
Chapter 10
The Problem of Motion of a Body
in a Liquid

The present chapter is devoted to the investigation of the problem of motion of
a rigid body by inertia in an ideal incompressible fluid, infinitely extending in all
directions and at rest at infinity. Strictly speaking, this problem belongs to the field of
fluid dynamics. The problem evolved namely in this way. The ordinary differential
equations of motion of the solid are simultaneously solved with partial differential
equation governing the motion of the liquid under boundary conditions satisfied on
the surface of the moving solid. In this process, the pressure of the liquid had to be
explicitly calculated at every point of the surface of the body. Nevertheless, after the
study of some simple cases, and mainly in the works of Thomson and Tait [352]
and of Kirchhoff [219], it became clear that the body and the liquid can be treated as
forming together one dynamical system of six degrees of freedom, so that the detailed
picture of the pressure of the fluid on the surface of the body is completely avoided.
This system, composed of the body and liquid, was reduced to the motion of a rigid
body with modified characteristics to compensate the motion of the liquid. When
referred to a coordinate frame fixed in the body, the kinetic energy of this system is
expressed as a quadratic form of the components of the angular and linear velocities
of the body with constant coefficients. This step was decisive in the evolution of the
subject along the next few decades.

In this setting, the present problem has six degrees of freedom: three for the
rotationalmotion and three for the translation of a point of the body and is traditionally
described for a simply connected body by Kirchhoff’s equations [219] (see also
[220]) or by their Hamiltonian form, mostly used by mathematicians, which are due
in their final form to Clebsch [55]. For a perforated body (a body bounded by a
multi-connected surface) the equations of motion are usually taken in the form due
to Lamb [253], or in the equivalent Hamiltonian form (see e.g. [41]).

Research in the problem of motion of a body in a liquid passed through a period of
vigorous activity in the last decades of the nineteenth century. After the formulation
of the equations of motion in their final most general form by Kirchhoff, Clebsch
and Lamb, a lot of significant results was obtained by several eminent, and mostly
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Russian, scientists, includingMinkowsky [284], Lyapunov [267], Chaplygin [53] and
Steklov [344, 345, 348]. For almost half a century, the research in the problementered
a state of stagnation. As stated by Aref and Jones [12] “The Kirchhoff equations
present a most remarkable simplification of a problem that, in principle, involves
an infinite number of degrees of freedom. Surprisingly, the literature exploring these
equations from the point of view of dynamical systems theory is rather sparse”.
Half a century later, the first significant results concerning the integrable cases were
obtained by Rubanovsky [317–320] (See also books: [121, 125]) using a modified
form, due to Kharlamov P., of Clebsch’s equations of motion. In most works outside
Russia, the form of Clebsch (also Hamiltonian) was mostly used for some qualitative
studies of the motion, e.g. [151, 263] (See also references of the last paper).

It turned out that the form of equations of motion involving the variables of
Euler–Poisson type, rather than those of Hamiltonian type, enjoy some privileges
that will be explained later in this chapter. Those are equations formulated, for the
first time, in their most general form in [383]. They are in fact a form of Lagrangian
equations, using redundant non-Lagrangian variables. SuchLagrangian equations are
not completely new. Similar equations were used by Minkowski, in the special case
of Kirchhoff’s equations, to establish his brilliant theorem about the isomorphism
between the reduced problem of rigid body motion and the motion of a particle on a
smooth ellipsoid through a time transformation [284].

In this chapter, equations of motion are presented in their original forms of Kirch-
hoff, Clebsch and Lamb. Our new equations of Lagrangian, in fact Routhian, form
[383] are also presented. This form turned out to be so effective that they put the
problem in a unified context with other problems considered in this book. Those
problems form a hierarchy, ascending from the classical problem to the one of the
present chapter. This hierarchy is extended in the next part of this book to include
the most general problem of motion of a rigid body under the action of conservative
potential and gyroscopic forces which have a common axis of symmetry through the
fixed point. The last problem reduces under some restrictions on the forces, to the
problem, equivalent to that of motion of a body in a liquid. Going lower in the hier-
archy, we note that every problem in it contains all the problems considered before
it as a special case. As a result of this representation of the equations of motion, a
striking property of the equations of motion of a rigid body in a liquid is revealed.
It is the first problem which is closed under the regular precession transformation.
Referring the equations to a coordinate frame precessing with a uniform speed with
respect to the inertial frame, results in the same equations, as if in the inertial frame,
but with changed characteristics of the body. Thus, this transformation generates
from any solution in the present problem or any problem lower in the hierarchy, a
new solution that contains the precession speed as an extra-parameter. This situation
helped to re-organize the known information about the subject and to fill gaps in
it. Some recently discovered integrable cases are generalized. Tables are given for
all integrable cases, general and conditional. The most important known families of
particular solutions to the problem are discussed on different levels of detail.
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In our presentation of the subject, the problem of motion of a body in a liquid
plays a rather unusual role. Results obtained in this problem by various methods
and accumulated along a century have grown into a core for the advancement of
some other problems of motion of a rigid body under more sophisticated forces. In
later chapters, we shall use some transformations to obtain new integrable extensions
which are more general from the physical and mathematical aspects and which were
not subjected to any studies before.

10.1 Equations of Motion

10.1.1 Kirchhoff’s Equations

Consider a rigid body moving in an ideal incompressible liquid, extending to infinity
in all directions and at rest at infinity. Assume that the body is bounded by a simply
connected surface and is moving by inertia, i.e. under no forces, except those exerted
on it by the pressure of the liquid on its surface. Let O ′ and O, respectively, be the
origins of the inertial coordinate system O ′XY Z and another system Oxyz fixed in
the body and let r = O ′O . Denote by ω the angular velocity of the body and by u
the velocity of O with respect to O ′, so that u = dr

dt . The equations of motion were
derived in Lagrangian form using the Lagrangian function L (kinetic energy T , since
no external forces are present):

L = T = 1

2
(ωA · ω+2uB · ω + uC · u) (10.1)

in which A, B, C are constant 3 × 3 real matrices; A, C symmetric and B is not
necessarily symmetric.Here, the state variablesω andu and all quantities (parameters
of the problem) are referred to the body system. Of course, as a quadratic form, T
must be positive definite in the six variables. For this the three matrices must satisfy
certain inequalities.

We shall not go through the explicit derivation of the matrices A, B, C from the
underlying hydrodynamical problem, because that would increase the size of this
chapter beyond preassigned limits. All this material can be found in the treatise of
Lamb [253]. It will be helpful in dealingwithmotion of bodieswith certain symmetry
properties to borrow the cases presented in the following table from that treatise. A
similar table is presented in [41].
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Table 0:
Symmetry Matrices Examples

1 Plane of symmetry xy A = diag(A1, A2, A3),

B =
⎛
⎝

0 0 B13
0 0 B23
B13 B23 0

⎞
⎠ ,

C =
⎛
⎝
C11 C12 0
C12 C22 0
0 0 C33

⎞
⎠ .

2 Two orthogonal planes of
symmetry xy, xz

A = diag(A1, A2, A3),

B =
⎛
⎝
0 0 0
0 0 B23
0 B23 0

⎞
⎠ ,

C = diag(C1,C2,C3)

3 Three orthogonal
planes of sym-
metry xy, xz, yz

A = diag(A1, A2, A3),

B = 0,

C = diag(C1,C2,C3)

Tri-axial
ellipsoid,
Parallele-piped.

4 Rotation through
an angle π about
axis Oz.

A = diag(A1, A2, A3),

B =
⎛
⎝

B11 B12 0
B12 B22 0
0 0 B33

⎞
⎠ ,

C =
⎛
⎝
C11 C12 0
C12 C22 0
0 0 C33

⎞
⎠ .

Two-bladed
ship screw.

5 Rotation through
an angle π/2
about axis Oz.

A = diag(A1, A2, A3),

B = diag(B1, B2, B3),

C = diag(C1,C2,C3).

Four-bladed
ship screw.

6 Helicoidal symmetry about
axis Oz.

A = diag(A, A, A3),

B = diag(B, B, A3),

C = diag(C,C,C3).

Helicoid.

7 Oz is axis of symmetry (or
rotation
through an angle
2π
n , n /∈ {2, 4}
around z-axis).

A = diag(A, A, A3),

B = 0,

C = diag(C,C,C3).

Spheroid,
Three-bladed
ship screw.

8 The body is similarly
related to each of the
coordinate planes.

A = Aδ,

B = 0,

C = Cδ.

Cube, sphere.

It is usually argued that the origin of the movable coordinate system can always
be shifted so that O coincides with a certain point of the body, called the central
point, at which the matrix B becomes symmetric. It is also usually assumed that the
axes of the body system are rotated to the principal axes of the matrix A, so that the
matrix A becomes diagonal. However, we shall see soon that there is no need for
those steps for the time being, if one is not concerned in using the original variables
ω and u.

The equations of motion are [219]
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d

dt

∂L

∂ω
+ ω × ∂L

∂ω
+ u×∂L

∂u
= 0,

d

dt

∂L

∂u
+ ω × ∂L

∂u
= 0. (10.2)

Explicitly, Kirchhoff’s equations can be written in vector form

ω̇A+u̇B + ω × (ωA + uB) + u × (ωBT+uC) = 0,

ω̇BT+u̇C + ω × (ωBT+uC) = 0 (10.3)

or, if one introduces the notation

M = ∂L

∂ω
= ωA + uB, (10.4)

and

p = ∂L

∂u
= ωBT+uC, (10.5)

in the alternative form

Ṁ + ω × M + u × p = 0,

ṗ + ω × p = 0. (10.6)

Equation (10.3) are quite complicated. An obvious disadvantage is that they are not
solved with respect to the derivatives. Every scalar equation of motion may contain
the six components of the derivatives ω̇ and u̇. Following Kirchhoff, we also note
that those equations admit three integrals of motion:

1. The energy integral, as the Lagrangian is a homogeneous quadratic polynomial
of the velocities

I1 = 1

2
(ωA · ω + 2uB · ω + uC · u). (10.7)

2. From the second equation in (10.6), it follows that the magnitude of the vector
p = ∂L

∂u is conserved.
I2 = |p|2 = |ωBT+uC|2. (10.8)

3. Also, using both Eq. (10.6), we get

I3 = M · p = (ωA + uB) · (ωBT+uC). (10.9)

The system of Eq. (10.3) was used in the treatment of certain simple cases.
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10.1.2 Example: Permanent Translational Motions

For example, Kirchhoff investigated the possibility that the body performs uniform
translational motion without rotation. From (10.3), settingω= 0, it turns out that the
condition for this motion is

u × uC = 0.

That is, the vector u must be directed along one of the principal axes of the matrix C.

Thus, a body of an arbitrary shape (with a tri-axial ellipsoid of the matrix C) always
has three mutually orthogonal axes such that if the body is set in motion parallel to
one of them along any direction in space and then left to itself, it will permanently
continue this motion with constant velocity. In case of two equal principal axes, all
axes at the equatorial plane are possible axes of permanent translation and also the
polar axis, and in case of spherical symmetry all directions in the body are possible
for permanent translation. Note that actual spherical symmetry of the body is not
necessary. It is a dynamical property that the matrix C has three equal eigenvalues.
This condition is satisfied by cubes as well as by spheres [253].

10.1.3 Clebsch’s Form of Kirchhoff’s Equations

Clebsch [55] transformed Eq. (10.6) to Hamiltonian form using the variables M, p
and the Legendre transformation

H(M, p) = M · ω + p · u − L

= 1

2
(Mã · M + 2Mb̃ · p + pc̃ · p) (10.10)

where

ã = (A − BT C−1B)−1,

b̃ = −C−1B(A − BT C−1B)−1

c̃ = C−1 + C
−1

B(A − BT C−1B)−1BT C−1.

Note that ã, c̃ are symmetric but b̃ is not.
The equations of motion acquire the Hamiltonian form due to Clebsch

Ṁ = M × ∂H

∂M
+ p × ∂H

∂p
, ṗ = p × ∂H

∂M
(10.11)

or, in expanded form,



10.1 Equations of Motion 235

Ṁ = M×(Mã+pb̃T ) + p × (Mb̃+pc̃),

ṗ = p × (Mã+pb̃T ), (10.12)

which is used, usually assuming symmetry of the matrix b̃, until recently, e.g. [41,
246, 263, 327, 328]. For the Hamiltonian form of the Kirchhoff equations see also
[12, 257, 258, 280].

The general integrals of motion take their simplest form in the variables M, p :

I1 = H,

I2 = M · p

I3 = p2. (10.13)

10.2 Thomson-Lamb’s Equations

By the words of the contemporary of Thomson and Lamb, A.B. Basset [19] “the
general theory of motion of a ring in an infinite liquid, when there is cyclic irrota-
tional motion through its aperture, was first given by Sir William Thomson in the
Philosophical Magazine (1871), and his theory has been subsequently developed by
Professor Lamb, in his Treatise on the motion of fluids” [252]. Hence, and although
the equations of motion are direct generalization of Kirchhoff’s equations, I will
give the name “Thomson-Lamb’s theory” to the theory of equations of motion of
a multi-connected (perforated) rigid body in a liquid. This problem was not con-
sidered in its generality in the western literature for about a century. In fact, after
the works of Basset and Fawcett on the motion of perforated bodies in liquid (e.g.
[19, 83]) in the last two decades of the nineteenth century, no significant results are
seen in this area until the equations of motion were reformed by Kharlamov in the
sixties. The deduction of the Lagrangian (Euler–Poisson type) equations appeared
in 1986, a whole century later. This may have been caused by the historical nature
of that period at the beginning of the twentieth century. The period of birth of new
physical theories: atomic physics, relativity, old quantum and then quantum theories.
Research in branches of classical mechanics was significantly retarded.

It may be noted here that the generalization of Kirchhoff equations for perforated
body was given by some authors the name “Kirchhoff–Poisson equations”. As exam-
ples, see [121, 125]. This name seems to us irrational, since Poisson had no relation
at all to the present circle of problems.

Let O ′ and O, respectively, be the origins of the inertial coordinate system and

the system fixed in the body, and let r = −−→
O ′O . Denote by ω the angular velocity of

the body and by u the velocity of O with respect to O ′, so that u = dr
dt . The equations

as in [253] are derived from a Lagrangian function (kinetic energy, since no external
forces are present):
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Fig. 10.1 Simple and perforated bodies

T = 1

2
(ωA · ω+2uB · ω+uC · u) + ᾱ · ω+β̄ · u (10.14)

in which A, B, C are constant 3 × 3 real matrices; A,C symmetric and B is not
necessarily symmetric and ᾱ, β̄ are constant vectors, which characterize the multi-
connectedness of the body and the circulations of the fluid on irreducible circuits
drawn on its surface (Fig. 10.1b). Here, the state variables ω and u and all quantities
(parameters of the problem) are referred to the body system. For a body bounded by
a simply connected surface the vectors ᾱ, β̄ vanish and the Lagrangian turns into
the one used by Kirchhoff and Clebsch.

It is usually argued that the origin of the movable coordinate system can always
be shifted to a certain point of the body, called the central point, at which the matrix
B becomes symmetric if it is not so at O, and hence it is also usually assumed that
the axes of the system are rotated, so that the matrix A becomes diagonal. However,
we shall see soon that there is no need for those steps for the time being.

The equations of motion are [253]
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d

dt

∂T

∂ω
+ ω × ∂T

∂ω
+ u×∂T

∂u
= 0,

d

dt

∂T

∂u
+ ω × ∂T

∂u
= 0. (10.15)

Explicitly, Lamb’s equations can be written in vector form

ω̇A+u̇B + ω × (ωA + uB+ᾱ) + u×(ωBT+uC+β̄) = 0,

ω̇BT+u̇C + ω × (ωBT+uC+β̄) = 0 (10.16)

or, if we introduce the notation

M = ∂T

∂ω
= ωA + uB+ᾱ, (10.17)

and

p = ∂T

∂u
= ωBT+uC+β̄, (10.18)

in the alternative form

Ṁ + ω × M + u × p = 0,

ṗ + ω × p = 0. (10.19)

Equation (10.16) are quite complicated. An obvious disadvantage is that they are not
solved with respect to the derivatives. Every scalar equation of motion may contain
the six components of the derivatives ω̇ and u̇. Following Lamb, we also note that
those equations admit three integrals of motion:

1. Jacobi’s integral, the homogeneous quadratic part of the Lagrangian

I1 = 1

2
(ωA · ω+2uB · ω + uC · u). (10.20)

2. From the second equation in (10.19), it follows that the magnitude of the vector
p = ∂L

∂u is conserved.

I2 = |p|2 = |ωBT+uC+β̄|2.

3. Also, using both Eq. (10.19), we get

I3 = M · p = (ωA + uB + ᾱ) · (ωBT+uC+β̄).

The system of Eq. (10.16) was used in the treatment of certain simple cases and
is usually transformed to the Hamiltonian variables. Using a Hamiltonian (see, e.g.
[41]):
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H = M · ω−T

= 1

2
(Mã · M + 2Mb̃ · p + pc̃ · p) + α̃ · M+β̃ · p (10.21)

the equations of motion acquire the form

Ṁ = M × ∂H

∂M
+ p × ∂H

∂p
, ṗ = p × ∂H

∂M
, (10.22)

or in explicit form

Ṁ = M × (Mã + pb̃T + α̃) + p × (Mb̃+pc̃ + β̃),

ṗ = p × (Mã + pb̃T + α̃). (10.23)

Integrals of motion take the simple form:

I1 = H,

I2 = p2,

I3 = M · p.

The last form of equations is used in most recent works, e.g. [41].

10.3 On Different Forms of the Equations of Motion

The traditional equations of Kirchhoff and Lamb suffer some disadvantages that in
most cases lead to their treatment for most of their history in isolation from other
problems of rigid body dynamics. They also involve the non-symmetric matrix b.

Although this matrix can be reduced to symmetric form by shifting the origin to the
central point of the body, the presence of non-symmetry complicates the equations
either in Lagrangian or Hamiltonian forms. In most recent works some simplifying
restrictions on the parameters are assumed, such as b = 0 (e.g. [151, 263]). Equa-
tion (10.11) has also the disadvantage that their solution gives the vector quantity M,
which has no direct interpretation in terms of the motion unless transformed to an
expression involving the angular velocity ω and the vector p constant in space.

If Eqs. (10.2) (or (10.11)) are written in the frame of reference attached to the
principal axes of a matrix A (or ã), they involve 15 parameters characterizing the
shape of the body.

If Eqs. (10.15) (or (10.22)) are written in the frame of reference attached to the
principal axes of a matrix A (or ã), they involve 24 parameters characterizing the
shape of the body and, for a perforated body, circulations of the fluid along irreducible
contours on its surface.
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10.4 A New Form of the Equations of Motion

Here, we present with minor modification a new form of the equations of motion
of a general body in a liquid, which was derived in our work [383]. We note first
that in the Lagrangian (10.1), the Cartesian coordinates (X,Y, Z) of the origin of the
system of axes fixed in the body relative to the inertial system are cyclic variables,
since the resultant of forces acting on the body-and-fluid system vanishes. We now
ignore those coordinates using the vector cyclic integral

∂T

∂u
= ωBT+uC+β̃ = p, (10.24)

where p is a vector whose components are constant in space and hence satisfies the
Poisson equation

ṗ + ω × p = 0. (10.25)

Now, solving the relation (10.24) in u we obtain

u = (p − β̄ − ωBT )C−1 (10.26)

and we proceed to form Routh’s function

R = T − u · ∂L

∂u

= 1

2
ωI · ω + (κ+pK̃) · ω−a · p−1

2
pJ · p (10.27)

where I,K̃, J are the constant 3 × 3 matrices and κ, a are the constant vectors given
by

I = A − BT C−1B,

J = C−1, (10.28)

K̃ = C−1B,

a = −β̄C−1, (10.29)

κ = ᾱ−β̄C−1B. (10.30)

As seen from (10.30), the matrices I, J are symmetric but K̃, in general, is not.
Let K̃s and K̃a be the symmetric and antisymmetric parts of K̄, so that
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K̃ = K̃s+K̃a, (10.31)

K̃s = 1

2
[C−1B + (C−1B)T ] ≡ −1

2
K, (10.32)

K̃a = 1

2
[C−1B − (C−1B)T ]. (10.33)

Here we introduced a constant matrix K = −[C−1B + (C−1B)T]. Inserting (10.31)
into (10.27), we can write

R = R0+pK̃a · ω, (10.34)

where

R0 = 1

2
ωI · ω + (κ − 1

2
pK) · ω−a · p−1

2
pJ · p. (10.35)

We now show that the antisymmetric part Ka does not contribute to the equations
of motion. In fact, the last term of (10.34) is

pKa · ω = (p1, p2, p3)

⎛
⎝

0 −Ka3 Ka2

Ka3 0 −Ka1

−Ka2 Ka1 0

⎞
⎠ · ω

= (p × ka) · ω

where we introduced the vector ka = (Ka1, Ka2, Ka3) constant in the body axes.
Thus, we have

pKa · ω = ka · (ω×p)

= −ka · ṗ

= d

dt
(−ka · p).

