Theorem 1 Let T, K ∈ L(H)with K has closed range and suppose for every f ∈ H
we have, ‖(T ∗ − K ∗) f ‖ ≤ α1‖T ∗ f ‖ + α2‖K ∗ f ‖ + α3‖ f ‖, for some α1, α2, α3 ∈
(0, 1). Then {(Wi , wi )}i∈I and {(Vi , vi )}i∈I are weaving T -fusion frames if they are
weaving K -fusion frames for R(K ).

Proof Let {(Wi , wi )}i∈I and {(Vi , vi )}i∈I be weaving K -fusion frames with the
universal bounds A, B. Then for every σ ⊂ I and every f ∈ R(K ) we have,

A‖K ∗ f ‖2 ≤
∑

i∈σ

w2
i ‖PWi f ‖2 +

∑

i∈σ c

v2
i ‖PVi f ‖2 ≤ B‖ f ‖2. (7)

Again for every f ∈ H we have, ‖K ∗ f ‖ ≥ ‖T ∗ f ‖ − ‖(T ∗ − K ∗) f ‖ and hence
applying closed range property of K (see Lemma 1) and employing given perturba-
tion condition for every f ∈ R(K ) we obtain,

(1 − α1)‖T ∗ f ‖ ≤ (1 + α2 + α3‖K †‖)‖K ∗ f ‖.

Therefore, using Eq. (7), for every σ ⊂ I we obtain,

A

(
1 − α1

1 + α2 + α3‖K †‖
)2

‖T ∗ f ‖2 ≤
∑

i∈σ

w2
i ‖PWi f ‖2 +

∑

i∈σ c

v2
i ‖PVi f ‖2 ≤ B‖ f ‖2,

for every f ∈ R(K ).

Corollary 1 Let T, K ∈ L(H) and suppose α1, α2 ∈ (0, 1) so that for every
f ∈ H we have, ‖T ∗ f − K ∗ f ‖ ≤ α1‖T ∗ f ‖ + α2‖K ∗ f ‖. Then {(Wi , wi )}i∈I and
{(Vi , vi )}i∈I are T -woven if and only if they are K -woven.

Theorem 2 Let K ∈ L(H1) for which {(Wi , wi )}i∈I and {(Vi , vi )}i∈I be weaving
K -fusion frames forH1 with universal lower bound A and suppose T ∈ L(H1,H2)

with T †T (Wi ) ⊂ Wi and T †T (Vi ) ⊂ Vi for all i ∈ I . Let us assume J ⊂ I and
0 < C < A

‖T ‖2 so that for every f ∈ H2

∑

i∈J
w2

i ‖PTWi ‖2 ≤ C‖T K ∗T ∗ f ‖2. (8)

Then {(TWi , wi )}i∈I\J and {(TVi , vi )}i∈I\J form weaving T KT ∗-fusion frames
forH2.

Proof Since {(Wi , wi )}i∈I and {(Vi , vi )}i∈I are weaving K -fusion frames for H1,
then by Lemma 4 and Proposition 2, {(TWi , wi )}i∈I and {(TVi , vi )}i∈I form weav-
ing T KT ∗-fusion frames forH2 with universal lower bound A

‖T ‖2 inH2. Therefore,
applying Eq. (8), for every σ ⊂ I \ J and for every f ∈ H2 we obtain,
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∑

i∈σ

w2
i ‖PTWi ‖2 +

∑

i∈σ c

v2
i ‖PTVi ‖2

=
∑

i∈σ∪J
w2

i ‖PTWi ‖2 +
∑

i∈σ c

v2
i ‖PTVi ‖2 −

∑

i∈J
w2

i ‖PTWi ‖2

≥ A

‖T ‖2 ‖(T KT ∗)∗ f ‖2 − C‖(T KT ∗)∗ f ‖2

=
(

A

‖T ‖2 − C

)
‖(T KT ∗)∗ f ‖2,

where σ c is the complement of σ in I \ J .
The universal upper bound will be followed by Proposition 1.

By choosing H1 = H2 and T = I , we obtain the following result.

Corollary 2 Let {(Wi , wi )}i∈I and {(Vi , vi )}i∈I be weaving K -fusion frames forH
with the universal bounds A, B. Let us consider J ⊂ I and 0 < C < A so that for
every f ∈ H, ∑

i∈J
w2

i ‖PWi ‖2 ≤ C‖K ∗ f ‖2,

then {(Wi , wi )}i∈I\J and {(Vi , vi )}i∈I\J are weaving K -fusion frames H with the
universal bounds (A − C), B.

Using Proposition 3, we get the following result analogous to Theorem 2.

Theorem 3 Let {(Wi , wi )}i∈I and {(Vi , vi )}i∈I be two weighted collections of
closed subspaces inH1 and K ∈ L(H2). Suppose T ∈ L(H1,H2) is one-one, closed
range operator so that {(TWi , wi )}i∈I and {(TVi , vi )}i∈I are weaving K -fusion
frames for R(T ) with the universal lower bound A. Further suppose J ⊂ I and
0 < C < A

‖T ‖4‖T †‖2 so that for every f ∈ H1

∑

i∈J

(
wi

‖T ‖
)2

‖PWi f ‖2 ≤ C‖(T †KT )∗ f ‖2. (9)

Then
{(

Wi ,
wi
‖T ‖

)}

i∈I\J
and

{(
Vi ,

vi
‖T ‖

)}

i∈I\J
are weaving T †KT -fusion frames

forH1.

4 Conclusion

Frames, especially the theory of K -fusion frames, and their wovenness became an
important tool for big data analysis. In this paper, we presented theoretical aspects of
K -fusion frames. We have discussed sufficient conditions under which wovenness
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of K -fusion frames is preserved between two Hilbert spaces. Stability of weaving
K -fusion frames under Paley-Wiener type perturbations and erasure of frame com-
ponents are also examined.
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Different Time Schemes
with Differential Quadrature Method
in Convection-Diffusion-Reaction
Equations

Bengisen Pekmen Geridönmez

Abstract In this study, two-dimensional, unsteady convection-diffusion and
convection-diffusion-reaction equations are numerically investigated with different
time schemes. In the governing equations, the space derivatives are approximated
by differential quadrature method (DQM) which gives highly accurate results using
small number of grid points and the time derivatives are handled by different time
schemes. The distribution of nodes is achieved by non-uniform Gauss-Chebyshev-
Lobatto (GCL) grid points. The problems having the exact solutions are chosen to
check the best error behavior. Computational cost in view of central processing unit
time and the efficiency of different time schemes in terms of errors are examined. As
expected, explicit time schemes need smaller time increments while implicit time
schemes enable one to use larger time increments. In each chosen problems, Adams-
Bashforth-Moulton and Runge-Kutta of order four exhibit the best error behavior.

Keywords Convection-diffusion-reaction · Differential quadrature method · Time
schemes

1 Introduction and Problem Definition

Convection-diffusion equations, also adding reaction term, describe many physical
problems such as heat transfer, chemical reaction processes, fluid dynamics etc. In
order to be able to interpret the physical reality as much as possible, the numerical
simulations should be performed not only as accurate as possible but also computa-
tionally efficient in view of less memory usage and short period of time of central
processing unit (CPU) in computers.

There are many numerical studies in literature on two-dimensional, unsteady,
convection-diffusion equations. Some of them may be mentioned as follows. Tian
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and Ge [1] presented compact alternating direction implicit method of exponen-
tial high-order. Dehghan and Mohebbi [2] proposed a fourth order finite difference
method for space derivatives and boundary value method for time integration. Mittal
and Tripathi [3] used collocation of modified bi-cubic B-spline functions for space
derivatives and strong stability preserving Runge Kutta method (ssprk(4,3)) for time
derivatives. Mittal an Jiwari [4] employed the cubic B-spline quasi-interpolation for
space derivatives and ssprk(5,4) for time derivatives. Rashidinia et al. [5] derived a
stable Gaussian radial basis function method. Hoz et al. [6] used Chebyshev differ-
entiation matrices for space derivatives. Li et al. [7] analyzed convection-diffusion-
reaction equation utilizing local mesh-independent Petrov-Galerkin method based
on radial basis function collocation method. Wang et al. [8] presented a local knot
method to solve two and three dimensional convection-diffusion-reaction equations
in random domains. In both theoretical and analytical aspect, a novel study is carried
out in [9] generalizing the scheme for discontinuous Petrov Galerkin to more general
Banach spaces using a very general residual minimization approach. In papers [10–
12], fractional differential equations are concerned in theoretical view based on Lie
algebra. Convection-diffusion-reaction equation with fractional time derivative in
the sense of Caputo derivative is also solved by Li et al. [13] using finite differ-
ence schemes for time derivative and local discontinuous Galerkin method for space
derivatives.

In this study, differential quadrature method is applied to space derivatives while
the different time schemes are implemented.DQMgives very accurate and fast results
using small number of nodes in a small computational domain. The sensitivity of
DQM depends the number of nodes. In the current study, the impact of various forms
of time schemes is analyzed.

The two-dimensional unsteady convection-diffusion-reaction equation in a
bounded rectangular domain Ω : [a, b] × [c, d] is defined by [3, 5]

∂u

∂t
= p1

∂2u

∂x2
+ p2

∂2u

∂y2
− q1

∂u

∂x
− q2

∂u

∂y
+ f (x, y, t, u), (1)

where x ∈ (a, b), y ∈ (c, d), t > 0, q1 and q2 are constant speeds of convec-
tion, p1, p2 > 0 are constant diffusivity in x and y directions, respectively, and
f (x, y, t, u) is the reaction term. Initial and boundary conditions are

u(x, y, 0) = g(x, y)

u(a, y, t) = χ1(y, t), u(b, y, t) = χ2(y, t)

u(x, c, t) = χ3(x, t), u(x, d, t) = χ4(x, t), 0 ≤ t ≤ tmax,

where tmax is the peak time level. Equation (1) is reduced to convection-diffusion
equation when f (x, y, t, u) = 0.
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2 DQM Application and Time Schemes

Approximation of space derivatives at a grid point is done by using all values of grid
points in the entire region of the problem in differential quadrature method.

In Eq. (1), Lagrange polynomials based DQM admits the space derivatives as [14]

∂u

∂x
=

N∑

k=1

aikuk j ,
∂u

∂y
=

M∑

k=1

ā jkuik,
∂2u

∂x2
=

N∑

k=1

bikuk j ,
∂2u

∂y2
=

M∑

k=1

b̄ jkuik,

(2)
by theweighting coefficients for the first and second order derivatives given explicitly

aik = Q(1)(xi )

(xi − xk)Q(1)(xk)
, i �= k, aii = −

N∑

k=1,k �=i

aik, (3)

bik = 2aik

(
aii − 1

xi − xk

)
, i �= k, bii = −

N∑

k=1,k �=i

bik, (4)

where Q(1)(xi ) = ∏N
k=1,k �=i (xi − xk), N , M are the number of GCL points on x-

and y-axis and i = 1, 2, . . . , N .
Let Dx , Dy, Dxx , Dyy, D2 = Dxx + Dyy be differentiation matrices formed by

Equation (2). Additionally, let A be the matrix pD2 − q(Dx + Dy) considering the
convection-diffusion part of Eq. (1), and thus,

ut = Au + f (t, x, y, u) = H(u) (5)

where subindex t refer to the time derivative of u.
Some efficient time schemes are chosen for approximation of time derivatives.

An iterative system depending on time is to be developed with various time schemes
as follows :

(a) The first order Backward Differentiation Formula (BDF1) (Backward-Euler):

un+1 − un

Δt
= Aun+1 + f (tn+1, x, y, u

n) (6)

(b) The second order Backward Differentiation Formula (BDF2) :

3un+1 − 4un + un−1

2Δt
= Aun+1 + f (tn+1, x, y, u

n) (7)

(c) The third order Backward Differentiation Formula (BDF3) (Houbolt method):

11un+1 − 18un + 9un−1 − 2un−2

6Δt
= Aun+1 + f (tn+1, x, y, u

n) (8)
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(d) Trapezoidal rule (Trap) ≡ Crank-Nicolson

un+1 − un

Δt
= 1

2

(
H(un+1) + H(un)

)

un+1 − un

Δt
= 1

2
(Aun+1 + f (tn+1, x, y, u

n)) + 1

2
(Aun + f (tn, x, y, u

n)) (9)

(e) Adams-Moulton formula of order 3 (AM3) :

un+1 − un

Δt
= 5

12
H(un+1) + 2

3
H(un) − 1

12
H(un−1)

( I
Δt

− 5A

12

)
un+1 =

( I
Δt

+ 2A

3

)
un − A

12
un−1

+ 5

12
f (tn+1, x, y, u

n) + 2

3
f (tn, x, y, u

n)

− 1

12
f (tn−1, x, y, u

n−1) (10)

(f) Heun’s Method (2nd order, predictor (P) - corrector (C))

(P) : un+1
1 − un = Δt H(un)

(C) : un+1
2 − un = 0.5Δt H(un) + 0.5Δt H(un+1

1 )

(C) : un+1 − un = 0.5Δt H(un) + 0.5Δt H(un+1
2 ) (11)

(g) Adams-Bashforth-Moulton (4th order, PC)

(P) : ūn+1 = un + Δt

(
55

24
H(un) − 59

24
H(un−1) + 37

24
H(un−2) − 9

24
H(un−3)

)

(C) : un+1 = un + Δt

(
9

24
H(ūn+1) + 19

24
H(un) − 5

24
H(un−1) + 1

24
H(un−2)

)
(12)

(h) Runge Kutta of order 4 (RK4)

k1 = Aun + f (tn, x, y, u
n) (13a)

k2 = A(un + 0.5Δtk1) + f (tn + 0.5Δt, x, y, un + 0.5Δtk1) (13b)

k3 = A(un + 0.5Δtk2) + f (tn + 0.5Δt, x, y, un + 0.5Δtk2) (13c)

k4 = A(un + Δtk3) + f (tn+1, x, y, u
n + Δtk3) (13d)

un+1 = un + Δt

6

(
k1 + 2k2 + 2k3 + k4

)
(13e)
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(i) 3-stage Strong Stability Preserving Runge Kutta of order 3 (ssprk3) [15] :

u1 = un + Δt
(
Aun + f (tn, x, y, u

n)
)

u2 = 3

4
un + 1

4
u1 + 1

4
Δt

(
Au1 + f (tn+1, x, y, u1)

)

un+1 = 1

3
un + 2

3
u2 + 2

3
Δt

(
Au2 + f (tn + 0.5Δt, x, y, u2)

)
(14)

(j) 5-stage Strong Stability Preserving Runge Kutta of order 4 (ssprk54) [16] :

u1 = un + 0.39175Δt
(
Aun + f (tn, x, y, u

n)
)

u2 = 0.44437 un + 0.55563 u1
+ 0.36841Δt (Au1 + f (tn + 0.39175Δt, x, y, u1))

u3 = 0.6201 un + 0.3799 u2
+ 0.25189Δt (Au2 + f (tn + 0.58608Δt, x, y, u2))

u4 = 0.17808 un + 0.82192 u3
+ 0.54497Δt (Au3 + f (tn + 0.47454Δt, x, y, u3))

u = 0.00683 un + 0.51723 u2 + 0.1276 u3
+ 0.0846Δt (Au3 + f (tn + 0.47454Δt, x, y, u3))

+ 0.34834 u4 + 0.22601Δt (Au4 + f (tn + 0.93501Δt, x, y, u4)) (15)

In all time schemes, Δt is the time increment. In items (a)-(e), I is the identity
matrix. Iteration is terminated at an assigned maximum time level.

3 Numerical Computations

Convection-diffusion, diffusion-reaction and convection-diffusion-reaction equa-
tions are solved in the following problems. Grid distribution based on GCL nodes is
established.

Error between approximated results and the exact solution are computed by the
following formulas :

maximum absolute error errin f = max{|uex − u|} = ||u − uex ||∞
relative error errrel = ||u − uex ||∞

||uex ||∞
average absolute error erravg = mean(|uex − u|).
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Table 1 Errors with 21 × 21 GCL grids at tmax = 1 when q = 1, p = 0.1

Time scheme Δt errinf errrel erravg CPU (s)

BDF1 0.01 4.819e-05 2.18e-05 1.191e-05 2.12

1e − 4 4.827e-07 2.184e-07 1.193e-07 108

BDF2 0.01 7.085e-08 3.205e-08 1.257e-08 2.45

1e − 4 9.618e-11 4.351e-11 4.248e-12 182

BDF3 0.01 3.277e-08 1.482e-08 3.826e-09 2.15

1e − 4 9.276e-11 4.197e-11 3.206e-12 182

Trap 0.01 8.046e-09 3.64e-09 1.988e-09 2.86

1e − 4 8.355e-11 3.78e-11 2.652e-12 187

AM3 1e − 4 5.374e-11 2.431e-11 3.763e-12 135.91

Heun 1e − 4 7.572e-13 3.426e-13 1.882e-13 257.13

ABM4 1e − 4 1.421e-14 6.429e-15 3.761e-15 56.91

RK4 1e − 4 1.332e-14 6.027e-15 3.492e-15 99.5

ssprk3 1e − 4 6.004e-13 2.716e-13 1.479e-13 80.45

ssprk54 1e − 4 1.002e-10 4.534e-11 2.476e-11 122

Problem 1. Convection-Diffusion Equation. Equation (1) is concerned in case of
f (x, y, t, u) = 0 as

ut = p∇2u − q(ux + uy), Ω : [0, 1] × [0, 1] (16)

with the analytical solution given as [3]

u(x, y, t) = aebt
(
e−xcx + e−ycy

)
, (17)

where cx = cy = −q ± √
q2 + 4bp

2p
> 0, and a = 1, b = 0.1 are fixed in computa-

tions. Initial andDirichlet boundary conditions are taken from the analytical solution.
For q = 1 and p = 0.1 at tmax = 1, Table1 illustrates the errors and CPU times in
different time schemes. Keeping up Δt = 10−4, the smallest error is obtained with
RK4 and the fast results come with ABM4 having almost the same accuracy with
RK4. Implicit methods BDF2, BDF3 and Trap provide good accuracy enabling one
to use larger time increments such as Δt = 0.01.

Problem 2. Diffusion-Reaction Equation. Equation (1) is considered without con-
vection terms but with a reaction term as [5]

ut = uxx + uyy + f (t, x, y, u), Ω : [0, 0.5] × [0, 0.5], (18)

where
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Table 2 Error analysis at tmax = 3 using 11 × 11 GCL grids

Time scheme Δt errinf errrel erravg CPU

BDF1 0.001 6.803e-07 1.366e-05 1.385e-07 4.88

BDF2 0.001 4.529e-07 9.096e-06 9.222e-08 5.41

1e-4 4.528e-08 9.095e-07 9.221e-09 39.4

BDF3 0.001 4.53e-07 9.099e-06 9.225e-08 6.7

1e-4 4.528e-08 9.095e-07 9.221e-09 36.7

Trap 0.001 2.264e-07 4.547e-06 4.61e-08 10.6

1e-4 2.264e-08 4.547e-07 4.61e-09 61.8

AM3 1e-4 1.887e-08 3.789e-07 3.842e-09 96.4

Heun 1e-4 1.08e-12 2.169e-11 2.32e-13 80.3

ABM4 1e-4 1.089e-13 2.187e-12 2.36e-14 32.6

RK4 1e-4 1.66e-13 3.333e-12 3.464e-14 22

ssprk3 1e-4 1.631e-13 3.275e-12 3.418e-14 42.7

ssprk54 1e-4 1.652e-13 3.317e-12 3.49e-14 30.6

f (t, x, y, u) = u

u2 + 1

+
(
2π2 − 1 − 1

1 − e−2t sin2(πx) sin2(πy)

)
e−t sin(πx) sin(πy).

(19)

In the presence of this reaction term, the governing equation becomes nonlinear.
Exact solution is u(x, y, t) = e−t sin(πx) sin(πy). Initial and boundary conditions
are obtained from this analytical solution. In Table2, 11 × 11 number of GCL grid
points is fixed. As expected, DQM provides very good accuracy using very small
number of grid points. Further, at Δt = 10−4, almost the same accuracy is noted
with ABM4, ssprk3 and RK4, respectively, and the fastest one is RK4.

In Ref. [5], 10 × 10 Chebyshev points give around 10−11 accuracy with ABM4
in 75.58 seconds. As can be noted in Table2, DQM gives a little bit better accuracy
and faster results with ABM4 in usage of 11 × 11 GCL points.

Problem 3. Convection-Diffusion-Reaction Equation.This problem searcheswhat
happens if the Neumann boundary conditions exist. Consider the problem [5, 6]

ut = 1

2
∇2u − sin(x)ux − sin(y)uy + (cos(x) + cos(y))u − (cos(x) + cos(y)),

(20)
where (x, y) ∈ [0, π/2]2.

The exact solution is given by u(x, y, t) = 1 + e−t sin(x) sin(y). The mixed
boundary conditions (Dirichlet and Neumann) are concerned as u(x, 0, t) =
u(0, y, t) = 1 and uy(x, π/2, t) = 0 = ux (π/2, y, t) = 0. Table3 presents
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Table 3 Error analysis at tmax = 1 using 21 × 21 GCL grids

Time scheme Δt errinf errrel erravg CPU

BDF1 0.001 0.0001839 0.0001344 6.56e-05 19.26

BDF2 0.001 1.534e-07 1.121e-07 5.472e-08 21.41

1e-4 1.532e-09 1.12e-09 5.468e-10 237.94

BDF3 0.001 2.348e-07 1.717e-07 8.379e-08 24.04

1e-4 2.352e-09 1.719e-09 8.399e-10 233.5

Trap 0.001 3.065e-08 2.241e-08 1.094e-08 28.73

1e-4 2.951e-10 2.157e-10 1.042e-10 279.74

AM3 1e-4 6.258e-12 4.575e-12 2.339e-13 289.86

Heun 1e-4 3.066e-10 2.241e-10 1.094e-10 187.47

ABM4 1e-4 4.907e-14 3.587e-14 9.582e-15 188.69

RK4 1e-4 1.843e-14 1.347e-14 3.923e-15 72.4

ssprk3 1e-4 7.656e-13 5.597e-13 3.21e-13 122.03

ssprk54 1e-4 1.269e-10 9.274e-11 5.391e-11 113.32

errors and CPU times at tmax = 1 using 21 × 21 GCL grids. Once again, RK4 is
the fastest and the best accurate time scheme with Δt = 10−4. BDF2, BDF3 and
Trap also give acceptable accuracy 10−8 using Δt = 10−3.

In Ref. [6], 5.9e-09 maximum error is found using 8 × 8 Chebyshev nodes. As
is seen in Table3, DQM with RK4 gives 5.68e-09 maximum error with 9 × 9 GCL
grids. This result also approves the proficiency of DQM with RK4 and GCL grids.

4 Conclusion

In this study, different forms of the time schemes in two-dimensional, unsteady,
convection-diffusion and convection-diffusion-reaction equations are examined.Dif-
ferential quadrature method is carried out for space derivatives in these equations.
A detailed analysis of DQM in collaboration with some time schemes is done in the
current study.

Explicit time schemes need smaller time increments while implicit time schemes
enable one to use larger time increments. Implicit methods, the second, the third order
backward differentiation formulas and also trapezoidal rule, are more reliable due to
their unconditionally stable nature. However, in terms of CPU times, some explicit
methods can also be preferable. RK4 and spprk3 perform at all problems with very
good error as well as CPU time. Another alternative is to perform predictor corrector
methods for good accuracy. Having a fast convergence, ABM4 is remarkable as a
competitor to RK4. These observations also point that not only spatial approximation
but also temporal approximation affect the results considerably.
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In addition to the problems having exact solutions, convection-diffusion-reaction
problems in the absence of exact solutions may be concerned as an extension of this
study.
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Determinants of Inflation in Malaysia:
Monetary or Real Factor?

Nurul Syafiqah Binti Mohd Shafie, Phaik Chin Tan, and Siok Kun Sek

Abstract This study examines if the inflationary of Malaysia is due to monetary or
real factor. The examination is based on the Quantity Theory of Money (QTM). The
data are in quarterly and range from year 1997 to 2018. The main determinants to be
tested are money supply (M1, M2 andM3), real gross domestic product (RGDP) and
real broad effective exchange rate (RBEER). The Autoregressive Distributed Lags
(ARDL) model and the nonlinear ARDL model are employed. The empirical results
detect M3 as the best proxy for money supply. The results reveal that money supply
has short-run impact on inflation meanwhile the RGDP has both short-run and long-
run impacts on inflation. QTM only holds partially in the short-run but invalid in the
long-run. The main determinant of inflation is RGDP in the long-run. Therefore, the
policymakers should strive for stable economy growth through accommodation of
both fiscal and monetary policy.

Keywords Inflation · Asymmetric effect · Quantity theory of money · Real factor

1 Introduction

Inflation has become one of the monetary phenomena over a period of time.
Milton Friedman proclaimed that “inflation is always and everywhere a monetary
phenomenon” [1]. Theoretically, inflation can be defined as a measure of the rate at
which the average price of a basket of selected goods and services to have persistent
rises over some time in an economy. In simple terms, inflation is an increase in the
cost of living. The consequences of inflation, for certain reasons, have a detrimental
impact, for example, on the reduction of the real value of money and other monetary
products over time, whilst the positive influence can entail alleviation of economic
recessions and debt relief by reducing the true amount of debt. There are many theo-
ries formed to explain inflation. However, the validity of these theories still requires
further examination.
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In Malaysia, the historical trend of inflation was influenced by many economic
factors. For instance,Cheng andTan [2] specified that the great fall of the inflation rate
in Malaysia in 1974 was owing to the decreased in gross domestic product growth.
Based on Bank Negara Malaysia Annual Report 2009, one factor that triggers the
inflation was the value of the ringgit dropped progressively [3]. The crude oil price
also may affect the inflation rate as what had happened during 2005. In 2018, Bank
Negara Malaysia reported that the decline in the inflation rate was caused by the
global demand and supply factors [4].

In terms of empirical research, the inappropriate use of researchmethodologymay
lead to inaccurate results. Many earlier studies applied linear modelling to examine
the relationship, but the results might be biased if the true relationship is nonlinear.
The conventional approach might also subject to limited information. For instance,
the results do not distinguish between short-run versus long-run effects.

This study seeks to fill the limitations that addressed above. In particular, we
aim to examine the validity of the quantity theory of money and to figure out if
inflation is a monetary phenomenon. We also intend to study the asymmetric effect
of the monetary on inflation in Malaysia, besides identifying the main determinant
of inflation in Malaysia. For this purpose, the study applies the Autoregressive-
Distributed Lag (ARDL) and Non-linear Autoregressive-Distributed Lag (NARDL)
models. The outlines of this paper are as follows: Sect. 2 offers the discussions on the
literature; Sect. 3 describes the data; Sect. 4 discusses the methods applied; Sect. 5
summarizes the key findings of the study; Finally, Sect. 6 concludes and finalizes the
study.

2 Literature Reviews

2.1 Theoretical Reviews

There are various theories describing the determinants of inflation. The two main
theories areQuantity Theory ofMoney (QTM) andKeynesian theorywhich proposed
monetary factor and real activity or gross domestic product (GDP) as the main deter-
minant of inflation respectively. The other theories have proposed more factors of
inflation. But overall, majority theories agreed that monetary factor and GDP are
the two main factors that might affect inflation. As summarized in Table 1, these
factors can be classified as monetary-based, which includes money supply, and
non-monetary based.
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Table 1 Theories on the determinants of inflation

No Theory Determinant of inflation

1 Quantity Theory of Money (QTM) Money supply

2 Keynesian theory GDP

3 Demand-pull inflation GDP, expected of inflation, money supply,
government spending

4 Cost-push inflation Wage-inflation, monopoly, government regulation
and tax, exchange rate

5 Mixed demand inflation GDP, expected of inflation, money supply,
government expenditure and tax, wage inflation,
monopoly, exchange rate

6 Structural theory GDP, wage inflation

7 Rational expectation theory Expected of inflation

8 Purchasing power parity model GDP

2.2 Quantity Theory of Money (QTM)

QTM states that money supply is directly proportional to the change of price, holding
the velocity of money and the income constant. Equation 1 below expressed QTM’s
equation [5],

MV = PY, (1)

where M represents the suitable measure of money supply (M1, M2 and M3), V
denotes the income velocity of money obtained by Y × P/M , P is the aggregate
price level expressed by CPI, and Y defines the RGDP. Expressing Eq. 1 in growth
form, its logarithm in lower case is denoted as:

m + v = p + y,

p = m + v - y.
(2)

There are two propositions on QTM. Firstly, the coefficient of money is gauged to
be 1 in long run estimate to show the proportionality relationship between inflation
and money supply. Second, the velocity of money is orthogonal to the money stock
growth rate [6].Grauwe andPolan [6] discussed the linkage between real and nominal
GDP in QTM, i.e., Yn = PY , where Yn is the nominal GDP. The simplest form of
QTM is known as Cambridge equation:

M = VYn.

After substituting Yn = PY into the Cambridge equation, the monetary
relationship is obtained:
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M = V PY,

where P is a deflator and Y is the real expenditure. Then, it can be expressed in the
proportional rate of change by letting the dot stand for logarithmic differentiation
[7],

ṁ = v̇ + ṗ + ẏ. (3)

Equation 3 can be written into econometric form, i.e.,

Yt = β0 + β1Xt + β2Zt + εt , (4)

where Yt , Xt , Zt , and εt are inflation rate, money growth rate, RGDP growth rate
of the country, and an error term, respectively. The velocity of money, v is excluded
from the estimation by assuming it is covered in the error term of the estimate [6, 8,
9]. QTM predicts the coefficient of money growth is positive 1 and the coefficient of
RGDP is minus 1, i.e., β1 = +1 and β2 = −1.

2.3 Empirical Reviews

The factors which affect inflation can mainly be grouped into monetary (money
supply) and non-monetary factors. Among these factors, the money supply is the
utmost determinant that affects inflation significantly. It supports theQuantity Theory
of Money (QTM), which suggests that the monetary factor is the main determinant
of inflation. Most studies revealed a positive relationship between money supply and
inflation, but QTM only holds partially, for instance Ndidi [10], Hashim et al. [11],
Kirimi [12], Adayleh [13], Bawono [14], and Setiartiti and Hapsari [15]. By contrast,
some studies reported that QTM does not hold, these include Ellahi [16], and Saxena
and Singh [17].

The second common variable used is the growth of real gross domestic products
(RGDP). Results are mixed. The studies that reported a negative relationship include
Ellahi [16], Chaudhary and Xiumin [18], Karadzic [19], Kirimi [12], Ochieng et al.
[20], and Bawono [14]. Some studies reported a positive relationship, they include
Uddin et al. [21], Odusanya and Atanda [22], Gyebi and Boafo [23], Saxena and
Singh [17], andWardhono et al. [24]. For Malaysia, there was a positive relationship
in the recent study by Mun et al. [25], but Hashim et al. [11] reported a negative
relationship between the variables tested.

Some studies examined exchange rate as the determinant of inflation and found
a negative relationship, for instance Uddin et al. [21], and Falnita and Sipos [26].
Others studies reported no significant relationship [10, 12, 20, 22]. Theoretically,
the inflation rate is highly affected by an interest rate with a negative relationship.
This theory was supported by Hashim et al. [11] and Adayleh [13] for the cases
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of Malaysia and Jordan, respectively. However, the study by Falnita and Sipos [26]
revealed a significant positive correlation which contradicts the theory.

3 Data

The analysis uses the data of Malaysia on consumer price index (CPI) as the
dependent variable, while independent variables include money supply (M1, M2
and M3), real gross domestic product (RGDP), and real broad effective exchange
rate (RBEER). To carry out the study, we obtain the data from several databases,
i.e., CPI from the Global Economy database, money supply from the Bank Negara
Malaysia (BNM) database, nominal GDP and CPI growth from the CEIC database,
and RBEER from Federal Reserve Economic Data (FRED) database. The study
utilises the quarterly data of Malaysia from the year 1997 to 2018.

4 Methodology

This research started with the conversion of data into a log form. Prior to the esti-
mation, all variables are checked with unit-root tests of Augmented Dickey-Fuller
(ADF), Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test, and breakpoint unit root.
The results show that some variables are stationary at level, I(0) but all variables
are stationary after first differencing, I(1). This condition satisfies the requirement
of ARDL and NARLD, i.e. variables with mixture of I(0) and I(1) and no variable
higher than I(1). Next, the estimations on the inflation equations are made in two
forms: log level and log growth rate of price (consumer price index) based on QTM
theory. Finally, diagnostic checking is performed on the log level and growth rate on
ARDL and NARDL models.

4.1 ARDL Versus NARDL Models

ARDL model is a linear time series model where dependent and independent vari-
ables are related contemporaneously and across historical value. In general, if yt
is the dependent variable and x1, x2, ..., xk are k explanatory variables in a general
ARDL (p, q1, q2, ..., qk) model, where the model consists of lag p on the dependent
variable and lag q on independent variables, it can be written as [27]:

yt =
p∑

j=1

λ j yt− j +
q∑

j=0

δ j xt− j + εt ,
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where t is the number of periods, yt is the dependent variable; xt represents k ×
1 vector of independent variables, δ j is k × 1 coefficient vectors, λ j is the vector
of scalars, and εt is the disturbance term with zero mean and finite variance. The
equation can also be expressed in error correction format:

�yt = αyt−1 + βxt +
p−1∑

j=1

λ∗
j�yt− j +

q−1∑

j=0

δ∗
j�xt− j + εt ,

where α = −1
(
1 − ∑p

j=1 λ j

)
; β = ∑q

j=0 δ j ; λ∗
j = ∑p

m= j+1 λm, j = 1, 2, ..., p−
1; δ∗

j = ∑q
m= j+1 δm, j = 1, 2, ..., q − 1. The equation can be summarized as:

�yt = α(yt−1 − θxt ) +
p−1∑

j=1

λ∗
j�yt− j +

q−1∑

j=0

δ∗
j�xt− j + εt ,

where θ = −β/α is the long-run equilibrium relationship among yt and xt ; λ∗
j is the

short-run effect of dependent variable on the dependent variable; δ∗
j is the immediate

effect of independent variables on dependent variable; α is speed of adjustment
on measuring the speed of convergence of yt to move to its long-run equilibrium
as xt change, and the coefficient is always negative indicates stability in long-run
relationship; θ is the indicator that measure the pass-through effect of shocks from
independent variables to dependent variables.

Meanwhile, the NARDL model is developed to capture the nonlinear and asym-
metric relationship among the variables and also aid to distinguish the short-term
and long-term effects of independent variables to dependent variable. In NARDL
model, we develop positive and negative shocks for variables and decompose these
shocks by white noise error [28]:

xt = x0 + x+
t + x−

t

x+
t =

t∑

j=1

�x+
j =

t∑

j=1

max
(
�x j , 0

)

x−
t =

t∑

j=1

�x−
j =

t∑

j=1

min
(
�x j , 0

)
(5)

Generally, NARDL equation can be defined as:

�yt = α
(
yt−1 − θ+x+

t − θ−x−
t

) +
p−1∑

j=1

λ∗
j�yt− j +

q−1∑

j=0

δ∗+
j �x+

t− j +
q−1∑

j=0

δ∗−
j �x−

t− j + εt ,
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where θ+ = −β+/α and θ− = −β−/α are the long-run equilibrium relationship
among yt and x+

t and x−
t , respectively.

It is divided into two main parts in testing the nexus of CPI inflation-money
supply using QTM hypothesis (Eq. 4): (I) regression based on log level variables;
(II) regression based on growth rate of variables. Money supply is proxy by M1, M2
and M3 respectively. The real exchange rate (LRBEER) is added as an additional
factor for testing the nexus. The following are the relationships to be examined:

Model 1: LCPI = f (LM1, LRGDP, LRBEER)
Model 2: LCPI = f (LM2, LRGDP, LRBEER)
Model 3: LCPI = f (LM3, LRGDP, LRBEER)
Model 4: LCPI = f (LM1POS, LM1NEG,
LRGDP, LRBEER)
Model 5: LCPI = f (LM2POS, LM2NEG,
LRGDP, LRBEER)
Model 6: LCPI = f (LM3POS, LM3NEG,
LRGDP, LRBEER)

Model 7: DLCPI = f (DLM1, DLRGDP,
DLRBEER)
Model 8: DLCPI = f (DLM2, DLRGDP,
DLRBEER)
Model 9: DLCPI = f (DLM3, DLRGDP,
DLRBEER)
Model 10: DLCPI = f (DLM1POS,
DLM1NEG, DLRGDP, DLRBEER)
Model 11: DLCPI = f (DLM2POS,
DLM2NEG, DLRGDP, DLRBEER)
Model 12: DLCPI = f (DLM3POS,
DLM3NEG, DLRGDP, DLRBEER)

where ‘L’ and ‘DL’ indicate variables in the log form and in the log differenced
(or growth rate), respectively. Model (1) to (3) and (7) to (9) are estimated with
ARDL while Model (4) to (6) and (10) to (12) are estimated using NARDL. Under
NARDL, the money supply variable in each model is decomposed into increasing
(positive) and decreasing (negative) series based on Eq. (5) i.e., LM1POS, LM2POS,
LM3POS, LM1NEG,LM2NEG, andLM3NEG formoney supply in log form,whereas
DLM1POS, DLM2POS, DLM3POS, DLM1NEG, DLM2NEG, and DLM3NEG for
money supply in log differenced form.

5 Results

Model 1 to 12 are estimated and their performances are evaluated based on Akaike
Information Criterion (AIC), Root Mean Square Error (RMSE), Mean Absolute
Percentage Error (MAPE), Log-likelihood Function (LOGL), and R-squared as indi-
cators for choosing the best model. The three former indicators should have the
smallest values but larger values for the two latter indicators. For the relationship in
the log level form, Model 4, Model 5, and Model 6 are found to be the best models.
For the growth rate relationship, the bestmodels areModel 8,Model 9, andModel 10.
The results for the estimations of the best models are summarised in Tables 2 and 3,
respectively. *, ** and *** indicate the significance at 10%, 5% and 1% respectively.
Due to the space constraint, only the significant short-run estimates are reported in
Tables 2 and 3.
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Table 2 Summary on the results of NARDL estimation for log level

Model 4: NARDL(1, 4, 0, 0, 0) Model 5: NARDL(1, 5, 5, 1, 0) Model 6: NARDL(6, 5, 5, 6, 2)

Variable Coefficient Variable Coefficient Variable Coefficient

Short-run estimate:

D(LM1NEG(-2)) 0.1385* D(LM2POS(-2)) 0.1543* D(LM3NEG(-4)) −1.7845***

D(LM1NEG(-3)) −0.1716*** CointEq(-1) −0.2884*** D(LM3POS(-1)) −0.2184*

D(LRGDP) 0.0638*** D(LM3POS(-2)) 0.4338***

CointEq(-1) −0.2178*** D(LM3POS(-3)) −0.2475**

D(LRGDP) 0.0478*

D(LRGDP(-5)) 0.0510*

D(LRBEER(-1)) −0.0794*

CointEq(-1) −0.2668***

Long-run estimate:

LM1POS 0.3098** LM2POS 1.8902 LM3POS −0.3115

LM1NEG 0.021 LM2NEG −0.0103 LM3NEG 0.0552

LRGDP 0.2931*** LRGDP 0.2998*** LRGDP 0.2929**

LRBEER −0.0318 LRBEER −0.0742 LRBEER 0.0009

C 1.2987 C 1.4142 C –

@TREND – @TREND − @TREND −0.0012

Bound (F test) 11.3767*** Bound (F test) 6.2001*** Bound (F test) 4.5450**

R-squared 0.9983 R-squared 0.9984 R-squared 0.9989

Adjusted
R-squared

0.9981 Adjusted
R-squared

0.998 Adjusted
R-squared

0.9984

LOGL 309.9842 LOGL 310.6694 LOGL 326.8487

AIC −7.2285 AIC −7.1627 AIC −7.2402

RMSE 0.008 RMSE 0.007 RMSE 0.0063

MAPE 0.1285 MAPE 0.1204 MAPE 0.1124

From Tables 2 and 3, the speed of adjustment (indicated by CointEq(-1)) is nega-
tive and significant in all models, indicating there is a convergence of inflation to the
long-run equilibrium level. This parameter also indicates the existence of the long-
run relationship in the model, which is consistent to our bound test. As observed,
the bound (F test) is significant (reject no long-run relationship) in each model. This
validates the application of ARDL and NARDL models. Table 2 summarizes the
best models selected for the log level inflation equation. All best models are from
NARDL estimates. The NARDL reveals extra information on the dynamic asym-
metric relationship between inflation and money supply which is not found in the
linear regression. Using different proxies for money supply give different results. As
observed,M2 does not have significant effect on inflation in both short- and long-run.

Comparisons of results are made between log level and log growth rate inflation,
with different M1, M2 and M3 proxies, between short- and long-run estimates. The
results from Tables 2 and 3 are summarized in Table 4. Note that + indicates a
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Table 3 Summary on the best results of ARDL and NARDL estimation for growth rate

Model 8: ARDL(2, 0, 3, 1) Model 9: ARDL(3, 6, 3, 2) Model 10: NARDL(1, 0, 3, 3, 1)

Variable Coefficient Variable Coefficient Variable Coefficient

Short-run estimate:

D(DLCPI(-1)) 0.2284** D(DLCPI(-2)) −0.2199* D(DLM1POS(-2)) 0.1167**

D(DLRGDP(-2)) −0.0357* D(DLM3(-2)) 0.1961*** D(DLRGDP) 0.0723***

D(DLRBEER) 0.0683* D(DLM3(-5)) −0.1834** D(DLRGDP(-2)) −0.0561**

CointEq(-1) −0.9906*** D(DLRGDP(-1)) −0.0479* D(DLRBEER) 0.0824**

CointEq(-1) −0.8764*** CointEq(-1) −0.8365***

Long-run estimate:

DLM2 0.0616 DLM3 0.1199 DLM1POS −0.0464

DLM1NEG −0.0399

DLRGDP 0.0642 DLRGDP 0.1717** DLRGDP 0.2384***

DLRBEER −0.0379 DLRBEER 0.0075 DLRBEER −0.0107

C 0.0030* C −0.0005 C −0.0074

Bound (F test) 11.7596*** Bound (F test) 7.3424*** Bound (F test) 12.8858***

R-squared 0.264 R-squared 0.3871 R-squared 0.2695

Adjusted
R-squared

0.1745 Adjusted
R-squared

0.2217 Adjusted
R-squared

0.1443

LOGL 306.2975 LOGL 305.9564 LOGL 306.2928

AIC −7.0547 AIC −7.11 AIC −7.0673

RMSE 0.0067 RMSE 0.0058 RMSE 0.0061

MAPE 165.812 MAPE 153.1323 MAPE 169.2914

Table 4 Summary of main findings

Model Money
supply

Best model Inflation-M Inflation-RGDP Inflation-RBEER

Short-
run

Long-run Short-
run

Long-run Short-
run

Long-run

Log
level

M1 NARDL/Model
4

+ (↓) + (↑) 0 + 0 0

M2 NARDL/Model
5

0 0 0 + 0 0

M3 NARDL/Model
6

+ 0 0 + 0 0

Log
growth
rate

M1 NARDL/Model
10

+ (↑) 0 + + + 0

M2 ARDL/Model
8

0 0 0 0 0 0

M3 ARDL/Model
9

+ 0 0 + 0 0
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positive relationship, 0 indicates no significant relationship, (↓) indicates decreases
series of money supply while (↑) indicates increases series of money supply. For the
NARDLmodel, the inflation-money supply (M) relationship is determined by bothM
increases and decreases. But the table only summarizes the significant effect (signif-
icant at 5% and 1%), the non-significance estimates are excluded. For the ARDL
model, the relationship of inflation-M is determined by the net supply (symmetric)
which does not distinguish betweenM increases and decreases. Table 4 shows that in
terms of inflation-RBEER, there is no significant relationship hold in both short-and
long-run (majority case). Hence real exchange rate does not influence inflation. In
terms of inflation-RGDP, the positive relationship exists in the long-run but weakly
exists in the short-run. The effect is large and highly significant in the long-run,
indicating that real GDP might be the main determinant causing to higher inflation
in Malaysia in the long-run.

In general, the relationship between inflation-M exists and is positive in the short-
run (using proxy of M1 and M3) as shown in both log level and log growth rate
models. However, there is no one-to-one relationship with coefficient value equal to
+1 as suggested by the QTM theory, hence QTM is only valid partially in the short-
run. The relationship does not hold in the long-run (except log level M1 (Model 4)).
Money supply proxy by M2 does not show any impact on inflation in all cases. At
the final step, diagnostic tests are performed to check the properties of residuals of
estimates. All models pass the autocorrelation LM test and the heteroscedasticity test
(Harvey), hence the results are reliable.

6 Conclusion

This study applies the ARDL and NARDL models to examine the validity of QTM
and also to find out if inflation is a monetary phenomenon, besides to study the
asymmetric effect of monetary on inflation in Malaysia. The examination on QTM
are in two forms which are inflation in log level and log growth rate form, with
money supply is proxy by M1, M2, and M3. The results show that QTM only holds
partially in the short run and does not hold in the long run. For non-monetary factors,
real effective exchange rate does not have any significant relationship with inflation
in all models. However, real GDP could be the main determinant of inflation. The
impact is large and highly significant inmajoritymodels. To be concluded, inflation in
Malaysia is more to real factor determined in the long-run. The monetary factor only
can explain the inflation in the short-run. To control and improve the current situation
of the inflation rate in Malaysia, the government should focus on money supply M3
in the shorter term and target on real GDP stability in the long term. Government
can manipulate the high inflation rate because of the demand-pull factor through the
implementation of monetary policy by the method of credit control such as control
the interest rates, reserves ratio, and securities. An effective monetary policy to target
at low inflation and output stability could be a good option to maintain both stability
in price and output to maintain the economic stability.
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PQ-Calculus of Fibonacci Divisors
and Method of Images in Planar
Hydrodynamics

Oktay K. Pashaev

Abstract By introducing the hierarchy of Fibonacci divisors and corresponding
quantum derivatives, we develop the golden calculus, hierarchy of golden binomi-
als and related exponential functions, translation operator and infinite hierarchy of
Golden analytic functions. The hierarchy of Golden periodic functions, appearing
in this calculus we relate with the method of images in planar hydrodynamics for
incompressible and irrotational flow in bounded domain. We show that the even
hierarchy of these functions determines the flow in the annular domain, bounded
by concentric circles with the ratio of radiuses in powers of the Golden ratio. As
an example, complex potential and velocity field for the set of point vortices with
Golden proportion of images are calculated explicitly.

