
Chapter 12
The Most General Integrable Cases
in Rigid Body Dynamics

In this chapter, we present a small, but most exotic, set of general and conditional
integrable cases, which constitute currently the uppermost level of the hierarchy
of integrable cases in rigid body dynamics. That level is inaccessible for all direct
methods used in mechanics in the past. Methods which investigate the existence of
analytical or polynomial integrals and the existence of single-valued solutions of the
equations of motion are equally hopeless in facing such a wide class of problems.
Here, we speak about several-parameter generalizations of six of the seven integrable
cases in the dynamics of a body in a liquid in two different ways, general and
conditional, by applying Theorems 2 and 3 of the last chapter.

12.1 General Integrable Cases

Listed in Table 12.1 are the most general and most exotic integrable cases known
up-to-date of the problem of motion of a rigid body about a fixed point under the
action of an axi-symmetric combination of conservative potential and gyroscopic
forces. Their generality results from the extra number of parameters (an arbitrary
function in case 7) included in their structure. The first five of the seven general
integrable cases, namely cases occupying positions 1–5 in Table 12.1, are obtained by
applying Theorem 2 of the preceding chapter to construct unconditional integrable
generalizations of all but one of the integrable cases of Chap.10 concerning the
motion of a body in a fluid. Depending on the structure of the potential, a number of
additional parameters, ranging up to 4, is added to the structure of each case. The case
number 6 of Table 12.1 is obtained by applying the same Theorem 2 to a general
integrable case found by Yehia and Bedwehy. The latter generalizes the classical
Kowalevski case by adding a singular term ε√

1−γ2
3

to the heavy body potential.
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Table 12.1 General integrable extensions of general integrable cases

1 Yehia [398] (1997),
Oreshkina [301],
Clebsch [55]: n1 = 0,
Brun [47]: n = n1 = 0,
Tisserand [354]: n = n1 = 0

V = (Aγ2
1 + Bγ2

2 + Cγ2
3 ){b − 1

2 [n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )]2},

ν = n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 ),

l = [n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )]γI,

μ1 = γ1{(A − B − C) [n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )]

+2n1[A(Aγ2
1 + Bγ2

2 + Cγ2
3 ) − (A2γ2

1 + B2γ2
2 + C2γ2

3 )]},
μ2 = γ2{(B − C − A) [n + n1(Aγ2

1 + Bγ2
2 + Cγ2

3 )]
+2n1[B(Aγ2

1 + Bγ2
2 + Cγ2

3 ) − (A2γ2
1 + B2γ2

2 + C2γ2
3 )]},

μ3 = γ3{[(C − A − B)[n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )]

+2n1[B(Aγ2
1 + Bγ2

2 + Cγ2
3 ) − (A2γ2

1 + B2γ2
2 + C2γ2

3 )]}
I3 = Apγ1 + Bqγ2 + Crγ3

+[n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )](Aγ2

1 + Bγ2
2 + Cγ2

3 )

I4 = A2{p + γ1[n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )]}2

+B2{q + γ2[n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )]}2

+C2{r + γ3[n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )]}2

−2(b − n1 I3)(BCγ2
1 + CAγ2

2 + ABγ2
3 )

I3 = M1 γ1 + M2 γ2 + M3 γ3,

H = 1/2 (
M2

1
A + M2

2
B + M2

3
C ) + b

(
Aγ2

1 + Bγ2
2 + Cγ2

3

)

− (M1 γ1 + M2 γ2 + M3 γ3) [n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3 )]

I4 = 1
2 (M2

1 + M2
2 + M2

3 )

−ABC(b − n1 I3)(BCγ2
1 + CAγ2

2 + ABγ2
3 )

The last of those cases, number 7, is the ultimate generalization of Lagrange’s case
to the most general case in which the proper rotation angle ϕ is a cyclic coordinate
and the fourth integral is the cyclic integral.

We also give relevant supplementary information and some characteristic proper-
ties of the cases provided in the table of the last section. Some clarifications are made
about the present status of the explicit solution of each of the generalized cases as
per the progress made in solving their primitive counterparts at the lower levels of
the hierarchy.

12.1.1 Table of General Integrable Extensions of General
Integrable Cases

This case includes one parameter n1 more than Clebsch’s case and two parameters
n, n1 more than Brun’s problem. As established in the last chapter, the explicit solu-
tion for this case in terms of time can be obtained by the variable precession transfor-
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mation (11.31) from the basic solution n = n1 = 0, given by Kötter in terms of theta
functions of two arguments for the first integrable case of Clebsch (see Chap. 10).

In [301], an integrable case of M. Kharlamov’s equations was constructed. It
admits a fourth integral quadratic in the angular velocities, with coefficients depend-
ing on γ. To this end, the author used an ansatz for the quadratic integral, and used
consistency conditions with the equations of motion. The resulting expressions are
quite complicated and lack transparency. The author has neither noted the possibil-
ity of transforming this case to Clebsch’s case of motion of a body in a liquid, nor
even any relation to Clebsch’s case as a special case. Consequently, to the end of
her paper, the author states that the existence of the fourth algebraic integral “means
the possibility, in principle, to reduce the problem to quadrature”. Our method gives
an effortless constructive way to build the explicit solution by applying the variable
precession transformation to Kötter’s solution.

2 Yehia [398] (1997),
Kharlamova L. [214] (1990): n1

c1
= n2

c2
= n3

c3
Clebsch’s case of spherical symmetry [55]: n1 = n2 = n3 = 0.
B = C = A,

V = 1
2 A[c1γ2

1 + c2γ2
2 + c3γ2

3 − (n + n1γ2
1 + n2γ2

2 + n3γ2
3 )

2],
ν = n + n1γ2

1 + n2γ2
2 + n3γ2

3 ,

l = Aνγ,

μ1 = −Aγ1[n + n1γ2
1 + γ2

2 (3n2 − 2n1) + γ2
3 (3n3 − 2n1)],

μ2 = −Aγ2[n + γ2
1 (3n1 − 2n2) + n2γ2

2 + (3n3 − 2n2) γ2
3 ],

μ3 = −Aγ3[n + γ2
1 (3n1 − 2n3) + γ2

2 (3n2 − 2n3) + n3γ2
3 ]

