
Chapter 17
Fuzzy Linear Programming with General
Necessity Measures

Masahiro Inuiguchi

Abstract In this chapter, a robust treatment of possibilistic linear programming
problems with linear membership functions is studied. After necessity measures
and their representations and properties are reviewed, necessity fractile optimization
models are introduced as optimization models with robust constraints. Those
problems are reduced to a semi-infinite linear programming problem. Conditions
on functions associated with the necessity measures are investigated so that the
problems are reduced to simpler problems. It is revealed that the problem is reduced
simply to a linear programming problem or solved by a more efficient method when
functions associated with necessity measures are convex and concave. Applying the
results, we show that necessity fractile optimization problems with many famous
implication functions are reduced to linear programming problems or solved rather
easily by the proposed solution procedure.

17.1 Introduction

The parameters, coefficients and right-hand side values, of mathematical program-
ming problems are assumed to be specified as real numbers. In real-world problems,
we may face cases when those parameters cannot be specified as real numbers
because of environmental fluctuation and/or the lack of knowledge. Moreover, we
may have cases when we cannot describe our goals and constraints with exact
values.

Fuzzy and possibilistic programming approaches are proposed to mathematical
programming problems with ambiguity and vagueness [8, 21]. By those approaches,
we obtain reasonable solutions under conflicting soft constraints and goals, robust
solutions under hard and soft constraints, hopeful solutions of attaining high-level
goals, and so on. Fuzzy programming approaches were formulated by proposing

M. Inuiguchi (�)
Graduate School of Engineering Science, Osaka University, Osaka, Japan
e-mail: inuiguti@sys.es.osaka-u.ac.jp

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Greco et al. (eds.), Intelligent Decision Support Systems, Multiple Criteria
Decision Making, https://doi.org/10.1007/978-3-030-96318-7_17

331

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96318-7_17&domain=pdf
mailto:inuiguti@sys.es.osaka-u.ac.jp
https://doi.org/10.1007/978-3-030-96318-7_17


332 M. Inuiguchi

treatments of inequality constraints whose coefficients and right-hand side values
are fuzzy numbers [23–25]. Tanaka and Asai [25] proposed the nonnegativity index
of a fuzzy number and applied it to the treatments of the inequality constraints of
fuzzy linear programming problems. As the nonnegativity index takes a positive
value when the center of the fuzzy number is positive, and the unity when the
lower bound of the support of the fuzzy number is non-negative, this treatment
can be considered a strongly robust one. Słowiński [23, 24] proposed two indices:
optimistic and pessimistic indices. The optimistic index shows to what extent the
constraint is potentially satisfied as it compares the upper bound of the level set
of a fuzzy number to be larger is not less than the lower bound of the level set of
the other fuzzy number. The pessimistic index is defined by the difference of the
upper bounds of the level sets of fuzzy numbers. To control the required levels of
constraint satisfaction, the minimally required differences are assumed to be given
as real numbers including negative values. Namely, this treatment can be seen as a
weakly robust one. Similar approaches were proposed in the literature [11, 20, 26].

After the possibility theory [4, 30], possibilistic programming approaches [3, 7,
12] were proposed. It has been shown that many fuzzy programming approaches can
be seen as variations of possibilistic programming approaches [7, 12]. In possibilis-
tic programming approaches, possibility and necessity measures are used to reduce
the problems to the conventional programming problems. Many results demonstrate
that possibilistic linear programming problems preserve the linearity in the reduced
problems when possibility and necessity measures are defined, respectively, by
minimum operation and Dienes implication function. However, cases with the other
conjunction and implication functions have not yet been considerably investigated,
while several alternative approaches [11, 21] have been proposed in the calculation
of linear functions with fuzzy coefficients. Inuiguchi [6] has shown that the necessity
fractile optimization models of possibilistic linear programming problems with soft
constraints can be reduced to semi-infinite linear programming problems even when
necessity measures are not defined by Dienes implication function. Tanaka and
Asai’s approach [25] for fuzzy programming problems is equivalent to a possibilistic
programming approach using the necessity measure defined by Dienes implication
function. Słowiński’s approach [23, 24] for fuzzy programming problems can have a
close relation to a possibilistic programming approach using the possibility measure
and the necessity measures defined by Gödel and reciprocal Gödel implication
functions.

In recent years, the theoretical and methodological contributions in fuzzy
optimization have shifted mainly to nonlinear programming problems [2, 17, 18, 27]
and optimization over fuzzy relational constraints [15, 16, 19, 28, 29] as fuzzy
linear programming problems have been investigated deeply. However, approaches
developed in fuzzy linear programming problems are useful in other types of math-
ematical programming problems. Indeed, the fuzzy linear programming techniques
are applied to many real-world programming problems [1, 5, 22].
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In this chapter, we further study fuzzy and possibilistic linear programming prob-
lems as there still exist some open problems. Namely, the introduction of various
implication functions into fuzzy linear programming problems has not yet studied
considerably, while it increases the representability of decision-maker’s request on
the robustness of constraints and goals. Therefore, we study the possibilistic linear
programming approach using general necessity measures. We assume that all fuzzy
coefficients as well as fuzzy constraints have linear membership functions and
that necessity measures are defined by modifier functions based on the approach
proposed by Inuiguchi et al. [9, 13]. As the results are more or less complex due to
the treatment of general cases, we concentrate the necessity fractile model among
various models in possibilistic programming approaches [8]. This model treated in
this chapter can be seen as a robust optimization approach.

This chapter is organized as follows. In the next section, necessity measures are
reviewed. Some properties and representations of necessity measures are briefly
described. The possibilistic linear programming problem treated in this chapter
is explained in Sect. 17.3. The reduction to a semi-infinite linear programming
problem is shown. Moreover, the differences of inclusion relations equivalent to
necessity fractile constraints defined by famous implication functions are illustrated.
In Sect. 17.4, results in cases where functions associated with necessity measures are
convex and concave are shown. Similar results in cases where modifier functions
defining necessity measures are convex and concave are described in Sect. 17.5. In
Sect. 17.6, the results in Sects. 17.4 and 17.5 are applied to R-, reciprocal R-, and
S-implication functions as well as to famous implication functions. It is shown that
the possibilistic linear programming problems with necessity measures defined by
many famous implication functions are reduced to linear programming problems or
solved rather easily by the proposed solution procedure.

