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to Generate Systemic Antitumor
Immunity
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3.1 Pattern Recognition Receptors (PRRs) Induce Innate
Inflammation

Pattern recognition receptors (PRRs) recognize rigid features known as pathogen
associated molecular patterns (‘PAMPs’) or damage associated molecular patterns
(‘DAMPs’) either in the extracellular space, endosome, or cytoplasm to induce
appropriate inflammation during pathogen infection and/or tissue damage. Canon-
ical PRRs include Toll-like Receptors (TLRs), of which there are 10 (TLRs 1-10)
in humans; RIG-I like receptors (RLRs) including MDA5 and RIG-I; cytosolic
double stranded DNA sensors (e.g., cGAS-STING); the AIM2-like receptors; the
NOD-like receptors; and C-type lectin receptors. For information on PRRs, their
locations, and specificities, see Fig. 3.1. Upon recognition of PAMPs or DAMPs
by PRRs, signaling to the Tank Binding Kinase 1 (TBK1) and IKK-α/β kinases
primarily lead to IRF3 phosphorylation and NFκB activation, respectively [1, 2],
to concertedly lead to the synthesis of pro-inflammatory cytokines (e.g., type I
IFNs, TNF, IL-6) and, in DCs, induce co-stimulatory ligand expression (e.g. CD86,
CD80).

3.2 PRR Signaling Dictates CD8+ T Cell Priming,
Recruitment, and Function During Viral Infection

Leveraging antitumor functions of CD8+ T cells to eliminate malignant cells in
an antigen-specific manner is the goal of most cancer immunotherapy strategies.
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Fig. 3.1 PRR cellular locations, specificities, and downstream signaling. Yellow indicates
PRRs, blue indicates signaling adapters/kinases, and red indicates transcription factors that medi-
ate transcription of inflammatory genes. PAMPs that activate PRRs are depicted in italicized red
text. Toll-like Receptors 1, 2 and 4–6 are located on the cell surface and recognize bacterial features
such as lipids, proteins, and lipoproteins. TLRs 3 and 7–9 are localized to endosomes, and recog-
nize viral nucleic acids. TLR4 is both extracellular and endosomal. The specificity and function
of TLR10 (not shown) is currently obscure, but in contrast to other TLRs, may negatively regulate
inflammation [3]. The RIG-I like receptors, RIG-I and MDA5, recognize cytosolic viral double
stranded (ds) RNA and have recently been shown to become activated at endoplasmic reticulum
(ER) derived microsomes [4]. Cytosolic DNA sensing by cGAS-STING is mediated at the ER. The
AIM2 inflammasome recognizes dsDNA in the cytosol to initiate cleavage of caspase-1, followed
by cleavage of pro-IL-1β and pro-IL-18 to their mature, secreted state. The NLRP3 inflammasome
(a NOD like receptor) recognizes various DAMP and PAMP features, including viral dsRNA and
single stranded RNA, and similarly leads to caspase-1 activation. Several variations of inflamma-
somes recognizing diverse features are not shown. The C-type lectin receptors Dectin-1 and 2 rec-
ognize bacterial and fungal features; several additional C-type lectins with various specificities are
not shown. The transcription factors IRF3 and IRF7 largely drive transcription of type I interferons
(IFNs) while NFkB and AP-1 induce other pro-inflammatory cyotkines. The activated transcrip-
tion factors also induce co-stimulatory ligand expression, as well as anti-viral/anti-bacterial gene
products
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Fig. 3.2 Innate immunity engages CD8+ T cells during viral infection. See text for stepwise
details

In a natural infectious setting, CD8+ T cells are enlisted to eliminate intracellular
pathogens, e.g., viruses. Provided below, and depicted in Fig. 3.2, is an example
of how a typical acute viral infection leads to priming of antiviral CD8+ T cells
via the activation of PRRs. The concepts of antiviral CD8+ T cell priming and
effector functions during an infectious process are analogous to events that must
occur to enable priming and effector function of antitumor CD8+ T cells.

Step 1: Viral infection of epithelium occurs (Fig 3.2a).
Step 2: Local inflammation is induced after recognition of viral features (e.g.
viral nucleic acids) by PRRs expressed on tissue resident macrophages, infected
epithelium, or by other tissue resident innate immune populations (Fig 3.2b).
Step 3: PRR mediated inflammatory signals leads to surface expression of
adhesion molecules on the local endothelium (Fig 3.2c).
Step 4: The induction of adhesion molecules on endothelium in concert with
chemokines/cytokines facilitates recruitment of additional innate immune cells
(Fig. 3.2d). Much of the innate inflammation at this stage functions to limit
viral replication and spread, and may lead to killing of infected cells by
innate immune populations including NK cells, neutrophils, and macrophages.
In addition, during this process conventional DCs consume antigens in the
infected site, while receiving activating signals from inflammatory cytokines
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from infected cells and/or direct PRR signaling (Fig 3.2d) that induces their
‘activation’—which includes the induction of co-stimulatory signals.
Step 5: Antigen-bearing DCs then migrate to the draining lymph node or other
lymphatic organ to prime and expand populations of CD8+ T cells recognizing
viral antigen from the infection site (Fig 3.2e).
Step 6: Activated CD8+ T cells chemotract to recognize and kill remaining
infected cells, and inflammation from the infection induces antigen presentation
machinery and stress signals in infected cells that further enable T cell mediated
killing. A pool of memory T cells persist after the infection is cleared for future
pathogen recognition and elimination (Fig 3.2f).

Notably variations in the routes by which these steps occur are pathogen and tissue
specific; alternate modes of CD8+ T cell priming have been demonstrated, e.g. via
antigen transfer between migratory vs lymph node resident DCs [5, 6]; and other
mechanisms of antigen transfer at sites distant from the infection may occur [7].
These processes, originally defined in the context of natural viral infection [8],
have been shown to largely apply to immune surveillance, that is, the recognition
and elimination of malignant cells by the immune system.

3.3 The Cancer Immunity Cycle and PRR Signaling

The host immune system recognizes malignant cells on the basis of protein coding
genetic mutations; abnormal post-translational modifications; aberrantly expressed
proteins (e.g., cancer-testis antigens); and in some cancer types, oncogenic viral
proteins. Recognition of such antigens is mediated by cell surface MHC class I
for CD8+ T cells, and surface MHC class II for CD4+ T cells, with CD8+ T
cells typically being the primary antitumor effectors during immune surveillance.
While co-evolution between malignant cells and the host immune system elim-
inates immunogenic malignant cells and results in outgrowth of ‘immunoedited’
tumors that are less immunogenic [9], and heterogeneity in the expression of tumor
associated antigens is common [10], the success of immune checkpoint blockade
in several tumor types implies that other potentially reversable regulatory nodes
prevent immune recognition and destruction of solid tumors.

