
Chapter 3
The Classical Problem: The Motion of a
Heavy Rigid Body About a Fixed Point

In the present chapter, we present detailed analysis of the classical problem ofmotion
of a rigid body about a fixed point under the action of its own weight. This problem
has a long history that began with the work of Euler and continued to the present
day. Various powerful methods belonging to eminent specialists in mechanics and
mathematics were applied to this problem without stopping, sometimes successfully
and sometimes with less success. The list of basic contributors to this problem from
our perspective, the construction of integrable cases, will be clearly presented as we
proceed through this preliminary chapter and the following two chapters, after we
make clear the meanings of general integrable, conditional integrable and particular
solvable cases of the classical problem. This chapter is mainly concerned with basic
concepts and various forms of the equations of motion, each of which would be more
suited for use in certain investigations of the classical problem.

3.1 Equations of Motion

In this section, we derive the equation of rotational motion of the rigid body about a
fixedpoint, under the actionof arbitrary forces,which are not necessarily conservative
or even having a potential. For such general setting, the Lagrangian approach is not
a suitable choice and it is preferable to use ordinary vector mechanics. Denote by
r the position vector of a mass element dm and by v = dr

dt its velocity. The angular
momentum of the body, denoted here by G, is the sum of moments of momenta of
the elements about the origin O, the fixed point of the body,

G =
∫

r × (vdm), (3.1)
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where the integral is taken over the whole mass of the body. Differentiating the last
relation, we get

dG
dt

=
∫

v × vdm +
∫

r × dv
dt

dm. (3.2)

The first integral vanishes, and from the equation of motion of the mass element dm,
we have

dm
dv
dt

= dF + dF′,

in which dF, dF′ are, respectively, the resultant external and internal forces exerted
on that element. Inserting this into (3.2), we write

dG
dt

=
∫

r × (dF + dF′). (3.3)

Since the internal forces appear only in equal and opposite pairs, their overallmoment
vanishes, i.e.

∫
r × dF′ = 0. Thus, we finally have

dG
dt

= L, (3.4)

where L = ∫
r × dF is the resultant moment of all the external forces acting on the

body about the fixed point. This is the equation of rotational motion of the rigid
body about a fixed point, under the action of arbitrary forces with moment L. It is
curious that this equation is similar to the equation of motion of a particle dP

dt = F,

but replacing the Linear momentum P and the force F by the angular momentum
and the moment of forces about the fixed point.

3.2 The Heavy Rigid Body

Equation (3.4) is quite general. It is valid for an arbitrary rigid body subject to arbitrary
system of forces. In this chapter, we are concerned with the simplest case of motion
of a body subject only to its own weight. For such a body, let g be the intensity of
the gravity field directed vertically downwards. We have

L=
∫

r × (gdm)

=
∫

rdm×g.

Recalling the definition of the centre of gravity (the centre of mass) of the body in
Chap.1, we write the last relation in the form
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L = Mr0 × g. (3.5)

Without loss of generality, for most applications, one can take the Z -axis in the
vertical direction upwards, so that the gravity field becomes

g = −gγ. (3.6)

Thus, in the case of a heavy rigid body, the equation of motion takes the form

dG
dt

= −Mgr0 × γ. (3.7)

3.3 The Angular Momentum of a Rigid Body

The mass element at the point r has velocity

v = ω×r. (3.8)

Recalling the definition (3.1), we write

G =
∫

r × (ω×r)dm

=
∫

[r2ω−(ω · r)r]dm.

The i-th component is

Gi = ωi

∫
r2dm −

∫ 3∑
j=1

ω j r j ri dm

=
3∑
j=1

ω j

∫
[r2δi j − rir j ]dm

=
3∑
j=1

ω j Ii j ,

where I = (Ii j )3i, j=1 is the inertia matrix in the system of axes at the fixed point O.

Making use of the symmetry of the inertia matrix, we write the last expressions in
the form

G = ωI. (3.9)
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Remark 15 In most textbooks, the last relation is usually written as

G′ = Iω,

where G′ is a column vector. We use the notation (3.9) to express G as a normal
row vector. This is especially convenient in applying rules of vector algebra to that
vector.

