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Preface

This special collective book is dedicated to Professor Roman Słowiński on the
occasion of his 70th birthday this year—2022.

Professor Roman Słowiński (Fig. 1) is a widely recognized scientist due to
his work in the fields of operations research, multiple-criteria decision-making,
optimization, computer science and artificial intelligence. In particular, he strongly
participated in the creation and development of the domain of intelligent decision
support systems, which combines elements of operations research and artificial
intelligence. This research thread became the leading idea of this book and the
inspiration for its title.

In his long-term scientific career, which began at the Poznań University of Tech-
nology in 1974, Roman Słowiński undertook various thematically basic theoretical
and applied research. This is reflected in more than several hundred published
scientific texts that are well appreciated in the international research community,
which is visible by the very high number of citations, and on this basis, Roman
Słowiński is among the world’s highest-cited researchers in computer science and
operations research, occupying the first position in Poland.

Professor Roman Słowiński is an authority, mentor, and inspiration for many
researchers all over the world. He opened the door to real scholarship to many
people, including us.

He actively participated in international collaborations. The number of his co-
authors, many of them from outside Poland, exceeds 150. Throughout his career, he
has been visiting professor or researcher at many well-known universities. He has
participated in many conferences and has been invited several times to give keynote
speeches. We illustrate this with the attached photos (Figs. 2, 3, 4 and 5).

In addition to his position as a university professor and researcher, he served in
a number of organizational capacities. In particular, he is the vice president of the
Polish Academy of Science. For many years, he has also served as one of the editors-
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vi Preface

Fig. 1 Professor Roman Słowiński

Fig. 2 Roman Słowiński together with Salvatore Greco, Constantin Zopounidis, and Pekka
Korhonen during 22nd Conference of the International Society on Multiple Criteria Decision
Making, June 17–21, 2013, Malaga, Spain

in-chief of the well-known scientific journal—the European Journal of Operational
Research. It is also worth emphasizing that in the 1990s, he founded the Intelligent
Decision Support Systems lab at Poznań University of Technology, which he has
led until now.

Let us also mention that he has been awarded several times for his extraordinary
achievements with various prestigious recognitions, both in Poland and in the
international research societies or universities.
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Fig. 3 Bernard Roy and Roman Słowiński in Poznan in 1992

Fig. 4 Roman Słowiński, on the right, together with (from the left to the right) Jerzy Stefanowski,
Shusaku Tsumoto, Lofti Zadeh, Wojciech Ziarko and Zdzislaw Pawlak during 4th Int. Workshop
on Rough Sets, Fuzzy Sets and Machine Discovery, Tokyo, 1996
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Fig. 5 Jerzy Stefanowski, Benedetto Matarazzo, Jan Weglarz, Roman Słowiński and Jerzy
Stefanowski during EURO XVI Conference in Brussels, 1998

In the first chapter of this volume, following this preface, we present in more
detail main research contributions of Roman Słowiński, so we will not repeat it now.
Furthermore, the second chapter also contains more information on his scientific
biography.

This book contains 21 chapters written by several of Roman Słowiński’s
collaborators, his previous PhD students, and friends, which cover various issues
related to his research interests and contributions to such fields as multiple criteria
decision aiding, multi-objective optimization methods, intelligent decision support
systems, and uncertainty managing in artificial intelligence. These chapters also
well demonstrate Roman Słowiński’s influence on theory and practice of intelligent
decision support systems, and we hope that the readers could find them stimulating
and enjoyable.

Finally, we know that Roman Słowiński will continue to be a very active scientist
in the next years. We wish him many more successes and happy years of health, with
his family and in our community.

Catania, Italy Salvatore Greco
Gif sur Yvette, France Vincent Mousseau
Poznan, Poland Jerzy Stefanowski
Chania, Greece Constantin Zopounidis
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1 Roman Słowiński and His Research Program: Intelligent
Decision Support Systems Between Operations Research
and Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Salvatore Greco, Vincent Mousseau, Jerzy Stefanowski, and
Constantin Zopounidis

2 Roman’s Scientific Trajectory: A Retrospective with an
Emphasis on the Beginning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Jan Wȩglarz
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Chapter 1
Roman Słowiński and His Research
Program: Intelligent Decision Support
Systems Between Operations Research
and Artificial Intelligence

Salvatore Greco, Vincent Mousseau, Jerzy Stefanowski,
and Constantin Zopounidis

Abstract This chapter is aimed to present the genesis and the development of the
scientific research activity of Roman Słowiński considering his contributions in
Operations Research, Multiple Criteria Decision Aiding, and Artificial Intelligence
in the perspective of Intelligent Decision Support Systems. We try to reproduce
his vision of intelligent decision support systems, which he largely initiated in the
scientific community, and his ideas and achievements in this field. The impact of his
contacts and collaborations with other researchers was also important in creating the
field. On the one hand, it was formed on the interaction with three great scientific
personalities such as Jan Wȩglarz, Bernard Roy, and Zdzisław Pawlak, and on the
other hand, it was developed during the years with a very large and diversified
network of cooperators from his own University as well as from other research
teams distributed in many different countries. In addition, we provide an in-depth
bibliometric analysis of Roman Słowiński’s published papers. We introduce also
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2 S. Greco et al.

the contributions of this book discussing their relation with the work of Roman
Słowiński.

1.1 Introduction

This volume is a Festschrift in honor of Roman Słowiński for his 70th birthday.
Roman Słowiński is one of the most influential scholars in the fields of Computer
Science, Operations Research, Artificial Intelligence, and Decision Science over the
last forty years. Through the contributions of some of the many colleagues that along
the years have been cooperating and interacting with him, this volume aims to shed
light, on the whole life scientific project of Roman Słowiński: combining Operations
Research and Artificial Intelligence into Intelligent Decision Support Systems.

The basic idea of Intelligent Decision Support System is often acknowledged to
the early contribution of Herbert Simon [88, 90], one of the fathers of Artificial
Intelligence and 1978 Nobel Prize for Economics, that proposed to integrate
intelligent capabilities in decision support systems (for a general reconstruction of
Herbert Simon’s contribution to decision support systems see, e.g., [80]). In one
illuminating paper [89], considering the widespread interest in expert system at the
end of the 80s due to the availability of minicomputers manifested in those years,
Herbert Simon discussed about combination of Artificial Intelligence (AI) and
Operations Research (OR), proposing “to think of expert systems and the data bases
that support them as matrices within which we can apply an amalgamation of AI and
OR analytic and problem-solving methods.” More precisely, after observing that “in
the decade after 1955, the tools of AI were applied side by side with OR tools to
problems of management” and that “after about 1960, AI and OR went their separate
ways,” Herbert Simon proposed what can be seen as his vision for intelligent
decision support systems: “We should aspire to increase the impact of MS/OR
[Management Science/Operations Research] by incorporating the AI kit of tools that
can be applied to ill-structured, knowledge-rich, nonquantitative decision domains
that characterize the work of top management and that characterize the great policy
decisions that face our society.” In the program drafted by Herbert Simon we could
notice the inspirations for the agenda developed in his almost fifty years of scientific
activity by Roman Słowiński, even if we were not able to find a single citation of that
paper in the 14 books and more than 400 articles published by him. Consequently,
it is interesting to reconstruct how Herbert Simon’s vision became the scientific
program of Roman Słowiński through his meeting, acquaintance, collaboration, and
friendship with three scholars who shaped operations research, decision aiding, and
computer science: Jan Wȩglarz, Bernard Roy, and Zdzisław Pawlak.

Jan Wȩglarz, who was a teacher and the supervisor for the master thesis and
the PhD of Roman Słowiński at the Poznań University of Technology, introduced
him to OR and, in particular, to project scheduling. The results obtained by Roman
Słowiński in this domain, some of them together with Jan Wȩglarz, were so
strikingly relevant and innovative that Roman Słowiński and Jan Wȩglarz, together
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with Jacek Błażewicz, another brilliant student of Jan Wȩglarz, were awarded with
1991 EURO Gold medal, the highest distinction within OR in Europe. Observe
that EURO Gold medal is in general considered as the award of a lifelong research
activity and Roman Słowiński got this prize when he was still not forty years old. In
fact, project scheduling was for him an excellent starting point rather than a point of
arrival. From the point of view of intelligent decision support systems, starting from
project scheduling had two positive aspects for Roman Słowiński:

1. Scheduling with its use of heuristics, as recognized by Herbert Simon in the
above mentioned article, was one of the few domains in which, application
of AI continued to be coupled with OR even when the trajectories of AI and
OR diverged; in this perspective, the first years of research activity shaped the
mindset of Roman Słowiński to work on intelligent decision support systems
(and, in fact, one of his last papers on scheduling was proposing a decision
support system for applications in that domain [100]);

2. Research on scheduling permitted to meet Bernard Roy, one of the founders of
OR in Europe, that introduced Roman Słowiński to multiple criteria decision
aiding, probably the domain in which he devoted most of his efforts and
capacities.

Roman Słowiński met Bernard Roy in 1977, participating, together with
Jan Wȩglarz, at the congress of Association Française pour la Cybernétique,
Économique et Technique (AFCET). Bernard Roy was interested in the presentation
of Roman Słowiński and wanted to speak with him. This was the beginning of a
scientific cooperation and a sincere friendship of the two researchers developed for
forty years until the death of Bernard Roy. Let us remember that Bernard Roy, one of
the major promoters of OR techniques in Europe, gave fundamental contributions in
graph theory and scheduling, but, overall, he is the founder of the European School
of Multiple Criteria Decision Aiding (MCDA), proposing, beyond the famous
ELECTRE methods, many important contributions to the overall approach and the
scientific foundation of MCDA. The basic reference in MCDA is the Bernard Roy’s
book “Méthodologie multicritère d’aide à la décision” [82] that Roman Słowiński
translated in Polish [84]. To synthesize the basic idea of MCDA promoted by
Bernard Roy we can consider the following frame, taken by a paper written together
with Roman Słowiński [86]: an MCDA method “should be seen as a tool for going
deeper into the decision problem, for exploring various possibilities, interpreting
them, debating and arguing, rather than a tool able to make the decision. We suppose
further that the model of preferences used by the method is, at least partially, co-
constructed through interaction between the analyst and the decision maker (or his
representative). This co-construction should account for the consequences on which
the actions will be judged and for value systems related to the decision context.”

A specific preoccupation of Bernard Roy was related to the imprecision,
uncertainty, ill determination of the performances assigned by considered criteria
to the actions under evaluation (see, e.g., [83]). Again we can find the attention to
the “ill-structured, knowledge-rich, nonquantitative decision domains” of the above
mentioned article of Herbert Simon.
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With respect to the interest to handle ambiguity and uncertainty in the data,
Roman Słowiński had the possibility to interact and to cooperate with another great
personality, this time, directly related to artificial intelligence: Zdzisław Pawlak,
one of the pioneers of Artificial Intelligence and Computer Science with worldwide
influence. Zdzisław Pawlak is specifically well known for his rough set theory
[74] but he also significantly contributed to many branches of theoretical computer
science, mathematics, and logic [79]. In the preface of his seminal book [75],
presenting rough set theory he writes: “This book is devoted to some areas of
Artificial Intelligence: knowledge, imprecision, vagueness, learning, induction and
others” and also “The main issue we are interested in is reasoning from imprecise
data, or more specifically, discovering relationship between them.” Again, you can
see that Zdzisław Pawlak was sharing with Herbert Simon and Bernard Roy the
same interest in the imperfection of data. Roman Słowiński met Zdzisław Pawlak
in the middle of eighties of the last century and he was immediately interested
as explained by himself [94]: “Personally, I am grateful to Professor Pawlak for
revealing me the concept of rough set at the beginning of its conception. Together
with my brother Krzysztof, a surgeon, we had the privilege of working with him
on the first real-world application of rough set theory—verification of indications
for the treatment of duodenal ulcer by HSV.” These joint scientific meetings also
initiated next Roman Słowiński’s work on generalizations of the rough set theory to
take into account various types of imprecision and on a more general exploitation
of rules, resulting from the simplification of decision tables, see, e.g., [64, 95–98].
Recall that Roman Słowiński with his cooperators organized in Kiekrz near Poznań
the first international workshop on rough sets theory and was an editor of one
first multi-authors monograph on rough sets theory and intelligent decision support
systems [93]. Then, he has continued to work on the rough set theory of Zdzisław
Pawlak combining it with the MCDA ideas of Bernard Roy, proposing many original
contributions and advances relevant both for rough set theory and MCDA, orienting
both of them in an AI perspective.

The above considerations show that the genesis of Roman Slowinski’s scientific
project of combining Operations Research and Artificial Intelligence in Intelligent
Decision Support Systems is the result of the interaction of the great scientific
personality of Roman Słowiński with the three great scientific personalities of Jan
Wȩglarz, Bernard Roy and Zdzisław Pawlak. This permitted to realize the vision
drafted by Herbert Simon, the founder of intelligent support systems, in his short
paper that very probably was unknown to all of them (we were not able to find any
citation of that paper also in the scientific productions of Jan Wȩglarz, Bernard Roy,
and Zdzisław Pawlak).

A confirmation that what we have reconstructed corresponds to the scientific
project Roman Słowiński has been pursuing can be meaningfully found in the
following frame of an interview he recently released [29]:

[. . . ] computer systems were and are created with the intention of decision support. [. . . ]
Its development accelerated after World War II with the transition of military operational
techniques to civilian operational research, which became a scientific discipline practiced
at the border of economics and computer science. In 1950, Alan Turing posed the question
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of whether machines could think in the pages of the journal Mind, and from 1956 the term
“artificial intelligence” began to be used to refer to computer systems that relieve humans of
certain intellectual tasks, that is, support their decisions. This is how operations research and
artificial intelligence came together to form intelligent decision support systems, which also
owe their effectiveness to the high computing power of computers and the Internet, which
is a huge database. A feature of AI is learning from observations accumulated in large data
sets. As Herbert Simon put it in the 1980s, learning allows adaptive changes to a system
that make it perform the same or similar task more efficiently next time. An intelligent
decision support system uses AI precisely in the aspect of learning from data about the
decision situation, thus making the user more familiar with the situation, as AI discovers
regularities, anomalies, cause-effect relationships, that is, it discovers knowledge useful in
decision making. [. . . ] The data provided to the system may be incomplete, inaccurate,
subject to random fluctuations, and partially contradictory. Different mathematical theories
and models, such as probability calculus and statistics, rough set theory, or fuzzy set theory,
deal with extracting knowledge from such “imperfect” data.

We want to conclude this section with some other words from another interview
of Roman Słowiński [71] clarifying his specific “humanistic” approach to the
intelligent decision support system domain:

These systems [intelligent decision support systems] help humans to better understand the
decision-making situation and recommend solutions that are consistent with the preferences
of a given person or group of people, that is, with their value system. These systems
are interactive, because there is a dialogue between the machine, which works according
to an algorithm, and the user: we need to let the machine know our preferences, then
the machine algorithm will produce a recommendation that is consistent with the model
of those preferences, and the human can either accept that recommendation or provide
new preference information in response, and such a process loops until a satisfactory
recommendation is obtained. Such a decision support process is said to be “human in the
loop of the system.”

1.2 Short Biographical Notes

Roman Słowiński was born in Poznań, Poland, on 16 March 1952 into the family
of Lech Słowiński, a professor of Polish philology, and Melania née Michalska.
He received his MSc degree from the Electric Faculty of the Poznan University
of Technology in 1974, followed by his doctorate (PhD) in 1977 under the
supervision of Jan Wȩglarz. In 1981 he obtained the degree of higher doctorate
(DSc) (Habilitated doctor in Polish system) from the same University. He attained
the national rank of professor in 1989, and since 1991 he has held the position
of Full Professor at the Poznań University of Technology. Since 2003 he is also
a Professor at the Systems Research Institute of the Polish Academy of Sciences
in Warsaw. Between 1995 and 1997 he hold the European Chair at the University
of Paris Dauphine. He was also an invited professor at the Swiss Federal Institute
of Technology in Lausanne, the University of Catania, Polytech’ Mons, University
of Michigan-Ann Arbor, Yokohama National University, Université Laval-Québec,
University of Missouri-Columbia, University of Osaka, Polytech’ Tours, Ecole
Centrale Paris, and many others.
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In 1989 Roman Słowiński founded the Laboratory of Intelligent Decision Sup-
port Systems (IDSS; http://idss.cs.put.poznan.pl/site/idss-en.html) at the Institute of
Computing Science, Poznań University of Technology. He has been chairing IDSS
continuously until now. Furthermore he created and led a new Master of Science
specialization at Poznan University of Technology devoted to Intelligent Decision
Support Systems (the first Master program in this domain in Poland).

He became a Corresponding Member of the Polish Academy of Sciences in 2004,
and an Ordinary Member in 2013. Since 2013 he has been a member of Academia
Europaea. In 2011–2018 he held the post of Chairman of the Poznań Branch of the
Polish Academy of Sciences. From 2015 till 2020 he was an elected Chairman of
the Committee on Computer Science of the Polish Academy of Sciences. In 2019
he was elected by the General Assembly of the Polish Academy of Sciences to the
post of Vice President of the Academy for the 2019–2022 term.

Other positions he has held include:

• Deputy Director of the Institute of Control Engineering, Poznań University of
Technology (1984–1987),

• Vice Dean of the Electric Faculty, Poznań University of Technology (1987–
1993),

• Professeur en chaire européenne at Université Paris-Dauphine (2003–2009),
• President (2010–2012) and fellow (since 2015) of the International Rough Set

Society;
• Vice president of Polish Operational and Systems Research Society—POSRS;
• Member of the scientific council of Polish Artificial Intelligence Society—PSSI;
• Expert panel member of the European Research Council, PE6-Computer Science

(2009–2013);
• The Vice-chairman of the Social Advisory Council at the Archbishop of Poznan.

Roman Słowiński has received many acknowledgments and prestige awards. We
have already mentioned the prestigious EURO Gold Medal that he was given in
1991. In 1997 he received the Edgeworth-Pareto Award by International Society
on Multiple Criteria Decision Making. Poland awarded Roman Słowiński with the
Annual Prize of the Foundation for Polish Science, the highest scientific honor
in the Country. He was also given the Scientific Award of the President of the
Polish Academy of Sciences (2016) and the Scientific Award of the Prime Minister
of Poland for creating a scientific school of Intelligent Decision Support Systems
(2020). In 2016, he also received the Scientific Award of the President of the Polish
Academy of Sciences. Furthermore, he was honored in his hometown, Poznan. The
society of the 19th century Polish positivist Hipolit Cegielski gave him the title of
“Outstanding Personage of Organic Work” (2017), and the City Council of Poznan
awarded him the title of “Distinguished Citizen of the City of Poznan” (2018).
In 2021 Roman Słowiński has been promoted “Officier dans l’Ordre des Palmes
académiques” by the French Prime Minister to reward his research work in the field
of computer science and his unfailing commitment to the development of Franco-
Polish relations in the academic and scientific field.

http://idss.cs.put.poznan.pl/site/idss-en.html
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Roman Słowiński is Doctor Honoris Causa of Polytechnic Faculty of Mons
(2000), University Paris Dauphine (2001) and Technical University of Crete (2008).
He is also a Honorary Professor of the Nanjing University of Aeronautics and
Astronautics (2018).

Roman Słowiński is fellow of IEEE (the Institute of Electrical and Electronics
Engineers—2017), IRSS (International Rough Set Society—2015), INFORMS
(the Institute for Operations Research and the Management Sciences—2019), and
IFIP (International Federation for Information Processing—2019). He was also an
active member of Polish Information Processing Society (PTI) and Polish Artificial
Intelligence Society (PSSI).

Since 1999 Roman Słowiński has been contributing to the development and
promotion of Operational Research as Coordinating Editor of the European Journal
of Operational Research (Elsevier, CiteScore=8.5), which, also due to his incessant
work, is now a premier journal in Operations Research. In years 1998–2003, he was
editor of Decision Analysis Section of the International Journal on Fuzzy Sets and
Systems. Currently, he is on editorial board of twenty scientific journals.

Since 2007 Roman Słowiński has been a coordinator of the EURO Working
Group on Multiple Criteria Decision Aiding, succeeding Bernard Roy, who founded
it in 1975. He has also been President of the INFORMS Section on Multiple Criteria
Decision Making for the two years period 2020–2021.

1.3 Advice and Supervision of New Researchers

In his academic career, Roman Słowiński has been a mentor and advisor to many
young researchers and students. So far, he has promoted 26 doctoral students, many
of whom have continued their scientific careers, achieving postdoctoral habilitation
degrees (13 in Poland) or professorships. They were successively: Eduardo R.
Fernandez (the first of Roman Słowiński’s supervised PhD student that defended
his thesis in 1987), Marek Kurzawa, Wiktor Treichelt, Mariusz Boryczka, Piotr
Zielczyński, Piotr Czyżak, Jerzy Stefanowski, Jacek Żak, Andrzej Jaszkiewicz,
Maciej Hapke, Piotr Zielniewicz, Krzysztof Krawiec, Robert Susmaga, Paweł
Kominek, Maciej Komosiński, Jacek Jelonek, Szymon Wilk, Roman Pindur, Irmina
Masłowska, Bartłomiej Prȩdki, Izabela Szczȩch, Wojciech Kotłowski, Krzysztof
Dembczyński, Jerzy Błaszczyński, Miłosz Kadziński, and Marcin Szela̧g. Many of
them have already raised their own doctoral students, so it can be stated that Roman
Słowiński is more than the scientific father of many, many researchers.

Let us emphasize that Roman Słowiński in his cooperation with PhD students and
younger colleagues not only plays the role of a mentor but also is even more of an
advisor and partner, leaving to his collaborators a large space of research freedom
encouraging them to be independent in a perspective of a very open discussion.
He also allows them to explore interesting research problems, which are sometime
distant from his main interests.
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Furthermore Roman Słowiński reviewed many dissertations, both in Poland and
abroad, and collaborated with many researchers contributing to the development
of their careers. In the Sect. 1.5 we will provide a bibliometric review of his joint
publications and discuss his research impact.

Roman Słowiński has also always encouraged and motivated colleagues, espe-
cially if young and at the beginning of their scientific carriers. Very often these
colleagues started some scientific project with Roman Słowiński and became his
friends beyond the scientific activity. For instance Constantin Zopounidis met
Roman in Lamsade, the laboratory of Université Paris Dauphine and the CNRS
founded by Bernard Roy as a researcher centre in Operational Research and
Decision Aiding, in the early 1980s. In that occasion, after a discussion about
multicriteria decision aiding and financial modeling, Roman Słowiński asked
Constantin Zopounidis to write a paper for the Journal “Foundations of Control
Engineering,” a quarterly peer-reviewed international journal published by Poznań
University of Technology since 1975—that since 1990 changed name becoming
“Foundations of Computing and Decision Sciences.” Constantin Zopounidis wrote
an article entitled “A Multicriteria decision making methodology for the evaluation
of the risk of failure and an application” [107], which was published in 1987. It was
one of the first papers of Constantin Zopounidis that after started a cooperation with
Roman Słowiński on the subject of that paper resulting in the publications of several
articles in prestigious journals [22, 99, 101].

1.4 The Main Research Contributions of Roman Słowiński

As explained in Sect. 1.1, the scientific carrier of Roman Słowiński started in the
area of project scheduling. In that domain he gave relevant contributions related to
multiple category resources, multiple job modes, multiple criteria, and uncertainty.
More in detail, his contributions were related to Resource Constrained Project
Scheduling [8, 73, 106] and scheduling problems with preemptive activities (jobs)
to be scheduled on unrelated parallel machines (processors) with additional limited
discrete resources [91]. A specific mention deserves the pioneering contributions on
fuzzy scheduling [52] and, overall, multiobjective scheduling considering conflict-
ing criteria such as project duration or maximum lateness [92, 100].

In fact, also due to the cooperation with Bernard Roy, MCDA became, in a
second moment, the most relevant research area of Roman Słowiński that has given
many diversified contribution in different directions:

• interactive multiobjective optimization: in this context we remember a classi-
cal interactive multiobjective optimization method [56] in which the decision
maker’s preference is modeled through the piecewise linear utility model of
UTA method [55], an interactive method in which an outranking relation is
used to select solutions to be proposed to the decision maker [58], a visual
interactive method, called FLIP, handling multiobjective linear programming
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problems with fuzzy coefficients in the objective functions and the constraints
[17], interactive procedures based on an achievement scalarizing function based
on weights of objectives compatible with preference information supplied by the
user [57, 60]; in this domain, a specific mention deserves the contribution in the
heuristics for multiobjective optimization: in this perspective let us remember the
Pareto simulated annealing for fuzzy multiobjective combinatorial optimization
[53], and overall, several methodologies to drive evolutionary multiobjective
optimization algorithm towards the most desirable region of the Pareto front
using preference information supplied by the decision maker such as NEMO
methods [9, 10] based on ordinal and robust ordinal regression and some methods
based on contraction of preference cones [61];

• ELECTRE methods: Roman Słowiński has proposed some relevant extensions
of the ELECTRE methods introducing two new effects called reinforced prefer-
ence and counter-veto effect [85] and specific procedures permitting to handle
hierarchy of criteria [14, 18]. Roman Słowiński has also introduced the induction
of parameters of ELECTRE methods from decision preferences through ordinal
regression approach [68]. Roman Słowiński has participated also to the develop-
ment of very reliable decision support systems for the applications of ELECTRE
methods [69]. Let us mention one of the first and most well-known real-world
applications of ELECTRE methods [87], related to the use of ELECTRE III
[81] for programming a water supply system (WSS) for a rural area. Roman
Słowiński has been also working on the axiomatic basis of ELECTRE methods
[102]. Let us also remember a very comprehensive and updated state of the art
on the ELECTRE methods [28].

• robust ordinal regression: in fact this can be considered a specific MCDA
approach originally proposed by Roman Słowiński [44, 47]. Differently from the
classical ordinal regression [55] that aimed to represent preferences expressed
by the DM with a single specification of a given decision model, very often
the additive value function, robust ordinal regression takes into account the
whole set of specifications of the considered model that are compatible with the
preference information supplied by the DM. Robust ordinal regression, originally
proposed taking into account additive value functions used to handle ranking
problems [44], was extended and generalized in a vast diversity of directions
considering representation of intensity of preferences [27], sorting problems
based on additive value functions [46], ELECTRE methods [48], hierarchy of
criteria in value functions [13] and ELECTRE methods [14, 15], interaction of
criteria in value functions [51] and ELECTRE methods [16], and so on.

Data analysis based on rough set theory is the third pillar of the Roman
Słowiński’s research activity. We have already mentioned that he did the first real-
world medical applications of the rough set theory [78] based on the development,
together with his cooperators, of the first software to apply rough set approach [96].
Roman Słowiński proposed also some remarkable extensions such as the rough
approximation based on a similarity relation being only reflexive that generalizes
the classical indiscernibility relation of original rough set theory which, being an
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equivalence relation, is not only simply reflexive but also symmetric and transitive
[98]. He studied also rough approximation in case of missing or imprecise data [95],
a methodology to apply the decision rules obtained from rough set approach on the
basis of their closeness to objects to be classified [97]. Roman Słowiński applied
rough set theory also in business and finance [22, 101].

From the beginning of the 1990s Roman Słowiński started to be interested
in applying rough set approach to multiple criteria decision aiding [76, 77]. The
proposed approach was based on the idea of supporting decisions by means of
the “if . . . , then . . . ” rules obtained from preference information supplied by the
decision maker in terms of example of decisions. In fact, the information requested,
the examples of decisions, as well as the information supplied, the decision rules,
were simple and easily understandable for human. However, its restriction was
noticed in the application of rough set theory to multiple criteria decision aiding.
Rough set theory is based on the indiscernibility relation that holds between two
objects if they have the same evaluation with respect to all considered attributes,
so that if two objects are indiscernible they should be assigned to the same class.
Instead, multiple criteria decision making is based on preference relations that
respect a dominance principle for which if one alternative a has an evaluation not
worse than another alternative b on all the considered attributes, then a has to be
considered at least as good as b. These considerations matured gradually in a certain
number of years with a sequence of steps. First, the idea that the object of a rough
approximation has to be a preference relation rather than a classification was taken
into consideration [30]. The approach gave some interesting results, but in a first
moment still the usual indiscernibility was continued to be applied. The necessity
to pass from indiscernibility to dominance was in a second moment matured, at the
beginning with a specific “single level” dominance used to approximate a preference
relation [33]. The clear idea of substituting indiscernibility with dominance and on
this basis reformulating the whole rough set theory appeared for the first time in
a paper in which rough set approximation was used to the problem of bankruptcy
evaluation [31], further developed and extended in [34], and finally published in
its definitive form called Dominance-based Rough Set Approach (DRSA) in [37]
which is one of the most cited papers both in the domains of rough set theory and
multiple criteria decision aiding. In the following years, DRSA has continued to
be extended and applied in many domains thanks also to the algorithms [35, 105]
and software [6] developed by Roman Słowiński and his cooperators. Among the
most relevant extensions of DRSA proposed by the same Roman Słowiński let us
remember

• the variable consistency DRSA [3, 36] permitting to discover strong patterns in
the data through a relaxation of the dominance principle,

• an extension of DRSA permitting to handle missing values [32],
• an extension of DRSA to handle decisions under uncertainty and time prefer-

ences [45],
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• an interactive multiobjective optimization method in which the preference
information supplied by the decision maker is represented in terms of DRSA
“if. . . , then . . . ” decision rule [43],

• the stochastic DRSA [63] resulting in a probabilistic model for ordinal classi-
fication problems based on a statistical approach relating DRSA with machine
learning approach [62].

In addition to the main research areas discussed above, Roman Słowiński with
his cooperators contributed to many problems in the field of artificial intelligence, in
particular, knowledge discovery from data and machine learning. We will mention
just some of them:

• new methods of evaluating rules discovered from data, including studies on
values rule evaluation measures [49], in particular, starting from an initial idea
presented in the paper co-authored also by Zdzisław Pawlak [39], promoting
Bayesian confirmation measures and investigating their formal properties [50],

• new methodologies for interacting with human analysts to evaluate and select the
most meaningful decision rules induced with the rough set approach [11], taking
also into account paradigms of multiple criteria perspective [103],

• an approach to evaluate the most important sets of elementary conditions in rules
by an adaptation of set functions used in cooperative game theory [42],

• online inductions and evaluation of rule classifiers [11, 40],
• selection of the most relevant subsets of features in the data processing steps of

knowledge discovery [104, 105] as well as in combination with artificial neural
network learning [59],

• new algorithms for discovering rules with handling semantically correlated
attributes [19, 38, 40],

• specialized rule-based ensemble classifiers [2, 4, 5, 20, 21],
• nonparametric ordinal classification with monotonic constrains [62],
• procedures to interpret classifiers with an additional dialogue with users [7].

Finally, it is necessary to mention the involvement of Roman Słowiński in many
practical applications of the above-discussed methods, in particular, in the field of
medicine [26, 66, 67], environmental protection [12, 24, 61], medical [25, 101]
and technical diagnostics [72], banking and finance [22, 31, 101], as well as in
preferences learning, e.g., in the domain of customer satisfaction [1, 41].

1.5 A Bibliometric Analysis of the Research Activity and
Impact of Roman Słowiński

Roman Słowiński is an exceptionally active and creative author of many scientific
texts. While writing them, he collaborated with many co-authors, inspired other
researchers, and influenced research conducted in many fields, as we discussed in



12 S. Greco et al.

the earlier sections of this chapter. In order to discuss his creative writing activity,
we present below a bibliometric analysis of his publications.

Let us recall that bibliometrics studies the publishing material quantitatively [23].
Here we will focus on an individual author by analyzing such indicators as the
number of publications, their total citations, cites of the most visible papers, the h—
index [54]. Furthermore we will identify the journals and other publication sources
where he published most often together with the fields and the most important
topics/keywords of his contributions. This part is somehow inspired by earlier types
of such bibliometric analysis undertaken in such studies as, for instance, [65]. We
will also determine his most frequent co-authors and comment on his research
network and other publishing activities.

This analysis is done using the following bibliography databases and web search
engines: Scopus (Elsevier’s abstract and citation database), Web of Sciences (cur-
rently maintained by Clarivate Analytics), and Google Scholar. It is also supported
by considering some summary information provided by DBLP—a computer science
bibliography website. The search process was carried out in October 5, 2021.

1.5.1 Numbers of Publications and Citations

Roman Słowiński has published over several hundred texts depending on the
bibliography source. These numbers and citations are presented in Table 1.1. Note
that Web of Sciences Core Collection is the most restrictive to selected journals
and main conferences while Scopus contains the larger collections of the good
quality materials. On the other hand Google Scholar indexes other conferences and
electronic materials, therefore its database and the number of found publication links
are usually clearly bigger.

The numbers of publications in each of these bibliography sources are very high.
If one analyzes the annual distributions of their numbers—see figures available
in Scopus or Web of Sciences interface—they increased since beginning of the
90’ (4–6 per year), to approximately 10–14 between 2000 and 2010, and an even
higher numbers more recently. The highest number of 22 publications occurred in
2012 year. These are, in any case, very high indicators proving his extremely rich
scientific activity.

Table 1.1 Numbers of Roman Słowiński’s publications, their citations and h index

Database system No. publications Total no. of citations No. of citing documents h-index

Scopus 325 14,727 8036 61

Web of Sciences 275 10,894 6238 51

Google Scholar > 500 30,378 – 87

Dblp 264 – – –
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The interesting information on the different types of publications may be found
in dblp website. According to it Roman Słowiński co-authored:

• 117 journal papers,
• 114 conferences papers,
• 17 chapters in books and collections,
• 8 being editor or co-editor of multi-author’s monographs.

This is somehow consistent with a similar analysis of the author output panel
available in Scopus (called document by source view) where also the numbers of
different journals and conferences papers are approximately the same (although
with advantage for journals). Following this Scopus report the Springer Lecture
Notes in Computer Science including Subseries in Artificial Intelligence is the
most numerous outlet for the publication of conference papers and chapters
(87 publications—26.9%—for all 325 papers). Nevertheless one should notice a
relatively very high number of Roman Słowiński’s publications in many journals.
The most frequent journals are analyzed in the next subsection.

The total numbers of citations presented in Table 1.1 are very high and should
be regarded as definitely above the average values of even very good researchers.
Moreover its dynamics is constantly increasing since the 90s—which is illustrated
in Fig. 1.1 as the number of citations received in each year. As one can notice, the
number of citations has increased significantly though time since the end of 70s in
the previous century. Following Scopus summaries Slowinski’s publications were
receiving around several hundreds of citations per year till 2003, then the numbers

Fig. 1.1 A number of annual citations of papers
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increased to nearly one thousand—for instance, it was 1021 in year 2014 and this
number remains relatively stable at a level slightly above 900 from this moment.
Following Google Scholar the corresponding values are higher and currently reach
values in the range of 1400–1500 citations per year.

The visibility and impact of Roman Słowiński’s publications is clearly reflected
by values of his h index in all examined bibliography databases. They are very high
and, in particular, 51 for Web of Science, 62 for Scopus, and 87 for Google Scholar.
Let us notice that values of bibliometric indices allow to classify Roman Słowiński
as one of the world’s most recognizable scientists. For instance, Guide2research
webpage (currently changed to research.com) contains 2021 7th edition of top
scientists ranking for computer science and Roman Słowiński is placed on 504
position in the world ranking and as the first researcher in Polish subranking.1

Following the discussion in [70] is also recognized as one of the most cited Polish
researchers in Artificial Intelligence.

1.5.2 The Most Cited Papers

The papers of Roman Slowinski received a high number of citations. The 20 most
cited positions in Scopus and Web of Science are the following (we list them
according to Scopus ranking and additionally show the number of citations from
Web of Science in brackets + an average per year):

1. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets theory for multicriteria
decision analysis. European Journal of Operational Research, 2001—1281
citations (1034 in WoS; 49.24 per year),

2. Pawlak, Z., Grzymala-Busse, L., Slowinski, R., Ziarko, W.: Rough sets.
Communications of the ACM, 1995—834 citations (582 in WoS, 21.56),

3. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approx-
imations based on similarity. IEEE Transactions on Knowledge and Data
Discovery, 2000—800 citations (656 in WoS; 29.82 per year),

4. Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation of a preference
relation by dominance relations. European Journal of Operational Research,
1999—389 citations (311 in WoS; 13.52 per year),

5. Pawlak, Z., Slowinski, R.: Rough set approach to multi-attribute decision
analysis. European Journal of Operational Research, 1994—375 citations (271
in WoS; 9.68 per year),

6. Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation by dominance
relations. International Journal of Intelligent Systems, 2002—367 citations
(288 in WoS; 14.4 per year),

1 https://research.com/scientists-rankings/computer-science/2021/pl.

https://research.com/scientists-rankings/computer-science/2021/pl
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7. Dimitras, A., Slowinski, R., Susmaga, R., Zopounidis, C.: Business failure
prediction using rough sets. European Journal of Operational Research, 1999—
360 citations (276 in WoS; 12 per year),

8. Greco, S., Matarazzo, B., Slowinski, R.: Rough sets methodology for sorting
problems in presence of multiple attributes and criteria. European Journal of
Operational Research, 2002—346 citations (290 in WoS; 14.5 per year),

9. Greco, S., Mousseau, V., Slowinski, R.: Ordinal regression revisited: Multiple
criteria ranking using a set of additive value functions. European Journal of
Operational Research, 2002—305 citations (277 in WoS; 19.79 per year),

10. Mousseau, V., Slowinski, R.: Inferring an ELECTRE TRI model from assign-
ment examples. Journal of Global Optimization, 1998—272 citations (228 in
WoS; 9.5 per year),

11. Jelonek, J., Krawiec, K., Slowinski, R.: Rough set reduction of attributes and
their domains for neural networks, 1995—207 citations (117 in WoS; 4.33 per
year),

12. Figueira, J.R. Greco, S., Roy, B., Slowinski, R.: An Overview of ELECTRE
Methods and their Recent Extensions, Journal of Multi-criteria Decision
Analysis, 2013—194 citations (162 in WoS; 18 per year),

13. Mousseau, V., Slowinski, R., Zielniewicz, P.: A user-oriented implementation
of the ELECTRE-TRI method integrating preference elicitation support, Com-
puters and Operation Research, 2000—194 citations (158 in WoS; 7.18 per
year),

14. Blaszczynski, J., Greco S., Slowinski, R.: Multi-criteria classification—a new
scheme for applications of dominance-based decision rules. European Journal
of Operational Research, 2007—175 citations (135 in WoS; 9 per year),

15. Laengle, S. et al.: Forty years of the European Journal of Operational Research:
A bibliometric overview. European Journal of Operational Research, 2017—
173 citations (148 in WoS; 29.6 per year),

16. Blaszczynski, J., Slowinski, R., Szelag, M.: Sequential covering rule induction
algorithm for variable consistency rough set approaches. Information Science,
2011—173 citations (149 in WoS; 13.6 per year),

17. Slowinski, R.: A multicriteria fuzzy linear programming method for water
supply system development planning. Fuzzy Sets and Systems, 1986—172
citations (155 in WoS; 4.31 per year),

18. Figueira, J.R. Greco, S., Slowinski, R.: Building a set of additive value
functions representing a reference preorder and intensities of preference: GRIP
method. European Journal of Operational Research, 2009—141 citations (128
in WoS; 9.85 per year),

19. Greco, S., Matarazzo, B., Slowinski, R., Stefanowski, J.: Variable consistency
model of dominance-based rough sets approach. Proc. RSCTC, Springer LNCS
2001—139 citations (no in WoS),

20. Jaszkiewicz, A., Slowinski, R.: The ’Light Beam Search’ approach - an
overview of methodology and applications. European Journal of Operational
Research, 1999—123 citations (105 in WoS, 4.57 per year).
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The citation rankings in Scopus and WoS are slightly different, although nearly
the same papers are present in both Top 20 positions. In case of Web of Science the
differences are: Roy. B, Slowinski R.: Questions guiding the choice of a multicriteria
decision aiding method. EURO Journal of Decision Process 2013 (112 citations,
ordered as 19 in the ranking) ; then Slowinski, R.: Two approaches to problems
of resource allocation among project activities. A comparative study. Journal of
the Operational Research Society 1980 and Corrente S., Greco S., Slowinski, R.:
Robust ordinal regression in preference learning and ranking. Machine Learning
2013 (both 98 citations). Google Scholar in its Top 20 shows also: Slowinski, R.,
Zopounidis, C.: Application of the rough set approach to evaluation of bankruptcy
risk. Intelligent Systems in Accounting, Finance and Management, 1995; and Greco,
S., Matarazzo, B., Slowinski, R.: The use of rough sets and fuzzy sets in MCDM,
a chapter in Multicriteria decision making, Springer 1999, and a Polish translation
by Roman Słowiński of Bernard Roy’s book Multicriteria Decision Aid [84]. All
these papers are highly cited, in particular, first positions in this ranking around
1000 times—which is an extraordinary result.

Nearly all of the listed top 20 cited papers were published in journals. Only few
publications are conference papers (Scopus) or book chapters. European Journal
of Operational Research is the dominated place for publications (over 10 times
per 20 positions), while others are selected as single positions. Most of them
also contribute to fields of operational research, decision analysis, fuzzy sets,
or intelligent systems. The most frequent key words and topics include: rough
set theory and rough approximations, multicriteria decision analysis, dominance
relations, ordinal regression, ELECTRE method, preferences, and decision rules.

1.5.3 Journals and Other Sources of Publications

Unlike the previous section (only top cited publications), now we present global
summaries of all publications. Firstly using Scopus Author Output panel we list
main journals and other sources of publications. Table 1.2 presents names of
journals of book series where Roman Slowinski published papers at least 3 times
in the period 1977–2021.

According to this summary table Roman Słowiński is author of a high number of
publications in journals from Operation Research, Artificial Intelligence, and Soft
Computing. Many of the listed journals are very prestigious ones with demanding
acceptance rates and high impact factors. For instance, the impact factor is 5.334 for
European Journal Of Operational Research, 7.084 for Omega, 6.795 for Information
Sciences, around 3.8 for Fuzzy Sets And Systems and International Journal
of Approximate Reasoning. Publication on such journals permitted that Roman
Słowinski’s articles could be read and cited by many researchers worldwide, which
explains also the large number of citations in the earlier list of papers presented
in the previous subsection. Springer series Lecture Notes In Computer Science
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Table 1.2 Names of journals or book series where Roman Slowinski published papers at least 3
times—source Scopus Author output

Name of journal/book How many

Lecture Notes In Computer Science 87

European Journal Of Operational Research 37

Information Sciences Journal 9

Lecture Notes In Artificial Intelligence 8

Omega (United Kingdom) 8

Fuzzy Sets And Systems 7

Control And Cybernetics 6

Decision Support Systems 6

Fundamenta Informaticae 6

International Journal of Approximate Reasoning 5

Annals Of Operations Research 4

Communications In Computer and Information Science 4

International Series In Operations Research And Management Science 4

Studies In Computational Intelligence 4

Computers And Operations Research 3

Engineering Applications Of Artificial Intelligence 3

Infor 3

Journal Of Global Optimization 3

Knowledge Based Systems 3

Springer Handbook Of Computational Intelligence 3

refers to mainly conference proceedings in similar fields of Artificial Intelligence,
Computational Intelligence, or Rough Sets Theory.

1.5.4 Main Co-Authors

Roman Słowiński cooperated with many researchers from different countries.
Depending on the bibliography systems their number is listed up to 150 ones. Below
in Table 1.3 we list the names of the most frequent collaborators.

One can notice that some of the names already occurred in the list of the
most cited papers of Roman Słowiński. Besides these co-authors Roman Słowiński
collaborated with many other researchers coming also from France, Germany, Bel-
gium, Spain, Portugal, Greece, Finland, Mexico, Brazil, and many other countries.
All these reports clearly demonstrate that he was able to create a strong research
networks of many researchers coming from different countries, not only from his
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Table 1.3 Names of the most frequent co-authors of Roman Słowiński papers indexed in
Scopus—the total number of authors 150 and papers 325

Name Country Co-authored documents

Salvatore Greco Italy 167

Matarazzo Benedetto Italy 66

Blaszczynski Jerzy Poland 43

Kadzinski Milosz Poland 31

Corrente Salvatore Italy 20

Dembczynski Krzysztof USA, Poland 20

Kotlowski Wojciech Poland 18

Stefanowski Jerzy Poland 18

Wilk Szymon Poland 16

Michalowski Wojtek Canada 15

Szelag Marcin Poland 15

Inuiguchi Masahiro Japan 13

Mousseau Vincent France 10

homeland Poland and his PhD students there. Many of his co-authors have also
independently published a high number of papers, which are also read and cited,
what is reflected by their own high h indices and numbers of citations. This creates
an extensive network of subsequent authors and shows how Roman Słowiński has
influenced so many researchers around the world.

1.5.5 Most Contributed Topics

Using Scopus authors profile the most contributed topics (keywords) in recent
Roman Słowiński’s publications are: multiple criteria, ELECTRE methods, attribute
reduction, rough sets, fuzzy rough sets, multiobjective evolutionary algorithm,
multiobjective optimization, and Pareto front. On the other hand using additional
tools offered by Web of Science one can find the report on research categories to
which Roman Słowiński’s published articles shown in Table 1.4.

The similar report from Scopus shows that his publications are mostly concerned
with general categories Operations Research, Management Science, and Computer
Sciences with Artificial Intelligence.
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Table 1.4 Names of general fields associated with types of publications—source Web of Science

Web of Science categories Record count no. % of 275

Computer Science Artificial Intelligence 119 43.273

Operations Research 84 30.545

Management Science 54 19.636

Computer Science & Information Systems 42 15.273

Computer Science Theory Methods 40 14.545

Mathematics Applied 21 7.636

Computer Science Interdisciplinary Applications 14 5.091

Automation Control Systems 12 4.364

Engineering Electrical Electronic 12 4.364

Computer Science Cybernetics 10 3.636

Engineering Multidisciplinary 7 2.545

Statistics Probability 7 2.545

Medical Informatics 6 2.182

Environmental Sciences 5 1.818

Engineering Industrial 4 1.455

Social Sciences Mathematical Methods 4 1.455

Economics 3 1.091

Mathematics Interdisciplinary Applications 3 1.091

Biochemistry 2 0.727

1.6 Volume’s Contributions

The chapters of this book constitute a set of contributions which are fairly
representative of the past and current research themes on which Roman Słowiński
had a substantial influence. The set of authors who are involved in this book as
authors correspond to renowned colleagues that had collaborations with Roman
Słowiński or were influenced by his works. We are grateful to all contributors
coming from laboratories from all over the world.

The book content, besides this Preface and the following contribution presenting
the scientific activity of Roman Słowiński, is organized into three main parts related
to the following domains in turn: Multicriteria Decision Aid, Multiobjective opti-
mization, Intelligent Decision Support Systems handling uncertainty in knowledge
management.

Jan Wȩglarz, drawing extensively from his personal memories first as a mentor
and then as a colleague and friend, reconstructs the scientific career of Roman
Słowiński, from his initial fundamental contributions in project scheduling, through
his research on multiple criteria decision aiding and rough set theory due to
his encounters with Bernard Roy and Zdzisław Pawlak, and continuing with all
his subsequent activity up to the present day full of many diverse international
collaborations.
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Part I of the book, devoted to Multiple Criteria Decision Aiding, is composed of
twelve contributions.

Salvatore Corrente, José Figueira, and Salvatore Greco present a reasoned survey
of the contributions given by Roman Słowiński to ELECTRE methods, a well-
known family of multiple criteria decision aiding methods originally proposed by
Bernard Roy and his cooperators.

Hannele Wallenius and Jyrki Wallenius discuss potential opportunities for the
Decision Science/MCDM community in view of the technology mega trends and
other trends characterizing the current world rapid changes. In this perspective
they envisage space for promising contributions in domains such as recommender
systems and search engines, matching algorithms big data, indices for sustainable
investing, and mass decision support tools to help online purchases.

Michael Doumpos, Evangelos Grigoroudis, Nikolaos Matsatsinis, and Con-
stantin Zopounidis provide an overview of the preference disaggregation paradigm,
covering the existing methodologies in this area, the main types of decision models
used in a disaggregation context (i.e., value functions, outranking, and rule-based
models), and existing formulations for ranking and sorting problems. The chapter
also reviews the recent applications, as well as methodological advances focusing
on robustness issues.

Eyke Hullermeier and Christophe Labreuche elaborate two important develop-
ments in the realm of multicriteria decision aid, which have attracted increasing
attention: first, the idea of leveraging methods from preference learning for the data-
driven (instead of human-centric) construction of decision models, and second, the
use of hierarchical instead of “flat” decision models. Finally, an approach based on
these two ideas is illustrated by means of a concrete example, namely the learning
of tree-structured combinations of the Choquet integral as a versatile aggregation
function.

Adiel Teixeira de Almeida Filho, Julio Cezar Soares Silva, Diogo Ferreira de
Lima Silva, and Luciano Ferreira give an overview of preference learning techniques
for the credit rating of financial assets focusing on the country and corporate credit
risk. The authors discuss multiple criteria decision methods helping the investors to
understand in a transparent way the assignment of financial assets to different risk
classes.

Eduardo Fernandez, Jorge Navarro, and Efrain Solares present two novel meth-
ods to address multicriteria ordinal classification problems on the basis of interval
value functions, which are used to represent preferences of decision makers that
hesitate about the precise value of criteria weights and criterion scores. The authors
prove that the proposed methods satisfy the following basic consistency properties
for sorting problems: Unicity, Independence, Homogeneity, Monotonicity, Confor-
mity, and Stability.

Aida Valls and Antonio Moreno review the extensions of the ELECTRE multiple
criteria decision aiding methods developed by the ITAKA research group that
they coordinate. In particular, they present three versions of the concordance and
discordance indices of ELECTRE methods that permit to handle multi-valued
linguistic scales and the hierarchy of criteria.
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Miłosz Kadziński reviews Robust Ordinal Regression, a relevant multiple criteria
methodology introduced by Roman Słowiński, which incorporates indirect prefer-
ence information in the form of decision examples and verify the consequences of
applying all compatible instances of an assumed preference model. The contribution
discusses different aspects of the methodology, recalls significant extensions, and
lists selected real-world applications.

Yves Meinard and Alexis Tsoukiàs in their chapter entitled “What Is Legitimate
Decision Support?” discuss the aspects of the organizational context, the overall
problem situation, the environment, culture, history, which could play an important
role in supporting decisions. Based on the literature review, they propose a general
theory of legitimacy, adapted to decision support contexts, encompassing the
relevant contributions they identified in the literature.

Philippe Fortemps and Marc Pirlot present a multicriteria outranking method
to handle sorting problems, that is, classification in preference ordered classes, in
which the information is not complete. The discussed method is an extension of
the MR-Sort, a multicriteria outranking method constituting a simplified variant of
ELECTRE TRI method.

Luis Dias and Miłosz Kadziński examine possibility of creating the meta-
rankings of journals publishing Multiple Criteria Decision Aiding research based on
multiple ratings coming from expert panels, which use different qualitative scales.
Their approach exploits Benefit-of-Doubt composite indicators for heterogeneous
qualitative scales, derived from Data Envelopment Analysis. They applied it to
rankings about 50 journals, including also the European Journal of Operational
Research for which Roman Slowinski has been editor in chief since 1999.

Eleftherios Siskos and Yannis Siskos propose a multicriteria evaluation method-
ology, which is based on a synergy of the outranking method PROMETHEE II
and the Robust Simos method for the elicitation of criteria importance weights.
The evaluation system operates via a robustness control algorithm, called “Bipolar
Robustness Control,” which measures and progressively improves the robustness of
both the evaluation model and the ranking results. The net outranking flow, given
by the PROMETHEE II method, indicates the degree of superiority or inferiority of
a country, compared to the average e-government performance in Europe.

Part II of the book includes three contributions on Multiobjective Optimization.
Juergen Branke, Andrzej Jaszkiewicz, and Piotr Zielniewicz review and summa-

rize the research of Roman Słowiński, members of his Laboratory, and his main
collaborators related to the use of the decision maker’s preferences in metaheuristic
and evolutionary algorithms for multiobjective optimization.

Margaret M. Wiecek and Philip J. de Castro discuss multiobjective optimization
problems focusing on their decomposition into subproblems with a smaller number
of criteria and their coordination to solve the original problem. Decomposing in sub-
problems permits to improve interaction with decision makers enabling the trade-off
elicitation in lower dimensional spaces. In this perspective a comprehensive process
and guidance for developing a decomposition-coordination technique is proposed.

Masahiro Inuiguchi proposes a robust treatment of possibilistic linear program-
ming problems with linear membership functions introducing necessity fractional
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optimization models as optimization models with robust constraints. Those prob-
lems are reduced to a semi-infinite linear programming problem that can be
solved approximately by a linear programming technique. Moreover, under some
conditions on functions associated with the necessity measures, the problem can be
reduced to a usual linear programming problem or solved by a relaxation procedure
with a bisection method.

Part III of the book, devoted to Intelligent Decision Support Systems handling
uncertainty in knowledge management, contains four contributions.

Jerzy Błaszczyński, Salvatore Greco, Benedetto Matarazzo, and Marcin Szelag
provide a comprehensive view on basic ideas and main trends of the Dominance-
based Rough Set Approach, which is one of the main methodological contribution
of Roman Słowiński. Besides a systematic presentation of main variants of this
proposal, this chapter contains an interesting section on the rationale and history
of its gradual development.

Patrick G. Clark, Jerzy W. Grzymala-Busse, Zdzislaw S. Hippe, and Teresa
Mroczek discuss probabilistic generalizations of rough set theory, which deals
with missing attribute values in incomplete data tables. The authors consider two
global and local probabilistic approximations of the sets of examples, which are
constructed from maximal consistent blocks. Then, they study their influence on the
complexity of induced sets of rules. The presented research fits well with Roman
Słowiński’s interests in various generalizations of the rough set theory.

Izabela Szczech, Robert Susmaga, Dariusz Brzezinski, and Jerzy Stefanowski
present a survey on confirmation measures that are indices representing the impact
of evidence an E on a hypothesis H with respect to decision rules. The paper
takes into consideration the idea, due to Roman Słowiński and his cooperators, that
confirmation measures can be used as interestingness measure of rules induced from
data and then can be applied in different tasks.

Dympna O’Sullivan, Szymon Wilk, Martin Michalowski, Hugh O’Sullivan,
Marc Carrier, and Wojtek Michalowski discussed their approach to combining
adherence to therapy and patient preference models for evaluation of therapies in
patient-centered care. More precisely, each patient has a preference model that
defines preferences for specific therapies. The adherence and patient preference
models are constructed from preferential information elicited using multiple criteria
decision analysis methods and they are represented as value functions. Then, they
discuss the clinical scenarios illustrating the use of this approach.

This concludes our brief overview of the chapters of this volume.

1.7 Final Remarks

This book aims to honor Roman Słowiński’s outstanding achievements by collecting
various contributions from his colleagues, collaborators, previous PhD students, and
friends. As we shown in the previous section, in terms of content, the chapters
of this book are related to the topics of Intelligent Decision Support, Multicriteria
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Decision Analysis, Operation Research, and Artificial Intelligence but also include
more personal comments from the authors about working with Roman Słowiński.
Note that Roman Słowiński is not only an outstanding scientist but also an open-
minded man with a great and wonderful personality with a positive attitude towards
other people and the world and he acts according to deep values.

While the characteristics of this multi-author monograph correspond to the Ger-
man term Festschrift, i.e., a special book published on the occasion of the significant
birthday, we do not regard it retrospectively as a summary of Roman Słowiński’s
long and fruitful career. Knowing him personally, we think prospectively and expect
his further work proposing many original ideas to contribute to the development
of many areas of research continuing to inspire the work of a rich network of
researchers.
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34. Greco S, Matarazzo B, Słowiński R (1999c) The use of rough sets and fuzzy sets in MCDM.
In: Gal T, Stewart T, Hanne T (eds) Multicriteria decision making: Advances in MCDM
models, algorithms, theory, and applications. Springer, pp 397–455
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37. Greco S, Matarazzo B, Słowiński R (2001) Rough sets theory for multicriteria decision
analysis. Eur J Oper Res 129(1):1–47
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69. Mousseau V, Słowiński R, Zielniewicz P (2000) A user-oriented implementation of the
ELECTRE-TRI method integrating preference elicitation support. Comput Oper Res 27(7-
8):757–777

70. Nalepa G, Stefanowski J (2020) Artificial intelligence research community and associations
in Poland. Found Comput Decis Sci 45(3):159–177

71. Nauka (2018) The mind over machine: An interview with Roman Slowiński. Science online
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73. Patterson J, Talbot F, Słowiński R, Wegłarz J (1990) Computational experience with a
backtracking algorithm for solving a general class of precedence and resource-constrained
scheduling problems. Eur J Oper Res 49(1):68–79

74. Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11(5):341–356
75. Pawlak Z (1991) Rough sets. Theoretical aspects of reasoning about data. Kluwer Academic

Publishing, Dordrecht, Netherlands
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Chapter 2
Roman’s Scientific Trajectory:
A Retrospective with an Emphasis
on the Beginning

Jan Wȩglarz

Abstract The scientific trajectory of Roman Słowiński began in 1972, when he
started an individual study program under my supervision at the Poznań University
of Technology. This chapter is a retrospective of Roman’s early career from my
point of view. It begins with his master thesis, through doctorate and habilitation,
until 1989, when he obtained the title of professor at the age of 37 and created his
own Laboratory of Intelligent Decision Support Systems known worldwide.

I met Roman Słowiński for the first time in October 1971 at the Electrical
Engineering Faculty of the Poznań University of Technology. He was a student of
the master’s degree in “Automatic Control”, and I conducted exercises of “Control
Theory” as an assistant at the Institute of Automatic Control. I quickly realized
that, together with Jacek Błażewicz and Wojtek Cellary, he belonged to a group of
outstanding students who want to learn something more than it was provided for
in the study program. Thus, at the beginning of 1972, I offered them individual
lectures, in which I introduced them to selected areas of mathematics that, to my
opinion, needed to be completed in order to attack research problems. I did it on
the basis of my own experience which I gained while studying mathematics at the
Adam Mickiewicz University of Poznań, completed in 1969, and while working on
my doctoral thesis. We agreed that this would be more effective than completing a
full math studies, as in my case.

It is worth noting that my master thesis at the Poznań University of Technology
and my doctoral dissertation (both under the supervision of Prof. Zdzisław Bubnicki
from the Wrocław University of Technology) concerned the problems of optimal
control of the so-called complexes of operations. The basic problem was to perform
in a minimum time a set of n independent tasks (operations), the start and end
states of which were known, as well as their processing speeds being piecewise-
continuous, increasing functions of the continuously divisible resource available in
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Poznań University of Technology, Poznań, Poland
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a limited amount. Although it was a problem in the area of optimal control theory, its
specificity made the known methods of this theory unsuitable, whereas properties of
optimal schedules could be proved using the theory of convex sets and Minkowski
functionals. The specificity of this problem, apart from the task models, was that
the tasks were performed simultaneously using a limited resource. This drew my
attention to other problems of this type, in which sets of precedence-related tasks
(activities), i.e., activity networks, require different types and categories of resources
and task performance characteristics depend on resource allocations. In this way, I
entered the area of operations research, more precisely project scheduling, which
I found very attractive, in particular, in the field of resource management in
computer systems. While focusing personally on the problem described at the
beginning with some important generalizations (e.g., doubly constrained resources,
like energy-power), I encouraged my younger colleagues to address other problems
of this type. In particular, Roman, for his master thesis, faced problems in which
the activity network is composed of divisible, i.e., preemptive activities using
limited, discrete resources of different categories. It is worth noting that considering
preemptive activities allows for the formulation of many variants of these problems
as linear programming (LP) problems. The most natural variant to tackle with
was the problem of Resource Constrained Project Scheduling (RCPS), frequently
considered in operations research for its practical utility. In the classical RCPS
problem, resource requirements of non-preemptive activities concern known types
and amounts of limited renewable resources. We considered the RCPS problem
in which activities are preemptive. For this problem we developed an original
algorithm, called ARSME, which, based on a concise description of the activity
precedence constraints, automatically generated the LP problem and then found
the schedule using the Revised Simplex Method. This schedule was optimal for
a given ordering of nodes of an activity-on-node network. Finding the globally
optimal schedule required solving LP problems for all possible node orders and
permitted to assess the quality of node-ordering heuristics. The globally optimal
schedule gives also a lower bound on the project processing time in case of non-
preemptive activities, which is useful to assess the quality of heuristics proposed for
the computationally harder classical RCPS problem. Description of this algorithm,
together with its program in Fortran and results of a computational experiment was
the content of our first publication in a world-class journal [29].

It is worth mentioning that one of the reviewers of the said article, who
appreciated its importance, disclosed himself and helped us prepare the final
version. It was James H. Patterson from the University of Missouri-Columbia, with
whom we established scientific cooperation (e.g., [16, 17]) and a friendship that
continues up to now.

For his doctoral thesis, Roman considered another variant of scheduling
problems with preemptive activities (jobs) to be scheduled on unrelated parallel
machines (processors) with additional limited discrete resources. In this problem,
the activity processing time depends on the type of machine and the amount of
allocated resources. This type of resource requirements, initiated in the works of our
team in late 70s, is called multiple job-modes and is presently a standard in RCPS
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problems. Roman proposed a two-phase method consisting of an LP problem for
finding the minimum project processing time, and a polynomial-in-time algorithm
for re-arranging the pieces of activities assigned to particular job-modes, so as to
get a feasible schedule [21]. His procedure dealt, moreover, with minimization of
the number of activity preemptions, as a secondary performance measure.

At the stage of preparation for the habilitation degree, which grants in Poland the
right of advising doctoral students, Roman worked on scheduling problems involv-
ing arbitrary discrete resources. These were: renewable resources, like machines,
processors, manpower; non-renewable resources, like energy, raw materials, money;
and doubly constrained resources which involved constraints on availability in every
moment and over a period of time, like electric power and energy. Consideration
of all these resource categories in one model led him to multi-criteria scheduling
problems, with competing time and cost criteria, and Roman became one of the
pioneers in this research area [22]. His interest in multi-criteria decisions has also
another origin-in November 1977, we participated together (at our own expense)
in the Congress of Association Française pour la Cybernétique, Économique et
Technique (AFCET) in Versailles, chaired by Bernard Roy-the founder of the
European School of Multiple Criteria Decision Aiding (MCDA). Bernard listened
to Roman’s presentation in French and invited him to a discussion afterwards.
Seeing Bernard’s sympathetic interest in our research, we invited him and his wife
Françoise to Poland, which was realized a year later. I was happy to observe that this
meeting started a very fruitful collaboration between Roman and Bernard, which
lasted 40 years and turned into a deep friendship including their families.

A turning moment in Roman’s career was his six-month visit to the LAMSADE
laboratory at Univeristé Paris Dauphine in 1980/81, led by Bernard Roy, where he
learned about the MCDA methodology and applied it to scheduling problems [23].
In total, Roman spent five years at French universities, mainly at Paris Dauphine,
where in 2001 he obtained a honorary doctorate.

A summary of the first fourteen years of our joint multidirectional research on
scheduling under resource constraints has been included in the book [1] which, for
many reasons, was a breakthrough for us. First of all, it was the first monograph in
world literature defining such a wide spectrum of these problems and their mutual
relations. Secondly, it showed our team as an important research center in which the
synergy of research activities was achieved. Last but not least, this book appeared
at the end of the first decade of the pontificate of Pope John Paul II, who, also
because of the faith uniting us, has been for us a moral authority and an unattainable
model of conduct. We expressed this by offering the Holy Father during one of the
audiences a copy of our book with a dedication. It also seems to us that the book
was the main argument for awarding three of its four authors with the EURO Gold
Medal (Aachen, 1991), the first and so far the only one awarded to Poles.

Our joint research on RCPS problems evolved later to expert systems for
scheduling under resource constraints and resulted in a system being an example of a
rising interest in interactions between operations research and artificial intelligence
[27]. This was our last joint publication. In 1989, when Roman received a professor
title, we decided to establish separate laboratories. Roman’s laboratory took the
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name “Intelligent Decision Support Systems” and opened a master degree with
that name. Since then, Roman has followed his own scientific way, developing his
wonderful doctoral school.

Still in eighties, Roman led a research project on water supply system pro-
gramming in Poland, which raised his interest in fuzzy set modeling of subjective
uncertainty [24]. He also applied the MCDA methodology in this project [20] that
was implemented in practice.

Another milestone in the Roman’s scientific trajectory was his meeting in mid-
eighties with Prof. Zdzisław Pawlak-the founder of rough set theory. In 1992,
Roman organized the First International Workshop on Rough Set Theory and
Applications in Poznań, and in the same year, he edited the first handbook on rough
sets [25]. He also brought this research topic to his collaborators in France [26].
Rough set theory has proven to be a very useful tool for preference learning from
partially inconsistent examples of people’s decisions. For some time he worked on
this topic with Pawlak, publishing, e.g., the first paper on application of the rough
set methodology to reasoning about medical data [19] and then a review on the
rough set approach to multi-attribute decision analysis [18], however, a real burst of
creativity in the latter topic came with Roman’s new PhD student Salvatore Greco
from Catania. Together with Benedetto Matarazzo, they have done pioneering works
on handling jointly various aspects of imprecise, vague, ambiguous, and granular
information in reasoning about ordinal data. This led them to development of, the
so-called, Dominance-based Rough Set Approach (DRSA)-a new way of preference
modeling using logical “if. . . , then. . . ” decision rules [6]. This approach was applied
to support multiple criteria decision, group decision, and decision under risk and
uncertainty. For this breakthrough achievement Roman was awarded the 2005 Prize
of the Foundation for Polish Science, considered as the most prestigious Polish
scientific award.

DRSA is enriching the traditional way of modeling preferences in decision
analysis. The traditional preference models have the form of either a utility function
or a system of binary relations-their underlying theories are Multi-Attribute Utility
Theory (MAUT) and Outranking Theory, respectively. These models often show a
limited capacity of preference representation, they require an important cognitive
effort on the part of the decision maker providing preference information necessary
to build these models, and their decision recommendations are not easy to explain
to the users. DRSA replaces the utility and outranking models by a set of monotonic
decision rules induced from data structured using the dominance-based rough set
concept. They constitute an intelligible preference model that is non-compensatory
and able to represent interactions between the attributes. Rules identify values that
drive decision maker’s decisions-each rule is a scenario of a causal relationship
between evaluations on a subset of attributes and a comprehensive judgment. It
has been proved on the axiomatic level that the proposed decision rule preference
model is the most general among all known models, so it has a greater capacity
of preference representation than utility functions (including Choquet integral and
Sugeno integral) and outranking relations [28]. Decision rules represent knowledge
whose value can be assessed by Bayesian confirmation measures, as shown in



2 Roman’s Scientific Trajectory: A Retrospective with an Emphasis on the Beginning 33

[7, 10]. It is worth underlining that DRSA has solid algebraic and topological
foundations [9, 11] and it has also been interpreted in terms of empirical risk
minimization typical for machine learning [14].

A good example of the practical use of rough set rules is the Mobile Emergency
Triage (MET) system that aids physicians in making triage decisions in the
emergency department of a hospital. The system’s mobile component is designed
to work on handheld computers. It has been tested at the Children’s Hospital of
Eastern Ontario in Ottawa [15].

Another original methodological proposal of Roman and Salvatore, working at
this stage with their own PhD students, is the robust ordinal regression approach
to constructive preference learning [4]. It assumes that a preference model of a
given type (utility function, binary relation, or set of decision rules) is learned from
preference information provided by decision makers in terms of decision examples.
Since, in general, the number of instances of the supposed preference model
compatible with the available preference information is infinite, the application of
all compatible instances on the set of considered alternatives leads to necessary
and possible preference relations. When the preference information is enriched, the
necessary and possible preference relations become closer each other. This way of
preference learning appeared to be particularly useful in interactive evolutionary
multiobjective optimization for both continuous and combinatorial problems [2, 13].
It is also worth mentioning a very innovative application of the robust ordinal
regression in case of a hierarchical structure of criteria [3], group decision [8], and
decision under risk and uncertainty [5, 12].

The impact of Roman’s publications is witnessed by a high number of citations.
He also enjoys the best bibliometric score among all computer scientists working in
Poland. What is, however, the most important, he is a man of flawless reputation in
moral matters. In a common opinion, his research activity is characterized not only
by technical proficiency, but also by creativity, vision and a sense of what is and will
be important. This all has been combined with an extraordinary dynamism, scientific
productivity, organizational proficiency and also a very skillful mentoring of the
young generation of researchers. Roman has been the supervisor of 26 PhD students
in the area of intelligent decision support, in which various tools and techniques of
operations research and artificial intelligence have been developed and combined
in an innovative way. 16 from among his former PhD students are now professors
in academia and are renown scientists with their own research teams and doctoral
students. How could I not be proud of my former student and one of my closest
friends to see how wonderfully he uses the talents given to him?
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Chapter 3
ELECTRE Methods: A Survey on
Roman Słowiński Contributions

Salvatore Corrente, Josè Rui Figueira, and Salvatore Greco

Abstract ELECTRE family is composed of a set of very well-known and appreci-
ated multiple criteria decision aiding methods. The ELECTRE methods, proposed
by Bernard Roy and his cooperators since the middle of 1960s, have been constantly
improved and enriched during the years. In this context, Roman Słowiński has
given many relevant contributions both from the methodological and the operational
point of view. We present a reasoned survey of these contributions underlining their
interest for real life applications.