Thus, the extra term in (10.34) is a nugatory term and has no contribution to the equa-
tions of motion (e.g. [305]). The Routhian R0 gives full description of the rotational
motion of the body. Euler’s equation for this motion can be deduced in a simple way.
With an eye on future applications, we present that in detail. In fact, the equation of
motion about the third axis of the body system is

d

dt
(
∂R0

∂ϕ̇
) − ∂R0

∂ϕ
= 0. (10.36)

This gives
d

dt
(
∂R0

∂ω
· ∂ω

∂ϕ̇
) − ∂R0

∂ω
· ∂ω

∂ϕ
− ∂R0

∂p
· ∂p
∂ϕ

= 0.
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But from formulas of Chap.2, we have

∂ω

∂ϕ̇
= k,

∂ω

∂ϕ
= −k × ω,

∂p
∂ϕ

= −k × p, (10.37)

and thus we get

k · [(∂R0

∂ω
)̇ + ω × ∂R0

∂ω
+ p×∂R0

∂p
] = 0,

so that the vector equation of motion can be written as

(
∂R0

∂ω
)̇ + ω×∂R0

∂ω
+ p×∂R0

∂p
= 0.. (10.38)

Now, inserting the expression (10.35) for the Routhian, we obtain

(ωI+κ − 1

2
pK)̇ + ω × (ωI+κ − 1

2
pK) + p × [ − 1

2
ωK − (a + pJ)] = 0,

(10.39)
As I,κ and K are constants in the body, the last equation becomes

ω̇I − 1

2
ṗK+ω×(ωI+κ − 1

2
pK) − 1

2
p×ωK = p × (a + pJ),

and using Poisson’s equation in the second term

ω̇I + ω×(ωI + κ − 1

2
pK) + 1

2
(ω×p)K + 1

2
ωK × p = p × (a + pJ). (10.40)

Here, using the identity

(ω×p)K+ωK × p = ω×(p[tr(K)δ−K]),

valid for any two vectors ω, p and symmetric matrix K, we write the final form of
the equations of motion

ω̇I + ω × (ωI + κ + pK̄) = p × (a + pJ),

ṗ + ω × p = 0. (10.41)

where K̄ = 1
2 tr(K)δ − K, which is the same as the relation between I and Ī in

Chap.1.
Equation (10.41) admit three first integrals:
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I1 = 1

2
ωI · ω + a · p+1

2
pJ · p,

I2 = p2,

I3 = (ωI+κ − 1

2
pK) · p. (10.42)

The vectors κ and a, resulting from the circulation of the fluid in the body per-
forations vanish for a simply connected body, in which case Eq. (10.41) reduce to a
form equivalent to Kirchhoff’s equations.

When referred to principal axes of the matrix I, Eq. (10.41) in the general case
involve only 21 parameters, compared to 24 in (10.22). The parameters of the original
problem can be expressed by inverting the relations (10.30) as:

A = I − (
1

2
K + K̃a)J−1(−1

2
K+K̃a),

B = J−1(−1

2
K + K̃a),

C = J−1,

K̃ = − 1

2
K + K̃a,

ᾱ = κ+aJ−1(−1

2
K + K̃a),

β̄ = −aJ−1, (10.43)

so that we retain, if we like, the three elements of the antisymmetric matrix, and thus
also the full set of 24 (18) parameters of the original Lamb (Kirchhoff) formulation.

Remark The observation that the antisymmetric part Ka of the matrix C−1B
has no contribution to the equations of motion, except entering into the symmetric
matrix A and the vector ᾱ, eliminates the necessity in several works to translate the
origin O fixed in the body to the so-called central point of the body, or to assume
the symmetry of the matrices and thus, unnecessarily, restricting the possible forms
of the body. Calculation of the coefficient matrices can be done at a suitable point
from the point of view of calculation and the characteristics of the rotational motion
are then constructed free of the choice of the origin.

Remark The same observation resolves once for all a situation that the Hamil-
tonian equations based on the original Kirchhoff and Lamb equations that one can
need to perform a canonical transformation to the Hamiltonian, to the equations of
motion and to the integrals of motion, so that after the transformation the integrals of
motion take a relatively simpler form. An example of such situation is the case found
originally by Sokolov in [335]. A canonical transformation introduced by Borisov
and Mamaev in [39] was used to simplify the Hamiltonian and to give the integral a
simpler form.
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10.5 Steklov and Kharlamov Analogies and Their
Generalization

The problem of motion of a rigid body in a liquid has been considered for a part of
its history in complete isolation of other problems of motion of a rigid body about a
fixed point.

As will be seen in more detail in the coming chapters, the equations of motion
in their full form (10.41) derived from the Routhian (10.27) can be interpreted as
equations of motion about a fixed point of a heavy, magnetized and electrically
charged body bearing a rotor and influenced by an axially symmetric combination
of three classical fields. More precisely, the second equation of (10.41) resembles
Poisson’s equation met in several previous chapters. This equation describes the
space time derivative of a vector p constant in space, referred to the body system.
Let us take a unit vector γ in the direction of p, so that p = p0γ and thus equations
(10.41) take the form

ω̇I+ω×(ωI+κ + p0γK̄)= γ×(p0a+p20γJ),

p0(γ̇ + ω × γ) = 0. (10.44)

Let us first assume that p0 �= 0. In that case one can absorb this constant in the
definitions for a, J and K̄.

10.5.1 The Equivalent Problem of Motion About a Fixed
Point

Alternatively, one can choose the units of measurement so that p0 becomes unity.
Finally, Eq. (10.41) can be written in the form of equations of motion of a rigid body
about a fixed point with the vector γ fixed in space, i.e.

ω̇I+ω×(ωI+κ + γK̄)= γ×(a+γJ),

γ̇ + ω × γ = 0. (10.45)

This system of equations may be obtained from (10.41) by the replacement

(p,K̄, a, J) →(p0γ, K̄/p0, a/p0, J/p20), (10.46)

so that if for some parameters I,κ,K̄, a, J one has a solutionω = ω(t) and γ = �(t)
of the equivalent system (10.45), then one can obtain a solution ω = ω(t), p = p0γ
of (10.41) through the replacement of parameters
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(K̄, a, J) →(p0K̄,p0a,p20J). (10.47)

In this way, in the solution of the problem (10.41) an additional parameter p0 is
added. Returning to the problem of motion of a body in a liquid in the original
formulation, we obtain a solution containing five parameters more than the solution
of the equivalent problem.

Let us now turn to the excluded case p0 = 0. In that case (10.44) reduces to

ω̇I+ω×(ωI+κ) = 0, (10.48)

which are the equations of motion of a free gyrostat fixed from one point. Those are
the integrable equations already discussed in Chap. 5 under the name of Joukovsky
and Volterra. This justifies the use of Eq. (10.45) in the generic case.

Equation (10.45) can be derived from the Lagrangian

L = 1

2
ωI · ω + (κ−1

2
γK) · ω−a · γ−1

2
γJ · γ, (10.49)

which is the last form of the Routhian R in (10.27). They admit the set of three
integrals corresponding to (10.42), which are now written as

I1 = 1

2
ωI · ω + a · γ+1

2
γJ · γ = h,

I2 = γ2 = 1,

I3 = (ωI+κ − 1

2
γK) · γ = f (10.50)

where h, f are arbitrary integration constants.
The six-dimensional problem of motion of the rigid body in the liquid is thus

reduced to another problem ofmotion of a body about a fixed point, having only three
degrees of freedom. This problem is described by Eq. (10.49) and has the integrals
(10.50). The Lagrangian of the new problem (the Routhian R of the original problem)
involves the angular velocity ω and the vector γ constant in space. The forces acting
on this virtual body can be interpreted as having a scalar potential

V = a · γ + 1

2
γJ · γ, (10.51)

and a vector potential

l = κ−1

2
γK. (10.52)

From now on, to conform with the previous simpler problems and with future
study of more complex problems, we shall write the Lagrangian (10.49) as
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L = 1

2
ωI · ω + l · ω − V, (10.53)

and Eq. (10.45) as

ω̇I+ω×(ωI+μ)= γ×∂V

∂γ
,

γ̇ + ω × γ = 0. (10.54)

where

V = a · γ+1

2
γJ · γ, (10.55)

μ = κ + γK̄. (10.56)

In this form, each of the terms appearing in the equations of motion (10.54) of a rigid
body in a liquid can be given concrete alternative interpretation:

(a) The vector a constant in the body, compared with formulas in Chap. 3, can be
interpreted as the term Mgr0, the product of the weight of the equivalent body in
a uniform gravity field g in the direction of (−γ) and the position vector r0 of the
centre of mass of that body.

(b) The vector κ, also constant in the body, can be interpreted as a gyrostatic
momentum of a symmetric rotor fixed from its axis of symmetry and rotating about
it with a constant angular rate (Compare with Chap.5).

(c) The potential term 1
2γJ · γ has a form, similar to that of the potential of a

far Newtonian centre of attraction (Compare with Chap. 6), but can be interpreted in
that way only when the matrices J and I are proportional J = λI. For an arbitrary
matrix J, this term can be given interpretation as partially due to an attraction centre
and partially as due to the electric interaction of a far Coulomb centre on the line
parallel to γ and passing through the origin O, fixed in the present analogy, on a set
of electric charges fixed in the equivalent body. In this interpretation, the matrix J is
proportional to the inertia matrix of the electric charges on the equivalent body.

(d) The term γK̄ of the vectorμ can be interpreted as a result of the Lorentz effect
of a uniform magnetic field parallel to γ on the electric charge distribution on the
body (see e.g. [139]). This effect will be considered in more detail later in this book.

Conclusion: The above considerations show that the overall effect of the hydro-
dynamic forces exerted by the fluid on the body can be replaced, as to their effect
on the rotational motion of the body, by a set of relatively simple gravitational and
electromagnetic interactions.

By analogy or equivalence between the two problems here we mean full iso-
morphism of their equations of motion.1 This analogy, pointed out in 1986 [383],
generalizes the limited earlier analogies due to Steklov and Kharlamov:

1 A weaker type of equivalence will be treated below involves isomorphism on the level of Routh-
reduced equations of motion. The full Lagrangian systems are not isomorphic to each other, but any
integrable case of one of them leads to an integrable case of the other.
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10.5.2 Steklov’s Analogy

In [345] (1895) and [348] (1902) noted that if in Kirchhoff’s equations in Clebsch’s
form (10.12) one sets b̃= 0, c̃ = εã those equations become identical with the equa-
tions of motion of a rigid body about a fixed point while acted upon by approximate
Newtonian field in the integrable case when the body is fixed from its centre of mass
(Case 2 of Chap.6). In the terminology of Eq. (10.45) Steklov’s analogy concerns
the case J = εI, K̄ = 0, κ = a = 0.

10.5.3 Kharlamov’s Analogy

In 1963, Kharlamov [192] generalized Steklov’s analogy to the case of a perforated

body, allowing non-zero vectors ˜α, β̃ in (10.23) and requiring only that b̃ = 0, c̃ =
εã. For Eq. (10.54) Kharlamov’s analogy requires that:

J = εI, K̄ = 0,

under which the problem of motion of a body in a liquid is analogous to the motion
of a gyrostat about a fixed point, under the action of approximate Newtonian field of
a centre (See Chap.6).

10.6 Completing the Solution

10.6.1 Solution of the Equivalent Problem

Solving the system of equations of motion (10.45) we determine, as functions of the
time t, the vectors ω(t) and γ(t). In the alternative problem we regard the vector
γ(= p

p0
), constant in space, as the unit vector pointing vertically upwards, take the

Z -axis in that direction andmeasure the angle of precessionψ in the plane orthogonal
to it. As in the classical problem (see 3.9), this determines the Eulerian angles of
nutation and proper rotation θ and ϕ as

θ = cos−1 γ3,ϕ = tan−1 γ1

γ2
(10.57)

while the precession angle ψ is expressed by the quadrature

ψ = ψ0 +
∫ t

0

pγ1 + qγ2

γ2
1 + γ2

2

dt, (10.58)
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ψ0 is an integration constant. This completes the solution of the equivalent problem
of motion about a fixed point, which is also the solution of the rotational part of the
body in a liquid.

10.6.2 Solution of the Original Problem

Suppose that for the parameters I,κ, K, a, J the equivalent problem (10.45) has a
solution ω = ω(t) and γ = �(t). The rotational motion of the body in the liquid is
the same as in the previous subsection.

Conditions on the parameters of the original parameters are obtained by applying
(10.47) to (10.43). This gives

A = I − (
1

2
p0K + K̃a)J

−1
( − 1

2
p0K + K̃a),

B = 1

p20
J−1(−1

2
p0K + K̃a),

C = 1

p20
J−1,

K̃ = − 1

2
p0K + K̃a,

ᾱ = κ+ 1

p0
aJ−1(−1

2
p0K + K̃a),

β̄ = − 1

p0
aJ−1. (10.59)

The velocity of the point O taken as origin is determined from (10.26) through
the formula

u = a+�J−�K̃T

= a+�J−�(
1

2
K − Ka)

= a+�J−1

2
ωK+� × ka . (10.60)

In the last formula, one can easily recognize the term ω×ka as the only origin-
dependent term. It represents the velocity of a unique point of the bodywhose position
vector relative to O is ka . In the sequel, this point will be called the proper central
point of the body. In contrast to the settled notation of the central point as the point
at which the matrix B is symmetric, the proper central point has direct dynamical
significance. If we take this point of the body as the origin, the matrix K̃ would be
symmetric. Taking (10.47) into account, the velocity ucp of the central point is
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ucp = p0a+p20�J−p0�K. (10.61)

That is origin-independent and depends only on the angular velocity and the orien-
tation of the body.

For a given solution of the equations of motion, the position vector of the central
point of the body can be found by quadratures

r′ = (X ′,Y ′, Z ′) = r′
0 +

∫ t

0
ucpdt

= p0at+p20(
∫ t

0
�(t)dt)J−p0(

∫ t

0
�(t)dt)K. (10.62)

This yields the projections of the position vector of the origin of the body system
relative to the origin of the inertial coordinate system on the axes of the body system.
To express the position vector of the central point of the body referred to the inertial
system, we write

r = (r′ · α, r′ · β, r′ · γ).

That is
r = r′R (10.63)

in terms of the rotation matrix R, which can be constructed using the expressions
(10.57) and (10.58) as shown in Chap.2.

In the rest of this chapter we shall deal with the equivalent problem, returning to
the original problem only occasionally, when some important assertions are to be
made concerning the original problem. This is made here as a way of accommodating
the problem of motion of a body in a liquid in the hierarchy on the top of problems
of the previous chapters. A higher level in this hierarchy will be added in the next
chapter.

10.7 Uniform Translational-Rotational Motion of a Body in
a Liquid (Permanent Rotations of a Body with a Fixed
Point About a Vertical Axis)

We now put forward a more general motion than that of Sect. 10.1.2, to find all
possible permanent stationary (time-independent) motions. That is all solutions of
(10.45) with the pair (ω,γ) constant in the body and also in space. Substituting
ω̇ = γ̇= 0 in (10.45), we get

ω × (ωI+κ + γK̄)= γ×(a+γJ),

ω × γ = 0. (10.64)
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From the second equation, we can express the angular velocity in the form

ω = ω0γ, (10.65)

where ω0 is some proportionality constant and inserting this in the first equation, we
obtain

γ×[ω2
0γI+ω0(κ + γK̄) − (a+γJ)] = 0. (10.66)

This condition determines the vector γ, which characterizes the possible stationary
motion in the sense that at any moment the body rotates about an axis parallel to γ
and passing through the proper central point.

Equation (10.66) has an obvious and direct geometric meaning:
For each, arbitrarily given, real ω0, the vector γ characterizing the possible sta-

tionary motion lies along one of the lines drawn from the proper central point to
intersect at right angle the surface

Φ = 1

2
γ(ω2

0I+ω0K̄−J) · γ + (ω0κ−a) · γ==const. (10.67)

Here fl is an inhomogeneous quadratic function. The surface is a quadric referred to
an origin (the proper central point of the body) different from its centre. In the case
of a simply connected body κ= a = 0 and then γ becomes one of the eigenvector of
thematrixω2

0I − 2ω0K̄−J,which are known to be three in number and orthogonal to
each other (See Sect. 10.1.2). The same conclusion can be reached also whenκ, a are
non-zero parallel vectors and ω0 is chosen such that ω0κ−a = 0. In the general case
of a Multiply connected (perforated) body no such general rule can be stated. When
this surface is an ellipsoid, for arbitrary ω0,κ and a only two lines are guaranteed
to be drawn from the origin to intersect the surface orthogonally. Those are points
on the surface, nearest and farthest from the origin. Only one such line is guaranteed
when the surface is one-sheeted and extending to infinity.

The vector Eq. (10.66) can be written in the form of three scalar equations, but
only two of those equations are independent. In fact, multiplying (10.66) scalarly by
each of the vectors γI and (a + γJ), one obtains two different expressions for the
angular speed

ω0 = γ · [γI × (a+γJ)]
γ · [γI × (κ+γK̄)] = γ · [(a+γJ) × (κ+γK̄)]

γ · [γI × (a+γJ)] . (10.68)

Equality of the two expressions for ω0 determines the locus of the vector γ in the
form

{γ · [γI × (a+γJ)]}2−
− {γ · [γI × (κ+γK̄)]}{γ · [(a+γJ) × (κ + γK̄)]}

= 0. (10.69)
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This equation is non-homogeneous of degree six, and it represents a surface fixed
in the body. This surface intersects the Poisson sphere in some spherical curve. The
line joining the fixed point to each point of that spherical curve generates the cone of
possible axes of permanent rotations. One readily recognizes the following special
cases:

(1) From (10.66) we find that pure translations (ω0 = 0) are possible if and only
if γ is a generator of the cone a · (γ × γJ) = 0. This equation resembles that
of Staude’s cone, except for replacing the inertia matrix I by the matrix J, that
appears in the potential.

(2) For a simply connected body (κ = a = 0) Eq. (10.69) of degree six in γ
becomes homogeneous, and hence represents a cone. This result was obtained
by Minkowski [284] in 1888.

(3) For a gyrostat moving about a fixed point in a uniform gravity field, J = K̄ = 0,

(10.69) becomes, as already seen in Chap.5,

[a · (γ×γI)]2 − [κ · (γ × γI)][a · (κ × γ)] = 0.

(4) In the special case collinear gyrostaticmomentum and centre ofmass and propor-
tional matrices K̄, J such that K̄ = εJ,κ = εa, the cone of permanent rotation
axes reduces to Staude’s cone for the classical problem. Shortly below, we shall
see that this is a result of certain symmetry of the equations of motion, which
allows for a rotation transformation.

(5) For the classical problem of motion of a body (J = K̄ = κ = 0) it gives Staude’s
cone described by the equation a · (γ×γI) = 0 [343].

Remark The above analysis applies mostly to the equivalent problem of motion
of a rigid body about a fixed point under the action of potential and gyroscopic forces,
described by the equations of motion (10.45) or (10.54). In the problem of motion
of a body in a liquid, as explained above, the body rotates with the constant angular
speed ω0 about an axis parallel to γ and passing through the proper central point,
while the latter moves with the uniform velocity

ucp = p0a+p20γJ − p0ω0γK). (10.70)

The position vector of the central point of the body can be expressed in the form

rcp = rcp0 +
∫ t

0
ucpdtR

= rcp0 + ucp

∫ t

0
dtR

= rcp0 + 1

ω0
[a+γ(J − ω0K)]

⎛
⎝

sin(ω0t) 1 − cos(ω0t) 0
cos(ω0t) − 1 sin(ω0t) 0

0 0 ω0t

⎞
⎠ .

(10.71)
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10.8 Stationary Motions About an Axis Inclined
to the Vertical

Unlike the classical problem and its generalization to the heavy gyrostat, the problem
of motion of a body in a liquid admits another type of motions in whichω is constant
(in space and in the body), but in a direction different from that of γ. Let us take the
z-axis of the body coordinate system along that direction. One can write

ω = �k,� = const . (10.72)

Equations of motion give

�k × (�kI+κ + γK̄) =γ × (a + γJ),

γ̇ + �k × γ = 0. (10.73)

The motion can be described by Euler’s angles in the usual notation: ψ = ψ0, θ =
θ0,φ = �t. In virtue of the symmetry of the problem about the Z -axis and without
loss of generality, one can take ψ0 = 0. The unit vector γ can be expressed as

γ = (sin θ0 sin�t, sin θ0 cos�t, cos θ0). (10.74)

This can be easily shown to satisfy the second equation in (10.73). Substituting in
the first equation and equating coefficients of similar terms in powers of sin�t and
cos�t, we arrive at the following set of conditions:

J12 = J13 = J23 = 0, J22 = J11,

a1 = a2 = 0, a3 + �K̃11 − (J11 − J33) cos θ0 = 0,

K̄12 = 0, K̄22 = K̄11,

κ1 + �I13 + cos θ0 K̄13 = 0,κ2 + �I23 + cos θ0 K̄23 = 0. (10.75)

In the generic case, we can write

J =
⎛
⎝

J11 0 0
0 J11 0
0 0 J33

⎞
⎠ , K̄ =

⎛
⎝

K̄11 0 K̄13

0 K̄11 K̄23

K̄13 K̄23 K̄33

⎞
⎠ ,

a = (0, 0,−�K̄11 + cos θ0(J11 − J33)),

κ = (−�I13 − cos θ0 K̄13,−�I23 − cos θ0 K̄23,κ3). (10.76)

where J11, J33, K̄11, K̄33, K̄13, K̄23, I13, I23,κ3 are arbitrary parameters. Note that
the axis of a permanent rotation of the present type must be a principal axis of the
matrix J, while the eigenvalues corresponding to the other two principal axes are
equal. The virtual centre of mass (the vector a) should also lie on the axis of rotation.
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The last twoEq. (10.76) determine the pair of vectorsa,κdependingon the angular
velocity � and the angle θ0, which can be given arbitrary values. On the other hand,
if one regards a,κ as given parameters, the last equations reduce to three equations
in two unknowns � and θ0, for the solution of which a condition on the parameters
of the body should be imposed. The parameters of the body must also satisfy the
obvious restriction |cos θ0| ≤ 1. The solution of (10.75) exhibits several special and
degenerate cases, some of which will be summed up in the exercises.