17.2 Necessity Measures

Necessity measure [9, 13] of fuzzy event B under fuzzy set A is defined by

NA(B) = inf
u∈U

I (μA(u), μB(u)), (17.1)

where μA and μB are the membership functions of A and B. I : [0, 1] × [0, 1] →
[0, 1] is an implication function satisfying the following properties:

(I0) I is upper semi-continuous.
(I1) I (0, 0) = I (0, 1) = I (1, 1) = 1 and I (1, 0) = 0.
(I2) I (a, b) ≤ I (c, d), for 0 ≤ c ≤ a ≤ 1 and 0 ≤ b ≤ d ≤ 1.
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The relation of the necessity measure to the inclusion relation can be found in
the following equivalence [6]:

NA(B) ≥ h ⇔ inf
u∈U

I (μA(u), μB(u)) ≥ h

⇔ (∀u ∈ U,∀k ∈ [0, 1]; μA(u) ≥ k ⇒ μB(u) ≥ θ(k, h))

⇔ ∀k ∈ [0, 1]; [A]k ⊆ [B]θi(k,h), (17.2)

where θ(k, h) = inf{s ∈ [0, 1] | I (k, s) ≥ h} and [A]k is a k-level set of a fuzzy set
A ⊆ U , i.e., [A]k = {u ∈ U | μA(u) ≥ k}. In what follows, we use a strong k-level
set (A)k of a fuzzy set A ⊆ U defined by (A)k = {u ∈ U | μA(u) > k}.

Although a necessity measure is defined by implication function I , it is not
an easy task to select suitable I depending on the situation. Then Inuiguchi and
Tanino [9] and Inuiguchi et al. [13] proposed a method for selecting a necessity
measure suitable for the decision-maker’s requirement. By this method, a necessity
measure is specified based on the decision-maker’s satisfaction degrees to several
inclusion relations between two fuzzy sets from weak to strong ones. The transition
of the inclusion relation from weak to strong can be expressed by two modifier-
generating functions gm, gM : [0, 1] × [0, 1] → [0, 1] satisfying:

(g1) gm(a, ·) and gM(a, ·) are lower and upper semi-continuous for all a ∈ [0, 1],
respectively.

(g2) gm(1, h) = gM(1, h) = 1 and gm(0, h) = gM(0, h) = 0 for all h > 0.
(g3) gm(a, 0) = 0 and gM(a, 0) = 1 for all a ∈ [0, 1].
(g4) h1 ≥ h2 implies gm(a, h1) ≥ gm(a, h2) and gM(a, h1) ≤ gM(a, h2) for all

a ∈ [0, 1].
(g5) a ≥ b implies gm(a, h) ≥ gm(b, h) and gM(a, h) ≥ gM(b, h) for all h ∈

[0, 1].
(g6) gm(a, 1) > 0 and gM(a, 1) < 1 for all a ∈ (0, 1).

gm is called an inner modifier-generating function, while gM is called an outer
modifier-generating function.

Then, a necessity measure is defined by

NA(B) ≥ h ⇔ mh(A) ⊆ Mh(B), (17.3)

where mh(A) and Mh(B) are defined by

μmh(A)(u) = gm(μA(u), h), μMh(B)(u) = gM(μB(u), h). (17.4)

To put it differently, a necessity measure is defined by

NA(B) = sup{h ∈ [0, 1] | mh(A) ⊆ Mh(B)}. (17.5)

Inuiguchi and Tanino [9] and Inuiguchi et al. [13] showed that the necessity
measures defined by modifier-generating functions can be defined by (17.1) with
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the following implication function:

I (a, b) = sup
h

{h ∈ [0, 1] | gm(a, h) ≤ gM(b, h)}. (17.6)

When we define gm(a, h) = a and gM(a, h) = a, ∀a ∈ [0, 1] for some
h ∈ (0, 1], NA(B) ≥ h is equivalent to the normal inclusion relation between
fuzzy sets A and B, i.e., A ⊆ B. Then the condition NA(B) ≥ h for general
modifier-generating functions can be seen as a generalization of the inclusion
relation between A and B, and NA(B) can be regarded as the degree of inclusion.

Using modifier-generating functions gm and gM , we define a necessity measure
NA(B) by giving the equivalent condition of NA(B) ≥ h (h ∈ (0, 1]) by an
inclusion relation between a modified fuzzy set A and a modified fuzzy set B,
i.e., mh(A) ⊆ Mh(B). Then, a necessity measure can be specified by giving
modifier-generating functions gm(·, h) and gM(·, h) that determine how A and B are
contracted/expanded and expanded/contracted according to degree h, respectively.
The specification of modifier-generating functions would be easier than that of
implication function directly.

17.3 Possibilistic Linear Programming

We consider the following possibilistic linear programming problem:

maximize cTx,

subject to aT
i x <∼ i bi, i = 1, 2, . . . ,m,

x ≥ 0,

(17.7)

where x = (x1, x2, . . . , xn)
T is a decision vector. bi , i = 1, 2, . . . ,m are constants.

Components cj of c and aij of ai are not known exactly, but the possible ranges of
those values are known as trapezoidal fuzzy numbers Cj and Aij , respectively. A
trapezoidal fuzzy number C is characterized by a quadruple (cL, cR, γ L, γ R), where
cL and cR are the lower and upper bounds of the most plausible interval for C, while
γ L and γ R are the left and right spreads so that cL −γ L and cR +γ R show the lower
and upper bounds of the least plausible interval. More concretely, the membership
function μC of C is defined by

μC(r) = max

(
0, min

(
1 − cL − r

γ L , 1 − r − cr

γ R , 1

))
. (17.8)

We assume Cj and Aij are trapezoidal fuzzy numbers characterized by
(cL

j , cR
j , γ L

j , γ R
j ) and (aL

ij , a
R
ij , α

L
ij , αR

ij ). The notation <∼ i is a fuzzified inequality

so that <∼ i bi corresponds to a fuzzy set Bi with verbal expression “a set of real
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numbers which are roughly smaller than bi .” We assume that the membership
function μBi of Bi is defined by

μBi (r) = max

(
0, min

(
1 − r − bi

βR
i

, 1

))
, (17.9)

where βR
i is a spread showing the tolerance.