3.1 Introduction

Roman Słowiński met for the first time Bernard Roy at the AFCET conference
organized by the same Bernard Roy in Versailles on November 21–24, 1977. In
that conference Bernard Roy wanted to speak with Roman Słowiński. Since then,
until the death of Bernard Roy in 2017, the two researchers have continued to be
in contact with a regular scientific cooperation and many occasions of personal
meetings. After that, Roman Słowiński, invited by Bernard Roy, visited regularly
LAMSADE, the laboratory that he founded at the Paris Dauphine University. At
the beginning, Roman Słowiński planned to work with Bernard on scheduling
problems. Indeed, scheduling, being the original specialization of Roman Słowiński,
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was a domain in which Bernard Roy gave some pioneer contributions. However,
in the 70s Bernard Roy was very interested in Multiple Criteria Decision Aiding
(MCDA) and in LAMSADE there were some of the most brilliant researchers in
that domain such as Yannis Siskos and Eric Jacquet-Lagrèze. Roman started then to
be interested in decision aiding and to collaborate with Bernard and his cooperators
on this domain. The interest of Roman Słowiński for MCDA, and especially for
the constructivist approach and the ELECTRE methods proposed by Bernard Roy,
has been maintained during the years. Inspired by the thought and the reflections
of Bernard Roy, Roman Słowiński has produced a relevant corpus of results in
MCDA, contributing substantially to shape the current MCDA state of the art. The
approach of Roman Słowiński to MCDA problems has been always motivated by
the possible real world applications. In this perspective, he has always searched for
that clarity and meaningfulness of the technical proposals that should permit the
best comprehension of the proposed methods not only for the analyst but also and
especially for the decision makers. Indeed, if according with the lesson of Bernard
Roy MCDA should provide concepts, techniques, and instruments to reflect on the
decision problem constructing a decision model with the cooperation of the decision
maker, clarity and meaningfulness are unavoidable. It appears also that clarity and
meaningfulness are the main ingredients that give their specific elegance to all the
contributions of Roman Słowiński to MCDA.

Because of the above considerations, in this chapter we propose a survey of
the scientific production of Roman Słowiński related to the ELECTRE methods,
trying to highlight the above-mentioned interest for real world applications, clarity,
meaningfulness, and elegance.

The chapter is structured as follows. Next section recalls the basic concepts of
ELECTRE methods. The following section presents the most relevant contributions
of Roman Słowiński to ELECTRE methods. The last section contains the conclu-
sions.

3.2 A Brief Overview on ELECTRE Main Concepts

ELECTRE methods are based on the principles of the so-called European School of
Multiple Criteria Decision Aiding (MCDA; [14, 32, 45]). In MCDA a set of actions
A = {a, b, . . .} is evaluated on a coherent family of criteria G = {g1, . . . , gm}
to deal with a decision making problem that could be of four different types:
choice, ranking, sorting, or description [42]. Several ELECTRE methods have
been developed during the years to deal with such type of problems (see [21, 22]
for two surveys on ELECTRE methods and their application areas). However,
independently on the type of problems they are applied to, the methods belonging
to the ELECTRE family are based on outranking relations S where an action a
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outranks an action b (aSb) iff a is at least as good as b. The construction of such
outranking relation aSb is based on the fact the two different tests are satisfied:

• Concordance test: a majority of criteria in G should be in favor of the outranking
of a over b,

• Non-discordance test: none of the criteria in G should oppose too strongly to the
outranking of a over b.

Depending on the considered method, the two tests are performed in a different
way. In the following, we will recall how the concordance index C(a, b) and the
partial discordance index dj (a, b) are built since most of the ELECTRE methods
are based on their computation.

The construction of C(a, b) is based on the following steps:

• For each criterion gj ∈ G and for each ordered pair of actions (a, b) ∈ A × A,
the partial concordance index ϕj (a, b) is computed

ϕj (a, b) =

⎧
⎪⎨

⎪⎩

1 if gj (b)− gj (a) � qj ,

0 if gj (b)− gj (a) � pj ,
pj−[gj (b)−gj(a)]

pj−qj
if qj < gj (b)− gj (a) < pj ,

(3.1)

where qj and pj denote, respectively, the indifference and the preference
threshold on gj . qj represents the maximum difference gj (b)−gj (a) compatible
with the indifference between a and b on gj , while pj represents the minimum
difference gj (b) − gj (a) compatible with a strict preference of b over a on
gj (more details on the meaning and definition of the thresholds can be found
in [47]). In general, the Decision Maker (DM) has to define these thresholds
only if he wishes to. Moreover, the thresholds should be dependent on the action
presenting the lowest or the greatest evaluation on gj between a and b. However,
to simplify the description and without loss of generality, in the following, we
shall assume that they are fixed for all pairs of actions. ϕj (a, b) is a non-
increasing function of gj (b) − gj (a) and it represents how much a is at least
as good as b on gj . ϕj (a, b) ∈ [0, 1] and, the greater ϕj(a, b), the more gj is in
favor of the outranking of a over b;

• For each ordered pair of actions (a, b) ∈ A× A, the concordance index C(a, b)

is computed as follows

C(a, b) =
m∑

j=1

wjϕj (a, b). (3.2)

In the previous equation, wj is the weight of gj and it represents the importance
of gj in the family of criteria G. Without loss of generality it is assumed that

wj ’s are such that wj > 0 for all gj ∈ G and
m∑

j=1

wj = 1. C(a, b) ∈ [0, 1] and
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the greater C(a, b), the greater the strength of the coalition of criteria in favor of
the assertion that a outranks b.

Regarding, instead, the partial discordance index dj (a, b), it is computed for
each criterion gj as follows:

dj (a, b) =

⎧
⎪⎨

⎪⎩

1 if gj (b)− gj (a) � vj ,

0 if gj (b)− gj (a) � pj ,
[gj (b)−gj (a)]−pj

vj−pj
if pj < gj (b)− gj (a) < vj .

(3.3)

In the previous equation, vj is the veto threshold on gj and it represents the
minimum difference gj (b) − gj (a) incompatible with the outranking of a over b.
dj (a, b) ∈ [0, 1] and it is a non-decreasing function of gj (b)−gj(a). The greater the
dj (a, b), the more the gj is against the outranking of a over b. As mentioned above,
if gj (b)− gj (a) � vj , then a cannot outrank b independently on their comparison
with respect to the other criteria in G. Also in this case, the DM is not obliged to
provide vj for all criteria but only to those he would assign this power.

The outranking relation aSb is therefore built on the basis of the indices
previously defined and the different methods differ on the way they define and
exploit such relation. Two main outranking relations are used in the ELECTRE
methods:

1. aSb iff C(a, b) � λ and gj (b) − gj (a) � vj , ∀gj ∈ G. This is the outranking
relation used in the ELECTRE Iv method [40],

2. aSb iff σ(a, b) � λ where

σ(a, b) = C(a, b)
∏

gj :dj (a,b)>C(a,b)

1 − dj (a, b)

1 − C(a, b)
(3.4)

is the credibility index defining how much credible is the outranking of a over
b. This is the outranking relation used in ELECTRE III [41], ELECTRE Tri-B
[55], ELECTRE Tri-C [2], and ELECTRE Tri-nC [3]. In particular, in ELECTRE
III, the credibility indices are aggregated to build two complete rankings of
the actions by a descending and an ascending distillation and, finally, a partial
ranking of the considered actions is obtained as the intersection of the previous
two rankings.

Let us observe that in both the outranking relations, λ ∈]0.5, 1] is called cutting level
and it represents, in 1., the minimum value of C(a, b) necessary (but not sufficient)
to have the outranking of a over b, while in 2., it represents the minimum value of
σ(a, b) necessary and sufficient to have the same outranking.
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3.3 Roman Słowinski Contributions

In this section we shall briefly present the papers containing contributions given by
Roman Słowiński to ELECTRE methods.

3.3.1 “Inferring an ELECTRE Tri Model from Assignment
Examples” and “A User-Oriented Implementation of the
ELECTRE-TRI Method Integrating Preference
Elicitation Support”

In sorting problems, a set of actions A evaluated on a set of criteria G have to
be assigned to a set of categories C1, . . . , Cp preferentially ordered with respect
to the preferences of the DM (it is assumed that C1 and Cp are the categories
containing the worst and the best actions, respectively). ELECTRE Tri-B [55] is
the first ELECTRE method built to deal with sorting problems. In ELECTRE Tri-
B categories are delimited by reference profiles bh, h = 0, . . . , p, so that bh−1
and bh are, respectively, the lower and upper limits of category Ch. These profiles
can be considered as actions and, therefore, they are evaluated on all criteria in G.
Consequently, it is possible, on the one hand, to compute the degree of outranking
of a over bh and, on the other hand, the degree of outranking of bh over a using the
Eq. (3.4). Consequently, aSbh iff σ(a, bh) � λ and a is preferred to bh (a � bh)
iff aSbh but not (bhSa). On the basis of the comparison of each action a with the
reference profiles bh two different assignment procedures are defined in ELECTRE
Tri-B:

• pessimistic procedure: a is assigned to category Ck iff aSbk−1 but not (aSbh),
for all h = k, . . . , p. bk−1 is then the first reference profile (starting from above)
outranked from a;

• optimistic procedure: a is assigned to category Ck iff bk � a and not (bh � a)

for all h = 1, . . . , k−1. bk is then the first reference profile (starting from below)
preferred to a.

As it is evident from the previous description, the implementation of the ELECTRE
Tri-B method implies the knowledge of several parameters: reference profiles,
indifference, preference and veto thresholds, weights of criteria and cutting level.
Asking the DM to provide directly all these values is quite demanding and,
therefore, in [37] an optimization problem based on indirect preferences provided by
the DM is developed to get a set of parameters compatible with them. The indirect
preference information is composed of assignment examples of some reference
actions belonging to A∗ ⊆ A as well as information on the importance of criteria.
All the parameters mentioned above are assumed to be unknown of the optimization
problem except the veto thresholds which is assumed are provided by the DM in
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accordance with the analyst. The assignment is supposed to be performed using the
pessimistic procedure.

The non-linear optimization problem to be solved is the following:

max

⎛

⎝α + ε
∑

ak∈A∗
(xk + yk)

⎞

⎠ , subject to,

α � xk,∀ak ∈ A∗,

α � yk,∀ak ∈ A∗,
m∑

j=1

wjϕj (ak, bhk−1)

m∑

j=1

wj

− xk = λ,

m∑

j=1

wjϕj (ak, bhk )

m∑

j=1

wj

+ yk = λ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

if ak ∈ A∗ is assigned to Chk ,

λ ∈]0.5, 1],
gj (bh+1) � gj (bh)+ pj (bh)+ pj (bh+1), ∀gj ∈ G, ∀h = 1, . . . , p − 1,

pj (bh) � qj (bh), ∀gj ∈ G, ∀h = 1, . . . , p − 1,

wj � 0, qj (bh) � 0, ∀gj ∈ G, ∀h = 1, . . . , p − 1,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where:

• ε is a small positive number,
• xk and yk are two fictitious variables used to translate the assignment of ak to Chk

and, in particular, the fact that σ(a, bhk−1) � λ and σ(a, bhk ) < λ.

Because ϕj (ak, bh) is non differentiable, it is approximated by the sigmoidal
function

f (x) = 1

1 + e

[
−5.55

pj (bh)−qj (bh) ·
(

gj (ak)−gj (bh)+ pj (bh)+qj (bh)

2

)]

being a function of the evaluation of reference profiles (gj (bh)), as well as
indifference and preference thresholds

(
qj (bh), pj (bh)

)
.
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If, solving the previous optimization problem, one gets α > 0, then there exists at
least one set of parameters compatible with the reference assignments provided by
the DM, while, in the opposite case, it is possible to check which are the troublesome
assignments and, therefore, revising them with the DM.

The previous procedure is implemented in the ELECTRE Tri Assistant software
that is presented and described in detail in [38].

3.3.2 Searching for an Equivalence Between Decision Rules
and Concordance-Discordance Preference Model in
Multicriteria Choice Problems

Reference [26] proposes a procedure to induce weights and veto thresholds for
defining a concordance relation on the basis of “if . . ., then . . .” decision rules
obtained through the application of Dominance-based Rough Set Approach (DRSA)
[24] on a set of examples of decisions represented in a Pairwise Comparison Table
(PCT [23]). More precisely, the DM is proposed a certain number of pairs of actions
(a, b) ∈ A×A and he is required to express his preferences by selecting one of the
three following possible answers

• a outranks b, that is a is at least as good as b, denoted by aSb,
• a does not outrank b, that is a is not at least as good as b, denoted by aScb,
• a and b are not comparable.

The PCT has the form of a matrix with a row for each pair of actions (a, b) ∈ A×A

for which the DM declared aSb or aScb and a column for each criterion gj ∈ G

and a further column with the judgment provided by the DM. Each row of the PCT
contains the following information related to a pair (a, b) ∈ A× A:

• for each criterion gj ∈ G, the value

Tj (a, b) =
{

0 if gj (a) � gj (b)− qj (a),

gj (a)− gj (b) otherwise
(3.5)

with qj (a) being an indifference threshold. Observe that

– Tj (a, b) = 0 means that a outranks b with respect to criterion gj , that is a is
at least as good as b with respect to gj ,

– Tj (a, b) < 0 means that a does not outrank b on gj , with the smaller Tj (a, b)

the more gj is against the outranking of a over b,

• the overall preference comparison expressed by the DM, that is, aSb or aScb.
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By means of DRSA, the judgments aSb and aScb can be explained with a set of
decision rules having the following syntax:

• D�−rule: if Tj1(a, b) = 0 and . . . and Tjp (a, b) = 0 and . . . and Tjp+1(a, b) �
tjp+1 and . . . Tjq (a, b) � tjq , then aSb, with P = {gj1, . . . , gjp } ⊆ G, R =
{gjp+1 , . . . , gjq } ⊆ G, P ∩ R = ∅,

• D�−rule: if Tj1(a, b) � tj1 and . . . Tjp (a, b) � tjp , then aScb, with P =
{gj1 , . . . , gjp } ⊆ G.

The above D� rules and D� rules are interpreted in the terms of the outranking
relation of the ELECTRE Iv method (see Sect. 3.2).

The decision rules suggest some constraints on the value of weights wj , j =
1, . . . ,m, the cutting level λ and the veto thresholds vj , j = 1, . . . ,m. In
particular

• from the D�−rule “if Tj1(a, b) = 0 and . . . and Tjp(a, b) = 0 and . . . and
Tjp+1(a, b) � tjp+1 and . . . and Tjq (a, b) � tjq , then aSb,” the following
constraints can be obtained

– wj1 + . . .+wjp � λ,
– vjp+1 > −tjp+1, . . . , vjq > −tjq ;

• from the D�−rule “if Tj1(a, b) � tj1 and . . . Tjp (a, b) � tjp , then aScb,” the
following constraints can be obtained

–
∑

j :gj /∈P

wj � λ, with P = {gj1, . . . , gjp },

– vjp+1 � −tj1 , . . . , vjq � −tjq .

The constraints obtained through the decision rules can be used to define the
parameters of the considered ELECTRE method in an ordinal regression approach.
The advantage of using the decision rules is related to their understandability due
to the natural language in which they are expressed, on the one hand, and to the
possibility to trace back to the DM’s judgments from which the decision rules were
induced, on the other hand. Taking into account the importance of an interaction
with the DM in the co-construction of the decision model [43], the use of decision
rules within an ordinal regression approach seems very beneficial.

3.3.3 Axiomatization of Utility, Outranking, and Decision Rule
Preference Models for Multiple Criteria Classification
Problems Under Partial Inconsistency with the
Dominance Principle

The paper [50] presents a very general axiomatic foundation of multiple criteria
sorting methods, showing how sorting approaches based on value functions [56],
sorting approaches based on outranking methods and sorting approaches based on



3 ELECTRE Methods: A Survey on Roman Słowiński Contributions 45

“if . . ., then . . .” decision rules [24] have a common theoretical basis and can be
considered equivalent, in the sense that each of the three models can be reformulated
in terms of the other two. The theoretical frame of this general result is the following.

Consider a product space X =
m∏

j=1

Xj , with Xj, j = 1, . . . ,m being a finite or

a countable set representing the evaluation scale of criterion gj , that is the set of
evaluations that can be taken by criterion gj . Let (xj , z−j ), xj ∈ Xj, z ∈ X, denote
one element of X being equal to z except to its j − th component which is equal
to xj . Consider also the family of sets Cl = {Cl1, . . . , Cln} being a partition of X,
that is ∅ ⊂ Clr ⊂ X, r = 1, . . . , n, Clr ∩ Cls = ∅ for all r, s = 1, . . . , n and
n⋃

r=1

Clr = X. The sets Clr , r = 1 . . . , n, represent increasingly ordered classes so

that for each x ∈ Clr and y ∈ Cls with r > s, x has a better overall evaluation of y.

The sets Cl
�
t =

n⋃

r=t

Clr , t = 1, . . . , n are called upward union of classes, while the

sets Cl
�
t =

t⋃

r=1

Clr , t = 1, . . . , n are called downward union of classes. The basic

result proposed by the article is the following Theorem.

Theorem The following four propositions are equivalent

1. (Basic axiom) for each j = 1, . . . ,m, for each xj , yj ∈ Xj , a, b ∈ X,
r, s ∈ {1, . . . , n}
[
(xj , a−j ) ∈ Clr and (yj , b−j ) ∈ Cls

]⇒
[
(yj , a−j ) ∈ Cl

�
r or (xj , b−j ) ∈ Cl

�
s

]
,

2. (Value function-based sorting) there exist

– functions gj : Xj → R for each j = 1, . . . ,m,
– a function U : Rm → R non-decreasing in each argument,
– n− 1 thresholds z2 < . . . < zn

such that, for each x ∈ X and for each t = 2, . . . , n

x ∈ Cl
�
t ⇔ U(g1(x1), . . . , gm(xm)) � zt ,

3. (Outranking-based sorting) there exist

– functions gj : Xj → R for each j = 1, . . . ,m,
– a function S : R2m → R non-decreasing in each first m arguments and non-

increasing in each other m arguments,
– n− 1 reference profiles p2, . . . , pn ∈ X

such that, for each x ∈ X and for each t = 2, . . . , n

x ∈ Cl
�
t ⇔ S(g1(x1), . . . , gm(xm), g1(p

t
1), . . . , gm(pt

m)) � 0,
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4. (Decision rule-based sorting) there exist

– functions gj : Xj → R for each j = 1, . . . ,m,
– a set of “decision rules” having a syntax

“if gj1(x) � rj1 and . . . gjp (x) � rjp , then x ∈ Cl
�
t ”

with {j1, . . . , jp} ⊆ {1, . . . ,m}, t = 2, . . . , n,

such that for each y ∈ Clt , t = 2, . . . , n, there is at least one decision rule
for which y ∈ Cl

�
t and there is no decision rule for which y ∈ Cl

�
r with

r > t .

The relation between the outranking-based sorting in point 3. and the
ELECTRE Tri-B method (pessimistic assignment) can be seen by taking
S(g1(x1), . . . , gm(xm),

g1(p
t
1) . . . , gm(pt

m)) = σ(x, pt )− λ so that we get

x ∈ Cl
�
t ⇔ S(g1(x1), . . . , gm(xm), g1(pt

1), . . . , gm(pt
m)) � 0 ⇔ σ(x, pt )− λ � 0.

Let us observe that an axiomatic foundation of ELECTRE Tri-B method was
provided in [4] using an axiom that, interestingly, was proposed in the same paper
[50] to characterize a sorting method based on the Sugeno integral [52]. Observe
also that an axiomatic foundation of ELECTRE outranking relation was provided
in [25] (see also Section 4.3 in [21]). Let us remind that a different axiomatic
foundation of ELECTRE outranking relation was provided by Denis Bouyssou and
Marc Pirlot in a series of papers [5–7] (for a comparison between the two axiomatic
foundations see Section 4.3 in [21]).

3.3.4 Handling Effects of Reinforced Preference and
Counter-Veto in Credibility of Outranking

In [44] Bernard Roy and Roman Słowiński propose the use of two new thresholds,
namely reinforced preference threshold and counter-veto threshold in outranking
methods and, in particular in ELECTRE ones. The two thresholds, denoted by rpj

and cvj , respectively, are not defined for all criteria gj but only for some of them.
They should be used if:

• the DM wants to give a greater weight to gj in the computation of C(a, b) iff
gj (a) − gj (b) � rpj , that is, if the difference is particularly high. In this case,
the weight of gj is not equal to wj but to ωjwj where ωj > 1,

• the DM wants to decrease the veto effect of some criterion gj even if gj (b) −
gj (a) > pj .

The two thresholds are such that pj < rpj < vj and, analogously, pj < cvj < vj .
However, no specific inequality between rpj and cvj exists.
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To better understand how the concordance and credibility indices have to be
modified to take into account the reinforced preference threshold and the counter-
veto threshold, let us underline that the concordance index in Eq. (3.2) can be
rewritten as follows:

C(a, b) =

∑

gj∈C(aSb)

wj +
∑

gj∈C(bQa)

ηjwj

∑

gj∈G

wj

,

where C(aSb) = {gj ∈ G : gj (b) − gj (a) � qj , }, C(bQa) = {gj ∈ G : qj <

gj (b)− gj (a) � pj } and ηj = pj−[gj (b)−gj (a)]
pj−qj

.
Then the consideration of the two thresholds mentioned above implies the

following modifications in the definitions given above:

1. C(a, b) =

∑

gj∈C(aRPb)

ωjwj +
∑

gj∈C(aSb)−C(aRPb)

wj +
∑

gj∈C(bQa)

ηjwj

∑

gj∈C(aRPb)

ωjwj +
∑

gj∈G−C(aRPb)

wj

,

where C(aRPb) = {gj ∈ G : gj (a)− gj (b) � rpj },

2. dj (a, b) =

⎧
⎪⎨

⎪⎩

1 if gj (b)− gj (a) � vj

0 if gj (b)− gj (a) � cvj

[gj (b)−gj (a)]−cvj

vj−cvj
if cvj < gj (b)− gj (a) < vj

,

3. σ(a, b) = C(a, b)

⎡

⎣
∏

gj∈G:dj (a,b)>C(a,b)

1 − dj (a, b)

1 − C(a, b)

⎤

⎦

(
1− k

m

)

,

where k = |{gj ∈ G : gj (b)− gj (a) > cvj }|.

3.3.5 ELECTREGKMS: Robust Ordinal Regression for
Outranking Methods

As already shown in the introductory section, the application of all ELECTRE
methods implies the knowledge of some parameters: discriminating thresholds,
weights, and cutting level. To get them, a direct or an indirect preference information
can be provided by the DM. In the first, the DM is asked to provide directly
values of the parameters involved in the method, while, in the second, the DM has
to provide some preference information in terms of comparison between actions
or comparison between criteria in terms of their importance so that parameters
compatible with these preferences can be inferred and, therefore, applied to get a
final recommendation on the problem at hand. In recent years, the indirect technique
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is the preferred between the two because it requires less cognitive effort to the DM
[33]. However, in this case, more than one set of parameters could be compatible
with the preferences provided by the DM. Even if the application of the ELECTRE
methods with each of these sets of compatible parameters would give the same
recommendations on the actions used as reference examples from the DM, the same
application would give different recommendations on the other actions. For such
a reason, it is meaningful providing information on the problem at hand taking
into account not only one but the whole set of instances of the assumed preference
model compatible with the preferences given by the DM (compatible models in the
following). This gave arise to the Robust Ordinal Regression (ROR) presented for
the first time in [27]. ROR defines a necessary and a possible preference relation
on A on the basis of the whole set of compatible models. On the one hand, a is
necessarily preferred to b iff a is at least as good as b for all compatible models,
while, on the other hand, a is possibly preferred to b iff a is at least as good as b for
at least one of them [10, 28].

In [30], ROR has been applied to the ELECTRE methods for the first time giving
arise to the ELECTREGKMS method. Going a bit more in detail, the DM has the
opportunity to express the following pieces of preference information:

• a outranks b (we shall write aSDMb) or a does not outrank b
(
aSC

DMb
)
,

• qj ∈
[
qj,∗, q∗j

]
where qj,∗ and q∗j represent the minimum and the maximum

value that the indifference threshold qj can get,

• pj ∈
[
pj,∗, p∗j

]
where pj,∗ and p∗j represent the minimum and the maximum

value that the preference threshold pj can get,
• the difference between gj (a) and gj (b) is not significant for the DM (a ∼j b),
• the difference between gj (a) and gj (b) is significant for the DM (a �j b).

In particular, if for a criterion gj , the DM is not able to provide the interval of
variation of the discriminating thresholds qj and pj , he is asked to give at least one
pair of actions (a, b) such that a ∼j b and at least one pair of actions (c, d) such
that c �j d .

An important novelty of the ELECTREGKMS is that the concordance index
C(a, b) is such that

C(a, b) =
m∑

j=1

Ψj(a, b),

where Ψj(a, b) is not a piecewise function as ϕj (a, b) (see (3.1)) but a non-
increasing function of gj (b)−gj(a) such that Ψj(a, b) = wj if gj (b)−gj(a) � qj

and Ψj (a, b) = 0 if gj (b)− gj (a) � pj .

The outranking relation used in the ELECTREGKMS method is the one defined
in the ELECTRE Iv method and briefly reviewed in Sect. 3.2. A compatible model
is therefore a vector composed of C(a, b), λ and Ψj (a, b), qj , pj , and vj for all
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gj ∈ G and all (a, b) ∈ A×A. To check for the existence of at least one compatible
model a specific MILP problem is solved (see [30]).

Regarding the application of the ROR, from the output point of view, four
different binary relations are computed:

• aSNb iff a outranks b for all compatible models,
• aSP b iff a outranks b for at least one compatible model,
• aSCNb iff a does not outrank b for all compatible models,
• aSCP b iff a does not outrank b for at least one compatible model.

Also in this case the four binary relations are computed by solving some specific
MILP problems (see [30]).

3.3.6 Multiple Criteria Hierarchy Process with ELECTRE and
PROMETHEE

In real world problems, all evaluation criteria are not at the same level but instead,
they are structured in a hierarchical way. It is therefore possible to underline a
root criterion being the main objective of the considered problem, some macro-
criteria representing the main indicators used to deal with the decision problem,
until the elementary criteria on which the actions are evaluated and being placed
at the bottom of the hierarchy of criteria. To deal with such problems [8] presents
the Multiple Criteria Hierarchy Process (MCHP). The main idea behind the MCHP
introduction is that decision problems can be decomposed in several pieces that
can be coped and dealt in a more detailed way. The introduction of the MCHP
permits to provide and obtain information not only at comprehensive level, that is,
considering all criteria simultaneously, but also at partial one, focusing, therefore,
on some particular aspects of the considered problem.

In [9] the MCHP is applied to the ELECTRE methods defining in consequence
a hierarchical ELECTRE method. To describe the hierarchical ELECTRE method,
we shall only briefly recall the nomenclature used in the MCHP and that will be
useful for the description of what the authors proposed in [9]:

• gt denotes an elementary criterion, that is, a criterion at the bottom of the
hierarchy and on which actions are evaluated;

• EL is the set of the indices of the elementary criteria, while LBO is the set of
the indices of the criteria placed at the last but one level of the hierarchy;

• gr is a generic criterion in the hierarchy; in particular, g0 denotes the root
criterion;

• given criterion gr, E(gr) ⊆ EL is the set of the indices of elementary criteria
descending from gr, while LBO(gr) is the set of the indices of the criteria
descending from gr placed at the last but one level of the hierarchy.
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The generalization of the ELECTRE methods to the MCHP is based on the
definition of an outranking relation Sr for each non-elementary criterion gr in the
hierarchy. Since, as observed in Sect. 3.2, the definition of this relation is based on
the computation of the concordance index between actions, we have to underline
the main changes necessary to this implementation. At first, the partial concordance
index ϕt(a, b) in Eq. (3.1) and the partial discordance index dt(a, b) in Eq. (3.3)
need to be defined for each elementary criterion gt and for each ordered pair of
actions (a, b) ∈ A × A. Then, a partial concordance index with respect to gr is
computed as follows:

Cr(a, b) =
∑

t∈E(gr)

wtϕt(a, b).

With respect to the parameters involved in the application of the ELECTRE methods
we have to underline the following points:

• the indifference, preference, and veto thresholds are defined (if the DM wishes
to do it) for the elementary criteria,

• the weights wt have to be defined for the elementary criteria only. Moreover, the
weight of each non-elementary criterion gr, that is Wr, is given by the sum of the
weights of the elementary criteria descending from gr:

Wr =
∑

t∈E(gr)

wt,

• a cutting level λl has to be defined for each non-elementary criterion placed at
the last but one level of the hierarchy. Then, the cutting level λr of whichever
non-elementary criterion gr in the hierarchy is given by the sum of the cutting
levels of the last but one level criteria descending from gr, that is,

λr =
∑

l∈LBO(gr)

λl.

In conclusion, the technical parameters have to be defined for the elementary criteria
and for the last but one level criteria only. After that, the ELECTRE I and ELECTRE
III methods have been extended to the MCHP defining an outranking relation Sr for
each non-elementary criterion in the hierarchy.

Analogously, the ELECTREGKMS recalled in Sect. 3.3.5 has been extended
to the MCHP providing, therefore, a necessary SN

r and a possible SP
r outranking

relation for each non-elementary criterion gr so that:

• aSN
r b iff aSrb for all compatible models,

• aSP
r b iff aSrb for at least one compatible model.

To compute aSN
r b and aSP

r b, the LP problems presented in [30] need to be slightly
modified to adapt them to the MCHP context (see [9]).
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3.3.7 Multiple Criteria Hierarchy Process for ELECTRE Tri
Methods

Three are the main contributions in [12]:

1. A formal definition of the steps involved in the SRF method application;
2. An extension of the SRF method to get the weights of criteria in case they are

structured in a hierarchical way;
3. The generalization of the ELECTRE Tri-B, ELECTRE Tri-C, and ELECTRE

Tri-nC methods to the MCHP, taking also into account interacting effects
between criteria.

As already underlined more than once before, the application of all ELECTRE
methods (apart from the ELECTRE IV) implies the knowledge of the weights of
criteria wj for each criterion gj . To get them, several methods have been proposed
in literature but the most applied is the SRF (Simos-Roy-Figueira) method [19]
being a generalization of the Simos method [48, 49]. In the SRF method, the DM is
provided with m cards, one for each criterion, presenting their characteristics, and
with several blank cards that should be used to increase the difference of importance
between considered criteria. The DM is then asked to:

(Step 1) Rank order the criteria from the least important L1 to the most important
Lv with the possibility of some ex-aequo. This means that criteria in L1 are
less important than criteria in L2 and so on until criteria in Lv−1 being less
important than criteria in Lv . In the following, by ws we shall denote the weight
of a criterion in the set Ls ,

(Step 2) Put (possibly) some blank cards between two successive subsets of
criteria (Ls and Ls+1) in order to increase the difference between the importance
of criteria in Ls and the importance of criteria in Ls+1. The greater the number of
blank cards between two successive subsets of criteria, the higher the difference
between the importance of criteria contained in these sets. Pay attention to the
fact that if the DM does not put any blank card between two successive sets of
criteria, this does not mean that criteria in these sets have the same importance but
that this difference is minimal. In the following, by es we shall denote the number
of blank cards the DM put between Ls and Ls+1 (see [15] for an extension of the
SRF method in which the DM has the possibility to provide the number of blank
cards not only between successive subsets of criteria but between whichever pair
of subsets of criteria),

(Step 3) Provide the ratio z between the weight of the most important criteria
(those in Lv) and the weight of the least important one (those in L1):

z = wv

w1

(see [1] for a recent improvement of the SRF method in which the z value can be
provided in a more intelligible way for the DM).
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On the basis of the previous preference information, for each criterion gj , the
following non-normalized weight w′

j can be computed:

w′
j = 1 +

(z− 1)

⎡

⎣l(j)− 1 +
l(j)−1∑

s=1

es

⎤

⎦

v − 1 +
v−1∑

s=1

es

,

where l(j) represents the index of the subset to which gj belongs, that is,
gj ∈ Ll(j) and v is the number of levels.
The normalized weight of criterion gj , denoted by wj , is then obtained as

wj =
w′

j

m∑

i=1

w′
i

.

In case the criteria are structured in a hierarchical way, the SRF can be applied
as well on the basis of what has been already presented above. As first step,
the SRF is applied to the first level criteria g1, . . . , gn, obtaining their weights
w1, . . . , wn. After that, for each non-elementary criterion gr, the DM has to apply
the SRF method to the subset of criteria {g(r,1), . . . , g(r,n(r))} being composed of the
subcriteria of gr placed at the level immediately below it, obtaining their weights
w∗

(r,1), . . . , w
∗
(r,n(r)) that, multiplied by wr, that is the weight of the criterion from

which g(r,1), . . . , g(r,n(r)) immediately descend, give the final weights w(r,s) =
w∗

(r,s) ·wr.
Another important contribution of the paper is due to the extension of the

ELECTRE Tri methods to the hierarchical case considering the possible interacting
effects between elementary criteria. Following [20], the concordance index C(a, b)

and, consequently, the partial concordance indices Cr(a, b) for each non-elementary
criterion gr, can be redefined to take into account the mutual-weakening effects, the
mutual-strengthening effects or the antagonistic effects between criteria in case the
set of criteria is not mutually preferentially independent [35, 54].

3.3.8 A Robust Ranking Method Extending ELECTRE III to
Hierarchy of Interacting Criteria, Imprecise Weights and
Stochastic Analysis

As already presented in Sect. 3.3.7, the SRF method together with the generalization
to the MCHP proposed by [12] requires a precise value regarding the number of
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blank cards between successive subsets of criteria as well as regarding the z value.
In [13] the authors extended the SRF method and the hierarchical SRF method to
take into account an imprecise preference information provided by the DM. To apply
the hierarchical and imprecise SRF method the DM is then asked to:

(Step 1) Rank order the criteria from the least important L1 to the most important
Lv with the possibility of some ex-aequo;

(Step 2) Provide (possibly) an imprecise number of blank cards between two
successive subsets of criteria Ls and Ls+1, with s = 1, . . . , v − 1. Denoting by
es the number of blank cards to be put between Ls and Ls+1, es ∈ [lows, upps ]
where lows and upps represent the minimum and maximum number of blank
cards that could be put between Ls and Ls+1;

(Step 3) Provide an interval of possible values for the z ratio, that is
z ∈ [

zlow, zupp

]
.

Denoting by ws the weight of a criterion in Ls , the set of constraints translating the
preferences given by the DM is the following:

EDM

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ws+1 � ws + (lows + 1) · C
ws+1 � ws + (upps + 1) · C

⎫
⎬

⎭
for all s = 1, . . . , v − 1,

zlow ·w1 � wv,

wv � zupp ·w1,

w1 > 0,

C > 0,

v∑

s=1

|Ls | · ws = 1.

Of course, the fact that the DM can provide a preference information in a simpler
way is counterbalanced by the plurality of models (weights vectors in this case)
that are compatible with the same preference. To take into account all of them,
the Stochastic Multicriteria Acceptability Analysis (SMAA; [36, 39]) is applied.
SMAA explores the whole space of compatible models providing recommendations
to the considered problem in probabilistic terms. The application of SMAA starts
with the sampling of several instances of the preference model compatible with the
information provided by the DM (in this case, since the linear constraints in EDM

define a convex set of vectors of weights, the Hit-And-Run method [51, 53] can be
applied). After that, the hierarchical ELECTRE III method is applied for each of
these vectors of weights. Then, for each non-elementary criterion gr, the probability
with which an action a is preferred, incomparable or indifferent to another action b

is provided to the DM.
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3.3.9 ELECTRE-III-H: An Outranking-Based Decision
Aiding Method for Hierarchically Structured Criteria

Another approach to deal with decision problems presenting a hierarchical structure
of criteria using the ELECTRE III method has been proposed by [17] extending
[16], namely the ELECTRE-III-H method. However, some differences can be
observed between the way the hierarchy is dealt in this paper in comparison with
[9].

While both methods build a partial preorder at the root level as well as at the
macro-criteria level, the way this partial preorder at the intermediate level is built
is different in the two methods. Indeed, in [9], as shown in Sect. 3.3.6, the partial
preorder of the actions on an intermediate criterion gr is built taking into account
the evaluations of the actions on the elementary criteria descending from gr only.
In [17], instead, the procedure starts from the bottom building the partial preorder
of the actions on criteria gr having only elementary criteria as subcriteria using
the classical ELECTRE III method. After that, since the actions are not evaluated
on intermediate criteria gr, a concordance index Cr(a, b) and a discordance index
dr(a, b) are defined in an appropriate way on the basis of the partial preorder on gr
obtained above. That is, the value assigned to Cr(a, b) and dr(a, b) depends on the
fact that a is preferred, indifferent or incomparable to b on gr or that b is preferred
to a on gr and from the difference between the number of actions preferred to a and
the number of actions preferred to b on gr in the same preorder.

The other difference is that, while in [9] the weights are defined for elementary
criteria only and, then, the weight of an intermediate criterion gr is equal to the
sum of the weights of the elementary criteria descending from gr, in [17] for each
intermediate criterion gr, the sum of the weights of the criteria directly descending
from it is equal to one implying that a greater number of variables needs to be known
to implement the method.

3.3.10 Other Contributions

As described in Sect. 3.3.5 ELECTREGKMS implements the ROR concepts provid-
ing recommendations on the set of actions by taking into account the whole set of
models compatible with the preference information provided by the DM. However,
in some real world context, it is necessary to provide a single ranking or sorting
of the considered actions. For such a reason, to summarize the results obtained
by ROR taking into account all compatible models, [34] propose a procedure
to compute the most representative set of outranking parameters based on the
preference information given by the DM in indirect terms and the necessary and
possible outranking relations obtained by the ROR application. The ELECTRE
methods can then be used with the obtained most representative set of parameters to
get a recommendation on the problem at hand.
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In [29] the ROR is applied to group decisions, that is, to decision problems
presenting a plurality of decision makers (DMs). In this case, the DMs share the
same problem composed of the same actions, criteria, and evaluations of the actions
on the considered criteria. However, each DM has his own preferences that are
expressed in an indirect way. On the basis of this preference information translated
in terms of outranking using the ELECTRE notation described in the previous
sections, four different binary relations on A are defined. Denoting by D′ the set
of DMs, for each (a, b) ∈ A×A one has:

• aSN,Nb iff aSNb for all dr ∈ D′,
• aSN,P b iff aSNb for at least one dr ∈ D′,
• aSP,Nb iff aSP b for all dr ∈ D′,
• aSP,P b iff aSP b for at least one dr ∈ D′.

Of course, specific LP and MILP problems have to be defined to compute such
outranking relations (see [29]).

The papers of Roman Słowiński propose also some applications of ELECTRE
methods to classical problems in decision theory and finance. More in particular,
[11] uses ELECTRE methods to handle decisions under uncertainty, proposing
an application to the newsvendor problem, while [31], taking into account the
Markowitz model, applies the ELECTRE methods to the classical financial portfolio
selection problem.

Let us also remember two more papers proposing interesting real world appli-
cations of the ELECTRE methods. In [46], ELECTRE III is used to setting up the
priority of water users according to some socio-economic criteria in the context
of a multicriteria programming water supply system for rural areas. In [18], an
MCDA approach based on the ELECTRE III method is applied to measure the
multi-functionality of an agri-food value chain. To this aim, 9 different indicators are
taken into account based on a literature review. Even if the proposed methodology
can be applied to different agri-food value chains, in the paper it is used to measure
the multi-functionality of the olive oil food value chain in five different European
countries being the biggest oil producers, that is, France, Greece, Italy, Portugal,
and Spain.

Finally, a review on the ELECTRE main characteristics and principles together
with a brief description of most of the ELECTRE methods has been provided in
[21]. Let us observe that a more recent review on ELECTRE methods and their
applications to real world decision making problems has been presented by [22].

3.4 Conclusions

Roman Słowiński proposed several and diversified contributions to ELECTRE
methods, ranging from theoretical investigations on the axiomatic basis to enrich-
ment of the methodology with new approaches emerging in MCDA, such as
ordinal regression and robust ordinal regression or consideration of hierarchy of
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criteria, passing through many innovative real world applications. We believe that
we can look at the approach of Roman Słowiński to ELECTRE methods as the
result of a constant tension to go beyond the mere passive application of formulas
and algorithms of these methods, proposing ingenious extensions and advances
that facilitate and enhance the effective application in real life decision aiding
procedures. All of this is done remaining always faithful to the spirit with which
the ELECTRE methods were proposed by Bernard Roy. We hope that the survey
we have proposed in this paper can contribute to encourage other researchers
and practitioners to proceed with the same spirit in the effective application and
development of ELECTRE methods.
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29. Greco S, Kadziński M, Mousseau V, Słowiński R (2011a) Robust ordinal regression for
multiple criteria group decision: UTAGMS -GROUP and UTADISGMS -GROUP. Decis Support
Syst 214(1):118–135
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Chapter 4
How Can Decision Sciences and MCDM
Help Solve Challenging World Problems?

Hannele Wallenius and Jyrki Wallenius

Abstract The world is witnessing rapid changes, some positive, some negative.
In this paper we overview several of the technology mega trends and other trends,
which are of interest for the Decision Science/MCDM community. We discuss, what
role our field could and should play in helping solve world problems.

4.1 Introduction

The world has been witnessing rapid advances of digital technology during the
last decade. At the same time, the world is witnessing great challenges concerning
the climate change and environment, and increasing world population. The recent
COVID-19 pandemic has accelerated the adoption of digital technology on many
fronts. Interestingly, results of recent research have made the world aware of the
possibility that pandemics and climate change could be linked.1 At the individual,
corporate, and even society level, the implications of what we call mega trends
are pervasive, posing both opportunities, challenges, and even threats, although
it is not easy to predict all the implications. Many individuals, businesses, and
even government leaders may not be aware of, let alone be prepared for the future

1 Coronavirus, Climate Change, and the Environment: An Interview with Dr. Aaron Bernstein,
Director of Harvard School of Public Health, 2019 (https://www.hsph.harvard.edu/c-change/
subtopics/coronavirus-and-climate-change/).
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changes. One could argue that the world has always been changing, but what is novel
now is the unprecedented pace at which changes take place all over the world. We
live in an era, where there is great demand for scholarly research and collaboration2

at supra-national levels. Wisdom is called for.
We will separate the technology mega trends from other mega trends.
In 2015, the World Economic Forum published a report Deep Shift: Technology

Tipping Points and Societal Impact, covering the ongoing technology mega trends.
The report groups the technological mega trends into the following six:

1. The Internet—world’s access to the Internet will continue improving; people’s
interaction with it will become more ubiquitous

2. Further enhancements in computing power, communications technologies,3 and
data storage

3. The “Internet of Things”
4. Big data and Artificial Intelligence—the ability to access and analyze huge

amounts of data; coupled with the “ability” of computers to make decisions based
on this data

5. The sharing (or platform) economy and distributed trust (based on, for example,
the block chain technology)

6. 3D-printing

The possibilities of the digital technology are almost unlimited, both in enhanc-
ing traditional industrial processes (robotics), and in generating novel digital
services and business opportunities. The digital revolution has begun, although
decades (centuries) are needed for its full potential to realize. One interesting cause
of the Internet and social media is the increased transparency of societies, which
helps to improve democracy. At the same time, we face severe problems with data
privacy issues and cyber-security.

In addition to technology mega trends, the world is witnessing highly important
other mega trends. These mega trends, unlike technology mega trends, are generally
perceived as challenges or threats to humankind. Some of them are discussed in
PwCForesight#megatrends and by the World Economic Forum:

1. Demographic and social change taking place in many countries (aging popu-
lations; decreasing fertility (Western world, but also China); urbanization (in
particular, in Africa); refugee problem)

2. Increasing world population (in particular, in India and Africa): growing need for
food, clean water, and cheap energy

3. Climate change, concern for the environment

2 It is beyond the scope of our paper to discuss negotiations. However, providing analytical support
for negotiators in the Howard Raiffa tradition is as timely as ever [20].
3 Zoom and Teams represent the state-of-the-art communication technologies, which have been
in common use by the world during pandemic. Both universities and businesses went to online
teaching/work, when the pandemic started in March of 2020. It remains to be seen, to what extent
distance work will remain an option for employees.
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The above three mega trends force governments and businesses to operate more
efficiently under resource scarcity. Moreover, the world is more than ever inter-
dependent on each other. The wealthier nations need to provide humanitarian help
to poor nations to help solve the world problems.4

With robots/Artificial Intelligence (AI) “outsmarting” many individuals (with
time, perhaps most individuals), what do most people do in year 2121? Brechbuhl
asks the good question, “What will happen to the sense of worth, place and
contribution to society that human beings have derived from work throughout much
of recorded history?” (World Economic Forum report).

We discuss technology mega trends 1, 4, and 5, and non-technology mega trend 3
from the above World Economic Forum’s list, in more detail. What role can Decision
Sciences/multi-criteria optimization, preference modeling, play? We argue that our
profession should be able to provide tools, software, and ideas to capitalize on rising
opportunities and tackle problems due to world mega trends. We provide concrete
examples.

4.2 Internet Searches

E-commerce is going strong. It started with digital products, such as movies and
music, and products which could be distributed electronically, such as airline tickets,
but has gained new territory. People buy today to an increasing extent online, and
even more so in the future. Besides travel and leisure industries, the clothing or
fashion industry is almost driving the change. Online grocery shopping was rela-
tively modest, until the world was hit by the COVID-19 pandemic. Online grocery
shopping experienced a rapid growth. According to Shopper Insights (February
16th, 2021), online grocery shopping grew to 10% of all grocery shopping, implying
a 5-times growth from pre-pandemic time.

The growth of e-commerce has many implications. Besides, it has generated
many interesting research questions. One of the implications is the increased
importance of logistics for delivering products which are not in digital format.
Customers have traditionally taken care of the home delivery of products them-
selves. In electronic commerce the goods are delivered directly from warehouse to
customers, which has a number of logistical consequences. For example, storage
and warehousing can be centralized, and delivery size decreases. From an MCDM
point of view, delivery times and cost become important, in addition to the price
and quality of the product. An example of a challenging logistics problem is the
COVID-19 Pfizer vaccinations which require (truly) cold storage. An important
research question is, how to gain the consumer’s trust when buying online. Because
the consumer is unable to inspect the product physically, one has to trust the store

4 Humanitarian logistics is a relatively new field close to Management Science/Operations
Research.
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that they will deliver good quality products.5 Mechanisms to build trust include, but
are not limited to showing videos or original photos of the product, giving shoppers
as much information as possible, sharing customer reviews, offering generous return
policy, and ranking high on Google searches. Behavioral science offers advice, how
to build trust. Prisoner’s dilemma, in particular, the iterated prisoner’s dilemma
game, teaches useful lessons, how to build trust. Regarding the clothing or fashion
industry, it is interesting that two opposite strategies are followed by online stores
regarding return policy. In a nutshell, when the product is relatively cheap, the
stores often encourage the consumer to order several units (even ten), keep one, and
return the rest, almost maximizing the returns. Some stores even provide free pick-
up delivery for returned goods. For expensive pieces of clothing, stores have, for
example, developed elaborate (visual) ways to help measure the size. Instead of just
one traditional size (number), the online stores solicit several measurements (sleeve
length, waist, etc.). Expensive fashion stores in a nutshell attempt to minimize the
returns. The return policy has an impact on the consumer choice problem. In the
former case, the choice process is two-staged: in the first (online) stage the consumer
must decide which products are delivered to her home; in the second (on-site) stage
the consumer narrows down the choice to one (typically).

Typically, when people buy online, they use some search engines, such as
Google, to help them find the products or services which they are looking for.
Quite commonly on top of the list provided by search engines emerge the cheapest
products/services. A typical example is flight tickets between two cities. The search
engines are not good in differentiating among offers (besides price). We realize that
Google has a dominating market position, but our scholars could work with Google
to develop better search engines. For an attempt, see Roy et al. [22]. Their idea was
based on two consecutive searches, where the user marks the relevant documents
(from the first search) with radio buttons and uses a multi-objective technology to
conduct a second improved search.6 The second improved search would provide
“more” relevant documents/products/services.

We recently heard of a problem related to searches conducted in rare languages,
such as Finnish (5.5 million people). Google was alerted to a problem associated
with the search word “vaccination.” Before Google corrected the situation, the
postings which ranked highest represented anti-vaccine, non-scientific propaganda,
although in Finland the anti-vaccination ideas have not gained any greater momen-
tum.

5 https://www.sellbrite.com/blog/how-to-build-trust-with-online-shoppers-an-actionable-guide/.
Consumers have experienced problems with products delivered from some countries.
6 The multi-objective technology refers to the “lambda problem” associated with the Zionts-
Wallenius interactive multi-criteria optimization algorithm [28]. The lambda problem generates
an improved set of attribute weights, which are used to find improved solutions.

https://www.sellbrite.com/blog/how-to-build-trust-with-online-shoppers-an-actionable-guide/
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4.2.1 Recommender Systems

To combat the information overload pertaining to both digital and non-digital
products or services, many companies (and academics) have found it worthwhile
to develop the so-called recommender systems. Such systems have predominantly
been developed by computer scientists. A recommender system is a subclass of
information filtering systems that seeks to predict the “rating” or “preference” that a
user would give to an item (Wikipedia). Recommender systems are extensively used,
for example, in choosing movies to watch, music to listen, news to follow, books to
read, and restaurants to visit. In order for recommender systems to function, they
need user data. This can be explicit (feedback in the form of product reviews), or
implicit (judged based on past choices). For some companies like Netflix, Amazon
Prime, and Hulu, their business model and its success depends on how good their
recommendations are. Netflix even offered a million dollars in 2009 to anyone who
could improve its system by 10%.

Recommender systems can be categorized into collaborative filtering approaches
and content-based filtering approaches [21, 26]. There also exist hybrid recom-
mender systems [24], who target to overcome the problems experienced with
content-based and collaborative approaches.

Collaborative filtering approaches are based on the idea of building a model from
a user’s past behavior as well as other users’ behavior (items previously purchased).
The logic of incorporating other person’s likings is that if other people found this
item (or similar items) popular, so would you (as their peer)! A positive feature
is that the recommendations are perceived to improve over time. However, there
are problems providing recommendations to new users. Moreover, if an individual
is “off the main street” with very specific likings, it is difficult to find good
recommendations.

Content-based filtering approaches develop a set of characteristics that an item
possesses, and build a profile of each user (that is, what they like) in order to
recommend additional items with similar characteristics. This idea is close in spirit
to MCDM, where the properties are called attributes or criteria. It is not uncommon
that the importance of a characteristic is correlated with the number of times the
specific characteristic is mentioned in the description of the product/service (text).
Similarity of characteristics vectors is normally measured with the cosine of the
angle of two vectors (algebraically, the dot product). We make two observations.
Firstly, the number of times a characteristic is mentioned in the text does not neces-
sarily correlate with its importance. Secondly, the dot product is not necessarily the
best similarity measure between two vectors.

Recommender systems are based on the “similarity” logic. What you and others
liked in the past; you will like more of the same in the future. The human desire
for variety does not play a role in this logic. The assumption is that people lack
curiosity and the desire to experiment. The underlying logic of recommender
systems is even dangerous, when we apply it to filter news. If an individual
is solely or largely dependent on reading news (in social media, as opposed to
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traditional media) recommended (filtered) by a system, the set of news offered
becomes narrow, representing a very narrow world-view. In the world there are
millions of people, whose world-view has become narrow, as a function of this.
We think that the recommender systems should periodically suggest different types
of products/services (or news), to broaden the person’s horizon. You might like
something which is out there, even though you have not tried it before. How to
operationalize this idea, calls for research.

MCDM scholars should easily understand the logic underlying recommender
systems. Both MCDM and recommender systems are about modeling user’s
preferences [13]. Preferences can be modeled with the help of value or utility
functions [10]. Some other interesting preference modeling approaches have been
described in Fürnkranz et al. [7] and Branke et al. [1, 2].

When purchasing relatively expensive goods (such as consumer durables),
irrespective of whether a person uses recommender systems or not, she has to make a
choice. Besides recommender systems, there is very little decision support available
for consumers in online environments. Interestingly, the Internet is changing the
concept, who a “decision maker” is, and what type of support she needs. Operations
researchers have largely been in the business of supporting corporate leaders and
managers. However, many of the hundreds of millions of consumers who buy online
could benefit from some support when making purchasing decisions on the Internet.
Such decision support must be targeted at masses; hence it must be simple. We think
there is a need for developing, in addition to complicated algorithms and decision
support tools, simple tools to be used by masses.

4.3 Big Data (and Artificial Intelligence)

According to the lead article in the Economist published on May 6th, 2017, the
world’s most valuable resource is no longer oil, but data. Data is being continuously
generated from various sources, including cash registers, mobile phones, and
Internet sites visited by hundreds of millions of people daily. Many corporations are
realizing that they should better utilize data to their (strategic) advantage. Some talk
about the monetization of data, meaning that there would be a market and monetary
value for data. We feel that data is necessary, but data analytics is needed to realize
the potential from data.

Typical advertising and marketing agencies or corporate departments do not
know how to analyze big data, even though they realize its importance or potential.
The need for people possessing analytics skills is high. What role does big
data play in advertising? In a nutshell, big data can be used to help create
targeted and personalized campaigns, which increase the efficiency of advertising
or marketing. How is this done? Simply by gathering information and learning
about user behavior. Many reward- and loyalty programs are based on the use of
consumer data. Recommender systems use past purchases or searches to make new
recommendations. An interesting phenomenon is the use of social media by ad
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agencies. It is easy to document and share experiences as customer or consumer
in social media. It is not uncommon that thousands of people read these posted
reviews and are influenced by them.

Another area where big data will find its uses is medicine and health care at large.
Various monitoring instruments continuously generate data, so do human genome
studies. They eventually lead to better preventive and actual care, and more accurate
diagnostics. An interesting problem from the perspective of MCDM is, how to better
incorporate patients’ views on their own healthcare plans and treatment decisions.
Is an average person without medical training able to express such preferences? We
think many would, if somebody explains to them the likely consequences of each
treatment option.

A more general level concern in healthcare is to make the system more efficient
and more personalized. A good starting point would be if various health care
providers could share data (with the patient’s consent). Such a system would have
to gain everybody’s trust due to the sensitive nature of the information. Blockchain
technology is being investigated for this. Healthcare decisions naturally have to deal
with multiple criteria, and complex tradeoffs between cost, the quality of care,
even potential loss of lives. Wojtek Michalowski’s (University of Ottawa) work
is a good example of the type of impactful work a person with an Operations
Research/MCDM background can do in healthcare. He has collaborated with
Ottawa Hospital.

Artificial Intelligence (AI) is a very important field today. AI is either rule-
based or based on machine learning [11]. In many cases, the technology is there or
“almost” there. A good example of the use of AI is in cyber-security to detect cyber-
criminal activities. Another example is driver-less automobiles. However, many
complex legal and ethical issues remain to be solved. AI must make complex moral
choices as well. Work is also currently being conducted to incorporate emotions into
“robots.” We ask, whose moral choices and emotions should be programmed? The
society’s? Or the person who owns the robot. In case the individual’s ethical choices
differ from the society’s, it would seem natural to impose the society’s views. But
the question is, does society have an answer (or a code book) for every conceivable
situation. Certainly not today.

We personally would hesitate to delegate decision-making powers in important
matters to “robots,” no matter how “intelligent” they are. We feel that humans should
be in control of their lives. AI is a good tool, but a dangerous master. Who guarantees
that the AI-driven robots are friendly towards humankind?7 If it is against the robot’s
objective, a human may not be able to stop the robot. Futurists commonly predict
AI as posing one of the greatest threats to humankind. Having said that, certainly
lower level routine decisions could be delegated to robots, if subjected to periodic
review by humans.

7 Physicist Hawkings, among other famous people, was concerned of this. See his last book: Brief
answers to the big questions, 2018, Hodder and Stoughton.
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4.4 The Platform Economy

Sharing economy is an umbrella term with a range of meanings, often used to
describe economic activity involving online transactions. It was born from the open
source community. We focus on the use of the term to describe sales transactions
conducted via online market places called platforms [27]. An example of such a
market place are online auctions, which have been around since late 1990s. Newer
examples are the San Francisco based taxi companies, Uber and Lyft; and the online
market for housing, Airbnb. Both Uber and Lyft were listed in the stock exchange
in 2019, Airbnb the following year. Their respective estimated value was 75 billion
USD (Uber), 30 billion USD (Lyft), and close to 100 billion USD (Airbnb).

Uber and Lyft realized that they did not need to own any vehicles, just a platform,
where owners of cars and people in need of rides or deliveries can communicate.
Uber is now operating globally. In case of Uber and Lyft, the drivers indicate to the
platform the hours they are available. Customers then specify their needs for driving
services from place A to B. The platform checks the availability of cars near A. The
customer sees upfront the price.

Airbnb is an American company, which hosts an online marketplace and hospital-
ity service, for people to lease or rent short-term lodging including vacation rentals,
apartment rentals, homestays, or hotel rooms (Wikipedia). They have currently over
4 million listings. Airbnb does not own a single house, apartment, or condominium,
but it provides a platform, where supply and demand for short-term housing meet.
Its commission is typically between 10–13%. In case of Airbnb, people who want
to rent out their homes or other rental property owned by them, post to the platform
the dates their home is available for rental, and details about the rental property.
Customers can specify the type of housing they are looking for, price range, number
of bedrooms, beds, and baths. Customers can also use extra filters, for example, for
handicapped people. Customers can then check out the locations and the units within
their wishes, and make their choice. The matching seems to work out reasonably
fine. In the lingo of MCDM, the choice problem is discreet, choosing one most
preferred option from a relatively small set. To facilitate the choice (or make it more
complicated), many sites post customer reviews. Practically all sites have pictures
of the rentals. Note that the filters usually operate in the fixed constraints mode.
MCDM literature seems to favor flexible constraints, however.

We worked with the platform economy concept already in late 1990s. We devel-
oped a multi-attribute reverse (or procurement) auction site, called NegotiAuction
[23]. We realized that price-only auctions were too simplistic, and that auctions
(transactions in general) need to include other aspects as well, such as quality
and terms of delivery. Our NegotiAuction system was based on “pricing out” (or
costing out) all other attributes besides cost. “Pricing out” is an old tool used by
practicing decision analysts [10]. Today there exist many such commercial multi-
attribute auction sites, for example, Perfect, Ariba, and CombineNet to name a few
[18].
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Another example of platform economy is crowdfunding and other peer-to-peer
lending sites, where private people (instead of banks) lend money to people in need
of money. Equity crowdfunding is a decade old, a rapidly growing alternative form
of entrepreneurial finance, reaching a 1,5 billion USD volume in 2020, posing many
interesting research questions [14, 15].

An example of a platform/recommender system is Voting Advice Applications
(VAAs). They are commonly used in many European countries, but also elsewhere
where we have multi-party elections. In many European countries (such as Finland
and Holland) over half of the general population uses them, and they have a signif-
icant impact on elections. This was recognized by the previous Prime Minister of
Finland, who wanted to commission a study of existing Voting Advice Applications
and their importance in Finland. VAAs are platforms to help voters find suitable
candidates to vote for in national, presidential, and regional elections. They are
based on both the candidates and the voters answering a set of questions concerning
political issues. The system (the algorithm) then finds the candidates and party,
which are “closest” to the voter’s political preferences. The development of such
Voting Advice Applications involves solving many MCDM/behavioral decision-
making problems. The questions must be discriminating and there cannot be too
many of them. They must have proper Likert-scales to make distance measurement
meaningful. What distance measure should one use? Are the questions of equal
importance to voters or should importance weights be used? If yes, how are they
determined? Are voters interested in voting for candidates who have a higher
likelihood of becoming elected? Current VAAs are based on the so-called proximity
voting model, where the voter looks for candidates who in the issue space would
be “closest” to them. But political science literature also talks about the directional
model and the discounting model [25]. Have the VAA developers too quickly locked
in the proximity model? The voting problem is an important problem, in particular,
in multi-party, multi-candidate elections, where voters have been shown to benefit
from the use of such support. For additional details, see Pajala et al. [17].

Generally speaking, many MCDM scholars are equipped with the skills to
develop online platforms. There is a growing market for them. In sharing economy
platforms, some type of matching based on preferences is sought, where supply
meets demand. The importance and popularity of platform economy has grown
during COVID-19 pandemic [16].

4.5 Climate Change, Concern for Environment

The scientists are of the opinion that human-induced climate change is highly
probable [5]. The concern for the environment is almost universal. Almost 200
countries have signed the Paris Accord, including the US, Russia, and China. Under
Trump’s administration, US withdrew from the agreement, but under Biden rejoined
it. When making decisions, governments and corporations are increasingly forced
to consider the impact of their decisions on the environment.
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Environmental studies naturally require the decision makers to consider multiple
criteria and complex tradeoffs between them, making environmental applications
common [9]. Another case in point is flood risk management, an area, which is
growing in importance due to the climate change [3]. From an MCDM scholar’s
perspective, many models which are being used by various environmental author-
ities may not be up-to-date, prompting our community to collaborate with the
environmental authorities.

From the MCDM’s perspective an under-researched topic is sustainable (or
green or ethical) investing. Markowitz’s original portfolio optimization model has
two objectives, maximizing expected returns, and minimizing risk (or volatility).
Now many investors (including institutional investors) also want to consider, how
the listed companies perform in terms of a third dimension: sustainability (or
Environmental, Social, and Corporate Governance, for short ESG). Dow Jones has
for over 20 years provided a list of companies who perform well regarding ESG
criteria. It lists the most sustainable companies from across 61 industries. The list
is periodically updated and serves as a benchmark to guide investors interested in
sustainable companies. If a company does not make it to the list, it may not be
easy to find out, how they perform regarding ESG criteria. The company’s website,
however, usually provides some self-reported information about this. However,
measuring sustainability is far from trivial. Sustainability is multi-dimensional, and
measuring it calls for research. Our community should help. Interesting early work
is reported in Hallerbach et al. [8]. In their work a framework for managing a
portfolio of socially responsible investments is presented. Real-life data is used
to illustrate, how multi-dimensional sustainability actually is. However, there are
many open questions. To make matters more complicated, ESG criteria also include
possible use of child labor or forced labor by oppressed people. How would we
know if this happens, and how are such considerations factored in?

We would like to conclude this subsection by referring to interesting research,
with a link to sustainability, conducted at the International Institute for Advanced
Systems Analysis (IIASA) in Austria. The Population and Just Societies Program
seeks to generate insights into current and future “population sizes, structures, and
distributions, which are fundamental to understanding human impact on ecosystems
and simultaneously, the impact of environmental changes on human wellbeing.”
The program’s research agenda forms a key priority in the IIASA strategic plan
by “identifying sustainable development challenges and exploring people-centric
systems solutions for sustainable, resilient, just and equitable societies.” From a
methods point of view, decision support tools as well as scenario analysis are in
frequent use in the program.

4.6 Where the Opportunities Lie?

The future for MCDM looks bright. Many of the world mega trends reinforce the
role of MCDM by pointing out novel application areas, such as sustainable invest-
ing. The MCDM community needs to be prepared for seizing the opportunities.



4 Decision Sciences and MCDM 69

The world is getting more complex. Despite the relative affluence of the world,
resource constraints still prevail. Because of resource constraints, we cannot achieve
everything we want, and tradeoffs must be made. The concepts of efficiency (or
Pareto optimality) and tradeoff are at the core of MCDM. They are still as valid as
ever.

Because of the increasing complexity of the world, heuristics offer a good
practical option to optimization approaches. One good example is Evolutionary
Multi-Objective Optimization (EMO), which consists of heuristic tools mimicking
the survival-of-the-fittest ideas in nature [4]. Originally developed mainly for bi-
objective problems, with the purpose of generating all approximately Pareto-optimal
solutions, much recent research has focused on developing hybrid interactive-
EMO/MCDM approaches for multiple-objective problems. Such hybrid approaches
naturally interact with a decision maker and highlight the importance of the decision
maker, and psychology.

The importance of preference modeling is highlighted because of recommender
systems. MCDM scholars need to tailor their tools to be used as part of recom-
mender systems.

The importance of psychology, or behavioral decision theory, is being redis-
covered in decision-making, and more broadly in Operations Research [6]. Three
Nobel Prizes in Economics have been awarded to decision psychologists, the
first to Herbert Simon in 1978; the most recent being awarded to Richard Thaler
(December, 2017), whose work builds on Daniel Kahneman and Amos Tversky.8

We think that the more realistic our tools are from a behavioral perspective, the
better are our chances to support individual decision makers. Hence there is a need
for better incorporating decision psychologists’ findings into our decision support
tools (whether MCDM or EMO).

We also think that there is an increased awareness of the fact that situations vary
and the needs of decision makers vary. In some cases, there is a need for more
formal analysis than in other cases. Sometimes, quick-and-dirty calculations may
be all that is needed. For an interesting study demonstrating that more is not always
better when talking about decision support, we refer to Johanna Bragge’s master’s
thesis (described in [12, pp. 118–119]).

The Internet is changing the concept, who a “decision maker” is, and what type
of support she needs. Consumers purchasing online need decision support. Such
support must be targeted at masses; hence the requirement for simplicity. In the
Internet era, the classical economics problem of matching has gained in importance
[19]. MCDM scholars can help by developing good matching algorithms.

8 Daniel Kahneman received the Nobel Prize in Economics in 2002.
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4.7 Final Word

We summarize our suggestions, where we see great potential for novel contributions
from our field.

1. Develop better recommender systems and search engines.
2. Develop better matching algorithms for various situations.
3. Promote the use of big data in companies and the public sector (for example,

health care).
4. Develop better measures (indices) for sustainable investing.
5. Develop decision support tools targeted at masses, instead of business leaders, to

help make online purchases.

References
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Chapter 5
Preference Disaggregation Analysis: An
Overview of Methodological Advances
and Applications

Michalis Doumpos, Evangelos Grigoroudis, Nikolaos F. Matsatsinis,
and Constantin Zopounidis

Abstract Preference disaggregation analysis has been widely used for constructing
decision models in multi-criteria decision aid (MCDA). Disaggregation approaches
adopt a data-driven scheme, in which preferential information is inferred from
decision examples through regression-like approaches. This chapter provides an
overview of the preference disaggregation paradigm and the existing methodologies
covering different modeling forms and decision contexts. Moreover, recent applica-
tions are summarized along with developments in this field.

5.1 Introduction

The development of decision models is a challenging and time-consuming task for
both decision-makers (DMs) and analysts. The development of a decision model
requires the specification of technical parameters and the representation of the
DM’s preferences in a way that fits the structuring of the decision problem, and
the judgment policy of the DM. Model development is an interactive process with
the DM having an active role on various steps, such as the specification of the
appropriate type of model, providing information about the preferential parameters
involved, and the verification of the model’s validity.

Among these issues, the specification of a model’s parameters that represent the
preferences of the DM is a crucial step in the development of decision models. Two
types of interactive approaches can be considered in this context. The first requires
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the DM to provide direct information about his/her judgment policy and system of
preferences. A typical example involves the specification of value trade-offs, which
are used in value function models to define the weights of the criteria [1].

An alternative approach relies on indirect approaches to elicit preferential
information from the DM. This is known as preference disaggregation analysis
(PDA; [2]). In PDA, examples of decisions taken by the DM are analyzed to identify
the underlying decision model, which can then be used in the actual decision
instance under consideration. Such an approach can be quite convenient when
the DM can easily provide decision examples, i.e., evaluations of representative
alternatives, using past cases, or considering examples of alternatives that are well-
understood and easy to evaluate. The inference of a decision model from such
examples is performed through regression-like techniques. Once the results from the
inference procedure are obtained, an interactive process can be initiated to identify
and resolve the inconsistencies between the model’s outputs and the preferences of
the DM, thus leading to the final model.

The roots of the PDA paradigm can be traced back to the early works on the use of
linear programming models for regression analysis and the analysis of preferences
[3, 4]. A formal approach in the field of multicriteria decision aid (MCDA), PDA
was first introduced with the development of the UTA method for constructing
additive value function models by Jacquet-Lagrèze and Siskos [5]. Since then, PDA
has evolved covering different types of MCDA models, various decision contexts,
and application areas. The aim of this chapter is to provide an overview of the
methodological advances and the applications of PDA approaches and to highlight
emerging research trends.

