
Chapter 13
Miscellaneous Cases Integrable on a
Single Level of the Areas Integral

In this chapter, we collect certain sets of conditional integrable cases of different ori-
gins and of various characters, which do not belong to one of the problems discussed
in previous chapters that have definite physical interpretation, but they are unified
only by being valid on a single level of the areas integral, and mostly on f = 0.
The first set consists of the separable cases investigated in Chap.9 above. Another
set began to appear in a work of Goryachev [117], who used an inverse method to
find potentials that admit existence of a complementary integral of the third or fourth
degrees in the components of the angular velocity, as modifications of the known
cases at that time. Those are Kowalevski’s case of a heavy body with a fixed point
and Chaplygin’s case of a rigid body in a liquid and Goryachev–Chaplygin’s case of
the classical problem. The search led in [117] to the new cases:

(1) A conditional case, on the level f = 0, under the condition A = B = 2C, with
the potential

V = a1γ1 + a2γ2 + b1(γ
2
1 − γ2

2) + 2b2γ1γ2 + λ

2γ2
3

.

This adds the singular term λ
2γ2

3
to a former result of Chaplygin [53], which

combines the potentials of Kowalevski’s classical case and Chaplygin’s case of
a body in a liquid.The complementary integral for this case is of the fourth degree.

(2) Another case under the condition A = B = 4
3C, with the potential

V = a + bγ1

γ
2
3
3

,

which admits a cubic integral.
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A variety of modifications and generalizations of known conditional integrable
cases have accumulated in the last three decades, mainly in the works of the
author and coworkers, as a result of the introduction of a new method of con-
struction of two-dimensional integrable systems living onRiemannianmanifolds
and whose integrals are polynomials in velocities [381]. The resulting systems
usually involved a large number of parameters, which could be adjusted to iden-
tify the metric of the problem with that of the reduced system of rigid body
dynamics after ignoring the precession angle as in Chap.9. Here we shall not
try to make any physical interpretation of the potential and gyroscopic terms
in each case, even though they are mostly generalizations of some of the cases
presented in the previous chapters in natural physical settings.

The most natural and comfortable classification of the relatively large number
(22) of known conditional integrable cases is the classification by the degree of the
polynomial complementary integral in every case. We shall follow this classification
here. We also give full-time sequence of each hierarchy of overlapping cases.

Although most of those cases do not have physical interpretation, due to strange
singularities in the potentials, we give full up-to-date list of them. As known cases
are scattered in the literature, we believe this step, made here for the first time, can
play a definite role in future development of the subject. As will be seen below, some
of those cases have already stimulated further studies on the separation of variables
and also on topological classification.

Remark 18 We have used the uniform and variable precession transformations in
some previous chapters. In the present one, those transformations will not be applied.
The reason is that in conditional cases on the level f = 0 this transformation may
be easily applied using an arbitrary function ν(γ) as discussed in Sect. 12.2 of the
preceding chapter.

13.1 Cases with a Quadratic Integral

It is well-known that a natural (time-reversible) mechanical system of two degrees
of freedom which admits an integral quadratic in velocities and independent of the
energy integral must be Liouville separable system in some generalized coordinates.
The dynamics of a rigid body acted upon by pure potential forces is time-reversible on
the zero-level of the cyclic integral.When gyroscopic forces are present, equations of
motion become irreversible and Liouville separability is lost. In the present section,
we list the three known types of potentials that admit a complementary quadratic
integral and hence admit Liouville separation and also three non-separable cases
with a quadratic integral.
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13.1.1 Separable Integrable Potentials

From the Minkowski analogy between the motion of a rigid body about a fixed point
and the motion of a material point on the inertia ellipsoid of the body at the fixed
point, it follows that certain potentials exist, which allow separation of variables on
the zero level of the areas integral. Those are of three types:

(1) Potentials separable in elliptic coordinates on the tri-axial ellipsoid (A �= B �=
C) Chap. 9 Sect. 9.7.2.

(2) Potentials separable in spherical coordinates for a dynamically symmetric body
(A = B), including the case of dynamical spherical symmetry at the fixed point
Chap.9 Sect. 9.7.1.

(3) Potentials separable in sphero-conic (elliptic) coordinates on the sphere of inertia
in the case of complete dynamical symmetry (A = B = C) Chap. 9 Sect. 9.7.3.

For all three types of separable cases μ = 0, f = 0 and u, v, F,G, g are arbitrary
functions of their arguments (Table13.1).