I3 = pγ1 + qγ2 + rγ3 + n + n1γ2
1 + n2γ2

2 + n3γ2
3 ,

I4 = (c1 − 2n1 I3) (p + νγ1)
2 + (c2 − 2n2 I3) (q + νγ2)

2

+ (c3 − 2n3 I3) (r + νγ3)
2

−[(2n2 I3 − c2) (2n3 I3 − c3) γ2
1 + (2n3 I3 − c3) (2n1 I3 − c1) γ2

2
+ (2n1 I3 − c1) (2n2 I3 − c2) γ2

3 ]
I ∗
3 = M1 γ1 + M2 γ2 + M3 γ3,

H = 1
2A (M2

1 + M2
2 + M2

3 ) + 1
2 (c1γ2

1 + c2γ2
2 + c3γ2

3 )

−(n + n1γ2
1 + n2γ2

2 + n3γ2
3 ) (M1 γ1 + M2 γ2 + M3 γ3)

I4 = (
Ac1 − 2n1 I ∗

3

)
M2

1 + (
Ac2 − 2n2 I ∗

3

)
M2

2 + (
Ac3 − 2n3 I ∗

3

)
M2

3
−A[(2n2 I ∗

3 − Ac2
) (
2n3 I ∗

3 − Ac3
)
γ2
1 + (

2n3 I ∗
3 − Ac3

) (
2n1 I ∗

3 − Ac1
)
γ2
2

+ (
2n1 I ∗

3 − Ac1
) (
2n2 I ∗

3 − Ac2
)
γ2
3 ]

In this case, the body has spherical dynamical symmetry. The basic case n1 =
n2 = n3 = 0 is a case of the motion of a body in a liquid (Case 3 of Table 10.1 of
Sect. 10.15). It is closely related to the other Clebsch’s integrable case with a tri-axial
body in the same problem. The solution of this case can be expressed in terms of
theta functions of two variables [233] (see also [71]) and so, in principle, will be
the present generalization. However, this point needs a closer examination, as the
present case presents some unusual and rarely met characteristic properties.

(1) The presence of the three extra parameters n1, n2, n3, which we assume dif-
ferent, raises the degree of the polynomial potential V (γ) from 2 to 4 and the degree
of the components of μ from 1 to 3. The combination of forces acting on the body
has turned into a much complicated one, compared to the original.
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(2) The presence of the same parameters raises the degree of the complemen-
tary polynomial integral I4 as a function of the angular velocity components in the
six-dimensional phase space {ω,γ} of the three-dimensional problem from 2 to 3.
However, on every level of the integral I3, say, I3 = f, the complementary inte-
gral I4 becomes of the second degree. This may be reformulated in the language of
analytical dynamics in the following way: The reduced equations of motion of the
problem under consideration after ignoring the cyclic coordinate ψ admit a quadratic
complementary integral I4 in the other two Eulerian angles {θ̇, ϕ̇}.

(3) An exceptional case arises, when the two sets of constants are proportional

n1
c1

= n2
c2

= n3
c3

= λ (say).

Then I4 takes the form

I4 = (1 − 2λI3) {c1(p + νγ1)
2 + c2(q + νγ2)

2 + c3(r + νγ3)
2

− (1 − 2λI3) [c2c3γ2
1 + c3c1γ

2
2 + c1c2γ

2
3 ]}.

For arbitrary value of I3, one can cancel the first factor (1 − 2λI3) to obtain for I4
the expression

I4 = c1(p + νγ1)
2 + c2(q + νγ2)

2 + c3(r + νγ3)
2

− (1 − 2λI3) [c2c3γ2
1 + c3c1γ

2
2 + c1c2γ

2
3 ],

which is quadratic in the velocities, but has some linear terms. This is the case of a
quadratic integral found in [214] in a more complicated and less transparent way.

3 Yehia [398] (1997),
Rubanovsky [317]: n1 = n2 = n3 = 0
Lyapunov [267]: n1 = n2 = n3 = a1 = a2 = a3 = 0
B = C = A,

ν = n + n1γ1 + n2γ2 + n3γ3,
V = A{a1γ1 + a2γ2 + a3γ3 − 1

2 (bcγ2
1 + caγ2

2 + abγ2
3 )

+ 1
2ν[(b + c) γ2

1 + (c + a) γ2
2 + (a + b) γ2

3 ] − 1
2ν2},

l = A[− 1
2 ((b + c)γ1, (c + a)γ2, (a + b)γ3) + νγ]

μ1 = A[n1 + γ1(a + n − 2ν)],
μ2 = A[n2 + γ2(b + n − 2ν)],
μ3 = A[n3 + γ3(c + n − 2ν)]
I3 = (pγ1 + qγ2 + γ3r) − 1

2 [ (b + c) γ2
1 + (c + a) γ2

2 + (a + b) γ2
3 ] + ν

I4 = 1
2 { (b + c) (p + νγ1)

2 + (c + a) (q + νγ2)
2 + (a + b) (r + νγ3)

2}
+ (−n1 I3 + a1) (p + νγ1 + aγ1)
+ (−n2 I3 + a2) (q + νγ2 + bγ2)
+ (−n3 I3 + a3) (r + νγ3 + cγ3)
−(bcpγ1 + caqγ2 + abrγ3) − ν(bcγ2

1 + caγ2
2 + abγ2

3 )
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I ∗
3 = M1γ1 + M2γ2 + M3γ3,

H = 1
2A (M2

1 + M2
2 + M2

3 ) + 1
2 [(b + c)M1γ1 + (c + a)M2γ2 + (a + b)M3γ3]

+[(Aa1 − n1 I ∗
3 )γ1 + (Aa2 − n2 I ∗

3 )γ2 + γ3(Aa3 − n3 I ∗
3 )]

− A
8 [(a2 + 2bc)γ2

1 + (b2 + 2ca)γ2
2 + (c2 + 2ab)γ2

3 ]
I4 = (b + c)[M1 + A

2 (b + c)γ1]2 + (c + a)[M2 + A
2 (c + a)γ1]2

+(a + b)[M3 + A
2 (a + b)γ1]2

+(Aa1 − n1 I ∗
3 )[2M1 + A(2a + b + c)γ1]

+(Aa2 − n2 I ∗
3 )[2M2 + A(a + 2b + c)γ2]

+(Aa3 − n3 I ∗
3 )[2M3 + A(a + b + 2c)γ3]

−A{bcγ1[2M1 + A(b + c)γ1] + caγ2[2M2 + A(c + a)γ2]
+abγ3[2M3 + A(a + b)γ3]}

Lyapunov’s case s1 = s2 = s3 = n1 = n2 = n3 = 0 [267] was solved by Kötter,
as well as the related Steklov case, in terms of theta functions of two arguments
[235]. This solution will cover the case s1 = s2 = s3 = 0 for arbitrary n1, n2, n3.
It is obvious that to express the solution in the most general case by applying the
variable precession transformation, it suffices to obtain the solution for the basic case
n = n1 = n2 = n3 = 0, s1s2s3 �= 0. This was not done up to the present time.

