
Chapter 5
The Motion of a Heavy Gyrostat

Originally, the gyrostat, as the terminology was coined by Lord Kelvin, is a heavy
rigid body with a rotor or a fly-wheel spinning with a constant angular speed about
its axis of symmetry. The subject gained a great interest at the first two decades of
the twentieth century. Examples are the two books by Crabtree [59] (1909) and Gray
[133] (1918), devoted exclusively to describing gyroscopic phenomena, specially the
stabilizing effects of rotors, and the ways to make use of them in warfare of World
War I. Today, gyroscopic apparatuses are indispensable in cell phones, in so many
applications in terrestrial and cosmic navigation and in technology. Most useful is
the stabilizing effect of fast rotors on normally unstable motions and equilibria.

In this chapter, different types of mechanical systems having the same equations
of motion as the gyrostat are presented. General and conditional integrable cases
of motion are presented. In fact, these are generalizations of the relevant integrable
cases in the classical problem, and reduce to them when the gyrostatic momentum
vanishes.

At present, several particular solutions to the problem of motion of a gyrostat are
known, namely, 13 solutions. Some of them are generalizations of classical counter-
parts by adding a gyrostatic momentum. Other cases lose their meaning when the
gyrostatic moment vanishes.

5.1 Models of the Gyrostat

5.1.1 The Classical Model

Consider a system S, composed of two joint rigid bodies. The first, S0, which we
shall call the carrier (or the main) body, is fixed in the inertial space from its point
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O. The second body, the rotor S1, is an axially symmetric body fixed from its axis
of symmetry in the main body. Its centre of mass, O1, lies on its axis of symmetry.
Usually, such a symmetric body is called gyroscope. Because of the symmetry of the
rotor, its rotation does not change the distribution of mass in the system. Let I and
r0 be the inertia matrix and the position vector of the centre of mass of the system,
referred to the system of axes Oxyz fixed in the main body. Let also J be the inertia
matrix of the rotor with respect to a system of axes O1x1y1z1 fixed in it with z1
along its axis of symmetry. From symmetry, it is clear that O1x1y1z1 is a system of
principal axes of the rotor and hence we can write J = diag(J1, J1, J ).

Let the rotor be set and kept in motion about its axis with a constant angular
velocity �, by means of some device. Let r1 = −−→

O O1 and denote by r the position
vector of a mass element dm of the system with respect to O . The velocity of that
element is ω × r if it belongs to S0 and ω×r+ �e × r′ for elements of S1, where r′
is the position vector of the mass element of the rotor with respect to O1. The angular
momentum of the system can be written as

G =
∫

S0

r × (ω×r)dm +
∫

S1

r × (ω×r+�e × r′)dm

=
∫

S0

r × (ω×r)dm +
∫

S1

r × (�e × r′)dm

= ωI+
∫

S1

(r1 + r′)×(�e × r′)dm

= ωI + r1×(�e ×
∫

S1

r′dm) +
∫

S1

r′×(�e × r′)dm

= ωI + 0+�eJ

= ωI+�Je. (5.1)

Here we have used
∫

S1
r′dm = 0. The last expression will be written as

G= ωI+κ, (5.2)

where κ = �Je is the gyrostatic momentum, the angular momentum of the rotor
relative to the carrier body. It is directed along the axis of symmetry of the rotor.

Now we write down the equation of motion of the system. The mutual forces
between the main body and the rotor are internal forces in the system and do not
appear in this equation. One has

Ġ + ω × G = Mgγ×r0.