The cancer immunity cycle outlines established steps by which antitumor
T cells can become activated endogenously to eliminate malignant cells [11]
(Fig. 3.3). Dying cancer cells release antigens that are taken up by dendritic cells
(DCs) to be loaded on to MHC-class I or II. Tumor antigen presenting DCs present
antigen along with co-stimulatory signals to T cells, typically within the tumor
draining lymph node. If the appropriate co-stimulatory signals along with cognate
antigen are delivered to tumor antigen-specific T cells at this step, activated tumor-
specific T cells may traffic to the tumor site, recognize tumor antigen-expressing
malignant cells, and mediate killing of malignant cells through several mecha-
nisms. The cytotoxic mechanisms of T cells include the release of perforin and
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Fig. 3.3 PRR signaling supports the cancer immunity cycle through multiple mechanisms,
adapted from Chen and Mellman Immunity 2013 [11] with permission. Red boxes denote mecha-
nisms by which PRR signaling impacts cancer immune surveillance. (1) Cancer cells routinely die
due to genotoxic stress, chemo/radiation, nutrient deprivation, hypoxia, and other reasons; lead-
ing to the release of tumor antigens. (2) Migrating antigen presenting cells, including migratory
conventional dendritic cells capable of cross presenting antigens to CD8+ T cells (see Fig. 3.4),
take up antigen in the tumor microenvironment to be processed and presented on MHC-class I or
II. PRRs potentiate this step by increasing antigen presentation on DCs, increasing antigen uptake
(e.g. via calreticulin and HSP surface expression on apoptotic cells) and potentially recruiting addi-
tional migratory DCs into tumors. (3) Within the draining lymph node or other secondary lymphoid
organ, tumor antigen loaded DCs present antigen to T cells, leading to their activation. PRR sig-
naling induces the expression of co-stimulatory signals on DCs to potentiate T cell priming; see
Fig. 3.4 for detailed explanation. (4) T cells traffic to the site of the tumor by surveying endothelial
ligand (e.g. ICAM-1 and VCAM-1) expression and chemokine signals, and (5) infiltrate the tumor
tissue. PRRs enhance endothelial cell T cell adhesion ligand expression and chemokine secretion
from the tumor site to facilitate T cell infiltration. (6) T cells recognize cognate tumor antigen pre-
sented on tumor cells; PRRs facilitate this process by inducing inflammation that causes induction
of antigen presentation machinery in cancer cells. (7) T cells kill cancer cells expressing their cog-
nate antigen via granzymes and perforin, FAS ligand, and secretion of cytotoxic cytokines; PRRs
induce inflammation that enhances antitumor T cell function and cytotoxicity

granzymes, apoptotic signals (FAS-ligand), cytokines that mediate apoptotic sig-
naling, e.g., TNF, as well as cytokines that induce upregulation of MHC class I
and antigen processing machinery in tumor cells, particularly IFN-γ.

However, several factors determine whether tumor-specific T cells will ulti-
mately become tolerized and anergic after DC mediated antigen presentation,
whether sufficient signals enable trafficking of tumor-reactive T cells to the tumor
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site, as well as whether antitumor T cells can function within the immune subver-
sive tumor microenvironment (TME). These issues are dictated by that status of
the innate immune system during the cancer immunity cycle, including that of DCs
and tumor associated macrophages/myeloid derived suppressor cells (MDSCs).
PRRs play a multifaceted role in determining the pace, and efficacy of the
cancer immunity lifecycle. PRR signaling enhances antigen presentation and co-
stimulatory signals on antigen presenting cells (Fig. 3.4), culminating in more
effective priming of tumor antigen-specific T cells. In addition, intratumor activa-
tion of PRRs induces chemokines that facilitate the recruitment of newly primed
antitumor T cells, and further supports their function by enhancing tumor antigen
presentation and an inflammatory milieu that potentiates T cell effector functions.
For detailed explanation of the role of PRR signaling at each step of the cancer
immunity cycle, see Fig. 3.3. Accordingly, an emerging clinical strategy aimed
at rectifying stalled cancer immune lifecycles in patients is that of targeting the
activation of PRRs within the TME to provoke the expression of: co-stimulatory
signals on DCs during antigen presentation, T cell recruiting chemokines within

Fig. 3.4 Dendritic cell (DC) activation is dictated by PPR signaling, which enables CD8+

T cell cross-priming. An example of cross presentation is shown, which occurs via loading of
engulfed exogenous antigen onto MHC-class I for presentation to CD8+ T cells, typically by
cDC1s (CD103+, BATF3+ in mice; CD141+ in humans). In the context of viral infection, PRRs
expressed by viral antigen presenting DCs sense PAMPs and DAMPs at the site of inflamma-
tion/infection and receive signals from locally produced cytokines. These signals lead to upreg-
ulation of antigen processing and presentation machinery (signal 1), induction of co-stimulatory
ligands including the CD28 ligands CD80 and CD86 (signal 2), and secretion of cytokines like
IL-12 and type I IFNs that lead to further activation and differentiation of the cognate antigen-
specific CD8+ T cell (signal 3). Upon receiving these signals, CD8+ T cells become activated and
can traffic to the site of infection to eliminate virally infected cells. Similarly, during the cancer
immunity cycle, migratory cDCs take up tumor associated antigens, traffic to the draining lymph
node, and present exogenously acquired antigen on MHC-class I to T cells. As occurs during viral
infection, PRR signaling bolsters the efficiency of tumor antigen uptake, processing, and presenta-
tion on MHC-class I on DCs (Signal 1); the induction of co-stimulatory ligands expressed on the
DC surface (Signal 2); as well as the induction of pro-inflammatory cytokines required for optimal
antitumor CD8+ T cell priming (Signal 3)
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the tumor site, and inflammation within the TME that supports antitumor CD8+ T
cell function.

3.4 Endogenous Activation of PRRs in Cancer

Endogenous signals from cells that are stressed or dying necrotically can induce
DC activation in the absence of foreign pathogen associated features [12]; lending
explanation for how T cell priming and activation in the contexts of spontaneous
antitumor immunity, transplantation rejection, and/or autoimmunity occurs. Recent
work has documented the importance of several PRRs in the context of tumor
biology that lead to DC activation, and generalized inflammation within tumors.
These include the following PAMPs and DAMPs, which represent only a subset
of relevant documented endogenous PRR ligands:

1. Double stranded DNA (dsDNA) from dying tumor cells can be recognized by
cGAS-STING, particularly within DCs that take up debris from dead tumor
cells. STING signaling culminates in IFNβ/antiviral responses that mediates
activation of systemic antitumor T cell immunity and tumor regression [13, 14].