4 Yehia [398] (1997),
Yehia [383] n1 = n2 = 0,
Yehia [380]: n = n1 = n2 = 0,
Kowalevski [238]: k = n = n1 = n2 = 0
A = B = 2C,

V = C[a1γ1 + a2γ2 − κγ3ν − 1
2ν2

(
2γ2

1 + 2γ2
2 + γ2

3

)],
ν = n + n1γ1 + n2γ2.
μ1 = C

(−nγ1 − n1γ2
1 + 2n1γ2

2 + n1γ2
3 − 3n2γ1γ2

)
,

μ2 = C
(−γ2n + 2n2γ2

1 − n2γ2
2 + n2γ2

3 − 3n1γ1γ2
)
,

μ3 = C(κ − 3nγ3 − 5n1γ1γ3 − 5n2γ2γ3)
I3 = 2pγ1 + 2qγ2 + (r + κ)γ3 + ν

(
2γ2

1 + 2γ2
2 + γ2

3

)

I4 = [(p + νγ1)
2 − (q + νγ2)

2 − (a1 − n1 I3) γ1 + (a2 − n2 I3) γ2]2
+[2(p + νγ1)(q + νγ2) − (a1 − n1 I3) γ2 − (a2 − n2 I3) γ1]2
+2κ (r + νγ3 − κ) [(p + νγ1)

2 + (q + νγ2)
2]

−4κγ3[(a1 − n1 I3) (p + νγ1) + (a2 − n2 I3) (q + νγ2)]
I ∗
3 = M1γ1 + M2γ2 + M3γ3,

H = 1
2C (

M2
1+M2

2
2 + M2

3 ) − kM3 + C(a1γ1 + a2γ2)
−(n + n1γ1 + n2γ2)(M1γ1 + M2γ2 + M3γ3)

I4 = [ M2
1−M2

2
4C2 − (a1 − n1

C I ∗
3 )γ1 + (a2 − n2

C I ∗
3 )γ2]2

+[ M1M2
2C2 − (a1 − n1

C I ∗
3 )γ2 − (a2 − n2

C I ∗
3 )γ1]2

+ k
C2 ( M3

2C − k)(M2
1 + M2

2 )

− 2k
C2 γ3[(a1 − n1

C I ∗
3 )M1 + (a2 − n2

C I ∗
3 )M2]

In view of the presence of the coefficients a1, a2 in the linear terms of V and n1, n2
in the function ν, it is evident that by rotating the xy axes one can eliminate one of
those four coefficients. Suppose we have eliminated a2, then n2 will remain there,
although it will not appear if we apply our method to the basic potential without a2.
Thus, we shall keep the four terms and the resulting case will neither repeat nor be
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included in the other generalization of Kowalevski’s case in the line leading to case
number 5.

The Euler–Poisson variables in Kowalevski’s case were expressed by Kowalevski
herself in terms of hyper-elliptic functions of time [238]. The solution was some-
what simplified and systematized by Kötter [232, 234] (see also [256]). Explicit
expressions for the six variables in terms of the separation variables can also be
found in [113, 256]. Many qualitative and global properties of motion are discussed
in [240] The same problem was treated in a large number of recent works using
methods of modern algebraic geometry and the inverse scattering method (e.g. [71,
145] and references cited therein). Of special interest is the work [152], which relates
the Kowalevski case to a special version ( f = 0) of Clebsch’s case by means of a
rational transformation and thus explicit solutions for the first can be obtained from
that of the other. The same idea was realized for our generalization of Kowalevski’s
case to the gyrostat by Gavrilov, who related it to the full case of Clebsch ( f �= 0)
solvable in Theta functions of two arguments [110]. Thus, it becomes evident that the
generalized case under discussion here is, in principle, solvable in terms of the same
class of functions. However, a direct separation of Yehia’s gyrostat is not achieved
yet (see Chap.5, Sect. 5.6).

5 Yehia [411]
Sokolov [336] n = n2 = 0
Yehia [380] n = n2 = c = 0
Kowalevski [238]n = n2 = c = κ = 0
A = B = 2C,

ν = n + n2γ2,

V = C[κcγ1 + a2γ2 − ν(κ + cγ1)γ3 − c2
2 (γ2

1 + 2γ2
3 )

− ν2

2 (2γ2
1 + 2γ2

2 + γ2
3 )],

l = C(2νγ1, 2νγ2,κ + νγ3 + cγ1),
μ1 = C(cγ3 − nγ1 − 3n2γ1γ2),
μ2 = C[−nγ2 + n2

(
2γ2

1 − γ2
2 + γ2

3

)],
μ3 = C(κ + cγ1 − 3nγ3 − 5n2γ2γ3)
I3 = 2pγ1 + 2qγ2 + (r + κ + cγ1)γ3

+(n + n2γ2)(2γ2
1 + 2γ2

2 + γ2
3 ),

I4 = {(p + νγ1)
2 − (q + νγ2)

2 + (a2 − n2 I3)γ2 + c2γ2
2 + cγ1(r + νγ3 − κ)}2

+{2(p + νγ1)(q + νγ2) − (a2 − n2 I3)γ1 − c2γ1γ2 + cγ2(r + νγ3 − κ)}2
+2κ(r + νγ3 − κ + cγ1)[(p + νγ1)

2 + (q + νγ2)
2 + 2c(p + νγ1)γ3]

−4κγ3(a2 − n2 I3)(q + νγ2)
−2κc2[2γ3 I3 − κγ2

3 − (γ2
1 + γ2

2 + 2γ2
3 )(r + νγ3 + cγ1)]