The possibilistic linear programming problem (17.7) is a fuzzy linear program-
ming problem as the coefficients are specified by fuzzy numbers showing their
possible ranges. In the possibilistic linear programming problem, each coefficient
is considered as an uncertain variable taking a value in the given fuzzy number and
treated by the possibility theory [4, 30].

As in the literature [8, 21], because x ≥ 0, cTx and aT
i x are restricted by trape-

zoidal fuzzy numbers CTx and AT
i x characterized by (cLT

x, cRT
x, γ LT

x, γ RT
x)

and (aL
i

T
x, aR

i

T
x,αL

i

T
x, αR

i

T
x), respectively, where we define cL =

(cL
1 , cL

2 , . . . , cL
n)T, cR = (cR

1 , cR
2 , . . . , cR

n )T, γ L = (γ L
1 , γ L

2 , . . . , γ L
n )T, γ R =

(γ R
1 , γ R

2 , . . . , γ R
n )T, aL

i = (aL
i1, aL

i2, . . . , a
L
in)

T, aR
i = (aR

i1, a
R
i2, . . . , a

R
in)

T, αL
i =

(αL
i1, αL

i2, . . . , α
L
in)

T, and αR
i = (αR

i1, α
R
i2, . . . , α

R
in)T.

Using a necessity measure Ni defined by an implication function I i , in this
chapter, we formulate Problem (17.7) as a necessity fractile optimization model
(see Inuiguchi and Ramík [8]):

maximize q,

subject to N0
CTx

([q,+∞)) ≥ h0,

Ni

AT
i x

(Bi) ≥ hi, i = 1, 2, . . . ,m,

x ≥ 0,

(17.10)

where q is an auxiliary variable. h0 ∈ (0, 1] and hi ∈ (0, 1], i = 1, 2, . . . ,m are
certainty levels of goal achievement and constraint satisfactions specified by the
decision- maker. Constraints N0

CTx
([q,+∞)) ≥ h0 and Ni

AT
i x

(Bi) ≥ hi are called

necessity fractile constraints.
In Fig. 17.1, the difference between AT

i x ⊆ Bi and NAT
i x(Bi) ≥ hi is shown.

In the right figure, AT
i x ⊆ Bi is not satisfied, but Ii(μAT

i x(r), μBi (r)) ≥ 0.8 with
Ii(a, b) = 1 − a + ab (Reichenbach implication function) is satisfied for all r ∈ R.
Namely, Ni

AT
i x

(Bi) ≥ 0.8 is satisfied.

Table 17.1 shows the relations between several implication functions and their
transitions of the inclusion relations required by constraint Ni

AT
i x

(Bi) ≥ hi as hi

increases. The definitions of implication functions shown in Table 17.1 are given
later in Table 17.3 of Sect. 17.6. From Table 17.1, we observe the difference of con-
straint Ni

AT
i x

(Bi) ≥ hi by the implication function defining the necessity measure.
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Fig. 17.1 AT
i x ⊆ Bi and NAT

i xx(Bi) ≥ hi

Table 17.1 Implication functions and transitions of inequality relations expressed by
Ni

AT
i x

(Bi ) ≥ hi

Implication Ni

AT
i x

(Bi) > 0 Ni

AT
i x

(Bi) ≥ 0.5 Ni

AT
i x

(Bi) ≥ 1

Dienes [AT
i x]1 ⊆ (Bi)0 (AT

i x)0.5 ⊆ [Bi ]0.5 (AT
i x)0 ⊆ [Bi ]1

Gödel (AT
i x)0 ⊆ (Bi )0 [AT

i x]k ⊆ [Bi ]k , ∀k ∈ (0, 0.5) AT
i x ⊆ Bi

Reciprocal
Gödel

[AT
i x]1 ⊆ [Bi ]1 [AT

i x]k ⊆ [Bi ]k , ∀k ∈ (0.5, 1] AT
i x ⊆ Bi

Łukasiewicz [AT
i x]1 ⊆ (Bi)0 [AT

i x]0.5+k ⊆ [Bi ]k , ∀k ∈ (0, 0.5] AT
i x ⊆ Bi

Goguen (AT
i x)0 ⊆ (Bi )0 [AT

i x]2k ⊆ [Bi ]k , ∀k ∈ (0, 0.5] AT
i x ⊆ Bi

Reciprocal
Goguen

[AT
i x]1 ⊆ [Bi ]1 [AT

i x]k+0.5 ⊆ [Bi ]2k , ∀k ∈ (0, 0.5] AT
i x ⊆ Bi

Reichenbach [AT
i x]1 ⊆ (Bi)0 [AT

i x]0.51−k ⊆ [Bi ]1−0.5k , ∀k ∈ (0, 1] (AT
i x)0 ⊆ [Bi ]1

Fodor [AT
i x]1 ⊆ (Bi)0 (AT

i x)0.5 ⊆ [Bi ]0.5 AT
i x ⊆ Bi

Inuiguchi [10] [AT
i x]1 ⊆ (Bi)0 AT

i x ⊆ Bi (AT
i x)0 ⊆ [Bi ]1

This difference implies the significance of the selection of implication function I i

defining necessity measure Ni . A more detailed transition of the inclusion rela-
tions required by the necessity fractile constraint can be useful for selecting the
implication function defining the necessity measure. Modifier functions gm and gM

corresponding to necessity measure Ni are useful for seeing the transition of the
inclusion relations. The decision-maker can choose an implication function I i and
degree hi considering his requirement on the robustness of the constraint.