The relation (3.9) can be written in the expanded form as

G = (p, q, r)

⎛
⎝ I11 I12 I13

I12 I22 I23
I13 I23 I33

⎞
⎠

= (I11 p + I12q + I13r, I12 p + I22q + I23r, I13 p + I23q + I33r). (3.10)

In the inertial system of axes at O , the bodymoves and its orientation changeswith
time. Equation (3.7) then involves 12 variable quantities: six moments and products
of inertia, three coordinates of the mass centre and three components of the angular
velocity. This makes the equations of motion quite complicated and impractical to
use.

The system of axes fixed in the body with origin at the fixed point O enjoys
the advantage that the inertia matrix is constant and also the position vector of the
centre of mass. This makes it plausible to use a coordinate system fixed in the body
to express Eq. (3.7) in it. A question arises, how to express that equation which is
derived in the inertial system of axes in the body system? The answer will be given
soon.

3.4 Kinetic Energy of a Moving Body

Summing the kinetic energy of mass elements and making use of the formulas of the
last subsection, we get

T =
∫

1

2
v2dm

= 1

2

∫
v · (ω×r)dm

= 1

2
ω ·

∫
[r × v]dm

≡ 1

2
ωI ·ω. (3.11)

In expanded form, this means
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T = 1

2
(I11 p

2 + I22q
2 + I33r

2 + 2I12 pq + 2I23qr + 2I13 pr). (3.12)

3.5 Equations of Motion in the Moving Coordinate System

Let us now write Eq. (3.7) in the body system. It takes the form, called Euler’s
equation,

Ġ + ω × G = Mgγ × r0. (3.13)

In addition to the vector ω, this equation involves the vertical unit vector γ, which
has variable components in the body system Oxyz. Being constant in space, the
vector γ satisfies dγ

dt = 0 in the inertial frame. In the body system, this is equivalent
to

γ̇ + ω × γ = 0, (3.14)

which bears the name of Poisson’s equation.
The pair of vector Eqs. (3.13) and (3.14), known as the Euler–Poisson equations,

constitute a closed system of six scalar first-order differential equations in six vari-
ables, which can be chosen as either ω,γ or G,γ.

3.5.1 The Use of the Variables ω,γ. Special Axes Related to
the Inertia Matrix

In that case, using (3.9), we write the Euler–Poisson equation as

ω̇I + ω × ωI = Mgγ × r0, γ̇ + ω × γ = 0, (3.15)

which is the most commonly used form of those equations. For arbitrary choice of
the body axes, they have the expanded form

I11 ṗ + I12q̇ + I13ṙ + (I33 − I22)qr + I23(q
2 − r2) + p (I13q − I12r) = Mg(z0γ2 − y0γ3),

I12 ṗ + I22q̇ + I23ṙ + (I11 − I33) pr + I13
(
r2 − p2

)
+ q (I12r − I23 p) = Mg(x0γ3 − z0γ1),

I13 ṗ + I23q̇ + I33ṙ + (I22 − I11)pq + I12
(
p2 − q2

)
+ r (I23 p − I13q) = Mg(y0γ1 − x0γ2),

(3.16)

γ̇1 + qγ3 − rγ2 = 0, γ̇2 + rγ1 − pγ3 = 0, γ̇3 + pγ2 − qγ1 = 0. (3.17)

In this form of equations, the inertiamatrix has six elements. The system is not solved
for the derivatives, a situation that is not in favour of a process of solution.
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3.6 Integrals of Motion

Equations of motion (3.13), (3.14) or in expanded form (3.16), (3.17) are essentially
nonlinear. For their solution, in the sense of reduction to quadratures, the application
of Jacobi’s theorem about the last integrating multiplier (See, e.g. [305]) requires the
knowledge of four integrals of motion.

The first step is to see how much general integrals the above system admits in its
most general form.