Since κ is kept constant in the body, κ̇ = 0, and the last equation reduces to

ω̇I + ω × (ωI + κ) = Mgγ×r0. (5.3)
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This is the final form of the dynamical equation of motion of the gyrostat. Together
with Poisson’s equation

γ̇ + ω × γ = 0, (5.4)

one obtains a closed system which we now write in the following scalar form of six
first-order differential equations:

A ṗ + (C − B)qr + κ3q − κ2r = Mg(z0γ2 − y0γ3),

Bq̇ + (A − C)pr + κ1r − κ3 p = Mg(x0γ3 − z0γ1),

Cṙ + (B − A)pq + κ2 p − κ1q = Mg(y0γ1 − x0γ2), (5.5)

γ̇1 + qγ3 − rγ2 = 0, γ̇2 + rγ1 − pγ3 = 0, γ̇3 + pγ2 − qγ1 = 0. (5.6)

This system admits the general integrals:

I1 ≡ Ap2 + Bq2 + Cr2 + Mg(x0γ1 + y0γ2 + z0γ3) = h,

I2 = γ2
1 + γ2

2 + γ2
3 = 1,

I3 = (Ap + κ1)γ1 + (Bq + κ2)γ2 + (Cr + κ3)γ3 = f. (5.7)

The first integral is usually termed Jacobi’s integral for the system, since it is different
from the total energy of the system, which contains terms linear in the components
of ω.

When the angular speed � of the rotor vanishes, gyrostatic momentum κ = 0,
and equations (5.5) and the integrals (5.7) reduce to their counterparts of the classical
problem.

5.1.2 The Free Rotor Model

In the previous model, the angular velocity of the rotor was kept constant relative to
the carrier body. In an interesting alternative, due to Levi-Civita [261], the rotor is
left to move freely around its axis of symmetry fixed in the body, so that the system
will have an additional rotational degree of freedom. Let χ be the angle of rotation of
the rotor relative to the body. Using the same symbols as in the previous subsection,
the kinetic energy of the system is expressed as the sum of two parts

T = 1

2

∫
S0

(ω×r)2dm + 1

2

∫
S1

(ω×r+χ̇e × r′)2dm

= 1

2

∫
S0

(ω×r)2dm + χ̇

∫
S1

(ω×r) · (e × r′)dm + 1

2
χ̇2

∫
S1

(e × r′)2dm
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= 1

2
ωI·ω + χ̇

∫
S1

(r1+r′)×(e × r′)dm·ω + 1

2
χ̇2

∫
S1

r′ × (e × r′)dm·e.

Noting that

r1×(e ×
∫

S1

r′dm) = 0,
∫

S1

r′ × (e × r′)dm = eJ =Je,

we obtain

T = 1

2
ωI·ω + J χ̇e·ω+1

2
J χ̇2

and hence the Lagrangian of the system may be written as

L = 1

2
ωI·ω + J χ̇e·ω+1

2
J χ̇2 − a·γ (5.8)

where a = Mgr0. Obviously, the angle χ is a cyclic variable. The corresponding
cyclic integral is

∂L

∂χ̇
= J (e·ω + χ̇) = κ, (5.9)

κ is an integration constant. Note that this integral means that the component of the
total angular velocity of the rotor along its axis of symmetry remains constant during
motion, i.e.

e·ω + χ̇ = κ

J
.

Now, ignoring the cyclic coordinate, we obtain the Routhian

R = L − κχ̇

= 1

2
ωI·ω − 1

2
J (ω·e)2+κe·ω − a·γ − κ2

2J

= 1

2
ωĨ · ω + κe·ω − a·γ (5.10)

where
Ĩi j=Ii j − Jei e j (5.11)

and a constant κ2

2J has been ignored. In the way described in Chap. 3, the Euler
dynamical equation derived from this Routhian are

ω̇Ĩ + ω × (ωĨ + κ) = γ × a, (5.12)

where κ = κe.
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This equation has the same structure as (5.3), but the matrix Ĩ is not simply the
matrix of inertia of the system, but depends on the axial moment of inertia of the rotor
and on the orientation of its axis relative to the main body. The meaning of the vector
κ, the gyrostatic momentum is different in the two equations. Moreover, it should
be noted that, in view of (5.11), the matrix Ĩ may not satisfy conditions, normal
to ordinary inertia matrix of the simple body, like positivity of diagonal elements,
triangle inequalities, etc.

5.1.3 Joukovsky’s Model

Generalizing previous particular cases considered by Stokes and Neumann,
Joukovsky established that “a fluid mass with an initial velocity in a multiply-
connected cavity in the rigid body performs an action that is similar to the action of
some rotor attached to the rigid body” [163] (see also [41, 286]).