The rest of the chapter is organized as follows. Section 5.2 describes the basic
principles and the framework of PDA. Section 5.3 discusses the use of PDA
approaches for the inference of different types of MCDA models, covering various
developments in methodologies for eliciting preferential information from decision
examples. Section 5.4 focuses on the issue of robustness of PDA approaches,
whereas Sect. 5.5 provides an overview of the literature on applications of PDA
methods and their implementation in decision support systems. Finally, Sect. 5.6
concludes the chapter and discusses some future research directions.

5.2 The General Framework of Preference Disaggregation
Analysis

As mentioned in the introduction, PDA is a regression-like approach for inferring
decision models from data. More formally, we assume a typical multicriteria
decision problem involving a set G= {g1, . . . , gn} of n evaluation criteria, expressed
in maximization form, with gk(a) denoting the performance of alternative a on
criterion k. For the evaluation of a finite set of alternatives A, a decision model
f is employed. Depending on the decision problematic [6], the evaluation may
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result in the selection of the best alternatives (problematic Pα), the sorting of the
alternatives to predefined performance categories (problematic Pβ), or the ranking
of the alternatives from the best to the worst (problematic Pγ).

Regarding the decision model, it can be expressed various forms, leading to a
distinction between:

• Functional models (e.g., value/utility functions; [5, 7])
• Relational models (outranking relations; [8, 9])
• Symbolic models (decision rules; [10])

Depending on the type of model that best fits the nature of the problem and
the policy of the DM, one may need to specify various technical and preferential
parameters. For instance, several types of models require information about the
relative importance of the criteria. Henceforth, f (P) will denote a decision model
defined by the set of parameters P .

In PDA approaches, the specification of the parameters in P is performed though
the analysis of a set of decision examples AR = {a1, . . . , am}, which is often
referred to as the reference set. The instances in the reference set involve alternatives
evaluated by the DM; these may be alternatives that the DM has evaluated in the past
(i.e., past decisions), a subset of A or fictitious cases that can be easily analyzed and
evaluated by the DM [2]. The evaluations that the DM provides on the alternatives of
AR are assumed to be representative of his/her system of preferences and judgment
policy. Thus, the reference set implicitly incorporates all the information needed to
describe the underlying decision model characterizing the DM.

The evaluations of the DM on the reference alternatives can be expressed in
various forms. For instance, the DM may define a ranking of the alternatives, a
classification, or may provide richer information in the form of defining pairwise
relations among the alternatives. Denoting by Y the evaluations of the DM on the
reference set, PDA seeks to identify a set of parameters P∗, such that the evaluations
ŶP∗ derived with the corresponding model f (P∗) are as close as possible to the
given evaluations Y, i.e., ŶP∗ ≈ Y . This leads to an optimization problem of the
following general form:

P∗ = arg min
P

L
(
ŶP , Y

)
, (5.1)

where L is a loss function for the differences between ŶP and Y. The exact
formulation of the above optimization problem (5.1) depends on the type of the
considered decision model and the decision problematic. Examples of some well-
known MCDA models are provided in the next section.

It is worth noting that the context of PDA is closely related to the framework of
supervised machine learning (ML), which is also focused on learning models from
data. However, ML adopts a data-driven, algorithmically oriented perspective, in
which the role of the DM is rather limited, whereas PDA assumes that the DM
has an active role in calibrating model, using the results from the optimization
(5.1) as the starting point. Moreover, ML algorithms are mainly designed for large-
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scale problems, whereas MCDA problems usually involve a smaller number of
alternatives. A detailed discussion of the connections between ML and PDA can
be found in the works of Doumpos and Zopounidis [11, 12]. Despite the existing
fundamental differences, the interactions and synergies between the two areas
have gained interest among researchers working on these fields, leading to new
developments for both domains, such as preference learning [13], as well as new
approaches for implementing PDA methodologies [14–17].

5.3 Models, Formulations, and Methodological Advances

This section provides an outline of the main methodological approaches in PDA,
categorized by the type of MCDA models in each approach. The presentation starts
with approaches based on value functions, which have been the first to be considered
in the PDA framework. Moreover, approaches for outranking relations and rule-
based models are also presented.

5.3.1 Value Function Models

Multi-attribute utility/value theory (MAUT/MAVT) adopts a normative approach
to decision-making, relying on an axiomatic basis first formally described by
Von Neumann and Morgenstern [18], who characterized the foundations of utility
models for decision-making under uncertainty. Details about the principles of multi-
attribute utility and value functions can be found in the comprehensive book of
Keeney and Raiffa [1]. Henceforth, we shall refer to value functions assuming
decision problems in a deterministic framework.

5.3.1.1 Modeling Forms

Depending on the preferential independence conditions that describe the underlying
system of preferences of the DM, different types of value functions can be defined.
The most widely used form of value function is the additive one, which assumes
mutual preferential independence of the criteria:

V (g1, g2, . . . , gn) =
n∑

k=1

vk (gk) , (5.2)

where vk(gk) is the marginal value function of criterion gk. The marginal value
functions provide the means to evaluate the performance of the alternatives on the
criteria through a common (value) scale; they are increasing for benefit criteria and
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decreasing for cost criteria. The marginal value functions can be scaled such that
vk(gk∗) = 0 and vk

(
g∗k
) = wk , where gk∗ and g∗k denote the least and most preferred

levels of criterion gk. Setting uk(gk) = vk(gk)/wk, the value function (5.2) can be
equivalently written as:

V (g1, g2, . . . , gn) =
n∑

k=1

wkuk (gk) . (5.3)

The weights define the trade-offs among the criteria, and they are defined to
be non-negative and summing up to 1. With this specification, the global value
functions (5.2) and (5.3) range in [0, 1] with higher values corresponding to better-
performing alternatives.

Although most studies on PDA approaches for value function models have
assumed an additive form, non-additive functions have also been considered. For
instance, Bugera et al. [19] presented an optimization formulation for quadratic
value functions, whereas Liu et al. [20] presented an approach for inferring value
function models augmented with components for handling the interactions among
criteria. During the past two decades, value models in the form of Choquet
integrals have attracted strong interest [21]. In this context, Angilella et al. [22]
used the Choquet integral to represented a non-additive model in an ordinal
regression framework, whereas Aggarwal and Fallah Tehrani [23] formulated a
nonlinear optimization problem to derive preferential information with the Choquet
integral through pairwise comparisons. Finally, Bresson et al. [24] presented an ML
approach, based on a neural network, for learning hierarchical Choquet integrals
from data.

5.3.1.2 Ranking Problems

The construction of value functions in the context of PDA, involves the specification
of the form of the marginal value functions. For problematic Pγ (ranking problems),
the reference alternatives a1, . . . , am are ranked from the best (alternative a1) to the
worst one (alternative am). With the predefined ranking, the value function model
should satisfy the following relations:

V (ai) > V
(
aj

) ∀ai � aj

V (ai) = V
(
aj

) ∀ai ∼ aj
, (5.4)

where � and ∼ denote the preference and indifference relations, respectively.
With conditions (5.4), the UTA method uses the following optimization problem

to infer the value function model that represents the predefined ranking as consis-
tently as possible:
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min
∑m

i=1σi

Subject to : V (ai)− V (ai+1)+ σi − σi+1 ≥ δ ai � ai+1

V (ai)− V (ai+1)+ σi − σi+1 = 0 ai ∼ ai+1

V (a∗) = 0, V (a∗) = 1
σi ≥ 0 i = 1, . . . ,m

. (5.5)

In this optimization model, σi represents the error variable for alternative ai
and δ is a user-defined small positive constant that imposes the strict inequality
V(ai) > V(ai) for pairs of alternatives for which the preference relation ai � aj
holds. The first two constraints represent the conditions (5.4) for the ranking model,
whereas the third constraint scales the value function such that the global value of
the least preferred alternative a∗ = [g1∗ , g2∗ , . . . , gn∗] is equal to 0 and the global
value of the most preferred alternative a∗ = [

g∗1 , g∗2 , . . . , g∗n
]

is equal to 1.
The basic formulation (5.5) can be expressed in linear programming form, if a

piece-wise modeling approach is adopted for the marginal value functions (for the
details, see [5]).

The introduction of the UTA method has led to the development of various
variants, which can be grouped into two main categories. The first involves
refinements of the optimization model (5.5) and the formulation of the additive
decision function to improve the quality of the model inference results. For instance,
Siskos and Yannacopoulos [25] presented the UTASTAR method, which uses two
error variables for each alternative instead of the single error assumed in formulation
(5.5). Doumpos and Zopounidis [16] and Liu et al. [17] presented formulations
based on the regularization principle of statistical learning theory, in order to
control the complexity of the model. This issue was also addressed through a
different approach by Doumpos et al. [26] and Sobrie et al. [27], who employed
smooth marginal value functions instead of the piecewise linear setting used in the
traditional UTA methods. Finally, Bous et al. [28] employed the concept of analytic
center, as a means of improving the robustness of the inferred model A.

The second category of studies has considered different decision contexts, thus
extending the range of applicability of UTA-based method. For instance, Siskos [29]
presented a variant for decision problems under uncertainty and Patiniotakis et al.
[30] considered a fuzzy setting. Moreover, value function models have also been
considered in the context of non-monotonic preferences [17, 31–33] and nominal
attributes [34], whereas Greco et al. [7] introduced the UTAGMS, which enables the
use of a set of value functions inferred from decision examples in ranking problems,
extending a similar idea first proposed by Siskos [35]. This approach was later
extended to group decision-making problems [36]. Finally, UTA-based methods
have been combined with other MAVT approaches, such as the MACBETH method
[37], to facilitate the decision aiding process and the inference of decision models
from data [38, 39].



5 Preference Disaggregation Analysis: An Overview of Methodological. . . 79

5.3.1.3 Sorting/Classification Problems

A lot of research has also been done on using UTA-based approaches for classifica-
tion and sorting problems (i.e., problematic Pβ), which arise in various domains in
business and engineering [40]. In this case, the objective is to infer a decision model
that is compatible with a predefined assignment of a set of reference alternatives into
categories C1, . . . , Cq, where C1 corresponds to the class of best alternatives and
Cq includes the worst performing ones. The most straightforward way to formulate
such problems is to assume a threshold-based classification rule, as in the UTADIS
method [5, 41], such that:

t� < V (ai) < t�−1 �⇒ ai ∈ C�. (5.6)

Alternatively, an example-based approach can be employed, in which the
assignment of an alternative to a set of predefined categories is derived through
its comparison against reference alternatives that serve as representative examples
from each class [42, 43].

Under the threshold-based setting, the inference of a value function model that
minimizes the errors for the classification of the reference alternatives is formulated
through the following optimization problem:

min
∑m

i=1 (σi + εi)

Subject to : V (ai)− t� + σi ≥ δ ∀ai ∈ C�, � = 1, . . . , q − 1
V (ai)− t�−1 − εi ≤ −δ ∀ai ∈ C�, � = 2, . . . , q

V (a∗) = 0, V (a∗) = 1
σi ≥ 0 i = 1, . . . ,m

, (5.7)

where σi and εi are error variables representing the violations of the classification
rules (5.6) and δ is a user-defined, small positive constant used to impose the strict
inequalities involved in the classification rules. An overview of the developments
in PDA approaches for inferring decision models in multicriteria classification
problems can be found in [44].

5.3.1.4 MUSA Method

The MUSA (MUlticriteria Satisfaction Analysis) is a UTA-based ordinal regression
analysis that has been developed for measuring and analyzing customer satisfaction
[45, 46]. Similar to the PDA philosophy, the method aims to assess a set of marginal
satisfaction functions in such a way that the global satisfaction criterion becomes as
consistent as possible with customer’s judgments. Although the MUSA method has
been proposed in the context of customer satisfaction analysis, it may be applied in
other decision-making problems where the main objective is to aggregate individual
judgments into a collective value function.
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Given ordinal global and partial judgments Y and Xk, respectively, the MUSA
method assesses global and partial value functions Y∗ and X∗

k , respectively, using
the following ordinal regression analysis equation:

∼
Y
∗
=

n∑

k=1

wkX
∗
k + σ+ − σ−, (5.8)

where
∼
Y
∗

is the estimation of the global value function Y∗ , σ+ and σ− are the
overestimation and the underestimation errors, respectively, and the value functions
Y∗ and X∗

k are normalized in [0, 100]. It should be noted that the notations of ordinal
regression are adopted in the MUSA method in order to emphasize the regression
analysis orientation of the method. Thus, a criterion gk is considered as a monotone
variable Xk and its marginal value function is denoted as X∗

k .
In order to assure the linearity of the model and decrease its complexity, the

following transformations proposed in the UTASTAR algorithm are used:

zr = y∗r+1 − y∗r
tkq = wkx

∗q+1
k −wkx

∗q
k

r = 1, . . . , α − 1
k = 1, . . . , n, q = 1, . . . , αk − 1

, (5.9)

where y∗r is the value of the yr global ordinal scale, x
∗q
k is the value of the x

q
k

partial ordinal scale, and α, αi are the number of global and partial levels of the
aforementioned ordinal scales.

Based on the above, the MUSA method is given by the following optimization
problem:

min
m∑

i=1

(
σ+i + σ−i

)

Subject to :
n∑

k=1

xi
k∑

q=1
tkq −

yi−1∑

r=1
zr − σ+i + σ−i = 0

α−1∑

m=1
zm = 100,

n∑

k=1

αk−1∑

q=1
tkq = 100

zr , tkq, σ+i , σ−i ≥ 0∀r, k, q, i

i = 1, . . . ,m (5.10)

where yi and xi
k are the ith level on which variables Y and Xk are estimated.

As already noted, the MUSA method has a regression analysis orientation.
Contrary to the previous PDA approaches, the necessary basic input information
is not based on a classical MCDA table, where alternatives are evaluated on a set of
criteria. Rather, a set of m individuals provide global and partial evaluations yi and
xi
k, respectively.

Grigoroudis and Siskos [45] give an analytical presentation of the MUSA
method, while further developments and reviews can be found in Grigoroudis
and Siskos [47] and Grigoroudis and Politis [48]. Alternative formulations of the
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previous PDA problems and extensions of the MUSA method can also be found in
the recent MCDA literature. For example, in order to increase the stability of the
results, Joao et al. [49] used a dummy variable regression technique with additional
constraints and employed an alternative optimality criterion (least square approach).
Similarly, additional constraints may be considered in the aforementioned optimiza-
tion problem. For example, Grigoroudis and Politis [50] examined the constraints
regarding special properties for the assessed average indices and additional customer
preferences about the criteria importance and showed that the modeling of these
additional information may improve the stability of the estimated results. A different
extension refers to the MUSA-INT model, proposed by Angilella et al. [51],
which takes into account positive and negative interactions among criteria. Other
extensions include the incorporation of the six sigma analysis and the principles of
Kano’s model in the previous optimization model [52] and the development of the
fuzzy MUSA method in order to produce fuzzy global and partial value functions
[53].

5.3.2 Outranking Models

In contrast to the functional decision models in MAUT/MAVT, outranking models
adopt a relational approach. The foundations of outranking approaches can be traced
to social choice theory [54] and the works of Bernard Roy, who first formalized them
in the context of decision aiding, through the introduction of the ELECTRE method
[55].

5.3.2.1 Brief Outline of Outranking Relations

In the context of outranking methods, the evaluation of a finite set of alternatives
is performed through pairwise comparisons, involving the examination of relations
of the form a S b, which is usually interpreted as “alternative a is at least as good
as alternative b.” In the context of the ELECTRE methods, this is referred to as
an outranking relation. Other outranking methods rely on a different type of binary
relation. For instance, the PROMETHEE methods [56] use a preference relation
indicating whether an alternative a is preferred over another alternative b. It is
worth noting that the binary relations considered by outranking methods are not
necessarily complete and transitive.

Typically, outranking models have an elaborate structure and often require the
specification of several parameters. As an example, we briefly refer to the fuzzy
outranking relation used in methods like ELECTRE III (problematic Pγ) and
ELECTRE TRI (problematic Pβ). The comparison of alternative a against b through
the examination of the relation a S b, starts with the calculation of the concordance
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index, which measures, on a 0–1 scale, the strength of the evidence in support of the
considered relation:

C (a, b) =
n∑

k=1

wkck (a, b) , (5.11)

where w1, w2, . . . , wn are the weights of the criteria, and ck(a, b) is the partial
concordance index, which measures the strength of the affirmation “alternative a
is at least as good as alternative b on criterion gk.” The partial concordance index
is defined by two parameters, namely the preference and indifference threshold,
denoted by pk and qk, respectively:

ck (a, b) =

⎧
⎪⎨

⎪⎩

0 if gk(b)− gk(a) ≥ pk
gk(a)−gk(b)+pk

pk−qk
if qk < gk(b)− gk(a) < pk.

1 if qk ≥ gk(b)− gk(a)

(5.12)

Except for the concordance index, a discordance index is also defined for each
decision criterion, measuring the strength of the evidence against the relation a S b:

Dk (a, b) =

⎧
⎪⎨

⎪⎩

0 if gk(a) ≥ gk(b)− pk
gk(a)−gk(b)+pk

pk−vk
if qk < gk(b)− gk(a) < pk

1 if gk(a) ≤ gk(b)− vk

, (5.13)

where vk is a veto threshold parameter defined by the DM.
The combination of the positive and negative evidence for the relation a S b,

is performed through the credibility index σ(a, b), which measures the overall
credibility of the relation taking into account both the concordance and discordance
indices:

σ (a, b) =
{

0 if F = ∅

C (a, b)
∏

gk∈F
1−Dk(a,b)
1−C(a,b)

if F �= ∅
, (5.14)

where F = {gk |Dk(a, b) > C(a, b)}. In the second step of the analysis, given a set
of m alternatives, the credibility indices derived from all pairwise comparisons are
used as inputs to algorithms for the derivation of the final evaluation results, i.e., the
ranking or classification of the given alternatives.

5.3.2.2 Inference Procedures

It is evident from the above brief description, that the complex structure of
typical outranking models, requires the specification of several parameters (e.g.,
weights, indifference/preference/veto thresholds). PDA approaches can facilitate the
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construction of such models. However, the complexity of outranking methods poses
some challenges, because following similar ideas as those presented in the previous
subsection for value function models, leads to non-convex optimization problems,
as first shown by Mousseau and Słowiński [9] for the ELECTRE TRI method.

To overcome this difficulty, two main approaches have been adopted. The first
is based on using simplifications or variants of outranking models, that lead to
trackable optimization formulations. For instance, Mousseau et al. [57] presented
a linear programming formulation for inferring the weights of the criteria in an
ELECTRE TRI model, with fixed indifference/preference/veto thresholds. Bisdorff
et al. [58] also considered the elicitation of the criteria weights from a given set of
outranking relations, through a mixed-integer linear programming model, focusing
on the stability of the results. Regarding other parameters of outranking models,
Dias and Mousseau [59] presented a mathematical programming formulation to
infer the veto parameters in ELECTRE III/TRI, assuming the other parameters
are given, whereas The and Mousseau [60] and Cailloux et al. [61], focused on
sorting problems and presented formulations for inferring the category limits that
discriminate the classes in the ELECTRE TRI method. Mathematical programming
approaches have also employed for PROMETHEE methods [62–65], which have
a simpler additive structure that allows the inference of the required preference
parameters through optimization formulations that are computationally tractable.
Other studies, such as those of Mousseau and Dias [66] as well as Sobrie et al. [67]
presented variants of existing models, which enable the implementation of PDA
procedures that reduce the computational burden of the inference procedure.

An alternative approach to cope with the complexity of PDA schemes for
outranking models involves the use of heuristics and metaheuristics. Doumpos
and Zopounidis [68], presented a heuristic algorithm to infer all parameters of an
ELECTRE TRI model from classification data, whereas Belahcène et al. [69] pre-
sented a satisfiability problem formulation for the inference of a non-compensatory
model from a reference set of classification assignments. Several metaheuristics
have also been employed, such as reduced variable neighborhood search [70], the
differential evolution algorithm [8], as well as single-objective and multi-objective
genetic algorithms [71, 72]. Finally, it is worth noting that the inference of relational
models based on the principles of the outranking theory, has also been considered
through well-known machine learning approaches, such as kernel methods [73] and
neural networks [74]. Such approaches enable the inference of outranking models
from large data sets, thus extending the range of applicability of outranking MCDA
methodologies in various data-intensive domains.

5.3.3 Rule-Based Models

Except for functional and relational models, a third major class of decision models
in MCDA involves symbolic models, typically expressed in the form of IF-THEN
decision rules. The natural language form of decision rules makes them easy to
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comprehend by DMs. Such models have been widely used in machine learning.
The most widely used rule-based approach in the context of MCDA is based on the
rough set theory of Pawlak [75]. Rough sets have been initially introduced as a data
mining/machine learning methodology to describe dependencies between attributes
and to deal with inconsistent data in classification problems. The key idea of rough
sets is that sets, or classes of observations, are often impossible to be described in
an exact and accurate manner by data, due to inconsistencies, vagueness, and errors.
In such cases, rough approximations can be useful, allowing the identification of the
cases that are certainly members of a class, or the cases that may be members of a
class.

Soon after its introduction, Pawlak and Słowiński [76] extended the rough sets
theory to consider decision criteria and preference ordered classes, thus allowing the
modeling of MCDA classification/sorting problems. While the traditional theory of
rough sets relies on an indiscernibility relation for the specification of the rough
approximations, in the MCDA framework, the dominance relation is used instead
[77]. Since the introduction of the new dominance-based rough sets approach
(DRSA) in the context of MCDA, significant research has been conducted on
the use of this approach for preference modeling and decision aiding purposes.
Among others, one can note extensions to choice and ranking problems [10,
78–80], group decision-making [81], and multi-objective optimization [82, 83].
Moreover, the interactions of RST with other related theories and methodologies
have been considered, such as probabilistic/stochastic approaches [84] and fuzzy
sets theory [85, 86], whereas Greco et al. [79] considered the integration of
DRSA with disaggregation methods based on value functions for ranking problems.
Dembczyński et al. [15] and considered the integration of MAVT with DRSA,
presenting an approach to construct an additive value model from dominance-based
rough approximations.

5.4 The Robustness Concern

This section focuses on the robustness of PDA methodologies, which has emerged
as an important area of research for the analysis of the quality of the results
obtained from PDA. We start with a brief outline of the robustness issue and its
implications, and then proceed with an overview of the related literature, covering
both methodological developments and experimental results.

5.4.1 The Issue of Robustness in PDA

Robustness is an active research topic in MCDA and operations research in general.
In the context of decision aiding, robustness concerns arise due to the uncertainties,
fuzziness, vagueness, and errors that characterize the parameters and data of a
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decision problem. A comprehensive discussion of the robustness concern in decision
aiding can be found in the works of Roy [87] and Vincke [88].

The robustness concern is particularly important in PDA, as it involves a type of
an ex-ante analysis of the quality of the model inference procedure and the derived
results. As explained in Sect. 5.2, the model inference procedure in PDA starts with
a set AR of reference alternatives and the parameters of the model are specified
through the optimal solution of the optimization problem (5.1). However, often
there is no unique optimal solution to that problem, thus leading to a set of optimal
solutions X ∗. Even through all solutions in X ∗ correspond to decision models that
provide similar results (possibly identical) for the reference example in AR, they
may lead to very different results when applied to instances outside the reference set.
Moreover, it should be noted that even in cases where problem (5.1) has a unique
optimal solution, it may not be robust to changes in the problem data.

The robustness issue has important implications for the quality of decision aid
provided through PDA approaches and the derived recommendations or findings.
On the one hand, non-robust inferences about the parameters of the model may
lead to incorrect interpretations about the characteristics of the problem and create
confusion. For instance, if the solutions in X ∗ correspond to criteria weights with a
large range, this may lead to doubts regarding the usefulness of the results with
respect to the information that they provide about the important aspects of the
problem. On the other hand, if minor changes in the problem data (e.g., addition
or removal of reference alternatives) lead to major changes in the outputs of the
model inference process, this also raises concerns about the validity of the results.
Therefore, identifying and addressing such issues is of major importance for the
successful implementation of PDA methodologies.

5.4.2 Methodological Approaches

Four main areas of research can be identified in the literature on the robustness
concern in PDA. The first stream of the literature focuses on approaches for the
description and characterization of the set X ∗ of models that are compatible with
the judgments of the DM as represented by the reference set. Jacquet-Lagrèze
and Siskos [5], in the context of the UTA method, first noted that X ∗ is often
non-singleton and proposed a simple heuristic post-optimality analysis approach
to identify a set of characteristic solutions from X ∗, instead of relying on one. In
their post-optimality analysis, the set X ∗ consists of all optimal or near-optimal
solutions of problem (5.5).1 The authors proposed the search of solutions in X ∗

1 In case of an inconsistent referent set, the optimal objective function value of problem (5.5)
is positive. In this case X ∗ may also include near optimal solutions, corresponding to objective
function values similar to the optimal one (according to a tolerance parameter defined by the analyst
and the DM).
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that maximize and minimize the weights of the criteria in the additive model of
the UTA method, thus identifying a range for the weights of the criteria in which
the resulting decision model is consistent with the rank-order of the reference
alternatives. Despite the simplicity of such post-optimality techniques, they provide
a limited view of the complete set of models that are compatible with the DM’s
preferences. A more thorough analysis requires analytic approaches, which can be
computationally intensive for large problems [89]. As an alternative, simulation
methods have been considered [90, 91].

A second group of studies has examined improved optimization formulations to
select a good representative model from the set X ∗. This line of research is closely
related to the approaches discussed above, in the sense that having a description
of the set X ∗, it is natural to ask what the most representative model among the
existing candidates. In their post-optimality approach, Jacquet-Lagrèze and Siskos
[5] use the average of the extreme solutions that define the range of the criteria
weights. The reasoning behind this approach is that the optimization formulation
(5.5) for the UTA method is expressed in linear programming form, which implies
that X ∗ is a polyhedron. The extreme solutions derived through post-optimality
analysis correspond to some representative vertices of the polyhedron, and their
average approximates the barycenter of polyhedron. Such a solution is expected to
be more robust to changes in the problem data (i.e., changes in the polyhedron X ∗)
compared to other solutions that are closer to the boundaries of the polyhedron.
However, given that the post-optimality approach of Jacquet-Lagrèze and Siskos
[5] is a heuristic, other approaches have been proposed. Beuthe and Scannella
[92] presented a comparison of various alternative post-optimality formulations
for selecting the more representative model, whereas other studies have considered
formulations based on the concepts of the analytic center [28] and the Chebyshev
center [93]. The experimental analysis of Doumpos et al. [93] showed that such
formulations are promising alternatives compared to barycenter solutions derived
through post-optimality analysis. The selection of a representative model has also
been considered in the context of an interactive decision aiding process [42].

The third stream on the literature about robustness in PDA has focused on
deriving recommendations from a set of decision models, instead of one. This idea
was first presented by Siskos [35] in the context of the UTA method, as a way to
build fuzzy preference relations based on the results of post-optimality analysis.
Later this approach was extended to consider not only the (limited) results of
post-optimality procedures but all models compatible with the evaluations of the
reference alternatives. This approach was first introduced for ranking problems with
additive value models [7] but has been also been employed in various other contexts,
such as for outranking relations [94], rule-based models [95], for sorting problems
[96], as well as for problems with a hierarchical structure [97], and group decision-
making [36].

A final group of studies focuses on the development of robustness measures.
These measures may depend on the post-optimality analysis results, and especially
on the form and the extent of the polyhedron of the linear programs (5.5), (5.7),
or (5.10). In this context, stability measures are based on the variance observed in
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the post-optimality results. For example, Grigoroudis and Siskos [45] proposed an
Average Stability Index (ASI), which is basically the average of the normalized
standard deviation of the estimated values vk

(
g∗k
)
. In a similar context, instead of

exploring only the previous extreme values, ASI may be calculated based on the
investigation of every value vk(·) during post-optimality analysis [47]. A general
form for ASI may be assessed as the average value of the normalized standard
deviation of the estimated preferential parameters:

ASI = 1 − 1

S

S∑

s=1

√
√
√
√
√
√

R
∑R

r=1p
2
rs −

(∑R
r=1prs

)2

R
∑R

r=1p
′2
rs −

(∑R
r=1p

′
rs

)2 , (5.15)

where S and R are the number of parameters and the number of instances examined
during the post-optimality analysis, respectively, prs is the rth instance of the sth
parameter and p′rs is the possible value of prs that maximizes its variance during
the post-optimality procedure. ASI ranges in [0, 1] and takes the value of 1 only in
case of perfect robustness. A detailed discussion of the ASI is given by Siskos and
Grigoroudis [47] and Matsatsinis et al. [98].

Robustness measures may be incorporated in a general interactive disaggrega-
tion and robustness control framework. Siskos and Grigoroudis [47] propose the
following steps:

(a) An applied PDA method is used to infer a representative model based on AR.
(b) Potential inconsistencies between the DM’s preferences and the results of the

PDA method are removed using interactive techniques [99, 100].
(c) A robustness measure (e.g., ASI) is estimated.
(d) If the robustness measure is considered satisfactory by the analyst, the model is

proposed to the DM, it can be extrapolated in A, and the process is terminated.
Otherwise, the process goes to step (e).

(e) If the robustness measure is not satisfactory, alternative rules of robustness
analysis are examined. These rules may include the addition of new global
preference judgments (e.g., pairwise comparisons, preference intensities new
reference actions), the visualization of the observed value variations to support
the DM in choosing his/her own model, the development of new preference
relations on the A during the extrapolation phase, etc. The process goes back to
step (c).

An extension of the previous framework has been proposed by Siskos and Psarras
[101] who developed an interactive bipolar robustness control. Their approach
manages robustness in both phases/poles of the interactive decision support process:
disaggregation phase and aggregation phase. Specifically, the robustness control
process is initiated after the inference of the PDA model, where the aforementioned
steps may be applied. In the reverse direction, the process moves from the
disaggregation to the aggregation pole, where the PDA model is extrapolated to A
and the stability of results is evaluated through an appropriate robustness measure.
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Matsatsinis et al. [98] propose several robustness measures on the aggregation pole:
average range of the ranking (ARRI) (possible number of positions that an average
action can occupy in the whole ranking), Ratio of the average range of the ranking
(RARR) (ratio of the deviation in ARRI, with respect to the whole number of
the alternatives under evaluation), and Statistical preference relations index (SPRI)
(probability that an alternative gets ranked in a specific position based on results
of random sampling techniques). In case of a satisfactory robustness the algorithm
ends; otherwise, the analyst returns to the disaggregation pole and asks the DM for
the additional preferential information. This approach can be applied not only to
PDA methods but also to other MCDA approaches.

5.4.3 Experimental Studies

Except for theoretical and methodological developments, the robustness properties
of PDA approaches have also been examined through experimental studies. Most
of these experimental studies employ simulated data sets, generated with predefined
properties with respect to the DM’s preference structure and the characteristics of
the reference set (e.g., number of criteria or alternatives). Such simulation tests,
provide a controlled environment to test PDA approaches against well-defined
hypotheses.

For instance, Vetschera et al. [102] examined two sorting approaches, namely
the weighted average model and a case-based model, with respect to their robustness
and accuracy. Among others, they considered the effect that the number of reference
alternatives has on the quality of the model inference results, as well as the effect
that the complexity of the problem has (i.e., number of criteria and categories).

In a similar sorting context, Doumpos et al. [93] compared various approaches
for inferring a representative additive value funcion from classification data. Their
results confirmed that central solutions to the polyhedron X ∗ yield more robust
decision models, with the discrepancies among different approaches becoming more
noticeable when the size of X ∗ increases. Moreover, the number of reference
alternatives and the complexity of the model (number of free parameters) were
found to have a significant impact on robustness.

In contrast to the previous two studies, Kadziński et al. [103] examined the
inference of decision models (additive functions) from holistic judgments provided
in the form of pairwise comparisons and noticed that there is a tradeoff between the
robustness of an additive model and its “expressiveness,” which refers to the ability
of the model to describe a given set of judgments by the DM. This implies, that
increasing the complexity of a model in order to improve its expressiveness, may
have a negative effect on robustness. The authors additionally considered different
approaches for the specification of an additive model with piecewise linear marginal
value functions in order to achieve a good balance between the two objectives
(expressiveness and robustness).
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Finally, Rangel-Valdez et al. [104] examined the inference of ELECTRE III
models in the context of PDA using a genetic algorithm, focusing on the effect
that noisy data have on the results and found that even if there is a moderate level of
errors in the judgments of the DM, a PDA can still provide reliable results.

5.5 Overview of Applications and Decision Support Systems

The theoretical and methodological advances in the field of PDA have been
accompanied by various applications in different domains of management and
engineering. Table 5.1 presents an indicative list of applications, covering studies
published since 2015. The studies in the table are categorized by the field of
application and the types of models used (MAVT-multiattribute value theory, OR-
outranking relations, DRSA - dominance-based rough sets approach).

The implementation of PDA approaches in practical applications has been greatly
facilitated by the development of decision support systems (DSSs). In the literature,

Table 5.1 Indicative list of recent applications of PDA approaches (since 2015)

Field of application Studies Model types

Energy [105–110] MAVT
Strategy and quality management [111–113] MAVT
Finance [114, 115] MAVT

[116, 117] DRSA
[118] MAVT and OR
[119] OR
[120] TOPSIS

Education [121, 122] DRSA
[20, 123] MAVT

Manufacturing [124, 125] MAVT
Marketing, consumer behavior and customer satisfaction [65] OR

[126–132] MAVT
[133] DRSA

Project portfolio management [134] DRSA
[135] MAVT

Public administration [136] MAVT
Environmental management and sustainability [137–142] MAVT

[143] OR
[144] DRSA

Transportation [145, 146] MAVT
Medicine and healthcare [147, 148] DRSA

[149–154] MAVT
[155] OR
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several PDA-based DSSs have been presented, which can be categorized into two
main groups:

• The first group involves systems developed as general-purpose tools that can be
applied in various decision aiding contexts. Some examples of such systems are
listed in Table 5.2. Most of the DSSs in this group have been developed following
the standard principles of DSS technology, i.e., in the form of fully functional
software, integrating a graphical user interface with database management, a
model base, and reporting capabilities. Recently, however, efforts have been
made to adopt an open-source approach, focusing on the implementation of
PDA approaches and other MCDA methods through standardized protocols, thus
allowing independent developers to contribute collectively to the development of
MCDA general-purpose software and DSSs. A typical example of this approach
is the DIVIZ system [156], which is based on the XMCDA data standard for
MCDA [161]. Toolboxes and packages for open-source software such as R have
also been developed [162].

• The second group includes DSSs that have been developed for specific fields.
Such systems, except for PDA methods, enable the DMs to use a variety of
other analytical and reporting tools that are tailored to the requirements of each
application area. Some examples are shown in Table 5.3.

Table 5.2 General-purpose
DSSs implementing PDA
methods

DSS Model types

DIVIZ [156] Various
ELECTRE TRI Assistant [157] Outranking
IRIS [158] Outranking
MINORA [99] MAVT
MIIDAS [39] MAVT
RAVI [159] MAVT
RACES [160] MAVT

Table 5.3 Domain-specific
DSSs implementing PDA
methods

DSS Model types Field

FINEVA [163] MAVT Finance
FINCLAS [164] MAVT Finance
MARKEX [165] MAVT Marketing
TELOS [166] MAVT Marketing
[137] MAVT Environmental planning
[167] DRSA, TOPSIS Territorial planning
[168] MAVT Finance
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5.6 Conclusions and Future Perspectives

The PDA paradigm is a powerful approach for constructing decision models in a
multicriteria setting, allowing the DM to describe his/her system of preferences
through holistic judgments and decision examples, rather than direct procedures,
which can pose cognitive limitations. Over the past 40 years, this area of MCDA
research has evolved rapidly, and now covers a wide variety of different types of
decision models and contexts. Given that many decision problems in various fields
become more and more data-driven, PDA tools could be particularly useful for
preference modeling and decision aiding.

This chapter presented an overview of the developments and trends in this area,
covering different types of decision models, highlighting new trends in model
inference procedures, as well as applications and DSS implementations.

Given the active research on the PDA approach of MCDA, various interesting
future research trends and directions can be noted. For instance, the recent trend
in exploring the connections between PDA and related techniques from the field
of artificial intelligence (AI) could extend the current PDA approaches to a broad
range of applications where preference learning plays a crucial role. Moreover, this
will allow to take advantage of developments in AI research for improving the
existing methodologies for inferring decision models from data in a PDA context.
Moreover, the investigation of behavioral issues for the successful development and
application of PDA methods is also an interesting research area [169, 170]. Such
issues may involve the role that potential biases and errors in holistic judgments
may have in the model inference process, and the protocols needed to collect an
adequate set of input data for PDA. Reporting and visualization could also be an
interesting research area [159] to design improved interactive approaches that would
facilitate the communication between analysts and DMs. Finally, further research is
required on procedures and metrics for assessing and validating the results of PDA
methodologies, with respect to their robustness and effectiveness.
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42. Greco S, Kadziński M, Słowiński R (2011) Selection of a representative value function in
robust multiple criteria sorting. Comput Oper Res 38:1620–1637. https://doi.org/10.1016/
j.cor.2011.02.003

43. Köksalan M, Ulu C (2003) An interactive approach for placing alternatives in preference
classes. Eur J Oper Res 144:429–439. https://doi.org/10.1016/S0377-2217(02)00138-8

44. Doumpos M, Zopounidis C (2018) Disaggregation approaches for multicriteria classification:
an overview. In: Matsatsinis N, Grigoroudis E (eds) Preference disaggregation in multiple
criteria decision analysis: essays in honor of yannis siskos. Springer, Cham, pp 77–94

45. Grigoroudis E, Siskos Y (2002) Preference disaggregation for measuring and analysing
customer satisfaction: the MUSA method. Eur J Oper Res 143:148–170. https://doi.org/
10.1016/S0377-2217(01)00332-0

http://dx.doi.org/10.1016/j.ejor.2017.03.021
http://dx.doi.org/10.1016/j.ejor.2010.03.009
http://dx.doi.org/10.1016/j.eswa.2011.06.014
http://dx.doi.org/10.1007/s00291-010-0231-2
http://dx.doi.org/10.1016/j.ejor.2016.11.038
http://dx.doi.org/10.1016/j.ejor.2017.04.024
http://dx.doi.org/10.1016/j.dss.2011.10.005
http://dx.doi.org/10.1016/0969-6016(94)90010-8
http://dx.doi.org/10.1016/j.ejor.2014.03.047
http://dx.doi.org/10.1016/S0377-2217(98)00217-3
http://dx.doi.org/10.1016/S0377-2217(01)00243-0
http://dx.doi.org/10.1016/j.cor.2011.02.003
http://dx.doi.org/10.1016/S0377-2217(02)00138-8
http://dx.doi.org/10.1016/S0377-2217(01)00332-0


94 M. Doumpos et al.

46. Siskos Y, Grigoroudis E, Zopounidis C, Saurais O (1998) Measuring customer satisfaction
using a collective preference disaggregation model. J Glob Optim 12:175–195. https://doi.org/
10.1023/A:1008262411587

47. Grigoroudis E, Siskos Y (2010) Customer satisfaction evaluation: methods for measuring and
implementing service quality. Springer, New York

48. Grigoroudis E, Politis Y (2018) Multiple criteria approaches for customer satisfaction
measurement. In: Matsatsinis N, Grigoroudis E (eds) Preference disaggregation in multiple
criteria decision analysis: essays in honor of Yannis Siskos. Springer, Cham, pp 95–123

49. João IM, Bana e Costa CA, Figueira JR (2010) An ordinal regression method for multicriteria
analysis of customer satisfaction. In: Ehrgott M, Naujoks B, Stewart TJ, Wallenius J (eds)
Multiple criteria decision making for sustainable energy and transportation systems. Springer,
Berlin, Heidelberg, pp 167–176

50. Grigoroudis E, Politis Y (2015) Robust extensions of the MUSA method based on additional
properties and preferences. Int J Decis Support Syst 1:438–460. https://doi.org/10.1504/
IJDSS.2015.074551
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77. Greco S, Matarazzo B, Słowiński R (1999) Rough approximation of a preference relation by
dominance relations. Eur J Oper Res 117:63–83
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94. Greco S, Kadziński M, Mousseau V, Słowiński R (2011) ELECTRE-GKMS: robust ordinal
regression for outranking methods. Eur J Oper Res 214:118–135. https://doi.org/10.1016/
j.ejor.2011.03.045
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Chapter 6
Modeling and Learning of Hierarchical
Decision Models: The Case of the
Choquet Integral

Eyke Hüllermeier and Christophe Labreuche

Abstract In this paper, we elaborate on two important developments in the realm
of multi-criteria decision aid, which have attracted increasing attention in the recent
past: first, the idea of leveraging methods from preference learning for the data-
driven (instead of human-centric) construction of decision models, and second, the
use of hierarchical instead of “flat” decision models. In particular, we show the
advantage of combining the two, that is, of learning hierarchical MCDA models
from suitable training data. This approach is illustrated by means of a concrete
example, namely the learning of tree-structured combinations of the Choquet
integral as a versatile aggregation function.

6.1 Introduction

To support a decision maker in the task of choosing among a set of alternatives,
ranking these alternatives from best to worse, or sorting them into preferential
categories, various methodologies have been developed in the decision sciences.
Multi-criteria decision aid (MCDA), for example, puts specific emphasis on decision
problems in which alternatives are characterized by their values on multiple,
possibly conflicting criteria [17, 18]. To this end, MCDA offers a wide variety
of decision models, most of which aggregate the evaluations on individual (local)
criteria into an overall assessment of an alternative.
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Such models can be as simple as a weighted average, but may also aggregate
criteria in a more sophisticated manner. The (discrete) Choquet integral [8] can
be mentioned as a specific though important example of a sophisticated model of
that kind. Regardless of the type, the construction of models in MCDA is typically
accomplished in the course of an interactive process, in which a decision analyst
seeks to elicit the decision maker’s preferences by asking informative questions,
and to fit the model to these preferences as closely as possible [4].

There are (at least) two recent developments in the field, which, in the opinion
of the authors, significantly increase the usefulness, performance capacity, effec-
tiveness, and applicability of decision aid and automated decision making, all
the more if being combined with each other. The first of these developments is
the data-driven (instead of human-centric) construction of decision models, i.e.,
the use of methods from preference learning instead of preference elicitation.
This development is fostered by the increasing availability of data and popularity
of machine learning. Preference learning (PL) is geared toward the automated
induction of models from large amounts of data [11]. Obviously, replacing the
interaction with a single decision maker by a process of learning from data implies
a number of differences between the settings of PL and MCDA and the underlying
assumptions. For example, a model in PL typically refers to an entire population
rather than to a single individual. Moreover, while user feedback in MCDA is
assumed to be consistent, or inconsistencies can be repaired by the decision maker,
PL generally tolerates noise in the observed data. Last but not least, PL puts very
much emphasis on generalization performance and predictive accuracy.

The second development is the use of hierarchical instead of “flat” decision
models. In the multi-criteria case, such models typically decompose criteria into
sub-criteria in a recursive manner, and the evaluation of the former is then obtained
through an aggregation of the evaluation of the latter. This allows for conquering
complexity through abstraction and hierarchical structuring. Indeed, the complexity
of flat models significantly increases with the number of criteria involved (unless
strong independence assumptions are made), hampering both model construction
and interpretation.

The goal of this paper is to elaborate on recent advances in hierarchical modeling
and preference learning for MCDM, showing advantages in comparison to previous
methods, and illustrating the learning of hierarchical MCDA models by means of
a concrete example, namely the learning of tree-structured combinations of the
Choquet integral as a versatile aggregation function.

6.2 Hierarchical Multi-Criteria Decision Models

We are interested in multi-criteria decision aid using hierarchical models and refer
to models supporting this task as “hierarchical multi-criteria decision models”
(HMCDM). This section provides the necessary background on MCDA, HMCDM,
and the Choquet integral as a specifically interesting aggregation function.
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6.2.1 Multi-Criteria Decision Models

We assume choice alternatives to be described in terms of a predefined set of
attributes, i.e., by a feature vector x = (x1, . . . , xm), where xi ∈ Xi and x ∈
X = X1 × · · · ×Xm. We denote by M = {1, . . . ,m} the index set of the attributes.
Moreover, we assume that each attribute xi is first evaluated by means of a marginal
utility function, and thereby turned into a local utility degree ui = ui(xi) ∈ R.
A criterion is a marginal utility function associated with an attribute. By abuse of
notation, we also denote by M the set of criteria. These marginal utility functions
are supposed to represent partial preferences of the decision maker. Assume we are
given domain knowledge in the form of a binary relation �i on Xi , where xi �i x ′i
suggests that the decision maker prefers xi at least as much as x ′i ceteribus paribus.
Then, the marginal utility function shall be consistent with �i :

∀xi, x
′
i ∈ Xi : ui(xi) ≥ ui(x

′
i ) ⇔ xi �i x ′i . (6.1)

We denote by �i and ∼i the asymmetric and symmetric parts of �i , respectively.
In a second step, the local utility degrees u1, . . . , um are aggregated into a global

utility U = A(u1, . . . , um), where A : Rm → R is an aggregation function. In
MCDA, the overall utility is meant to represent preferences of the decision maker
over alternatives in X, taking the form of a binary relation �, where

∀ x, x ′ ∈ X : x � x′ ⇔ U(x) ≥ U(x′) . (6.2)

We then denote by � and ∼ the asymmetric and symmetric parts of �, respectively.
The parameters of the models of this kind, i.e., that of the marginal utility functions
ui as well as of the aggregation function A, can be specified in different ways—
for example, as already mentioned, through preference elicitation [4]. In preference
learning, where the data is mainly observational, one commonly assumes that
attributes x are provided as training information together with a decision y (for
example, the rank assigned to an alternative). This decision is supposedly taken on
the basis of the utility U , which, however, is a latent variable that is not observed
directly. Because the data might not be consistent, and human decisions might be
subject to additional influences that are not captured by the model, the dependence
between U and y is modeled in terms of a probabilistic model P . Eventually, we
thus obtain a model that can be written (in a somewhat simplified form) as follows:

y = P(U(x)) = P
(
A
(
u1(x1), . . . , um(xm)

))
.

The general structure of a multi-criteria decision model (MCDM) of that kind is
shown in Fig. 6.1.
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Fig. 6.1 General structure of an MCDM model

6.2.2 Choquet Integral

Let us consider an aggregation function A : R
m → R on a set of criteria

M = {1, . . . ,m}. The arguably simplest aggregation model is the weighted sum
parameterized by weights w = (w1, . . . , wm), which takes the form Aw(a) =
∑m

i=1 wi ai . This aggregation model is easy to understand but fails to account for
subtle decision strategies, for example, involving interaction among criteria. To
overcome the limitations of the weighted sum, a possible extension is to consider
weights assigned to subsets of criteria, e.g., accounting for the fact that having
several criteria met simultaneously might be preferred to the cumulative effect of
having them satisfied separately.

A fuzzy measure (also called capacity) on a set M is a set function μ : 2M →
[0, 1] satisfying two properties [30]:

Normalization: μ(∅) = 0 and μ(M) = 1, (6.3)

Monotonicity: A ⊆ B ⊆ M ⇒ μ(A) ≤ μ(B). (6.4)

The (discrete) Choquet integral, parameterized by a fuzzy measure μ, is defined on
utility vectors as follows [8]:

Cμ(a) =
m∑

i=1

(aτ(i) − aτ(i−1)) μ({τ (i), τ (i + 1), . . . , τ (m)}) , (6.5)
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with τ being a permutation on C such that aτ(1) ≤ aτ(2) ≤ · · · ≤ aτ(m) and aτ(0) = 0
by definition. A Choquet integral thus involves 2m−2 parameters μ(A), one for each
nonempty subset A ⊂ M .

As an aggregation model, the Choquet integral can easily be interpreted through
the mean importance of criteria [28] and the mean interaction among criteria
[13, 21], which can be computed from the weights associated with any subset of
criteria. The Choquet integral satisfies many properties [12], which contributes to
the interpretability of this model. One can mention monotonicity with respect to
their inputs: for all a, a′ ∈ R

m,

(∀i ∈ C, ai ≥ a′i ) ⇒ Cμ(a) ≥ Cμ(a′) . (6.6)

Another important property is idempotency [12, 20]:

∀α ∈ R : Cμ(α, . . . , α) = α . (6.7)

It requires that an alternative having the same score α on all criteria should have
exactly that score as its overall evaluation.

The drawback of the Choquet integral is its exponential (in m = |M|) number
of parameters. Several models of intermediate complexity, in-between the weighted
sum and the general Choquet integral, have been proposed as a compromise. An
especially relevant one is the so-called 2-additive Choquet integral. It is the sub-
class of Choquet integrals where interactions among criteria are limited to pairs,
and takes the following form [14]:

Cμ(a) =
m∑

i=1

wiui +
∑

1≤i<i′≤m

(
w∧

i,i′ (ui ∧ ui′)+w∨
i,i′(ui ∨ ui′)

)
, (6.8)

where ∧ and ∨ denote the min and max operators, respectively, and the parameters
are the weights wi,w

∧
i,i′ , w

∨
i,i′ . The monotonicity conditions on the 2-additive

Choquet integral are

∀i ∈ M : w
j

i ≥ 0,

∀{i, i ′} ⊆ M : w
j,∧
i,i′ ≥ 0,

∀{i, i ′} ⊆ M : w
j,∨
i,i′ ≥ 0.

(6.9)

The monotonicity property can thus be obtained through m2 constraints. Likewise,
the normalization of the 2-additive Choquet integral is obtained by the following
condition:

m∑

i=1

wi +
∑

1≤i<i′≤m

(
w∧

i,i′ +w∨
i,i′
)
= 1. (6.10)
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6.2.3 Hierarchical Multi-Criteria Decision Models

The hierarchical part of an HMCDM essentially concerns the aggregation function
A, which is represented in terms of a hierarchical, tree-like structure. The organiza-
tion of a set of criteria in the form of a tree has a long tradition in MCDA [24, 25], but
can also be found in more recent approaches, such as the multiple criteria hierarchy
process [9].

More specifically, we consider a rooted tree T composed of a set of nodes N and
a function C returning the set of children C(j) for every node j ∈ N . The leaves of
the tree correspond to the criteria M , and the root of T is denoted by r ∈ N \ M .
We also denote by D(j) the set of leaves that are descendants of j ; for instance,
D(r) = M and D(j) = {j } for every j ∈ M .

We assume that a local aggregation function Aj : R|C(j)| → R is defined for
every aggregation node j ∈ N \ M . Then, for given marginal utilities aM =
(a1, . . . , aM) on all M criteria, the overall aggregation function is defined as
A(aM) = αr , where the value αj for a node j is defined in a recursive manner
as follows:

αj =
{

aj if j ∈ M

Aj

(⋃
i∈C(j) αi

)
if j ∈ N \M.

When all aggregation functions are Choquet integrals, HMCDM is called Hierar-
chical Choquet Integrals (HCI) model.

6.3 Expressiveness of Hierarchical Models: The Case
of Choquet Integrals

In this section, we elaborate on an important feature of hierarchical models, namely
their expressivity: Using a hierarchical model, it is often possible to represent
preferences that are not representable in terms of a flat model, or to represent the
same preferences in a more compact form. We illustrate these advantages for the
specific case of the Choquet integral as an aggregation function.

6.3.1 An Illustrative Example in an MCDA Setting

MCDA is primarily interested in representing the preferences � of a decision maker
in terms of a decision model, like in (6.2). In the normative approach to decision
science, axiomatic characterizations provide necessary and sufficient conditions
under which � (or the overall utility U ) is representable by some specific models
[17]. Let us consider the case where this specific model is a Choquet integral. In the
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context of decision under uncertainty, all features are identical (X1 = · · · = Xm),
and hence all marginal utility functions, too, yielding a model called Choquet
Expected Utility model—CEU [26, 36]. In MCDA, we can mention different
results: axiomatization of a single Choquet integral as an aggregation function [20],
axiomatization of a single Choquet integral and its marginal utility functions as a
utility model [19], and axiomatic representation of a preference relation by a single
Choquet integral and its marginal utility functions [35]. Yet, we are not aware of any
axiomatic characterization of a general hierarchical Choquet integral model.

On the experimental side, there are some works in psychology and cognitive
science, analyzing the behavior of decision makers in practice and checking whether
they are representable by the models studied in the normative approach. In this
setting, preferential paradoxes are examples of simple preferences that a user would
in general accept, and which can be represented by an elaborate model though not
by a simpler one. Let us mention the Allais paradox [1] in the context of decision
under risk and the Ellsberg paradox [10] in the context of decision under uncertainty.
For instance, in Ellsberg’s paradox, the user is asked to compare several lotteries, in
which she picks up a ball from an urn containing balls of three colors and receives
some amount of money depending on the color of the ball, where the number of
balls of each color is only partly known. Here, users tend to be risk-averse and
prefer those bets that minimize the worst possible gain—such preferences can be
represented by CEU but not by the usual expected utility model.

In the context of MCDA, there are simple examples illustrating the interest of
a Choquet integral compared to a weighted sum [12]. The aim of this section is to
provide such an example for an HMCDM.

To this end, consider a simple example of the selection of a car on the basis of
three criteria: (1) CAPEX (capital expenditure), the buying cost of the car, (2) OPEX
(operational expenditure), including gas, maintenance and so on, and (3) safety
rating from 1 (very bad) to 5 (very good). The preference relations �1,�2,�3
are clear as one wishes to minimize the value on the first two attributes and
maximize the value on the third one. We consider that attributes 1 and 2 are bounded
continuous domains—typically finite intervals, which perfectly makes sense for
costs. Thus for each attribute i ∈ M , there exist a best and a worst element, denoted
by 1i and Oi , respectively, such that ∀xi ∈ Xi , 1i �i xi �i Oi . We assume that

ui(1i ) = 1 and ui(Oi ) = 0 . (6.11)

The decision maker describes the following preferences in the form of rules:

R1: She is interested in alternatives that are good at both costs and safety. She is
not happy if one of these concerns are not met.

R2: Criteria 1 and 2 compensate each other: Improving (significantly) on a cost
criterion fully compensates a degradation on the other cost criterion.

We fix the value of attribute 3 and look at the preferences in the subspace X1 ×X2.
Let us fix c ∈ X3 with 13 �3 c �3 O3. Rule R1 says that the decision
maker is extremely intolerant regarding costs and safety. In other words, when she
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considers an alternative, she systematically focuses on the weaker of the two aspects,
completely discarding the stronger one. When safety is the weak point, then the
relatively good values on costs do not matter, so that replacing the current values
x1, x2 of costs by the best possible values 11,12 would not help. Hence, such a
situation clearly corresponds to an alternative in Xc∼ defined by

Xc∼ := {(x1, x2, c) ∈ X : (x1, x2, c) ∼ (11,12, c)}.

According to rule R1, the previous situation often occurs, so that Xc∼ is not reduced
to a singleton set {(11,12, c)}. Hence,

∃(x1, x2, c) ∈ Xc∼ with x1 ≺1 11 and x2 ≺2 12 . (6.12)

As X1,X2 are closed intervals and by virtue of monotonicity, we obtain that
[x1,11]×[x2,12]×{c} ⊆ Xc∼. Note that condition (6.12) is far from being classical,
as most practical models are strictly monotone, which is not the case for (6.12).

Now, when costs are the weakest points, then we are in the following set:

Xc≺ := {(x1, x2, c) ∈ X : (x1, x2, c) ≺ (11,12, c)},

as replacing the cost values by the ideal costs 11,12 would clearly improve the
overall preference. By rule R1, this situation also often occurs, so that Xc≺ cannot be
empty or reduced to a singleton set. More precisely,

∃(x1, x2, c) ∈ Xc≺ with x1 �1 O1 and x2 �2 O2. (6.13)

By virtue of monotonicity, [O1, x1] × [O2, x2] × {c} ⊆ Xc≺.
Rule R2 implies that for any (x1, x2, c3) ∈ X with x1 ≺1 11 and x2 �2 O2, there

exists x ′1 �1 x1 and x ′2 ≺2 x2 such that (x1, x2, c3) ∼ (x ′1, x ′2, c3). In other words,
one can fully compensate a degradation on attribute 2 by a (sufficient) improvement
on attribute 1, and vice versa. Hence,

(x1, x2, c3) ∈ Xc≺ with x1 ≺1 11 and x2 �2 O2

⇒ ∃x ′1 �1 x1 and x ′2 ≺2 x2 : (x ′1, x ′2, c3) ∈ Xc≺ . (6.14)

Let us try to represent the previous preferences with a flat model

U(x) = Cμ(u1(x1), u2(x2), u3(x3)). (6.15)

Lemma 6.1 The flat model (6.15) cannot represent the previous preferences.
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Proof By (6.12), (6.13), and (6.14), for any O3 ≺3 c ≺3 13, there exists O1 ≺1
x1 ≺1 x ′1 ≺1 x ′′1 ≺1 11 (i.e. 0 < u1(x1) < u1(x

′
1) < u1(x

′′
1 ) < 1) and O2 ≺2 x2 ≺2

x ′2 ≺2 12 (i.e. 0 < u2(x2) < u2(x
′
2) < 1) such that

(x1, x2, c) ∈ Xc≺ , (x ′1, x2, c) ∈ Xc∼ , (x ′1, x ′2, c) ∈ Xc≺ and (x ′′1 , x ′2, c) ∈ Xc∼.

These four points are represented in Fig. 6.2. We know that the Choquet integral
is characterized by the separation frontiers u1(x1) = u2(x2), u1(x1) = u3(c) and
u2(x2) = u3(c)—see Fig. 6.3. There are three segments between the successive
points (x1, x2, c), (x ′1, x2, c), (x ′1, x ′2, c), and (x ′′1 , x ′2, c) (see the blue segments
in Fig. 6.3). One can readily see that these three segments cannot be cut by the
three separation frontiers. For instance, if segment [(x1, x2, c), (x

′
1, x2, c)] is cut by

u1(x1) = u3(c) and segment [(x ′1, x2, c), (x
′
1, x

′
2, c)] is cut by u2(x2) = u3(c),

Fig. 6.2 Representation of
sets Xc∼ (in green), Xc≺ (in
orange), and of the four
points (x1, x2, c), (x′1, x2, c),
(x′1, x′2, c) and (x′′1 , x′2, c)

Fig. 6.3 Representation of
three separation frontiers (in
brown)
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then the last segment [(x ′1, x ′2, c), (x ′′1 , x ′2, c)] cannot be cut by u1(x1) = u2(x2).
Likewise, if segment [(x1, x2, c), (x

′
1, x2, c)] is cut by u1(x1) = u3(c) and segment

[(x ′1, x ′2, c), (x ′′1 , x ′2, c)] cannot be cut by u1(x1) = u2(x2), then the last segment
[(x ′1, x2, c), (x

′
1, x

′
2, c)] cannot be cut by u2(x2) = u3(c). We can proceed in the

same way for all possible cases.
Hence, there must be one segment with two points (denoted by y and y′) not

separated by a frontier and belonging to Xc≺ and Xc∼, respectively. As segment
[y, y ′] is not separated by a frontier, their three components are ordered in the same
way: U(y) = u1(y1) (μ(S1 ∪ {1}) − μ(S1)) + u2(y2) (μ(S2 ∪ {2}) − μ(S2)) +
u3(c) (μ(S3 ∪ {3}) − μ(S3)) and U(y ′) = u1(y

′
1) (μ(S1 ∪ {1}) − μ(S1)) +

u2(y
′
2)(μ(S2∪{2})−μ(S2))+u3(c)(μ(S3∪{3})−μ(S3)), for some S1, S2, S3 ⊆ M .

Alternative (11,12, c3) is on the frontier u1(x1) = u2(x2) and can thus take the
same expression with sets S, 1, S2, S3: U(11,12, c3) = (μ(S1 ∪ {1}) − μ(S1)) +
(μ(S2 ∪ {2})− μ(S2))+ u3(c) (μ(S3 ∪ {3})− μ(S3)).

Moreover, as y ∈ Xc≺ and y′ ∈ Xc∼, we have y ≺ (11,12, c3) and y′ ∼
(11,12, c3) with O3 ≺3 c ≺3 13. Hence,

u1(y1) (μ(S1 ∪ {1})− μ(S1))+ u2(y2) (μ(S2 ∪ {2})− μ(S2))

< (μ(S1 ∪ {1})− μ(S1))+ (μ(S2 ∪ {2})− μ(S2)) ,

and u1(y
′
1) (μ(S1 ∪ {1})− μ(S1))+ u2(y

′
2) (μ(S2 ∪ {2})− μ(S2))

= (μ(S1 ∪ {1})− μ(S1))+ (μ(S2 ∪ {2})− μ(S2)).

As the marginal utility lies in [0, 1] and that 0 < u1(y1), u2(y2), u1(y
′
1), u2(y

′
2) <

1, the first relation implies that μ(S1∪{1}) > μ(S1) and μ(S2∪{2}) > μ(S2), while
the second one implies that μ(S1 ∪ {1}) = μ(S1)) and μ(S2 ∪ {2}) = μ(S2). Hence
we obtain a contradiction, and we have shown that the flat model (6.15) cannot
represent rules R1 and R2. �

We note that in R1, the two cost criteria 1 and 2 are taken together. The idea is
thus to organize them in a subtree, like in Fig. 6.4.

Fig. 6.4 Hierarchy of criteria
in the example of cars Overall

Costs

x 1: CAPEX x 2: OPEX x 3: Safety
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Let us try to represent the previous preferences with a hierarchical model given
by tree in Fig. 6.4:

U(x) =
(u1(x1)+ u2(x2)

2

)
∧ u3(x3). (6.16)

Lemma 6.2 The hierarchical model (6.16) can represent the previous preferences.

Proof We have

Xc∼ =
{

(x1, x2, c) ∈ X :
(u1(x1)+ u2(x2)

2

)
∧ u3(c) = u3(c)

}

=
{

(x1, x2, c) ∈ X : u1(x1)+ u2(x2)

2
≥ u3(c)

}

and

Xc≺ =
{

(x1, x2, c) ∈ X : u1(x1)+ u2(x2)

2
< u3(c)

}

.

Hence, (6.12) and (6.13) are clearly satisfied. Moreover, the expression u1(x1)+u2(x2)
2

is in essence compensatory in x1 and x2, so that (6.14) is also fulfilled. �

6.3.2 The Hierarchical Choquet Integral Model

The weighted sum is an easily interpretable aggregation function, as the weights are
directly understandable to the user. However, it cannot model interacting criteria.
The impossibility to model interaction is due to the fact that this model adopts
the same linear expression in the entire alternative space. A natural extension is
to consider piecewise affine aggregation functions. Such a function is indeed locally
interpretable, as it is locally characterized by simple weights. At the same time, the
representation of interacting criteria is made possible by changing the weights from
one (sub)domain to another one.

According to (6.5), a Choquet integral is a piecewise affine function, in which
the separation frontiers between two affine parts take the form ai = ai′ for i, i ′ ∈
C(j). This special form of separation is justified by the fact that the argument of
a Choquet integral is a vector of commensurate elements, where a similar score
on different criteria has the same meaning. In particular, an alternative having the
same score on all criteria should have this value as the overall score. This property,
called idempotency, thus justifies the frontiers of the form ai = ai′ . This implies
that interaction occurs across frontiers of the form ai = ai′ . In order to have more
complex forms of interactions, one might wish to have more complex separation
frontiers between the linear parts.
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a 1 a 2 a 3 a 4 a 5

s 1 s 2 s 3 s 4 s 5 s 6 s 7 s 8

b

Fig. 6.5 Graph of interconnected nodes of depth 2 with m = 5 and r = 8

It has been shown that any piecewise affine function1 can be represented by
a network of interconnected Choquet integrals [22]. More precisely, consider a
piecewise affine function f characterized by r affine parts given by r affine
functions f1, . . . , fr . Then, f can be described by a network of depth 2, as in
Fig. 6.5, where the leaves are the m inputs a1, . . . , am, the next layer is composed
of the r affine functions f1, . . . , fr , and the last layer is a Choquet integral with a
fuzzy measure taking only values 0 and 1. This latter Choquet integral is a min-max
function of its inputs and triggers the correct function fi .

We note that adding more layers to the interconnected graph does not increase
expressivity, and that the width of the second layer, which corresponds to the number
of affine parts, can be arbitrarily large [22]. Fully connected graphical models of that
kind will normally be difficult to interpret, however.

In spite of the expressivity of Choquet models with a single (hidden) layer, this
could be a motivation to consider models with a deeper structure. In this regard,
an interesting connection could be drawn to neural networks, where advantages
of “deep” over “flat” structures have also been observed, both for representation
and training [5]: Although it is true that neural networks with a single hidden
layer exhibit universal approximation capabilities, the practical realization of this
theoretical property may require an extremely large number of neurons in this layer.
The same approximation quality might be achieved with a significantly smaller
number of neurons if these are distributed on several layers and connected in a
proper way, and this may also facilitate the learning process.

Here, we are specifically interested in the family of hierarchical Choquet
integrals (HCI) [6]. Roughly speaking, these are models consisting of a tree of
Choquet integrals, as described in Sect. 6.2.3. A similar conception of hierarchical
Choquet models was put forward in [2, 3].

Apart from the compromise between flat and fully connected graphs, the
HCI exhibits properties that are appealing from the perspective of learning and
interpretation. An important example of such a property is identifiability. As already

1 It shall be noted that piecewise affine functions are necessarily continuous.
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mentioned, any fully connected graph of Choquet integrals can be transformed into
an equivalent graph of depth two, showing that such a model is not identifiable. In
other words, the same function X → R can be represented in different ways. On
the other side, as recently shown in [7], an HCI model is identifiable (under certain
technical assumptions), which means there are no two distinct HCI models (with
different hierarchies or the same hierarchy but different parameters for aggregation
functions and marginal utility functions) yielding exactly the same function X → R.
In particular, for a given HCI model, the separation frontier between two affine
parts is of the form

∑
i∈A wi ui(xi) = ∑

i∈B wi ui(xi), where A,B ⊆ M ,
A ∩ B = ∅, wi > 0 for all i ∈ A ∪ B, and A and B correspond to descendants
of two different subtrees. The idea is that one can recover the shape of the tree
by looking at the expression of the separation frontiers between the affine parts.
In the example of the tree in Fig. 6.4, we obtain separation frontiers of the form
w1 u1(x1) = w2 u2(x2) (as x1 and x2 belong to two different subtrees below Costs),
and w′

1 u1(x1)+w′
2 u2(x2) = w3 u3(x3) (as {x1, x2} and x3 belong to two separate

subtrees below node Overall).

6.4 Neur-HCI Framework to Learn a HMCDM

In this section, we illustrate the idea of hierarchical Choquet integral models by
means of a concrete example of preference learning, namely a method called Neur-
HCI, which makes use of a neural representation for learning such models from data
[6].

6.4.1 Marginal Utility Functions

A marginal utility ui : Xi → [0, 1] is a function mapping the i-th attribute
domain Xi to the unit interval. As described in Sect. 6.2.1, one usually assumes an
underlying binary preference relation �i on each attribute, which represents domain
knowledge. Obviously, ui should then be monotone with respect to this relation—
see (6.1). For the sake of simplicity, we will assume here that Xi ⊆ R and that the
marginal utility functions are non-decreasing. This means that when the attribute
is discrete, we will assume that Xi takes integer values {0, 1, 2, . . .}, which are the
labels of the attributes, ordered from the worst to the best according to �i . Several
representations of non-decreasing marginal utility functions are conceivable:

– Piecewise smooth functions with fixed breakpoints: We can think of piecewise
affine functions, which are quite common in MCDA (see for instance [16]). The
use of splines has also been proposed: M-Splines and I-Splines in [23], and Cubic
splines in [29]. As a drawback of such a model, the breakpoints are often fixed
arbitrarily, e.g., equally spaced in the attribute domain. This is a limitation, as
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one does not know in advance which parts of the attribute domain may require a
fine-grained modeling with a resolution higher than others, for example, because
the marginal utility has a steep gradient.

– Polynomials: The marginal utility function can be considered as a polynomial of
a fixed dimension [29], which avoids breakpoints. In order to learn non-negative
and non-decreasing polynomials, one needs to use semidefinite programming,
which is a limiting factor with regard to high dimensional problems.

– Sigmoids: A marginal utility function ui can be put in the form of a convex
combination of sigmoid functions [31]:

ui(xi) =
p∑

k=0

rk
i

1 + e−(ηk
i xi−βk

i )
, (6.17)

where the hyper-parameter p is the maximum number of sigmoids involved in
the representation; βk

i and ηk
i are the bias and precision parameters of the k-th

sigmoid, respectively, and rk
i its weight. Each sigmoid is thus characterized by

its inflection point −βk
i

ηk
i

, which is the point where the gradient of the function is

the largest, and its slope. In the course of a learning process, this allows one to
look for the parts of the attribute domain where the marginal utility has its largest
gradient. Monotonicity of ui is simply ensured by assuming

∀ i ∈ M ∀ k ∈ {0, . . . , p} : rk
i ≥ 0 and ηk

i ≥ 0 . (6.18)

Finally, the normalization condition on the utility is

∀ i ∈ M :
p∑

k=0

rk
i = 1 . (6.19)

In the sequel, we consider the sigmoid model due to its flexibility and the simplicity
of the monotonicity conditions.

