
Chapter 2
Description of Rotation of a Rigid Body
About a Fixed Point

Although in motion of a rigid body about a fixed point, we deal with continuous
change of position, i.e. with a sequence of infinitesimal rotations, it turns out that
the study of finite rotations is essential in understanding several concepts concerning
infinitesimal ones. In this chapter, we present a brief theory of finite rotations to
elucidate their properties and relation to infinitesimal rotations. We shall concentrate
on the use of Euler’s angles and the Euler–Rodrigues or quaternion coordinates as
the most relevant to the Lagrangian approach. For space considerations, some other
alternative descriptions, like Cayley–Klein, are not considered. We also use the most
common notation. For a useful historical survey, the reader may consult [332] and
several references therein.

2.1 The Position of a Rigid Body. Euler’s Angles

The position of a rigid body moving about a fixed point O is completely determined
by the position of a Cartesian coordinate system Oxyz fixed in the body and moving
with it with respect to the system OXY Z fixed in space. The number of parameters
necessary for the description must be three, the number of degrees of freedom of
the rotational motion of the body. Several types of angles are used to this end, and
their choice depends mainly on the suitability for the concrete problem of motion
under consideration. For example, some angles are most suitable to use in the study
of motion of a ship and others are suitable for describing the flight of a plane.
Although, of course, different sets of angles must be equivalent for arbitrary position
of the body, each of them can have specific privileges or drawbacks in regard to
certain application.

One of themost frequently used sets of angles inmany applications and especially
for theoretical purposes are Euler’s angles ψ, θ and ϕ. They are defined as follows
(see Fig. 2.1):
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Fig. 2.1 Euler’s angles

We begin by the body axes Oxyz coinciding with the space-fixed axes OXY Z ,

and from that position, we give the body system a rotation by an angle ψ (the pre-
cession angle) about the Z -axis, so that the body system takes the position OKY1Z .

Then, the last system is given a rotation by an angle θ (the angle of nutation) about
OK .This brings the body system to the position OKY2z.Wenowfix the z-axis in the
body and give the body system a rotation by an angleϕ (the angle of proper rotation)
about the z-axis to reach its final position Oxyz, fixed in the body. In this way, ψ
is the angle of rotation of the body about the space axis Z , θ is the angle between z
and Z and ϕ is the angle of rotation about z. The line OK is the intersection of the
two planes Oxy and OXY. It is called the line of nodes.

Now, let α,β,γ; i, j,k be the unit vectors along the space axes XY Z and the
body axes xyz, respectively. Let also n be a unit vector along the nodal line OK
and j1, j2 be unit vectors along OY1 and OY2, respectively. One can express the
components of the fixed unit vectors with respect to the moving axes. For example,

α = cosψn − sinψj1
= (cosψ cosϕ − cos θ sinψ sinϕ, − cosψ sinϕ − cos θ sinψ cosϕ, sin θ sinψ),

β = (sinψ cosϕ + cos θ cosψ sinϕ, − sinψ sinϕ + cos θ cosψ cosϕ,− sin θ cosψ),

γ = (sin θ sinϕ, sin θ cosϕ, cos θ). (2.1)

We can also write the unit vector n in the body and space axes, respectively, as
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n = cosϕi − sinϕj = cosψα + sinψβ. (2.2)

Conversely, we can express the moving unit vectors i, j,k in the fixed (space)
basis. They have the form

i = (cosψ cosϕ − cos θ sinψ sinϕ, sinψ cosϕ + cos θ cosψ sinϕ, sin θ sinϕ),

j = (− cosψ sinϕ − cos θ sinψ cosϕ, − sinψ sinϕ + cos θ cosψ cosϕ, sin θ cosϕ),

k = (sin θ sinψ,− sin θ cosψ, cos θ). (2.3)

2.2 The Rotation Matrix

Let (X,Y, Z) be the coordinates of a point P in the system of axes XY Z . When the
system XY Z is rotated by an angle � around Z -axis, the point P is displaced to the
new point P ′(X ′,Y ′, Z ′). One can easily write

X ′ = X cos� + Y sin�,

Y ′ = −X sin� + Y cos�,

Z ′ = Z ,

which can be put in the matrix form

⎛
⎝

X ′
Y ′
Z ′

⎞
⎠ = R

⎛
⎝

X
Y
Z

⎞
⎠ ,

where

R =
⎛
⎝

cos� sin� 0
− sin� cos� 0

0 0 1

⎞
⎠ .