10.9 A Several-Parameter Particular Solution

A result, which will be presented in the next chapter, was obtained in [389] in the
context of the problem of motion of a body about a fixed point under the action of
an axially symmetric combination of forces. A special case of this result reduces to
a case of motion of a body in a liquid (in fact, the alternative problem) and gives
a quite general particular solution of that problem, in the sense of the number of
parameters retained in it. That is a solution satisfying three invariant relations. It can
be formulated as the following

Theorem 10.1 Let in (10.45)

J = −MIM + αM + εδ,

K̄ = βM−αδ + tr(MI)δ − IM − MI,

κ = m(βδ − I),

a = m(αδ − IM). (10.77)

where M, m are a constant real 3 × 3 symmetric matrix and a vector, respectively,
α,β, ε are constants. Then,

(1) (10.45) admits a solution, which satisfies the relations

ω = γM + m, (10.78)

and γ is a solution of Poisson’s equation, which now takes the form

γ̇+(γM + m)×γ= 0. (10.79)

(2) In the generic case, the solution (ω and γ) is expressed in terms of elliptic
functions of time.

Proof (1) On substituting (10.77)–(10.79) into (10.45) and using the identity in
Appendix 11.1, the first equation turns into identity.

(2) Assuming that det(M) �= 0 and using the relation inverse to (10.78), one can
write Eq. (10.79) as
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ω̇M−1 + ω × (ωM−1 − mM−1) = 0.

This is the equation of motion of a free gyrostat with inertia matrix M−1 and
gyrostatic momentum−mM−1. This characterizes the case discussed in Chap.5
under the name of Joukovsky–Volterra’s case. Referring equations to the prin-
cipal axes of M−1 by a suitable rotation, the solution is determined in terms of
elliptic functions of time. �
This completes building for the alternative problem (10.45), which involves 21

parameters, a solution depending on 15 of those parameters. One can also go back
through (10.43) to build the relevant solution of the problem of motion of a body in
a liquid (Eq. (10.41)) and including the parameter p0 and the three elements of the
anti-symmetric part of B.

The solution established by theorem1 generalizes by the presence of several extra-
parameters a former solution obtained by Kharlamov in [197]. It also generalizes
another solution obtained by Kharlamova [205], while studying the motion of a rigid
body about a fixed point in an approximate Newtonian field without gyroscopic
forces, except the constant gyrostatic momentum. The choices in both works [197,
205] correspond to a matrix M which is diagonal and hence commuting with I. The
relation of the variables to time was established only in some special cases, where
very restrictive conditionswere imposed on the parameters.Much older partial results
were obtained by Steklov, who considered the case m = 0 and M diagonal in the
principal axes of inertia [345].

Solutions on invariant relations of the general form (10.79) (with non-diagonal
M) were considered in the much later papers [128, 129] (See also [125]). In those
papers, no reference is made to our relevant result in [389], published 14 years
earlier. Conditions that the dynamical equations of motion are satisfied along with
the given invariant relations are obtained by the (brute force) method of solving
algebraic equations. Expressions obtained in [129] are not transparent, and there is
no comparison with previous results.

10.10 Alternative Hamiltonian Formulation

Equations of motion (10.45) can be put in Hamiltonian form in two ways. On one
hand, using canonical variables, such as Euler’s angles and momenta conjugate to
them is hopelessly complicated for analytical considerations. On the other hand,
one can introduce the angular momentum of the system described by the Routhian
(10.27)

M = ∂R

∂ω
= ωI + κ + γK̄, (10.80)

as phase variable instead of ω, so that

ω = (M − κ − γK̄)I−1. (10.81)
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The Hamiltonian corresponding to the Lagrangian (10.49) as a function in M and γ
is

H = 1

2
ωI · ω + a · γ+1

2
γJ · γ

= 1

2
(M−κ − γK̄)I−1 · (M − κ − γK̄) + a · γ+1

2
γJ · γ

= 1

2
MI−1 · M−(κ + γK̄)I−1 · M

+ (a + κI−1K̄T ) · γ + 1

2
γ(J + K̄I−1K̄T ) · γ, (10.82)

so that the equations of motion can be written as

Ṁ = M×∂H

∂M
+ γ×∂H

∂γ
,

γ̇ = γ×∂H

∂M
. (10.83)

Note that

∂H

∂M
= (M − κ − γ K̄ )I−1 = ω,

∂H

∂γ
= a+γJ − (M−κ − γK̄)I−1K̄T ,

or, in the expanded form

Ṁ = M×(M − κ − γK̄)I−1 + γ×∂H

∂γ
,

γ̇ = γ × (M − κ − γK̄)I−1. (10.84)

For the Hamiltonian equations, the integrals of motion take the simplest form

I1 = H = h,

I2 = M · γ = f,

I3 = γ · γ = 1. (10.85)

This situation makes use of the Hamiltonian form of equations favourable in certain
situations. However, in other situations and for most of our purposes, the Lagrangian
formalism of the equations of motion remains the favourable choice.

Throughout this book, we adhere to the use of Lagrangian formalism. We owe
the reader some explanation for that. In early times of Hamiltonian mechanics, the
formulation of mechanical problems stemmed directly from the physical setting. In
the Hamiltonian describing the motion of a particle under the action of certain forces,
each term of the Hamiltonian usually had its definite and unambiguous meaning. The
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situation in modern days is different. Some integrable Hamiltonians of the structure
(10.82) were recently obtained by searching the relevant coefficients in a general
ansatz. Two factors come into play even in the simpler cases when the description
of motion is given a priori in Hamiltonian form:

(1) The Hamiltonian and the equations of motion derived from it are not unique
for one and the same physical problem. This makes classification of integrable
cases in Hamiltonian formulation rather problematic. As a matter of fact, to
decide whether two Hamiltonians describe the same mechanical system practi-
cally reduces to computing the functions V and μ as the quantities that remain
invariant under all gauge transformations (canonical transformations linear in
momenta in Hamiltonian terms).

(2) In the Euler–Poisson variables, it is possible to tell about physical interpretation
of various terms of the potential. For example, terms linear in γ represent the
potential of the heavy body in a constant gravity field. The centre of mass of the
body is uniquely determined by terms in the Lagrangian linear in γ. Other terms
can be identified as a result of gravitational, electric or magnetic potential, but in
the transformedHamiltonian form terms of various degrees are totally disguised.

To illustrate the above points,we use as an example the case introduced bySokolov
[336] with the Kowalevski configuration A = B = 2,C = 1. The original Hamilto-
nian describing this case is

H1 = 1

4
(M2

1 + M2
2 + 2M2

3 ) + 1

2
M3(c1γ1 + c2γ2) + 1

2
γ3(c1M1 + c2M2)

+ (c1γ2 − c2γ1)
2 − (c21 + c22)γ

2
3 . (10.86)

Calculating the Lagrangian corresponding to this Hamiltonian (10.86) and using the
Legendre transformation

ω ≡ (p, q, r) = ∂H1

∂M

= (
1

2
M1 + 1

2
c1γ3,

1

2
M2 + 1

2
c2γ3, M3 + 1

2
(c1γ1 + c2γ2)), (10.87)

we find

L1 = M · ∂H1

∂M
− H1

= p2 + q2 + r2

2

− c1(pγ3 + 1

2
rγ1) − c2(qγ3 + 1

2
rγ2)

− 9

8
[(c1γ2 − c2γ1)

2 − (c21 + c22)γ
2
3 ] + 1

8
(c21 + c22)(γ

2
1 + γ2

2 + γ2
3). (10.88)
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In the last expression one can eliminate its last term, since the spherically symmetric
term does not contribute to the equations of motion. Thus, the Lagrangian L1 has a
potential part

V = 9

8
[(c1γ2 − c2γ1)

2 − (c21 + c22)γ
2
3 ]. (10.89)

On the other hand, the gyroscopic terms of L1 correspond to the choice of the vector
l as

l = −(c1γ3, c2γ3,
1

2
c1γ1 + 1

2
c2γ2).

This uniquely determines the vector

μ = −∇[3
2
(c1γ1 + c2γ2)γ3]

= −3

2
(c1γ3, c2γ3, c1γ1 + c2γ2). (10.90)

The mechanical system under consideration is completely characterized by the pair
of functions V and μ. The complementary integral of motion in the Euler–Poisson
variables can be written as

I4 = Z1Z2, (10.91)

Z1 = (r − 1/2 a1 γ1 − 1/2 a2 γ2) ,

Z2 = 1/4 (2r − a1 γ1 − a2 γ2) [4 p2 + 4 q2 + (2r − a1 γ1 − a2 γ2)
2]

+ 2 (2 pa1 + 2 qa2) (2 pγ1 + 2 qγ2) + (a1 γ1 + a2 γ2) (2r − a1 γ1 − a2 γ2)
2

+ 1/2 (a1 γ1 + a2 γ2)
2 (2r − a1 γ1 − a2 γ2)

− 1/2
(
a21 + a22

)
γ3 [8 pγ1 + 8 qγ2 + γ3(2r − a1 γ1 − a2 γ2)]. (10.92)

where we have set a1 = 3c1, a2 = 3c2.
AnalternativeHamiltonian describing the same systemwas introduced byBorisov

and Mamaev [39], using a linear transformation of the phase variables, which pre-
serves the Poisson brackets and simplifies the Hamiltonian to

H2 = 1

4
(M2

1 + M2
2 + 2M2

3 ) + 1

2
M3(a1γ1 + a2γ2) + 1

4
(a21 + a22)(γ

2
1 + γ2

2).

(10.93)
The relation between ω and M for this Hamiltonian is

ω = ∂H2

∂M

= (
1

2
M1,

1

2
M2, M3 + 1

2
(a1γ1 + a2γ2)), (10.94)
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and by direct calculation of the corresponding Lagrangian

L2 == p2 + q2 + r2

2

− 1

2
r(a1γ1 + a2γ2)

+ 1

8
[(a1γ2 + a2γ1)

2 + 2(a21 + a22)γ
2
3 ]. (10.95)

Note that its second line gives

l = (0, 0,
1

2
(a1γ1 + a2γ2)),

which leads to the same μ as in (10.90). The two Lagrangians L1,2 are in fact
equivalent. Their difference is

L1 − L2 = c1(rγ1 − pγ3) + c2(rγ2 − qγ3) − (c21 + c22)(γ
2
1 + γ2

2 + γ2
3)

= d

dt
(c2γ1 − c1γ2) − (c21 + c22)(γ

2
1 + γ2

2 + γ2
3),

i.e a gauge term and a central potential term. Both terms do not contribute to the
equations of motion.

In contrast to the clarity and the physical relevance of the Lagrangian approach,
none of theHamiltonians H1 and H2 reflects the real nature of the potential (The terms
quadratic in γi ). Physical characteristics of the mechanical system are disguised in
Hamiltonian form.

On the other hand, different Hamiltonian equations of motion are obtained using
the Hamiltonians H1, H2. Also, each form of the Hamiltonians corresponds to a dif-
ferent form of the complementary integral, which can be constructed by substituting
(10.87) and (10.94), respectively, in (10.91).

The change of the phase variables {M,γ} → {M̄,γ} which transforms H1 into
H2 can be obtained by comparing (10.94) with (10.87), in the form

M̄1 = M1 + c1γ3, M̄2 = M2 + c2γ3, M̄3 = M3 − c1γ1 − c2γ2. (10.96)

This is identical to the (canonical) transformation given by Borisov and Mamaev in
[39] (See also [336]).

10.11 The Uniform Precession Transformation [383]

In its full final form (10.45), the problem of motion of a body in a liquid is at the
top of a hierarchy, consisting of the problems considered in the previous chapters,
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involving the gyrostatic effect, the Newtonian potential term and the uniform gravity
field as special cases. Consequently, every integrable case or solution of the above
problems may have a generalization in the frame of the present one. This situation
will be made clear in the tables of integrable cases provided below in this chapter.

A remarkable feature of Eq. (10.45) for the body in liquid, which is not enjoyed
by any of the three simpler problems of Sects. 10.3–10.6, is their invariance under
the uniform precession transformation, which we are going to describe now. This
transformation was firstly introduced for the problem of motion of a body in a liquid
in [383].

10.11.1 Direct Derivation

In the equations of motion (10.45), we perform the transformation of the variables
ω to a new set of variables ω′ by the relation

ω = ω′−nγ, (10.97)

containing the free real parameter n. Substituting in (10.45) we obtain

(ω̇′−nγ̇)I+(ω′ − nγ) × [(ω′ − nγ)I + κ + γK̄) =γ × (a + γJ),

γ̇ + (ω′−nγ) × γ = 0. (10.98)

ω̇′I+ω′×(ω′I+κ + γK̄ − nγI)= n(γ̇I + γ×ω′I)+γ × (a + γJ)

+nγ × ( − nγI + κ − 2γK̄),

γ̇ + ω′ × γ = 0. (10.99)

Using Poisson’s equation to express γ̇ and noting that

(ω′×γ)I + ω′I × γ = ω′×γ[tr(I)δ − I]

we give (10.99) the form

ω̇′I+ω′×(ω′I+κ + γK̄+2nγ Ī) = γ×[a+nκ + γ(J − 2nK̄ − n2I)],
γ̇ + ω′ × γ = 0, (10.100)

which can be readily put in the final form

ω̇′I+ω′×(ω′I+κ+γK̄′)= γ×(a′+γJ)

γ̇ + ω′ × γ = 0, (10.101)
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after introducing the notation

K′ = K + 2nI, K̄′ = K̄ + 2nĪ,

a′ = a + nκ,

J′ = J − nK − n2I. (10.102)

A look at the two sets of Eqs. (10.45) and (10.101) reveals that they have the
same structure in terms of the two sets of variables {ω,γ} and {ω′,γ} and that they
differ only in the values of parameters a, J, K, which are transformed to a′, J′, K′,
respectively, containing the extra-parameter n. When one sets n = 0, ω′ = ω and
the three primed matrix-parameters reduce to their original (unprimed) values. It
is an easy exercise to show that the consecutive application of two transformations
with parameters n1, n2 is equivalent to the application of one transformation with
the parameter n1 + n2.

10.11.2 Lagrangian Derivation

Consider the problem described by the equations of motion (10.45) derived from the
Lagrangian (10.49). Let us affect the transformation. It can be readily checked that
this transformation changes the Lagrangian (10.49) to the similar form

L ′ = 1

2
ω′I · ω′ + l ′.ω′ − V ′, (10.103)

where

V ′ = V + nl · γ − 1

2
n2γI · γ,V = a · γ+1

2
γJ · γ,

l ′ = l−nγI, l = κ − 1

2
γK. (10.104)

and renders the equations of motion (10.45) to

ω̇′I + ω′×(ω′I + ¯′) = γ×∂V ′

∂γ
,

γ̇ + ω′×γ = 0 (10.105)

where

μ′ = μ + 2nγ Ī

= κ + γK̄+2nγ Ī.
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Equation (10.105) admit the integrals

I1 ≡ 1

2
ω′I · ω′ + a′ · γ+1

2
γJ′ · γ = h′,

I2 = (ω′I + κ − 1

2
γK̄′) · γ = f ′,

I3 = γ2 = 1, (10.106)

with the constants
h′ = h + n f, f ′ = f. (10.107)

10.11.3 Physical and Mechanical Significance
of the Transformation

The transformation (10.97) was used by Tisserand in [353] (See also [354]) to illus-
trate the effect of Coriolis and centrifugal forces on the motion of a rigid body with
one point fixed on the rotating earth. It was implicitly used by other authors (e.g.
[21, 51]) while studying the stability of relative equilibria in the problem of motion
of a satellite in a circular orbit. It was applied only to the integrals of motion, but the
transformed equations were not obtained and the full significance of the transforma-
tion was not revealed.

The transformation was applied for the first time to the full equations of motion
of a charged and magnetized body in [378], where all its properties were revealed. It
was also applied to the problem of motion of a satellite in a circular orbit to obtain
its equations of motion relative to the orbital frame [382], in a form that resembles
equations of motion of a rigid body about a fixed point under the action of given
potential and gyroscopic forces. The invariance of the equations of motion of the
body in a liquid under this transformation was first recognized in our work [383].

The presence of the parameter n in the transformed Lagrangian and the trans-
formed equations of motion, in the framework of the equivalent physical problem,
turns on a simultaneous combination of three physical effects:

(1) The effect of displacing the centre of mass of the body by an amount nκ, pro-
portional to the gyrostatic moment.

When a is proportional to κ, say, a = mκ, then one can choose n = −m, so
that a′ = 0 and thus getting rid of the uniform gravity field in the transformed
problem.

(2) The matrix K is changed by the amount nI. This can be interpreted as the matrix
of coefficients in the vector potential of a static, on the body, charge distribution
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whose inertia matrix is proportional to the inertia matrix of the distribution of
mass in the body and subject to the Lorentz forces due to a uniform magnetic
field of intensity B = −2n in the direction of γ.

If the matrix K is proportional to I, say, K = mI, then the regular precession
transformation can be used to make K′ = 0 by taking n = m.

(3) The matrix J of coefficients of the quadratic part of the potential is modified
by adding two terms: −nK − n2I. The potential resulting from those terms can
be interpreted as due to magnetized (electrically charged) parts of the body
influenced by a magnetic (electric) field with second-harmonic potential.

In the next sections, we shall use the uniform precession transformation in the two
ways: to construct more general solutions containing the parameter n from known
simpler ones and to simplify some other cases of motion by using that parameter to
reduce the number of physical constants in them, in order to facilitate obtaining their
solutions.

As a quick illustrative example, we work out an explicit solution of Euler’s case
generalized by the uniform precession transformation. For the transformed motion

V = −1

2
n2γI · γ, μ = 2nγ Ī. (10.108)

The equations of motion for this case take the form

ω̇I + ω × (ωI + 2nγ Ī) = −n2γ×γI,

γ̇ + ω × γ = 0. (10.109)

They admit the complementary integral

A2(p + nγ1)
2 + B2(q + nγ2)

2 + C2(r + nγ3)
2 = G2. (10.110)

On one hand, Eq. (10.109) characterizes an integrable case of motion of the body
in a liquid, which lies on the intersection of the cases of Clebsch and Steklov (See
Table10.2 below). On the other hand, in the framework of the equivalent problem,
they describe the motion of a body under the influence of potential and Lorentz’
forces. A family of explicit solutions of this case2 can be written down immediately
by transforming the solution constructed for Euler’s case in Chap.4 Sect. 4.1.

2 In Euler’s case we have solved only the dynamical equations of motion and adopted a very special
solution of Poisson’s equations in which the vectorsγ andG are parallel. Hoever, the transformation
applies equally well to the general solution of thewhole Euler-Poisson system.
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p = ±(μ − n

D
A)

√
D(D − C)

A(A − C)
cnλ(t − t0),

q = (μ − n

D
B)

√
D(D − C)

B(B − C)
snλ(t − t0),

r = ±(μ − n

D
C)

√
D(A − D)

C(A − C)
dnλ(t − t0), (10.111)

γ1 = ±
√

A(D − C)

D(A − C)
cnλ(t − t0),

γ2 =
√

B(D − C)

D(B − C)
snλ(t − t0),

γ3 = ±
√
C(A − D)

D(A − C)
dnλ(t − t0), (10.112)

where λ, D,μ and k, the modulus of elliptic functions, are the same as in Chap.4
Sect. 4.1. The motion of the body is quite different from that in Euler’s case. For
example, choosing n = μD

A we make p ≡ 0. The angular velocity lies permanently
in the yz-plane, and it is still expressed in elliptic functions of time.

10.11.4 Uniform Precession Transformation in Hamiltonian
Formalism

The expression (10.82) gives the Hamiltonian corresponding to the Lagrangian
(10.49). Let H ′ be the Hamiltonian corresponding to the Lagrangian L ′ in (11.6), i.e.
the Lagrangian obtained from (10.49) by the replacement ω→ω′ = ω+nγ. It can
be shown by direct calculation that

H ′ = H + nM · γ. (10.113)

The precession transformation is equivalent to adding the term nM · γ to the Hamil-
tonian, which is the precession parameter n multiplied by the areas integral (the
second integral in (10.85)). The transformed Hamiltonian is a constant of motion

H ′ = h′ = h + n f, (10.114)

in agreement with (10.107). We also have
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ω′ = ∂H ′

∂M

= ∂H

∂M
+ nγ

= ω + nγ. (10.115)

Moreover, it is easy to show that the transformed Hamiltonian H ′ in (10.113)
produces the same equations of motion as the original Hamiltonian H. In fact, using
H ′ in (10.83), we obtain the equations

Ṁ = M×∂H ′

∂M
+ γ×∂H ′

∂γ

= M × (
∂H

∂M
+ nγ) + γ×(

∂H

∂γ
+ nM)

= M×∂H

∂M
+ γ×∂H

∂γ
,

γ̇ = γ×∂H ′

∂M

= γ×(
∂H

∂M
+ nγ)

= γ×∂H

∂M
, (10.116)

which are identical to the original Eq. (10.83).
In contrast to the transformed Lagrangian (10.103), the transformed Hamilto-

nian (10.113) does not reveal any of the physical effects of the uniform precession
transformation, which we listed in the last subsection. Thus, the part of the physical
effects induced by the uniformprecession transformation in the problem is completely
hidden by the Hamiltonian form of the equations of motion. The Hamiltonian for-
malism identifies the whole family of mechanical systems depending on the arbitrary
parameter n into a single Hamiltonian system. The Hamiltonian flow on the integral
manifold of that system is the same for all physical problems, which differ only in
the value of n. In the problem of motion of a body in a liquid that is a family of
bodies with differing shape characteristics, but in the alternative problem it means a
body subject to a family of potential and gyroscopic forces depending on n.As usual
in the search for integrable cases, one assumes only the Hamiltonian form of the
equations of motion and tries to determine the coefficients in a general form (ansatz)
of the Hamiltonian and the complementary integral. In Hamiltonians constructed
in this way, a term of the form nM · γ is missing and the dynamical behaviour of
the original physical system will be determined up to a precessional motion with a
constant rate.
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10.12 Generalization of General Integrable Cases

The most important consequence of the form-invariance of equations of motion
under the transformation (10.97) is the possibility it opens to generalize general
(unconditional) and conditional integrable cases and also particular solutions through
adding the precession parameter n into their structure, and thus enriching the physical
problem by adding new physical effects. In the present section, we formulate this
result for general integrable cases and give concrete examples of its applications.
Conditional and particular cases are discussed in the next sections.