The gyrostatic moment can also be due to internal cyclic degrees of freedom such
as circulation of fluid in tubes inside the body or to forced stationary motions as
motors, whose axes are fixed in the body.

As will be seen in a later chapter, terms in the equations of motion similar to
gyrostatic momentum appear in problems of motion of a perforated rigid body (a
body bounded by a multi-connected surface) in a liquid, as a result of the presence
of circulations through perforations.

5.2 Equations of Motion in Hamiltonian Form

As in the classical problem (Chap. 3), one may use some generalized coordinates
like Euler’s angles, to construct theHamiltonian function and the canonical equations
of motion, involving those coordinates and momenta conjugate to them. This form
of the equations of motion is rarely used in applications and is left as an exercise.
Non-canonical equations

M = ∂R

∂ω
= ωI+κ, (5.13)

so that
ω= (M−κ)I−1. (5.14)

Also, the Hamiltonian corresponding to the same Routhian as a function in M and
γ is

H = 1

2
ωI·ω + a·γ
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= 1

2
(M−κ)I−1 · (M−κ) + a·γ

= 1

2
MI−1 · M−κI−1 · M + a·γ, (5.15)

so that the equations of motion can be written as

Ṁ = M× ∂H

∂M
+ γ × ∂H

∂γ
,

γ̇ = γ× ∂H

∂M
. (5.16)

or, in the expanded form,

Ṁ = M × (M − ˇ)I−1 + γ × a,

γ̇ = γ×(M−κ)I−1. (5.17)

5.3 Tables of Integrable Cases

Equations (5.5 and 5.6) have three known general and one conditional integrable
cases, which generalize the four cases of a simple heavy body. Those are listed in
the following Tables 5.1 and 5.2.

Table 5.1 Unconditional cases

Author Conditions

1 Joukovsky 1885 [163] and Volterra 1899 [366]

Euler κ1 = κ2 = κ3 = 0. gr0 = 0.
I4 = (Ap + κ1)

2 + (Bq + κ2)
2 + (Cr + κ3)

2.

2 Axially symmetric case B = A,

(Generalization of Lagrange’s top) x0 = y0 =
0,

I4 = Cr + κ3. κ1 = κ2 =
0.

3 Yehia 1986 [380], [383]∗ A = B =
2C,

Kowalevski 1889 (κ = 0 ) [238] z0 = 0,

I4 = (p2 − q2 − a1γ1 + a2γ2)2 + (2pq − a1γ2 − a2γ1)2

+2κ (r − κ) (p2 + q2) − 4κγ3(a1 p + a2q),

κ1 = κ2 =
0.

where κ = κ3/C, a1 = Mgx0/C, a2 = Mgy0/C
∗The case (3) was rediscovered in 1987 by Komarov [225] and Gavrilov [109]. In the monograph
[41], it is attributed to Yehia, Komarov and Gavrilov, but in the Russian literature it is mostly called
Kowalevski–Yehia’s case
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Table 5.2 Conditional cases f = 0

1 Sretensky (1963) [341]. A = B = 4C, z0 = 0,

Goryachev–Chaplygin
1900–1901 (κ = 0).

κ1 = κ2 = 0,κ3 = Cκ.

I4 = (r − κ)(p2 + q2) − γ3(a1 p + a2q).

where κ = κ3/C, a1 = Mgx0/C, a2 = Mgy0/C

5.4 The Case of Joukovsky and Volterra

The first integrable case, which generalizes Euler’s case, i.e. a balanced gyrostat or
a gyrostat under no external torques, was noted in 1885 by Joukovsky in his study of
themotion by inertia of a body containing liquid-filled cavities [163]. He also devised
a geometric-mechanical interpretation of the motion in that case. Independently, in
a trial to explain the displacement of Earth’s poles by adding a rotor to the model of
rigid Earth, Volterra gave in 1899 the full solution of the equations of motion in terms
of Weierstrass’ elliptic functions σi of time [366]. Those functions are complex in
general. An alternative but real solution in terms of Jacobi’s elliptic functions was
constructed by Wittenburg [369]. Volterra’s solution and stability analysis of the
permanent rotations were reconsidered in [18].