Keywords Fibonacci divisors · Golden calculus · Hydrodynamic images

1 Golden Ratio and Inversion in Circle

The usual definition of Golden proportion or the Golden ratio is related with division
of interval x + y in proportion x+y

x = x
y ⇒ ϕ2 = ϕ + 1, were x

y = ϕ = 1+√
5

2 ≈
1.6 - Golden Ratio. Here we propose new definition of Golden Ratio, connected with
reflection in circle with radius R. Let a and b are symmetric points with respect to
the circle at distance R between them, satisfying equations

a b = R2, b − a = R.

Then, distances to these points from origin are in Golden proportion of R,

a = 1

ϕ
R, b = ϕR.
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As well known, symmetric points with respect to circle at origin in complex plain
are z and R2/z̄. These points correspond to position of a vortex and its image in
the circle, according to method of images in hydrodynamics. Then, due to above
definition, if the distance between vortex and its image is R, positions of vortex and
the image are in Golden proportion. For unit circle with R = 1, these positions are
z = ϕeiθ and z∗ = 1

ϕ
eiθ.

If method of images is applied to problem with two circles, then an infinite set
of images arises [1]. These images can be counted by q-periodic functions [2] and
two circle theorem [3] in q-calculus with q = r22/r

2
1 . For annular domain with two

concentric circles of radiuses r1 and r2, it can be reformulated in terms of PQ-calculus,
with P = r21 and Q = r22 . Then, the PQ number in this calculus

[n]PQ = Pn − Qn

P − Q

for P = ϕk and Q = ϕ′k becomes Binet formula for Fibonacci divisors (1). This
implies that calculus of Fibonacci divisors [4] can be applied to problem of hydro-
dynamic images in annular domain with two circles and the Golden ratio of images.

2 Calculus of Fibonacci Divisors

The ratio of twoFibonacci numbers Fn/Fm is not in general integer number.However,
surprising fact is that Fkn , where k, n ∈ Z is dividable by Fk .

Definition 1 The infinite sequence of integer numbers

Fkn

Fk
≡ F (k)

n

we call Fibonacci divisors conjugate to Fk .

The Binet formula for these numbers

F (k)
n = (ϕk)n − (ϕ′k)n

ϕk − ϕ′k , (1)

leads to recursion relation F (k)
n+1 = Lk F (k)

n + (−1)k−1F (k)
n−1,where Lk are Lucas num-

bers. The first few sequences of Fibonacci divisors F (k)
n for k = 1, 2, 3, 4, 5 and

n = 1, 2, 3, 4, 5, ... are
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k = 1; F (1)
n = Fn = 1, 1, 2, 3, 5, ...

k = 2; F (2)
n = F2n = 1, 3, 8, 21, 55, ...

k = 3; F (3)
n = 1

2
F3n = 1, 4, 17, 72, 305, ...

k = 4; F (4)
n = 1

3
F4n = 1, 7, 48, 329, 2255, ...

k = 5; F (5)
n = 1

5
F5n = 1, 11, 122, 1353, 15005, ...

Definition 2 The Golden derivative operator (k)Dx
F , corresponding to Fibonacci

divisors conjugate to Fk , k ∈ Z acts on arbitrary function f (x) as

(k)D
x
F [ f (x)] = f (ϕk x) − f (ϕ′k x)

(
ϕk − ϕ′k) x

. (2)

For even k in the limit k → 0 it gives usual derivative limk→0 (k)Dx
F f (x) = f ′(x)

and (k)Dx
F xn = F (k)

n xn−1.

Definition 3 The product of Fibonacci divisors,

F (k)
1 F (k)

2 . . . F (k)
n =

n∏

i=1

F (k)
i ≡ F (k)

n ! (3)

—theFibonacci divisors factorial, can be considered as k-th Fibonorial or generalized
Fibonorial. The Fibonomial coefficients for Fibonacci divisors are

(k)

[
n

m

]

F

= F (k)
1 F (k)

2 . . . F (k)
n−m+1

F (k)
1 F (k)

2 . . . F (k)
m

= F (k)
n !

F (k)
m !F (k)

n−m ! .

Hierarchy of Golden Binomials

Definition 4 The k-th Golden binomial is defined by polynomial

(k) (x − a)nF =
n∏

s=1

(
x − ϕk(n−s)ϕ′k(s−1)a

)
.

It can be expanded in powers of x :

(k) (x + y)nF =
n∑

m=0

(k)

[
n

m

]

F

(−1)k
m(m−1)

2 xn−m ym .
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The k-th Golden derivative acts on this binomial as

(k)D
x
F (k) (x + y)nF = F (k)

n (k) (x + y)n−1
F ,

(k)D
y
F (k) (x + y)nF = F (k)

n (k)
(
x + (−1)k y

)n−1

F
,

(k)D
y
F (k) (x − y)nF = −F (k)

n (k)
(
x − (−1)k y

)n−1

F
.

Proposition 1 Let, entire complex valued function of complex variable z is

f (z) =
∞∑

n=0

an
zn

n! . (4)

Then, for any integer k exists entire complex function

(k) fF (z) =
∞∑

n=0

an
zn

F (k)
n ! . (5)

Definition 5 We introduce entire exponential functions

(k)e
x
F ≡

∞∑

n=0

xn

F (k)
n ! , (k)E

x
F ≡

∞∑

n=0

(−1)k
n(n−1)

2
xn

F (k)
n ! . (6)

The kth Golden derivative acts on these functions as

(k)D
x
F

(
(k)e

λx
F

) = λ (k)e
λx
F , (k)D

x
F

(
(k)E

λx
F

) = λ (k)E
(−1)kλx
F . (7)

Two exponential functions are related by formula

(k)E
x
F =(−k) e

x
F . (8)

The product of the exponentials is represented by series in powers of kth Golden
binomial

(k)E
x
F ·(k) eyF =

∞∑

n=0

(k)(x + y)nF
F (k)
n ! ≡(k) e

(k)(x+y)F
F . (9)

Translation operator (k)E
y(k)Dx

F
F generates these binomials and kth Golden functions

as follows
(k)E

y(k)Dx
F

F xn =(k) (x + y)nF , (10)

(k)E
y(k)Dx

F
F f (x) =(k) E

y(k)Dx
F

F

∞∑

n=0

anx
n =

∞∑

n=0

an · (k)(x + y)nF . (11)
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Hierarchy of Golden Analytic Functions

Definition 6 By translation operator we introduce complex valued kth Golden ana-
lytic binomials

(k)E
iy(k)Dx

F
F xn =(k) (x + iy)nF (12)

and the hierarchy of kth Golden analytic functions

(k)E
iy(k)Dx

F
F f (x) =

∞∑

n=0

an · (k)(x + iy)nF ≡ f
(
(k)(x + iy

)
F ). (13)

For every integer k it satisfies the ∂̄-equation

1

2

(
(k)D

x
F + i(−k)D

y
F

)
f
(
(k)(x + iy

)
F
) = 0. (14)

For the real and imaginary parts of these functions

u(x, y) =(−k) cosF
(
y(k)D

x
F

)
f (x), v(x, y) =(−k) sinF

(
y(k)D

x
F

)
f (x), (15)

we have the Cauchy-Riemann equations

(k)D
x
Fu(x, y) =(−k) D

y
Fv(x, y), (−k)D

y
Fu(x, y) = −(k)D

x
Fv(x, y), (16)

and functions are solutions of the hierarchy of Golden Laplace equations

(
(k)D

x
F

)2
φ(x, y) + (

(−k)D
y
F

)2
φ(x, y) = 0. (17)

Golden periodic functions The set of Golden derivatives determines hierarchy of
Golden periodic functions for every natural k. If function f (x) is Golden periodic
(k = 1),

Dx
F ( f (x)) = 0 ⇐⇒ f (ϕx) = f (ϕ′x), (18)

then, it is also periodic for arbitrary kth order Golden derivative,

Dx
F ( f (x)) = 0 ⇒ (k)D

x
F ( f (x)) = 0,

f (ϕx) = f (ϕ′x) ⇒ f (ϕk x) = f (ϕ′k x),

for k = 2, 3, . . . But the opposite is not in general true. Indeed, function

f (x) = sin

(
π

lnϕ2
ln |x |

)

is Golden periodic function with k = 2, but it is not Golden periodic (k = 1).
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3 Hydrodynamic Images and Golden Periodic Functions

3.1 Two Dimensional Stationary Flow

We consider incompressible and irrotational planar flow,

div u = 0 ⇒ u1 = ψy, u2 = −ψx , rot u = 0 ⇒ u1 = ϕx , u2 = ϕy,

where real functions ϕ(x, y) and ψ(x, y) are velocity potential and stream function,
correspondingly. These functions are harmonically conjugate and satisfy Cauchy-
Riemann equations, ϕx = ψy, ϕy = −ψx . Combined together, they determine com-
plex potential f (z) = ϕ + iψ, as analytic function ∂

∂ z̄ f (z) = 0, of z = x + iy. Cor-

responding complex velocity V (z̄), where V̄ (z) = ∂
∂z f (z), is anti-analytic function

of z. For hydrodynamic flow in bounded domain, the problem is for given C-the
boundary curve, find analytic function (complex potential) F(z), with boundary
condition �F |C = ψ|C = 0. This equation determines the stream lines of the flow,
such that normal velocity to the curve vn|C = 0.

Two Circle Theorem. Applying two circles theorem [3] for flow f (z), restricted
to annular domain: 1 < |z| <

√
ϕ between two concentric circles C1 : |z| = 1, C2 :

|z| = √
ϕ, we get complex potential

Fϕ(z) = fϕ(z) + f̄ϕ

(
1

z

)
,

where q = r22
r21

= ϕ, flow in even annulus and flow in odd annulus are correspondingly

fϕ(z) =
∞∑

n=−∞
f (ϕnz), f̄ϕ

(
1

z

)
=

∞∑

n=−∞
f̄

(
ϕn 1

z

)
.

Goldenϕ-periodicity offlowTheGoldenperiodicity fϕ(ϕz) = fϕ(z) ⇒ Fϕ(ϕz) =
Fϕ(z) implies that complex potential of the flow is invariant under Golden Ratio
rescaling and as follows, it is Golden ϕ-periodic function,

Dz fϕ(z) = f (ϕz) − f (z)

(ϕ − 1)z
= 0.

Corresponding complex velocity

V̄ (z) =
∞∑

n=−∞
ϕn v̄(ϕnz) − 1

z2

∞∑

n=−∞
ϕnv

(
ϕn 1

z

)

is Golden ϕ-scale invariant function V̄ (ϕz) = ϕ−1V̄ (z).
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Golden ϕ scale-invariant analytic fractal. The scale invariant function f (ϕz) =
ϕd f (z) is subject to the ϕ-difference equation

zDz f (z) = [d]ϕ f (z).

Solution of this equation is representable as f (z) = zd Aϕ(z), where Aϕ(ϕz) =
Aϕ(z) is an arbitrary ϕ-periodic function, playing the role of ϕ-periodic modu-
lation.

Golden Weierstrass-Mandelbrot fractal. As an example we consider

W (t) =
∞∑

n=−∞

1 − cosϕnt

ϕnd
, 0 < d < 1, ϕ > 1,

—continuous but nowhere differentiable function, representing fractal with dimen-
sion 2 − d. It is Golden self-similar function W (ϕt) = ϕdW (t), satisfying ϕ-
difference equation

t DtW (t) = [d]ϕW (t).

By decomposing it as W (t) = td Aϕ(t) we extract the Golden ϕ-scale periodic part
Aϕ(ϕt) = Aϕ(t), where in terms of Fibonacci numbers

Aϕ(t) =
∞∑

n=−∞

1 − eiϕ
n t

(ϕd)ntd
=

∞∑

n=−∞

1 − cos(ϕFn + Fn−1)t − i sin(ϕFn + Fn−1)t

(ϕd)ntd
.

Elliptic Function Form. Let complex potential is Golden periodic analytic function
F(ϕz) = F(z). The Golden ratio can be represented

ϕ = e2πi
ω′
ω

by arbitrary real ω and pure imaginary ω′ = −i ω
2π lnϕ. Function F(z) ≡

�
(

ω
iπ ln z

) = �(u) is double periodic function:�(u + 2ω′) = �(u), �(u + 2ω) =
�(u). It is an elliptic function on Golden torus, determined by its singular points.

Golden ϕ periodic flow. Simplest example of Golden ϕ periodic function (as prin-
cipal branch) is

F(z) = z
2πi
lnϕ = e

2πi
lnϕ ln z = F(ϕz).

Rewritten in polar coordinates z = reiθ,

F(z) = e− 2π
lnϕ θ (

cos(2π logϕ r) + i sin(2π logϕ r)
)

it gives stream function ψ(r, θ) = e− 2π
lnϕ θ sin(2π logϕ r) and complex velocity
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V̄ (z) = dF

dz
= 2πi

lnϕ

1

z
e

2πi
lnϕ logϕ z = Γ

2πi

1

z
Aϕ(z).

In the last form it represents Golden modulated point vortex at origin, with strength
Γ = − 4π2

lnϕ
and stream lines ψ|C = 0 at sin(2π logϕ r) = 0, or 2π logϕ r = πn, n =

0,±1,±2, .... These lines represent an infinite set of concentric circles with radiuses

rn = ϕ
n
2 .The squared ratio of two successive radiuses is theGoldenRatio q = r2n+1

r2n
=

ϕ. For the flow in Golden annulus r0 = 1 and r1 = √
ϕ we have DϕF(z) = 0, and

in k-th Golden annulus r0 = 1 and rk = ϕ
k
2 it gives Dϕk F(z) = 0. Superposition

Fk(z) =
+∞∑

N=−∞
aN z

2πi
k lnϕ N

describes the flow in circular annulus with radius r = 1 and R = ϕ
k
2 , so that

Fk(ϕ
k z) = Fk(z), and the flow is ϕk-periodic.

3.2 Vortex in Golden Annular Domain

For point vortex at position z0 in Golden annular domain, 1 < |z0| < ϕ
k
2 , by Two

Circle Theorem

Fk(z) = Γ

2πi

∞∑

n=−∞
ln

z − z0ϕkn

z − 1
z̄0

ϕkn

and

V̄ (z) = Γ

2πi

∞∑

n=−∞

[
1

z − z0ϕkn
− 1

z − 1
z̄0

ϕkn

]

.

The flow is Goldenϕk periodic Fk(ϕ
k z) = Fk(z),with self-similar complex velocity

V̄k(ϕ
k z) = 1

ϕk V̄ (z). It represents modulation of point vortex by Golden periodic
function

V̄ (z) = Γ

2πi z
Ak(z).

Golden Ratio of pole singularities Pole singularities are located at positions
zn = z0ϕkn and at symmetric points z∗

n = 1
z̄0

ϕkn, where n = 0,±1,±2, ... ± ∞.

The ratio of two image positions is power of Golden ratio |zn+1|
|zn | = ϕk . In addition,

the distance between symmetric points is growing in geometric progression

∣
∣zn − z∗

n

∣
∣ = ∣

∣z0 − z∗
0

∣
∣ (ϕk

)n
.
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Hierarchy of Golden Logarithmic Functions. The set of vortex images is deter-
mined completely by singularities of the ϕ-Logarithmic function,

Lnϕ(1 − z) ≡ −
∞∑

n=1

zn

[n]ϕ .

It converges for |z| < ϕ, where ϕ - number

[n]ϕ ≡ 1 + ϕ + ϕ2 + · · · + ϕn−1 = ϕn − 1

ϕ − 1

expressed by Fibonacci numbers is [n]ϕ = (Fn+1 − 1)ϕ + Fn. More general func-
tion, ϕk-logarithm (0 < |z| < ϕk):

Lnϕk (1 + z) =
∞∑

n=1

(−1)n−1zn

[n]ϕk
= 1

ϕk

∞∑

n=1

z

ϕkn + z
(19)

is expressible by Fibonacci divisors ϕkn = ϕk F (k)
n + (−1)k+1F (k)

n−1 and numbers

[n]ϕk = ϕk F (k)
n + (−1)k+1F (k)

n−1 − 1

ϕk − 1
.

This function possess an infinite number of simple pole singularities at zn = −ϕkn .
The logarithm function is related to entire exponential functions

eϕ(z) =
∞∑

n=0

zn

[n]ϕ! , Eϕ(z) =
∞∑

n=0

ϕn(n−1)/2 zn

[n]ϕ! ,

which by Euler identities for ϕ-binomial can be written as infinite product

eϕ (z) = E 1
ϕ
(z) =

∞∏

n=0

(
1 + z

ϕn+2

)
.

Zeroes of ϕ - exp function, due to ϕLnϕ(1 − αz) = z d
dz ln eϕ(−ϕαz), contribute to

complex potential

F(z) =
N∑

s=1

iκs ln(z − zs) +
N∑

s=1

iκs ln
eϕ

(
−ϕ z

zs

)
eϕ

(−ϕ zs
z

)

eϕ (−ϕzz̄s) eϕ

(
− ϕ2

zz̄s

) ,

so that all images in the second sum are determined by zeros of these functions.
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3.3 Hydrodynamic Images and k-th Golden Derivatives

For even k = 2l, the Fibonacci divisor derivative is determined by finite difference

z (k)D
z
F [ f (z)] = f (ϕk z) − f ( 1

ϕk z)
(
ϕk − 1

ϕk

) ,

vanishing for Golden periodic function F(z): (k)D
z
F F(z) = 0. In annular domain

bounded by circles 1 < |z| < ϕ
k
2 , the flow is k-th Golden periodic, Fk(ϕ

k z) = Fk(z),
so that (k)D

z
F Fk(z) = 0.

3.4 Single Vortex Motion

For single vortex motion, subject to equation ż0 = iωz0, the solution describes uni-
form rotation z0(t) = z0(0)eiωt , with angular velocity

ω = ϕκ

|z0|2
(
Lnϕ

(
1 − |z0|2

) − Lnϕ

(
1 − ϕ

|z0|2
))

.

The vortex is stationary, ω = 0, at geometric mean distance |z0| = ϕ
1
4 and ratio of

frequencies at boundary circles is the Golden ratio: |ω1|
|ω2| = ϕ.

Semiclassical quantization of vortex motion The Bohr-Zommerfeld quantization
of single vortex motion gives discrete energy spectrum

En = Γ 2

4π
ln

∣
∣∣∣∣
eϕ

(
−ϕ

(
n + 1

2

))
eϕ

(
−ϕ2

(n + 1
2 )

)∣
∣∣∣∣
.

This expression never vanishes, since zeros of exponential functions in r.h.s. should
satisfy following equations, n + 1

2 = ϕk+1 or n + 1
2 = ϕ−k . But in both equations

the l.h.s is rational number, while the r.h.s. is irrational.

3.5 N Vortex Dynamics

For N—point vorticeswith circulationsΓ1,…,ΓN , at positions z1, . . . , zN , equations
of motion are

˙̄zn = 1

2πi

N∑

j=1( j 
=n)

Γ j

zn − z j
+ 1

2πi

N∑

j=1

±∞∑

n=±1

Γ j

zn − z jϕn
− 1

2πi

N∑

j=1

∞∑

n=−∞

Γ j

zn − 1
z̄n

ϕn
.
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This is Hamiltonian system with Hamiltonian function

H = − 1

4π

N∑

i, j=1(i 
= j)

ΓiΓ j ln |zi − z j | − 1

4π

N∑

i, j=1

ΓiΓ j ln

∣∣∣∣∣
∣

eϕ

(
−ϕ zi

z j

)
eϕ

(
−ϕ

z j
zi

)

eϕ

(−ϕzi z̄ j
)
eϕ

(
− ϕ2

zi z̄ j

)

∣∣∣∣∣
∣
,

where the second sum describes an infinite set of images with Golden proportion of
positions. The Green function of the problem

GI = − 1

2π
ln |z − zl | − 1

2π
ln

∣∣∣∣∣∣

eϕ

(
−ϕ z

zl

)
eϕ

(−ϕ zl
z

)

eϕ (−ϕzz̄l) eϕ

(
− ϕ2

zz̄l

)

∣∣∣∣∣∣
+ 1

4π
lnϕ

satisfies following conditions:1. symmetry GI (z, zl) = GI (zl , z); 2. boundary val-

ues, GI (z, zl)|C2 = 0 - at the outer circle, GI (z, zl)|C1 = 1
2π ln

∣∣
∣
√

ϕ

zl

∣∣
∣ - at the inner

circle.
Exact solution for N identical vortices Γl = Γ, l = 1, . . . , N , located at the same

distance 1 < r <
√

ϕ is zl(t) = reiωt+i 2πN l , where rotation frequency

ω = Γ

2πr2

⎛

⎝N − 1

2
+ ϕ

N∑

j=1

[
Lnϕ

(
1 − ϕ

r2
ei

2π
N j

)
− Lnϕ

(
1 − r2 e−i 2πN j

)]
⎞

⎠ .

At geometrical mean distance r = ϕ1/4 the rotation frequency is ω = Γ (N−1)
4π

√
ϕ

.

Notes and Comments. First discussed by Poincaré [5], the problem of vortex motion
around two cylinders bymethod of images in annular domain,was exactly formulated
and solved in terms of non-symmetric q-calculus in [1]. For one vortex problem, the
solution in elliptic functions was given in [6]. In paper [3] it was reformulated in
terms of q-periodic functions, as the two circle theorem and then applied to several
bounded domains in [7]. In present work, for annular domain with Golden ratio of
circles, we solved problem by “post-quantum”, PQ calculus for Fibonacci divisors.
The approach shows clear intuitive picture of vortex images and converges faster
than the elliptic function case. It provides convergent and compact form for infinite
sums of images in terms of q-elementary functions, and illuminates a new type of
hidden symmetry related with quantum groups and quantum symmetry.
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Generalized Riesz Potential Operator
in the Modified Morrey Spaces

Abdulhamit Kucukaslan

Abstract In this paper, we prove the boundedness of generalized fractionalmaximal
operator Mρ and generalized Riesz potential operator Iρ in the modified Morrey
spaces ˜L p,λ(R

n). We show that the sufficient conditions for the boundedness of
the operator Mρ and the operator Iρ from the modified Morrey spaces ˜L p,λ(R

n) to
another one ˜Lq,λ(R

n), for 1 < p < q < ∞ and from ˜L1,λ(R
n) to the weak modified

Morrey spaces W˜Lq,λ(R
n), for p = 1, 1 < q < ∞. We get the boundedness of our

two-operators Iρ and Mρ in the modified Morrey spaces ˜L p,λ(R
n) using the local

estimate given in the Lemma 2.

Keywords Generalized Riesz potential operator · Generalized fractional maximal
operator · Modified Morrey spaces

1 Introduction

Morrey spaces L p,λ(R
n)were introduced byMorrey in [1] and defined as following:

For 1 ≤ p ≤ ∞, 0 ≤ λ < n, f ∈ L p,λ(R
n) if f ∈ Lloc

p (Rn) and

‖ f ‖L p,λ(Rn) := sup
x∈Rn ,r>0

r− λ
p ‖ f ‖L p(B(x,r)) < ∞ (1)

holds. These spaces appeared to be useful in the study of local behavior proper-
ties of the solutions of second order elliptic PDEs. Morrey spaces found important
applications to potential theory [2] and [3], elliptic equations with discountinuous
coefficients [4], Navier-Stokes equations [5] and Shrödinger equations [6]. For more
information about the Morrey spaces can be seen in the book [7].
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In recent years, many authors have been working on the boundedness of classical
operators of harmonic analysis in the modified Morrey spaces ˜L p,λ(R

n). It can be
seen some examples of these works in [8–12]. The boundednesses of fractional
maximal operator Mα and Riesz potential operator in the modified Morrey spaces
˜L p,λ(R

n) were investigated by Guliyev et al. in [13]. But, the generalization of
these two-operators which are the generalized fractional maximal operator Mρ and
the generalized fractional integral operator Iρ , respectively, in the modified Morrey
spaces ˜L p,λ(R

n) have not been studied, yet.
Let f ∈ L1

loc(R
n)which is the set of locally integrable functions. For ameasurable

function ρ : (0,∞) → (0,∞) the generalized fractional integral operator Iρ and the
generalized fractional maximal operator Mρ are defined by

Iρ f (x) :=
∫

Rn

ρ(|x − y|)
|x − y|n f (y)dy, Mρ f (x) := sup

r>0

ρ(r)

rn

∫

B(x,r)

| f (y)|dy (2)

for any suitable function f on R
n , respectively. If ρ(r) ≡ rα , then Iρ ≡ Iα is Riesz

potential and Mρ ≡ Mα is the fractional maximal operator, respectively. If ρ(r) ≡ 1,
then Mρ ≡ M is the Hardy-Littlewood maximal operator. The operators Iα and Mα

play important role in real and harmonic analysis (see, for example [5, 14–17]).
There is a close relation between the operators Mρ and Iρ (see [18], pp. 78), such

that
Mρ f (x) ≤ C Iρ(| f |)(x). (3)

The generalized Riesz potential operator, so-called generalized fractional integral
operator Iρ was initilally investigated in [19]. Nakai [20] proved the boundedness
of Iρ in the generalized Morrey-type spaces. Nowadays many authors have been
culminating important observations about Iρ and Mρ especially in connection with
Morrey-type spaces. Some of these studies are investigated by Guliyev et al. [21];
Eridani et al. [22–24]; Kucukaslan et al. [18, 25–29].

In the present work, we prove sufficient conditions for the boundedness of the
generalized fractional maximal operator Mρ and the generalized Riesz potential
operator Iρ from the modified Morrey spaces ˜L p,λ(R

n) to ˜Lq,λ(R
n), for 1 < p <

q < ∞ and from ˜L1,λ(R
n) to the weak modified Morrey spaces W˜Lq,λ(R

n), for
p = 1, 1 < q < ∞.

Throughout the paper we use the letter C for a positive constant, independent of
appropriate parameters and not necessarily the same at each occurrence.

2 Preliminaries

B(x, t) denotes the open ball centered at x of radius t for x ∈ R
n and t > 0.

|B(x, t)| = ωntn and ωn denotes the volume of the unit ball in the Euclidean space
R

n .



Generalized Riesz Potential Operator … 139

Now we recall the definitions of Morrey spaces and modified Morrey spaces.

Definition 1 ([30]) Let 1 ≤ p < ∞, 0 ≤ λ ≤ n. We denote by L p,λ(R
n) theMorrey

space, and by ˜L p,λ(R
n) the modified Morrey space, as the set of locally integrable

functions f (x), x ∈ R
n , with the finite norms

‖ f ‖L p,λ(Rn) := sup
x∈Rn ,t>0

t−
λ
p ‖ f ‖L p(B(x,t)), (4)

‖ f ‖
˜L p,λ(Rn) := sup

x∈Rn ,t>0
[min{1, t}]− λ

p ‖ f ‖L p(B(x,t)), (5)

respectively.

Note that
˜L p,0(R

n) = L p,0(R
n) = L p(R

n), (6)

˜L p,λ(R
n) ↪→ L p,λ(R

n) (7)

and
max{‖ f ‖L p,λ(Rn), ‖ f ‖L p(Rn)} ≤ ‖ f ‖

˜L p,λ(Rn) (8)

and if λ < 0 or λ > n, then L p,λ(R
n) ≡ ˜L p,λ ≡ �, where� is the set of all functions

equivalent to 0 on Rn .

Definition 2 ([30]) Let 1 ≤ p < ∞ , 0 ≤ λ ≤ n.Wedenote byWL p,λ(R
n) theweak

Morrey space and by W˜L p,λ(R
n) the modified weak Morrey space as the set of all

locally integrable functions f (x), x ∈ R
n with finite norms

‖ f ‖WL p,λ(Rn) := sup
x∈Rn ,t>0

t−
λ
p ‖ f ‖WL p(B(x,t)), (9)

‖ f ‖W˜L p,λ(Rn) := sup
x∈Rn ,t>0

[min{1, t}]− λ
p ‖ f ‖WL p(B(x,t)) (10)

respectively.

Note that
WL p(R

n) = WL p,0(R
n) = W˜L p,0(R

n), (11)

L p,λ(R
n) ⊂ WL p,λ(R

n) and ‖ f ‖WL p,λ(Rn) ≤ ‖ f ‖L p,λ(Rn) (12)

˜L p,λ(R
n) ⊂ W˜L p,λ(R

n) and ‖ f ‖W˜L p,λ(Rn) ≤ ‖ f ‖
˜L p,λ(Rn). (13)

The following lemma was proved in [22].
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Lemma 1 ([22]) (i) Let 1 < p < q < ∞. Then the operator Iρ is bounded from
L p(R

n) to Lq(R
n) if and only if there exists C > 0 such that for all r > 0

ρ(r) ≤ Cr
n
p − n

q . (14)

(i i) Let p = 1, 1 < q < ∞. Then the operator Iρ is bounded from L1(R
n) to

W Lq(R
n) if and only if there exists C > 0 such that for all r > 0

ρ(r) ≤ Crn− n
q . (15)

The following lemma was proved in [21] which is our main tools to obtain the
boundedness of generalized Riesz potential operator Iρ in the modified Morrey
spaces.

Lemma 2 ([21]) Let 1 ≤ p < ∞ and f ∈ Lloc
p (Rn). Then the following inequality

|Iρ f (x)| ≤ C

⎛

⎝ρ(t)M f (x) +
∞

∫

t

‖ f ‖L p(B(x,r))
ρ(r)

r
n
p +1

dr

⎞

⎠ , (16)

satisfies for the generalizedRiesz potential operator Iρ and for all y ∈ B(x, r), t > 0,
where C is a positive constant and M f is the Hardy-Littlewood maximal function.

3 The boundedness of Iρ and Mρ in the spaces ˜L p,λ(R
n)

When we consider our two-operators Iρ and Mρ , we will always assume that ρ

satisfies the Dini condition:

1
∫

0

ρ(s)

s
ds < ∞, sup

1≤t<∞
ρ(t)

tn
< ∞, (17)

respectively, so that Iρ and Mρ are well defined, at least for characteristic functions
1/|x |2n of complementary balls:

f (x) = χRn\B(0,1)(x)

|x |2n . (18)

Also ρ satisfies the growth condition: there exist constants C > 0 and 0 < 2k1 <

k2 < ∞ such that

sup
r
2 <s≤ 3r

2

ρ(s)

sn
≤ C

k2r
∫

k1r

ρ(t)

tn+1
dt, r > 0; sup

r<s≤2r

ρ(s)

sn
≤ C sup

k1r<t<k2r

ρ(t)

tn
, r > 0 (19)
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for the operators Iρ and Mρ , respectively. Also we will put the following conditions
on ρ (see, [20]):

r
∫

0

ρ(t)

t
dt ≤ Cρ(r), r, t > 0 (20)

and
ρ(r)

rn
≤ C

ρ(s)

sn
, s ≤ r (21)

so that the sufficient conditions for the boundedness of generalized fractional integral
operator Iρ and generalized fractional maximal operator Mρ are satisfied on the
modified Morrey spaces ˜L p,λ(R

n).
In the following theoremwhich is the one of main results of our paper, we give the

sufficient conditions for the boundedness of the generalized Riesz potential operator
in the modified Morrey spaces. We prove Theorem 1 using the local estimate given
in Lemma 2.

Theorem 1 Let 0 ≤ λ < n, 1 ≤ p < q < ∞, the function ρ be a positive, measur-
able function and the conditions (20)–(21) be satisfied, and f ∈ ˜L p,λ(R

n).
(i) If 1 < p < q < ∞ and ρ satisfies the condition (14), then the generalized

Riesz potential operator Iρ is bounded from ˜L p,λ(R
n) to ˜Lq,λ(R

n) and the following
norm inequality satisfies, i.e.,

‖Iρ f ‖
˜Lq,λ(Rn) ≤ C‖ f ‖

˜L p,λ(Rn). (22)

(i i) If p = 1, 1 < q < ∞ and ρ satisfies the condition (15), then the generalized
Riesz potential operator Iρ is bounded from˜L1,λ(R

n) toW˜Lq,λ(R
n)and the following

norm inequality satisfies, i.e.,

‖Iρ f ‖W˜Lq,λ(Rn) ≤ C‖ f ‖
˜L1,λ(Rn). (23)

Proof (i) Let 0 ≤ λ < n, 1 ≤ p < q < ∞, the function ρ be a positive, measur-
able function and the conditions (20)–(21) be satisfied, and f ∈ ˜L p,λ(R

n). From the
Lemma 2 we get

‖Iρ f ‖
˜Lq,λ(Rn) = sup

x∈Rn ,t>0
[min{1, t}]− λ

q ‖Iρ f ‖Lq (B(x,t)) (24)

= sup
x∈Rn ,t>0

⎛

⎜

⎝
[min{1, t}]−λ

∫

B(x,t)

|Iρ f (y)|qdy
⎞

⎟

⎠

1
q

(25)

≤ C sup
x∈Rn ,t>0

[min{1, t}]− λ
q (26)
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×
⎛

⎜

⎝

∫

B(x,t)

⎛

⎝ρ(r)M f (y) +
∞

∫

r

‖ f ‖L p(B(x,τ ))

ρ(τ )

τ
n
p +1

dτ

⎞

⎠

q

dy

⎞

⎟

⎠

1/q

(27)

≤ C sup
x∈Rn ,t>0

[min{1, t}]− λ
q (28)

×
⎛

⎜

⎝

∫

B(x,t)

⎛

⎝ρ(r)M f (y) + ‖ f ‖
˜L p,λ

min

⎧

⎨

⎩

∞
∫

r

ρ(τ)

τ
n
p +1

dτ,

∫ ∞

r

ρ(τ)

τ
n−λ
p +1

dτ

⎫

⎬

⎭

⎞

⎠

q

dy

⎞

⎟

⎠

1/q

(29)
= sup

x∈Rn ,t>0
[min{1, t}]− λ

q (30)

×
⎛

⎜

⎝

∫

B(x,t)

(

ρ(r)M f (y) + ‖ f ‖
˜L p,λ

min

{

ρ(r)

r
n
p

,
ρ(r)

r
n−λ
p

})q

dy

⎞

⎟

⎠

1/q

. (31)

Thus choosing ρ(r) =
( ‖ f ‖

˜L p,λ(Rn )

M f (y)

)
q−p
q

for all y ∈ B(x, t) we obtain

‖Iρ f ‖
˜Lq,λ(Rn) ≤ C sup

x∈Rn ,t>0
[min{1, t}]− λ

q ‖ f ‖1−
p
q

˜L p,λ
‖M f ‖

p
q

L p(B(x,t)). (32)

Hence from the boundedness of Hardy-Littlewood maximal operator M in the
spaces ˜L p,λ(R

n) (see [13], pp. 493) we get

‖Iρ f ‖
˜Lq,λ(Rn) ≤ C‖ f ‖1−

p
q

˜L p,λ(Rn)
‖ f ‖

p
q

˜L p,λ(Rn)
= ‖ f ‖

˜L p,λ(Rn), (33)

which completes the boundedness of the generalized Riesz potential operator Iρ from
˜L p,λ(R

n) to ˜Lq,λ(R
n).

(ii) Let p = 1 and 1 < q < ∞. From the Theorem 2 we have

|Iρ f (x)| ≤ C

⎛

⎝ρ(t)M f (x) +
∞

∫

t

‖ f ‖L1(B(x,r))
ρ(r)

rn+1
dr

⎞

⎠ (34)

≤ C

(

ρ(t)M f (x) + ‖ f ‖
˜L1,λ

min

{

ρ(t)

tn
,
ρ(t)

tn−λ

})

. (35)
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Thus choosing ρ(r) =
( ‖ f ‖

˜L1,λ(Rn )

M f (y)

)
q−1
q

for all y ∈ B(x, t) we obtain

|Iρ f (x)| ≤ C(M f (x))1/q‖ f ‖1−1/q
˜L1,λ(Rn)

. (36)

From the inequality (36) and Theorem 1 (ii) in ([13] pp. 494) we get

‖Iρ f ‖q
W˜Lq,λ(Rn)

= sup
x∈Rn ,t>0

[min{1, t}]−λ‖Iρ f ‖qW Lq (B(x,t)) (37)

= sup
r>0

rq sup
x∈Rn ,t>0

[min{1, t}]−λ|{y ∈ B(x, t) : |Iρ f (y)| > r}| (38)

≤ C sup
r>0

rq sup
x∈Rn ,t>0

[min{1, t}]−λ|{y ∈ B(x, t) : (M f (y))1/q‖ f ‖1−1/q
˜L1,λ(Rn)

> r}|
(39)

= sup
r>0

rq sup
x∈Rn ,t>0

[min{1, t}]−λ

∣

∣

∣

∣

∣

∣

⎧

⎨

⎩

y ∈ B(x, t) : M f (y) >

⎛

⎝

r

‖ f ‖1−1/q
˜L1,λ(Rn)

⎞

⎠

q⎫
⎬

⎭

∣

∣

∣

∣

∣

∣

(40)

≤ C sup
r>0

rq

⎛

⎜

⎝

‖ f ‖1−
1
q

˜L1,λ(Rn)

r

⎞

⎟

⎠

q

‖ f ‖
˜L1,λ(Rn) (41)

= ‖ f ‖q
˜L1,λ(Rn)

, (42)

which completes the boundedness of generalized Riesz potential operator Iρ from
˜L1,λ(R

n) to the weak space W˜Lq,λ(R
n).

Corollary 1 In the Theorem 1, in the special case if we choose ρ(t) = tα then we
get sufficient conditions for the boundedness of Riesz potential operator Iα from
˜L p,λ(R

n) to ˜Lq,λ(R
n) for 1 < p < q < ∞, and from ˜L1,λ(R

n) to W˜Lq,λ(R
n) for

p = 1, 1 < q < ∞, (see Theorem 2, in [13]).

Theorem 2 Let 0 ≤ λ < n, 1 ≤ p < q < ∞, the function ρ be a positive, measur-
able function and the conditions (20)–(21) be satisfied, and f ∈ ˜L p,λ(R

n).
(i) If 1 < p < q < ∞ and ρ satisfies the condition (14), then the generalized

fractional maximal operator Mρ is bounded from ˜L p,λ(R
n) to ˜Lq,λ(R

n) and the
following norm inequality satisfies, i.e.,

‖Mρ f ‖
˜Lq,λ(Rn) ≤ C‖ f ‖

˜L p,λ(Rn). (43)

(i i) If p = 1, 1 < q < ∞ and ρ satisfies the condition (15), then the generalized
fractional maximal operator Mρ is bounded from ˜L1,λ(R

n) to W˜Lq,λ(R
n) and the

following norm inequality satisfies, i.e.,
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‖Mρ f ‖W˜Lq,λ(Rn) ≤ C‖ f ‖
˜L1,λ(Rn). (44)

Proof The inequality (3) implies that the generalized fractional maximal operator
Mρ is dominated by the generalized Riesz potential operator Iρ . Hence the proof of
Theorem 2 is step by step the same as in the proof of Theorem 1.

Corollary 2 In the Theorem 2, in the special case if we choose ρ(t) = tα then we get
sufficient conditions for the boundedness of fractional maximal operator Mα from
˜L p,λ(R

n) to ˜Lq,λ(R
n) for 1 < p < q < ∞, and from ˜L1,λ(R

n) to W˜Lq,λ(R
n) for

p = 1, 1 < q < ∞, (see Corollary 1, in [13]).

Corollary 3 In the Theorem 2, in the special case if we choose ρ(t) ≡ 1 then we
get sufficient conditions for the boundedness of Hardy-Littlewood maximal operator
M from ˜L p,λ(R

n) to ˜L p,λ(R
n) for 1 < p < ∞, and from ˜L1,λ(R

n) to W˜Lq,λ(R
n) for

p = 1, (see Theorem 1, in [13]).

4 Conclusions

This work is a generalization of the main results of the paper [13]. Our main results
are Theorems 1 and 2. In the Theorem 1, we prove sufficient conditions for the
generalized Riesz potential operator Iρ from the modified Morrey spaces ˜L p,λ(R

n)

to ˜Lq,λ(R
n), for 1 < p < q < ∞ and from ˜L1,λ(R

n) to the weak modified Morrey
spaces W˜Lq,λ(R

n), for p = 1, 1 < q < ∞.
It is well-known that (see [18], pp. 78) the inequality (3) is valid for our two-

operators Iρ and Mρ . Since the generalized fractional maximal operator Mρ is domi-
nated by the generalized Riesz potential operator Iρ then we get the
Theorem 2, in which we prove the boundedness of the generalized fractional max-
imal operator Mρ from the modified Morrey spaces ˜L p,λ(R

n) to ˜Lq,λ(R
n), for

1 < p < q < ∞ and from˜L1,λ(R
n) to theweakmodifiedMorrey spacesW˜Lq,λ(R

n),
for p = 1, 1 < q < ∞.
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Do Energy and Economic Growth
Contribute to Environmental
Degradation? Empirical Evidence From
Selected European Countries

Sayed Kushairi Sayed Nordin and Siok Kun Sek

Abstract Energy as one of the factors contributing to environmental degradation, as
found in literature, provides a necessary input for economic growth inmost countries.
This study investigates relationships of energy consumption and economic growth to
environmental degradation for a panel of 25 selected European (EU) countries from
2000 to 2019. Carbon dioxide (CO2) emission, gross domestic product (GDP) and
energy consumption are used as proxies in the analysis. Besides ordinary least square
regression (OLS), we employ a spatial model to measure the spatial dependence
effect in the region. The LagrangeMultiplier (LM) test shows that the Spatial Durbin
Model (SDM) ismost appropriate formodeling the relationship.The estimated results
indicate that there is a spatial effect among the variables. Thus, this study provides
a better understanding of the inter-relationship among the variables in developed
countries like the EU to attain sustainable development.

Keywords CO2 emissions · Energy · Economic growth · Spatial models

1 Introduction

Pollution is one of the most pressing issues responsible for climate change and envi-
ronmental problems around the globe. Among the causal to pollution, emissions of
greenhouse gases due to energy consumption is believed to be a significant problem.
Energy resources, on the one hand, provide the necessary resources in production to
boost economic progress. Still, on the other hand, they might produce greenhouse
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gases that might harm the environment. Many studies have been conducted to study
the nexus between energy consumption, economic growth, and CO2 emissions. One
of the famous theories, the Environmental Kuznets Curve (EKC), has established a
link between economic growth and environmental quality, depicted in an inverted-U
curve. According to the EKC theory, the more substantial economic growth initially
leads to higher CO2 emissions before reversing after the economy has reached its
optimal level.

To reduce the emissions of greenhouse gases, coal and fossil fuel-based energy
should be regulated. However, environmental degradation is unavoidable in the
progress of economic development. This is the cost of industrialization, which may
abrupt the progress of economic growth [1]. Such trade-off condition also brings
challenges to balancing the outcome to achieve the mutually benefits [2]. Unsustain-
able development has the potential to harm ecosystems and human health. Global
warming and climate change have resulted in rising sea levels, melting ice caps and
glaciers, and causing extreme weather such as droughts, major floods, and tornadoes.

Meanwhile, the National Energy Consumption Technology Laboratory reports
that there are two significant sources of CO2 emissions: anthropogenic and natural
CO2. Human activities such as worldwide trade, travel industries, power generation,
transportation, industrial sources, chemical manufacture, fossil fuel combustion, and
agricultural production release CO2 from anthropogenic sources. According to [3],
the relationship between economic growth and the environment can be explained in
three ways: win-win, win-lose, and lose-lose.

As one of the world’s major oil-importing countries, Germany aims to reduce
CO2 emissions by 40% by 2020 and 80% to 95% by 2050 [4]. In 2020 and 2050,
primary energy consumption is expected to be lowered by20%and50%, respectively,
compared to 2008. According to the International Energy Agency, other European
countries, such as Italy, France, and Poland, were among the top 20 emitters of CO2

in 2015. As a result of missing the Paris climate agreement’s 2016 target, France has
agreed to reconsider its CO2 emissions target.

In [5], the empirical evidence confirms a long-term positive association between
economic growth and renewable energy consumption in theEU.Even though the rela-
tionship between economic growth, energy consumption, and environmental degra-
dation has been extensively studied, there is no consensus on the spatial connection.
These three variables have the potential to be geographically connected between
neighbouring countries in this light. As a result, this study applies spatial panel
regression to avoid the potential coefficient bias that non-spatial models disregard.

This study contributes to the literature of energy consumption-growth-
environmental quality in three ways: first, to the best of our knowledge, the first study
uses a spatial panel model to predict the link between these three variables in EU
countries. Second, most of the previous works focused on examining spatial effects
based on the national level. Still, this study is one of the limited spatial studies that
focused on the regional level. Third, we compare the results from different spatial
weighting matrices in examining the link between these variables. We use three
distinct models to assess the spatial interaction effects in different countries.
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The remainder of this research is organized as follows: Section 2 reviews the
literature, Section 3 is an overview of the data source and methods, and Section 4
summarizes the empirical findings. Section 5 concludes with the findings and
suggestions.

2 Literature Review

The study on the nexus between energy consumption, economic growth and envi-
ronmental quality is broad. The topic has attracted experts from different fields,
including economics, ecologists, industrial players, and legislators. The inverted
U-shaped EKC illustrates how pollution rises in tandem with economic expansion
before reversing its direction after a country reaches its optimal state of economic
growth. This research, however, has yet to provide consistent outcomes as results
might vary using different methodologies, data and periods.