6.4.2 Learning Tasks

We describe three settings to train the parameters of a hierarchical model U(x) for
a known hierarchy, given some dataset E .

Binary Classification In binary classification, E = {(x(j), y(j)), j = 1, . . . , q},
where y(j) ∈ {0, 1} is the binary label associated with alternative x(j) ∈ X, with 1
indicating a “good” evaluation and 0 a “bad” one. Generalizing logistic regression,
we are interested in models of the form

log

(
π(x)

1 − π(x)

)

= λ Uθ(x)+ β , (6.20)
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where β is a bias term (intercept), λ a precision parameter that specifies how sharply
the good and bad instances are separated from each other, θ the parameters of the
utility function U , and π(x) = P(y = 1 | x) the probability of x belonging to class
1. This is equivalent to

π(x) = πβ,λ,θ (x) = 1

1 + exp(−β − λ Uθ (x))
. (6.21)

The loss function is given by

L(β, λ, θ) = log P(E | β, λ, θ) = log
q∏

j=1

P
(
y(j) | x(j), β, λ, θ

)
(6.22)

=
q∑

j=1

y(j) log πβ,λ,θ(x
(j))+

q∑

j=1

(1 − y(j)) log(1 − πβ,λ,θ (x
(j))) .

This loss ought to be minimized through a proper choice of the parameters β, λ, θ .
We note that the loss can be augmented with a parsimony term on the marginal
utility function or on the fuzzy measures (limiting the interaction terms).

Regression Another setting is when E = {(x(j), y(j)), j = 1, . . . , q} and y(j) ∈
[0, 1] is a real-valued utility of the alternative x(j). In this case, the model is trained
using a standard regression criterion (e.g., mean squared error) :

L(θ) =
q∑

j=1

(
y(j) − Uθ(x

(j))
)2

.

Ranking In a third setting, the data might be given in the form of pairs E =
{(x(j,1), x(j,2)), j = 1, . . . , q}, indicating preferences x(j,1) � x(j,2) between
alternatives (expressed by an expert). A loss function could then be specified as
follows:

L(θ) =
q∑

j=1

(
U(x(j,2))− U(x(j,1))− η

)

+ ,

with α+ = max(α, 0) and η a hyper-parameter enforcing a margin effect (strict
preference x(j,1) � x(j,2) is replaced by weak preference U(x(j,1)) ≥ U(x(j,2)) +
η). To prevent the learning algorithm from over-fitting the training data, the loss
can be augmented by regularization terms on the utility function or on the Choquet
integrals.
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6.4.3 Learning and Optimization

The problem of binary classification, i.e., the optimization of (6.22), has first
been tackled in [31], modeling U in terms of a single Choquet integral (a flat
organization); moreover, the utility functions ui are excluded from the actual
learning process and instead determined in a pre-processing step (essentially
through standardization of the empirical distribution in the data). Referring to
the use of the Choquet integral as a replacement of the linear utility in logistic
regression, the authors call the approach “choquistic regression.” It has furthermore
been generalized to ordinal classification [33] and ranking [32]. An extension toward
learning a flat model together with the marginal utility functions has been proposed
in [34] under the name “choquistic utilitaristic regression.”

Different optimization methods have been used in these approaches for fitting
a “flat” Choquet integral. These methods turned out to be difficult to generalize
to the case of a hierarchal model (HCI), for example, due to a lack of stability
and modularity. In [6], it was therefore proposed to leverage recent advances in the
learning of neural networks (NNs), which, of course, presumes a representation of
an HCI model in terms of an NN-like structure.

To this end, we first of all represent marginal utility functions in terms of
a “marginal utility module”. According to (6.17), the function ui is a convex
combination of p sigmoids. This is represented by a hidden layer of the NN-
structure composed of p hidden neurons with sigmoidal activation function (cf.
Fig. 6.6). Non-negativity of ηk

i and rk
i is ensured by clipping, while the normal-

ization condition
∑p

k=0 rk
i = 1 is guaranteed through batch normalization (without

creating any instability).
For an aggregation node j ∈ N \ M , the aggregation function is chosen as

a 2-additive Choquet integral (6.8). It can be described in a NN-structure in the
following way. We set mj = |C(j)|. A 2-additive Choquet integral over an mj -
dimensional utility vector a = (a1, . . . , amj ) is represented as a neural architecture
with a single hidden layer comprising mj

2 neurons (Fig. 6.7). We distinguish three
types of neurons:

Fig. 6.6 A marginal utility
module with 3 hidden nodes
(p = 3)
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Fig. 6.7 A 2-additive
Choquet module with two
inputs and hidden neurons of
type A, B, and C

A: mj neurons with a single output ai . In order to enforce monotonicity condition

(6.9), one could apply clipping w
j
i to 0 when it becomes negative during the

learning process. However, this turned out to generate high instability. Hence,
the non-negativity of w

j
i is ensured by an appropriate change of variable: w

j
i =

σ(z
j
i ), where z

j
i is any real number, and σ denotes the differentiable softplus

function σ(z) = ln(1 + exp(z)). Neurons of type A then return σ(z
j

i ) ai .

B:
mj (mj−1)

2 neurons, denoted h∧
i,i′ with inputs ai and ai′ . As before, we write

w
j,∧
i,i′ = σ(z

j,∧
i,i′ ), for any real number z

j,∧
i,i′ , in order to fulfill monotonicity

condition (6.9). Neurons of type B then return σ(z
j,∧
i,i′ ) (ai ∧ ai′). It corresponds

to a weighted min-pooling of criteria i and i ′.
C:

mj (mj−1)

2 neurons, denoted h∨
i,i′ with inputs ai and ai′ . As before, we write

w
j,∨
i,i′ = σ(z

j,∨
i,i′ ), for any real number z

j,∨
i,i′ , in order to fulfill monotonicity

condition (6.9). Neurons of type C then return σ(z
j,∨
i,i′ ) (ai ∨ ai′). It corresponds

to a weighted max-pooling of criteria i and i ′.

Finally, the normalization constraint (6.10) is enforced through a batch normaliza-
tion layer [15]. This module is called Choquet module.

The previous marginal utility and 2-additive Choquet integrals modules are
combined following the tree structure of the hierarchical model. Consider Fig. 6.4
composed of

– Three attributes x1 (CAPEX), x2 (OPEX), and x3 (Safety).
– Two aggregation nodes: 4 (Costs) and 5 (Overall).

The general neural network is depicted in Fig. 6.8. It combines application of the
following modules: application of the marginal utility module from x1 to u1 (see
upper red rectangle in Fig. 6.8); application of the marginal utility module from
x2 to u2 (see middle red rectangle in Fig. 6.8); application of the marginal utility
module from x3 to u3 (see lower red rectangle in Fig. 6.8); application of the 2-
additive Choquet Integral module from u1, u2 to u4 (see upper green rectangle in
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Fig. 6.8 Example of the combination of the two modules on a tree with three marginal utility
functions and two aggregation nodes

Fig. 6.8); application of the 2-additive Choquet Integral module from u4, u3 to u5
(see green rectangle in the right hand side of Fig. 6.8).

With the process outlined above, any hierarchical organization of a set of criteria
can be transformed into a neural network. One can readily see that the neural
network rigorously encodes the expression of the marginal utility functions and
the 2-additive Choquet integral, as well as their monotonicity and normalization
conditions. The values of their parameters can be learned using standard back-
propagation techniques for neural network training. This ensures that the solution
to the learning process of the neural network returns a proper HCI model. Once the
HCI model is learned, it can be used for the purpose of inference and prediction, for
which the NN-structure is no longer needed.
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6.5 Summary and Conclusion

We elaborated on the idea of leveraging machine learning methods to construct
hierarchical MCDA models from suitable training data, and illustrated this idea by
means of Neur-HCI, a method for learning tree-structured combinations of Choquet
integrals. As stated repeatedly, we believe that this is an extremely interesting
research direction, both from the perspective of MCDA and machine learning. First
promising results have already been achieved, but many opportunities remain and
a lot of work still needs to be done. For example, while the Choquet integral as
an aggregation function in Neur-HCI covers the class of generalized averaging
operators, it might be useful to also include conjunctive and disjunctive aggregation
operators—in the literature, a model class of that kind has already been proposed
under the name fuzzy pattern tree [27], and it would be interesting to see whether it
is amenable to the neural representation and learning techniques of Neur-HCI.
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Chapter 7
Preference Learning Applied to Credit
Rating: Applications and Perspectives

Adiel Teixeira de Almeida Filho, Julio Cezar Soares Silva,
Diogo Ferreira de Lima Silva, and Luciano Ferreira

Abstract To build a portfolio that satisfies their objectives, investors need informa-
tion about possible losses when they choose among a diversity of financial assets
with fixed or variable income. Although variable income is the main option for
investors more tilted to accept higher risk, fixed income alternatives also expose
more conservative investors to the default risk. Preference learning approaches have
been deployed to help investors to better understand why some alternatives are
riskier than others and to discriminate financial assets among different classes of
risk. The objective of this chapter is to give an overview about the credit rating
problem for a discrete set of financial assets and how preference learning techniques
can assist in analyzing the relations between multiple attributes and the performance
of the alternatives in a more transparent and objective way. The focus was on the
country and corporate credit risk applications and presenting the perspectives to
increment the preference models and methods related to this problem.

7.1 Introduction

Preference learning is a research field that emerged from the intersection of
machine learning and multiple criteria decision aiding (MCDA) [28, 31, 42, 43, 52]
considering the notion of “preferences” in economics and operations research
along with the learning perspective. There are two preference learning approaches:
direct and indirect. In the direct approach, an acceptable representation of the DM
judgment policy is required, which can involve an elicitation of his/her preferences.
Although more fluid and up-to-date applications in complex strategic problems
can be performed when there is good cooperation between decision analysts and
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stakeholders [9], this can be a very costly process and may not apply to repetitive
decisions, with small-time windows [37, 39, 67].

To deal with indirect and incomplete specification of preferences of a decision-
maker (DM), three basic instances can be considered in multiple criteria decision
aiding (MCDA): functions, outranking relations, and rule based [22, 67]. Research
involving indirect preference elicitation includes diverse contexts: country [15, 51]
and corporate [16, 27] credit risk, economic freedom [14], nanotechnology [40, 41],
public health and medicine [32, 33, 50, 63], and many other applications [13, 22, 36].
See [23, 38] for an overview on preference disaggregation approaches.

Although in the multicriteria literature, the term sorting is already established
as a process for ordinal classification, from a broad perspective, rating is a widely
used term as remarked by Colorni and Tsoukiàs [10]. An everyday use of MCDA
methods in Finance is observed in credit rating problems [13, 19, 27, 46, 68]. The
credit assessment of companies and countries refers to analyzing the degree of risk
that an entity is not capable of meeting its debt obligations. In different decisions and
negotiation processes, it is essential to have a view of some parts’ creditworthiness
and credit risk. For example, banks need to understand the risk of lending financial
resources to their customers; a particular company, entity of a supply chain, needs
to use its credit to buy raw material from its suppliers and may sell its outputs
to customers also on credit; investors should understand the credit risk of bonds’
issuers, which companies may represent (i.e., corporate bonds, debentures) or even
governments (sovereign bonds) [15, 16, 27]. While credit scoring analysis results in
a numerical score for each borrower (indicating the probability of default), credit
ratings are expressed within an ordinal qualitative scale [27]. In this chapter, we
focus on the problem of rating.

This chapter is organized as follows: Sect. 7.2 presents how the rating problem
can be modeled as multiple criteria sorting problem, Sect. 7.3 brings recent applica-
tions of preference learning models and methods in-country and corporate risk, and
the conclusions and future perspectives of some preference learning models and
methods applied to credit rating are presented in Sect. 7.4.

7.2 Credit Rating or Sorting with Multiple Criteria

The multidimensional characteristic of financial problems, which frequently involve
various objectives that should be addressed in the decision process, makes them
typical problems for multiple criteria applications [13, 68]. In this perspective, an
analyst may include classical criteria (i.e., profitability, risk) and modern dimensions
(social responsibility, liquidity, solvency). de Almeida-Filho et al. [13] grouped and
analyzed the main criteria used in the literature regarding MCDA applications in
finance; see Fig. 7.1.

The problem of rating companies or investment alternatives can be structured
as an ordinal classification (sorting) problem. Sorting refers to allocating a set of
alternatives in pre-defined classes that are ordered in terms of preferences [49].
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Fig. 7.1 Financial criteria [13]

Several sorting methods have been used in the last decades, and new proposals
and studies continue to emerge in the literature [30]. Let the problem be defined
as follows.

Let A ={A1, A2, . . . , Am} be a set of m alternatives (actions, instances); G =
{g1, g2, g3, . . . , gn} be a set of n criteria (features); W = [w1, w2, w3, . . . , wn] be
a vector of weights with n elements, where wj is the weight of criterion gj ; and G+
and G− be, respectively, the subsets of beneficial and cost criteria. Let ai,j be the
performance of alternative ai regarding criterion gj . Also, let C ={C1, C2, . . . , Cq}
be a set of q pre-defined ordered ratings (classes), where C1 � C2 �, . . . ,� Cq .

In some MCDA preference learning approaches for sorting (PDTOPSIS-Sort
[16], ELECTRE-TRI variations [29, 45], PROMETHEE variations [15]), the char-
acteristics of each class are described with the use of profiles, defined in the center
of the classes (characteristic profiles) or in the limit between consecutive classes
(boundary profiles). So, let P ={P1, P2, . . . , Pp} represent a set of p = q − 1
boundary profiles or p = q characteristic profiles, and let Pk,j be the performance
of profile Pk regarding criterion gj .

Ordered ratings (classes) can also be characterized by rules when adopting the
dominance-based rough set approach (DRSA) [34], which is an evolution of the
classical rough set approach proposed by Pawlak [48]. In DRSA, decision-makers’
preferences can be represented by a set of “If. . . , then...” rules R, induced from the
set of decision examples. The general form of a decision rule is presented below.

IF ai,1 satisfies rk,1 and ai,2 satisfies rk,2 and ... and ai,n satisfies rk,n; THEN i

belongs to Yk .
Where rt,j is j -th criteria threshold for rule k ∈ R, which defines the conditional

part of the rule, and Yk = C1 or C2 or ... or Cq defines the decision part for rule k.
To understand the types of rules in more detail, data reduction, preference discovery,
rule induction algorithms, and classification issues, please refer to [3–5, 34, 54].
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7.2.1 Country Risk

The 2007 economic crisis reflected the lack of clarity in procedures adopted by the
international credit rating agencies, which brought to the forefront a debate about
the quality and the true role of the agencies that rate risk. The risk assessment
process for these sovereign bonds is still considered subjective because of the
lack of criteria-related information and transparency of the methodologies used by
international credit rating agencies [15, 51].

Preference learning with indirect elicitation has been applied in the sovereign
risk assessment context [1, 15, 24]. The literature also contains some applications
of rough sets in sovereign risk assessment, both with the classical approach [35]
and with a preference learning approach [8, 12, 51]. The developed preference
learning works studied ways to support the DM in finding the criteria that most
influence the risk classification, evaluation of model’s classification accuracy, and
how to increment the results’ interpretability for different types of decision-makers
(investors, governments, financial institutions, and others).

7.2.2 Corporate Credit Risk

On several occasions, companies need to raise the financial amount necessary to
finance their projects through instruments in the financial market. For example,
a company can issue fixed-income securities that can be purchased by individual
investors. Although those investments are composed of fixed income contracts, the
investors are exposed to the default risk, i.e., the risk the company issuing the bond
will not be able to comply with the agreed requirements and pay back the investors.
This can happen, for example, when an issuing company goes bankrupt.

Multiple criteria methods have been applied in the literature to sort financial
and non-financial companies in ordered classes in terms of credit risk or corporate
performance [13, 23, 36, 44]. In these applications, a set of criteria, which usually
include accounting indicators (financial ratios), is used to describe the objectives of
the decision problem. This perspective can be used also to select qualified equities
to compose a portfolio of investments, which may be obtained afterward through
a multiobjective optimization approach [57–62]. Among the used MCDA methods,
the applications for ratings include Electre variations [27, 55, 58], PROMETHEE
variations [21], UTADIS [20, 26, 56, 64, 65], MHDIS [25, 47], Rough Set develop-
ments [18, 53], and PDTOPSIS-Sort [16].
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7.3 Applications

Many different preference learning approaches to finance exist in the literature.
Applications include a sovereign bonds risk assessment to bankruptcy prediction
in companies. The literature reviews of [68] and [13] cover preference learning
methods applied in finance, where credit risk is included. In this section, we present
recent applications of preference learning models and methods in-country and
corporate risk.

7.3.1 Sorting Sovereign Bonds with Two Preference Learning
Approaches

7.3.1.1 Alternatives and Reference Set Construction

In the context of sorting sovereign bonds, investors want to discriminate “high risk”
countries from “low risk” countries, so that they can allocate capital in a more
rational way, according to their objectives (building a portfolio to obtain high return
or to have less risk of losing capital over time). From time to time, the countries are
sorted into pre-defined risk categories by risk agencies, such as Standard and Poor’s,
Moody’s, and Fitch Ratings, defining a preference order among the risk categories.
To build a more simplified model, which facilitates summarization of results and
interpretability to obtain better insights, de Lima Silva et al. [15] proposed to group
the agencies’ ratings into three categories: “very low risk” (C1), “low to moderate
risk” (C2), and “speculative” (C3), where C1 � C2 � C3. Table 7.1 shows the risk
classes proposed by the authors and how they are associated with the ratings of the
considered agencies.

When considering a preference disaggregation approach, the multicriteria deci-
sion aid method can learn preferences through a reference set of alternatives. The
reference set is a data table composed of decision examples, thus in this problem,
each decision example consists of a country’s criteria (conditional attributes) and
it’s class (decision criteria). Among different ways to allocate a country for a certain
risk class, one can choose to allocate according to the worst rating among those
performed by Standard and poor’s (S&P) and Moody’s. An example of a reference
set composed of six alternatives and a demonstration of this “rating to risk class”
conversion is presented in Table 7.2.

In a recent study, Silva et al. [51] experimented with different reference sets to
increment the performance of DRSA when considering the model of [15] for the
country risk problem. The authors simulated different country sampling strategies,
where the best strategy was to give more importance to the worst-rated countries
from C1, the best-rated countries from C3, and a combination of the best- and worst-
rated countries from C2.
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Table 7.1 The three classes
proposed in [15] and how
they are associated with the
ratings of standard and Poor’s
and Moody’s

Category Moody’s ratings Standard and poor’s ratings

C1 Aaa AAA

Aaa1 AA+
Aaa2 AA

Aaa3 AA−
A1 A+
A2 A

A3 A−
C2 Baa1 BBB+

Baa2 BBB

Baa3 BBB−
C3 Ba1 BB+

Ba2 BB

Ba3 BB−
B1 B+
B2 B

B3 B−
Caa1 CCC+
Caa2 CCC

Caa3 CCC−
Ca CC

C C

D

Table 7.2 Converting ratings
to risk classes according to
the worst rating case in a
reference set

Alternative Moody’s S&P Final risk class

Country 1 A1 A+ C1

Country 2 Aa2 AA C1

Country 3 Baa3 A C2

Country 4 Baa2 BBB+ C2

Country 5 Caa3 CCC− C3

Country 6 Baa3 BB− C3

7.3.1.2 Conditional Criteria and Data Reduction

Since the procedure used by the agencies is extremely subjective and often
questioned, objective indicators that measure the performance of a country in
different sectors (economy and growth, poverty, environment, and others) must be
incorporated in preference learning models to provide more transparent associations
between countries’ and agencies’ ratings. The study performed by de Lima Silva
et al. [15] found 9 real economic indicators among 18 collected from the World
Bank database that potentially influence the ratings of Moody’s and S&P. These 9
indicators and their associated preference directions are presented in Table 7.3.
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Table 7.3 Criteria available in the World Bank website that potentially influence agencies’ ratings

Criteria Preference direction

GDP per capita (current US$) Max

Exports of goods and services (% of GDP) Max

Gross savings (% of GDP) Max

Foreign direct investment, net inflows (BoP, current US$) Max

GDP at market prices (current US$) Max

Total reserves (includes gold, current US$) Max

GNI per capita, Atlas method (current US$) Max

Lending interest rate (%) (current US$) Min

Reals interest rate (%) (current US$) Min

The use of reducts in [51] brought interesting results since fewer criteria were
needed to classify new objects into the risk groups. Reducts can be used to identify
the most relevant criteria and increase the number of countries that will be evaluated
since not all indicator values are computed for all the countries listed in the World
Bank database. Furthermore, less effort will be spent on result interpretation, since
fewer variables are contained in the set of rules. Finally, while de Lima Silva et al.
[15] sorted 36 countries using the criteria from Table 7.3, the adoption of reducts in
[51] enabled more sovereign bonds to be sorted among risk classes over time.

7.3.1.3 Preference Learning Approach

After the data table containing a set of classified decision examples and their
evaluation on the considered criteria is settled, a preference learning method
is applied to complete the credit risk evaluation process. de Lima Silva et al.
[15] evaluated a PROMETHEE approach, which has been adapted to the sorting
problematic with preference disaggregation. This PROMETHEE variation was
proposed by Doumpos and Zopounidis[21] and to obtain the necessary parameters
for the components of the sorting process, a linear programming model is used,
modeling each preference function (for each criterion j ) parts of a linear function.

The advantage of using an indirect elicitation approach is that when it is not
possible to elicit DMs’ preferences directly by the classical approaches, decision
examples enable to reduce the cognitive effort in situations when the DM is not able
to specify the preference model’s parameters or, due to time constraints, is not able
to participate in a costly elicitation process [45].

When using this PROMETHEE II variation, de Lima Silva et al. [15] indicated
some advantages to support the investor decision-making process. The linear
programming applied in the model indicated the weights of the considered criteria
that best defined the assignments for the chosen reference set. Thus, it is possible
to verify which criteria have more influence on the credit rating assignments. Also,
it is possible to exploit the preference learning model to classify new countries into
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one of the three classes, using a relatively small reference set to infer the parameters
of the preference model. This is interesting because the decision-maker only needs
to choose a small subset of countries (i.e., 9 countries) to build the final model to
start the risk evaluation process.

Due to the cognitive reduction advantages of indirect elicitation in country risk,
Silva et al. [51] also investigated a rule-based approach that requires the DM to
specify decision examples only. In DRSA, decision rules keep the ordinal character
of input data rather than transforming it into numeric information. The interpretable
set of rules enable the analyst to understand why some suggestions/decisions were
made and the possibility to verify the importance of each attribute considered in the
analysis [3, 6].

The method used by Silva et al. [51] enabled to check consistency between
economic indicators and worst-case classifications of Moody’s and S&P, and to
reduce the data used in the analysis (this last feature was presented in the last
paragraph of Sect. 7.3.1.2). In addition, the induced rules offer interpretability
concerning the classifications of risk and therefore support decisions by providing
more detail, depending on the context that the decision-maker is dealing with. An
example of a rule that was induced by Silva et al. [51] is presented below.

IF Exports of goods and services <= 40.43% and Total reserves <= 1.78e10
and Real interest rate >= 8.42, THEN credit risk is at most C3 (Very low risk)”.

This rule characterizes a set of countries classified by Moody’s and S&P as
low risk in the worst-case scenario. The authors also performed some comparisons
and verified that DRSA obtained better performance results than MRSort [7] and
UTADIS [17, 65, 66] in the best reference set encountered. The results are shown in
Fig. 7.2.

ELECTRE-TRI is a non-compensatory method that uses the pessimistic clas-
sification rule, and its parameters are estimated based on the provided decision

Fig. 7.2 Comparison between DRSA, UTADIS, and MRSort
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examples. A rough version of ELECTRE-TRI is implemented in MRSort and was
used for the comparison. For each attribute, UTADIS elicits value functions from
the provided reference set, and the assignment of each decision examples to the
classes is performed based on an additive value function. DRSA presented better
overall accuracy than UTADIS and MRSort. Despite the advantage of UTADIS on
the C3 accuracy (A_C3) performance, DRSA had a balanced performance, and thus
obtained good results for all risk classes, especially in classes 1 and 3, as expected
considering previous experiments.

7.3.2 Sorting Brazilian Debentures with the PDTOPSIS-Sort
Method

de Lima Silva et al. [16] present a decision problem consisting of sorting a set of
investment alternatives, represented by Brazilian debentures, which are a kind of
corporate bond. The application is organized into seven steps, summarized below.

7.3.2.1 Problem Definition

The Problem is defined in the first step. Thus, the information about the decision-
makers and their goals, the alternatives of the problem, and the criteria (representing
the decision-makers’ objectives) are identified. Also, the ratings are ordered. In
Brazil, debentures represent the main available alternatives of corporate bonds
to individual investors. Therefore, a set of 50 Brazilian debentures was selected
as alternatives to the decision problem. The set includes both private and public
companies from different sectors, such as energy, logistics, retail, mining, real
estate, oil, and gas.

The sorting problem was defined with three predefined and ordered classes
(ratings): C1, C2, and C3. The rating C1 represents investments with low risk, while
the rating C3 represents higher risk debentures. Therefore, these are ordered as
follows: C1 � C2 � C3, maintaining the idea that was structured in Table 7.2.

The criteria presented in Table 7.4 were defined similarly with the literature [21,
58] which includes profitability, activity, liquidity, and debt measures. The criteria
financial ratios were calculated based on the companies’ balance sheets regarding
the year 2016.

7.3.2.2 Learning the Expert’s Preferences

In the second step, decision examples were obtained from the decision-maker,
a financial analyst of a large Brazilian investment bank. Based on this holistic
information, the PDTOPSIS-Sort method uses a preference disaggregation approach



130 A.T. de Almeida Filho et al.

Table 7.4 Set of criteria—corporate bonds rating

gj Criteria Description

g1 Return on assets Earnings before interest and taxes divided by total
assets

g2 Return on equity Net income divided by shareholders’ equity

g3 Net profit margin Net income divided by sales

g4 Asset turnover ratio Sales divided by total assets

g5 Acid liquidity ratio Current assets minus inventories divided by
current liabilities

g6 Cash asset ratio Cash plus cash equivalents divided by current
liabilities

g7 Working capital to current liabilities
ratio

Current assets minus current liabilities divided by
current liabilities

g8 1/solvency ratio Shareholder’s equity divided by total liabilities

g9 Leverage ratio Total assets divided by shareholder’s equity

g10 Interest coverage ratio Earnings before interest and taxes divided by
interest expenses

to infer boundary profiles and weights for a TOPSIS-based sorting approach. The
set of reference alternatives can be formed by a subset of the original alternatives of
the problem, other alternatives that the DM feels confident to assign into the classes,
or fictitious alternatives.

In the third step of PDTOPSIS-Sort, a domain is defined for the criteria space.
The configuration of a domain in TOPSIS is important to prevent the occurrence
of ranking reversals deriving from the inclusion (or exclusion) of alternatives in the
initial set considered in the model [14, 16]. A way of defining the domain is through
the definition of two fictitious alternatives (a∗ and a−) that receive, respectively, the
highest and lowest value considered for each criterion in the application.

The fourth step of the model regards the inference of the necessary parameters to
perform the allocations of the alternatives into the ratings of risk. In PDTOPSIS-
Sort, weights and boundary profiles are inferred with the use of a nonlinear
optimization solver. The model works as a regression, searching for TOPSIS-Sort
parameters that allocate the reference examples into the correct classes. For that,
besides weights and the performance of the boundary profiles, error variables are
defined and should be minimized in the objective function. Details of the model are
available in [16].

It might be the case that the DM does not approve the set of parameters found
during the last step. Then, a fifth step considered a validation of the inferred
parameters. If the decision-maker wants, he/she can include new constraints to the
optimization problem, for example, indicating a maximum or minimum weight for
a criterion.

In the sixth step, the sorting process takes place. The alternatives are assigned to
the risk classes according to their closeness coefficients and those coefficients found
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Fig. 7.3 Rating Brazilian debentures. Adapted from [16]

for the boundary profiles. In TOPSIS, an alternative’s closeness coefficient is based
on its distance from an ideal solution and an anti-ideal solution [14].

Finally, in the seventh step, a sensitivity analysis is performed. After analyzing
the impact of small parameters’ variations, the financial analyst can decide to
maintain the results of the ratings. Figure 7.3 illustrates the alternatives allocated
to the different classes in terms of their distances to the ideal solution (d∗) and to
the anti-ideal (d−) solution. More details about the method and the sorting process
can be found in [16].

7.4 Conclusion and Future Perspectives

The adoption of preference learning approaches is necessary to deal with complex
decision problems when several and possibly conflicting objectives are considered.
The applications presented in this chapter demonstrated how an analyst can structure
different credit rating problems and how to apply preference learning methods to
the developed models. When using an indirect preference elicitation method, as
presented here, the decision-maker might focus more on the interpretability of the
results provided by the model rather than on the elicitation of parameters, which is
associated with more cognitive effort.
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Preference learning methods can put forward the use of an objective and
transparent methodology to sort sovereign bonds. Using the perspective obtained
with preference learning sorting methods, it is possible to verify the consistency of
agencies’ ratings, consider a set of non-redundant attributes, and understand why
sovereign bonds have a certain level of risk. Investors can use this kind of model to
calibrate their decisions and protect them from the subjectivity incorporated by the
mainly used rating systems.

The authors of sovereign credit risk studies that were analyzed in this chapter
[15, 51] made some considerations on directions to improve the preference learning
models in this problem. The first is to consider indicators from other sectors rather
than Economy and Growth, such as those considered by Corrente et al. [11]. The use
of economic variables resulted in good performance concerning the identification
of speculative countries (C3), but there was relatively poor performance when the
considered methods tried to identify countries belonging to C1 and C2. The use of
indicators from other sectors may help to improve the performance in the task of
characterizing countries with less credit risk. Also, given the diversity of countries
contained in C3, it is interesting to investigate the subdivision of this class into two.

In the case of the corporate risk application [16], the authors identified that
the method was able to assign the alternatives to the risk classes as expected.
On the other hand, they highlight only objective criteria related to a single year
were used, limiting the scope of the results. Criteria such as managers’ quality and
experience, sector risk, and the state of the economy could influence the default risk
of the alternatives. Moreover, criteria regarding the changes on the indicators over
a different year could be added and be more plausible to get an overall view of the
companies’ financial status.

In a world of great amounts of data and growing computers’ capacity, preference
learning methods have gained prominence and visibility. Various MCDA, statistical,
and machine learning techniques have emerged to support managerial decision-
making in different areas. In finance, the complexity of the problems involving large
sets of data and multiple variables makes these techniques essential for business, and
their use should continue to grow in the future.

Works involving preference learning methods and applications to real prob-
lems point to a new direction of investigation, which is the tradeoff between
interpretability of the results and the classification task performance evaluation
given by preference learning methods against machine/statistical learning methods
[2, 13, 39, 51], and the combination of these approaches to build a better model
[2, 50]. Consequently, future work involving preference learning approaches applied
to credit rating should take this demand into consideration, performing compar-
isons with competitive machine learning algorithms or evaluating combinations of
machine and preference learning approaches.
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Chapter 8
USort-nB and USort-nC: Two
Multi-criteria Ordinal Classification
Methods Using Interval Value Functions

Eduardo Fernández, Jorge Navarro, and Efrain Solares

Abstract Two novel methods to address multi-criteria ordinal classification prob-
lems are presented here. The main characteristic of these methods is that interval
value functions are used for the first time to model compensatory and transitive
preferences of decision makers that hesitate about the precise value of criteria
weights and criteria scores. The flexibility achieved by these interval value functions
provide flexibility to the decision maker and robustness to the methods. One of the
methods uses interval limiting actions to characterize boundaries between adjacent
classes. The other method employs representative interval actions to characterize the
classes. Each of the methods uses two procedures that are symmetric with respect
to the transposition operation. Under certain conditions, we show that both methods
fulfill the set of basic consistency properties established for this type of methods:
Unicity, Independence, Homogeneity, Monotonicity, Conformity, and Stability. The
requirements on the limiting boundaries are stronger than those on the representative
actions.

8.1 Introduction

Generally speaking, the verb “to classify” relates to the action of assigning objects
of a certain universe to predefined classes. Unlike nominal classification, in ordinal
classification the decision maker (DM) is interested in assigning objects (maybe
potential actions, decision alternatives) to elements of a set of ordered classes
or categories. The multi-criteria ordinal classification problem is a fundamental
instance of ordinal classification problems, which arises when the decision actions
are described by multiple evaluation criteria. Many multi-criteria ordinal classifica-
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tion methods have been reported in the scientific literature. From the point of view
of the underlying decision model, most of the methods are grouped in one of three
main paradigms:

• Construction of value functions (the functional paradigm) (e.g., [18, 20, 21, 32]).
• Symbolic methods coming from the Artificial Intelligence paradigm (e.g., [3, 6,

16, 17]).
• The relational paradigm based on the construction of outranking relations (e.g.,

[1, 4, 5, 8, 14, 25, 30, 31]).

Regardless of the decision model used, classes should be characterized in some way.
There are two basic forms:

(i) Using limiting actions that describe boundaries between adjacent classes (e.g.
[4, 5, 11, 13, 24–26]);

(ii) Through decision examples (or reference actions) whose classification is (or
maybe) known (e.g. [1, 2, 7, 9, 10, 13, 17–21, 24, 32]).

Some methods in (ii) use a single “central” (or representative) action to char-
acterize each class (e.g., [1, 19, 24]). Other methods use information about a few
characteristics or representative actions (e.g. [2]). Several approaches can handle
many reference actions, which are not necessarily representative of their class (e.g.,
[7, 8, 20]).

Within the methods based on limiting actions, the most popular one is ELECTRE
TRI- B, originally proposed by Yu [31] with the name ELECTRE TRI, and after-
wards detailed by Roy and Bouyssou [26]. In this method, classes are characterized
by their boundaries; a single limiting action (profile) is used to describe the
boundary between adjacent classes; in each boundary, the limiting action belongs
to the upper class. Actions to be assigned are compared with the limiting actions
through an outranking (respectively, preference) relation, in the pseudo-conjunctive
(resp. pseudo-disjunctive) procedure. The assignment is suggested according to the
result of this comparison.

ELECTRE TRI-B evolved to ELECTRE TRI-nB [11]; in the later method,
the boundaries are characterized by several limiting actions, what permits more
informed assignments. ELECTRE TRI-B and ELECTRE TRI-nB fulfill several
fundamental properties (conformity, monotonicity, stability, homogeneity, indepen-
dence, and uniqueness), which were originally proposed by Roy and Bouyssou [26].
Similar properties are satisfied by other methods as ELECTRE TRI-C, ELECTRE
TRI-nC, and ElectreSort [1, 2, 19]. The non-fulfillment of some of these properties
is a serious drawback of many multi-criteria ordinal classification approaches.

ELECTRE TRI-B and its variants have been criticized from a theoretical point
of view. Roy [27] and Bouyssou and Marchant [4] pointed out that the pseudo-
conjunctive and pseudo-disjunctive assignment rules do not correspond via the
transposition operation, which consists of inverting the direction of preferences on
all criteria, also inverting the ordering of the classes. Bouyssou and Marchant [4]
argued that the conclusions obtained after this operation should not be different
from the original conclusions. The information provided by “x outranks a limiting
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action b” has the same value as that obtained from “a limiting action b outranks x”;
the overall information should be considered for assigning x. So, if a multi-criteria
ordinal classification procedure has an “image” method through the transposition
operation, both methods should be used conjointly. Hence, on the one hand, the
pseudo-conjunctive (respectively, pseudo-disjunctive) ELECTRE TRI-B (or ELEC-
TRE TRI-nB) brings only partial information. On the other hand, the conjoint use
of the pseudo-conjunctive and pseudo-disjunctive rules is not theoretically justified,
because these procedures have no symmetry with respect to the transposition
operation. Such a lack of symmetry is a consequence of considering the classes
as closed from below [4].

The methods based on eliciting limiting profiles can be also criticized because
defining these actions is often a difficult task, especially when the decision maker
has only a vague idea about the boundary between two adjacent categories. The
existence of such boundaries is often questioned in real-world problems (cf. [1]).
Being the imprecise setting of limiting profiles perhaps the most important criticism
to this kind of methods, a way to represent imperfect known criterion scores can be
a real advantage.

As stated by Roy et al. [28] “. . . the definition of each criterion frequently
comprises some part of arbitrariness, and the data used to build criteria are also
very often imprecise, ill-determined, and uncertain.” Also, to a certain extent, the
elicitation of model’s parameters often cannot avoid imprecision, ill-determination,
and arbitrariness. This is, for instance, the case when the entity in charge of the
decision is a group whose members have conflicting values, or when the DM
represents a general view (e.g., the public), or a very hardly accessible entity (as
a multinational CEO). Hence, the decision analyst (frequently in collaboration with
the DM or his/her representative) should be prepared to handle imperfect knowledge
of data from the above-mentioned sources.

Within this avenue of research, ELECTRE TRI-nB and ELECTRE TRI-
nC were extended to the interval framework in [13]. In INTERCLASS-nB
and INTERCLASS-nC, the imperfect information on criterion scores and
model’s parameters is modeled by interval numbers. This imperfect information
(imprecision, ill-determination, and arbitrariness) can be naturally and easily
characterized by interval numbers. Interval numbers represent a modeling
alternative to sophisticated mathematical tools that can require significant cognitive
efforts from the DM. An interval number is related to a magnitude whose precise
value is unknown, but the range within which this value lies is well determined.

Often, the DM may feel more comfortable using an additive value function as
preference model. In this context, interval numbers can also represent a natural
and easy way to model imprecision and ill-determination in criterion weights and
criterion scores (of both reference actions and actions that should be allocated to
a class); therefore, interval-based generalizations of modeling preferences through
additive functions seem plausible. This contribution presents two multi-criteria
ordinal classification approaches that use an interval-based value function as model
of the DM’s preferences. One of the methods uses interval limiting actions to
characterize boundaries between adjacent classes. The other method employs
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representative interval actions to characterize the classes. Each method is composed
of two procedures, which correspond via the transposition operation. The essential
properties of conformity, monotonicity, stability, homogeneity, independence, and
uniqueness are fulfilled.

The structure of this contribution is the following: A required background
on interval numbers and interval value functions is provided in Sect. 8.2. The
USort-nB method is detailed in Sect. 8.3. Section 8.4 presents the USort-nC,
including a simple example that illustrates the basic operation of the approach. Some
conclusions are discussed in Sect. 8.5.

8.2 Some Background

According to Moore [23], an interval number is a range E = [E,E], where E

denotes its lower limit and E its upper limit. Boldface italic letters will be used
throughout the rest of the chapter to represent these numbers. Real numbers can
be defined as particular interval numbers for which E = E (degenerate interval
numbers).

Some basic arithmetic operations with interval numbers are the following:

D +E = [D + E,D + E]

D −E = [D − E,D − E]

D ×E = [min{DE,DE,DE,DE}, max{DE,DE,DE,DE}]

Following [15], we call realization of the interval number E any real number
e in [E,E]. An order relation on interval numbers can be defined as: Let e and d

be two unknown realizations of E and D, respectively, we say that E > D if the
proposition “e is greater than d” has more credibility than “d is greater than e.”

Shi et al. [29] introduced the possibility function:

P(E ≥ D) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if PED > 1,

PED if 0 ≤ PED ≤ 1,

0 PED < 0.

(8.1)

where E = [E,E] and D = [D,D] are interval numbers and PED =
E−D

(E−E)+(D−D)
.

When E = E and D = D, then
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P(E ≥ D) =
{

1 if e ≥ d,

0 otherwise.
(8.2)

In [12], the value P(E ≥ D) is interpreted as the credibility of the statement
“given two realizations from E and D, e and d , e will be greater than or equal to d .”

From the interpretation of the order relation > on interval numbers, it is easy to
prove that E > D ⇔ e > d and E = D ⇔ e = d .

Some properties of the order relation and the possibility function follow (see
[12]):

(i) P(E ≥ D) = α1 ≥ 0.5 and P(D ≥ C) = α2 ≥ 0.5 ⇒ P(E ≥ C) =
min{α1, α2} (transitivity).

(ii) E > D and D > C ⇒ E > C.
(iii) If e and d are, respectively, the middle points of the intervals E and D, then

E > D ⇔ e > d and E = D ⇔ e = d (dictatorship of the middle point).
(iv) P(E ≥ D) = α ⇒ P(D ≥ E) = 1 − α (negation).

Given a set X of interval numbers, ≥ is a weak order on X. Using this order
relation, the concepts of maximum and minimum can be defined as: x∗ is the
maximum (respectively minimum) in X iff for all y ∈ X, x∗ ≥ y (resp. x∗ ≤ y).
These concepts have the same properties as in real numbers. If X is a finite set, the
existence of maximum and minimum on X is guaranteed.

As higher the value of α, the more reliable the strict order given by Eq. (8.3).

E >α D ⇔ P(E ≥ D) ≥ α > 0.5. (8.3)

Let I be the set of interval numbers. An interval function f : I → I is said to
be increasing iff for all (E,D) ∈ I × I ,E > D ⇒ f (E) > f (D). We will use a
preference model given based on the following assumption:

Assumption 8.1 The DM’s multi-criteria preferences are compatible with an
interval function U. This means that for any pair of actions (x, y),U(x) ≥ U(y)

is an argument in favor of the statement “action x is at least as good as y.”
Under reasonable conditions, it is possible to model U through the additive form:

U(x) =
∑

wiui (gi ) (8.4)

where the uis are one-dimensional value functions, gi denotes the i-th criterion
score of action x, and wi is the interval weight associated with the i-th criterion. The
simplest form of (8.4) is the interval weighted-sum function in which ui (gi ) = gi .
This linear function was used by Liesio et al. [22] and Fliedner and Liesio [15] in
robust project portfolio optimization.

Definition 8.1 Action x is said to be α-preferred to action y if P(U (x) ≥ U (y)) ≥
α > 0.5.
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This relation will be denoted as xP≥αy. Based on Assumption 8.1, it is
interpreted as “x is preferred to y with credibility greater than or equal to α.”

Remark 8.1 From the above properties (i) and (iv) of the possibility function,
xP≥αy is asymmetric and transitive on the decision set A.

8.3 An Ordinal Classification Method Based on Limiting
Boundary Actions

8.3.1 Description of the Method

First of all, we present the requirements to the limiting profiles of an ordinal
classification method based on Assumption 8.1, which satisfies the consistency
properties from [26], being also symmetric with respect to the transposition
operation.

Condition 8.1 (Requirements on Limiting Profiles) Set α > 0.5. Consider a
set of M ordered and predefined classes C = {C1, . . . , Ck, . . . , CM }, (M ≥ 2)

(ordered in the sense of increasing preference). The boundary between Ck and Ck+1
is described by a set of limiting actions Bk , for k = 1, . . . ,M − 1. Each Bk is
composed of two disjoint subsets BUk and BLk such that each w ∈ BUk is in Ck+1,
and each z ∈ BLk is in Ck . Additionally:

(i) There is no pair (w, z) ∈ Bk × Bh(h > k) fulfilling wP≥αz.
(ii) There is no pair (w, z) ∈ BUk × BUk fulfilling zP≥αw.

(iii) There is no pair (w, z) ∈ BLk × BLk fulfilling wP≥αz.
(iv) For each w ∈ BUk there is z ∈ BLk such that wP≥αz.
(v) For each w ∈ BLk there is z ∈ BUk such that zP≥αw.

(vi) For each w ∈ BUk there is z ∈ Bk+1 such that zP≥αw.
(vii) For each w ∈ BLk there is z ∈ Bk−1 such that wP≥αz.

Definition 8.2 (P≥α Relation Between Actions and Boundaries)

(a) xP≥αBk ⇔ There is w ∈ Bk such that xP≥αw.
(b) BkP≥αx ⇔ There is w ∈ Bk such that wP≥αx.

Remark 8.2 Combining Definition 8.2.a, Conditions 8.1.iv and 8.1.vii, and
Remark 8.1 (transitivity of P≥α), it is easy to prove that xP≥αBk ⇒ there is
w ∈ BLk such that xP≥αw.

From Definition 8.2.b, Condition 8.1.v, and Remark 8.1 (transitivity of P≥α), it
follows that BkP≥αx ⇒ there is w ∈ BUk such that wP≥αx.

Proposition 8.1 Under Condition 8.1, the following propositions are fulfilled:

(i) xP≥αBk ⇒ xP≥αBh for k > h.
(ii) BhP≥αx ⇒ BkP≥αx for k > h.
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Proof Proposition 8.1.i: From Remark 8.2, there is w ∈ BLk such that xP≥αw.
Then, Definition 8.2.a and Condition 8.1.vii imply xP≥αBk−1. Applying the same
argument recursively, we have xP≥αBh for h < k.

Proposition 8.1.ii: From Remark 8.2, there is w ∈ BUh such that wP≥αx. From
Condition 8.1.vi and Remark 8.1, there is z in Bh+1 fulfilling zP≥αx. So, Bh+1P≥αx

(Definition 8.2.b). The recursive application of this argument leads to BkP≥αx for
k > h.

The assignments of actions are obtained by the following rules:

Definition 8.3 (Primal Assignment Procedure) Set Bk , k = 1, . . . ,M − 1
fulfilling Condition 8.1 and take BM and B0 as the ideal and anti-ideal actions,
respectively. Set BMP≥αx.

• Compare Bk with x for k = 1, . . . ,M .
• Let Bk be the first boundary such that BkP≥αx.
• Take Ck as a possible class to assign x.

Definition 8.4 (Dual Assignment Procedure) Set Bk , k = 1, . . . ,M−1, fulfilling
Condition 8.1 and take BM and B0 as the ideal and anti-ideal actions, respectively.
Set xP≥αB0.

• Compare x with Bk for k = M − 1, . . . , 0.
• Let Bk be the first boundary such that xP≥αBk .
• Take Ck+1 as a possible class to assign x.

Remark 8.3 The above assignment rules correspond via the transposition operation.
As was discussed in Introduction, they should be used conjointly. In the following,
the conjoint method will be called USort-nB.

Proposition 8.2 (Relationship Between the Two Assignment Rules) Let Ch and
Ck′ be the assignments suggested by the primal and dual rules, respectively. Then,
h ≥ k′ − 1.

Proof x is assigned to Ch by the primal procedure ⇒ BhP≥αx ⇒ there is w ∈ Bh

such that wP≥αx; x is assigned to Ck′ by the dual procedure⇒ xP≥αBk′−1 ⇒ there
is z ∈ Bk′−1 such that xP≥αz; Then, there is a pair (w, z) ∈ Bh × Bk′−1 such that
wP≥αz; h < k′ − 1 contradicts Condition 8.1.i. Hence, h ≥ k′ − 1.

8.3.2 Consistency Properties of the USort-nB Primal and Dual
Procedures

In this subsection, we analyze whether the USort-nB rules satisfy the properties that
were firstly proposed by Roy and Bouyssou [26] for ELECTRE TRI-B. They are
fulfilled also by ELECTRE TRI-nC [2], ElectreSort [19], ELECTRE TRI-nB [11],
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and INTERCLASS-nB [13]; these properties have become a rational paradigm for
multi-criteria ordinal classification methods.

In the framework of USort-nB, we will use the same definitions of merging
classes and splitting a class as in [11]. The reader is referred to such a paper for
a formal definition.

Definition 8.5 (Stability Property) A method is considered stable under merging
and splitting operations, if and only if:

(i) After performing a merging or a splitting operation, the actions belonging to a
non-modified class previously to the change will keep their assignments after
such a modification.

(ii) After performing a merging of two classes, the actions belonging to the merged
classes (before merging) are still belonging to the new one.

(iii) After performing a splitting operation of a class, the actions belonging to the
modified class (before splitting) are still belonging to one of the two new ones.

Proposition 8.3 (Consistency Properties of USort-nB)) Under Condition 8.1,
the primal and dual procedures of USort-nB fulfill the following consistency
properties:

i. Uniqueness: An action is classified only into a single class.
ii. Independence:When assigning an action to a certain class, the assignment does

not depend on the assignment of other actions.
iii. Conformity:

(a) A limiting action w ∈ BLk is assigned to Ck .
(b) A limiting action w ∈ BUk is assigned to Ck+1.

iv. Monotonicity: If x is assigned to Ck and yP≥αx, then y is classified into Ck′
with k′ ≥ k.

v. Homogeneity: If two actions fulfill the same preference relation of Definition 8.2
with respect to the limiting boundaries, then they are assigned to the same class.

vi. Stability: The methods are stable according to Definition 8.5.

Proof The proofs of Uniqueness, Independence, and Homogeneity are trivial,
determined by the form the assignment rules were designed (see Definitions 8.3
and 8.4).

Conformity
Dual procedure:
w ∈ BLk ⇒ there is no z ∈ Bk such that wP≥αz from Conditions 8.1.ii and 8.1.iii
⇒ not (wP≥αBk) (Definition 8.2.a) ⇒ not (wP≥αBh)(h ≥ k) (Counter-reciprocal
of Proposition 8.1.i).

There is y ∈ Bk−1 such that wP≥αy from Condition 8.1.vii. Hence, wP≥αBk−1
(Definition 8.2.a). Hence, w is assigned to Ck (Definition 8.4).

w ∈ BUk ⇒ there is no z ∈ Bk+1 such that wP≥αz from Condition 8.1.i;
⇒ not (wP≥αBk+1) (Definition 8.2.a) ⇒ not (wP≥αBh)(h ≥ k + 1) (Counter-
reciprocal of Proposition 8.1.i).
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There is y ∈ Bk such that wP≥αy from Condition 8.1.iv. Hence, wP≥αBk

(Definition 8.2.a). Hence, w is assigned to Ck+1 (Definition 8.4).

Monotonicity
Dual procedure:
x is assigned to Ck ⇒ there is w in Bk−1 such that zP≥αw. Since yP≥αx, it follows
that yP≥αw (transitivity of P≥α). So, yP≥αBk (Definition 8.2.a). Then, y is assigned
to Ck′ with k′ ≥ k (Definition 8.4).

Stability
Dual procedure:

a. Merging operation between two adjacent classes.

i. Consider that action x was classified into class Ch, for all h > k+1 (i.e., h−
1 > k) before we proceed to a merging operation. Given the two propositions
not (xP≥αBh) and xP≥αBh−1 are verified, after removing set Bk , we obtain
exactly the same situation; x will be assigned to the same class as before once
B ′

h−1 = Bh and C′
h−1 = Ch for h > k.

ii. Consider that action x is classified into either Ck or Ck+1 before we proceed
to a merging operation. If before withdrawing Bk, x was assigned to Ck+1,
it naturally follows that xP≥αBk and not (xP≥αBh) for all h > k (from
Definition 8.4) and xP≥αBk−1 from Proposition 8.1.i. After we proceed to a
merging operation, x will be assigned to C′

k , which is the class that substitutes
the two classes Ck and Ck+1. If, before we proceed to a merging operation,
action x was classified into Ck , from Definition 8.4 we have both xP≥αBk−1
and not (xP≥αBh), for all h > k − 1. After a merging operation, none of the
previous conditions changes; from Definition 8.4, action x is assigned to C′

k ,
which is the class that substitutes both Ck and Ck+1.

iii. Consider that action x belongs to category Ch, for all h < k before we
proceed to a merging operation. It is clear that after withdrawing the set Bk ,
none of the previous conditions changes; according to Definition 8.4, the
action x is classified into the same class as previously.

b. Splitting a single category into two new consecutive ones.

i. Consider that action x was assigned to Ch, for all h > k(h ≥ k + 1) before
we proceed to a splitting operation. Then, from Definition 8.4, it naturally
follows both conditions, not (xP≥αB ′

h+1) and xP≥αB ′
h, where B ′

h = Bh−1
and B ′

h+1 = Bh. Hence, x will be assigned to C′
h+1 (the same class Ch).

ii. Consider that action x is classified into Ck before we proceed to a splitting
operation. From Definition 8.4, we obtain both conditions, not (xP≥αBk)

and xP≥αBk−1. After inserting the set B ′
k , according to the definition of

the splitting operation, we obtain both conditions, not (xP≥αB ′
k+1) and

xP≥αB ′
k−1. From Definition 8.4 and xP≥αB ′

k , it follows that x will be
assigned to C′

k+1. Otherwise, x would be assigned to C′
k . Hence, x will be

assigned to one of the classes in which the old class Ck was split.
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iii. Consider now that action x was classified into Ch, for all h < k before
we proceed to a splitting operation. According to Proposition 8.1.i, from
not (xP≥αBh), it follows that not (xP≥αB ′

k). After splitting, none of the
previous conditions changes, given that B ′

h = Bh, for all h < k. Hence,
after we proceed to a splitting operation, action x will be classified into C′

h

(which is the same Ch), for all h < k.

The proofs for the primal rule are omitted. They can be justified by the
equivalence through the transposition operation.

Remark 8.4 It should be underlined that the USort-nB method is not based on
any particular form of function U; the single requirement to this function is to be
compatible with Assumption 8.1.

8.4 USort-nC: An Ordinal Classification Method Based on
Representative Actions

8.4.1 Description of the Method

We present below the requirements to the representative actions of an ordinal
classification method based on Assumption 8.1, which satisfies the consistency
properties from [26], being also symmetric with respect to the transposition
operation.

Condition 8.2 (Requirements to the Set of Reference Actions) Set α > 0.5.
Consider a set of M ordered and predefined classes C = {C1, . . . , Ck, . . . , CM },
(M ≥ 2) (ordered in the sense of increasing preference). Let Rk = {rk,j , j =
1, . . . , card(Rk)} denote the subset of reference actions introduced to characterize
Ck , k = 1, . . . ,M . Let {r0, R1, . . . , RM, rM+1} be the set of all reference actions,
in which r0 and rM+1 are the anti-ideal and ideal actions, respectively. The elements
in Rk , k = 1, . . . ,M must satisfy the following conditions:

i. For each w ∈ Rk there is z ∈ Rk+1 such that zP≥αw.
ii. For each w ∈ Rk there is z ∈ Rk−1 such that wP≥αz.

iii. For each k, minRk+1{U(rk+1,j )} > maxRk {U(rk,j )}.
Definition 8.6 (P≥α Relation Between Actions and Representative Subsets)

(a) xP≥αRk ⇔ There is w ∈ Rk such that xP≥αw and U(x) > maxRk{U (rk,j )}.
(b) RkP≥αx ⇔ There is w ∈ Rk such that wP≥αx and minRk {U(rk,j )} > U (x).

Remark 8.5

(A) From Definition 8.6, it follows that the preference relation between actions and
representative subsets is asymmetric.
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(B) Combining Definition 8.6 and the transitivity property of the order relation on
interval numbers, it follows that yP≥αx and xP≥αRk ⇒ yP≥αRk .

Proposition 8.4 Under Condition 8.2, the following propositions are fulfilled:

(a) xP≥αRk ⇒ xP≥αRh for k > h.
(b) RhP≥αx ⇒ RkP≥αx for k > h.

The proofs follow from Definition 8.6, Conditions 8.2, and the transitivity
property of the order relation on interval numbers.

Definition 8.7 (Preference Non-closeness Measure) The non-closeness measure
between x and Rk is defined as:

nc(x, Rk) = minRk {U(rk,j )} − U(x) if minRk {U (rk,j )} > U (x)

nc(x, Rk) = U(x)−maxRk {U(rk,j )} if U (x) > maxRk {U(rk,j )}
nc(x, Rk) = 0 if minRk {U(rk,j )} ≤ U(x) ≤ maxRk {U(rk,j )}

Note that nc(x, Rk) strictly increases (respectively, decreases) with U (x) when
xP≥αRk (resp., RkP≥αx).

Under the previous definitions and requirements, the assignment rules are the
following:

Definition 8.8 (Primal Assignment Procedure) Set RM+1P≥αx.

(a) Compare x with Rk for k = 1, . . . ,M + 1, until the first value, k, such that
RkP≥αx.

(b) For k = 1, select C1 as a possible class to assign action x.
(c) For 1 < k < M + 1, if nc(x, Rk) < nc(x, Rk−1), then select Ck as a possible

class to assign x; otherwise, select Ck−1.
(d) For k = M + 1, select CM as possible class to assign x.

Definition 8.9 (Dual Assignment Procedure) Set xP≥αR0.

i. Compare x with Rk for k = M, . . . , 0, until the first value k such that xP≥αRk .
ii. For k = M , select CM as a possible class to assign action x.

iii. For 0 < k < M , if nc(x, Rk) ≤ nc(x, Rk+1), then select Ck as a possible
category to assign x; otherwise, select Ck+1.

iv. For k = 0, select C1 as a possible class to assign x.

As in ELECTRE TRI-nC and the method described in Sect. 8.3, the above
assignment rules correspond via the transposition operation, and should be used
conjointly. In the following, the conjoint method will be called USort-nC.

8.4.2 Consistency Properties of USort-nC

First of all, it is necessary to define the merging and splitting operation on the new
context.
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Definition 8.10 (Merging and Splitting Operations in the Context of USort-nC)

(a) Merging operation: Two adjacent classes, Ck and Ck+1, will be merged
to become a new one, C′

k , characterized by a new subset of refer-
ence actions, R′

k = Rk ∪ Rk+1. The new set of classes is C =
{C1, . . . , Ck−1, C

′
k, Ck+2, . . . , CM }, which (updating the subscripts) can be

denoted as {C′
1, . . . , C

′
k−1, C

′
k, C

′
k+1, . . . , C

′
M−1}. The new set of reference

actions is R = {R1, . . . , Rk−1, R
′
k, Rk+2, . . . , RM }, which can be denoted as

R′ = {R′
1, . . . , R

′
k−1, R

′
k, R

′
k+1, . . . , R

′
M−1}.

The fulfillment of Condition 8.2 of the new reference set R′ is a direct
consequence of the fulfillment of Condition 8.2 on the previous (before
merging) reference set R.

(b) Splitting operation: Ck is split into two new adjacent classes, C′
k and C′′

k , char-
acterized by two new distinct subsets of reference actions, R′

k and R′′
k respec-

tively. The new set of classes is C = {C1, . . . , Ck−1, C
′
k, C

′′
k, Ck+1, . . . , CM },

which, (updating the subscripts), will be denoted as {C′
1, . . . , C

′
k−1, C

′
k, C

′
k+1,

C′
k+2, . . . , C

′
M+1}. The new set of reference actions is R = {R1, . . . , Rk−1, R

′
k,

R′′
k, Rk+1, . . . , RM }, which will be denoted as R′ = {R′

1, . . . , R
′
k−1, R

′
k, R

′
k+1,

R′
k+2, . . . , R

′
M+1}. R′ should fulfill Condition 8.2, and additionally:

min
r∈R′

k

{U (r)} ≤ min
r∈Rk

{U(r)} ≤ min
r∈R′′

k

{U(r)}

max
r∈R′

k

{U(r)} ≤ max
r∈Rk

{U (r)} ≤ max
r∈R′′

k

{U(r)}.

Remark 8.6 Let Ck and Ck+1 be the classes that were merged into the new class
C′

k .

(A) From Condition 8.2 iii and Definition 8.10(a) we have:

• maxr∈R′
k
{U(r)} = maxr∈Rk+1{U(r)}

• minr∈R′
k
{U (r)} = minr∈Rk {U (r)}.

(B) It is easy to prove that:

• xP≥αRk and xP≥αRk+1 ⇒ xP≥αR′
k

• not (xP≥αRk) and not (xP≥αRk+1) ⇒ not (xP≥αR′
k).

Proposition 8.5 (Consistency Properties of USort-nC) Under Condition 8.2,
the primal and dual procedures of USort-nC fulfill the following consistency
properties:

i. Uniqueness: An action is classified only into a single class.
ii. Independence: When assigning an action to a certain class, the assignment

does not depend on the assignment of other actions.
iii. Conformity: A representative action w ∈ Rk is assigned to Ck .
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iv. Monotonicity: If x is assigned to Ck and yP≥αx, then y is classified into C′
k

with k′ ≥ k.
v. Homogeneity: If two actions fulfill the same preference relation of Definition 8.6

with respect to the subsets of representative actions, then they are assigned to
the same class.

vi. Stability with respect to merging operation: After performing a merging
operation, the actions belonging to a non-modified class previously to the
change will keep their assignments after such a modification; the actions
previously assigned to the merged categories are assigned to the new class.

vii. Stability with respect to splitting operation: After splitting a class into two new
classes, the actions previously assigned to the modified class are assigned to
one of the new classes; any action previously assigned to a non-adjacent class
to the modified one will remain in the same category; any action previously
assigned to an adjacent class to the modified one will either be assigned to the
same category or to a new category.

Proof The proofs of Uniqueness, Independence, and Homogeneity are trivial,
determined by the way the assignment rules were designed (see Definitions 8.8
and 8.9).

Conformity
Dual assignment rule:

If w ∈ R1 or w ∈ RM , the proof is trivial.
If 1 < k < M:

w ∈ Rk and Definition 8.6⇒ not (wP≥αRk) ⇒ not (wP≥αRh) for k < h (Counter-
reciprocal of Proposition 8.4.a).
w ∈ Rk ⇒ there is z ∈ Rk−1 such that wP≥αz (Condition 8.2.ii); wP≥αz and
Condition 8.2.iii ⇒ wP≥αRk−1.

nc(w,Rk−1) = U(w)− maxRk−1{U(rk−1,j )} > 0 from Condition 8.2.iii
nc(w,Rk) = 0 since w ∈ Rk;
nc(w,Rk) < nc(w,Rk−1); hence w is assigned to Ck according to Definition 8.9.

This completes the proof.

Monotonicity
Dual procedure:
Suppose that x is assigned to CM . From Definition 8.9, we have two possibilities:
xP≥αRM or (not (xP≥αRM), xP≥αRM−1, and nc(x, RM−1) > nc(x, RM));
xP≥αRM and yP≥αx ⇒ yP≥αRM from Remark 8.5.B ⇒ y is assigned to CM

(Definition 8.9).
Consider the case not (xP≥αRM), xP≥αRM−1, and nc(x, RM−1) > nc(x, RM);

since yP≥αx, we have yP≥αRM−1 (Remark 8.5.B) and perhaps also yP≥αRM ; if
yP≥αRM, y is assigned to CM (Definition 8.9).

Suppose now that not (yP≥αRM); since yP≥αx, we have nc(y, RM−1) >

nc(x, RM−1) and nc(x, RM) > nc(y, RM) (Definition 8.7); hence, nc(x, RM−1) >

nc(x, RM) ⇒ nc(y, RM−1) > nc(y, RM);
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not (yP≥αRM), yP≥αRM−1 and nc(y, RM−1) > nc(y, RM) ⇒ y is assigned to
CM (Definition 8.9).

Let us consider the case where x is assigned to Ck (k < M). k = 1 is trivial;
according to Definition 8.9, we have two possibilities:

xP≥αRk and nc(x, Rk) ≤ nc(x, Rk+1), or
xP≥αRk−1, not (xP≥αRk), and nc(x, Rk) < nc(x, Rk−1)

xP≥αRk and yP≥αx ⇒ yP≥αRk (Remark 8.5.B); y is assigned to C′
k (k′ ≥ k)

(Definition 8.9);
xP≥αRk−1 and yP≥αx ⇒ yP≥αRk−1 (Remark 8.5.B) ⇒ yP≥αRk or (yP≥αRk−1
and not (yP≥αRk));
If yP≥αRk then y is assigned to C′

k (k′ ≥ k) (Definition 8.9).
Suppose that yP≥αRk−1 and not (yP≥αRk);
Since yP≥αx, nc(x, Rk) > nc(y, Rk) and nc(x, Rk−1) < nc(y, Rk−1) (Defini-
tion 8.7). Hence, nc(x, Rk) < nc(x, Rk−1) ⇒ nc(y, Rk) < nc(y, Rk−1). From
Definition 8.9, it follows that y is assigned to Ck . This completes the proof.

Stability
Dual procedure:

a. Merging operation between two adjacent classes (Ck and Ck+1).

i. Let h > k + 1 be the first value of k such that xP≥αRh before a merging
operation. From Definition 8.9 it follows that the action x will be assigned to
the same class as previously.

ii. Let h = k + 1 be the first value of h such that xP≥αRh before a merging
operation. xP≥αRk+1 ⇒ nc(x, Rk+1) = U(x) − maxr∈Rk+1 U (r) (from
Definitions 8.6 and 8.7) and xP≥αRk (Proposition 8.4); using Remark 8.6
we have nc(x, Rk+1) = nc(x, R′

k) and xP≥αR′
k . If x was assigned to class

Ck+2 ⇒ nc(x, Rk+2) < nc(x, Rk+1) = nc(x, R′
k), then x is assigned to

Ck+2 (the same class). If x was assigned to class Ck+1 ⇒ nc(x, Rk+2) >

nc(x, Rk+1) = nc(x, R′
k), then x is assigned to C′

k (the new class).
iii. Let h = k be the first value of h such that xP≥αRh before a merging

operation. xP≥αRk ⇒ x is assigned to class Ck or Ck+1 ⇒ x is assigned to
class C′

k (the new class).
iv. Let h = k − 1 be the first value of h such that xP≥αRh before a

merging operation. We have not (xP≥αR′
k) (Remark 8.6) and xP≥αRk−1

(Proposition 8.4). If x is assigned to class Ck ⇒ nc(x, Rk) < nc(x, Rk−1),
we have three options: (1) U(x) > maxr∈R′

k
{U (r)}; by Remark 8.6 and

Condition 8.2 we can affirm that U(x) > maxr∈Rk {U(r)} ⇒ nc(x, Rk) =
U (x) − maxr∈Rk {U(r)} and nc(x, R′

k) = U (x) − maxr∈R′
k
{U(r)} ⇒

nc(x, R′
k) < nc(x, Rk) ⇒ nc(x, R′

k) < nc(x, Rk−1); (2) maxr∈R′
k
{U (r)} ≥

U (x) ≥ minr∈R′
k
{U(r)} ⇒ nc(x, R′

k) = 0 (Definition 8.7) ⇒ nc(x, R′
k) <

nc(x, Rk−1); (3) U(x) < minr∈R′
k
{U(r)} ⇒ U(x) < minr∈Rk {U(r)}

(Remark 8.6) ⇒ nc(x, R′
k) = nc(x, Rk) ⇒ nc(x, R′

k) < nc(x, Rk−1).
In all cases x is assigned to class C′

k (the new class). If x is assigned to
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class Ck−1 ⇒ nc(x, Rk−1) ≤ nc(x, Rk), we know that nc(x, Rk−1) =
U (x) − maxr∈Rk−1{U(r)} ⇒ nc(x, Rk) = minr∈Rk {U(r)} − U(x) ⇒
U (x) < minr∈Rk {U (r)} ⇒ U (x) < minr∈R′

k
{U(r)} (Remark 8.6) ⇒

nc(x, Rk) = nc(R′
k) ⇒ nc(x, Rk−1) ≤ nc(x, R′

k) ⇒ x is assigned to class
Ck−1 (the same class).

v. Let h < k − 2 be the first value of h such that xP≥αRh before a merging
operation. From Definition 8.9 and Remark 8.6 it follows that the action x

will be assigned to the same class as previously.

b. Splitting a single category into two new consecutive ones (Ck into C′
k and

C′′
k).

i. Consider that action x was assigned to Ck , before we proceed to a splitting
operation. There are two options: (1) Let h = k be the first value
such that xP≥αRh before a split operation; (2) Let h = k − 1 be the
first value such that xP≥αRh before a split operation. (1) We know that
nc(x, Rk) ≤ nc(x, Rk+1) also xP≥αRk−1 (Proposition 8.4). If xP≥αR′′

k ⇒
nc(x, R′′

k) = U(x) − maxr∈R′′
k
{U(r)} < U (x) − maxr∈Rk {U(r)} =

nc(x, Rk) (Definition 8.10 (b)) ⇒ nc(x, R′′
k) < nc(x, Rk+1). If xP≥αR′

k

by Definition 8.9 it follows that x is assigned to class C′
k or C′′

k . If
not (xP≥αR′

k), since xP≥αRk ⇒ U(x) > maxr∈Rk U(r) also we know that
maxr∈Rk U (r) ≥ maxr∈R′

k
{U(r)} > maxr∈Rk−1{U (r)} (Definition 8.10(b)

and Condition 8.2) ⇒ nc(x, R′
k) < nc(x, R′

k) ⇒ x is assigned to
class C′

k . (2) We know that nc(x, Rk) ≤ nc(x, Rk−1). If xP≥αRk−1 ⇒
nc(x, Rk−1) = U (x) − maxr∈Rk−1{U (r)}. U(x) has three options: U (x) >

maxr∈R′
k
{U (r)} ⇒ nc(x, R′

k) < nc(x, Rk−1) (Condition 8.2 and Defi-
nition 8.7); U (x) < minr∈R′

k
{U (r)} ⇒ U(x) < minr∈Rk {U(r)} (Def-

inition 8.10) ⇒ nc(x, R′
k) ≤ nc(x, Rk) ⇒ nc(x, R′

k) ≤ nc(x, Rk−1);
minr∈R′

k
{U(r)} ≤ U (x) ≤ maxr∈R′

k
{U(r)} ⇒ nc(x, R′

k) = 0 ≤
nc(x, Rk) ⇒ nc(x, R′

k) ≤ nc(x, Rk−1). In all of the cases, x is assigned
to class C′

k .
ii. Consider that action x was assigned to Ch, with h > k+1, before we proceed

to a splitting operation. We have xP≥αRm with m > k (Definition 8.9) ⇒ x

will be assigned into the same class as previously.
iii. Consider that action x was assigned to Ch, with h < k−1, before we proceed

to a splitting operation. We have xP≥αRm with m < k − 1 (Definition 8.9)
⇒ x will be assigned into the same class as previously.

iv. Consider that action x was assigned to Ck+1, before we proceed to a
splitting operation. There are two options: (1) Let h = k + 1 be the first
value h such that xP≥αRh before a splitting operation and nc(x, Rk+1) ≤
nc(x, Rk+2) ⇒ x will be assigned to the same class as previously (trivial);
(2) Let h = k be the first value h such that xP≥αRh before a splitting
operation and nc(x, Rk+1) < nc(x, Rk) ⇒ U(x) > maxr∈Rk{U (x)} ⇒
U (x) > maxr∈R′

k
U (x) (Definition 8.10(b)) ⇒ nc(x, R′

k) < nc(x, Rk−1),
we also know that xP≥αRk−1 (Proposition 8.4) then in the worst case where
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not (xP≥αR′
k) and not (xP≥αR′′

k), x will be assigned to the class C′
k . ⇒ x

will be assigned to the same class as previously or some of the new classes.
v. Consider that action x was assigned to Ck−1, before we proceed to a splitting

operation. There are two options: (1) Let h = k − 2 be the first value h such
that xP≥αRh before a splitting operation and nc(x, Rk−1) < nc(x, Rk−2) ⇒
x will be assigned to the same class as previously (trivial); (2) Let h = k− 1
be the first value of h such that xP≥αRh before a splitting operation and
nc(x, Rk−1) ≤ nc(x, Rk) ⇒ since maxr∈Rk {U(x)} > maxr∈Rk−1{U(x)} ⇒
U (x) < minr∈Rk {U(x)} ≤ minr∈R′′

k
{U(x)} (Definitions 8.7 and 8.10(b))

⇒ not (xP≥αR′′
k) ⇒ by Definition 8.9, it follows that x will be assigned to

the same class as previously or some one of the new classes.