I ∗
3 = M1γ1 + M2γ2 + M3γ3,

H = 1
2C (

M2
1+M2

2
2 + M2

3 ) − (κ + cγ1)M3 + C(a2γ2 + 2cκγ1 − c2γ2
3 )−ν(M1γ1 + M2γ2 + M3γ3)

I4 = [ M2
1−M2

2
4C2 + (a2 − n2

C I ∗
3 )γ2 + c( M3

C − 2κ)γ1 − c2(γ2
1 − γ2

2 )]2
+[ M1M2

2C2 − (a2 − n2
C I ∗

3 )γ1 + c( M3
C − 2κ)γ2 − 2c2γ1γ2]2

+κ( M3
C − 2κ)[ M2

1+M2
2

2C2 + 2cγ3
M3
C ] − 2κγ3(a2 − n2

C I ∗
3 + 2c2γ2)

M2
C

− 2κc2
C [2γ1γ3M1 − (γ2

1 + γ2
2 )M3]
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Variable separation for the basic Sokolov’s case, n = n2 = 0, was obtained in
[227] and explicit expressions for dynamical variables are constructed in [70], in
terms of two intermediate variables, which are expressed in genus-2 Theta functions.
At the present level of the hierarchy, after the introduction of the parameters n, n2,
the solution is obtained by applying the relevant precession transformation.

6 Yehia [398] (1997),
Yehia–Bedwehy [419]: n = n1 = n2 = N = 0,
Kowalevski [238]: ε = n = n1 = n2 = N = 0
A = B = 2C,

ν = n + n1γ1 + n2γ2 + N√
1−γ23

V = C[a1γ1 + a2γ2 + ε√
1−γ23

− 1
2ν2

(
2γ2

1 + 2γ2
2 + γ2

3

)]
l = Cν(2γ1, 2γ2, γ3),
μ1 = C[−nγ1 + n1

(
2γ2

2 − γ2
1 + γ2

3

) − 3n2γ1γ2 − Nγ1

(1−γ23 )
3
2
],

μ2 = C[−nγ2 + n2
(
2γ2

1 − γ2
2 + γ2

3

) − 3n1γ1γ2 − Nγ2

(1−γ23 )
3
2
],

μ3 = −C[(3n + 5n1γ1 + 5n2γ2)γ3 + Nγ3√
1−γ23

]
I3 = 2pγ1 + 2qγ2 + rγ3 + ν(2γ2

1 + 2γ2
2 + γ2

3 )

I4 = [(p + νγ1)
2 − (q + νγ2)

2 − (a1 − n1 I3) γ1 + (a2 − n2 I3) γ2]2
+[2(p + νγ1)(q + νγ2) − (a1 − n1 I3) γ2 − (a2 − n2 I3) γ1]2
+2 (ε−N I3)√

1−γ23

[(p + νγ1)
2 + (q + νγ2)

2] + (ε−N I3)2

1−γ23

I ∗
3 = M1γ1 + M2γ2 + M3γ3,

H = 1
2C (

M2
1+M2

2
2 + M2

3 ) − ν(M1γ1 + M2γ2 + M3γ3)
+C[a1γ1 + a2γ2 + ε√

1−γ23

]

I4 = [ M2
1−M2

2
4C2 − (a1 − n1

C I ∗
3 )γ1 + (a2 − n2

C I ∗
3 )γ2]2

+[ M1M2
2C2 − (a1 − n1

C I ∗
3 )γ2 − (a2 − n2

C I ∗
3 )γ1]2

+ M2
1+M2

2
2C2 [ ε− N

C I ∗
3√

1−γ23

] + [ε− N
C I ∗

3 ]2
1−γ23

Separation variables and expressions of the dynamical variables in terms of them
are constructed in [218] for the conditional case 11 of Table 13.1 of Chap.13, which
covers the Yehia–Bedwehy only on the level f = 0. To cover the present full general
case, explicit solution of the full Yehia–Bedwehy case for f �= 0 is needed. This was
not achieved until now. Note that in cases 1–6, the constant I3(or I ∗

3 ) figuring in the
expression for I4 can be substituted by its expression in each case as a function in
the components of ω( or M) and γ.

Remark: It would be highly interesting to study how this phenomenon of coupling
constants changes many results and conclusions obtained for all integrable cases of
motion of a body in a liquid and, in particular, the portrait of the integrals of motion,
bifurcation diagrams and the topological classifications of integral manifolds. Those
questions are presently open for all the above six cases in Table 12.1.
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7 Generalization of Lagrange’s case. Two cyclic coordinates ψ and ϕ.

B = A,

V = V0(γ3),
l=(�γ1, �γ2, l3),
μ = (−l ′3γ1,−l ′3γ2, l3 − 2γ3� + (γ2

1 + γ2
2 )�

′),
V0(γ3), �(γ3), l3(γ3) arbitrary functions, and
l ′3, �′ denote derivative w.r. to γ3
I3 = A(pγ1 + qγ2) + Crγ3 + (γ2

1 + γ2
2 )� + l3γ3

I4 = Cr + l3
I3 = M1γ1 + M2γ2 + M3γ3,

H = 1
2 (

M2
1+M2

2
A + M2

3
C ) − [ �

A (M1γ1 + M2γ2) + l3
C M3]

+V0(γ3) + 1
2A (γ2

1 + γ2
2 )�

2 + l23
2C

I4 = M3

This is the most general case of Lagrange’s type. The body admits not only
dynamical but also physical symmetry about its z-axis. The equations of motion can
be easily reduced to quadratures. In fact, the integrals I3 and I4 can be written as

I3 = A(pγ1 + qγ2) + �(γ2
1 + γ2

2) + (Cr + l3)γ3 = f,

I4 = Cr + l3 = j, (12.1)

where f, j are the integral constants. The first can be reduced to the relation

ψ̇ = 1

A
[ f − jγ3
1 − γ2

3

− �], (12.2)

while I4 gives
C(ψ̇γ3 + ϕ̇) + l3 = j. (12.3)

From here we find, using (12.2),

ϕ̇ = 1

C
( j − l3) − γ3

A
[ f − jγ3
1 − γ2

3

− �]. (12.4)

Thus, we have expressed ψ̇ and ϕ̇ in terms of γ3. To obtain the relation with time,
we use the energy (in fact, Jacobi’s) integral

1

2
[A(p2 + q2) + Cr2] + V = h.