Theorem 10.2 Let for some set of parameters I,κ, K′, a′, J′, Eq. (10.105) admit a
complementary integral I4 = I4(ω′, γ), so that they become integrable for arbitrary
initial conditions, and let their solution be {ω = �(t), γ = �(t)}. Then Eq. (10.54)
are also integrable for arbitrary initial conditions, for the set of values of the param-
eters I,κ, K, a, J :

K̃ = K̃′ − 2nI,

a = a′−nκ,

J = J′ + nK + n2I, (10.117)

their complementary integral is

I4 = I4(ω + nγ,γ), (10.118)

and their general solution is {ω = �(t) + n�(t),γ = �(t)}. It contains the addi-
tional arbitrary real parameter n. When n = 0, the generalized solution renders to
the original solution.

Any one of the hierarchy of integrable cases provided in the previous chapters
admits a generalization as a case of themotion of a rigid body in a liquid. Transformed
cases are of the same type (general or conditional) as the original ones. Examples are
given in the next subsections: In Sokolov’s case, the introduction of the parameter
n results in a new integrable case. Even when the parameter n already enters in the
structure of a known system, like in the case due to Rubanovsky [317], the regular
precession transformation can be used to simplify the process of construction of
an explicit solution of the equations of motion in terms of time. In such cases, the
solution can be found first for the simpler case n = 0 and then generalized by that
transformation for arbitrary n by the formulas in the last theorem.
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10.12.1 Generalization of the Integrable Case Found
by Sokolov

In 2002, Sokolov [336] obtained an integrable case of the rigid body in a liquid,
which adds a parameter c to a former case by Yehia [380] (1986). The body has the
Kowalevski configuration A = B = 2C. The centre of mass lies in the equatorial
plane. The functions V, l,μ and the integrals I3 and I4 are given, according to the
order followed in this book, as

V = C[kcγ1 + a2γ2 − c2

2
(γ2

1 + 2γ2
3)],

l = C(2cγ3, 0, k − cγ1),μ = C(cγ3, 0, k + cγ1), (10.119)

I3 = 2(pγ1 + qγ2) + (r + k + cγ1)γ3,

I4 = [
p2 − q2 + a2γ2 + c2γ2

2 + cγ1(r − k)
]2

+ [
2pq − a2γ1 − c2γ1γ2 + cγ2(r − k)

]2
+ 2k(r − k + cγ1)

[
p2 + q2 + 2cpγ3

]

− 2kc2{2γ3[2pγ1 + cγ1γ3 + 2qγ2 + rγ3]
+ kγ2

3 − (γ2
1 + γ2

2 + 2γ2
3)(r + cγ1)} − 4a2kqγ3. (10.120)

It was pointed out in [411] (2003) that the parameter n can be added to this case
to produce a non-trivial generalization, represented by the formulas

V = C[kcγ1 + a2γ2 − nkγ3 − c2

2
(γ2

1 + 2γ2
3)

− ncγ1γ3 − n2

2
(2γ2

1 + 2γ2
2 + γ2

3)],
l =C(2cγ3 + 2nγ1, 2nγ2, k − cγ1 + nγ3),

μ=C(cγ3 − nγ1,−nγ2, k + cγ1 − 3nγ3), (10.121)

I3 = 2(pγ1 + qγ2) + (r + k + cγ1)γ3 + n(2γ2
1 + 2γ2

2 + γ2
3),

I4 = [
(p + nγ1)

2 − (q + nγ2)
2 + a2γ2 + c2γ2

2 + cγ1(r + nγ3 − k)
]2

+ [
2(p + nγ1)(q + nγ2) − a2γ1 − c2γ1γ2 + cγ2(r + nγ3 − k)

]2
+ 2k(r + nγ3 − k + cγ1)

[
(p + nγ1)

2 + (q + nγ2)
2 + 2c(p + nγ1)γ3

]

− 2kc2{2γ3[2(p + nγ1)γ1 + cγ1γ3 + 2(q + nγ2)γ2 + (r + nγ3)γ3]
+ kγ2

3 − (γ2
1 + γ2

2 + 2γ2
3)(r + nγ3 + cγ1)} − 4a2k(q + nγ2)γ3. (10.122)
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Comparing (10.121), (10.122), (10.119), (10.120)wenote that, unlike inSokolov’s
case, the centre of mass in the generalized case does not lie in the equatorial plane
since it has three non-zero coordinates. Also, the vector potential l and the gyroscopic
vector μ do not lie in a meridional plane as in Sokolov’s case.

Remark. On the other hand, the regular precession transformation can be used
in the reverse direction. For example, to seek the explicit solution of the equations
of motion or to study the stability of a given motion, it suffices to study equations of
motion for the Sokolov case. The solutionmay be extended to the generalized system
with the extra-parameter n and the conclusion about stability will be the same before
and after adding this parameter to the system.

10.12.2 Steklov’s Case and Its Generalizations

One of the first known integrable cases ofKirchhoff equations (The version of (10.45)
with κ= a = 0)

ω̇I+ω×(ωI + γK̄)= γ×γJ,

γ̇ + ω × γ = 0. (10.123)

describing the motion of a rigid body with a singly connected surface in a liquid was
discovered in 1895 by Steklov [345]. It corresponds to the choice

J = 0. (10.124)

Using (10.123), (10.124) we calculate the derivative

d

dt
{1
2
|ωI|2 + γK̄ · (ωI)} = −ω · [(ω×γ)K̄I].

Under the condition
K̄I = εδ,

where δ is the unit matrix, or, equivalently,

K̄ = εI−1 (10.125)

the right-hand side of the last equation vanishes, which leads to Steklov’s comple-
mentary integral of motion

1

2
|ωI|2 + εω · γ = const . (10.126)

This is the classical case of Steklov. When ε = 0, it turns into Euler’s case.
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Kharlamov [192, 197] investigated the full equations of motion which describe
the problem of motion of a body with a multi-connected surface equivalent to (10.45)
but in certain modified Clebsch variables. We write them in our form (10.45)

ω̇I+ω×(ωI+κ + γK̄)= γ×(a+γJ),

γ̇ + ω × γ = 0. (10.127)

In those equations, the analog of the gyrostatic momentum and the centre of mass
are present. Using what can be called a “brute force” method, Kharlamov found a
generalization of Steklov’s result under the conditions

a1 + nκ1 = a3 + nκ3 = 0, a2 = κ2 = 0 (10.128)

and expressed the complementary integral as a quadratic polynomial in the variables
[197]. Somewhat later, Rubanovsky [320] by a similar method replaced Kharlamov’s
non-symmetrical conditions a2 = κ2 = 0 by the less restrictive and more symmetric
condition

a2 + nκ2 = 0, (10.129)

so that the two vectors a and κ are now proportional, i.e.

a = −nκ. (10.130)

Let us now consider a system of equations of motion containing only the arbitrary
gyrostatic vectorκ, in addition to Eq. (10.123) and take Steklov’s condition (10.128)
into account. We write them as

ω̇′I + ω′×(ω′I + κ + εI−1) = 0,

γ̇ + ω′ × γ = 0. (10.131)

It can be easily verified that this system admits the following complementary integral,
which generalizes (10.126):

1

2
|ω′I+κ|2 + εω′ · γ = const . (10.132)

Now we apply the regular precession transformation to the system (10.131) and
its integral (10.132). Equation (10.131) transforms to (10.127), in which

K̄ = −1

2
εI−1 + nĪ, J = −n2I, a = −nκ. (10.133)

This gives at once Rubanovsky’s generalization ofKharlamov’s result. It also enables
to write the complementary integral in the very simple and transparent way:
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I4 = 1

2
[ωI + nγI+κ]2 + εω · γ = const . (10.134)

Although this case was noted by Rubanovsky, the method used here helped write
the integral I4 in this simple form. A notable advantage of the regular precession
transformation is that one can use it here in the reverse way. To construct the explicit
solution in terms of functions in time, it is sufficient to do that for the case n = 0.
This means to construct the solution of the system (10.131) with the fourth integral
(10.132). Having completed this task, i.e. having foundω′ = �(t), = �(t), one can
just write down the solution for the generalized case

ω = �(t) − n�(t),γ = �(t). (10.135)

Explicit time solution of the full case (10.131) is not constructed to the present
moment. This was achieved only in two particular cases:

(1) In Steklov’s case κ = 0, by Kötter in terms of theta functions of two variables
[235].

(2) In Joukovsky’s case ε = 0, the solutionwas obtainedbyVolterra [366] in termsof
Weierstrass functions, which are complex functions in t . An alternative solution
in terms of real Jacobi’s elliptic functions was constructed by Wittenburg [369].

Despite the interest in applyingmethods ofmodern algebraic geometry (e.g. [71]),
the general solution for the full basic case ε|κ|�=0 was not considered.

10.13 Generalization of Conditional Integrable Cases

Theorem 10.3 Let for some set of parameters I,κ,K̄′, a′, J′, Eq. (10.105) be inte-
grable on the integral level I2 = f0 with the complementary integral I4 = I4(ω′, γ),

and let their solution be {ω = �(t),γ = �(t)}. Then Eq. (10.54) is also integrable
on the same integral level I2 = f0, for the set of values of the parameters I,κ,K̃, a, J,

K = K′ − 2nI,

a = a′−nκ,

J = J′ + nK + n2I,

their complementary integral is

I4 = I4(ω + nγ,γ),

and their general solution on that level is {ω = �(t) + n�(t),γ = �(t)}. It contains
the additional arbitrary real parameter n. When n = 0, the generalized solution
renders to the original solution.
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There are two conditionally integrable cases known presently in the problem of
motion of a body in a liquid. We now demonstrate how the uniform precession
transformation works on one of them, namely, the Goryachev–Chaplygin hierarchy
of cases. The second hierarchy is based on a conditional subcase of Kowalevski’s
case and the integrable problem of a body in a liquid found by Chaplygin. The last
problem will be treated in more detail later in this chapter.

10.13.1 Generalization of Goryachev–Chaplygin’s,
Sretensky’s and Sokolov–Tsiganov Cases

The first and most famous conditional integrable case of Goryachev and Chaplygin
of the classical problem (See Chap.4 Sect. 4.4) was built in 1900–1901 for a body
satisfying the conditions A = B = 4C and z0 = 0.This casewas generalized through
the addition of a gyroscope along the axis of dynamical symmetry by Sretensky in
1963 [341]. For more details, see Chap.5 Sect. 5.3. Sokolov and Tsiganov [337]
(2002) added two more parameters. In our way of writing, the last case corresponds
to the choice

V = C[a1γ1 + a2γ2 + 1

2
(c2γ1 − c1γ2)

2], (10.136)

and
μ = C(c1γ3, c2γ3,κ + c1γ1 + c2γ2). (10.137)

This case can be readily generalized by the regular precession transformation to
include the parameter n as follows:

V = C[a1γ1 + a2γ2 − nκγ3 + 1

2
(c2γ1 − c1γ2)

2

− nγ3(c1γ1 + c2γ2) − n2

2
(4γ2

1 + 4γ2
2 + γ2

3)],
μ=C(c1γ3 − nγ1, c2γ3 − nγ2,κ + c1γ1 + c2γ2 − 7nγ3). (10.138)

The transformation adds several terms to the potential, including linear and quadratic
terms, and some linear terms to μ. The complementary integral for the generalized
case is

I4 = (r − κ + c1γ1 + c2γ2 + nγ3)[(p + nγ1 + 1

2
c1γ3)

2 + (q + nγ2 + 1

2
c2γ3)

2]
+ γ3[(κc1 − a1)(p + nγ1) + (κc2 − a2)(q + nγ2)]
+ 1

2
γ2
3 [κ(c21 + c22) − c1a1 − c2a2]. (10.139)
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Explicit time solution for this case is not found yet. But to find this solution, it
suffices to express solution for the special case n = 0, i.e. for the case found by
Sokolov and Tsiganov [337].

10.14 Generalizations of Particular Solvable Cases

All the twelve particular solvable cases of the classical problem presented in Chap.8
can be immediately generalized by the regular precession transformation. All those
cases produce new cases in the problem of motion of a rigid body in liquid. The same
remark fully applies for all the known solvable cases of the motion of a gyrostat (See
Chaps. 13 and 14) and also any particular solution known in the problem of motion of
a body in a liquid. The parameter n can be added to all those cases, with all possible
implications on the nature of forces acting on the body.

We shall not make a complete list of those generalized cases, but we shall provide
some of the most illustrative examples. We first formulate the following theorems:

Theorem 10.4 Let for some set of parameters I,κ, K′, a′, J′ and initial conditions
ω = �0, = �0, theEq. (10.105)admit a particular solution {ω = �(t),γ = �(t)},
then for the set of values of the parameters I,κ, K, a, J and for the initial condi-
tions ω = �0 + n�0,γ = �0 Eq. (10.54) admit a particular solution {ω = ω(t) +
n�(t),γ = �(t)} containing the additional arbitrary real parameter n.Whenn = 0,
the generalized particular solution renders to the original particular solution.

Corollary. Any motion of a body in a liquid whose angular velocity has the form
ω = ω1γ + ω2, i.e. involves a component ω1 in the direction of γ, can be reduced
by using the transformation (10.97) with n = −ω1 to a motion with angular velocity
ω = ω2 and vise versa. In particular,

1- A uniform (permanent) rotation about a vertical axis can be reduced to a
position of equilibrium.

2- A regular precession with a vertical precession axis can be reduced to a perma-
nent rotation about the configuration axis (fixed in the body), which becomes fixed
in space.

3- The so-called semi-regular precession (composed of pendulum-like motion of
the rigid body about a horizontal axis and a uniform rotation about the vertical) can
be reduced to pendulum-like motion, parallel to a fixed plane.

Theorem 10.5 All properties of the first solution in the last theorem, like stability
in the sense of Lyapunov, stability in (or by) the first approximation, instability and
periodicity3 are passed to the second solution.

3 Here, periodicity relates only to the Euler-Poisson variables ω, γ. The motion is periodic relative
to the body system of axes. The motion can be periodic in space only under commensurability
condition between the periods of the relative and the precessional motions.



10.14 Generalizations of Particular Solvable Cases 271

The proof follows immediately from the fact that the stability, instability or
periodicity of one of the pairs of solutions {ω = �(t),γ = �(t)} and {ω = �(t) +
n�(t),γ = �(t)} implies the same to the other pair.

This theorem allows a great simplification to the study of properties of motion, as
in the last corollary, a permanent rotation reduces to an equilibrium. Also, a regular
precession (a periodic motion) reduces to a uniform rotation. Note that the equations
of variation for the precession are periodic in time, while those for uniform rotation
are of constant coefficients and hence their analysis is much simpler.

We give here only a few illustrative examples to show how the transformation
can be used in the direct or in the reverse directions, to generalize a given case or to
simplify it. We present results partly in the framework of the problem of motion of
a rigid body about a fixed point and partly in the equivalent problem, according to
our analogy described earlier in this chapter, of motion of a body in a liquid.

10.14.1 Example 1. Equilibria and Permanent Rotations
About a Vertical Axis

It is evident that a position of equilibrium of the body governed by Eq. (10.45) can be
transformedby the regular precession transformation.The image for a givenfinite real
n is a permanent rotation about an axis fixed in the body and taking a vertical position.
Conversely, a permanent rotation can always be reduced to a relative equilibrium in
a coordinate system moving with the same precession speed as the body.

Equilibria. Consider an equilibrium position of the system (10.45). Those are the
solutions {ω = 0,γ = γ0} where γ0 satisfies

γ0×(a+γ0J) = 0. (10.140)

1. For the classical problem, when J = 0, a �= 0, there are two equilibria: the
upper and lower equilibria of the centre of mass above or below the fixed point.

2. When a = 0, J �= 0, there are six equilibria, in which one of the principal axes
of the matrix J is directed along or against the vector γ.

3. In the generic case γ0 satisfies a relation a+γ0J = ˘γ0, so that

γ0= −a(J − λδ)−1, (10.141)

where λ is a root of the sixth-degree equation

∣∣a(J − λδ)−1
∣∣2 = 1. (10.142)

In this case also we have a maximal number of six positions of equilibrium and
minimum number of two.
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Permanent rotations. Permanent rotations were discussed in detail in Sect. 10.7.
In a coordinate system moving with the same precession speed as the body, the
permanent rotation looks like an equilibrium position, which is determined from the
Eq. (10.140) but with the transformed parameters a′ and J′, i.e.

γ0 × (a′+γ0J′) = 0. (10.143)

Substituting those parameters from (10.102) into the last relation,weget the condition
for a permanent rotation as

γ0 × [a + nκ + γ0(J−nK−n2I)] = 0. (10.144)

This equation can now be compared with the condition for the permanent rotation
(10.66). They become identical, provided we take n = −ω0.

10.14.2 Example 2. Permanent Rotations About a Tilted Axis
and Precessional Motions About the Vertical

Consider a precessional motion, in which the angular velocity of the body is given
by

ω = �0e + �1γ, (10.145)

where �0,�1 are constants and e is a unit vector fixed in the body at the fixed point
O . The body rotates about e with angular velocity �0, while this axis precesses
about the vertical with angular velocity �1. Using the transformation (10.97) with
the choice n = −�1, we have

ω′ = �0e. (10.146)

The precessionalmotion is reduced by this transformation to a uniform rotation about
an axis fixed in the body and in space and inclined to the vertical at a fixed angle. That
is the permanent rotational motion described in Sect. 10.8. Similarly, a permanent
rotational motion with angular velocity (10.146) can be transformed by the inverse
transformation n = �1 to the precessional motion.

Solutions of the equations of motion corresponding to regular precessions were
investigated in [123] (See also [125]). The conditions for existence of such precession
are obtained in a quite complicated form (conditions (18) in [123]). Those conditions
can be easily shown to be equivalent to conditions (10.75) followed by the rotation
transformation (10.97). According to the said above, one could consider only uniform
rotational motions about an axis fixed in space and inclined to the vertical. The whole
class of precessional motions generated by transforming uniform rotations about an
inclined axis using (10.97) with the parameter n taking all real values are equivalent
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to that rotation and, moreover, have the same properties, for example, as concerns
stability of the motions.

10.14.3 Example 3. generalization of grioli’s precession
[402, 405]

On a dynamical basis, Grioli established the possibility of a regular precession of the
heavy rigid body about a non-vertical axis under certain conditions on the parameters
of the body [138]. Guliaev derived the full explicit solution of this case [141] (see
also [256]). We present the necessary details in brief. The solution differs from that
of Guliaev only in that we have assigned a certain value for the initial time moment,
so that the solution becomes more transparent.

Let the axes be arranged such that A ≥ B ≥ C. For

a′ = (a, 0, c),κ= 0, K′= J′ = 0, (10.147)

where a
√
B − C = c

√
A − B, the system of Eq. (10.105) admits a particular solu-

tion (See 8.10)

p′ = �

s
(a − c cos(�t)), q ′ = � sin(�t), r ′ = �

s
(c + a cos(�t)),

γ1 = −�2

s2
[Cc cos(�t) + (B − C)a sin2(�t)],

γ2 = �2

s3
sin(�t)[(Aa2 + Cc2) − (A − C)ac cos(�t)],

γ3 = �2

s2
[Aa cos(�t) + (A − B)c sin2(�t)], (10.148)

where s = √
a2 + c2,�2 = s√

(A−B+C)2+(A−B)(B−C)
. This solution corresponds to a

regular precession of the body. The angular velocity ω′ can be written as the sum of
two terms

ω′ = �ζ + �α, (10.149)

where ζ,α are two unit vectors: the first fixed in the body (orthogonal to a circular
section of the inertia ellipsoid) and the second fixed in space [141], so that in the
body system

ζ = (
a

s
, 0,

c

s
),α = ( − c

s
cos(�t), sin(�t),

a

s
cos(�t)). (10.150)

Note that ζ is orthogonal to α and that α is inclined to the upward vertical vector γ
at a fixed angle δ,
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cos δ = A − B + C√
(A − B + C)2 + (A − B)(B − C)

. (10.151)

The body rotates with the uniform velocity� around the vector ζ fixed in it, while
that vector rotates with the same velocity � about the direction α fixed in space.

We now consider another case of motion of the same body as above, but we will
replace V ′,μ′ by

a′ = (a, 0, c),κ = 0, K′= J′ = 0,

V = aγ1 + cγ3 − 1

2
n2(Aγ2

1 + Bγ2
2 + Cγ2

3),

μ = n((B + C − A)γ1, (C + A − B)γ2, (A + B − C)γ3) (10.152)

where, for simplicity, n is taken as a constant. It is easy to verify that applying
the substitution ω = ω′ + nγ transforms (10.152) into (10.147). Thus, the system
with (10.152) admits a particular solution representing Grioli’s precession uniformly
rotated with speed n about the vertical. In this solution γ1, γ2, γ3 are the same as in
(10.148), while

p = �

s
(a − c cos(�t)) − n�2

s2
[Cc cos(�t) + (B − C)a sin2(�t)],

q = � sin(�t) + n�2

s3
sin(�t)[(Aa2 + Cc2) − (A − C)ac cos(�t)],

r = �

s
(c + a cos(�t)) + n�2

s2
[Aa cos(�t) + (A − B)c sin2(�t)].

(10.153)

This case is a non-trivial generalization of Grioli’s result [138]. The whole picture
of Grioli’s precession about the inclined axis precesses about the vertical at an arbi-
trary angular speed n. The resulting motion admits two interpretations as a motion
of a body in liquid [383] or a motion of a charged body under potential and Lorentz
forces as described in Sect. 2.2 above. It is noteworthy that this gives a new result in
both interpretations.