2. High-mobility-group box 1 (HMGB1) is a nuclear protein that is released during
cell death, including after chemotherapy/radiation, to engage TLR4 on DCs
[15].

3. Cell surface calreticulin facilitates phagocytosis of apoptotic tumor cells by
DCs and macrophages and determines the immunogenicity of phagocytosed
cells [16–18].

4. Heat Shock Proteins (HSPs) released from dying cancer cells are widely
reported to bind to TLRs 2 and 4 to induce inflammation [19–24].

5. Endogenous retroviruses have been shown to reactivate in some cancers pre-
sumably due to epigenetic dysregulation or loss of innate signaling in malignant
cells [25], and can induce TLR and RLR signaling due to cytoplasmic presence
of replicating retroviral RNA [26].

6. Uric acid/monosodium urate crystals, a byproduct of purine metabolism that
causes gout, have been shown to induce activation of the NLRP3 inflammasome
[27], TLR2, and TLR4 [28]. Uric acid mediates DC activation [29].

7. The tumor microbiome has recently been defined, demonstrating evidence of
microbial presence (e.g., intracellular bacteria and viruses) in various tumor
types at baseline [30, 31]. The presence of such microbes is likely to impact
endogenous PRR signaling in tumors, though this remains to be determined.

Thus, PRRs in tumors are not inert, but rather may recognize features associated
with cell death; tissue damage; and in some cases, endogenous pathogens. Collec-
tively, their activity in cancer likely explains how spontaneous antitumor T cells
are primed to eliminate malignant cells. In contrast, a lack of co-stimulation from
DCs to antitumor T cells is frequent in cancer [32, 33], causing tolerance and sup-
pression as opposed to activation. This contradiction may be due to insufficient
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PRR signals from endogenous PAMPs/DAMPs, tolerance/desensitization of PRR
signaling due to chronic PAMP exposure, or other mechanisms of tumor medi-
ated immune suppression. Thus, given their roles in orchestrating co-stimulatory
signal expression in antigen presenting cells, targeting PRRs to induce inflamma-
tion compatible with T cell priming and co-stimulation is a therapeutically viable
strategy to engage antitumor CD8+ T cell immunity.

3.5 Engaging PRRs for Cancer Immunotherapy

3.5.1 Inducing Innate Inflammation in Tumors: A Historical
Perspective

The first widespread medical use of a PRR activator in cancer is that of Coley’s
toxin [34, 35] in the late 1800s, though the use of pathogens for cancer therapy, as
well as anecdotal correlations of pathogen infection and spontaneous tumor regres-
sion, was documented much earlier [34, 36, 37]. Based upon clinical case review
of a patient that experienced sarcoma tumor regression after bacterial infection at
the tumor site, William Coley tested if bacterial infection of sarcomas may mediate
tumor regression in patients. After initially using live bacterium, Coley switched
to inactivated bacterium; which caused regression in some patients. This cock-
tail of inactivated bacteria became known as ‘Coley’s toxins’, but the approach
was ultimately overshadowed by advances in radiation therapy, and suffered from
limitations in standardizing the treatment [34].

In the early 1900s Mycobacterium bovis was isolated from a cow with tuber-
culosis mastitis. Laboratory passaging in bovine bile (to prevent clumping) led to
a loss of virulence, and the strain of M Bovis was named Bacillus of Calmette
and Guerin (BCG) after the scientists that developed the strain [38]. Coinciden-
tally, Tuberculosis infection was noted to be associated with a lower frequency
of cancer [39], raising the possibility for using M bovis for cancer therapy. In
1969 the first report of BCG’s use as a cancer therapy was reported by Mathe
et al.in the treatment of lymphoblastoid leukemia where encouraging results were
reported [40]. The first clinical trial of BCG for bladder cancer was published
in 1976 [41] where a decrease in recurrence of superficial bladder cancer was
observed. These observations were confirmed in 1980 [42], spurring widespread
use of BCG as a intravesicular therapy for bladder cancer. BCG was FDA approved
for the treatment of bladder cancer in 1990, and represents the first approved cancer
immunotherapy. BCG mediates innate inflammation that engages CD4+ and CD8+

T cells with several TLRs being shown to mediate the initial innate response,
including TLRs 2, 4, and 9 [43]. The success of BCG, along with discoveries on
the role of PRR signaling in mediating immune surveillance, led to further studies
applying intratumor PRR activators for cancer immunotherapy in several cancer
types.
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3.5.2 Non-Infectious Engagers of PRRs for Cancer
Immunotherapy

PRR activating PAMPs have shown preclinical promise in engaging systemic anti-
tumor immunity. In addition, therapies that evoke PRR signaling through indirect
means are also being explored. Clinically tested approaches to engage immune
surveillance through targeted PRR activation using non-replicating, non-infectious
PAMPs are described below according to their PRR specificities.

3.5.2.1 TLR Agonists
The toll like receptors were first discovered in Drosophila, and later confirmed to
induce innate inflammation in mammalian systems [8]. TLR signaling culminates
in activation of TBK1 and IKKα/β to induce type I IFNs and NFkB dependent
gene expression, respectively (Fig. 3.1).

TLR3
The double stranded RNA mimetics Poly I:C and Poly A:U, and derivatives
thereof, have been widely tested as cancer immunotherapies in several solid tumor
indications. Poly A:U was tested in the 1980–90 s wherein it was shown to extend
relapse free survival after systemic delivery in breast cancer patients [44], but
showed minimal efficacy in melanoma [45], and was associated with less favorable
survival after systemic delivery in colorectal cancer patients [46].

The double stranded RNA mimetic, Poly I:C, effectively induces type I IFN in
several tumor associated cell types and mediates generation of Th1 responses in
mice [47, 48]. A poly-L-lysine stabilized version of Poly I:C in carboxymethyl-
cellulose, Poly ICLC (Hiltonol), also engages MDA5 activation [49, 50] and has
been tested in several trials. Poly ICLC has been delivered intramuscularly to
boost systemic type I IFN responses [51, 52], as well as via intratumoral routes
[53–55]. Poly ICLC was well tolerated in early trials, but limited efficacy as a
monotherapy was reported overall. Ongoing work demonstrating potential clinical
benefit focuses on combining Poly ICLC with other modalities including FLT3L,
radiation, and PD-1 blockade [56]. Poly ICLC is also being used as a person-
alized cancer vaccine adjuvant, where sustained antitumor T cell responses were
demonstrated [57].