We first see that Problem (17.10) is reduced to a semi-infinite linear programming
problem. Let cL

j (h) = inf[Cj ]h, cR
j (h) = sup[Cj ]h, aL

ij (h) = inf[Aij ]h, aR
ij (h) =

sup[Aij ]h, and bR
i (h) = sup[Bi ]h. Then, from (17.2) and x ≥ 0, we obtain

N0
CTx

([q,+∞)) ≥ h0 ⇔
[
CTx

]
k

⊆ [[q,+∞)]θ0(k,h0)

⇔ inf
[
CTx

]
k

≥ q, ∀k ∈ [0, 1], θ0(k, h0) > 0,
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⇔
n∑

j=1

cL
j (k)xj ≥ q, ∀k ∈ [0, 1], θ0(k, h0) > 0, (17.11)

Ni

AT
i x

(Bi) ≥ hi ⇔
[
AT

i x
]
k

⊆ [Bi ]θi (k,hi)

⇔ sup
[
AT

i x
]
k

≤ sup [Bi]θi (k,hi) , ∀k ∈ [0, 1], θ i(k, hi) > 0,

⇔
n∑

j=1

aR
ij (k)xj ≤ bR

i (θ i(k, hi)), ∀k ∈ [0, 1], θ i(k, hi) > 0, (17.12)

where θ i(k, h) = inf{s ∈ [0, 1] | Ii(k, s) ≥ h}, i = 0, 1, . . . ,m. We note that the
constraints N0

CTx
([q,+∞)) ≥ h0 and N0

CTx
([q,+∞)) ≥ h0 are vanished when

θ0(k, h0) = 0 and θ i(k, hi) = 0, respectively.
From (17.11) and (17.12), Problem (17.10) is reduced to the following semi-

infinite linear programming problem:

maximize t,

subject to
n∑

j=1

cL
j (k)xj ≥ q, ∀k ∈ [0, 1], θ0(k, h0) > 0,

n∑
j=1

aR
ij (k)xj ≤ bR

i (θ i(k, hi)), ∀k ∈ [0, 1], θ i(k, hi) > 0,

i = 1, 2, . . . ,m,

x ≥ 0.

(17.13)

Then, selecting finitely many numbers of k ∈ [0, 1], Problem (17.10) is approxi-
mately reduced to a linear programming problem. We note that, as fuzzy numbers
are trapezoidal, we obtain

cL
j (k) =

{
cL
j − (1 − k)γ L

j , if k ∈ (0, 1],
−∞, if k = 0,

j = 1, 2, . . . , n, (17.14)

aR
ij (k)=

{
aR
ij + (1 − k)αR

ij , if k ∈ (0, 1],
+∞, if k = 0,

i =1, 2, . . . ,m, j =1, 2, . . . , n,

(17.15)

bR
j (k) =

{
bR
j + (1 − k)βR

j , if k ∈ (0, 1],
+∞, if k = 0,

j = 1, 2, . . . , n. (17.16)
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17.4 Case Where θi(·, hi)’s Are Convex and Concave

As fuzzy parameters Cj , Aij , and Bi have linear membership functions, we obtain
simpler reduced problems when θ i(·, hi)’s are convex and concave.

Let us consider a case where θ i(·, hi) : [0, 1] → [0, 1], i = 1, 2, . . . ,m, are
convex in range (0, 1) (see Fig. 17.2). From (17.9), we obtain bR

i (θ i(k, hi)) = bi +
(1 − θ i(k, hi))βi , i = 1, 2, . . . ,m. Therefore, the convexity of θ i(·, hi) implies
the concavity of bR

i (θ i(·, hi)). Under the concavity of bR
i (θ i(·, hi)), the following

equivalence is valid:

Ni

AT
i x

(Bi) ≥ hi ⇔
n∑

j=1

aR
ij (k)xj ≤ bR

i (θ i(k, hi)), ∀k ∈ [0, 1], θ i(k, hi) > 0

⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

āR
ij (k̄

i)xj ≤ b̄R
i (θ i(k̄i , hi)),

n∑
j=1

aR
ij (k̂

i)xj ≤ bR
i (θ i(k̂i , hi)),

(17.17)

where we define k̄i = inf{k ∈ [0, 1] | θ i(k, hi) > 0}, k̂i = inf{k ∈ [0, 1] |
θ i(k, hi) = θ i(1, h)}, āR

ij (k) = sup(Aij )k , and b̄R
i (k) = sup(Bi)k . As Aij and Bi

are linear membership functions, we obtain

āR
ij (k)=

{
aR
ij +(1 − k)αR

ij , if k ∈ [0, 1),

−∞, if k=1,
i =1, 2, . . . ,m, j =1, 2, . . . , n,

(17.18)

b̄R
i (k) =

{
bR
i + (1 − k)βR

i , if k ∈ [0, 1),

−∞, if k = 1,
i = 1, 2, . . . ,m. (17.19)

Fig. 17.2 θi(·, hi) convex in
range (0, 1)
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From (17.17), Problem (17.13) can be reduced to the following linear program-
ming problem:

maximize
n∑

j=1

cL
j (k̄0)xj

subject to
n∑

j=1

āR
ij (k̄

i)xj ≤ b̄R
i (θ i(k̄i , hi)), i = 1, 2, . . . ,m,

n∑
j=1

aR
ij (k̂

i)xj ≤ bR
i (θ i(k̂i , hi)), i = 1, 2, . . . ,m,

x ≥ 0.

(17.20)

Now, let us consider a case where θ i(·, hi) : [0, 1] → [0, 1], i = 0, 1, 2, . . . ,m,
are concave in the range (0, 1). In this case, bR

i (θ i(·, hi)) becomes convex. Because
aR
ij (k) = aR

ij + (1 − k)αR
ij , i.e., linear with respect to k > 0, given x = (x1, x2, . . . ,

xn)
T ≥ 0, there exists k∗

i such that

n∑
j=1

aR
ij (k)xj ≤ bR

i (θ i (k, hi)), ∀k ∈ [0, 1], θ i (k, hi) > 0

⇔
n∑

j=1

aR
ij (k

∗
i )xj ≤ bR

i (θ i(k∗
i , hi)). (17.21)

Utilizing the convexity of bR
i (θ i(·, hi)), Problem (17.13) can be solved by the

following relaxation procedure [6] together with a bisection method, where k∗
i is

approximately calculated for each candidate solution x∗:

S0. Specify ε by a sufficiently small positive number.
S1. Let zi = 0 and k

zi

i = 0.5k̄i + 0.5k̂i , i = 1, 2, . . . ,m.
S2. Solve the following linear programming problem:

maximize
n∑

j=1

cL
j (k̄0)xj ,

subject to
n∑

j=1

aR
ij (k

l
i )xj ≤ bR

i (θ i(kl
i , h

i)), l = 0, 1, . . . , zi , i = 1, 2, . . . ,m,

x ≥ 0.