3.6.1 The Energy Integral

The rigid body is assumed to be smoothly fixed at O and moving in the uniform field
of gravity, whose potential is

V = Mgr0 · γ. (3.18)

Regarding expressions (3.11), (3.12) and (3.18), one can immediately write the
energy integral as

I1 ≡ T + V

≡ 1

2
ω · G + Mgr0 · γ

≡ 1

2
ωI ·ω + Mgr0 · γ = h, (3.19)

h being the arbitrary constant of conserved total energy of themotion. In the expanded
form, we can write

I1 ≡ 1

2
(I11 p

2 + I22q
2 + I33r

2 + 2I12 pq + 2I23qr + 2I13 pr)

+Mg(x0γ1 + y0γ2 + z0γ3)

= h. (3.20)

3.6.2 The Area’s Integral

Now we rewrite the equation of rotational motion (3.7)

dG
dt

= −Mgr0 × γ,

and note that on multiplying scalarly by the vector γ on both sides, we get
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γ · dG
dt

= 0,

which may be now written as
d

dt
(G · γ) = 0,

so that we obtain the second general integral of motion

I2 ≡ G ·γ = f, (3.21)

f being an arbitrary parameter. In the moving axes, it has the form

I2 ≡ ωI · γ = f. (3.22)

In a general body system, it may be written as

I2 = (I11 p + I12q + I13r)γ1 + (I12 p + I22q + I23r)γ2 + (I13 p + I23q + I33r)γ3 = f.

The integral of motion (3.21) or (3.22) is linear in the components of the angular
velocity. In accordancewith the tradition prevailing in celestial mechanics, it is called
the areas integral.

3.6.3 The Geometric Integral

The vector γ is defined as the unit vector directed vertically upwards. From this
definition, it directly follows that its square is a constant of motion, with its constant
value normalized to 1:

I3 ≡ γ2 ≡ γ2
1 + γ2

2 + γ2
3 = 1. (3.23)

3.6.4 Exercise

Use Euler–Poisson’s equations of motion in the vector form (3.15) to directly obtain
the three general integrals of motion.

3.7 Special Axes Associated with the Inertia Matrix

Equation (3.16) can be somewhat simplified, by a suitable choice of the body axes.
For example, we can take the z-axis as the one joining the fixed point with the centre
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of mass, so that r0 can be written as

r0 = (0, 0, z0). (3.24)

Moreover, we still have the freedom to rotate the x, y-axes in their plane to a position
in which

I12 = 0. (3.25)

We shall call the final set of axes the special axes associated to the inertia matrix.
Those axes are most convenient in describing some particular solutions of the clas-
sical problem and other problems in rigid body dynamics, such as the regular pre-
cessions. This will be made clear later on.

The Euler equations now take the form

I11 ṗ + I13ṙ + (I33 − I22)qr + I23(q
2 − r2) + I13 pq = Mgz0γ2,

I22q̇ + I23ṙ + (I11 − I33) pr + I13
(
r2 − p2

) − I23 pq = −Mgz0γ1,

I13 ṗ + I23q̇ + I33ṙ + (I22 − I11)pq + r (I23 p − I13q) = 0, (3.26)

while Poisson’s equations still have the form (3.17), i.e.

γ̇1 + qγ3 − rγ2 = 0, γ̇2 + rγ1 − pγ3 = 0, γ̇3 + pγ2 − qγ1 = 0.

The general integrals of motion can be written in the given coordinate system in the
form

I1 ≡ 1

2
(I11 p

2 + I22q
2 + I33r

2 + 2I23qr + 2I13 pr)

+Mg(x0γ1 + y0γ2 + z0γ3)

= h,

I2 ≡ (I11 p + I13r)γ1 + (I22q + I23r)γ2 + (I13 p + I23q + I33r)γ3 = f,

I3 ≡ γ2
1 + γ2

2 + γ2
3 = 1. (3.27)

3.8 The Use of Principal Axes of Inertia of the Body

In the special case, when the body axes are chosen to be the principal axes of the
body at O, we have

I = diag(A, B,C),G = (Ap, Bq,Cr), r0 = (x0, y0, z0). (3.28)

The equations of motion take the form
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A ṗ + (C − B)qr = Mg(z0γ2 − y0γ3),