OLS regression, a non-spatial panel approach, had been widely utilized by
numerous academics before panel regression became popular. One of the promi-
nent researchers, [6], introduced the neoclassical growth model and concluded that
a country’s economy would enter a stable phase when no new investment is neces-
sary. The study also stated that technological advancement is necessary for long-term
economic success. On the other hand, the economic expansion comes with the cost
of development, which leads to the degradation quality of the environment. The
emissions of greenhouse gases increase as industrial growth accelerates. According
to [7], CO2 emissions have a detrimental impact on economic growth in Turkey,
whereas energy consumption has a favourable impact. Authors [3, 8] and [9] found a
positive link between CO2 emissions and economic growth. Yassin and Aralas [10],
on the other hand, applied panel data from 1971 to 2005 and found no strong link
between the variables. Yassin and Aralas [10] examined the regional level of selected
Association of Southeast AsianNations (ASEAN) countries using homogeneous and
heterogeneous estimators to investigate pollution in the area from 1990 to 2016. The
study concluded that the CO2 emissions of ASEAN could rise as carbon-intensive
activities and industrialization continue to grow.

The effect of spatial interaction in neighbouring areas is not considered by classic
panel methods, including EKC’s estimation. As a result, these strategies are highly
susceptible to estimation bias. Countries are frequently assumed to be homogeneous
and spatially independent. When there exists a dependency among countries, there
is always a risk of spatial dependence on the data. Zhang et al. [11] examined 30
Chinese provinces from 2005 to 2012 and discovered a sizeable spatial influence
of CO2 emissions. Regarding understanding the components that contribute to CO2

emissions, the spatial autoregressive with autoregressive disturbance model (SAC)
outperformed other models. Hao et al. [12] estimated the Spatial Autoregressive
Model (SAR), Spatial Error Model (SEM), and SDM using data from 29 Chinese
provinces from 1995 to 2012. The findings backed up the existence of an EKC
for China’s per capita coal use. They encouraged the government to find a way to
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minimize energy consumption and greenhouse gas emissions. Kang et al. [13] also
investigated how energy-related factors affect CO2 emissions in China. From 1997
to 2012, the SDM illustrated that GDP is the primary cause of rising CO2 emissions.
Another study was conducted by [14] in 30 provinces in China. Economic growth is
expected to impact sustainable development in the long run positively. The Moran’s
I result showing that a positive clustering among the provinces.

Rios and Gianmoena [15] applied the data from 1970 to 2014 to conduct the
dynamic geographic panel research in assessing the evolution of cross-country CO2

emissions. According to the findings, there exists an association between the initial
CO2 and growth rates. Maddison [16], on the other hand, focused the examination
on various contaminants (SO2, NOx, VOCs, and CO2). The findings contradicted the
notion that environmental degradation can be rectified by economic growth on its
own. From 2001 to 2009, [17] examined the spatial dependence on CO2 emissions at
the state level in theUnited States. The SARwith fixed effects revealed that economic
spillovers were significantly positive while state-level emissions were significantly
negative. Authors [18, 19] and [20] employed spatial panel regression to look at data
from Chinese provinces.

3 Methodology

This study investigates the relationship between economic growth and energy
consumption on environmental degradation from a spatial perspective. An annual
panel data of 25 selected EU countries (N=25) from the year 2000 to the year
2019 (T = 20) are obtained from The World Bank and BP Statistical Review
of World Energy websites. The shapefile for spatial analysis is generated from
www.diva-gis.org/gdata. The sampled countries are Austria, Belgium, Bulgaria,
Croatia, Czech Republic, Denmark, Estonia, France, Germany, Greece, Hungary,
Italy, Latvia, Lithuania, Luxembourg, Netherlands, Poland, Portugal, Romania,
Slovakia, Slovenia, Spain, Switzerland, Turkey and Ukraine. The data are converted
into logarithm form for consistency purposes. The details of the variables used are
given below (Table 1).

The analysis involves several steps. First of all, all variables are checked with their
stationarity using the Levin-Lin-Chu panel unit root test. The rejection of the null
hypothesis reveals the stationary of the series. The next step is to construct the spatial
weight matrix to capture the spatial relations among the spatial objects, diagnose the
spatial dependence in OLS regression and comparing the results between spatial
regression models.

Aweightmatrix is essential in spatialmodelling. The use of aweightmatrixmakes
spatial models different from non-spatial models. The purpose of the spatial weight
matrix is to describe the spatial relations between N spatial objects, the countries.
For every spatial weight, Wi j , indicates the “spatial influence” of object j on object
i [20].

http://www.diva-gis.org/gdata
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Table 1 Description of variables

Variables Definition Unit of
Measurement

CO2 emission The carbon emissions reflect only those
through consumption of oil, gas and coal
for combustion-related activities and are
based on ’Default CO2 Emissions Factors
for Combustion’ listed by the IPCC in its
Guidelines for National Greenhouse Gas
Inventories (2006)

Million tonnes

GDP Gross domestic product divided by
midyear population. GDP is the sum of
gross value added by all resident producers
in the economy plus any product taxes and
minus any subsidies not included in the
value of the products

Per capita (constant 2010 US$)

Energy
consumption

Commercially traded fuels, such as modern
renewables used to create power, are
classified as primary energy. Energy from
all sources of non-fossil power generation
is used on an input-equivalent basis

Gigajoule per capita

Wi j =
{
1, i f share a common border or or a single common point
0, elsewhere

In the analysis, we apply a contiguity matrix to indicate whether spatial units
share a boundary or not. The higher order of weight matrix (second-order) is used
to capture the effects from neighbours of the neighbours of spatial objects. Figure 1
exhibits the connectivity maps for both orders. The number of countries connected
as neighbours for the second-order weight matrix is remarkably higher than the first
order.

Fig. 1 Connectivity map of the first-order (left) and second-order (right) spatial weight matrix
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Three spatial models, namely Spatial Autoregressive Model (SAR) and Spatial
Error Model (SEM) and Spatial Durbin Model (SDM), are used in the modelling
part. The SAR is useful to investigate the direct impact of the dependent variable,
Yi on its neighbouring Y j and vice versa, and it uses the spatial lag effect of the
dependent variable. The SEM refers to a situation in which the unobserved shock
to country i is influenced by unobserved shocks in adjacent countries. Meanwhile,
the SDM assumes the Yi is spatially dependent on the independent and dependent
variables of other adjacent countries. The empirical models are specified as:

SAR:

lnCO2i t = ρ

n∑
j=1

Wi j lnCO2 j t + β1lnGDPit + β2lnEN Eit + μi + λi + εi t (1)

SEM:

lnCO2i t = βo + β1lnGDPit + β2lnEN Eit + μi + λi + ϕi t (2)

ϕi t = δ

n∑
j=1

Wi jϕ j t + εi t (3)

SDM:

lnCO2i t = ρ

n∑
j=1

Wi j lnCO2 j t + β1lnGDPit + β2lnEN Eit

+ θ1

n∑
j=1

Wi j ln(GDP) j t + θ2

n∑
j=1

Wi j ln(ENE) j t + μi + λi + εi t (4)

where i and j represent countries i and j respectively (i �= j) and t denotes the period
in the year. β ′s are parameters and ρ is the spatial parameter indicating the depen-
dency among the dataset.Wi j is an element in the square N×N spatial weightmatrix.
Theμi represents the time-fixed effect of spatial units. The λi denotes spatially fixed
effects and εi t is the random disturbance term. ϕi t in SEM is the spatial correlation
error term. δ denotes the spatial autoregressive coefficient, which shows the effects of
residuals of the local area, and εi t is an i.i.d (independent and identically distributed)
residual. θ in SDM denotes the spatial autocorrelation coefficient of independent
variables.

LM tests are applied to test whether the spatial dependence in OLS regression. If
a dependency exists, the OLS regression is inefficient and biased to regress the data.
For spatial error, the Ho of the LM test is that the error has no spatial autocorrelation
versus the Ha of the error has spatial autocorrelation. For spatial lag, the Ho for the
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LM test is that the spatial lagged dependent variable has no spatial autocorrelation
versus the Ha of spatial autocorrelation.

4 Empirical Results

The panel unit-root test of Levin-Lin-Chu is conducted to check the stationarity of
each variable. From Table 2, the null hypothesis of unit root is rejected, implying
that all panel series are stationary (no unit root). Next, the data is estimated using
OLS before proceeding to spatial regression analysis. The result of OLS is presented
in Table 3. The coefficients are not significant for both independent variables. A low
value of R-square (0.2%) indicates that the OLS model is not well performed to
explain the data.

Table 4 reports the results of diagnostic tests. Based onLMandRobust LM results,
most of the statistics are significant across different orders of weight matrices. The
null hypothesis of the error has no spatial autocorrelation, and the spatial lagged
dependent variable that has no spatial autocorrelation will be rejected. Therefore, the
SDM that incorporates both features of SAR and SEM is the most suitable model to
deal with spatial dependence [14]. The results also reveal that OLS regression is not
appropriate to model the data because it is inefficient and biased.

Table 5 compares the maximum likelihood (ML) estimation of the three models
using different weight matrices. In general, all the spatial models fit the data very
well, with high values of R-square greater than 95%. As we can see, the coefficients

Table 2 Test for unit root Level

Without trend Trend

LNCO2 0.219 −2.545***

LNGDP −3.576*** −3.836***

LNENE 0.018*** −2.264***

*significant at 10%, ** significant at 5%, *** significant at 1%

Table 3 OLS regression
results

Variables Coefficient

LNGDP 0.002
(0.088)

LNENE 0.135
(0.198)

Constant 3.610
(0.743)

R-square 0.002

Standard errors are given in the bracket
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Table 4 Diagnostic tests for
spatial dependence in OLS
regression

Spatial contiguity weight matrix

Order 1 Order 2

Spatial error:

LM 13.014*** 1.035

Robust LM 85.660*** 34.106***

Spatial Lag:

LM 14.688*** 0.641

Robust LM 87.334*** 33.712***

Suggested model SDM SDM

*significant at 10%, ** significant at 5%, *** significant at 1%

Table 5 Spatial regression results

Spatial contiguity weight matrix

Order 1 Order 2

SDM SAR SEM SDM SAR SEM

LNGDP −0.903***
(0.110)

−0.092
(0.089)

−0.199*
(0.109)

−0.534***
(0.092)

0.024
(0.091)

0.092
(0.104)

LNENE −0.084
(0.179)

0.048
(0.195)

−0.079
(0.193)

−0.225
(0.176)

0.116
(0.199)

0.073
(0.201)

Constant −3.740***
(−3.740)

4.096***
(0.738)

6.528***
(1.1271)

−1.278
(1.118)

3.817***
(0.7814)

3.036***
(0.785)

Rho 0.055***
(0.0498)

0.188***
(0.049)

−0.382***
(0.092)

−0.075
(0.091)

Sigma 1.109***
(0.035)

1.235***
(0.039)

1.224***
(0.039)

1.094***
(0.034)

1.257***
(0.039)

1.254***
(0.397)

Lambda 0.252***
(0.057)

−0.1628
(0.117)

W*
LNGDP

0.951***
(0.167)

1.963***
(0.193)

W*
LNENE

1.609***
(0.179)

−1.184***
(0.433)

Global Moran I −0.264*** 0.271*** 0.244*** 0.744*** 0.395*** 0.458***

R-square 0.979 0.992 0.989 0.957 0.992 0.992

AIC 0.033 0.012 0.016 0.068 0.011 0.012

*significant at 10%, ** significant at 5%, *** significant at 1%

are not consistent across the models. However, to explain the model, SDM is the
most appropriate model for both orders of weight matrix as suggested in previous
diagnostic tests (Table 4). Therefore, we use SDM for interpreting factors affecting
CO2 emissions in the EU.
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Based on the chosen model, all coefficients for independent variables are consis-
tent for both order weight matrices. GDP and energy have a significant and negative
effect on CO2 emissions. Moving to spatial analysis, it is worth mentioning that the
spatial correlation parameter, Rho of the estimation, is significant with the opposite
direction of the effect when using order one and order two weight matrix. The results
indicate that CO2 emissions in adjacent countries affect each other. The estimate of
0.055 suggests that a 1% increase in the CO2 emissions in the adjacent countries
should result in about a 0.055% increase in local CO2 emissions. Meanwhile, the
estimate of −0.382 indicates that a 1% increase in the CO2 emissions in the adjacent
countries should result in a 0.382% decrease in local CO2 emissions. The product
terms of independent variables and spatialweightsmatrixW in the SDMindicate how
independent variables in adjacent countries affect other country’s dependent variable.
The spatial spillover effects of adjacent GDP and energy consumption areas were
highly significant to CO2 emissions. All the products terms were positive except
W*LNENE for order two weight matrix, which implies that an increase in energy
consumption in adjacent countries should decrease CO2 emissions in a country. In
summary, the results indicate that regardless of the order of weight matrices in spatial
analysis, economic growth and energy consumption significantly affect CO2 emis-
sions in adjacent countries. Comparing between SDM model in order one and order
two, order 1 is preferable as it shows lowerAIC (0.033) and higher R-square (97.9%).

5 Conclusion

In this paper, we examine the relationship between economic growth, energy
consumption and environmental degradation. We compare the results of spatial
models with the non-spatial model (OLS regression) using annual panel data from
2000–2019. Our main objective is to investigate the spatial effects of independent
variables (GDP and energy) on the dependent variable (CO2 emissions). The panel
unit root tests show that all the variables are stationary. The diagnostics tests suggest
that the OLS regression is miss-specified as the dataset has a spatial dependence
issue. Thus, we can conclude that the spatial model is more appropriate to model
the relationship. Based on LM tests, SDM was favourable than SEM and SAR. The
spatial models show that spatial interactions exist among the variables. The results
imply that GDP and energy significantly affect each other among adjacent countries
in the EU region. The empirical results are consistent with the past studies, in which
an increase in economic growth and energy consumption leads to an increase in
CO2. Overall, it is possible to conclude that all the variables are related to sampled
countries of the EU. The results offer a better understanding of the spillover effects
of economic growth and energy consumption on environmental quality. Indirectly, it
proves that support fromneighbouring countries is necessary to achieve sustainability
both locally and globally.
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Some Characterizations for Harmonic
Complex Fibonacci Sequences

Emel Karaca and Fatih Yilmaz

Abstract In this study, we define and construct a new number system, called the
harmonic complex Fibonacci sequences (HCF), which is inspred by thewell-known
harmonic and complex numbers in literature. Some algebraic properties are examined
indetail. Furthermore, byusinggenerating fuction,Binet formula andCassini identity
are shown.

Keywords Complex number · Harmonic number · Fibonacci sequence

1 Introduction

In mathematics, there are several number systems which are studied by many math-
ematicians actively, such as harmonic, algebraic, complex, hybrid etc. One of the
well-known number system is harmonic number system.

The nth harmonic number, denoted by Hn , is defined by

Hn =
n∑

k=1

1

k
,

where H0 = 0. These numbers are required in many areas of science such as in
calculations of high energy physics, in computer science, in the efficiency analysis
of algorithms, see for details in [1, 2].

Especially, in algebra and number theory, there are a lot of research articles about
special sequences such as Lucas, Pell, Horadam, Fibonacci, etc., see [3–9]. Among
these sequences, Fibonacci sequence has attracted many mathematicians. The defi-
nition of Fibonacci sequence is given as follows:
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The Fibonacci sequence is defined by the following recurrence relation, for n ≥ 0:

Fn+2 = Fn+1 + Fn

with F0 = 0, F1 = 1.
There is a fact that the complex numbers are quite easy to describe in terms of

real numbers. In other words, every complex number has the form x + yi where x
and y are real numbers. If a complex number is at the denominator of a fraction, it
can be expressed as below:

1

x + iy
= x − iy

x2 + y2
= x

x2 + y2
− y

x2 + y2
i.

At this study, we give a new persoective to generalization of the complex numbers.
Motivated by such researchs, we defined harmonic complex Fibonacci sequence
(HCF). Then we obtain some significiant algebraic properties in detail. Furthermore,
by exploitting generating fuction, Binet formula and Cassini identity has been exam-
ined.

This study is organized as follows: In Sect. 2, complex Fibonacci numbers are
defined. Some fundamental properties of these numbers are represented. Moreover,
generating function,Binet formula andCassini identity are proved in detail. In Sect. 3,
obtained results are discussed.

2 On Harmonic Complex Fibonacci Sequences

In this section, we define a new approach to complex numbers by inspring harmonic
numbers. In this approach, we combined harmonic numbers with complex numbers.
We consider harmonic complex Fibonacci numbers as

HC
n =

n∑

k=1

1

Fk + i Fk+1
. (1)

Let us denote the set of the harmonic hybrid Fibonacci numbers as follows:

K1 = {
n∑

k=1

1

Fk + i Fk+1
: Fk is k − th Fibonacci number, i2 = −1, 1 < n <∝}.

(2)
For all HC

n = ∑n
k=1

1
Fk+i Fk+1

, HC
m = ∑m

k=1
1

Fk+i Fk+1
∈ K1, the fundamental operators

are defined as below:
(a) Addition:
(i) If m = n, HC

n + HC
m = 2

∑n
k=1

1
Fk+i Fk+1

.

(ii) If m < n, HC
n + HC

m = 2
∑m

k=1
1

Fk+i Fk+1
+ ∑m+1

k=1
1

Fk+i Fk+1
.
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(ii) If n < m, HC
n + HC

m = 2
∑n

k=1
1

Fk+i Fk+1
+ ∑m

k=n+1
1

Fk+i Fk+1
.

(b) Multiplication:

HC
n · HC

m =
( n∑

k=1

1

Fk + i Fk+1

)
·
( m∑

k=1

1

Fk + i Fk+1

)

is calculated as distributing terms on the right by exploitting the each product of unit.
(c) Complex conjugate:

HC
n =

n∑

k=1

Fk + i Fk+1

F2
k + F2

k+1

.

From the definition of complex conjugate, the norm is calculated as

N (HC
n ) =‖ HC

n ‖=
√
HC

n HC
n . (3)

Now, let us consider some algebraic properties and significiant theorems of HCF.

There is an isomorphism between the map φ : K −→ M2×2, where K is a ring.
Considering this isomorphism, let us denote the matrix representation of HC

n :

M =
(∑n

k=1
Fk

F2
k +F2

k+1

∑n
k=1

−Fk+1

F2
k +F2

k+1∑n
k=1

Fk+1

F2
k +F2

k+1

∑n
k=1

Fk
F2
k +F2

k+1

)
,

where the matrix representations of units are 1 ↔
(
1 0
0 1

)
, i ↔

(
0 1

−1 0

)
.

Let M be the matrix representation of φ(HC
n ) is called harmonic complex Fibonacci

matrix corresponding to HC
n , where φ(HC

n ) = M and φ is a ring isomorphism.

Definition 1 Assume that M is a 2 by 2 real matrix corresponding to HC
n . The deter-

minant of M is defined as

det (M) =
( n∑

k=1

Fk

F2
k + F2

k+1

)2

det (i) +
( n∑

k=1

Fk+1

F2
k + F2

k+1

)2

det (1),

=
n∑

k=1

1

F2
k + F2

k+1

.

Theorem 1 Let M and N be the matrix representations of any non-zero HC
n and

HC
m , respectively. The following equalities are satisfied:

(i) det (M) = det (MT ) = det (M̄),

(ii) For any λ ∈ C, det (λM) = λ2det (M),

(iii) det (MN ) = detM.det N .
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Proof Exploiting the definitions of conjugate and transpose for matrices given above
and properties of determinant, the proof can be shown easily.

Corollary 1 Let M be the matrix representation of any non-zero HC
n . Then, the

following equation is satisfied:

det (M)
2 = det (MT M̄). (4)

Example 1 For n = 1 and m = 2, let us consider two matrices M and N corre-
sponding to HC

n and HC
m :

M =
(

1
2 − 1

2
1
2

1
2

)

and

N =
(

7
10 − 9

10
9
10

7
10

)
.

We can simply calculate that det (MN ) = detM.det N . Moreover, the transpose of
M is

MT =
(

1
2

1
2

− 1
2

1
2

)
.

The conjugate of M is equal to M. Therefore, it is seen that det (M)
2 = det (MT M̄).

Additionally, we verify the condition (iii) given Theorem 1 as calculating

det (MN ) = det (M).det (N ) = 260.

Theorem 2 Let HC
n and HC

m be any non-zero harmonic complex Fibonacci
sequences. The following properties are satisfied:

(i) HC
n

T = HC
n .

(ii) If HC
n is invertible, HC

n

−1 = ((HC
n ))−1.

(iii) If HC
n is invertible, ((HC

n )T )−1 = ((HC
n )−1)T .

(iv) If HC
n and HC

m are invertible, (HC
n HC

m )−1 = (HC
m )−1(HC

n )−1.

Proof (i)–(iii) and (iv) may be proved by considering the properties of transpose,
inverse and complex conjugate of HC

n . We will only prove (ii).

(ii) Let (HC
n ) be invertible. Hence, we give

(HC
n )

−1 =
n∑

k=1

(Fk + i Fk+1) (5)



Some Characterizations for Harmonic Complex Fibonacci Sequences 163

and

(HC
n )−1 =

∑n
k=1

Fk+i Fk+1

F2
k +F2

k+1∑n
k=1

1
F2
k +F2

k+1

=
n∑

k=1

(Fk + i Fk+1).

So, we obtain the desired result.

Example 2 For n = 1, let us consider HC
1 , and denote its matrix representation with

M =
(

1
2 − 1

2
1
2

1
2

)
.

The inverse of M is

M−1 =
(

1 1
−1 1

)
.

It is very easy to see that all the conditions of Theorem 2 are satisfied.

Theorem 3 (Generating Function): For n ≥ 0, the generating function of HC
n is

G(t) = HC
0 + (HC

1 − HC
0 )t

1 − t − t2
.

Proof By using the definition of generating function, we have

G(t) =
∝∑

k=1

HC
n t

n.

By writing the following equalities, i.e.:

G(t) = HC
0 + HC

1 t + HC
2 t

2 + · · · + HC
n t

n + · · · (6)

tG(t) = HC
0 t + HC

1 t
2 + HC

2 t
3 + · · · + HC

n t
n+1 + · · · (7)

t2G(t) = HC
0 t

2 + HC
1 t

3 + HC
2 t

4 + · · · + HC
n t

n+2 + · · · (8)

So, we obtain
G(t)(1 − t − t2) = HC

0 + (HC
1 − HC

0 )t.

Then, we get

G(t) = HC
0 + (HC

1 − HC
0 )t

1 − t − t2
.
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Theorem 4 (Binet Formula) For n ≥ 1, the Binet formula is

HC
n =

n∑

k=1

α − β

(A∗αk − B∗βk)
(9)

where A = 1 + iα, B = 1 − iβ and α = 1+√
5

2 , β = 1−√
5

2 .

Proof Using the definition of the harmonic complex Fibonacci numbers and the
Binet’s formula of the Fibonacci numbers, it can be seen easily.

Theorem 5 (Cassini Identity) Let HC
n be the sequence of harmonic complex

Fibonacci sequence. Then for n ≥ 1 :

HC
n+1H

C
n−1 − (HC

n )2 = 5(−1)n−1AB, (10)

where A = −2
√
5+7−i(2

√
5+3)

10
√
5

and B = −2
√
5−7−i(2

√
5−3)

10
√
5

.

Proof This proof employs Binet formula for harmonic complex Fibonacci numbers:

HC
n =

n∑

k=1

(Aαk + Bβk), (11)

where α = 1+√
5

2 and β = 1−√
5

2 . Moreover, we have α.β = −1 and α − β = √
5.

HC
n+1H

C
n−1 − (HC

n )2 = (Aαn+1 + Bβn+1)(Aαn−1 + Bβn−1) − (Aαn + Bβn)2

= ABαn−1βn−1(α2 − 2αβ + β2)

= ABαn−1βn−1(α − β)2

= 5AB(−1)n−1.

As we put A and B into the equation given above, we find

HC
n+1H

C
n−1 − (HC

n )2 = 5(−1)n−1
(−2

√
5 + 7 − i(2

√
5 + 3)

10
√
5

)(−2
√
5 − 7 − i(2

√
5 − 3)

10
√
5

)
.

(12)

3 Conclusion

In this study, we define a new number system wich is called complex Fibonacci
number. Some significiant algebraic properties are examined in detail. Furthermore,
several fundamental theorems are proved and some exampes are given to support the
main results.
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Topological Rings and Annihilator
Conditions

Ebru Bitkin and Yeliz Kara

Abstract We introduce the class of rings which is defined by certain annihilator
conditions on projection invariant ideals. We obtain connections between the former
class of rings and the class of dual rings. Examples illustrate our results.

Keywords Annihilator conditions · Dual rings · Projection invariant ideals

1 Introduction

All rings are associative with unity and R will denote such a ring in this paper.
Kaplansky [1] introduced the concept of dual rings by defining certain annihilator

conditions on closed ideals of a topological ring. Following this idea, Hajarnavis and
Norton [2] studied the variation of dual ring condition in algebraic sense. Several
authors have investigated different annihilator conditions on rings and modules.

Motivated by the study in [2], we introduce the class of π -dual rings defined by
certain annihilator conditions on projection invariant one-sided ideals. We obtain
some results to make connections between π -dual rings and related concepts. Some
examples are indicated to demonstrate our results.

In Sect. 2, we present preliminary results for topological rings. Moreover, the
motivation of the study on Baer rings and some current research on this field are
mentioned. In Sect. 3, we introduce and explore the class of π -dual rings. Since
there is a link between the theory of Baer rings and extending rings (see [3]), we
also investigate some connections between π -dual rings and π -extending rings. We
present examples to illustrate our results.

We use r(X ), l(X ) and Matn(R), for the right annihilator of X in R, the left
annihilator ofX inR and the n × n full matrix ring overR, respectively. Recall that
a ringR is called Abelian, if ea = ae for all a ∈ R and e = e2 ∈ R. An idempotent
e ∈ R is called left semicentral if xe = exe, for all x ∈ R. The set of left semicentral
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idempotents of R is denoted by Se(R). A ring R is a duo ring, if every one-sided
ideal is two-sided. For undefined terminology and notions, we refer to [1, 3–5].

2 Background

In this section, we give some preliminaries for the concept of topological rings and
the class of rings defined by certain annihilator conditions. Some examples are also
indicated.

Definition 1 [6] A topological ring is a ringR that is also a topological space such
that both the addition and the multiplication are continuous.

All Banach algebras, rings of all bounded real-valued functions on a topological
spaceX , rings of continuous linear operators on a normed vector spaceX , the p-adic
numbers with standard topology are the examples of topological rings (see [6]).

In 1948, Kaplansky [1] introduced dual rings on a topological ring with respect
to the annihilator conditions.

Definition 2 [1] A topological ringR is called a dual ring, if for every closed right
ideal A, r(l(A)) = A, and for every closed left ideal B, l(r(B)) = B.

It is evident that l(B) is a closed left ideal and r(l(B)) is a closed right ideal.
Then, for any X ⊆ R, r(l(X )) is the smallest closed right ideal. In particular, if X
is a right ideal, r(l(X )) is the closure of X .

For many examples and detailed information about dual rings, we refer to [1].
Motivated by Kaplansky’s idea on topological spaces, Hajarnavis and Norton [2]

studied the following class of rings.

Definition 3 [2] A ring R is called a dual ring, if for all right ideal A of R, A =
r(l(A)) and for all left ideal B of R, B = l(r(B)).

Notice thatY is amaximal right ideal of a dual ring provided that l(Y) is aminimal
left ideal. For a dual ring R, it is proved that RR has finite uniform dimension and
R/J is semisimple Artinian, where J is the Jacobson radical of R (see [2, 3.3
Lemma] and [2, 3.4 Theorem]).

Kaplansky [5] defined the notion of Baer rings which dates back to the study of
Operator Theory. Clark [7] generalized the idea of Baer ring and named quasi-Baer.
The importance of such rings are the annihilators generated by idempotent elements.

Definition 4 [5, 7] A ring R is Baer (resp., quasi-Baer) if the right annihilator of
each nonempty set (resp., ideal) is generated by an idempotent element, as a right
ideal of R.
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Realize that Baer and quasi-Baer ring conditions are right-left symmetric. Clearly,
every Baer ring is quasi-Baer. Since a Baer ring is right nonsingular, any prime ring
which is not right nonsingular is quasi-Baer. However it is not Baer. In the following
example, some examples of Baer and quasi-Baer rings are given.

Example 1 (1) Any domain is a Baer ring.
(2) The endomorphism ring of VF is Baer, where VF is a vector space over the field
F .
(3) Von Neumann algebras satisfy Baer property.
(4) The full (resp., upper triangular) matrix ring over a quasi-Baer ring is quasi-Baer.
(5) The polynomial ring of a quasi-Baer ring is quasi-Baer.

As opposed to quasi-Baer, Baer condition does not transfer to the matrix (resp.,
polynomial) rings.

Example 2 [3, Example 3.1.28] Consider T = Mat2(Z[x]). Although Z[x] is
Baer, T is not. However, the ring Mat2(Z) is Baer, by [5, Example 3]. Since
T = Mat2(Z[x]) = Mat2(Z)[x], T is not Baer.

Since quasi-Baer property behaves better than Baer property with respect to ring
extensions, it can be discussed on a property between the Baer and quasi-Baer prop-
erties. Recently, the authors in [8] introduced the notion of π -Baer rings using the
class of projection invariant ideals.

Definition 5 [4] A left (resp., right) ideal P of R is called projection invariant,
if Pg ⊆ P (resp., gP ⊆ P) for each g2 = g ∈ R, denoted by RP �p RR (resp.,
PR �p RR).

Obviously, every two sided ideal is projection invariant ideal. It can be seen that
every one sided ideal of an Abelian ring is projection invariant. Various examples
for the projection invariance concept can be constructed.

Lemma 1 (i) Any intersection and sum of projection invariant right (resp., left)
ideals is a projection invariant right (resp., left) ideal.
(i i) r(P) is a projection invariant right ideal, for a projection invariant left ideal P
of R.
(i i i) l(G) is a projection invariant left ideal, for a projection invariant right ideal G
of R.

Proof It is clear from [4, p. 50] and [8, Lemma 2.1].

Definition 6 [8] A ring R is π -Baer, if for each projection invariant left ideal P ,
r(P) = cR for some c = c2 ∈ R.

In the following result, the connections between π -Baer rings and related notions
are mentioned.
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Proposition 1 [8, Theorem 2.1.] Consider the following assertions:

(a) R is Baer.
(b) R is π -Baer.
(c) R is quasi-Baer.
Thence (a) ⇒ (b) ⇒ (c), however these arrows are irreversible, in general.

3 Main Results

We introduce and investigate the class ofπ -dual rings in this section. The connections
between π -dual rings and related notions are studied.

Definition 7 A ring R is called right projection invariant dual ring (denoted by,
π -dual) if for each projection invariant right ideal P of R, P = r(l(P)).

The left projection invariant π -dual concept can be defined similarly. R is said
to be a π -dual ring, if R is both right and left π -dual. Clearly P ⊆ r(l(P)), for all
PR �p RR.

Proposition 2 Suppose R is a π -dual ring and {Pi }i∈I a collection of projection
invariant right (resp., left) ideal of R. Hence

l(
⋂

i∈I
Pi ) = ∑

i∈I
l(Pi ) (resp., r(

⋂

i∈I
Pi ) = ∑

i∈I
r(Pi )).

Proof Suppose R is a π -dual ring and {Pi }i∈I is a collection of projection
invariant right ideal ofR. Then Pi = r(l(Pi )). Thence l(

⋂

i∈I
Pi ) = l(

⋂
r(l(Pi ))) =

lr
∑

i∈I
l(Pi ). Observe that Rl(Pi ) �p RR by Lemma 1. It is clear from Lemma 1 that

∑
l(Pi ) is projection invariant left ideal of R.

∑
l(Pi ) = lr(

∑
l(Pi )), as R is π -

dual. Therefore l(
⋂

i∈I
Pi ) = ∑

i∈I
l(Pi ). The equality for left ideals is obtained similarly.

Lemma 2 If any of the following assertions hold, then R is a dual ring ⇔ R is a
π -dual ring.

(a) R is indecomposable,
(b) R is Abelian,
(c) R is right duo.

Proof Since every right ideal of an indecomposable (resp., Abelian, right duo) ring
is projection invariant, the proof is straightforward.

Recall that a ring R is right π -extending [9], if every projection invariant right
ideal X of R is essential in a direct summand of R. The connections between the
π -Baer, π -extending and π -dual conditions are obtained in the next result.
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Proposition 3 (i) Assume R is a π -Baer ring. Then R is right π -dual ring ⇔ For
each AR �p RR, A = eR, where e = e2 ∈ Sl(R).
(i i) IfR is a π -Baer and right π -dual ring, then R is right π -extending.

Proof (i) Suppose R is a π -Baer and right π -dual ring. Let AR �p RR. Hence
l(A) = Rh for some h = h2 ∈ R, asR is π -Baer. Thus r(l(A)) = (1 − h)R. Since
R is right π -dual, A = r(l(A)) = (1 − h)R = eR, where g = 1 − h. Notice from
Definition 6, g ∈ Sl(R). The converse is clear.

(i i) It is a result of part (i).

It is clear from [8, Proposition 2.4] that every nonsingular π -Baer ring is π -
extending. Thus, it might be expected π -dual property implies nonsingularity. How-
ever, we eliminate this possibility by the next example.

Example 3 (i) R = Z is nonsingular, but clearlyR is not a π -dual ring.

(i i) Let F be a field and V a vector space over F such that dim(VF ) = 1. Consider
the following ring

R =
[
F V
0 F

]

=
{[

a x
0 a

]

: a ∈ F , x ∈ V
}

.

Then R is a commutative indecomposable ring. Then the singular right ideal is[
0 V
0 0

]

�= 0. However, R is a π -dual ring.

(i i i) The ring in (i i) also illustrates that a π -extending and π -dual ring need not to
be a π -Baer ring.

4 Conclusions

In this study, we explore the class of π -dual rings. Some connections between π -
dual rings and related concept are obtained. As a future work, a topology can be
constructed on the π -dual rings. Moreover, it will be worthwhile to investigate the
correspondence of π -dual ring properties in modules.
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On a Generalization of FI-Extending
Modules

Yeliz Kara

Abstract In this paper, we introduce modules with the property that every f -closed
submodule has a complementwhich is a direct summand.We provide some structural
properties related to the class of generalization of extending modules.

Keywords Complement submodule · Extending module · Fully invariant
submodule

1 Introduction

Throughout this paper, Rwill denote an associative ringwith unity andM will denote
a unital right R-module, respectively.

Recall that a module is extending [3], if every submodule is essential in a direct
summand, equivalently every complement submodule is a direct summand. Various
generalizations of extending modules have been studied by many authors [1, 6]. In
particular,M is called aC11-module [6], if every submodule has a complement which
is a direct summand of M . Furthermore, a submodule A of M is called fully invariant
[4], provided φ(A) is contained in A for all endomorphism φ of M . Many examples
of fully invariance concept can be constructed in different algebraic structures. By
using fully invariant submodules, a module M is said to be FI-extending [1], if every
fully invariant submodule is essential in a direct summand of M . Module theoretical
properties of F I -extending modules are investigated in [1]. It is shown in [2] that
extending condition implies C11 condition and C11 condition implies F I -extending
condition.

Recall from [5] that a submodule N of M is said to be z-closed, if M /N is non-
singular. Motivated by the idea of z-closed submodules, we introduce the notion of
f -close in this study. Incidentally, we call a submodule N of M is f-closed, if N
is fully invariant submodule of M such that M/N is nonsingular. We provide basic
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properties of f -closed submodules. Further, we discuss modules with the condition
that every f -closed submodule has a complement which is a direct summand. To
this end, we obtain some connections between the former class of modules and gen-
eralizations of extending modules. Moreover, we explore when the aforementioned
module property inherits by its submodules.

For notation X ≤ M , X ≤e M , X ≤c M , and X � M , we mean that X is a right
R-submodule of M , X is an essential submodule of M , X is complement in M , and
X is a fully invariant submodule of M , respectively. For undefined terminology and
notions, we refer to [1, 3–5].

2 Main Results

In this section, we present the fundamental connections between the former class
of modules and related notions. For the following well-known result about fully
invariant submodules, we refer to [4, p. 50].

Lemma 1 [4, p. 50] Let M be a module.

(i) Assume {Xi | i ∈ I } is the family of fully invariant submodules of M. Then⋂

i∈I
Xi and

∑
i∈I Xi are fully invariant submodule of M.

(i i)Let X1 ≤ X2 ≤ M such that X1 is fully invariant in X2 and X2 is fully invariant
in M. Then X1 is fully invariant in M.

(i i i) Assume M = ⊕

i∈I
Mi and X is fully invariant in M. Then

X = ⊕

i∈I
(X ∩ Mi ), where X ∩ Mi is fully invariant in Mi for each i ∈ I .

Definition 1 We call a submodule N of M is f-closed provided that N is a fully
invariant submodule of M and M /N is nonsingular.

In the following result, we obtain some useful properties of f -closed submodules.

Lemma 2 (i) Any intersection of f -closed submodules of M is an f -closed sub-
module of M.

(i i) Let A1, A2 ≤ M such that A1 ≤ A2. If A1 is an f -closed submodule of A2

and A2 is an f -closed submodule of M, then A1 is an f -closed submodule of M.
(i i i) Every f -closed submodule of M is a complement in M.

Proof (i) Let X1 be an f -closed submodule of M and X2 be an f -closed
submodule of M . Then X1 � M and X2 � M such that Z(M/X1) = 0 and
Z(M/X2) = 0. Notice from Lemma 1, X1 ∩ X2 � M . Define the homomorphism
θ : M → M/(X1 ∩ X2), by θ(m) = (m + X1,m + X2). Then M/(X1 ∩ X2) ∼=
θ(M) ≤ (M/X1) ⊕ (M/X2). Since Z(M/X1) = 0 and Z(M/X2) = 0, Z(θ(M)) =
0. It follows that Z(M/(X1 ∩ X2)) = 0. Therefore X1 ∩ X2 is an f -closed
submodule of M .
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(i i) Suppose A1 is an f -closed submodule of A2 and A2 is an f -closed submodule
of M . It follows from Lemma 1 that A1 � M . Since (M/A1)/(A2/A1) ∼= M/A2, it
can be checked that Z(M/A1) = 0. Hence A1 is an f -closed submodule of M .

(i i i) Let X be an f -closed submodule of M . Then X � M and Z(M/X) = 0.
Assume that there exists a submodule T of M such that X ≤e T ≤c M . Then T/X
is singular, hence T/X ⊆ Z(M/X). Since Z(M/X) = 0, T = X . Thus X has no
proper essential extension, so X is complement in M .

Definition 2 We call a module M is a C f
11-module, if every f -closed submodule of

M has a complement which is a direct summand of M .

The next result which provides a useful characterization of the C f
11-modules will

be used repeatedly.

Lemma 3 Amodule M is a C f
11-module if and only if for each f-closed submodule L

of M, there exists a direct summand P of M such that L ∩ P = 0 and P ⊕ L ≤e M.

Proof It is straightforward.

We present connections between C f
11-modules and generalization of extending

modules in the next result.

Proposition 1 Assume the following assertions for a module M:

(i) M is an extending module,
(ii) M is a C11-module,
(iii) M is a F I -extending module,
(iv) M is a C f

11-module.

Hence (i) ⇒ (i i) ⇒ (i i i) ⇒ (iv).However, these arrowsare irreversible, in gen-
eral.

Proof (i) ⇒ (i i) ⇒ (i i i) ⇒ (iv) It can be seen that these implications hold from
definitions.

(i i i) � (i i) � (i) It follows from [2, Proposition 1.2].

(iv) � (i i i) Let T =
[K V
0 K

]

=
{[

κ ω

0 κ

]

: κ ∈ K, ω ∈ V
}

be the ring, where K
is a field and V is a vector space over K with dimension ≥ 2. Note that T is a
commutative indecomposable ring, so all T -submodules of T is fully invariant. Thus,
T has no proper f -closed submodule. Hence, TT is a C f

11-module. Nevertheless, TT
is not F I -extending.

Lemma 4 Let M be a nonsingular module. Then M is a C f
11-module if and only if

M is an F I -extending.
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Proof Suppose M is a nonsingular C f
11-module and L � M . Thus, there is a com-

plement submodule T in M such that L ≤e T . Since M is nonsingular, T � M by [7,
Proposition 4.101]. It follows from [7, Lemma 5.58 (ii)] thatM/T is nonsingular. So,
T is an f -closed submodule of M . Then, there exists a direct summand P of M such
that T ∩ P = 0 and T ⊕ P ≤e M by Lemma 3. Then, L ∩ P = 0 and L ⊕ P ≤e M .
By [2, Lemma 1.1], M is F I -extending. Proposition 1 yields the converse.

The C f
11-module property may not transfer to the submodules, in general. Let

R =
[
S S ⊕ S
0 S

]

, where S is a simple domain which is not a division ring. Then R is

a right nonsingular ring. By [1, Example 4.11], RR is not F I -extending. Therefore
it is not a C f

11-module by Lemma 4. However, the injective hull of RR fulfills the
C f
11-module property. In the next result, we focus on when the C f

11-module property
inherits by submodules.

Proposition 2 Assume M is a C f
11-module. Then every f-closed submodule of M

fulfills C f
11-module property.

Proof Suppose L is an f -closed submodule of M and L ′ is an f -closed submodule
of L . By Lemma 2, L ′ is an f -closed submodule of M . Thereby, there exists a direct
summand P of M such that L ′ ∩ P = 0 and L ′ ⊕ P ≤e M . Accordingly, M = P ⊕
P ′ for some submodule P ′ of M . Since L � M , Lemma 1 gives that L = (L ∩ P) ⊕
(L ∩ P ′). Observe that L ′ ∩ (L ∩ P) = 0 and L ∩ (L ′ ⊕ P) = L ′ ⊕ (L ∩ P) ≤e L .
Therefore, L is a C f

11-module by Lemma 3.

3 Conclusion

In the current research, we investigate the class of C f
11-modules by asking that every

f -closed submodule has a complement which is a direct summand rather than every
submodule. We explore some module theoretical properties for the former class.

Finally, decomposition results and applications on Abelian groups ofC f
11-module

property can be discussed as a future work.
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A Solution of Fractional Bio-Chemical
Reaction Model by Adomian
Decomposition Method

Gunvant A. Birajdar

Abstract This paper focuses on themodeling of the bio-chemical reaction viz anaer-
obic digestion which is biochemical process of producing biogas which is the bio-
logical degradation of biomass. This chemical phenomenon forms as an system of
fractional differential equations. Therefore, the attempt has been made to model this
bio-medical process and to find its solution by using powerful Adomian decompo-
sition method. For this Caputo fractional operator is used to represent the fractional
derivative.

Keywords Anaerobic · System of fractional equations · Caputo fractional
derivative

1 Introduction

Nowadays, the application of fractional calculus are found in every branch like
physics, bio-chemistry, viscoelasticity and engineering etc. Along with this many
more real world problems and its applications exhibits by fractional differential
equations. Many researchers have discussed such problems and its application
[1, 2]. Because of this number of researchers & scientists attracted towards this
field. The importance of such important biological process energised the researchers
to build simple, coherent and high accurate methods for solving such mathematical
models which governs differential equation or system of differential equations of
fractional order. Djouad et al. [3] gave a light on chemical kinetics for gas phase. It
is observed that Jajarmi et al. [4] formulated a model for the dengue fever which is
in the forms of system of differential equation of fractional order. Baleanu et al. [5]
developed a fractional model by using nonsingular derivative operator. In biochem-
ical process Anaerobic digestion is one of the important process which are having
many applications. This is an activity of generating biogas which is the biological
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decomposition of biomass [6–8]. In this biochemical activity involving multiple and
complex stages of metabolic interactions, presented by a group of microbial pop-
ulations in the absent of oxygen. Further, this can be divided into four stages of
biodegration viz mehtanogenesis , acidogenisis, hydrolysis and acitogenesis [9–12].
The mathematical formation of biochemical activities is obtained by the number of
chemical reactions carry out in every phase of the process. Such process governs
as set of coupled nonlinear fractional differential equations. The solution of such
system of equations permits exactly to predict the concentration of chemical species
at random time using the initial conditions. So, it becomes challenging task to obtain
the solution of such initial value problem. There are the known and popular classi-
cal technics are available in literature viz iterative method [13], numerical methods
[14–19],and Adomian decomposition method (ADM) [17, 20–23]. In 1980 Gorge
Adomian introduced the method called ADM [20, 21] which is useful for obtaining
the solution of nonlinear equations. Wazwaz [24] discussed the application of this
method by solving varieties of nonlinear differential equations. Dhaigude and Bira-
jdar [25] developed the discrete ADM to obtain the solution of system of fractional
partial differential equations together with initial condition.

1.1 Preliminaries

This section is devoted for the main definitions and its important properties of
Riemann-Liouville (R-L) fractional integral and derivatives as well as the its relation
with Caputo fractional derivative.

Definition 1 [1] A real valued function g(y), y > 0 is said to be in space Cα, α ∈
� if there exists a real number p > β such that g(y) = y pg1(y) where g1(y) ∈
C[0,∞).

Definition 2 [1] A function g(y), y > 0 is called to be in space Cm
β ,m ∈ N

⋃{0}
if gm ∈ Cβ.

Definition 3 [1] Consider g ∈ Cβ and β ≥ −1, then R-L fractional integral of g(y)
with respect to y of order β is denoted by J βg(y) and is defined as

J βg(y) = 1

Γ (β)

y∫

0

(y − τ)β−1 f (τ )dτ, t > 0, β > 0.