TLR4
After the clinical use of Coley’s toxin in sarcomas, it was proposed that TLR4 acti-
vation via bacterial polysaccharides mediated that anti-sarcoma effects of Coley’s
toxin in mice [58]. Lipopolysaccharide (LPS), also known as endotoxin, is the
canonical bacterial polysaccharide used to activate TLR4 signaling in laboratory
studies. Inducing TLR4 signaling leads to robust myeloid cell activation, partic-
ularly macrophages, and in preclinical models has been shown to induce robust
antitumor effects [59–61]. The first clinical trial of LPS in cancer patients occurred
via intravenous injection concomitant with ibuprofen to prevent inflammatory side
effects, and showed induction of pro-inflammatory cytokines in the sera (TNF, IL-6
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and MCSF) with moderate antitumor activity observed in 2 patients with colorec-
tal cancer [62]. A follow-up trial of systemic LPS delivery showed only moderate
antitumor efficacy [63]. Systemic toxicities associated with inflammation were a
common issue for trials using LPS.

Usage of the lipid A subunit of LPS was later shown to induce antitumor activ-
ity with a more favorable toxicity profile [59, 64, 65]. Lipid A isolated from
Salmonella, called monophosphoryl lipid A (MPL) was subsequently tested in
cancer patients intravenously and was found to have minimal antitumor efficacy
[66]. Several derivatives of MPL have been clinically tested in cancer patients
with inconsistent or lacking indication of antitumor efficacy [67–69]. Despite lim-
ited efficacy of various MPL based strategies delivered intratumor, subcutaneous,
or intravenously, MPL succeeded as an adjuvant for the HPV vaccine Cervarix®
and was FDA approved for this use in 2009 [70]. Recent clinical efforts include
the use of the TLR4 activating glycolipid (GSK1795091) in combination with an
activating OX40 antibody, and a synthetic MPL mimetic (GLA-SE) in combination
with radiation therapy [71, 72].

TLR7/8
Imiquimod is a small non-nucleoside TLR7/8 activator that originally demon-
strated utility as an antiviral agent in preclinical models in the 1980s [73–75].
The antiviral effects observed were dependent upon mediating inflammation as
opposed to direct action on viruses [74, 76–82]. Initial clinical trials delivering
oral imiquimod in cancer patients failed to demonstrate efficacy beyond induction
of inflammation [83, 84]. However, topical application of imiquimod cream for
actinic keratosis [85–91] and basal cell carcinoma [92–100] was efficacious, and
was FDA approved in 2004 for these indications. Several studies in various topical
pre-cancerous and cancerous disease have since been conducted [67], with more
recent testing occurring in breast cancer, melanoma, and other solid tumors alone
or in combination with immune checkpoint blockade.

R848 (Resmiquimod) and motolimod (VTX-2337) are TLR7/8 agonists that are
currently being clinically explored for cancer immunotherapy, in pre-cancerous
actinic keratosis and head and neck squamous cell carcinoma, respectively [101].
Other agonists targeting TLR7 and TLR8 are currently being tested alone or in
combination with immune checkpoint blockade in various solid tumors [102].

TLR9
TLR9 agonists induce potent type I IFN responses from plasmacytoid DCs (pDCs),
and generally mimic unmethylated CpG DNA. Importantly, murine cell-type
expression patterns of TLR9 is distinct from that of humans, with TLR9 largely
being expressed in human pDCs and B cells, while murine expression of TLR9
is more ubiquitous in macrophage and DC populations [103]. Numerous clinical
trials using TLR9 agonists have been conducted as monotherapy studies in solid
tumors, exhibiting manageable safety profiles despite association with cytokine
release syndrome related to IFN mediated inflammation [104]. Clinical efficacy
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signals in monotherapy trials have been limited, with more promising signals being
observed when combined with other modalities [104].

Lefitolimod (MGN1703) was tested in two phase II trials in small cell lung can-
cer and metastatic colorectal cancer with subcutaneous delivery and did not meet
survival endpoints [105, 106]. A phase III trial was conducted in a subgroup of
metastatic colorectal cancer patients identified in the phase II trial, where negative
results were posted.

Tilsotolimod (IMO-2125) has been tested in multiple solid tumors, most exten-
sively in melanoma. A phase I/II trial in anti-PD-1 refractory melanoma showed
evidence of efficacy of Tilsotolimod in combination with ipilimumab (anti-CTLA-
4) or pembrolizumab (anti-PD-1) with an objective response rate (ORR) of 22%
(News release, Idera Pharmaceuticals, April 21, 2020 press release). A follow-
up phase III trial of Tilsotolimod in combination with ipilimumab in anti-PD-1
refractory melanoma was conducted but did not meet objective response rate end-
point (Idera pharmaceuticals, March 18, 2021 press release). A phase III trial
in microsatellite stable colorectal cancer in combination with ipilumimab and
nivolumab (anti-PD-1) is ongoing.

SD-101 has shown abscopal effects in indolent lymphoma patients after intra-
tumor administration [107] and demonstrated an objective response rate (ORR)
of 78% in treatment-naïve and 15% ORR in PD-1 refractory melanoma in com-
bination with pembrolizumab [108]. Intratumor SD-101 in combination with
pembrolizumab and paclitaxel in HER2-negative breast cancer showed non-
significant improvement in pathological complete responses [109]. Several trials of
SD-101 as an intratumor therapy are ongoing in combination with other modalities
in melanoma, breast cancer, prostate cancer, and lymphoma.

CMP-001 is a virus like particle comprised of bacteriophage capsid with a CpG
oligodeoxynucleotides. The drug is taken up by pDCs via FCgamma receptor anti-
bacteriophage antibodies that bind the virus like particle leading to robust type-I
IFN induction [110, 111]. In anti-PD-1 refractory melanoma patients, intratumor
CMP-001 in combination with pembrolizumab achieved an ORR of 25% asso-
ciated with abscopal effects noted [112, 113]. Ongoing clinical trials are testing
CMP-001 in melanoma, head and neck squamous cell carcinoma, and lymphoma.

TLR9 agonists remain a very active area of clinical pursuit, particularly with
newer routes of delivery, e.g., in the aforementioned case of bacteriophage-
antibody mediated delivery via CMP-001; NZ-TLR, which uses a cold isostatic
pressing to encapsulate a TLR9 agonist that permits extended release following
intratumor injection; and AST-008, a spherical nucleic acid-based nanomaterial
TLR9 agonist [104].

3.5.2.2 RLR Activation
The RLRs MDA5 and RIG-I are cytoplasmic sensors of viral RNA that have
recently gained attention as potential targets for cancer immunotherapy.
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MDA5
MDA5 recognizes long dsRNA in the cytosol, culminating a distinct type I IFN
dominant activation of macrophages and DCs and cell death signaling in can-
cer cells [114–116]. Poly ICLC activates both TLR3 and MDA5 as mentioned
in Sect. 3.5.2.1, with MDA5 activation being linked to the potent Th1 antitumor
activity observed by Poly ICLC ([49, 50] (see TLR3 agonist description above
for clinical status of Poly ICLC). An emerging route to target MDA5 activation
is via synthetic RNA viruses and indirect reactivation of endogenous retroviruses
(ERVs) using epigenetic modulators.

