
Chapter 6
Motion of a Rigid Body About a Fixed
Point in the Field of a Distant Newtonian
Centre and Brun’s Problem

In the preceding chapters, we concentrated on the study of motion of a rigid body
about a fixed point in the uniform gravity field. This field serves also as a good
approximation for the forces acting on the body in most purposes. However, for
certain applications, like precise surveying instruments, the slight variations in the
Earth’s gravitational field from point to another must be taken into consideration.
These variations play a decisive role in the determination of rotational motion of
artificial satellites of Earth, especially those whose tasks demand high precision of
orientation, for terrestrial, cosmic or astronomical purposes.

In the present chapter, we study in detail another approximate model for one rigid
body moving in the gravitational field of a fixed body. In this model, we make two
assumptions:

(a) The fixed body is spherically symmetric. This enables us to treat it as a point
mass concentrated at the centre of the body.

(b) The diameter of the moving body is very small compared to the distance
between the fixed point of the moving body and the centre of the fixed body.

Let a body of mass M be in motion about its fixed point O at a distance R from
a fixed Newtonian attraction centre of mass M ′ at O ′. Denote by γ the unit vector

in the direction
−−→
O ′O and by V the potential of the body in the field of the centre. To

calculate the moment of gravitational forces about O , we take a mass element dm
of the body whose position vector referred to O is r :

The potential of this element will be dV = − μdm
|Rγ+r| , the force exerted on it by the

attraction centre is dF = −μ(Rγ+r)dm
|Rγ+r|3 and its moment about O is dL = −μRγ×rdm

|Rγ+r|3 ,

where μ is Gauss’ constant of the centre (μ = M ′×Newton’s gravitational constant).
Integrating over the whole mass of the body, we get

V = −μ

∫
dm

|Rγ+r| , (6.1)
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L = −μRγ×
∫

rdm
|Rγ+r|3 (6.2)

and recalling that |Rγ+r| = √
R2 + 2Rγ·r+r2, one can write (2) in the form

L = γ×∂V

∂γ
. (6.3)

6.1 Approximate Form of the Potential

It is evident from (6.3) that the knowledge of the potential V is sufficient for complete
determination of the moment L. However, in most cases it is difficult to calculate V
from (6.1) due to the complexity of the shape of the body, its mass density or because
the mass distribution in the body is unknown. In those cases, an efficient solution is
to expand the potential in powers of 1

R and keeping terms up to the third degree in
this parameter. First we write the expansion of the function
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Inserting this expression into (6.1), and neglecting terms of degrees higher than the
third, we obtain

V = −μ[ 1
R

∫
dm − 1

R2
γ·

∫
rdm − 1

2R3

∫
r2dm + 3

2R3

∫
(γ·r)2dm]

= −μ[M
R
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2R3
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xi x j dm − 1

2
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= −μ[M
R

− M
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γ·r0 + 1

2R3
(3γ(

1

2
tr(I)δ − I)·γ − 1

2
tr(I))]

= −μ[M
R

− M
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γ·r0 + 1

2R3
(tr(I) − 3γI·γ)]. (6.4)

In expanded form that is

V = −μM

R
+ μM

R2
(x0γ1 + y0γ2 + z0γ3)
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− μ

2R3
tr(I) + 3μ

2R3
(Aγ2

1 + Bγ2
2 + Cγ2

3). (6.5)

As from (6.3) only derivatives of V with respect to components of γ, the constant
terms may be discarded and thus the potential can be written as

V = Mg(x0γ1 + y0γ2 + z0γ3) + 1

2
λ(Aγ2

1 + Bγ2
2 + Cγ2

3)

= Mgr0 · γ + 1

2
λγI · γ, (6.6)

where g is the gravity field intensity of the centre at the fixed point O of the body and
λ = 3g

R . Formula (6.6) gives the approximate form of the potential of the body by the
knowledge of its centre of mass and moments of inertia, without need to completely
specify the distribution of mass in the body.

Remark: Note that for a Newtonian centre of attraction both parameters g and
λ are positive. In certain physical problems, the Newtonian attraction is replaced by
Coulomb’s electric interaction (e.g. [58]). In that case g and λ can be either positive
or negative and I,Mgr0 are replaced, respectively, by the inertia matrix of the electric
charges and the moment of those charges multiplied by the intensity of the electric
field of the central charge at O .