5.5 The Case of Axially Symmetric Gyrostat

The axi-symmetric gyrostat is a trivial generalization of Lagrange’s top and the
solution of the equations of motion for it is practically the same as that of Lagrange’s
case. In a later Chap. 12, we will show a much richer generalization of this case.

We now prove the following

Theorem 5.1 Any integrable case of an axi-symmetric body in a potential field, in
which both φ and ψ are cyclic variables, can be generalized by the addition of a
rotor aligned with the axis of symmetry.

Theorem 5.2 Consider the motion of an axi-symmetric gyrostat, with a gyrostatic
momentum κ aligned along the axis of symmetry of the carrier body. The motion
of the axis of the gyrostat is identical with the motion of a simple body with the
same moments of inertia of the carrier body and moving in the same potential. The
gyrostatic momentum is compensated by an additional angular speed κ/C given to
the body about its axis, C being the axial moment of inertia of the body.

Conversely, the motion of the axis of a simple axi-symmetric body, which given
an additional angular speed � around that axis is identical to the motion the axis of
a similar body, which carries a rotor with gyrostatic momentum κ = C�.
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Those two theorems can be proved by writing the Lagrangian of the simple body
in a field with potential V (θ). Let the moments of inertia of the body be C about its
z-axis of symmetry and A about any axis orthogonal to it. For such body, we have
from (3.44)

L = 1

2
[A(p2 + q2) + Cr2] − V (θ)

= 1

2
[A(θ̇2 + sin2 θψ̇2) + C(ψ̇ cos θ + ϕ̇2) − V (θ). (5.18)

We now study themotion in another reference frame, which is rotating abut the z-axis
with a constant angular rate �. This can be achieved by a substitution

ϕ = ϕ′ + �t,

which preserves the holonomicity of the system. The Lagrangian transforms to

L = 1

2
{A(θ̇2 + sin2 θψ̇2) + C[ψ̇ cos θ + (ϕ̇′ + �)2)]} − V (θ)

= 1

2
{A(θ̇2 + sin2 θψ̇2) + C(ψ̇ cos θ + ϕ̇′)2}

+C�(ψ̇ cos θ + ϕ̇′) − V (θ) + 1

2
C�2.

Ignoring the last constant term, this can be regarded as describing the motion of the
body referred to fixed axes in it, but with the coordinate ϕ′ instead of ϕ and with the
same potential V and additional gyroscopic term C�(ψ̇ cos θ + ϕ̇′) = C�r ′. The
last term is the contribution of a gyrostatic momentum κ directed along the z-axis

κ= (0, 0,C�).

This proves Theorem 5.1 and the first part of Theorem 5.2. The second part of
Theorem 5.2 follows naturally.

Those results may be used to express the quadrature resulting from separation of
variables in the case 2 of Table5.1, i.e. the gyrostatic generalization of Lagrange’s
case from the quadrature (4.42) by replacing r0 by r0 + κ3

C , so that it becomes

t =
∫

dγ3√
(1 − γ2

3)(E − aγ3) − 1
A2 [ f − (Cr0 + κ3)γ3]2

.

5.6 Yehia’s Case

The history of the third case in Table 5.1 has experienced some confusion andmisun-
derstandings. It was direct and easy, guided by the same principle of conservation of
angular momentum, to obtain the integrable case of Joukovsky, as a generalization of
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Euler’s case in the classical problem, by adding a constant gyrostaticmomentum. The
generalization of Lagrange’s case of a symmetric bodywas even easier. Nevertheless,
the search of a gyrostatic generalization of Kowalevski’s case was so futile, that it
was generally believed that, unlike Euler’s and Lagrange’s cases, Kowalevski’s case
does not admit generalization by the addition of a gyrostatic momentum. This trend
may have been augmented by three contradicting results published in the mid-sixties
by Keis:

(1) In the first of those works [167] (1963), Keis claimed having obtained general-
izations to the gyrostat problem for four known integrable and particular cases
of the classical problem, namely, Lagrange’s, Hess’, Bobylev–Steklov’s and
Delone’s cases. The first case, the generalization of Lagrange’s top, is trivially
simple and the next two cases will be commented on in the relevant section on
particular solutions. The last case (Delone’s) is a special case of Kowalevski’s,
when Kowalevski’s integral takes a zero value and splits into two invariant rela-
tions (See Sect. 4.3). Keis added to the body a constant gyrostatic momentum,
aligned with the centre of mass in the equatorial plane of the inertia spheroid
and claimed that the resulting system admits two invariant relations generalizing
those of Delone’s case. This claim was cited as being true in the review book
[256].

(2) In the second paper [168] (1964), may be after realizing the flaw in his 1963
paper (cited in [168]), Keis used the method of Husson [154, 155] to give
another theorem asserting that the equations of motion of the heavy gyrostat
with Kowalevski’s configuration A = B = 2C admit an algebraic complemen-
tary integral only when the gyrostatic momentum vanishes (κ1 = κ2 = κ3 = 0).
He then formulated it as1 “If x2

0 + y20 + z20 �= 0 and κ2
1 + κ2

2 + κ2
3 �= 0 a fourth

algebraic integral is possible only when A = B, x0 = y0 = 0, κ1 = κ2 = 0”,
i.e. only in the case of Lagrange when both the centre of mass and the gyrostatic
momentum are directed along the axis of dynamical symmetry of the body. This
meant that Kowalevski’s case has no extension to the gyrostat problem.

(3) In the third paper [170] (1965), Keis used Golubev’s method [113] (In fact,
Poincaré’s method of small parameter) to establish a new result. The search for
all cases, when all the solutions of the equations of motion of a heavy gyrostat
are single-valued, reduces to investigation of the solution in three cases:

(a) The torque-free gyrostat, or gyrostat fixed from its centre of mass, (x0 =
y0 = z0 = 0).

(b) The axi-symmetric gyrostat (A = B, x0 = y0 = 0, κ1 = κ2 = 0).
(c) The “Kowalevski gyrostat” (A = B = 2C, y0 = z0 = 0,κ1 = κ2 = 0).

In this paper, the presence of the third component of the gyrostatic momentum
does not give rise to multi-valued solutions in any of the three cases, up to
the second degree of a small parameter. However, the conditions for case c
are considered as necessary. The only way to ensure integrability is to find the

1 Here we use the notation adopted in the present book.
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complementary fourth integral of motion, a step which was not considered by
Keis. Strangely, in the third paper the author does not refer to any of the other
two papers, each of which announces a conflicting result.

Probably, influenced by the result in the second paper of Keis, published in the
most influential Russian mechanics journal PMM, Kharlamov and coworkers con-
centrated on the search for particular solutions of the equations of motion. In this
respect, they have succeeded in constructing the most part of the cases of that type
known up to date. To this end, they used equations of motion in the form of Euler–
Poisson and various modified forms. Kharlamov [198] obtained a particular solution
of the heavy gyrostat with the Kowalevski configuration A = B = 2C, y0 = z0 = 0,
involving a gyrostatic moment along the axis of dynamical symmetry of the body
under certain restrictions on the initial motion. His case characterized by the exis-
tence of an invariant relation quadratic in the angular velocities fits as a special case
of the third general integrable case in Table 5.1.

The full generalization of Kowalevski’s case by the addition of a rotor to the body
came out, in our work [380], in almost a century (exactly 98 years) after the publica-
tion of Kowalevski’s case (See also [383]). Actually, it was not found as a solution of
Euler–Poisson equations or any of their modifications. It was one of the first results
obtained by the completely new method devised by the author of the present book
to construct integrable 2D conservative mechanical systems, which admit a comple-
mentary integral polynomial in the velocities. After constructing a several-parameter
integrable time-irreversible system of the above type, the parameters of the system
are given certain values, such that the metric of the system could be identified with
that of the Routhian reduction of the rigid body dynamics and then potential and
gyroscopic forces could be identified and only then the appropriate Euler–Poisson
equations are verified and the presentation of the new case in [380] was made in the
last context.2 The details of the method will not be presented here for space consid-
erations, but the reader can get some acquaintance with it from the early papers [381,
419]. This method has proved fruitful and still gives new integrable cases of much
more complicated problems in particle and rigid body dynamics (see, e.g. [411, 413,
422, 423]). All cases pertaining to rigid body dynamics obtained in this way will
be described later in this book. They form the most part of the list of conditional
integrable cases in Chap. 13.