The well known property [1]of the Riemann-Liouville operator J β is

J β yγ = Γ (γ + 1)yγ+β

Γ (γ + β + 1)
.
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Definition 4 [26] For m to be the smallest integer that exceeds β > 0, the Caputo
fractional derivative of g(y) with respect to y of order β > 0 is defined as

Dβ
y g(y) =

⎧
⎪⎪⎨

⎪⎪⎩

1
Γ (m−β)

y∫

0
(y − τ)m−β−1 gmdτ, for m − 1 < β < m;

gm(y), forβ = m ∈ N .

Note that the relation between Riemann-Liouville operator and Caputo fractional
differential operator is given as follows

J β(Dβ
y g(y)) = J β(Jm−βg(m)(y)) = Jm f (m)(y) = g(y) −

m−1∑

k=0

g(k)(0)
gk

k! .

1.2 Modeling of Metabolic Process

The activities of the anaerobic digestion are:
Hydrolysis: The initial phase of degradation, in which composite organic molecules
viz fats, carbohydrates and proteins decompose into soluble monomers form. The
enzymes secreted during the reaction are from fermentative bacterias and hydrolytics
like lipase, cellulase and protease. The organic raw is braked into a sugar (glucose)
during hydrolysis reaction which can exhibit by following equation

C6H10O5 + H2O = C6H12O6. (1)

Acidogenesis: In the process of Acidogenesis sugars are fermented in to simple
organic compounds especially ketones (e.g.glycerol, acetone), alcohols (e.g. ethanol,
methanol), and acids (e.g. propionic, formic, lactic, butyric, or succinic acids). We
can see in the following an example of product gained on acidogenesis activity as
well as its corresponding value of ΔG

C6H12O6 � C4H8O2 + 2CO2 + 2H2, ΔG = −264.19 KJ/mol. (2)

Acetogenesis: The third steps in this process is Acetogenesis resulted in a mixture
of hydogen (H2), acetate, and carbon dioxide (CO2) during the fermentation. From
the lipid hydrolysis the long chain fatty acids are oxidized to propionate or acetate
and formes gaseous hydrogen which represents the following reaction equation.

2C4H8O2 + 2H2O + CO2 � 4C2H4O2 + CH4, ΔG = −35 KJ/mol. (3)

Methanogenesis: The final stage in this process is Methanogensis carried out by
methanogen micooraganisms where CO2 and methane are produced. In this activ-
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ity the methanogenic archaea mainly converts CO2, acetic acid and hydrogen into
methane. It is classified into two groups [12].

Acetoclasticmethanogenesis they generateMethane frommethanol or acetic acid.
These are the prime and importantmicroorganisms in anaerobic digestion,which pro-
duces methane approximately 60–70%. Hydrogenotrophic methanogenesis process
they uses hydrogen as reducing agent and produce methane from hydrogen and CO2

using CO2 as origin of carbon. The chemical reaction is shown in Table 1 with its
ΔG value of each reaction. The theoretical yield of CH4 and CO2 can be obtained if
the substrate composition is known and is given by

CnHpOq +
[

n − p

4
− q

2

]

H2O �
[

n − p

4
− q

2

]

H2. (4)

where Cn + HpOq is organic matter and n, p and q are dimensionless coefficients.

2 Mathematical Formulation of the Bio-chemical Process

For the formulation of any chemical reaction the stoichiometric equation, we have

Ma∑

i=1

uivi = 0, (5)

where vi is the stoichiometric coefficient of i-th species ui and Ms is the number
of species. In general the constant v j are −ve and +ve for reagents and products
respectively by convention. Applying the law of mass action the rate of reaction, we
have

s j = l j

Ma∏

i

u
w j i

i , (6)

where u j is the molar concentration of species i and l j the rate coefficients that can
be calculated using the Gibbs free energy (ΔG) of each reaction

l j = exp

(−ΔG

RTj

)

, (7)
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Table 1 Set of chemical reactions of the anaerobic digestion process

Phases Reaction Rates

I C6H10O5 + H2O = C6H12O6 s0 = l0[C6H10O5][H2O]
II C6H12O6 = C4H8O2 + 2CO2 + 2H2 s1 = l1[C6H10O6]
III C4H8O2 + H2O + 1

2CO2 =
2C2H4O2 + 1

2CH4

s2 = l2[C4H8O2][H2O][CO2] 1
2

IV 1
2CO2 + 2H2 = 1

2CH4 + H2O s3 = [CO2] 1
2 [H2]2

V 2C2H4O2 = 2CH4 + 2CO2 s4 = l4 = [C2H4O2]2

where R = 8.3144 J/Kmol is the universal gas constant and Tj is the absolute
temp (Kelvins). We obtain the fractional system of differential equations (FSDEs) is
written as

Dα
t u j (t) =

Mb∑

j

v j i s j , j = 1, 2, 3, · · · , Ma . (8)

We can observe that the system (8) is nonlinear in general. Every species take part
in reaction with corresponding production rate. The above fractional system having
the different reaction stages: (A) Hydrolysis, (B) Acidogenesis, (C) Acetogenesis,
(D) Hydrogenotrophic Methanogenesis, and (E) Acetoclastic Methanogenesis. The
above Table 1 provides the different phases of reaction, viz (A), (B), (C) and (D)
which can be written in system.

Table 2 Chemical compounds, chemical formulas and abbreviations

Chemical compounds Chemical formulas Abbreviations (ui )

1 Cellulose C6H10O5 u1
2 Glucose C6H12O6 u2
3 Butyric acid C4H8O2 u3
4 Acetic acid C2H4O2 u4
5 Methane CH4 u5
6 Carbon dioxide CO2 u6
7 Hydrogen H2 u7
8 Water H2O u8
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In the Table 2, we can observe the chemical compounds are the parts of anaerobic
digestion process and which abbreviated in chemical formula.

The concentration variations ui (i = 1, 2, 3, ..., 8) are based on system (8). So
the system of fractional differential equations is composed of eight fractional FDEs
together with initial conditions as fallow:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dα
t u1(t) = −s0u1u8, u1(0) = 1,

Dα
t u2(t) = −s0u1u8 − s1u2, u2(0) = 0,

Dα
t u3(t) = s1u2 − s2u3u8u

1
2
6 , u3(0) = 0,

Dα
t u3(t) = s1u2 − s2u3u8u

1
2
6 , u3(0) = 0,

Dα
t u4(t) = 2s2u3u8u

1
2
6 − 2s4u24, u4(0) = 0,

Dα
t u5(t) = s2u3u8u

1
2
6 + 1

2 s3u
1
2
6 u

2
7 + 2s4u24, u5(0) = 0,

Dα
t u6(t) = 2s1u2 − s2u3u8u

1
2
6 − 1

2 s3u
1
2
6 u

2
7 + 2s4u24 u6(0) = 0

Dα
t u7(t) = 2s1u2 − 2s3u

1
2
6 u

2
7, u7(0) = 1

Dα
t u8(t) = −s0u1u8 − s2u3u8u

1
2
6 + s3u

1
2
6 u

2
7, u8(0) = 1.

(9)

3 Adomian Decomposition Method

Consider the system of fractional differential equations with initial conditions of the
following form

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Dα
t u1(t) = N1(t, u1, u2, ..., un) = g1(t), u1(0) = u1,0,

Dα
t u2(t) = N2(t, u1, u2, ..., un) = g2(t), u2(0) = u2,0,

..., ...

..., ...

Dα
t un(t) = Nn(t, u1, u2, ..., un) = gn(t), un(0) = un,0,

(10)

where Nk(t, u1, u2, ..., un), k = 1, 2, 3, ...n are linear and nonlinear function.Apply-
ing the operator Jα (10) we get,

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(t) = u1(0) − Jα{N1(t, u1, u2, ..., un) + g1(t)},
u2(t) = u2(0) − Jα{N2(t, u1, u2, ..., un) + g2(t)},
...,

...,

un(t) = un(0) − Jα{Nn(t, u1, u2, ..., un) + gn(t)}.

(11)
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As per the procedure of the Adomian decomposition method the linear terms un
and nonlinear terms Nn can be decomposed by an infinite series of components such
as

u1(t) =
∞∑

n=0

u1,n(t), u2(t) =
∞∑

n=0

u2,n(t), ..., un(t) =
∞∑

n=0

un,n(t), (12)

and the nonlinear functions
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

N1(t, u1, u2, ..., un) = ∑∞
n=0 An,

N2(t, u1, u2, ..., un) = ∑∞
n=0 Bn,

...,

...,

Nn(t, u1, u2, ..., un) = ∑∞
n=0 Zn,

(13)

respectively. Note that u1(t), u2(t), ..., un(t)(n ≥ 0) are the approximations of
u1(t), u2(t), ..., un(t), where An, Bn, ..., Zn are the Adomian polynomial generated
according to nonlinearity. In general the Adomian polynomial is defined as

Pn = 1

n!

[
dn

dn
g

( ∞∑

k=0

λkvk(t)

)]

λ=0

, n ≥ 0. (14)

Substituting equation (13) in equation (12), we have

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(t) = u1(0) + Jαg1(t) − Jα
(∑∞

n=0 An
)
,

u2(t) = u2(0) + Jαg2(t) − Jα
(∑∞

n=0 Bn
)
,

...,

...,

un(t) = u1(0) + Jαgn(t) − Jα
(∑∞

n=0 Zn
)
.

(15)

On simplifying above equation (13), we get the following recursive relations as
follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1,0(t) = u1(0) + Jαg1(t) u1,n+1(t) = −Jα (An) , n ≥ 0,

u2,0(t) = u1(0) + Jαg1(t) u2,n+1(t) = −Jα (Bn) , n ≥ 0,

...,

...,

un,0(t) = u1(0) + Jαg1(t) un,n+1(t) = −Jα (Zn) , n ≥ 0.

(16)

Therefore, the solution for fractional system of equations is given by
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⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u1(t) = u1,1(t) + u1,2(t) + ... + u1,n(t),

u2(t) = u2,1(t) + u2,2(t) + ... + u2,n(t),

...,

...,

un(t) = un,1(t) + un,2(t) + ... + un,n(t).

(17)

Solution of the Problem

In this section we are giving the solution of above fractional system of equations up
to two terms

Equations 1

A0 = − k0u1,0u8,0,

u1,1 =Jα(A0dt) = A0
tα

Γ (α + 1)
.

Equations 2

B0 = − s0u1,0u8,0,

u2,1 =Jα(B0dt) − Jα(s1u2,0) = (B0 − s1u2,0)
tα

Γ (α + 1)
.

Equations 3

C0 = − s2u3,0u8,0
√
u6,0,

u3,1 =Jα(C0dt) − Jα(s1u3,0) = (C0 + s1u3,0)
tα

Γ (α + 1)
.

Equations 4

D0 =2s2u3,0u8,0
√
u6,0 − 2s4u

2
4,0,

u4,1 =Jα(C0dt) − Jα(s1u3,0) = (C0 + s1u3,0)
tα

Γ (α + 1)
.

Equations 5

E0 =1

2
s2u3,0u8,0

√
u6,0 − 1

2
s3

√
u6,0u

2
7,0 + 2s4u

2
4,0,

u5,1 =Jα(E0dt) = (E0)
tα

Γ (α + 1)
.
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Equations 6

F0 =−1

2
s2u3,0u8,0

√
u6,0 − 1

2
s3

√
u6,0u

2
7,0 + 2s4u

2
4,0,

u6,1 =Jα{(F0 + 2s1u2,0dt)} = (F0 + 2s1u2,0)
tα

Γ (α + 1)
.

Equations 7

G0 = − 2s3
√
u6,0u

2
7,0,

u7,1 =Jα{(G0 + 2s1u2,0dt)} = (G0 + 2s1u2,0)
tα

Γ (α + 1)
.

Equations 8

H0 = − s0u1,0u8,0 − s2u3,0u8,0
√
u6,0 + s3

√
u6,0u

2
7,0,

u8,1 =Jα{H0dt} = (H0)
tα

Γ (α + 1)
.

Then the solution of system by the ADM using initial iterations, we get

For two term For three terms

U1 = u1,0 + u1,1 U1 = u1,0 + u1,1 + u1,2
U2 = u2,0 + u2,1 U2 = u2,0 + u2,1 + u0,2
U3 = u3,0 + u3,1 U3 = u3,0 + u3,1 + u3,2
U4 = u4,0 + u4,1 U4 = u4,0 + u4,1 + u4,2
U5 = u5,0 + u5,1 U5 = u5,0 + u5,1 + u5,2
U6 = u6,0 + u6,1 U6 = u6,0 + u6,1 + u6,2
U7 = u7,0 + u7,1 U7 = u7,0 + u7,1 + u7,2
U8 = u8,0 + u8,1 U8 = u8,0 + u8,1 + u8,2.

Conclusion

The paper is devoted to model the biochemical process where the biogas production
process was presented as cellule as a substrate.This is done using the Gibbs free
energy value. For obtaing the solution an efficient and Powerful Adomian decompo-
sition method is used.
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On Fixed Point Results for Mixed
Nonexpansive Mappings

Isa Yildirim

Abstract In this presented paper, we consider the S-iteration process for two map-
pings which include mappings such as satisfying condition (C) and α-nonexpansive
mapping in the framework of convex metric spaces. We also prove the some fixed
point theorems on strong convergence and�-convergence of the proposed algorithm.

Keywords Iterative process · Convex metric space · Condition (C) ·
α-nonexpansive mapping.
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1 Introduction and Preliminaries

Let (Z , ρ) be a metric space and let V be a nonempty subset of Z . Assume that
P : V → V is a mapping. The set F(T ) shows that the set of fixed points of P , that
is, F(P) = {v ∈ V : Pv = v}. We also suppose that P is a mapping on V .

(i) Ifρ (Pv, Pz) ≤ ρ(v, z) for all v, z ∈ V , themapping P is called nonexpansive.
(ii) If ρ (Pv, Pz) ≤ ρ(v, z) for all v ∈ V and z ∈ F(P), the mapping P is called

quasi-nonexpansive.
(iii) If ρ (v, Pv) ≤ ρ(v, z) implies ρ (Pv, Pz) ≤ ρ(v, z) for all v, z ∈ V , the

mapping P said to satisfy condition (C).
(iv) Ifρ (Pv, Pz)2 ≤ αρ(Pv, z)2 + αρ(v, Pz)2 + (1 − 2α) ρ(v, z)2 for allv, z ∈

V and for some α < 1, the mapping P is called α-nonexpansive.
From the above definitions, we know that the condition (C) is stronger than quasi-

nonexpansiveness but is weaker than nonexpansiveness [13].

I. Yildirim (B)
Department of Mathematics, Faculty of Science, Atatürk University, 25240 Erzurum, Turkey
e-mail: isayildirim@atauni.edu.tr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
F. Yilmaz et al. (eds.), Mathematical Methods for Engineering Applications,
Springer Proceedings in Mathematics & Statistics 384,
https://doi.org/10.1007/978-3-030-96401-6_18

191

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96401-6_18&domain=pdf
mailto:isayildirim@atauni.edu.tr
https://doi.org/10.1007/978-3-030-96401-6_18


192 I. Yildirim

Definition 1.1 [15] Let (Z , ρ) be a metric space and let � : Z × Z × [0, 1] → Z
be a mapping. Assume that the mapping satisfies the following inequality

ρ (v,� (z, y;μ)) ≤ μρ (v, z) + (1 − μ) ρ (v, y) .

for all v, z, y ∈ Z and all μ ∈ [0, 1]. Then the metric space (Z , ρ) is called a convex
metric space.

The mapping � doesn’t need to continuous. But, if the following inequality

ρ(�(v, z, μ),�(v, y, μ) ≤ (1 − μ)ρ(z, y)

holds in the convex metric space Z , then the mapping � becomes continuous.

Definition 1.2 [12] Let (Z , ρ) be a convex metric space. This space Z is called
uniformly convex if for all v, z, y ∈ Z , δ > 0 and η ∈ (0, 2], there exists a θ > 0
such that ρ

(
�(z, y, 1

2 ), v
) ≤ (1 − θ) δ < δ whenever ρ(z, v) ≤ δ, d(y, v) ≤ δ and

d(z, y) ≥ δη.

We suppose that {vn} is a bounded sequence in Z . The mapping ζ(., {vn}) is
defined on Z by

ζ(v, {vn}) = lim sup
n→∞

ρ(v, vn), v ∈ Z .

The number ζV ({vn}) is the asymptotic radius of the sequence {vn} with respect
to V ⊆ Z and it is defined as

ζV ({vn}) = inf
v∈V ζ(v, {vn})

and the asymptotic center CV ({vn}) of {vn} with respect to V is the set

CV ({vn}) = {z ∈ V : ζ(z, {vn}) = ζV ({un})}.

Let {vn} be a sequence in (Z , ρ). If ρ(vn+1, v) ≤ ρ(vn, v) for v ∈ V , the sequence
{vn} is Fejer monotone with respect to a subset V of Z . If v is the unique asymptotic
center for every subsequence {zn} of {vn}, then the sequence {vn} �-converges to
v ∈ Z . In this case, we write � − limnvn = v.

Recently, Takahashi et al. [14] obtained some fixed point results for two nonex-
pansive mappings such as P and R in Banach space using the following iteration

{
vn+1 = (1 − γn) vn + γn Pzn
zn = (1 − δn) vn + δn Rvn

(1)

where 0 < γn, δn < 1. After then, Dhompongsa et al. [4] used the algorithm (1) to
obtain some convergence results for a nonspreading mapping and a mapping satisfy-
ing condition (C) in Hilbert spaces (see also [2, 3, 8–11]). Moreover, Wattanawitoon
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et al. [16] proved some convergence theorems for an α-nonexpansive mapping and
a mapping satisfying the condition (C) using the algorithm (1) in Hilbert spaces.

In this paper, we consider S-iteration process for two mappings such as an α-
nonexpansive mapping and a mapping satisfying condition (C) in the framework
of convex metric spaces. We also show that some convergence theorems using this
iteration process in such spaces. Our algorithm is as under

{
vn+1 = �(Pvn, Rzn, γn)
zn = �(vn, Pvn, δn)

(2)

where 0 < γn, δn < 1.
If we take a normed space instead of convex metric space, the algorithm (2)

reduces to the following algorithm

{
vn+1 = γn Pvn + (1 − γn) Rzn
zn = δnvn + (1 − δn) Pvn,

(3)

where 0 < γn, δn < 1.
This iteration process (3) is independent of the iteration process (1), but the process

(3) is faster than the Mann, Ishikawa and Noor iteration processes. If we take P = R
in (3), we obtain the S-iteration process [1].

Now, we will give some important lemmas that we will use to prove the main
results. Throughout the paper, we will take F = F(P) ∩ F(R).

Lemma 1.1 [6] Let (Z , ρ) be a complete and uniformly convex metric space and
let V be a nonempty, closed and convex subset Z. Then every bounded sequence {vn}
in Z has a unique asymptotic center with respect to V .

Lemma 1.2 [7] Let (Z , ρ) be a uniformly convex metric space with continuous
convex structure �. Assume that v ∈ Z and {an} be a sequence in [t, r ] for some
t, r ∈ (0, 1). If {vn} and {zn} are sequences in Z such that limsupn→∞d(vn, v) ≤ δ,
limsupn→∞d(zn, v) ≤ δ and limn→∞ρ(�(vn, zn, an), v) = δ for some δ ≥ 0, then
limn→∞ρ(vn, zn) = 0.

Lemma 1.3 [5] Let (Z , ρ) be a metric space and let V be a subset of a metric
space Z. Let P be an α-nonexpansive mapping on V and let R be a mapping on V
satisfying condition (C) with F 
= ∅. Then P and R are quasi-nonexpansive.

Lemma 1.4 [5] Let (Z , ρ) be a complete and uniformly convex metric space and
let V be a nonempty, closed and convex subset of Z with continuous convex structure
�. Assume that P is an α-nonexpansive mapping on V and R is a mapping on V
satisfying condition (C) such that F 
= ∅ . If {zn} is any bounded sequence in V with
C({zn}) = {z} and

lim
n→∞d(zn, Szn) = lim

n→∞d(zn, T zn) = 0,

then z ∈ F.
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2 Main Results

Lemma 2.1 Let (Z , ρ) be a convex metric space and let V be a nonempty, closed
and convex subset of Z. Let P : V → V be an α-nonexpansive mapping and let
R : V → V be a mapping satisfying condition (C) such that F 
= ∅. Then for the
sequence {vn} in (2), we get the followings:

(1) {vn} is a Fejer monotone sequence with respect to F,

(2) lim
n→∞ρ(vn, q) exists for all q ∈ F,

(3) lim
n→∞ρ(vn, F) exists.

Proof From convex structure of metric space and the iteration process (2), for any
q ∈ F , we have

ρ (zn, q) = ρ (�(vn, Pvn, δn), q) (4)

≤ δnρ (vn, q) + (1 − δn) ρ (Pvn, q)

≤ δnρ (vn, q) + (1 − δn) ρ (vn, q)

= ρ (vn, q)

and

ρ (un+1, q) = ρ (�(Pvn, Rzn, γn), q) (5)

≤ γnρ (Pvn, q) + (1 − γn) ρ (Rzn, q)

≤ γnρ (vn, q) + (1 − γn) ρ (zn, q) .

If we combine the inequalities (4) and (5), we get

ρ (vn+1, q) ≤ γnρ (vn, q) + (1 − γn) ρ (zn, q) = d (vn, q) . (6)

By using (6), we obtain that (1) {vn} is a Fejer monotone sequence with respect to
F and (2) lim

n→∞ρ(vn, q) exists for each q ∈ F . If we take inf of both sides in (6), we

get
inf
q∈F ρ (vn+1, q) ≤ inf

q∈F ρ (vn, q)

which implies that (3) lim
n→∞ρ(vn, F) exists.

Lemma 2.2 Let (Z , ρ) be a convex metric space and let V be a nonempty, closed
and convex subset of Z. Let P : V → V be an α-nonexpansive mapping and let
R : V → V be a mapping satisfying condition (C) such that F 
= ∅. Then for the
sequence {vn} in (2), we have the following limits

lim
n→∞ρ(vn, Pvn) = lim

n→∞ρ(vn, Rvn) = 0.
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Proof From (ii) in Lemma 2.1, we know limn→∞ ρ (vn, q) for q ∈ F . Let’s say σ .
If σ = 0, the proof is clear. We suppose that σ > 0. Since the mapping P satisfies
condition (C), the mapping P is quasi-nonexpansive mapping (see Lemma 1.3).
That’s why we write ρ (Pzn, q) ≤ ρ (zn, q). If we take lim sup of this inequality, we
obtain

lim sup
n→∞

ρ (Pzn, q) ≤ lim sup
n→∞

ρ (zn, q) .

Using Lemma 2.1, we have ρ (zn, q) ≤ ρ (vn, q). If we take again lim sup of this
inequality, we get

lim sup
n→∞

ρ (zn, q) ≤ lim sup
n→∞

ρ (vn, q) = σ

which implies lim supn→∞ ρ (zn, q) ≤ σ . Also,

lim sup
n→∞

ρ (Pzn, q) ≤ lim sup
n→∞

ρ (zn, q) ≤ σ

⇒ lim sup
n→∞

ρ (Pzn, q) ≤ σ.

Since R is an α-nonexpansive, we have

ρ (Rvn, q) ≤ ρ (vn, q) (7)

⇒ lim sup
n→∞

ρ (Rvn, q) ≤ σ.

Also
σ = lim

n→∞ ρ (vn+1, q) = lim
n→∞ ρ(�(Pvn, Rzn, γn), q)

and from Lemma 1.2
lim
n→∞ ρ (Pvn, Rzn) = 0. (8)

Now

ρ (vn+1, q) ≤ ρ(�(Pvn, Rzn, γn), q)

≤ γnρ (Pvn, q) + (1 − γn)ρ(Rzn, q)

≤ γnρ (Pvn, q) + (1 − γn)ρ (Pvn, Rzn) + (1 − γn)ρ (Pvn, q)

≤ ρ (Pvn, q) + (1 − γn)ρ (Pvn, Rzn)

which implies
c ≤ lim

n→∞ inf d (T xn, p)

so that (7) gives that
lim
n→∞ d (T xn, p) = c.
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In turn,

d (T xn, p) ≤ d (T xn, Syn) + d(Syn, p)

≤ d (T xn, Syn) + d(yn, p)

implies
σ ≤ lim inf

n→∞ ρ(zn, q).

Thus σ = limn→∞ ρ(zn, q) = limn→∞ ρ(�(vn, Pvn, δn), q) gives by Lemma 1.2

lim
n→∞ ρ (vn, Pvn) = 0. (9)

Now

ρ(zn, vn) = ρ(�(vn, Pvn, δn), vn)

≤ (1 − δn)ρ (vn, Pvn)

imply by (9) that
lim
n→∞ ρ(zn, vn) = 0. (10)

Using (8), (9) and (10), we have

ρ (vn, Rvn) ≤ ρ (vn, Pvn) + ρ (Pvn, Rzn) + ρ (Rzn, Rvn)

≤ ρ (vn, Pvn) + ρ (Pvn, Rzn) + ρ (zn, vn)

and so
lim
n→∞ ρ (vn, Rvn) = 0.

Theorem 2.1 Let (Z , ρ) be a convex metric space and let V be a nonempty, closed
and convex subset of Z. Let P : V → V be an α-nonexpansive mapping and let
R : V → V be a mapping satisfying condition (C). Moreover, let the sequence {vn}
be defined as in (2). If F 
= ∅, then � − limn vn = v ∈ F.

Proof From Lemma 2.1, we know the sequence {vn} is bounded. Therefore the
sequence {vn} has a unique asymptotic center, i.e., C ({vn}) = {v}. For any subse-
quence {zn} of {vn}, Lemma 1.1 gives that C ({zn}) = {z}. Using Lemma 2.2, we
have

lim
n→∞ ρ (zn, Pzn) = lim

n→∞ ρ (zn, Rzn) = 0.

FromLemma 1.4, we have z ∈ F .Wewill show that v = z. Let’s accept the opposite.
Using the uniqueness of asymptotic centers, we have
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lim sup
n→∞

ρ (zn, z) < lim sup
n→∞

ρ (zn, v)

≤ lim sup
n→∞

ρ (vn, v)

< lim sup
n→∞

ρ (vn, z)

= lim sup
n→∞

ρ (zn, z) .

This is a contradiciton. Therefore C ({zn : {zn} is any subsequences of {vn} }) =
{v} .This requires that � − limn vn = v ∈ F .

Now, we will give the following concepts in order to obtain some strong conver-
gence results.

A self-mapping P : V → V is semi-compact if for any bounded sequence {vn}
in V with ρ (vn, Pvn) → 0, we must have that {vn} has a convergent subsequence
in V .

Let P : V → V and R : V → V be two mapping and let F be a nonempty subset
F of V . They are said to satisfy condition (I I ) if there exists a nondecreasing function
g on [0,∞) with g(0) = 0 and g(s) > 0 for s ∈ (0,∞) such that

1

2
[ρ (v, Pv) + ρ (v, Rv)] ≥ g(ρ(v, F))

for all v ∈ V .

Finally, we will give the following strong convergence results without proofs.

Corollary 2.1 Let (Z , ρ) be a convex metric space and let V be a nonempty, closed
and convex subset of Z. Let P : V → V be an α-nonexpansive mapping and let
R : V → V be a mapping satisfying condition (C). Moreover, let the sequence {vn}
be defined as in (2). If F 
= ∅ and either P or R is semi-compact, then {vn} converges
strongly to a fixed point.

Corollary 2.2 Let (Z , ρ) be a convex metric space and let V be a nonempty, closed
and convex subset of Z. Let P : V → V be an α-nonexpansive mapping and let
R : V → V be a mapping satisfying condition (C). Moreover, let the sequence {vn}
be defined as in (2). If F 
= ∅ and P and R satisfy condition (I I ), then {vn} converges
strongly to a fixed point.

Conclusion 2.1 In this paper, we showed that some fixed point theorems on strong
convergence and �-convergence of the iteration process (2) to common fixed point
of a mapping satisfying condition (C) and an α- nonexpansive mapping in a convex
metric space. SinceHyperbolic spaces,CAT (0) spaces andHilbert spaces are convex
metric spaces, therefore our results also hold in such spaces. Furthermore, our results
generalize the corresponding ones in [2, 7, 9] etc.
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Finite Element Approximation
of Eigenvibration of a Coupled
Vibro-Acoustic System Motivated by
Phonation into Tubes

Jan Valášek, Petr Sváček, and Jaromir Horáček

Abstract The mathematical model of the vibro-acoustic problem representing
human phonation into tube is formulated. It consists of acoustic and structural prob-
lem description as well as their mutual coupling. Here, the vocal folds vibrations
are modelled using linear elasticity theory and the Helmholtz equation is used for
frequency characterization of acoustic waves propagation in the vocal tract model.
The both subproblems are numerically approximated by finite element method. The
preliminary results compare the acoustic eigenfrequencies of vocal tract with tube
and the eigenfrequencies of the coupled vibro-acoustic system. The eigenmodes
with significant acoustic contribution are identified. The first eigenfrequency of cou-
pled system with prevailing acoustic part is substantially increased indicating strong
interaction with the elastic structure.

Keywords Finite element method · Vibroacoustics · Helmholtz equation ·
Eigenfrequencies of coupled system.

1 Introduction

Phonation into tubes of various dimensions is a popular technique used by voice
professionals for voice training and therapy purposes, see [1]. The favourable effect
of the exercise can be explained by lowering the needed power for vocal fold (VF)
phonation process enabled by advantageous interaction of structural vibrations with
the propagating acoustic waves, see [2]. This interaction is particularly strong for the
case when the prolongation of the vocal tract (VT) decreases the first VT acoustic
resonance to the vicinity of the first eigenfrequency of VF vibration. Then it was
measured aswell as computed—see [1, 2], that the first acoustic resonance frequency
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of coupled system is essentially increased due to the aforementioned interaction. In
that case a more complex model of vocal tract acoustics coupled to vocal folds
vibrations needs to be considered what motivates our study of the vibro-acoustic
problem.

Articles [1] and [2] employ a simple 1Dmodel of transfermatrix approach coupled
with a single degree-of-freedom model of elastic body. Such model can not fully
describe spatial shape of the VF vibration eigenmode and its coupling contribution
to the acoustic problem. Therefore we present here the 2D model based on the
coupled partial differential equations and its numerical solution as one of the standard
approaches to coupled vibro-acoustic problem, see e.g. books [3] or [4]. Such 2D
coupled model can reveal us additional information about spatial distribution of
coupled eigenmodes, etc.

In this article the vocal folds vibrations are modelled as linear isotropic elastic
body and the Helmholtz equation is used for the frequency characterization of acous-
tic waves propagation in the vocal tract model. The standard coupling conditions on
the common interface are considered, see [3]. The both subproblems are numeri-
cally approximated by finite element method (FEM). The final coupled system of
equations in frequency domain represents a generalized eigenvalue problem and its
solution reduces to finding a subset of the lowest eigenfrequencies and corresponding
eigenmodes.

The preliminary results compare the acoustic resonance frequencies of vocal tract
alone and the resonance frequencies of the coupled vibro-acoustic system. The first
eigenfrequencyof coupled systemwith the dominance of acoustic part is substantially
increased compared to solely acoustic model. The associated eigenmode shape is
shown.

The paper outline is following: In the next section the mathematical model of
vibro-acoustic model is described. Then the finite element approximation is given. In
the end the preliminary results of eigenfrequencies of coupled system are presented.

2 Mathematical Model

Let us consider a two-dimensional vibro-acoustic problem in domain Ω consisting
of elastic structure domain Ωs (vocal folds) and acoustic domain Ωa . The acoustic
domain models human vocal tract with length L1 and thin tube inserted into mouth
of length L2 and diameter d2, see Fig. 1. The boundary of domain Ω is composed of
mutually disjoint parts: Γ a

Dir, Γ
s
Dir and Γ a

Neu. Moreover by ΓW is denoted the common
interface between domains Ωs and Ωa , see Fig. 1.

Let us consider the problem description in frequency domain, i.e. we assume that
all involved quantities depend on the spatial coordinates x and angular frequency ω,
e.g. p̂(x, ω), if it is not mentioned differently.
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Fig. 1 Scheme of structure
domain Ωs and acoustic
domain Ωa together with
marked boundaries of ∂Ωa

2.1 Elastic Structure

The elastic structure displacement û(x, ω) = (û1, û2) is modelled by

ω2ρs ûi + ∂τ̂ s
i j

∂x j
= 0, in s, (i = 1, 2), (1)

where ρs is the structure density and τ̂ s
i j denote the components of the Cauchy stress

tensor. Under assumption of isotropic body the stress tensor components can be
expressed with help of the Hooke’s law as

τ̂ s
i j = λsdiv û δi j + 2μs êsi j (û), (2)

where I = (δi j ) is Kronecker’s delta, êsi j (u) = 1
2

(
∂ û j

∂xi
+ ∂ ûi

∂x j

)
denotes the small strain

tensor and parameters λs, μs are the Lamé coefficients, see e.g. [5]. The elastic body
is firmly clapped at the bottom given by Dirichlet boundary condition

û(x, ω) = 0, for x ∈ Γ s
Dir. (3)

2.2 Acoustics

The sound propagation through homogeneous medium at rest is described in fre-
quency domain by the Helmholtz equation for acoustic pressure p̂(x, ω), see [6],

−ω2

c20
p̂ − 
 p̂ = f̂ a(x, ω), in Ωa, (4)

where c0 is the speed of sound and function f̂ a describes possible generic sound
sources. The following boundary conditions are considered

(a) p̂(x, ω) = 0, for x ∈ Γ a
Neu, (5)

(b)
∂ p̂

∂n
(x, ω) = 0, for x ∈ Γ a

Dir,
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where vector n = (n j ) is unit outer normal to ∂Ωa . Condition (5a) is so called sound
soft boundary condition which models the free end of tube. The second condition
(5b) is the sound hard condition and it represents fully reflecting walls, see [6].

2.3 Vibro-Acoustic Coupling

The vibro-acoustic problem, represented by equations (1) and (4), is coupled by
boundary conditions on the common interfaceΓW.The boundary condition for acous-
tic pressure p̂ has the form, see e.g. [4],

∂ p̂

∂n
(x, ω) = ρaω2û(x, t) · n, x ∈ ΓW. (6)

where ρa is the density of air. This boundary condition can be understood as the
acoustic emission given by normal acceleration of vibrating surface ΓW.

The boundary condition prescribed for elastic body is based on the stress conti-
nuity in normal direction and it reads

τ̂ s
i j (x, ω) n j = p̂(x, ω) ni , x ∈ ΓW, (7)

where n = (n j ) is unit outer normal to ΓW pointing from Ωs to Ωa .

3 Numerical Modelling

The FEM is used for spatial discretization of both subproblems (1) and (4).

3.1 Elastic Structure

The standard weak formulation of (1) together with considered boundary conditions
(3) and (7) leads to problem – find û ∈ V such that

−ω2
(
ρs û,ψ

)
Ωs + (

λs(div û) I + 2μses(û), es(ψ)
)
Ωs = − (

p̂n,ψ
)
ΓW

, (8)

holds for all ψ ∈ V = V × V , V = { f ∈ H 1(Ωs)| f = 0 on Γ s
Dir}. The scalar prod-

uct of functions from L2(D) is denoted by (·, ·)D.
Finite element approximation can be expressed as a linear combination of basis

functions ψ i from FE space Vh , i.e. uh = ∑2Nh
i=1 α̂s

i ψ i (x). It leads to linear algebraic
system of equations for unknown vector α̂

s = (α̂s
i ) for given ω ∈ R
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−ω2
M

s α̂
s + K

s α̂
s + C

aα̂
a = 0, (9)

where vector α̂
a denotes unknowns of acoustic part of the problem. The elements of

matrices Ms = (ms
i j ),K

s = (ksi j ) and C
a = (cai j ) are given by

ms
i j = (ρsψ j ,ψ i )Ωs , ksi j = (λs(div ψ j ) δi j + 2μses(ψ j ), es(ψ i ))Ωs , (10)

cai j = (
ηi n, ψ j

)
ΓW

,

where ηi denotes FE basis functions of the acoustic FE approximation space Yh .

3.2 Acoustics

The weak formulation of problem (4) together with conditions (5) and (6) in func-
tional space Y = { f ∈ H 1(Ωa)| f = 0 on a

Dir} reads: find p̂ ∈ Y that

−ω2

(
1

c2
p̂, η

)
Ωa

+ (∇ p̂,∇η
)
Ωa + ω2

(
ρa û · n, η

)
ΓW

=
(
f̂ a, η

)
ΓW

(11)

is satisfied for any η ∈ Y . The same discretization procedure by the FEM yields

−ω2
M

aα̂
a + K

aα̂
a + ω2

C
s α̂

s = ba(ω), (12)

where matricesMa andKa are the mass and stiffness matrices, respectively, and the
components of right hand side vector ba(ω) = (baj ) and the couplingmatrix elements
C

s = (csi j ) are given by

baj =
(
f̂ a, η j

)
Ωa

, csi j = (
ρaψ i · n, η j

)
ΓW

. (13)

The acoustic and the structure meshes are chosen to be consistent across the interface
ΓW. Then no additional treatment during computation of the coupling matrices is
needed.

3.3 Numerical Solution of Coupled Vibro-Acoustic Problem

Collecting all terms of (9) and (12) in one system yields

(
−ω2

(
M

s 0
−C

s
M

a

)
+

(
K

s
C

a

0 K
a

))(
α̂
s

α̂
a

)
=

(
0
ba

)
, (14)
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where further vector ba := 0 is assumed. Then this problem represents the general-
ized eigenvalue problem and it can be solved by e.g. mathematical library ARPACK.

4 Numerical Experiments

First the eigenfrequencies of separated acoustic and structural model are described.
Then the resonance frequencies of the coupled system is computed.

4.1 Acoustic Resonance Frequencies of Vocal Tract Without
and with Tube

Vocal tract (VT) model is motivated byMRI measurement of vowel [u:] of [7] where
the glottal space is additionally included resulting in L1 = 0.1931m. Further as in
[1] the VT is prolonged by the tube of dimensions L2 = 0.264m, d2 = 6.77mm.
This geometry setting is in next referred as VT+tube. Boundary condition (6) on ΓW

is replaced for the case of sole acoustic problem by sound hard boundary condition
(5b). The speed of sound is chosen as c0 = 343m/s and density is ρa = 1.2 kg/m3.

The first four computed eigenfrequencies of VT model without and with the tube
is listed in Table1. In our problem setting the VT or VT+tube can be represented
very approximately for low frequencies as an acoustic quarter-wave resonator, see
[8]. Then inclusion of the tube leading to significant decrease of eigenfrequencies of
acoustic system, see Table1, can be satisfactory explained by the increase of acoustic
resonator length (L ≈ L1 vs. L ≈ 0.4571m for VT+tube).

4.2 Structural Resonance Frequencies of Vocal Fold Model

The vocal fold (VF) model is based on the geometric and material settings published
in [9] with the initial glottal gap equal to 2.0mm. Structural density is chosen as ρs =

Table 1 Computed eigenfrequencies (in Hz) of the vocal tract models without and with tube
prolongation. The eigenfrequencies of vocal fold model is in last column

VT VT+tube Vocal folds

F1 374.8 139.8 121.2

F2 1522.4 559.8 216.7

F3 1866.8 881.0 275.3

F4 2671.6 1347.2 388.1
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Fig. 2 The first three eigenmodes of chosen VF model with the corresponding eigenfrequencies
121.2Hz, 216.7Hz and 275.3Hz. The reference VF shape is marked by black line. Different colors
reproduce regions with different material settings

1020 kg/m3. Boundary condition (7) on ΓW in the case of sole structure problem is
replaced by zero Neumann boundary condition τ̂ s

i j (x, ω) n j = 0.
The four lowest VF eigenfrequencies are shown in Table1 and the corresponding

(three) eigenmodes are plotted on Fig. 2. The lowest structural eigenfrequency is
close to the first acoustic frequencies of VT+tube suggesting the need to consider
their mutual coupling as it is performed in the next paragraph.

4.3 Resonance Frequencies of Coupled System

Let us solve now eigenvalue problem (14). It has many eigenfrequencies however we
are interested only in such oneswhere the acoustic part of eigenmode has a significant
contribution. In our case with high ratio of considered densities the eigenfrequen-
cies of the structural part are negligibly influenced whereas the eigenfrequencies of
acoustic part are significantly impacted indicating strong interaction with the elastic
structure, see [3]. The eigenfrequencies with significant acoustic contribution can
be found by skipping all solely structural eigenfrequencies (as obtained in previous
paragraph) from the list of computed coupled eigenfrequencies of system (14).

Thefirst two coupled eigenmodeswith significant acoustic contribution are plotted
in Figs. 3 and 4. The considering of coupling leads to significant increase of the
first eigenfrequency (F1 = 139.8Hz of purely acoustic problem to Fc

1 = 365.3Hz
of coupled problem, F2 = 559.8Hz vs. Fc

2 = 692.4Hz) similarly as analysed by
[1]. Very interesting is the change of acoustic resonator character of the coupled
system. Figures3 and 4 suggest that vocal tract (with tube) behaves rather as half-
wave resonator when coupled with the vocal folds. This observation is missing in
reference [1].
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Fig. 3 The first eigenmode of coupled system with significant acoustic contribution at Fc
1 =

365.3Hz. Left: The amplitude of acoustic pressure and the magnitude of structural displacement is
plotted on z-axis. Right: The structural part of the first coupled eigenmode is shown

Fig. 4 The second (acoustic) eigenmode of coupled system at Fc
2 = 692.4Hz. Left: The amplitude

of acoustic pressure and the magnitude of structural displacement is plotted on z-axis. Right: The
structural part of the second coupled eigenmode is shown

5 Conclusion

The mathematical model of the vibro-acoustic problem in frequency domain repre-
senting phonation into tube was described and this problem was discretized in space
by the FEM leading to the generalized eigenvalue problem. The eigenfrequencies of
the coupled system provide interesting results highlighting the importance of struc-
tural coupling inclusion into model. The first eigenfrequency of coupled system with
acoustic dominancewas substantially increased compared to solely acoustic problem
in correspondence with reference [1]. The change of acoustic resonator character is
newly pointed out. An open question remains to determine the influence of vocal
fold stiffness to the resulting eigenfrequencies of coupled system.
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On Mathematical Modelling of Flow
Induced Vocal Folds Vibrations During
Phonation

Petr Sváček

Abstract In this paper the problem of mathematical modelling of phonation is dis-
cussed. The main attention is paid to the treatment of vocal fold vibrations including
the periodical appearance of their contacts. A simplified mathematical model is pre-
sented, numerically analyzed and discussed. The Hertz impact forces are used in the
structural part. In order to treat the contact phenomena in the fluid model a strat-
egy based on fictitious porous media is introduced. The numerical discretization is
described and numerical results are presented.

Keywords Aeroelasticity · Navier-Stokes equations · Finite element method

1 Introduction

The fluid-structure-acoustic interaction problems are usually associated with tech-
nical applications as aeroelasticity, see [1]. However, couplings between fluid flow,
elastic structure deformation and acoustics are involved also in biomechanics of
voice, see [2]. Voice production is a complex process, which involves airflow induced
vibrations of vocal folds generating a sound source. The fundamental sound is fur-
ther modified by the acoustic resonances in the vocal tract cavities. The vocal folds
start to oscillate at the so-called phonation onset (flutter instability) given by certain
airflow rate and a certain prephonatory vocal folds position, see [3]. For higher flow
rates, the glottis is closing during VFs vibration and the VFs collide loading the tis-
sue periodically by the contact stress. Consequently, the mathematical modelling of
phonation process is challenging task, it addresses flow field, structure deformation
as well as acoustics, see e.g. [4].
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In this paper an attention is paid the mathematical modelling of the voice pro-
duction. As during voice creation the airflow velocity in the human glottal region is
lower than 100m/s, one can use separately the incompressible Navier-Stokes model
for the fluid flow and the Lighthill’s acoustic analogy for the acoustic wave propaga-
tion, see [5]. The considered problem is characterized as a problem of fluid-structure
interaction and an attention is paid to the problem of glottis closure (glottis is the
narrowest part between the vibrating vocal folds).

Computational modelling can help with analysis of the physical background of
the phonation processes. These involve the interactions of the fluid flow with solid
body deformation, the contact problem and acoustics. One of the possible approaches
is using of a simplified model as the 2-mass model of the vocal folds of [6], where
a simplified air flow model is used. Such aeroelastic models [3] has applications in
simulation of vowels and in estimation of the vocal fold loading by impact stress and
inertial forces.

Here, a simplified lumped VF model with the Hertz contact model is considered
in order to more easily address the phenomena of fluid-structure interactions with the
contact of the vibrating structure similarly as in [7] and [8]. Due to the same reason a
suitablemodification of the inlet boundary condition is used. The novelty of this paper
lies in verification of the problem formulation with modified boundary conditions,
where a simplified stationary model problem is analyzed. Further, more consistent
formulation of the porous media term is used in the present paper compared to the
approach proposed in [7]. The applied numerical method is described and numerical
results are shown.

2 Mathematical Model

We consider two-dimensional model of incompressible fluid flow in an interaction
with a simplified model of vocal fold, whose deformation is described as motion of
an equivalent mechanical systems with two-degrees of freedom, see [3].

2.1 Flow Model

First, theflowmodel through the twodimensionalmodel of the computational domain
Ωt during the phonation onset phase is introduced. In this case only small amplitudes
of the vibrations of vocal folds appear and thus the flow in the domain Ωt can be
treated with the aid of Arbitrary Lagrangian Eulerian (ALE) method, see [9]. The
computational domain Ωt is shown at Fig. 1, where the additional assumption of a
symmetric flow and symmetric vibrations of vocal folds are made. The boundary
∂Ωt is assumed to consist of the inlet ΓI , the outlet ΓO , the axis of symmetry ΓS and
the time dependent part of boundary Γt consisting of its fixed ΓF and deformable
part ΓWt , which corresponds to the surface of the vibrating vocal fold.
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Fig. 1 The computational
domain Ωt with specification
of the boundary parts

The flow in the computational domain Ωt is modelled as incompressible fluid
flow described by the system of the incompressible Navier-Stokes equations (cf.
[10]) written in the ALE form.