R is called the rotation matrix. Note that R is an orthogonal matrix (all rows are
orthogonal and also columns), its inverse is its transpose (R−1 = RT ) and its deter-
minant is 1.

Now we consider the characteristic equation of R. That is

∣∣∣∣∣∣
cos� − λ sin� 0
− sin� cos� − λ 0

0 0 1 − λ

∣∣∣∣∣∣
= 0.
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In the final form, this becomes

(1 − λ)(λ2 − 2λ cos� + 1) = 0. (2.4)

As we see, one of the characteristic roots equals 1. It corresponds to the eigenvector
(0, 0, 1), which coincides with the axis of the rotation. The other two roots are
complex

cos� ±
√
cos2 � − 1 = cos� ± i sin� = e±i�.

Thus, the eigenvector vector corresponding to the unit eigenvalue of the rotation
matrix coincides with the axis of the rotation and the argument of the complex pair
of eigenvalues directly expresses the angle of rotation.

Now we apply the same conception to an arbitrary rotation. Let r be a vector
whose components are (X,Y, Z) in the space-fixed axes and (x, y, z) in the body-
fixed axes. We can find the relations between the components of the vector in the
two systems as follows:

The components of r in the system OKY1Z after a rotation by an angle ψ around
the Z -axis ⎛

⎝
x1
y1
z1

⎞
⎠ = Rψ

⎛
⎝

X
Y
Z

⎞
⎠ =

⎛
⎝

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎞
⎠

⎛
⎝

X
Y
Z

⎞
⎠ (2.5)

and in the system OKY2Z after a rotation by an angle θ around OK

⎛
⎝
x2
y2
z2

⎞
⎠ = Rθ

⎛
⎝
x1
y1
z1

⎞
⎠ =

⎛
⎝
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠

⎛
⎝
x1
y1
z1

⎞
⎠ . (2.6)

Finally, after a rotation by an angle ϕ around the z-axis, we find the components of
r in the body system

⎛
⎝
x
y
z

⎞
⎠ = Rϕ

⎛
⎝
x2
y2
z2

⎞
⎠ =

⎛
⎝

cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞
⎠

⎛
⎝
x2
y2
z2

⎞
⎠

= R

⎛
⎝

X
Y
Z

⎞
⎠ , (2.7)

where

R = RϕRθRψ

=
⎛
⎝

cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 1

⎞
⎠

⎛
⎝
1 0 0
0 cos θ sin θ
0 − sin θ cos θ

⎞
⎠

⎛
⎝

cosψ sinψ 0
− sinψ cosψ 0

0 0 1

⎞
⎠
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=
⎛
⎝

cosψ cosϕ − cos θ sinψ sinϕ sinψ cosϕ + cos θ cosψ sinϕ sin θ sinϕ
− cosψ sinϕ − cos θ sinψ cosϕ − sinψ sinϕ + cos θ cosψ cosϕ sin θ cosϕ

sin θ sinψ − sin θ cosψ cos θ

⎞
⎠ .

(2.8)

Comparing with (2.1), we conclude that

R =
⎛
⎝

α1 β1 γ1
α2 β2 γ2
α3 β3 γ3

⎞
⎠ ,

and again we note that R has all rows and columns orthogonal unit vectors. Its
inverse is its transposeR−1 =RT (check thatRRT = RTR = δ) and its determinant
equals 1. Note also that the columns of are the components of the fixed unit vectors
referred to the moving (body) axes while its rows are the components of the unit
vectors i, j,k, in the directions of the movable axes xyz, referred to the fixed axes
XY Z .

2.2.1 The Angle of Rotation

We now proceed to form the characteristic equation of the rotationmatrix (2.8). After
some manipulations and factorization, we get

|R − λδ| = (1 − λ){λ2 + [(1 − cos θ) − (1 + cos θ) cos(ψ + ϕ)]λ + 1}
= (1 − λ){λ2 + 2[1 − 2 cos2

θ

2
cos2

ψ + ϕ

2
]λ + 1} = 0. (2.9)

From here, we see that one of the characteristic roots of the rotation matrix is 1. The
eigenvector v corresponding to that root satisfies the equation

Ra = a,

i.e. the rotation represented by thematrixR leaves that vector unchanged. This vector
coincides with the axis of the rotation. On the other hand, to obtain the rotation angle
of the rotation �, we compare the quadratic factors in (2.9) and (2.4). We get

cos� = 2 cos2
θ

2
cos2

ψ + ϕ

2
− 1. (2.10)

This can be also written in the form

cos
�

2
= cos

θ

2
cos

ψ + ϕ

2
(2.11)

in which we have chosen positive sign.
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Remark: In spite of their simplicity, Euler’s angles suffer from the defect that the
two angles ψ and ϕ lose their independence when the third angle θ takes one of the
values 0 or π. In those cases, the rotation matrix takes the form

⎛
⎝

cos(ψ ± ϕ) sin(ψ ± ϕ) 0
− sin(ψ ± ϕ) cos(ψ ± ϕ) 0

0 0 1

⎞
⎠

which involves not the two angles, but their sum when θ = 0 and difference when
θ = π.