(17.22)
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Let x∗ = (x∗
1 , x∗

2 , . . . , x∗
n)T be the obtained optimal solution.

S3. For i = 1, 2, . . . ,m, check the existence of k∗
i ∈ (0, 1] such that

∑n
j=1

aR
ij (k

∗
i )x∗

j > bR
i (θ i(k∗

i , hi)) by a bisection method and update zi = zi + 1 with

defining k
zi

i = k∗
i if k∗

i exists.
S4. If at least one zi is increased, return S2. Otherwise, x∗ is an optimal solution

to Problem (17.10).

The bisection method in S3 can be performed as follows (see Fig. 17.3):

B0. Let λi = − ∑n
j=1 αR

ij x∗
j , and let δ be a positive small number.

B1. Define k̃i = k
q
i with q = arg minl=0,1,...,zi

(
bR
i (θ i(kl

i , h
i)) − ∑n

j=1 aR
ij (k

l
i )x

∗
j

)
.

Set κi = min
(
{kl

i | kl
i > k

q
i , i = 0, 1, . . . , zi} ∪ {k̂i}

)
and

κi = max
({kl

i | kl
i < k

q
i , i = 0, 1, . . . , zi} ∪ {k̄i}).

B2. If bR
i (θ i(k̃i + δ, hi)) < bR

i (θ i (k̃i, h
i)) + λiδ, update κi = k̃i .

B3. If bR
i (θ i(k̃i − δ, hi)) < bR

i (θ i (k̃i, h
i)) − λiδ, update κi = k̃i .

B4. If κi − κi > ε and min(κi − k̃i , k̃i − κi) = 0, update k̃i = 0.5κi + 0.5κi and
return B2.

B5. If
∑n

j=1 aR
ij (k

∗
i )x

∗
j > bR

i (θ i (k∗
i , hi)), terminate the procedure with k∗

i = k̃i .

Otherwise, there is no k∗
i such that

∑n
j=1 aR

ij (k
∗
i )x∗

j > bR
i (θ i (k∗

i , h
i)).

We note that Problem (17.10) can be solved by the relaxation procedure with
a bisection method described above when θ i(·, hi) associated with each constraint
Ni

AT
i x

(Bi) ≥ hi is convex of concave in the range (0, 1), although we considered

only the case when all θ i(·, hi) are concave.

Fig. 17.3 Figure for the
explanation of the bisection
procedure composed of B0 to
B5
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17.5 Similar Results for Necessity Measures Defined
by Modifier-Generating Functions

Now we describe the case when necessity measure Ni is defined by modifier-
generating functions gm

i and gM
i . In this case, constraints N0

CTx
([t,+∞)) ≥ h0

and Ni

AT
i x

(Bi) ≥ hi can be rewritten as

m0
h0(C

Tx) ⊆ [t,+∞), mi
hi (A

T
i x) ⊆ Mi

hi (Bi), (17.23)

where mi
hi and Mi

hi are defined by gm
i , gM

i , and hi .

Let q̄m
i = inf{gm

i (k, hi) | gm
i (k, hi) > 0, k ∈ [0, 1]} and q̂M

i = sup{gM
i (k, hi) |

gM
i (k, hi) < 1, k ∈ [0, 1]}. Then we have

N0
CTx

([t,+∞)) ≥ h0 ⇔ [m0
h0(C

Tx)]q̄m
0

⊆ [t,+∞). (17.24)

As in the analysis with θ i(·, hi)’s, the second inclusion relation of (17.23) is reduced
to semi-infinite linear inequalities. In what follows, we investigate cases where the
second inclusion relation of (17.23) is treated in some easier ways.

First, let us consider the case where gm
i (·, hi) is convex in range (0, 1) and

gM
i (·, hi) is concave in range (0, 1). Then, we have the following equivalence (see

Fig. 17.4a):

Ni

AT
i x

(Bi) ≥ hi ⇔

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
(mi

hi (A
T
i x))0 ⊆ (Mi

hi (Bi))0, if q̄m
i = 0,

[mi
hi (A

T
i x)]q̄m

i
⊆ (Mi

hi (Bi))q̄m
i
, if q̄m

i > 0,{
[mi

hi (A
T
i x)]1 ⊆ [Mi

hi (Bi)]1, if q̂M
i = 1,

[mi
hi (A

T
i x)]q̂M

i
⊆ (Mi

hi (Bi))q̂M
i

, if q̂M
i < 1.

(17.25)

Fig. 17.4 Properties of gm
i and gM

i mi
hi (A

T
i x) and Mi

hi (Bi): (a) convex gm
i and concave gM

i and

(b) concave gm
i and convex gM

i



17 Fuzzy Linear Programming with General Necessity Measures 343

Namely, as fuzzy sets Aij and Bi have linear membership functions, the convexity
of gm

i (·, hi) and the concavity of gM
i (·, hi) in the range (0, 1) make the member-

ship functions of mi
hi (A

T
i x) and Mi

hi (Bi) convex and concave in the range (0, 1),

respectively. From these properties of the membership functions of mi
hi (A

T
i x) and

Mi
hi (Bi), constraint Ni

AT
i x

(Bi) ≥ hi is equivalent to two inclusion constraints of

level sets of mi
hi (A

T
i x) and Mi

hi (Bi).

Let us define functions km
i : [0, 1] → [0, 1] and kM

i : [0, 1] → [0, 1] by

km
i (a) =

{
sup{k ∈ [0, 1] | gm

i (k, hi) ≤ a}, if a �= 1,

sup{k ∈ [0, 1] | gm
i (k, hi) < 1}, if a = 1,

(17.26)

kM
i (a) =

{
inf{k ∈ [0, 1] | gM

i (k, hi) ≥ a}, if a �= 0,

inf{k ∈ [0, 1] | gM
i (k, hi) > 0}, if a = 0.

