
Chapter 11
The General Problem of Motion of a
Rigid Body Acted upon by a Coaxial
Combination of Potential and Gyroscopic
Forces

11.1 Introduction

In the last chapter, we have seen that the problem of motion of a body in a liquid
or, more precisely, the alternative problem of motion of a body about a fixed point,
while acted by magnetic, electric and Lorentz forces, lies on the top of a hierarchy
of problems, each of which generalizes the one below it. In this chapter, we extend
this hierarchy upwards, by allowing general axi-symmetric potential and gyroscopic
forces to act on the body. The fact that problems on that level of complication were
not treated in the literature in no way means that such problems have little phys-
ical significance. A natural reason is that the grave theoretical difficulties met in
as simple as the classical problem gave the impression that difficulties will grow
with the degree of complication of forces applied to the body. Fortunately, it turned
out that certain symmetries grow with the complication, opening wide chances to
achieve far-reaching results. In fact, one can go along the line of thinking that led
to the precession transformation in the last chapter, but this time replacing the con-
stant precession speed n with a function ν(γ). Under different circumstances, this
type of transformation keeps the equations of motion of the new problem form-
invariant, leading to construct new integrable/solvable cases from all known cases of
the previous chapters. To this end in this chapter, we shall use two different types of
transformations which can be applied to all the known integrable cases to generate
from them new ones of the most complicated structure ever seen, while preserving
integrability either general or restricted to a certain level of the areas integral. Some
of the new cases can be given definite and non-trivial physical interpretation. In this
respect a word of warning is due. As stressed in previous chapters, we are dealing
with physical models, which have their obvious limitations. Both relativistic effects
and the radiation from accelerated electric charges are permanently neglected.
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11.2 Equations of Motion

Nowweassume a rigid bodymoving about a fixed point,while subject to conservative
(time-independent) potential and gyroscopic forces of the most general form with a
common axis of symmetry OZ fixed in space and passing through the fixed point O
of the body. The Lagrangian has the form

L = 1

2
ωI·ω + l.ω − V, (11.1)

in which V = V (γ1, γ2, γ3), l = l(γ1, γ2, γ3). The precession angle ψ is a cyclic
coordinate. The corresponding cyclic integral is

∂L

∂ψ̇
= ∂L

∂ω
· ∂ω

∂ψ̇
= (ωI + l) · γ = f. (11.2)

Towrite down the dynamical (Euler-like) equations ofmotion in the body System,
we first deduce the equation corresponding to the angle ϕ (the proper rotation angle
around the z-axis fixed in the body):

d

dt

∂L

∂ϕ̇
− ∂L

∂ϕ
= 0.

That is
d

dt
(Cr + l3) − [(ωI + l)·∂ω

∂ϕ
+ ω· ∂l

∂ϕ
− ∂V

∂ϕ
] = 0,

and after expressing derivatives w.r.t. ϕ in terms of derivatives w.r.t. γ, it can be
written as

Cṙ + (B − A)pq + p[∂(l · γ)

∂γ2
− γ2

∂

∂γ
· l] − q[∂(l · γ)

∂γ1
− γ1

∂

∂γ
· l]

−(γ1
∂V

∂γ2
− γ2

∂V

∂γ1
) = 0.

The last equation can be given the form

k · {ω̇I + ω×[ωI + ∂(l · γ)

∂γ
− (

∂

∂γ
· l)γ]−γ × ∂V

∂γ
} = 0.

Now, we note that nothing in the curly bracket depends on the unit vector k figuring
before that bracket. This vector can be replaced in the last equation by any of the
other two unit vectors i and j. Thus, we can write the dynamical equation in the final
vector form
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ω̇I + ω × (ωI+μ) = γ × ∂V

∂γ
, (11.3)

where

μ = l+(γ× ∂

∂γ
) × l

≡ ∂

∂γ
(l·γ) − (

∂

∂γ
·l)γ. (11.4)

Equation (11.3) and Poisson’s equation constitute the system

ω̇I + ω×(ωI + μ) = γ×∂V

∂γ
,

γ̇ + ω×γ = 0, (11.5)

of six first-order equations in 6 unknowns, which generalizes the equations of motion
in all problems considered in the previous chapters. We shall refer to V and l as the
scalar and vector potentials, respectively, and to μ as the gyroscopic vector.

It is easy to check that the system (11.5) satisfies Jacobi’s condition for the last
integrating multiplier

∂ω̇

∂ω
+∂γ̇

∂γ
≡ 0.

Hence, for its integration one needs a single additional integral of motion I4 besides
the three general integrals, which we write in the form

I1 ≡ 1

2
ωI · ω + V = h,

I2 = γ2 = 1,

I3 = (ωI + l) · γ = f. (11.6)

Those are the energy integral or, more precisely, Jacobi’s integral, the geometric
integral and the cyclic integral corresponding to the coordinate ψ. The last can be
found as

I3 = ∂L

∂ψ̇
= ∂L

∂ω
·∂ω

∂ψ̇
= (ωI + l)·γ.

The solution of the system (11.5) determines only ω and γ as functions of t. This
completely determines only the angles θ = cos−1 γ3 and ϕ = tan−1 γ1

γ2
. To obtain ψ,

one has to use the cyclic integral (11.2) together with formulas of Chap.2 to express
ψ̇ in the form

ψ̇ = 1

γI·γ [ f − l · γ − (A − B)γ1γ2γ̇3 − C(γ2γ̇1 − γ1γ̇2)

1 − γ2
3

]. (11.7)
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The angle of precession is found by integrating this relation with respect to time, and
this completes the solution.