Table 13.1 Conditional integrable cases. The first 20 cases are valid on the level f = 0

1 Separable in elliptic coordinates on the ellipsoid of inertia [31, 224, 381]

V = Aγ21+Bγ22+Cγ23√
β

[u(α + √
β) + v(α − √

β)],
α = AB + BC + CA − ABC(

γ21
A + γ22

B + γ23
C ) = ABC[tr(I−1) − γI−1·γ],

β = α2 − 4ABCD, D = Aγ2
1 + Bγ2

2 + Cγ2
3 ≡ γI·γ.

I4 = A2 p2 + B2q2 + C2r2 + 1√
β
[(α − √

β)v(α − √
β) + (α + √

β)u(α + √
β)]

2 Separable in spherical coordinates on the Poisson sphere B = A

V = F(γ3) + A−(A−C)γ23
A(1−γ23 )

G(
γ1
γ2

) ≡ F(γ3) + A−(A−C)γ23
Aγ22

g( γ1
γ2

), G(
γ1
γ2

) = g(
γ1
γ2

)

1+(
γ1
γ2

)2

I4 = Cr2 + 2G(
γ1
γ2

)

3 Separable in sphero-conic coordinates on the Poisson sphere [390, 391]

A = B = C,

V = [u(α
′ −

√
β

′
)+v(α

′ +
√

β
′
)]√

β
′ ,

α
′ = a + b + c − (aγ2

1 + bγ2
2 + cγ2

3 ), β
′ = α′2 − 4abc(

γ21
a + γ22

b + γ23
c ).

I4 = (ap2 + bq2 + cr2)

+ 1√
β

′ [(α′ + √
β

′
)u(α

′ − √
β

′
) + (α

′ − √
β

′
)v(α

′ + √
β

′
)]

A special case of this separable potential, equivalent to F(γ3) = 0, was pointed
out also by Kolossov in [224], but the general potential seems to be unnoticed in the
literature. This type of potential appears as a part of the potential in some integrable
generalizations of Kowalevski’s case, which admit an integral quartic in velocities.
The quartic integral in those cases can be written as the square of the quadratic
integral in the separable
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13.1.2 Non-separable Cases with a Quadratic Integral

4 Yehia [414]
Separable (K = 0),
Subcase of Steklov’s (s = 0)

V = sS
2ABC

√
S2−4ABCD

,

S = A(B + C)γ2
1 + B(C + A)γ2

2 + C(A + B)γ2
3

μ = −K (
γ1
A ,

γ2
B ,

γ3
C ),

l = K
2ABC (A(B + C)γ1, B(C + A)γ2,C(A + B)γ3)

I4 = 1
2 (A2 p2 + B2q2 + C2r2) − K (pγ1 + qγ2 + rγ3) + s√

S2−4ABCD

5 Yehia [394]

V = n
A(B+C)γ21+B(C+A)γ22+C(A+B)γ23

Aγ21+Bγ22+Cγ23
μ = ∂F

∂γ − �γ

F = J
A(B+C)γ21+B(C+A)γ22+C(A+B)γ23√

ABC(Aγ21+Bγ22+Cγ23 )

� = J
2(A+B+C)v0−3v20+ 2ABC

Aγ21+Bγ22+Cγ23√
ABC(Aγ21+Bγ22+Cγ23 )

I3 = Apγ1 + Bqγ2 + Crγ3 + F
I4 constructed in elliptic coordinates and not in Euler-Poisson
variables. See [394]

6 Yehia [401]
Separable (N = 0)
Subcase of Lyapunov’s (K = 0)
A = B = C

V = C[− N2abc
2 (

γ21
a + γ22

b + γ23
c ) + K√

β
′ ]

l = − 1
2C((b + c)γ1, (c + a)γ2, (a + b)γ3)

μ = C(aγ1, bγ2, cγ3)

I4 = 1
2 [(b + c) p2 + (c + a) q2 + (a + b) r2]
−Nabc(p γ1

a + q γ2
b + r γ3

c ) + 1
2 K

a+b+c+aγ21+bγ22+cγ23√
β

′

13.2 Cases with a Cubic Integral

The list of such cases comprises only three items:

7 Yehia and Elmandouh 2016 [424] (c1, c2 added)
Yehia 2002 [409] c1 = c2 = 0
Sokolov and Tsiganov 2002 [337] e0 = e1 = λ = 0
Yehia [395] 1996 (Independently of [226]) e0 = e1 = c1 = c2 = 0
Komarov and Kuznetsov [226] 1987 e0 = e1 = c1 = c2 = a2 = 0
Sretensky [341] 1963 e0 = e1 = c1 = c2 = λ = 0
Goryachev [118] 1916 e0 = e1 = c1 = c2 = k = 0
Goryachev-Chaplygin [115] 1900, [52] 1901 e0 = e1 = c1 = c2 = k = λ==0
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A = B = 4C,

l = C

(
0, 0, k + c1γ1 + c2γ2 + e0(

2
γ43

− 1
γ23

) + e1
γ21+γ22

)
,

μ1 = C[c1γ3 + 2e0
γ1(4−γ23 )

γ53
− 2e1γ1γ2

(γ21+γ22 )2
],

μ2 = C[c2γ3 + 2e0
γ2(4−γ23 )

γ53
− 2e1γ1γ2

(γ21+γ22 )2
],

μ3 = C[k + c1γ1 + c2γ2 + e0
γ2(2−γ23 )

γ43
+ e1

γ21+γ22
],

V = C {a1γ1 + a2γ2 − c1c2γ1γ2

+ c22
2 γ2

1 + c21
2 γ2

2 + λ
γ23

+e0
(
γ2
3 − 2

) c1γ1+c2γ2
γ43

− e20
4−8γ23+5γ43

2γ83

+e1
k+e0−γ1c1−γ2c2

γ21+γ22
− 1

2 e
2
1
4γ21+4γ22+1
(
γ21+γ22

)2 }
I3 = 4pγ1 + 4qγ2

+[r + k + c1γ1 + c2γ2 + e1
γ21+γ22

+ e0(
2
γ43

− 1
γ23

)]γ3 = 0,

I4 =
[
r − k + c1γ1 + c2γ2 + e0(2−γ23 )

γ43
− e1(8γ21−1)

(γ21+γ22 )

] {[p + c1
2 γ3]2

+[q + c2γ3
2 ]2 + λ

2γ23
+ k( e0

γ43
− e1

2 ) − ( e12 + e0(2−γ23 )

2γ43
)r

+ (c1γ1 + c2γ2) [ e12 + e0(2−γ23 )

2γ43
] − e20(3γ

4
3−6γ23+4)

2γ83

+ e1
γ21+γ22

[ e1(1−8γ21 )

2 + 8γ21 (γ23−2)−2γ43+9γ23−8

2γ43
]
}

−γ3[(2e1c1 − c1k + a1)(p + c1γ3
2 )

+(2e1c2 − c2k + a1)(q + c2
2 γ3)]

+k

{
(c1γ1 + c2γ2)[ e0γ23 + e1(1−2γ23 )

γ21+γ22
] + 4e1γ21 (e0−2e1γ23 )

γ23 (γ21+γ22 )

− 4e1γ3
γ21+γ22

(pγ1 + qγ2)

}

− 8e0e1c2γ2γ21
γ23 (γ21+γ22 )

+ (a1γ1 + a2γ2)[ e0γ23 − e1
γ21+γ22

] + 4e1γ2
1 [ 2e

2
0

γ63
+ λ

γ23 (γ21+γ22 )
]

− 8e1c1γ31
γ21+γ22

[e1 + e0
γ23

] + 4e0e21γ
2
1

γ43 (γ21+γ22 )2
[8γ2

1 (γ
2
3 − 2) − (γ2

1 + γ2
2 )(γ

2
3 − 4)]

+ e1(c21+c22)

9(γ21+γ22 )
[18γ2

1γ
2
3 − 9γ4

3 + 13γ2
3 − 4] + 8e31γ

3
1 (1−4γ21 )

(γ21+γ22 )2

+ 2e1γ3
γ21+γ22

{q[c2(5γ2
1 − γ2

2 ) − 2c1γ1γ2]
+p[c1(3γ2

1 + γ2
2 ) − 2c2γ1γ2]}

− 16e1γ1γ2
γ21+γ22

[
pq − e1c2

2 γ1
] + 8e1(γ21−γ22 )

γ21+γ22
q2

The second case with a cubic complementary integral is due to Goryachev [117].
It is characterized by the following

8 Goryachev 1915 [117].
A = B = 4

3C,

l = μ = 0,
V = aγ1+bγ2+c

γ
2
3
3

,

I3 = 4
3 (pγ1 + qγ2) + rγ3 = 0,

I4 = 2r(p2 + q2) + r3 − 2aγ
1
3
3 p + r a+bγ1

γ
2
3
3

.
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Although having no obvious physical meaning, this case has received a growing
interest in the last years [45, 361]. It turns out to be the first example of a mechanical
system whose complex invariant varieties are strata of Jacobians of a non-hyper-
elliptic curve, here a trigonal curve of genus 3 [45].