Bq̇ + (A − C) pr = Mg(x0γ3 − z0γ1),

Cṙ + (B − A)pq = Mg(y0γ1 − x0γ2),

γ̇1 + qγ3 − rγ2 = 0, γ̇2 + rγ1 − pγ3 = 0, γ̇3 + pγ2 − qγ1 = 0, (3.29)

and the integrals of motion become

I1 ≡ 1

2
(Ap2 + Bq2 + Cr2) + Mg(x0γ1 + y0γ2 + z0γ3) = h,

I2 ≡ Apγ1 + Bqγ2 + Crγ3 = f,

I3 ≡ γ2
1 + γ2

2 + γ2
3 = 1. (3.30)

The equations of motion acquire in (3.29) their simplest and most symmetric
form. Themost favoured form is in scientific and technical literature. Those equations
involve six parameters: three principalmoments of inertia and three quantities formed
by multiplying three coordinates of the centre of mass by the body weight. Unlike
Eq. (3.16), Eq. (3.29) is readily solved in the derivatives ṗ, q̇, ṙ , which is quite an
advantage.

In the sequel, we shall mostly adhere to this form of the equations of motion. Only
in exceptional occasions, we find other forms more appropriate or easier to use.

3.9 Determination of Euler’s Angles

Solving the system of six equations of motion (3.29), we determine the vectors ω(t)
and γ(t)as functions of the time t and only five arbitrary constants of integration,
since the initial values of γ satisfy the geometric integral without arbitrary constant.
This determines the Eulerian angles of nutation and proper rotation θ and ϕ as

θ = cos−1 γ3,ϕ = tan−1 γ1

γ2
. (3.31)

To complete the solution of the dynamical problem, i.e. to determine the orientation
of the body in space, we should also determine the precession angle ψ. To this end,
we use (2.39) of Chap.2 to write

ψ̇= pγ1 + qγ2

γ2
1 + γ2

2

, (3.32)

so that we finally obtain
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ψ = ψ0 +
∫ t

0

pγ1 + qγ2

γ2
1 + γ2

2

dt, (3.33)

ψ0 is the sixth integration constant of the solution. This completes the solution of the
problem of motion about a fixed point.

3.10 The Movable and Immovable Hodographs

Applied to the angular velocity vector the relation (2.37) gives

dω

dt
= ω̇, (3.34)

i.e. the angular velocity has the same rate of change in space as in the body. This
formula, noted by Poisson,means that the infinitesimal change in the angular velocity
at any moment of time is the same in both space and body reference frames. This has
a very useful interpretation. Let the spatial curves �, named as the movable angular
velocity hodograph, and �0, the immovable angular velocity hodograph, be the loci
of the angular velocity vector in the body and space system of axes, respectively. The
two curves have the same tangent at every moment of time. The motion of the body
in space can be represented as rolling the movable hodograph � without slipping on
the immovable hodograph �0 (fixed in space). The hodograph motion was studied
as a way of geometric visualization of the motion in solvable cases. A voluminous
literature exists on this topic. Interested readers may see, e.g. [108, 121] for several
concrete examples.

3.11 The Use of the Variables G,γ. Special Axes
Associated with the Gyration Ellipsoid

Let G = (P, Q, R) denote the angular momentum of the body and its components
referred to the body axes. In that case, inverting the relation (3.9), we write

ω = GA,A = I−1, (3.35)

so that (3.13) and (3.17) take the form

Ġ + GA × G = Mgγ × r0, γ̇ + GA × γ = 0, (3.36)

and the integrals of motion become
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1

2
GA · G+Mgr0 · γ = h,

G · γ = f,

γ2 = 1. (3.37)

The main advantage of Eq. (3.36) is that they are solved for the derivatives, in the
sense that each of the six equations involves only one derivative of one component of
G or γ. In this form, also the areas integral takes its simplest form. The situation can
be made more advantageous by using the so-called “Special axes associated with
the gyration ellipsoid”, introduced and extensively used by Kharlamov [191]. They
are formed in the following way: Choose the z-axis as the one joining the fixed point
with the centre of mass, so that r0 can be written as

r0 = (0, 0, z0), (3.38)

and then rotate the x, y-axes in their plane to a position in which

A12 = 0. (3.39)