2.3 Description of Finite Rotation

Wehave just seen that the finite rotation can be always and completely represented by
a rotation matrix. On the other hand, it is evident that such rotation can be completely
determined by giving the axis of rotation and the angle of rotation about that axis,
i.e. one can say the rotation is determined by a scalar quantity and a direction.
Nevertheless, it cannot be represented in the full sense by a vector, since an essential
rule of vector algebra, the commutation rule, is not followed bymatrices. This means
that performing two consequent rotations R1 and then R2 gives different resultant
from that of reverse order R2 and then R1. This can be clearly illustrated by the
following

Example: Let us perform to the body in Fig. 2.2a two consecutive rotations, each
by a right angle,1 the first about the x-axis and the second about the y-axis. Figure
2.2b shows what we get in this case, but Fig. 2.2c shows the completely different
result of performing the rotations in the reverse order.

Analytically, R1 and R2 can be represented by the matrices

R1 =
⎛
⎝
1 0 0
0 0 1
0 −1 0

⎞
⎠ ,R2 =

⎛
⎝
0 0 −1
0 1 0
1 0 0

⎞
⎠ .

Resultant of the first sequence is

S = R2R1 =
⎛
⎝
0 1 0
0 0 1
1 0 0

⎞
⎠

and the second sequence

1 We mean rotation by an angle described in the positive sense about an axis, i.e. counterclockwise
as viewed from the positive end of that axis.
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Fig. 2.2 Finite rotations are not commutative

S′ = R1R2 =
⎛
⎝
0 0 −1
1 0 0
0 −1 0

⎞
⎠ .

The two matrices S and S′ are obviously different. We can go a little further and
construct the characteristic equation for S. That is

1 − λ3 = (1 − λ)(λ2 + λ + 1) = 0,

and its roots are 1, e±i 2π3 . This means that the angle of the rotation S is equal to 2π
3 .

To find the axis of the rotation, we solve the equations

Sv′= v′,

which gives the column vector

v′ =
⎛
⎝
1
1
1

⎞
⎠ .

Thus, S is a rotation by angle 2π
3 around the axis in the direction parallel to the vector

v =(1, 1, 1).
Similarly, one can show that S′ is a rotation by angle 2π

3 around the vector
v =(1, 1,−1).
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Fig. 2.3 Geometry of a rotation vector

2.4 Representation of Finite Rotation by Means of a Vector

The above example shows that finite rotation cannot be completely represented by a
vector as we represent the position vector or the velocity of a particle. Thus, we shall
try now to find the formula that expresses the finite rotation as a vector quantity and
to find a suitable rule for the resultant of two rotations, a rule that must account for
the non-commutation of rotations.

2.4.1 The Rotation Vector

Let us begin with some vector r = −→
OP and an axis OQ with a unit vector e in its

direction. The rotation of r by an angle� around OQ in the positive direction carries

r to its new position r′ = −−→
OP ′ and the point P along the circular arĉPP ′ to P ′ (4.1).

Let also O ′ be the centre of PP ′. Our aim now is to express r′ in terms of r and the
angle and direction of the rotation (see Fig. 2.3).

The plane Fig. 2.4 shows the circle O ′PP ′. O ′R is orthogonal to PP ′ and RS is
orthogonal to O ′P. Note that e is the outward unit vector normal to the plane of the
figure and SR = O ′P sin �

2 cos �
2 , so that SR = e × O ′P sin �

2 cos �
2 .

From simple geometry, we find that

PP ′ = 2PR = 2(PS + SR) = 2[−O ′P sin2
�

2
+ e × O ′P sin

�

2
cos

�

2
].