6.2 Brun’s Problem

Brun considered the motion of the following model [47]:
Let a rigid body be inmotion about a fixed point O , while each of itsmass elements

is influenced by a force proportional to its mass and its distance from a fixed plane at
O in the direction perpendicular to that plane. In the usual notation, the axes Oxyz
are taken as the system of principal axes of the body at the fixed point and OXY Z as
the inertial frame, with the Z -axis orthogonal to the fixed plane and the unit vector
γ along the Z direction.

The potential of the body

V = 1

2
N

∫
Z2dm = 1

2
N

∫
(r·γ)2dm

= 1

2
Nγ Ī·γ = −1

2
NγI·γ + const (6.7)

where N is proportionality constant. This potential is just the quadratic part of the
potential (6.6), with λ replaced by −N .

Thus, Brun’s problem is a special version of the general problem of motion of a
rigid body in an approximate Newtonian field, namely, the case when the body is
fixed from its centre of mass.
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6.3 Equations of Motion and Integrals of Motion

Taking (6.6) into account, one can write the equations of motion of the body in the
approximate field of a Newtonian centre of attraction in the form

ω̇I+ω×ωI = γ × (Mgr0 + λγI),

γ̇+ω×γ= 0. (6.8)

Or in expanded form

A ṗ + (C − B)(qr − λγ2γ3) = Mg(z0γ2 − y0γ3),

Bq̇ + (A − C) (pr − λγ1γ3) = Mg(x0γ3 − z0γ1),

Cṙ + (B − A)(pq − λγ1γ2) = Mg(y0γ1 − x0γ2),

γ̇1 + qγ3 − rγ2 = 0, γ̇2 + rγ1 − pγ3 = 0, γ̇3 + pγ2 − qγ1 = 0. (6.9)

This is a closed system of six first-order differential equations. For this system,
we have three obvious general integrals of motion. They are the energy, areas and
geometric integrals

I1 = 1

2
ωI·ω+Mgr0 · γ + 1

2
λγI · γ= h,

I2 = ωI·γ = f,

I3 = γ·γ= 1. (6.10)

6.4 Integrable Cases

As will be seen later in this book, the problem under consideration is in fact a special
version of the much more general problem considered in Chap.10, dealing with the
motion of a body in a liquid or a magnetized and electrically charged body about
a fixed point. However, in virtue of the importance of this version in applications,
we present here its integrable cases. For the system (6.9) to be integrable, just as in
the problem of motion in the uniform gravity field, we have to find a fourth integral
independent of those three. It turned out that this can be achieved in two cases.

6.4.1 Brun’s Case [47] (Analog of Euler’s Case)

In this case r0 = 0, i.e. the body is fixed from its centre of mass. To obtain the
complementary integral, we write the Euler–Poisson equation
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ω̇I+ω × ωI = λγ × γI

multiplying scalarly by ωI to get

ωI·ω̇I+ωI · (ω×ωI) = λωI · (γ × γI).

That is

d

dt

1

2
|ωI|2 = −λγ·(ωI×γI)

= −λABCγI−1·(ω×γ). (6.11)

The last relation can be verified very easily by writing the triple scalar product in
the form of a determinant and using the determinant’s properties. Using Poisson’s
equation in this relation, we write

d

dt

1

2
|ωI|2 = λABCγI−1 · γ̇

= d

dt

1

2
λABCγI−1 · γ

and hence finally we get

|ωI|2 − λABCγI−1 · γ = c, (6.12)

or in expanded form

I4 = A2 p2 + B2q2 + C2r2 − λABC(
γ2
1

A
+ γ2

2

B
+ γ2

3

C
) = c. (6.13)

This integral is an obvious generalization of the fourth integral in Euler’s case (the
square of the modulus of the angular momentum). Nevertheless, complete solution
of the equations of motion (6.9) for Brun’s case with the integrals (6.10) and (6.13) is
much more complicated than in Euler’s case. Kobb [223] expressed the Hamiltonian
of the problem using Euler’s angles as generalized coordinates and the momenta
conjugate to them. By writing Hamilton–Jacobi equation and constructing a com-
plete solution for it, he reduced the solution to certain quadratures, but he has not
tried to solve those quadratures explicitly for the coordinates in terms of time. A
similar approach was adopted by Kharlamova in [204] using different coordinates,
the sphero-conic coordinates on the Poisson sphere (See Chap.9).
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6.4.2 The Generalization of Lagrange’s Case