The angular velocity ω = �(ζ + α) + nγ no longer has constant magnitude as
was the case in Grioli’s precession. The resulting motion is not a regular precession.
Although ω and γ are periodic functions of time, the motion is not in general peri-
odic in space for arbitrary values of n. However, if n

�
is rational the body returns

periodically to its initial position. As far as we know, such motions have not been
considered previously. This solution can be generalized by adding a rotor to the body
along the normal to a circular cross-section of the ellipsoid of inertia of the body. The
solution for the last case was found by Keis [167] and rediscovered by Kharlamova.
The resulting case of motion of a heavy gyrostat can be transformed using the regular
precession transformation to a case of motion of another body by inertia in a liquid
or a case of motion of an electrically charged body in gravity and magnetic fields.
Formulas received will generalize (10.152), (10.153).
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10.14.4 Example 4. Regularly Precessing Pendulum

By this motion, wemean a generalization of the motion of a physical pendulum, such
that the axis of the pendulum rotation performs regular precession about the vertical.
A near, but different, term “semi-regular precession” was coined by Grioli [139] in
certain problems lower in the hierarchy than that of the present chapter. The same
name was used later by many authors, e.g. [357]. (See also Gorr [119] and for more
detail [126]). This name refers to the motion in which the body rotates with a time-
dependent (i.e. non-uniform) angular velocity about an axis fixed in it, while this axis
makes regular precession about an axis fixed in space. Thus, the regularly precessing
pendulum motion is a type of semi-regular precession, but the last may comprise
motions that do not fit in the pendulum type in addition to a regular precession.

Conditions for existence of semi-regular precessions of a rigid body in a liquid
involving a pendulum-like motion about an axis fixed in the body and regular pre-
cession about the (virtual) vertical were first found in [247] where solutions of the
equations of motion were sought such that the angular velocity has the form

ϕ̇e + nγ, (10.154)

where n is a constant, γ is the unit vector along the (virtual) vertical and e is a unit
vector constant in the body. This formula is substituted into the equations of motion,
compatibility conditions are found and then a differential equation is obtained for
the determination of ϕ.

Independently, and slightly later, of [247] the samemotions were consideredmore
comprehensively in the Ph.D. Thesis [148]. In this work not only conditions for
the existence of pendulum motions and their transformed version (the semi-regular
precession) are obtained, but also a detailed study was made on the orbital stability
of certain special cases of those motions.

In our presentation of the precessing pendulum motion, we shall use the method
used in [148]. The study of the motion is made in two steps:

A)Themotion is studied in a rotating reference frame inwhich the bodyperforms a
pendulum motion about a horizontal axis fixed in this system. Conditions necessary
for performing this motion are found on the transformed parameters of the body
I, a′, J′,κ, K̄′.

B) The motion is transformed back to the inertial frame, the regular precession
will be added. The relevant conditions on the original parameters of the body are
obtained from

ω′ = ω + nγ. (10.155)

10.14.4.1 Pendulum Motion

Consider the motion of the body as a physical pendulum, taking place around a
principal axis of the inertia matrix of the body-liquid system, while this axis keeps a
permanent horizontal position (Fig. 10.2).
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Fig. 10.2 The body configuration of pendulum motion. G the centre of mass, S the rotor with
gyrostatic moment k3

Let us choose the third principal axis to be the axis of proper rotation with variable
angular velocity ϕ̇. The solution corresponding to this motion with θ = π

2 is

ω = (p, q, r) = (0, 0, ϕ̇),

γ = (sinϕ, cosϕ, 0). (10.156)

We shall find conditions on the matrices K̄, J and the vectors κ = (k1, k2, k3) and
a = (a1,a2, a3) that allow the body to perform pendulum motion. Substituting into
Eq. (10.45), the Poisson equations are identically satisfied and the first two dynamical
equations give:

− ϕ̇[ K̄12 sinϕ − 2K̄22 cosϕ + k2] − cosϕ[J13 sinϕ + J23 cosϕ + a3] = 0,

ϕ̇[K̄11 sinϕ − 2 K̄12 cosϕ + k1] + sin (ϕ) [J13 sinϕ + J23 cosϕ + a3] = 0,

(10.157)

while the third dynamical equation is replaced by the energy integral

1

2
Cϕ̇2 + a · γ+1

2
γJ · γ = E, (10.158)

where E is the energy constant of the motion.
A combination of (10.157) gives

ϕ̇[k1 sinϕ − k2 cosϕ − (K̄11 − K̄22) sin 2ϕ − 2K̄12 cos 2ϕ] = 0,

which leads to the conditions

k1 = k2 = 0,

K̄12 = 0, K̄22 = K̄11. (10.159)
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Now, getting back to (10.157) we obtain one equation

K̄11ϕ̇ + J13 sinϕ + J23 cosϕ + a3 = 0. (10.160)

This equation in ϕ gives a law of motion contradicting the pendulum law, and hence
should be satisfied as an identity. We obtain, in addition to (10.159), the conditions

K̄11 = 0, a3 = 0, J13 = J23 = 0. (10.161)

Summing up, for this version one can write the parameters of the problem in the
form:

a = (a1, a2, 0),κ = (0, 0, k3),

J =
⎛
⎝

J11 J12 0
J12 J22 0
0 0 J33

⎞
⎠ , (10.162)

K̄ =
⎛
⎝

0 0 K̄13

0 0 K̄23

K̄13 K̄23 K̄33

⎞
⎠ , K =

⎛
⎝

K̄33 0 −K̄13

0 K̄33 −K̄23

−K̄13 −K̄23 0

⎞
⎠ . (10.163)

Those conditions mean that the centre of mass of the body lies in the xy-plane,
perpendicular to the axis of pendulum rotation (the z-axis), which is a principal
axis also of the matrix J. The angle of proper rotation ϕ can be determined as an
elliptic function of time by inverting the integral, obtained by separating variables in
(10.158),

t =
∫

dϕ√
2(E − a1 sinϕ − a2 cosϕ − J12 sinϕ cosϕ) − J11 sin2 ϕ − J22 cos2 ϕ

.

(10.164)
This formula contains the energy constant E, which takes all real values on the
interval [V−,∞), V− being the minimum of the potential V on the Poisson sphere.
Pendulum motions constitute a family of periodic motions of two types: vibrational
motions reversing their direction every half-period time and complete rotational
motions going on in one direction all the time.

10.14.4.2 The Precessing Pendulum

Conditions (10.163) for existence of pendulum-like motion of the body in a liquid (or
in the equivalent generalized problem) can now be generalized to generate conditions
for the semi-regular precession. One can now transform the pendulum-like motion
about its axis fixed in space to add the parameter n to the solution. Every pendulum-
like motion generates a family of semi-regular precessions, with n taking all real
values. The parameter n enters in the transformed conditions (10.154) according
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to the transformation formulas (10.102). Finally, we can write the parameters of
the body, in order that the body can perform a semi-regular motion composed of a
pendulum motion and a precession with angular velocity n :

a′ = (a1, a2, nk3),κ = (0, 0, k3),

K̄′ =
⎛
⎝
2n(B + C − A) 0 K̄13

0 2n(C + A − B) K̄23

K̄13 K̄23 K̄33 + 2n(A + B − C)

⎞
⎠

J′ =
⎛
⎝

J11 − n2A − nK̄33 J12 nK̄13

J12 J22 − n2B − nK̄33 nK̄23

nK̄13 nK̄23 J33 − n2C

⎞
⎠ . (10.165)

In the last formula, we used the relation K = tr(K̄)−K̄ to obtain the transformed
parameters from (10.102).

Conditions (10.165) are well-ordered and much transparent than conditions in
[247], where conditions for the semi-regular precession are given just as relations
between the parameters.

10.14.4.3 The Space Picture of the Motion

The integral (10.164) is elliptic and can be evaluated using formulas from [130].
When J12 = 0 and a2 = 0, i.e. when the vector a (the centre of mass) lies on a
principal axis of inertia and J, I have common principal axes, the integral becomes
simpler and γ1 = sinϕ can be determined in terms of Jacobian elliptic function in
time. This was done in [148], where also the translational motion was studied. It
turned out that the central point can draw several types of trajectories in space.

In the special case when the parameters of the body satisfy the conditions

A = B,

J11 = J22 = εA, J33 = εC,

K13 = K23 = 0, K33 = −nC,

one finds

γ1 = −1 + 2 sn2 v, γ2 = 2 sn v cn v,

p = −nγ1, q = −nγ2, r = 2

k

√
a1
C

dn v, (10.166)

where

v =
√
a1
C

t

k
(10.167)
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and the modulus of the elliptic functions

k =
√

4a1
2h + 2a1 − A(ε + n2)

. (10.168)

Note that we have chosen the case of fast pendulum (in which the pendulum rotates
with variable angular velocity in one direction).

From (10.166), we also get

ψ̇ = pγ1 + qγ2

γ2
1 + γ2

2

= −n,

so that we can write
ψ = −nt,

and thus we arrive at the following expressions for the base vectors in space

α = (γ2 cos nt,−γ1 cos nt,− sin nt),

β = (−γ2 sin nt, γ1 sin nt,− cos nt). (10.169)

The velocity of the central point of the body can now be written from (10.60) as

u = a + γJ − 1

2
ω K.

The space components of the velocity with respect to some inertial system of axes
ξηζ are

ξ̇ = u · α, η̇ = u · β, ζ̇ = u · γ,

and can now be evaluated:

dξ

dt
= F(t) sin nt + 2a1 sn v cn v cos nt

dη

dt
= F(t) cos nt − 2a1 sn v cn v sin nt

dζ

dt
= (ε + n2)A − a1 + nC + 2a1 sn

2 v, (10.170)

where

F(t) = n(k3 + 2

k

√
Ca1 dn v).

By integrating (10.170) with respect to time, we obtain
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ξ = −C(
k3
C

+ 2

k

√
a1
C

dn(

√
a1
C

t

k
)) cos nt,

η = C(
k3
C

+ 2

k

√
a1
C

dn(

√
a1
C

t

k
)) sin nt,

ζ = [(ε + n2)A − a1 + nC + 2a1
k2

(1 − E(k)

K (k)
)]t

− 2

k

√
a1
C

Z(

√
a1
C

t

k
) (10.171)

where K (k), E(k) are complete elliptic integrals and Z is Jacobi’s Zeta function of
the same modulus k.

The functions dn, Z have period

T1 = 2kK (k)

√
C

a1
, (10.172)

while the trigonometric terms have period

T2 = 2π

n
. (10.173)

The position vector of the central point of the body P (say) is not periodic in time
in general, but its projection on the ξη-plane can be a closed curve if the ratio T1

T2
is

a rational number.
Now we are ready to describe the space picture of the motion of the body. The

body performs the periodic pendulum motion about its horizontal z-axis while this
axis precesses with a uniform angular speed n in the (virtual) horizontal plane. The
motion of the central point P of the body traces a space curve of helicoidal type
about a (virtual) vertical axis. The radial distance ρ of P from the ζ-axis of the curve

ρ = k3 + 2

k

√
Ca1 dn v (10.174)

changes periodically, while rotating about the vertical ζ-axis with the same angular
speed n of the body about the vertical Z -axis. As to its horizontal motion, the body
moves around the ζ-axis and rotates in such a way that one face of the body is always
directed to that axis. In celestial mechanics, this regime of motion is called 1 − 1
rotation.

From the expression (10.174), we note that the effect of the gyrostatic moment
k3 appears in the motion of the central point as an increase (decrease) of the radial
distance between that point and the ζ-axis. This means widening or narrowing the
lateral dimensions of the helicoidal trajectory, according to the sign of k3.

The motion of the central point in the ζ-direction is not periodic in general, due
to the presence of a secular term (linear in t). After each (orbital) revolution about
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the ζ-axis the central point elevates (or descends) a certain distance above (or below)
the horizontal plane that passed through P at the initial moment t = 0. The space
path of P is helicoidal-like.

However, if the coefficient of t in the secular term vanishes, i.e. if

(ε + n2)A − a1 + nC + 2a1
k2

(1 − E(k)

K (k)
) = 0, (10.175)

then the vertical motion of P is periodic with period T1. If, moreover, T1 and T2 are
commensurable, say, T1

N1
= T2

N2
, then the space trajectory of P closes after a number N

of revolutions N = LCM(N1, N2) (The least commonmultiple of the two numbers).
The following figures illustrate the shapes of some space trajectories of the cen-

tral point. In all of them we suppose that (10.175) is satisfied and set C = 1 and
substitute

√
a1 = 2kK (k)/T 1, so that the equation of the space curve becomes

ξ = −[k3 + 2

k

√
a1 dn(2K (k)

t

T1
)] cos(2π t

T2
),

η = [k3 + 2

k

√
a1 dn(2K (k)

t

T1
)] sin(2π t

T2
),

ζ = −2

k

√
a1Z(2K (k)

t

T1
). (10.176)

The following Fig. 10.3 shows the space orbit of the central point of the body for
values of the parameters:

k3 = 1, k = 0.9, n = 1, a1 = k2 = 0.81.

Fig. 10.3 Space trajectory of pendulum. a An upper view b A side view
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Fig. 10.4 T1 = T2

Fig. 10.5 k3 = −3, a1 = 4, T1 = 2T2(N1 = 2, N2 = 1). a Side view. b Projection on ξη-plane

Fig. 10.6 Side view for different values of k3 and a1

The shapes of some closed space curves are shown for different values of the
parameters k3, k and the integers N1 and N2. They show the diversity of the forms
of trajectories, even for a very limited set of initial conditions (Figs. 10.4, 10.5, 10.6,
10.7, 10.8).

Fast pendulum rotations k = 0.99,
Slower rotation k = 0.5 N1 = 1, N2 = 1
N1 = 2, N2 = 1
The case of a simple body k3 = 0 :
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Fig. 10.7 k3 = −3, a1 = 4, T2 = 2T1(N1 = 1, N2 = 2). a side view b Projection on ξη-plane

Fig. 10.8 k3 = −3, a1 = 4 a Side view b Projection on ξη-plane

It has been noticed before that the presence of the gyrostatic momentum k3 affects
only the lateral dimensions of the trajectory of the body. We now examine some
periodic motions of the body in the absence of k3. To keep the variation of the radial
distance ρ somewhat large, we give the modulus of elliptic functions k the value
0.99. The following figures are obtained by taking a1 = 4. The values of N1 and N2

are given for each figure. The motion of the body consists of
- Complete rotations of the body as a physical pendulum, with period of rotation

T1, about its z-axis, which is always horizontal (orthogonal to the virtual vertical γ)
and directed to the ζ-axis.

- A 1-1 regime of rotation about the ζ-axis (One side of the body always faces
that axis) of periodic time T2 = 2π

n .
- Radial displacement of the central point from the ζ-axis of periodic time T1 (The

same as the periodic time of the pendulum).
- Oscillations of the central point in the direction of the ζ-axis (the virtual vertical)

of periodic time T1.
Figure10.9 depicts the case of equal T1 and T2. The space trajectory of the central

point of the body closes after a single rotation about the ζ-axis. The central point
ascends from the lowest point to the highest point on the part of the trajectory near to
the ζ-axis and then descends on the farther part to the first point. At the same time,
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Fig. 10.9 T1 = T2

Fig. 10.10 T1 = 2T2

the body completes a pendulum rotation cycle in its vertical plane which rotates, in
turn, so that the axis of the pendulum motion remains all the time directed to the
ζ-axis. In Fig. 10.10, at the time of a complete pendulum rotation cycle the body
completes two rotations about the ζ-axis, giving always the same face to that axis.
The central point of the body ascends along the narrower loop and descends along
the wider one.

In Fig. 10.11, each pendulum rotation cycle corresponds to one vertical oscillation
but corresponds to ten precession cycles associated with ten loops around the ζ-axis
forming a ten-loop solenoid. The central point of the body ascends along the narrow
part of the solenoid anddescends along thewider part to the lowest point. Figure10.12
shows the reverse case T2 = 10T1. The time of one complete precession cycle of the
body and rotation of its central point is enough for ten cycles of the vertical and lateral
vibrations of the central point and ten complete cycles of the pendulum vibration.
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Fig. 10.11 T1 = 10T2

Fig. 10.12 T2 = 10T1

Remark: It is now time to repeat our previous assertion, that all regular pendulum
precessions generated by a certain pendulum motion share all qualitative properties
with that motion. For example, the condition for the (orbital) stability of the hor-
izontal axis of semi-regular precession is the same as the condition of stability of
the pendulum-like motion generating it, for n = 0. Conditions for stability of pre-
cessional motion are obtained from the former conditions by replacing the original
parameters by the primed ones, which involve the precession parameter n. Some
information about orbital stability of pendulum-like motions in the two problems of
this chapter will be included in the exercises.
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10.15 Tables of Integrable Cases of Motion of a Rigid Body
in a Liquid

In this section,weprovide tables of general and conditional integrable cases ofmotion
of a rigid body by inertia in an ideal incompressible liquid, infinitely extending in all
directions and resting at infinity. results are displayed for the case of a body bounded
by a multi-connected surface, i.e. for a perforated body. This case is characterized
by the presence of the two vectors a and κ in our equations in the framework of
the equivalent problem of motion about a fixed point of a rigid body acted upon by
potential and gyroscopic forces. To follow the same pattern as in previous and coming
chapters, we have chosen to put the problem of the present chapter in the context of
the second problem. In the tables, all integrable cases of the problem of motion of a
body in a liquid are presented in their most general form, as cases of integrability of
our new Eq.10.45 and in terms of the parameter matrices and vectors I, J, K,κ and
a. To express the integrability conditions and the integrals of motion in terms of the
original (Kirchhoff-Lamb) parameters, one should use (10.43) or (10.30) as needed.

As to the classification of cases in each table, we organized cases according to the
degree of the complementary integral as a function in the components of the angular
velocity.

For each case, we provide

(1) The full hierarchy of earlier cases, to which the given case reduces under relevant
conditions on the parameters.

(2) The conditions on the parameters on the body and fields, under which the case
is valid.

(3) The potential function V .
(4) The vector functions l and μ , which describe the gyroscopic forces acting on

the body: The first enters in the Lagrangian and the second in the equations of
motion.

(5) The explicit forms of the first integrals I3 and I4 in the Euler-Poisson variables.
(6) A Hamiltonian function H is given for each case, together with the correspond-

ing form of the complementary integral in terms of the variables (M,γ) (See
Sect. 10.10).

Remark 16 Regarding the fact that most integrable cases are obtained by using
inverse method, different hamiltonians may be constructed for one and the same
case.

10.15.1 General Integrable Cases

The number of known general integrable cases in the two equivalent problems of the
present chapter is seven. Most of them are solutions of Thomson-Lamb equations.
They developed historically from solutions of the simpler cases of integrability of



10.15 Tables of Integrable Cases of Motion of a Rigid Body in a Liquid 287

the Kirchhoff equations and, in cases, from cases of integrability of problems lower
in the hierarchy, which are presented in the previous chapters.

Remark: The regular precession transformation parameter n figures in five of the
seven integrable cases, namely, cases 2,3,5,6 and 7. If n is introduced in cases 1 and
4, it can be absorbed in other parameters of the problem and can give no new effects.
In cases 2,3 and 5, the parameter n appeared at some stage in their development and
not necessarily from the first discovery of the case. In the remaining cases (number
6,7), the introduction of that parameter in [411] was a significant generalization of
the case found by Sokolov [336].

Table 10.1 General integrable cases

1 The case of axi-symmetric body
Generalization of Lagrange’s case
Kirchhoff [219] (1870) (see also [220]) a3 = 0,κ3 = 0

A = B,

V = a3γ3 + 1
2 [b1(γ2

1 + γ2
2 ) + b3γ2

3 ],
l = (K1γ1, K1γ2, K3γ3 + κ),

μ = (−K3γ1,−K3γ2, (K3 − 2K1)γ3 + κ),

I3 = A(pγ1 + qγ2) + (Cr + κ)γ3 + K1(γ
2
1 + γ2

2 ) + K3γ
2
3 ),

I4 = Cr + κ + K3γ3

H = M2
1+M2

2
2A + M2

3
2C − K1

A (M1γ1 + M2γ2) − M3
C (K3γ3 + κ)

+a∗
3γ3 + b∗

1(γ
2
1 + γ2

2 ) + b∗
3γ

2
3 ,

I4 = M3

where a∗
3 , b

∗
1 and b∗

3 are constants

2 Clebsch [55] (1870).
Euler [79] (1758). n = b = 0
V = (b − 1

2n
2)(Aγ2

1 + Bγ2
2 + Cγ2

3 )

l = n(Aγ1, Bγ2,Cγ3)
μ = n((A − B − C) γ1, (B − C − A) γ2, (C − A − B)γ3)
I3 = Apγ1 + Bqγ2 + Crγ3 + n(Aγ2

1 + Bγ2
2 + Cγ2

3 ),

I4 = 1
2 [A2(p + nγ1)

2 + B2(q + nγ2)
2 + C2(r + nγ3)

2]
−b(BCγ2

1 + CAγ2
2 + ABγ2

3 ).

H = 1
2 (M2

1 /A + M2
2 /B + M2

3 /C) + b(Aγ2
1 + Bγ2

2 + Cγ2
3 )−n(M1γ1 + M2γ2 + M3γ3),

I4 = 1
2 (M2

1 + M2
2 + M2

3 ) − b(BCγ2
1 + CAγ2

2 + ABγ2
3 ).

Somewhat later, after [55], the special version (n = 0) of this case case was found,
apparently independently, by Tisserand [354] (1891) and Brun [47] (1893) in the
context of the motion of a body acted upon by approximate Newtonian gravitational
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forces (SeeChap.6). At that time the Steklov analogy, described above in this chapter,
between the two problems was still unknown.