But since

O ′P = r − (r · e)e = (e · e)r − (e · r)e = −e × (e × r),
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Fig. 2.4 Rotation angle

then we obtain

PP ′ = 2[sin2 �

2
e × (e × r)+ sin

�

2
cos

�

2
e × r],

so that we can finally write

r′ = r + PP ′

= r + 2[sin �

2
cos

�

2
e × r+ sin2

�

2
e × (e × r)]. (2.12)

This is the Rodrigues formula, which expresses the rotated vector r′ in terms of the
initial vector r, the angle of rotation � and the direction e of the rotation axis. It can
be written also in the form

r′ = r + (sin�)e × r+(1 − cos�)e × (e × r). (2.13)

It is valid for arbitrary angle and arbitrary direction of the rotation. As expected, for
a point on the axis of rotation, r = e and r′= r. Also, a rotation with an angle 2π
brings all points of space to their initial positions.

To push forward the concept of a vector representing a finite rotation, we assume
that the rotation angle � �= π, i.e. cos �

2 �= 0. Then we can write (2.12) in the form

r′ = r + 2 cos2
�

2
[tan �

2
e × r+ tan2

�

2
e × (e × r)]

= r + 2

1 + tan2 �
2

[tan �

2
e × r+ tan2

�

2
e × (e × r)].

Introducing the notation

ρ = tan
�

2
e, (2.14)
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then we rewrite the last formula as

r′ = r + 2

1 + ρ2
ρ × [r + ρ × r]. (2.15)

Using (2.14), one can verify that

(1) ρ(� + 2π, e) = ρ(�, e).
(2) ρ(−�,−e) = ρ(�, e).

Those properties are geometrically obvious.
(3) Formula (2.14) is not suitable for expressing any rotation with an angle π about

any axis. That is the singular point of the function tan . This is not related to
the rotation itself, but due to the way of representing the rotation as a vector in
(2.14). The previous formulas (2.12), (2.13) are still valid for the angle � = π.

(4) Finite rotation is thus represented by a vector, which may be written in terms of
its components as ρ = (ρ1, ρ2, ρ3) or ρ = ρ1i + ρ2j + ρ3k, but this determines
the magnitude and direction of the rotation and does not mean at all that the
rotation is the resultant of its parts, or equivalent to any sequence of those parts.

(5) It is evident that rotation vectors do not commute and cannot be summed accord-
ing to rules of vector algebra. However, it can be easily shown that infinitesimally
small rotations do commute and obey the rule of summation of vectors.
Let ρ1 be a rotation by a small angle�1 the rotation vector ρ1= tan �1

2 e1=�1
2 e1.

After neglecting nonlinear terms in the rotation vector, formula (2.15) takes the
form

r′ = r + 2ρ1 × r. (2.16)

If ρ1 is followed by another small rotation ρ2=�2
2 e2, the vector r′ is transformed

to

r′′ = r′ + 2ρ2 × r′

= r + 2ρ1 × r + 2ρ2 × (r + 2ρ1 × r). (2.17)

Neglecting the nonlinear term, we get

r′′ = r + 2(ρ1+ρ2) × r. (2.18)

Small rotations are summed according to vector addition rule, and their sum does
not depend on the order of the rotations.

Now we return to formula (2.14) to see how a rotation ρ = tan �
2 e acts on the unit

vectors α,β,γ fixed in the directions of XY Z and bring them to be coincident with
the unit vectors i, j,k, respectively. According to (2.15), we have
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i = α + 2

1 + ρ2
ρ × (α + ρ × α),

j = β + 2

1 + ρ2
ρ × (β + ρ × β),

k = γ + 2

1 + ρ2
ρ × (γ + ρ × γ). (2.19)

One immediately notices that

ρ · i = ρ · α,ρ · j = ρ · β,ρ · k = ρ · γ,

i.e. the components of the rotation vector are the same in the directions of the initial
and final axes. We shall denote those components by ρ = (ρ1, ρ2, ρ3).

We now express the rotation matrix in terms of the components of the rotation
vector

R =
⎛
⎝

i·α i·β i·γ
j·α j·β j·γ
k·α k·β k·γ

⎞
⎠

=

⎛
⎜⎜⎝
1 − 2 ρ22+ρ23

1+ρ2 2 ρ1ρ2+ρ3
1+ρ2 2 ρ1ρ3−ρ2

1+ρ2

2 ρ1ρ2−ρ3
1+ρ2 1 − 2 ρ21+ρ23

1+ρ2 2 ρ2ρ3+ρ1
1+ρ2

2 ρ1ρ3+ρ2
1+ρ2 2 ρ2ρ3−ρ1

1+ρ2 1 − 2 ρ21+ρ22
1+ρ2

⎞
⎟⎟⎠ . (2.20)

2.5 Hamilton–Rodrigues’ Parameters

We now introduce the four quantities λ0,λ1,λ2,λ3 to express the three components
of the rotation vector, such that