Synthetic positive-sense RNA viruses and replicons are commonly engineered
from Semliki Forest virus, Sinbus virus, or Venezuelan equine encephalitis virus
and delivers self-replicating RNA into the cytosol of cells, which can be recognized
by both MDA5 and RIG-I [117]. Results from a phase I clinical trial testing a Sim-
liki Forest virus-based HPV vaccine in HPV induced cancers efficiently induced
HPV antigen-specific T cells and was well tolerated [118]. Synthetic coxsack-
ievirus A21 RNA that engage MDA5 are currently in development for clinical use
[119]. How well replicons/synthetic viral RNA engage MDA5 and other PRRs
relative to oncolytic viruses/natural virus infection (see Sect. 3.5.3 below) remains
unknown.

ERVs comprise up to 8% of the human genome [120] where they typically
remain inactive, but have been shown to be reactivated in various cancer types
[25]. Usage of demethylating agents was initially proposed to mediate antitumor
effects by inducing expression of tumor suppressor genes [121]. However, sev-
eral studies have shown that 5-aza-2-deoxycytidine, a DNA methylation inhibitor,
causes re-expression of ERV gene products that induce dsRNA recognized by
MDA5 in cancer cells, sensitizing tumor-bearing mice to anti-CTLA-4 therapy
[122, 123]. Given that immunotherapy success is associated with ERV gene expres-
sion in tumors [124–126], it is possible that optimizing DNA demethylating agents
for induction of ERV mediated MDA5 signaling will enhance immune check-
point blockade therapy. DNA demethylating agents have been tested extensively
in the clinic [127, 128], however it is unclear whether MDA5 engagement occurred
and/or contributed to therapy effect.

RIG-I
In contrast to MDA5, RIG-I recognizes short dsRNA as well as 5’-ppp-RNA that
lacks a 7-methylguanosine cap on the 5’ end of RNA commonly added to endoge-
nous mRNAs. Several RIG-I agonists have been developed and are in clinical
testing.

MK-4621 is a 5’-ppp synthetic RNA oligonucleotide that was delivered intratu-
moral in various solid tumor types where an interim analysis showed a favorable
safety profile and induction of serum chemokine levels [129]. A second study
testing MK-4621 complexed with JetPEI™ and pembrolizumab is also ongoing
[130]. CV8102 is a single stranded, uncapped RNA complexed with cationic pep-
tides that activates RIG-I along with TLR7/8. This drug was tested by intratumor
injection in solid tumors alone or in combination with PD-1 blockade wherein the
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drug was well tolerated and early responses were observed [131]. GEN0101 is a
drug composed of inactivated Sendai virus particles that engage RIG-I and have
shown immunological responses to treatment, declines in prostate-specific antigen,
and potential disease stabilization after intratumoral and subcutaneous injection in
castration-resistant prostate cancer patients [132, 133]. Several other studies of
GEN0101 have been conducted in melanoma and mesothelioma, however results
from these trials have not been reported [134].

3.5.2.3 STING Agonists
Due to the role of endogenous STING signaling in tumors leading to spontaneous
antitumor immunity [13], STING agonists have gained considerable attention as
intratumoral agonists for clinical cancer immunotherapy.

DMXAA was originally developed as an anti-vascular drug that was later
found to activate TBK1-IRF3 signaling [135] via STING [136]. A large phase III
study was conducted in non-small cell lung cancer patients, but was discontinued
[137]. Other clinical efforts with this agent have failed to show compelling clin-
ical responses. However, despite preclinical data indicating its ability to engage
antitumor CD8+ T cell immunity, it was later found to only induce mouse
STING signaling, and not that of humans [138], possibly explaining its lack of
clinical activity.

Other clinical trials of intratumor delivered STING agonists are ongoing and
include GSK3745417, MK-2118, MK-1454, BMS-986301, IMSA-101, ADU-
S100 and E7766; most of which are being combined with immune checkpoint
blockade. At the time of writing, biological activity of STING agonists has been
reported in patients [139, 140], but the clinical efficacy of these agents remains
to be reported. Further development of modified versions of STING agonists in
preclinical settings are ongoing that include the development of orally available
STING agonists [141, 142], as well as higher potency STING agonists [143, 144].

3.5.3 Infectious Agents as Engagers of PRRs for Cancer
Immunotherapy

In addition to BCG described above, attenuated, replication-competent viruses and
bacteria being clinically developed for cancer immunotherapy also engage PRR
signaling. A potential advantage of intratumoral therapy with infectious agents
versus that of targeted PRR engagement with PAMPs is that infectious agents
generally engage multiple PRRs within the spatiotemporal context of a natural
infectious process, possibly recapitulating a more natural T cell priming scenario.
However, infectious agents derived from natural animal viruses and bacterium also
typically mediate some level of innate or adaptive immune interference (e.g. sup-
pression of antiviral signaling or antigen presentation) that evolved to ensure the
successful lifecycle of the pathogen [145–148]. It remains to be determined which
approach (non-infectious agonists vs infectious agents) will be more effective in
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engaging immune surveillance and controlling tumor growth. Beyond the PRR-
engaging attributes of these agents, it also must be noted that oncolytic viruses
also mediate killing of cancer cells, adding an additional dimension of anticancer
and immunogenic activity.

3.5.3.1 Oncolytic Viruses
While dubbed ‘oncolytic’ due to selective toxicity observed by various attenu-
ated viruses in cancer cell lines [149], the antitumor potential of using viruses for
cancer therapy may largely be due to their ability to elicit antitumor CD8+ T cells
through PRR activation [114, 150–152]. Diverse virus species have been developed
for cancer immunotherapy, ranging from large DNA viruses to small RNA viruses,
that have distinct tissue tropisms, viral replication strategies, and mechanisms of
immune subversion. Thus, as with targeting distinct PRRs for cancer therapy, dif-
ferent virus contexts are likely to mediate antitumor efficacy through different
routes, with differing efficiencies. Clinically tested viral cancer immunotherapies
are described below, however, numerous virus contexts beyond these agents are
being considered for future clinical testing.

Herpes Simplex Viruses (HSV). HSV is a dsDNA viruses that engage a number
of PRRs including STING, TLR2, TLR3, and TLR9 [153]. Talimogene laher-
parepvec (T-VEC), an attenuated oncolytic HSV1 (oHSV) expressing GMCSF,
is the only FDA approved oncolytic virus to date, which demonstrated a 16.3%
durable response rate and 33% 5-year response rate in a randomized phase III
clinical trial of melanoma [154]. An abscopal effect was noted, with regression
of non-injected lesions occurring in some patients [155]. Other monotherapy
clinical trials of oHSVs have shown evidence of efficacy similar to what has
been observed for T-VEC in early stage clinical trials [156]. While initial obser-
vations in combination with immune checkpoint blockade suggested promise
[157], a phase III clinical trial testing T-VEC combined with pembrolizumab
was recently discontinued due to futility [158].