Remark: It must be noted here that the gyroscopic vector μ, which enters the
equations of motion (11.5), is unique for any physical problem, but the vector poten-
tial l is not. In fact, as was noted before in Chap.10, a term of the type

−dχ(γ)

dt
= −dχ

dγ
· dγ

dt
= ω·(γ×dχ

dγ
)

can be added to the Lagrangian without changing the equations of motion. Thus, the
vector l can be determined only up to a term of the form

l0 = γ×dχ

dγ
, (11.8)

in which χ is an arbitrary function of γ.

11.3 Relation to Grioli’s and Kharlamov’s Equations

11.3.1 Grioli’s Equations

Grioli [139] considered the system of equations of motion

ω̇I + ω×[ω I + m(ω,γ)] = γ×∂V (γ)

∂γ
,

γ̇ + ω×γ = 0, (11.9)

as a generalization of the classical problems of motion of a rigid body about a fixed
point including a general potential function V (γ) and a general gyroscopic term
m(ω,γ). He answered the question: for which m does this system admit an areas
integral? In fact, one can use (11.9) to deduce the relation

d

dt
(ωI·γ) + m·γ̇= 0. (11.10)

Ifm is expressible in the form

m =∂F(γ)

∂γ
+ �(ω,γ)γ, (11.11)

where F and � are scalar functions of their arguments, then (11.9) admits the areas
integral

ωI·γ+F(γ) = f (arbitrary constant). (11.12)
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Grioli did not study further the system (11.9) withm as in (11.11). Although such
system preserves the sum of kinetic and potential energies, it cannot be presented in
Lagrangian or Hamiltonian form. The powerful techniques of analytical dynamics
are inapplicable to that system.

11.3.2 M. Kharlamov’s Equations

M. Kharlamov considered the same question of existence of areas integral, but
demanded that the system (11.9) had Lagrangian structure [173]. He was led to
the same form of the gyroscopic function as (11.11), but with velocity-independent
�, so that

μ=∂F(γ)

∂γ
+ �(γ)γ, (11.13)

where F,� are two arbitrary functions of γ.

We now prove that gyroscopic terms in the equations of motion (11.5) can be
determined in two equivalent ways, either by giving the vector l(γ) or the pair of
scalar functions F and � :

(1) Let l(γ) be given, then

F = l · γ, (11.14a)

� = ∂

∂γ
· l. (11.14b)

Note that a gauge-term vector l0 in the form (11.8) gives no contribution to any of
those functions.

(2) Let l(γ), l ′(γ) be two solutions of (11.14a) and (11.14b) for given F and �.

The difference
λ = l ′−l (11.15)

satisfies the equations

λ · γ= 0,
∂

∂γ
· λ = 0.

The general solution of the first equation is

λ = γ × s(γ), (11.16)

and inserting this into the second equation we get

∂

∂γ
· (γ × s(γ)) = −γ · (

∂

∂γ
× s) = 0.
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This is a single under-determined linear partial differential equation in the three
components of s. Its solution involving two arbitrary functions χ and N is

s =∂χ

∂γ
+ N (γ)γ. (11.17)

Inserting this expression into (11.16) and using (11.15), we can write

l ′ = l + γ×[∂χ

∂γ
+N (γ)γ]

= l + γ×∂χ

∂γ
. (11.18)

Thus, replacing l by l ′ in the Lagrangian (11.1) adds to L a term of the form

ω·(γ×∂χ

∂γ
) =∂χ

∂γ
·(ω×γ) = −dχ

dt
,

which is a nugatory term, having no contribution to the equations of motion. Khar-
lamov’s form (11.13) for the vector μ is equivalent to our form (11.4).

11.4 Potential of, and Torques on, a Heavy, Magnetized
and Electrically Charged Body

The model of an absolutely rigid body as such is a purely mathematical model. All
ordinary materials suffer deformation under stresses applied to them. Nevertheless,
this model has proved practical, useful and comfortable in the study of a wide spec-
trumof physical andmechanical problems. In this section,we formulate the equations
of motion of a rigid body about a fixed point in a much wider physical setting, taking
into account classical interactions, all at a time. In addition to its mass distribution
acted upon by gravitational forces, assume that the body has some magnetized parts
and carries some electric charges. The body is also subject to electric and magnetic
fields.

The picture to be drawn here for the rigid body and physical effects on it should not
be taken as literally describing a real body with usual properties as electric insulation
or conductivity, magnetic permeability or other properties that change its physical
characteristics when its orientation changes under the action of external fields. Our
aim here is to construct a mathematical model that would lead to tractable equations
of motion of the rigid body in the presence of all the classical physical interactions.
To this end, we make some necessary simplifying assumptions:

1- The main part of the body (the carrier body), which is fixed from the origin O,

has neither electrical nor magnetic properties, so that it does not interfere with the
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interaction between the external fields and the magnets and electric charges carried
by the body.

2- The physical characteristics of the rigid body are constant in it. They do not
change with time, with the change of the body’s orientation in space, nor with the
change of internal forces in the body. Thus, the body may carry a distribution of
immovable electric charges and some permanently magnetized parts, also fixed in
it. Magnetization of the body can also arise due to the presence of steady electric
circuits in the body. An electric motor whose axis is fixed in the body generates in
its working mode a magnetic moment due to electric current in its coil, equivalent
to a permanent magnet, and a constant gyrostatic moment due to the steady rotation
of the coil.

3- It is well known that, according to the laws of classical physics, an accelerated
electric charge emits electromagnetic radiation. This was established by Larmor
[254] in 1897 (see also [161]). The total energy of motion of the body decreases with
time. The maximum acceleration attained by a point of the body will be assumed
small enough to justify neglecting this effect.