(ρ1, ρ2, ρ3) = (λ1,λ2,λ3)

λ0
. (2.21)

As we have one redundant parameter, we assume that the new parameters satisfy the
condition

λ2
0 + λ2

1 + λ2
2 + λ2

3 = 1, (2.22)

so that the end of the four-dimensional vector � = (λ0,λ1,λ2,λ3) lies on a three-
dimensional sphere of unit radius. This implies the relation

λ0λ̇0 + λ1λ̇1 + λ2λ̇2 + λ3λ̇3 = 0. (2.23)

From (2.21), we calculate
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1 + ρ2 = 1 + λ2
1 + λ2

2 + λ2
3

λ2
0

= 1

λ2
0

, (2.24)

and substituting (2.21) in (2.20) and using the last relation, we obtain the expression
of the rotation matrix

R =
⎛
⎝

λ2
0 + λ2

1 − λ2
2 − λ2

3 2(λ0λ3 + λ1λ2) 2(−λ0λ2 + λ1λ3)

2(−λ0λ3 + λ1λ2) λ2
0 + λ2

2 − λ2
1 − λ2

3 2(λ0λ1 + λ2λ3)

2(λ0λ2 + λ1λ3) 2(−λ0λ1 + λ2λ3) λ2
0 + λ2

3 − λ2
1 − λ2

2

⎞
⎠ . (2.25)

This form of the rotation matrix is more symmetric than that in terms of the
rotation vector or in terms of Euler’s angles. Moreover, it does not have the problem
of degeneration of Euler’s angles at θ = 0 or π, nor the singularity of the rotation
vector corresponding to a rotation by an angle π. This makes Euler–Rodrigues’
parameters in certain problems appropriate for use as variables describing motion
and finite rotations of the rigid body.

On the other hand, one can readily notice that the two sets of the Hamilton–
Rodrigues parameters±� correspond to the same rotation matrix. Thus, any expres-
sion designating a quantity of physical meaning should contain only even terms in
�, otherwise it will be double-valued on the group of rotations SO3. This remark
will have some implications in later chapters.

Remark 12 The expression (2.25) for the rotation matrix can be decomposed into
three parts of simpler structure (two symmetric and one antisymmetric):

R = (2λ2
0 − 1)

⎛
⎝
1 0 0
0 1 0
0 0 1

⎞
⎠ + 2

⎛
⎝

λ2
1 λ1λ2 λ1λ3

λ1λ2 λ2
2 λ2λ3

λ1λ3 λ2λ3 λ2
3

⎞
⎠

+2λ0

⎛
⎝

0 λ3 −λ2

−λ3 0 λ1

λ2 −λ1 0

⎞
⎠ (2.26)

or in the shorter tensor form

Ri j = (2λ2
0 − 1)δi j + 2λiλ j + 2λ0εi jkλk, (2.27)

where δ is the Kronecker delta and ε is the Levi-Civita tensor.

Remark 13 It is clear from (2.25) that the points (λ0,λ1,λ2,λ3) and (−λ0,−λ1,

−λ2,−λ3) represent the same rotation matrix. The sphere (2.22) covers the con-
figuration space of the rotating body twice. The configuration space can, thus, be
represented by one half of that sphere, say, the half on which λ0 � 0.

Remark 14 From (2.24) and (2.14), we have

1

λ2
0

= 1 + ρ2 = 1 + tan2
�

2
= sec2

�

2
,
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so that

λ0 = cos
�

2
, (2.28)

and hence

(λ1,λ2,λ3) = λ0ρ

= cos
�

2
tan

�

2
e

= sin
�

2
e.

Thus, we can write the following expression for the Euler–Rodriguez parameters

(λ0,λ1,λ2,λ3) = (cos
�

2
, sin

�

2
e). (2.29)

2.6 The Angular Velocity Vector

During motion of the body, Euler’s angles change with time t , and also the rotation
matrix. To express the time derivatives of an arbitrary quantity, one may first check
the following relations using expressions (2.1)

∂α
∂ψ

= α × γ,
∂β
∂ψ

= β × γ,
∂γ
∂ψ

= 0,
∂α
∂θ

= α × n,
∂β
∂θ

= β × n,
∂γ
∂θ

= γ × n,
∂α
∂ϕ

= α × k,
∂β
∂ϕ

= β × k,
∂γ
∂ϕ

= γ × k.