(17.27)

Then, as fuzzy sets Aij and Bi have linear membership functions, we have

[m0
h0(C

Tx)]q̄0 ⊆ [t,+∞)] ⇔ [CTx]km
0 (q̄m

0 ) ⊆ [t,+∞)]
⇔ cL

j (km
0 (q̄m

0 )) ≥ t, (17.28)

(mi
hi (A

T
i x))0 ⊆ (Mi

hi (Bi))0 ⇔ (AT
i x)km

i (0) ⊆ (Bi)kM
i (0)

⇔
n∑

j=1

āR
ij (k

m
i (0))xj ≤ b̄R

i (kM
i (0)), (17.29)

[mi
hi (A

T
i x)]q̄m

i
⊆ cl(Mi

hi (Bi))q̄m
i

⇔ [AT
i x]km

i (q̄m
i ) ⊆ cl(Bi)kM

i (q̄m
i )

⇔
n∑

j=1

aR
ij (k

m
i (q̄m

i ))xj ≤ b̄R
i (kM

i (q̄m
i )), (17.30)

[mi
hi (A

T
i x)]1 ⊆ [Mi

hi (Bi)]1 ⇔ [AT
i x]km

i (1) ⊆ [Bi]kM
i (1)

⇔
n∑

j=1

aR
ij (k

m
i (1))xj ≤ bR

i (kM
i (1)), (17.31)

[mi
hi (A

T
i x)]q̂M

i
⊆ cl(Mi

hi (Bi))q̂M
i

⇔ [AT
i x]km

i (q̂M
i ) ⊆ cl(Bi)kM

i (q̂M
i )

⇔
n∑

j=1

aij (k
m
i (q̂M

i ))xj ≤ b̄R
i (kM

i (q̂M
i )), (17.32)

where clD is the closure of a set of D ⊆ R.
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As a result, applying the necessity fractile optimization model, Problem (17.7) is
reduced to the following linear programming problem:

maximize

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

c̄L
j (km

0 (0))xj , if q̄m
0 = 0,

n∑
j=1

cL
j (km

0 (q̄m
0 ))xj , if q̄m

0 > 0,

subject to ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

āR
ij (k

m
i (0))xj ≤ b̄R

i (kM
i (0)), if q̄m

i = 0,

n∑
j=1

aR
ij (k

m
i (q̄m

i ))xj ≤ b̄R
i (kM

i (q̄m
i )), if q̄m

i > 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

i = 1, 2, . . . ,m,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n∑
j=1

aR
ij (k

m
i (1))xj ≤ bR

i (kM
i (1)), if q̂M

i = 1,

n∑
j=1

aR
ij (k

m
i (q̂M

i ))xj ≤ b̄R
i (kM

i (q̂M
i )), if q̂M

i < 1,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

i = 1, 2, . . . ,m,

x ≥ 0.

(17.33)

Now let us consider the case where gm
i (·, hi) : [0, 1] → [0, 1] and gM

i (·, hi) :
[0, 1] → [0, 1] are concave and convex in range (0, 1). Because Aij and Bi have
linear membership functions, given x = (x1, x2, . . . , xn)

T ≥ 0, there exists q∗
i such

that (see Fig. 17.4b)

mi
hi (A

T
i x) ⊆ Mi

hi (Bi) ⇔ [mi
hi (A

T
i x)]q∗

i
⊆ cl(Mi

hi (Bi))q∗
i

⇔
n∑

j=1

aR
ij (k

m
i (q∗

i ))xj ≤ b̄R
i (kM

i (qi∗)). (17.34)

Problem (17.10) can be solved by a relaxation procedure together with a bisection
method. In this procedure, we explore an approximately optimal solution x by
the relaxation procedure with searching q∗

i ’s corresponding to tentative solutions
generated in the procedure. Let q̄M

i = inf{gM
i (k, hi) | gM

i (k, hi) > 0, k ∈ [0, 1]}
and q̂m

i = sup{gm
i (k, hi) | gm

i (k, hi) < 1, k ∈ [0, 1]}. Then the procedure can be
written as follows:

T0. Let ε be a sufficiently small positive number. Let q̄i = max(q̄m
i , q̄M

i ) and
q̂i = min(q̂m

i , q̂M
i ).

T1. Let zi = 0 and q
zi

i = 0.5q̄ i + 0.5q̂ i , i = 0, 1, . . . ,m.
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T2. Solve the following linear programming problem:

maximize
n∑

j=1

cL
j (km

0 (q̄m
0 ))xj ,

subject to
n∑

j=1

aR
ij (k

m
i (ql

i ))xj ≤ b̄R
i (kM

i (ql
i )), l=0, 1, . . . , zi , i =1, 2, . . . ,m,

x ≥ 0.

(17.35)

Let x∗ = (x∗
1 , x∗

2 , . . . , x∗
n)T be the obtained optimal solution.

T3. For i = 1, 2, . . . ,m, check the existence of q∗
i ∈ (0, 1] such that∑n

j=1 aR
ij (k

m
i (q∗

i ))x∗
j > b̄R

i (kM
i (q∗

i )) + ε by a bisection method and update zi =
zi + 1 with defining q

zi

i = q∗
i if q∗

i exists.
T4. If at least one zi is increased, then return S2. Otherwise, x∗ is an optimal

solution to Problem (17.10).

The bisection method in T3 can be performed as follows:

C0. Define ϕi(q) = b̄R
i (kM

i (q)) − ∑n
j=1 aR

ij (k
m
i (q))xj , and let q̂i =

arg minl=0,1,...,zi
ϕ(ql

i ). Let UB = min
({ql

i | ql
i > q̌i, l = 0, 1, . . . , zi} ∪ {q̂i}

)
and LB = max

({ql
i | ql

i < q̌i, l = 0, 1, . . . , zi} ∪ {q̄i}
)
.

C1. If q̂i = UB and ϕi(q̂i) < ϕi(q̂i − ε), then terminate this procedure. In this
case, if ϕi(1) < 0, then q∗

i = 1; otherwise, q∗
i does not exist.

C2. If q̄i = LB and ϕi(q̄i) < ϕi(q̄i + ε), then terminate this procedure. In this
case, if ϕi(q̄i) < 0, then q∗

i = q̄i ; otherwise, q∗
i does not exist.