Under those conditions, the following effects on the body will be taken into
account:

(1) A torque arises due to the gravitational field g of a certain distribution of gravitat-
ing sources, fixed in the inertial system of axes OXY Z , O being the fixed point
of the body.Gravitational forces are derivable from a scalar potential Vg(X,Y, Z)

by the relation g = −∇Vg. The gravitational potential is harmonic, i.e. satisfies
Laplace’s equation in the inertial coordinate system outside gravitating sources.
The potential of the body, due to the gravitational field, has the form

VG =
∫

Vg(X,Y, Z)dm,

where dm is the mass element at the point r(X,Y, Z) of the body and integration
is extended on the space domain occupied by the body. Referring to the system
of axes Oxyz fixed in the body, we have r = (x, y, z) and hence the potential
can be written as

VG =
∫

Vg(r · α, r · β, r · γ)dm, (11.19)

α,β,γ being the basic unit vectors in the inertial space.
(2) The external electric field E, derived from the potential Ve by the relation

E = −∇Ve, acts on the electric charges on the body in a similar way. The electric
potential of the body is

VE =
∫

Ve(r · α, r · β, r · γ)de. (11.20)

(3) The externalmagnetic fieldH = −∇Vm acts on themagnetized parts of the body.
Note that we use the magnetic field H rather than the magnetic induction B,
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since the body is considered as having unit permeability. Also, for simplicity, we
consider the magnetized part of the body as composed of a set of short magnets
(dipoles). If mi is the magnetic dipole moment at the point ri (X,Y, Z), the
potential of the body due to the scalar magnetic interaction is

VM = �mi · ∇Vm(ri · α, ri · β, ri · γ)

= −�mi · H(ri · α, ri · β, ri · γ). (11.21)

(4) The external magnetic field also exerts the velocity-dependent Lorentz forces on
the electric charge distribution in the body. The moment of those forces about
the origin is1

MH =
∫

r × [(dedr
dt

) × H],

where the velocity of the point of the body in space dr
dt = ω × r. We have

MH =
∫

r × [(ω × r) × H]de

=
∫

(r · H)ω × rde

= ω ×
∫

(r · H)rde. (11.22)

This means that the vector μ in the equations of motion (11.3) may be written
in the form

μ = κ−
∫

(r · H)rde. (11.23)

For certain purposes, e.g. to construct a Lagrangian for the problem of motion, the
magnetic field can also be derived from a vector potential A, which is also assumed
time-independent, according to the formula H =∇ × A. The vector potential l of
the body may be written as

l = κ +
∫

r × Ade, (11.24)

while μ can be derived from l according to (11.4).
For the purpose of giving a concrete example, let us consider the following phys-

ical situation.
Let the principal body of a gyrostat be carrying a permanent distribution of electric

charges and the system be subject to

(1) A uniform magnetic field H in the Z -direction, i.e. H = Hγ.

1 Here MKS units are used. In Gaussian units de should be divided by the velocity of light c (e.g.
[44]).
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(2) An electric field whose potential is a1Z + 1
2a2Z

2.

(3) A gravitational field with another quadratic potential b1Z + 1
2b2Z

2.

It should be noted that those forms of the electric and gravitational potentials
appear as a secondapproximationof thepotentials of a general rigid body (or gyrostat)
in arbitrary coaxially symmetric electric and gravitational fields, by including the
second harmonics. The same applies for the case of fields due to a distant axi-
symmetric and symmetrically situated invariable body.

According to (11.23), we write

μ = κ − H
∫

(r · γ)rde

= κ − 2Hγ Īe, (11.25)

where Ī e = 1
2 (trIe)δ − Ie, Ie is the inertia matrix of the distributions, and δ is the

unit matrix. The corresponding vector potential is

l = κ+1

2
HγIe. (11.26)

On the other hand, the total potential of the system is (ignoring an insignificant
constant)

V =
∫

[a1r.γ + 1

2
a2(r.γ)2]de

+
∫

[b1r.γ + 1

2
b2(r.γ)2]dM

= a.γ+1

2
γJ·γ (11.27)

where J = −a2Ie − b2I, a =a1
∫
rde + b1Mrc, M the mass of the system and rc

its centre of mass. As seen in Chap.10, formulas (11.25)–(11.27) characterize the
problem of motion of a body in a liquid.

The effect of Lorentz forces on the motion of a rigid body was considered only in
very few works (e.g. [22, 139, 140, 378, 382]). In a number of more recent works,
similar problems were considered, repeating to a great extent previous results as
introducing the inertia matrix of electric charges, e.g. [430–433].

Expressions analogous to the above ones can be derived for more complicated
forms of the magnetic field. In the case when the scalar potential of the external
magnetic field can be expressed as a second-degree harmonic polynomial,

VM = a1Z + a2(3Z
2 − r2). (11.28)

The vector μ can be expressed as
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μ =
∫

[a1r · γ + 2a2(3(r · γ)2 − r2)]rde. (11.29)

In expanded form, one may write

μ1 = −2a2(Ixxx + Ixyy + Ixzz) + a1(Ixxγ1 + Ixyγ2 + Ixzγ3)

+6a2(Ixxxγ
2
1 + Ixyyγ

2
2 + Ixzzγ

2
3 + 2Ixxyγ1γ2 + 2Ixxzγ1γ3 + 2Ixyzγ2γ3)

μ2 = −2a2(Ixxy + Iyyy + Iyzz) + a1(Ixyγ1 + Iyyγ2 + Iyzγ3) (11.30)

+6a2(Ixxyγ
2
1 + Iyyyγ

2
2 + Iyzzγ

2
3 + 2Ixyyγ1γ2 + 2Ixyzγ1γ3 + 2Iyyzγ2γ3)

μ3 = −2a2(Ixxz + Iyyz + Izzz) + a1(Ixzγ1 + Iyzγ2 + Izzγ3)

+6a2(Ixxzγ
2
1 + Iyyzγ

2
2 + Izzzγ

2
3 + 2Ixyzγ1γ2 + 2Ixzzγ1γ3 + 2Iyzzγ2γ3)

where, for example, Ixx = ∫
x2de, Ixyz = ∫

xyzde and so forth are the second- and
third-degree moments of the charge distribution.