(2.30)

From those, we get

α̇ = ∂α

∂ψ
ψ̇ + ∂α

∂θ
θ̇ + ∂α

∂ϕ
ϕ̇ (2.31)

= α × γψ̇ + α × nθ̇ + α × kϕ̇

= α × (ψ̇γ+θ̇n+ϕ̇k). (2.32)

Let us now introduce the notation

ω = ψ̇γ+θ̇n+ϕ̇k. (2.33)

The vector ω is called the angular velocity of the body and it is, in fact, the usual
vector sum of the three vectors ψ̇γ,θ̇n,ϕ̇k, which represent the angular velocities
ψ̇, θ̇ and ϕ̇ about the axes Z , K and z, respectively. In a similar way, we can get two
expressions for the derivatives of β and γ, so that we can write
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α̇ = α × ω, β̇ = β × ω, γ̇ = γ × ω. (2.34)

Those equations satisfied by α,β,γ are called Poisson’s equations and they
express the constancy of those vectors in space, as we shall see soon. They play an
important role in the dynamics of rigid body as will be seen in due course.

2.7 Space and Relative Time Rates of Change of a Vector

During the motion of the body, the three unit vectors i, j,k fixed in the body along
the axes x, y, z change with time. The rate of change of one of them, i, say, is the
velocity di

dt of its end point in space. Hence, we have

di
dt

= ω × i,
dj
dt

= ω × j,
dk
dt

= ω × k, (2.35)

where ω is the instantaneous angular velocity of the body.
Now, let u be a vector given by its components (u1, u2, u3) in the body system of

axes, so that we write
u = u1i+u2j+u3k. (2.36)

The time derivative of this vector is

du
dt

= du1
dt

i+du2
dt

j+du3
dt

k+u1
di
dt

+u2
dj
dt

+u3
dk
dt

.

Using (2.35) in the last three terms, we get

du
dt

= du1
dt

i + du2
dt

j + du3
dt

k + u1ω × i+u2ω × j + u3ω × k

= du1
dt

i + du2
dt

j + du3
dt

k + ω × (u1i + u2j + u3k).

Now we introduce the notation u̇ = du1
dt i + du2

dt j + du3
dt k, i.e. u̇ is the time derivative

of the vector u as if the unit vectors i, j,k were constant vectors, or as seen by an
observer fixed in the body and moving with it. This derivative will be called the
relative derivative or the relative rate of change of u. The last relation becomes

du
dt

= u̇+ω×u. (2.37)

Thus, we have split the space derivative into two terms: the relative derivative u̇ in
the body system and the term ω × u resulting from the rotation of the body system.
When ω = 0 the two derivatives coincide.
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As an example, we apply this rule to the three vectors α,β and γ fixed in space.
As dα

dt = dβ
dt = dγ

dt = 0, we have

α̇ + ω × α = 0, β̇ + ω × β = 0, γ̇ + ω × γ = 0, (2.38)

so that we again obtain Poisson’s equations (2.34).

2.7.1 Components of the Angular Velocity in the Body Axes
and Space Axes

The direction of the angular velocity at the fixed point determines a line called the
instantaneous axis of rotation. Points of the body lying on that line at any moment of
time are instantaneously at rest. Themagnitude ofω is ameasure of the angular speed
of rotation of the body. In case of rotation about a fixed axis, the angular velocity is
the time rate of change of the angle of rotation about that axis, but it is not possible
in general to write a rotation angle such that the angular velocity is represented as
its rate of change.

We shall denote by p, q, r and p′, q ′, r ′ the components of the angular velocity
ω in the moving and in the fixed axes, respectively. Using (2.2) and (2.3) together
with (2.33), we have

p = ψ̇ sin θ sinϕ + θ̇ cosϕ,

q = ψ̇ sin θ cosϕ − θ̇ sinϕ,

r = ψ̇ cos θ + ϕ̇, (2.39)

and similarly, we write

p′ = ϕ̇ sin θ sinψ + θ̇ cosψ,

q ′ = −ϕ̇ sin θ cosψ + θ̇ sinψ,

r ′ = ϕ̇ cos θ + ψ̇. (2.40)

2.7.2 The Use of the Euler–Rodrigues Parameters

From (2.11) and (2.28), we have λ0 = cos θ
2 cos

ψ+ϕ
2 . One can easily obtain expres-

sions for the other three parameters by comparing corresponding elements of the
rotation matrix R in formulas (2.8) and (2.25). It is even easier to compare the anti-
symmetric parts, e.g. one can see from (2.26) and (2.8) that
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λ1 = R23 − R32

4λ0
= sin θ(cosϕ + cosψ)