The question of integrability of Eqs. (5.5 and 5.6) did not attract as much interest
as the problem of a simple heavy body. Only one result on this aspect is known.
It generalizes the above-mentioned theorem of Husson to the present problem of
motion of a gyrostat.

Theorem 5.3 (Gavrilov [110, 111]) The equations of motion of heavy gyrostat (5.5
and 5.6) possess an additional algebraic first integral only in the three cases of
Joukowsky, Lagrange and Yehia.

2 This result was announced at the International Conference on Mechanics held in Moscow Uni-
versity, January 1986.
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5.6.1 Separation of Variables

For greater clearness we first write down the equations and integrals of motion in the
present case, after adding a simplifying condition y0 = 0, which can be attained by
a coordinate rotation. The equations have the form

2 ṗ − q(r − κ) = 0,

2q̇ + p(r − κ) = aγ3,

ṙ + aγ2 = 0,

γ̇1 + qγ3 − rγ2 = 0, γ̇2 + rγ1 − pγ3 = 0, γ̇3 + pγ2 − qγ1 = 0, (5.19)

in which a = Mgx0
C ,κ = κ3

C . The three general integrals of motion may be written as

I1 = 2(p2 + q2) + r2 + 2aγ3 = 2h,

I2 = 2(pγ1 + qγ2) + (r + κ)γ3 = f,

I3 = γ2
1 + γ2

2 + γ2
3 = 1,

I4 = (p2 − q2 − a1γ1 + a2γ2)
2 + (2pq − a1γ2 − a2γ1)

2

+2κ (r − κ) (p2 + q2) − 4κγ3(a1 p + a2q)

= K (5.20)

and here we retained the same names for h and f after dividing by C and K is an
arbitrary constant.

Unlike the case of Kowalevski’s top (with κ = 0), the explicit solution of the
equations of motion in terms of time in Yehia’s case is still unsuccessful. Separation
coordinates analogous toKowalevski’s s1, s2 (Chap. 4 Sect. 4.3) were not found, even
on the zero level of the areas integral. However, there is an indirect indication about
the class of functions needed to describe this solution. An idea of special interest
was presented in [145], which relates Kowalevski’s case to a special version ( f = 0)
of an integrable case of the problem of motion of a rigid body in a liquid, known as
Clebsch’s first case (Case 2 of Table 10.1. Chap. 10) A bi-rational complex trans-
formation was found relating the two sets of variables describing the two integrable
problems, so that explicit solution for one of the cases can be obtained from that of
the other. In the meantime, Clebsch’s case is known to be solvable in terms of Theta
functions with two arguments.

As was established by Gavrilov [110]: “The gyrostat of Yehia can be realized in
a similar way as (the full f �= 0) Clebsch’s geodesic motion on E3. This leads, in
particular, to formulas for its explicit solution in terms of genus-two hyper-elliptic
Theta functions [233]”. Of course, this construction is not practical as a method of
solution and there must be another direct way to obtain the solution. This way has
not been found yet.

Komarov and Tsiganov [229] (See also [228]) considered the trajectory iso-
morphism of what they call “the Kowalevski gyrostat” and the Clebsch problem.
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Although appeared fifteen years later, the last works do not contain any reference to
Gavrilov’s work.

In a recent work [326], Ryabov shows that the separated equations of the Yehia
(Kowalevski–Yehia) case, on its zero level of area’s integral, can be formally written
in the Abel–Jacobi form analogous to (4.58) with �(s) as a polynomial of degree
five in the variable s. However, the relation of the original variables of the problem
to separated ones are not obtained, so that the problem of separation of variables
cannot be considered complete yet, even on the level f = 0.