Let A = B and x0 = y0 = 0, i.e. the body admits axial dynamical symmetry about
the z-axis passing through the fixed point and the centre of mass of the body lies on
the axis of dynamical symmetry. Under those conditions, it is easy to write the third
equation of (6.9) in the form

Cṙ = 0

and thus the integral is the same as in Lagrange’s case

I4 = r = r0. (6.14)

To obtain the solution of the equations of motion, one can proceed exactly as in
Lagrange’s case in Chap.4 (Sect. 4.2). The relation between γ3 and time t has the
same form as in (4.42)

t =
∫

dγ3√
F(γ3)

, (6.15)

but with
F(γ3) = (1 − γ2

3)(E − aγ3 − a1γ
2
3) − (b − cr0γ3)

2, (6.16)

i.e. F(γ3) is here a polynomial of the fourth degree. Thus, γ3 is expressible in terms
of elliptic functions of time. This procedure was pointed out in [250], where the
Eulerian angles are given expressions in terms of Weierstrass’ elliptic functions.

Arkhangelsky [14] proved that the equations of motion (6.8) do not admit a com-
plementary single-valued integral in any more cases than the above two. Note also
that the case of axially symmetric body can be readily generalized by adding a gyro-
static moment, i.e. a rotor along the axis of symmetry of the body. The integral I4
becomes Cr + k3, i.e. I4 = r is still a constant of the motion.

6.4.3 The Place of Brun’s Potential

At present we know very little about the answer to an important question: for which
potentials are the Euler–Poisson equations

ω̇I + ω×ωI = γ×∂V

∂γ
, γ̇ + ω×γ = 0 (6.17)

integrable? Even for the simplest case of a quadratic integral we know a single
partial result, obtained in [381] using reduced equations in isometric coordinates
on the inertia ellipsoid. We deduce it here in a direct way from Euler–Poisson’s
equations. We formulate it as
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Theorem 6.1 Equation (6.17) is integrablewith a quadratic complementary integral
for arbitrary A, B,C, and for all initial conditions only for the potential

V = 1

2
λ(Aγ2

1 + Bγ2
2 + Cγ2

3), λ arbitrary constant (6.18)

and their integral is

I4 = A2 p2 + B2q2 + C2r2 − λ(BCγ2
1 + CAγ2

2 + ABγ2
3). (6.19)

Proof Let for a general potential V (γ) and μ = 0 the equations of motion have an
integral quadratic in the angular velocities. This integral must have the form

I4 = A2 p2 + B2q2 + C2r2 + F(γ1, γ2, γ3), (6.20)

so that F ≡ 0 when V ≡ 0. Differentiating this integral we get

2ωI·ω̇I+∂F

∂γ
· γ̇ = 0,

and using (6.17) this becomes

2ωI·(γ×∂V

∂γ
− ω×ωI)+∂F

∂γ
· (−ω×γ) = 0,

and finally we obtain the relation

2ωI·(γ×∂V

∂γ
)−ω · (γ×∂F

∂γ
) = 0, (6.21)

which is satisfied for arbitrary vector ω.

Now we replace ω by γ in Eq. (6.21), to obtain an equation for the potential V

2γI·(γ×∂V

∂γ
) = 0,

whose solution is readily
V = V (γI·γ,γ2).

Since we have γ2 = 1, the last expression can be written as

V = V (γI·γ). (6.22)

In a similar way, we replace ω by γI−1 in Eq. (6.21), to obtain the equation for F

γI−1 · (γ×∂F

∂γ
)= 0.
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It follows that
F = F(γI−1·γ). (6.23)

Now, inserting (6.22) and (6.23) into (6.21), one gets

4V ′(γI·γ)ωI·(γ × γI) − 2F ′(γI−1·γ)ω · (γ × γI−1) = 0. (6.24)

Comparing the structures of the two terms in the last equation and noting that γI · γ
and γI−1 · γ are independent functions for a tri-axial body (A �= B �= C), The two
derivatives V ′ and F ′ must be constants. Neglecting an insignificant constant in each
of V and F, we write

V = 1

2
λ(Aγ2

1 + Bγ2
2 + Cγ2

3), F = N1(γ
2
1/A + γ2

2/B + γ2
3/C). (6.25)

Again, inserting the last expressions into (6.24), we obtain

λγ · (ωI × γI) + N1γI−1 · (ω × γ) = 0.