4 cos θ
2 cos

ψ+ϕ
2

= sin
θ

2
cos

ψ − ϕ

2

and so on, so that we get the expressions

λ1 = sin
θ

2
cos

ψ − ϕ

2
,λ2 = sin

θ

2
sin

ψ − ϕ

2
,

λ3 = cos
θ

2
sin

ψ + ϕ

2
,λ0 = cos

θ

2
cos

ψ + ϕ

2
. (2.41)

The angular velocity has the expression

p = 2(λ0λ̇1 − λ1λ̇0 + λ3λ̇2 − λ2λ̇3),

q = 2(λ0λ̇2 − λ2λ̇0 + λ1λ̇3 − λ3λ̇1),

r = 2(λ0λ̇3 − λ3λ̇0 + λ2λ̇1 − λ1λ̇2). (2.42)

This may be written in the vector form

ω = 2[λ0λ̇ − λ̇0λ − λ × λ̇], (2.43)

where λ denotes the three-dimensional vector (λ1,λ2,λ3). In this notation, (2.22)
and (2.23) take the form

λ2
0 + λ2 = 1, (2.44)

λ0λ̇0 + λ · λ̇ = 0. (2.45)

The formula (2.43) together with (2.44), (2.45) can be used to obtain a remarkable
expression for the square of the angular velocity. Squaring both sides of (2.43) and
noting that the third term on the right-hand side is orthogonal to the other two, we
write

ω2 = 4[λ2
0λ̇

2 − 2λ0λ̇0λ · λ̇λ̇ + λ̇2
0λ

2 + |λ × λ̇|2]
= 4[λ2

0λ̇
2 − 2λ0λ̇0λ · λ̇ + λ̇2

0λ
2 + λ2λ̇

2 − (λ · λ̇)2]
= 4[(λ2

0 + λ2)λ̇
2 + 2λ2

0λ̇
2
0+λ̇2

0λ
2 − (λ0λ̇0)

2

= 4[(λ2
0 + λ2)λ̇

2 + (λ2
0 + λ2)λ̇2

0]
= 4(λ2

0 + λ2)(λ̇2
0 + λ̇

2
)

= 4(λ̇2
0 + λ̇

2
),

so that, finally, we have
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ω2 = p2 + q2 + r2 = 4(λ̇2
1 + λ̇2

2 + λ̇2
3 + λ̇2

0) = 4�̇
2
. (2.46)

That is four times the square of the speed of the point � = (λ0,λ1,λ2,λ3) moving
on the unit sphere (2.22).

2.8 Quaternions and Representation of Finite Rotation

Quaternions, or hypercomplexnumbers, discoveredbyHamilton, are a generalization
of the ordinary complex number system. A quaternion is composed of one real
component and three imaginary ones. A general quaternion can be written in the
form

Q = (a, A1, A2, A3) = a + A1i + A2 j + A3k, (2.47)

where i, j, k are imaginary units satisfying the multiplication rules

i2 = j2 = k2 = 1,

i j = − j i = k, jk = −k j = i, ki = −ik = j. (2.48)

In (2.47), the first part a is an ordinary real part and the remaining parts can be viewed
as a vector A = A1i + A2j + A3k, and thus, we write

Q = a + A. (2.49)

Now it is easy to check that the product of the quaternions Q and Q′ = a′ + A′
according to the rules (2.48) can be put in the usual form using scalar and vector
products of vectors as

QQ′ = aa′ − A · A′ + aA′ + a′A + A × A′, (2.50)

and ifwe define the conjugate quaternion Q̄ = a − A,we easily note that the quantity

QQ̄ = Q̄Q = a2 + A · A (2.51)

is a positive real number which we adopt as the squared magnitude of the quaternion

|Q| =
√
QQ̄ =

√
a2 + A2

1 + A2
2 + A2

3. (2.52)

From the last, we get that for a non-zero quaternion Q

Q
Q̄

|Q|2 = 1. (2.53)
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That is the multiplicative inverse of Q (which satisfies QQ−1 = Q−1Q = 1) is
Q−1 = Q̄

|Q|2 .
Consider now the quaternion formed by Euler–Rodrigues’ parameters Q = λ0 +

λ1i + λ2 j + λ3k. It can be put in the form

Q = λ0 + λ0ρ = cos
�

2
(1 + ρ). (2.54)

Note that

|Q| = 1, Q−1 = cos
�

2
(1 − ρ). (2.55)

Let r be a vector, i.e. a quaternionwith zero real part. Applying (2.50),we calculate
the product

QrQ−1 = cos2
�

2
(1 + ρ)[(0 + r)(1 − ρ)]