Goryachev’s case 8 has been generalized to the following one involving two
(vector and scalar) potentials (Yehia 2002 [409]):

8* l = (0, 0,κ + 1
γ21+γ22

[3κ + e0γ
2
3
3 + e1(2+γ23 )

γ
2
3
3

]),
V = aγ1+bγ2+c

γ
2
3
3

+ 1(
γ21+γ22

)2 [ e20(4−7γ23 )

6γ
2
3
3

− e21(13γ
4
3−8γ23+4)

2γ
4
3
3

−e0e1(5γ2
3 − 2) + 3κ2γ23

2 (γ2
3 − 4)

−3e0κγ
8
3
3 − 3κe1γ

4
3
3 (γ2

3 + 2)].

where κ, e0 and e1 are arbitrary constants. Note that the constant gyrostatic momen-
tum κ is a coupling constant for some potential and gyroscopic terms.

For this generalization, one can easily write

I3 = 4

3
(pγ1 + qγ2) + {r + κ + 1

γ2
1 + γ2

2

[3κ + e0γ
2
3
3 + e1(2 + γ2

3)

γ
2
3
3

]}γ3 = 0,

but the complementary cubic integral is not yet expressed in the Euler–Poisson vari-
ables (See [409]).

Cases 7 and 8 were constructed as special cases of an integrable many-parameter
system with a cubic integral under some restrictions on those parameters.

9 Yehia 2000 [404].
Gaffet 1998 [96, 97] (The equivalent problem for a particle on a sphere).
A = B = C,

V = K

(γ1γ2γ3)
2
3

.l = 0.

I3 = pγ1 + qγ2 + rγ3 = 0,

I4 = Apqr − 2K (γ1γ2γ3)
1
3 (

p
γ1

+ q
γ2

+ r
γ3

).

13.3 Cases with a Quartic Integral

The thirteen presently known cases with a quartic integral are characterized by the
Kowalevski configuration A = B = 2C.They aremostly (but not all) generalizations
on the level f = 0 of the two classical cases: Kowalevski’s case of a heavy body and
Chaplygin’s case of a body in a liquid. It is curious to note that the main potential
in most of those cases is composed of the basic potential present in Kowalevski’s or
Chaplygin’s cases or both of them and some additional terms that belong to separable
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potentials discussed in Chap.9 Sect. 9.7.1. When alone, the last terms give rise to a
quadratic integral, instead of the quartic one.

Those cases are divided into five types, presented in the following subsections.

13.3.1 Cases Stemming from Kowalevski’s Case

Four cases of this type are listed here:

10 Yehia 1996 [396],
λ = 0 Yehia-Bedwehy 1987, (unconditional case) [419] (unconditional case),
λ = ε = 0 Kowalevski 1888 [238] (unconditional case).
A = B = 2C,

V = C[a1γ1 + a2γ2 + ε√
γ21+γ23

+ λ
γ23

],
l = μ = 0.
I3 = pγ1 + qγ2 + rγ3 = 0,

I4 = [p2 − q2 − a1γ1 + a2γ2 − λ(γ21−γ22 )

2γ23
]2

+[2pq − a1γ2 − a2γ1 − λγ1γ2
γ23

]2

+ε[ (p+nγ1)
2+(q+nγ2)

2
√

γ21+γ23

+ ε
γ21+γ23

+ 2λ
√

γ21+γ23

γ23
]

11 Yehia 2006 [413]
ν1 = δ2 = 0: Yehia-Bedwehy 1987 [419]
A = B = 2C.

V = C[a1γ1 + λ
γ23

+ ε√
1−γ23

+ 2−γ23
γ22

(δ2 + ν1γ1√
1−γ23

)].
l = μ = 0.
I3 = pγ1 + qγ2 + rγ3 = 0,

I4 = [p2 − q2 − a1γ1 − λ(γ21−γ22 )

γ23
]2 + [2pq − a1γ2 − 2λγ1γ2

γ23
]2

+[δ2 γ23
γ22

+
ε+ν1γ1

γ23
γ22√

1−γ23

][2p2 + 2q2 + δ2
γ23
γ22

+
ε+ν1γ1

γ23
γ22√

1−γ23

]

+ 2λε
√
1−γ23

γ23
− 2

γ22
(a1γ2

3 + λγ1)(δ2γ1 + ν1

√
1 − γ2

3 )

The main result of [413] was the construction of an integrable system of two
degrees of freedom living on a Riemannian (or pseudo-Riemannian1) manifold and
admitting an integral of degree four in velocities. Cases 11, 14 were obtained as
special cases under suitable restrictions of this twenty-one-parameter system that
render the metric to that of the Routhian of the rigid body dynamics. Case 18 below
was obtained by further development of the method of [413].