The next generation of herpesvirus-based immunotherapies have been
developed with intentions of improving oHSV immunotherapy efficacy, par-
ticularly in regards to preventing oHSV mediated disruption of antigen
presentation (G47� [159]); enhancing oHSV toxicity selectively in cancer
cells (rQNestin34.5v2 [160], RP1 [161]); enhancing IFN resistance of oHSV
(ONCR-177 [162]); and ‘arming’ oHSV with PD-1 or CTLA4 blocking anti-
bodies and immunostimulatory cytokines, particularly IL-12 (M032 [163],
ONCR-177 [164], RP2 [165], MVR-T3011 [166]). Several of these agents
are moving into early stage clinical trials in various solid tumor types as
intratumorally delivered therapies.
Adenovirus. Adenovirus has a dsDNA genome and is recognized by TLR9 on
pDCs[167], STING [168, 169], NOD like receptors [170, 171], with evidence
for roles of other TLRs in vivo [172]. Immunogenic cell death (e.g., release
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of HMGB1, calreticulin, ATP, and HSP70) has also been proposed as a key
mechanism driving the immunogenicity of oncolytic adenoviruses [173–175].
In 2005 China approved the replicating adenovirus H101 (Oncorine) for the
treatment of nasopharyngeal carcinoma [176]. DNX-2401 is a modified aden-
ovirus that selectively replicates in cancer cells with defective Retinoblastoma
(Rb) and has shown promising phase I results in recurrent glioblastoma wherein
20% of patients surviving > 3 years [177]. A follow-up phase II study of DNX-
2401 delivered at the time of biopsy in recurrent glioblastoma patients was
conducted in combination with pembrolizumab, wherein 5/42 patients receiv-
ing the full DNX-2401 dose had confirmed responses [178]. A randomized
phase III study is in planning [178]. Several ‘armed’ adenoviruses are in clini-
cal testing in various indications; armed with GMCSF (CG0070 [179, 180] and
ONCOS-102 [181]), immunostimulatory ligands CD40L and 41BBL (LOAd-
703 [182]); hyaluronidase (to facilitate viral spread and CD8+ T cell recruitment
within the tumor, VCN-01 [183]); IL-12 (AD5-yCD/mutTKSR39rep-hIL-12,
[184]); OX40L (DNX-2440 [185]); and CXCL9, CXCL10, and IFN-α (NG-641
[186]). In addition, combination strategies of modified oncolytic adenoviruses
with CAR T cell therapy (CAdVec) and chemoradiation (Colo-AD1) are being
pursued [187].
Poxviruses. Poxviruses are large dsDNA viruses (130–300 Kb) that have sophis-
ticated replication strategies and mechanisms to evade viral elimination by the
host immune system [188]; attenuated vaccina viruses, are the most exten-
sively tested oncolytic poxviruses. Poxviruses are recognized by several PRRs,
including TLR2, TLR6, MDA5, and the NALP3 inflammasome [189, 190].
Interestingly, UV and heat inactivated Vaccina virus was shown to mediate
stronger innate inflammation through STING signaling compared to replicating
Vaccina, possibly reflecting strategies by which Vaccina interferes with innate
signaling [191]. Pexa-Vec (JX-594), a Vaccinia virus, was tested as an intra-
tumor therapy in hepatocellular carcinoma in a phase II clinical trial where
evidence of disease control was reported [192]. However, a follow-up study
revealed lack of overall survival benefit in this patient population [193]. A
trial of Pexa-Vec in colorectal cancer was pursued with immune checkpoint
inhibitor combination, but failed to show a significant improval in response
[194]. As with other DNA viruses used for virotherapy, a current emphasis on
arming poxviruses is driving ongoing clinical efforts, including with GM-CSF,
chemokines, IL-15 and PD-1 blocking antibodies [195]. GL-ONC1 and vvDD
are vaccina viruses that were delivered intravenously [196, 197], other stud-
ies in solid tumors are ongoing and evaluation of antitumor effects have not
yet been reported. Myxoma viruses are also being developed for virotherapy in
preclinical settings [195].
PVSRIPO. PVSRIPO, a (+)stranded RNA picornavirus, is the live attenuated
type I Sabin strain of Polio with exchange of the Sabin Internal Ribosomal
Entry Site (IRES) with that of human rhinovirus type II [198, 199]. This substi-
tution neuroattenuates the virus, but does not impair its ability to kill malignant
cells [198]. PVSRIPO requires poliovirus receptor (PVR) expression for viral
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entry, which is highly expressed on both antigen presenting cells and malignant
cells [114, 198, 200]. PVSRIPO infection activates MDA5, leading to a sus-
tained type I/III IFN dominant IFN signature in tumor-associated macrophages
and dendritic cells that culminates in antitumor CD8+ T cell immunity [114,
115, 201]. Importantly, in preclinical models the antitumor efficacy of PVS-
RIPO was primarily dependent upon viral infection of TME constituents as
opposed to malignant cells, indicating that PVSRIPO may function primarily as
an engager of MDA5 within the TME [114]. A phase I clinical trial in recurrent
GBM demonstrated a 21% survival rate at 36 months, relative to 4% survival
in an eligibility criteria-matched historical control cohort of patients [202]. A
small phase I trial in anti-PD-1 refractory melanoma demonstrated antitumor
responses in both injected and non-injected lesions in 4/12 patients, with 6/12
patients resuming immune checkpoint blockade after PVSRIPO having durable
disease control at 18 months of follow-up [203]. Ongoing clinical studies are
focused on combining PVSRIPO with PD-1 blockade in melanoma, GBM, and
other solid tumors [203–205].
Reovirus. Reoviruses are segmented dsRNA viruses with a long history of pre-
clinical investigation backing its utility as an immunovirotherapy agent [206,
207]. Reovirus is recognized primarily by RIG-I and MDA5 [208]. The anti-
tumor efficacy of Reovirus is independent of viral replication in preclinical
models [209], implying that PRR recognition occurs upon viral entry, lead-
ing to antitumor CD8+ T cell priming [210]. Reolysin (aka pelareorep) has
been delivered both intravenously and intratumorally in clinical trials. An initial
phase I study observed local tumor responses in 7/19 patients, with one com-
plete response in advanced solid tumors [211]. Phase II trials in combination
with chemotherapy for malignant melanoma [212], breast cancer [213], non-
small cell lung cancer [214], head and neck cancer [215], metastatic pancreatic
cancer [216] have been conducted with some indication of efficacy in subsets of
patients. Recent work has demonstrated that intravenously delivered Reovirus
reaches brain tumors in patients and induces PD-1/PD-L1, possibly indicating
its potential use as a systemic agent in combination with immune checkpoint
blockade [217]. As with other oncolytic viruses, the ongoing focus of current
Reovirus virotherapy is focused on combining with other immunomodulatory
agents [218].
Coxsackievirus A21 is a (+)stranded RNA picornavirus primarily sensed by
MDA5 [219], that has been clinically tested in both intravenous and intra-
tumoral contexts as V937 (aka CAVATAK). Indications tested include non-
muscle-invasive bladder cancer [220], in which tumor associated inflammation
was observed, and melanoma [221], wherein 43.2% of patients had progression
free survival at 1 year post treatment. Ongoing studies combining V937 and
immune checkpoint blockade are being conducted in unresectable melanoma,
and early results indicate the combination of V937 and pembrolizumab has a
47% ORR [222].
Vesicular Stomatitis Virus (VSV) is a (−) stranded RNA virus that was devel-
oped as an oncolytic virus due to the lack of type I IFN mediated suppression
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of attenuated VSV replication in human cancer cells [223]. VSV is recognized
by RIG-I [224] and TLR7 [225]. However, VSV vectors are capable of caus-
ing neurological disease in non-human primates [226]; thus an interferon-β
expressing VSV (VSV-IFNβ) was developed to restrict VSV replication beyond
normal cells and was found to not cause neurotoxicity in non-human primates
[227–229]. VSV-IFNβ was further modified with expression of a sodium iodide
symporter (NIS) to enable imaging. Ongoing clinical studies in various indica-
tions include IV infusion in multiple myeloma, T cell lymphoma, and acute
myeloid leukemia [230].
Measles Virus is a (−) stranded RNA virus that was originally proposed as
an oncolytic virus candidate due to case reports of measles infection being
linked to tumor regression [231]. Measles is recognized by MDA5 and RIG-I
[232], however it is reported to intercept RLR recognition in antigen presenting
cells [233]. Indeed natural (wildtype) measles infection also suppresses adaptive
immunity [234]. The live attenuated vaccine strain of Measles (Edmonston-
Zagreb strain) has been developed for cancer immunotherapy and tested in
early stage clinical trials of T cell lymphoma [235], ovarian cancer [236],
glioblastoma, breast cancer, head and neck squamous cell carcinoma, malignant
peripheral nerve sheath tumors, bladder cancer, and multiple myeloma [237].
A NIS-expressing version of measles was also generated and tested in patients
after intravenous administration [238].
Newcastle’s Disease Virus (NDV) is a (−) stranded RNA virus recognized pri-
marily by RIG-I [239, 240] that naturally infects chickens. NDV has been
shown to mediate both oncolysis and type I IFN-dependent priming of anti-
tumor T cells in preclinical models [150, 241]. Several clinical trials used
NDV-treated oncolysate, or lysed cancer cells, for vaccination in cancer patients
[242], most of which were in melanoma where improved overall survival
was demonstrated relative to historical controls. A phase III clinical trial
demonstrated longer survival after NDV-pulsed autologous vaccine compared
to surgical resection alone in colorectal cancer patients [243]. The MTH-68
strain of NDV was tested in various advanced cancer types in small cohorts
of patients, including glioblastoma, with potential evidence of efficacy after
intravenous administration [244, 245]. The PV701 strain was likewise tested
intravenously in small cohorts patients with advanced cancers, documenting
some objective responses [246, 247]. Extension of these studies have been com-
plicated by changing regulatory guidelines restricting the use of NDV strains
[241]. Ongoing clinical efforts to test NDV include a GMCSF expressing NDV
variant (MEDI5395) being tested in various advanced cancers in combination
with durvalumab (anti-PD-L1 antibody) [248].
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3.5.3.2 Intracellular Bacterium