11.5 On General and Conditional Integrable Cases in Rigid
Body Dynamics

As explained in previous chapters of this book,we call a problem general integrable if
I4 exists for arbitrary initial conditions and conditional integrable if it admits a fourth
integral I4 only on a single level f of the cyclic integral I3 (in many cases f = 0)
but for all initial conditions compatible with that level. In both types of integrable
problems, the solution can be reduced to quadratures through the application of
Liouville’s theoremor Jacobi’s theorem to the reduced two-dimensional Hamiltonian
system. It is thus sufficient to point out the fourth integral to ensure integrability in
those cases. In some cases, it becomes possible to construct a quantity constant only
under other restrictions on the initial state of motion, which do not fit as conditions
on the integral level of I3. Then one cannot apply Liouville’s theorem to construct the
solution and a procedure for accomplishing this task should be indicated separately.
In such cases, we deal with particular solutions of the problem.

Equations of motion of the form (11.5) cover a wide range of applications in rigid
body dynamics. Special cases are the classical problem of motion of a heavy body, its
generalizations to the case of a gyrostat moving under potential and Lorentz forces.
We recall that they cover also the Routhian reduction of the problem of motion of a
body in a liquid, in which the body has no fixed point. In many cases, Eq. (11.5) with
reasonably behaving functions V can be interpreted as characterizing gravitational,
electric andmagnetic interactions andμ as the Lorentz force exerted by the magnetic
field on someelectric charges restingon the body.However, this is not always the case.
In some problems that happen to be integrable, such interpretation is not possible,
due to the presence of singularities that cannot be exhibited by the potentials of real
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bodies. Detailed examples of integrable problems of both types will be considered
in the next two chapters, Chap. 12 and Chap. 13.

11.6 Transformation of the Equations of Motion

In the preceding chapter, we have applied the transformation ω = ω′ + νγ, where
ν is a constant, to a system of the type (11.5) and its form-invariance is used to
generate integrable cases containing ν as a parameter. Here we shall develop this
idea, by replacing the constant ν by a function ν(γ). In fact, the substitution

ω = ω′ + νγ, ν = ν(γ1, γ2, γ3) (11.31)

leaves the invariant form of the Poisson equation in (11.5), transforming it to

γ̇ + ω′×γ = 0, (11.32)

while the areas integral in (11.6) takes the form

I3 = (ω′I + l+νγI) · γ= f. (11.33)

Substituting in the Eulerian part of the equations of motion, using (11.32) and
rearranging terms, we get

ω̇′I+ω′×(ω′I + μ + 2νγI − ν(trI)γ + γI · γ
∂ν

∂γ
− (γI· ∂ν

∂γ
)γ)

= γ × [∂V
∂γ

− ν μ− ν2γI + (ω′I·γ)
∂ν

∂γ
]. (11.34)

On the level I3 = f (say), we substitute ω ′I · γ from (11.33) and after some manip-
ulations write the equations of motion in the final form:

ω̇′I + ω′×(ω′I + μ′) = γ × ∂V ′

∂γ
,

γ̇ + ω′×γ = 0, (11.35)

where

μ′ = μ+ ∂

∂γ
(νI · γ) − [ ∂

∂γ
· (νγI)]γ,

≡ μ−2νγ Ī + γI×(
∂ν

∂γ
× γ)
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V ′ = V + ν( f − l·γ) − 1

2
ν2γI·γ, (11.36)

and Ī= 1
2 tr(I)δ−I. From the first of Eq. (11.36) and comparing with (11.4), we can

also write the transformation law for the vector l as

l ′ = l+νγI. (11.37)

Thus, the transformation (11.31) preserves the form of the equations of motion
on a fixed level of I3, changing only V,μ (or l) to V ′,μ ′ (or l ′). The value f of I3
enters in the potential V ′ as a parameter. The solution of the transformed equations of
motion (11.35) can be obtained from that of (11.5) through the substitution (11.31).

The system of Eq. (11.35) admits the linear integral

I3 = (ω′I + l ′)· γ = f ,

equivalent to (11.33), and also the energy (Jacobi’s) integral

1

2
ω′I · ω′ + V ′ = h.

On the one hand, the transformed system (11.36) can be viewed as the equations
of motion of the original system as in (11.5), as seen by an observer resting in the
reference frame moving with the position-dependent angular velocity ν(γ1, γ2, γ3).
The new terms that appeared in the transformed system are the inertial forces due to
the rotation of the frame.

On the other hand, there is a different and more constructive way of looking at
(11.36). We shall make use of the situation that the transformation preserves the
form of the equations of motion to understand the transformed equations on their
own as describing the motion of a second body in the inertial frame under the forces
determined by V ′,μ′. In other words, we consider the system (11.36) as formally
generalizing (11.5) to which it reduces when ν = 0.However, this will not prevent us
from relating the solutions of the two systems by the (formal) transformation (11.31).
This duality in interpretation is the key to understanding the present method. From
now on, we will mostly regard the system (11.36) as a generalization of (11.5) rather
than a transformed form of it.