The proofs for the primal rule are omitted. They can be justified by the
equivalence through the transposition operation.

8.4.3 An Illustrative Example

For a certain DM, the global impact of Research and Development projects is
determined by four criteria: economic impact, social impact, scientific impact, and
improvement of the research team competence. Each criterion is evaluated in a
quantitative scale ranging in [0, 5]; the classes are {Poor, Acceptable, Very Good}.
The DM will fund projects assigned to “Very Good,” and reject those classified
into “Poor.” Project assigned to the class Acceptable could be funded in the case
of sufficient resources. The DM agrees with an interval weighted-sum model.
(S)he assesses roughly a similar importance to all the criteria. But accepting some
imprecision, the DM sets wi = [0.2, 0.3], i = 1, . . . , 4.

Below table provides representative projects for each class. For simplicity, we
will use a single action per class and real number scores.

Economic Social Scientific Improvement
impact impact impact of research Overall

Project Id score score score competence score Impact

r3 4 4 4 5 Very good

r2 4 2 2 2 Acceptable

r1 1 1 1 3 Poor

Using the interval weighted-sum model and the basic operations on interval
numbers, we have:

U(r1) = [1.2, 1.8]
U(r2) = [2, 3]
U(r3) = [3.4, 5.1]
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The DM sets α = 0.9. It is easy to see that the reference set fulfills Condition 8.2.
Let us analyze the assignment of the project p1 with scores (3.5, 3.5, 3.5, 4.5). It

follows that U(p1) = [3, 4.5]. Using the possibility function of Eq. (8.1) we have:

P(U (p1) ≥ U(r1)) = P(U (p1) ≥ U (r2)) = 1; P(U (p1) ≥ U(r3)) ≈ 0.344;
P(U (r1) ≥ U(p1)) = P(U (r2) ≥ U (p1)) = 0; P(U (r3) ≥ U(p1)) ≈ 0.656.

According to the primal assignment rule of USort-nC (Definition 8.8),
not (R3P≥αp1) ⇒ p1 is assigned to the highest class (Very Good).

According to the dual assignment rule (Definition 8.9), descending from k = M ,
the first value of k for which xP≥αRk is k = 2; then, we should select the assignment
between C2 and C3 by using the non-closeness measure (Definition 8.7).

nc(p1, R2) = [3, 4.5] − [2, 3] = [0, 2.5];nc(p1, R3) = [3.5, 5.1] − [3, 4.5] =
[−1, 2.1].

Applying Eq. (8.1): P(nc(p1, R2) ≥ nc(p1, R3)) = 0.625.
Hence, nc(p1, R2) > nc(p1, R3), and p1 is assigned to C3 (Very Good) by the

dual procedure (Definition 8.8).
The primal and dual assignments are coincident.
Note that the assignments do not change in a wide range of α values.

8.5 Concluding Remarks

Interval value functions can be used to model compensatory and transitive pref-
erences from a decision maker who hesitates about the appropriate assessment
of criterion weights, and criterion scores. To the present authors’ knowledge, this
contribution is the first in addressing multi-criteria ordinal classification problems
through this kind of functions.

We have proposed here two novel methods. USort-nB is inspired by ELECTRE
TRI-nB, but modified to the functional paradigm and an interval framework. USort-
nC follows ELECTRE TRI-nC, but using interval numbers on the functional
paradigm.

USort-nC (respectively, USort-nB) uses characteristic (respectively, limiting)
actions to describe the (resp., boundaries between adjacent) classes. In both
methods, the criterion scores of reference actions may be interval numbers, what
brings more flexibility for the DM. Unlike ELECTRE TRI-nB, the USort-nB is
composed of two procedures, which are symmetric with respect to the transposition
operation, and should be used conjointly. The same happens with USort-nC (as in
ELECTRE TRI-nC).

Under certain requirements on the reference actions, both methods fulfill the set
of consistency properties proposed by Roy and Bouyssou [26] for ELECTRE TRI-
B and revisited by Almeida-Dias et al. [1, 2] for ELECTRE TRI-C and ELECTRE
TRI-nC: Unicity, Independence, Homogeneity, Monotonicity, Conformity, and
Stability. The requirements for USort-nB are, to a great extent, stronger than those
for USort-nC (compare Conditions 8.1 and 8.2). Additionally, setting characteristic



156 E. Fernández et al.

actions is easier than limiting actions. Hence, most DMs could feel USort-nC more
comfortable. More research is needed in order to characterize the effectiveness of
the methods, thus deriving conclusions about their appropriateness.
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16. Fortemps Ph, Greco S, Słowiński R (2008) Multicriteria decision support using rules that
represent rough-graded preference relations. Eur J Oper Res 188:206–223
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Chapter 9
Constructing an Outranking Relation
from Semantic Criteria and Ordinal
Criteria for the ELECTRE Method

Aida Valls and Antonio Moreno

Abstract This chapter reviews the work done at the ITAKA research group in the
last decade on extending the ELECTRE multiple criteria decision aiding method.
We present three different versions of the classic concordance and discordance
indices, which are in the core of the construction of outranking relations. The first
version is used when the elementary criteria have multi-valued linguistic scales,
consisting on a set of terms from a domain ontology. Semantics is then used to
interpret the linguistic words and the user preferences can be applied to calculate
concordance and discordance values (ELECTRE-SEM). The other two are needed
in order to use ELECTRE with a hierarchy of criteria for ranking (ELECTRE-
III-H) and for sorting (ELECTRE-TRI-H). In that way, problems with a large
set of elementary criteria can be represented with a tree structure distinguishing
different groups of criteria at different levels. ELECTRE is applied to each node and
the propagation of results is made using these new concordance and discordance
indices. The chapter illustrates the application of these methods in two fields:
environmental risk analysis and tourism recommendation systems. These works
were developed in collaboration with many partners from different institutions. We
want to highlight the ideas and support of Prof. Roman Slowinski and his research
group.

9.1 Introduction

The well-known ELECTRE family of multiple criteria decision aiding methods
(MCDA) was created by Prof. Bernard Roy [20]. This method originated a new
MCDA approach based on preference relations for solving a decision problem. In
particular, ELECTRE proposes the construction of a pairwise outranking relation as
the core component of the MCDA methodology, as will be shown in Sect. 9.2.
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By building and exploiting an outranking relation, the ELECTRE method is
able to establish different types of relations between the alternatives: indifference,
preference, and incomparability. From the different versions, let us highlight two of
them: ELECTRE-III generates a partial pre-order from an outranking matrix using
a procedure called Distillation to solve ranking problems [9], and ELECTRE-TRI
classifies a set of alternatives into a predefined set of categories using the outranking
relations between the alternatives and the limiting or central profile of each category
[23].

Outranking methods have been very successful because they are based on social
choice models that copy the human natural reasoning procedure. Many applications
can be found in diverse areas such as environmental analysis, project management,
logistics, or health care [12].

An interesting advantage of ELECTRE is the fact that the operations are
directly made on the original criteria scales, without requiring any normalization
of transformation into an arbitrary common range of values. However, ELECTRE
methods have been defined for numerical or ordinal data, but other kinds of values
are common nowadays, among them linguistic terms. The need to associate a set
of terms (i.e. tags) to the alternatives is present in many applications. These tags
are usually nouns or adjectives that describe the content of an alternative. The
decision maker may have different preferences (i.e. interests) on each term. The
semantics (i.e. meaning) of the tags is important in order to correctly manage them
in the decision process. In Sect. 9.3, we will explain how the preferences of the
decision maker are stored in an ontology-based user profile. Then, we will use
this information to adapt the ELECTRE procedure for constructing semantic-based
outranking relations between the alternatives.

In complex decision aiding problems, it is sometimes appropriate to define a
hierarchy of criteria. Some methods proposed this structure intrinsically in their
approach, such as the AHP (Analytic Hierarchy Process) [21] and LSP (Logic
Scoring of Preference) [7]. In other cases, a method initially working on a unique
flat set of criteria is extended to deal with a criteria structure in form of a tree, as in
Corrente [2]. In Del Vasto we also proposed a method to apply ELECTRE methods
in a hierarchy of criteria like the one presented in Fig. 9.1.

The nodes of the hierarchy contain three different types of criteria: (1) The
overall criterion in the root, representing the global goal of the decision problem
to be solved, (2) Intermediate criteria, representing the decomposition of the global
problem into partial sub-problems, and (3) Elementary criteria, representing the
most specific criteria where the decision maker directly evaluates the alternatives.
The number of levels is not limited and the length of the branches may be different.
In Fig. 9.1, we can see 4 criteria in blue, that correspond to the root and intermediate
criteria, and 7 elementary criteria in gray.

The main idea in our approach is to use the standard two-stage procedure of
ELECTRE in each of the non-elementary nodes. When the descendants of a node are
all elementary criteria, the classic definition of concordance and discordance indices
may be used to build an outranking relation, as they are defined for numerical scales.
However, if one of these nodes has a descendant that is a non-elementary node, it
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Fig. 9.1 A hierarchical organization of criteria

will not have a numerical value for each alternative, but the output of the ELECTRE
exploitation stage. Consequently, it is necessary to define new ways of building
an outranking relation from the different outputs obtained in the exploitation stage
of ELECTRE. In Sect. 9.4, we will explain how to calculate the concordance and
discordance indices from a partial pre-order (obtained after a distillation procedure
in the ELECTRE-III ranking method), and in Sect. 9.5, how to build those indices
using the assignments made by the sorting procedure in ELECTRE-TRI.

The methods explained in this chapter have been implemented in a program
called ELECTRE-H Software Package, with license at Universitat Rovira i Virgili,
which will be presented in Sect. 9.6. The software includes also additional tools to
visualize and store the results, to compare results with specific measures, and to help
the decision maker in the definition of the thresholds in hierarchical criteria.

The chapter will finish with some examples of applications of these methods
in the field of analysis of environmental risk, as well as in the personalized
recommendation of touristic activities.

Several researchers and doctoral students participated in the definition of the
methods that are explained in this chapter, in their implementation, and in the
experimentation with different case studies. It is worth to highlight the joint work
done with the Institute of Intelligent Decision Support Systems of Poznań University
of Technology and, in particular, with Professor Roman Slowinski, who participated
in several of the contributions presented in this chapter. The collaboration between
our groups started in 2009 and still continues in the frame of different projects
related to decision support.
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9.2 An Introduction to the Classic Methodology for
Constructing an Outranking Relation in ELECTRE

The aim of the outranking method is to build a binary outranking relation for any
pair of alternatives in the set A. A credibility value on the outranking relation
between a, b ∈ A measures the strength of the statement “a is at least as good
as b” (denoted aSb). It is obtained by a pairwise comparison of the alternatives for
each criterion in a set of criteria G. The value of this outranking relation for all
possible pairs of options (i.e. alternatives) is calculated on the basis of two socially
inspired rules: the majority opinion and the right of veto. The aim is to use this
outranking relation to establish a realistic representation of four basic situations of
preference: indifference, weak preference, strict preference, and incomparability.
From these relations, we can select, rank, or classify the set of alternatives. In fact,
there exist different versions of ELECTRE to solve different decision problems
[8]: ELECTRE-I is for the selection of the best alternatives (choice), ELECTRE-
II and ELECTRE-III for constructing a ranking, and ELECTRE-TRI for classifying
alternatives into predefined categories.

In outranking methods, the values of an alternative a for each criterion gj (a)

are not useful by themselves, as they are always compared to the values of other
alternatives. In this comparison procedure, three parameters are used. The two first
ones are related to the discrimination power of a criterion and are used to model the
uncertainty or flexibility in comparing two values. The third one is used to avoid
compensations with other criteria. The three thresholds are:

• qj : Indifference threshold for criterion gj : This value marks the point where an
alternative is strictly preferred to another.

• pj : Preference threshold for criterion gj : This value defines an interval to decide
if the preference between two values is significant or not.

• vj : Veto threshold for criterion gj : This value sets the maximum negative
difference we can allow before vetoing.

The following relation must always be fulfilled: 0 ≤ qj ≤ pj ≤ vj .
Depending on the values of the two first thresholds, we can distinguish two types

of criteria: True-criterion when p = q = 0 and Pseudo-criterion when p ≥ q ≥ 0.
Another important parameter in ELECTRE is the set of weights W , such that

∑
wi = 1. In ELECTRE, weights represent the voting power of each criterion when

evaluating the outranking statement aSb. Thus, they indicate the relative voting
importance with respect to other criteria.

With this information, ELECTRE constructs the pairwise outranking matrix by
merging two indices obtained from the set of criteria. The most general formulation
of those indices is the following:
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• Concordance index: It measures if most criteria are in favor of the assertion aSb,
taking into account their weights.

c(a, b) =
n∑

j=1

wjcj (a, b) (9.1)

cj (a, b) =

⎧
⎪⎨

⎪⎩

1 if gj (a)+ qj ≥ gj (b)

0 if gj (a)+ pj ≤ gj (b)
pj−(gj (a)−gj(b))

pj−qj
otherwise

(9.2)

• Discordance index: It checks if any criterion can deny the assertion aSb. It is
used to introduce the veto right for minorities.

dj (a, b) =

⎧
⎪⎨

⎪⎩

1 if gj (b) > gj (a)+ vj

0 if gj (b) ≤ gj (a)+ pj
gj (b)−gj (a)−pj

vj−pj
otherwise

(9.3)

From them, the credibility of the outranking relation is calculated as follows:

ρ(aSb) =
{

c(a, b) if dj (a, b) ≤ c(a, b),∀j
c(a, b)

∏
j∈J (a,b)

1−dj (a,b)

1−c(a,b)
otherwise

(9.4)

being J (a, b) the set of criteria with a partial discordance value higher than the
overall concordance.

In this formulation, the criteria are assumed to be numerical and its performance
must be maximized (i.e. they are considered gain criteria).

9.3 Constructing an Outranking Relation from Semantic
Criteria

In this section, we deal with a new type of criterion that does not use a numerical
scale: the semantic criterion. This kind of criterion associates a list of words (i.e.
tags) with each alternative. Thus, these attributes are multi-valued. In order to apply
ELECTRE, first of all, a proper way of representing (i.e. storing) the decision maker
preferences on the tags is needed. A method based on ontologies will be explained.
After that, the information of the ontology will be used in the concordance and
discordance measures when comparing two lists of tags corresponding to two
different alternatives.

The tags are words (usually nouns or adjectives) with a concrete meaning.
Knowing the semantics of the tags is important when comparing them, as two
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Fig. 9.2 Preferences in an ontology for aquatic sports

different words can refer to similar concepts. In order to know the semantic relations
between tags, many intelligent systems rely on a data structure called ontology [11].
An ontology is basically formed by a set of concepts (mapped into words), which
are linked through taxonomic (i.e. is-a) and non-taxonomic relationships. It can
also store properties of the concepts and specific instances of them. In a decision
problem, if each attribute is referring to a different property, a different domain
ontology should be associated with each semantic criterion.

An example of a portion of an ontology of aquatic sports is given in Fig. 9.2.
We assume that the set of tags that will appear in the values of a semantic criterion
will belong to the most specific terms of the ontology (i.e. the ones that do not have
descendants).

We define a function that associates a preference score with a tag t , denoted as
Tag Interest Score, T IS(t). The tag interest score is a numerical score between 0 and
1, also shown in Fig. 9.2, that indicates the satisfaction degree of the user with the
corresponding tag t according to the decision maker’s goals. We assume that T IS(t)

has to be maximized. This score can be directly given by the user. However, due to
the large number of terms in real-world ontologies, a procedure to infer unknown
preference scores can be used [17].

ELECTRE-SEM is a version of ELECTRE able to construct the outranking
relation when semantic criteria are considered. In order to manage a different
type of criteria, ELECTRE-SEM changes the first step of the ELECTRE method,
because the exploitation procedure only takes into account the credibility values. In
particular, appropriate ways of calculating the partial concordance index and partial
discordance index in the case of a semantic criterion have to be defined [15].

A semantic criterion can be defined as a pseudo-criterion, with two discrimi-
nant thresholds (preference and indifference) as well as the veto threshold. This
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procedure follows the same principles than the classic ELECTRE method, but
concordance and discordance indices are fuzzy functions defined in terms of the
pairwise comparison of the Tag Interest Scores. First, we define how to measure the
strength of the assertion aSb in terms of one semantic criterion, called SemanticWin
Rate, SWRj (a, b).

The Semantic Win Rate is a numerical value in [0..1] that indicates the degree
of performance of the alternative a with respect to the alternative b on the semantic
criterion gj . It is based on the two sets of tags gj (a) = {t1,a, t2,a, t3,a, . . . , t|gj(a)|,a }
and gj (b) = {t1,b, t2,b, t3,b, . . . , t|gj(b)|,b} (the values taken by the alternatives in the
criterion), and it is calculated as follows:

SWRj (a, b) =
∑

ti,a

∑
tk,b

f (ti,a, tk,b)

|gj (a)| · |gj (b)| (9.5)

where

f (x, y) =
{

1 if T IS(x) ≥ T IS(y)− qj

0 if T IS(x) < T IS(y)− qj
(9.6)

Thus, SWRj (a, b) is the percentage of pairwise comparisons between the tags
of a and b for the semantic criterion gj for which the user has a higher (or equal)
preference for a than for b.

We introduce here the possibility of using an indifference threshold qj similar to
the one in standard ELECTRE, in order to define an interval of indistinguishability
regarding the TIS range of values. In that way, if two scores are similar enough, they
can be considered equally preferred by the decision maker.

Example Let us consider two lists of tags describing a touristic activity, with their
associated TIS value:

• a: (boating 0.8, canoeing 0.5)
• b: (fishing 0.6, scuba-diving 0.9, windsurfing 0.3)

In the first look, we take qj = 0 and then SWRj (a, b) = 3/6 = 0.5 and
SWRj (b, a) = 3/6 = 0.5, so both options have a similar preference level for
the decision maker, because in option b, although the user is not interested in
windsurfing, the other two sports compensate that.

Let us now introduce some indifference on similar scores with qj = 0.1. Now,
SWRj (a, b) = 5/6 = 0.83 and SWRj (b, a) = 3/6 = 0.5. This means that
scores 0.8 and 0.9 are considered to be in the same level of preference (for boating
and scuba-diving). The same situation arises in the comparison of 0.5 and 0.6 (for
canoeing and fishing). Thus, the semantic win rate (SWR) changes, being a the best
option as the score of windsurfing is penalizing option b, while the rest of sports
have the same level of interest for the user.

Using the Semantic Win Rate value, the partial concordance and discordance
indices are defined as follows:
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cj (a, b) =

⎧
⎪⎨

⎪⎩

1 if SWRj (a, b) ≥ μj

0 if SWRj (a, b) ≤ pj
SWRj (a,b)−pj

μj−pj
otherwise

(9.7)

dj (a, b) =

⎧
⎪⎨

⎪⎩

1 if SWRj (a, b) ≤ vj

0 if SWRj (a, b) ≥ pj
pj−SWRj (a,b)

pj−vj
otherwise

(9.8)

As SWRj (a, b) is a percentage that represents the comparison of the perfor-
mance of a over b, the usual thresholds used in concordance and discordance must
be revised and now they have the following meaning:

• μj is a strong threshold of the strength of SWRj (a, b) to consider maximum
concordance with aSb.

• pj is a weak threshold of the strength of SWRj (a, b) where the user may still
have some preference of a with regard to b, thus still supporting the relation aSb

to a certain degree.
• vj is the veto threshold, which is a value threshold below which SWRj (a, b) is

low enough to imply the full discordance with the outranking relation.

In this case, the role of the thresholds is analogous to the one of the numerical
case: pj being the threshold that indicates if the value of the SWRj (a, b) is in
favor of or against aSb, whereas μj and vj are used to determine the value of the
concordance or discordance vote for a certain criterion. Notice that the following
condition must hold: 0 ≤ vj ≤ pj ≤ μj .

Example Following the same example in which SWRj (a, b) = 0.83 and
SWRj (b, a) = 0.5, let us consider two scenarios:

• First case: μ(j) = 0.8, pj = 0.6, and vj = 0.4.
In this situation, aSb holds because the SWRj (a, b) exceeds 0.8. So, cj (a, b) =
1. On the contrary, when evaluating bSa, we have cj (b, a) = 0 because
SWRj (b, a) < 0.6. Moreover, regarding the discordance index, we have
dj (b, a) = (0.6 − 0.5)/(0.6 − 0.4) = 0.5, which indicates a medium level of
discordance with b outranking a.

• Second case: μ(j) = 0.7, pj = 0.4, and vj = 0.3.
In this scenario, cj (a, b) continues to be 1 because of the large value of
SWRj (a, b) = 0.83 > 0.7. But now, we also have some level of concordance
in cj (b, a) = 0.33, as the threshold of preference is set at 0.4 and the semantic
win rate is SWRj (b, a) = 0.5, which is larger than 0.4. Obviously, the two
discordance indices are now 0.

With this example, we can see that these thresholds permit to model the
discrimination power between alternatives in a similar way to the ones used for
numerical data. It is worth noting that the ELECTRE-SEM thresholds must be
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defined in terms of the SWR measure, which is a value of the relative preference
of one alternative with respect to another (unlike the classical ELECTRE methods,
where the thresholds are set in terms of differences between values in a numerical
scale).

9.4 Constructing an Outranking Relation from a Partial
Pre-order on a Set of Alternatives

After presenting the management of semantic criteria, we now move to the case of
having a hierarchy of criteria. Each of the intermediate nodes of the tree indicates
a decision point where information from the direct sub-criteria must be taken into
account. In this section, we focus on the problem of ranking a set of alternatives
using the ELECTRE-III distillation procedure. The output of this ranking method is
a partial pre-order, such as the one shown in Fig. 9.3.

ELECTRE-III-H is a method proposed in [4] that applies, at different levels
of a hierarchy of criteria, the ELECTRE-III process with pseudo-criteria and
ranking by distillation. ELECTRE-III-H generates a partial pre-order at each of the
intermediate nodes, as well as in the root node (overall criterion).

The procedure follows a bottom-up approach. For instance, in Fig. 9.1, we would
start calculating a partial pre-order O1 using criteria number 5 and 6, and another
partial pre-order O3 with criteria 8 and 9. Next, criterion 7, criterion 10, and O3 (the
output of ELECTRE in criterion 3) must be used to calculate the partial pre-order
O2 using ELECTRE-III in criterion 2. Finally, the partial pre-orders O1 and O2,
and the elementary criterion 4 are used for calculating the overall result. To achieve
this, in intermediate levels, ELECTRE-III-H must use the information of the partial
pre-orders from lower levels, instead of the usual numerical scales. Therefore, in
order to propagate the information of the pre-orders to an upper level, a proper way
of calculating the partial concordance and discordance indexes was defined.

Fig. 9.3 A partial pre-order
Oexample
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Table 9.1 Table of relations
and rank order value for
Oexample

a b c d e f Γ

a I P− I P− P− R 3

b P I P P− R R 1

c I P− I P− P− R 3

d P P P I P P 0

e P R P P− I P 1

f R R R P− P− I 2

To calculate the concordance and discordance indices from a partial pre-order
Oj , two main concepts are proposed in [4]: first, a numerical indicator related
with the order expressed in Oj , and second, the relation existing in Oj between
any pair of compared alternatives. An example of a partial pre-order among 6
alternatives is given in Fig. 9.3. Table 9.1 illustrates these two pieces of information
for this example. The four types of relations in the partial pre-order are denoted as
preference (P ), inverse preference (P−), indifference (I ), and incomparability (R).

The Rank Order Value Γj (a), for an alternative a in the Oj partial pre-order,
is defined as the number of alternatives that are preferred to alternative a in this
partial pre-order. This value must be minimized, as the lower the rank order value,
the better. It is shown in the last column of Table 9.1.

Depending on the relation type between a pair of alternatives (a, b), the
calculation of the partial concordance and the partial discordance is different. Three
situations are distinguished:

• Preference (P ) and Indifference (I ): We establish cj (aPb) = 1 and cj (aIb) =
1, whereas dj (aPb) = 0 and dj (aIb) = 0, because in both cases the relation is
indicating support to the statement “a is equal or better than b” (aSb).

• Inverse preference (P−): In this relation, aSb is not supported, but some
tolerance is allowed depending on the discrimination thresholds:

cj (aP−b) =

⎧
⎪⎨

⎪⎩

1 if Γj (a)− Γj (b) ≤ qj

0 if Γj(a)− Γj (b) > pj
pj−(Γj (a)−Γj (b))

pj−qj
otherwise

(9.9)

dj (aP−b) =

⎧
⎪⎨

⎪⎩

1 if Γj (a)− Γj (b) > vj

0 if Γj (a)− Γj (b) ≤ pj
Γj (a)−Γj (b)−pj

vj−pj
otherwise

(9.10)

• Incomparability (R): This relation type means there is not a direct relation
between alternatives a and b. Thus, it is equally probable that it turns into aPb,
aP−b, or aIb. In 2/3 of these cases aSb is supported, so we can assume this
value for the partial concordance. Hence, the remaining 1/3 is assumed for the
partial discordance. Moreover, an α factor is introduced to increase or decrease
the partial concordance or discordance based on the magnitude of the difference
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between the alternatives (n is the number of alternatives).

ifΓ (a)− Γ (b) ≤ pj then

{
cj (aRb) = 2/3 + α(Γj (b)−Γj (a)−qj )

(pj−qj )+(n−2)

dj (aRb) = 0
(9.11)

ifΓ (a)− Γ (b) > pj then

{
cj (aRb) = 0

dj (aRb) = 1/3+ α(Γj (a)−Γj (b)−vj )

(vj−pj )+(n−2)

(9.12)

The thresholds used in these equations of ELECTRE-TRI-H must be defined in
terms of the new Rank Order Value indicator, so they are based on the positions of
the alternatives in the partial pre-orders.

In the example of Table 9.1, the partial concordance and discordance values of
the first alternative a with respect to the others are given in Table 9.2. The example
considers qj = 0, pj = 2, vj = 3, and α = 0.3. Notice that for the relation aSd

we obtain a discordance of 1, while the discordance is zero for aSe. This is due to
the veto threshold that establishes that a difference of 3 units in the rank order value
will activate the veto, whereas a difference of just 2 units corresponds to the point
of non-concordance and non-discordance, fixed by the preference threshold.

Therefore, having these equations to calculate a partial discordance index and a
partial concordance index, we can later make the rest of the ELECTRE credibility
calculations in the usual way (with Eqs. 9.1 and 9.4). It is then straightforward to
apply any of the standard exploitation stages for choice or ranking. In Sect. 9.7,
some applications of this method are presented.

9.5 Constructing an Outranking Relation from
an Assignment of Alternatives to Categories

In this section, we focus on sorting problems, where a set of alternatives must be
assigned to some predefined categories or labels. The categories have an order
from the worst to the best, indicating several degrees of interest or suitability of
the alternatives for a certain user. ELECTRE-TRI is a sorting method based on the
notion of outranking. From its several versions, we will focus on ELECTRE-TRI-
B-H, which is a sorting method that works with a hierarchy of criteria, such as the
one seen in the previous section.

In [5], we propose extending ELECTRE-TRI-B to handle assignments of alterna-
tives to several levels of the hierarchy. This method is able to manage different sets

Table 9.2 Partial
concordance and discordance
of a with respect to the rest of
alternatives in Oexample

a b c d e f

Conc 1 0 1 0 0 0.62

Disc 0 0 0 1 0 0
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Fig. 9.4 Graphical representation of profile limits in ELECTRE-TRI-B

of categories at each intermediate criteria and at the root criterion, giving to the user
the possibility of using the most appropriate labels at each node. ELECTRE-TRI-B
considers a set of fictitious profiles B = {B1, ..Bk} that determine the boundaries
between the k + 1 categories (see Fig. 9.4).

The aim of ELECTRE-TRI-B is to compare alternatives to profile limits to build
a valued outranking relation S, where aSbh means “a is at least as good as the profile
bh.” This outranking relation is calculated as explained in the previous sections
from elementary criteria (numerical or semantic). From this outranking relation,
ELECTRE-TRI-B assigns the alternatives in A to the predefined categories C.

The first step in the sorting stage consists in transforming the valued credibility
values into a crisp outranking relation by applying a cutting level λ-cut, which
is considered as the smallest value of the credibility index ρ to consider that
the outranking relation holds [19]. Next, each alternative (independently from the
others) is assigned using two logic operations:

• The conjunctive rule (pessimistic), in which an alternative can be assigned to
a category when its evaluation is at least as good as the lower limit of this
category. The alternative is then assigned to the highest category Ch that fulfills
this condition.

• The disjunctive rule (optimistic), in which an alternative can be assigned to a
category if it has, on at least one criterion, an evaluation at least as good as the
lower limit of this category. The alternative is then assigned to the lowest category
Ch that fulfills this condition.

Classical ELECTRE-TRI-B only considers a set of elementary criteria and makes
a unique assignment of the alternatives to the categories of an overall criterion. In
the hierarchical version ELECTRE-TRI-B-H [5], the method makes an assignment
of the alternatives to a category at each of the non-elementary criteria. That is,
the assignment procedure is not only computed at the root, but also at each of
the intermediate sub-criteria. Consequently, when going upwards in the hierarchy,
the information to be considered in an upper level may come from a previous
assignment into categories and not from a numerical or semantic criterion. In this
regard, ELECTRE-TRI-B-H introduces a new procedure to define profile limits in
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Fig. 9.5 Graphical representation of profiles in categories in several criteria

terms of different sets of categories from criteria at lower levels in the hierarchy.
Moreover, it also redefines the classical outranking construction step in terms of
assignment of alternatives to categories, instead of numerical ratings.

Let us introduce some notation of ELECTRE-TRI-B-H:

• For each non-elementary criterion gj , Bj = { b
j

1, b
j

2 ,.., b
j

kj
} is the finite set of

indices of the profiles defining kj + 1 categories on this criterion.

• For each non-elementary criterion gj , Cj = { C
j
1 , C

j
2 ,.., C

j
kj+1} is the finite set of

ascending predefined categories on criterion gj , being b
j

h the upper limit of the

category C
j
h and the lower limit of C

j

h+1, h = 1, 2, . . . , kj .

The user gives rules to define the boundary profiles separating the categories of
the node gj with respect to the categories of its direct descendants gj.d . These rules
establish a mapping between the assignments established at the lowest level (to gj.d )
and the assignments that must be established at the current node gj . Then, the vector
profiles can be automatically obtained from these rules, which have the following
format:

if Ψj.1 and Ψj.2 . . . and Ψj.|Dj | then (gj = C
j
h+1),

where Ψj.d is a disjunctive condition such as (Cj.d

h′ or C
j.d

h′′ or . . . ), in which the
subset of categories is ascending and the categories are consecutive.

The user must give an assignment mapping rule for each category in Cj . All
rules must fulfill two conditions: (1) the maximum value max(Ψj.d ) in rule i must
be smaller or equal than the minimum value min(Ψj.d ) in rule i + 1; and (2) all the
categories Cj.d of the descendent criterion must appear in at least one rule condition
Ψj.d .

For example, consider the following graphical representation of boundary pro-
files on a parent criterion with 3 sub-criteria (Fig. 9.5).
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In this example we would have the following set of mapping rules:

Rule 1: if gj.1 = (Very Poor or Poor or Medium Poor) and gj.2 = (Very Bad or
Bad) and gj.3 = Unreliable then gj = Bad

Rule 2: if gj.1 = (Fair or Medium Good) and gj.2 = Regular and gj.3 = Reliable
then gj = Acceptable

Rule 3: if gj.1 = (Good or Very Good) and gj.2 = Excellent and gj.3 = Reliable
then gj = Good

From the mapping assignment rule for a category C
j

h+1, which is of the form

if Ψj.1 and Ψj.2 . . . and Ψj.|Dj | then (gj = C
j
h+1), the profile limit b

j
h can be

represented as a vector with the lowest category for each condition min(Ψj.d ). In
that way, the profile establishes the lowest value of a criterion gj.d that should be

assigned to C
j

h+1.

b
j
h = 〈min(Ψj.1), min(Ψj.2), . . . min(Ψj.|Dj |)〉

For the previous example in Fig. 9.5, the profile limits are

b
j

1 = 〈Cj.1
4 , C

j.2
3 , C

j.3
2 〉 = 〈 Fair, Regular, Reliable〉

b
j

2 = 〈Cj.1
6 , C

j.2
4 , C

j.3
2 〉 = 〈 Good,Excellent, Reliable〉

Once the boundary profiles are known, we need a numerical value that can be
used to compare alternatives and profiles. We proposed in [5] the definition of the
Category Improvement Value as a function of the form Φj : A ∪ Bj −→ N that
determines how many categories an alternative (or profile) may improve to get the
best performance value for criterion gj (Eq. 9.13). Then, the indifference qj (b

j
h),

preference pj (b
j
h), and veto vj (b

j
h) thresholds referring to criteria are defined in

terms of the difference between the category improvement values of the alternatives
assignment to Cj.d .

Φj (x) =
{

kj.d + 1 − i if x ∈ A and x ∈ C
j.d
i

kj.d + 1 − h′ + 1 if x = b
j

h ∈ Bj and b
j

h = 〈. . . , Cj.d

h′ , . . .〉 (9.13)

The category improvement value permits to calculate the partial concordance
indices cj in the different nodes of the hierarchy. Having their corresponding relative
weights wj , the overall concordance can be calculated with the classical equations
of ELECTRE. Similarly, the partial concordance indices obtained for each different
type of criterion are merged when the credibility matrix is calculated. Finally,
the credibility matrix is exploited with either the pessimistic or optimistic rules
mentioned before.
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9.6 The ELECTRE-H Software Package: Tools for Assisting
the Decision Maker in the Determination of Thresholds

Researchers of the ITAKA research group have built a software tool that supports
the methods explained in this chapter. It is called ELECTRE-H Software Package
and has the intellectual protection and license for Universitat Rovira i Virgili. It is
commercialized by URV through the InnoGet platform.1 Figure 9.6 shows the main
window of ELECTRE-H, with data of a typical example of selecting a car using
inside and outside criteria. The hierarchy of criteria is displayed in the left panel,
while the right part has all the tools for the configuration of the parameters and the
selection of the exploitation procedure.

The ELECTRE-H Software Package provides some tools to help the user to find
the most suitable values for the thresholds at intermediate levels of the hierarchy
of criteria. As the first assistance, the interface provides a list of possible policies
for the discrimination and veto thresholds, which are related to the attitude of the
decision maker toward uncertainty and risk. Each policy has some values for the
thresholds in terms of percentages (see Table 9.3). These percentages are applied
to the original scales of elementary criteria to find the values for each threshold.
Moreover, they can also be applied at intermediate nodes, depending on the nature
of the method. For ranking using ELECTRE-III-H, the Rank Order Values are
used, while for sorting with ELECTRE-TRI-H, the percentages are applied to
the Category Improvement Values. These percentages have been established on
the basis of previous works [10]. In practical applications, we could observe the
difficulty for the decision makers to define thresholds on the Rank Order or Category
Improvement values; for this reason, these predefined options may be very useful to
the users [22].

The results are displayed in different windows, both as a list or using graphical
tools (Fig. 9.7). These results can be exported to Excel and JPG files. To analyze the
results, the system includes a second block of functionalities that permits to explore
the space of possible values starting from a given configuration. Some graphics
display the results obtained using different parameters, in order to facilitate the
study of different cases. A comparative analysis of a pair of rankings may also
be performed to identify easily the changes produced by different values on the
thresholds, so that the user can discover which ones represent his/her preferences.

To assist the user, the software provides two indices: (1) the rank acceptability
index Aj(a) that measures the frequency with which an alternative a is placed at
the k-th quartile in the ranking computed for criterion gj ; and (2) the relation index
Rr

j (a, b) that calculates the frequency of the binary relations r = {P, I,R, P−}
for a pair of alternatives (a, b). In both cases, the system constructs a stacked bar
chart. The number of bars can be given by the user, as well as the order of the bars
(see Figs. 9.8 and 9.9). The bottom panel of the window displays some data in text

1 INNOGET platform: https://www.innoget.com/technology-offers.

https://www.innoget.com/technology-offers
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Fig. 9.6 Main window of ELECTRE-III-H software package

Table 9.3 Percentages for
calculating the thresholds on
5 basic policies

Policy Indifference (%) Preference (%) Veto (%)

Very strict 0 0 10

Strict 0 5 20

Neutral 5 10 30

Tolerant 10 20 40

Very tolerant 15 25 50
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Fig. 9.7 Results displayed by ELECTRE-H software package for ranking with distillation

Fig. 9.8 Configuration and display of the acceptability index

mode. The decision maker selects the alternative to display and detailed information
regarding this alternative is printed. The chart can be saved as an image file and
exported to csv format.

The ELECTRE-H Software Package also includes some other analysis tools like
the calculation of correlations between rankings, distances between partial pre-
orders, and distances between classification assignments. For semantic criteria,
special management and visualization of the terms and ontologies are provided as
well.
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Fig. 9.9 Configuration and display of the relation index

9.7 Examples of Applications

The semantic and hierarchical versions of ELECTRE explained in this chapter have
been used in several applications by the authors, in collaboration with other entities.
This section will briefly present applications in two different fields: environmental
risk analysis and tourism. For the first, four case studies are briefly summarized to
illustrate how the methods presented can be used. Regarding tourism case studies,
we first present an application for touristic destination managers and secondly, the
use of ELECTRE methods in a personalized recommender system is outlined.

9.7.1 Environmental Analysis

Environmental analysis is a discipline that has been using MCDA methods for a
long time. The complexity and number of the indicators makes it suitable for a
hierarchical approach. In 2015–16, under a large research project, ELECTRE-III-H
was used to analyze and compare several future scenarios of Mediterranean small
rivers due to the climate change. Global warm is expected to produce a drought
in small rivers whose yield is very dependent on the seasonal yearly rains. The
case of 3 rivers in Tarragona (Catalonia, Spain) was used as case study, named
Francolí, Gaià, and Ebre. Environmental experts defined a hierarchy of criteria
with three main groups: economic criteria, ecological impact, and water supply
criteria. The complete hierarchy can be seen in Fig. 9.10. The values of elementary
indicators were obtained from simulation studies, and three different analyses were
done for different time spans (2040, 2070, 2100). For each period, three scenarios
were considered regarding the strength of the effects of global warm on the rivers.
The alternatives were a set of possible actions of water supply management, which
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Fig. 9.10 Hierarchy of criteria for evaluating water supply actions

Fig. 9.11 Example of ranking of water supply actions

ranged from using only the water from nature (“A”), to a high use of alternative
resources (“D”), such as desalination plants or reclaimed water.

As illustration of the results obtained, Fig. 9.11 shows the partial pre-orders
obtained at the root node for a balanced configuration (equal weights in sub-criteria)
and an optimistic scenario with low reduction of water yield in the rivers. Options
with “C” make a moderate use alternative resources, being C11 and C10 the best
ones for the different time spans. B11 uses less alternative resources, which seems
good at a further future but not for until 2040. The options that rely only on water
from the nature (A11 and A12) appear always between the 5th and 8th position in
these rankings, from a total of 48 possible actions. More details can be found in
[6, 14].
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A similar approach based on comparison of multiple scenarios was used in [10].
In this case, different irrigation scheduling actions were compared. The adoption of
well-scheduled irrigation models is required in countries with poor water resources
in order to prevent water loss while keeping high productivities in agricultural crops.
The hierarchy defined has three levels with three main areas: crop productivity
indicators, production of different kinds of water resources, and economical criteria.
The case study with ELECTRE-III-H was made in Tunisia, in the Mornag Area.

Another field of application that is common nowadays is the study of natu-
ral energy production, to progressively substitute fossil fuels. In [16], semantic
variables were included in a study to evaluate several energy production plants.
It included 5 renewable technologies (solar, wind, hydro-power, geothermal, and
biopower) and 4 non-renewable (natural gas, coal gasification, nuclear, and pul-
verized coal). In this case, there was no hierarchy, a unique set with 3 numerical
and 2 semantic criteria were used. The semantic criteria were: Waste by-products,
which indicates the different contaminating substances produced by a certain energy
generation type, and Pollution Damage, which indicates the different kind of
pollution effects produced. Each type of plant was tagged with an average of 4
waste by-products and 3 pollution damages. Figure 9.12 shows the rank positions
of the 9 different types of plants obtained with ELECTRE-SEM. Position 1 is for
geothermal plants or for biopower and wind (which are in a tie for all cases). These
two first positions change depending on the values of the preference threshold p

and the activation or not of veto v. Nuclear and pulverized coal plants are the worst
performing, followed by the other non-renewable plants. Therefore, the conclusion
is that a change to renewable energies is highly recommended.

Fig. 9.12 Ranking obtained with ELECTRE-SEM for energy production plants
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Fig. 9.13 Rankings with ELECTRE-II-H on 3 intermediate criteria for several wind power plants
sites

Focusing on wind power plants, another study for finding the best possible
location for a wing farm was conducted in [1]. Seven projects with different
locations for the construction of wind turbines were evaluated, being one of them
the possibility of not building any plant. Given public concern about the impact of
this wind farm, the options considered were based on combining information from
participatory processes, interviews, and a review of the projects in the regions of
study. The assessment and selection of the best site was made with ELECTRE-III-
H, with a hierarchy of 3 levels, with 3 intermediate criteria (economic, ecological,
and social) and 9 elementary criteria. Thresholds at elementary level were defined
by experts, and for intermediate level we considered different configurations and
conducted a robustness analysis. Figure 9.13 shows the rank positions for the three
intermediate criteria. We can see that the different sites obtain different positions
depending on each of them, having a lot of ties in case of social criteria. When
merging that rankings, the final result considered as best the location in R area,
followed closely by ST option. Both of them are in good positions in the three
partial-pre-orders.

9.7.2 Tourism

Tourism is a sector with great influence in the economy of many countries,
especially in the Mediterranean area. Improving the experience of the visitors
is a growing interest of destination management offices. Tarragona province and
Catalonia attract tourists from many countries during the year, with larger number
in Spring and Summer. In this section, we will introduce two different works with
ELECTRE methods.

Promoting a destination in the website is of major importance to attract new
tourists. In [3], the content and design of 10 different destinations were analyzed
using ELECTRE-III-H. Experts in brand communication in tourism defined a
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Fig. 9.14 Hierarchy of criteria to evaluate a touristic destination website

large hierarchy of criteria (see Fig. 9.14), setting also weights and veto thresholds.
The model includes different aspects, such as the architecture of the website, the
usability, the brand image, or social web tools among others. It is difficult to find a
website that performs well in all of them. A complete study was done on the different
intermediate criteria, revealing the good and bad points of each of the websites.
The relative position of a destination website against its competitors was highly
appreciated by the decision makers, as they could know which aspects should be
improved in order to get a better position than another website. The graphical tools
and the statistical comparative analysis provided in ELECTRE-H Software Package
were very useful to generate reports.

Once the tourist has decided to come to a certain destination, the managers
must make his/her stay the best experience. The final feeling of the tourist may
influence other tourists (word-of-mouth effect) as well as increase the possibility
of coming again in the near future. The experience of the visitor is good if he/she
is able to make activities that fit with his/her interests. Recommender systems are
tools designed for modeling the user’s preferences in a personalized profile and then
provide a set of proposals according to this profile. The SigTur system was built in
collaboration with experts in tourism for recommendation of activities in Tarragona
and Costa Daurada area in Catalonia as part of a large research project.

About 900 activities were collected in a database and described using several
criteria, both numerical and semantic. In [18], the set of criteria and the recom-
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Fig. 9.15 Hierarchy of criteria in the touristic recommender system

Fig. 9.16 Mapping of categories for building the boundary profiles in ELECTRE-TRI-H

mendation procedures are explained. A combination of different methods was made
using both content-based and collaborative-based models. First, ELECTRE-TRI-H
method was used as the semantic information was transformed into a numerical
score by means of aggregation operators [5]. The hierarchy had 2 intermediate
nodes (customer satisfaction and context) and 6 elementary criteria (Fig. 9.15),
and different categories were used in the different nodes. The representation of
the boundary profiles is shown in Fig. 9.16. The final assignment was made in 4
categories as shown in Fig. 9.17. Changing the values of the thresholds, we could
configure the system to be more or less strict in the assignment.

In a second study about recommendation of touristic activities [15, 17],
ELECTRE-SEM formulations were applied directly to the semantic variables
and next, ELECTRE-III was then applied to obtain a ranking instead of a sorting
of the activities. A study of the thresholds influence on the partial pre-orders was
made in [15], showing that both discrimination thresholds and veto for semantic
variables had a similar effect to the one produced in the usual numerical criteria.
These results validate the methods explained in this chapter.
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Fig. 9.17 Number of activities in each of the final categories using ELECTRE-TRI-H

9.8 Summary and Conclusions

This chapter has made an overview of several contributions on the modification of
the indices of concordance and discordance to handle non-numerical criteria. On
the one hand, we have presented the case of semantic data expressed by means
of linguistic terms from a domain ontology. On the other hand, the proposal of a
hierarchical structure of criteria in ELECTRE has motivated the definition of indices
for partial pre-orders and for category assignments. The definition of a rank order
value and a category improvement value has been used as main component for the
new formulation of partial concordance and partial discordance. This method allows
to propagate the results of ELECTRE-III and ELECTRE-TRI-B in a bottom-up
procedure.

A software tool provides these methods in a user-friendly interface. In addition,
this software has a set of options that assist the decision maker in the definition of
the parameters of the proposed methods. Different graphical representations of the
results can be obtained and exported to files. This software has been used in different
applications, which have been outlined in the last section, providing references for
further details for the interested readers.

The ELECTRE family of methods for decision aiding is well recognized in
the research field, and they have been used to solve problems in many different
fields. With the current trend of increasing the computerization of the processes
and the advent of intelligent support technologies, this kind of methods should gain
relevance as they provide an operational procedure for intelligent decision support.
Therefore, extending the capabilities of ELECTRE opens the possibility of using
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this method in more complex problems. In particular, the decomposition into a
hierarchy of intermediate goals enables the management of large sets of criteria in a
more comprehensible way. It is remarkable the fact that the proposed method has the
possibility of obtaining partial solutions regarding a certain subset of criteria, which
facilitates the analysis of the different dimensions of the problem separately. With
the aim of including the use of other kinds of data, the semantic approach presented
here opens the door to consider knowledge in linguistic terms. Tagging of objects is
common nowadays in social networks or other online systems, which may be prone
to integrate some kind of personalized recommendation algorithms (see [13] for a
primer step in this direction).
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Chapter 10
Robust Ordinal Regression for Multiple
Criteria Decision Aiding

Miłosz Kadziński

Abstract We review the Multiple Criteria Decision Aiding (MCDA) methods in the
stream of Robust Ordinal Regression (ROR). They incorporate indirect preference
information in the form of decision examples and verify the consequences of
applying all compatible instances of an assumed preference model. We focus on
four aspects distinguishing the ROR approaches: considered problem typologies,
forms of accepted preference information, employed decision models, and types of
delivered outcomes quantifying the robustness of results. We also discuss significant
extensions of ROR. The most prevailing ones include Stochastic Ordinal Regres-
sion, active learning strategies, algorithms for generating dedicated explanations
of the decision outcomes, and procedures for answering questions regarding the
stability of results. Finally, we list selected real-world applications of ROR in
various fields. The review confirms the position of ROR as one of the essential
methodological streams in MCDA in the last decades.

10.1 Introduction

Multiple Criteria Decision Aiding (MCDA) concerns decision problems involving a
set of alternatives (e.g., actions, solutions, or objects) evaluated on a consistent fam-
ily of criteria [44]. The only objective information that comes from a formulation of
such problems is the dominance relation established in the set of alternatives. Since
the criteria represent heterogeneous viewpoints, this relation is usually too poor to
compare all alternatives completely. As a result, the decision problem is far from
being solved.

This situation can be addressed by eliciting preference information from a Deci-
sion Maker (DM) or a group of DMs. Such information represents a value system
of the DMs, forming an input for learning a more or less explicit preference
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model [87, 94]. Each formalized decision model requires the specification of some
parameter values. For example, when using a value-based model, these parameters
are related to the formulation of marginal value functions [76]; in case of outranking
relation, these can be weights and comparison thresholds [86], whereas for decision
rules—the parameters are involved in some logical conditions validating a given
decision [95]. A suitably parameterized model is then applied to aggregate the vector
evaluations or performances of alternatives and induce a preference relation. Its
proper exploitation leads to a recommendation in terms of ranking (i.e., ordering
alternatives from the most to the least preferred), sorting (i.e., assignment of
alternatives to pre-defined, ordered decision classes), or choice (i.e., identifying the
most preferred subset of alternatives) [16].

In MCDA, many methods have been proposed to determine or learn the values
of preference model parameters. This can be attained by asking the DM for
these values directly or indirectly [47]. The experience from using decision aiding
methods indicates that direct specification of the model’s form or precise values of
such parameters is too demanding in terms of the cognitive effort [21]. Thus, more
and more focus is put on incorporating indirect preferences. They take the form of
some example holistic decisions concerning a small subset of reference alternatives
or desired requirements that the final results should satisfy. The psychologists
confirm that DMs are used to providing preference information in such intuitive
forms, which are consistent with their experience and knowledge. Consequently,
indirect preference information is considered more user friendly. Moreover, decision
support based on indirect preference information is gaining importance in many
fields of science. For example, in revealed preference theory, one analyzes choices
made by consumers, whereas learning by examples is one of the most critical trends
in Machine Learning and Artificial Intelligence [37].

In MCDA, one of the most prevailing preference learning paradigms is ordinal
regression. Its original meaning was given by Srinivasan and Shocker [97], who
proposed a model incorporating goal programming to explain a set of pairwise
comparisons in terms of numerical variables. A similar interpretation has been
then followed in the stream of papers devoted to the UTA-like methods (see [46]
and [92]). For example, in UTA, a Linear Programming (LP) model is used to
explain a complete pre-order of alternatives by a sum of monotone additive value
functions. In general, ordinal regression disaggregates preferences to construct pref-
erence model instances that are compatible with the DM’s holistic judgments [47].
In this way, it emphasizes the discovery of intentions as an interpretation of decision
examples. Even though this paradigm was originally coupled with a value-based
preference model, it has been subsequently generalized to outranking-[82] and rule-
based [36] models.

Indirect preference information is affected by natural imperfections because the
preference structure may not be well defined in the DM’s mind and the DMs
are often not fully aware of the adopted multiple criteria model. Specifically,
the incompleteness of preference information results in the ambiguous definition
of a preference model, i.e., the existence of its multiple instances compatible
with the DM’s preferences [37]. The traditional MCDA methods apply some
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arbitrary rules for the selection of a single, compatible instance of the preference
model [56]. However, the conclusions that can be derived from applying each of
these instances on the set of alternatives may differ substantially. As a result, the
delivered recommendation strongly depends on which particular instance is chosen.
Investigating the stability of results given all preference model instances compatible
with imperfect preferences has been a focus of methods such as ARIADNE [90],
Preference Programming [91], VIP [31], IRIS [32], and UTADIS-KU [77].

Robust Ordinal Regression (ROR) combines preference disaggregation [47] and
robustness analysis [87]. It incorporates decision examples concerning a subset
of reference alternatives and verifies the consequences of applying all compatible
instances of an assumed preference model on the set of all alternatives. By doing so,
it examines the ambiguity in representing the DM’s indirect preference information.
The first method proposed in the ROR stream was UTAGMS [37]. It asks the
DM for pairwise comparisons, considers all compatible additive value functions
with general non-decreasing marginal functions, and quantifies the results through
the necessary and possible preference relations. The former holds for a pair of
alternatives in case all compatible value functions confirm the preference. In
contrast, the latter is instantiated when being supported by at least one compatible
value function.

This chapter reviews the methodological developments in the stream of
ROR [21]. We first focus only on the works co-authored by Professor Roman
Słowiński while referring to four aspects. First, we discuss various problem
typologies, which are tackled by ROR. These range from choice [39], ranking [37],
and sorting [38] through interactive [33] and evolutionary [11] multiple objective
optimization to group decision problems [41] and decision under uncertainty [66].
Second, we discuss different forms of indirect and incomplete preference
information (see [21] and [63]). These differ depending on the tackled problem,
accounted perspective, the scope of considered criteria, and certainty level. Third,
we review preference models to which ROR was applied, including value-[34],
outranking-[49], and rule-based [64] models. Some of them assume the preferential
independence of criteria and monotonicity of per-criterion preferences, whereas
others admit interactions [3, 43] and non-monotonicity [73]. Fourth, we present
different types of outcomes that quantify the robustness of results given the
multiplicity of compatible preference model instances [21, 75]. These include
necessary [37], possible [38], extreme [55], and representative [40] results as well
as various certainty levels implied by the imprecision of performances [29] and
multiplicity of DMs [41].

Then, we discuss significant extensions of ROR as well as related methodological
and application-driven developments. On the one hand, we refer to various types
of decision models [2] and robust results [52]. On the other hand, we mention
algorithms that support active questioning of the DMs [17], provide dedicated
explanations of the decision outcomes [61], and investigate the scenarios of
performance modification needed to reach a certain target [19]. We also refer to
some investigations of the properties of models [68, 96] and methods [50] as well
as selected real-world applications in various fields [4, 81, 100].
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10.2 Review of Core Methods in Robust Ordinal Regression

In this section, we review the core methods in the stream of ROR. To honor
Professor Roman Słowiński on the occasion of his 70th birthday, we focus only
on his co-authored works. Instead of discussing the proposed approaches one after
another, we generalize the review by referring to the four important features. These
include different problem typologies, forms of indirect and incomplete preference
information, decision models considered in the preference disaggregation approach,
and robust outcomes.

10.2.1 Problem Typologies Considered in the ROR Methods

This section concerns different problem typologies that have been tackled explicitly
by ROR methods. We refer to different types of decision-making problems, charac-
teristics of criteria used to assess alternatives, and sources of multiple dimensions in
decision aiding.

When it comes to types of decision problems, ROR has been originally applied
to multiple criteria ranking to quantify the robustness of ordering the alternatives
from the most to the least preferred. Some of these approaches (e.g., UTAGMS [37],
GRIP [34], RUTA [58], UTAGMS-INT [43], MUSA-INT [3], SSOR [24], or
PROMETHEEGKS [55]) deliver the robust relation, which imposes an incomplete
order admitting incomparability. Others provide means for establishing a complete
order (e.g., Extreme Ranking Analysis (ERA) [55]), incorporate some procedures
that aggregate the robust results to deliver a score for each alternative (e.g.,
ELECTREGKMS [39] and DRSA-ROR-RANK [64]), or select a single represen-
tative model instance that emphasizes the outcomes obtained for all such instances
(e.g., UTA-REPR [56] or PROMETHEE-REPR [57]). In this way, one can obtain
a complete or partial ranking depending on the type of recommendation delivered
by the respective non-robust method (e.g., UTA [46] or PROMETHEE II [15]).

As far as multiple criteria choice is concerned, a few ROR methods are
specifically oriented toward selecting the most preferred subset of alternatives.
These include ELECTREGKMS [39] and DRSA-ROR-RANK [64], which construct
some robust relations that are subsequently exploited to offer a choice-oriented
recommendation. Other approaches systematically reduce a set of potentially
optimal alternatives that are ranked at the top for at least one compatible preference
model instance. A dedicated method proceeding in this way is Interactive Robust
Cone Contraction (IRCC) [54], whereas the potential of ERA in such a context has
been discussed in [18].

The sorting methods in the ROR stream support the assignment of alternatives
to pre-defined ordered classes. Approaches such as UTADISGMS [38], ROR-
UTADIS [63], DIS-CARD [60], UTADIS-NM [73], and DRSA-ROR-SORT [62]
quantify the robustness of recommendation given multiplicity of compatible sorting
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models, hence revealing potential imprecision in the recommended assignments. On
the contrary, UTADIS-REPR [40] builds a single sorting model delivering a precise
assignment on top of all compatible ones. Among these methods, ROR-UTADIS and
DIS-CARD allow dealing with so-called constrained sorting problems that require
control over the number of alternatives assigned to each decision class.

The methods mentioned above deal with a flat structure of criteria. However,
ROR has also been generalized to Multiple Criteria Hierarchy Process (MCHP),
which accounts for criteria organized in levels, hierarchically, from general to
detailed ones. MCHP-UTA [20], MCHP-ELECTRE, MCHP-PROMETHEE [22],
and MCHP-Choquet [5] deal with ranking problems, whereas MCHP-UTADIS [28]
is applicable in the context of sorting. Also, the vast majority of ROR methods
deal with deterministic performances of alternatives on particular criteria. The
sole exception in this regard is ROR-Imprecise [29] that deals with uncertain
performances in the form of n-point intervals.

The prevailing assumption in ROR is that the criteria are monotonic, and the
order of preference is defined as constantly non-decreasing or non-increasing with
respect to the per-criterion performances of alternatives. On the contrary, UTADIS-
NM [73] tolerates an unknown order that needs to be discovered based on the DM’s
preference information. The latter method admits non-monotonicity implied by
potential changes in the preference directions in different regions of the evaluation
scale.

Multiple criteria are not the sole source of conflicting evaluations in decision
problems considered in ROR. On the one hand, in group decision problems, one
needs to account for preference expressed by multiple DMs. Such a setting has
been considered in the context of ranking in UTAGMS-GROUP [41] or UTA-REPR-
GROUP [59] and sorting in UTADISGMS-GROUP [41]. These approaches assume
that all DMs play the same role in the committee. On the other hand, in the decision
problems under uncertainty, multiple possible states of the world imply various
consequences of the actions (probabilities of outcomes). Such a setting has been
considered in [66] and [26] by drawing analogies to multiple criteria sorting or
ranking and choice, respectively.

ROR has also been applied to Multiple Objective Optimization (MOO) dealing
with problems involving several objectives to be optimized simultaneously. Various
ROR methods have a potential for use in Interactive MOO, but it has been directly
demonstrated for UTAGMS and GRIP in [33] and IRCC in [54]. In these approaches,
two alternative stages are performed. In the first stage, a representative sample of
solutions from the Pareto optimal set is generated. In the second stage, the DM’s
preference information concerning some solutions from the sample is used to derive
a model that is subsequently applied on the whole Pareto optimal set. The procedure
cycles until a satisfactory solution is selected or the DM comes to the conclusion that
there is no such solution for the current problem setting.

The ROR-inspired concepts have also been incorporated into Evolutionary MOO
(EMO), which is prevailing in decision contexts where an entire Pareto front needs
to be approximated. Methods such as NEMO-I [11], NEMO-II [12], NEMO-II-
Ch [13], CDEMO, and DCEMO [74] exploit the set of preference model instances
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compatible with the progressively supplied preference information concerning the
solutions from the current population. In this way, evolutionary optimization can be
focused on the DM’s most preferred region of the Pareto front.

10.2.2 Preference Information Elicited in the ROR Methods

The type of admitted preference information and elements of responses obtained
by the DMs greatly impact the consistency between the value system of the
stakeholders, the evolution of the decision process, and the recommendation of
a specific decision. ROR methods accept indirect, incomplete, and imprecise prefer-
ence information in the form of example decisions and requirements on the desired
results. In this way, they avoid direct specification of the values of preference model
parameters. Some approaches tolerate only a single type of indirect preference
information, whereas others accommodate various forms of preferences coming
from the DM, hence increasing the flexibility of the interactive procedure. In what
follows, we review different types of preference information considered in ROR.

A primary type of indirect preference information considered in multiple criteria
ranking and choice and MOO problems is pairwise comparisons of reference
alternatives. For example, in UTAGMS [37], these comparisons refer to the weak
or strict preference and indifference relations (e.g., alternative a is preferred to
alternative b; alternatives c and d are indifferent), whereas in ELECTREGKMS [39]
and DRSA-ROR-RANK [64]–they build on the outranking and non-outranking
relations. In PROMETHEEGKS [55], pairwise comparisons can refer to the level
of construction and exploitation of the preference model. The former refers to
the direct comparison of strengths of arguments in favor of one alternative over
another and vice versa, whereas the latter refers to the final positions (ranks) of
alternatives. The above pairwise comparisons are certain, indicating that some
relations should certainly hold for a given pair of alternatives. In SSOR [24], one
may additionally account for uncertain pairwise comparisons pointing out that
although the preference of one alternative over another is not certain, it is more
credible than inverse preference.

Other types of indirect preference information applicable in the context of
ranking and choice include:

– Comparisons of intensities of preference for different pairs of reference alterna-
tives either comprehensively, on all criteria, or partially, on a particular criterion
(e.g., the intensity of preference of alternative e over alternative f is greater than
for the comparison of alternatives g and h) postulated in GRIP [34].

– Imprecise rank-related requirements (e.g., alternative i should be ranked in the
top 5; alternative j should be placed in the lower half of the ranking) postulated
in RUTA [58].
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– Constraints on the desired comprehensive values attained by the reference
alternatives (e.g., the comprehensive value of alternative k should be greater than
0.7) postulated in RUTA [58].

When it comes to multiple criteria sorting, ROR methods account for the following
four types of indirect and imprecise preference information:

– Precise or imprecise assignment examples for a subset of reference alternatives
(e.g., alternative a should be assigned to the best class; alternative b should not
be assigned to the worst class) considered in, e.g., UTADISGMS [38] and DIS-
CARD [60].

– Assignment-based pairwise comparisons for reference alternatives (e.g., alterna-
tive c should be assigned to a class at least as good as the class of alternative d;
there is a difference of at least two classes between alternatives e and f ) used in
ROR-UTADIS [63].

– Imprecise desired class cardinalities (e.g., we wish to accept at most 10
candidates; we need to reject at least 30 applications) used in DIS-CARD [60]
and ROR-UTADIS [63].

– Constraints on the desired comprehensive values of alternatives assigned to a
given class or class range (e.g., alternatives assigned to a class at most medium
should have value not greater than 0.4) considered in ROR-UTADIS [63].

When criteria are organized in a hierarchy, MCHP allows the DM to express
preference information comprehensively and partially, considering a sub-
criterion at an intermediate level of the hierarchy. Such capability has been
demonstrated in the context of pairwise comparisons (e.g., MCHP-UTA [20] and
MCHP-ELECTRE [22]), preference intensities (e.g., MCHP-UTA and MCHP-
Choquet [5]), and assignment examples (e.g., MCHP-UTADIS [28]).

Since ROR methods are intended to support the DMs in an interactive process,
they permit an incremental specification of indirect preferences. In this perspective,
one may account for different confidence levels assigned to preference information
(e.g., “absolutely sure” or “mild”). Such an option has been considered for pairwise
comparisons [37] and assignment examples [38], but it can be generalized to other
types of preferences.

10.2.3 Preference Models Employed in the ROR Methods

The role of a preference model in decision aiding is two-fold. On the one hand, it
represents the DM’s value system through some mathematical formalisms. On the
other hand, it allows conducting a comprehensive evaluation of alternatives in line
with the DM’s preference information. In this way, the model’s indication can be
used to derive a recommendation that is likely to be accepted by the DM. A general
aim of ROR methods is to learn (i.e., to reconstruct faithfully) the DM’s preferences
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by the preference model. In what follows, we review different types of preference
information considered in ROR.

ROR has been applied to all three significant families of preference models:
scoring functions, binary relations, and decision rules. In this regard, it can deal
with qualitative or quantitative performance scales while admitting null, partial, or
full compensation between criteria. Moreover, some of these models incorporate
the weights of criteria, admit specification of pairwise comparison thresholds, or
account for interactions between criteria. Overall, one can choose a model best
suited for a particular decision-making problem from various options offering
different capabilities.

When it comes to scoring functions, the prevailing model in ROR is an additive
value function (e.g., UTAGMS [37], GRIP [34], ERA, [55], and RUTA‘[58]). This
model requires a rather strong assumption about mutual independence in the sense
of preference. It has been relaxed in UTAGMS-INT [43] and MUSA-INT [3],
where a value function is augmented by two types of components corresponding
to “bonus” or “penalty” values of positively and negatively interacting pairs of
criteria, respectively. Interactions can also be represented by the Choquet integral
through the use of a set of non-additive weights called capacities (see, e.g., MCHP-
Choquet [5]). Other scoring functions used in ROR for representing the DM’s
holistic judgments include Achievement Scalarizing Functions (ASFs) [54] and L-
norms [74]. Depending on the selected parameter α, the latter ones admit various
compensation levels, from full for a weighted sum to none for the Chebyshev
function.

As far as binary relations are concerned, ROR has been applied to an outranking
relation that holds for a pair of alternatives if one of them is at least as good as
another. In ELECTREGKMSC [39] and PROMETHEEGKS [55], the parameters that
are inferred from the DM’s preference information are criteria weights, whereas
in ELECTREGKMS—these are additionally credibility level and veto thresholds.
A definition of an outranking model requires knowing additional parameters (e.g.,
indifference and preference thresholds) whose values cannot be inferred from the
DM’s comprehensive judgments. In this regard, ROR methods tolerate imprecision
in the specification of their values.

Finally, the decision rules aggregate the performance on different criteria using
“if . . . , then . . . ” statements that handle interactions between criteria. Such a
model has been used in DRSA-ROR-RANK [64] and DRSA-ROR-SORT [62] that
consider all minimal sets of minimal decision rules compatible with the DM’s
indirect preference information. An important remark is that when using binary
relations or decision rules, only proper exploitation of the constructed model can
lead to a comprehensive assessment in choice (e.g., graph kernel methods), ranking
(e.g., Net Flow Score procedures), or sorting (e.g., disjunctive or conjunctive
assignment procedures or a rule-based sorting scheme).

The score- or value-based compatible model instances are constructed in ROR
using LP [37, 39]. The basic mathematical constraints correspond to monotonicity,
normalization, and translation of preference information into model parameters.
When the DM’s preferences are consistent with an assumed model, there usually
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exist infinitely many model instances. Hence, one cannot investigate them one by
one. In turn, to check the validity or determine some robust result, one needs to
solve some dedicated LP models that verify the truth of some smartly formulated
hypothesis in the set of all compatible model instances. An alternative procedure
based on the Segmenting Description approach has been discussed in [72].

On the contrary, when using a rule-based model, the number of all minimal sets
of rules is finite. They are constructed using the algorithms for inducing all minimal
rules, constructing all minimal covers of preference information pieces by rules,
and computing a Cartesian product of rule sets for different preference relations or
class unions in case of, respectively, ranking and sorting [62, 64]. The robust results
summarize the outcomes obtained for each individual set of rules.