Bacille Calmette-Guerin (BCG) is standard of care therapy for non-muscle inva-
sive bladder cancer, and was the first FDA approved cancer immunotherapy. See
Sect. 3.5.1 for a description of the use of BCG in cancer therapy.

Listeria monocytogenes is a gram positive, intracellular bacterium that causes
listeriosis, a foodborne illness. Listeria is recognized by TLR2, TLR5, NOD-
like receptors, and STING [249]. Strains of Listeria have been developed for use
as cancer vaccine vectors, with its intracellular lifecycle being an asset to deliver
tumor associated antigens and engage antitumor T cell responses [250]. Listeria
vaccine clinical trials have been conducted via intravenous delivery in pancre-
atic cancer, against mesothelin (CRS-207 [251]); in cervical cancer against HPV
antigens [252, 253], and in mesothelioma against mesothelin (CRS-207 [254]).
Encouraging objective responses have been observed in early stage clinical tri-
als of mesothelioma and cervical cancer; however a phase III trial of Listeria E7
vaccine (AIM2CERV) in cervical cancer was closed by the sponsor [250], and
CRS-207 development was recently discontinued after a failed lacking activity
in combination with pembrolizumab [255]. Several Listeria-based approaches
are in development with ongoing clinical trials.

3.6 The Role of Type I IFN in Mediating the Antitumor
Efficacy of PRR Agonists

Type I IFNs are critical toward engaging DC priming of antitumor T cells [256].
Indeed, the efficacy of several PRR activators (both non-infectious agonists and
infectious agents) has been shown to be dependent upon eliciting type I IFN
signaling in tumors, including: Poly IC/Poly IC-LC [49, 114, 257, 258], RLR
agonists [50, 259], TLR7/8 agonists [260], TLR9 agonists [261], STING agonists
[262–264], PVSRIPO [114], and NDV [150]. IFNAR signaling both primes DC
differentiation and expression of costimulatory ligands [47], while also boosting
cytolytic function of antitumor CD8+ T cells locally [114, 265, 266]. However,
it is critical to note that out-of-context type I IFN does not recapitulate the anti-
tumor efficacy of broader signals delivered by type I IFN during PRR signaling
[114, 267], which encompasses a myriad of other pro-inflammatory signals coin-
ciding with type I IFN (Fig. 3.1). Indeed, while exogenous type I IFN treatment
in cancer patients has shown some activity in the clinic, the efficacy of type I
IFN treatment of tumors/cancer patients was limited [268]. PRR agonists, either
infectious or non-infectious, offer potential to contextualize type I IFN signaling,
and its T cell engaging capacity, within an inflammatory milieu supporting the
production of chemokines, other DC/T cell modulating cytokines, and induction
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of pro-inflammatory signals within the TME that support CD8+ T cell effec-
tor functions. Whether this potential is fully realized clinically remains to be
determined.