= cos2
�

2
(1 + ρ)(ρ · r + r + ρ × r)

= cos2
�

2
[ρ · r + r + ρ × r − ρ · (r + ρ × r)

+(ρ·r)ρ + ρ × (r+ρ × r)]
= cos2

�

2
[r + 2ρ × r + (ρ · r)ρ + ρ × (ρ × r)]

= cos2
�

2
[r + 2ρ × r + 2ρ × (ρ × r) + ρ2r]

= cos2
�

2
[(1 + ρ2)r + 2ρ × r + 2ρ × (ρ × r)]

= cos2
�

2
(1 + ρ2)[],

and using (2.14), we finally get

QrQ−1 = r + 2ρ

1 + ρ2
×(r + ρ × r). (2.56)

Comparing this formula with (2.15), we note that the rotation ρ transfers the vector
r to

r′ = QrQ−1, (2.57)

so that the rotationρ is completely determined by the quaternion Q of unitmagnitude.
Also, we have
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Q−1r′Q = Q−1(QrQ−1)Q

= (Q−1Q)r(Q−1Q)

= r,

so that the inverse of the rotation is given by the quaternion Q−1 = Q̄.

2.9 Composition of Two Rotations

Formula (2.57) is due to Cayley. Although equivalent to (2.15), it is much simpler in
dealing with finite rotations. We use it now to obtain a formula for the composition
of two rotations.

Consider a rotation through an angle �1 around the axis in the direction e1. This
rotation is completely described either by the rotation vector ρ1= tan �1

2 e1 or by the
quaternion q1 = λ0 + λ1i + λ2 j + λ3k. Let the rotation vector ρ2= tan �2

2 e2 and
the quaternion q2 = μ0 + μ1i + μ2 j + μ3k correspond to another rotation through
an angle �2 around e2. We have

q1 = cos
�1

2
(1 + ρ1), q2 = cos

�2

2
(1 + ρ2). (2.58)

The vector r is transformed by the first rotation to

r′ = q1rq−1
1 (2.59)

and then by the second rotation to

r′′ = q2r′q−1
2 = q2q1rq−1

1 q−1
2 = (q2q1)r(q2q1)−1. (2.60)

Thus, the resultant rotation corresponds to the quaternion

Q = q2q1
= (Q0, Q1, Q2, Q3), (2.61)

where

Q0 = λ0μ0 − λ1μ1 − λ2μ2 − λ3μ3,

Q1 = λ1μ0 + λ0μ1 + λ3μ2 − λ2μ3,

Q2 = λ2μ0 + λ0μ2 + λ1μ3 − λ3μ1,

Q3 = λ3μ0 + λ0μ3 + λ2μ1 − λ1μ2. (2.62)

If we like to express the resultant rotation in terms of the rotation vectors, we use
(2.58) to write
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Q = cos
�1

2
cos

�2

2
(1 + ρ2)(1 + ρ1)

= cos
�1

2
cos

�2

2
[(1 − ρ1 · ρ2) + ρ1 + ρ2 + ρ2 × ρ1]

= cos
�1

2
cos

�2

2
(1 − ρ1 · ρ2)[1 + ρ1 + ρ2 + ρ2 × ρ1

(1 − ρ1 · ρ2)
]. (2.63)

Comparing this with (2.58), we can write the resultant rotation quaternion in the
form

Q = cos
�

2
(1 + ρ). (2.64)

We find
ρ = ρ1 + ρ2 + ρ2 × ρ1

(1 − ρ1 · ρ2)
(2.65)

and

cos
�

2
= cos

�1

2
cos

�2

2
(1 − ρ1 · ρ2)

= cos
�1

2
cos

�2

2
− sin

�1

2
sin

�2

2
e1 · e2

= cos
�1

2
cos

�2

2
− sin

�1

2
sin

�2

2
cosχ. (2.66)

Rodrigues’s formula (2.65) gives the resultant rotation vector and (2.66) gives the
angle of the resultant rotation in terms of the two rotation angles and the angle χ
between the two axes of the rotations.

Note that Rodrigues’s formula (2.65) is not valid when ρ1 · ρ2 = 1. In that case,
from (2.66), we see that the rotation angle � = π. This is expected whenever we
deal with vectors of rotation.

2.10 Exercises

1- Show that the resultant of two half turns around different axes intersecting at an
angle θ is equivalent to a rotation at an angle 2θ around the axis orthogonal to the
two axes.

2- Put the formula (2.42) for the angular velocity in the quaternion form

ω = 2q−1q̇, (2.67)

and hence prove the formula (2.46).
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