
Chapter 7
The Motion of a Body with No Fixed
Point

7.1 General Considerations

In previous chapters, we studied problems of motion of a rigid body with one point
fixed in space, i.e. in an inertial reference frame. In the present chapter, we study
certain problems of motion when the body is not fixed from any point. For the
moment, we shall not begin with constructing a Lagrangian for the motion. To keep
the applicability of the equations of motion as wide as possible, we assume that the
body is subject to a set of forces, which are not necessarily time independent and
which may not have a potential.

As in Chap.3, we write the equation of motion of an element dm of the body mass

dm
d2r
dt2

= dF + dF′ (7.1)

summing over the mass of the body one gets

M
d2r0
dt2

= F. (7.2)

The centre of mass of the body moves as a particle acted upon by a force equal to
the resultant of all external forces acting on the body.

On the other hand, let ρ be the position vector of themass element dm with respect
to the centre of mass, so that

r = r0 + ρ. (7.3)

Multiplying (7.1) vectorially by ρ and integrating over the body, we obtain the
equation for the rotational motion in the form

dGc

dt
= Lc, (7.4)
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where Gc = ∫
ρ× dρ

dt dm and Lc = ∫
ρ × dF are, respectively, the angular momen-

tum and the resultant moment of external forces about the centre of mass. The law
of rotational motion about the centre of mass of the body resembles that of motion
relative to the inertial frame.

Example 1 A rigid body is free to move in vacuo under the action of a uniform
gravity field. Describe the motion.

The centre of mass of the body moves as a projectile, while the body performs a
torque-free motion about the centre of mass as in Euler’s case.

In particular, if the body begins with zero angular velocity, it will continue trans-
lational motion of its centre of mass without change in its orientation. If the body
beginswith a rotation about one of its principal axes of inertia, it will continue rotation
with the same angular velocity about the same axis, which keeps fixed orientation in
space.

Kinetic energy of the rigid body: To construct the Lagrangian of the motion,
one needs to have an expression for the kinetic energy. That is

T = 1

2

∫
(vc + dρ

dt
)2dm

= 1

2
Mv2c + 1

2

∫
(
dρ

dt
)2dm. (7.5)

The kinetic energy of the body in a general translational and rotational motion is the
sum of two terms: the kinetic energy of a mass M, equal to the mass of the body and
moving with its centre of mass, and the kinetic energy of the rotation of the body
about its centre of mass. The last formula gives a simple expression of the kinetic
energy, very useful in application to many problems of rigid body dynamics. In the
next section, we study an example of such application.

Example 2 Aheavymagnetized rigid body is free tomove in vacuo under the action
of two skew uniform gravity and magnetic fields. Describe the motion.

Let (X,Y, Z) be the coordinates of the centre of mass P of the body relative to
an inertial frame OXY Z with axis Z directed vertically upwards and let H = He
be the magnetic field of fixed magnitude and fixed direction in space determined by
the unit vector e. The Lagrangian of the problem can be written as

L = 1

2
M(Ẋ2 + Ẏ 2 + Ż2) − MgZ

+1

2
(Ac p

2 + Bcq
2 + Ccr

2) − m ·H,

where M,m are the mass of the body and its magnetic moment, respectively, and
Ac, Bc,Cc are the central principal moments of inertia. One can see at once that the
translational motion of the centre of mass and the rotational motion are completely
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independent. The centre of mass P moves as a projectile on a parabola with its axis
vertical and vertex upwards. The equations of the rotational motion are obtained
from the Lagrangian

L ′ = 1

2
(Ac p

2 + Bcq
2 + Ccr

2) − Hm · e. (7.6)

This Lagrangian is form-identical with (3.43) of the classical problem of motion
of a heavy body about a fixed point and the problem can be put in Lagrangian,
Hamiltonian or in the Euler–Poisson form. It follows immediately that the present
problem is generally integrable only in the following three cases:

(1) The analog of Euler’s case. The case of no magnetic effect H = 0 (no magnetic
field) or m = 0 (no magnetization in the body)

(2) The analog of Lagrange’s case. The central inertia ellipsoid is a spheroid and the
magnetic moment is parallel to the symmetry axis.