In those special axes, the angular velocity

ω = (A11P + A13R, A22Q + A23R, A33R + A13P + A23Q), (3.40)

and Euler–Poisson’s Eq. (3.36) become

Ṗ + (A22 − A33)QR − A13PQ + A23(R
2 − Q2) = Mgz0γ2,

Q̇ + (A33 − A11)PR + A23PQ + A13(P
2 − R2) = −Mgz0γ1,

Ṙ + (A11 − A22)PQ + (A13Q − A23P)R = 0,

γ̇1 + (A22Q + A23R)γ3 − (A33R + A13P + A23Q)γ2 = 0,

γ̇2 + (A33R + A13P + A23Q)γ1 − (A11P + A13R)γ3 = 0,

γ̇3 + (A11P + A13R)γ2 − (A22Q + A23R)γ1 = 0. (3.41)

As to the integrals of motion in the special axes, we note that the areas and
geometric integrals still have the form as in (3.37), but the energy integral takes the
form

I1 = 1

2
(A11P

2 + A22Q
2 + A33R

2 + 2A23QR + 2A13PR) + Mgz0γ3 = h.

(3.42)
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3.12 Equations of Motion in Generalized Coordinates

The Euler–Poisson form is mostly preferred in the study of rigid body motion. Nev-
ertheless, in certain situations, it is advantageous to write the Lagrangian form of
the equations of motion, sometimes using the Eulerian angles as generalized coordi-
nates and other times using different coordinates or some redundant coordinates, for
example, the components of the vector γ or the quaternions. This formalism turns
out to be most useful in the case of a dynamically symmetric body, but we shall not
impose this condition for the time being.

The Lagrangian can be written in arbitrary coordinate system fixed in the body,
but to obtain a more tractable form, we use the principal axes of inertia of the body
at the fixed point as body axes. We write

L = 1

2
(Ap2 + Bq2 + Cr2) − Mgr0 · γ. (3.43)

Using Eqs. (2.39) and (14.1), the Lagrangian takes the form

L = 1

2
[A(ψ̇ sin θ sinϕ + θ̇ cosϕ)2

+B(ψ̇ sin θ cosϕ − θ̇ sinϕ)2 + C(ψ̇ cos θ + ϕ̇)2]
−Mg(x0 sin θ sinϕ + y0 sin θ cosϕ + z0 cos θ). (3.44)

We note at once two properties of the Lagrangian leading to two integrals:
(1) The system is conservative and hence admits the energy integral

I1 ≡ 1

2
[A(ψ̇ sin θ sinϕ + θ̇ cosϕ)2

+B(ψ̇ sin θ cosϕ − θ̇ sinϕ)2 + C(ψ̇ cos θ + ϕ̇)2]
+Mg(x0 sin θ sinϕ + y0 sin θ cosϕ + z0 cos θ) = h. (3.45)

(2) The angle of precession ψ is a cyclic coordinate and this leads to the cyclic
integral

I2 ≡ ∂L

∂ψ̇

= A sin θ sinϕ(ψ̇ sin θ sinϕ + θ̇ cosϕ)

+B sin θ cosϕ(ψ̇ sin θ cosϕ − θ̇ sinϕ) + C cos θ(ψ̇ cos θ + ϕ̇)

= (A sin2 θ sin2 ϕ + B sin2 θ cos2 ϕ + C cos2 θ)ψ̇

+(A − B) sin θ sinϕ cosϕθ̇

= f. (3.46)
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It is evident that those integrals are the same as the two in (3.30). Note that the
geometric integral in (3.30) turns into an identity in the Euler angles as coordinates.
In fact, γ1, γ2, γ3 are redundant coordinates, i.e. they are dependent coordinates
subject to the geometric integral as a constraint.