C3. If UB − LB ≤ ε, then terminate this procedure. In this case, if ϕi(q̃i) < 0,
then q∗

i = q̃i ; otherwise, q∗
i does not exist.

C4. Let q̃i = 0.5q̌i + 0.5UB. If ϕ(q̃i) < ϕ(q̌i), then set LB = q̌i and q̌i = q̃i

and return to C3. Otherwise, set UB = q̃i .
C5. Let q̃i = 0.5q̌i + 0.5UB. If ϕ(q̃i) < ϕ(q̌i), then set UB = q̌i and q̌i = q̃i .

Otherwise, set LB = q̃i . Return to C3.

We note that Problem (17.10) can be solved by the relaxation procedure with
a bisection method described in the previous section and this section when each
constraint Ni

AT
i x

(Bi) ≥ hi is reduced to two linear inequalities (θ(·, hi) is convex

in the range (0, 1) or gm(·, hi) and gM(·, hi) are convex and concave in the range
(0, 1), respectively) or treated by the relaxation procedure with a bisection method
(θ(·, hi) is concave in the range (0, 1) or gm(·, hi) and gM(·, hi) are concave and
convex in the range (0, 1), respectively), although we considered cases only when
all I i have the same property in the previous section and this section.
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17.6 Results Applied to Various Implication Functions

17.6.1 R-, Reciprocal R-, and S-Implication Functions

In this section, we investigate Problem (17.10) with necessity measures defined by
R-, reciprocal R-, and S-implication functions. R-, reciprocal R-, and S-implication
functions are constructed from a t-norm t : [0, 1] × [0, 1] → [0, 1] satisfying: (t1)
t (a, 1) = a, ∀a ∈ [0, 1], (t2) t (a, b) = t (b, a), ∀a, b ∈ [0, 1], (t3) t (a, t (b, c)) =
t (t (a, b), c), ∀a, b, c ∈ [0, 1], and (t4) t (a, b) ≤ t (c, d), ∀a, b, c ∈ [0, 1]; a ≤
c, b ≤ d and a strong negation n : [0, 1] → [0, 1] satisfying (n1) n(0) = 1 and
(n2) n(n(a)) = a, ∀a ∈ [0, 1]. Namely, under given t-norm t and strong negation
n, R-implication function IR[t], reciprocal R-implication function I r−R[t, n], and
S-implication function IS[t, n] are defined by

IR[t](a, b) = sup{s ∈ [0, 1] | t (a, s) ≤ b}, (17.36)

I r−R[t, n](a, b) = sup{s ∈ [0, 1] | t (n(b), s) ≤ n(a)}, (17.37)

IS[t, n](a, b) = n(t (a, n(b))). (17.38)

A t-norm t is said to be Archimedian if it satisfies t (a, a) < a, ∀a ∈ (0, 1). It is
known that any continuous Archimedian t-norm t can be generated from a strictly
decreasing and continuous function f : [0, 1] → [0,+∞) ∪ {+∞} with f (1) = 0
as

t (a, b) = f ∗(f (a) + f (b), (17.39)

where f ∗ : [0,+∞) ∪ {+∞} → [0, 1] is a pseudo-inverse of f defined by

f ∗(r) = sup{h ∈ [0, 1] | f (h) ≥ r} =
{

f −1(r), if r < f (0),

0, if r ≥ f (0).
(17.40)

Such a function f is called an additive generator of t-norm t .

17.6.2 Results in R-Implication Functions

When implication function I is an R-implication function IR[t], for any k, h ∈
[0, 1], we have

θ(k, h) = t (k, h). (17.41)

Therefore, if necessity measure Ni of Problem (17.10) is defined by an R-implication
function I i with t-norm t i , i.e., I i = IR[t i ] such that t i (·, hi) is convex in range
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(0, 1), the constraint Ni

AT
i x

(Bi) ≥ hi can be reduced to a system of two linear

inequalities shown in (17.17).
Moreover, if a necessity measure Ni is defined by an R-implication function

I i with t-norm ti such that ti(·, hi) is concave in range (0, 1), the relaxation pro-
cedure together with a bisection method described in Sect. 17.4 is applicable for
Ni

AT
i x

(Bi) ≥ hi .

For many famous t-norms such as minimum operation, arithmetic product,
bounded product, and so on, t (·, hi) becomes convex in range (0, 1). However, for
Schweizer–Sklar t-norms [14] tSS

η with parameter η > 1, Hamacher t-norms [14] tH
η

with parameter η < 1, and so on, t (·, hi) becomes concave in range (0, 1), where
tSS
η and tH

η are defined by

tSS
η (a, b) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

max(0, aη + bη − 1)
1
η , if η ∈ (−∞, 0),∪(0,+∞),

min(a, b), if η = −∞,

ab, if η = 0,{
min(a, b), if max(a, b) = 1,

0, otherwise,
η = +∞,

(17.42)

tH
η (a, b) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{
min(a, b), if max(a, b) = 1,

0, otherwise,
η = +∞,

0, if η = a = b = 0,
ab

η + (1 − η)(a + b − ab)
, otherwise.

(17.43)

17.6.3 Results in Reciprocal R-Implication Functions

When implication function I is a reciprocal R-implication function I r−R[t, n], we
have θ(k, h) = inf{s ∈ [0, 1] | t (n(s), h) ≤ n(k)}. Then when a reciprocal R-
implication function I r−R[t, n] is defined by n(h) = 1 − h and t-norm t such that
t (·, hi) is convex in range (0, 1), we can prove that θ(·, hi) is convex in range (0, 1)

as follows: for any k1, k2 ∈ [0, 1], any λ ∈ [0, 1], we have

θ(λk1 + (1 − λ)k2, h
i)

= inf{s ∈ [0, 1] | t (1 − s, hi ) ≤ 1 − (λk1 + (1 − λ)k2)}
= inf{λs1 + (1 − λ)s2 ∈ [0, 1] | s1, s2 ∈ [0, 1]

t (λ(1 − s1) + (1 − λ)(1 − s2), h
i) ≤ λ(1 − k1) + (1 − λ)(1 − k2)}

≤ inf{λs1 + (1 − λ)s2 ∈ [0, 1] | s1, s2 ∈ [0, 1]
λt (1 − s1, h

i) + (1 − λ)t (1 − s2, h
i) ≤ λ(1 − k1) + (1 − λ)(1 − k2)}

≤ λθ(k1, h
i) + (1 − λ)θ(k2, h).
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Therefore, if necessity measure Ni of Problem (17.10) is defined by reciprocal
R-implication function I i = I [t, n] with n(h) = 1−h and t-norm t such that t (·, hi)

is convex in range (0, 1), the constraint Ni

AT
i x

(Bi) ≥ hi can be reduced to a system

of two linear inequalities shown in (17.17).