Separation variables and expressions of the dynamical variables in terms of them
are constructed for case 11 in [218] (See also [137]), without treating the inversion
of the resulting quadratures.

1 In differential geometry, that is a manifold whose metric is not necessarily positive-definite
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12 Yehia, Elmandouh 2011 [422]
c = 0. Yehia-Bedwehy (unconditional case) [419]
λ = 0. Sokolov (unconditional case)
A = B = 2C,

V = C[aγ1 + c2
2 (γ2

1 − γ2
3 ) + ε√

γ21+γ22

+ λ
γ23

],
μ = Cc(0, γ3, γ2),

I4 = (p2 − q2 − aγ1 − crγ2 − c2γ2
1 − λ(γ21−γ22 )

γ23
)2

+(2pq − aγ2 + crγ1 − c2γ1γ2 − 2λγ1γ2
γ23

)2

+ε[ 2(p2−q2)√
γ21+γ22

+ ε
γ21+γ22

+ 2
√

γ2
1 + γ2

2 (c
2 + λ

γ23
)]

13 Yehia, Elmandouh 2011 [422],
λ = 0: the integral I4 becomes unconditional and gives Sokolov’s [336].
A = B = 2C,

V = C[κcγ1 + a2γ2 + c2
2 (γ2

2 − γ2
3 ) + λ

γ23
],

l = C (0, 0, k + cγ1) ,

μ = C(cγ3, 0,κ + cγ1),

I4 =
[
p2 − q2 + a2γ2 + c2γ2

2 − cγ1(κ − r) − λ(γ21−γ22 )

γ23

]2

+
[
2pq − a2γ1 − c2γ1γ2 − cγ2(κ − r) − 2λγ1γ2

γ23

]2

+2κ(r − κ + cγ1)[p2 + q2 + 2cpγ3 + λ(1 + 1
γ23

) − γ3
(
2qa2 + c2κγ3

)]
−2κc2[4γ3(pγ1 + qγ2) − (1 − γ2

3 )(r + cγ1)].

13.3.2 Cases Stemming from Chaplygin’s Case

Four cases of this type are listed in the following table:

14 Yehia 2006 [413]
δ1 = δ2 = 0, Yehia 2003 [411]
δ1 = δ2 = ρ = 0, Goryachev [118]
δ1 = δ2 = ρ = λ = 0, Chaplygin [53]
A = B = 2C,

V = C[b1(γ2
1 − γ2

2 ) + λ
γ23

+ ρ( 1
γ43

− 1
γ63

)

+(2 − γ2
3 )(

δ1
γ21

+ δ2
γ22

)],
l = μ = 0,
I3 = 2pγ1 + 2qγ2 + rγ3 = 0,

I4 = [p2 − q2 + b1γ2
3 − λ(γ21−γ22 )

γ23
]2 + 4[pq − λγ1γ2

γ23
]2

+2(p2 + q2){ρ[ 1
γ43

− 1
γ63

] + γ2
3 [ δ1

γ21
+ δ2

γ22
]} + ρ

(γ21+γ22 )2

γ123
(ρ − 2λγ4

3 )

+ 2ρb1(γ21−γ22 )

γ43
− 2b1γ4

3 [ δ1
γ21

− δ2
γ22

] + γ4
3 [ δ1

γ21
+ δ2

γ22
]2

−2(ρ + λγ4
3 )

1−γ23
γ43

[ δ1
γ21

+ δ2
γ22

].
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Together with case 11, this case was constructed in [413] (See comment next to
case 11). Separation variables and quadratures were constructed for this case (and
for case 11) in [137].