Remark 17 A curious note may be in place here. In certain cases, it is possible from
Eq. (11.36) to choose the function ν so that V ′ vanishes. This means that in those
cases, when the resulting ν(γ) is a real function, the original forces with potential V
can be replaced by purely gyroscopic forces in a properly chosen rotating coordinate
frame. However, we shall not follow this line, since it seemingly has no practical
consequences.
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11.7 Maximal Reduction of the Order of the Equations
of Motion

The method used in Chap.9 Sect. 9.2 and an exercise of Chap.10 can be used here
in the most general case of potential and gyroscopic forces to obtain a second-order
orbital equation connecting two of the geometric variables γi . The Lagrangian of the
problem of motion will be taken in the form (11.1), namely

L = 1

2
ωI · ω + l · ω − V, (11.38)

in the redundant configurational variables ψ, γ1, γ2, γ3, subject to the holonomic
condition

γ2
1 + γ2

2 + γ2
3 = 1. (11.39)

The angular velocity may be written as

ω = ψ̇γ+N, (11.40)

where

N = θ̇n + ϕ̇k

= − γ̇3√
1 − γ2

3

(cosϕ,− sinϕ, 0) + γ2γ̇1 − γ1γ̇2

γ2
1 + γ2

2

k

= (−γ2γ̇3, γ1γ̇3, γ2γ̇1 − γ1γ̇2)

1 − γ2
3

. (11.41)

As a result of cyclicity of the Lagrangian in the variable ψ, we have the integral

∂L

∂ψ̇
= ∂L

∂ω
· ∂ω

∂ψ̇
= (ωI + l) · γ = f. (11.42)

Multiplying (11.40) scalarly by γI and using (11.42), we obtain

ψ̇ = 1

D
( f − l · γ−γI · N), D = γI · γ. (11.43)

Then, ignoring ψ we construct the Routhian

R = ABC

2D
γ̇I−1·γ̇+l∗·γ̇ − V ∗, (11.44)
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where

V ∗ = V (γ)+ 1

2D
( f − l · γ)2,

l∗ = 1

D
[γI×l + f

∂

∂γ̇
(γI·N)]. (11.45)

Just as in the preceding chapters, applying Maupertuis’ principle to (11.44) and
eliminating γ2, we arrive at the following second-order differential equation in
γ3(γ1), to which the equations of motion of the problem are reduced on the integral
level {I1 = h, I2 = 1, I3 = f }2 [384]:

D(1 − γ21 − γ23 )γ′′
3 + Cγ3(1 − γ23 )

−γ1[A − (A + 2C)γ23 ]γ′
3 + γ3[C − (C + 2A)γ21 ]γ′2

3

−Aγ1(1 − γ21 )γ
′3
3

− ρ

ABCD
{Cγ3[(A − B)(A + B − C)γ21 + B(B − C)(1 − γ23 )]

+Aγ1[(B − C)(B + C − A)γ23 + B(A − B)(1 − γ21 )]γ′
3}

+ ρ

2ABC(h − V ∗)
[∂V

∗
∂γ3

(λ + μγ′
3) − ∂V ∗

∂γ1
(μ + νγ′

3)]

+ ρ3/2

ABC
√
aD3(h − V ∗)

×{ f [(A − B)(A + B − C)γ21 − B(A − B + C) + (C − B)(B + C − A)γ23 ]
+�}

= 0, (11.46)

where

ρ = λ + 2μγ′
3 + νγ′2

3 ,

λ1 = C[B(1 − γ2
3) + (A − B)γ2

1 ],
λ2 = ACγ1γ3,

λ3 = A[B(1 − γ2
1) + (C − B)γ2

3 ], (11.47)

and

V ∗ = V (γ) + 1

2D
( f − l · γ)2,

� = D2γ · [ ∂

∂γ
× (

l × γI
D

)]

≡ D2 ∂

∂γ
· [ 1

D
γ × (γIs×l)]. (11.48)

2 The positive sign of the square root in (11.46) corresponds the choice of positive sign of the root
in (11.49). If this choice is reversed, Eq. (11.46) is not changed, provided the signs of f and l are
reversed. This is a consequence of the invariance of the system (11.5) with respect to the replacement
t,ω,μ → −t,−ω,−μ.
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As should be expected, one can verify that a gauge term l0 (11.8) does not contribute
to the two functions V ∗ and �.

Now, having a solution γ3 = γ3(γ1) of the orbital Eq. (11.46), one can obtain the
dependence of γ1 on time by inverting the integral

t =
∫ √

λ1 + 2λ2γ
′
3 + λ3γ

′2
3

2D(h − V ∗)(1 − γ2
1 − γ2

3)
dγ1, (11.49)

and substituting in γ3, the last is determined in terms of time and then γ2 is found
from the geometric integral. This completes determination of γ and hence the two
Eulerian angles θ and ϕ as functions of t. Thus, we have shown the equivalence of
the reduced Eq. (11.46) to the equations of motion (11.5) on the integral level {h, f },
provided γ′

3 and γ
′′
3 are well defined, i.e. excluded are only trajectories along which

γ1 takes a constant value.
It should be noticed here that the three functions V ∗, l∗ and �, which occur in

(11.44) and (11.46), are all invariant with respect to the transformation (11.31). This
can be easily verified by replacing the pair (V, l) in them by the pair (V ′, l ′). This
means that, on the integral level {h, f }, the Routhian (11.44), the orbital Eq. (11.46)
and the expressions of γ, θ and ϕ do not change by the variable rotation transforma-
tion (11.31). We shall use this property later in several situations.

To completely determine the position of the body in space, one has to find an
expression for the precession angle ψ by integrating (11.43), which involves the
vector potential l . Using (11.40), one can express the angular velocity ω in the form

ω = 1

D
[γ̇×γI + ( f − l · γ)γ]. (11.50)

Not only all the Euler–Poisson variables are thus determined as functions of time,
but also the vectors α,β. For the transformed system (11.35), regarding (11.37),
this process gives

ψ̇′ = 1

D
( f − l ′ · γ−γI·N)

= ψ̇ − ν,

ω′ = ω − νγ, (11.51)

which coincides with (11.31).

11.7.1 The Case of Complete Dynamical Symmetry

For the purpose of future use, we now write down in expanded form the Routhian
(11.44) in the special case when the inertia ellipsoid of the body at the fixed point
becomes a sphere. Then, from (11.44) we have
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R = 1

2
A(γ̇2

1 + γ̇2
2 + γ̇2

3)

−[l1(γ2γ̇3 − γ3γ̇2) + l2(γ3γ̇1 − γ1γ̇3) + (l3 + f γ3
γ2
1 + γ2

2

)(γ1γ̇2 − γ2γ̇1)]

−[V (γ) + 1

2A
[ f − l1γ1 − l2γ2 − l3γ3]2]. (11.52)

11.8 Extensions of Integrable Problems

As a direct application of the transformed equations, we can readily deduce the
following theorems which construct integrable extensions of the known integrable
problems and connect the solutions of the generalized systems to those of the original
problems.