3 Clebsch [55] (1870) -
A = B = C
V = 1

2 A(c1γ2
1 + c2γ2

2 + c3γ2
3 )

l = nAγ, μ = −nAγ
I3 = A(pγ1 + qγ2 + rγ3),
I4 = A[c1(p + nγ1)

2 + c2(q +
nγ2)

2 + c3(r + nγ3)
2

−(c2c3γ2
1 + c3c1γ2

2 + c1c2γ2
3 )]

H = 1
2A (M2

1 + M2
2 + M2

3 ) + 1
2 (c1γ2

1 + c2γ2
2 + c3γ2

3 )−n (M1 γ1 + M2 γ2 + M3 γ3) ,

I4 = c1M2
1 + c2M2

2 + c3M2
3

−A[c2c3γ2
1 + c3c1γ2

2 + c1c2γ2
3 ]

In cases 2 and 3, the parameter n invokes gyroscopic terms due to circulation of
the liquid through perforations. Setting n = 0 makes the body simply connected.

4 Rubanovsky [317] (1968),
Kharlamov (κ2 = 0) [192] (1963),
Steklov (κ= 0) [344] (1893),
Joukowsky (a = 0) [163] (1885),
Euler (κ= 0, a = 0) [79] (175
I = diag(A, B,C), Ī = 1

2 tr(I) − I,
J = [tr(I−1)δ−I−1]

= diag( 1
B + 1

C , 1
A + 1

C , 1
A + 1

B )

κ = (κ1,κ2,κ3),

V = −n(κ · γ−aγI−1 · γ) − 1
2n

2γI · γ,

l = κ+aγJ + nγI,
μ = κ + 2aγI−1 − 2nγ Ī,
I3 = (ωI+l) · ,

I4 = 1
2 | (ω + nγ)I+κ |2 −2aω · γ

H = 1
2 (M − ˇ − aγJ)I−1 · (M−κ − aγJ)

−nM · ,

I4 = 1
2 | M − aγJ |2 −aγI−1 · (M−κ − aγJ).
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5 Rubanovsky [317] (1968)
Lyapunov [267] (a1 = a2 = a3 = 0) (1893)
A = B = C,

V = C{a1γ1 + a2γ2 + a3γ3
− 1

2 [(bc + b0)γ2
1 + (ca + b0)γ2

2 + (ab + b0)γ2
3 ]},

l = − 1
2C((b + c)γ1, (c + a)γ2, (a + b)γ3),

μ = C(aγ1, bγ2, cγ3),
I3 = pγ1 + qγ2 + rγ3 + 1

2 (aγ2
1 + bγ2

2 + cγ2
3 ),

I4 = 1
2 [(b + c) p2 + (c + a) q2 + (a + b) r2] − abc(p γ1

a + q γ2
b + r γ3

c )

+a1(p + aγ1) + a2(q + bγ2) + a3(r + cγ3).

H = 1
2C (M2

1 + M2
2 + M2

3 ) + 1
2 [(b + c)M1γ1 + (c + a)M2γ2 + (a +

b)M3γ3]
+C(a1γ1 + a2γ2 + a3γ3)
−C

8 [(a2 + 2bc)γ2
1 + (b2 + 2ac)γ2

2 + (c2 + 2ab)γ2
3 ],

I4 = (b + c)M2
1 + (c + a)M2

2 + (a + b)M2
3

+C{[(b2 + c2)γ1 + 2a1]M1 + [(a2 + c2)γ2 + 2a2]M2 + [(a2 +
b2)γ3 + 2a3]M3}

+C2

4 [(b + c)(b − c)2γ2
1 + (c + a)(c − a)2γ2

2 + (a + b)(a − b)2γ2
3 ]

+C2[(a + b + c)(a1γ1 + a2γ2 + a3γ3) + 2(a1aγ1 + a2bγ2 + a3cγ3)].

The parameter b0 has meaning in the problem of motion of a body in a liquid. In
the alternative problem it is immaterial.

6 Yehia [411] (2003)
Sokolov [336] n = 0 (2002)
Yehia [380] n = c = 0 (1986)
Kowalevski [238] n = c = κ = 0 (1889)
A = B = 2C,κ = C(0, 0,κ),

V = C[κcγ1 + a2γ2 − nκγ3 − c2
2 (γ2

1 + 2γ2
3 ) − ncγ1γ3

− n2
2 (2γ2

1 + 2γ2
2 + γ2

3 )],
l = C(2cγ3 + 2nγ1, 2nγ2,κ − cγ1 + nγ3),
μ = C(cγ3 − nγ1,−nγ2,κ + cγ1 − 3nγ3),

I3 = 2(pγ1 + qγ2) + (r + κ + cγ1)γ3 + n(2γ2
1 + 2γ2

2 + γ2
3 ),

I4 = [
(p + nγ1)

2 − (q + nγ2)
2 + a2γ2 + c2γ2

2 + cγ1(r + nγ3 − κ)
]2

+ [
2(p + nγ1)(q + nγ2) − a2γ1 − c2γ1γ2 + cγ2(r + nγ3 − κ)

]2
+2κ(r + nγ3 − κ + cγ1)

[
(p + nγ1)

2 + (q + nγ2)
2 + 2c(p + nγ1)γ3

]
−2κc2{2γ3[2(p + nγ1)γ1 + cγ1γ3 + 2(q + nγ2)γ2 + (r + nγ3)γ3]
+κγ2

3 − (γ2
1 + γ2

2 + 2γ2
3 )(r + nγ3 + cγ1)} − 4a2κ(q + nγ2)γ3.

H = 1
2C (

M2
1
2 + M2

2
2 + M2

3 ) − cγ3M1 + (cγ1 − κ)M3 + Ca2γ2
−n(M1γ1 + M2γ2 + M3γ3)

I4 = [ M2
1−M2

2
4 + Cc (−M1 z + M3 x) + (

a2 y + c2
)
C2]2

+[ M1M2
2 + Cc (−M2 z + M3y) − C2a2 x]2 + 1

2Ck (M3 − 2Ck)
(
M2

1 + M2
2

)
+C2k[−2Ca2M2 z − 2M2 (M1 y − M2 x) c − 2Cc2M3]
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7 The parameter n is added here to B-M-S result.
Borisov, Mamaev and Sokolov n = s = 0 [39] (2001)
Sokolov [336] n = 0 (2001)
Kowalevski n = m = 0 (1888)
A = B = 2C,

V = C{s(c1γ1 + c2γ2) + 1
2m

2[(c1γ1 + c2γ2)2 − (c21 + c22)γ
2
3 ]

+nmγ3(c2γ1 − c1γ2)γ3 − n2
2 (2γ2

1 + 2γ2
2 + γ2

3 )},
l = C(2nγ1, 2nγ2,m(c2γ1 − c1γ2) + nγ3),
μ = C(−mc2γ3 − nγ1,−mc1γ3 − nγ2,m(c2γ1 − c1γ2) − 3nγ3),

I3 = 2(pγ1 + qγ2) + [r + m(c2γ1 − c1γ2)]γ3 + n(2γ2
1 + 2γ2

2 + γ2
3 ),

I4 = A2
4 + B2

4 ,

where
A4 = (p + nγ1)

2 − (q + nγ2)
2 + s(c2γ2 − c1γ1)

+m(r + nγ3)(c2γ1 + c1γ2) + m2(c22γ
2
2 − c21γ

2
1 ),

B4 = 2(p + nγ1)(q + nγ2) − s(c1γ2 + c2γ1)
−m(r + nγ3)(c1γ1 − c2γ2) − m2(c1γ2 + c2γ1)(c1γ1 + c2γ2)]2.

H = 1
2C [ M2

1+M2
2

2 + M2
3 ] + m(c1γ2 − c2γ1)M3 + Cs(c1γ1 + c2γ2)

−Cm2(c21 + c22)γ
2
3 − n (M1 γ1 + M2 γ2 + M3 γ3) ,

I4 = [ M2
1−M2

2
4C2 + m(c1γ2+c2γ1)

C M3 + s(−c1γ1 + c2γ2) − m2(c21 + c22)(γ
2
1 − γ2

2 )]2
+[ M1M2

2C2 − m(c1γ1−c2γ2)
C M3 − s(c1γ2 + c2γ1) − 2m2(c21 + c22)γ1γ2]2.

Strictly speaking, case 7 is related to case 6 and can be considered as its special
case. We prefer, for future uses (See Chap.12), to consider case 7 as independent
case in its most general form containing maximum number of parameters.

In case 7, the integral I4 is the sum of two squares. It is the squared modulus of
the complex quantity

A4 + i B4 = [p + iq + n(γ1 + iγ2)]2
− (c1 + ic2)(γ1 + iγ2)[s + im(r + nγ3) + m2(c1γ1 + c2γ2)].

(10.177)

The quantities A4, B4 satisfy the relations

Ȧ4 = [r + nγ3 + m(c1γ2 − c2γ1)]B4, Ḃ4 = −[r + nγ3 + m(c1γ2 − c2γ1)]A4,

(10.178)
so that the set of conditions

{A4 = 0, B4 = 0}

define an invariant manifold.
When s = 0, case 7 renders to the case discussed in Sect. 10.10 and the integral

becomes expressible, as in (10.91), in the form of the product of two functions one
linear and the other cubic in velocities.
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10.15.2 Conditional Integrable Cases on the Level f = 0

Two conditional integrable cases are known. Those cases can be generalized, as will
be shown later, using an arbitrary function ν(γ) instead of n. Nevertheless, we write
them down here with that parameter, as it adds physically significant terms to both
problems considered in this chapter: the problem of motion of a body in a liquid
and the alternative problem of motion under the action of potential and gyroscopic
forces.

Table 10.2 Cases integrable on the level

1 Parameter n is added here to the result of Sokolov and Tsiganov
n = 0 Sokolov-Tsiganov [338], 2002,
n = c1 = c2 = 0 Sretensky [341], 1963,
n = c1 = c2 = κ = 0 Goryachev-Chaplygin

A = B = 4C,

V = C[a1γ1 + a2γ2 − nκγ3 + 1
2 (c2γ1 − c1γ2)2

−nγ3(c1γ1 + c2γ2) − n2
2 (4γ2

1 + 4γ2
2 + γ2

3 )],
l = C( c12 γ3 + 4nγ1,

c2
2 γ3 + 4nγ2,

1
2 (c1γ1 + c2γ2) + nγ3),

μ = C(c1γ3 − nγ1, c2γ3 − nγ2,κ + c1γ1 + c2γ2 − 7nγ3),
I3 = 4pγ1 + 4qγ2 + [r + κ + c1γ1 + c2γ2]γ3 + n(4γ2

1 + 4γ2
2 + γ2

3 ),

I4 = (r − κ + c1γ1 + c2γ2 + nγ3)×
×[(p + nγ1 + 1

2 c1γ3)
2 + (q + nγ2 + 1

2 c2γ3)
2]

+γ3[(κc1 − a1)(p + nγ1) + (κc2 − a2)(q + nγ2)]
+ 1

2γ2
3 [κ(c21 + c22) − c1a1 − c2a2]

H = 1
2C (

M2
1
4 + M2

2
4 + M2

3 ) + (−κ + 2c1γ1 + 2c2γ2)M3
−γ3(c1M1 + c2M2) + C(a1γ1 + a2γ2)
−n(M1γ1 + M2γ2 + M3γ3),

I4 = [(M3 − 2Cκ + 4C(c1γ1 + c2γ2)](M2
1 + M2

2 )

−4C2γ3(a1M1 + a2M2)

I3 = f = 0

In [337, 338], Sokolov and Tsiganov did not give the complementary integral for
this full case. The above formulas are adjusted from [41] (English edition 2017).
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2 Yehia [386] 1987,
n = κ = 0 Chaplygin [53] 1903,
n = κ = b1 = b2 = 0 Kowalevski [238] 1888 (Special case f = 0),
A = B = 2C,

V = C[a1γ1 + a2γ2 − nκγ3 + b1(γ2
1 − γ2

2 ) + 2b2γ1γ2
− n2

2 (2γ2
1 + 2γ2

2 + γ2
3 )],

l = C(2nγ1, 2nγ2,κ + nγ3),μ = C(−nγ1,−nγ2,κ − 3nγ3),

I3 = 2pγ1 + 2qγ2 + (r + κ)γ3 + n(2γ2
1 + 2γ2

2 + γ2
3 ),

I4 = [(p + nγ1)
2 − (q + nγ2)

2 − a1γ1 + a2γ2 + b1γ2
3 ]2

+[2(p + nγ1)(q + nγ2) − a1γ2 − a2γ1 + b2γ2
3 ]2

+2κ (r + nγ3 − κ) [(p + nγ1)
2 + (q + nγ2)

2]
−4κγ3[(p + nγ1)(a1 + b1γ1 + b2γ2)

+(q + nγ2)(a2 + b2γ1 − b1γ2)].
H = 1

2C (
M2

1
2 + M2

2
2 + M2

3 ) − κM3

+C[a1γ1 + a2γ2 + b1(γ2
1 − γ2

2 ) + 2b2γ1γ2]
−n(M1γ1 + M2γ2 + M3γ3),

I4 = [ M2
1−M2

2
4C2 − a1γ1 + a2γ2 + b1γ2

3 ]2
+[ M1M2

2C2 − a1γ2 − a2γ1 + b2γ2
3 ]2

− κ
2C3 (2Cκ − M3)(M2

1 + M2
2 )

− 2κ
C γ3[M1(a1 + b1γ1 + b2γ2) + M2(a2 + b2γ1 − b1γ2)].

10.16 Further Studies on Integrable Cases

In the set of integrable cases in the dynamics of a body in a liquid, the presence of the
complementary (fourth) integral makes it possible to perform several analytical and
qualitative investigations on each one of the integrable cases, something we are not
able to do in the generic casemissing the fourth integral. Those investigations include
the final explicit solution of the equations of motion in terms of time, bifurcation and
topological classification of orbits of the integrable system on its integral manifold
and the stability analysis of certain motions like stationary and periodic motions.

In this section, we try to give a quick review of some of those investigations
performed for the problem of motion of a body in a liquid.

10.16.1 Separation of Variables, Explicit Solutions and

Separation of the variables was performed most easily in the general integrable
cases of Euler and Lagrange of the classical problem. Both cases were reduced to
elliptic quadratures and hence the explicit solution was expressed in terms of elliptic
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functions of time. The general integrable case of Kowalevski and the conditional
case of Goryachev and Chaplygin were reduced to hyper-elliptic quadratures (For
more information see Chap. 4). Explicit time solution of various integrable cases of
motion of a body in a liquid was investigated by several authors. The present status
of this aspect is summarized in the following:

General integrable cases:
(1) Kirchhoff reduced the case of simply connected body (a3 = κ = 0) to an ellip-

tic quadrature and expressed some particular motions in terms of elliptic functions
[219]. Detailed analysis of the general solution in elliptic functions was performed
by Halphen [146] and Greenhill [135, 136]. The full general case 1 of Table10.1 can
be easily solved also in terms of elliptic functions of time. This is shown in Chap.12
Sect. 12.1 as a special version of a more general separable case of Lagrange’s type
(Case 7 of Table10.1).

(2) The two cases 2 and 3 discovered by Clebsch were shown by Kötter [233]
in 1892 to have their general solution in terms of Theta functions in two variables.
The special version f = 0 of the asymmetric case of Clebsch was solved, in the
same set of functions by Weber, somewhat earlier using separation of variables in
Hamilton–Jacobi equation [367]. The version f = 0 of the spherical Clebsch case
is equivalent to Neumann’s problem solved in Theta functions of two variables (See
Chap.9 Sect. 9.7.3). Equations of motion in the Lax pair form and generalization to
n-dimensional space are briefly discussed in [306]. Some later trials led to separation
of variables in a much more complicated form, e.g. [260, 273]. Recently, the full
version and Weber’s one have been reconsidered in [95, 271].

(3) Steklov andLyapunov subcases of cases 4 and 5 are conjugate in the same sense
as the two cases of Clebsch. A solution of those subcases proposed byKötter in Theta
functions of two variables [235] was presented in a very compact and complicated
way, which led to some controversies between his contemporaries. Tsiganov [360]
reconsidered the separation problem for Steklov andLyapunov subcases and recently,
in [363], the full versions of cases 4, 5 due to Rubanovsky. However, no explicit
formulas are given. Thus, the separation of variables for theRubanovsky cases cannot
be considered complete, except for the Steklov and Lyapunov subcases separated by
Kötter.

(4) As concerns case 6, only the lower level of this hierarchy (Kowalevski’s case)
is separated by Kötter [232, 234]. The status of the second level (Yehia’s gyrostat)
is described in Chap.5. A successful procedure like that followed by Kötter has not
been found. Separation of variables is not yet achieved for that level and for the
next one (Sokolov’s generalization of Yehia’s gyrostat). Note that if the solution of
the Sokolov case (n = 0) is constructed, the solution of the last level with n �= 0 is
the same, as concerns the vector γ(t). The vector ω(t) is then readily obtained by
applying the regular precession transformation (See Sect. 10.11).

Topological classification of the case of Yehia’s gyrostat in the uniform gravity
field (See Chap.5) is discussed in detail in the book of M. Kharlamov et al. [184]
(See also [185]). The generalized version when n �= 0 and for non-zero Sokolov
parameter c, was not investigated until now.
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(5)Variable separation for the Sokolov case in the hierarchy 7 (without a gyrostatic
momentum) was proposed in [227]. It generalizes the one used for Kowalevski’s
case by Kowalevski and Kötter. Explicit separation and expressions for dynamical
variables were given in [70] , in terms of two intermediate variables, which are
expressed in genus-2 Theta functions. In the last level of the hierarchy, after the
introduction of the parameter n, the solution is obtained by applying the uniform
precession transformation. The same separation variables of [227] were used in
[186] for detailed investigation of the integral manifolds and their bifurcation and
also complete description of the phase topology of this case.

Conditional integrable cases
(1) Separation of variables is known for the first two levels of the hierarchy. For

Goryachev–Chaplygin’s see Chap.4 Sect. 4.4 and for Sretensky’s level see Chap.5.
Explicit time solution for the full case (1) of Table10.2 is not found yet.

(2) The second case of Table10.2 involves 6 significant parameters a1, a2, b1, b2,
κ, n, of which the last one can be set equal to zero for variable separation and it
can be restored in the system by the uniform precession transformation. Separation
of variables and explicit expressions for the dynamical variables are known in the
following subcases:

a- The special version f = 0 of Kowalevski’s case (n = κ = a2 = b1 = b2 = 0).
By a rotation of the x, y axes fixed in the body by a constant arbitrary angle in their
plane, one can construct a solution in which both coefficients a1, a2 are present.

b- Chaplygin [53] first established the integrability, on the level f = 0, of the case
n = κ = a1 = a2 = b2 = 0, that describes the motion of a simply connected body
in a liquid (with only one parameter b1 present in the potential). Then he achieved a
separation of variables for this case and expressed the dynamical variables in terms
of two parameters s1, s2, each of which can be expressed as an elliptic function of
t. This solution is presented in detail in the next section. By a rotation of the x, y
axes fixed in the body at a constant arbitrary angle in their plane, one can construct
a solution in which both coefficients b1, b2 are present.

c- From the results of [416], it follows that the problem of motion of a rigid body
with A = 2C and arbitrary B, subject to forces with potential

V = a1γ1 + b1(γ
2
1 − γ2

2),

under the additional restrictions

q = 0, f = 0,

is solvable in elliptic functions of time.

10.16.2 Topological Classification of Integrable Cases

The classical integrable cases of the problem of motion of a rigid body in a liquid
served as a fertile land for the application of methods of algebraic geometry and
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topology, created specially for the study of the phase space of integrable systems.
Topological classification offers an alternative, which determines the picture of the
foliation of the Liouville tori and hence sheds some light on the general (qualitative)
features of motion that can hardly be obtained from the explicit solution of compli-
cated problems. General methods of the study of bifurcation of integral manifolds
and phase topology of the integrable cases of the classical problem and gyrostat
motion were developed by M. Kharlamov (See e.g. [183, 185]). Steklov’s case was
investigated by Bogoyavlensky and Ivakh [33].

Fomenko constructed what may be called “Morse theory of integrable Hamil-
tonian systems” [87–90], building on previous results of many authors including,
in particular, works of Smale. This theory was further developed by Fomenko, his
colleagues and coworkers (e.g. [34, 35, 92, 303]). Topological classification is made
for several two- and multi-dimensional integrable Hamiltonian systems. Most inter-
esting, in particular, are Hamiltonian systems with two degrees of freedom. Those
include reductions of higher dimensional systems with cyclic coordinates. A theory
of topological invariants of such systems was developed, which gives their classifi-
cation up to Liouville equivalence, i.e. up to deformation of Liouville tori. For basic
information about the theory and some applications to rigid body dynamics, the
reader is referred to papers in [90], the works cited above and references therein. In
this subsection, some results about topological classification are pointed out parallel
to information about explicit solution for each integrable case of the dynamics of a
rigid body in a liquid. It has to be said here that topological classification is not a
characteristic property of an integrable system. Chaplygin’s case of rigid body in a
liquid, discussed in the next section, is an example.

10.17 Chaplygin’s Case of Integrability

In [53], Chaplygin discovered the conditional case, integrable on the zero level ( f =
0) of the areas integral and like Kowalevski’s case valid under the condition A =
B = 2C and characterized by the choice

V = Cc(γ2
1 − γ2

2),μ = 0, (10.179)

in the equations of motion (10.54), which, in this case take the form

2 ṗ − qr = 2cγ2γ3,

2q̇ + pr = 2cγ1γ3,

ṙ = −4cγ1γ2,

γ̇1 + qγ3 − rγ2 = 0, γ̇2 + rγ1 − pγ3 = 0, γ̇3 + pγ2 − qγ1 = 0. (10.180)
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The four integrals of motion are

p2 + q2 + 1

2
r2 + c(γ2

1 − γ2
2) = h,

2pγ1 + 2qγ2 + rγ3 = 0,

γ2
1 + γ2

2 + γ2
3 = 1,

(p2 − q2 + cγ2
3)

2 + 4p2q2 = K 2. (10.181)

They involve two arbitrary constants h and K . The sign of K is immaterial and,
without loss of generality, we can assume that K ≥ 0.