DAu
Dt

+ ((u − wD) · ∇)u = divτ f ,

∇ · u = 0, (1)

where u denotes the fluid velocity vector u = (u1, u2), τ f = (τ
f
i j ) is the fluid stress

tensor given as τ f = −pI + ν
(∇u + ∇T u

)
, p is the kinematic pressure (means

pressure divided by the constant fluid density ρ) and ν > 0 denotes the constant
kinematic fluid viscosity (the viscosity divided by the density). Further, wD denotes
the domain velocity (i.e. the velocity of the point with a fixed reference), and DAu

Dt
is the ALE derivative, i.e. the derivative with respect to the reference configuration
Ωre f . Both the domain velocity wD as well as the ALE derivative depends on the
ALE mapping At describing the deformation of a reference domain Ωre f onto the
computational domain Ωt .

The system (1) is then equipped with an initial condition and with the following
boundary conditions are prescribed

(a) u = wD on ΓWt ,

(b) u2 = 0,−τ
f
12 = 0 on ΓS, (2)

(c)
1

2
(u · n)−u − n · τ f = 1

ε
(u − uI ) on ΓI ,

(d)
1

2
(u · n)−u − n · τ f = pre f n on ΓO ,

where uI is a given reference inlet velocity, pre f is a reference outlet pressure, n
denotes the unit outward normal vector to ∂Ω

f
t , α− denotes the negative part of a

real number α. Here, the boundary condition (2c) weakly imposes the inlet velocity
uI using the penalization parameter ε > 0.
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2.2 Vocal Fold Vibrations

The vocal fold vibrations is modelled using the mechanically equivalent two degrees
of freedommodel characterized by three massesm1,m2 andm3. The two massesm1

and m2 are displaced by the length l = L/2 from the center of the vocal fold, where
the mass m3 is located. The three masses m1,m2,m3 were determined by

m1,2 = 1

2l2
(I + m e2 ± m e l), m = m1 + m2 + m3, (3)

with l = L/2 being the distance of the masses m1 and m2 from the center, m
denotes the total mass m = m1 + m2 + m3, e is the eccentricity and I is the iner-
tia moment, see Fig. 2. The parameters e, m and I are determined using the den-
sity ρV F = 1020 kg/m3, the length (depth of the channel in the third dimension)
h = 18mm and the (parabolic) shape of the surface of the vocal fold

am(x) = 1.858 x − 159.861 x2 [m] (4)

for x ∈ 〈0, L〉 [m] with L being the thickness of the vocal fold L = 6.8 mm.
The vibration of the vocal fold is modelled by two degrees of freedom, see Fig. 2,

which are the displacements w1(t) and w2(t) of the masses m1 and m2, respectively.
The governing equation of motion reads

Mẅ + Bẇ + Kw = −F, (5)

where M is the mass matrix of the system, K is the stiffness matrix of the system
characterized by the spring constants k1, k2, see [3] for details. Thematrices are given
by

M =
(
m1 + m3

4
m3
4

m3
4 m2 + m3

4

)
. K =

(
k1 0
0 k2

)
, B = ε1M + ε2K (6)

The vector F = Fimp + Faero consists of the impact forces Fimp and the aerodynam-
ical forces Faero = (F1, F2)

T (downward positive) acting at the masses m1 and m2

Fig. 2 Two degrees of
freedom model (with masses
m1, m2, m3) in displaced
position (displacements w1
and w2). The acting
aerodynamic forces F1 and
F2 are shown
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evaluated from the aerodynamical forces as surface integrals using the (kinematic)
pressure p and derivatives flow velocity u = (u1, u2), see [7].

Moreover, the displacement of the structure surface ΓWt determines the boundary
condition for the construction of the ALE mapping and the domain velocity wD at
ΓWt is determined using by time derivatives of w1, w2.

2.3 Contact Problem

The treatment of the contact the vocal folds in the flow model requires to address
not only the inlet boundary condition, but also the periodical topological changes
of the flow domain. It can be realized more easily for the simplified situation of the
symmetric domain, but this concept can be extended to a more complicated case.
First, in this section the computational domain Ωt is assumed to be formed of the
subdomain Ω

f
t , which is really occupied by the fluid(air), and the subdomain Ω

p
t ,

which is still part of the computational flow domain but it should be occupied the
elastic vocal fold ΩV F

t . In practical implementation, the domain Ω
p
t is determined

as the intersection of the domain Ωt with the deformed vocal fold domain ΩV F
t . The

geometricalmodification of themotion of the surfaceΓWt is based on the deformation
of the surface at the contact region, see Fig. 3, where the deformation is locally
modified not to violate the minimal gap condition. At these points the surface of
the vocal fold is shifted in order to guarantee the minimal gap (gmin) condition, see
Fig. 3.

The part of the fluid domain Ω
p
t is assumed to be domain of porous media, and

the flow is then assumed to be governed by the modified equations

DAu
Dt

+ ((u − wD) · ∇)u + σ Pu = divτ f , (7)

where the tensor coefficient σ P corresponds to the artificial porosity of the fictitious
porousmedia, see [11], or it can be understand as penalization, see [12]. Here the ten-
sor is chosen to act only the x-direction, i.e. the choice σ P = P

ν
e1 ⊗ e1χΩ

p
t
was used,

Fig. 3 The detail of the
porous media flow domain
Ω

p
t
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where P denotes the artificial porosity coefficient and χΩ
p
t
denotes the characteristic

function of the set Ω p
t which is equal to one on Ω

p
t and zero otherwise.

Although this approach can be written generally, for the presented model problem
it can be described more specifically: The reference (undeformed) shape of the vocal
fold ΩV F

re f is given by

ΩV F
re f = {[x, y] ∈ R

2 : x ∈ (0, L),−H < y < am(x) − H}, (8)

where H = g0 + HV F denotes the half-height of the inlet channel given as sum of
the initial halfgap g0 and the height of the vocal fold HV F = maxx∈[0,L] am(x). The
deformation of the vocal fold ΩV F

t is described using w1, w2 by the Lagrangian
mapping Lt (x, y) = (x, ynew) with

ynew = y + w1 + w2

2
+ w2 − w1

L
x (9)

for [x, y] ∈ ΩV F
re f . In particularly, the position of the vocal fold surfaceΓ V F

t (interface
between the fluid and structure domain) is given as

Γ V F
t = {[x, y] ∈ R

2 : x ∈ [0, L], y = am(x) − H + w1 + w2

2
+ w2 − w1

L
x}.
(10)

The domainΩ P
t can be characterized as all points [x, y] ∈ ΩV F

t whichwould violate
the condition g(t) ≥ gmin or y > −gmin . Consequently, the porous media domain
can be specified as

Ω
p
t = {[x, y] ∈ R

2 : x ∈ (0, L), −gmin < y < am(x) − H + w1 + w2

2
+ w2 − w1

L
x},
(11)

see Fig. 3.
Let us mention, that for the half-gap g(t) (i.e. the oriented distance of the vocal

fold and the symmetry axis) satisfying g(t) ≥ gmin > 0 (phonation onset) such an
intersection is naturally empty and in this case the mathematical model is equivalent
to the mathematical model presented in [15] and the presented numerical method
then leads to the same results, which well determines the flutter velocity.

3 Existence and Uniqueness of a Stationary Solution

In order to discuss the penalization boundary condition we shall start with a sim-
plified stationary problem on two-dimensional domain Ω ⊂ R

2 with the Lipschitz-
continuous boundary ∂Ω . The system of Navier-Stokes equations is written in the
form
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− ν	ui + u · ∇ui + ∂p

∂xi
= fi , i = 1, 2, in Ω

∇ · u = 0, in Ω (12)

with the boundary conditions prescribed on the mutually disjoint parts ∂Ω = Γ0 ∪
Γ1 ∪ Γ2 ∪ ΓS, as

u = 0, on Γ0,

−ν
∂u
∂n

+ (p − pre f )n − 1

2
(u · n)− u = 0, on Γ1 ∪ Γ2, (13)

with pre f = pi on Γi , i = 1, 2.
The stationary problem of Navier-Stokes system of equations reads: Find u ∈ X

such that for all z ∈ X and q ∈ Q

ν
(
∇u,∇ z

)

Ω
+ c(u; u, z) −

(
p,∇ · z

)

Ω
+

(
q,∇ · u

)

Ω
+

+
∫

Γ1∪Γ2

1

2
(u · n)+u · zdS =

(
f , z

)

Ω
−

2∑

k=1

∫

Γk

pk(z · n)dS. (14)

In order to prove the existence and uniqueness of the solution let us consider the
subspace Xdiv ⊂ X defined as

Xdiv = {ϕ ∈ X ,∇ · ϕ = 0}.
Any solution u ∈ X of Equation (14) satisfies u ∈ Xdiv and moreover the equation

ν
(
∇u, ∇ z

)

Ω
+ c(u; u, z) +

∫

Γ1∪Γ2

1

2
(u · n)+u · zdS =

(
f , z

)

Ω
− (p1 − p2)

∫

Γ1

(z · n)dS.

(15)
holds for all z ∈ Xdiv .

Theorem 1 (Existence and uniqueness of the solution) Let CF‖ f ‖0,2,Ω + C1|p2 −
p1| < ν2

C̃
, where CF is the constant from Friedrichs inequality, C1 is the constant

from the trace theorem and C̃ is the constant from the continuity of the trilinear form
c. Then there exists an unique solution u ∈ Xdiv , which satisfies Equation (15) for
all z ∈ Xdiv .

Proof 1. First, we consider for any w ∈ Xdiv the problem: find u ∈ Xdiv

Aw(u, z) = L(z) for all z ∈ Xdiv.

The bilinear form Aw(·, ·) is defined by
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Aw(u, z) = ν
(
∇u,∇ z

)

Ω
+ c(u; u, z) +

∫

Γ1∪Γ2

1

2
(u · n)+|u|2dS,

and the form L(·) is defined by

L(z) =
(
f , z

)

Ω
− (p1 − p2)

∫

Γ1

(z · n)dS,

because for any z ∈ Xdiv holds

2∑

k=1

∫

Γk

pk(z · n)dS = (p1 − p2)
∫

Γ1

(z · n)dS.

The bilinear form Aw(·, ·) is continuous and coercive on Xdiv , the linear form
L(·) is continuous on Xdiv . Thus for any w∗ ∈ Xdiv there exists solution z∗ ∈
Xdiv such that

Aw∗(z∗, z) = L(z) for all z ∈ Xdiv.

With the choice of z = z∗ we get the following apriori bound

ν|z∗|21,Ω ≤ Aw(z∗, z∗) = L(z∗) ≤
(
CF‖ f ‖0,2,Ω + C1|p2 − p1|

)
|z∗|1,Ω

thus

|z∗|1,Ω ≤ 1

ν

(
CF‖ f ‖0,2,Ω + C1|p2 − p1|

)
.

2. We define the mapping Ψ : w → z from K onto K, where

K =
{
z ∈ Xdiv, |z|1,Ω ≤ 1

ν

(
CF‖ f ‖0,2,Ω + |p2 − p1|C1

)}
,

where C1 is the constant from the trace theorem. Further, we will show that the
mappingΨ is the contractive mapping onK. Let us takew1,w2 ∈ K and denote
z1 = Ψ (w1) and z2 = Ψ (w2). Thus the following equations are satisfied

Aw1(z1, z2 − z1) = L(z2 − z1),

Aw2(z2, z2 − z1) = L(z2 − z1).

Now by subtracting both equations we get from the continuity of the trilinear
form c

ν|z2 − z1|21,Ω = c(w2 − w1; z2, z2 − z1)

≤ C̃ |w2 − w1|1,Ω |z2|1,Ω |z2 − z1|1,Ω
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and with z2 ∈ K we have

|z2 − z1|21,Ω ≤ C̃
ν2

(
CF‖ f ‖0,2,Ω + |p2 − p1|C1

)
|w2 − w1|1,Ω .

Thus the mapping Ψ is a contractive mapping from K in K, and there exists a
fixed point of the mapping Ψ , which is the unique solution of the problem (15).

4 Numerical Approximation

In this section the numerical approximation of the flow model is introduced: an
equidistant partition t j = jΔt of the time interval I with a constant time stepΔt > 0
is considered. At time instants t j , j = 0, 1, . . . the approximations of velocity and
pressure are sought u j ≈ u(·, t j ) and p j ≈ p(·, t j ), respectively. The domain veloc-
ity at time instant t j is denoted byw

j
D . For the time discretization the formally second

order backward difference formula is used, i.e. the ALE derivative is approximated
at t = tn+1 as

DAu
Dt

|tn+1 ≈ 3un+1 − 4ũn + ũn−1

2Δt
(16)

where at a given time instant t = tn+1 by ũk the transformation of the velocity uk

defined on Ωtk onto Ωtn+1 is denoted.
In order to apply finite element method the weak form of Eqs. (1) is derived in a

standard form, where the ALE derivative is approximated using Eq. (16). The stabi-
lized weak at time instant tn+1 form then reads: find finite element approximations
U = (u, p) := (un+1, pn+1) such that u satisfy the boundary condition (2a) and

a(U ;U, V ) + aS(U ;U, V ) + PS(U, V ) = L(V ) + LS(V ) (17)

holds for any test functions V = (z, q) from the finite element spaces, [7] for details.
The Galerkin forms a and L are defined for any U = (u, p), U = (u, p) and V =
(z, q) by

a(U ;U, V ) =
∫

Ω

(
(

3

2Δt
+ σ P)u + ((w · ∇)u

)
· zdx −

∫

ΓI,O

1

2
(u · n)−u · zdS

+
∫

ΓI

1

ε
u · zdS +

∫

Ω

(2ν(∇u : ∇ z) − (∇ · z)p) dx (18)

and

L(V ) =
∫

Ω

4ũn − ũn−1

2Δt
· zdx +

∫

ΓI

1

ε
uI · zdS −

∫

ΓO

pre f (n · z)dS, (19)

where w = u − wn+1
D , Ω := Ωtn+1 .
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The terms aS(U ;U, V ) and LS(U ; V ) are the SUPG/PSPG stabilization terms
and the term PS denotes the div-div stabilization term. The stabilization terms are
defined locally on each element K of the employed triangulation TΔ and summed
together, i.e.

aS(U ;U, V ) =
∑

K∈TΔ

δK

(
(

3

2Δt
+ σ P )u − μ	u + (w · ∇) u + ∇ p, (w · ∇)z + ∇q

)

K

LS(U ; V ) =
∑

K∈TΔ

δK

(
4ũn − ũn−1

2Δt
, (w · ∇)z + ∇q

)

K

PS(U, V ) =
∑

K∈TΔ

τK

(
∇ · u, ∇ · z

)

K
,

where δK , τK are stabilization parameters chosen similarly as in [15].
The problem (17) is linearized, strongly coupled with the structural solver and

the described treatment of the contact problem is used.

5 Numerical Results

This section presents the numerical results for the described aeroelastic model. The
parabolic vocal fold shape am(x) given byEq. (4)was used and the computationswith
the initial half-gap chosen as g0 = 0.2mm and the inflow velocity U∞ = 0.65m/s
were performed. These conditions the phonation onset occurs, see [15]. The fol-
lowing parameters were used: the mass m = 4.812 × 10−4 kg, the inertia moment
I = 2.351 × 10−9 kg / m2 and the eccentricity e = 0.771 × 10−3 m. The stiffness
constants were chosen as k1 = 56N/m and k2 = 174.3N/m. The proportional damp-
ing constants were set to ε1 = 120.35 s−1 and ε2 = 6.12 × 10−5 s. The stiffness con-
stants give the natural frequencies of the structural model f1 = 100Hz, f2 = 160Hz,
see [13, 14]. The fluid density was ρ = 1.2 kg/m3 and the kinematic viscosity
ν = 1.58 × 10−5 m2/s.

The numerical results are shown in terms of a typical aeroelastic reponse for the
aeroelastically unstable system in Fig. 4. The vibration of the vocal fold is shown by
the graph of displacementsw1 andw2 in time domain. The graph Fig. 4a) corresponds
to the phonation onset case, the gap between the vocal folds at the glottis is still
wide opened and the modification of the mathematical model to treat the contact
phenomena is not needed.

The vocal fold vibrations grows further and the increase of amplitudes finally
leads to the almost periodical mutual contact of the vocal folds. The appearance of
the impact forces leads to almost a limit cycle of oscillations, see Fig. 4b).

The computations were performed either for the case of porosity coefficient P
equal zero (which corresponds to the open space flow) or a prescribed fixed value
(P = 106ν) of porosity. Figure6 shows the comparison of these two computations
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Fig. 4 The aeroelastic response of the structure for flow velocity U∞ = 0.65 m/s: a phonation
onset in terms of the displacements w1(t) and w2(t) (top), b phonation with the glottis closure in
terms of the displacements w1(t) (solid/black line) and w2(t) (dashed/green line) on the left and
the half-gap g(t) on the right

Fig. 5 The flow patterns in terms of flow velocity magnitude and instantenous streamlines during
the closing and the reopening phase. The axis show the non-dimensional coordinates x/L , y/L
with L being the width of the vocal fold (length in x-direction)

in terms of the inlet quantities. This graph confirms that use of this modified math-
ematical model also really well addresses the real gap closing similarly as in [7].
The use of the anisotropic porosity has almost no influence on the inlet values of
velocity or pressure, see Fig. 6, still the x-component of the gap velocity shown in
Fig. 7 becomes zero in the case of the fictitious porosity approach employed. This
is also confirmed in Fig. 5, where the flow stops during the closure period (see the
middle part of Fig. 5).
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Fig. 6 Inlet velocity (left) and pressure (right) - comparison of the quantities for zero porosity
(dashed/green line) and non-zero porosity (solid/black line). The dotted/blue line shows the (scaled)
half-gap in dependence on time

Fig. 7 The flow velocity x-component in the glottal area - comparison of the results for zero
porosity (dashed/blue line) and non-zero porosity (solid/black line). The dotted/green line shows
the (scaled) half-gap in dependence on time

6 Conclusion

This paper focuse on analysis and an improvement of the mathematical model of
human phonation process previously suggested in [7]. The mathematical model is
based on the incompressible flow model strongly coupled with a system of ordi-
nary equations describing the motion of the vocal fold model. In order to treat the
vocal folds contact the inlet boundary conditions are prescribed by the penalization
approach, the geometrical modification of the computational domain is made and
in the artificially created part of the computational domain the fictitious anisotropic
porous media flow model is used. The analysis of a stationary problem with cor-
responding boundary conditions is presented. The proposed concept of anisotropic
porous media flow is applied , the problem is numerically discretized by an in-house
software by the stabilized finite element method. Numerical results are shown prov-
ing that the suggested approach is applicable and robust.
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Team-Based Learning Collaborative, Is
Possible Online?

Cristina M. R. Caridade

Abstract In the proposal presented in this paper, the use of the Team-Based Learn-
ing Collaborative methodology during online classes was explored, with a view to
training in mathematics for the (future) engineer. The objective was to answer the
rhetorical question of the paper’s title. During the online classes of Calculus 1, fixed
teams of 4–6 students were created that collaboratively interacted and solved 3 chal-
lenges. The proposed problems followed 3 phases: Preparation, Learning assurance
process and Application. Classroom experiences are reported here using GeoGebra
software and Miro collaborative working technology. Activities proposed covering
concepts related to solving nonlinear equations and numerical integration, situations
that address notions of numerical methods related to topics that are part of the cur-
riculum. It is hoped that these experiences will serve as an inspiration for more active
mathematics teaching practice.

Keywords Active learning · Team-Based Learning · Collaborative learning ·
Math for engineers · Online course

1 Introduction

In the formation of future engineers, who are increasingly innovative, autonomous
and entrepreneurs, more significant pedagogical interventions are needed, which
allow them to develop, in addition to technical knowledge, the ability to argue, team-
work, management, innovation and problem solving. The application and develop-
ment of new teaching-learningmethodologies thatmotivate and help students to build
knowledge have been much studied and developed [1]. Within these methodologies,
active learning stands out [2]. Active learning is a teaching approach in which the
student takes an active role in their own learning, participating in activities, making
and reflecting on their own learning, often working in collaboration with their peers
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Fig. 1 Active versus Passive Learning. Adapted from https://teachonline.asu.edu/2013/03/how-
does-active-learning-support-student-success/

[3]. Active learning can happen in many different ways, but it usually involves 4
main steps (analyze, define, create, evaluate) that can occur individually, in pairs or
in groups (Fig. 1). One of these ways is Team-Based Learning. Team-Based Learn-
ing (TBL) is an active learning strategy developed at the University of Oklahoma
Business School by Dr. Larry Michaelsen when his classes grew from 40 to 120
students. Team-Based Learning is one of the learning technologies that have been
used in several areas of education, culture, arts, health, among others [4, 5]. TBL
is now used around the world in various schools of medicine, dentistry, pharmacy
and other health science disciplines. In mathematics teaching, the TBLmethodology
has also been applied in secondary courses [6–9] and in higher education, although
less frequently, especially in the case of engineering courses [10, 11]. TBL not only
encourages individual effort, but also team involvement to learn in an academic envi-
ronment, also called Team-Based Learning Collaborative (TBL-C) characterized by
a three-phase approach (Fig. 2). The TBL-C begins to emerge in collaborative learn-
ing teaching strategy [12]. Asmore courses/disciplines start using online platforms to
teach content, universities are becoming more interested in learning how to integrate
TBL-C into the online learning environment [5]. Learning is transformed into online
learning and the TBL-C methodology will have to accompany this transformation,
TBL-C learning is possible online.

2 Methodology

During the transition regime towards COVID-19, the teaching and learning envi-
ronment changed from face-to-face in a traditional classroom to online mode in a
virtual classroom, in order to provide continuity of learning, given the impossibil-
ity of them having in-person classes. Traditional higher education institutions also

https://teachonline.asu.edu/2013/03/how-does-active-learning-support-student-success/
https://teachonline.asu.edu/2013/03/how-does-active-learning-support-student-success/
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Fig. 2 Methodology process adapted from [16]

had to change overnight from a predominantly face-to-face teaching mode to a fully
on-line mode. This required a fundamental change in their core teaching and assess-
ment processes. Students’ learning experiences and teachers’ way of teaching were
impacted and everyone had to adapt to this new reality [13–15]. This paper reports a
case study developed in the classes of Calculus 1 of the Degree in Electrotechnical
Engineering at Coimbra Institute of Engineering, in which the TBL-C methodology
(face-to-face) had to be adapted to online TBL-C. About sixty students from the first-
year who attended Calculus 1 mathematics classes in 2020/2021 participated in this
study. Three online TBL-C projects (designated by challenges) were carried out that
addressed different content and that follow a line of activities proposed to students
and represented schematically in the Fig. 2. In the first phase (Preparation), students
get the information they need tomeet the learning objectives. Information can include
book chapter readings, learning guides, online information, research articles, or even
information given in classes or labs. In the second phase, called the Learning Assur-
ance Process, students must review and be prepared to use the information during
class. At this stage, to ensure that all students have mastered the pre-class material,
individual and team readiness tests are conducted. The individual and team test is
the same, consisting of 3 or 4 multiple choice questions. Afterwards, the individual
and teams results were presented to the students, as well as the correct answers and
their resolution. It is at this point that, if necessary, students will have to review some
concepts. The final phase (Application), where students share information they ’ve
acquired in teams to solve real-world problems, apply the learned information, and
ultimately provide feedback to peers [5, 17]. In this phase, when students as a team
solve the proposed challenge, they follow 5 to 6 essential steps: briefly present the
studied content, give examples of application of that content, visualize and solve the
proposed challenge, present the results to colleagues, and in the final give an opinion
on the activity developed. Throughout this process, students need to be supported
and guided to learn the necessary skills and achieve learning outcomes. Without that
support and direction, learning will not succeed. The teacher’s primary role is that of
a facilitator: supporting and advising when needed, providing the necessary structure
and competencies.



226 C. M. R. Caridade

3 Experience in Classes

The classroom is no longer a physical place within the university, but an online space
anywhere, where students on that day and time connect and have classes over the
internet in a virtual environment. Teamwork is not carried out at tables, with students
around, writing in notebooks, computers and sharing ideas, but in simultaneous
rooms using collaborative whiteboards and digital resources. In this experience,
students formed permanent teams throughout the semester of 4 to 6 students, who
for 1h30 every week were housed in simultaneous zoom rooms, where they shared
their learning and ideas. Simultaneously, in the Miro portal [18], collaborative areas
were created for the registration, exchange and sharing ideas of teamwork. On this
platform the teams could develop creative, dynamic and innovative alternatives of the
solutions proposed to the challenges presented. The teacher’s rolewas to facilitate the
entire learning process, by analysing, detecting, and verifying whether the learning
objectives were being achieved. Students were presented with 3 challenges: Create
a non-linear equation and solve it; Find the Batman symbol area and Find the Small
Lagoon area.

3.1 First Challenge—Create a Non-linear Equation
and Solve It

The first challenge presented to the students was the creation of a non-linear equation
and the calculation of one of its solutions using the bisection method and the Newton
method. During individual preparation, students studied alone based on the course
notes. In class, they answered a quiz about each method individually and then in
groups. In this first experience, the results (individual/groups) were not very good.
Additional clarificationweremade about: howmany iterations are necessary to obtain
a given approximation using a method or which one should be the initial chosen
approximation for method to converge. Figure3 depicts Miro’s mural with the work
of the 12 teams (which correspond to the 12 columns of the mural). In this first phase,
the students had to get to know each other (contacts were placed with sticks on the
wall), and to become familiar with the collaborative use of Miro. It is necessary to
learn how to use the platform with its dynamic whiteboards, where it is possible to
register the team’s structured ideas, visualize and interact with the tasks, providing
a contextualization of the team work. After a first contact, the teams started to solve
their challenge. The Fig. 4 represents the solutions obtained by three different teams.
TeamAwith 4 elements (names indicated on the sticks on the left), created a problem
and solved it using prints of the calculator machine and its resolutions on paper. In
the case of team B and C, others mathematical applications were used (GeoGebra,
wolframalpha, excel) and presentations inword andpowerpoint. It isworth noting the
diversity ofmaterials and tools that the teams used together with the fixed annotations
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Fig. 3 Miro’s mural for challenge 1

(through scratches, underlines, sticks, text balloons, etc.), which reinforces that it is
a team effort.

3.2 Second Challenge—Find the Batman Symbol Area

The second challenge was to use numerical integration, more specifically the trape-
zoid rule, to calculate the area of theBatman symbol. In this challenge, the teamswere
already more interconnected, the students already knew each other and were already
starting to become more familiar with the collaborative platform. The involvement,
the time to complete the challenge and the results obtained were frankly more posi-
tive. The individual preparation focused on trapezoid rule for numerical integration,
using the links and documents available on Miro. The quiz was carried out with 3
questions: (1) calculate the approximate value of the area defined by points, (2) find
the smallest number of points for the area calculation with a given error (3) compare
the results obtained by the 2 methods. Some difficulties still arose, especially regard-
ing the number of points to be considered (even/odd points; many/few points) and
the the error obtained in the approximation. These difficulties were overcome when
the questions were asked in groups. In Fig. 5 it is possible to find the complete mural
of this challenge. With the 12 teams working in real time (about 50 to 60 students),
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Fig. 4 Examples of the challenge 1: a team A, b team B and c team C

using the same model (template available in Miro [18]) and more organized, the
classes were very motivating and enriching for everyone involved in this learning
process. The Fig. 6 shows two illustrative examples made by teams D and E. In the
left column a summary of the trapezoid rule for the calculation of numerical integra-
tion was presented, in the center on top an example of the applicability of this rule;
the resolution of the challenge and its application in GeoGebra were placed in the
right on top and in the center on bottom, and in the right on bottom the opinions of
the team about the challenge: what they learned, what they liked the most and least
and the opinion.

3.3 Third Challenge—Find the Little Lagoon Area

In the third challenge it was applied Simpson’s rule, to calculate the approximate
area of the Little Lagoon, located in "Serra da Estrela", Portugal. It was necessary
to use Google Maps to access a real image of the lagoon and obtain real points and
distances to calculate the respective area. In the individual preparation there were no
doubts. The results of the individual and group evaluationweremuchmore satisfying,
therefore, no further clarification was needed. This challenge was the one that went
better, the teams were already working as a whole and the learning environment
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Fig. 5 Miro’s mural for challenge 2

Fig. 6 Examples of challenge 2: Team D (top); Team E (bottom); theory summary (left); example
(center-top); GeoGebra (right-top); calculations (center-bottom) and opinions (right-bottom)
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Fig. 7 Miro’s mural for challenge 3

Fig. 8 Example of challenge 3 performed by team F: a real image (left-top); GeoGebra (right-top);
calculations (left-bottom) and opinions (right-bottom)

was already completely dominated by the students. The teacher cooperation with
the teams was almost non-existent, only at the beginning to assess the acquired
knowledge and at the end to analyze the presentations and opinions. Figure7 shows
the complete mural and Fig. 8 the example of team F. The template is divided into
4 parts (from left to right, top to bottom): aerial image of the Little Lagoon, with
the scale; point identification and calculations in GeoGebra; challenge resolution
and students’ opinions. The teams were given the freedom to use the tools and
technologies they liked best and that would be appropriate to solve the challenge.
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3.4 Students’ Opinion

After the first challenge, some oral opinions were obtained from the students, which
allowed for the adjustment and improvement of the proposal for the second challenge.
Hence, in the following challenges, the opinion of those involved was part of the
challenge itself. Analyzing these opinions, it is verified that the students learned the
contents and applied them autonomously using new tools (without the teacher) in a
group.What they likedmost was the use of new support technologies (GeoGebra and
Miro), the existing dynamics ofworking in groups and interacting andgetting to know
their teammates and other teams. The lack of technology practice and autonomous
studies were the aspects that the students liked the least. As for the general opinions
about the activities, called challenges, students feel that they are innovative and
interesting activities, and that they surprisingly learn math. They claim that this type
of activity has a very important role in the times we live in because it promotes the
interaction of students with each other and promotes the spirit of collaborative work.
One of the students even comments: “I feel very fulfilled with the work done” and
another says “This was the best work in terms of knowledge and application of new
technologies that I have ever done in a mathematics curricular unit”.

4 Conclusions

There are several teaching techniques that can be used in the classroom. However,
the urgency of using new teaching/learning methodologies in higher education and
more specifically in mathematics that is taught to engineering is noticeable. There is
a need to intensify research on significant pedagogical strategies aimed at developing
engineers better prepared for their integration into the labor market and society.

The results of this study demonstrate the interrelationships between the different
elements of TBL-C. The results provide new insights into how to apply TBL-C in
math classes and what students’ perceptions are towards this new learning method-
ology. Collaborative Team Based Learning (TBL-C) helps instructors (facilitators)
develop an active teaching approach to the classroom by collaboratively working in
groups in the same environment. With TBL-C, students are involved in their learning
and continuous assessment process through problem solving (challenges), through
team discussions and peer feedback, ensuring greater responsibility for everyone.
Team learning activities should be regular and assessments should be ongoing to
document student progression and verify that desired end goals have been achieved.
Using TBL-C, students are the agents of their teaching/learning process, highlighting
the following advantages that were perceived in the experience reported here: moti-
vation to work as a team, closer contact with students, innovation methodologies,
improvement in the student/student and student/teacher relationship and learning
based on technical knowledge and social skills. As a first experience of applying the
TBL-C didactic innovation, in completely distance learning classes, it was perceived
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that it is necessary to improve some aspects and adjust others, such as: increasing
the workload to carry out this type of activities, at least initially when the students
need it to become familiar with the technologies used; sending video lessons and
supplementary materials at the beginning of the semester to facilitate access to these
resources earlier and apply a quiz assessment in addition to the assessment of oral
presentations.

A popular misconception is that active learning can only take place in a face-to-
face learning environment. As it was possible to verify with the experience described
here, active learning can also occur in courses with many students, hybrid courses
and in online courses. The key to the success of this type of learning in the online
classroom is to assess students before and throughout the process in order to verify
that knowledge has been effectively achieved and to create learning tasks that involve
students in teams and that allow for awhole process of thinking, discussing, reflecting
and concluding. In the specific case of what was previously presented in this paper,
it appears that the practice of TBL-C is possible, and it is possible in online courses,
thus answering the rhetorical question presented in the title. The experiences reported
here and lived are intended to serve as inspiration in the teaching practice of other
trainers (facilitators), with similar proposals for learning other contents. And that in
the near future these experiences can be shared by all those who teach mathematics
to engineers.
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GeoGebra Augmented Reality:
Ideas for Teaching and Learning Math

Cristina M. R. Caridade

Abstract The methodologies of teaching mathematics in engineering must be
active, and directed to the area of courses, so that freshman students are motivated
in their learning and thus be able to overcome their difficulties. Augmented reality
(AR) is an immersing experience that can be introduced into learning content such
as integral calculus and solids of revolution. This paper presents ideas for teaching
and learning math using GeoGebra AR. The results presented and visualized show
that students engage in this virtual environment integrated into their real world and
that the contents explored in a creative way are learned by students. Learning math
is done within augmented reality!

Keywords Active methodologies ·Mathematics · Engineering · Augment
reality · GeoGebra

1 Introduction

Poor performance in mathematics is not a specific case and, although secondary
education is a more advanced stage of teaching, a large number of students do not
master basic mathematical concepts. In this way, students, upon entering higher
education, have serious difficulties in understanding the contents that depend on
previous concepts [1]. It is common knowledge that today’s students feel a lack
of motivation and poor preparation in mathematics, which makes their integration
into an engineering course difficult [2]. In higher education, mathematics plays a
prominent role in technology-based courses. In the particular case of engineering,
mathematics plays an important role, since many aspects of engineering activity
include formulating problems and choosing suitable methods to solve them [3]. For
students, mathematics is often seen as difficult and many students do not enroll
in science, technology, engineering and mathematics subjects, closing the doors to
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scientific, engineering and technology careers [4]. Fortunately, much of the math
content can be presented using practical applications to justify its study and spark
interest in students. Themanipulation of mathematical concepts and their connection
can be explored using methodological strategies in mathematical disciplines [5, 6].
Learning is, therefore, an active process that requires participation, commitment and
involvement of students throughout the learning process [7].

Virtual reality (VR) and Augmented reality (AR) are two things in common, both
aim to expand an individual’s sensory environment by mediating reality through
technology [8].

GeoGebra AR [9] displays 3D graphics and objects in real-world environments
and makes the connection between the real world and the world of abstract mathe-
matics [10, 11]. It can also place math objects on any surface, allow the user to walk
around them and take screenshots from different angles. With the GeoGebra feature,
students can now model 3D virtual objects into real world objects directly in AR
applications [11, 12]. Using the AR feature, students visualize mathematical objects
such as geometric solids or solids of revolution that in real life are part of their quo-
tidian. It is also possible to enter the virtual environment and take screenshots from
different perspectives, which is a unique experience for students [13]. Many works
have been developed with GeoGebra AR in a learning context [14, 15], essentially
in the learning of mathematics. Projects aimed at exploring and (re)discovering the
mathematicalworld in different age groups, different levels of education and different
contents have been reported in recent years. The main objective of these projects is
to stimulate the engagement and enthusiasm for mathematics through its connection
with the contents of other areas of knowledge, such as history, art or architecture,
these projects facilitate the integration and adaptation of multidisciplinary content
to curricular and educational.

In the line of research that has been carried out [16] in order to innovate in the
teaching methodologies of mathematics for engineering, this paper presents some
ideas for teaching and learning mathematics using GeoGebra AR in engineering
education.

2 Motivation

The main motivation of this paper is the need felt as an educator to find “something”
that really matters to students, something that keeps them attentive and interested in
the classroom. It is to experience the teaching and learning ofmathematics to promote
the discovery of subject content and connect them with other subjects or areas,
improving the learning of Science, Technology, Engineering, Arts and Mathematics
(STEAM) through the use of digital manipulation tools [17].
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3 Methodology

During classes in the first semester and as a first step upon the arrival of freshman
engineering students, the curricular unit of Calculus 1 is presented.With 5h perweek,
students must learn basic mathematics essential to their progression and integration
into an engineering course. But the lack of priormathematical knowledge and the lack
of interest in this area of knowledge lead students to de-motivation and disinterest.

This paper presents ideas for teaching and learning mathematics to engineers
using active methodologies that aim to involve students in their learning and show
them that mathematics is essential for their training as an engineer.

4 Experience in Classes

The students of the first year of Electrotechnical Engineering at the Coimbra Institute
of Engineering in the academic year 2020/2021, during the first semester’s math
classes in Calculus 1, collaborated in the experience reported in this paper. Students
were organized into groups of 2 and each group interacts collaboratively. They must
download the GeoGebra 3D application (app) and the AR tool on their cell phones
or tablets to handle and adjust the geometric models. Concrete instructions for the
activities are provided to students based in five separate stages: Real object as a
solid of revolution; Object dimensions and scale; 3D object (Planar regions and limit
curves; 3D solid by rotating); Calculations and Augment Reality represented in the
flowchart of Fig. 1.

The first step is to find an everyday object that can be considered a solid of
revolution, such as a ball, a glass, a lamp or a jar. In the second step, the object is

Fig. 1 Flowchart of the steps followed in the applied methodology
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Fig. 2 Examples of everyday objects that are considered to be a solid of revolution. Courtesy by
Author

photographed and its dimensions calculated. In the next step, the three-dimensional
solid corresponding to the real object chosen, is created in GeoGebra. Then all
calculations are performed to determine areas and lengths of planar regions and the
volume of the 3D solid. In the last step and using the GeoGebra AR application the
created 3D object is inserted into reality.

4.1 Real Object as a Solid of Revolution

Given a region R in the xy-plane, it is possible to generate a solid, by revolve the R
region about a vertical or horizontal axis of revolution. A solid generated this way is
often called a solid of revolution. In our daily life, there are many objects with these
characteristics, for example a ball that is geometrically defined by a sphere can be
obtained by rotating a semi-circle around an axis of revolution. Figure2 shows some
examples of real objects that can be considered as solids of revolution.

4.2 Object Dimensions and Measurement Scale

After acquiring the photograph of the chosen object, it is important to define the
scale between the real object and the object’s image. For this, using a measuring
instrument, measurements are taken of the object and the image of the object to find
the scale. In Fig. 3 some of these measurements are represented.
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Fig. 3 Objects dimensions and measurement scale. Courtesy by Author

4.3 3D Solid

The photograph is then uploaded to GeoGebra, some geometric transformations are
carried out so that the object is aligned with the coordinate axes and so that the
entire planar region is located in one of the quadrants of the xoy plane. Then it is
necessary to define the boundary of the planar region. This task can be performed
in two different ways: by defining a composition of curves (polynomials—Fig.4
(right)) or by defining a set of points that allow defining one or more interpolating
polynomials (Fig. 4 (left)).

Fig. 4 Boundary of planar regions: by interpolating polynomials (left) or by curves (right)
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Fig. 5 Image sequence for building a 3D object

Fig. 6 3D object created: planar region (left) and 3D object (right)

Once the planar region is defined, using GeoGebra a 3D solid can be constructed
by rotating that region around an axis. In the case presented in Fig. 5, some steps in
the construction of a 3D object can be observed by rotating the planar region around
the x-axis.

Another example can be seen in Fig. 6, where on the left side the definition of the
planar region by the two processes (composition of curves—top and interpolating
polynomial—bottom) is shown, and on the right side the visualization of the three-
dimensional object constructed.

4.4 Calculations

The introduction of these active learning techniques into application-oriented fresh-
man engineering courses allows students to discover, practice, master and integrate
their knowledge of integral calculus. Thus, students must also present the mathemat-
ical calculations necessary to determine the area and perimeter of the planar region,
and the volume of the solid of revolution created. In Fig. 7 on the left are presented
the calculations made by hand and on the right using the calculator. Calculations
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Fig. 7 Calculations performed: by hand (left) and using a calculator (right)

must be done by hand and confirmed using calculators or other mathematical appli-
cations. In some cases, students built the planar region on the calculating machine
before performing the calculations.

4.5 Augment Reality

The final and most motivating phase consists of introducing the object created by
the student into reality. An interactive experience of a real world environment where
some of the objects placed there were created by the students on the computer.

The student uses the GeoGebra AR tool that he downloaded to his smart-phone or
tablet and as he films the environment that surrounds him, he inserts the 3D object in
that environment, literally joining the real worldwith the abstract world ofmathemat-
ics. In this way, the application allows the student to explore 3Dmathematical objects
placed virtually in the students’ environments, while they can walk around them and
observe them from different perspectives (Fig. 9) or pass through the objects (Fig. 8)
and observe their geometric characteristics. Furthermore, it is possible to look for
symmetries, rotations, translations or other transformations and take screenshots of
different perspectives, as if it were a mathematical walk.

Finally, in Fig. 10, screenshots of the video made by a student are presented with
the addition of music and special effects on the solid of revolution. Creativity and
motivation are strongly present in this very simple example.

5 Conclusions

First-year math study is often seen as irrelevant and distracting by engineering stu-
dents who are more interested in applied engineering disciplines [18]. Many students
are disconnected for this reason and present a performance in mathematics at levels
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Fig. 8 GeoGebra AR: Screenshots from video

Fig. 9 GeoGebra AR: Screenshots from video

Fig. 10 GeoGebra AR: Screenshots from video
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well below their abilities, which will be reflected in the subjects of subsequent years
where the contents depend on the basic contents of the 1st year mathematics sub-
jects. In this sense, it is increasingly important that mathematics teachers use active
teaching methodologies that can reveal to students the importance of mathematics in
their engineering course. Captivating students through the implementation of projets
or activities in their area of study where the mathematics content taught to students
is present there and can be explore in a more enriching and motivating way. It is
in this line of teaching/learning that the study described in this paper is located. It
was intended to present concrete examples of activities carried out in the classes of
Calculus 1 of the first year of the degree in engineering.

The results of the application of these technologies such as GeoGebra, GeoGebra
AR and the calculating machine, is the creation of a richer learning environment,
whichmakes the studentmore interested, applied andmotivated.Working in different
scenarios allows for more concise and rich learning with more creative solutions and,
therefore, greater student motivation. By using mathematical modeling, students
are involved in designing and solving problems that typically originate outside of
mathematics.

The results visualized and presented above confirm that this type of ideas applied
to teaching and learningmathematic are possible and that the teaching of engineering
students is a teaching that must be multi-methodological, by the gradual and hierar-
chical construction of capacities over time that create bases for engineering students
have developed skills and competencies in various areas of knowledge (STEAM) as
an Engineer presupposes.

As future projects to be applied in the next school year and using augmented reality
as a background, it is planned to develop the possibility of inserting in Augmented
reality objects that are composed of more than a solid of revolution, such as a vase
with flowers, a cup of coffeewith saucer or a graph and a knife. It will also be possible
to create a virtual environment with solids of revolution created by different students
in groups, for example placing a set of objects on a desk or table.
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Understanding the Level of Mathematics
Knowledge of Students Who Joined ISEC

M. E. Bigotte de Almeida, J. R. Branco, L. Margalho, A. Queiruga-Dios,
and M. J. Cáceres

Abstract The low pass rate in the curricular units of Differential and Integral Cal-
culus, taught throughout the first semester of the first year of engineering degrees at
the Coimbra Institute of Engineering, led to the development of a diagnostic test with
the intention of identifying the degree of knowledge considered essential for the full
integration [1]. This diagnostic test was constructed considering the guidelines of
European Society for Engineering Education. Regarding the minimum knowledge
recommended for entering higher education for an engineering course and accord-
ing to the basic and secondary education program of Portugal, the 20 questions were
grouped taking into account the topics algebra, analysis and calculus, geometry and
trigonometry. The analysis of the data, fromacademic years 2013/2014 to 2019/2020,
allows us to analyze the level of knowledge in terms of mathematics content of the
students as well as to realize in which topics they show the greatest difficulties.
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1 Introduction

It’s not new the debate about the failure of mathematics in the teaching of engi-
neering and its relationship to the knowledge obtained in high school. In 1995, the
London Mathematical Society, in collaboration with the Institute of Mathematics
and its Applications and the Royal Statistical Society, produced the report Tack-
ling the Mathematics Problem [2], which investigated the existing concerns among
mathematicians, scientists and engineers in the mathematical preparation of students
entering higher education. Thefinal report, produced by theUKEngineeringCouncil,
showed strong evidence of a “steady decline” in basic mathematical competencies
and “increasing inhomogeneity inmathematical attainment and knowledge” [3]. One
of the main recommendations of this report is to apply a diagnostic test, aiming at:

– identifying students at risk of failing because of their mathematical deficiencies,
– targeting remedial help,
– designing programmes and modules that take account of general levels of mathe-
matical attainments, and

– removing unrealistic staff expectations.

It also states that “students embarking on mathematics-based degrees should have a
diagnostic test on entry”, emphasizing that this test must be understood as a means
to an end: “Diagnostic test should be seen as part of a two-stage process. Prompt and
effective follow-up is essential to deal with both individual weaknesses and those of
the whole cohort”.

This gap has been, at an international level, one of the main reasons given for
failure in higher education, a situation regularly referred to as the “Maths Problem”
[4]. Commonly cited characteristics of this problem include lack of basic math skills,
fragmented understanding, inadequate knowledge of concepts, and inability to suc-
cessfully solve math problems. The “Maths Problem” has been highlighted as an
issue of concern in Ireland, UK, Australia and US [4–6].

This discussion led to the definition of multiple strategies aimed at overcoming
the difficulties detected and the consequent analysis of the impact of implementing
the measures [7–12].

In order to discuss the European systems of education and training in engineering,
the European Society for Engineering Education (SEFI) created, in 1982, the Math-
ematics Working Group (MWG), which aims to promote a forum for discussion and
guidance aimed at all those interested in the mathematics education of engineering
students in Europe.