10.2.4 Decision Outcomes Provided in the ROR Methods

Robustness analysis takes into account internal and external uncertainties observed
in the actual decision situations [51]. ROR is focused on investigating the robustness
of the provided conclusions, i.e., the stability of decision outcomes given the mul-
tiplicity of compatible preference model instances [87]. In particular, it investigates
which results are valid for all or the most plausible sets of model parameters. In
what follows, we review different types of results that are considered in ROR.
For each type, we provide examples concerning various problem typologies. These
results are often perceived as a communication and reflection tool that allows for
looking more thoroughly into the problem by exploring, interpreting, or testing
scenarios [88]. Some methods focus on a single decision outcome, whereas others
conduct diversified robustness analysis for the delivered results.

The basic types of results considered in ROR are the necessary and possible
outcomes [37]. The necessary results can be considered as robust with respect
to the preference information due to the fact that they are confirmed for all
compatible preference model instances [37]. In turn, the possible outcomes hold
if they are supported by at least one compatible preference model instance. In
this way, they reveal all parts of the recommendation, which are admissible given
the incompleteness of the DM’s preference information [38]. The necessity and
possibility of decision recommendation have been considered:

– In case of ranking and choice problems—preference relations (e.g., weak pref-
erence in UTAGMS [37] or outranking and non-outranking in ELECTREGKMS

[39]) and intensities of preference (e.g., GRIP [34]) for, respectively, pairs and
quadruples of alternatives (e.g., alternative a is preferred to alternative b for
at least one compatible preference model instance; alternative c is preferred to
alternative d at least as much as e to f for all compatible preference model
instances).

– In case of sorting problems—assignments to decision classes (e.g., UTADISGMS

[38]) or class unions (e.g., MCHP-UTADIS [28]) for individual alternatives
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and assignment-based preference relation (e.g., ROR-UTADIS [63]) for pairs of
alternatives (e.g., alternative a is always (necessarily) assigned to class good; the
possible evaluation of alternative b as bad or medium depends on the selected
model instance; alternative c is always assigned to a class at least as good as
alternative d).

When verifying the robustness of some measure related to the performance of some
alternative or characteristic of decision outcomes, it is more reasonable to account
for the extreme results. They reflect the least and the most advantageous scenario
or the pessimistic and optimistic attainments in the set of all compatible preference
model instances. The extreme results have been considered in the context of:

– Ranks and comprehensive scores (e.g., ERA [55] and RUTA [58]) attained by
each alternative (e.g., alternative a is ranked third and sixth in the most and the
least advantageous cases, respectively; the comprehensive values observed for
alternative b in the set of all compatible preference model instances are within
the range [0.4, 0.7]).

– Class cardinalities (e.g., DIS-CARD [60] and ROR-UTADIS [63]), i.e., the max-
imal and minimal numbers of alternatives, which are simultaneously assigned to
a given class for some compatible model instance (e.g., at least five and at most
ten alternatives are assigned to class medium).

Note that alternatives that are ranked first in the most advantageous scenario are
called potentially optimal [18].

The space between the necessary and the possible, as well as the difference
between extreme outcomes, can often be quite large. For this reason, some ROR
methods postulate the selection of a single representative preference model instance
that builds on the results attained with all compatible instances. A general idea
underlying such a “one for all, all for one” rule consists of (a) emphasizing the robust
outcomes unanimously confirmed by all compatible instances and (b) leveling
or neglecting these parts of the decision recommendation that are ambiguous
given indications of all compatible instances [40]. This idea has been imple-
mented in case of selecting representative value functions (e.g., UTA-REPR [56],
UTADIS-REPR [40], and UTA-REPR-GROUP [59]), outranking models (e.g.,
ELECTRE-REPR and PROMETHEE-REPR [57]), and decision rules (e.g., DRSA-
ROR-SORT [62] and DRSA-ROR-RANK [64]). Such an instance can be used to
derive precise recommendation that is supported by the outcomes observed for all
compatible instances, hence serving as their univocal representative.

The complexity of a decision problem may increase due to accounting for
multiple dimensions that do not correspond to evaluation criteria. In such cases,
ROR introduces additional levels of certainty to quantify the robustness of results.
In group decision problems, the second level is related to the support given to some
outcome in the set of DMs. In particular, the necessary-necessary result indicates
some conclusion confirmed by all preference model instances compatible with the
preferences of all DMs. In contrast, the possible-possible outcome needs to be
supported by at least one compatible preference model instance for at least one DM
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(see, e.g., UTAGMS-GROUP and UTADISGMS-GROUP [41]). When considering
imprecise performances [29], the necessary and possible relations are additionally
judged in terms of being strong or weak. The former holds for all possible
realizations of performances, whereas the latter is instantiated when confirmed by
at least one admissible performance setting. Finally, the concepts of the necessary
and the possible can be adjusted to other sources of potential ambiguity than the
multiplicity of compatible preference model instances. For example, in SSOR [24],
one considers probability distributions over the space of consistent preference model
instances inferred based on certain and uncertain preferences. In this context, one
accounts for the probabilistically necessary and possible outcomes that need to be
confirmed by, respectively, all or at least one compatible probability distribution.

The results derived by ROR can be used by the DM to learn about her/his
preferences. In this way, mutual learning of the model and the DM can be
implemented [21]. It is supported by the characteristics of delivered outcomes that
provoke the DM to provide additional preferences as well as the convergence of
results with the progressive specification of preference information. Specifically,
the necessary consequences are enriched, the possible outcomes become more
sparse, and the difference between extreme results becomes smaller [17]. Such an
interactive process involving alternating stages of preference elicitation and DM’s
analysis of a recommendation is called constructive preference learning [21]. It
is continued until the DM accepts the recommendation judging it as sufficiently
convincing and decisive or opts for changing the problem setting.

10.3 Review of Other Developments Related to Robust
Ordinal Regression

In this section, we review three types of developments related to ROR. These
include other ROR methods that have not been co-authored by Professor Roman
Słowiński. We also discuss approaches that can be coupled with ROR to support the
preference elicitation process, deliver complementary results, or provide dedicated
explanations. Finally, we list some selected real-world studies in which ROR was
applied.

10.3.1 Robust Ordinal Regression methods

When it comes to other ROR methods, they have been designed to support
different problem typologies. The most notable ranking methods include ROR-
DISTANCE [101], Non-additive ROR (NAROR) [2] and its extensions [10, 25, 99],
and ROR applied to Bipolar PROMETHEE [23]. ROR-DISTANCE is a TOPSIS-
like approach that computes distances from the ideal and anti-ideal alternatives in
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the space of a comprehensive value. In turn, NAROR incorporates a preference
model in the form of the Choquet integral or one of its generalizations. The
problem of selecting representative capacities in NAROR has been considered in [1]
and [45]. In [23], PROMETHEEGKS has been extended to the case of interacting
criteria on a bipolar scale by suitably adapting the bipolar Choquet integral
to PROMETHEE. A recent ranking method couples ROR with dimensionality
reduction techniques [8].

Some ROR-like sorting methods were developed even before the concept of
Robust Ordinal Regression was formalized. These include significant extensions
of UTADIS [77, 79] and ELECTRE TRI-B [32, 78]. Other ROR approaches that
can handle ordinal classification problems include ROR-ELECTRE-DIS, ROR-
PROMETHEE-DIS [49], ROR-ELECTRE TRI-C [65], and ROR-ELECTRE-TRI-
B [75].

ROR has also been incorporated into the family of EMO algorithms, called
NEMO-GROUP [53], designed for dealing with MOO group decision problems. Let
us emphasize that the concepts originally proposed in ROR have also been referred
to in other approaches that are not based on indirect preference information, in turn,
admitting imprecision in the specification of values of preference model parameters
(see, e.g., [27] and [71]).

10.3.2 Decision Aiding Methods Related to ROR

ROR is useful to provide information on which particular outcomes occur with all,
some, or no compatible preference model instances. However, it is not appropriate
to estimate the probability of the results, which are possible though not necessary.
To allow this, one has proposed Stochastic Ordinal Regression (SOR) for multiple
criteria ranking [51] and sorting [52]. Its essence consists of using the Monte
Carlo simulations to estimate the probability of different outcomes based on the
sufficiently numerous samples of all compatible preference model instances. The
outcomes of SOR are materialized with the acceptability indices quantifying the
shares of all compatible preference model instances that confirm a particular
result [80]. For example, in ranking problems, these are rank and pairwise outrank-
ing (winning) acceptability indices. Although the introduced SOR approaches have
been originally designed for dealing with the basic forms of incomplete preference
information (i.e., pairwise comparison or assignment examples) and a preference
model in the form of an additive value function, they can be easily adapted to
other types of preferences, models, and problem typologies (see, e.g., [5, 35, 75]).
Moreover, the idea of coupling exact and stochastic robustness analysis conducted
with, respectively, mathematical programming and the Monte Carlo simulations has
been subsequently implemented in the context of other methods (see, e.g., [5–7]).
Subsequently, SOR has been extended to Bayesian Ordinal Regression (BOR) to
derive a posterior distribution over a set of all potential value functions instead of
assuming a distribution exogenously given [89].
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ROR, SOR, and selection of a representative preference model instance based on
the analysis of robust outcomes represent three major approaches for dealing with
the indetermination of the DM’s preference model. A new stream of research has
been initiated in [50] and [98]. It aims to construct a recommendation by directly
exploiting the outcomes of robustness analysis without singling out a specific prefer-
ence model instance. In [50], one has presented a few dozens of scoring procedures
for transforming the results of robustness analysis to a univocal recommendation,
whereas in [98], one has proposed some mathematical programming models for
constructing a complete ranking based on the stochastic results.

All preference disaggregation methods have been conceived with some specific
intentions on how they should perform and when they might be useful. Therefore,
it is relevant to check whether they conform to what was expected from them.
Such theoretical and experimental-oriented perspectives have been adopted in the
context of ROR. For example, Spliet and Tervonen [96] formulated the necessary
and sufficient conditions for the necessary inferences based on a set of preference
model instances compatible with the DM’s pairwise comparisons. Moreover, their
experimental results indicated that general additive value models were unlikely to
be useful by themselves for decision support in preference disaggregation context.

To capture a trade-off between the generality of the preference models used in
ROR and their ability to reproduce preference information provided by the DM, one
has assessed their expressiveness [68]. Furthermore, Kadziński and Michalski [50]
investigated the ability of ROR-like ranking methods to comprehensively restore
a preference model of the DM based on incomplete preference information. Other
works focused on verifying the robustness of recommendation obtained with the
use of different models and methods [50, 68, 96]. Such analyses provide insights
on the usefulness of decision aiding tools in different contexts and the amount of
preference information needed from the DM to restore his/her views faithfully.

To support the preference elicitation process in the context of ROR and SOR,
one has proposed a variety of active learning strategies. These can be seen as
heuristics for selecting the next pairwise or assignment-based question, aiming
at minimizing the number of questions to be asked to the DM until deriving
a sufficiently conclusive recommendation. Such strategies build on the outcomes
of robustness analysis and estimate the information gain offered by each candidate
question in terms of quantifying the uncertainty in recommendation attained with all
compatible preference model instances. There exist questioning strategies that have
been specifically designed for supporting the elicitation of holistic judgments in the
context of ranking [17], choice [14, 18], and sorting [48]. The extensive experiments
involving simulated and real-world DMs indicate that they can vastly reduce the
number of interactions with the DM.

Each MCDA method should guarantee that the DM learns about the problem but
also that (s)he is convinced about the relative advantage of the indicated solution.
The latter requires some dedicated explanations to justify that the recommendation
is logical, valid, and correct. The algorithms for generating dedicated explanations
for ROR create arguments about the validity of results and the role of particular
criteria (see [61, 72]). In this perspective, they compute preference reducts and
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constructs, which denote, respectively, the minimal subset of preference information
pieces implying the truth of some outcome or the maximal subset of such pieces
admitting the validity of some currently non-observable result. Moreover, Kadziński
et al. [72] introduce the concept of holistic preference criteria reduct corresponding
to a minimal subset of criteria sufficient for reproducing the DM’s preferences. In
turn, Greco et al. [42] show how DRSA provides a valuable interpretation of the
preference relations in ROR in terms of decision rules. Finally, Belahcene et al. [9]
consider the problem of explaining the necessary inferences by means of sequences
of preference swaps, i.e., trade-offs on a subset of criteria, assuming the other ones
remain unchanged.

The last methodological development related to ROR has been designed for
answering questions regarding the stability of results. Knowledge about the nec-
essary, possible, and extreme consequences of the provided preference information
may stimulate the DM to wonder how the improvement or deterioration of some
performances influences the sort of an alternative in the obtained recommendation.
The framework of Post Factum Analysis [19, 67] considers the following example
questions: “what improvement on all or some performances of a given alternative
should be made so that it achieves a better result in the recommendation obtained
with a set of compatible preference model instances?” or “what is the margin of
safety in some or all performances of a given alternative, within which it can main-
tain some rank or class assignment as in the obtained robust recommendation?”. To
determine such improvements or deteriorations, PFA solves dedicated optimization
problems.

10.3.3 Real-World Applications

ROR and other related methods discussed in this section have been applied to
real-world problems in various fields. They range from environmental management
and medicine through nanotechnology and urban planning to logistics and strategic
decision making. The example ranking applications include Swiss water infrastruc-
ture decision with UTAGMS [100], e-government benchmarking in the European
Union [93] and pharmaceutical strategy determination [81] with ERA, and siting
an urban waste landfill with NAROR [4]. Moreover, the problem of organization
of result lists of medical evidence with UTAGMS-GROUP and UTA-GROUP-
REPR was considered in [84], whereas life cycle assessment was conducted with
dimensionality reduced ROR in [8]. In [30], one demonstrated the potential of ROR
to rank universities in the presence of hierarchical and interacting criteria.

When it comes to sorting, Kadziński et al. [70] considered a green chemistry-
based classification model inspired by UTADISGMS and SOR. In turn, Oppio et al.
[83] accounted for sorting Urban Development Agreements in Italy with the robust
decision rules. Furthermore, Palha et al. [85] applied ROR-UTADIS for classifying
activities to be outsourced in the civil construction of a brewery in Brazil. The
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potential of NEMO algorithms for solving multiple objective optimization problems
related to green supply chain design has been demonstrated in [69].

10.4 Summary

Robust Ordinal Regression has been one of the prevailing methodological streams
in MCDA. Its most peculiar feature consists of considering all preference model
instances compatible with the indirect preference information. This stream was
initiated with the ranking method, called UTAGMS, that constructs all additive
value functions compatible with the DM’s pairwise comparisons and delivers the
necessary and possible preference relations.

In the last decade, ROR has been vastly developed in different directions.
First, there are methods that are suitable not only for ranking but also for choice,
sorting, group decision, multiple objective optimization, and decision under risk
and uncertainty. Second, the types of admitted indirect preference information have
been significantly extended. In particular, one may employ pairwise comparisons
that are suitable for diverse problem typologies, have various interpretations, and
refer to different levels of certainty, confidence, or hierarchy of criteria. However,
the scope of indirect preference information pieces accounted in ROR is much
broader, including, e.g., rank-related requirements or desired class cardinalities.
Third, ROR has been applied to the three families of models: scoring functions,
binary relations, and decision rules. As a result, one can choose a model best
suited for a particular decision-making problem from various options. They offer
different capabilities with respect to compensation levels, representing interactions
between criteria, handling different performance scales, or tolerating potential non-
monotonicity of per-criterion preferences. Fourth, a versatile robustness analysis can
be conducted to offer the necessary, possible, extreme, and representative results.
These outcomes quantify the stability of delivered recommendations given different
perspectives that are relevant for the considered problem. For example, in the case of
sorting problems, we may focus on the individual alternatives, pairs of alternatives,
and decision classes.

ROR has been extended in different ways. As far as the stage of preference
elicitation is concerned, dedicated active learning strategies select the next question
to the DM while minimizing the number of questions to be asked until deriving a
sufficiently conclusive recommendation. When it comes to the robustness analysis,
the most prevailing methodological advances deliver stochastic acceptability indices
computed with the Monte Carlo simulations (Stochastic Ordinal Regression) or
construct a univocal recommendation by directly exploiting the robust outcomes.
Furthermore, analysis of the recommended decision has been supported with the
algorithms for generating dedicated explanations or answering questions regarding
the stability of results. Finally, ROR and related approaches have been applied
to real-world problems in environmental management, medicine, nanotechnology,
urban and territorial planning, logistics, and strategic decision-making.
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We envisage a few critical directions for future research. One of them concerns
the specialization of ROR to specific real-life applications. This may require
adaptation of ROR to less typical problems such as multiple criteria clustering or
sorting with partially ordered classes or standard problem types involving uncertain
performances, potentially non-monotonic criteria, or multiple DMs playing different
roles in the committee. These aspects have so far received no or limited attention.
Much effort should also be assigned to the development of user-friendly open-source
software.

A much-neglected aspect in MCDA concerns performing extensive compu-
tational studies to assess the properties of preference models and methods that
decide upon their usefulness for constructive preference learning. Such experimental
verification involving simulated and real-world DMs should indicate which models
are more suitable for use with different levels of incompleteness in preference
information and which methods provide more credible recommendations when the
DM’s preference information is scarce.

Finally, an appealing research direction concerns the adaptation of ROR to
handling extensive preference data. This should enhance the application of MCDA
in big data environments, which are naturally affected by the high level of
inconsistency in the available preference information.
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36. Greco S, Matarazzo B, Słowiński R (2001) Rough sets theory for multicriteria decision
analysis. Eur J Oper Res 129:1–47
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49. Kadziński M, Ciomek K (2016) Integrated framework for preference modeling and robustness
analysis for outranking-based multiple criteria sorting with ELECTRE and PROMETHEE.
Inf Sci 352–353:167–187
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Chapter 11
What Is Legitimate Decision Support?

Yves Meinard and Alexis Tsoukiàs

Abstract Decision support is the science and associated practice that consist in
providing recommendations to decision-makers facing problems, based on the avail-
able theoretical knowledge and empirical data. Although this activity is often seen as
being mainly concerned with solving mathematical problems and conceiving algo-
rithms, it is essentially an empirical and socially framed activity, where interactions
between clients and analysts, and between them and concerned third parties, play
a crucial role. Since the 80s, two concepts have structured the literature devoted to
analyzing this aspect of decision support: validity and legitimacy. Whereas validity
is focused on the interactions between the client and the analyst, legitimacy refers
to the broader picture: the organizational context, the overall problem situation, the
environment, culture, and history. Despite its unmistakable importance, this concept
has not received the attention it deserves in the literature in operational research and
decision support. The present chapter aims at filling this gap. For that purpose, we
review the literature in other disciplines (mainly philosophy and political science)
that is demonstrably relevant to elaborate a concept of legitimacy useful in decision
support contexts. Based on this review, we propose a general theory of legitimacy,
adapted to decision support contexts, encompassing the relevant contributions we
found in the literature. According to this general theory, a legitimate decision
support intervention is one for which the decision support provider produces a
justification that satisfies two conditions: (i) it effectively convinces the decision
support provider’s interlocutors (effectiveness condition) and (ii) it is organized
around the active elicitation of as many and as diverse counter-arguments as possible
(truthfulness condition). Despite its conceptual simplicity, legitimacy, understood in
this sense, is a very exacting requirement, opening ambitious research avenues that
we delineate.
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11.1 Introduction

Although the term “decision” might at first sight seem to refer a punctual event,
in fact most decisions are made through a set of cognitive activities that the
decision-maker performs: a decision process. Decision support is the science and
associated practice that consist in providing recommendations to clients (possibly
decision-makers) facing problems, based on the available theoretical knowledge
and empirical data. Just like decisions or decision-making, decision support is a
process, rather than a punctual event. What do we do when, as decision analysts,
we engage in such processes [46]? From an analyst’s perspective, the answer is
that we manipulate information to provide recommendations. To formulate this
idea, we purportedly use the ambiguous term “manipulate,” because it conveniently
conveys the idea that this task is double-edged. Indeed, depending on the context,
“manipulate” can be either a neutral term, synonym for “compute” or “handle," or
be attached with negative connotations, and mean something more akin to “distort”
or “falsify.” When dealing with information in decision support processes, we are
always in the gray zone between these two senses of “manipulate.” On the one
hand, we are mostly guided by a willingness to help the decision-maker, and in
that sense we are not here to cheat or deceive her/him. But, on the other hand, when
we work with information, using our data analysis technologies, our algorithms,
and theoretical and computational devices, we unavoidably make choices that are
to some extent arbitrary, and about which the decision-maker does not have a say—
because we do not give her/him the opportunity, and/or because she/he does not
have the required technical skills to make a cogent decision in this domain.

Usually, the information we “manipulate” in that sense consists of empirical
observations, data collected in different forms and circumstances, as well as
information about the subjectivity of the decision-maker, such as her/his values,
beliefs, and intentions. To these, we may add norms, regulations, standards, which
apply independently of the precise problem situation at hand, as well as culture,
history, practices, and habits that frame the space and time within which the decision
support process is conducted. Although it is clear that the boundaries between
these concepts might be blurry, for the sake of simplicity, we may categorize these
different types of pieces of information in four categories:

• Objective data
• Preference statements
• Constraints that can be called “hard,” in the sense that they are untouchable at

the scale of the decision support process, such as laws and regulations, budgets
constraints, and so on

• Cultural, or “soft” constraints, which are to some extent binding, but can
nonetheless be somewhat slackened, such as habits and customs

An extensive literature in Decision Sciences addresses the cognitive effort
that gathering, computing, and analyzing these information entail for clients and
analysts developing decision support models (see [18, 48]), and associated biases
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plaguing decision-aiding processes. An important outcome of these reflections is
the development of “user friendly” methods (such as rule-based decision support
models; see [17, 43]) and preference learning techniques (see [11, 16, 29]).

Beyond these contributions, since the 80s, the bulk of academic discussions of
the appropriateness of such “manipulations” have been mainly developed around
two key concepts: validity and legitimacy.

Concerning the former, Landry ([23]; see also [24]) famously introduced four
types of validity checks: conceptual, logical, experimental, and operational. Seen
from a decision support process perspective (focused on interactions between a
client and an analyst), they can be regrouped into two categories:

1. To be valid, decision support should be meaningful for the analyst, in the
sense that it should respect accepted axioms, theorems, and properties. For
example, the “manipulation” should respect meaning invariance (for more about
the concept of meaningfulness in measurement theory, see [37–39]).

2. To be valid, decision support should be meaningful for the client, in the sense
that it should reply to her/his questionings, it should be useful in terms of advice
on what to do (or not to do), and it should be felt as owned by the client and
usable within the decision process within which it has been requested.

However, as already noted by Landry himself in the 90s, although necessary,
validity is not enough to ensure that the “manipulation” we produce and the
recommendation that follows will be effectively used, applied, and appreciated and
will have an impact in the real world. This is because validity refers to interactions
between client and analyst but ignores the larger picture: the organizational context,
the overall problem situation, the environment, culture, and history. Besides, more
often than not, beyond the decision-maker and stakeholders identified in the decision
process, decisions also affect other stakeholders who can appreciate or not the
decision, react to it by modifying their behavior, and in fine influence how the whole
decision process for which the decision support has been asked is conducted.

Although many analysts, especially in academic contexts, often pursue research
interests when “manipulating” data, in decision support processes, we should keep
in mind that such “manipulations” of information are not aimed at supporting
the analyst, but the client. In other terms, whatever “manipulation” we do is
going to be available for use by others, within contexts that we know and control
only partially, producing consequences that most of the times will affect the
client and the stakeholders involved in our recommendation. Hence, while many
academic decision analysts tend to see their activity as mainly concerned with
solving mathematical problems or conceiving algorithms, in fact supporting the
decision-making of others essentially is an empirical and socially defined activity
[2, 10, 28, 40, 41]. This predicament means that, as analysts involved in decision
support processes, we have to make sure that the “manipulations” we engage in
can make sense for the decision-maker in light of the context in which we support
her/his decision-making.

The concepts of validity and legitimacy are complementary in the sense that the
latter encapsulates all the above-mentioned aspects of decision support interactions
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that the former, focused as it is on the interaction between client and analyst, fails to
capture. When practicing decision support for their clients, analysts need not only
check the validity of the information “manipulation” they perform, and the validity
of the corresponding recommendation. They should also pay due attention to their
legitimacy.

In this chapter, we propose and explain our vision of what the legitimacy
requirement amounts to. This vision is aimed at clarifying debates on the desirable
features of decision support processes, among other things by providing answers to
the above questions.

For that purpose, we begin by showing that the issue of the legitimacy of decision
support is both important and neglected in the current literature. We then proceed
by reviewing the recent literature on legitimacy. Without claiming to be exhaustive,
we will try to identify the main theoretical options exposed in the literature. Based
on this review, we then propose a general theory of the legitimacy of decision
support, designed to encompass the various visions presented in the preceding
section, in such a way as to overcome their limitations and make the most of their
strengths. This general theory is, to a large extent, based on preliminary discussions
published in [26] and [27]. Equipped with this general theory, we will then be
in a position to address a major, if relatively neglected question: the one of the
challenges facing the quest for legitimacy in decision support contexts. Our aim in
this section is to explore reasons why, despite all the major reasons we have to take
legitimacy seriously (recalled above), in some cases the quest for legitimacy can
prove extremely difficult, if not impossible to achieve. The exploration of theses
hurdles on the path to legitimacy will enable us to identify a series of challenges
for future research on means and approaches to construct the legitimacy of decision
support.

11.2 The Legitimacy of Decision Support: An Important But
Neglected Topic

The issue of the legitimacy of decision support is of unmistakable prominence
when decision support activities are involved in policy making, policy design,
or policy evaluation [22, 26]. In such contexts, decision support is expected to
improve or strengthen policies or parts thereof. The latter are activities that typically
limit the liberties of some individuals and/or groups and distribute financial or
regulatory advantages among individuals and/or groups. This can, and often does,
arouse questionings and disagreements. Besides, often enough, policies pertaining
to different sectors compete with one another to capture public finances and public
support (e.g., environmental policies vs. economic policies), and various such
policies are involved in or criticized by the competing policy agendas of different
political parties and/or candidates to elections in democracies. The corresponding
debates around the well-foundedness of policies are often framed in the terminology
of “legitimacy.” The legitimacy of the decision support activities involved in the
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elaboration and implementation of the policies at issue is unavoidably raised as part
of these debates.

The concept of legitimacy is, however, relevant to decision support well beyond
political contexts [31]. Even when decision support is deployed in private companies
to address issues without any link with public policies, questions echoing the
ones mentioned above unavoidably emerge. Indeed, the typical decisions for
which decision support is requested in private firms, such as possible changes
in strategy, reorganizations of the workforce or workflow, or other organizational
issues, typically have differential implications for various individuals within the
organization: some individuals will gain prominence and/or responsibility, at the
expense of others, which can raise debates and disputes. Although the latter do not
have, in private firms, the same importance as in political democratic arenas, still
they can endanger the stability of the organization, which should accordingly pay
attention to legitimacy.

This is all the more true when the decisions made in private firms have
implications for public policies or, more generally, for the public. This is the case,
for example, when a private firm decides to use a certain type of data or algorithm,
which can involve the infringement of privacy or raise other stakes of public
interest. Even beyond private organizations, as soon as issues of public interest
can be involved in or impacted by decisions, the legitimacy of the decision-maker
and her/his decision and, consequentially, the legitimacy of the decision support
she/he benefits from are raised, even in the archetypal case of a single, self-standing
decision-maker. In the following, we provide two short examples allowing to show
the difference between constructing a valid model and providing a legitimate model
for the decision process where the model is expected to be used.

Example 1 (Organizational Legitimization) The second author has been
involved in the past in “providing” decision support to a large Italian company
facing the problem of massive software acquisitions that needed to be framed
by a general policy assisted by a rigorous evaluation model. The case study is
reported in [32]. When the whole study was completed, the final deliverable
was almost dismissed by the General IT manager of the company because he
considered it was too complicated for his staff to be effectively used. The
project has been saved when the project manager revealed that the whole
procedure was implemented on a spreadsheet (it has been largely used in the
subsequent years). The reasoning of the IT manager was simple: if it runs on a
spreadsheet, it fits our organizational knowledge. Otherwise, it is an academic
exercise. On our side, the reason for using the spreadsheet implementation
was only rapid prototyping; actually the project manager was pushing for a
very sophisticated (although user-friendly) implementation. This is a typical
case where a model certainly valid (for both the client and the analyst) risked
to fail an organizational legitimacy check. It has been saved by chance.
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Example 2 (Society Legitimization) In the late 60s, early 70s, the NYFD
commissioned to the RAND corporation a large study concerning the location
of the fire-fighters stations in order to improve the efficiency of the whole
service and reduce the dramatic increase of casualties due to late intervention
of fire brigades (see [49]). The project has been technically successful but rose
an extensive number of controversies both political and with the trade unions,
resulting in reducing drastically the effectiveness of the suggested solutions
(for a nice discussion, see [19]). This is a typical case where neglecting the
social complexity of the problem at hand may produce “valid” models that
turn to be socially unacceptable and thus not legitimated.

Despite this unmistakable importance, and associated major theoretical and prac-
tical implications, the issue of the legitimacy of decision support has not received
the attention it deserves in the literature on decision science, operational research,
and management. [25] in operational research and [44] in management sciences are
notable, if now a bit old, exceptions. Despite their undeniable contribution (to be
discussed below), they cannot compensate for the overall scarcity of discussions
on this topic in this literature. By contrast, the literature on this topic is immense
in a wide range of domains, from economics (e.g., [47]) to philosophy (e.g., [21])
and political sciences (e.g., [4]). For lack of thorough, recent contributions to these
debates in the specialized literature, the concrete meaning and implications of this
large body of literature for the specific case of decision support are currently unclear.

Our aim here is to bridge this gap in the literature and, in so doing, hopefully,
to bring our contribution to larger, interdisciplinary debates on the concept of
legitimacy, from both theoretical and practical points of view.

11.3 Visions of Legitimacy

[25] notoriously emphasized the importance for models used in operational research
practice to be legitimate, and they pointed the need to clearly make a difference
between the validity of a model and its legitimacy. According to these authors,
“legitimisation encompasses two complementary and often unconscious activities.
The first one is a comparison of concrete actions, situations, or states of affairs with
a set of abstract entities comprising values, norms or symbolic reference systems,
which will be referred to as the ‘code’ henceforth. The second activity is a judgment
as to the conformity of these concrete actions, situations, or states of affairs with
the corresponding code.” However, they do not clearly explain what they take this
“code” to be. Fortunately, a rich and profuse literature is available to clarify this
issue and overcome the limitations of [25]’s seminal effort.
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Discussions on legitimacy in the literature appear, at first sight, to be highly
complex and dispersed, diversely focused as they can be on sources of legitimacy,
criteria of legitimacy, means to ensure legitimacy, proofs of legitimacy, and so on. In
this section, our aim is to draw a map of the main theories of legitimacy developed
and used in the literature, to clarify this complex theoretical landscape.

The question of the legitimacy of a given decision support activity can be raised
from two, complementary points of view: positive and normative. The positive
approach asks an empirical question: what are the criteria that people use, as a
matter of fact, when deciding whether they take something to be legitimate or
illegitimate? The normative question approach asks: what are the criteria that should
be used to decide if something is legitimate or not?

As scientists, we might think that the normative question is not for us, but for
moralists or preachers, to answer, and that the positive question is the only one that
can be addressed in a scientific context such as the one of decision support. But this
would be a mistake, for two associated reasons.

First, as famously explained by [34], the frontier between normative and positive
is always blurred, since many issues, theories, or approaches that are typically seen
as entirely positive in fact have a normative anchorage, and most issues that are
typically seen as entirely normative are based on, or influenced by, positive data.
Confining ourselves to the positive question is accordingly impossible in practice.
In concrete terms, this impossibility stems from the fact that, when designing a
scientific project to answer the empirical question above and when analyzing the
data obtained, we unavoidably take stances on issues that pertain to the normative
approach. This is the case, for example, when making decisions on how questions
will be formulated to survey individuals, or on how behavior will be monitored and
interpreted.

The second related reason is that, most of the time, there is no such thing
as a “fact of the matter” when it comes to what people take to be legitimate or
illegitimate. People might fail to have an opinion on what they take to be legitimate
or not. They might start asking themselves the question and forming an opinion
upon our asking them. They might change their mind if we give them pieces
of information, perhaps even if this information is irrelevant. On issues such as
legitimacy, the picture according to which people always already have a well-
formed, stable vision, independent of the scientist and the scientific protocol that
strive to capture this independent “fact of the matter,” is accordingly untenable.

The crude vision according to which normative questions are for preachers
or moralists to address is therefore entirely irrelevant when issues such as those
surrounding legitimacy are raised. Normative philosophy is, for that matter, to
a large extent devoted to address normative questions in a rational way, rather
than through preaching. In contemporary normative philosophy, Rawls [35] and
Habermas [20] are the most prominent authors who have championed this rationalist
approach to normative philosophy, in the wake of Kant’s philosophy of practical
reason. Such philosophical approaches to normative questions do not evacuate
positive questions: they strive to take advantage of studies of positive questions to
enrich normative reflection, and conceive of the latter as relevant to improve the way
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positive questions are addressed. In the remainder of this chapter, we will endorse a
similar approach. We will take into account both normative and positive approaches
to legitimacy, and we will strive to use both as complementary approaches liable to
enrich one another.

Beyond the normative/positive dichotomy of points of view, visions of legitimacy
in the literature are classically divided into two broad categories: theories of output
legitimacy, also called substantive theories [47], and theories of input legitimacy,
also called procedural theories [4]. Substantive theories claim that the legitimacy of
a policy or decision depends on the state of affairs that it brings about. By contrast,
procedural theories hold that the legitimacy of a decision is determined by the
decision-making process through which the decision was made. A toy example of
discordance between substantive and procedural visions of legitimacy can be given
by the following scenario: imagine that, through a democratic decision-making
process such as a majority vote, a minority group in society is denied some basic
rights, such as access to education and health insurance. A plausible procedural
theory of legitimacy might claim that the decision is legitimate, because it was made
through a legitimate process (majority vote). A plausible, dissenting substantive
theory might claim that such a policy that ends up arbitrarily depriving some people
from some basic rights cannot be legitimate, because the state of affairs in which a
minority is oppressed is illegitimate.

This substantive/procedural dichotomy is useful to clarify some debates on
legitimacy, since numerous theories can easily be classified along the lines of this
dichotomy. Among prominent visions of legitimacy that can be classified in this
way, take for example a vision according to which the essence of legitimacy is due
process or legality. In this vision, a decision is legitimate if it rigorously abides by all
the relevant regulatory rules. This first vision clearly falls in the procedural category.
Similarly, a vision according to which the effective participation of citizens is the
crux of legitimacy is another example of a plausible procedural theory. By contrast, a
theory claiming that a policy is legitimate if it ensures that all the people affected see
their welfare increased falls in the substantive category. The same goes for theories
of so-called higher goods, such as the one championed by [45]. Among theories
clearly falling into one or the other category, a diversity of concrete criteria through
which legitimacy is ascertained can then emerge: procedural theories can champion
criteria of fairness, impartiality, responsibility, while substantive theories will use
criteria of equality, efficiency, or effectiveness.

For all its usefulness for clarification purposes, the substantive/procedural
dichotomy has, however, its limits. Indeed, numerous theories of legitimacy mix
procedural and substantive aspects. This intimate mix of substantive and procedural
aspects can even be found within some basic concepts that can hardly be avoided in
discussions on legitimacy. This is the case, for example, of the concept of right. On
the one hand, the picture of who enjoys a given right and who is deprived from it in
a given population is, in a sense, a state of affair. In that sense, a theory that would
hold that this right is the crux of legitimacy would be called substantive (this is what
we have done in our example above). But, on the other hand, a right is procedural,
in the sense that a right specifies what people who enjoy it or are deprived from
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it can do. This is particularly evident when the right at issue is a right to vote or
to partake in a decision, but this is true of rights in general. The theory holding
that a right is the crux of legitimacy is, in that sense, also procedural. The same
logic applies at least to some values, as illustrated, for example, by [6]’s theory
of democracy. According to this author, the essence of democratic legitimacy is a
set of “core values” that can materialize in both procedures (hence, the procedural
aspect of his theory, which refers to voting and parliamentary procedures) and
substantive judgments (made by judicial courts, such as the Supreme Court in the
United States).

Another weakness of the substantive/procedural dichotomy is revealed by “epis-
temic” theories [15]. These theories focus on procedures to decide if a decision is
legitimate or not. But they do not take procedures to be the core of legitimacy, which
they locate in substantive features. They focus on procedures because they take them
to be the most reliable means we have to make sure that the substantive features of
interest are and/or will be brought about.

11.4 The Legitimacy of Decision Support: A General Theory

At this stage, we hence see that, although there is a large diversity of visions of
legitimacy, a series of concepts (the normative/positive and substantive/procedural
dichotomies, the notion of epistemic approaches, etc.) can be put to use to clarify
the complex picture that this large diversity of visions draws. We have also seen that
these various concepts have their limits. But they can be used as complementary
tools, whose limited relevance should be assessed on a case-by-case basis when
using them, to clarify debates on legitimacy.

Now that we have this complex landscape and a set of conceptual tools to
navigate it, the question should be asked: is it possible to elaborate a unique, central
theory of legitimacy, possibly useful to think through concrete issues, such as the
ones associated with decision support activities?

We argue that the literature in normative philosophy on deliberative democracy
[9, 12, 21, 36] provides the key to overcome the diversity of visions of legitimacy, so
as to develop a unique, encompassing theory. Just like our overview of legitimacy
witnesses a diversity of theories, theories of deliberative democracy are concerned
with situations in which a diversity of ethical views co-exist and are championed by
a diversity of people and/or groups composing a society. In this context primarily
characterized by pluralism, theories of deliberative democracy are concerned to
identify means to make collectively acceptable decisions, without hoping to identify
decisions that will perfectly match any one of the diverse points of view that are
concerned. The key concept through which theories of deliberative democracy claim
to escape chaos is justification. According to theories of deliberative democracy,
decisions can be collectively made in a pluralist setting if they can be justified to all
the diversity of concerned actors or groups.
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This idea raises numerous questions that fall beyond our scope in this chapter,
such as: how can one be sure that it will be possible to justify a given policy to
all those concerned? How should we identify who are those people that are called
“concerned”? etc. We leave aside these questions here because our point is not to
champion the theory of deliberative democracy, but to assess if the reference to
justification, which is used by this theory to address pluralism, can be used in our
case to address the diversity of visions of legitimacy.

Beyond the similitude in context (deliberative democracy faces a diversity of
ethical views, and we face a diversity of visions of legitimacy), the idea to use the
same concept of justification stems from the way deliberative democracy uses this
concept, which appears relevant to our case as well. Indeed, the crux of the usage of
the concept of justification in deliberative democracy consists in taking the various
ethical views composing pluralism as a reservoir of building blocks for candidate
justifications. Seen from these lenses, any given ethical theory contains or can lead
to the formulation of justifications for some decisions but not for others. These
justifications will, typically, be accepted by people endorsing this ethical view, but
probably not by people endorsing other ethical views. In a deliberative dynamics,
such disagreements should lead to the formulation of new justifications, less directly
anchored in any given ethical view, and therefore liable to enable agreement among
a diversity of people endorsing different ethical views. This approach to diversity
and pluralism suggests that, in our case of a diversity of visions of legitimacy, the
various visions can also be seen as reservoirs of building blocks for justifications.

In this general approach, legitimacy is a matter of justification, and the various
visions of legitimacy found in the literature are partial justifications that can
complement and enrich one another in various situations, as required by the context.
Various applications of this or that substantive theory, or this or that procedural
theory, understood in a normative or a positive interpretation should hence be seen
as elements that can be combined to produce justifications. Some combinations will
prove incoherent, others irrelevant, beside the point, unnecessarily intricate, and so
on. But some combinations might constitute convenient justifications in some cases.

However, this usage of the concept of justification creates, at this stage, an
important problem, heralded by the fact that, in the last sentence, we have had
to add an adjective (“convenient”) to qualify justifications. This need to qualify
justifications stems from the fact that the term “justification” is, as it stands,
ambiguous. Indeed, what, precisely, is a justification? A basic idea conveyed by
this term, which we posit is shared by all the users of the term, is that a justification
is an argumentative discourse. But our usage of the concept of justification in our
general theory cannot be limited to this basic idea. Indeed, it would not make sense
for us to claim that articulating an argumentative discourse that would be incoherent
or nonsensical or beside the point is enough to yield legitimacy. Hence, the need to
qualify the kinds of argumentative discourses that are relevant for our purposes.

We argue that two complementary qualifications are needed to equip ourselves
with a relevant notion of justification: the first one has to do with effectiveness, and
the second one with truthfulness. To explain the meaning of these two qualifications,
let us focus on our core setting of interest: decision support activities involving
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decision support providers (typically, decision analysts or experts), decision-makers,
and concerned stakeholders.

If the decision support provider is concerned to entrench the legitimacy of
her/his intervention, according to our general theory, she/he will elaborate and
voice a justification. But if no one understands her/his argument, or if it fails to
convince anyone, it is clear enough that her/his justification will have failed to yield
legitimacy. We therefore need to add an effectiveness requirement to the meaning we
give to the concept of justification within our theory of legitimacy: what is needed,
as a matter of justification, is an argumentative discourse that manages to convince
the relevant public.

But this reference to effectiveness immediately raises two problems.
The first problem is just as ancient as philosophical reflections on speech and its

ambivalent relation to rationality [8]. This problem is that, if we focus uniquely on
effectiveness, we will end up with a wholly manipulative concept of justification
(in the negatively connoted sense of the term). This would lead to an absurd
approach in which the more manipulative (still in the negatively connoted sense of
the term) the decision support provider is, the more legitimate her/his intervention
is (this echoes [25]’s claim that “legitimisation cannot be mystification” and that we
“should not confuse manipulation and legitimisation”). Therefore, we need another
qualification, designed to ensure that effectiveness does not stem from mystification,
but from rational persuasion [33]. Because the point of this qualification is to ensure
that effectiveness does not reflect mystification, but rather a faithful account of
relevant facts and theories, let us talk about a truthfulness qualification.

The second problem, which can be called the problem of “the targets of justifica-
tion,” is that, if we accept to abide by an effectiveness requirement, the question
unavoidable arises: effective for whom? Should the justification be convincing
for the decision-maker and only for her/him? Should it also include those actors
who are tightly involved in the decision-making process, such as members of a
steering committee monitoring the process when one such committee exists? Should
the circle of interlocutors to be convinced include all concerned stakeholders, or
all the people who see themselves as potentially impacted by the decision to be
made, or all the people who can take a stance on the issue even though they
cannot be directly impacted? The theory and practice of deliberative democracy
and participation face notorious difficulties to answer such questions. Participatory
practices usually informally choose the stakeholders who are asked to participate,
and despite academic calls to formalize stakeholders’ recruitment [30], there is
currently no largely accepted technology available for that purpose. This lack of
practical solutions reflects a theoretical difficulty, which is unmistakable in the main
theoretical works on deliberative democracy. [36]’s idea to solve this problem was
that justifications should be acceptable to all “reasonable” citizens, and he claimed
that the precise content of this requirement should be clarified by reasonable citizens
themselves. However, as [14] has shown (and as anyone should have expected), this
purported solution does not work, since there is an “impervious” plurality of groups
that might call themselves “reasonable.” As opposed to Rawls’s (untenable) refusal
to clarify what “reasonable” means, [15] claims that philosophers of deliberative
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democracy should acknowledge that a “true” theory of who is reasonable and who
is not is needed. But Estlund does not explain how this “truth” is to be discovered.
Rawls’s and Estlund’s theoretical stances, which are the two options developed
in the theoretical literature, therefore fail to solve the problem of the targets of
justification.

We argue that these two problems can be solved by designing a truthfulness
qualification fit for purpose.

Identifying means to ensure that a justification is truthful rather than manipu-
lative is a notoriously difficult question. Here, we propose to take advantage of
[27]’s approach, introduced in the context of a reflection on the justification of
norms underlying decision support, to solve this problem. This approach proposes
that, when developing a justification, one should actively seek as many counter-
arguments as possible, including by soliciting the interventions of outsiders and
people marginalized from the decision support process, and then enrich one’s
justification by defending it against all these counter-arguments. The underlying
idea is that mystifying arguments typically stress convenient aspects of the matter,
while silencing inconvenient aspects. A powerful counter-manipulative tactic is
therefore to track aspects that presumably mystifying discourses tend to silence.
By organizing one’s justifications around an active search for counter-arguments,
one therefore puts oneself in a position in which being mystifying is by design
extremely difficult. By the same token, the “target of the justification” problem
is solved. Indeed, if the search for counter-arguments is thorough enough, and if
the defense against all these counter-arguments is effective, the justification will by
definition be convincing to all.

At this stage, a natural rejoinder might be to claim that the idea of “actively
seeking as many counter-arguments as possible” is exceedingly vague and easily
manipulable: if the decision support provider concerned to produce a justification
takes, say, five minutes to seek counter-arguments, is it enough? And how “active”
should she/he be? The notion of “active search” might appear much too inde-
terminate. But, as [27] argue, this indeterminacy would be a serious flaw of the
theory only if the latter had the pretension to achieve an “absolute” justification,
taking into account all the possible counter-arguments, from absolutely all sides.
Achieving such an “absolute” justification is, in any case, impossible, since the
universe of counter-arguments is infinite, and there even exists an infinity of counter-
arguments that have not yet been discovered. As opposed to this unreachable
“absolute justification,” the truly worthwhile pursuit is the search for the best
locally achievable justification, while keeping in mind that justifications are always
provisional: new counter-arguments can emerge and ruin a hitherto convenient
justification, and alternative decision support interventions can be launched and be
supported by justifications that overcome the former one.

To sum up, our general theory of the legitimacy of decision support interventions,
which we claim encompasses all the other theories reviewed above, is the following:
“A legitimate decision support intervention is one for which the decision support
provider (or, for that matter, anyone else), produces an unavoidably provisional
justification that satisfies two conditions: (i) it effectively convinces the decision
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support provider’s interlocutors (effectiveness condition) and (ii) it is organised
around the active elicitation of as many and as diverse counterarguments as possible
(truthfulness condition)”.

In the following, we provide a short final example in order to show how our
theory of legitimacy would apply in a recent real-world case study.

Example 3 (The Legitimacy of Using Predictive Justice Tools) In the past few
years, there were extensive discussions about the use, abuse, and misuse of
predictive justice devices. The best known controversy is the “COMPASS”
case1 (for a nice discussion, see [1]): it concerns the fact that, behind a
device computing a “score” that is used in order to assist a decision-maker
(a judge in this case) in making a decision, there are “hidden” hypotheses
and assumptions. In that precise case, these hidden assumptions refer to
manipulations that can be considered to be “racial discrimination” when the
software computes the score for people from different racial origins.

A standard way to analyze such a case consists in striving to show that,
because the tool manipulates data on racial origin in a certain way, it is unfair.
However, fairness is a concept with several different formal definitions, and it
turns out that many such definitions are incompatible. Fairness, as a general
and vague concept, can be used both to defend the use of data on racial origins
and to dismiss it as discriminatory. This standard way to discuss the case is
therefore inconclusive, because the concept that is supposed to play the key
role in criticizing the tool turns out to be ambiguous.

This case easily lends itself to an alternative approach, along the lines
suggested by our theory of legitimacy. Instead of focusing on fairness, our
approach suggests that the problem with the tool is not that it is unfair, but
that the vision of fairness it presupposes has been imposed without discussion,
in an opaque way, without any justification or explanation whatsoever. From
the point of view of our theory, the tool is hence illegitimate because
relevant criticisms that can be raised against it are swept under the carpet.
Implementing our approach to legitimacy here would consist in actively
searching for such criticisms (truthfulness conditions), and setting out to
convince decision-makers, concerned stakeholders, and other interlocutors
that the decisions made, and the associated authorizations and bans, are
meaningful and relevant (effectiveness condition)—even if this means, in the
end, that some of the procedural features currently structuring the process, or
the final decision itself, will have to be adjusted to become more legitimate.

1 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing.

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
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11.5 Hurdles on the Road to Legitimacy

The general theory of legitimacy presented in the former section is simple enough
in its formulation. Its basic components (the production of argumentative discourses
constituting justifications of decision support interventions, the test of the extent
to which these justifications are convincing, and the active search for counter-
arguments) are activities in which anyone can engage, more or less successfully.
Many practicing decision support providers certainly already engage in these
activities, informally and to some limited extent, in their everyday decision support
interventions. However, to go beyond such informal, unchecked practices, there is
a need to organize this legitimization endeavor in a systematic and formal way. As
we will show in this section, despite the prima facie simplicity of the activity that
consists in producing the kind of justifications structuring the above general theory
of legitimacy, its formal systematization is deeply challenging. In this section, we
will present what we take to be the two most important hurdles complicating the
accomplishment of the legitimization task. These hurdles represent as many avenues
for future research on the legitimacy of decision support interventions.

The first, and most evident, challenge is to elaborate operational methods
and tools to support the various steps of the production of justifications. This
involves elaborating and deploying technologies to search for counter-arguments,
including the search for and elicitation of neglected and/or marginalized sources
of counter-arguments. Because marginalized sources of arguments typically use
means of expression that are different from the mainstream ones, integrating them in
argumentative discourses will also generate difficulties. Besides, in cases in which
relevant counter-arguments will be numerous and complex (which seems bound to
be the general case, except for the most trivial applications), a risk will be that
argumentative discourses including all those counter-arguments could become too
complex, long, and convoluted to be understandable. There is hence a real challenge
to construct readable and accessible argumentative architectures based on such a
complex and profuse material. Informal [20, 33] and formal [3, 5, 13] approaches
to argumentation theory will certainly prove useful to address these operational
challenges. However, as explained by [7], as they stand, these approaches are ill-
equipped to address the empirical dimensions of these challenges. This is because
this literature does not explore how decision support providers can organize their
interactions with decision-makers and other interlocutors, so as to assess how
convincing various arguments are, without mystifying them (see [7] and [7, 27],
for a deeper exploration of this first research frontier).

A second, perhaps even more difficult hurdle on the road to legitimacy, refers to
what one might call “mediation” in justifications of decision support interventions:
that is, the intervention of third parties in interactions between producers and
receptors of justifications. Two kinds of mediation play a prominent role in many
decision support interactions:

• Representation. Decision support interactions only rarely involve the direct
participation of all the actors potentially concerned by the decision at issue.
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Decisions are rather typically made in small circles, including the formal
decision-maker(s) and the decision aid provider. Over the last decades, the
inclusion of stakeholders in these circles has been increasingly championed (see,
e.g., [42]), and the participation of stakeholders in decision-making is now com-
monplace, through various organizational devices, such as steering committees.
In such settings, vast groups of stakeholders are typically represented by a tiny
sample of “representatives,” including elected representatives, trade unionists,
agents working for institutions allegedly representing various issues of public
interest, or simply individuals who see themselves and are seen by others as
“typical” of a larger group of concerned people.

• The “nesting” of decision support interactions. In typical decision support
interactions, decision support providers and experts with whom they interact
often take advantage of, use or refer to various kinds of outcomes of antecedent or
parallel decision support interactions: reports produced when trying to solve sim-
ilar problems in other contexts, tools such as software or databases constructed
in other contexts, methodological reports elaborated on the basis of a series
of similar missions, scientific publications, etc. In so doing, decision support
providers take the role of decision-makers supported by other decision support
providers, who are themselves, for the same reason, decision-makers benefiting
from antecedent or parallel decision support interactions. These various decision
support interactions can take different forms, and, typically, the higher up we
climb the hierarchy, the less interactive the “interaction” will be. For example,
as authors of this chapter, we are decision-makers supported by, among others,
Pythagoras and Aristotle, as great figures in our intellectual formation. But our
“interaction” with them is much less interactive than the one we have with clients
for whom we work as decision support providers. Anyways, through references
and the usage of tools, decision support interactions are all nested in an infinite
series of other, more or less clearly defined and formalized, decision support
interactions.

Both aspects of mediation substantially complicate the task to produce legitimiz-
ing justifications:

• Representation raises the questions: If we manage to produce a justification
that convinces representatives, can we admit without further ado that it is
enough? Should not we rather strive to convince those people who are supposed
to be represented by the representatives? What if we manage to convince
representatives but not represented persons, or the other way round?

• The nesting of decision support interactions raises the questions: how far should
we go when we decide on the aspects of the decision support interaction that
we should justify? Evidently enough, we cannot set ourselves the requirement to
justify each and every aspect of the decision support interaction, since this would
mean, for example, that we would have to justify all the aspects of the foundations
of the mathematical theories on which our theories and tools are based. But then,
how are we to make a choice between the various aspects that could be justified?
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At this stage, we do not claim to be able to answer these difficult but unavoidable
questions. They constitute major agendas for further research.

11.6 Conclusions

Supporting the decision activities of clients (potentially decision-makers) can
certainly be characterized by the use of formal and abstract models. However,
pragmatically it is more complex than a simple application of such models.
Although the topic of model validity has been discussed in the literature and can
be based on some formal requirements (such as meaningfulness), there is a problem
of model and more generally of decision support legitimacy.

In this chapter, we show that, with the notable exception of some seminal
contributions, this topic is essentially neglected and barely developed. Renewing
a tradition of discussions that used to animate the meetings of the EURO MCDA
Working Group, this chapter aims at suggesting a new perspective on decision
support legitimacy.

We have proposed a general theory of the legitimacy of decision support
processes and used examples to illustrate the importance of the topic and the
application of our theory. At the end of the day, supporting our clients within their
decision processes consists in convincing:

– Ourselves that we appropriately used our models and methods
– Our clients that what we suggest and advise makes sense for them
– Any other potential stakeholder, about the potential impact of this advice

Our contribution is far from being exhaustive. Our topic has multiple theoretical
and practical extensions and research pathways that could not be explored here.
We hope that our broad community will pursue our effort by exploring these other
aspects of the topic. Among the questions that researchers should address in this
future effort, the most prominent ones are perhaps:

• Which are or can be considered to be legitimate sources of information?
• What does it mean to perform a legitimate information manipulation?
• Who is expected to release a “patent of legitimacy” within a decision support

process?
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Chapter 12
MR-Sort with Partial Information
to Decide Whether to Invest
in Innovation Projects

Philippe Fortemps and Marc Pirlot

Abstract More often than not, writing a funding application for an innovation
project requires information that is not yet available. To avoid rejecting incomplete
applications a priori, we propose here a variant of the MR-Sort method for dealing
with partial information.

It consists of identifying the criteria whose assessment is available and those
whose assessment is missing. Depending on the mindset of the decision-maker,
a bipolar hierarchy of ordered classes is run through to identify the class to be
recommended on the basis of the state of information.

This new proposal keeps the simplicity of use and expressiveness of the original
MR-Sort method. It can be applied in contexts where the information is not always
initially complete and can be acquired progressively.

12.1 Introduction

Today, innovation is a key factor in the development of the economy, both regionally
and globally [12, 24, 27, 43]. All sectors of activity are affected: ranging from
agriculture [11] to motorsport [40], not to mention climate change, which is a
terrible source of innovation challenges [14, 51]. About a century ago, Schumpeter
had already identified innovation as a crucial parameter for accelerating economic
growth [47]. For him, technological development and innovative entrepreneurs are
the real drivers of this growth.
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Innovation can be defined as the application of new ideas and/or emerging
technologies to produce products, services or processes that improve the daily
lives of customers, the efficiency of industrial production or the performance of
a company [41].

A delicate stage in an innovation project is obtaining early funding. At this point,
potential investors must be convinced to support a project that is not yet fully
defined. Indeed, not only is it an innovation project which, by its very nature, is
characterized by many uncertainties as to its evolution. But, at the early stages of
development, the project owner cannot even provide the full information that is
usually required to build a financing file.

The purpose of this chapter is to propose a method of decision support for
investors: faced with an innovation project whose parameters are only partially
known, can one already decide to invest in it or to reject it, or should one ask for
more information?

It will therefore be a decision support method, capable of handling multiple
criteria and assigning submitted projects to ordered classes (from “to reject” to “to
fund”). It will work with incomplete information and adapt to different investor
profiles and different investors, varying from a banker to a public investment agency.
Ultimately, it would be interesting to provide a rationale for a class assignment
recommendation, both to convince investors of the relevance of the recommendation
and to allow the project owner to focus on the information that would allow a quicker
decision.

In the rest of this chapter, we present the methods that exist in the scientific
literature and that approach the stated problem (Sect. 12.2). This state of the art
identifies the points of attention from which we can build our methodological
proposal (Sect. 12.3). Then, we return to the context of investment projects to apply
this methodological proposal (Sect. 12.4). Finally, we outline the possibilities for
extending the method, both conceptually and through another potential application
context (Sect. 12.5).

12.2 Multiple Criteria Sorting When Evaluations Are
Missing

Methods for assigning objects into ordered classes on the basis of their evaluations
w.r.t. several criteria have been proposed since the 1990s. A crucial feature
distinguishes such methods in the field of classification. The objects assignment
respects the sense of preference on the various criteria. In other terms, an object that
is at least as good as another on all criteria cannot be assigned to a worse class. This
property is often called “respect of dominance” or “monotonicity”.

ELECTRE TRI [46, 53] is among the first and most important methods for
sorting objects into ordered classes. It belongs to the family of multi-criteria
methods based on an outranking relation. The general idea behind outranking is
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that an object a outranks another object b if there are enough reasons (based on
the evaluations of both a and b) for saying that a is at least as good as b and there
is no aspect on which a is unacceptably worse than b. In the original version of
ELECTRE TRI, classes are defined using special objects called boundary profiles.
For assigning an object to a class, ELECTRE TRI relies on the set of boundary
profiles outranked by the object (respectively, outranking the object). Since its
inception, ELECTRE TRI has been very successful. It has been applied in many
contexts. Methods for learning its parameters on the basis of assignment examples
have been developed (e.g., [38]). Numerous variants of ELECTRE TRI have been
proposed, as, e.g., one using reference actions (or objects) instead of boundary
profiles [1], another using several boundary profiles associated with each class [17].

Even though we shall not use them, we have to mention that another family of
sorting methods in ordered classes has developed within the framework of multi-
attribute value functions (MAUT); see, for instance, [21, 29, 54].

When using ELECTRE TRI or one of its variant for sorting objects into ordered
classes, usually, the evaluations of the objects are supposed to be known, even
though, sometimes, imprecisely. In some contexts, in particular when dealing with
innovative projects, some evaluations may simply be lacking. “Project selection
decision makers frequently have much less information to evaluate possible innova-
tion projects than they would wish” [32, p. 286].

There are not so many papers that have specifically dealt with missing evaluations
in MCDA and in particular in sorting methods. Moreover, most of these papers
address this question in the context of learning a sorting model on the basis
of assignment examples. In such a case, the parameters of the learned model
are imprecisely known, since, in general, many models equivalently fit the data.
For instance, the robust approach to sorting enables to compute the possible and
necessary assignments of any object. The assignment of an object to a class is
possible if there is a model that assigns the object to the class in the family of models
equivalently fitting the data. The assignment of an object to a class is necessary if
this class is the only possible one. For examples of such an approach, see [21] for
sorting by means of additive value functions, [22] for a robust approach to learn
outranking relations and [30] for sorting relying on the dominance-based rough sets
approach. The case of missing data has been addressed explicitly in the framework
of the rough set approach [20].

In this work, we consider that the model has been elicited in an interactive process
involving the decision-maker. It is assumed that its parameters are precisely known.
The idea of possible and necessary assignments can be adapted in a straightforward
manner. A project, with missing evaluations, is possibly (respectively, necessarily)
assigned to a class if the model assigns it to this class for some value (respectively,
all values) of the missing evaluations.

Actually, missing evaluations can be viewed as a limit case of uncertain
or imprecise evaluations, in which the uncertainty or the imprecision of some
evaluations is total. Therefore, most methods proposed to deal with imprecise or
uncertain data (see, e.g., [16]) can be adapted to missing data. Assuming that the
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sorting model is known without imprecision, the following proposals can be derived
from methods dealing with imprecise or uncertain data.

1. Replace the missing value(s) by a default value, for instance, by the criterion
range midpoint or the average of the other alternatives evaluations on the same
criterion or the most frequent value taken by objects on the criterion. In the
context of methods based on pairwise comparisons, it has been suggested to
assume that both objects have the same evaluations on the criteria on which the
evaluation of one of (or both) the compared object(s) is lacking [9]. Note that an
early experimental comparison of methods for handling missing values in data
mining (i.e., classification) has determined that replacing the missing values by
the most frequent one was the worst out of ten explored strategies [23]. In our
case, it makes little sense to replace a missing evaluation by a single default
evaluation, whatever it is.

2. Simulation. Assume a distribution of probability on the range of any criterion on
which an evaluation is lacking. Contrary to the case of uncertain evaluations,
this distribution should not convey any information on the missing value.
Therefore, it should be a uniform distribution on the range of the criterion.
Using a given assignment model for objects with missing evaluations replaced
by uniformly distributed evaluations generates a probability distribution on the
possible assignment classes for the object. The class with the highest probability
could then be recommended (applying a maximum likelihood principle). This
approach is in the spirit of the SMAA method proposed for dealing with
imprecisely known model’s parameters [50].

3. The robust approach was introduced above. The concepts of possible and
necessary assignments originate from fuzzy logic, more specifically, possibility
theory [15]. Again, in case of incomplete data, it is difficult to consider modelling
lack of evaluation by anything else but a fuzzy number whose membership
function is equal to 1 on the whole range of the related criterion. In such a case,
the degree of possibility of the assignment of an object to a class is 0 or 1. The
approach proposed in [10], which represents imprecise evaluations by a nested
family of intervals, the smaller the less plausible, supposes a certain form of
information on the evaluation. The latter is often not available in case of missing
data.

All these proposals hardly fit our needs. Both simulation and the robust approach
(items 2 and 3 above), in general, lead to several possible assignments for an object
with lacking evaluations. The set of classes we have in mind is ordered in a bipolar
way. In the middle, we have a neutral class the meaning of which will soon be
presented. The classes above the neutral one contain projects for which a substantial
set of evaluations pleads in favour of accepting them. Symmetrically, the classes
below the neutral one contain projects for which a substantial set of evaluations
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pleads in favour of rejecting them. The neutral class in the middle collects projects
whose status is undetermined: neither validated nor non-validated.1

This is reminiscent of the bipolar three-valued (or (2k + 1)-valued) logic
developed in [4, 5] and used for expressing the credibility of outranking. This three-
valued logic is implemented for sorting into ordered classes by using a simple
version of ELECTRE TRI in [36]. The authors build two outranking relations, a
pessimistic one and an optimistic one.2 The pessimistic outranking relation is built
by replacing the missing values by the range lower bound of the corresponding
criteria and using a pessimistic concordance threshold (no veto is considered).
The optimistic outranking relation is built by replacing the missing values by
the range upper bound and using an optimistic concordance threshold. An upper
(respectively, lower) bound class for the assignment of an object is determined by
using the optimistic (respectively, pessimistic) outranking relation. Note that there
is no special neutral class in this approach and no symmetry between the “good”
and the “bad” classes. Also, the assignment rule is the classical pseudo-conjunctive
one. In the next section, we describe our own proposal, which bears similarities with
[36] but proposes assignment rules adapted to a bipolar ordered set of classes.

12.3 MR-Sort with Partial Information

Among the various methods for assigning objects to ordered classes, we consider
MR-Sort [34], a simplified variant of ELECTRE TRI [39, 46, 48, 53]. The MR-
Sort rule will be first briefly described in the usual case (Sect. 12.3.1). Then, we
will propose the model for incomplete information. Section 12.3.2 describes the
proposed principle, while Sects. 12.3.3 and 12.3.4 introduce the needed notation.
Section 12.3.5 implements the principle with a cautious mindset, while Sect. 12.3.6
performs the same task in a more audacious mindset.

12.3.1 A Short Reminder of MR-Sort

Let X be the set of objects to be assigned into p ordered classes Ch, with
h = 1, . . . , p, C1 and Cp being, respectively, the worst and the best class. A set

1 Such a bipolar interpretation of the classes was at the root of trichotomic segmentation methods.
The works [37, 45] have proposed procedures for assigning objects into three classes: the definitely
good, the definitely bad and a class in-between gathering the objects for which a clear decision
cannot be made. The nTOMIC method [35] also has a bipolar set of classes. Such methods can be
viewed as forerunners of ELECTRE TRI.
2 These pessimistic and optimistic outranking relations should not be confused with the pessimistic
and optimistic assignment rules used in the ELECTRE TRI method; the latter are now, respectively,
called pseudo-conjunctive and pseudo-disjunctive (see [18, pp. 170-171]).
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F of n criteria (or ordered attributes) is used to evaluate the objects. Therefore, each
object x ∈ X can be described by a vector (x1, . . . , xj , . . . , xn), where xj is the
evaluation of x on the j -th criterion (or attribute) Kj . The classes are delimited by
boundary profiles described using the same set of n criteria. More precisely, each
class Ch has a lower boundary profile bh−1 and an upper boundary profile bh. Thus
described, the lower boundary profile of Ch+1 is identical to the upper boundary
profile of Ch, for 0 < h < p. It is also assumed that the profiles respect the following
dominance condition: bh,j �j bh−1,j for h ∈ {1, . . . , p} and j ∈ {1, . . . , n}, where
�j is the preference order on the scale of criterion j . The lower boundary profile of
C1 and the upper boundary profile of Cp are fictive; they are defined such that b0 is
dominated by every object and bp+1 dominates every object.

To assign the appropriate class to an object x, MR-Sort progressively compares x

to each profile and determines the class based on the best profile outranked by x (this
corresponds to the pessimistic [46], now called pseudo-conjunctive [18], assignment
rule of ELECTRE TRI). This is done by calculating the weight of the coalition of
criteria for which x is at least as good as each boundary profile bh :

σ(x, bh) =
∑

j :xj�j bh,j

wj , (12.1)

where wj is the non-negative weight of criterion j . Generally, the set of weights is
chosen to sum up to one:

∑
j∈F wj = 1.

We say that x outranks the considered profile bh (denoted xSbh), if this coalition
is considered sufficient:

x S bh ⇐⇒ σ(x, bh) ≥ λ, (12.2)

where λ is a majority threshold, with λ ∈]1/2, 1].
Finally, x is assigned into class Ch (denoted x �→ Ch) if and only if x outranks

the lower boundary profile of Ch and does not outrank its upper boundary profile,
i.e.,

x S bh−1 and x �S bh (12.3)

or equivalently

∑

j :xj�j bh−1,j

wj ≥ λ and
∑

j :xj�j bh,j

wj < λ. (12.4)

The outranking relation S here is a concordance relation [6, 7, 46]. A version of
MR-Sort with veto has been considered in [49].
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12.3.2 Our Proposal

The idea of our proposal is quite simple. We assume first that the parameters of
the sorting model are precisely known. On the other hand, some objects that we
want to classify are partially described: some evaluations of an object x are known
while others are missing. The problem is to guess the class to be assigned to x. This
should be done by taking into account the information available at that moment, but
considering that additional information may arrive.

For example, when considering using a model like MR-Sort for the classification
of investment projects, one can assume that the boundary profiles are well known,
through interacting with the decision maker. However, the same is not necessarily
true for the projects themselves, as project owners may only provide incomplete
information. In other words, the projects may not be fully assessed. For a given
project, some criteria may already have been evaluated and others not.

To determine the appropriate class for x, we start by provisionally assigning it
into a neutral class. First, we consider the possibility of moving up towards good
classes. If x can move up even without assuming the missing evaluations to be
favourable to x, we are certain that the actual class of x is better than the neutral
class: x can thus surely move up. If x did not succeed in moving up (i.e., x is still
in the neutral class), then we consider moving down towards the bad classes. If x

has to move down even though assuming the missing evaluations to be favourable
to x, we are certain that the actual class of x is worse than the neutral class: x

can thus surely move down. If x did move neither up nor down, it has to remain
in the neutral class, waiting for additional information. Finally, the neutral class
contains both candidates about which there is not enough information and medium
candidates, i.e., neither good nor bad.

12.3.3 The Bipolar Ordered Set of Classes

As in MR-Sort, we work with classes Ch ordered from worst to best. Within this set,
one class assumes a particular role that of the neutral class. We denote it C0. Thus,
the classes above C0 will be numbered from C1 to Cp and the classes below from
C−q to C−1.

The set of ordered classes need not be symmetrical with respect to the neutral
class C0. In other words, the number of upper classes p may be different from the
number of lower classes q , depending on the needs of the decision-maker in a given
situation. Indeed, according to the latter, it may be appropriate to bring more nuance
in one direction of the decision than in the other.

Classes are separated by fully described boundary profiles using the n criteria.
More precisely, each class Ch (h ranging from −q to p) is delimited by a lower
boundary profile bh and an upper boundary profile bh+1. Thus, for example, the
class C0 is bounded by b0 (which separates it from C−1) and by b1 (which separates
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it from C1). As with ELECTRE TRI and MR-Sort, profiles respect dominance, i.e.,
bh,j �j bh−1,j for h ∈ {1, . . . , p} and j ∈ {1, . . . , n}, where �j is the preference
order on the scale of criterion j .