Chaplygin’s case is highly interesting for many reasons. In particular,

(1) It was the second conditional case in rigid body dynamics, after the Goryachev–
Chaplygin case of the classical problem (See Chap.3 Sect. 3.4).

(2) It turned out that separation of variables is much simpler than in the former
case and leads to explicit expressions of the Euler-Poisson in terms of elliptic
functions. In fact, it is a rare example of dynamical problem, with a relatively
simple solution that can be explicitly written in terms of two sets of elliptic
functions, which have two independent moduli.

(3) Because, as will be seen later in Chap.2, it can be brought to equivalence with
a completely different problem. Namely, it is that of motion of a body with the
Kowalevski configuration about a fixed point, while acted upon by two irre-
ducible uniform fields.

(4) It was the subject of many later generalizations, as will be seen in Chap. 13.

Chaplygin’s casewas a favourite subject for topological analysis bymany authors.
Topology of the iso-energy surfaces, bifurcation diagrams in the plane {K 2, h} and
topological classification of the Liouville tori are studied in [300, 322].More detailed
topological analysis can be found in [295]. In [91], topological equivalence of Chap-
lygin’s case is established with two other problems, the Euler case of rigid body
dynamics and Jacobi’s problem of geodesics on an ellipsoid. Nevertheless, it seems
that not much is done in the literature dealing with the explicit analytical forms of
the solution or the qualitative properties of motion. For all those reasons, we now
give a somewhat detailed description of the solution and possible types of motion of
the body.

10.17.1 Separation of Variables

We give here the expressions for the Euler–Poisson variables in terms of Chaplygin’s
separation variables. Some more details on the separation process can be found in
[53].
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p = 1/2

√
2
√
K

√
s1 − 1

√
1 − s2√

s1 − s2
,

q = 1/2

√
2
√
K

√
s1 + 1

√
1 + s2√

s1 − s2
,

r =
√
2[

√(
s21 − 1

)
(β − cs2) +

√(
1 − s22

)
(cs1 − α)]

s1 − s2
), (10.182)

γ1 = [√(s1 + 1) (1 − s2) (β − cs2) − √
(1 + s2) (s1 − 1) (cs1 − α)]√

2c (s1 − s2)
,

γ2 = [√(s1 − 1) (1 + s2) (β − cs2) + √
(1 − s2) (s1 + 1) (cs1 − α)]√

2c (s1 − s2)
,

γ3 = −
√
2K√

c(s1 − s2)
, (10.183)

where α = h + K ,β = h − K . Note that α ≥ β and equality occurs when K = 0.
The two variables s1, s2 are solutions of the equations

ṡ1 = −
√
2

(
s21 − 1

)
(cs1 − α),

ṡ2 = −
√
2(1 − s22 )(β − cs2). (10.184)

It is not hard to see that for a real solution of those equations s1 ∈ [max(α, 1),∞],
while s2 ∈ [−1,min(β, 1)].

Now, for more visibility of the results, one can choose the units of measuring
time, so that the constant c = 1. It is essential to find the conditions of repeated roots
in the under-root polynomials in (10.184). Those are, respectively,

h = −K ± 1, h = K ± 1. (10.185)

For simplicity, we introduce the parameters

α = h + K ,β = h − K . (10.186)

The bifurcation diagram in the Kh-plane is shown in Fig. 10.13.
There are three admissible regions I, II and III, inscribed by solid lines. In those

regions we have

−1 < 1 < β < α in region I,

−1 < β < 1 < α in region II,

−1 < β < α < 1 in region III.



298 10 The Problem of Motion of a Body in a Liquid

Fig. 10.13 Bifurcation
diagram for Chaplygin’s case

Inside each region the analytical form of the solution of (10.184) and its qualitative
properties do not change, and so does the topological type of the invariant two-
dimensional manifold which consists of tori on which the trajectories are wind in the
phase space. Only crossing the boundaries between those regions, those properties
can change.

By integrating (10.184), it is not hard to obtain the following formulas for s1 and
s2 in terms of time:

s1 = α + (α − 1)
sn2(

√
α+1
2 t, k1)

cn2(
√

α+1
2 t, k1)

, k1 =
√

2

α + 1
, α > 1,

= 1 + (1 − α)
sn 2(t, ν1)

cn2(t, ν1)
, ν1 =

√
α + 1

2
, α < 1,(10.187)

and

s2 = −1 + 2 sn2(

√
β + 1

2
τ , k2), k2 =

√
2

β + 1
, β > 1,

= −1 + (β + 1) sn2(τ , ν2), ν2 =
√

β + 1

2
, β < 1. (10.188)

Here τ = t − t0, t0 is an arbitrary constant. Note that 0 ≤ t0 < T, where T is the
period of the Jacobi elliptic functions of moduli k2. A similar constant appears in the
first two formulas is set equal to zero without loss of generality by choosing the initial
time moment. The generic motion is quasi-periodic, but becomes periodic when the
periods T1 and T2 of the two sets of Jacobi’s functions are commensurable.

According to the general Liouville-Arnold theorem for completely integrable
hamiltonian systems, the integral manifold of the Chaplygin system, corresponding
to a fixed pair of the parameters {K , h}, is a 2-torus or a union of such tori, each
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Fig. 10.14 Iso-potentials on
the Poisson sphere, the same
as zero-velocity curves

of which is filled (winded) by quasi-periodic phase trajectories. On each torus, a
trajectory is singled out by the value of the parameter t0. The projection of a trajectory
of the system on the Poisson sphere is the trajectory of the apex of the vector γ,

during the motion of the body, on that sphere. That is what we try to clarify in the
following subsections.

10.17.2 Forms of Motion on the Poisson Sphere

A look at Eq. (10.180) reveals that they have six equilibrium positions, in which an
end of one of the principal axes of inertia is directed vertically upwards. Twopositions
correspond to potentialminimaV = −1 at the pointsγ = (0,±1, 0), two correspond
to potential saddle point V = 0 at γ = (0, 0,±1) and the last two correspond to
potential maxima V = 1 at γ = (±1, 0, 0).

From the energy integral in (10.181), one can see that any real possible motion or
equilibrium must satisfy the condition

V = γ2
1 − γ2

2 ≤ h. (10.189)

The region determined by this condition on the Poisson sphere is called the region
of possible motions. On its boundary γ2

1 − γ2
2 = h, the angular velocity of the body

vanishes. If exists, this boundary is named the zero-velocity curve ZVC.
Figure10.14 depicts iso-potential lines on the Poisson sphere. At the minimum

value of the energy parameter h = −1, the ZVC is composed of two opposite points,
corresponding to two stable equilibrium positions4 of the body with either ends of

4 Here we mean the alternative problem of motion about a fixed point. In the Chaplygin problem,
it corresponds to a steady translational motion of the body in the liquid.
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the y-axis directed along the upward vertical (The vector γ). As h increases, namely,
for h ∈ (−1, 0) ZVC consists of two components, each of which is closed around
one of the ends of the y-axis. The region of possible motion is composed of the two
areas inside the two components of the ZVC. The value h = 0 is a critical one. At
this value, the ZVC renders to a pair of great circles intersecting on the z-axis and
the two regions meet at the two ends of the z-axis. For greater values of h ∈ (0, 1),
the two components of the ZVC become closed around the tips of the x-axis and the
region of possible motion is the whole sphere with the exception of the two regions
inscribed by the ZVC. For h = 1, the region of possible motion is the whole sphere
and the equilibrium is possible with the x-axis in vertical position. Finally, for h > 1,
the region of possible motion is the whole sphere and no ZVC exists.

In the bifurcation diagram Fig. 10.13, one can readily see that the least value of
the energy parameter for a possible motion is h = −1 at P and at this point K = 0.
Those values correspond to two equilibriumpositionsγ = (0,±1, 0) at two potential
minima. The y-axis is then directed up or down the positive Z -axis fixed in space.
The trajectory of the apex of y consists of two points. If we move in the bifurcation
diagram on the boundary PQ, the trajectory becomes an arc of the great circle
γ3 = 0, corresponding to a periodic pendulum-like motion about the z-axis. As we
approach the point Q, the motion becomes asymptotic to one of the two equilibrium
positions at the two potential maxima at γ = (±1, 0, 0). At all points beyond Q,

the trajectory is the whole circle, corresponding to complete uni-directional plane
(pendulum-like) rotations about the z-axis.

A similar pattern is noted also on the line PR.Themotion begins as pendulum-like
vibration about the x-axis with increasing amplitude that reaches π/2 at R, where
the motion becomes asymptotic to the equilibrium positions at γ = (0, 0,±1), the
saddle points of the potential. Beyond R, the motion is a pendulum complete rotation
about the x-axis.

An exceptional family of motions corresponds to parameters on the segment RQ.

The motion begins as a pendulum-like vibration about the y-axis with increasing
amplitude that reaches π/2 at Q, where it becomes asymptotic to the equilibrium
positions at two potential maxima at γ = (±1, 0, 0).

Finally, on the critical line h = K + 1, the motion is asymptotic to pendulum-like
complete rotations about the y-axis.

10.17.3 Explicit Solution

Now, substituing relevant expressions for s1 and s2 from (10.187), (10.188) into
(10.182), (10.183), one can write down all the Euler-Poisson variables as functions
of time. Doing that, one has to choose the signs of the radicals

√
s1 − 1,

√
1 − s2, · ··

and
√
s1 − s2. However, one has to take only the combinations of signs which are

compatible with the areas integral, the second one in (10.181). To make it more
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definite, we first note that the equations of motion and the integrals of motion enjoy
the property of being invariant under each of the simultaneous changes of signs of
the tuples

1){γ1, γ2, γ3},
2){p, q, γ3},
3){r, γ1, γ2, t}. (10.190)

Somemore changes can be obtained as products of those three. Example is the change
{ω(t),γ(t)} → {−ω(−t),γ(t)}, obtainable as the product of the three changes.
Alternatively, the last change follows from a general principle, the time-reversibility
of the motion of natural mechanical systems, acted upon by purely potential forces.

We now write down the final forms in the three zones of the primary solution,
obtained by giving all radicals in (10.182), (10.183) a positive sign. In all illustrat-
ing examples in the accompanying figures below, we have set t0 = 0, i.e. we have
projected one trajectory of the infinite number on an integral torus of the problem.
Note that those figures were plotted on different time intervals, sufficient for suitable
visualization (Figs. 10.15, 10.16, 10.17).

10.17.3.1 In Zone I (1 ≤ β ≤ α < ∞,)

p =
√
K (α − 1) cn (ν2τ , k2)√

�1
,

q =
√
K (α + 1) dn (ν1t, k1) sn (ν2τ , k2)√

�1
,

r =
√
2(α − 1)

�1
[2sn(ν1t, k1) cn(ν1t, k1) sn (ν2τ , k2) cn (ν2τ , k2)

+√
(α + 1)(β + 1) dn (ν2τ , k2) dn(ν1t, k1)], (10.191)

γ1 = 1

�1
[√(α + 1)(β + 1) cn(ν1t, k1) dn(ν1t, k1) cn (ν2τ , k2) dn (ν2τ , k2)

− (α − 1) sn (ν2τ , k2) sn(ν1t, k1)],

γ2 =
√

α − 1

�1
[√(α + 1) sn(ν1t, k1) dn(ν1t, k1) cn (ν2τ , k2)

+ √
(β + 1) sn (ν2τ , k2) dn (ν2τ , k2) cn(ν1t, k1) ],

γ3 = −
√
2
√
K cn(ν1t, k1)√

�1
, (10.192)
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Fig. 10.15 Examples of trajectories from zone I

where

�1 = (α + 1) dn2 (ν1t, k1) − 2 cn2 (ν1t, k1) sn
2 (ν2τ , k2) . (10.193)

10.17.3.2 In Zone II (−1 ≤ β ≤ 1 ≤ α < ∞)

p =
√
K (α − 1) dn (τ , ν2)√

�2
,

q =
√
K (α + 1)(β + 1) dn (ν1t, k1) sn (τ , ν2)√

2�2
,

r =
√
2(α − 1)(β + 1)

�2

[√2 sn(ν1t, k1) cn(ν1t, k1) sn (τ , ν2) dn (τ , ν2) + √
α + 1 cn (τ , ν2) dn(ν1t, k1)],

(10.194)
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Fig. 10.16 Examples of
zone II

γ1 = −
√

β + 1

2�2
[−2

√
α + 1 dn(ν1t, k1) dn (τ , ν2) cn (τ , ν2) cn(ν1t, k1)

+ √
2 (α − 1) sn (τ , ν2) sn(ν1t, k1)],

γ2 =
√
2(α − 1)

2�2
[√2(α + 1) sn(ν1t, k1) dn(ν1t, k1) dn (τ , ν2)

+ (β + 1) sn (τ , ν2) cn (τ , ν2) cn(ν1t, k1) ],

γ3 = −
√
2
√
K cn(ν1t, k1)√

�2
, (10.195)

where

�2 = (α + 1) dn2 (ν1t, k1) − (β + 1) cn2 (ν1t, k1) sn
2 (τ , ν2) . (10.196)
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Fig. 10.17 Examples of
trajectories in zone III

10.17.3.3 In Zone III (−1 ≤ β ≤ α ≤ 1 < ∞)

p =
√
K (1 − a) sn (t, ν1) dn (τ , ν2)√

�3
,

q =
√
K (β + 1) dn (t, ν1) sn (τ , ν2)√

2�3
,

r =
√
2(1 − α)(β + 1)

�3
[sn (t, ν1) dn (t, ν1) cn (τ , ν2)

+ cn (t, ν1) sn (τ , ν2) dn (τ , ν2)], (10.197)

γ1 = ν2

�3
[(a − 1) sn (t, ν1) sn (τ , ν2) + 2 cn (t, ν1) dn (t, ν1) cn (τ , ν2) dn (τ , ν2)]

γ2 =
√
2(1 − a)

2�3
[2 dn (t, ν1) dn (τ , ν2)

+ (β + 1) sn (t, ν1) sn (τ , ν2) cn (t, ν1) cn (τ , ν2)]

γ3 = −
√
2K cn(t, ν1)√

�3
, (10.198)
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where
�3 = 2 dn 2 (t, ν1) − (β + 1) sn2 (τ , ν2) cn

2 (t, ν1) . (10.199)

10.18 Integrability Issues

To begin with, let us note that just as in the problems considered in the previous
chapters, the equations ofmotion (10.45) satisfy Jacobi’s divergence condition,which
may be written as

∂

∂ω
· ω̇ + ∂

∂p
· ṗ = 0

and thus we need only one general integral (involving a new arbitrary constant) to
complete the integration of the problem of motion.

The problem of motion of a body by inertia in an ideal fluid is described by
Lagrangian and Hamiltonian equations, isomorphic by the analogy introduced in
this chapter to the equations describing the motion of a rigid body about a fixed point
under the action of an axi-symmetric combination of three classical fields. The last
problem has three degrees of freedom and thus requires for complete integrability
the existence of a fourth integral independent of the three known ones. In any set
of generalized coordinates, say, Euler’s angles, the geometric integral degenerates
into an identity and we are left with three integrals, the number of integrals required
for complete integrability in the sense of Liouville. Thus, Jacobi’s and Liouville’s
approaches lead to the same requirement.

Neither Eqs. (10.45) and (10.41) nor the equivalent Thomson-Lamb equations
were investigated in their full form for the existence of a fourth (complementary)
integral. The situation is somewhat better for Kirchhoff’s equations, which describe
the motion of a body bounded by a simply connected surface. We give here only
brief account of the various research on this matter.

10.18.1 Results Concerning Kirchhoff’s Equations

10.18.1.1 The Case of Tri-Axial Ellipsoid of the Matrix ā

Existence of a real-analytic fourth integral: One of the notable results is due to
Kozlov and Onishchenko [246] (See also [41]), who used Eq. (10.12) to establish
that when the matrices ā,b̄,c̄ are simultaneously diagonal, i.e.

ā = diag(a1, a2, a3),

b̄ = diag(b1, b2, b3),

c̄ = diag(c1, c2, c3),
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and under the condition that a1 �= a2 �= a3 �= a1, there exists no real-analytic comple-
mentary integral of (10.12) independent of the three known general integrals (10.13),
except in the two cases when the following necessary relations hold between the
matrices:

A)
c1 − c3

a2
+ c2 − c1

a3
+ c3 − c2

a1
= 0, b̄ = 0, (10.200)

Conditions (A) are also sufficient for integrability. They correspond to Clebsch’s
integrable case (Case 2 of Table10.1 above) under the restriction n = 0, n the regular
precession transformation parameter.5

B)
b1 − b3

a2
+ b2 − b1

a3
+ b3 − b2

a1
= 0. (10.201)

This condition is necessary but not sufficient. The classical case of Steklov (Case 5
of Table10.1 above, with n = 0,κ = 0) satisfies this condition and existence of the
fourth integral is secured by the additional restriction c̄ = 0.

Branching of solution:The large number of parameters involved in theThomson-
Lamb equations of motion of a body in a liquid has become an obstacle for further
analytical studies of those equations. In spite of its huge success in the classical
problem, the approach used by Kowalevski [238] to isolate possible cases in which
the solution of equations of motion has only poles as critical points in the complex t-
plane does not seem efficient in the problem ofmotion of a body in a liquid. However,
analogous result was established for Kirchhoff’s equations:

Under the condition that ā, b̄, c̄ are simultaneously diagonal and a1 �= a2 �= a3 �=
a1, the general solution of (10.12) is meromorphic only for the cases of Clebsch and
Steklov [316].

In both cases, the complementary integral is known and the explicit time solution
is expressed in terms of Theta functions.

Existence of a single-valued or algebraic fourth integral: The investigation of
existence of a single-valued complementary integral was performed in [36]. It turned
out that when a1 �= a2 �= a3 �= a1, branching of solutions is an obstacle for existence
of single-valued integrals. It is shown that

Under the condition that ā, b̄, c̄ are simultaneously diagonal and a1 �= a2 �= a3 �=
a1, the cases of Clebsch and Steklov are the only cases, when Eq. (10.12) admit a
single-valued fourth integral.

5 In fact, the condition b̄ = 0, is over-restrictive. The result holds when b̄ is propertional to Ī =
1
2 tr(I)δ − I = 1

2 tr(ā−1)δ−ā−1.Compare with Case 2 of Table10.1. The full form, consistent with
that in Table10.1, was given in [36].
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The existence of a polynomial integral of Kirchhoff was also considered in some
recent works [263, 428], following a line due to Darboux.

10.18.1.2 Case when ā Has an Ellipsoid of Revolution

Preserving the assumption of diagonal three matrices and adding the restriction a1 =
a2, Sadetov [327, 328] has shown that a complementary algebraic integral of the
equations ofmotion does not exist, except in theKirchhoff case (Case 1 of Table10.1)
and the special versions of the cases of Clebsch under the extra-condition a1 = a2.

Remark: As we have seen, in all methods used to investigate integrability of
the problem, diagonality of all matrices was a common assumption. This situation
greatly reduced the efficiency of those methods. None of them has pointed out a
new integrable case. Ironically, in the case which generalizes the classical case of
Kowalevski, found later by Sokolov, the matrix K has off-diagonal elements. It was
not predicted by any method, but came as a result of the application of a brute force
method. An ansatz of an integral of degree 4 was used and a symbolic program
was used to solve the resulting conditions on the coefficients and on the system
parameters.

10.19 Remark Concerning Particular Solutions
of the Problem

The above tables of general and conditional integrable cases of Thomson-Lamb and
Kirchhoff equations give a complete up-to-date list and full identification of those
cases. Although we also know a large number of particular exact solutions, we have
not tried to make a complete list of them. At present, some of those solutions are
scattered in journal papers. We have described the most important of those solutions
in the present chapter, as examples on solutions of various forms of the equations of
motion and also in examples of application of the regular precession transformation.

The largest collection of particular exact solutions of problems ofmotion of a body
in a liquid may be found in books of Gorr and co-authors [121, 125, 126]. Cases
are classified by the nature of motion: permanent rotations, regular precessions,
semi-regular precessions and so on. However, those books concentrate more on the
research of the Donetsk group and in general on results published in Russian. Some
results may have been disguised by the use of various sets of variables and may need
careful revision. In general, further effort is needed to compare, complete, classify
and tabulate all existing results.
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10.20 The Donetsk School of Mechanics and Its Attitude
to Competing Works

Be not proud because thou art learned; but
discourse with the ignorant man as with the sage.
For no limit can be set to skill, neither is there
any craftsman that possesseth full advantages
Ptah-Hotep (2880 BC) [72]

Although founded by Euler and developed by the basic works of D’Alembert,
Poisson and Lagrange, the field of dynamics of a rigid body acted upon by various
forces suffered from stagnation for almost a century. Over that period, the search
for integrable cases or particular solutions didn’t lead to any notable results, even in
the simplest problem, the classical problem of motion of a body about a fixed point
under its own weight, more than Euler’s and Lagrange’s cases.

The first breakthrough in the classical problemwasmade, in 1888, byKowalevski,
who discovered the third integrable case. To that she was not led by a physical or
mechanical conservation law, as in the previous twocases, butwas ledonly by apurely
mathematical property of the solution of the equations of motion. Kowalevski’s
success encouraged a number of several of the classics inmathematics andmechanics
to invest huge efforts in the same problem. Over the next two decades, the search of
such eminent scientists as Joukovsky, Lyapunov, Steklov, Chaplygin and Goryachev
produced several integrable cases and particular solutions not only in the classical
problem, but also in the gyrostat problem and the problem of motion of a body in a
liquid. We have listed those results in relevant chapters of this book. It can be noted
that of the eight solutions known up to the first decades of the twentieth century,
four cases were found by Russian authors. The next four decades have brought
no significant changes in the status of the field, but in 1948, Grioli announced the
discovery of a regular precession about an axis inclined to the vertical.