3.13 Canonical Equations of Motion in Euler’s Angles

For certain important applications, such as different perturbation procedures, it may
be advantageous to use the Hamiltonian formalism. We shall give now the Hamilto-
nian function and canonical equations of motion in Euler’s angles and their conjugate
momenta pψ, pθ, pϕ. From (3.44), we get

pψ = ∂L

∂ψ̇
= Dψ̇ + (A − B) sin θ sinϕ cosϕθ̇ + C cos θϕ̇,

pθ = ∂L

∂θ̇
= (A − B) sin θ cos θ sinϕψ̇ + (A cos2 ϕ + B sin2 ϕ)θ̇,

pϕ = ∂L

∂ϕ̇
= C(ψ̇ cos θ + ϕ̇), (3.47)

where
D = A sin2 θ sin2 ϕ + B sin2 θ cos2 ϕ + C cos2 θ. (3.48)

Then, after solving (3.47) for ψ̇, θ̇, ϕ̇, we calculate the Hamiltonian

H = ψ̇ pψ + θ̇pθ + ϕ̇pϕ − L

= (A cos2 ϕ + B sin2 ϕ)

2AB sin2 θ
(pψ − pϕ cos θ)2 + (A sin2 ϕ + B cos2 ϕ)

2AB
p2θ

− (A − B) sinϕ cosϕ

AB sin θ
(pψ − pϕ cos θ)pθ + p2ϕ

2C
+Mg(x0 sin θ sinϕ + y0 sin θ cosϕ + z0 cos θ). (3.49)

The equations of motion can be written in the form

ṗψ = −∂H

∂ψ
, ψ̇ = ∂H

∂ pψ
,

ṗθ = −∂H

∂θ
, θ̇ = ∂H

∂ pθ
,

ṗϕ = −∂H

∂ϕ
, ϕ̇ = ∂H

∂ pϕ
. (3.50)
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Since H does not depend on ψ, we have ṗψ = 0, i.e. pψ = const. In conformity
with (3.46), we take this constant to be f, so that

pψ = f. (3.51)

The second and third pairs of equations give

ṗθ = (B − A) sinϕ cosϕ

AB sin2 θ
( f cos θ − pϕ)pθ

+ (A cos2 ϕ + B sin2 ϕ)

AB sin2 θ
( f − pϕ cos θ)( f cos θ − pϕ)

−Mg (x0 cos θ sinϕ + y0 cos θ cosϕ − z0 sin θ) ,

θ̇ = (B − A) sinϕ cosϕ

AB sin θ
( f − pϕ cos θ) + (A sin2 ϕ + B cos2 ϕ)

AB
pθ,

ṗϕ = (A − B)

AB
[ sinϕ

sin θ
( f − pϕ cos θ) + pθ cosϕ]

×[cosϕ

sin θ
( f − pϕ cos θ) − pθ sinϕ]

−Mg sin θ (x0 cosϕ − y0 sinϕ) ,

ϕ̇ = pϕ

C
+ (A − B) sinϕ cosϕ cos θ

AB sin θ
pθ

− (A cos2 ϕ + B sin2 ϕ) cos θ

AB sin2 θ
( f − pϕ cos θ). (3.52)

If a solution is obtained for the last system giving θ,ϕ, θ̇, ϕ̇ as functions of time,
the precession angle ψ can be then determined by integrating the second equation in
(3.50), which is now written as

ψ̇ = (A cos2 ϕ + B sin2 ϕ)

AB sin2 θ
( f − pϕ cos θ) − (A − B) sinϕ cosϕ

AB sin θ
pθ. (3.53)

3.14 The Routhian Reduction

From (3.46), we find

ψ̇ = f − (A − B) sin θ sinϕ cosϕθ̇ − C cos θϕ̇

(A sin2 θ sin2 ϕ + B sin2 θ cos2 ϕ + C cos2 θ)
. (3.54)

One can now use Routh’s procedure to ignore the cyclic coordinate ψ and reduce
the problem of motion to a system of two degrees of freedom. The Routhian of the
system is
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R = L − f ψ̇

= R2 + R1 − V1, (3.55)

where

R2 = 1

2D
{C sin2 θ(A sin2 ϕ + B cos2 ϕ)ϕ̇2 −

−1

2
C(A − B) sin 2θ sin 2ϕθ̇ϕ̇

+[D(A cos2 ϕ + B sin2 ϕ) − (A − B)2 sin2 θ sin2 ϕ cos2 ϕ]θ̇2},
R1 = f

D
[C cos θϕ̇ + (A − B) sin θ sinϕ cosϕθ̇],

V1 = V + f 2

2D
. (3.56)