In this context, given the decline inmathematical skills and knowledge of students
upon entry into higher education and the heterogeneity of candidates for engineering
degrees, it was created, in 1992, the first curriculum guidance document to formulate
a detailed and structured list of topics, organized by levels, which correspond to
specific content essential for learning mathematics in engineering degrees. The main
concern of this document was to define the appropriate contents of mathematics in
engineering education. After 5 meetings held in several countries of the European
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Community, MWG produced a set of recommendations on A core curriculum in
Mathematics for the European engineer [13].

Based on the 1965 OECD report [14], this document summarizes the reasons for
the importance of mathematics in an engineering curriculum:

1. mathematics provides a training in rational thinking and justifies confidence in
the value of such thinking;

2. it is the principal tool for the derivation of quantitative information about natural
systems;

3. it is the second language of human discourse and parallels natural language, pro-
viding a means of communication for ideas, as evidenced by contents of technical
papers;

4. it facilitates the analyses of natural phenomena;
5. it is important in assisting the engineer to generalise from experience;
6. it trains the imagination and inquisitiveness of the student if properly taught;
7. it is an education for adaptation to the future.

To these aspects, there is also the evolution of technology that has substantially
reinforced the role of mathematics on engineering.

The document also states that the prior knowledge of students at the beginning
of the degree is essential, so it is necessary to define the set of prerequisites in pure
mathematics required when accessing higher education. Core Zero was thus estab-
lished, which integrates contents of arithmetic, algebra, geometry and trigonometry,
and differential and elementary integral calculus. In 2002, MWG reformulated [13],
aiming to learn outcomes rather than a simple list of topics. Regarding the min-
imum knowledge recommended for entering higher education for an engineering
course, these are detailed by areas and identified by topics in the Core Zero section
from Mathematics for the European Engineer—A Curriculum for the Twenty-First
Century [15].

The insufficient preparation that students have when they arrive to higher educa-
tion is also a problem of the Portuguese education system, and is compounded by
the heterogeneity of the undergraduate students in engineering.

According to Programme for International Student Assessment (PISA) 2018
report, Portugal scored around theOECDaverage inmathematics.Meanperformance
improved since 2003, although in 2018was close to the level observed over the period
2009-15. The report also remarks that career expectations of the highest-achieving
15-year-old students reflect strong gender stereotypes. Amongst high-performing
students in mathematics or science, about one in two boys expects to work as an
engineer or science professional at the age of 30, while only about one in seven girls
expects to do so.

Higher education Portuguese institutions used several alternative processes to
attract new students, which increase the heterogeneity of personal and motiva-
tional features of students, that access through very different means (scientific-
humanistic graduates, professional undergraduates courses, technological under-
graduates courses, technological specialization undergraduate courses, over 23 years
old, etc). This multiplicity of students have originated heterogeneous mathematical
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skills, asymmetries in the essential mathematics knowledge and difficulties on inte-
gration into higher education, and motivate the definition of alternative paths that
allowed those students to follow a positive learning process.

The Department of Physics andMathematics of Coimbra Institute of Engineering
has promoted and developed a set of strategies to reverse this situation, reorganizing
the operation and evaluation of courses, building tools that facilitate the learning
process and implementing strategies for student engagement. Despite all this effort,
students have not met the expectations and continue to exhibit a high failure rate
and high abstention rates (to classes and also to evaluations). Assuming that students
are not learning what they should learn, because of the enormous gap in the basic
knowledge, we should construct pedagogical tools that can contribute to the diag-
nosis, acquisition and consolidation of mathematical knowledge and skills needed
in engineering, as well as develop resources that will give engineering students the
best possible learning experience.

Differential and Integral Calculus courses have been referred in many studies,
and the difficulties experienced by students in elementary and basic contents, essen-
tials for full integration in higher education, are major concerns expressed by many
teachers, leading to adaptations of curricular reorganization and definition of actions
that allow modify this situation.

The aimof this paper it to describe the experience carried outwith themathematics
diagnostic test, the partnership established with the Dublin Institute of Technology
and to analyze the results obtained by students on the last 6 academic years.

2 The Diagnostic Test at ISEC: The Evolution

2.1 ISEC—Coimbra Institute of Engineering

Coimbra Institute ofEngineering (ISEC) is an organic unit of thePolytechnic Institute
of Coimbra that offers engineering undergraduate degrees: Biomedical, Bioengineer-
ing,Civil, Electrical (normal andpost-work regime),Electromechanical, Engineering
and Industrial Management, Informatics (normal, post-work regime and European
course) and Mechanical. In the 2018/2019 academic year, ISEC also created a non
engineering degree in Sustainable Cities Management, which was presented with a
curricular plan focused on economic, environmental and social stainability of learn-
ing methodologies that allow students to develop professional skills.

All these 9 degrees include a Differential and Integral Calculus curricular unit,
with a common syllabus: trigonometric and inverse trigonometric functions, integra-
tion, definite and improper integrals. This syllabus constitute the core of mathematics
knowledge that teachers understand as essential. However, poor results from students
on access to higher education national exams are frequently observed, specially on
self-proposed students [16], which means that students who access higher education
generally have difficulties on basic and elementary contents of mathematics, that
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prevent a full integration on Differential and Integral Calculus curricular unit and on
the degree itself.

ISEC also provides a “Year Zero”, a start programme available for students who
have not joined in higher education but attend to optional undergraduate courses at
ISEC, to deepen knowledge in basic engineering subjects (mathematics and physics),
to prepare them to the qualifying exams needed to access to higher education in the
following year as well as preparation for attending classes.

Research group on didactics of mathematics in engineering (GIDiMatE) is a
group formed within the mathematic scientific area of ISEC, established in 2011,
that implements competency assessment/improvement actions and develops teaching
tools and instruments to contribute to the acquisition and consolidation of basic and
complementary mathematical knowledge, essentials for the Differential and Integral
Calculus curricular units.

2.2 The Diagnostic Test

Given the previous context and the real situation found at ISEC, it became evident
for maths teachers from ISEC to build a diagnostic tool, applied at the entry of higher
education, which helps to identify flaws in the set of essential knowledge in mathe-
matics that students need to master, so that, based on the results obtained, strategies
can be defined to overcome the gaps detected, thus ensuring the understanding of the
syllabus contents in the Differential and Integral Calculus curricular units.

To study this question, since the school year 2011/2012 a diagnostic test (DT) has
been held annually, in the first week of classes of the first semester, from students
who attended to classes of Differential and Integral Calculus curricular units from
ISEC’s first year degrees.

DT had suffered successive alterations. Nowadays we consider a stabilized ver-
sion, that allows to compare results from different years.

Of multiple reflections that mathematic teachers from ISEC have maintained
throughout their academic career, it has been found that students bring large gaps in
elementary knowledge necessary for successful integration in the curricular units of
mathematics of engineering degrees.

So, in 2011/2012 school year they carried out the first edition of the DT. Topics
were addressed that, based on the experience accumulated by those teachers, should
be the most relevant in the acquisition of knowledge and skills in mathematics in
higher education, particularly for degrees in engineering. Five topics were consid-
ered: equations, functions, rationals, geometry and trigonometry and derivatives. The
questions were of multiple choice, with six options each, in order to assess the most
common shortcomings of students. The 36 questions of the test were distributed as
showed at Table 1. The results were obtained by arithmetic mean of correct answers
in each of the 5 topics.
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Table 1 Distribution by topic of the 36 questions from 1st version of the DT (2011/2012)

Topic Number of questions

Equations 8

Functions 5

Rationals 7

Geometry/Trigonometry 10

Derivatives 6

Faced with the existence of SEFI document [15], GIDiMatE group decided to
compare the structure of the DT with the structure suggested by MWG. Among the
suggested areas and according to the programof the elementary and secondary educa-
tion of Portugal, GIDiMatE gave special attention to algebra, analysis and calculus,
geometry and trigonometry. Those areas were considered as the most significant,
because they are essential for most of the mathematic curricular units. According to
the guidelines of SEFI the 36 initial questions included in the diagnostic test were
regrouped in the topics listed in Table 2.

Table 2 Distribution by topic, according to SEFI area, of the 36 questions from 1st version of the
DT (2011/2012)

Topic Number of questions

Arithmetic of real numbers

Algebraic expressions and formulae 3

Linear laws 3

Quadratics, cubics, polynomials 2

Arithmetic of real numbers 2

Analysis and Calculus

Functions and their inverses 8

Logarithmic and exponential functions 3

Rates of change and differentiation 6

Complex Numbers 2

Geometry and Trigonometry

Geometry 2

Trigonometric functions and applications 4

Trigonometric identities 1

On 2012/2013 school year, GIDiMatE decided to reduce the DT both in size and
in time, and changed some issues in order to contribute to a better understanding of
the difficulties faced by students. Questions were reduced from 36 to 25, such that
there was an uniform distribution on the topics proposed by GIDiMatE and answers
were reduced from 6 to 4, including the elimination of the option “none”. It was
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also decided to remove all questions about complex numbers, since it was found
this content was not uniformly addressed in secondary education, putting students
in unequal situation in the diagnostic evaluation. From the 36 original questions of
2011/2012 diagnostic test only 12 were included in the revised version.

From contacts with Dublin Institute of Technology (DIT) and the joint reflection
that was done, it was found to be important to introduce some issues in common
with the Irish diagnostic test in order to be able to make comparisons of results
and proposed actions in partnership [17]. As a result of this cooperative work, on
2013/2014 school year 9 common issues were constructed or modified, as listed in
Table 3, and the number of questions was reduced to 20.

Table 3 Distribution by topic of the 9 question common with DIT DT (2013/2014)

Topic Number of questions

Algebra

Algebraic expressions and formulae 1

Analysis and Calculus

Functions and their inverses 3

Rates of change and differentiation 3

Geometry and Trigonometry

Geometry 2

Additionally, Danish KOM project led by Niss [18], organized a detailed and
systematic description of what we should expected to obtain with the teaching of
mathematics, using the concept of competence which influenced the description of
the learning objectives reflected in studies of the OECD-PISA, [19]: “Possessing
mathematical competence means having knowledge of, understanding, doing and
using mathematics and having a well-founded opinion about it, in a variety of situa-
tions and contexts where mathematics plays or can play a role”.

KOM project identified a list of mathematical competencies such as “the abil-
ity to ask and answer questions in and with mathematics, focus on mathematical
thinking, problem handling, modelling and reasoning” and “the ability to deal with
mathematical language and tools, focus on representation, symbols and formalism,
communication competency”.

In this context we decided to integrate a question to evaluate the competence in
mathematical modeling. For that purpose we selected a statement of a problemwhich
reflects a linear system of two equations and two unknowns.

According to SEFI [15], the final 20 questions were regrouped by the areas listed
in Table 4. We remark that 3 of the questions are evaluating more than 1 subject.

This is the final version of the DT, so it was not modified since that.
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Table 4 Distribution by topic of the 20 questions from 3rd version of the DT (2013/2014)

Topic Number of questions

Algebra

Arithmetic of real numbers 3

Algebraic expressions and formulae 4

Linear laws 2

Quadratics, cubics, polynomials 1

Analysis and Calculus

Functions and their inverses 3

Logarithmic and exponential functions 1

Rates of change and differentiation 3

Geometry and Trigonometry

Geometry 2

Trigonometric functions and applications 2

Trigonometric identities 1

Mathematical modeling 1

2.3 The Methodology

This study follows a quantitative research methodology, considering the observation
of data collection instruments. Taking into account that the analysis may allow us to
conclude the level of mathematical knowledge that students have when they access
the ISEC, as well as in which topics they show greater difficulties, the case study
approach will be made according to an interpretive paradigm. Thus, it is intended,
without exercising any type of control over the situation, to obtain conclusions that
can lead to the implementation of strategies at the level of teaching, learning and
assessment that contribute to the promotion of success in those Differential and
Integral Calculus curricular units.

To carry out the DT, certain requirements were required, such as:

– failure to submit calculations or justifications;
– the existence of a grid of answers where the respective letter considered correct
by the student was placed;

– the unequivocal presentation of the answer, under penalty of being annulled;
– not using any calculator.

The duration of the DT was 60’, being given in the 1st week of the semester to
students attending Differential and Integral Calculus curricular units.
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3 Sample

DT was given to all ISEC’s engineering degrees, from 2013/14 to 2019/20, with
the exception of the school years 2018/2019 and 2019/2020 which, due to various
constraints, was only given to informatics and biomedical students, which the authors
teach at Differential and Integral Calculus curricular units.

Sample is formed by 2231 results of students from ISEC degrees (Biomedi-
cal, Bioengineering, Civil, Electrical, Electromechanical, Engineering and Industrial
Management, Informatics, Mechanical and Sustainable City Management) and also
students from “Year Zero”.

4 Results

4.1 Global Results

Results of the DT are present at Table 5. We present global results and also results,
mean value and standard deviation, from each school year, from 2013/14 to 2019/20.
According to Portuguese system, results are presented to 20 values.

As DT evaluates basic knowledge on mathematics, a mean value of 10.26 points
shows that mathematical knowledge is far below what one would expect.

There is no stated trend, neither of growth nor of degrowth, but it is to notice a
significant improvement on results on 2019/2020 school year, as presented on Fig. 1.
The standard deviation is high, being in the order of 20% in all years.

Table 5 DT results, from 2013/2014 to 2019/2020 school years

School year Dimension Mean value St. deviation

2013/2014 432 9.52 (4.14)

2014/2015 398 9.92 (3.82)

2015/2016 495 10.33 (4.49)

2016/2017 397 10.57 (3.79)

2017/2018 225 10.21 (4.25)

2018/2019 93 9.55 (4.42)

2019/2020 191 12.20 (4.48)

All 2231 10.26 (4.22)
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Fig. 1 DT results, from 2013/2014 to 2019/2020 school years

4.2 Results Depending on the Number of Enrollments

On Fig. 2 we present the results obtained on the DT depending on the number of
enrollments. The goal is to analyze if students that put apart Differential and Integral
curricular units lost any kind of basic knowledge of mathematics, that is essential to
these curricular units and, of course, for the degree. As the majority of the students
from our sample are from informatics (1324 students), for this analysis we only
consider students from this degree, to avoid bias.

Results showa decreasing trend as number of enrollments increases,which reveals
that students that put aside the mathematics curricular units lose basic mathematical
knowledge that is essential for that course. The only exception are students on the 2nd
enrollment, that show a very irregular behaviour: usually worse than students with

2013/14 2014/15 2015/16 2016/17 2017/18 2018/19 2019/20 all years
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all students
1 enrollment
2 enrollments
3 enrollments
>3 enrollments

Fig. 2 Informatics DT results depending on the number of enrolments, from 2013/2014 to
2019/2020 school years
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1 enrollment, but sometimes worse than students with 3 or even more enrollments
and sometimes even better than students with only 1 enrollment!

In terms of time dependency, we observe similar evolution than global results,
even the improvement on results on the 2019/2020 school year.

4.3 Results According to Topic

On Fig. 3 we present the results according to the year and topic. Since the number of
questions in each topic is different, to facilitate the comparative analysis of results,
we present them converted to a scale from 0 to 20.

2013/14 2014/15 2015/16 2016/17 2017/18 2018/19 2019/20 all years

8

9

10

11

12

13
global
algebra
analysis
geometry

Fig. 3 DT results depending on the topic, from 2013/2014 to 2019/2020 school years

Naturally, the pattern shown by year is the same as the global results.
Results on algebra are always higher than the average result, and the results on

analysis and geometry are lower than the average. The poor results on analysis are
particularlyworrisome, since this is one of the fundamental pillars of themathematics
curricular units.

5 Conclusions and Future Work

Results show that, in average terms, basic knowledge on mathematics is insufficient
for engineering degree students.

Evenwith poor basic knowledge onmathematics, they tend to getworse if students
do not monetize them in the first years of the degrees. That shows the importance to
students monetize their mathematical basic knowledge in the first enrollment.
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Geometry iswhere students performworst, but it’s also the least important. Behav-
ior on analysis is particularly worrisome, because this is the most important topic for
differential and Integral calculus curricular units.

DT result provides information on themathematical content that should beworked
with the student, which allows to define an individual working plan. This plan is
prepared according to [15] and will describe the evolution of the student’s learning,
through themonitoring and reformulation.Thegoal is to encourage autonomouswork
and to adapt to personal learning style, study method and cognitive development.

In the future, we intend to study regression models, to analyze the determinants
of students’ mathematical knowledge.
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From Fibonacci Sequence to More
Recent Generalisations

Paula Catarino and Helena Campos

Abstract Number sequences have been the subject of several research studies. From
the algebraic properties to the generating matrices and generating functions of these
sequences, all these topics and many others have been studied by several researchers
and a vast bibliography covers this type of sequences. When in 2013 the first author
had an initial contact with this topic, she soon turned to other sequences of numbers
and began a careful investigationwith great enthusiasm. A group of researchers inter-
ested in these themes was formed, based on the most recent works on this subject of
number sequences, they developed new generalisations of some of them, introducing
the respective definitions, properties and some results concerning those sequences.
In this paper we propose a tour of our work involving the number sequences we have
been studying over the past eight years, either jointly or individually.

Keywords k-Fibonacci numbers · k-Jacobsthal numbers · k-Pell numbers ·
Balancing numbers · k-Telephone numbers · Hyper k-Pell numbers · Incomplete
numbers

1 Introduction

About the number sequences there is a vast literature studying several properties,
ones involving the well-known Binet’s formula, Catalan’s, Cassini’s and d’Ocagne’s
identities and there is also a vast literature dedicated to the study of other properties
involving each sequence. The Fibonacci succession has been one of the geneses
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of multiple researches that resulted in the creation of other number sequences and
respective research. Many papers are dedicated to Fibonacci and Lucas sequences,
such as the works of Dil and Mezo [1], Hoggatt [2], Vorobiov [3], among so many
others. The modern science is interested in the application of the Golden Section and
Fibonacci numbers [4]. It is well known that the ratio of two consecutive Fibonacci
numbers converges to the Golden Mean, or Golden Section, 1+√

5
2 , which appears in

problems related with physics of the high energy particles or theoretical physics.
Based on the most recent works on the subject related to number sequences, we

have developed new generalisations of these recurrence sequences, introducing the
definition, properties and some theorems concerning the k-Fibonacci and k-Lucas
numbers, as well as k-Jacobsthal and k-Jacobsthal-Lucas [5], not also forgetting
the k-Pell, k-Pell-Lucas, and Modified k-Pell numbers [6], as well as balancing and
cobalancing numbers [7] and some of their generalisations. More recently, the def-
inition and properties of the Incomplete sequence of numbers [8], the k-Telephone
numbers [9] and the Leonardo numbers [10–12] have resulted in new papers already
published or already submitted. Also, the Hyper k-Pell, Hyper k-Pell-Lucas, and
Hyper Modified k-Pell [13] sequences are introduced, as well as their generating
functions and some properties of each one. Furthermore, properties about the rela-
tionship between them and some of their generating functions are presented in our
works.

As we have mentioned before, in 2013 the first author had a first contact with
this type of topic. Since that time a group of researchers interested in these themes
was formed and one of the first sequences studied was one of the generalizations
of the Fibonacci sequence. In this context, based on the most recent works on this
subject of number sequences, we develop new generalisations of some of them and
the aim of this paper is to visit some of this work that we have done in the last eight
years in individual and in group research. Therefore, the next section is divided into
subsections according to different number sequences that are presented. The final
section is dedicated to give some final remarks about this tour.

2 A Tour Around Some of the Sequences We Worked On

In 1965, Horadam studied some properties of sequences of the type, {wn} ≡
{wn(a, b; p, q)}, where a, b are nonnegative integers and p, q are arbitrary inte-
gers, see [14, 15]. Such sequences are defined by the recurrence relations of second
order: wn = pwn−1 − qwn−2, (n ≥ 2), rule that will allow the next terms to be cal-
culated according to their predecessors. The initial conditions w0 = a and w1 = b.
For example, the Fibonacci, the Lucas, the Pell, the Pell-Lucas and the Modified Pell
sequences can be considered as special cases of sequences of this type, having the
following for these cases:

The Fibonacci sequence: {wn(0, 1; 1,−1)} ≡ {Fn}, with initial conditions F0 =
0, F1 = 1. The Lucas sequence: {wn(2, 1; 1,−1)} ≡ {Ln}, with initial conditions
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L0 = 2, L1 = 1. The Pell sequence: {wn(1, 2; 2,−1)} ≡ {Pn}, with initial condi-
tions P0 = 1, P1 = 2.

The Modified Pell sequence: {wn(1, 1; 2,−1)} ≡ {qn}, with initial conditions
q0 = 1, q1 = 1. The Pell-Lucas sequence: {wn(2, 2; 2,−1)} ≡ {Qn}, with initial
conditions Q0 = 2, Q1 = 2.

Also, the Jacobsthal and the Jacobsthal-Lucas sequences can be considered
as {wn(0, 1; 1,−2)} ≡ {Jn}, with initial conditions J0 = 0, J1 = 1 and
{wn(2, 1; 1,−2)} ≡ { jn}, with initial conditions j0 = 0, j1 = 1, respectively.

Next,wefind the explicit formula for the termof order n of each number sequences
using the well-known results involving recursive recurrences. Consider the following
characteristic equation, associated to Fibonacci and Lucas recurrence relation given
by r2 − r − 1 = 0 with two distinct roots, r1,2 = 1±√

5
2 . Using these roots, we can

have the Binet formulas for each sequence as follows:

Fn = 1√
5

[(
1 + √

5

2

)n

−
(
1 − √

5

2

)n]
= 1√

5

(
r21 − r22

) ;

Ln =
(
1 + √

5

2

)n

+
(
1 − √

5

2

)n

= r21 + r22 .

About the Pell, Pell-Lucas andModified Pell sequences, the respective characteristic
equation is given by r2 − 2r − 1 = 0 with also two distinct roots, r1,2 = 1 ± √

2.
Hence the Binet formulas for these sequences are

Pn = 1

2
√
2

((
1 + √

2
)n −

(
1 − √

2
)n) ;

Qn =
(
1 + √

2
)n +

(
1 − √

2
)n ; qn =

(
1 + √

2
)n +

(
1 − √

2
)n

2
,

respectively.
Finally, for the Jacobsthal and Jacobsthal-Lucas sequences, the characteristic

equation is r2 − r − 2 = 0 with two distinct roots, r1 = −1 and r2 = 2, being

Jn = 1

3

(
2n − (−1)n

) ; jn = 2n + (−1)n ,

the respective Binet’s formulas.
It should be noted that many other results related to these sequences can be found

in the literature.
Some of these sequences were generalised for any positive real number k. The

studies of k-Fibonacci sequence, k-Lucas sequence, k-Pell sequence, k-Pell-Lucas
sequence, Modified k-Pell sequence, k-Jacobhstal and k-Jacobhstal-Lucas sequence
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are examples of these generalizations and a look about them is done in the next
subsections.

Also quaternions and octonions sequences as well as polynomials sequences were
and continue to be studied by the authors of this work. However, in this article it is
our purpose to make a retrospective of only some numerical sequences introduced
and studied by this research group.

2.1 The Sequences of k-Pell, k-Pell-Lucas and Modified
k-Pell Numbers

In 2013, the first author published the first paper in this topic related with the
sequence of k-Pell numbers (see [16], for more detail). In this research work, the
Binet’s formula for k-Pell numbers is provided and as a consequence some prop-
erties for k-Pell numbers are established. Also the generating function for k-Pell
sequences and another expression for the general term of the sequence, using the
ordinary generating function, are presented. Following the Horadam’s idea, the k-
Pell sequence is the special case given by {wn(0, 1; 2,−k)} ≡ {Pk,n}, with initial
conditions Pk,0 = 0, Pk,1 = 1.

Also in 2013, the author and somecolleagues from the researchgroup studiedother
generalizations of these sequences, namely the k-Pell-Lucas and the Modified k-Pell
sequences (see [17–19], formore detail). In the case ofModified k-Pell sequence, it is
defined by {wn(1, 1; 2,−k)} ≡ {qk,n}, with initial conditions qk,0 = 1, qk,1 = 1 and
for the k-Pell-Lucas, we have {wn(2, 2; 2,−k)} ≡ {Qk,n}, with initial conditions
Qk,0 = 2, Qk,1 = 2. About the characteristic equation, we have r2 − 2r − k = 0
with two distinct roots, r1,2 = 1 ± √

1 + k, giving for Binet’s formulas,

Pk,n = r1n − r2n

r1 − r2
; Qk,n = r1

n + r2
n; qk,n = r1n + r2n

2
.

As a curiosity, for k = 1, we obtain that r1 is the silver ratio which is related with
the Pell number sequence. Silver ratio is the limiting ratio of consecutive Pell num-
bers. Sometimes some basic properties of these sequences come from the Binet’s
formula. In other paper [20], these sequences are considered to achieve some sums
and certain products involving their terms. For instance, the next results (see Propo-
sitions 1 and 2 in [20]) can give an idea of some of the properties studied.

Proposition 1 For any positive real number k, if Pk, j , Qk, j and qk, j are the j th
k-Pell, k-Pell-Lucas and Modified k-Pell numbers, respectively then we have:

(1)
∑n

j=0

(
Pk, j + Qk, j

) = 1
k+1

[−1 + (1 + 2k)Pk,n+1 + Pk,n+2
] ;

(2)
∑n

j=0

(
Pk, j + qk, j

) = 1
k+1

[−1 + kPk,n + (k + 2) Pk,n+1
] ;

(3)
∑n

j=0

(
Qk, j + qk, j

) = 3
2(k+1)

(
Qk,n+1 + kQk,n

) = 3
k+1

(
qk,n+1 + kqk,n

)
.
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Proposition 2 For any positive real number k, if Pk, j , Qk, j and qk, j are the j th
k-Pell, k-Pell-Lucas and Modified k-Pell numbers, respectively then we have:

(1)
∑n

j=0 Pk, j Qk, j = 1
3−k

[
2

k+1 (−1 + Pk,2n+1 + kPk,2n) − kPk,2n
] ;

(2)
∑n

j=0 Pk, j qk, j = 1
2(3−k)

[
2

k+1 (−1 + Pk,2n+1 + kPk,2n) − kPk,2n
] ; ;

(3)
∑n

j=0 Qk, j qk, j = (1 − k)
(
qk,2 + qk,2qk,3 + · · · + qk,n−1qk,n)+

qk,nqk,n+1 − k
)
.

In 2015, in [21], the authors present some identities involving terms of k-Pell,
k-Pell-Lucas and Modified k-Pell sequences. Also some results on the column and
row norms of Hankel matrices which entries are numbers of these sequences are
given.

In 2019, in [22], the authors define the generalised Fibonacci sequence and k-Pell
sequence. After that, by using these sequences, the authors delineated the generalised
Fibonacci matrix sequence and k-Pell matrix sequence. Also, results by some matrix
technique for both general sequences as well as for matrix sequences are provided.
Also in 2019, in [23] was presented the (s, t)-type sequences and the (s, t)-type
matrices sequences and then the authors study the case of (s, t)-Generalised Pell
Sequence and its Matrix Sequence. Gaussian Modified Pell sequence is defined by
the authors in the study [24]. Some properties involving this sequence, including the
Binet-style formula and the generating function are also presented.

In 2020, in the paper [6], the authors defined the k-Pell, k-Pell-Lucas andModified
k-Pell numbers with arithmetic indexes and they study some properties of these
sequences of numbers and give their generating functions. These are another type of
generalisation of Fibonacci numbers.

2.2 The Sequence of k-Fibonacci and k-Lucas Numbers

In 2014, once more the first author published a research article related with the
sequence of k-Fibonacci numbers (see [25], for more detail). We obtain some identi-
ties for k-Fibonacci numbers by using their Binet’s formulae. Also, another expres-
sion for the general term of the sequence, using the ordinary generating function, is
provided in this paper.

This sequence is defined as follows {wn(0, 1; k,−1)} ≡ {Fk,n}, with initial con-
ditions Fk,0 = 0, Fk,1 = 1, characteristic equation r2 − kr − 1 = 0 with two distinct

roots, r1,2 = k±√
k2+4
2 and the Binet formulas

Fk,n = r1n − r2n

r1 − r2
; Lk,n = r1

n + r2
n.

These sequences generalise, between others, both the classical Fibonacci sequence
and the Pell sequence. Some identities are stated and studied as we can see in the
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next results (see Propositions 3 and 4, that correspond, respectively to Propositions
2 and 4 of [25]):

Proposition 3 (Catalan’s identity)

Fk,n−r Fk,n+r − F2
k,n = (−1)n+1−r F2

k,r .

Proposition 4 (d’Ocagne’s identity) If m > n then

Fk,mFk,n+1 − Fk,m+1Fk,n = (−1)n Fk,m−n.

Using the generating function, other expression of the general term of k-Fibonacci
sequence was also analysed as we can see in what follows (see Proposition 5, that is
the Proposition 7 of [25])).

Proposition 5 Let us consider f (x) = ∑∞
n=0 Fk,n xn, for x ∈

]
− 1

α1
, 1

α1

[
. Then we

have that

Fk,n = f (n)(0)

n!
where f (n)(x) denotes the nth order derivative of the function f .

Once more in 2014, in the paper [26], some basic properties of the k-Fibonacci
and k-Lucas sequences are provided. Their relationship allows us to obtain some new
properties involving sums and products of terms of these sequences. Furthermore, as
a consequence of the Binet’s formula for each one, we also proved some identities
involving these sequences. In the paper [27], the authors derive the explicit formula
for the termof order n of the k-Fibonacci and k-Lucas sequences and also get thewell-
known Cassini’s identity using some tools of linear algebra. The Binet’s formulas of
both sequences are also deduced from the diagonalization of the respective generating
matrices.

In 2018, in the paper [28] the first author with other researchers introduced a
new generalisation of Fibonacci sequence and that was called as k-Fibonacci-Like
sequence. They studied some fundamental properties for k-Fibonacci-Like sequence
and also they present some relations among k-Fibonacci-Like sequence, k-Fibonacci
sequence and k-Lucas sequence by some algebraic methods.

2.3 The Sequence of k-Jacobsthal and k-Jacobsthal-Lucas
Numbers

In 2014, in the paper [5], it was presented the sequence of the k-Jacobsthal-Lucas
numbers that generalizes the Jacobsthal-Lucas sequence introduced by Horadam
in 1988. For this new sequence we established an explicit formula for the term of
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order n, the well-known Binet’s formula, Catalan’s and d’Ocagne’s Identities and
a generating function. Using the Horadam’s idea, these sequences are defined by
{wn(0, 1; k,−2)} ≡ {Jk,n} with initial conditions Jk,0 = 0, Jk,1 = 1, for the case of
k-Jacobsthal sequence, and {wn(2, k; k,−2)} ≡ { jk,n} with initial conditions jk,0 =
2, jk,1 = k, for the case of k-Jacobsthal-Lucas. The characteristic equation, for both

cases, is r2 − kr − 2 = 0, that has two distinct roots, r = k±√
k2+8
2 and the respective

Binet’s formulas are the following

Jk,n = r1n − r2n

r1 − r2
; jk,n = r1

n + r2
n.

The use of the Binet’s formula of each sequence and the fact that r1r2 = −2 allows us
to obtain Catalan’s Identity for the k-Jacobsthal-Lucas as we have in the next result,
Proposition 6 (see Proposition 2.2 of [5]).

Proposition 6 (Catalan’s identity)

jk,n−r jk,n+r − j2k,n = (−2)n−r
(
j2k,r − (−2)r+2

)
.

Finally, we have one more identity involving the k-Jacobsthal-Lucas sequence,
Proposition 7 (see Proposition 2.4 of [5]).

Proposition 7 (d’Ocagne’s identity) For m > n,

jk,m jk,n+1 − jk,m+1 jk,n = (−2)n
√
k2 + 8

(
jk,m−n − 2n−m+1

(
k +

√
k2 + 8

)m−n
)

.

The generating function for the k-Jacobsthal-Lucas sequence is given by Propo-
sition 8 (see Proposition 3.1 of [5]).

Proposition 8

jk(x) = 2 − kx

1 − kx − 2x2
.

In the paper [29], new families of sequences that generalize the Jacobsthal and
the Jacobsthal-Lucas numbers are presented and some identities are established.
The authors also give a generating function for a particular case of the sequences
presented. The new sequence is given as follows in Definition 1 of [29].

Definition 1 Let n be a nonnegative integer and k be a natural number. By the divi-
sion algorithm there exist uniquenumbersm and r such thatn = mk + r (0 ≤ r < k).
Using these parameters we define the new generalized Jacobsthal and generalized
Jacobsthal-Lucas numbers

J (k)
n = 1

(r1 − r2)
(rm+1

1 − rm+1
2 )r (rm1 − rm2 )k−r
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and
j (k)n = (rm+1

1 + rm+1
2 )r (rm1 + rm2 )k−r

where r1 = 2, r2 = −1, respectively.

In 2018, the aim of thework [30]was to introduce new difference sequences by the
application of the concept of difference relation to the sequences of k-Jacobsthal and
k-Jacobsthal-Lucas numbers. Some algebraic properties of these sequences were
studied and in addition, the author have given the Binet formula and generating
functions satisfied by each of these sequences.

2.4 The Balancing, Cobalancing, Lucas-Balancing
and Lucas-Cobalancing Numbers

Many authors have dedicated their research to the study of these sequences and
also to the generalisations of the theory of the sequences of balancing, cobalancing,
Lucas-balancing and Lucas-cobalancing numbers. Behera and Panda [31] observed
that n is a balancing number if and only if n2 is a triangular number, that is 8n2 + 1
is a perfect square and the square of a balancing number is a square triangular
number, that is, Bn

2 = STn , where STn denotes the nth square triangular num-
ber. The recurrence relations and the initial conditions of these sequences are the
following:Bn+1 = 6Bn − Bn−1(n ≥ 1), with B0 = 0, B1 = 1; bn+1 = 6bn − bn−1 +
2(n ≥ 1), with b1 = 0, b2 = 1; Cn+1 = 6Cn − Cn−1(n ≥ 1), with C0 = 1,C1 = 3;
cn+1 = 6cn − cn−1(n ≥ 1), with c0 = 1, c1 = 7, where Bn, bn,Cn, cn denotes the
nth term of balancing, cobalancing, Lucas-balancing and Lucas-cobalancing, respec-
tively.

In all cases the characteristic equation associated to the recurrence relations is
given by r2 − 6r + 1 = 0with two distinct roots, r1,2 = 3 ± 2

√
2.TheBinet formula

of two sequences mentioned before are

Bn = r1n − r2n

r1 − r2
;Cn = r1n + r2n

2
.

Because of r1,2 = σ1,2
2 with σ1,2 the two distinct roots of r2 − 2r − 1 = 0, then

the Binet formulas of the last two sequences are

bn = σ1
2n−1 + σ2

2n−1

4
√
2

− 1

2
; cn = σ1

2n−1 + σ2
2n−1

2
.

As a consequence of the Binet formula for balancing, cobalancing, Lucas-
balancing andLucas-cobalancing numbers, in [7], the authors provide some formulas
for these sequences explicitly, which can have certain importance or applications in
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most recent investigations in this area. Also the authors give another expression for
the general term of each sequence, using the ordinary generating function.

2.5 The Incomplete k-Pell, Incomplete k-Pell-Lucas
and Incomplete Modified k-Pell Numbers

In the paper [8], it was defined the incomplete k-Pell, k-Pell-Lucas and Modified
k-Pell numbers, it was studied the recurrence relations, some properties of these
sequences of integers and their generating functions. In the definition of incomplete k-
Pell numberwe use a combinatorial tool as follows:with k any integer, the Incomplete
k-Pell numbers are defined by

Pl
k,n :=

l∑
j=0

(
n − 1 − j

j

)
2n−1−2 j k j , 0 ≤ l ≤

⌊
n − 1

2

⌋
; n ∈ N.

From this definition, we present a few incomplete k-Pell numbers as we can see in
the following Table 1 (Table of Incomplete numbers of [8]).

In the next result, Proposition 9 (Proposition 3.2 of [8]), we present the recurrence
relation verified by these numbers:

Proposition 9 With k any integer, the recurrence relation of the incomplete k-Pell
numbers Pl

k,n is

Pl+1
k,n+2 = 2Pl+1

k,n+1 + kPl
k,n,

(
0 ≤ l ≤ n − 2

2
; n ∈ N

)
.

Table 1 The incomplete Pl
k,n for 1 ≤ n ≤ 8

n j

0 1 2 3

1 1

2 2

3 4 4 + k

4 8 8 + 4k

5 16 16 + 12k k2 + 12k + 16

6 32 32 + 32k 6k2 + 32k + 32

7 64 64 + 80k 24k2 + 80k + 64 k3 + 24k2 +
80k + 64

8 128 128 + 192k 80k2 + 192k +
128

8k3 + 80k2 +
192k + 128
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3 Conclusions

It is our intention to continue to work in this topic, if possible to introduce new
sequences of numbers, polynomials, quaternions, octonions, etc., studing several
algebraic properties, matrices whose entries are elements of these sequences and
also some combinatorial aspect involving them. We do not forget their applications
in several fields, in particular in Cryptography.
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Extension of Leap Condition
in Approximate Stochastic Simulation
Algorithms of Biological Networks
with 2nd and 3rd order Taylor Expansion

Saliha Demirbüken and Vilda Purutçuoğlu

Abstract The approximate stochastic simulation algorithms are the alternative
methods to simulate the complex biological systems with a loss in accuracy by
acquiring from computational demand. These methods depend on the leap condi-
tion. Here, the study aims to construct an actual and close confidence interval for
the parameter denoting the number of simultaneously reaction in the system, by
expanding the leap condition and the hazard function by second and third order
Taylor expansion in the same time. To reach the goal, we use the poisson τ -leap
and approximate Gillespie algorithm. Moreover, we derive the maximum likelihood
estimators (MLE) and the method of moment estimators (MME) of the simulation
parameters and construct confidence interval estimators at a given significance level
α for these extended version of algorithms. Finally, we theoretically present that the
obtained k can generate more narrower results [1–5, 7, 10].

Keywords Approximate stochastic simulation algorithms · Leap condition ·
Confidence interval · Taylor expansion

1 Introduction

There are many occuring chemical reactions in the biological systems. Stochastic
Simulation Algorithms (SSAs) enable to simulate these reactions in the time evo-
lution. Three main SSAs are commonly used in the literature. These are Gillespie
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algorithm, the first reaction method and the next reaction method. Although these
algorithms give exact generation of the system, they are computationally costly. So
approximate SSAs can be used since they are faster than SSA. Nevertheless, approx-
imate SSAs generate less accurate results. Primarily, these methods depend on the
leap condition. In other words, there should be no significant change in the values
of the propensity function during the time change from t to t + τ , i.e, [t, t + τ ) [4].
That is [11],

|h j (Y + λ̄)(Y, τ ) − h j (Y )| ≤ εh0(Y ),

where h0(Y ) = ∑r
j=1 h j (Y ) is the sum of all hazard functions h j (Y ), ε denotes the

error control parameter and λ̄ presents

λ̄(Y, τ ) =
r∑

j=1

[h j (Y )τ ]ν j = τξ(Y ).

The above expression shows the expected net change in the state for the given time
interval when the system has r members of reactions. In this equation, ν j represents
the stoichiometric coefficients of the reaction j which corresponds to the j th row of
the net effect matrix V .

Basically, estimators are used to find the plausible value of Ŷ by using unknown
population parameter. Hereby, there are different kinds of estimators. In this study,
especially,maximum likelihood estimators (MLE) andmethod ofmoment estimators
(MME) are handled to deduce the parameters such as k, which is the number of
simulatenous reactions in the system and τ which is the time interval to specify k.
Shortly, the likelihood function can be written as follows

Ln(θ) = Ln(θ, y) = fn(y, θ),

where the observed data set is denoted by y = (y1, y2, . . . , yn), associated with a
vector θ = [θ1, θ2, . . . , θk]

T of parameters that indices the probability distribution
within a parametric family{ f (· ; θ) | θ ∈ Θ}. Thus, this is called the parameter space
and fn(y; θ) is the product of univariate density functions. Therefore, the aim ofMLE
is to find the values of the model parameters that maximize the likelihood function
over the parameter space, i.e,

θ̂ = arg max
θ∈Θ

L̂n(θ ; y).

On the other hand, in addition to MLE, MME can be described in the following
way. Suppose that the problem is to estimate k unknown parameters θ1, θ2, . . . , θk
characterizing the distribution fW (w; θ) of the random variable W . Also, assume
that the first k moments of the true distribution, i.e, the “population moments”, can
be expressed as the functions of θ’s via
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μ1 ≡ E[W ] = g1(θ1, θ2, . . . , θk),

μ2 ≡ E[W 2] = g2(θ1, θ2, . . . , θk),

...

μk ≡ E[Wk] = gk(θ1, θ2, . . . , θk).

Accordingly, if a sample of size n is drawn, resulting in the values w1, . . . , wn ,
j = 1, . . . , k, the estimated mean of these values μ j can be found by

μ̂ j = 1

n

n∑

i=1

w
j
i as the jth sample moment. As a result, the method of moments

estimator for θ1, θ2, . . . , θk denoted by θ̂1, θ̂2, . . . , θ̂k can be described as the solution
of the equations:

μ̂1 = g1(θ̂1, θ̂2, . . . , θ̂k),

μ̂2 = g2(θ̂1, θ̂2, . . . , θ̂k),

...

μ̂k = gk(θ̂1, θ̂2, . . . , θ̂k).

Furthermore, a confidence interval can be defined as an estimated range of values
which is likely to include an unknown population parameter. This estimated range
is evaluated from a given set of sample data.

Hence, in this study, by expanding net change of hazard function via 2nd and
3rd order Taylor expansion, the aim is to construct the confidence intervals for the
population parameters k and τ in the two approximate SSAs, namely, the poisson tau-
leap and the approximate Gillespie method, by using MLE and MME approaches.
All these approaches are based on the leap condition. In the current literature, the
k and τ in these three simulation approaches have been used via a conservative
one-sided confidence interval without controlling the significance level α. Hence,
this study suggests realistic and accurate confidence intervals for both parameters
by controlling α and by using the MLE and MME of the modal parameters so
that narrower and more accurate confidence intervals can be obtained theoretically.
Thereby, in the organization of the paper, we demonstrate the selected three major
approximate SSAs in Sect. 2. We show our confidence intervals inserted to the leap
condition of the underlying approximate SSAs in Sect. 3. Finally, we conclude our
results in Sect. 4 [7, 8].

2 Approximate Stochastic Simulation Algortihms

Despite the fact that advancement of the SSA described previously gives helpful
results, however, focused on being efficient, it is slow and computational costly. To
speed the time of the simulation, there could be some sacrifice in the exactness of
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the SSA. Using approximate SSAs are one way to do this [5]. These fast algorithms
are depend on a time discretisation of the Markov process [12]. Here, the main
concept is that, firstly, the time is seperated into small different pieces, leap. Then,
to be possible to continue with improvement of the state from the start of one piece
to another, the basis kinetics are approximated [12]. Mostly, these algorithms act
with the assumption of leap condition. In other words, the selected time interval τ
should be satisfied that there is no notable change in the propensity function during
the time change from t to t + τ . In addition, since SSAs are computational costly,
approximate SSAs make possible to obtain less computational demand.

2.1 Poisson τ -Leap Method

Under the leap condition, the aim of this method is improve intervals between select-
ing times with selected the time interval τ as large as possible [4, 11]. Here, for each
reaction channel R j , a random value k j is generated from a Poisson distribution by
Poi(h j (Y )τ ) in the time interval [t, t + τ ], where Y (t) = Y is a state vector. Then,
an acceptable τ is obtained by substituting it boundary for the difference between

h j (Y + λ(Y )) − h j (Y ),

where λ(Y ) = ∑r
j=1 k jv j denotes the net change in the state of the system in [t, t +

τ ]. As k j ∼ Poi(h jτ ), mean of k j equals h jτ , i.e., E(k j ) = h j (Y )τ and

λ̄(Y, τ ) =
r∑

j=1

[h j (Y ).τ ]v j = τξ(Y ) (1)

that gives the expected net change in the state for the given time interval. In this equal-
ity, j represents the stoichiometric coefficients of the reaction j corresponding to the
j th row of the net effect matrix V as defined beforehand and h j (Y ) corresponds the
hazard function of the j th reaction which is found by the product of the rate constant
c j and distinct molecular reactant combination of underlying reaction. Subsequently,
ξ(Y ) = ∑r

j=1 h jv j can be represented as the mean or expected state change in a unit
of time by an n-dimensional vector where each i th component, ξ j (Y ), subtends to
the expected change of the i th species in an unit of time. Afterwards, the following
inequality is obtained

|h j (Y + λ̄)(Y, τ ) − h j (Y )| ≤ εh0(Y ) (2)

by using λ(Y, τ ) in Eq. (1). It can be inferred from Eq. (2) in the following. The
expected changes in the hazard functions in time τ is restricted by a fraction ε,
error control parameter lying 0 < ε < 1, and the sum of all hazard functions h0 =∑r

j=1 h j (Y ). In fact, this inequality presents a leap condition. Consequently, using
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the first order Taylor expansion helps to predict the difference on the left hand side
of Eq. (2). After the application of the Taylor expansion, the following equality is
obtained.

|h j (Y + λ̄(Y, τ )) − h j (Y )| ≈ λ̄(Y, τ )h j (Y ) =
n∑

i=1

τξ j (Y )
∂h j (Y )

∂Yi
. (3)

Then, setting b ji (Y ) = ∂h j (Y )

∂Yi
(i = 1, . . . , n, j = 1, . . . , r ), the below inequality

can be shown

τ |
n∑

i=1

ξ j (Y )b ji (Y ) ≤ εh0(Y )|.