12.3.4 The Coalition Weights

The idea of a sufficient majority coalition of criteria must be redefined with respect
to the available and missing evaluations. We propose to redefine the coalition score
σ on the basis of criteria that are fully informed. Let us also define an indicator τ

determining the weight of the criteria for which some information is missing.

σ(a, b) =
∑

j :aj and bj are known
and aj�j bj

wj (12.5)

τ (a, b) =
∑

j :aj or bj is unknown

wj . (12.6)

If we consider a partially evaluated project a and a fully known profile b, the
coalition score σ(a, b) defined in Eq. (12.5) gives the total weight of the current
coalition in favour of a as compared to the profile b, based on the available
information. Whatever information may arrive later on a, the score could only
increase, since additional criteria could enter the coalition in favour of a and no
criterion could be removed from this coalition. On the other hand, in the same
situation, τ (a, b) provides the total weight of the criteria that could still be involved.
But, as the information is not yet available, one cannot certify that it will be in favour
of a. This represents potential room for improvement.

In other words, σ(a, b) provides the currently certain coalition weight (i.e.,
the coalition that is certainly in favour of a when compared to profile b), while
σ(a, b)+ τ (a, b) represents the maximum coalition weight currently possible (i.e.,
the maximum coalition that is potentially in favour of a in front of profile b), where
“currently” means “on the basis of the currently available information”. We leave
the obvious proof of the following proposition to the reader.

Proposition 12.1

σ(a, b)+ τ (a, b)+ σ(b, a) = 1 + ι(a, b) (12.7)

τ (a, b) = τ (b, a), (12.8)

where

ι(a, b) =
∑

j :aj and bj are known
and aj∼j bj

wj . (12.9)
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12.3.5 The Conservative Mindset for Sorting

The conservative mindset is compatible with the pseudo-conjunctive logic, accord-
ing to which an object can be assigned to a class if it is at least as good as the lower
boundary profile of that class, on a sufficient majority of criteria. This majority can
be determined on the basis of the scores σ and τ introduced above.

Therefore, we can construct two outranking relations, the first one SF favourable
to x and the second SD adverse to x. On the one hand, x certainly outranks profile
b (denoted by xSDb) if its certain score σ(x, b) is already sufficient (i.e., at least as
large as the majority threshold λ); such an outranking will be maintained, even if all
the unknown information were to turn out to be adverse to x. On the other hand, x

potentially outranks b (denoted by xSF b) if its potential score σ(x, b)+ τ (x, b) is
sufficient; such an outranking can subsequently be revoked by new information.

xSDb ⇐⇒ σ(x, b) ≥ λ (12.10)

xSF b ⇐⇒ σ(x, b)+ τ (x, b) ≥ λ, (12.11)

or equivalently,

x �SDb ⇐⇒ σ(x, b) < λ (12.12)

x �SF b ⇐⇒ σ(x, b)+ τ (x, b) < λ. (12.13)

In other words, SF is called favourable outranking, because it is assumed that
τ will turn to be in favour of x. SD is called unfavourable outranking, because the
opposite assumption is made: τ will rather play in disfavour of x (i.e., at least not in
favour of x).

Proposition 12.2 If x outranks a profile b with τ being unfavourable, then x

potentially outranks b with τ being favourable:

xSDb �⇒ xSF b, (12.14)

or equivalently,

x �SF b �⇒ x �SDb. (12.15)

Proof Indeed, σ(x, b)+ τ (x, b) ≥ σ(x, b), since τ (x, b) cannot be negative.  !
In accordance with our proposal (see Sect. 12.3.2), the assignment of x to a class

on the basis of the information available at a given moment starts by positioning
x in the neutral class C0 (see Algorithm 1). As long as x manages to outrank the
boundary profile bh, based on the unfavourable relation SD , for h ranging from 1 to
p, x is moved up to the higher class Ch. When this ascent attempt ends up, either x

has reached a class Ch with h > 0 or x has remained in the class C0. In the latter
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Algorithm 1 Assignment based on outranking: �→S

Require: A set of profiles bh, h : −q + 1, . . . , 0, . . . , p

An object x to be assigned into some class
1: " h is the running index of the current class assigned to x #
2: h ← 0 " x is initially placed into C0
3: while h < p and xSDbh+1 do "While x is allowed to move up
4: h ← h+ 1
5: if h = 0 then " If x is still in C0
6: while h > −q and x �SF bh do "While x has to move down
7: h ← h− 1
8: h∗ ← h " h∗ is index of the assigned class
9: output x �→S Ch∗

case, we consider descending: as long as x does not outrank the boundary profile
bh, based on the favourable relation SF , for h going from 0 to −(q − 1), we make
x descend in the lower class Ch−1. At the end of this descent attempt, either x has
reached a class Ch with h < 0 or x has remained in C0.

The operation of this algorithm can also be described on the basis of the two
extreme classes reachable on the basis of SF and SD . Indeed, the relation SD leads
to a lower approximation h, since it considers that all the new pieces of information
can be to the disadvantage of x. On the other hand, the relation SF leads to an upper
approximation h. We have

x �→SD Ch ⇐⇒ xSDbh and x �SDbh+1, (12.16)

x �→SF Ch ⇐⇒ xSF bh and x �SF bh+1. (12.17)

If we note Ch∗ the class determined by Algorithm 1, we have h ≤ h∗ ≤ h. It is then
easy to show the following.

Proposition 12.3 If the unfavourable outranking relationship does not allow x to
move into a positive class and the favourable outranking relationship does not force
x into a negative class, then the algorithm keeps x in class C0. More precisely,

• If 0 < h, then h∗ = h

• If h < 0, then h∗ = h

• If h ≤ 0 ≤ h, then h∗ = 0

12.3.6 The Audacious Mindset for Sorting

The procedure described above may appear a bit conservative. Indeed, assigning x

into a class Ch requires that this candidate be able to outrank the bh profile in a
pseudo-conjunctive way (i.e., w.r.t. a majority of criteria).
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A more audacious decision-maker would like to place x in a Ch class, as long as
the bh profile does not prevent her from doing so. Such a logic corresponds to the
pseudo-disjunctive assignment rule in ELECTRE TRI.

Traditionally, the strict outranking relation P is defined as the asymmetric part
of the outranking relation S: aPb ⇐⇒ aSb and b �Sa. In our situation, we need to
remember that τ (x, b) can either be credited in favour of x or in disfavour of it, i.e.,
in favour of b.

A profile b strictly outranks x, in a context favourable to x, if the certain
coalition σ(b, x) of b compared to x is sufficient while the enriched coalition
σ(x, b)+ τ (x, b) of x compared to b is not. We have

bPF x ⇐⇒ σ(b, x) ≥ λ and σ(x, b)+ τ (x, b) < λ; (12.18)

bPDx ⇐⇒ σ(b, x)+ τ (b, x) ≥ λ and σ(x, b) < λ, (12.19)

or equivalently,

b �PF x ⇐⇒ σ(b, x) < λ or σ(x, b)+ τ (x, b) ≥ λ; (12.20)

b �PDx ⇐⇒ σ(b, x)+ τ (b, x) < λ or σ(x, b) ≥ λ. (12.21)

Proposition 12.4 If a profile b strictly outranks an object x within a context
favourable to x, then b strictly outranks x in a context unfavourable to the latter,
i.e.,

bPF x �⇒ bPDx. (12.22)

Therefore,

b �PDx �⇒ b �PF x. (12.23)

Proof Indeed, σ(b, x)+ τ (b, x) ≥ σ(b, x) and σ(x, b) ≤ σ(x, b)+ τ (x, b), since
τ (b, x) = τ (x, b) cannot be negative.  !

Again, based on our proposal (see Sect. 12.3.2), we derive another algorithm
assigning x into a class, using the strict outranking relations PD and PF (see
Algorithm 2).

Applying the pseudo-disjunctive rule with PD and PF would lead to assigning
x to two classes defined as follows:

x �→PD Ch′ ⇐⇒ bh′ �PDx and bh′+1P
Dx (12.24)

x �→PF C
h′ ⇐⇒ b

h′ �PF x and b
h′+1P

F x. (12.25)

If we note Ch′∗ the class determined by Algorithm 2, then h′ ≤ h′∗ ≤ h′. A
proposition similar to Proposition 12.3 can be written regarding Algorithm 2.
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Algorithm 2 Assignment based on strict outranking: �→P

Require: A set of profiles bh, h : −q + 1, . . . , 0, . . . , p

An object x to be assigned into some class
1: " h is the running index of the current class assigned to x #
2: h ← 0 " x is initially placed in C0
3: while h < p and bh+1 �P Dx do "While x is allowed to move up
4: h ← h+ 1
5: if h = 0 then " If x is still in C0
6: while h > −q and bhP F x do "While x has to move down
7: h ← h− 1
8: h′∗ ← h " h′∗ is index of the assigned class
9: output x �→P Ch′∗

Proposition 12.5 Applying Algorithm 2 for assigning x, we have

• If 0 < h′, then h′∗ = h′
• If h′ < 0, then h′∗ = h′
• If h′ ≤ 0 ≤ h′, then h′∗ = 0

Finally, one can show that the pseudo-disjunctive assignment is indeed more
audacious than the pseudo-conjunctive assignment.

Proposition 12.6 The class provided by the audacious mindset is at least as good
as that provided by the cautious mindset.

• If x �→S Ch∗ (see Algorithm 1) and x �→P Ch′∗ (see Algorithm 2), then h′∗ ≥ h∗.

Proof We know that h ≤ h′ and h ≤ h′ (see, for instance, [8, p. 382]). Using
Propositions 12.3 and 12.5, we get the following:

• If h > 0, then h∗ = h ≤ h′ = h′∗;
• If h′ < 0, then h′∗ = h′ ≥ h = h∗;
• If h′ ≥ 0 and h ≤ 0, we have:

– if h′ ≤ 0, then h′∗ = 0 and

if h ≥ 0, then h∗ = 0 = h′∗;
if h < 0, then h∗ = h < h′∗;

– if h′ > 0, then h′∗ = h′ > 0 and

if h ≥ 0, then h∗ = 0 < h′∗;
if h < 0, then h∗ = h < h′∗.

 !
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12.4 Application to the Evaluation of Innovation Projects

Doblin’s framework [31] distinguishes 10 aspects that can give rise to innovation.
Each of these aspects can be measured by different criteria. An exhaustive list of
these criteria is beyond the scope of the current article (see [26, 28, 33]). We present
a few of them, before reporting on the application of the approach with a potential
investor.

The TRL (Technology Readiness Level) is a well-known maturity indicator [25].
Proposed by NASA in the 1970s, it characterizes the state of the technology needed
for the project on a scale ranging from 1 (basic principles observed) to 9 (actual
system proven in an operational environment). Similarly, maturity indicators have
been constructed for an innovation project (IRL—Innovation Readiness Level), for
industrialization processes (MRL—Manufacturing Readiness Level) and for mar-
keting conditions (CRL—Customer Readiness Level or BRL—Business Readiness
Level). In addition to the maturity indicators, there are also more traditional criteria
such as NPV (Net Present Value), ROI (Return On Investment), market potential
etc.

In a recent study conducted by one of our students [44], decision-makers
(DMs) were able to express their views on how to proceed. Their daily task is to
evaluate innovation projects, with a view to potentially investing financial or human
resources. Among the investors, different profiles can be distinguished: bankers,
public investors, entrepreneurship stimulation agencies etc. Of course, a banker
takes a more cautious approach than a public investor. Therefore, the conservative
mindset (Sect. 12.3.5) is more in line with the former, while the latter is more likely
to adopt the audacious mindset (Sect. 12.3.6).

We will describe here the way of thinking of a banker B, as it is quite
representative. Other DMs operate similarly, except for the choice of mindset
(conservative vs audacious), criteria and boundary profiles, criteria weights wj and
coalition threshold (λ). They may also have another hierarchy of ordered classes,
but each has at least 3 classes: reject, neutral and fund.

To decide on financing, the banker bases her decision on three criteria

K1 Reliability of the project owner (PO): this DM assesses the reliability of the
PO on the basis of her banking history: has she ever been bankrupt? Is she
currently repaying loans (private or professional)?

K2 Her knowledge of the sector of economic activities: it is based on the self-
assessment by the PO, but also on the assessment by the banker of the PO and
her professional network.

K3 Viability of the project: as seen by the banker, it is the ability of the PO to
repay. On the one hand, it is evaluated on the basis of the ratio between the
initial financial contribution of the PO and the total capital needed for the project.
On the other hand, it is also assessed using the project margin rate; indeed, this
margin rate reflects what remains available to companies to remunerate capital
and invest. The margin rate of the project is compared to the mean margin rate of
the targeted sector of economic activities.
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Fig. 12.1 Merging two
indicators for project owner’s
reliability K1
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Fig. 12.2 Merging two
indicators for project viability
K3: PO’s contribution is
related to the overall needed
budget; the margin rate of the
project is compared to that of
the sector of economic
activities

PO’s contribution
? 5% 5− 10% 10%

M
ar
gi
n
ra
te ? ? B M M

85% B B B B
85− 100% M B M G

100% M B G G

While one of the criteria (K2) can be assessed quite simply (market knowledge
is described by an indicator with 4 values: “Bad”, “Medium”, “Good” and “Very
Good”), each of the other two criteria is described by two indicators.

Let us consider first the reliability of the project owner K1. It is assessed on the
basis of the number of bankruptcies already suffered by the PO and the number
of her active credits. The number of bankruptcies and the number of credits can be
equal to 0, 1, 2 or strictly greater than 2. Of course, information about them may also
not be available. Usually, both pieces of information are available or missing at the
same time (Fig. 12.1). If both pieces of information are missing, then the criterion
is considered as missing. If only one of the two pieces of information is available,
the criterion is assessed on the basis of the latter. If one of the two indicators is bad
(i.e., greater than or equal to 3) or if the sum of the two indicators is too high (i.e.,
greater than or equal to 4), the criterion will have a “Bad” value. If the sum of the
two indicators is low (i.e., less than 1), the criterion will receive the value “Good”.
In all other cases, it will have a “Medium” value.

Let us now consider the viability of the project K3, as it is done by the banker
(see Fig. 12.2). The first indicator is the percentage of the overall project budget
brought in by the PO. Ideally, this percentage should be at least 10%. If it is less
than 5%, this is a problem. The second indicator describes whether the margin rate
expected for the project is sufficiently high w.r.t. the mean margin rate of the sector.
As soon as one of the indicators is bad, the criterion has value “Bad”. A “Good”
value is only achieved by the criterion if at least one of the two indicators is good,
and the other is at least medium. In the other cases, the criterion will have value
“Medium”, except in the case where the two missing indicators lead to a “Missing”
value of the criterion.
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In the above-mentioned study [44], it has been found that the majority of the
criteria for all the DMs are the result of a similar merging of two indicators. In each
case, a simple table can be used to deduce the value of the criterion based on the
relevant indicators.

The banker considers that her three criteria are important, but that the first one is
crucial. It was therefore decided to set the following weights: w1 = 0.5, w2 = 0.25
and w3 = 0.25 with a majority threshold λ = 0.7. Thus, criterion 1 is necessary to
pass the majority threshold; there are two minimum sufficient coalitions: (K1,K2)

and (K1,K3). Indeed, these are the minimum combinations of criteria whose sum
of weights exceeds the majority threshold. To divide the projects into 3 classes, C−1
(to be rejected), C0 (neutral) and C1 (to be financed), it expresses two boundary
profiles: b0 = [M,M,M] and b1 = [G,G,G].

Let us now consider the treatment of a project on which there is no information,
within the conservative mindset (Sect. 12.3.5). The algorithm described in Algo-
rithm 1 provides the following results: h∗ = 0. Indeed, this situation is characterized
by a maximum imprecision on the class to be assigned h = −1 and h = 1, all the
criteria being “Unknown”. In other words, in the absence of any information, the
banker cannot decide anything, except to ask for more information.

If the banker learns that the PO has already filed for bankruptcy and still has an
active loan, K1 takes the value Medium. And in this case, the value provided by the
algorithm remains the medium class h∗ = 0. However, we can already know that it
will be impossible to reach class C1. Indeed, the uncertainty is reduced and h = 0.
It remains possible to reject the project or to have a medium project. If, in addition,
it is found that the PO has no knowledge of the market (K2 takes value 0) and does
not contribute enough to the initial project budget (less than or equal to 5% of the
overall budget), the banker will make the decision of refusing the project. Indeed, in
this case, h∗ = −1.

For another project, it is enough to know that the PO has already completed at
least 3 bankruptcies or has at least 3 active credits. The banker will never finance
this project, whatever the quality of the project w.r.t. the other criteria. Indeed, with
this fragmentary information, she already knows that K1 takes a zero value. And
this is enough to definitely assign the project into class C−1 (to be rejected).

12.5 Conclusion and Discussion

The adaptation of MR-Sort to incomplete evaluations leads to a simple and intuitive
methodology. The available information is fully exploited, and no assumptions (e.g.,
of statistical nature) are made about what values the missing evaluation would
take on at any given time. This approach also makes it possible to represent two
types of decision-maker behaviours, either conservative (i.e., pseudo-conjunctive)
or audacious (i.e., pseudo-disjunctive).

In the context of an innovation project, this allows decisions to be made early in
the development of a project, without the need to collect all pieces of information.
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And when there is still a lack of clarity about the decision, it helps to point out the
information that needs to be collected. Indeed, the simplicity of the model makes it
clear which available or missing evaluations drive the decision. In some cases, this
may even allow the PO to review her project and identify on which criteria it should
be improved.

Of course, there are many other contexts where this methodology can be useful,
as Bernard Roy had already identified [45].

The most sensitive context is probably that of medical diagnosis assistance. For
example, in the time of an epidemic, when a patient comes to the hospital or to
the doctor’s office, there is initially no information about her health status. It is
therefore impossible to categorize her as healthy or sick. Of course, this discussion
is multiplied when we consider not only one possible pathology, but all known
pathologies.

To consider a priori that the patient is healthy is to ignore her request to be heard
on the symptoms or discomforts. It also increases the risk of spreading a potential
contagious disease or the risk of aggravation for the individual. On the other hand,
considering her a priori as a sick individual can be harmful for the patient and costly
for the healthcare system. It is therefore prudent to consider the patient a priori in a
neutral class, requiring more information.

Each time a piece of information is obtained (for example, the identification of a
symptom or the result of an examination), it enriches the decision. When the doctor
has accumulated enough information, for or against good health, she can make a
diagnosis. In the meantime, the range of decision imprecision can be gradually
reduced.

In this chapter, we present an approach with classes that are separated by simple
boundary profiles, each of which is described by a single vector. However, in
the spirit of [17], it is possible to extend our proposal by describing each profile
by several vectors. This increases the expressiveness of the model. However, the
determination of these different vectors is not an easy task for the decision-maker.
It therefore seems appropriate to try first the simple model presented here, before
considering multiple profiles to delimit the ordered classes.

The neutral class has a very special meaning in our model, since it gathers objects
for which a decision is impossible. This can happen because of a lack of information
or, conversely, because of an excess of contradictory information. It would therefore
be interesting to study this class further using the quadrivalent logic of Belnap [2,
3, 52]. The latter has been extended by [42] in a continuous way for preference
modelling from possibly incomplete or conflicting sources of information. Their
model admits an infinite number of truth values in the convex hull of four reference
values {T—true, F—false, K—contradictory, U—unknown}. Ignatius of Loyola’s
(1548) advice on “how to make a good choice” [13] inspired another extension
of Belnap’s logic, to handle positive and negative arguments for the ranking of a
finite set of alternatives [19]. By giving the arguments an interpretation in terms
of necessity measures of truthfulness and falsity (see Possibility Theory [15]), the
authors handle the arguments in an ordinal way. Both extensions could be useful to
analyse the central class and to distinguish between objects that are unknown and
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objects that have contradictory data. Objects in the neutral class with a high value
of τ fall under the logic value U (unknown), while those with a low value of τ fall
rather under the logic value K (contradictory).

Our approach has quite strong links with the proposal of [36]. In the latter
study, missing assessments are replaced with either the minimum or the maximum
value of the domain of the criterion concerned. There are therefore two versions
for each object, an optimistic version and a pessimistic version, leading to the
assignment into two classes. These two classes define a class interval for the object
with missing values. In our approach, when x benefits from the weight τ of the
criteria without information, it amounts to considering an optimistic version of x.
Otherwise, we consider a pessimistic version of x. We also obtain a class interval
[h, h]. However, our approach differs first by the internal mechanism, which is based
on the weights of the criteria and does not require to determine the extreme values
of the criteria. Furthermore, we make a recommendation h∗, which does not ignore
the class interval but allows to clarify the situation. Finally, our approach can work
both in a conservative (pseudo-conjunctive) mindset and in an audacious (pseudo-
disjunctive) one. It can therefore be adapted to decision-makers with different
reasoning.
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Chapter 13
Meta-Rankings of Journals Publishing
Multiple Criteria Decision Aiding
Research: Benefit-of-Doubt Composite
Indicators for Heterogeneous Qualitative
Scales

Luis C. Dias and Miłosz Kadziński

Abstract This chapter examines the possibility of deriving journal rankings based
on multiple ratings from expert panels using different qualitative scales. Such
comprehensive rankings are constructed using Benefit-of-Doubt (BoD) composite
indicators derived from Data Envelopment Analysis (DEA). Specifically, we con-
sider a value-based efficiency model. An analogous BoD composite indicator can
be built considering an additive aggregation model with incomplete information. To
illustrate the proposed approach, 50 journals publishing Multiple Criteria Decision
Aiding (MCDA) research are ranked based on ratings provided by panels from
different geographies (Australia, Brazil, China, Finland, Poland, and the United
Kingdom). We construct various rankings depending on whether each alternative
minimizes its maximal regret or maximizes its absolute comprehensive value.
Moreover, we contrast the elitist and anti-elitist perspectives that emphasize the
best classifications or assume the difference between levels decreases as one moves
toward better assessments. The results confirm high consistency in the orders of
MCDA-related journals irrespective of the modeling options. In particular, the
European Journal of Operational Research always appears at the top.
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13.1 Introduction

This chapter addresses the problem of assessing a set of alternatives evaluated on
heterogeneous qualitative scales. As a particular case, but without loss of generality,
we consider the problem of deriving a comprehensive score for academic journals
based on qualitative appreciations from different evaluation panels. Specifically,
given the context of this book and the scientific area of the chapter’s authors,
the journals considered are those most open to Multiple Criteria Decision Aid-
ing/Analysis (MCDA) [3, 8, 15] research.

The assessment of scientific journals is widely used in academia for evaluating
the journals’ impact, prestige, and position in a given field. The results of such an
assessment are relevant for scholars to decide where to publish. Indeed, publishing
in highly rated journals allows researchers to reach a better audience and boost
their academic careers. Such outcomes are also important for librarians to decide
which journals to subscribe to and for editors and publishers to define their policies.
Moreover, they are commonly accounted for when evaluating the performance of
researchers for hiring, tenure, promotion, and resource allocation decisions, as well
as when evaluating research centers and universities [4].

There exist different ways of assessing the quality of journals. In particular,
several metrics have been proposed for this purpose, serving as a proxy of journals’
influence on the academic community. The most notable ones include Impact
Factor used by Web of Science, Scopus-driven CiteScore, h5-index employed by
Google Scholar, and SCImago Journal Score. They represent mostly citation-based
measures based on the analysis of all papers published in a given journal over a
certain period, possibly enriched with a perception of the importance of journals
where such citations come from. Another approach for evaluating the quality
of journals has been through surveys of academic leaders or committee votes.
Nowadays, it is common to combine hard objective data (bibliometric indicators)
and more subjective panel opinions that can be interpreted as revealed and stated
preferences, respectively [19]. Other authors have proposed inferring journal quality
by indirect evidence, such as from examining past promotion decisions [2].

Often, the journal assessments take the form of qualitative ratings (e.g., A, B,
C, etc.) that provide an ordinal sorting or classification of the journal set (even if
these are often called journal rankings). Such ratings have been developed by higher
education and research institutions to evaluate their own outputs, but also by larger
associations (e.g., The Association of Business Schools in the United Kingdom [22])
or individual researchers (e.g., [16], as one of the first rating proposals). In a broader
Operations Research and Management Science field encompassing MCDA, one
may cite the proposals of Olson [23] (a survey of faculty members), Donohue and
Fox [12] (composite indicator), as well as Cheang et al. [5] and Xu et al. [29] (the
PageRank method).

Let us remark that there exist some well-document studies on the negative
consequences of using journal rankings [20] as well as manifestos for judging the
contents rather than the outlet of a publication, such as the Leiden Manifesto [17]
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or the San Francisco Declaration on Research Assessment [28]. In this chapter, we
do not wish to enter the debate about the advantages and disadvantages of different
approaches for deriving the journal ratings [4, 12, 21, 22] nor the issues associated
with the potential side effects of these assessments [20, 24]. In turn, we are interested
in approaches that combine different qualitative ratings.

Combining different rankings or ratings has been addressed using MCDA
and Data Envelopment Analysis (DEA) models. When it comes to the MCDA
approaches, they aggregate the rankings or ratings, considering each one to be a
different criterion. In an early MCDA type of approach for this purpose, Donohue
and Fox [12] aggregate the ranking positions of decision and management science
journals through a simple weighted sum, using a weighting vector chosen by the
authors. More recently, Yuan et al. [30] combine different ratings using a weighted
sum after transforming each rating level into a percentile score. The same authors
apply TOPSIS to aggregate bibliometric indicators and select the weights for these
two methods using a mathematical program that minimizes the differences between
them. Other researchers see the problem of ranking or rating aggregation as a
computation of a consensus ranking. In particular, Theuβl et al. [26] and Aledo et al.
[1] use mathematical optimization to obtain a consensus ranking that minimizes the
sum of its difference to the individual rankings. The use of social choice aggregation
methods such as the Borda count has also been envisaged and compared with the
previous approach [1]. Consensus rankings and the Borda count assume all rankings
have the same weight.

Some DEA models have also been proposed to aggregate different journal quality
indicators. Rather than assuming each rating has the same weight, DEA allows each
journal to select the weights that make it compare to its peers under the best possible
light. The weights are therefore determined by the DEA models in a data-driven way
rather than by an evaluator. This type of reasoning has been originally applied to
aggregate quality scores (cardinal information) of operations management journals
[13] (a more recent DEA assessment of operations management journals based on
cardinal bibliometric information is [25]). In our context of aggregating qualitative
ratings, Tüselmann et al. [27] aggregates ten qualitative scales plus a cardinal one
(journal impact factor) using a DEA model. The DEA model they used allows each
journal the freedom to select the weight of each ranking and the worth (a cardinal
value) associated with each level in the qualitative scales. When doing so, they
assumed the “convexity constraint” (henceforth named “elitist”), implying that the
difference between the neighboring levels increases as one moves in the direction of
better levels.

In this chapter, we propose using DEA for deriving a composite indicator of
journal quality based on various ordinal ratings. In this way, we overcome the
absence of an undisputable vector of weights by implementing the Benefit-of-
Doubt (BoD) perspective [7]. That is, the weighting problem is handled for each
journal individually, and the weights are endogenously determined by looking
at the journal’s strengths and weaknesses relative to other considered journals.
We adopt such a data-oriented model to perform relative (efficiency) assessment
of journals similarly to [27] and the idea of minimizing the maximum regret in
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additive aggregation models under incomplete (imprecise, partial) information [10].
In addition, we complement it with an absolute BoD assessment that seeks to
maximize the comprehensive score of each journal, independently of the remaining
ones, allowing each journal to select the best parameter values maximizing its value
[10]. When performing the analysis, we consider a few minimal constraints on the
weights and obtain results with and without the elitist constraint that emphasizes
the best classifications. We contrast them with an anti-elitist perspective where the
difference between levels decreases as one moves in the direction of better levels.
The proposed family of models is applied for evaluating 50 journals publishing
MCDA research. A comprehensive ranking is derived from the ratings provided
by expert panels from six different geographies: Australia, Brazil, China, Finland,
Poland, and the United Kingdom.

13.2 Benefit-of-Doubt Perspectives for Heterogeneous
Qualitative Scales

The BoD approach has been proposed as a potential solution to the problem of
weighting multiple indicators to obtain a composite indicator when no consensus
exists about the weights to be used [7]. According to the BoD principle, instead
of assuming equal weights or eliciting weights from experts or stakeholders, each
alternative can be evaluated by the weights it would choose, i.e., with the weighting
vector that makes it look as good as possible. The BoD DEA model [7] consists
in a relative evaluation, in which each alternative is compared to its peers that
define a Pareto–Koopmans efficiency frontier. In this work, we further exploit the
BoD perspective considering three different models. Two of them perform a relative
evaluation analogous to DEA, whereas a third one performs an absolute evaluation.
We show that the latter is equivalent to the previous approaches when considering
an ideal alternative.

The BoD models are typically concerned about weighting the indicators. How-
ever, they can also be adapted to set the value differences between performance
levels when the indicators are provided on a qualitative scale. In our adaptation,
besides choosing the weights, each alternative can also select such value differences.
This is attained in the way that benefits each alternative the most, in the spirit of
BoD. Thus, the different levels are not assumed to be equidistant.

Allowing complete freedom for each alternative to select values and weights
would enable choices that would be hardly acceptable, such as considering only
one indicator (putting all the weight for that indicator and null weights for the
other indicators) or considering that different levels have no difference in value.
Thus, we incorporated two reasonable constraints in all models. The first one is
that no indicator alone can have more weight than all other indicators together (a
non-dictatorship condition, see [11]). The other one is that a better level must have
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strictly more value than a lower level. Rather than assuming the qualitative levels
are equidistant in terms of value, we present three variants:

• A free variant allows any strictly increasing values for the successively better
levels.

• An elitist variant places a higher value difference for consecutive better levels
than for lower levels, thus overvaluing the top-ranked journals, as assumed by
Tüselmann et al. [27].

• An anti-elitist variant does the reverse, placing a higher value difference for lower
levels than for higher levels, thus particularly penalizing the journals with the
lowest level (in our case, journals not recognized by the indicator).

13.2.1 Notation and Common Elements

The notation used in this chapter and the common elements in the forthcoming
models are following:

• n is the number of indicators (the qualitative journal panels).
• t is the number of alternatives (the journals being assessed).
• rp,1, . . . , rp,L(p) denote the qualitative scale levels used by indicator p, with

L(p) being the best level on this indicator. Some journals have not been
recognized by all the panels behind the ratings used in this work. We assume
that level 1 (the worst level) corresponds to not being recognized by the panel.

• a1, . . . , at denotes the list of alternatives being evaluated.
• sp(ai) ∈ {rp,1, . . . , rp,L(p)} denotes the assessment of alternative ai on indicator

p.
• vp,1, . . . , vp,L(p) denote the quantitative scores associated with rp,1, . . . , rp,L(p).

Each score (using a typical variable transformation) corresponds to the quan-
titative value of the qualitative level on the indicator multiplied by the weight
associated with this indicator.

• A comprehensive value of alternative ai is given by

V (ai) =
n∑

p=1

L(p)∑

l=1

mi,p,lvp,l (13.1)

with

mi,p,l =
{

1, if sp(ai) = rp,l (ai is rated at level l on indicator p),

0, otherwise.
(13.2)

Note: The weight of each factor p is implicitly defined as
vp,L(p)∑n
q=1 vq,L(q)

.
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The models presented in the following subsections will consider the quantitative
scores associated with the qualitative levels, v1,1, . . . , v1,L(1), . . . , vn,1, . . . , vn,L(n),
as decision variables, which need to comply with the following constraints. First,
a normalization is needed. Otherwise, the value functions are not bounded. There-
fore, we consider

n∑

p=1

vp,1 = 0, (13.3)

n∑

p=1

vp,L(p) = 100. (13.4)

Then, we avoid that one indicator has more weight than all other ones considered
jointly, and we ensure a minimum weight for each indicator by assuming

v1,L(1), . . . , vn,L(n) ≥ 100

2(n− 1)
. (13.5)

Given constraints (13.4) and (13.5), even if n − 1 indicators are assigned the
minimum possible weights, the remaining indicator can have a maximum weight
of 100− (n− 1) 100

2(n−1)
= 50 (out of 100).

Other constraints are needed to bound the differences between consecutive levels.
They depend on the variant considered:

• For the free variant, one only requires that two consecutive levels cannot have the
same value, demanding a minimum value increase of ε (in this work, we consider
ε = 1 on a value scale 0–100), i.e.,

vp,l − vp,l−1 ≥ ε,∀p ∈ {1, . . . , n},∀l ∈ {2, . . . , L(p)}. (13.6)

• For the elitist variant, when moving toward better levels the value differences
cannot decrease, i.e.,

{
vp,2 − vp,1 ≥ ε

vp,l − vp,l−1 ≥ vp,l−1 − vp,l−2,∀p ∈ {1, . . . , n},∀l ∈ {3, . . . , L(p)}.
(13.7)

• For the anti-elitist variant, when moving toward better levels the value differ-
ences cannot increase, i.e.,

{
vp,L(p) − vp,L(p)−1 ≥ ε

vp,l − vp,l−1 ≤ vp,l−1 − vp,l−2,∀p ∈ {1, . . . , n},∀l ∈ {3, . . . , L(p)}.
(13.8)
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The models discussed in the following subsections generalize the Value-Based DEA
model [14] to the case of qualitative levels. Thus, they are based on the concept of
value difference for an undetermined (free to choose) value function, rather than
based on an outputs-to-inputs ratio as other DEA models that are also able to cope
with qualitative and ordinal scales [6, 9].

13.2.2 Model 1: BoD Minimize Regret

The first BoD model finds the level scores that minimize the maximum regret
[10, 14]. The regret is interpreted as the difference between the value of the
alternative under evaluation and the best alternative when considering the value
function that favors the former the most. For each alternative ai , it is possible to find
a value function (defined by v1,1, . . . , v1,L(1), . . . , vn,1, . . . , vn,L(n)) minimizing its
regret using Linear Programming (LP):

M1:
VARIABLES: v1,1, . . . , v1,L(1), . . . , vn,1, . . . , vn,L(n), τ

MINIMIZE τ

SUBJECT TO:

n∑

p=1

L(p)∑

l=1

mi,p,lvp,l + τ ≥
n∑

p=1

L(p)∑

l=1

mj,p,lvp,l, for j = 1, . . . , t,

Constraints (13.3)–(13.5),

Constraints (13.6), (13.7), or (13.8) (depending on the variant),

τ ≥ 0.

At the optimum of M1, if τ ∗ = 0, then alternative ai under evaluation
is deemed to be efficient, i.e., there is a value function such that V (ai) =
∑n

p=1
∑L(p)

l=1 mi,p,lvp,l is at least as good as the value of all other alternatives.
Otherwise, ai is deemed inefficient, and the value difference (i.e., the regret) τ ∗ is a
measure for its inefficiency. The binding constraints in the first set, i.e., constraints
such that V (ai) + τ = V (aj ) identify the alternatives aj for which the difference
is minimal, which are the efficient peers for the optimal value function chosen by
alternative ai .
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13.2.3 Model 2: BoD Minimize Regret without Trade-Offs

The second model (M2) limits the set of alternatives with which the alternative
under evaluation, ai , is compared. Namely, it considers only potential peers that
dominate it (in a multiple criteria sense). That is, each alternative only compares
itself with alternatives that are not rated worse on any indicator. This corresponds
to a No-Trade-offs perspective, according to which being worse on some indicator
cannot be compensated by being better on another one. Hence M2 is similar to M1,
except that fewer alternatives are considered in the first constraint group:

M2:
VARIABLES: v1,1, . . . , v1,L(1), . . . , vn,1, . . . , vn,L(n), σ

MINIMIZE σ

SUBJECT TO:

n∑

p=1

L(p)∑

l=1

mi,p,lvp,l + σ ≥
n∑

p=1

L(p)∑

l=1

mj,p,lvp,l,

for j ∈ {1, . . . , t : sp(aj ) � sp(ai),∀p},
Constraints (13.3)–(13.5),

Constraints (13.6), (13.7), or (13.8) (depending on the variant),

σ ≥ 0.

Proposition 1 Let us denote the optimal solutions of models M1 and M2 for
alternative ai by τ ∗ and σ ∗, respectively. Then, σ ∗ ≤ τ ∗.

Proof According to the LP theory, since the objective of both M1 and M2 is
minimization and the feasible solutions for M1 are a subset of the feasible solutions
for M2, the optimal value of the more constrained problem (M1) cannot be less than
the optimal value of the less constrained model (M2).

13.2.4 Model 3: BoD Maximum Value

The third model (M3) takes the BoD perspective to find the value function that
maximizes the absolute value of each alternative, regardless of the other alternatives.
Again, an LP formulation yields the desired result:

M3:
VARIABLES: v1,1, . . . , v1,L(1), . . . , vn,1, . . . , vn,L(n)

MAXIMIZE ν =∑n
p=1

∑L(p)

l=1 mi,p,lvp,l

SUBJECT TO:
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Constraints (13.3)–(13.5),

Constraints (13.6), (13.7), or (13.8) (depending on the variant).

This corresponds to a BoD evaluation of each alternative independent of the other
alternatives (i.e., absolute rather than relative). Yet, it corresponds to the previous
models if all alternatives are compared to an ideal alternative having the best level
on all indicators.

Proposition 2 Let us denote the optimal solutions of models M1 and M3 for
alternative ai by τ ∗ and ν∗, respectively. Then, τ ∗ ≤ 100− ν∗.

Proof Considering μ = 100− ν, M3 is equivalent to

MAXIMIZE 100-μ
SUBJECT TO:

100− μ =
n∑

p=1

L(p)∑

l=1

mi,p,lvp,l,

Constraints (13.3)–(13.5),

Constraints (13.6), (13.7), or (13.8) (depending on the variant),

μ ≥ 0.

which is equivalent to

MINIMIZE μ

SUBJECT TO:

n∑

p=1

L(p)∑

l=1

mi,p,lvp,l + μ = 100,

Constraints (13.3)–(13.5),

Constraints (13.6), (13.7), or (13.8) (depending on the variant),

μ ≥ 0.

According to the LP theory, since the objective is minimization and the feasible
solutions for the above LP, being equivalent to M3, are a subset of the feasible
solutions for M1, the optimal value of the more constrained problem (the above LP)
cannot be less than the optimal value or the less constrained model.

Proposition 3 If one alternative (possibly fictitious) has the best level on every
factor, then the three models are equivalent, in the sense that τ ∗ = σ ∗ = 100− ν∗.



254 L. C. Dias and M. Kadziński

Proof Suppose aI is an ideal alternative such that sp(aI ) = rp,L(p),∀p. Then,
it is a potential peer for all other alternatives in M1 and M2, as sp(aI ) �
sp(ai),∀p. Moreover, per constraint (13.4), V (aI ) = ∑n

p=1
∑L(p)

l=1 mI,p,lvp,l =
∑n

p=1
∑L(p)

l=1 vp,L(p) = 100. Hence, the value of this alternative is maximum
and V (aI ) ≥ V (aj ), j = 1, . . . , t . In these conditions, both M1 and M2 can be
simplified as

MINIMIZE σ

SUBJECT TO:

n∑

p=1

L(p)∑

l=1

mi,p,lvp,l + σ = 100,

Constraints (13.3)–(13.5),

Constraints (13.6), (13.7), or (13.8) (depending on the variant),

σ ≥ 0.

Therefore, minimizing σ (or τ ) amounts to minimizing 100 −∑n
p=1

∑L(p)
l=1 mi,p,l

vp,l , and the solution that minimizes σ maximizes
∑n

p=1
∑L(p)

l=1 mi,p,lvp,l , and vice
versa.

13.3 Selection of MCDA-Related Journals and Rankings

This work is focused on journals publishing MCDA research (including multiple
objective programming). The set of journals to be assessed (see Table 13.1) resulted
from the following process:

• First, we searched for journals in the Clarivate Web of Science database, in
the Operations Research & Management Science (ORMS) category. For each
of these journals, we divided the number of articles published since 2017 that
mention “multi-criteria,” “multi-attribute,” or “multi-objective” (also considering
variants without the hyphen) in the Topic search field (which includes title,
abstract, authors’ keywords, and automatically generated keywords) by the total
number of articles published in that journal in the same period. The obtained
fraction of papers relevant to MCDA serves as an approximate indication of the
relative weight of the MCDA area in the journal. It might exclude articles on
MCDA mentioning specific methods (e.g., AHP or ELECTRE) but not “multi-
criteria,” “multi-attribute,” or “multi-objective.” We retained only 41 journals
with at least 5% of their articles on MCDA.

• To increase the diversity of journals, we looked for the journals in other Web of
Science categories publishing a high number of MCDA articles in relative terms
(as a ratio to their total number of articles) or in absolute terms. We retained
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five journals with 20% or more of their articles mentioning MCDA (IEEE
Transactions on Evolutionary Computation, Swarm and Evolutionary Compu-
tation, International Journal of Intelligent Systems, Evolutionary Computation,
and Complex & Intelligent Systems) and three other journals that published over
500 articles mentioning MCDA in this period (IEEE Access, Journal of Cleaner
Production, and Applied Soft Computing).

• Finally, to reach a round number of 50 journals, we picked the Journal of Multi-
Criteria Decision Analysis since it is explicitly devoted to the MCDA area.

Concerning the set of panel-based journal ratings, we aimed at having a diverse set
in terms of geographies, focus, and number of levels. The selected ratings were the
following (based on the versions available in May 2021):

• ABDC—a rating from the Australian Business Deans Council mainly focused
on fields relevant to Business/Management, foreseeing four levels: C, B, A, A*
(from worst to best).

• AJG (Academic Journal Guide)—a rating from the Chartered Association of
Business Schools, based in the United Kingdom. It is mainly focused on fields
relevant to Business/Management, foreseeing five levels: 1, 2, 3, 4, 4* (from
worst to best).

• POL—a rating from the Polish Ministry of Education and Science, covering all
areas. It foresees six levels labeled as 20, 40, 70, 100, 140, 200 (from worst to
best), which we deal with qualitatively.

• FMS (Federation of Management Societies of China)—a rating developed jointly
by the Chinese Society of Optimization, Overall Planning and Economical
Mathematics, the Society of Management Science and Engineering of China, and
the Systems Engineering Society of China, focused on Management Science. It
foresees four levels: D, C, B, A (from worst to best).

• JUFO (Julkaisufoorumi)—a forum by the Federation of Finnish Learned Soci-
eties, covering all areas. It foresees three levels: 1, 2, 3 (from worst to best).

• Qualis—a rating from CAPES, a government agency linked to the Brazilian
Ministry of Education, covering all areas. It foresees eight levels: C, B5 to B1,
A2, A1 (from worst to best). As journals can have various ratings in different
areas, we considered the best level.

The levels assigned to particular journals combine revealed and stated preferences.
For example, AJG is based upon peer review, editorial and expert judgments, and
statistical information related to citations, whereas POL levels are proposed by the
expert panels considering the prestige and bibliometric indicators of journals.

Table 13.1 lists the ratings for the 50 journals selected for this study. For
example, the European Journal of Operational Research attains the best levels in
terms of ABCD, AJG, FMS, and Qualis, and the second-best levels according to
the remaining two ratings. In turn, the variability of ratings attained by Applied Soft
Computing is significantly greater with, e.g., the best level in Brazil and Poland, but
having the worst level (not recognized) in two other ratings.
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Figure 13.1 presents the frequencies of these ratings. The distributions differ
vastly from one rating to another. For example, half of the journals are not included
in the ABCD rating list, the numbers of journals with levels C, B, or A are relatively
similar, and there is only one journal assigned the best level. On the contrary, all
journals are included in the POL list; very few are assigned the second and seventh
levels, and 18 out of 50 are assigned an intermediate, fourth level.

13.4 Results for the Different Models and Variants

Models M1, M2, and M3 were run three times per journal, corresponding to the
three variants of constraints: free, i.e., any increasing value function (13.6), an elitist
value function (13.7), or an anti-elitist value function (13.8). The results are depicted
in Figs. 13.2 and 13.3. In these figures, the bars represent the BoD absolute value of
each journal for M3 (ν∗) and the complement to 100 of their BoD relative efficiency
(maximum regret) for M1 (100− τ ∗) and M2 (100−σ ∗). In all cases, the larger the
bar, the better is the journal. This allows comparing models, variants, and journals.

13.4.1 Model Comparison

Since σ ∗ ≤ τ ∗ (Proposition 1) and τ ∗ ≤ 100 − ν∗ (Proposition 2), we find
necessarily ν∗ ≤ 100 − τ ∗ ≤ 100 − σ ∗ for each journal, regardless of the
variant considered. For example, when considering an elitist variant for Annals of
Operations Research (a2), τ ∗, σ ∗, and ν∗ derived from models M1, M2, and M3 are
equal to 8, 7.5, and 80.4, respectively, corresponding to bar lengths 92, 92.5, and
80.4 in Fig. 13.2.

This is in accordance with the logic of minimizing the maximum regret in relation
to its peers (minimizing the difference to the best), considering the set of peers
defined for each model. The most penalizing case (M3) occurs when considering
the peer is an ideal alternative with the best performance on all indicators. An
intermediate case occurs when considering the peers are all other alternatives, which
might even be worse on some indicators but compensate for that by being better on
other indicators (i.e., allowing trade-offs). The least penalizing case occurs when
considering the peers are only those alternatives that dominate the alternative under
evaluation.

When evaluating the 50 journals, M1 and M2 yield the same results for all
journals under the free variant, and differ for, respectively, 1 (a3) and 12 (e.g., a1,
a2, and a3) journals when considering the anti-elitist and elitist settings. The results
are fully consistent for 91.3% of the cases. Moreover, the observed differences are
relatively small (not exceeding 1 on a scale between 0 and 100) except for one
journal.
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Fig. 13.2 Results for journals a1–a25 for the three variants: (a) free; (b) elitist; (c) anti-elitist
(results for M1 and M2 are reversed subtracting from 100 (the more, the better))
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Fig. 13.3 Results for journals a26–a50 for the three variants: (a) free; (b) elitist; (c) anti-elitist
(results for M1 and M2 are reversed subtracting from 100 (the more, the better))
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This exception is a3 (Applied Soft Computing) for the elitist variant (a difference
of 6.4) and, even more markedly, for the anti-elitist variant (a difference of 13.7).
For both variants, a3 is considered efficient by model M2 (σ ∗ = 0), and this happens
because no other journal dominates it. Indeed, it is one of two journals attaining the
top level of the POL rating, and the only other journal attaining the same level for
POL, a17, is beaten by a3 for not being recognized by the ABDC list, whereas a3
is one level above (C). Hence, in M2, a3 is compared only with itself. In M3, the
advantage of a3 in the ABDC rating is clearly outweighed by its disadvantages to
a17 in AJG (4 levels worse), FMS (3 levels worse), and JUFO (2 levels worse),
taking into account the non-dictatorial weight constraint (preventing it from placing
null weight in the ratings where it is worse) and the value function constraints.
Comparing a3 with another strong peer, a12, the former is one level better in POL,
but it is four levels worse in AJG and FMS, three levels worse in ABDC, and one
level worse in JUFO. Again the constraints do not allow an advantageous trade-
off for a3. In the elitist variant, it will place as much weight as it can in POL, and
it is allowed to place a significant value difference between the top two levels in
that ranking, thereby minimizing the maximum regret to only 6.4. However, the
anti-elitist variant does not allow placing such a high difference between these two
levels, and the BoD regret increases to 13.7. In the free variant, which allows all
the freedom to set the values corresponding to different levels, a3 manages to have a
null BoD regret and match the performance of a12 by placing a large value difference
between the top two levels in POL but not doing the same for other ratings.

Overall, the correlation coefficients between the quality measures derived using
different models are very high. They range from 0.932 for the comparison of results
attained for models M1 and M3 under the elitist variant to 1.0 for models M1 and
M2 under the free variant.

13.4.2 Variant Comparison

The statistics depicted in Fig. 13.4 indicate that for the considered journals, the anti-
elitist constraints did not lead to major changes compared to the free variant and
were the same for M3. In contrast, the elitist variant tends to provide worse scores
to the journals. While for M1 and M2 the average differences with respect to free
and anti-elitist variants are not greater than 0.2 and 1.9, respectively, they are more
substantial for the third model.

In particular, the average difference between the scores for the elitist and free
variants for M3 is 14.6. The largest differences (≥30) are observed for journals
a6, a30, a37, a39, and a49. They have relatively low levels on all indicators. Hence
they maximize their values in the free variant by placing as much value as possible
for these levels. In the elitist variant, they have less freedom to do the same.
Interestingly, using the relative efficiency models M1 and M2, the scores for the
elitist and free variants are the same for most of the previous journals. Their
optimal choice in the free variant is to select a12 as a peer and try to decrease a
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Fig. 13.4 Box-plots of results for the three variants (results for M1 and M2 are reversed
subtracting from 100 (the more, the better))

comprehensive value of the latter as much as possible. They achieve this by selecting
the same value function as the elitist model in a way that places a large difference
of value between the top level and the second-best level on the two indicators where
a12 does not have the top rating. The exception is a39, which also wants to use an
elitist value function in those indicators, but would benefit from an anti-elitist value
function to minimize the difference value to a12 in other indicators. Therefore, for
this journal, the elitist variant provides a worse score than the free variant also for
models M1 and M2.

In turn, the least differences (≤4) between the scores obtained for the elitist
variant and the free and anti-elitist variants using M3 are observed for journals a12,
a17, and a48. Among them, a12 and a17 attain the best levels for 4 out of 6 ratings.

The correlation coefficients between the quality measures derived using different
variants are very high. The lowest values (0.935) are observed for the comparison
of results attained under the elitist variant and the anti-elitist or free ones for M3. In
turn, a perfect correlation is observed between the latter two variants.

13.4.3 Journal Comparison

Regardless of the model and variant considered, the European Journal of Oper-
ational Research (a12), coordinated by Editor-in-Chief Roman Slowinski, always
appears at the top, sometimes tied with IEEE Transactions on Evolutionary Com-
putation (a17) and Applied Soft Computing (a3). The rankings of the journals that
reach the top 10 for some model or variant are depicted in Table 13.2.

The BoD standing of a3 and a17 varies markedly across models and variants.
Journal a17 is able to reach the top rank ex aequo in relative efficiency models M1
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and M2, benefiting from being the only journal with the top rating from JUFO. It is,
therefore, able to place as much value as possible for that level (50), and ensure a
large advantage over its peers even in the anti-elitist variant where the second-best
level in that indicator can remain relatively distant with a value of 33.3. In model
M3, however, it is penalized for not being recognized in the ABDC list and for
not reaching the top level in the FMS rating. Journal a3 is able to reach the top
rank ex aequo in relative efficiency model M2 (as explained in Sect. 13.4.1 it has no
competitors in this model) and the free variant of M1, but drops many positions for
the remaining variants of M1 (particularly the anti-elitist) and M3. This results from
not being recognized in the AJG and FMS lists and also for its C rating in the ABCD
list. Given these shortcomings, it is noteworthy how a3 can still be efficient in M1’s
free variant. This is achieved by matching the value of its peers a12 and a17 using
an elitist value function for AJG (forcing its peers to lose value for not attaining
the top level) and also for POL (to gain a relatively large advantage over a12), but
uses an anti-elitist value function for ABDC able to gain a relatively large advantage
over a17 while not losing much to a12, and an anti-elitist value function for JUFO to
minimize its disadvantage versus these two peers. As this freedom is not allowed in
the elitist and anti-elitist variants, a3 can no longer reach the top position in M1.

Journals a3 and a17 are among six for which the difference between the extreme
ranks is at least ten. The remaining ones are: a9 (ranks between 26 and 37), a34
(33–43), and a39 (23–44), and a48 (23–35). The reasons for this are very different.
For example, a48 attains very favorable levels given three ratings, while not being
recognized by the remaining three rankings. This allows it to attain an advantageous
ranking under the elitist setting, while decreasing its performance in the remaining
two scenarios. On the contrary, a39 attains rather low ratings in all rankings, but it
is not recognized only in a single list. As a result, it can perform well under the
anti-elitist setting, while being punished under the elitist one.

The stability of ranks attained by other top-ten journals listed in Table 13.2 is sig-
nificantly greater. In particular, the International Journal of Production Economics
(a25) and Omega (a38) journals are tied and solidly placed among the top five for all
models and variants, and even reach the second position for M3. Next, Computers
and Operations Research is ranked between fourth and sixth. The ranks attained
by the bottom-ranked journals are also stable. Journals a6, a22, a30, a37, and a49
are placed as the worst five according to all models and variants. The underlying
reasons are the same for all these journals. They are not recognized in three or four
input ratings while attaining relatively low levels in the remaining ones.

Overall, the rankings obtained for different models and variants are very similar.
For example, Kendall’s τ between the journal orders for the free and anti-elitist
variants is equal to 0.92, 0.94, and 1.0 for models M1, M2, and M3, respectively.
The lowest rank correlation value (0.82) is observed when comparing the ranks
attained for the elitist and the other two variants for M3.
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13.5 Summary

We proposed a family of Linear Programming models for constructing a univocal
ranking based on multiple ratings using different qualitative scales. The underlying
idea consisted in adapting value-based efficiency analysis for deriving Benefit-of-
Doubt composite indicators. The basic models minimized the maximal regret of
each alternative to the best one. In this regard, we accounted for all alternatives
as potential benchmarks or limited the latter set to these dominating a specific
alternative under consideration. However, we also accounted for the maximization
of an absolute comprehensive value score. All models were adapted to tolerate
the elitist, anti-elitist, and unconstrained perspectives when moving toward better
qualitative levels. Under all settings, the considered alternative was free to set the
weights and values corresponding to different levels that made it compare to its
peers under the best possible light.

We used the elaborated models to evaluate 50 journals publishing MCDA
research. To have a diverse set of panel-based journal ratings, we considered
the ones established in Australia, Brazil, China, Finland, Poland, and the United
Kingdom. The obtained rankings were consistent to a large extent when considering
both the quantitative scores and the respective ranks of journals. The greatest
similarities were observed for the results derived from the minimization of the
maximal regret with or without trade-offs as well as for free and anti-elitist variants
for all models. In turn, slight differences with respect to the remaining settings were
noted for the models maximizing an absolute comprehensive score and/or assuming
the elitist perspective emphasizing the best classifications.

A common feature of all rankings was that the European Journal of Operational
Research always appeared at the top. Thanks to its most favorable levels in four
journal ratings and two second-based levels in the remaining two ratings, the
minimal regret for EJOR could be nullified, whereas its maximal comprehensive
score was close to a perfect 100. Moreover, for all journals but IEEE Transactions
on Evolutionary Computation and Applied Soft Computing, EJOR served as a peer
in a relative evaluation.

We envisage the following future research directions. First, we aim at extending
the proposed models with robustness analysis that would quantify the stability of
rankings attained for all feasible weight vectors and other parameter values [18].
This would contrast with the perspective adopted in this chapter that allowed each
journal to choose a value function from which it could benefit the most. Second, it
would be interesting to incorporate expert knowledge when defining the constraints
on the value differences between the neighboring levels. The points assigned to
these levels in the Polish rating or the level names in Brazil (one C level, five B
levels, and 2 A levels) suggest that the underlying marginal value functions should
be neither linear nor fully convex or concave, and their character may differ from
one rating to another. Third, it is possible to consider other ratings, preferably from
the world’s regions that were not represented in the conducted study. Note, however,
that such ratings are the most popular in Europe. In fact, we also analyzed France’s
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CNRS Section 37 and Denmark’s BFI, but they were not included in the data set
due to their remarkable similarity to AJG and JUFO, respectively. Fourth, it would
be interesting to consider other (possibly broader) journal categories. As a final
remark, let us emphasize that even though in this chapter we focused on the analysis
of ratings of academic journals, the proposed models can be applied for evaluating
any set of alternatives evaluated on heterogeneous qualitative scales.
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Chapter 14
Interactive Multicriteria Methodology
Based on a Synergy of PROMETHEE II
and Robust Simos Methods: Application
to the Evaluation of E-government
in Europe

Eleftherios Siskos and Yannis Siskos

Abstract This chapter proposes a multicriteria evaluation methodology, which is
based on a synergy of the outranking method PROMETHEE II and the Robust
Simos method for the elicitation of criteria importance weights. The evaluation
system operates via a robustness control algorithm, called “Bipolar Robustness
Control”, which measures and progressively improves the robustness of both the
evaluation model and the ranking results. The new framework is then implemented
to evaluate and rank 22 developed European countries, on the basis of their e-
government readiness, considering the knowledge and the preferential data of a
senior expert. The net outranking flow, given by the PROMETHEE II method,
indicates the degree of superiority or inferiority of a country, compared to the
average e-government performance in Europe.

14.1 Introduction

The PROMETHEE outranking methods originally developed by Brans and Vincke
[1] are popular multicriteria methods that are producing outranking relationships
between the actions/alternatives a ∈ A of a decision-making problem (see [2, 3],
for instance). Just like in the case of the ELECTRE family methods, the n criteria
that frame the decision problem, are supposed to be weighted by a Decision Maker
(DM), through the elicitation of importance weights p1, p2, . . . , pn, which express
the relative magnitude of them and always sum up to one.
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∑n

j=1
pj = 1. (14.1)

The importance weights are assessed and quantified, using another auxiliary
method, in conjunction with the PROMETHEE method, which requires them as
input. Such methods and techniques include direct assessment procedures, indirect
methods that require pairwise comparisons, elicitation of importance ranges, rank-
ing of the criteria etc. (see [4], for more details).

This paper proposes an interactive multicriteria evaluation procedure, which is
based on the synergy of the PROMETHEE II method for assigning a global score
to the set of actions under evaluation, and a procedure named “Robust Simos
Method” [5] for the elicitation of the criteria importance weights. This synergy
aims to provide the decision-maker (DM) with a simple, transparent and easily
comprehensible elicitation protocol for the criteria weights and assuring at the same
time that these are stable enough to produce robust ranking results.

The implementation of the synergistic framework of the two aforementioned
Multicriteria Decision Aid (MCDA) methods is coordinated and guided by a
robustness control algorithm, called “Bipolar Robustness Control”. This algo-
rithm measures, assesses and progressively improves the robustness of the criteria
weights, calculated by the Simos procedure, and the robustness of the evaluation
results, given by the PROMETHEE II method. In the same spirit, Corrente et al.
[6] propose the application of the Stochastic Multicriteria Acceptability Analysis
(SMAA) to the family of PROMETHEE methods, in order to explore the whole
set of parameters, compatible with some preference information provided by the
Decision Maker (DM). Corrente et al. [7] also propose a ranking framework,
extending the ELECTRE III to prioritize interacting criteria, allowing the handling
of imprecise data and defining the space of feasible weighting solution. The
robustness analysis in that case is achieved through a stochastic analysis of a
sampled set of possible weights.

In the end, the proposed robustness control framework is implemented, in
conjunction with the synergy of the PROMETHEE II and the Robust Simos method,
to evaluate and rank 22 developed European countries, on the basis of their e-
government performance. The whole interactive assessment procedure considers the
knowledge and the preferential information, provided by a senior expert in the field
of e-governance.

The rest of the paper is organized as follows: Section 14.2 presents the proposed
synergy of PROMETHEE II—Robust Simos procedure. Section 14.3 outlines the
bipolar robustness control algorithm, and additionally proposes a set of robustness
indicators, assigned to the poles of the system. Subsequently, the implementation of
the methodological framework to the e-government evaluation problem is presented
in two parts: the first elicitation of criteria weights (Sect. 14.4), and the progressive
implementation of robustness control, until the final evaluation of the European
countries, is achieved (Sect. 14.5). Section 14.6 summarizes the achieved outcomes
and concludes the paper.
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14.2 The Synergy of PROMETHEE II and Robust Simos
Multicriteria Evaluation Methods

14.2.1 A Brief Presentation of the PROMETHEE Methods

The PROMETHEE methods make use of the notion of generalized criterion. Hence
they model the value that the DM or stakeholder/evaluator is attributing to the score
difference [gj(a) − gj(b)] on a criterion gj for a pair of actions (a, b), where gj(a) is
the performance of action a on criterion gj. This is performed through the modelling
of a preference function Pj(a, b), defined as follows:

Pj (a, b) = Fj

[
dj (a, b)

]∀a, b ∈ A, (14.2)

where

dj (a, b) = gj (a)− gj (b). (14.3)

0 ≤ Pj (a, b) ≤ 1. (14.4)

Pj (a, b) = 0, when gj (a)− gj (b) ≤ 0. (14.5)

When gj(a) − gj(b) > 0, the non-negative value that the preference function Pj

exhibits, is dependent on the type of generalized criterion that is selected by the
analyst (see Appendix 1 for the description of the 6 different types of preference
functions). The specific parameters that eventually need to be provided by the DM
for the specification of these functions are:

q: indifference threshold
p: strict preference threshold
s: median threshold between q and p

14.2.1.1 A Multicriteria Pairwise Outranking Indicator

For every pair of actions (a,b), the following weighted preference indicator is
defined:

π (a, b) =
∑n

j=1
pjPj (a, b) . (14.6)

It expresses the global outranking intensity of action a over action b.
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14.2.1.2 Outranking Flows

For each action a the following outranking indicators are defined, in relation to the
rest of the alternatives x ∈ A under evaluation:

Positive outranking flow:

ϕ+ (α) = 1

n− 1

∑

x∈A

π (α, x) . (14.7)

Negative outranking flow:

ϕ− (α) = 1

n− 1

∑

x∈A

π (x, α) . (14.8)

Net outranking flow:

ϕ (α) = ϕ+ (α)− ϕ− (α) . (14.9)

14.2.1.3 PROMETHEE II Ranking Procedure

For the specific case of the PROMETHEE II method, the actions under evaluation
are rank-ordered, based on their net outranking flows ϕ. It should be noted that
PROMETHEE I, on the contrary, creates two rankings according to the flows ϕ+
and ϕ−, and gives a partial ranking of the alternatives, through the merging of the
aforementioned two.

14.2.2 Elicitation of Criteria Weights Through the Simos
Methods

14.2.2.1 The Original Method of Cards

The Simos Method or method of cards (see [8–10]) consists of the following three
information extraction steps:

1. The DM is given a set of cards with the name of one criterion on each (n cards,
each corresponding to a specific criterion of a family F). A number of white cards
are also provided to the DM.

2. The DM is asked to rank the cards/criteria from the least to the most important,
by arranging the cards in an ascending order. If multiple criteria have the same
importance, she/he should build a subset by holding the corresponding cards
together with a clip.
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3. The DM is finally asked to introduce white cards between two successive cards
(or subsets of ex aequo criteria) if she/he deems that the difference between them
is more extensive. The greater the difference between the weights of the criteria
(or the subsets of criteria), the greater the number of white cards that should be
placed between them. Specifically, if u denotes the difference in the magnitude
between two successive criteria cards, then one white card means a difference of
two times u, two white cards mean a difference of three times u etc.

The information provided by the DM is exploited by the Simos method for the
determination of the weights, according to the following algorithm:

(i) Ranking of the subsets of ex aequo from the least important to the most
important, considering also the white cards

(ii) Assignment of a position to each criterion/card and to each white card
(iii) Calculation of the non-normalized weights, and
(iv) Determination of the normalized weights

The least qualified card is given Position 1, while the most qualified one
receives Position n. The non-normalized weight of each rank/subset is determined
by dividing the sum of positions of a rank, by the total number of criteria belonging
to it. The non-normalized weights are then divided by the total sum of positions of
the criteria in each rank (excluding the white cards), in order to normalize them. The
obtained values are rounded off to the lower or higher nearest integer value. The
reader is referred to the Sect. 14.4.3 for the actual implementation of the original
Simos method.

Figueira and Roy [11] proposed a revised version of the Simos method. In
addition to the three-step data collection process, the new procedure introduces a
fourth step, which demands from the DM to state “how many times the last criterion
is more important than the first one in the ranking” (ratio z). This ratio is applied, in
order to define a fixed interval between the weights of criteria or their subsets. This
interval is denoted by u = z−1

e
, where e is the number of different weighting classes

(namely single cards, subsets of ex aequo cards, and white cards).
Very recently, Corrente et al. [12] presented an improved version of the deck of

cards method to render the construction of ratio and interval scales more “accurate”
compared to the ones built in the original version. The improvement comes from
the fact that a richer and finer preference information is provided by the DM, which
permits a more accurate modelling of the strength of preference between different
levels of a scale.

14.2.2.2 The Robust Simos Method

Siskos and Tsotsolas [5] proved that the information provided by a DM, in the
context of the original or revised Simos method, is not sufficient to ensure the
attainment of a unique set of weights. On the contrary, there is an infinite number
of weighting vectors, compatible with the decision-maker, which are elements of
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a hyper-polyhedron P. This polyhedron is framed by the set of linear relations,
imposed by the DM’s comparison of the criteria, with respect to their relative
importance. Tsotsolas et al. [13] focused on the presentation of the weights
assessment through prioritization method (WAP), constituting a specific integrated
implementation of the Robust Simos Method. WAP method on the one hand
enriches the preferential information used, in a friendly and comprehensive for the
DM way, while on the other hand, it leads to the estimation of weighting vectors
with higher robustness.

Therefore, it is expected that the existence of multiple weighting vectors in
outranking methods, such as the ELECTRE and PROMETHEE methods, will
cause distortions in the evaluation of the actions of the problem. These distortions,
translated to potential significant changes in the final ranking, cannot guarantee the
proposition of robust recommendations to the DM.

To this end, the control and progressive improvement of the stability of the
criteria weights are obtained through a set of robustness measures (see Sect. 14.3),
which are integrated into a single methodological framework, called “Robust Simos
Method”. This algorithmic process is expected to include an initialization phase,
which consists of the transformation of the DM’s hierarchy of criteria into a n-
dimensional convex polyhedron P, n being the number of criteria. This is followed
by the bipolar robustness control procedure, which is shown in the next Section.
A numerical investigation of this methodology on the e-government evaluation
problem is extensively presented in Sects. 14.4 and 14.5.

14.3 Bipolar Robustness Control and Decision Support

14.3.1 Methodological Framework of Bipolar Robustness
Control

The bipolar robustness control, presented in this section includes a set of robustness
measures and indices (see Sects. 14.3.2 and 14.3.3 below). These can support
analysts to apply the Simos method and ensure high robustness, in both the
elicitation of the weights (Disaggregation Pole) and the evaluation of the results,
given by the implementation of the outranking method (Aggregation Pole).

The lack of stability in one of the poles drives the analyst to reinforce the Simos’
initial criteria ranking with new preferential data, such as the addition of the ratio
z, thresholds and upper levels for certain criteria weights, bilateral comparisons of
alternatives, and more. The flowchart of the bipolar robustness control algorithm, in
conjunction with the Simos method, eliciting the criteria weights and the evaluation
results, is presented in the flowchart of Fig. 14.1.



14 Interactive Multicriteria Methodology Based on a Synergy. . . 275

Fig. 14.1 Bipolar robustness control flowchart for the synergy of Simos with an outranking
method

In case the level of robustness in one of the two control points is not considered
satisfactory, the analyst can return to the Disaggregation Pole and enrich the
preferential information input, with the help of the DM, in an attempt to improve
the robustness of both the model and the evaluation results.
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14.3.2 Robustness Measures in the Disaggregation Pole

The measures proposed below aim at measuring the stability of the weighting
coefficients, achieved through the Simos method, prior to their use in a given
outranking method. These measures and indices are as follows:

Variation range of weights for each criterion separately, by means of the
execution of 2n linear programmes (max − min approach):

min pj &pj , for every j = 1, 2, . . . , n. (14.10)

s.t.

p ∈ P . (14.11)

Average Weighting Vector (Barycenter) This weighting solution is considered as
the most representative weighting solution of polyhedron P and may be obtained
by different techniques. One of them consists in listing and averaging all weighting
solutions of the 2n linear programmes (14.10)–(14.11). Another technique consists
of finding and recording all the vertices of the polyhedron P, by using the
Manas-Nedoma [14] analytical algorithm, which traverses all the vertices of the
Hamiltonian path, and calculating a new average weighting vector, which represents
the barycenter of P (see also [15]).

For the acquisition of a representative weighting solution, it is also possible to
implement a random weight sampling algorithm/technique to produce and analyze
statistically a great number of weighting sets from the polyhedron. A relevant
technique is the stochastic multiobjective acceptability analysis (SMAA) initiated
by Lahdelma et al. [16]. The analyst is capable of computing an average weighting
solution, which could also be considered as a representative solution of P. Other
related techniques have been proposed by Greco et al. [15], Tervonen et al. [17] and
Corrente et al. [6, 7].

Average Range of the Preferential Parameters (ARP) This index reveals the
potential range of an average preferential parameter of the model, after considering
the preference information, extracted by the DM. The calculation of the ARP index
requires the a priori implementation of the max − min approach and is defined as
follows:

ARP = 1

m

m∑

i=1

[
maxi

(
pij

)− mini

(
pij

)]
, (14.12)

where m is the number of weighting instances of the system, considered during the
max − min LPs procedure, n is the number of criteria, and pij is the weight of ith
criterion for the jth instance. This index ranges in [0, 1] and receives lower values,
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when the robustness of a model increases. ARP receives the perfect value of 0, when
a unique preference model reflects the preference statements of the DM.