That is

A(θ̇2 + sin2 θψ̇2) + ( j − l3)2

C
= 2(h − V ),
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which can be given the final form

γ̇2
3 = 1

A
(1 − γ2

3)[2(h − V ) − ( j − l3)2

C
] − 1

A2
[ f − jγ3 − �(1 − γ2

3)]2. (12.5)

Denoting the right-hand side of this relation by F(γ3), one can make a separation of
variables and find the quadrature

t =
∫

dγ3√
F(γ3)

, (12.6)

which may be used to express γ3 = cos θ as a function in time, and hence (12.2) and
(12.4) can be integrated to obtain the angles ψ and ϕ, respectively.

The above formulas are direct generalization of their lower counterparts in the
hierarchy, beginning from Lagrange’s top to Kirchhoff’s case of the motion of a body
in a liquid (Case 1 of Table 10.1 of Sect. 10.15). For Lagrange’s top, as we have seen
in Sect. 4.2, F(γ3) is a cubic function and γ3 can be expressed in elliptic functions
of time. In the case of a multi-connected symmetric body in a liquid, we have

V = a3γ3 + 1

2
[b1(1 − γ2

3) + b3γ
2
3 ],

� = K1, l3 = K3γ3 + κ, (12.7)

so that

F(γ3) = 1

A
(1 − γ2

3)[2h + b1 − 2a3γ3 + (b1 − b3)γ
2
3

− 1

C
( j − κ − K3γ3)

2] − 1

A2
[ f − jγ3 − K1(1 − γ2

3)]2

is a polynomial of the fourth degree and hence γ3 is also an elliptic function of time.
Kirchhoff reduced the case of simply connected body (a3 = κ = 0) to an elliptic

quadrature and expressed some particularmotions in terms of elliptic functions [219].
Detailed analysis of the general solution of the last special case in elliptic functions
was performed by Greenhill [135]. This solution was not extended to the case of
multi-connected body, but it can be noted that the presence of the constant gyrostatic
term κ and the parameter a3 changes the distribution of the roots of F and hence
affects the picture of motion. As far as we know, this case was not studied in detail.

Thus, of all known results remains without the present type of generalization only
one case, namely the case of a body in a liquid found by Rubanovsky [317] that
includes as special versions an earlier case due to Steklov [345] and the case of a
torque-free gyrostat considered by Joukovsky [163] and Volterra [366]. Due to the
situation that in this case the basic potential is zero, no more terms can be added by
the present method. However, as we have seen in Chap.11, a generalization involving
an arbitrary function and a parameter has been applied to this case in the next section,
but to produce a conditional integrable case from it.
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12.1.2 About the Hamiltonian Formulation

We have shown in Chap.10 that, when ν(γ) = n = const, the transformed problems
are generalizations of the original ones, without bringing any mathematical compli-
cation to the solution process. The original and transformed problems are described
by one and the same set of Hamiltonian equations. This is a consequence of the fact
that the Hamiltonian after transformation is H ′ = H + nM·γ, i.e. a combination of
the original Hamiltonian and the areas integral.

We shall show now that when ν(γ) is chosen according to one of the two proce-
dures described inTheorems11.1–2, theHamiltonianflowof thegeneralizedproblem
is really different from that of the original problem and hence the first problem is a
genuine generalization of the second.

In the tables of extended integrable cases, we have adopted the choice to identify
every case by the expressions of functions V andμ, which are unique and completely
characterize the physical setting for that case. An expression for the vector potential
l is also given in the tables, so that the Lagrangian for each case can be readily
constructed. The Hamiltonian of a problem can be obtained as described in previous
chapters. To this end one can write

H = ω · ∂L

∂ω
− L , (12.8)

and eliminate ω using the momentum variables

M =∂L

∂ω
. (12.9)

The equations of motion take the form

Ṁ= M× ∂H

∂M
+ γ × ∂H

∂γ
,

γ̇=γ× ∂H

∂M
, (12.10)

and their integrals are

I1 = H,

I2 = γ2 = 1,

I3 = M · γ = f. (12.11)

In order to illustrate our point of view described above, we now give examples of
the extended cases in the Hamiltonian formalism.

(1) The first example is case 1 of Table 12.1, which involves one parameter n1
of the new type in addition to the uniform precession parameter n. The Hamiltonian
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for that case is

H = 1/2 (
M2

1

A
+ M2

2

B
+ M2

3

C
) + b

(
Aγ2

1 + Bγ2
2 + Cγ2

3

)

− (M1 γ1 + M2 γ2 + M3 γ3) [n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3)]

= Hc − (M1 γ1 + M2 γ2 + M3 γ3) [n + n1(Aγ2
1 + Bγ2

2 + Cγ2
3)], (12.12)

where Hc is the original Hamiltonian of the Clebsch case. The equations of motion
are

Ṁ = M × {∂Hc

∂M
− [n + n1(Aγ2

1 + Bγ2
2 + Cγ2

3)]γ}

+γ × {∂Hc

∂γ
− [n + n1(Aγ2

1 + Bγ2
2 + Cγ2

3)]M − 2n1(M·γ)γI},

= M × ∂Hc

∂M
+ γ × [∂Hc

∂γ
− 2n1(M·γ)γI], (12.13)

and

γ̇ = γ × {∂Hc

∂M
− [n + n1(Aγ2

1 + Bγ2
2 + Cγ2

3)]γ}

= γ × ∂Hc

∂M
. (12.14)

The fourth integral is

I4 = 1

2
(M2

1 + M2
2 + M2

3 )

−ABC[b − n1 (M1 γ1 + M2 γ2 + M3 γ3)](BCγ2
1 + CAγ2

2 + ABγ2
3)

= I4c + n1ABC (M1 γ1 + M2 γ2 + M3 γ3) (BCγ2
1 + CAγ2

2 + ABγ2
3). (12.15)

From (12.13), we see that when f �= 0 and n1 �= 0, then Hc and I4c are no more
integrals of motion. The Hamiltonian flow is deformed and the overall picture of the
trajectories in the phase space of the new problem is different from that of Clebsch’s
case.