17.6.4 Results in S-Implication Functions

When implication function I i is an S-implication IS[t, n], we have

θ(k, hi) = n
(

sup{s ∈ [0, 1] | t (k, s) ≤ n(hi)}
)

. (17.44)

Let us define a set BS(h) ⊆ [0, 1] × [0, 1] and a function ψBS(h) : [0, 1] → [0, 1]
by

BS(h) = {(k, s) ∈ [0, 1] × [0, 1] | t (k, s) ≤ h}, (17.45)

ψBS(h)(k) = sup{s ∈ [0, 1] | t (k, s)≤h}=sup{s | (k, s) ∈ BS(h)}. (17.46)

It is easily shown that ψBS(h) is concave if BS(h) is a convex set. Then we
obtain that if t-norm t is quasi-convex and n is convex, θ(·, hi) becomes convex.
Therefore, if necessity measure Ni of Problem (17.10) is defined by S-implication
I i = IS[t, n] with a convex strong negation n and a quasi-convex t-norm t , the
constraint Ni

AT
i x

(Bi) ≥ hi can be reduced to a system of two linear inequalities

shown in (17.17).
When t-norm t is an Archimedian t-norm having the additive generator f with

(17.39), S-implication IS[t, n] can be defined by (17.6) with the following modifier-
generating functions (see Inuiguchi and Tanino [9] and Inuiguchi et al. [13]):

gm(a, h) = max

(
0, 1 − f (a)

f (n(h))

)
,

gM(a, b) = min

(
1,

f (n(a))

f (n(h))

)
. (17.47)

If I i is S-implication function IS[t, n] with respect to a continuous Archimedian
t-norm t such that the additive generator f is concave and n is convex, from (17.47)
and strict decreasingness of f , gm(·, h) and gM(·, h) are convex and concave in the
range (0, 1). Then in this case, the constraint Ni

AT
i x

(Bi) ≥ hi can be reduced to a

system of two linear inequalities.
Moreover, if a necessity measure Ni is defined by an S-implication I i = IS[t, n]

with respect to a continuous Archimedian t-norm such that the additive generator
f is convex and n is concave, from (17.47) and strict decreasingness of f , gm(·, h)
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and gM(·, h) are concave and convex in the range (0, 1). Therefore, the relaxation
procedure with a bisection method described in the previous section is applicable
for the constraint Ni

AT
i x

(Bi) ≥ hi .

17.6.5 Obtained Results Applied to Famous Implication
Functions

The obtained results are arranged in Table 17.2. In Table 17.2, the convexity and
concavity of θ(·, hi), gm(·, hi), gM(·, hi), and t (·, hi) are restricted in the range
(0, 1). RPBM-applicable means that the relaxation procedure together with a bisec-
tion method is applicable. As shown in Table 17.2, some convexity and/or concavity
of some functions related to implication functions are required for solving Prob-
lem (17.10) in a simpler way. These conditions may be seen as being strong.

However, if we apply the obtained results to famous and useful implication func-
tions, we obtain Table 17.3. The implication functions can be found in [9, 10,
13]. In Table 17.3, column “reduc.” shows the reduced constraints. “Linear” stands
for linear inequalities, while “Relx.” stands for relaxation procedure with a bisec-
tion method. As shown in Table 17.3, constraint Ni

AT
i x

(Bi) ≥ hi with respect to

many of famous implication functions I i except Reichenbach implication func-
tion is reduced to two linear inequality conditions. When necessity measure Ni is
defined by Reichenbach implication function, if other necessity fractile constraints
are reduced to linear inequalities or treated by the relaxation procedure with a
bisection method, Problem (17.10) can be solved by the relaxation procedure with
a bisection method described in previous sections.

Therefore, for many famous implication functions, necessity measures can be
treated without great loss of linearity when fuzzy numbers Cj , Aij and fuzzy con-
straints Bi have linear membership functions.

Table 17.2 Implication functions and the conditions for reducing Ni

AT
i x

(Bi) ≥ hi

Implication function I i Linear inequalities RPBP-applicable

General I θ(·, hi) is convex. θ(·, hi) is concave.

By gm and gM gm(·, hi ) is convex and gm(·, hi ) is concave and

gM(·, hi ) is concave. gM(·, hi ) is convex.

R-implication IR[t] t (·, hi) is convex. t (·, hi) is concave.

Reciprocal R-implication t (·, hi) is convex —–

I r−R[t, n] and n(h) = 1 − h.

S-Implication IS[t, n] t is quasi-convex and n is convex. —–

S-Implication IS[t, n] with f is concave and n is convex. f is convex and n is concave.

t (a, b) = f ∗(f (a) + f (b))
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17.7 Concluding Remarks

We have investigated in the necessity fractile optimization models of possibilistic
linear programming problems with trapezoidal fuzzy numbers. We consider the
models with general necessity measures defined by various implication functions.
In general, the model is reduced to a semi-infinite linear programming problem
that can be solved approximately by a linear programming technique with selecting
many constraints from the semi-infinite constraints.

We showed that the model can be reduced to a usual linear programming prob-
lem or solved by a relaxation procedure with a bisection method when functions
related to the implication function have convexity and/or concavity. Utilizing the
obtained results, we demonstrated that the model can be reduced to a usual lin-
ear programming problem when many famous implication functions are used for
defining necessity measures. To see the significance of the selection of implication
function, differences of the equivalent conditions to the necessity fractile constraints
by the implication functions are observed.

The studies on necessity measure optimization models would be one of the future
topics derived from the results of this chapter. Moreover, the study on the specifica-
tion of necessity measures suitable for decision-maker’s requirements would be one
of the important topics.
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