Consequently, the largest value of τ satisfying the leap condition for the given Y
and the preselected ε is calculated by

τ = min

{
εh0(Y )

| ∑n
i=1 ξ j (Y )b ji (Y )|

}

. (4)

After all, using the exact SSA is more preferable rather than Eq. (4) since the
obtained value of τ is favorable for the leap size. The obtained value of τ in Eq. (4)
would not be selected if τ ≤ 1

h0(Y )
as τ = 1

h0(Y )
is given fromSSA.Not considering of

the computational cost, the time interval in the Poisson τ -leapmethos ismore suitable
than the time of SSA. Essentially, there is an incremental difference between them.

In final step, there is an update of the current state in the Poisson τ -leap methods
by replacing t by t := t + τ . In addition, for Y , there is a necessity to determine the
largest value of τ and to be adaptable with the leap condition.

Beside this, in the long-run simulations, Poisson τ -leap algorithm can create
problem of negative molecular populations from the application of this method in
various systems. To overcome this problem, there are some suggested solutions. One
of the well-known alternative solutions is the Binomial τ -leap approach. Although
it does not give accurate result to have smooth approximation of exact SSAs, it
overcomes the negativity problem [6, 7, 9, 11].

2.2 Approximate Gillespie Algorithm

As an alternative approaches of the poisson τ -leap method, the approximate Gille-
spie algorithm can be considered. Basically, the approximate Gillespie algorithm
[11], depending on the extension of the exact Gillespie method, states that k
numbers of reactions, generated from the Gamma distribution with a parameter∑r

j=1 h j (Y ), where each of them occurs in an exponential time step t , which
is performed rather than a single reaction at a time. Then, it can be shown that
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τ ∼ Γ (k, h0(Y )), where τ presents the time interval of k reactions in the total haz-
ard, h0(Y ), h0(Y ) := ∑r

j=1 h j (Y ). In this case, the system is updated by replacing
t by t := t + τ and by changing the current state Y by Y := Y + λ(Y ), where the
net change in the state is found via λ(Y ) = ∑r

j=1 k jv j . In this expression v j is the
net effect of the j th reaction by showing the j th row of the net effect matrix V as
used previously. By this way, it is assumed that the essential time for every reaction
correspons to that of Gillespie. Under this assumption, the total number of reactions
during the interval τ is determined by controlling k in each time interval. For this
purpose, it is initially described a k satisfying the leap condition in each time step.
Then, the change in hazard function Δh j (Y ), ( j = 1, ..., r) is approximated by the
first order Taylor expansion in the time interval [t, t + τ ], in a such way that the
following equality can be obtained as performed in the poisson τ -leap approach.

Δh j (Y ) = h j (Y + ¯λ(Y, τ )) − h j (Y ) ≈ ¯λ(Y, τ )h j (Y ) =
n∑

i=1

¯λ(Y, τ )
∂hi j (Y )

∂Yi
(5)

in which the expected change in the state by regarding k simultaneous reaction
computed by

¯λ(Y, τ ) = Y (t + τ ) − Y (t) =
r∑

j=1

k jν j .

In the above expression, k j shows the number of times of the j th reaction and ν j is
the net effect of the j th reaction by denoting the j th row of the net effect matrix V as
before. Hence, by using a gamma distribution, we can show τ ∼ Γ (k, h0(Y )) where
k = E(τ ).h0(Y ). In this expression, E(τ ) illustrates the expected τ on average.

Then, by inserting this k into Eq. (5), the approximation of

Δh j (Y ) ≈
r∑

j=1

f j j ′(Y )τh0(Y ),

is acquired where the total change in hazard of reaction j ′ is described in terms of
f j j ′(Y ) via

f j j ′(Y ) =
∑

i=1

∂h j (Y )

∂Yi
νi j

for the execution of the reaction j ′. Finally, in order to obtain the confidence interval,
the following expression is written as

Δh j (Y ) ≈ E(Δh j (Y )) ± √
Var(Δh j (Y )), (6)

where Var(.) denotes the variance of the given random variable. Then, the statistics
for Δh j (Y ) can be shown by
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E(Δh j (Y )) ≈
r∑

j=1

f j j ′(Y )E(τ )h0(Y ) =
r∑

j=1

f j j ′(Y )
k

h0(Y )
h0(Y ) = k

r∑

j=1

f j j ′(Y )

(7)
and

Var(Δh j (Y )) ≈
r∑

j=1

f 2j j ′(Y )Var(τ )h0(Y ) =
r∑

j=1

f 2j j ′(Y )
k

h0(Y )
h0(Y ) = k

r∑

j=1

f 2j j ′(Y ).

(8)

By substituting Eqs. (7) and (8) into the required leap condition, the below expres-
sion can be found

|k|
r∑

j ′=1

f j j ′(Y ) ≤ εh0(Y )

and √
√
√
√

(
k

r∑

j ′=1

f 2j j ′(Y )
) ≤ εh0(Y ).

Accordingly, the optimal k is computed from

k = min
j∈[1,r ]

⌈ ∣
∣
∣
∣
∣

εh0(Y )
∑r

j ′=1 f j j ′(Y )

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

ε2h20(Y )
∑r

j ′=1 f 2j j ′(Y )

∣
∣
∣
∣
∣

⌉

. (9)

Indeed, mostly, inserting the distributions feature of k and τ into the leap condi-
tion and finding a conservative confidence interval has been derived for the poisson
distribution too [6]. But in these studies, the confidence intervals are constructed
one-sided and by taking a fixed significance level α which roughly sets the tabulated
value to 1. Furthermore, they generate large intervals which decreases the accuracy
of the approximate algorithms. Hereby, the following part introduces an extension
where the confidence intervals can produce more accurate results regarding previous
studies [8, 9].

3 Leap Condition

In this study, h0(Y ) is expanded by 2nd and 3rd order Taylor formula to improve the
accuracy of the leap condition [9]. Thus, it aims to obtain an acceptable k by forming
confidence interval with parameters of estimation deriving MLE and MME under
Poisson and Gamma distribution, seperately.
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3.1 Expansion of 2nd Order Taylor Expansion

The change hazard function Δh j (Y ) is approximated by the second order Taylor
expansion in the time interval [t, t + τ ] in a such way that

h j (Y + λ̄(Y, τ )) = h j (Y ) + λ̄(Y, τ )h′
j (Y ) + λ̄2

2
h′′
j (Y ) + O3(h j (Y )),

h j (Y + λ̄(Y, τ )) − h j (Y ) ≈ λ̄(Y, τ )h′
j (Y ) + λ̄2

2
h′′
j (Y )

Δh j (Y ) ≈ λ̄(Y, τ )h′
j (Y ) + λ̄2

2
h′′
j (Y ), (10)

where h′
j (Y ) = ∑n

i=1
∂hi j (Y )

∂Yi
and h′′

j (Y ) = ∑n
i=1

∂2hi j (Y )

∂Y 2
i

λ̄(Y, t) = Y (t + τ ) − Y (t) = ∑r
j=1 k jν j

Δh j (Y ) ≈
r∑

j=1

k jν j h
′
j (Y ) + 1

2

( r∑

j=1

k jν j
)2
h′′
j (Y )

Δh j (Y ) ≈
r∑

j=1

k jν j h
′
j (Y ) + 1

2

r∑

j=1

k jν j

r∑

j=1

k jν j h
′′
j (Y ) (11)

Then, considering τ is generated from gamma distribution with parameters k and
h0(Y ), i.e., τ ∼ Γ (k, h0(Y )), k can be written as k = τ .h0(Y ) by using its expecta-
tion. After substituting into Eq. (11), the following expressions are obtained.

Δh j (Y ) ≈
r∑

j=1

τh0(Y )h′
j (Y )ν j + 1

2

r∑

j=1

τh0(Y )ν j

r∑

j=1

τh0(Y )ν j h
′′
j (Y )

= τh0(Y )

r∑

j=1

h′
j (Y )ν j + 1

2
τ 2h20(Y )

r∑

j=1

ν j

r∑

j=1

ν j h
′′
j (Y ). (12)

Setting f j j ′(Y ) = ∑r
i=1

∂hi j (Y )

∂Yi
νi j = h′

j (Y )ν j and g j j ′(Y ) = ν j
∑r

j=1 ν j
∑r

i=1
∂2hi j (Y )

∂Y 2
i

νi j = ν j
∑r

j=1 h
′′
j (Y )ν j .

Accordingly, Δh j (Y ) can be obtained in the following way.
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Δh j (Y ) ≈ τh0(Y )

r∑

j=1

f j j ′(Y ) + 1

2
τ 2h20(Y )

r∑

j=1

g j j ′(Y )

=
r∑

j=1

(
τh0(Y ) f j j ′(Y ) + h20(Y )

2
τ 2g j j ′(Y )

)
. (13)

We have that

Δh j (Y ) ≈ E(Δh j (Y )) ± zα/2

√
Var(Δh j (Y )). (14)

Then, the mean of Eq. (13), E(Δh j (Y )), is calculated by

E(Δh j (Y )) ≈ E

( r∑

j=1

(
τh0(Y ) f j j ′(Y ) + h20(Y )

2
τ 2g j j ′(Y )

)
)

=
r∑

j=1

(

E(τ )h0(Y ) f j j ′(Y ) + E(τ 2)
h20(Y )g j j ′(Y )

2

)

. (15)

Since E(τ ) = k
h0(Y )

and E(τ 2) = k(k+1)
h20(Y )

,

E(Δh j (Y )) ≈
r∑

j=1

((

k

√
g j j ′(Y )

2
+ ( f j j ′(Y ) + g j j ′ (Y )

2 )
√
2g j j ′(Y )

)2
−

(
( f j j ′(Y ) + g j j ′ (Y )

2 )
√
2g j j ′(Y )

)2)

.

(16)

Hence, by substituting this final expression into the leap condition, the underlying
inequality can be acquired as below.

∣
∣
∣
∣

r∑

j=1

((

k

√
g j j ′(Y )

2
+ ( f j j ′(Y ) + g j j ′ (Y )

2 )
√
2g j j ′(Y )

)2

−
(

( f j j ′(Y ) + g j j ′ (Y )

2 )
√
2g j j ′(Y )

)2)∣
∣
∣
∣ ≤ εh0(Y )

(17)

Then, we get the following expressions.

k ≤

√

εh0(Y ) +
(

( f j j ′ (Y )+ g j j ′ (Y )

2 )√
2g j j ′ (Y )

)2

− ∑r
j=1

( f j j ′ (Y )+ g j j ′ (Y )

2 )√
2g j j ′ (Y )

∑r
j=1

√
g j j ′ (Y )

2

. (18)

In a similar way of calculation of E(Δh j (Y )), Var(Δh j (Y )) is derived in the
following approach.



280 S. Demirbüken and V. Purutçuoğlu

Var(Δh j (Y )) ≈
r∑

j=1

(

h20(Y ) f j j ′ (Y )Var(τ ) + h40g j j ′ (Y )

4
Var(τ2) + h30(Y ) f j j ′ (Y )g j j ′ (Y )Cov(τ , τ2)

)

.

(19)

As τ ∼ Γ (k, h0(Y ), it is known that Var(τ ) = k
h20(Y )

, Var(τ 2) = 4k3+10k2+6k
h40(Y )

=
2k(k+1)(2k+3)

h40(Y )
andCov(τ , τ 2) = 2k(k+1)

h30(Y )
. By substituting these values into the equation

of Var(Δh j (Y )) ,i.e., (Eq. (19)), the following form is found.

Var(Δh j (Y )) ≈
r∑

j=1

(
f 2j j ′ (Y )k + g2j j ′ (Y )2k(k + 1)(2k + 3)

4
+ f j j ′ (Y )g j j ′ (Y )2k(k + 1)

)
.

(20)

After plugging Eq. (20) into the leap condition, we have that

k = min
j∈[1,r ]

⌈

√

εh0(Y ) +
(

( f j j ′ (Y )+ g j j ′ (Y )

2 )√
2g j j ′ (Y )

)2

− ∑r
j=1

( f j j ′ (Y )+ g j j ′ (Y )

2 )√
2g j j ′ (Y )

∑r
j=1

√
g j j ′ (Y )

2

,

√
ε2h20(Y ) − A(Y ) + ∑r

j=1 B
2(Y ) − ∑r

j=1 B(Y )
∑r

j=1 g j j ′(Y )

⌉

, (21)

where A(Y ) = ∑r
j=1

(
2 f j j ′(Y )g j j ′(Y ) + f 2j j ′(Y ) + 3

2g
2
j j ′(Y )

)
and B(Y ) =

(
5
2 g j j ′ (Y )+2 f j j ′ (Y )g j j ′ (Y )

2g j j ′ (Y )

)

. Hereby, although it is hard to compare directly Eq. (9) with

Eqs. (21) and 21) is expected to give more accurate result due to the higher order
expansion in the derivation. Whereas, as a future work, these values will be analysed
via simulations.

Confidence Intervals with Poisson by Distribution Using MLE FromMLE under
the Poisson distribution, τ ∼ Poi(k), it is known that the value of k equals to k = τ .
Then, this value is substituted into Δh j (Y ) in Equation (11). Thus, Δh j (Y ) can be
found as

Δh j (Y ) ≈
r∑

j=1

τν j h
′
j (Y ) + 1

2

r∑

j=1

τν j

r∑

j=1

τ

nh0(Y )
ν j h

′′
j (Y )

=
r∑

j=1

(

τ f j j ′(Y ) + τ 2

2
g j j ′(Y )

)

, (22)
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where f j j ′(Y ) = ∑r
i=1

∂hi j (Y )

∂Yi
νi j = h′

j (Y )ν j and g j j ′(Y ) = ν j
∑r

j=1 ν j
∑r

i=1
∂2hi j (Y )

∂Y 2
i

νi j = ν j
∑r

j=1 h
′′
j (Y )ν j .

By evaluating E(Δh j (Y )) and Var(Δh j (Y )) as in the following equation,

E(Δh j (Y )) ≈=
r∑

j=1

(

E(τ ) f j j ′(Y ) + E(τ 2)

2
g j j ′(Y )

)

. (23)

Since τ ∼ Poi(k), the equalities of E(τ ) = k and E(τ 2) = k + k2 are known.There-
fore,

E(Δh j (Y )) ≈
r∑

j=1

((√
g j j ′(Y )√

2
k + 2 f j j ′(Y ) + g j j ′(Y )√

2g j j ′(Y )

)2
−

(
2 f j j ′(Y ) + g j j ′(Y )√

2g j j ′(Y )

)2)

.

(24)

Similarly, Var(τ ) = k, Var(τ 2) = k + 6k2 + 4k3 and Cov(τ , τ 2) = 2k2 + k
can be computed too. Then, the following equality can be obtained

Var(Δh j (Y )) ≈
r∑

j, j ′=1

(

g2j j ′(Y )k3 + (3

2
g2j j ′(Y ) + 2 f j j ′(Y )g j j ′(Y )

)
k2

+ (
f 2j j ′(Y )

g j j ′(Y )

4
+ f j j ′(Y )g j j ′(Y )

)
k

)

(25)

After substituting Eqs. (24) and (25) into the leap condition, an admissable value
of k can be chosen by

k = min
j∈[1,r ]

⌈

√

εh20(Y ) + ∑r
j=1

( 2 f j j ′ (Y )+g j j ′ (Y )√
2g j j ′ (Y )

)2 − ∑r
j, j ′=1

(
2 f j j ′ (Y )+g j j ′ (Y )√

2g j j ′ (Y )

)

∑r
j, j ′=1

√
g j j ′ (Y )

2

,

√

ε2h20(Y )
∑r

j=1

(
9
14g

2
j j ′(Y ) + f 2j j ′(Y ) + f j j ′ (Y )g j j ′ (Y )

2 − f 2
j j ′ (Y )g j j ′ (Y )

4

)

∑r
j=1 g j j ′(Y )

−
∑r

j=1

(
3
4g j j ′(Y ) + f j j ′(Y )

)

∑r
j=1 g j j ′(Y )

⌉

. (26)

Indeed it can be difficult to make a direct comparison between Eq. (26) and its
previous value. However, as in our derivation, we apply the MLE expression in the
derivation of τ and k and since MLE is a sufficient statistic, as a consequence of
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Rao-Blackwellized theorem, we expect toget lower variance in the expression of
k. Therefore, thereotically, we presume that thi final expression of k’s Eq. (26) is
narrowe than k in Eq. (9).

In addition to these , the confidence interval under the Poisson distribution for
the value of k estimated from MLE is obtained by using the approximation of k ≈
τ ± z α

2

√
τ
n . Then, plugging this interval into Eq. (11) gives the expression below.

Δh j (Y ) ≈
r∑

j, j ′=1

((

τ ± zα/2

√
τ

n

)

f j j ′ (Y ) + 1

2

(

τ ± zα/2

√
τ

n

)2

g j j ′ (Y )

)

=
r∑

j, j ′=1

(
g j j ′ (Y )

2
τ2 ± zα/2

g j j ′ (Y )√
n

τ
√

τ +
(

f j j ′ (Y ) + z2α/2
g j j ′ (Y )

2n

)

τ ± zα/2
f j j ′ (Y )√

n

√
τ

)

,

(27)

where f j j ′(Y ) = ∑r
i=1

∂hi j (Y )

∂Yi
νi j = h′

j (Y )ν j and g j j ′(Y ) = ν j
∑r

j=1 ν j
∑r

i=1
∂2hi j (Y )

∂Y 2
i

νi j = ν j
∑r

j=1 h
′′
j (Y )ν j .

Then, the values of E(Δh j (Y )) and Var(Δh j (Y )) are calculated by using the fol-
lowing equations.

E(τ
√

τ ) ≈ k
√
k, having a similar process of obtaining E(

√
τ ) (See the Appendix),

Var(
√

τ ) ≈ 0,

Var(τ
√

τ ) ≈ k + 3k2,

Cov(τ2, τ
√

τ ) ≈ −k2
√
k,

Cov(τ2, τ ) = 2k2 + k,

Cov(τ2,
√

τ ) = −k
√
k,

Cov(τ
√

τ ) ≈ 0,

Cov(τ
√

τ ,
√

τ ) ≈ k,

Cov(τ ,
√

τ ) ≈ 0.

Therefore,

E(Δh j (Y )) ≈
r∑

j, j ′=1

(
g j j ′(Y )

2
(k + k2) ± zα/2

g j j ′(Y )√
n

(k
√
k)

+
(

f j j ′(Y ) + z2α/2
g j j ′(Y )

2n

)

k ± zα/2
f j j ′(Y )√

n

√
k

)

(28)

and
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Var(Δh j (Y )) ≈
r∑

j, j ′=1

( g2j j ′ (Y )

4
(k + 6k2 + 4k3) + z2α/2

g j j ′ (Y )

n
(k + 3k2)

+
(

f j j ′ (Y ) + z2α/2
g j j ′ (Y )

2n

)2

k + z2α/2

f 2j j ′ (Y )

n
Var(τ ) − zα/2

g2j j ′ (Y )√
n

k2
√
k

+ g j j ′ (Y )
(
f j j ′ (Y ) + z2α/2

g j j ′ (Y )

2n

)
(2k2 + k) − f j j ′ (Y )g j j ′ (Y )√

n
k
√
k

+ z2α/2
2 f j j ′ (Y )g j j ′ (Y )

n
k

)

. (29)

FromEqs. (28) and (29), by getting k alone is effortful since the equations have not
integer powers. In other words, the equations have roots powers. Hence, the process
of constructing confidence interval for k at the beginning and inserting Eq. (11) is
likely to be inefficient as a workload.

Confidence Intervals with Poisson Distribution by Using MMEFromMMEunder
the Poisson distribution, τ ∼ Poi(k), it is known that the value of k equals to k = τ

n .
Then, this value is inserted Δh j (Y ) in (Eq. 11) via

Δh j (Y ) ≈
r∑

j=1

τ

n
ν j h

′
j (Y ) + 1

2

r∑

j=1

τ

n
ν j

r∑

j=1

τ

n
ν j h

′′
j (Y )

=
r∑

j=1

(
τ

n
f j j ′(Y ) + τ 2

2n2
g j j ′(Y )

)

, (30)

where f j j ′ (Y ) = ∑r
i=1

∂hi j (Y )

∂Yi
νi j = h′

j (Y )ν j and g j j ′ (Y ) = ν j
∑r

j=1 ν j
∑r

i=1
∂2hi j (Y )

∂Y 2
i

νi j =
ν j

∑r
j=1 h

′′
j (Y )ν j .

Then, E(Δh j (Y )) and Var(Δh j (Y )) are calculated by the following way.

E(Δh j (Y )) ≈
r∑

j, j ′=1

((√
g j j ′ (Y )

n
√
2

k + 2 f j j ′ (Y )n + g j j ′ (Y )

2n
√
2g j j ′ (Y )

)2

−
(
2 f j j ′ (Y )n + g j j ′ (Y )

2n
√
2g j j ′ (Y )

)2)

(31)

and

Var(Δh j (Y )) ≈
r∑

j, j ′=1

(
g2j j ′(Y )

n4
k3 +

(
3g j j ′(Y )

2n4
+ 2 f j j ′(Y )g j j ′(Y )

n3

)

k2

+
(

f 2j j ′(Y )

n2
+ g2j j ′(Y )

4n4
+ f j j ′(Y )g j j ′(Y )

n3
+

)

k

)

. (32)
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Putting Eqs. (31) and (32) into the leap condition gives the plausible k via

k = min
j∈[1,r ]

⌈

√

εh0(Y ) + ∑r
j, j ′=1

(
2 f j j ′ (Y )n+g j j ′ (Y )

2n
√

2g j j ′ (Y )

)2

− ∑r
j, j ′=1

(
2 f j j ′ (Y )n+g j j ′ (Y )

2n
√

2g j j ′ (Y )

)

∑r
j, j ′=1

√
g j j ′ (Y )

n
√
2

√

ε2h20(Y ) − ∑r
j=1

( g2
j j ′ (Y )−g j j ′ (Y )

4n4− f j j ′ (Y )g j j ′ (Y )−6 f j j ′ (Y )

n3

− 3 f 2
j j ′ (Y )

n2
) − ∑r

j=1

(
3

2n2
− 2 f j j ′ (Y )

n

)

∑r
j=1

g j j ′ (Y )

n2

⌉

. (33)

Indeed here, although Eq. (33) can be simulated to determine which k value gives
more accurate result.Wecannot directly say that the expression inEq. (33) is narrower
than the expression of k in Eq. (26). Because, theoretically it is not guarantee that all
produce sufficient statistics as the maximum likelihood estimators. Hence, this final
expression is one of the future work by evaluating its value in simulation studies.
Theoretically, it is not straightforward to do this.

Confidence Intervals with Gamma Distribution by Using MLE From MLE, it is
known that the value of k equals to k = τ

nh0(Y )
. Then, this value is inserted Δh j (Y )

in (Eq. 11) via

Δh j (Y ) ≈
r∑

j=1

τ

nh0(Y )
ν j h

′
j (Y ) + 1

2

r∑

j=1

τ

nh0(Y )
ν j

r∑

j=1

τ

nh0(Y )
ν j h

′′
j (Y )

=
r∑

j=1

(
τ

nh0(Y )
f j j ′(Y ) + τ 2

2n2h20(Y )
g j j ′(Y )

)

, (34)

where f j j ′(Y ) = ∑r
i=1

∂hi j (Y )

∂Yi
νi j = h′

j (Y )ν j and g j j ′(Y ) = ν j
∑r

j=1 ν j
∑r

i=1
∂2hi j (Y )

∂Y 2
i

νi j = ν j
∑r

j=1 h
′′
j (Y )ν j .

E(Δh j (Y )) ≈
r∑

j=1

(( √
g j j ′ (Y )√
2nh20(Y )

k + 2nh20(Y ) f j j ′ (Y ) + g j j ′ (Y )

2nh20
√
2g j j ′ (Y )

)2

−
(
2nh20(Y ) f j j ′ (Y ) + g j j ′ (Y )

2nh20
√
2g j j ′ (Y )

)2)

(35)

and

Var(Δh j (Y )) ≈
r∑

j=1

((
f j j ′(Y )

nh0(Y )

)2 k

h20(Y )
+

(
g j j ′(Y )

2n2h20(Y )

)2 2k(k + 1)(2k + 3)

h40(Y )

+ 2 f j j ′(Y )g j j ′(Y )

2n3h30(Y )

2k(k + 1)

h30(Y )

)

. (36)

Similar to previous derivations, inserting Eqs. (35) and (36) into the required leap
condition gives an acceptable value of k via
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k = min
j∈[1,r ]

⌈

√
∑r

j=1

(
2nh20(Y ) f j j ′ (Y )+g j j ′ (Y )

2nh20
√

2g j j ′ (Y )

)2

− εh0(Y ) − 2nh20(Y ) f j j ′ (Y )+g j j ′ (Y )

2nh20
√

2g j j ′ (Y )

∑r
j=1

√
g j j ′ (Y )√
2nh20(Y )

√

ε2h20(Y ) + ∑r
j=1

(
19g2

j j ′ (Y )

4n4h80(Y )
− 8 f j j ′ (Y )g j j ′ (Y )

n3h60(Y )
− 3 f 2

j j ′ (Y )

n2h40(Y )

)

−
(

5g j j ′ (Y )

2n2h40(Y )
+ 2 f j j ′ (Y )

nh20(Y )

)

∑r
j=1

g j j ′ (Y )

n2h40(Y )

⌉

. (37)

Thus, as MLE gives the sufficient statistics and as a consequence of the Rao-
Blackwellized theorem, we can theoretically say that Eq. (37) obtained from (37)
can provides more accurate results than the estimators derived by the method of
moments.

Moreover, the confidence interval for the value of k estimated fromMLE is found
as, previously, k ≈ k

nh20(Y )
± z α

2

√
k

h40(Y )n3
. Then, insterting this interval into Eq. (11)

gives the following approximation.

Δh j (Y ) ≈
r∑

j, j ′=1

(
g j j ′ (Y )

2n2h40(Y )
k2 ± z α

2

2

n2
√
nh40(Y )

k
√
k +

(
f j j ′ (Y )

nh20(Y )
+ z2α

2

g j j ′ (Y )

2n3h40(Y )

)

k ± z α
2

f j j ′ (Y )

n
√
nh20(Y )

√
k

)

,

(38)

where f j j ′(Y ) = ∑r
i=1

∂hi j (Y )

∂Yi
νi j = h′

j (Y )ν j and g j j ′(Y ) = ν j
∑r

j=1 ν j
∑r

i=1
∂2hi j (Y )

∂Y 2
i

νi j = ν j
∑r

j=1 h
′′
j (Y )ν j . As k = τ

nh0(Y )
is estimated from MLE, it is substi-

tuted into Eq. (38). Thereby,

Δh j (Y ) ≈
r∑

j, j ′=1

(
g j j ′(Y )

2n2h40(Y )

τ 2

n2h20(Y )
± z α

2

2

n2
√
nh40(Y )

τ

nh0(Y )

√
τ

nh0(Y )

+
(

f j j ′(Y )

nh20(Y )
+ z2α

2

g j j ′(Y )

2n3h40(Y )

)
τ

nh0(Y )
± z α

2

f j j ′(Y )

n
√
nh20(Y )

√
τ

nh0(Y )

)

(39)

Furthermore, E(Δh j (Y )) and Var(Δh j (Y )) are calculated by using E(τ
√

τ ) ≈
(

k
h0(Y )

)3/2
, which is evaluated by a similar process of finding E(

√
τ ),

Var(
√

τ ) ≈ 0, Var(τ
√

τ ) ≈ 3k2+2k
h30(Y )

,Cov(τ 2, τ
√

τ ) ≈ (
k

h0(Y )

)7/2 − k2+k
h20(Y )

(
k

h0(Y )

)3/2
,

Cov(τ 2,
√

τ ) ≈ (
k

h0(Y )

)5/2 − k2+k
h20(Y )

(
k

h0(Y )

)1/2
, Cov(τ

√
τ , τ ) ≈ 0, Cov(τ

√
τ ,

√
τ ) ≈

k
h20(Y )

, Cov(τ 2, τ ) = 2k(k+1)
h30(Y )

and Cov(τ ,
√

τ ) ≈ 0. Thus,
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E(Δh j (Y )) ≈
r∑

j, j ′=1

(
g j j ′(Y )

2n4h60(Y )

k2 + k

h0(Y )
± zα/2

2

n4h50(Y )
√
h0(Y )

k3/2

h3/20 (Y )

+
(

f j j ′(Y )

n2h30(Y )
+ z2α/2

g j j ′(Y )

2n4h50(Y )

)
k

h0(Y )
± z α

2

f j j ′(Y )

n2h20(Y )
√
h0(Y )

√
k

h0(Y )

)

(40)

and

Var(Δh j (Y )) ≈
r∑

j, j ′=1

(
g2j j ′(Y )

4n8h120 (Y )

6k3 + 9k2 + 6k − 1

h40(Y )
+ zα/2

4(3k2) + 2k

n8h140 (Y )

+
(

f j j ′(Y )

n2h30(Y )
+ z2α/2

g j j ′(Y )

2n4h50(Y )

)2 k

h0(Y )

± zα/2
2g j j ′(Y )

n8h110 (Y )
√
h0(Y )

(
( k

h0(Y )

)7/2 − k2 + k

h20(Y )

( k

h0(Y )

)3/2
)

+ g j j ′(Y )

n4h60(Y )

(
f j j ′(Y )

n2h30(Y )
+ z2α/2

g j j ′(Y )

2n4h50(Y )

)
2k(k + 1)

h30(Y )

± zα/2
f j j ′(Y )g j j ′(Y )

n6h80(Y )
√
h0(Y )

(
( k

h0(Y )

)5/2 − k2 + k

h20(Y )

( k

h0(Y )

)1/2
)

± z2α
2

4 f j j ′(Y )

n6h80(Y )

k

h20(Y )

)

. (41)

Like Eqs. (28) and (29), here, in Eqs. (40) and (41), it is not tractable to get alone
k so finding analytic result can be obtained via numeric analysis.

3.2 Expansion of 3rd Order Taylor Expansion

Similar to previous part (3.1), here, the change in the hazard function Δh j (Y ) is
approximated by the third order Taylor expansion in the time interval [t, t + τ ] in a
such way that

h j (Y + λ̄(Y, τ )) = h j (Y ) + λ̄(Y, τ )h′
j (Y ) + λ̄2

2
h′′
j (Y ) + λ̄3

6
h′′′
j (Y ) + O4(h j (Y ))

h j (Y + λ̄(Y, τ )) − h j (Y ) ≈ λ̄(Y, τ )h′
j (Y ) + λ̄2

2
h′′
j (Y ) + λ̄3

6
h′′′
j (Y ), (42)

where h′
j (Y ) = ∑n

i=1
∂hi j (Y )

∂Yi
,h′′

j (Y ) = ∑n
i=1

∂2hi j (Y )

∂Y 2
i

and h′′′
j (Y ) = ∑n

i=1
∂3hi j (Y )

∂Y 3
i

.
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λ̄(Y, t) = Y (t + τ ) − Y (t) = ∑r
j=1 k jν j . So,

Δh j (Y ) ≈
r∑

j=1

k jν j h
′
j (Y ) + 1

2

r∑

j=1

k jν j

r∑

j=1

k jν j h
′′
j (Y ) + 1

6

r∑

j=1

k jν j

r∑

j=1

k jν j

r∑

j=1

k jν j h
′′′
j (Y ).

(43)

Similar to previous derivations, under the Gamma distribution, it is known that
k = τh0(Y ). Subsequently,

Δh j (Y ) ≈
r∑

j=1

(

τh0(Y ) f j j ′(Y ) + 1

2
τ2h20(Y )g j j ′(Y ) + 1

6
τ3h30(Y )l j j ′(Y )

)

, (44)

setting f j j ′(Y ) = ∑r
i=1

∂hi j (Y )

∂Yi
νi j = h′

j (Y )ν j , g j j ′(Y ) = ν j
∑r

j=1 ν j
∑r

i=1
∂2hi j (Y )

∂Y 2
i

νi j = ν j
∑r

j=1 h
′′
j (Y )ν j and l j j ′(Y ) = ν j

∑r
j=1 ν j

∑r
j=1 ν j

∑r
i=1

∂3hi j (Y )

∂Y 3
i

νi j =
ν j

∑r
j=1 ν j

∑r
j=1 h

′′′
j (Y )ν j .

Then, E(Δh j (Y )) and Var(Δh j (Y )) are derived by

E(Δh j (Y )) ≈
r∑

j=1

(

k f j j ′(Y ) + 1

2
k(k + 1)g j j ′(Y ) + 1

6
k(k + 1)(k + 2)l j j ′(Y )

)

(45)

and

Var(Δh j (Y )) ≈
r∑

j=1

(

f 2j j ′(Y )k + g2j j ′(Y )

4
(6k3 + 9k2 + 6k − 1)

+ l2j j ′(Y )

36
(9k5 + 72k4 + 213k3 + 180k2 + 210k)

+ f j j ′(Y )g j j ′(Y )(2k(k + 1))

+ g j j ′(Y )l j j ′(Y )

6
(k(k + 1)(k + 2)(6k + 12))

+ f j j ′(Y )l j j ′(Y )

3
(3k(k + 1)(k + 2))

)

. (46)

As k ∼ Γ (k, h(0)(Y )), it is known that
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Var(τ 2) = 6k3 + 9k2 + 6k − 1

h40(Y )

Var(τ 3) = 9k5 + 72k4 + 213k3 + 180k2 + 210k

h60(Y )

Cov(τ , τ 2) = 2k(k + 1)

h30(Y )

Cov(τ 2, τ 3) = k(k + 1)(k + 2)(6k + 12)

h50(Y )

Cov(τ , τ 3) = 3k(k + 1)(k + 2)

h40(Y )
.

Similar to previous outputs, Eqs. (29) and (41), procuring an admissable k is tough
in Eq. (46).

Finally, inserting the statements in the Eq. (45) into the required leap condition
results that

k ≤

√

εh0(Y ) + ∑r
j=1

(
3(g j j ′ (Y )+l j j ′ (Y ))2

2l j j ′ (Y )
+ f j j ′ (Y ) + l j j ′ (Y )

3

)

−
(
g j j ′ (Y )+l j j ′ (Y )

2

)√(
6

l j j ′ (Y )

)

∑r
j=1

√
l j j ′ (Y )

6

.

(47)

4 Conclusion

With the help of SSA, the reactions occuring in the biological systems can be simu-
lated. Although the exact results can be obtained by SSA, the speed of acquiring the
result is slow. When considering the speed, approximate SSA can be preferable as
they are faster than SSA. Also, approximate SSA depends on leap condition which
implies that the time step τ should be selected so that the propensity function do not
change during the time interval [t, t + τ ]. In this study, to construct the confidence
interval, we have used mainly Poisson τ -leap method and approximate Gillespie
algorithm. We have expanded the function of net change in the hazard function with
the 2nd and 3rd order Taylor expansions. Then, we have derived MLE and MME
for the parameter k. After all, we have extended into leap condition to obtain an
acceptable value of k which can produce theoretically more accurate result as a con-
sequence of the Rao-Blackwell theorem. Because, we have used sufficient statistics
in the derivation of k. As a result of these confidence interval, we have see that
particularly the result found from MME are not tractable due to their high powers,
whereas MLE can be tractable. On the other hand, as we have obtained theoretical
outputs, we consider to evaluate all the expressions via simulation studies [9].



Extension of Leap Condition in Approximate Stochastic Simulation Algorithms … 289

Acknowledgements The authors thank to the Scientific Research Project ofMiddle East Technical
University (Project no: BAP- 10282) for their support.

Appendix

Let g(τ ) = √
τ be a smooth function for τ ≥ 0with τ ∼ Poi(k). Then, by the Taylor

expansion around the mean μ = E(τ ), the following expression can be obtained.

g(τ ) = g(μ) + g′(μ)(τ − μ) + g′′(μ)(τ − μ)2

2! + g′′′(μ)(τ − μ)3

3! + · · · + gt (μ)(τ − μ)t

t ! + . . .

Then, the mean can be derived as

E(g(τ )) = g(μ) + g′(μ)E(τ − μ) + g′′(μ)E(τ − μ)2

2! + g′′′(μ)E(τ − μ)3

3! + · · · + gt (μ)E(τ − μ)t

t ! + . . .

= g(μ) + g′(μ)m1 + g′′(μ)m2

2! + g′′′(μ)m3

3! + · · · + gt (μ)mt

t ! + . . . ,

wheremt is t-th central moment. In this case, considering just up to third order Taylor
expansion, m1 = 0 and m2 = m3 = μ. So, we have

E[g(τ )] = √
μ + 0 + 1

8
μ− 1

2 − 1

16
μ− 3

2 .

Then, E[g(τ )] = E[μ] ≈ √
μ = √

E(τ ) = √
k for μ >> 1. Thus,

√
E(τ ) ≈ √

k.
Similarly,we apply these processes for the gammadistributionwith τ ∼ Γ (k, h0(Y ))

and by this way, t th moment for the gamma distribution is defined as E(τ t ) =
(k+t−1)...(1)

ht0(Y )
. Accordingly, we can obtain E(τ ) as below.

E(τ ) =
√

k

h0(Y )
+ 1

8

(
1√

k.h0(Y )
− 1

h40(Y ).k
√
k

)

,

with E[τ − μ] = 0, E[(τ − μ)2] = V (τ ) = k
h20(Y )

and E[(τ − μ)3] = 2k
h30(Y )

. If k ×
h0(Y ) << 1, then it is possible to reach that E[√τ ] =

√
k

h0(Y )
.Similarly, the equality

Var(
√

τ ) =
√

k
h20(Y )

can be obtained.
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Discrete Biorthogonal Systems
and Equilibrium Condition in the Hardy
Space of Unit Disc and Upper Half-Plane

Zsuzsanna Nagy-Csiha and Margit Pap

Abstract Starting from recent result of Fridli and Schipp, we introduce the dual
system of the Malmquist–Takenaka complex orthonormal system on the upper half-
plane, and prove the biorthogonality of the systems. We show that the nodal points
of the biorthogonal systems on the unite disc and on the upper half-plane satisfy the
similar equilibrium condition as it was proved previously for the discrete orthogonal
system on the unite circle and on the real line. In this way we generalize the results
obtained in [1, 2] by Pap and Schipp.

Keywords Hardy spaces · Malmquist–Takenaka systems · Discrete
biorthogonality · Blaschke products · Equilibrium condition

1 Introduction

The Malmquist–Takenaka (M-T) system [3, 4] is an orthonormal system of rational
functions-products of Blaschke factors–in the Hardy space of unit disc, which con-
tains as special case the classical “trigonometric” system. It is frequently applied in
system identification in order to approximate the transfer functions. Discretization
results connected to M-T systems for unit disc and the upper half plane were pub-
lished in [1, 2, 5, 6]. Based on these an analogue of discrete Fourier transform (DFT)
was developed and the discrete versions was applied successfully for compression
and representation of human ECG signals [7, 8].

Discretization nodes on unit circle and on the real line have similar properties: they
satisfy some equilibrium conditions and are stationary points of some logarithmic
potentials. The problem whether they are discrete energy minimizer configurations
was formulated in [1, 2] and was answered positively recently in [6].
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In paper [9] Fridli and Schipp introduced the dual of the Malmquist–Takenaka
system on the unit disc and proved discrete biorthogonal property on a set of points
of the unit disc. Based on the presented results connected to Malmquist–Takenaka
systems and the discrete orthogonality on unit circle and real line in this paper we
introduce the dual system of the Malmquist–Takenaka system on the upper half-
plane and we prove discrete biorthogonality result on a set of discretization points on
upper half plane. We study the properties of discretization points on disc and upper
half-plane, and we prove that they satisfy analogue equilibrium conditions like on
unit circle and real line.

LetD denote the open, andD denote the closed unit disc,D := {z ∈ C : |z| < 1},
D := {z ∈ C : |z| ≤ 1}, and let us denote the upper half-plane with C+, C+ = {z ∈
C : �z > 0}. Let us denote the set of analytic functions over D and C+ with A(D)

and A(C+), respectively, and consider the Hardy space of the unit disc and the Hardy
space of the upper half-plane with

H 2(D) =
{
f ∈ A(D) : ‖ f ‖H 2(D) = sup

r<1

(
1

2π

∫ π

−π

| f (reit )|2dr
)1/2

< ∞
}

,

H 2(C+) =
{
f ∈ A(C+) : ‖ f ‖H 2(C+) = sup

0<y

(∫
| f (x + iy)|2dx

)1/2

< ∞
}

.

For every function f ∈ H 2(D), for a.e. t ∈ [−π,π) there exists the finite limit
f (eit ) := limr→1 f (reit ). Moreover, the limit function f is in L2(T), and
‖ f ‖H 2(D) = ‖ f ‖L2(T). In the similar way for the Hardy space of the upper half plane
if f ∈ H2(C+), for a.e. x ∈ R there exist the finite limit f (x) := limy→0+ f (x + iy),
the limit function of f satisfies the following conditions f ∈ L2(R) and ‖ f ‖L2(R) =
‖ f ‖H 2(C+).

The Hardy space of the upper half-plane and the Hardy space of the unit disc
may be connected through the Cayley transform, which is a conformal mapping
from C+ to D: Kθ(z) = eiθ z−i

z+i . The maps Kθ : C+ → D and Kθ : R → T \ {eiθ}
are bijections, and the inverse of Kθ is K−1

θ (z) = i 1+ze−iθ

1−ze−iθ . In the following, we
choose eiθ = −1, and use the notation

K (z) := Kπ(z) = i − z

i + z
= 1 + i z

1 − i z
, K−1(z) := K−1

π (z) = i
1 − z

1 + z
.

The following linear transformation is an isometry between H 2(D) and H 2(C+):

(T f )(z) := 1√
π

1

i + z
f (K (z)). (1)

Let us define the ba Blaschke-function and the ra rational function:
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ba(z) := z − a

1 − az
, ra(z) :=

√
1 − |a|2
1 − az

(a ∈ D, z ∈ D).

Ba
N (z) is the finite product of Blaschke-functions,

Ba
N (z) := BN (z) := c

N−1∏
k=0

bak (z) , (z ∈ D, a = (a0, . . . , aN−1) ∈ D
N , c ∈ T).

The Malmquist–Takenaka (MT) system of the unit disc is given by the following
formulas, for z ∈ D, n ∈ N

∗:

φa
0(z) = φ0(z) = ra0(z), φa

n(z) = φn(z) = ran (z)
n−1∏
k=0

bak (z).

If the so called non Blaschke condition
∑∞

n=0(1 − |an|) = ∞ holds, then the
Malmquist–Takenaka system is complete orthonormal system in the Hardy space
of the unite circle. The Christoffel–Darboux formula permits us to write the kernel
function associated to the system in closed form:

KN (z, ξ) =
N−1∑
k=0

φk(z)φk(ξ) = 1 − BN (z)BN (ξ)

1 − zξ
(1 − zξ 
= 0).

Let us define the transform of the Malmquist–Takenaka system under the trans-
formation defined in (1). We get that the system

Ψn(z) := (Tφn)(z) = 1√
π

1

i + z
φn(K (z)) (�z ≥ 0, n ∈ N),

which is the analogue of the Malmquist–Takenaka system for the upper half-plane,
is orthonormal in L2(R).

In more detailed let us introduce λa := K−1(a) = i 1−a
1+a , a ∈ D. Then

√
1 − |a|2
|1 + a| = √�λa, (2)

ba(K (z)) = ba(−1)
z + i

z − λa

, ra(K (z)) = ra(−1)
z + i

z − λa

, (3)

Ψ0(z) = 1√
π

φ0(−1)

z − λa0

, Ψn(z) = 1√
π

φn(−1)

z − λan

n−1∏
k=0

z − λak

z − λak

(n ∈ N
∗).

Wewill use the following normalization of theMT system on the upper half-plane
(see in [5]):
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Ψ ˘
0 (z) :=

√�λ0√
π

z − λ0

, Ψ ˘
n (z) :=

√�λn√
π

z − λn

n−1∏
k=0

z − λk

z − λk

(n ∈ N
∗). (4)

We remark, that according to (2), and |ba(−1)| = 1, we have
∣∣∣ 1√

π
Φn(−1)

∣∣∣ =
√�λn√

π
. The secondly defined MT system differs from the firstly defined system with a

constant, so we get that the second system is also an orthogonal system. Moreover, if
the non-Blaschke condition

∑∞
k=0

�λk
1+|λk |2 = ∞ for the upper half-plane is satisfied,

then (Ψn, n ∈ N) and (Ψ λ
n , n ∈ N) are complete orthonormal systems for H 2(C+).

We will need for the proof Džrbašjan result, the analogue of the Cristophel–
Darboux formula for the upper half plane, see in [10]. For n ≥ 0 let us consider the
function

B̃n(ω) =
n−1∏
k=0

ω − λk

ω − λk

τk, τk = |1 + λ2
k |

1 + λ2
k

.

When λk = i , then by definition τk := 1. For arbitrary values of the variables ω and
w, and for any n, 0 ≤ n < ∞,

n−1∑
k=0

Ψ λ
k (ω)Ψ λ

k (w) = 1 − B̃n(w)B̃n(ω)

2iπ(w − ω)
, ω 
= w.

2 Previous Result

The discretization of the Malmquist–Takenaka system on the unite circle and on the
real line was investigated in [1, 2, 5]. Recently, Fridli and Schipp generalized the
discrete orthogonality proved by Pap and Schipp to the unite disc, where they proved
discrete biorthogonality with respect to a discrete scalar product defined on a discrete
subset of the unit disc [9]. At first, we recall Theorem 2.1. of Fridli and Schipp in
[9]. Using this result we prove similar discrete biorthogonality for the Malmquist–
Takenaka system on the upper half plane. We prove that the discretization nodes in
both cases, in the unit disc and upper half plane, satisfy an equilibrium condition,
proved previously on the circle and on the real line in [1, 2].

We consider the solutions of the equations

Ba
N (z) = u (0 < |u| ≤ 1) and (5)

(Ba
N )′(z) = 0.