Donetsk school headed by P.V. Kharlamov has made a significant advance in the
subject of rigid body dynamics in the period extending from the mid-fifties to the
late eighties. For most of this period the Donetsk school comprised a large number of
coworkers whoworked on all aspects of the classical problem and its generalizations,
and especially, the problemofmotion of the gyrostat. The groupmade several notable
achievements: three new particular solutions of the classical problem raised the ratio
of exact particular solutions constructedbyRussian-writing authors to seven cases out
of a total of twelve known at the present time. Donetsk school’s successwas exclusive
in the problem of motion of a heavy gyrostat about a fixed point. As pointed out in
Sect. 15 of Chap.5, a considerable part of our present knowledge of exact particular
solutions of the equations of motion of a gyrostat belongs to that school. Those are
mostly cases generalizing known ones of the classical problem, but a few ones have
no analogs in the classical problem. However, the Donetsk school did not find any
general integrable cases of the gyrostat problem. This is a key remark to which we
shall return later.
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The group used a “brute force” policy in the search for exact solutions. Problems
are scanned for the possibility of admitting a solution of a prescribed form. Each of
the resulting cases certainly required a high cost of manual calculations. The view of
an expression or a solution with coefficients written in one or two pages was normal
and mostly expected. In the classical field of rigid body dynamics no easy results
are left. The group earned credibility and authority in the area of constructing exact
solutions and renewed the spirit that prevailed at the turn of the 19th to the 20th
century, when the field of rigid body dynamics was, almost completely, a Russian-
language science.

Researchers from the Donetsk school have shown that the few results announced
in the thirties by Field, Corliss and Fabbri mainly repeat or are special cases of the
former results of Russian authors. Also, a result of Mertsalov (1946) was shown to
be in error. The overall performance of the research group was more than successful.
This gave the group a sense of responsibility to the Russian heritage: they kept its
competence among other schools of mechanics and turned into custodian not only
of the Russian contributions but also of the whole subject of rigid body dynamics.

In the mid-eighties, the author introduced the simple transformation discussed in
detail in Sect. 10.11, which led to an automatic generalization of all general and con-
ditional integrable cases as well as particular solutions of the classical problem and
its generalizations by inserting an additional parameter n that invokes a simultaneous
combination of potential and gyroscopic forces. Results have interpretations as new
integrable and solvable cases in the problem of motion of a body in a liquid. Nearly
at the same time, the author devised a method for constructing two-dimensional inte-
grable systems that admit a complementary integral, polynomial in velocity. This
method had two main advantages. Firstly, it produced systems living on Riemannian
manifolds and not only on flat spaces. Secondly, those systems are time-irreversible,
and thus accommodate reductions of 3D systems with a cyclic integral. Those two
advantagesmade themethod able to obtain a new integrable system that needed some
restrictions to produce a case of motion of the gyrostat, which turned out to be the
long-waited generalization of the historical Kowalevski’s case, by adding a rotor to
the body along its axis of dynamical symmetry (For details, see Chap.5 Sect. 5.6).
There were some other new results, like the new form of the equations of motion of
a body in a liquid, which we presented in detail in Sect. 10.4.

The new results have shocked the Donetsk school in more than one way. On one
hand, a significant contribution came from outside the Donetsk school. On the other
hand, no brute force was used, nor needed, in obtaining those results. The Donetsk
school behaved in reaction to the appearance of the new results in a strange way.
We give here few brief quotations from the publications of members of the Donetsk
school of mechanics, to show to what extent some scientific criticism can go when
a strongly overconfident group of researchers have full control over a well-known
scientific journal.A rebuttal of someof those criticizing publicationswas published in
2001 in [405], too late, after some comments were included inMathematical Reviews
[281] and Zentralblatt (Zbl 1025.70007). After the publication of our article [405], it
seems that the Donetsk group, at last, realized that they were in error, nevertheless,
no one of the authors of the aggressive publications came out to declare that. The
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direct aggressive series of criticism was stopped. Only in few occasions they were
resumed, and mainly indirectly (e.g. [203]).

After the detailed presentation of the problem of motion of a body in a liquid in
this chapter, one can hardly need any comments on the claims in the papers of the
Donetsk group. However, we find it necessary to pick up some of the most offensive
claims. In fact, there are some lessons here to be learned from them.

10.20.1 The Attitude to the Uniform Precession
Transformation

In a series of publications, which were brought to our attention only in the fall of
1996, the authors claimed that this method of generalization is void, meaningless
and leads to nothing new [200, 211, 216, 217, 292, 350]. We give few quotations,
referring the reader to original sources.

(A) In a rare example of unjustified criticism, one of those authors (Kharlamov
P.V. [200]) stated, after appraising the criticism in [216, 217, 350], that this criticism:

“restores the truth in the most difficult problems of the dynamics of a rigid body, and cleans
the field of study from rubbish introduced by faulty and illiterate papers of H. M. Yehia ... ”
[200].

The same quotation was included in the review (MR 93g: 01040), written for
Mathematical Reviews by Konosevich, the colleague of the authors in the same
institute.

(B) Another author writes [350]:

“H. Yehia has announced so significant results, that, in case they were true, the state of the
classical problems of rigid body dynamics could have radically changed. ...
Astonishing is the lightness with which the achievements of the greatest scientists including
prominent nationals were “generalized” in a single stroke by means of a trivial change of
variables and introducing a nonsignificant parameter to the system. But neither V. A. Steklov,
N. E. Joukovsky, S. A. Chaplygin nor G. V. Kolossov can defend themselves against Yehia’s
generalizations” .

(C) As was explained by Kharlamov in [200] (The same reasoning also in [216,
217, 350]), the main point of their criticism is the following:

“Let the system of differential equations

ẋi = Xi (x1, x2, ..., xn), i = 1, ..., n (10.202)

be transformed by means of the invertible substitution

yi = yi (x1, x2, ..., xn; ν), i = 1, ..., n (10.203)

to the form
ẏi = Yi (y1, y2, ..., yn; ν), i = 1, ..., n. (10.204)

If (10.202) admits an integral
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I (x1, x2, ..., xn) = const. (10.205)

then (10.204) has the integral

J (y1, y2, ..., yn; ν) = const. (10.206)

obtained from (10.205) by the substitution (10.203). Even a beginner in Mathematics can
realize that the factiously introduced parameter ν in (10.204) and (10.206) can have no
significant meaning, since it can be eliminated again by the use of the inverse transformation
of (10.203). Thus Yehia’s idea to generalize in this way all the known results in the dynamics
of rigid bodies (belonging to Joukovsky, Kowalevski and others) is empty and meaningless”.

(1) The first lesson here to learn is that a scientific journal not owned and edited by
that research group, could not allow the use of words like “rubbish, faulty and
illiterate” to describe the publications of a competing author.

(2) The second is that over-confidence caused the whole group to deny or disbelieve
scientific achievements of others.

(3) The third lesson is that the review data bases Mathematical Reviews and Zen-
tralblatt sometimes adopt the easy solution: to assign each of the members of
a certain scientific institution to review the publications of other members, and
thus allowing less probability of fair reviews and objective evaluations. In our
case, each of the members of the IAMM (Institute of Applied Mathematics
and Mechanics) reviewed other members’ works. The circle is thus closed: The
Authors are the Editors of the Journal (Mekh. Tverd. Tela) and reviewers of their
articles and, at last, the reviewers of their publications for theMR and Zbl bases.6

10.20.2 The Attitude to the Equations of Motion in the Form
(10.45)

In 2001, Kharlamov P.V., Mozalevskaya G.V. and Lesina M.E. published the paper
[203], inwhich the equations ofmotion of a body in a liquid are observed to bewritten
in four different forms, as per the choice of the principal variables in the equations.
The first is the classical Tomson-Lamb Eq. (10.16) using the variables ω, u. The
second is (10.23) using M, p. In fact, they use a slightly modified form due to
Kharlamov [192], praising this form as being chosen byChaplygin andKharlamov in
their research and giving it the term “principal (main) representation” of the equations
of motion. The third form usesω and p(γ),which are in fact our equations presented
in Sect. 10.4 and deduced originally in 1986 [383], but they are not presented in [203]
in full form. The fourth form uses M, u and is termed as the worst choice. As the
authors tried to give references and names for the first two forms, they pass by
the third form of the equations without giving any references nor referring to any

6 In fact, articles were rejected from publication in the Russian journal PMM J. Appl. Math. Mech.
(See [200]). Namely, this rejection evoked the publication of the whole series of papers in “Mekh.
Tverd. Tela”.
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authority in the field. In particular, our 1986 paper [383], which is most relevant to
this context was not mentioned nor cited in [203].

It may be interesting in this context to recall the next quotation from the Zentral-
blatt review (Zbl 1025.70007) concerning the above paper [203] and just repeating
all the claims advanced in that paper:

“It is noticed, that the objective factors, that characterize the given mechanical
object, should be separated from the subjective factors, brought by the investigator
into the mathematical model of this object. In this connection it is shown, that the
equations used by H.M. Yehia in some of his papers are not new, but they are partial
cases of Kirchhoff’s equations. It is also noticed that some of the generalizations
of known integrable cases given by H.M. Yehia are not new too, but they can be
obtained from the initial integrable cases by coordinate transformation. To avoid
such mistakes the authors suggest that all results in this area should be compared
with the corresponding results for the main form7 of Kirchhoff’s equations.”

Reviewer: Boris Ivanovich Konosevich (Donetsk)

It is notable here that the reviewer and the authors of the article [203] are members
of the same institute.

10.21 Exercises

(1) A solid of revolution moves through a liquid and its kinetic energy T is given by

T = 1

2
[A(p2 + q2) + Cr2 + A′(u21 + u22) + C ′u23].

Prove that the steady motion given by

p = q = 0, r = �, u1 = u2 = 0, u3 = v

is stable in the linear approximation, provided

�2 = 4v2 AC
′(A′ − C ′)
A′C2

.

[Lamb]
(2) Show that in the classical problem of motion of a heavy rigid body fixed from

on point the permanent rotations around a tilted axis (Sect. 10.8) is possible,
only when the body is fixed from its centre of mass, and the axis of rotation is a
principal axis of inertia of the body at the fixed point.

7 The “main form” means the second representation, i.e. the one used by Kharlamov (See the last
paragraph).
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(3) A body fixed from its centre of mass moves under the action of forces with
potential V = 1

2

∑
Ji jγiγ j , γi are the direction cosines of a certain line fixed in

space. Show that a uniform rotation of the body about an axis inclined to that
line is possible only when the axis of rotation is a common principal axis of the
matrices J, I and this axis takes a horizontal position.

(4) A body bounded by a simply connected surface is moving in an ideal incom-
pressible fluid, infinitely extending in all directions and at rest at infinity. The
equations of motion have the form (10.45), with κ= a = 0. Show that uniform
rotation about the z-axis of the body is possible only if the three matrices have
the form:

J =
⎡
⎣
J11 0 0
0 J11 0
0 0 J33

⎤
⎦ ,

K̃ =
⎡
⎣
K11 0 K13

0 K11 K23

K13 K23 K33

⎤
⎦ ,

I =
⎡
⎢⎣

I11 I12
K11

2(J33−J11)
K13

I12 I22
K11

2(J33−J11)
K23

K11
2(J33−J11)

K13
K11

2(J33−J11)
K23 I33

⎤
⎥⎦ ,

provided J33 �= J11, K11 �= 0, the angle θ0 is chosen arbitrarily and the angular
speed of rotation

� = −2(J33 − J11) cos θ0

K11
.

(5) Consider the critical cases of exercise 4: K11 = 0, J33 �= J11 and K11 = 0, J33 =
J11.

(6) Show that the consecutive application of two transformations with parameters
n1, n2 is equivalent to the application of one transformation with the parameter
n1 + n2.

(7) In Sect. 10.14.4,when K̄11 �= 0 useEq. (10.160) to show that the relation between
the rotation angle ϕ and time is determined from the equation

t = −K̄11

∫
dϕ

J13 sinϕ + J23 cosϕ + a3
(10.207)

under the condition that the parameters of the body are given by

a = a3(
−C J13
K 2

11

,
−C J23
K 2

11

, 1),κ = (0, 0,κ3),
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J =
⎛
⎜⎝

J11 −C J13 J23
K 2

11
J13

−C J13 J23
K 2

11
J11 + C

K 2
11

(J 2
13 − J 2

23) J23
J13 J23 J33

⎞
⎟⎠ ,

K̄ =
⎛
⎝

K̄11 0 K̄13

0 K̄11 K̄23

K̄13 K̄23 K̄33

⎞
⎠ . (10.208)

Show that in contrast to the case of pendulum motion, this motion has a definite
energy value, which depends on the parameters of the body

E = 1

2
[J11 + C

K 2
11

(J 2
13 + a23)]. (10.209)

(8) Starting from the Lagrangian (10.49) of the generalized problem (10.45) (the
Routhian of the problem of motion of a body in liquid after ignoring the cyclic
translational coordinates):

(a) Ignore the angle of precession retaining the Poisson variables (the compo-
nents of γ) as redundant configurational variables.

(b) Apply Hamilton’s principle in the form of Jacobi to the reduced time-
irreversible Routhian system. Equations of motion are deduced from a vari-
ational problem of the type δ

∫
Rdt = 0. Applying Maupertuis’ principle to

eliminate the time differential from the variational problem.
(c) Use γ1 as the independent variable and obtain the following second-order

differential in γ3, to which the equations of motion of the body in a liquid
are reduced on the integral level {I1 = h, I2 = f } [384]:
D(1 − γ21 − γ23 )γ′′

3 + Cγ3(1 − γ23 )

− γ1[A − (A + 2C)γ23 ]γ′
3 + γ3[C − (C + 2A)γ21 ]γ′2

3

− Aγ1(1 − γ21 )γ
′3
3

− ρ

ABCD
{Cγ3[(A − B)(A + B − C)γ21 + B(B − C)(1 − γ23 )]

+ Aγ1[(B − C)(B + C − A)γ23 + B(A − B)(1 − γ21 )]γ′
3}

+ ρ

2ABC(h − V1)
[∂V1
∂γ3

(λ + μγ′
3) − ∂V1

∂γ1
(μ + νγ′

3)]

+ ρ3/2

ABC
√
aD3(h − V1)

× { f [(A − B)(A + B − C)γ21 − B(A − B + C) + (C − B)(B + C − A)γ23 ]
+ �}

= 0, (10.210)
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where

ρ = λ + 2μγ′
3 + νγ′2

3 ,

λ = C[B(1 − γ2
3) + (A − B)γ2

1 ],
μ = ACγ1γ3

ν = A[B(1 − γ2
1) + (C − B)γ2

3 ].

and

V1 = a · γ + 1

2
γJ · γ+ 1

2D
[ f − κ · γ + 1

2
K · γ]2,

� = Dκ · γI+κ · γ[D tr(I) − 2|γ I |2]
+ |γI|2γK · γ + D[tr(K)D − γIK · γ − tr(I)γK · γ].

(9) Under conditions (10.163) a solution of the orbital equation in the previous exer-
cise is possible in the form γ3 = 0.

[This characterizes the precessing pendulum motion, including the pendulum
motion about a fixed axis.]

(10) Let the particle of unit mass and unit electric charge moving on the fixed smooth
ellipsoid

Ax2 + By2 + Cz2 = 1

be acted upon by forces with potential

V = 1

2
[ k

A2x2 + B2y2 + C2z2
+ J 2

(A2x2 + B2y2 + C2z2)2
]

where k, J are constants, and effective magnetic field H whose component Hn

orthogonal to the surface is given by

Hn = J
[A2(B + C − A)x2 + B2(C + A − B)y2 + C2(A + B − C)z2]

[A2x2 + B2y2 + C2z2]5/2 .

Show that this system admits in addition to Jacobi’s integral, the quadratic integral

I = (A2x2 + B2y2 + C2z2)(Aẋ2 + B ẏ2 + Cż2) − k
A3x2 + B3y2 + C3z2

A2x2 + B2y2 + C2z2

+ 2J
[BC(B − C)yzẋ + CA(C − A)zx ẏ + AB(A − B)xyż]

A2x2 + B2y2 + C2z2

+ J 2 [A2(B + C − A)x2 + B2(C + A − B)y2 + C2(A + B − C)z2]
(A2x2 + B2y2 + C2z2)2

,



316 10 The Problem of Motion of a Body in a Liquid

and is consequently integrable.
[Use the Lagrangian (10.53) with the choice

V = 1

2
b(Aγ2

1 + Bγ2
2 + Cγ2

3),

l = n(Aγ1, Bγ2,Cγ3),

which characterize Clebsch’s case of tri-axial body (Case 2 of Table10.1). After
Routhian reduction by the cyclic variable ψ perform Minkowsky change of vari-
ables. For detailed solution see [412].

11. A pendulum of unit length whose bulb has unit mass and carries a unit electric
charge ismoving under the influence of forceswhose potential is V (r) and amagnetic
field H(r). Show that the equations of motion on the unit sphere can be written in
the form [404]:

r×r̈ = Hr ṙ − r × ∂V

∂r
, (10.211)

r = (x, y, z) is the position vector of the bulb, Hr = H · r is the radial component of
the magnetic field. The motion is completely determined by the two scalar functions
V and Hr . The two cases of motion of a dynamically spherical body in a liquid
generate the following two cases of motion of a particle on the sphere:

(1) The case corresponding to Clebsch’s case.

It is characterized by the pair of functions

V = ax2 + by2 + cz2,

Hr = f. (10.212)

The second integral of motion for this case can be obtained from Clebsch’s integral
substiuting ω→ f r − r×ṙ (compare to (2.33)).

I = a(yż − z ẏ − f x)2 + b(zẋ − x ż − f y)2 + c(x ẏ − yẋ − f z)2

− (bcx2 + cay2 + abz2). (10.213)

This case is a non-separable generalization of the well-known separable Neumann
integrable problem [294] by the presence of the gyroscopic forces and reduces to it
when f = 0.

(2) The case corresponding to the Rubanovsky–Lyapunov case
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V = s1x + s2y + s3z − abc

2
(
x2

a
+ y2

b
+ z2

c
)

+ 1

8
[2 f + (b + c)x2 + (c + a)y2 + (a + b)z2]2,

Hr = f + 1

2
[a + b + c − 3(ax2 + by2 + cz2)]. (10.214)

The second integral of motion is

I = (b + c)(yż − z ẏ − Nx)2 + (c + a)(zẋ − x ż − Ny)2

+ (a + b)(x ẏ − yẋ − Nz)2 + s1[(N + a)x + z ẏ − yż]
+ s2[(N + b)y + x ż − zẋ] + s3[(N + c)z + yẋ − x ẏ]
− (bcx2 + cay2 + abz2) (10.215)

where N = f + 1
2 [(b + c)x2 + (c + a)y2 + (a + b)z2].


	10 The Problem of Motion of a Body  in a Liquid
	10.1 Equations of Motion
	10.1.1 Kirchhoff's Equations
	10.1.2 Example: Permanent Translational Motions
	10.1.3 Clebsch's Form of Kirchhoff's Equations

	10.2 Thomson-Lamb's Equations
	10.3 On Different Forms of the Equations of Motion
	10.4 A New Form of the Equations of Motion
	10.5 Steklov and Kharlamov Analogies and Their Generalization
	10.5.1 The Equivalent Problem of Motion About a Fixed Point
	10.5.2 Steklov's Analogy
	10.5.3 Kharlamov's Analogy

	10.6 Completing the Solution
	10.6.1 Solution of the Equivalent Problem
	10.6.2 Solution of the Original Problem

	10.7 Uniform Translational-Rotational Motion of a Body …
	10.8 Stationary Motions About an Axis Inclined  to the Vertical
	10.9 A Several-Parameter Particular Solution
	10.10 Alternative Hamiltonian Formulation
	10.11 The Uniform Precession Transformation yjm2
	10.11.1 Direct Derivation
	10.11.2 Lagrangian Derivation
	10.11.3 Physical and Mechanical Significance  of the Transformation
	10.11.4 Uniform Precession Transformation in Hamiltonian Formalism

	10.12 Generalization of General Integrable Cases
	10.12.1 Generalization of the Integrable Case Found  by Sokolov
	10.12.2 Steklov's Case and Its Generalizations

	10.13 Generalization of Conditional Integrable Cases
	10.13.1 Generalization of Goryachev–Chaplygin's, Sretensky's and Sokolov–Tsiganov Cases

	10.14 Generalizations of Particular Solvable Cases
	10.14.1 Example 1. Equilibria and Permanent Rotations About a Vertical Axis
	10.14.2 Example 2. Permanent Rotations About a Tilted Axis and Precessional Motions About the Vertical
	10.14.3 Example 3. generalization of grioli's precession  yjpall,yzamp
	10.14.4 Example 4. Regularly Precessing Pendulum

	10.15 Tables of Integrable Cases of Motion of a Rigid Body in a Liquid
	10.15.1 General Integrable Cases
	10.15.2 Conditional Integrable Cases on the Level f=0

	10.16 Further Studies on Integrable Cases
	10.16.1 Separation of Variables, Explicit Solutions and
	10.16.2 Topological Classification of Integrable Cases

	10.17 Chaplygin's Case of Integrability
	10.17.1 Separation of Variables
	10.17.2 Forms of Motion on the Poisson Sphere
	10.17.3 Explicit Solution

	10.18 Integrability Issues
	10.18.1 Results Concerning Kirchhoff's Equations

	10.19 Remark Concerning Particular Solutions  of the Problem
	10.20 The Donetsk School of Mechanics and Its Attitude  to Competing Works
	10.20.1 The Attitude to the Uniform Precession Transformation
	10.20.2 The Attitude to the Equations of Motion in the Form (10.45)

	10.21 Exercises