An earlier work relying on the Lax pair representation of the equations of motion
constructs separation variables that are simultaneously suitable, on the zero level
of the areas integral, for what the author names as gyrostatic generalizations of
Kowalevski’s and Goryachev–Chaplygin’s cases [249]. It is claimed there that the
given separation is “much simpler than the Kowalevski separation”. However, the
impact of that situation on the solution of the equations ofmotionwas not considered.

Further (unpublished) results are announced by Fedorov et al. concerning the
case of a gyrostat in two constant uniform fields, which includes the present case as
a special version. This will be commented later in Chap. 14 Sect. 14.2.1.1.

The gyrostatic generalizations of Appelrot’s classes of motions are discussed in
Appendix D.

5.7 The Conditional Case of Sretensky

In [341], Sretensky found the modification of the complementary integral in the gen-
eralization of Goryachev–Chaplygin’s case. He also generalized the procedure due
to Chaplygin for explicit solution (See Chap. 4 Sect. 4.4) by changing the definitions
of the three quantities r, U and V in (4.70)–(4.72) to be

r = u − v − κ,

U = u(u − κ)2 − 2Eu − 4G,

V = v(v + κ)2 − 2Ev + 4G. (5.21)

The ultra-elliptic quadratures remain the same as in (4.77). The investigation of the
critical sets and bifurcation diagrams in Sretensky’s case is performed in [172, 174]
(See also [183]). The results generalize relevant ones for Goryachev–Chaplygin’s
case, but they are much more complicated in view of the presence of three significant
parameters. For more detail about Sretensky’s case see Appendix E.

5.8 Some Applications of the Gyrostat Motion

We have seen that the presence of the gyrostatic momentum leads to appearance of
a gyroscopic moment κ × ω in the equations of motion.
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5.9 Exercises

1- Show that the Lagrangian

L = 1

2
ωI·ω + κ · ω − V (γ),

describes the motion of a gyrostat with gyrostatic momentum κ about a fixed point,
while acted upon by axially symmetric forces with potential V (γ) (γ is the unit
vector along the axis of symmetry of the forces). Deduce the equations of motion in
the form

ω̇I + ω × (ωI+κ) = γ × ∂V

∂γ
,

γ̇ + ω × γ = 0.

2- In the previous problem, show that all possible axes of stationary motions lie
on the cone, with vertex at the origin and generators passing through the points of
the spherical curve

[γ · (γI×∂V

∂γ
)]2 − [κ·(γ × γI)][κ · (γ × ∂V

∂γ
)] = 0,

γ2 = 1,

and the angular velocity of the gyrostat about the axis in the direction of γ is given
by any of the expressions

ω = γ · (γI × ∂V
∂γ

)

κ·(γ × γI)
= κ·(γ × ∂V

∂γ
)

γ·(γI× ∂V
∂γ

)
.

3-An axially symmetric gyrostat,moving about a fixed point under its ownweight,
has its centre of mass on its axis of symmetry and the gyrostatic momentum is
collinear with that axis. Show that the upper equilibrium position of the gyrostat,
which is unstable in the absence of gyrostatic moment, can always be stabilized and
find the minimum angular velocity necessary for that effect.

4- Write down the Hamiltonian and Hamiltonian equations of motion of a heavy
gyrostat moving about a fixed point, using Euler’s angles as generalized coordinates.

5- A system composed of a main body S0 fixed from one point O , while carrying
another body S1 whose axis O ′ P is fixed in S0 by means of a smooth cylindrical
hinge and freely rotates about this axis. Let O O ′ = r1 and e is the unit vector in the
direction of O ′ P . Show that the kinetic energy of the system is

T = 1

2
ωI·ω + χ̇eJ·ω + 1

2
χ̇2eJ · e+M1χ̇ω·[r1×(e × r′

0)],
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where I is the inertia matrix of the system at the fixed point, J is the inertia matrix
of the second body at O ′, M1 is the mass of S1 and r′

0 is the position vector of its
centre of mass.
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