On the other hand, when n1 = 0 (ν = n)

H = Hc − nI3,

so that the Hamiltonian is a linear combination of the two integrals Hc and I3 with
constant coefficients. In that case, from (12.13), (12.14), we see that the flow defined
by the Hamiltonian (12.12) is identical with the flow corresponding to Clebsch’s
Hamiltonian Hc and the integral takes the form of Clebsch. The same holds also if
consideration is restricted to the level I3 = f = 0.
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(2) The second example is the extension of Clebsch’s spherically symmetric
case. That is case 2 in Table 12.1. Let Hs and I4s be the original Clebsch spherical
Hamiltonian and the corresponding fourth integral. We have

Hs = Hs(M,γ, c1, c2, c3)

= 1

2A
(M2

1 + M2
2 + M2

3 ) + 1

2
(c1γ

2
1 + c2γ

2
2 + c3γ

2
3),

I4s = c1M
2
1 + c2M

2
2 + c3M

2
3 − (c2c3γ

2
1 + c3c1γ

2
2 + c1c2γ

2
3). (12.16)

For the extended integrable system with three different parameters n1, n2, n3,

H = Hs − (n + n1γ
2
1 + n2γ

2
2 + n3γ

2
3) (M1 γ1 + M2 γ2 + M3 γ3) ,

= Hs(M,γ, c1 − 2n1 I3, c2 − 2n2 I3, c3 − 2n3 I3). (12.17)

The equations of motion have the form

Ṁ = M×∂Hs

∂M
+ γ × [∂Hs

∂γ
− 2(M·γ)(n1γ1,n2γ2, n3γ3)],

γ̇ = γ × ∂Hs

∂M
, (12.18)

and the complementary integral is

I4 = (c1 − 2n1 I3) M
2
1 + (c2 − 2n2 I3) M

2
2 + (c3 − 2n3 I3) M

2
3

−A[(2n2 I3 − c2) (2n3 I3 − c3) γ2
1 + (2n3 I3 − c3) (2n1 I3 − c1) γ2

2

+ (2n1 I3 − c1) (2n2 I3 − c2) γ2
3 ] (12.19)

= I4s(M,γ, c1 − 2n1 I3, c2 − 2n2 I3, c3 − 2n3 I3).

The deformation caused by the presence of the three parameters n1,n2, n3 and I3 in
the Hamiltonian flow on any level I3 = f �= 0 is obvious. The solution of the new
problem of motion is obtained from that of the original case by replacing the origi-
nal physical parameters c1, c2, c3 by their new values involving three new physical
parameters and the dynamical parameter f.

It is remarkable that the fourth integral (12.19) is cubic in themomenta in thewhole
phase space, due to the presence of I3 in the coefficients but becomes quadratic in
momenta on any fixed level of I3. It also reduces to Clebsch’s quadratic integral when
n1=n2 = n3 = 0.

12.2 Conditional Integrable Deformations of General
Integrable Cases

By Theorem 1 in Chap.11, Sect. 11.6, all the general and conditional integrable
cases of integrability of the previous hierarchy of problems admit a generalization
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using the transformation (11.31) to conditional cases involving the arbitrary function
ν(γ1, γ2, γ3). The explicit solution of the equations of motion in each case can be
obtained from the solution of the original case, if the last is known, by Theorem 3.We
apply this procedure here to all the general integrable cases, whichwere the subject of
generalization in the preceding chapter, but this time including the case of Steklov–
Rubanovsky, which was not amenable to the generalization as an unconditional case.
As the structure of potential in the basic cases is not significant for the present type of
generalization, we consider only one branch of the Kowalevski–Sokolov hierarchy,
so that the total number of cases is still 7.

12.2.1 Table of Cases

In Table 12.2, we list the deformations of the known general integrable cases as
conditional cases on a fixed level of the areas integral. For each case we provide

– conditions, if any, on the inertia matrix of the body,
– the pair of scalar potential V and vector μ, figuring in the equations of motion,
– the vector l which enters in the Lagrangian or Hamiltonian of the problem and

in the structure of the cyclic integral,
– the cyclic integral I3 itself,
– and, finally, the complementary integral.
– Each of the systems in the following table is integrable on the level I3 = β. For

each case, we also add the forms of the Hamiltonian function and the complementary
integral in terms of momenta. In the Hamiltonian formulation, the cyclic integral has
the same form for all integrable cases

I3 = M1 γ1 + M2 γ2 + M3 γ3 = β.

Table 12.2 Conditional integrable extensions of general integrable cases, valid on the level I3 = β.

ν = ν(γ1, γ2, γ3) is an arbitrary function

1 Case of Clebsch’s type

V = (b − 1
2ν2)(Aγ2

1 + Bγ2
2 + Cγ2

3 ) + βν,

l=νγI,
μ = ∂

∂γ (νγI · γ) − [ ∂
∂γ · (νγI)]γ

I3 = ωI· γ+ ν(Aγ2
1 + Bγ2

2 + Cγ2
3 ) = β

I4 = 1
2 [A2(p + νγ1)

2 + B2(q + νγ2)
2 + C2(r + νγ3)

2

−b(BCγ2
1 + CAγ2

2 + ABγ2
3 )

I3 = M1 γ1 + M2 γ2 + M3 γ3,

H = 1/2 (
M2

1
A + M2

2
B + M2

3
C ) + b

(
Aγ2

1 + Bγ2
2 + Cγ2

3

)

+[β − (M1 γ1 + M2 γ2 + M3 γ3)]ν
I4 = M2

1 + M2
2 + M2

3
−b(BCγ2

1 + CAγ2
2 + ABγ2

3 )
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In all the cases under consideration, one can show that

d I4
dt

= (I3 − β)�(ω,γ),

where � is a different function for each case. Thus, I4 becomes an integral under the
condition I3 = β. As examples we give explicit results for two cases from the table.

Remark:For the conditional integrable cases presented in Table 12.2, theHamil-
tonian of the extended system is

H ′ = H + ν(β − M · γ),

where H is the original Hamiltonian (before the transformation). The equations of
motion are

Ṁ = M×∂H

∂M
+ γ × ∂H

∂γ
+ (β − M·γ)γ × ∂ν

∂γ
,

γ̇ = γ × ∂H

∂M
. (12.20)

Although the equations of motion in all cases of Table 12.2 depend on the parame-
ter β and the (non-constant) function ν(γ),on the single level f = β theHamiltonian
flow of the new conditional integrable problem becomes identical with the flow in
the original unconditional integrable problem. In the last problem, the parameter f
is arbitrary, while in the former the additional parameter β is present but regarding
the dynamical condition f = β both problems have the same number of parameters.