15 Yehia-Elmandouh 2013 [423]
K = 0 Yehia [411] (Sect. 4.2.3) 2003
K = ρ = 0 Goryachev [118] 1916
K = ρ = λ = 0 Chaplygin [53] 1903
A = B = 2C
V = C{k [

2dγ1γ2 + c(γ2
1 − γ2

2 )
]

+K 2[2cdγ1γ2(γ
2
1 − γ2

2 ) + d2
2 (γ4

3 + 4γ2
1γ

2
2 )

−c2(γ2
3 (γ

2
1 + γ2

2 ) + 2γ2
1γ

2
2 )] + λ

γ23
+ ρ( 1

γ43
− 1

γ63
)},

l = C(0, 0, K [d(γ2
2 − γ2

1 ) + 2cγ1γ2]),
μ = C(2Kγ3(cγ2 − dγ1), 2Kγ3(dγ2 + cγ1),

K [d(γ2
2 − γ2

1 ) + 2cγ1γ2]).
I3 = 2pγ1 + 2qγ2 + {r + K

[
d(γ2

2 − γ2
1 ) + 2cγ1γ2

]}γ3,
I4 = {p2 − q2 + ckγ2

3 + γ2
3 [Kdr + cK 2(c(γ2

1 − γ2
2 ) + 2dγ1γ2)]

− λ(γ21−γ22 )

γ23
}2

+{2pq + dkγ2
3 + [dK 2(c(γ2

1 − γ2
2 ) + 2dγ1γ2) − Kcr ]γ2

3
− 2λγ1γ2

γ23
}2

+ρ{ 2(γ23−1)

γ63
[p2 + q2]

− 2Kr
γ43

[2cγ1γ2 + d(γ2
2 − γ2

1 )]
+ (1−γ23 )2

γ123
(ρ − 2λγ4

3 )

+K 2[2c2( 1
γ43

− 2
γ23

) + 8
(d2−c2)γ21γ22+cdγ1γ2(γ

2
1−γ22 )

γ43
]

+ 2k
γ43

[c(γ2
1 − γ2

2 ) + 2dγ1γ2]}.

16 Yehia and Elmandouh 2016 [425]
κ = 0 : Special case of Yehia and Elmandouh [423]
A = B = 2C
V = C{κ[c(γ2

1 − γ2
2 ) + 2dγ1γ2] + κK [2cγ1γ2 − d(γ2

1 − γ2
2 )]+K 2{2cdγ1γ2(γ

2
1 − γ2

2 ) − c2[γ2
3 (γ

2
1 + γ2

2 ) + 2γ2
1γ

2
2 ]

+ d2
2 (γ4

3 + 4γ2
1γ

2
2 )} + λ

γ23
},

l = C(0, 0,κ + K [2cγ1γ2 − d(γ2
1 − γ2

2 )]),
μ = C(2Kγ3(cγ2 − dγ1), 2Kγ3(cγ1 + dγ2),κ + K [2cγ1γ2 + d(γ2

2 − γ2
1 )]),

I3 = 2pγ1 + 2qγ2 + (r + κ + K [2cγ1γ2 + d(γ2
2 − γ2

1 )])γ3,
I4 = {

p2 − p2 + ckγ2
3 + cK 2γ2

3 [c(γ2
1 − γ2

2 ) + 2dγ1γ2]
+dK [2κ − γ2

3 (3κ − r)] − λ(γ21−γ22 )

γ23

}2

+ {
2pq + kdγ2

3 + dK 2γ2
3 [2dγ1γ2 + c(γ2

1 − γ2
2 )]

+cK [γ2
3 (3κ − r) − 2κ] − 2λγ1γ2

γ23

}2

+2κ[r − κ − K (2cγ1γ2 + d(γ2
2 − γ2

1 ))]
{
p2 + q2 + λ(1 + 1

γ23
)

+γ2
3 [K 2(c2 + d2)(γ2

3 − 1) − 2dκK + κc]
}
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−4κγ3 {[2Kκ(cγ1 + 2dγ2) − k(2cγ2 − dγ1)](q + nγ2)
+γ2(p + nγ1)(2cκK + dk)}

−8κ
{
c2Kγ2

3 [κK (γ2
3 − 1) − kγ1γ2]

+c{2κdK 2γ1γ2γ
2
3 + K [ 12 kdγ4

3 − 2λγ1γ2
+dkγ2

3 (γ
2
1 − 1

2 )] − 1
2 kκγ2

3 }−2κd2K 2γ2
1γ

2
3 + K [2λdγ2

1 + d(κ2 + λ)γ2
3 ]