Yet, IFN signaling also mediates cancer cell chemoradiation resistance and
induction of immune checkpoints that prevent antitumor T cell function [269–
271]. Moreover, type I IFN contributes to T cell exhaustion and dysfunction
during chronic viral infection [272], and type I IFN signaling in CD4+ T cells
has been shown to negatively associate with immunotherapy response [273]. The
context of IFN signaling may well determine whether it promotes or desensitizes
antitumor immunity [274]: tumors with active IFN signaling at baseline may be
resistant or non-responsive to PRR agonist therapy; and due to the role of IFNs
in inducing immune checkpoint ligands [275], combination strategies to mitigate
such negative feedback may be necessary to empower the antitumor effects of
PRR engaging therapies. Indeed, most clinically pursued PRR engagers have been
shown to induce PD-L1 and other immune checkpoint ligands, and are potentiated
by immune checkpoint blockade in preclinical models [49, 114, 115, 150, 157,
267, 276].

3.7 Comparison of PRR Activators to Other
Immunotherapies and Their Utility in Combination

PRR engaging immunotherapies intended to mediate in situ vaccination dif-
fer mechanistically from other anticancer modalities in several complementary
ways. Complementary and distinct attributes of PRR activating immunotherapies
compared to other established immunotherapy approaches are presented below:

Immune checkpoint blockade (ICB): Blockade of PD-L1, PD-1, CTLA4, and
other immune inhibitory receptors function to resuscitate antitumor T cell func-
tion, and has achieved unprecedented clinical responses in immunogenic tumors
with high mutation loads and/or oncogenic viral gene expression [277]. Gener-
ally, these modalities rely upon the presence of pre-existing antitumor T cells
and are more efficacious in tumors that have higher baseline inflammation
[278]. Inclusive of resistance mechanisms to ICB is that of innate immuno-
suppression, which limits co-stimulation, infiltration, and effector function of
antitumor T cells [279]. In contrast, intratumoral therapy with PRR activators
mediates innate inflammation within tumors, that enhances expression of co-
stimulatory signals on antigen presenting cells, causes chemokine induction
that enables trafficking of T cells to the site of the tumor, and directly bolsters
the function of antitumor T cells, e.g., via type I IFNs [114, 280]. Numer-
ous pre-clinical studies have shown that PRR activation within tumors leads to
priming of antitumor T cells, which may broaden the potential of ICB therapy
by bolstering antitumor T cell populations, while supporting their recruitment
and function within the tumor microenvironment. Indeed, several studies have
demonstrated synergy between PRR activators and ICB [281].
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Cancer vaccines: Various cancer vaccine modalities have been developed
including peptide vaccines, autologous dendritic cell vaccines, and mRNA
vaccines. Indicating their clinical potential, prophylactic vaccination against
HPV antigens has been remarkably successful in preventing cervical cancer
[282]. Traditionally, cancer vaccines have been restricted to ‘shared’ tumor
associated antigens common across numerous patients, e.g., HER2, EGFRviii,
and MART1. With more recent feasibility of whole exome sequencing of
biopsy tissue, personalized vaccines based upon patient-specific neoantigens
are in development [57]. However, as with immune checkpoint blockade, can-
cer vaccines require that primed and expanded antitumor T cell populations
induced by the vaccine traffic and function within the tumor. Moreover, these
strategies require knowledge and accurate prediction of effectively presented,
homogenously expressed, and targetable neoantigens. Notably, PRR activat-
ing adjuvants are used in cancer vaccines to enable priming and expansion
of antitumor T cells in the periphery. In contrast, intratumoral delivery of PRR
engaging therapies function to mediate vaccination using the tumor site in an
antigen agnostic manner, by activating innate immunity and antigen presen-
tation to prime T cells against antigens present within the tumor. Moreover,
PRR agonists induce inflammation that enable trafficking and potentiation of
antitumor T cell function. Intratumoral PRR agonist therapy is anticipated to
complement cancer vaccines by enabling the recruitment, further tumor/tumor
draining lymph node localized expansion of tumor antigen-specific T cells, and
by providing inflammation in the tumor that supports antitumor T cell function.
Adoptive T cell transfer/CAR T cells: A direct route to bolster antitumor T cell
populations in cancer patients is to deliver either expanded autologous antitumor
T cells (or tumor infiltrating T cells) or autologous chimeric antigen receptor
(CAR) T cells against specific tumor antigens. These approaches have shown
promising antitumor efficacy in some cancer types [283, 284]. Distinct from a T
cell-based approach to induce antitumor immunity in patients, intratumoral PRR
activation leads to priming of T cells in the tumor bed and tumor draining lymph
node while providing a supportive innate inflammatory framework for antitumor
T cells to function. Intratumoral PRR activation has been shown to potentiate
adoptive T cell therapy and CAR T cell therapy in pre-clinical models, primarily
by enhancing recruitment of the ex-vivo expanded or engineered autologous T
cells to the site of the tumor [285, 286].

3.8 The Future of PRR-Targeted Cancer Immunotherapies:
Hurdles and Limitations

Beyond logistical regulatory and manufacturing issues, several hurdles remain for
the success of PRR engaging immunotherapy to be realized. First, the optimal
dosing of PRR engagers remains unclear, and is likely to be specific to each
agent. For example, administration of higher doses of a STING agonist in mice
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impaired systemic antitumor immunity [287], implying that exaggerated activa-
tion of intratumor STING signaling may mediate a deleterious effect on antitumor
T cell function. Whether this is true for other PRR engagers remains unknown. It
also remains unclear as to which tumor types may benefit most from PRR engaging
therapy: should immunologically quiescent tumors be targeted to enhanced intra-
tumor inflammation and engage T cells? Or are immunologically active tumors
more responsive to PRR-induced inflammation? As presented in this chapter, PRR
agonists have been tested in both notoriously immunosuppressed tumors (e.g.,
glioblastoma) as well as immunogenic tumors (e.g., melanoma).

In addition, PRR-induced inflammation plays both anti- and pro-tumor roles
[288]. For example, TLR3 signaling in the tumor microenvironment has been
shown to enhance cancer metastases [288]; VEGF, matrix metalloproteinases, and
other inflammatory features induced by PRR signaling may facilitate tumor vascu-
larization; interferon responses induce APOBEC which can add to the evolutionary
potential of cancer cells by increasing mutation rates [289]; PRR signaling pro-
motes NFkB signaling, which can enable cancer cell survival and resistance to
T cell mediated killing [290, 291]; and PRR signaling may exacerbate T cell
exhaustion and dysfunction. In some respects, combination therapies like immune
checkpoint blockade, anti-VEGF therapies, and other mechanisms may comple-
ment PRR engaging therapies to mitigate these effects. Overcoming and defining
these limitations will be critical to optimize PRR activation for future cancer
therapy.
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