2 Case of Clebsch’s type of spherical symmetry
A = B = C,

V = βν + 1
2 (b1γ2

1 + b2γ2
2 + b3γ2

3 ) − 1
2Cν2,

l = Cνγ,

μ = C[ ∂ν
∂γ − (ν + γ · ∂ν

∂γ )γ]
I3 = C(pγ1 + qγ2 + rγ3 + ν) = β

I4 = C[b1(p + νγ1)
2 + b2(q + νγ2)

2 + b3(r + νγ3)
2]

−(b2b3γ2
1 + b1b3γ2

2 + b1b2γ2
3 )

H = 1
2C (M2

1 + M2
2 + M2

3 ) + 1
2 (b1γ2

1 + b2γ2
2 + b3γ2

3 )+[β − (M1 γ1 + M2 γ2 + M3 γ3)]ν
I4 = b1M2

1 + b2M2
2 + b3M2

3 − C(b2b3γ2
1 + b1b3γ2

2 + b1b2γ2
3 )

3 Rubanovsky–Lyapunov type [317]
A = B = C
V = C{a1γ1 + a2γ2 + a3γ3 − 1

2 (bcγ2
1 + caγ2

2 + abγ2
3 )

+ν{β + 1
2 [(b + c)γ2

1 + (c + a)γ2
2 + (a + b)γ2

3 ]} − 1
2ν2}

l = C[νγ − 1
2 ((b + c)γ1, (c + a)γ2, (a + b)γ3)],

μ = C[(aγ1, bγ2, cγ3) + ∂ν
∂γ − (ν + γ · ∂ν

∂γ )γ]
I3 = (pγ1 + qγ2 + rγ3 + ν) − 1

2 [(b + c)γ2
1 + (c + a)γ2

2 + (a + b)γ2
3 ] = β
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I4 = 1
2 [(b + c) (p + νγ1)

2 + (c + a) (q + νγ2)
2 + (a + b) (r + νγ3)

2]
+a1[p + (ν + a)γ1] + a2[q + (ν + b)γ2] + a3[r + (ν + c)γ3]
−[bc(p + νγ1)γ1 + ca(q + νγ2)γ2 + ab(r + νγ3)γ3]

H = 1
2C (M2

1 + M2
2 + M2

3 ) + 1
2 [(b + c)M1γ1 + (c + a)M2γ2 + (a + b)M3γ3]

+C(a1γ1 + a2γ2 + a3γ3)
−C

8 [(a2 + 2bc)γ2
1 + (b2 + 2ac)γ2

2 + (c2 + 2ab)γ2
3 ],+[β − (M1 γ1 + M2 γ2 + M3 γ3)]ν

I4 = (b + c)M2
1 + (c + a)M2

2 + (a + b)M2
3

+C{[(b2 + c2)γ1 + 2a1]M1 + [(a2 + c2)γ2 + 2a2]M2 + [(a2 + b2)γ3
+2a3]M3}+C2

4 [(b + c)(b − c)2γ2
1 + (c + a)(c − a)2γ2

2 + (a + b)(a − b)2γ2
3 ]

+C2[(a + b + c)(a1γ1 + a2γ2 + a3γ3) + 2(a1aγ1 + a2bγ2 + a3cγ3)]

4 Case of Steklov–Rubanovsky’s type
V = ν(β − κ · γ + a[tr(I−1)|γ|2−γI−1 · γ]) − 1

2ν2γI · γ,

l = κ−aγJ + νγI, J =[tr(I−1)δ−I−1]
μ = κ + 2aγI−1 + ∂

∂γ (νγI · γ)− [ ∂
∂γ · (νγI)]γ

I3 = [ωI+κ−aγJ + νγI] · γ = β

I4 = 1
2 | ωI+νγI+κ |2 +2a(ω · γ + ν)

H = 1
2 (M−κ − γJ)I−1 · (M−κ − γJ)

+[β − (M1 γ1 + M2 γ2 + M3 γ3)]ν
I4 = 1

2 | M − aγJ |2 −aγI−1 · (M−κ − aγJ)

For this case, one can show that

d I4
dt

= (I3 − β)[(ωI+νγI+κ) · (
∂ν

∂γ
× γ) + aγI−1·( ∂ν

∂γ
× γ)].

(1) For any function ν, I4 is an integral on the level I3 = β and the dynamics is
conditionally integrable. On the other hand, when ν(γ) = n (a constant) the
terms in the square bracket vanish and this case becomes integrable for arbitrary
initial conditions and coincides with the Rubanovsky–Steklov case of motion of
a body in liquid.

5 Case of Kowalevski–Yehia–Sokolov type
A = B = 2C,

V = βν + C[κcγ1 + a2γ2 − νκγ3
− c2

2 (γ2
1 + 2γ2

3 ) − νcγ1γ3

− ν2

2 (2γ2
1 + 2γ2

2 + γ2
3 )]

l = C(2cγ3 + 2νγ1, 2νγ2,κ − cγ1 + νγ3),
μ = C{(cγ1, 0,κ + cγ3) + ∂

∂γ [(2γ2
1 + 2γ2

2 + γ2
3 )ν]

−[5ν + 2γ1 ∂ν
∂γ1

+ 2γ2 ∂ν
∂γ2

+ γ3
∂ν
∂γ3

]γ},
I3 = C[2pγ1 + 2qγ2 + (r + κ)γ3 + cγ1γ3 + (2γ2

1 + 2γ2
2 + γ2

3 )ν] = β

I4 = [
(p + νγ1)

2 − (q + νγ2)
2 + a2γ2 + c2γ2

2 + cγ1(r + νγ3 − κ)
]2

+ [
2(p + νγ1)(q + νγ2) − a2γ1 − c2γ1γ2 + cγ2(r + νγ3 − κ)

]2

+2κ(r + νγ3 − κ + cγ1)
[
(p + νγ1)

2 + (q + νγ2)
2 + 2c(p + νγ1)γ3

]