}

17 Yehia 2003 [411]
Goryachev 1916 [118], ρ = 0.
Chaplygin 1903 [53] λ = ρ = 0.
A = B = 2C,

V = C[c(γ2
1 − γ2

2 ) + 2dγ1γ2 + λ
γ23

+ ρ( 1
γ43

− 1
γ63

)],
l = μ = 0,
I3 = 2pγ1 + 2qγ2 + rγ3 = 0,

I4 = [p2 − q2 + cγ2
3 − λ

(
γ21−γ22

)

γ23
]
2
+ [2 pq + dγ2

3 − 2 λ γ1γ2
γ23

]2

+2 ρ [( 1
γ43

− 1
γ63

)
(
p2 + q2

) + c
(
γ21−γ22

)

γ43
+ 2 d γ2 γ1

γ43
− λ

(
1−γ23

)2

γ83
]

+ρ2
(
1−γ23

)2

γ123
.

Elmandouh (2015) [73] introduced a two-parameter generalization of this case
by adding singular terms into the vector and scalar potentials:

17∗ V = C[c(γ2
1 − γ2

2 ) + 2dγ1γ2 + λ
γ23

+ ρ( 1
γ43

− 1
γ63

) + (γ23−2)γ23
2γ21

( ν1
γ1

+ ν2
γ2

)2],

l = C(0, 0,
2−γ23

γ1
( ν1

γ1
+ ν2

γ2
)).

The fourth integral is also given in the Euler–Poisson variables in [73].

13.3.3 Cases Combining Kowalevski’s and Chaplygin’s Cases

Two cases are listed in the following table:

18 Yehia 2012 [415],
δ = 0 Goryachev 1917 [118],
δ = λ = a1 = 0 Chaplygin 1903 [53],
δ = λ = a2 = 0 Kowalevski 1888 [238],
A = B = 2C,

V = 2C[a1γ1 + a2(γ2
1 − γ2

2 ) + λ
γ23

+ δ
2−γ23
γ22

],
l = μ = 0,
I3 = 2pγ1 + 2qγ2 + rγ3 = 0,

I4 = [p2 − q2 − a1γ1 + a2γ2
3 − λ(γ21−γ22 )

γ23
)2

+(2pq − a1γ2 − 2λγ1γ2
γ23

)2

+ δ
γ22

{2[(p2 + q2]γ2
3 − 2a1γ1γ2

3 − 2λγ2
1 + 2a2 + δγ43

γ22
}.
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TheGoryachev subcase (δ = 0) of case 18 has led to complex separation variables
in [337, 359].

19 Yehia 1996 [396],
λ = 0. Yehia 1987 [386],
k = 0. Goryachev [118],
k = a2 = λ = 0 Chaplygin 1903 [53],
k = b1 = b2 = λ = 0 Kowalevski 1888 [238],

V = C[a1γ1 + a2γ2 + b1(γ2
1 − γ2

2 ) + b2γ1γ2 + λ
2γ23

],
l = μ = C(0, 0, k).
I3 = 2pγ1 + 2qγ2 + (r + k)γ3 = 0,

I4 = [p2 − q2 − a1γ1 + a2γ2 + b1γ2
3 − λ(γ21−γ22 )

2γ23
]2

+[2pq − a1γ2 − a2γ1 + b2γ2
3 − λγ1γ2

γ23
]2

+k{(r − k)[2(p2 + q2) + λ(1 + 1
γ23

)]
−4γ3[(a1 + b1γ1 + b2γ2)p + q(a2 + b2γ1 − b1γ2)]}.

Elmandouh (2015) [74], added a parameter e, which engenders singular terms in
the vector and scalar potentials, as follows:

19∗ V = C{a1γ1 + a2γ2 + b1(γ2
1 − γ2

2 ) + b2γ1γ2 + λ
2γ23

− eγ23
γ21

[k − e(2γ22+γ23 )

2γ21
]},

l = C

(
0, 0, k + e(1+γ22 )

γ21

)
,

μ = C

(
−2eγ3

γ31
(1 + γ2

2 ),
2eγ2γ3

γ21
, k + e(1+γ22 )

γ21

)
,

The complementary integral was also provided in [74].
Separation of variables for the Chaplygin level of the above hierarchies was

attained by Chaplygin himself. For detailed solution see Chap.10 Sect. 10.16. The
version κ �= 0 of this case was considered in Tsiganov’s work [358], where an
assertion is made that separated variables are constructed for what the author calls
“theKowalevski–Goryachev–Chaplygin gyrostat”. However, the proposed separated
variables are complex functions of the physical variables. It remains an open problem
how to construct real solutions using complex hyper-elliptic quadratures [358].Note
that the title and references in that work have brought certain confusion, which was
commented in our note [410].