Theorem 11.1 Let the system (11.5) with certain V (γ) and μ(γ) corresponding to
vector potential l(γ), be general integrable, for arbitrary initial conditions, with the
complementary integral I4 = F(ω, γ). Then, upon replacing V,μ by

V ′ = V + ν(b − l · γ) − 1

2
ν2γI · γ,

μ′ = μ+ ∂

∂γ
(νγI·γ) − [ ∂

∂γ
· (νγI)]γ (11.53)

where ν = ν(γ) is an arbitrary function and b a new parameter, the new system is
integrable on the level

I3 = (ω′I+l+νγI) · γ = b. (11.54)

This theorem allows one to generate from an unconditional case (integrable for
arbitrary initial conditions) a conditional case integrable on a single level of the areas
integral I3, but with additional potential and gyroscopic forces involving an arbitrary
function ν(γ) and an arbitrary parameter bmore than the original integrable problem.
To illustrate the feasibility of the generalized problem, one can calculate for it the
reduced potential. One gets

V ∗ = V + (b − f )ν+ 1

2D
( f − l · γ)2. (11.55)

The extra-parameter b enters in Eq. (11.35), in the equations of motion derived from
the Routhian (11.44) as well as in the orbital Eq. (11.46). The extended problemmay
not be integrable for arbitrary initial conditions. However, on the single level f = b,
the reduced potential reduces to that of the original problem. The extended problem
involves one more physical parameter b and under the dynamical condition f = b,
it becomes integrable and its solution has the same number of parameters as in the
solution of the original problem.
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A quick example can be readily given by the simplest extension of Euler’s case
of the motion of a body under no torques. Let us take V = 0, l = 0 and choose
ν = n + n1γ1, so that

V ′ = bν − 1

2
ν2γI · γ, l ′ = νγI. (11.56)

A family of solutions of the transformed problem can be written down generalizing
formulas (10.111), (10.112) of Chap.10 by replacing n by ν in that solution. The
resulting solution is valid on the level f = b.

Theorem 11.2 Let the system (11.5) with certain V (γ) and μ(γ) corresponding
to vector potential l(γ), be general integrable (for arbitrary initial conditions). Let
also V have the structure

V = V0 + b1V1 + ... + bkVk, (11.57)

where Vi , i = 0...k and l are functions of γ not involving any of the parameters
b1, ..., bk and the complementary integral be

I4 = F(ω,γ; b1, ..., bk). (11.58)

Then, upon replacing V,μ(l) by

V ′ = V0 + b1V1 + ... + bkVk − νl · γ − 1

2
ν2γI · γ,

μ′ = μ+ ∂

∂γ
(νγI · γ) − [ ∂

∂γ
· (νγI)]γ,

(l ′ = l+νγI), (11.59)

where ν = n1V1 + ... + nkVk and ni are new constants, the new system is uncondi-
tionally integrable with the areas integral

I3 = (ω′I+l ′) · γ = f, (11.60)

and for it the complementary integral is

I4 = F(ω′ + νγ,γ; b1 − n1 I3, ..., bk − nk I3). (11.61)

In fact, comparing the reduced potentials for the original problem characterized
by the pair {V, l}with that of the extended problem characterized by the pair {V ′, l ′}
in (11.59), we find

l ′∗ = l∗,
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V ∗ = V0 + b1V1 + ... + bkVk+ 1

2D
( f − l · γ)2,

V
′∗ = V0 + b1V1 + ... + bkVk − f (n1V1 + ... + nkVk)+ 1

2D
( f − l · γ)2

= V0 + (b1 − f n1)V1 + ... + (bk − f nk)Vk+ 1

2D
( f − l · γ)2. (11.62)

The potentials V ∗, V ′∗ in (11.62) are identical in form. The only difference is that
each bi is replaced by b′

i = bi − f ni , i = 1, ..., k, and hence follows integrability
and the form of the integral (11.61). The set of solutions of the extended problem is
the same as that of the original problem. Notable here is the coupling between the
constants which characterize the physical problem, and hence appear in the equations
of motion, and a dynamical constant of motion I3,which appears in the process of
integrating those equations. In fact, the phase portrait and phase trajectories of the new
integrable problems are different from their original counterparts provided f �= 0.

Theorem11.2 generates from an unconditional case integrable for arbitrary initial
conditions another unconditional case also integrable for arbitrary initial conditions.
The new system involves k + 1 parameters n0, n1, ..., nk more than the old one
and renders to it when one puts n0 = n1 = ... = nk = 0. According to the problem
setting, the new parameters invoke additional forces in the equations of motion,
which can be given concrete physical interpretation.

The presence of I3 in the expression for I4 in the transformed problem may lead
in certain cases to notable changes in the structure of the integral. For example, we
shall see below a case in which the degree of the quadratic I4 is raised to 3 because
of the appearance of I3 in the coefficients of the quadratic terms.

Theorem 11.3 If {ω = �(t,ω◦, γ◦), γ = �(t,ω◦, γ◦)}, is the general solution of
the first system satisfying the arbitrary initial conditions {ω = ω◦, γ = γ◦}, then
for arbitrary ν(γ) the solution of the second system, satisfying the initial conditions
{ω′ = ω′◦, γ = �◦}, is

{ω′ = �(t,ω′◦ + ν(γ◦)γ◦,γ◦)
−ν(�(t,ω′◦ + ν(γ◦)γ◦,γ◦))�(t,ω′◦ + ν(γ◦)γ◦,γ◦),

γ = �(t,ω′◦ + ν(γ◦)γ◦,γ◦)}. (11.63)

Theorem 11.4 If the first system admits any particular solution {ω = �(t), γ =
�(t)}, then for arbitrary ν(γ) the second system admits the solution {ω′ = �(t) −
ν(�(t))�(t), γ = �(t)}.