Let us introduce the set Za
N ,u := {z ∈ C : Ba

N (z) = u} (0 < |u| ≤ 1). Let z∗ =
1/z and let Q denote the set of rational functions. For any f ∈ Q the domain will
be extended to C := C ∪ {∞} by f (a) = ∞, if a is a pole of f , and f (∞) :=
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limz→∞ f (z). We introduce the following two types of inversions: f ∗(z) :=
( f (z))∗, f �(z) := f (z∗) (z ∈ C, f ∈ Q). It is obvious, that for any z ∈ T, we
have z = z∗. f ∗(z) = f �(z) = f (z) ( f ∈ Q). Moreover, in case of Blaschke-
products, the operations coincide: B∗

N (z) = B�
N (z) = BN (z∗) (z ∈ C). Let us con-

sider the following functions:

φ�
0 = z

√
1 − |a0|2
z − a0

= r �
a0(z), φ�

n = φn(z
∗) = z

√
1 − |an|2
z − an

n−1∏
k=0

1 − akz

z − ak
=

r �
an (z)

n−1∏
k=0

b�
ak (z) (n ∈ N

∗), z ∈ C \ D.

The system Φ� := ((φn)
�, n ∈ N) is called the dual of the MT-system Φ = (φa

n, n ∈
N). If z ∈ T, then φ�

n = φn, n ∈ N.
If |u| ≤ 1, then it is easy to see, that the equation BN (z) = u has exactly N

solutions counting with multiplicities. In particular, if u ∈ T, then all of the roots are
of multiplicity one.

If |u| ≥ 1, then |u∗| ≤ 1. In that case BN (z) = u if and only if B∗
N (z) = u∗. But

B∗
N (z) = BN (z∗), so the equation BN (z) = u has N solutions. In the following we

will consider that u ∈ D is a number for which the equation has N distinct roots, so
the set Za

N ,u has N elements: Za
N ,u = {zk, k = 0, . . . , N − 1}. It is easy to see, that

similar lines of arguments hold in the case |u| > 1.
It is easy to verify (see the proof in [9]) that the following theorem holds not just

for 0 < |u| ≤ 1, as it is mentioned in [9], but for u ∈ C \ {0}.
Theorem 1 Let u ∈ C \ {0} be a parameter for which the set Za

N ,u has N different
elements. Then the φn,φ

�
n (0 ≤ n < N ) systems are biorthogonal:

[φn,φ
�
m]a,u :=

∑
z∈Za

N ,u

φn(z)φ�
m(z)/K a

N (z, z∗) = δmn (0 ≤ m, n < N ),

where K a
N (z, z∗) is the Dirichlet kernel, K a

N (z, z∗) = ∑N−1
k=0 φk(z)φk(z∗).

3 New Results

3.1 Discrete Biorthogonality on the Upper Half-Plane

Nowwe give the isometric transform of the dual systemΦ� := ((φn)
�, n ∈ N) to the

upper half-plane. With straightforward computation it is easy to see, that

b�
a(K (z)) = ba(−1)

z − λa

z − λa

= ba(K (z)), r �
a(K (z)) = ra(−1)

z + i

z − λa

= ra(K (z)).
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Then

Ψ̃0(z) := (Tφ�
0)(z) = 1√

π

i + z

i + z

φ0(−1)

z − λa0

= i + z

i + z
Ψ0(z), Ψ̃n(z) := (Tφ�

n)(z) =

1√
π

1

i + z
φ�
n(K (z)) = 1√

π

i + z

i + z

φn(−1)

z − λan

n−1∏
k=0

z − λak

z − λak

= i + z

i + z
Ψn(z).

By definition, the dual system of (4) will be equal to

Ψ̃ λ
0 (z) := i + z

i + z

√�λ√
π

z − λ0

= i + z

i + z
Ψ λ
0 (z),

Ψ̃ λ
n (z) = i + z

i + z

√�λ√
π

z − λn

n−1∏
k=0

z − λk

z − λk

= i + z

i + z
Ψ λ
n (z).

For arbitrary values of the variables ω and w fromC+ and for any n, 0 ≤ n < ∞,
the kernel function corresponding to the system (4) and its dual can be written also
in closed form as follows:

K̃N (ω, w) =
N−1∑
k=0

Ψ λ
k (ω)Ψ̃ λ

k (w) =
(
i + w

i + w

) N−1∑
k=0

Ψ λ
k (ω)Ψ λ

k (w) =

w − i

w − i

1 − B̃N (w)B̃N (ω)

2iπ(w − ω)
, ω 
= w.

K̃N (ω,ω) =
N−1∑
k=0

Ψ λ
k (ω)Ψ̃ λ

k (ω) =: 1

ρ̃N (ω)
= w − i

w − i

N−1∑
k=0

�λk

π(ω − λk)(ω − λk)
.

Let us consider ak = K (λk) = i−λk
i+λk

. We assume that the Eq. (5) has N different
solutions, denoted by zk .

In what follows, we want to prove the analogue of Theorem1 for the upper half-
plane. Let us consider tk , where zk = K (tk) = i−tk

i+tk
is the solution of the equation

(5), and the following set of nodes on the upper half-plane:

CN ,u = {tk : k = 0, . . . , N − 1}. (6)

Theorem 2 The finite collection of Ψ λ
n , (0 ≤ n < N ) and Ψ̃ λ

n , (0 ≤ n < N ) are
discrete biorthogonal systems with respect to the scalar product

〈F,G〉N =
∑
t∈CN ,u

F(t)G(t)ρ̃N (t),

namely 〈Ψ λ
m , Ψ̃ λ

n 〉N = δmn (0 ≤ m, n < N ).
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Proof Let us denote by ω = K−1(z) = i 1−z
1+z , w = K−1(ξ) = i 1−ξ

1+ξ
, ak = K (λk) =

i−λk
i+λk

, zk = K (tk) = i−tk
i+tk

. Then

(
i 1−ξ
1+ξ

− λk

i 1−ξ
1+ξ

− λk

|1 + λ2
k |

1 + λ2
k

)
i 1−z
1+z − λk

i 1−z
1+z − λk

|1 + λ2
k |

1 + λ2
k

=
(

ξ − ak
1 − akξ

)
z − ak
1 − akz

. (7)

According to (7) and the property w = K−1(ξ∗) we get B̃N (w)B̃N (ω) =
BN (ξ∗)BN (z). From this and the definition of the zk it follows that

B̃N (t j )B̃N (ti ) = BN (z∗
j )BN (zi ) = u

u
= 1.

From now the proof follows the same lines as the proof of Theorem1. For t j 
= ti we
have

N−1∑
k=0

Ψ λ
k (ti )Ψ̃ λ

k (t j )

K̃N (ti , ti )
= 1

K̃N (ti , ti )

t j − i

t j − i

1 − B̃N (t j )B̃N (ti )

2iπ(t j − ti )
= 0.

For t j = ti we have
∑N−1

k=0
Ψ λ
k (ti )Ψ̃ λ

k (ti )
K̃N (ti ,ti )

= 1. These relations imply that the matrices

A = [aik]N−1
i,k=0, aik = Ψ λ

k (ti )/K̃N (ti , ti ), B = [b jk]N−1
j,k=0, b jk = Ψ̃ λ

k (t j )

satisfy AB∗ = E , where B∗ means the adjoint matrix and E the identity matrix.
From this it follows that A = (B∗)−1, and then B∗A = E , which is equivalent to

δi j =
N−1∑
k=0

bkjaki =
N−1∑
k=0

Ψ̃ λ
j (tk)Ψ

λ
i (tk)/K̃N (tk, tk) = 〈Ψ λ

i , Ψ̃ λ
j 〉N .

Forω ∈ R,Ψ λ
n (ω) = Ψ̃ λ

n (ω). If we choose in the proof of the theorem u ∈ T, then
the discretization points are all real numbers, tk ∈ R, k = 0, . . . , N − 1, and from
Theorem2 we reobtain the Theorem 2.2 of Eisner and Pap [5].

3.2 Equilibrium Condition in D and on C+

For u ∈ T, in Pap and Schipp [1] it was proved that the elements of the set Za
N ,u

satisfy an equilibrium condition. In what follows it is shown that for u ∈ C \ {0} the
elements of Za

N ,u have similar property. i.e. the points are the solutions of similar
equations.
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For any complex number z ∈ C we introduce the polynomials

ω1(z) :=
N−1∏
k=0

(z − ak), ω2(z) :=
N−1∏
k=0

(1 − akz), (8)

ω(z) := ω′
1(z)ω2(z) − ω′

2(z)ω1(z) (z ∈ C). (9)

It is clear, that ω is a polynomial of degree 2N − 2. It is true (see in [1]), that
if ζ ∈ C is a root of ω, then ζ∗ is also a root of ω with the same multiplicity.
Denote by ζ1, ζ

∗
1 , . . . , ζs, ζ

∗
s the pairwise distinct roots of ω with the multiplicity

ν1, ν1, . . . , νs, νs . We mention, that the points ζ1, ζ
∗
1 , . . . , ζs, ζ

∗
s are in the same time

critical points of the Blaschke product, i.e. the solution of equation (Ba
N )′(z) = 0.

Theorem 3 In BN (z) let c = 1, and let us set u ∈ C \ {0} such that the Eq. BN (z) =
u has N different solution, and denote the set of the solutions by Za

N ,u = {zk, k =
0, . . . , N − 1}. Then the numbers zk ∈ Za

N ,u (k = 0, . . . , N − 1) satisfy the follow-
ing equations:

N−1∑
j=0, j 
=k

1

zk − z j
=

s∑
�=1

(
ν�

2

1

zk − ζ�

+ ν�

2

1

zk − ζ∗
�

)
(k = 0, . . . , N − 1).

Proof Let c = 1, and let u be a number, for which the equation BN (z) = u has N
distinct solution,Za

N ,u = {zk, k = 0, . . . , N − 1}. Denoteϕ(z) := ∏N−1
j=0

z−a j

1−a j z
− u.

It is clear, that ϕ(z) = 0 if and only if z = zk (k = 0, . . . , N − 1). Let us denote by

f (z) :=
N−1∏
k=0

(z − zk), g(z) = ω1(z) − u · ω2(z). (10)

Then ϕ(z) = 0 if and only if g(z) = 0. So the polynomials f and g have the same
degree and roots, therefore f = λg with a constant λ ∈ C. It is easy to see, that

1

2

g′′(zk)
g′(zk)

= 1

2

f ′′(zk)
f ′(zk)

=
N−1∑

j=0, j 
=k

1

zk − z j
(k = 0, . . . , N − 1). (11)

By the definition of zk

N−1∏
j=0

zk − a j

1 − a j zk
= ω1(zk)

ω2(zk)
= u (k = 0, . . . , N − 1). (12)

On the other hand according to (8)–(10) and (12) we get
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g′′(zk)
g′(zk)

= ω′′
1 (zk) − u · ω′′

2 (zk)

ω′
1(zk) − u · ω′

2(zk)
= u · ω2(zk)ω′′

1 (zk) − u2 · ω2(zk)ω′′
2 (zk

u · ω2(zk)ω′
1(zk) − u2 · ω2(zk)ω′

2(zk)
= (13)

u · ω2(zk)ω′′
1 (zk) − u · ω1(zk)ω′′

2 (zk)

u · ω2(zk)ω′
1(zk) − u · ω1(zk)ω′

2(zk)
= ω′(zk)

ω(zk)
.

According to Lemma 1 from [1] the roots of ω are of the form ζ1, ζ
∗
1 , . . . , ζs, ζ

∗
s with

the multiplicity ν1, ν1, . . . , νs, νs . Consequently in ω′/ω every root appears with
multiplicity 1 and thus we have the partial fraction decomposition

ω′(z)
ω(z)

=
s∑

j=1

(
A j

z − ζ j
+ Ã j

z − ζ∗
j

)
.

Considerω(z) = (z − ζ j )
ν j Pj (z), where P(ζ j ) 
= 0. Then ω′(z)

ω(z) = ν j Pj (z)+(z−ζ j )P ′
j (z)

(z−ζ j )Pj (z)
,

Consequently A j = limz→ζ j (z − ζ j )
ω′(z)
ω(z) = ν j . Similarly, Ã j = ν j , and by (11) and

(13) we get

1

2

g′′(zk
g′(zk)

= 1

2

ω′(zk)
ω(zk)

=
s∑

j=1

(
ν j/2

zk − ζ j
+ ν j/2

zk − ζ∗
j

)
,

and Theorem3 is proved.

What kind of interpretation can we give for the points of CN ,u , defined in (6)?
For u = 1, and then tk ∈ R similar property was shown in [2], that we show in the
previous theorem. For λ0, . . . ,λN−1 ∈ C+ let us consider the polynomials

ϕ1(z) :=
N−1∏
k=0

(z − λk), ϕ2(z) :=
N−1∏
k=0

(z − λk)

ϕ(z) := ϕ′
1(z)ϕ2(z) − ϕ′

2(z)ϕ1(z) (z ∈ C).

It is clear, that ϕ is a polynomial of degree 2N − 2. It is easy to prove, that if d is a
root of ϕ with multiplicity m, then d is also a root with the same multiplicity. Let us
denote by d1, d1, . . . , dN−1, dN−1 the roots of ϕ, i.e.

ϕ(z) =
N−1∏
j=1

(z − d j )(z − d j ) (z ∈ C). (14)

The numbers ak := K (λk) (k = 0, . . . , N − 1) are in D, and by (3)

BN (K (z)) = BN (−1)
N−1∏
k=0

z − λk

z − λk

= BN (−1)
ϕ1(z)

ϕ2(z)
.
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We note, that ϕ(z) = 0 if and only if (BN (K (z)))′ = 0. The functions ω1,ϕ1,ω2,ϕ2

and ω,ϕ can be expressed by each others:

(i + z)Nω1(K (z)) = ω1(−1)ϕ1(z), (i + z)Nω2(K (z)) = ω2(−1)ϕ2(z),

(i + z)2N−2ω(K (z)) = −ω1(−1)ω2(−1)ϕ(z)

and consequently ω(K (d j )) = 0, if d j 
= −i . Let u ∈ D \ {0} be such that the Eq. (5)
has N different solutions, Za

N ,u = {zk, k = 0, . . . , N − 1}. Then the numbers tk :=
K−1(zk) ∈ C+ are the solution of the equation

ϕ1(z)

ϕ2(z)
= q := u

BN (−1)
∈ D \ {0}, (15)

and we have

Theorem 4 Let q ∈ D \ {0} and denote by tn ∈ C+ (n = 0, . . . , N − 1) the solu-
tions of (15). Then the following equilibrium conditions are satisfied:

N−1∑
k=0, k 
=n

1

tn − tk
= 1

2

N−1∑
j=1

(
1

tn − d j
+ 1

tn − d j

)
(n = 0, . . . , N − 1).

The proof is the same as the proof of Theorem 5 in [2], with the condition q ∈ D \ {0}
instead of q ∈ T.

Proof By definition of tk it follows that g(z) := ϕ1(z) − qϕ2(z) = 0 if and only
if z = tk (k = 0, . . . , N − 1). Set f (z) = ∏N−1

k=0 (z − tk). The polynomials f and g
have the same degree and roots, therefore f = λg with λ ∈ C. It is easy to see, that

g′′(tn)
2g′(tn)

= f ′′(tn)
2 f ′(tn)

=
N−1∑

k=0, k 
=n

1

tn − tk
(n = 0, . . . , N − 1).

By the definition of tn
ϕ1(tn)
ϕ2(tn)

= q (n = 0, . . . , N − 1). On the other hand we get
that

g′′(tn)
g′(tn)

= ϕ′′
1(tn) − qϕ′′

2(tn)

ϕ′
1(tn) − qϕ′

2(tn)
= ϕ2(tn)ϕ′′

1(tn) − ϕ1(tn)ϕ′′
2(tn)

ϕ2(tn)ϕ′
1(tn) − ϕ1(tn)ϕ′

2(tn)
= ϕ′(tn)

ϕ(tn)
.

From (14) we have

ϕ′(t)
ϕ(t)

=
N−1∑
k=1

(
1

t − dk
+ 1

t − dk

)
,

and the theorem is proved.
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4 Conclusion

We introduced the dual system of theMT system on the upper half-plane, and similar
as in [9],weobtaineddiscrete biorthogonality result.Weproved that the discretization
nodes in both cases in the unite disc and upper half-plane satisfy an equilibrium con-
dition. These properties can be considered as generalizations of the results obtained
in [1, 2].
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Abstract In this work, the analysis will be based on a Leslie–Gower type predation
model, described by a two-dimensional system of ordinary differential equations,
assuming that the prey population is influenced by an Allee effect, which modifies
classical logistic equation. The functional response will be assumed linear, prey-
dependent, and monotonously increasing. In turn, the equation of growth of preda-
tors will also be considered of like-logistic type, where the environmental carrying
capacity for predators is assumed proportional to the prey population size. Among
the most important results obtained is that for the same set of parameters, there
are different behaviors of the system solutions, since two attractor singularities can
appear simultaneously. Then, populations can coexist around fixed population sizes,
or the prey population can become extinct.
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1 Introduction

In Mathematical (or Theoretical) Ecology and in particular in Population Dynamics
[1] the interaction between predators and their prey has been and will continue to
be one of their fundamental subjects of study, as a consequence of their universal
existence and high importance in nature [2].

In turn, the dynamics inherent to this relationship constitute an important field of
study in AppliedMathematics, being approached by different perspectives and using
different mathematical tools.

1.1 Brief Historical Review

The first predator-prey model was proposed by the Italian mathematician Vito
Volterra (1860–1940) [1, 3], in a well-known monograph [4], which is described
by a two-dimensional system of Ordinary Differential Equations. This model coin-
cidedwith amodel for biochemical interactions previously proposed by theAmerican
mathematician Alfred J. Lotka; so the formulated system is named as Lotka–Volterra
model [5, 6].

The main feature of this first model is that the only positive equilibrium point
is a center, that is, all paths are concentric closed orbits [1]. This implies that the
population sizes of predators and their prey oscillate around a fixed point for any
initial condition. These behaviors of the system’s solutions were quite questioned,
beginning so the debate concerning the realism of simplified models in Ecology, the
question that is still a subject of scientific dispute [1]; moreover, in nature, there are
no predation interactions with that characteristics.

From the work of Volterra, different proposals were followed to face and resolve
the various objections raised.One of the first proposals to solve someof the objections
to the Lotka–Volterra model was formulated by the Russian biologist Georgii F.
Gause (1910–1986), who proposed in 1934 [7] a model that takes into account the
intraspecific competition of dams, replacing the Malthusian growth incorporated in
the Lotka–Volterra model, by the logistic growth function (also called Verhulst–Pearl
equation [6])

An important result is a theorem proposed by the Russian mathematician Andrei
N. Kolmogorov in 1936 [8], which ensures the existence of an ecologically stable
periodic solution (mathematically, a solution called limit cycle), a phenomenon for
which there is sufficient evidence in nature.

A different alternative is a model proposed by Patrick Holt Leslie (1900–1972)
in 1948 [9], which does not fit the scheme of the Lotka–Volterra model [6]. Unlike
the compartmentalized models of the Gause type [10], based on a principle of mass
or energy transfer [2], Leslie’s model is characterized in that the equation of growth
of predators is of the logistic type, in which the environmental carrying capacity is
proportional to the abundance of prey.
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Clearly, the model of Leslie or Leslie–Gower [11], is not defined for x = 0,
producing some anomalies in its predictions; it vaticinates that if the death rate of
an individual predator is almost nil, the population of predators can grow, if the
predator/prey ratio is very small, that is, if the predator population is even lower than
the prey population [6].

1.2 Allee Effect

It is a social behavior [12–16], named in honor of the American ecologist Warder
Clyde Allee (1885–1955), who was one of the first to study this phenomenon. It has
other names in Population Dynamics such as: negative competition effect, inverse
density dependence, positive density dependence or undercrowding [17]. In partic-
ular, in Fisheries Sciences, it is known as depensation [17, 18].

Undercrowding represents a negative effect of increased density on per capita
growth [17] and it is defined as a positive relationship between a component of
individual fitness and the number or density of conspecifics [13, 15, 16].

It is an ecological phenomenon that occurs at low population densities, where
the per capita growth rate is a growing function of population abundance. At large
population sizes, this rate is negative as it happens in the logistic equation for all
population sizes.

Some populations may exhibit the Allee effect due to a wide range of biological
phenomena, such as reducedvigilance antipredation, social thermoregulation,mating
difficulty, and poor feeding at low densities. However, several other causes can lead
to this phenomenon (see Table1 on [12] or Table2.1 on [19]).

The most common mathematical way to describe the Allee effect is the nonlinear
differential equation.

dx
dt = r

(
1 − x

K

)
(x − m) x, (1)

where x = x (t) indicates the size of a population for t ≥ 0. The parameter r is the
intrinsic growth rate of and K indicates the environmental carrying capacity (having
the same meanings as in the logistic equation); m is the parameter associated with
the Allee effect.

Ifm > 0, the parameter is named the minimum of viable population or extinction
threshold and it has a strong Allee effect. Clearly, if x < m in Eq. (1), it has dx

dt < 0,
implying that the population tends to extinction.

If m ≤ 0, it has a weak Allee effect.
We note that equation (0) describes an Allee effect when the per capita growth

rate is negative for values of the variable x close to zero, which happens, if and only
if, −K < m << K .
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1.3 The Functional Response

The functional response of predators or consumption function refers to the change
in the density of prey attacked per unit of time per predator, when the density of
prey changes [10]. They are classified into several types, depending only on the prey
population size, or the size of both populations.

The first classification is due to the Canadian Ecologist Crawford S. Holling
(1930–2019) in 1959 [20], who described three types of saturated functions, based
on laboratory experiments; he considered them only dependent only on the prey
population size (functional response prey-dependent). They are named as Holling,
I, II, or III [6].

Laterly Robert J. Taylor in 1984 [21] proposed the functional response Holling
type IV or non-monotonic [21] also prey-dependent, usually used to describe the
ecological phenomenon called group defense formation.

We should note that there are many mathematical expressions to represent the
saturated functions of Holling, except for Holling type I, which is described by

h (x) =
{
qx, if x < a
qa, if x ≥ a

with q > 0.
Functional responses dependent on both populations have also been proposed,

such as Beddington–DeAngelis, the rate-dependent, Crowley–Martin, Watt, or
Hassel–Varley.

We note that the linear functional response h (x) = qx, with q > 0, does not cor-
respond to any of the classifications proposed by Holling, because it is not saturated.
However, it is considered in the Lotka–Volterra model [1], as well as in the Volterra
[6] and Leslie–Gower [11] models.

The systems that describe these last two models are characterized by having a
wide subset of parameters for which there is a unique positive equilibrium point that
is globally asymptotically stable [22].

1.4 Competition Among Predators (CAP)

The oldest proposal for competition (or interference) among predators was formu-
lated independently in 1975 by J. A. Beddington [23] and by Donald DeAngelis and
collaborators [24], proposing a new functional response dependent on both interact-
ing populations, which is described by the function

h (x, y) = qx

a + bx + cy
,

with q, a, b, c > 0.
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A second form for the CAP was formulated by Herbert I. Freedman in 1979 [25],
modifying the assumption of the usual models (the total rate of prey death prey, is
a functional response-dependent only on prey population sizes, by the number or
density of predators). Freedman proposed the function h (x, y) = h (x) yβ, where
β is the mutual interference constant, so that 0 < β < 1, and h (x) is the functional
response of the predator, which is prey-dependent.

Following Colin W. Clark [18], in bioeconomic models, the function B (y) = yβ

expresses the congestion among fishing vessels (men as predators) that harvest a
bank of fish, resulting in a decrease in the catch rates [26].

The third way to describe the CAP is given by adding a negative quadratic term to
the predator growth equation [3]. Therefore, the function that describes the mortality
of predators takes the form ϕ (y) = −cy − ey2, with c and e > 0. It is mainly used
in predation models of the Gause type.

In this case, it is assumed that the population of predators can be reduced by other
causes. One of them is the size of the appropriate habitat for the predator, to live and
reproduce there [3].

2 Model Proposal

The model to be studied is a modification of the Leslie model proposed in 1948 [9]
being described by an autonomous bi-dimensional nonlinear ordinary differential
equation systems of the Kolmogorov type [10, 22]. The key factors of this interaction
that we modify are:

(i) The prey population growth function, assuming that it is affected by the phe-
nomenon called the Allee effect [13, 15, 16, 19].

(ii) The functional response [6, 10], including competition (or interference) among
predators [3, 25, 27].

(iii) The predator population growth function, assuming that predators have an alter-
native food [28].

Considering the above mentioned, the model proposed is

Gμ (x, y) :
{ dx

dt = (
r

(
1 − x

K

)
(x − m) − qyβ

)
x

dy
dt = s

(
1 − y

nx+c

)
y,

(2)

where x = x (t) e y = y (t) are the prey and predator populations sizes and μ =
(r, K , q, s, n, c,m, β) ∈ R6+ × ]−K , K [ × ]0, 1[ . The parameters have the ecolog-
ical meanings described in Table1:

System (2) is defined throughout the first quadrant, that is, it is defined in

� = {
(x, y) ∈ R2 : x ≥ 0, y ≥ 0

}
.
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Table 1 Parameters and their ecological meanings in system (2)

Parameter Meaning

r Intrinsic prey growth rate or biotic potential

K Prey environmental carrying capacity

q Predators consumption rate

s Intrinsic predator growth rate

n Energy quality measure provided by the prey as food for predators

c Amount of alternative food available for predators

m Parameter describing the Allee effect

β Mutual interference constant [25]

The equilibrium points of the system (1) or singularities of the vector field Gλ (x, y)
are: (0, 0), (m, 0), when m > 0, (K , 0), (0, c), and those who are at the intersection
of the isoclines y = nx + c and

y =
(
r

q

(
1 − x

K

)
(x − m)

) 1
β

.

2.1 Topologically Equivalent System

In order to simplify the calculations, a change of variables and a rescaling of the time
is made, which is given in the following:

Lemma 1 System (2) is topologically equivalent to the system

Gν (u, v) :
{ du

dτ
= (

(1 − u) (u − M) − Qvβ
)
u (u + C)

dv
dτ

= S (u + C − v ) v
(3)

where ν = (Q, S,C, M, β) ∈ R3+ × ]−1, 1[ × ]0, 1[ with C = c
nK , M = m

K , Q =
q(nK )β

r K and S = s
r K .

Proof Let x = Ku and y = nKv. Factoring, simplifying and it has effecting the
rescaling of the time given by τ = r K

u+ c
nK
t , du

dt = du
dτ

dτ
dt it has

Vη (u, v) :
⎧
⎨

⎩

r K
u+ c

nK

du
dτ

= r K
(
(1 − u)

(
u − m

K

) − q(nK )β

r K vβ
)
u

rK
u+ c

nK

dv
dτ

= s
(
1 − v

u+ c
nK

)
v,

Finally,
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Vη (u, v) :
{

du
dτ

=
(
(1 − u)

(
u − m

K

) − q(nK )β

r K vβ
) (

u + c
nK

)
u

dv
dτ

= s
r K

(
u + c

nK − v
)
v,

Defining M = m
K , S = s

r K , C = c
nK and Q = q(nK )β

r K , system (3) is obtained. �

System (3) or vector field Gν (u, v) is defined in �̄ = {
(u, v) ∈ R2 : u ≥ 0,

v ≥ 0} .

Remark 1 We have built a diffeomorphism ϕ : �̄ × R → � × R, such that

ϕ (u, v, τ ) =
(
Ku, nKv,

u + c
nK

r K
τ

)
= (x, y, t) .

Their differential is

Dϕ (u, v, τ ) =
⎛

⎝
K 0 0
0 nK 0
1
r K 0

u+ c
nK

r K

⎞

⎠ ,

and det Dϕ (u, v, τ ) = nK
r

(
u + c

nK

)
, the diffeomorphism preserves the orientation

of time. The topological equivalence between the systems ensures that the qualitative
behavior between them is the same. For this reason, in what follows, wewill consider
the analytical results in the reparametrized system (3).

2.2 Positively Invariant Region and Boundedness
of Solutions

For the system (3) or vector field Gν (u, v) we have the following properties that we
show below.

Lemma 2 The set Γ̄ = {
(u, v) ∈ �̄ : 0 ≤ u ≤ 1, v ≥ 0

}
is a positively invariant

region.

Proof Where the system is of Kolmogorov type, the coordinate axes are invari-
ant sets. If u = 1, we have that the first equation of the system (3) is du

dτ
=

−Qvβ (1 + C) < 0, which indicates that the solutions of the vector field cross
the line u = 1, whatever the direction of the second component of the vector field
Gν (u, v). �

Remark 2 (i) The set Γ̄C = {
(u, v) ∈ �̄ : 0 ≤ u ≤ 1, 0 ≤ v ≤ u + C

} ⊂ Γ̄ is
also a positively invariant region.

(ii) In the original system (2) the set Γ = {(x, y) ∈ � : 0 ≤ x ≤ K , y ≥ 0}, and
also the subsetΓc = {(x, y) ∈ � : 0 ≤ x ≤ K , 0 ≤ y ≤ nx + c} ⊂ Γ are pos-
itively invariant regions.
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Lemma 3 All solutions of the system (3) are uniformly bounded.

Proof From the first equation of system (3) we have

du

dτ
≤ (1 − u) (u − M) u,

for all v ≥ 0, when 0 < u < 1.
We also know that

{
u → 1, when τ → ∞ and u < 1.
u → 1, when τ → ∞ and u > 1.

Let L = max {u (0) , 1} therefore u (t) ≤ L , for all t ≥ 0.
Defining the function w (u, v) = u + 1

S v, it has, w (u, v) > 0, for all t ≥ 0, and

dw

dτ
= du

dτ
+ 1

S

dV

dτ
= (1 − u) (u − M) u − Quv + (u + C − v ) v.

Considering dw
dτ

+ σw, with σ > 0, we obtain

dw

dτ
+ σw = Mu2 − Mu + u2 − u3 − Quv + (u + C) v − v2 + σu + σ

S
v.

Thus,

dw
dτ

+ σw ≤ (M + 1) u2 + (u+C+ σ
S )

2

4 + σu ≤ (M + 1) L2 + + (L+C+ σ
S )

2

4 + σ L

If we denote N = (M + 1) L2 + (L+C+ σ
S )

2

4 + σ L then 0 < dw
dτ

+ σw ≤ N , which
is a first-order differential inequality. Applying the Comparison Theorem for Differ-
ential Inequalities (page 30 in [29]), we obtain

0 < w (τ) eτ ≤ Neτ + N2.

when τ = 0, it obtains w (0) ≤ N + N2; i.e., N2 ≥ w (0) − N .
Then, there is p ∈ N such that N2 ≤ p (w (0) − N );
Thus, w (τ) eτ ≤ Neτ + p (w (0) − N ), i.e., w (t) ≤ N + p (w (0) − N ) e−t .
Accordingly, when τ → ∞ then w (τ) ≤ N . Therefore, all solutions are uni-

formly bounded. �
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2.3 Equilibria Existence

The equilibrium points of the system (3) or vector field Gν (u, v) are (0, 0), (1, 0),
(0,C), (M, 0), when M > 0, and those that are at the intersection of the isoclines
v = u + C and

v =
(
1

Q
(1 − u) (u − M)

) 1
β

.

In what follows we will assume that M > 0.
We note that the second isocline is defined for M ≤ u ≤ 1, except for some

particular cases of the parameter β.
The abscissa of the positive equilibrium points or at interior of the first quadrant

satisfy the transcendent equation:

p (u) = Q (u + C)β − (1 − u) (u − M) = 0 (4)

Lemma 4 Equation (4) has at most two positive real roots, or one of multiplicity
two, or none.

Proof Considering the functions g1 (u) = Q (u + C)β and g2 (u) = (1 − u)

(u − M) . The function g2 represents a parabola, and the intercepts on the u − axis
are u = 1 and u = M . Besides, it has a maximum value in umax = 1+M

2 ; then,
g2(umax) = 1

4 (1 − M)2.
The functions g1 and g2 have intersection, if and only if, g1 (0) < g2(umax ), i.e.,

QCβ < 1
4 (1 − M)2.

Now, the intersection of the curves will be determined considering the tangency
of the graphics of these functions. When the curves are tangent, their derivatives
must be equals.

Thus, d
du (g1 (u)) = βQ (u + C)β−1 and d

du (g2 (u)) = M − 2u + 1.
Let u∗ be the abscissa of the point of tangency of both curves, when it exists. Then

βQ
(
u∗ + C

)β−1 = M − 2u∗ + 1.

Furthermore, u∗ is solution of the equation (4), i.e.,

Q
(
u∗ + C

)β = (
1 − u∗) (

u∗ − M
)
.

Therefore, u∗ is solution of the equation polynomial.

(2 − β) (u∗)2 + (2C − (1 − β) (M + 1)) u∗ − (Mβ + C (M + 1)) = 0. (5)

Whatever the sign of the coefficient b0 = 2C − (1 − β) (M + 1), the Eq. (5) has
two real roots:
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u∗
1 = 1

2 (2 − β)

(
b0 − √

ΔT

)
and u∗

2 = 1

2 (2 − β)

(
b0 + √

ΔT

)
,

with u∗
1 < 0 < u∗

2, and

ΔT = (1 − β)2 M2 + (2 (2C + 1 + β (2 − β))) M + (
(2C + 1)2 − β (2 − β)

)
,

Therefore, Eq. (4) can have up to two positive real roots. If they exist, they are
u1 = u∗

2 − ε and u2 = u∗
2 + ε, with ε > 0. �

From the result above, the following statement is immediate

Corollary 1 The system (3) has two positive equilibrium points, one or none.

3 Main Results

3.1 Boundary Equilibria Stability

The Jacobian or community matrix of the system (3) is:

DGν (u, v) =
(
DGν (u, v)11 −Qβu (u + C) vβ−1

Sv S (u + C − 2v)

)

where

DGν (u, v)11 =
(
(1 − u) (u − M) − Qvβ

)
u +

(
(1 − u) (u − M) − Qvβ

)
(u + C)

+u (u + C) (M − 2u + 1) .

The nature of the equilibrium points of the system (3) cannot be determined using
the standard methodology. The Jacobian matrix is not defined for v = 0, although
the system is defined for that value.

In order to determine that nature, we carry out the change of variable given by
w = vβ . Thus, dv

dτ
= 1

β
w

1
β
−1 dw

dτ
.

Replacing in the second equation of the system (3) we obtain the new system

Wη (u, w) :
{

du
dτ

= ((1 − u) (u − M) − Qw) (u + C) u
dw
dτ

= βS
(
u + C − w

1
β

)
w,

(6)

where η = (Q, M, S,C, β) ∈ R3+×]0, 1[. The equilibrium points are (0, 0), (1, 0),

(M, 0),
(
0,Cβ

)
and

(
u∗
e ,

(
u∗
e + C

)β
)
, with ue determined by the intersection of
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the isoclines h1 (u) = (u + C)β and h2 (u) = 1
Q (1 − u) (u − M) , or ue satisfies

equation (4)

p (u) = Q (u + C)β − (1 − u) (u − M) = 0.

The Jacobian matrix of system (6) is:

DWη (u, w) =
(
DWσ (u, w)11 −Qu (u + C)

βSw βS
(
β (u + C) − (1 + β) w

1
β

)
)

,

withDWσ (u, w)11 = u (u + C) (−1) + (1 − u − Qw) (u + C) + (1− u −Qw) u.
Clearly, the Jacobian matrix is defined for v = 0.
The nature of the equilibrium points of the system (6) on the u − axis is deter-

mined by the following proposition:

Proposition 1 (a) The equilibrium point (0, 0) is a hyperbolic repeller.
(b) The equilibrium point (1, 0) is a hyperbolic saddle point.
(c) The equilibrium point (M, 0) is a hyperbolic repeller.

Proof We prove only (a) because the other proofs are similar. The Jacobian matrix
evaluated at (0, 0) is:

DWη (0, 0) =
(
C 0
0 β2CS

)
.

So, det(DWη) (0, 0) = β2C2S > 0 and tr(Wη) (0, 0) = C
(
1 + β2S

)
> 0.

Therefore, by the trace and determinant theorem [30], the equilibrium point (0, 0)
is a hyperbolic repeller. �

It can be concluded that for system (3), the equilibrium points on the u − axis
have the following nature.

Corollary 2 The equilibrium point

(a) (0, 0) is a non-hyperbolic repeller,
(b) (1, 0) is a non-hyperbolic saddle point,
(c) (M, 0) is a non-hyperbolic repeller.

We observe that when β → 1, the system (3) has a behavior similar to the case in
which β = 1, model that was analyzed in [14].

To determine the nature of the other equilibrium points, we consider again the
Jacobian matrix of the system (3).

Lemma 5 The equilibrium point (0,C) is a hyperbolic attractor for all parameter
values.



314 A. Rojas-Palma et al.

Proof The Jacobian matrix evaluated at the point (0,C) is:

DY
λ
(0,C) =

(− (M + βQC)C 0
SC −SC

)
.

We have: det(DY
λ
) (0,C) = S

(
M + QCβ

)
C2 > 0,

and tr(DY
λ
) (0,C) = − (

M + QCβ
)
C − SC < 0. From the above, the point (0,C)

is a hyperbolic attractor. �

3.2 Nature of Positive Equilibria

The Jacobian matrix evaluated at the points (ue, ue + C) is

DGν (ue, ue + C) =
(
ue (ue + C) (M − 2ue + 1) −Qαue (ue + C)β

S (ue + C) −S (ue + C)

)
,

Then,

detDGν (ue, ue + C) = Sue (ue + C)
(
Qα (ue + C)β − (M − 2ue + 1) (ue + C)

)

= Sue (ue + C) (ue + C)β
(
Qβ − (M − 2ue + 1) (ue + C)1−β

)
,

As Q (u + C)β = (1 − u) (u − M), then the sign of det(DGν) (ue, ue + C) depends
on the factor L1 = Qβ (ue + C)β − (M − 2ue + 1) (ue + C) .

Further, tr(DGν) (ue, ue + C) = (ue + C) ((M − 2ue + 1) ue − S) , whose sign
depends on the factor L2 = (M − 2ue + 1) ue − S.

Supposing there are two positive equilibrium points (ue1, ue1 + C) and
(ue2, ue2 + C), with M < ue1 < ue2 < 1. Where

ue1 = u∗
2 − ε and ue1 = u∗

2 + ε, con ε > 0 and u∗
2 = 1

2(2−β)

(
b0 + √

ΔT
)
.

Considering u∗
2 = 1

2(2−β)

(
b0 + √

ΔT
)
, the abscissa of the tangency point, when

exist; the abscissa of the positive positive equilibrium points can be expressed as
ue1 = u∗

2 − ε and ue1 = u∗
2 + ε, with ε > 0.

Recalling equation (4) we have Q (ue + C)β = (1 − u) (u − M).
Then,

L1 = β (1 − u) (u − M) − (M − 2u + 1) (u + C)

= (2 − β) u2 + (2C − (1 − β) (M + 1)) u − (Mβ + C (M + 1)) ,

which matches the equation for T , the factor that determines the tangency of the
curves g1 and g2.

Lemma 6 The equilibrium (ue1, ue1 + C) when it exists, is a hyperbolic saddle

Proof Sinceue1 < u∗
2 = 1

2(2−β)

(
b0 + √

ΔT
)
,withb0 = 2C − (1 − β) (M + 1), and

ΔT = (1 − β)2 M2 + (2 (2C + 1 + β (2 − β))) M + (
(2C + 1)2 − β (2 − β)

)
.
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Hence, the factor

L1 = β (1 − ue1) (ue1 − M) − (M − 2ue1 + 1) (ue1 + C) < 0.

Thus, it is immediate that det(DGν) (ue1, ue1 + C) < 0, and the equilibrium point
(u1, u1 + C) is a hyperbolic saddle. �

Theorem 1 Existence of a homoclinic curve and a non-infinitesimal limit cycle
There are conditions on the parameter values for which:

(a) It exists a homoclinic curve determined by the stable and unstable manifold of
point (u1, u1 + C).

(b) It exists a non-infinitesimal limit cycle that bifurcates from the homoclinic [31]
surrounding the point (u2, u2 + C).

Proof (a) The path determined by the right unstable manifold Wu+ cannot intersect
the line u = 1, since Γ̄ is a positively invariant region. Then, its ω − limit should
be:

(i) the point (ue2, ue2 + C), when this is an attractor;
(ii) a stable limit cycle, if (ue2, ue2 + C) is a repeller;
(iii) the point (0,C).
On the other hand, the α − limit of Ws+ may be the point (ue2, ue2 + C), or an

unstable limit cycle surrounding that point, or it may be to the right, in the x − axis
direction, outside of Γ̄ .

Therefore, by the theorem of existence and uniqueness of solutions and the
geometry of the stable and unstable manifolds of the saddle point (ue1, ue1 + C),
there is a subset in the parameter space for which Wu+ intersects with Ws+, i.e.,
Ws+ (ue1, ue1 + C) ∩ Wu+ (ue1, ue1 + C) �= φ, and a homoclinic curve is obtained.

(b) When the point (u2, u2 + C) is an attractor and the ω − limit of the right
unstable manifold Wu+ (ue1, ue1 + C) is the point (0,C), there exists an unstable
limit cycle dividing the behavior of trajectories in the neighborhood of (u2, u2 + C),
which is the frontier of the basin of attraction of that point. �

Theorem 2 Denoting by Wu+ (1, 0) the upper unstable manifold of saddle point
(1, 0) and Ws+ (ue1, ue1 + C) the upper unstable manifold of saddle point
(ue1, ue1 + C). Let’s consider the points (u∗, vu) ∈ Wu+ (1, 0) and
(u∗, vs) ∈ Wu+ (ue1, ue1 + C), with M < ue1 < u∗ < 1.

The relationship between vu and vs determines the stability of the point
(ue2, ue2 + C) as follows:

(a) Assuming that vs > vu, then the equilibrium point (ue2, ue2 + C) is:
(a.1) a hyperbolic attractor, if and only if, (M − 2ue2 + 1) ue2 < S.
(a.2) a hyperbolic repeller, if and only if, (M − 2ue2 + 1) ue2 > S.
(a.3) a weak focus, if and only if, (M − 2ue2 + 1) ue2 = S.
(b) Assuming that vs < vu, then, it is a hyperbolic repeller node or focus and the

trajectories of the system (2) have the point (0,C) as their ω − limit .
The point (0,C) is an almost globally stable equilibrium [32].
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Proof (a) It is also immediate, evaluating the Jacobian matrix, and considering the
relative positions of the stable manifold of the point (0,C) and the unstable manifold
of the point (1, 0).

(b) When (M − 2ue2 + 1) ue2 > S, there exists a limit cycle, whose diameter
increases until to coincide with the heteroclinic curve joining the equilibrium points
(0,C) and (1, 0).

Laterly, this heteroclinic breaks up and the singularity (0,C) is an attractor for
almost all trajectories [32]. �

Theorem 3 The equilibrium point
(
u∗
2, u

∗
2 + C

)
with u∗

2 = 1
2(2−β)

(
b0 + √

ΔT
)
, and

ΔT = (1 − β)2 M2 + (2 (2C + 1 + β (2 − β))) M + (
(2C + 1)2 − β (2 − β)

)
,

is (a) a saddle-node attractor, if and only if, S >
u∗
2(1−2u∗

2−A)
A+u∗

2
,

(b) a saddle-node repeller, if and only if, S <
u∗
2(1−2u∗

2−A)
A+u∗

2
,

(c) a cusp point, if and only if, S = u∗
2(1−2u∗

2−A)
A+u∗

2
.

Proof Applying the conditions for the existence of the saddle-node equilibriumpoint
when the positive equilibrium points coincide. �

4 Conclusions

In this work, we studied a Leslie–Gower type predation model, described by a two-
dimensional system of ordinary differential equations, assuming that the prey pop-
ulation is affected by an Allee effect and competence among predators generalists.
The inclusion of the Allee effect, affecting prey at low population densities has not
only ecological importance but also mathematical importance since it originates in
the models a much richer dynamic than that of the model that does not consider this
effect.

In summary, the following aspects of the modified Leslie–Gower model [11] can
be highlighted.

(i) There can be up to two positive equilibrium points.
(ii) There is a separatrix curve Σ̄ in the phase plane (u, v), dividing the behavior of

the solutions of the system. Two trajectories with very close initial conditions,
but on a different side of that separatrix can have very far ω − limits, such as
the point (0,C) or a positive equilibrium point, or else a stable limit cycle.

This implies that, for the same subset of parameters, there is a high sensitivity
of the solutions to the initial conditions. So, for population sizes of prey and
predators close to the separatrix curve can occur:
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(a) the prey population can disappear and the predator population attains their
maximum size C , or

(b) coexist with its predators in the long term, either at a fixed equilibrium point
or oscillating around that point.

(iii) There are parameter values for which there is a homoclinic orbit generated
by a hyperbolic saddle point. The breaking of this curve when the parameters
vary originates a non-infinitesimal unstable limit cycle obtaining a Homoclinic
Bifurcation [3].

Nonetheless, the inclusion of competition among predators has not had a signifi-
cant impact on the dynamics of themodel. Comparing our results with those obtained
in [14], we see that the dynamics are similar and therefore it seems, that the param-
eter β does not have a strong impact on the behavior of the model. However, with
the model studied in [33] there is a great difference since in this model the global
stability of the unique positive equilibrium point is obtained.

It is well known that any model represents an abstraction of reality. The problem
is not whether they are true, but whether the results obtained are valid and credible,
under the stated assumptions underlying the model.

A credible predator-prey model must possess reasonable biological and ecolog-
ical properties [2]. In addition, there are minimal attributes that determine various
conditions for the growth equation of prey and predators [2].

We consider that the analyzed model satisfies these requirements and that the eco-
logical interpretations of the analytical results obtained are consistent and congruent
with the stated assumptions.

On the other hand, these results obtained can serve as a basis or be compared with
models in which other types of mathematical tools are used.
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