−4a2κ(q + νγ2)γ3
−2κc2{2γ3[2(p + νγ1)γ1 + cγ1γ3 + 2(q + νγ2)γ2 + (r + νγ3)γ3]

+κγ2
3 − (γ2

1 + γ2
2 + 2γ2

3 )(r + νγ3 + cγ1)}
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I3 = M1γ1 + M2γ2 + M3γ3 = β,

H = 1
2C (

M2
1+M2

2
2 + M2

3 ) − (κ + cγ1)M3 + C(a2γ2 + 2cκγ1 − c2γ2
3 )+ν[β − (M1γ1 + M2γ2 + M3γ3)]

I4 = [ M2
1−M2

2
4C2 + a2γ2 + c( M3

C − 2κ)γ1 − c2(γ2
1 − γ2

2 )]2
+[ M1M2

2C2 − a2γ1 + c( M3
C − 2κ)γ2 − 2c2γ1γ2]2

+κ( M3
C − 2κ)[ M2

1+M2
2

2C2 + 2cγ3
M3
C ] − 2κγ3(a2 + 2c2γ2)

M2
C

− 2κc2
C [2γ1γ3M1 − (γ2

1 + γ2
2 )M3]

6 Yehia [398],
Yehia–Bedwehy [419]: ν = 0,
Kowalevski [238]: ν = a = 0
A = B = 2C
V = βν + C[a1γ1 + a2γ2 + a√

1−γ23

− 1
2ν2

(
2γ2

1 + 2γ2
2 + γ2

3

)]
l = Cν(2γ1, 2γ2, γ3),
μ = C{ ∂

∂γ [ν(2γ2
1 + 2γ2

2 + γ2
3 ] − [5ν + ∂ν

∂γ · (2γ1, 2γ2, γ3)]γ}
I3 = C[2pγ1 + 2qγ2 + rγ3 + ν(2γ2

1 + 2γ2
2 + γ2

3 )] = β

I4 = [(p + νγ1)
2 − (q + νγ2)

2 − a1γ1 + a2γ2]2
+[2(p + νγ1)(q + νγ2) − a1γ2 − a2γ1]2
+2 a√

1−γ23

[(p + νγ1)
2 + (q + νγ2)

2] + a2

1−γ23

7 Case of Lagrange’s type
B = A,

V = V0(γ3) + βν − ν[(γ2
1 + γ2

2 )� + l3γ3] − 1
2ν2[A + (C − A)γ2

3 ],
l = ((� + Aν)γ1, (� + Aν)γ2, l3 + Cνγ3),
μ = ∂

∂γ (l · γ) − ( ∂
∂γ · l)γ,

V0(γ3), �(γ3), l3(γ3), ν(γ1, γ2, γ3) arbitrary functions
I3 = A(pγ1 + qγ2) + (Cr + l3)γ3 + (γ2

1 + γ2
2 )� + ν[A + (C − A)γ2

3 ] = β
I4 = C(r + νγ3) + l3
I3 = M1γ1 + M2γ2 + M3γ3,

H = 1
2 (

M2
1+M2

2
A + M2

3
C ) − [ �

A (M1γ1 + M2γ2) + l3
C M3]

+V0(γ3) + 1
2A (γ2

1 + γ2
2 )�

2 + l23
2C + ν[β − (M1 γ1 + M2 γ2 + M3 γ3)]

I4 = M3

Note that the precession angle ψ is cyclic and the corresponding generalized
momentum is the integral of motion I3. The proper rotation angle ϕ is no longer
cyclic in general, but becomes cyclic on the level I3 = β. In fact, one may calculate

∂L

∂ϕ
= (I3 − β)

∂ν

∂ϕ
.

The cyclic integral I4 is conditional on the level I3 = β. One can easily find

d I4
dt

= (I3 − β)(γ2
∂ν

∂γ1
− γ1

∂ν

∂γ2
). (12.21)
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This expression vanishes when either I3 = β or ν = ν(γ2
1 + γ2

2),which is equivalent
to ν = ν(γ3). Case 7 is integrable for arbitrary function ν(γ1, γ2, γ3) on the level
I3 = β, but becomes unconditional when ν = ν(γ3).

12.2.2 Example of Physical Application

Consider the simple original case of Kowalevski, obtained from case 5 of Table 12.2
by setting κ = c = 0. We shall transform this case using

ν = λγ3,β = Cλa.

The generalized case will be characterized by

A = B = 2C

V = C[a1γ1 + λaγ3 − λ2

2 γ2
3

(
2γ2

1 + 2γ2
2 + γ2

3

)]
l = Cλγ3(2γ1, 2γ2, γ3),
μ = Cλ(−2γ1γ3,−2γ2γ3, 2 − 3γ2

3 )

I3 = C[2pγ1 + 2qγ2 + rγ3 + γ3(2γ2
1 + 2γ2

2 + γ2
3 )] = Ca

I4 = [(p + λγ1γ3)
2 − (q + λγ2γ3)

2 − a1γ1]2
+[2(p + λγ1γ3)(q + λγ2γ3) − a1γ2]2

H = 1
4C (M2

1 + M2
1 + 2M2

1 ) + C(a1γ1 + λaγ3)
+λγ3[Ca − (M1 γ1 + M2 γ2 + M3 γ3)],

I4 = [M2
1 − M2

2 − 4C2a1γ1]2
+4[M1M2 − 2C2a1γ2]2

The potential is modified by the addition of two terms. The first Cλaγ3 means
a displacement of the centre of mass of the body in the z-direction (normal to the
equatorial plane) to the point (x0 = Ca1/Mg, 0, z0 = Cλaγ3

Mg ) and the second term is
quartic in γ. The last may be written as

−Cλ2

2
γ2
3

(
2γ2

1 + 2γ2
2 + γ2

3

) = −Cλ2

2
γ2
3

(
2 − γ2

3

)
.

The new problem involves also the gyroscopic moments described by the vector l
and μ and it is integrable on the level I3 = Ca. On setting λ = 0, one recovers the
general integrable case of Kowalevski.

Note that the parameter λ does not appear in the Hamiltonian form of I4. Note
also that from the Hamiltonian function of the new problem one cannot recognize
the acting potential and gyroscopic forces, which are clearly defined by the potential
V and the vector μ.
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