In [416], it was shown that the problem of motion of a rigid body, with A = 2C
and arbitrary B, subject to forces with potential containing one Kowalevski term,
one Chaplygin term together with the singular Goryachev term

V = a1γ1 + b1(γ
2
1 − γ2

2) + c1
γ2
3

, (13.1)

under the additional restrictions q = 0, f = 0, is solvable in elliptic functions of
time. The solution is the same in case 17, when A = B = 2C, n = κ = a2 = b2 = 0
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under the additional restriction q = 0. Without this restriction, the solution corre-
sponding to the last potential (13.1) is not known at this moment.

The subcase with the potential

V = b1(γ
2
1 − γ2

2) + c1
γ2
3

, (13.2)

common between hierarchies #14-19, has attracted more attention. It is called by
some authors the “Goryachev system”. Ryabov found real separation variables for
this case in [323], reduced its integration to hyper-elliptic quadratures and studied the
phase topology for positive values of the parameters, i.e. when the integral surfaces
are compact. The case of negative values of the parameters, when the integral surfaces
become non-compact, is treated by Nikolaenko [297], who has also shown that
Goryachev’s system is Liouville equivalent to other integrable cases in rigid body
dynamics, according to the value of the energy parameter on the admissible energy
interval [hmin,∞) [296].

13.3.4 A Case with a Quartic Integral Outside the Above
Classification

20 Yehia 2003 [411], f = 0,
A = B = 2C,

V = aγ3

(γ21+γ22 )
3
4

+ b√
γ21+γ22

+
γ3

√

cγ1+dγ2+
√

(c2+d2)(γ21+γ22 )
√

γ21+γ22

,

μ = 0.

This is a case of algebraic potential, which involves three singular terms of dif-
ferent fractional powers. It reminds the case of fractional power potential and third-
degree integral due to Goryachev. The fourth integral for this case can be expressed
in terms of Euler’s angles, using formulas provided in [411], but it is not constructed
yet in the Euler-Poisson variables.

13.3.5 Two Conditional Cases Valid on a Single, Not
Necessary Zero, Level of the Linear Integral [421]

This case adds to Yehia’s gyrostat the parameter m, figuring in potential and gyro-
scopic terms, and turns into it whenm = 0. The quartic integral is expressed in terms
of Euler’s angles, but not in Euler-Poisson variables [421] (Table13.2).
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Table 13.2 Conditional cases on a single level of the linear integral f = α(αarbitrary)

1 A = B = 2C,

V = aγ1 + bγ2 − m
2(γ21+γ22 )

[
2(k − m) − 2αγ3 + m

γ21+γ22

]
,

l = (0, 0, k + m
γ21+γ22

)

2 V = aγ1 + bγ2 − k
2(γ21+γ22 )

[
−2αγ3 + k

γ21+γ22

]

+
λ+γ3

√
c2+d2

2

√
γ21+γ22+ c2−d2

2 γ2+cdγ1
√

γ21+γ22

,

l = (0, 0, k + k
γ21+γ22

).

Case 2 generalizes the case of Yehia and Bedwehi. In both cases, the added new
terms are all singular at the two positions γ = (0, 0,±1).

13.4 Integrable Extensions of Conditional Integrable Cases

As remarked in the beginning of this chapter, the method of transformation with an
arbitrary function ν(γ1, γ2, γ3) used in Sect. 12.2 of the last chapter is also applicable
to all conditional integrable cases, valid on the zero level of the cyclic integral, i.e.
to the 20 cases of this type listed in the last three sections.

We shall not give here a list of generalizations of the conditional cases. Most of
those cases involve singular terms that are not likely to get acceptable physical inter-
pretation. Physical effects of the transformation are here immaterial and will remain
at present just as parts of mathematical models. Moreover, unlike the generalized
cases introduced in Chap.12, the flexibility offered by the presence of the areas con-
stant as an arbitrary parameter is here lost. The transformed integrable problems and
their original counterparts share the same Hamiltonian. To this kind of extension of
conditional integrable cases applies the argument of Borisov andMamaev [41], men-
tioned in the last section of the preceding chapter and they need not to be considered
unless for some reason it becomes necessary to use a concrete form of the function
ν in the transformation.
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