(3) The analog of Kowalevski’s case. Ac = Bc = 2Cc and the magnetic moment lies
in the equatorial plane (m3 = 0).

The conditional integrable case of Goryachev and Chaplygin has its analog valid
on the level f = 0, f being the component of the angular momentum in the direction
of the magnetic field (ωIc · e = f ). The same applies to all particular solutions of
the classical problem, a complete list of which will be provided in Chap.8.

7.2 Poisson’s Top. A Top on a Smooth Horizontal Plane

In our previous study of Lagrange’s top (the axi-symmetric top), the assumption was
made that the pin of the top serves as a fixed point in the inertial space. A related
model was first considered by Poisson [309], but much rarelymentioned in textbooks
on the subject. For a somewhat detailed treatment see [221, 222].

In this model, a symmetrical top moves with its apex Q constrained to move
without friction on a horizontal plane, so that the reaction R of the plane on the
body remains in the vertical direction. Denote by P the centre of mass of the top.
From symmetry, P lies at a point on its axis of the top at a distance a (say) from Q.
Let (x, y, z) be the coordinates of P relative to an inertial frame Oxyz with axis z
directed vertically upwards and the xy-plane is the plane of motion of the apex. In
this system, the apex Q has coordinates (X,Y, 0). The rotational motion of the top
will be described by the Eulerian angles: ψ between the vertical plane containing
QP and the xz-plane, θ between QP and the vertical upwards and finally ϕ the
angle of proper rotation of the top about its axis (See Fig. 7.1).

To derive equations of motion, one may use (7.5) to write down the Lagrangian
of the motion as
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Fig. 7.1 Poisson’s top

L = 1

2
M(ẋ2 + ẏ2 + ż2)

+1

2
[A(θ̇2 + sin2 θψ̇2) + C(ψ̇ cos θ + ϕ̇)2]

−Mgz

where M is the mass of the top, C is its axial moment of inertia, A is the moment
of inertia about any axis passing through P and orthogonal to QP and g is the
acceleration of gravity. Recalling that z = a cos θ, we can rewrite the Lagrangian in
the form

L = 1

2
M(ẋ2 + ẏ2 + a2 sin2 θ θ̇2)

+1

2
[A(θ̇2 + sin2 θψ̇2) + C(ψ̇ cos θ + ϕ̇)2]

−Mgz. (7.7)

The mechanical system under consideration has five degrees of freedom. It also
admits five integrals of motion: the energy integral and four integrals corresponding
to the four cyclic coordinates x, y, ψ and ϕ, so that there is no need to write any of
the Lagrange’s equations of motion, but only to write the integrals

ẋ = U,

ẏ = V,

ψ̇ cos θ + ϕ̇ = r0,

A sin2 θψ̇ + Cr0 cos θ = n,

1

2
M(U2 + V 2 + a2 sin2 θ θ̇2) + 1

2
[A(θ̇2 + sin2 θψ̇2) + Cr20 ] + Mgz = h, (7.8)
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where U, V, r0, n, h are arbitrary constants of motion.
From the first two integrals, it turns out that the centre of mass of the top moves

with uniform horizontal velocity. This agrees with the fact that the bodymoves under
the action of only two vertical forces: its weight and the reaction of the plane. From
the last three integrals, one gets

ψ̇ = n − Cr0 cos θ

A sin2 θ
,

ϕ̇ = r0 − cos θ(n − Cr0 cos θ)

A sin2 θ
(7.9)

and the final equation for the angle θ

(A + Ma2 sin2 θ)θ̇2 = 2(E − Mga cos θ) − (n − Cr0 cos θ)2

A sin2 θ
, (7.10)

where E = h − 1
2M(U 2 + V 2) − 1

2Cr
2
0 .