The last theorem follows from the fact that the solution of the second system for
the Poisson variables γ is not affected by the function ν(γ).

In the following chapter, we discuss the consequences of the above theorems
in application to known solvable problems of rigid body dynamics. Theorem 11.1
ensures the integrability of the problem (11.35) on the level f of the cyclic integral and
for arbitrary ν(γ) whenever the corresponding problem (11.5) is integrable, either
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for arbitrary initial conditions or only on a fixed level of the cyclic integral. Theorem
11.2 relates the explicit solutions of the two problems. Theorem 11.3 enables the
generalization, bymeans of including the function ν, of particular solutions of (11.5),
i.e. solutions not involving any arbitrary constants or involving a number of constants
of motion less than needed to guarantee integrability.

11.9 Transformations of Cyclic Variables

In Sects. 11.6 and 11.8, we have introduced the variable precession transformations
that leave the invariant form of the Euler–Poisson equations of motion. We were also
able to use this transformation, specially designed for rigid body dynamics under
the influence of axi-symmetric forces, to construct integrable extensions of known
cases. It turns out that the same transformation can be attained in a completely differ-
ent way, applicable to any system whose structure involves cyclic coordinates. The
basic idea is that for such system to be integrable, all that matters is the structure
of its Routhian equations of motion after ignoring the cyclic coordinates. We use
a simple observation that several Lagrangian mechanical systems that have differ-
ent Lagrangian and Routhian functions can be reduced to one and the same set of
Routhian equations in the palpable part of the generalized coordinates. Clearly, this
will be the case if the Routhians of those systems differ only by constant terms that
may depend only on the cyclic constants, but not on any of the palpable coordinates
or velocities.

Consider the mechanical system of n + k degrees of freedom, of which k degrees
are cyclic, characterized by the time-independent Lagrangian

L = L(q1..., qn, q̇1..., q̇n, Q̇1, ..., Q̇k). (11.64)

The system admits the cyclic integrals

∂L

∂ Q̇i
= fi , i = 1, ..., k. (11.65)

Let us consider another system with the Lagrangian

L ′ = L(q1, ..., qn, q̇1, ...,
.
qn, Q̇

′
1 + ν1, ..., Q̇

′
k + νk) −

k∑
i=1

βiνi (q1..., qn),

(11.66)
where βi are certain constants and νi are certain functions of the palpable coordi-
nates q1..., qn . We notice that the system (11.66) is time-independent with the cyclic
variables Q′

1 , ..., Q
′
k . This system can be considered as a transformation of (11.64)

through the linear time-independent transformation of the cyclic variable rates
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Q̇i = Q̇′
i + νi (q1, ..., qn). (11.67)

Consider the motion of the system (11.66) on the same level of the cyclic integrals
as in (11.65), i.e.

∂L ′

∂ Q̇′
i

= fi , i = 1, ..., k. (11.68)

This is the transformed form of (11.65) according to (11.67).
Now, let R and R′ be the Routhians of the two systems, then their difference

R′ − R = L −
k∑

i=1

βiνi −
k∑

i=1

Q̇′
i fi − (L −

k∑
i=1

.

Qi fi )

=
k∑

i=1

(Q̇i − Q̇′
i ) fi − βiνi

=
k∑

i=1

( fi − βi )νi . (11.69)

The Routhian equations of motion (see, for example, [305, 368]) of the system char-
acterized by (11.64), (11.65) will be identical to those obtained for the transformed
system (11.66), (11.68) if we set { fi = βi , i = 1, ..., k}. In other words, under the
last conditions, the arbitrary functions νi do not affect the solution for the non-cyclic
coordinates.

From the above considerations we draw the following theorems:
1. For constant {νi = ni , i = 1, ..., k}. In this case the right-hand side of (11.69)

is constant, and one can take {βi = 0}. Equations for q1..., qn are identical from R′
and R.

Theorem 11.5 If the Lagrangian (11.64) is general integrable (for arbitrary initial
conditions), then the Lagrangian

L ′ = L(q1, ..., qn, q̇1, ...,
.
qn, Q̇

′
1 + n1, ..., Q̇

′
k + nk) (11.70)

is also integrable for arbitrary initial conditions.

It is not hard to see that this theorem applied to the problem of motion of a
body about a fixed point under the action of axi-symmetric fields, i.e. with one cyclic
coordinateψ (the angle of precession), leads to the uniformprecession transformation
introduced in Chap.10. Note that in this method, we have not used the property of
invariance of the form of Euler–Poisson equations.

Exercise [405]: Apply the last theorem to exercise 5 of Chap.9, using the trans-
formation ψ̇ → ψ̇ + n, ϕ̇ → ϕ̇ + N , n, N constants. Show that the transformed
integrable Lagrangian is
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L ′ = 1

2
[(A + mz2)(θ̇2 + sin2 θψ̇2) + C(ψ̇ cos θ + ϕ̇)2 + ż2]

+n[(A + mz2
)
sin2 θψ̇ + C cos θ(ψ̇ cos θ + ϕ̇)] + CN (ψ̇ cos θ + ϕ̇)

−{V (z) − n2

2
[(A + mz2

)
sin2 θ + C cos2 θ] − nNC cos θ}. (11.71)

Note that the transformation engenders, among other effects, the presence of a
gyrostatic momentum CN along the axis of symmetry and uniform field potential
−nNCγ3.