The function V1 is called the reduced potential, while V is the original potential
of the problem. The equations of motion are

d

dt

∂R

∂θ̇
− ∂R

∂θ
= 0,

d

dt

∂R

∂ϕ̇
− ∂R

∂ϕ
= 0. (3.57)

We shall not write them down in the expanded form because they lack symmetry and
they are not easy to use in general. However, they can be used much easily in case
of a dynamically symmetric body. Such concrete applications are not in the focus
of the present book and can be found in several books on perturbation problems.
Those are two second-order equations in the two variables θ and ϕ. After solving
those equations and expressing the two angles in terms of time, one can determine
the ignored angle ψ by integrating (3.54) with respect to time.

Remark 1: The Lagrangian (3.44) (and equations of motion derived from it in
any generalized coordinates) is time-reversible, i.e. the Lagrangian and equations
remain invariant if the sign of time t is changed. On the contrary, the Routhian and
Routhian equations of motion are not time-reversible. They are invariant only on the
simultaneous change of signs of t and f.

When f = 0, the Routhian becomes

R = R2 − V,

and the Routhian equations of motion are time-reversible.
Remark 2: In the case of axial dynamical symmetry B = A, a significant sim-

plification occurs in the Routhian (3.55). It renders to the form

R = A

2D
(C sin2 θϕ̇2 + Dθ̇2) + f

D
C cos θϕ̇ − V1,

V1 = V + f 2

2D
. (3.58)
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Finally, when A = C, i.e. in the case of complete dynamical symmetry, D = A
and we have

R = A

2
(sin2 θϕ̇2 + θ̇2) + f cos θϕ̇ − V (θ,ϕ). (3.59)

This is the Lagrangian of a particle moving on a smooth sphere with θ and ϕ as
polar coordinates on that sphere. The particle is subject to forces with potential V
and gyroscopic forces represented by the term linear in ϕ̇. Note that the last term is
proportional to f and thus vanishes when f = 0.

3.15 Exercises

(1)Aheavy rigid body is moving about a fixed point, which is not coincident with the
centre of mass of the body. Use the energy integral and Euler’s equations to express
the vector γ in terms of the angular velocity ω and its time derivative ω̇ in the form

γ = 1

Mg|r0|2 [r0 × (ω̇I + ω × ωI) + (h − 1

2
ωI ·ω)r0], (3.60)

where h is the energy constant and r0 �= 0 is the position vector of the centre of mass
of the body with respect to the fixed point.

(2) Use the last result to reduce the equations of motion of the classical problem
to the form of three autonomous first-order differential equations in the components
of the angular velocity with respect to an arbitrary system of axes fixed in the body
in time as independent variable to the form1

(ω̇I + ω × ωI) · r0 = 0,

(h − 1

2
ωI ·ω)2 + (ω̇I + ω × ωI)2 = M2g2|r0|2,

r0 · [(h − 1

2
ωI ·ω)ωI+ω̇I×ωI − |ωI|2ω] = Mg f |r0|2, (3.61)

where f is the areas constant and other parameters as defined above.
Hint: Use the following equations:

(ω̇I + ω × ωI) · r0 = 0,

|γ|2 = 1,

ωI · γ = f.

1 For this form, or (3.63), to be equivalent to the original Euler–Poisson system, a condition on the
motion must be satisfied (See the two theorems in Sect. 8.1).
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(3) Show that in terms of G, the formula (3.60) and reduced Eq. (3.61) take the
following form:

γ = 1

Mg|r0|2 [r0 × (Ġ + GA × G) + (h − 1

2
GA · G)r0], (3.62)

and

(Ġ + GA × G) · r0 = 0,

(h − 1

2
GA · G)2 + (Ġ + GA × G)2 = M2g2|r0|2,

r0 · [(h − 1

2
GA · G)G+Ġ×G − |G|2GA] = Mg f |r0|2, (3.63)

where A = I−1.
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