From the analytical point of view, setting cos θ = u, we transform (7.10) to the
form

[A + Ma2(1 − u2)]u̇2 = 2(E − Mgau)(1 − u2) − 1

A
(n − Cr0u)2, (7.11)

which leads through separation of variables to the relation

t =
∫ u

√
A + Ma2(1 − u2)

2(E − Mgau)(1 − u2) − 1
A (n − Cr0u)2

du

=
√

a

2g

∫ u du√
F(u)

, (7.12)

where

F(u) =
√

(u − u1)(u2 − u)(u3 − u)

u24 − u2
,

and 0 ≤ u1 ≤ u2 ≤ 1 ≤ u3, u4 =
√
1 + A

Ma2 > 1.
Now,we note that Eq. (7.9) is identicalwith the ones considered for Lagrange’s top

in Chap.3. Also, (7.11) is similar to its corresponding Eq. (4.41) in Lagrange’s case,
and differs from it only by presence of the term Ma2(1 − u2) in the coefficient of u̇2

on its left-hand side. However, this term does not change the sign of the coefficient.
Thus, the general qualitative character of the motion of the Poisson top is almost the
same as in Lagrange’s top and it will not be repeated here.

In general, the last integral is hyper-elliptic, compared to the elliptic integral (4.42)
for Lagrange’s top. Inverting this relation we express u = cos θ in terms of time, and
then integrating (7.9) with respect to time we obtain ψ and ϕ. In Klein’s work [221],
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where the top under consideration is termed the “toy top”, explicit expressions of
the Cayley–Klein parameters describing the motion as hyper-elliptic integrals in u
were given, so that together with (7.12) this gives a parametric representation of the
solution. Those results were detailed and refined in [339], where also degenerate
cases when hyper-elliptic integral reduce to elliptic were singled out.

To find the equation of the trajectory of the tip of the top on the plane, we write

X = x − a sin θ cosψ = x0 +Ut − a sin θ cosψ,

Y = y − a sin θ sinψ = y0 + V t − a sin θ sinψ. (7.13)

The reaction of the plane on the apex can be found from the equation of motion of
the centre of mass in the z direction

Mz̈ = R − Mg,

so that

R = M(g + z̈)

= M(g + aü). (7.14)

Remark:Without any effect on the rotational motion of the top, it can be assumed
that U = V = x0 = y0 = 0, so that x = y = 0. This fixes the choice of the inertial
frame as the one whose Z -axis passes through the initial position of the centre of
mass P of the top. In this frame, P moves only vertically up and down the Z -axis.

7.2.1 Regular Precession of Poisson’s Top

As it was in the case of Lagrange’s top, regular precession corresponds to the nutation
angle θ taking a constant value θ∗ (say), and then from (7.9) we find that the other
two Eulerian angles ϕ,ψ change with time in constant rates. This occurs in two
qualitatively different ways:

1- When u1 = u2 = u∗, 0 < u∗ ≤ 1. This can happen at arbitrary inclination of
the body axis to the vertical, including the standing gyroscope positions (u = 1).
Regular precessions of this type correspond to Fig. 7.2a for the function F. They are
all stable, since a slight perturbation of the motion causes splitting of the two roots
in a small neighbourhood of u∗. This leads to a small periodic change in the nutation
angle θ and consequently small wobbling in the rates ψ̇ and ϕ̇.

2- When u1 < 1, u3 = u2 = 1. This gives a different standing position, corre-
sponding to Fig. 7.2b. On perturbation, the equal roots split into u3 > 1, u2 < 1. The
figure axis begins a finite periodic motion, in which it goes to position u1 before it
returns to u2. This standing position is unstable.
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Fig. 7.2 Stability of regular precession for Poisson’s top

7.3 Exercises

1. Show that the resulting problem of example 2 in Sect. 7.1 above can be generalized
to the case of a body-gyrostat.

2. The Poisson top is given the upper equilibrium position. Show that this position,
which is unstable when r0 = 0, can be stabilized by giving the top an angular speed
r0 about its axis of symmetry provided

|r0| > 2

√
MgaA

C
.

3. A rigid body moves freely in a gravitational field with homogeneous quadratic
potential

Vg = 1

2
(aξ 2 + bη2 + cζ 2)

in the inertial frame. Show that the equations of translational motion of the centre
of mass and the rotational motion about the centre of mass are completely separate.
For more details see Chap.14 Sect. 14.3.1.
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