2. For variable {νi = νi (q1..., qn), i = 1, ..., k}
Theorem 11.6 If the system with the Lagrangian

L = L(q1..., qn, q̇1..., q̇n, Q̇1, ..., Q̇k) (11.72)

is integrable for arbitrary initial conditions, then the system whose Lagrangian is

Ĺ = L(q1, ..., qn, q̇1, ...,
.
qn, Q̇́1 + ν1, ..., Q̇́k + νk) −

k∑
i=1

βiνi (q1..., qn) (11.73)

is integrable for arbitrary functions νi and arbitrary constants {βi } on the level

{ ∂ Ĺ

∂
.

Q́i

= βi , i = 1, ..., k} (11.74)

of the cyclic integrals.

It should be stressed again that the integrability of the system with Lagrangian
(11.73) in the last theorem is conditional, i.e. valid only for initial conditions consis-
tent with the restriction (11.74), even though the original system (11.72) is integrable
for arbitrary initial conditions. In application to dynamics of a rigid body about a
fixed point in an axi-symmetric field, this theorem reproduces Theorem 1 of the
previous section, which generates a conditional integrable extension from a general
one.

There are, however, very important situations when the new system can be made
integrable for all initial conditions. This depends on the structure of the potential part
of the Lagrangian.

For the sake of clarity and for future applications, we consider in detail the case of
a generalized natural system with three degrees of freedom, of which one is cyclic.
Let

L = 1

2
(a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2 ) + (c1q̇1 + c2q̇2)Q̇ + 1

2
c3 Q̇

2

+b1q̇1 + b2q̇2 + b3 Q̇ − V, (11.75)
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where ai j , bi , ci , V depend only on q1, q2, so that Q is a cyclic variable. On an
arbitrary level of the cyclic integral

c1q̇1 + c2q̇2 + c3 Q̇ + b3 = f (11.76)

the Routhian has the form

R = 1

2
(a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2 ) − 1

2c3

[c1q̇1 + c2q̇2 + b3 − f ]2

+b1q̇1 + b2q̇2 − V . (11.77)

Now we perform in (11.75) the transformation

Q̇ = ν + Q̇′, ν = ν(q1, q2). (11.78)

According to the last theorem, we get the new Lagrangian

L ′ = 1

2
(a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2 ) + (c1q̇1 + c2q̇2)(Q̇

′ + ν) + 1

2
c3(Q̇

′ + ν)2

+b1q̇1 + b2q̇2 + b3(Q̇ + ν) − V, (11.79)

integrable on the level of the cyclic integral

c1q̇1 + c2q̇2 + c3(Q̇
′ + ν) + b3 = f. (11.80)

Now, ignoring the cyclic coordinate Q′ in (11.79) with the aid of this integral,
one obtains the Routhian

R′ = 1

2
(a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2 ) − 1

2c3

[c1q̇1 + c2q̇2 + b3 − f ]2

+b1q̇1 + b2q̇2 − V + f ν. (11.81)

Note that
R′ = R + f ν. (11.82)

Let the system with the Lagrangian (11.75) be integrable. This implies the inte-
grability of the system described by the Routhian (11.77), which should admit a
complementary integral, independent of the Jacobi integral (the Hamiltonian). The
transformed system with Lagrangian L ′ is not necessarily integrable. This is clearly
seen from the relation (11.82) between the Routhians R and R′. When ν is not a
constant, the two systems have different Routhian equations for the palpable coor-
dinates. The following curious situation arises, which enables us to construct a wide
class of extended integrable problems.

Let the potential V in (11.75) have the structure
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V = V0 +
∑

aivi (11.83)

where {ai } are arbitrary constants and V0, vi are certain functions in the palpable
generalized coordinates q1, q2. Let, further, the system (11.75) be integrable for
arbitrary initial conditions. This means that, besides the three general integrals, the
Routhian equations of this system admit a complementary general integral, which
will depend on the set of constants {ai }, say

I4 = F(q1, q2, q̇1, q̇2, f ; a1, a2, ...). (11.84)

If, moreover, we choose ν in the transformation (11.78) in the form

ν =
∑

nivi (11.85)

and substitute this and (11.83) in (11.77) and (11.81), we put the two Routhians in
the form

R = 1

2
(a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2 ) − 1

2c3

[c1q̇1 + c2q̇2 + b3 − f ]2

+b1q̇1 + b2q̇2 − V0 −
∑

aivi , (11.86)

and

R′ = 1

2
(a11q̇

2
1 + 2a12q̇1q̇2 + a22q̇

2
2 ) − 1

2c3

[c1q̇1 + c2q̇2 + b3 − f ]2

+b1q̇1 + b2q̇2 − V0 −
∑

Aivi , (11.87)

where Ai = ai − f ni . The only difference between the two is that {ai } are replaced
by {Ai }.

The Routhian equations of motion for the transformed problem are also generally
integrable. They admit the integral

I ′
4 = F(q1, q2, q̇1, q̇2, f ; A1, A2, ...)

= F(q1, q2, q̇1, q̇2, f ; ai − f ni , a2 − f n2, ...). (11.88)

Moreover, the corresponding Lagrangians are also integrable. The integrals I3 and
I ′
3 can be obtained by substituting the parameter f from (11.76) and (11.80), respec-
tively. It is remarkable that this substitution replaces some constant coefficients of
the complementary integral of the transformed problem by ones depending on f,
which can be replaced by its expression involving the velocity variables. The pres-
ence of the added parameters {ni } changes the structure of the integral. Naturally,
the transformed system is a physical generalization of the original one and when all
{ni } vanish one goes back to the original system.
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The above three ways of generalizing integrable systems with cyclic coordinates
can be applied to rigid body dynamics. In the particular case of axi-symmetric fields,
they give the same results as described in the theorems of the last section. Themethod
using cyclic variables furnishes a great advantage. It does not require invariance of
the Euler–Poisson equations and it will be used in various situations in the sequel,
while dealing with the motion of the body in an asymmetric combination of fields.
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