Applying the identity (A.2) in AppendixA, we rewrite the last relation as

(λABC + N1)γI−1 · (ω × γ) = 0

and thus we obtain
N1 = −λABC.

This completes the determination of the integral as in (6.13). �

6.5 Exercises

1- In the classical problem of motion of a rigid body about a fixed point in the
constant uniform gravity field two equilibrium positions are possible. In the problem
of motion in approximate Newtonian field, show that in any equilibrium position one
of the generators of Ampère’s cone (Staude’s cone) must be vertical (passes through
the fixed point and the centre of attraction).

2- Noting that λ is positive in (6.8) for a centre of attraction, show that the vertical
generator of Staude’s cone in an equilibrium position must be one of the axes inad-
missible for Staude’s rotation in the uniform gravity field. [Compare the equations
of equilibrium to equations of Staude’s rotation and note that ω2 in Staude’s rotation
is replaced by −λ]

3- For a body fixed from its centre of mass in a uniform gravity field, any position
is a possible equilibrium position. Show that for a body fixed from its centre of
mass in the approximate field of a Newtonian centre there are only six equilibrium
positions and find them.
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4- For a body fixed from its centre ofmass, show that a uniform rotation is possible
only in two cases:

(a) The rotation about a principal axis with arbitrary angular velocity.
(b) The rotation with angular velocity ±√

λ about an arbitrary axis.

5- Show that all the axes of uniform rotation of the body in approximate field of a
Newtonian centre are generators in Ampère’s cone and that possible axes of Staude’s
rotation constitute a subset of possible axes of uniform rotation in the Newtonian
field.

6- Using the terminology of the present chapter, F is the exact resultant force
exerted on the body by the centre of attraction. Show that

(a) F = −μ
∫

(Rγ+r)
|Rγ+r|3 dm,

(b) The component of this force in the direction of γ is F·γ = − ∂V
∂R , V being the

exact potential (V = −μ
∫

dm
|Rγ+r| ).

(c) The resultant force F can be written in terms of the potential in the form

F = −∂V

∂R
γ + 1

R
γ × (γ × ∂V

∂γ
).

Note that F · L = 0, which agrees with the fact that the resultant attraction must be
a single force passing through the centre of attraction whatever be the position of the
body.

(d) The magnitude of the resultant force F is

|F| =
√
(
∂V

∂R
)2+ 1

R2
|γ × ∂V

∂γ
|2.

(e) The reaction of the fixed point on the body at any equilibrium position must
be vertical.

7- A rigid body is fixed from a point and its centre of mass lies on a principal plane
for that point, say, the xy-plane. The body is acted upon by the gravitational force due
to a distant Newtonian attraction. Show that the body can perform a plane pendulum-
like motion about a horizontal axis, described by the conditions p = q = γ3 = 0,
and determine the variables r, γ1, γ2 as functions of time.

8- Brun’s model problem is modified, so that each mass element of the body is
influenced by a force proportional to its mass and its distance from an arbitrary fixed
plane and in the direction perpendicular to that plane. Show that the potential is
equivalent to the general potential (6.6).

9- Investigate the stability of the uniform rotation of a body fixed from its centre
of mass O in the approximate Newtonian field of a far centre at O ′, determined in
Exercise4-a. Show that the rotation with angular speed r0 about the z-axis, which is
directed to pass through the centre of attraction and the fixed point of the body, is

(a) unstable when the z-axis is the middle principal axis of inertia of the body at
O,
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(b) stable for all values of r0,when C is the least principal moment of inertia, and
(c) when C is the largest principal moment of inertia, the rotation is unstable if

r0 <

√
3g

R

√
a + √

b

1 + √
ab

,

and stable if

r0 >

√
3g

R

√
a + √

b

1 + √
ab

,

where a = C−B
A , b = C−A

B , g is the acceleration of gravity at O and R = |−−→O ′O|.
[Beletsky [20]. See also [256], Sect. 18.4]
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