Average Stability Index (ASI) For each of the above robustness techniques, the
robustness measure ASI (Average Stability Index) can be also calculated. It reflects
the mean value of the normalized standard deviation of the estimated weights:

ASI = 1 − 1

n

∑n

i=1

√

m
∑m

j=1p
2
ij −

(∑m
j=1pij

)2

m
n

√
m− 1

. (14.13)

ASI takes values in the interval [0, 1]. The robustness of the weights is considered
acceptable (transition to the second robustness pole), when the value of the index
approaches 1, i.e. around 0.95 [18].

14.3.3 Robustness Measures in the Aggregation Pole
and Decision Support

Siskos and Tsotsolas [5] recommend that, when a decision analyst is willing to
use an MCDA framework, coupled with a weighting elicitation procedure, which
does not uniquely define the preferential parameters, one or more of the following
activities should be implemented. Such procedures include the Simos method and
calculate the criteria weights for the selection, ranking or sorting of a set of actions
A.

1. Build on A two distinct outranking relations, the necessary outranking
(aSNb ⇐⇒ aSb, i.e. action a outranks action b, for every weighting vector
p ∈ P), and the possible outranking, aSPb, meaning that there exists at least one
weighting vector p ∈ P for which aSb (see [19, 20], for definitions and properties
of these outranking relations, under the notion of Robust Ordinal Regression).

2. Define the maximum and minimum possible ranking positions for every action
a ∈ A, through the use of mixed integer linear programming techniques (see [21]).

3. Perform random samplings in P, in order to compute statistical measures,
associated to outranking relations between all the actions in A and to possible
ranking positions for each action separately (see [22]). These statistical indices
indicate either the probability that an action a outranks action b, or the probability
that action a maintains its initial position, given by a representative ranking.

Additional robustness measures, which complement the aforementioned activi-
ties, are proposed below.

Average Range of the Ranking (ARRI) and Ratio of the Average Range
of the Ranking (RARR) The calculation of these indices prerequisites the imple-
mentation of the Extreme Ranking Analysis technique, proposed by Kadzinski et
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al. [21]. Specifically, ARRI depicts the possible number of positions that an average
action can occupy in the complete ranking, while RARR reflects the ratio of the
aforementioned deviation, in association with the total number of alternatives under
evaluation. The optimal values of ARRI and RARR are 1% and 0%, respectively, and
they are calculated using the following formulae:

ARRI = 1

N

N∑

k=1

(∣
∣R∗(k)− R∗(k)

∣
∣+ 1

)
. (14.14)

RARR = ARRI − 1

N − 1
· 100%. (14.15)

R∗(k) and R∗(k) are the worst and best possible ranking positions, respectively
for the kth action and N is the total number of actions under evaluation.

Statistical Preference Indices These indices offer a comprehensive way to exam-
ine the stability of the ranking positions, achieved by the whole entity of actions.
Their calculation prerequisites the implementation of methods that generate a
statistically adequate number of weighting vectors, within the polyhedron P, such
as the Manas-Nedoma algorithm, the SMAA technique, the Hit and Run algorithm
[17, 23]. Then, an equal number of different rankings is calculated, as the number
of different weighting vectors, generated by the weighting generation method.

Building on these multiple rankings, the statistical preference indices calculate
the separate probabilities, that each action occupies a single ranking position in the
final ranking, and constitute a measure to give a clear insight into the robustness of
the results.

14.4 Implementation to the E-government Evaluation: Phase
A’—First Elicitation of the Criteria Weights

14.4.1 E-government Evaluation Importance and Criteria
Modelling

Currently, with the global health crisis of 2020, caused by the COVID-19 pandemic,
the availability, acceptance and impact of e-government are increasingly attracting
attention [24]. Government measures taken by all the countries worldwide and the
restraining of citizens from reaching public services, in the form of lockdown, stress
the need for an empowerment and deepening of e-government services, provided
by the national and local authorities to citizens and businesses. Respectively, Sá
et al. [25] performed a literature review on the evaluation of the quality of local
e-government services.

On the other hand, the rapid development, transformation and modernization
of e-government creates an urgent need for the continuous evaluation of the
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performance of digitalized services in the world [26]. Towards this direction, e-
government benchmarks are used to assess the progress in the area of service
digitalization made by an individual country over a period of time, and to compare
its growth against other countries [27]. Such benchmarks can have a significant
practical impact, both political and potentially economic [28] and can influence
the development of e-government services [29, 30]. The results of benchmarking
and ranking studies, particularly global projects, conducted on a fixed chronical
base by international organizations, attract considerable interest from a variety of
observers, including governments and policy makers [31]. Such major e-government
evaluations worldwide include, among others, the UN E-Government Survey [32]
and the European Commission e-Government benchmark [33].

Researchers and practitioners evaluate the performance of e-government on
the basis of four complementary perspectives, including readiness assessment,
availability assessment, demand assessment, and impact assessment [34, 35]. The
readiness evaluation examines the maturity of the e-government environment by
evaluating the awareness, willingness, and preparedness of e-government stakehold-
ers and identifying the respective enabling factors [29, 36]. Benchmarking indices
and indicators for the readiness assessment are generally quantitative in nature, and
collectively form a framework for ranking. To maximize the acceptability of results,
rankings should be based on well understood and supported frameworks and indices,
and sound computational procedures [37].

Towards this direction, Siskos et al. [38] outlined an MCDA methodological
framework in order to evaluate and rank 22 European countries, based on their e-
government performance. The evaluation framework models a consistent family of
eight evaluation criteria, which are built on the following four points of view:

1. Infrastructures (two criteria: access to the web; broadband internet connection).
2. Investments (one criterion: % GDP on Information & Communications Tech-

nologies and Research & Development).
3. E-processes (two criteria: online sophistication; e-participation), and.
4. User’s attitude against e-processes (three criteria: citizens’ online interaction

with authorities; businesses’ online interaction with authorities; user’s experi-
ence).

A summary of this evaluation system and the corresponding evaluation scales
is presented in Table 14.1 (see [38] for a detailed presentation of the evaluation
system). The evaluation of the 22 European countries on the eight criteria is given
in Appendix 2. The data refer to the year 2017.

14.4.2 Initialization of the PROMETHEE II Method

The application of PROMETHEE II for the evaluation of e-government requires the
specification of the preference functions for all the criteria, as well as the estimation
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Table 14.1 Indices, criteria ranges, and preference thresholds

Criterion Index Preference threshold

g1-Access to the web % population 5%
g2-Broadband internet connection % population 5%
g3-% of GDP on ICT and R&D % GDP 0.1%
g4-Online Sophistication % 10%
g5-E-participation Index [0–1] 0.1
g6-Citizens’ online interaction with authorities % citizens 10%
g7-Businesses’ online interaction with authorities % businesses 5%
g8-User’s experience % index 10%

of the criteria importance weights. The decision-maker (DM) is a senior expert in
the field of e-governance and the digitalization and interoperability of services.

After a dialogue between the analyst and the DM, for the determination of the
preference function for each criterion, according to the typology of PROMETHEE
II (see Appendix 1), the DM-evaluator concluded that, since all the criteria data
stem from external but reliable sources, any difference in the evaluation between
two countries is meaningful. However, he did question the preferential reliability
of the so-called “small differences”. To this end, he agreed on the adoption of a p
preference threshold for each criterion, and specifically the Type 3 function P(p) for
all eight criteria, based on formula (14.16). All eight preference thresholds pj, j= 1,
2, .., 8, as given by the DM, are presented in the last column of Table 14.1.

P(d) =

⎧
⎪⎨

⎪⎩

0 d ≤ 0
d
p

0 ≤ d ≤ p

1 d > p

. (14.16)

The Type 3 preference function (or V-shape) indicates that there is always a
preference between two countries on any criterion, when there exists a difference
in their values. This preference increases linearly, as long as the difference between
the two countries in a criterion is less than the threshold value p, and takes the value
of 1, when that difference reaches or exceeds the value of p.

In this way, the calculations of the tables Pj(a, b) are performed for each criterion
gj and for all the countries, as dictated by the formulae (14.2)–(14.5).

14.4.3 A’ Phase of the Robust Simos Method

After the calculation of the PROMETHEE preference tables, the elicitation of the
weights of the criteria is performed, through the Robust Simos Method (RSM), in
synergy with the bipolar robustness control algorithm and in full interaction with
the DM. To this end, the analyst asks the DM to give a complete ranking of the
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criteria, based on their importance, in order to proceed to the application of the
Simos method. The rank order of the criteria, in increasing importance and with the
inclusion of white cards, is given in Table 14.2.

The results obtained after the implementation of the original Simos method are
shown in Table 14.3. Particularly, the calculated criteria weights are given in the last
two columns of the Table. At this point, the analyst could deliberately set the weight
of the two least important criteria to the value: p5 = p7 = 3.5 (instead of 4.0), so
that the sum of all the weights sharply reaches the value of 100.

Contrary to the original Simos method, the subsequent application of the Robust
Simos Method (RSM) and the implementation of its underlying mathematical
relations gives a clear overview of the first polyhedron P. The polyhedron is framed
by the linear constraints, imposed by the Simos ranking, see below, and it has been
assumed that the minimum preference difference between two consecutive criteria
or subset of criteria, δ, is 0.01. The weights of the two white cards are denoted below
as w1 and w2.

Table 14.2 Ranking of the
criteria as given by the DM
(Increasing importance)

Criteria Ranking (increasing importance)
g5, g7

g8

White Card I
g4

g1

g3

g6

White Card II
g2

Table 14.3 Calculation of the e-government criteria weights with the original Simos algorithm

Class No of cards Position
Non-normalized
weight Normalized weight Total

{5, 7} 2 1,2 1+2
2 = 1.5 1.5

42 × 100 = 3.6 → 4 2 × 4 = 8
{8} 1 3 3 3

42 × 100 = 7.1 → 7 1 × 7 = 7
White Card I 1 (4) – – –
{4} 1 5 5 5

42 × 100 = 11.9 → 12 1 × 12 = 12
{1} 1 6 6 6

42 × 100 = 14.3 → 14 1 × 14 = 14
{3} 1 7 7 7

42 × 100 = 16.7 → 17 1 × 17 = 17
{6} 1 8 8 8

42 × 100 = 19.0 → 19 1 × 19 = 19
White Card II 1 (9) – – –
{2} 1 10 10 10

55 × 100 = 23.8 → 24 1 × 24 = 24
Total 10 42 ~100
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1st Polyhedron P

1. p5 − p7 = 0 2. p8 − p7 ≥ 0.01 3. w1 − p8 ≥ 0.01 4. p4 − w1 ≥ 0.01
5. p1 − p4 ≥ 0.01 6. p3 − p1 ≥ 0.01 7. p6 − p3 ≥ 0.01 8. w2 − p6 ≥ 0.01
9. p2 − w2 ≥ 0.01
10. p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1
11. p1, p2, p3, p4, p5, p6, p7, p8, w1, w2 ≥ 0

The robustness control procedure that follows the framework of the RSM is
initially implemented in the Disaggregation Pole, through the use of the max − min
technique. After solving the relevant 16 linear programming problems (14.10)–
(14.11), i.e. 8 max and 8 min, the results of Table 14.4 are obtained.

Figure 14.2 depicts the range of the eight criteria weights in the first polyhedron
P. Observing this diagram, it is immediately apparent that the weights are practically
uncontrollable, since they exhibit very high variance within the feasible range [0, 1].
An extreme example is p2, the fluctuation range of which exceeds 0.60 (60% of the
maximum possible fluctuation).

Consequently, the analyst noticed without difficulty the inadequate stability of
the model at this stage, which is also confirmed by the relatively low value of 0.901,
obtained by the optimistic ASI index. On the other hand, the Average Range of
Parameters (ARP) index elevates to the unsatisfactory value of 23.5%.

Therefore, the analyst considers that at this phase, it is impossible to calculate
a representative model and thus proceed to the Aggregation Pole. The algorithm

Table 14.4 Results of the A′ Phase max − min procedure

Solution type p1 p2 p3 p4 p5 p6 p7 p8

min p1 0.04 0.323 0.293 0.03 0 0.303 0 0.01
max p1 0.223 0.263 0.233 0.03 0 0.243 0 0.01
min p2 0.131 0.171 0.141 0.121 0.091 0.151 0.091 0.101
max p2 0.04 0.81 0.05 0.03 0 0.06 0 0.01
min p3 0.04 0.445 0.05 0.03 0 0.425 0 0.01
max p3 0.04 0.323 0.293 0.03 0 0.303 0 0.01
min p4 0.223 0.263 0.233 0.03 0 0.243 0 0.01
max p4 0.186 0.226 0.196 0.176 0 0.206 0 0.01
min p5 0.162 0.202 0.172 0.152 0 0.182 0 0.132
max p5 0.131 0.171 0.141 0.121 0.091 0.151 0.091 0.101
min p6 0.04 0.81 0.05 0.03 0 0.06 0 0.01
max p6 0.04 0.445 0.05 0.03 0 0.425 0 0.01
min p7 0.162 0.202 0.172 0.152 0 0.182 0 0.132
max p7 0.131 0.171 0.141 0.121 0.091 0.151 0.091 0.101
min p8 0.186 0.226 0.196 0.176 0 0.206 0 0.01
max p8 0.162 0.202 0.172 0.152 0 0.182 0 0.132
Barycenter 0.121 0.328 0.161 0.088 0.017 0.217 0.017 0.050
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Fig. 14.2 Criteria weights ranges (A′ Phase)

returns to the starting point of the Disaggregation Pole, with a view to acquiring
additional preferential information by the DM and determine therefore more
accurately the decision model.

14.5 Implementation to the E-government Evaluation: B′
and C′ Phases

14.5.1 B′ Phase of Robustness Control

At the start of the B′ Phase of Robustness Control, the analyst considers it
appropriate to ask the DM for further information, in order to improve the robustness
of the model. Specifically, after observing, in the diagram of Fig. 14.2, that the
weights of the two least significant criteria, g5 and g7, are possible to even be zero,
which is unreasonable, he asks the DM to set minimum importance thresholds for
them.

Indeed, the DM responds and sets the minimum possible weight for these
two criteria at 3%. Thus, the following two new inequalities emerge, which are
incorporated to the existing system of constraints:

p5, p7 ≥ 0.03. (14.17)
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The new polyhedral space, in which the weights of the eight criteria are confined,
is described below:

Second Polyhedron P

1. p5 − p7 = 0 2. p8 − p7 ≥ 0.01 3. w1 − p8 ≥ 0.01 4. p4 − w1 ≥ 0.01
5. p1 − p4 ≥ 0.01 6. p3 − p1 ≥ 0.01 7. p6 − p3 ≥ 0.01 8. w2 − p6 ≥ 0.01
9 p2 − w2 ≥ 0.01 10. p5 ≥ 0.03 11. p7 ≥ 0.03
12. p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1
13. p1, p2, p3, p4, p5, p6, p7, p8, w1, w2 ≥ 0

Having this new preference information included in the system of constraints,
the analyst proceeds to the robustness control of the model in the Disaggregation
Pole, using the max − min technique. The solution of the 16 corresponding linear
programming problems (14.10)–(14.11) produces the results for the criteria weights
that are shown in Table 14.5. The ranges of the criteria weights are graphically
shown in the diagram of Fig. 14.3.

By comparing the two diagrams of the A′ and B′ Phase, a substantial reduction of
the criteria weights ranges can be noticed. This improvement in the robustness of the
model parameters between the two phases justifies the importance of the additional
piece of information, provided by the DM. Simultaneously, the ASI increased to
0.937, while the ARP index decreased to 15.8%.

Based on the new findings, the analyst deems that it is now possible to build
a tentative representative model, which marks the transition to the Aggregation

Table 14.5 Results of the B′ Phase max − min procedure

Solution type p1 p2 p3 p4 p5 p6 p7 p8

min p1 0.07 0.273 0.243 0.06 0.03 0.253 0.03 0.04
max p1 0.193 0.233 0.203 0.06 0.03 0.213 0.03 0.04
min p2 0.131 0.171 0.141 0.121 0.091 0.151 0.091 0.101
max p2 0.07 0.60 0.08 0.06 0.03 0.09 0.03 0.04
min p3 0.07 0.355 0.08 0.06 0.03 0.335 0.03 0.04
max p3 0.07 0.273 0.243 0.06 0.03 0.253 0.03 0.04
min p4 0.193 0.233 0.203 0.06 0.03 0.213 0.03 0.04
max p4 0.168 0.208 0.178 0.158 0.03 0.188 0.03 0.04
min p5 0.152 0.192 0.162 0.142 0.03 0.172 0.03 0.122
max p5 0.131 0.171 0.141 0.121 0.091 0.151 0.091 0.101
min p6 0.07 0.60 0.08 0.06 0.03 0.09 0.03 0.04
max p6 0.07 0.355 0.08 0.06 0.03 0.335 0.03 0.04
min p7 0.152 0.192 0.162 0.142 0.03 0.172 0.03 0.122
max p7 0.131 0.171 0.141 0.121 0.091 0.151 0.091 0.101
min p8 0.168 0.208 0.178 0.158 0.03 0.188 0.03 0.04
max p8 0.152 0.192 0.162 0.142 0.03 0.172 0.03 0.122
Barycenter 0.124 0.277 0.155 0.099 0.041 0.195 0.041 0.067
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Pole. The specification of a representative model, using the barycentric weighting
vector of Table 14.5, makes it possible to rank the 22 countries. The e-government
ranking is obtained by applying the PROMETHEE II method and calculating the
Net Outranking Flows ϕ(a) of each country, according to the relations (14.7)–(14.9).
In the end, the 22 countries are rank-ordered in a descending net outranking flow, as
shown in Table 14.6.

At this point, the application of the model on the real country data allows
the implementation of certain Aggregation Pole tools and indicators to assess the
robustness of the results. In particular, the Extreme Ranking Analysis is applied, in
order to calculate for each country the number of different positions it can achieve
in the complete ranking.

The algorithm of Extreme Ranking Analysis was modelled and executed in the
GAMS platform, and the occurring results are presented in the diagram of Fig. 14.4.

The visualization of the results of the Extreme Ranking Analysis advocate, that
for the majority of the countries under evaluation, the ranking ranges are quite
extensive. The robustness index ARRI gives the value of 3.0, which means that
an average country has 3 possible ranking positions. Accordingly, the RARR index
receives the non-acceptable value of 9.7%.

The aforementioned observations lead the analyst to the conclusion that the
evaluation results are still not exhibiting satisfactory levels of robustness. He conse-
quently decides to return to the Disaggregation Pole and repeat the whole procedure,
as indicated by the bipolar robustness control methodological framework.
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Table 14.6 E-government
ranking (representative
evaluation model—B′ Phase)

Rank Country Net Outranking flow

1 FI 0.784
2 SE 0.682
3 DN 0.652
4 NL 0.631
5 NO 0.421
6 FR 0.296
7 AT 0.231
8 EE 0.197
9 GE 0.153
10 UK 0.141
11 IR 0.095
12 SLO 0.016
13 BE −0.048
14 ES −0.062
15 PT −0.227
16 CZ −0.409
17 SLK −0.435
18 IT −0.481
19 HU −0.549
20 PO −0.599
21 HR −0.744
22 GR −0.744

Fig. 14.4 Extreme ranking analysis of the European countries for the B′ Phase evaluation model
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14.5.2 C′ Phase of Robustness Control

As part of the C′ Phase of Robustness Control, the analyst revisits again the
communication protocol with the DM, according to the procedures defined in the
Disaggregation Pole, in order to improve the stability of the model. At this stage, he
asks the DM to set a range for the ratio of significance (z, see Revised Simos above)
between the most important and the least important criterion. Specifically, he asks
the DM approximately how many times more important is the mostly appreciated
criterion g2 compared to the least appreciated criteria g5 and g7. The DM, after
careful reasoning, specifies that the criterion g2 is 5 to 5.5 times more important
than the criteria g5 and g7.

This statement is mathematically translated to the double inequality (14.18),
which again is added to the existing system of constraints.

5p5 ≤ p2 ≤ 5.5p5. (14.18)

The resulting new polyhedral space, within which the weights of the eight criteria
are confined, is described below:

Third Polyhedron P

1. p5 − p7 = 0 2. p8 − p7 ≥ 0.01 3. w1 − p8 ≥ 0.01 4. p4 − w1 ≥ 0.01
5. p1 − p4 ≥ 0.01 6. p3 − p1 ≥ 0.01 7. p6 − p3 ≥ 0.01 8. w2 − p6 ≥ 0.01
9. p2 − w2 ≥ 0.01 10. p5, p7 ≥ 0.03 11. 5p5 ≤ p2 12. p2 ≤ 5.5p5

13. p1 + p2 + p3 + p4 + p5 + p6 + p7 + p8 = 1
14. p1, p2, p3, p4, p5, p6, p7, p8, w1, w2 ≥ 0

The analyst, upon acquiring the new information, proceeds to examine the
robustness of the model in the Disaggregation Pole by reapplying the max − min
technique. The results that occurred after solving the relevant 16 linear programming
problems, 8 max and 8 min, are presented in Table 14.7. The ranges of the 8 criteria
weights are additionally visualized in Fig. 14.5.

It is now apparent, from the diagrams above, that the ranges of the criteria
weights have been significantly reduced, compared to the results of the previous two
Phases. It is therefore evident that this contraction of the variability of the weights
provides a solid basis for the derivation of a more reliable representative model.

The improvement of robustness of the results is likewise reflected in the ASI,
which increased to 0.964. The value of the index is even closer to the value of one,
which indicates the increasing robustness of the decision model. At the same time,
the ARP index fell below 10%, specifically to 9.3%.

The considerable increase in the robustness of the model clearly enables the
analyst to build a representative model and apply it to the dataset of the 22 countries.
The construction of a representative evaluation model, using the barycentric weight-
ing vector of Table 14.7, makes it possible to evaluate and rank the 22 countries.
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Table 14.7 Results of the C′ Phase max − min procedure

Solution type p1 p2 p3 p4 p5 p6 p7 p8

min p1 0.085 0.248 0.218 0.075 0.045 0.228 0.045 0.055
max p1 0.182 0.222 0.192 0.07 0.04 0.202 0.04 0.05
min p2 0.149 0.189 0.159 0.139 0.038 0.169 0.038 0.119
max p2 0.105 0.356 0.115 0.095 0.065 0.125 0.065 0.075
min p3 0.092 0.288 0.102 0.082 0.052 0.268 0.052 0.062
max p3 0.085 0.248 0.218 0.075 0.045 0.228 0.045 0.055
min p4 0.182 0.222 0.192 0.07 0.04 0.202 0.04 0.05
max p4 0.164 0.204 0.174 0.154 0.037 0.184 0.037 0.047
min p5 0.15 0.19 0.16 0.14 0.035 0.17 0.035 0.12
max p5 0.108 0.338 0.118 0.098 0.068 0.128 0.068 0.078
min p6 0.105 0.356 0.115 0.095 0.065 0.125 0.065 0.075
max p6 0.092 0.288 0.102 0.082 0.052 0.268 0.052 0.062
min p7 0.15 0.19 0.16 0.14 0.035 0.17 0.035 0.12
max p7 0.108 0.338 0.118 0.098 0.068 0.128 0.068 0.078
min p8 0.164 0.204 0.174 0.154 0.037 0.184 0.037 0.047
max p8 0.15 0.19 0.16 0.14 0.035 0.17 0.035 0.12
Barycenter 0.129 0.254 0.155 0.107 0.047 0.184 0.047 0.076
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Fig. 14.5 Criteria weights ranges (C′ Phase)

The ranking of the countries, resulting from the application of PROMETHEE II, is
presented in Table 14.8, in descending Net Outranking Flows.

After applying the representative model to the country data, the analyst decides to
implement certain robustness control techniques of the Aggregation Pole to validate
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Table 14.8 E-government
ranking (representative
evaluation model—C′ Phase)

Rank Country Net Outranking flow

1 FI 0.806
2 SE 0.717
3 DN 0.689
4 NL 0.666
5 NO 0.450
6 FR 0.270
7 AT 0.230
8 GE 0.211
9 EE 0.180

10 UK 0.170
11 IR 0.070
12 SLO 0.032
13 BE 0.003
14 ES −0.085
15 PT −0.282
16 CZ −0.424
17 SLK −0.446
18 IT −0.524
19 HU −0.549
20 PO −0.633
21 HR −0.763
22 GR −0.787

the robustness of the results. Similar to Phase B′, the Extreme Ranking Analysis
gives a clear picture of the robustness of the final ranking of the 22 countries. The
obtained results are shown in Fig. 14.6.

The application of the Extreme Ranking Analysis revealed a notable reduction in
the number of potential ranking positions of each country. In particular, the ARRI
decreased to 2.3, while RARR dwindled to 6.2%. These indicators show that an
average country in the ranking can occupy 2.3 positions in the ranking, while the
overall ranking exhibits a total volatility of 6.2%.

At the end of the C′ Phase, the analyst, in agreement with the DM, considers that
the results of the bipolar robustness control procedure are sufficiently satisfactory
and can support a reliable ranking of the 22 European countries. The decision model,
developed on the basis of the Simos Method elicitation protocol, is assumed as
sufficiently robust too. Both the DM and the analyst deem that it can adequately
perform the evaluation and ranking of additional countries and/or the same, when
new data on the indicators are made available. They consequently decide to
terminate the algorithmic process of robustness control, and mark the e-government
ranking of C′ Phase as final.

Finally, the evolution of the values of the robustness indices, through the three-
phase decision support procedure, is illustrated in Table 14.9. The parentheses show
the percentagewise improvement of the indicators from one Phase to the next.
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Fig. 14.6 Extreme ranking analysis of the European countries for the C′ Phase evaluation model

Table 14.9 Evolution of the
robustness indices through
the implementation of the
Robust Simos Method

Index A′ phase B′ phase C′ phase

ASI 0.906 0.937 (+3.4%) 0.964 (+2.9%)
ARP 23.5% 15.8% (−32.7%) 9.3% (−41.1%)
ARRI – 3.0 2.3 (−23.3%)
RARR – 9.7% 6.2% (−36.1%)

14.6 Conclusion

This paper proposes and outlines an interactive synergy of the two complementary
multiple criteria methods “PROMETHEE and Robust Simos”, when used to
evaluate a predefined set of actions. Towards this directions, special effort is made
to achieve robust results, i.e. results that are resistant to the possible fluctuations
of preference and other data. This has been ensured through the proposition of
an algorithmic procedure, called bipolar robustness control, which measures and
manages the robustness of the evaluation results by controlling the quality of the
input data. The proposed framework is successfully applied to the problem of the
evaluation of the e-government performance of 22 European countries. The net
outranking flows, achieved through the application of the PROMETHEE II method,
can be interpreted as a degree of superiority (positive flow) or inferiority (negative
flow) of each country, compared to the e-government performance of the average
European country.

This evaluation procedure can identify structural gaps of performance, as well
as insufficiencies in specific countries, which need to be accounted by Europe
as a whole, in order to pursue a mutual path of continuous improvement and
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development. On the other hand, the benchmarking and dynamic nature of the
evaluation can provide valuable insights to policy makers, to assess the progress
made by a specific country and adjust the strategical e-government empowerment
framework likewise.

From a methodological point of view, the benchmarking and ranking tools,
presented in this paper, can also serve to different evaluation problems and complex
decision-making procedures, which concern the allocation of resources for efficient
policymaking. Such problems include for instance the ranking of institutions, the
evaluation of technological and human development projects for clean energy and
climate change mitigation, the ranking of global energy security and poverty and
the evaluation of urban planning solutions.

The proposed modelling of e-government evaluation, in particular, could set
the basis for a more inclusive global or European assessment, incorporating, more
explicit aspects of e-governance, such as extensive e-participation, as well as the
interoperability of services and websites. Such a framework can account for new
technological developments, in the field of maturity of digital services and public
acceptance, which are gradually becoming largely applicable.

Appendices

Appendix 1: Typology of PROMETHE’s Generalized Criteria:
Preference Function P(d),d: Evaluation Difference [2]

Generalized criterion Definition Parameters

Type 1:
Uniform P (d) =

{
0 d ≤ 0

1 d > 0

–

Type 2:
U-shape P (d) =

{
0 d ≤ q

1 d > q

q

(continued)
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Generalized criterion Definition Parameters

Type 3:
V-shape criterion

P (d) =⎧
⎪⎨

⎪⎩

0 d ≤ 0
d
p

0 ≤ d ≤ p

1 d > p

p

Type 4:
Level

P (d) =⎧
⎪⎨

⎪⎩

0 d ≤ q
1
2 q < d ≤ p

1 d > p

p, q

Type 5:
V-shape with indifference criterion

P (d) =⎧
⎪⎨

⎪⎩

0 d ≤ q
d−q
p−q

q < d ≤ p

1 d > p

p, q

Type 6:
Gaussian criterion

P (d) =
{

0 d ≤ 0

1 − e
−d2

2s2 d > 0

s
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Appendix 2: Performance of the European Countries
on the Eight Evaluation Criteria

Country g1 g2 g3 g4 g5 g6 g7 g8

Belgium 90.00 67.75 2.28 63.00 0.25 36.00 74.33 58.00
Czech Republic 88.00 63.76 1.91 56.00 0.25 21.33 87.67 44.50
Denmark 96.00 72.78 3.05 85.00 0.55 65.33 89.33 65.00
Germany 93.50 71.26 2.94 67.00 0.70 33.33 58.67 45.50
Estonia 89.50 69.50 1.74 87.00 0.76 35.00 80.00 77.50
Ireland 90.00 66.17 1.58 87.00 0.65 43.00 88.00 62.00
Greece 77.50 59.62 0.78 46.00 0.80 27.67 78.33 41.00
Spain 86.00 66.42 1.24 91.00 0.78 36.33 69.00 72.50
France 91.00 68.51 2.23 75.00 0.96 44.00 89.00 68.50
Croatia 82.00 61.67 0.81 53.00 0.33 19.33 81.00 48.00
Italy 85.50 63.35 1.25 77.00 0.78 15.67 69.67 60.50
Hungary 81.50 61.96 1.41 45.00 0.45 34.33 82.33 35.50
Holland 98.00 77.40 1.98 82.00 1.00 57.67 80.67 65.50
Austria 89.50 67.41 2.81 86.00 0.63 40.33 80.67 70.50
Poland 84.00 62.50 0.87 76.00 0.49 17.33 81.67 51.00
Portugal 81.00 63.63 1.36 96.00 0.65 30.67 81.00 74.00
Slovenia 87.50 67.39 2.59 68.00 0.39 37.00 85.00 63.00
Slovakia 88.00 63.53 0.83 72.00 0.63 33.00 80.67 30.00
Finland 95.00 75.46 3.32 86.00 0.71 64.00 91.33 71.00
Sweden 94.00 74.94 3.21 83.00 0.61 60.33 90.67 68.50
Norway 95.00 71.42 1.69 78.00 0.69 64.33 84.33 63.50
United Kingdom 92.50 72.33 1.63 74.00 0.96 35.00 75.00 51.00
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Chapter 15
The Use of Decision Maker’s Preferences
in Multiobjective Metaheuristics

Juergen Branke, Andrzej Jaszkiewicz, and Piotr Zielniewicz

Abstract In multiobjective optimization, there is usually not a single optimal solu-
tion as result, but a set of so-called Pareto-optimal solutions with different trade-offs
between the objectives. Metaheuristics, in particular evolutionary algorithms, have
been very successful in solving such problems, because they can simultaneously
search for multiple Pareto-optimal solution. However, at some point a decision
maker has to be involved to pick the final solution. This chapter reviews and
summarizes the research of Prof. Roman Słowiński, members of his Laboratory,
and his main collaborators related to the use of the decision maker’s preferences in
metaheuristic and evolutionary algorithms.

15.1 Introduction

Metaheuristics, including evolutionary algorithms, are very successful tools for
approximate continuous and combinatorial optimization [10, 11]. Although single
objective metaheuristics may be applied in multiobjective context, for example
for optimization of parametrized scalarizing functions, the full potential of this
class of algorithms is exhibited in multiobjective metaheuristics (MOMHs), which
aim at generation of multiple approximately Pareto-optimal solutions in a single
run [22, 23]. This stream of research started with the proposition of the Vector
Evaluated Genetic Algorithm by Schaffer [24] and became an extremely active field
of research and application. In particular, evolutionary multiobjective optimization
algorithms (EMOs) and other population-based algorithms can take advantage of
processing a population of solutions that could spread over the whole or over a sub-
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region of the Pareto front [9, 22]. However, in most applications, the decision maker
(DM) is only interested in a single solution, for example a project manager needs
to select a single schedule for a project taking into account multiple objectives.
So, at some point the DM’s preferences with respect to the relative importance of
the different criteria need to be revealed. Depending on the moment of collecting
the preference information with respect to the optimization process, multiobjective
methods can be classified as either having a priori, a posteriori, or progressive
(interactive) articulation of preferences [16, 25]. A priori elicitation of preferences
may require single objective optimization (e.g. optimization of a utility function),
which may be performed with single objective metaheuristics. In the case of
interactive and a posteriori approaches, MOMHs and EMOs are more natural
choices.

Taking into account the interest of Roman Słowiński in DM preference elicita-
tion, modelling, and exploitation, it is natural that his research and the research of
some members of his team has been focused on the use of DM preferences in the
class of MOMH and EMO algorithms. So this chapter highlights the contributions
he and his team made to the field. Since he started working on this topic,
the combination of ideas from multi-criteria decision analysis and multiobjective
metaheuristics has quickly become an active research field over recent years, with
a regular Dagstuhl seminar (https://www.dagstuhl.de) on the topic, which also
resulted in a book co-edited by Roman Słowiński [1].

15.2 Two-Stage Approach for Interactive Analysis of
Multiobjective Combinatorial Optimization Problems

In 1997 two members of the Roman Słowiński’s team, Piotr Czyżak and Andrzej
Jaszkiewicz, proposed Pareto simulated annealing (PSA) [7], one of the first
multiobjective version of SA algorithm. PSA uses a population of solutions that
repel each other in order to spread over the whole Pareto front. Combining
this proposition with the interest of Roman Słowiński in preference modelling,
project scheduling, and optimization under uncertainty, he and his co-authors
proposed a methodology for interactive analysis of multiple criteria fuzzy project
scheduling problems with a two-stage approach [14, 15]. Since project scheduling
is a multiobjective combinatorial optimization problem, PSA has been applied to
generation of a large set of approximately Pareto-optimal solutions from the point
of view of the following objectives:

• The project completion time
• The total project cost
• The resource smoothness rate expressed as the average deviation from the

average resource usage expressed in resource units

https://www.dagstuhl.de
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The first two objectives were taking fuzzy values, which required an adaptation of
PSA for comparison of fuzzy numbers. In addition a fuzzy scheduling procedure
using weak and strong comparison rules for fuzzy numbers was applied. Since
the number of approximately Pareto-optimal solutions could be very large, the
DM may still require a support in selecting the best compromise solution. The
authors proposed the use of Light Beam Search (LBS) method [20] in the second
stage for interactive analysis of large set of alternatives. LBS enables an interactive
analysis through presentation of samples of solutions to the DM in each iteration.
It uses a local preference model in the form of an outranking relation to define
the neighbourhood of the current solution from which the sample is generated.
The method has been originally proposed by Jaszkiewicz and Słowiński for
multiobjective nonlinear optimization; however, it was later adapted to the analysis
of large sets of predefined alternatives/solutions [19]. The DM can control the search
by either modifying the aspiration and reservation points or by shifting the current
point to a selected better point from its neighbourhood. The proposed two-stage
approach has been applied to an agricultural project scheduling problem and it was
one of the first approaches combining multiobjective metaheuristics and the use of
DM’s preferences.

15.3 Preference-Based Evaluation of Multiobjective
Metaheuristics

In 1998 Andrzej Jaszkiewicz from Roman Słowiński’s Laboratory and Michael
Hansen from Technical University of Denmark published a technical report [13],
which was one of the first papers on evaluation of multiobjective metaheuristics
and evolutionary algorithms. Although this paper has never been published as a
journal or conference publication (the topic was probably too new for reviewers
at that time), it became one of the most cited papers from Roman Słowiński’s
Laboratory, and many results were later re-confirmed in other papers (see e.g.
[31]). What is important, motivated by the works of Roman Słowiński, Hansen and
Jaszkiewicz looked at the problem of measuring the quality of approximations to
the non-dominated set from the perspective of the DM’s preferences. They started
with the observation that in the case of a multiobjective optimization problem, the
overall goal of the decision-maker (DM) is to select the single solution, which
is the most consistent with his or her preferences. Generating an approximation
to the non-dominated set is only a first phase in solving the problem. In the
second phase, the DM selects the best compromise solution from the approximation,
possibly supported by an interactive procedure. Therefore, the DM may consider
approximation A as being better than approximation B if he or she can find a
better compromise solution in A than in B. They assumed, however, that the
DM’s preferences are not known a priori. In fact, the use of heuristics generation
of approximations to the full non-dominated set is justified only in this case.
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Nevertheless, one may be able to make some general assumptions about possible
DM’s preferences. Using these assumptions, one can state that an approximation
A outperforms (is better than) B if, for some possible preferences held by the
DM, the DM may find a better compromise solution in A than may be found in
B, and for other possible preferences, the solutions found in A will be not worse
than those found in B. This led to the definitions of weak, strong, and complete
outperformance relations w.r.t. a set of possible preferences and the concept of
compatibility of quality indicators with these relations. The most general and widely
accepted assumption about DM’s preferences is the compatibility with a dominance
relation, which means that the DM always prefers a dominating solution over the
dominated one. This led to the concept of the compatibility of quality indicators
with the dominance relation, which was the basis for the general acceptance of the
hypervolume indicator that guarantees this compatibility [31].

Andrzej Jaszkiewicz continued the work on evaluation of multiobjective meta-
heuristics and evolutionary algorithms in [17], where he analysed the efficiency
of multiobjective metaheuristics vs. their single objective counterparts applied
to optimization of weighted scalarizing functions from (among others) the point
of view of interactive analysis. The question asked was, what is the relative
computational efficiency of the scenario where a multiobjective metaheuristic is
run first and then the DM uses an interactive method to analyse the large set of
potentially Pareto-optimal solutions (see Sect. 15.2) vs. the scenario where a single
objective metaheuristics is interactively used to optimize scalarizing functions with
different weights to generate on-line solutions presented to the DM. The different
ways of using interactive analysis together with metaheuristics and evolutionary
algorithms were further summarized in [18].

15.4 Evolutionary Multiobjective Optimization Algorithms
Based on Robust Ordinal Regression

In contrast to traditional MCDA methods that rely on the selection of a single
compatible instance of the preference model, the methods based on the Robust
Ordinal Regression (ROR) construct recommendations taking into account all
instances of the preference model compatible with the preference information
provided by the DM. Since these different instances of the preference model
may favour different solutions, the result may still be a range of Pareto-optimal
solutions. Since finding a set of Pareto optimal solutions is precisely the strength of
multiobjective evolutionary algorithms, a combination of the two methods makes a
lot of sense.

In [2–5] Roman Słowiński with his co-workers presented an original family
of algorithms for solving multiobjective optimization problems, called NEMO
(Necessary-preference-enhanced Evolutionary Multiobjective Optimizer), which
combines an evolutionary multiobjective optimization with an interactive procedure
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based on robust ordinal regression. The motivation for suggesting this approach
was the observation that with the increase of the number of criteria, many EMO
algorithms have difficulty to find a good representation of the Pareto front, and the
conviction that focusing on a small area of the Pareto front will allow to find an
interesting solution more quickly and reach the proper region of the Pareto front
with more accuracy.

The preference model used in almost all NEMO algorithms has the form of
an additive value function, which is compatible with the preference information
provided by the DM in the form of holistic pairwise comparisons of some non-
dominated solutions from the population. The marginal value functions can be
linear, piecewise linear, or general monotonic.

The basic NEMO-I algorithm proposed in [2] is based on the 2-criteria selection
mechanism known from the NSGA-II algorithm [8], in which the dominance
relation used to rank solutions in the population is replaced by the necessary
preference relation, and the crowding distance calculated in the criteria space is
replaced by the crowding distance calculated in the value space.

The necessary preference relation between two solutions occurs if and only if the
first one is at least as good as the second for all instances of the preference model
compatible with the preference information provided by the DM [12]. This relation
can be considered as robust with respect to the preference information. To determine
the occurrence of the necessary preference relation between two solutions, it is
necessary to solve one or two corresponding linear programming problems. The
crowding distance in the value space is calculated using a single, representative
value function compatible with the preference information given by the DM. For
this purpose, the NEMO-I algorithm uses the most discriminating value function,
i.e. value function that maximizes the difference of scores between solutions related
by preference in the necessary ranking.

However, the study of the NEMO-I algorithm revealed two of its practical
drawbacks. The first one was a long time of calculation (especially in the case
of large problems) due to its computational complexity. In every iteration of the
evolutionary algorithm, it is necessary to solve O(n2) linear programming problems
(with n being the population size) in order to rank solutions in the population from
the best to the worst using the necessary preference relation. The second drawback
was the preference model based on general-monotonic marginal value functions,
which turned out to be too flexible. As a consequence of this flexibility, a lot of
preference information is required to learn a useful model and obtain satisfactory
results.

In [4] the same authors proposed a new variant of the algorithm, called NEMO-0,
devoid of the above-mentioned drawbacks. The main assumption of the NEMO-
0 algorithm is to rank solutions in the population using a single value function
compatible with the preference information provided by the DM. The selection
mechanism implemented in the algorithm is based on two steps. First, the solutions
in the population are ranked by the dominance relation, as in the NSGA-II
method. Next, all solutions located in the same dominance front are sorted using a
representative value function compatible with the preference information obtained
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from the DM. In the discussed paper, the authors implemented and tested 5 different
representative functions.

In [5] Roman Słowiński and his co-workers presented another effective concept
of ranking solutions in the population during the selection process. This variant of
the algorithm, called NEMO-II, focuses on finding potential preferred solutions, i.e.
those that are best for at least one value function compatible with the preference
information provided by the DM. For each solution in the population, the algorithm
solves the corresponding linear programming problem. The linear computational
complexity of this algorithm positions it between the NEMO-I algorithm (square
complexity) and the NEMO-0 algorithm (constant complexity).

Moreover, for the first time in the context of evolutionary multiobjective opti-
mization, the authors proposed the non-additive DM’s preference model having the
form of the Choquet integral (NEMO-II-Ch), which allows interaction between the
criteria. The Choquet integral is based on the concept of capacity (fuzzy measure)
that assigns a weight to each subset of criteria rather than to each single criterion.
As there exists a trade-off between the flexibility of the value function model and
the complexity of learning a faithful model of DM’s preferences, the NEMO-II-Ch
algorithm starts the interactive process with a simple linear model but then switches
to the Choquet integral when a richer DM’s preference information becomes
available and can no longer be represented using the linear model. Conducted
research confirmed the high efficiency of the NEMO-II-Ch algorithm with respect to
its variants based on an additive preference model with linear and piecewise-linear
marginal value functions. Yet another preference model, namely preference cones
following the Lα norm from a pre-defined reference point, has been proposed in
[27].

In [21], Kadzinski and Tomczyk extend NEMO-0 and NEMO-II to a group
decision setting, either searching for the solution(s) that provide the best total utility
or maximize the minimum utility among the DMs.

The EMOSOR algorithm by Milosz Kadzinski and co-authors [26] follows
a similar idea as NEMO-II but rather than solving LPs to determine whether a
solution may be preferable according to a compatible value function, it randomly
generates a set of compatible value functions and then uses this set to rank
solutions. This is not only computationally more efficient but also allows to derive
a more detailed ranking of the solution. Different options for ranking solutions are
examined in the paper, such as a ranking of solutions according to the percentage of
generated value functions that prefer a particular solution. As a further advantage,
such information can be used in the preference elicitation step to decide which pair
of solutions should be shown to the DM for ranking. The idea there is to gather
as much information as possible in the sense of maximally reducing the number of
potentially optimal solutions remaining in the population (i.e. narrowing down as
much as possible the region of interest).

While the above methods are adaptations of NSGA-II [8] as the baseline EMO
algorithm, similar ideas have also been applied to MOEA/D [30]. MOEA/D co-
evolves a number of sub-populations, each optimizing a different scalarized value
function. However the subpopulations share information by using each others’
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individuals for crossover or by individuals migrating from one sub-population to
another. The scalarized value functions in MOEA/D are usually carefully chosen to
ensure an even spread of solutions along the Pareto front. In [27, 29], scalarized
value functions are chosen randomly, but only among those compatible with
the DM’s preference information. Preference information is once again based on
pairwise comparisons, and as more and more pairwise preference information is
elicited, the set of compatible scalarized value functions shrinks, and consequently
the sub-populations focus increasingly on the most desirable (according to the DM’s
preferences) part of the Pareto frontier. As an additional feature, the algorithm in
[29] dynamically alters the sizes of the co-evolved sub-populations.

In [28] the preference elicitation step in interactive evolutionary multiobjective
optimization is focused. It examines strategies for selecting pairs of solutions to
be shown to the DM, proposes a mechanism to decide when the DM should
be questioned, and compares different types of indirect preference elicitation
mechanisms such as pairwise comparisons, best-of-k judgments, or complete orders
of a small subset of solutions.

In [6] the Dominance-based Rough Set Approach to model DM preferences is
used. In this approach, the DM is asked to classify sets of solutions into good and
bad, from which preference information is derived in the form or “if . . . then . . . ”
decision rules, which can then be used to guide the evolutionary algorithm. The
main motivation is the explainability of the learned preference model.

15.5 Conclusion

Professor Roman Słowiński was one of the pioneers in bridging the gap between
multiple-criteria decision analysis focused on elicitation, modelling, and exploita-
tion of the DM’s preferences, as well as multiobjective metaheuristics focused on
computation of the (approximately) Pareto-optimal solutions for hard optimization
problems. Originally researchers from each of these fields knew little about activities
and achievements of the other, and, in fact, poorly understood the importance of
the other field. This situation changed, among others, due to a series of already
mentioned Dagstuhl seminars (https://www.dagstuhl.de) with participation of top
researchers from both fields. Roman Słowiński was one of the organizers and
very active member of these seminars. It resulted in the growing interest of the
research community in the use of preferences in multiobjective metaheuristics.
For example, Fig. 15.1 shows the number of publications (according to Scopus)
with terms “(interactive OR preference) AND multi-objective AND evolutionary
algorithm” in the title, abstract, or keywords, between years 2000 and 2020. Roman
Słowiński and his research group have substantially contributed to the growth of this
field and shaped it in many ways.

https://www.dagstuhl.de
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Fig. 15.1 Numbers of publication on the use of preferences and interactive analysis in multiob-
jective evolutionary algorithms
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Chapter 16
Decomposition and Coordination
for Many-Objective Optimization

Margaret M. Wiecek and Philip J. de Castro

Abstract Many-objective programs have often been reported in the literature as
mathematical optimization tools to model and solve decision-making problems
in many areas of human activity. However, in the presence of many objectives,
the solution of the overall problem in its entirety may be challenging or even
impossible, and decomposition of the problem into subproblems with a smaller
number of criteria becomes appealing provided solving the subproblems can be
coordinated and related to solving the initial problem. Based on an overview
of selected decomposition and coordination methods, we put forward a list of
steps that may be followed with certain desirable properties for a decomposition–
coordination technique to effectively support the decision-maker and allow for
an interactive tradeoff analysis. We support this process with theoretical results
pertaining to a quasi-separable many-objective program and illustrate this process
on an engineering design example problem.

16.1 Introduction

Multicriteria decision-making (MCDM) has become an important modeling and
methodological tool to successfully support decision-making processes in business,
management, and engineering in the presence of multiple and conflicting objectives
(criteria or goals) or multiple decision-makers (DMs) [27]. Since the 1970s, this
research field has been rapidly growing and gaining numerous studies performed
around the world by academics and practitioners of diverse backgrounds [3].
Multiobjective optimization, as part of MCDM, addresses decision-making for
systems whose performance results from the decisions selected within a feasible
set and is evaluated by vector-valued functions representing multiple and potentially
conflicting objectives. Due to possible conflicts, a unique optimal solution (decision)
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yielding the best system performance does not generally exist. Rather, within the
set of feasible solutions, there exists a set of efficient solutions that offer tradeoff
options for system performance. Solving a multiobjective optimization problem
(MOP) is understood as finding the set of efficient solutions, its representative
subset, or a preferred efficient solution. Each of these tasks can be challenging
in its own way. Computing the efficient set may not be accomplished with a
polynomial time algorithm [15], while deciding whether efficient solutions are
representative or preferred may be subjective [4]. Furthermore, factors such as the
type of mathematical model or the number of objective functions also profoundly
affect the difficulty of solving MOPs.

MOPs with objectives modeled by linear and/or quadratic functions and feasible
sets modeled by linear functions might be considered easy because they can be
solved for their complete efficient sets [37, 48]. However, if these MOPs have, say,
four or more criteria, the selection of preferred solutions may not be straightforward
for the DM due to the difficulty of comparing tradeoff decisions in four or higher
dimensions. On the other hand, a tradeoff analysis for a biobjective optimization
problem (BOP) may be simple, but computation of efficient solutions may not be if
the BOP is a global optimization problem.

MOPs with four or more objectives have often been reported in the literature and
attracted interest of many researchers. Such works include 4-objective problems in
engineering [22] and radiotherapy [56], 9-objective control problem [9], 7-objective
classification problem [39], and 10-objective calibration problem in ecology [46].
In [49], the number of objectives is classified as small (2–3), moderate (4–20), and
large (up to hundreds), and a wide range of applications from aerodynamic design
to medical decision-making and land use planning are presented. MOP models
proposed more recently in chemical engineering [47], pharmaceutical industry [44],
autonomous ground systems [33], and emission reduction [11] also have many
objectives.

Two decades ago, MOPs with four or more criteria were renamed into many-
objective optimization problems to recognize the computational and decision-
making challenges that are not typical when the number of objectives is lower
[21]. The evolutionary multicriteria optimization (EMO) community has been first
to adopt this term and has actively undertaken studies on such MOPs. Procedures
based on evolutionary algorithms have been proposed to interactively lead the DM
to the most desirable part of the solution set (see, e.g., [5, 6]). At the Workshop
on Many-Criteria Optimization and Decision Analysis (MACODA), EMO experts
continued these efforts [53].

In the presence of many objectives, not all functions may be of interest to
the DM or not all objectives may be in conflict with each other. It is of interest
to make the original MOP simpler by removing unnecessary objective functions,
while the solution set remains unchanged. The concept of redundant (or, also called
later, nonessential) objective functions is first introduced and studied in [23] and
followed in [40, 41]. An objective function is said to be redundant if the efficient
set is unchanged when that function is removed. On the other hand, the concept
of representative criteria is introduced in [51]. A collection of criteria is called
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representative provided all criteria not in the collection can be represented as a
conical combination of the criteria in the collection.

If a reduction of the objectives is not possible, the solution of the overall problem
in its entirety may be challenging or even impossible, and decomposition of the
MOP into a set of MOPs with a smaller number of criteria (sub-MOPs) becomes
appealing provided solving the sub-MOPs can be coordinated and related to solving
the original MOP. In general, MOPs can be decomposed into single-objective
optimization problems (SOPs) or sub-MOPs. The former is typically accomplished
by techniques that convert the vector-valued objective function into a scalar-valued
function by means of scalarizing parameters [52] and has become a successful
decomposition tool in EMO [57, 58]. To achieve improved performance, EMO
algorithms making use of the scalarizations have been enhanced, for example, with
a customized dominance relation [8] or a capability to learn the characteristics
of the estimated solution set [54]. For an earlier extended survey and two recent
brief overviews of exact decomposition methods of MOPs into SOPs and sub-
MOPs and their subsequent coordination, the reader is referred to [18] and [14, 38],
respectively.

In this chapter, being motivated by real-life decision-making problems with
many objectives, we focus on decomposing the MOP into sub-MOPs and their
coordination to accomplish two goals. If computation of the overall solution set is
possible, the goal is to enhance capability of making tradeoff decisions by working
in lower dimensional spaces. Otherwise, if computation of the overall solution set
is not possible, the goal is to enable its construction and to facilitate decision-
making in a similar way. We collect and put forward a list of steps that should be
followed and properties that ought to be satisfied by a decomposition–coordination
(DC) technique to effectively support the DM and allow for an interactive tradeoff
analysis.

This chapter is structured as follows. In Sect. 16.2, a problem statement and
conceptual foundations for decomposition are given. An overview of selected DC
techniques is presented in Sect. 16.3. Based on this literature review, a compre-
hensive process and guidance for developing a DC technique are proposed in
Sect. 16.4 and applied in Sect. 16.5 to an engineering design problem. This chapter
is concluded in Sect. 16.6.

16.2 Foundations for Decomposition

Let Rn and R
p denote Euclidean vector spaces as the decision and objective space,

respectively. Let u, v ∈ R
p. We write u < v if ui < vi for each i = 1, . . . , p, u ≤ v

if ui ≤ vi for each i = 1, . . . , p with at least one i such that ui < vi , and u � v if
ui ≤ vi for each i = 1, . . . , p. Furthermore, let Rp

� = {u ∈ R
p : u � 0}.
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Define a vector-valued function f (x) = [
f1(x) f2(x) . . . fp(x)

]
with fi(x) :

R
n → R for i = 1, 2, . . . , p. MOPs assume the following form:

min f (x) = [
f1(x) f2(x) . . . fp(x)

]

s.t. x ∈ X,
(MOP)

where X ⊆ R
n is a feasible set that may include equality and inequality constraints,

as well as bounds on the decision variables. The usual way of addressing optimality
in multiobjective optimization is with the notion of efficient solutions defined with
the Pareto partial order in R

p.

Definition 16.1 Let x∗ ∈ X. We say that x∗ is (weakly) efficient to (MOP) if there
is no feasible x such that f (x)(<) ≤ f (x∗). We say that f (x∗) is a (weak) Pareto
point or outcome.

For any problem of the form (MOP), let E(X, f ) (Ew(X, f )) denote the set of
all efficient (weakly efficient) solutions in X.

Since it is of interest to decompose (MOP) into multiobjective subproblems,
(MOP) is referred to as the all-in-one (AiO) MOP, the set X is called the AiO-
feasible set, and the efficient solutions are referred to as AiO-efficient. In [14],
these solutions are defined in a more general context and are called superior. For
decomposition, Pareto efficiency is not the only useful notion of optimality, and
generalizations such as ε-efficient and (1 + δ)-efficient solutions are helpful.

Definition 16.2 Let x∗ ∈ X.

1. Let ε ∈ R
p

�. We say that x∗ is (weakly) ε-efficient to (MOP) if there is no feasible

x such that f (x)(<) ≤ f (x∗)− ε.
2. Let δ ∈ R≥. We say that x∗ is (weakly) (1 + δ)-efficient to (MOP) if there is no

feasible x such that (1 + δ) · f (x)(<) ≤ f (x∗).

Similar to [20], we decompose (MOP) into a number, say M , of subproblems
with criteria taken from (MOP). Let Ik ⊂ {1, 2, . . . , p} for 1 ≤ k ≤ M with
⋃M

k=1 Ik = {1, 2, . . . , p}, and consider two cases where
⋂M

k=1 Ik = ∅ or
⋂M

k=1 Ik �=
∅ depending on the context of the problem. Then the kth subproblem of (MOP)
contains pk functions selected from (MOP), with

∑M
k=1 pk = M , and assumes the

form

min Fk(x) = [
sk1(fk1(x)) · · · skt (fkt (x))

]

s.t. x ∈ Xk ⊆ X.
(MOPk)

In (MOPk), the original scalar-valued functions assigned to this subproblem make
up kt scalar and/or vector-valued functions, 1 ≤ kt ≤ pk, fkj : Rn → R

kj for j =
1, . . . , t ,

∑t
j=1 kj = pk , that are scalarized by means of some real-valued functions

skj : Rkj → R for j = 1, . . . , t . Note that if the desired decomposition requires
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individual functions from (MOP) to be in (MOPk), the identity map is selected as
the scalarization function. In general, the use of scalarizing functions may control
the number of objectives in the subproblem. The feasible set Xk is a restriction of
the original feasible set that is relevant to (MOPk).

Indeed, while we may in general decompose (MOP) in any way we choose, it is
often most useful to decompose an (MOP) into a collection of BOPs in order to make
visualization and analysis of the subproblems much simpler for DMs. Furthermore,
it is important to note that often times efficient solutions for one subproblem may not
perform efficiently in other subproblems. To compensate, a method of subproblem
coordination enables DMs to discover (weakly) efficient solutions for the AiO that
are “sufficiently good” across each subproblem.

16.3 State-of-the-Art in Multiobjective Decomposition
and Coordination

We provide an overview of recent studies on multiobjective decomposition and
coordination (DC) and decision-making and examine the collected works with
respect to three aspects: (1) the type of the AiO-MOP considered and the solution
concepts used; (2) the proposed coordination approach to obtain AiO-efficient
solutions and the resulting decision-making capability; (3) the applications of the
model.

16.3.1 Models and Solution Concepts

The AiO-MOP models differ with respect to the type of the objective functions,
location of the decision variables in these functions, type of the constraints, and the
related structure of the feasible set. Two types of objective functions are considered.
In a majority of studies, objectives are vector-valued functions of decision variables,
while in [25, 42], they are composite vector-valued functions of decision variables.

Decision variables are located in some or all objective functions, which makes
such variables, respectively, local or global [12, 14, 20, 24, 25, 28, 50]. Since the
constraints may be associated with specific subproblems as well as carry local or
global variables, they may also be either local or global. The latter are also referred
to as linking. The interchangeable role of global variables and linking constraints is
discussed in [14]. The feasible sets of the subproblems are called independent when
they are built by its own (and not linking) constraints carrying local and global
variables. The MOP is called decomposable if its objectives and variables assume
a block-diagonal structure [50]. To model interaction between subsystems, linking
variables as functions of local and global variables are introduced in [25, 28]. In [38],
MOPs with linking variables are called interwoven. A general graph-based model
of the AiO-MOP is developed in [14] to capture the overall general complexity.
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The MOP models are extended with additional concepts to perform coordination.
To guarantee feasibility, one needs to distinguish between the AiO-feasibility and
subproblems’ feasibility. For MOPs with linking constraints, consistent solutions
are defined as the solutions that satisfy these constraints. If a solution is feasible and
consistent, it is called valid [14]. To take care of efficiency, for subproblems with
global variables, the concept of ε-efficient solutions to subproblems is used [20].
It relaxes the subproblem efficiency and allows to reach AiO-efficient solutions.
For subsystems with local, global, and linking variables, the concepts of duplicated
global and linking variables, consistency constraints, and coordination constraints
for subproblems are used to allow communication between the sub-MOPs when
they are solved [12, 24, 25, 28]. For the same type of problems, new concepts of
efficiency such as individually, cooperative, and mutually efficient solutions are also
proposed [38]. If AiO-efficient solutions cannot be achieved through decomposition,
they are replaced with (1+δ)-AiO-efficient solutions relaxing the AiO-efficiency or
compromising solutions computed as the median among the subproblems’ efficient
sets [14]. For the latter, however, the validity of the compromise solution is an issue.

16.3.2 Coordination and Decision-Making

The general conceptual goal of a DC method is to construct the AiO-efficient
solutions by computing the efficient solutions of the subproblems. Since the
available methods offer different levels of accomplishing this goal, we put them
in the following classes:

1. Complete coordination: There exists a set of subproblems such that a subset of
their feasible solutions is equal to the AiO-efficient set [14, 25, 42].

2. Relaxed coordination: For each AiO-efficient solution, there exists a set of
subproblems whose feasible solutions can produce that AiO-efficient solution
[20].

3. Partial coordination: For at least one AiO-efficient solution, there exists a set
of subproblems whose feasible solutions can produce that AiO-efficient solution
[12, 14, 24, 25, 28].

4. Approximate coordination: For at least one AiO-efficient solution, there exists a
set of subproblems whose feasible solutions can approximate that AiO-efficient
solution [14, 50].

The word “method” is used rather liberally because some coordination methods
come as mathematical propositions that guarantee one of the four types above and
may imply implementable procedures, while other approaches are presented in the
form of algorithms whose outputs ensure the types. It is expected but not guaranteed
that the subsystems’ feasible solutions used in the coordination are also subsystems’
efficient.
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The decision-making goal of a DC method to support the DM in choosing an
AiO preferred efficient solution is typically achieved interactively by examining
performances of efficient solutions in smaller dimensional spaces and checking
how the efficient solutions in one subproblem affect the performance of the other
subproblems. This interactive process typically consists of two repetitive stages:
(1) computation of subproblems’ efficient solutions and (2) coordination of these
solutions and other information leading to construction of a preferred AiO-efficient
solution.

In [19, 20, 28, 50], sub-MOPs are scalarized to be solved for their preferred
efficient solutions. Despite the scalarization of the AiO-MOP in [12, 13], only the
scalarized subproblems are actually solved due to the use of the block coordinate
descent (BCD) method.

The coordination is based on two types of information. First, this information
is subproblem-specific and includes, e.g., the current values of global or linking
variables, the value of ε that quantifies how the performance of one subproblem can
be decayed to improve the performance of another subproblem [19, 20]. Second,
other entities such as the dual variables associated with consistency constraints
participate in coordination. The update of the coordination variables is done through
Lagrangian relaxation integrated with the BCD method [12, 13] or using subgradient
optimization [28].

There is no coordination in [50] because the approximated AiO-MOP assumes
a block-diagonal structure and the preferred subproblems’ efficient solutions are
concatenated to produce the preferred AiO-efficient solution.

Due to the two-stage strategy, decision-making is supported by two types of
tradeoff information: tradeoffs within a subproblem between efficient solutions to
each sub-MOP, and tradeoffs between subproblems between efficient solutions to
different sub-MOPs. For each subproblem, tradeoffs within are naturally available.
Tradeoffs between problems are quantified by the dual variables associated with
coordination constraints of auxiliary SOPs associated with sub-MOPs [19, 20],
or the parameters used in the scalarizations and the coordination dual variables
[13, 28].

16.3.3 Applications

Although the applications of DC methods could be reviewed according to the real-
life domains in which they have been used, we review them in the context of how
the decomposition has been performed.

Engineering design is an important area of application for DC methods because
many engineering design problems are quite complex and never solved as AiO.
They are naturally decomposed because the teams of involved designers work in
different disciplines and rarely as one team. In bilevel vehicle design [13], the battery
designers optimize heat distribution in the battery depending on its dimensions,
while the vehicle designers optimize the vehicle performance with respect to several
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criteria and depending on the placement of the battery in the underhood. The best
performing battery design does not necessarily guarantee the best overall vehicle
design. In [28], the teams are involved in the design of the vehicle suspension system
and separately build its subsystems. In both cases, coordination and evaluation of
tradeoffs between the design subproblems become indispensable. The coordination
plays the role of negotiation among the teams that operate within their field of
expertise while collaborating to reach a compromise as the AiO solution.

The AiO-MOP can be decomposed into subproblems for which it is easy to
conduct tradeoff evaluation because of the physical meaning of the objectives. This
is the case in the design of the layout of a set of vehicle components for a medium-
sized truck for use in both civilian and military environments [17]. The coordination
ensures that the specific and critical design objectives are achieved in the final truck
configuration. The AiO-MOP can also be decomposed so that the tradeoffs within
are examined for each pair of criteria. In [20], a three-objective MOP representing
the design of a seat/head restraint system to optimize vehicle safety is decomposed
in this way. The coordination performed on three BOPs makes use of tradeoffs for
three pairs of criteria and yields an AiO preferred solution that is ε-efficient to each
subproblem.

Another major application of DC schemes is in optimization under uncertainty
because the AiO-MOP can be decomposed with respect to uncertainty realizations.
The design of truss topology is decomposed with respect to uncertain loading
conditions, while the coordination makes sure that the truss performs well in all
conditions [19]. In the portfolio management model, return and risk are optimized
under uncertainty represented by multiple scenarios that are coordinated to yield not
only an efficient but also robust portfolio [20].

Based upon this section’s discussion, in the next section we present the compo-
nents a DC method shall have to effectually support decision-making in the presence
of many criteria.

16.4 Developing a Decomposition–Coordination Technique

We propose that a DC method should consist of the following five elements: (1)
method to decompose the AiO-MOP into subproblems with a smaller number of
criteria; (2) theory relating the efficient solutions of the subproblems to the AiO-
efficient solution and vice versa; (3) theory addressing a coordination approach in
one of the classes identified in Sect. 16.3.2; (4) method for computing efficient
solutions; (5) capability to engage the DM in an interactive decision process.
The first three elements are rather theoretical, while the last two are related to
implementation and actual use of the DC method.

Although we present these elements on a specific mathematical model, they
represent a DC method for a broad class of AiO MOPs. Let n0, n1, n2 ∈ N and
n = n0 + n1 + n2. Let x0 ∈ R

n0 , x1 ∈ R
n1 , x2 ∈ R

n2 and x = (x0, x1, x2) ∈ R
n.

Let f1 : Rn → R
p1 and f2 : Rn → R

p2 , where p = p1 + p2. We observe a
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quasi-separable AiO-MOP as formulated in [24].

min f (x0, x1, x2) =
[
f1(x0, x1) f2(x0, x2)

]

s.t. (x0, x1, x2) ∈ X =
{

(x0, x1, x2) ∈ R
n

∣
∣
∣
∣
g1(x0, x1) � 0
g2(x0, x2) � 0

}

.
(QS)

Note that (QS) has a global variable, x0, and two local variables, x1, x2, and that
there are no global constraints linking all three variables together.

16.4.1 Types of Decomposition

Decomposition of AiO-MOPs into subproblems with a smaller number of objectives
may be conducted with respect to the following aspects:

1. Disciplines of science and engineering: The subproblems may be associated
with particular disciplines such as control theory, mechanics, mixed-integer
optimization, and evolutionary optimization [13, 28].

2. Physical components: The subproblems may model particular physical subsys-
tems or components of the overall system represented by the AiO-MOP [13].

3. Mathematical model: The placement of the variables in the objective and
constraint functions in the AiO-MOP mathematical model may dictate a decom-
position scheme [50].

4. Tradeoffs: The DM’s ability to assess tradeoffs between specific objectives
in the AiO-MOP may determine the placement of specific criteria in specific
subproblems [17, 20].

5. Performance: The subproblems may model the scenarios in which the overall
system performs [19, 20].

Decomposition may require scalarization if there is a need to keep several criteria
together or if it is desired that the subproblems be biobjective. Since scalarization
methods provide the associated tradeoff information, the scalarization choice will
affect the decision-making process.

For (QS), we apply a decomposition with respect to the mathematical model.
Considering the problem structure, we set the number of subproblems M = 2,
and respecting the local variables, we duplicate the global variable to also make it
local to each subproblem. Letting z1 = x0 and z2 = x0 and X1 = {(z1, x1) ∈
R

n0+n1 | g1(z1, x1) � 0}, X2 = {(z2, x2) ∈ R
n0+n2 | g2(z2, x2) � 0}, we have the

following subproblems when (QS) is decomposed.

min f1(z1, x1)

s.t. (z1, x1) ∈ X1
(MOP1) min f2(z2, x2)

s.t. (z2, x2) ∈ X2.
(MOP2)
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Each subproblem carries the original objectives (with some of them possibly
scalarized) and can be solved independently of the other one.

16.4.2 Efficient Solutions of Subproblems Up to AiO

Using the context of (QS), we address the relationship “up” from the subproblems
to the overall problem.

Proposition 16.1 (Proposition 6.7 in [24]) Let (ẑi , x̂i) ∈ E(Xi, fi) for i = 1, 2
such that ẑ1 = ẑ2 = x̂0. Then (x̂0, x̂1, x̂2) ∈ E(X, f ).

Proposition 16.2 Let (ẑi , x̂i ) ∈ E(Xi, fi , εi) with εi ∈ R
pi

� for i = 1, 2 such that

ẑ1 = ẑ2 = x̂0. Then (x̂0, x̂1, x̂2) ∈ E(X, f, ε) with εT = [
εT

1 εT
2

]
.

Proof Let (ẑi , x̂i) ∈ E(Xi, fi , εi) with εi ∈ R
pi

� for i = 1, 2 such that ẑ1 =
ẑ2 = x̂0, and suppose, toward a contradiction, that (x̂0, x̂1, x̂2) �∈ E(X, f, ε) with

εT = [
εT

1 εT
2

]
. Thus, there exists (x0, x1, x2) ∈ X such that

[
f1(x0, x1)

f2(x0, x2)

]

≤
[
f1(x̂0, x̂1)− ε1

f2(x̂0, x̂2)− ε2

]

. We have three cases to consider. Case 1 has that f1(x0, x1) ≤
f1(x̂0, x̂1)−ε1 and f2(x0, x2) � f2(x̂0, x̂2)−ε2. Note that f1(x0, x1) ≤ f1(x̂0, x̂1)−
ε1 = f1(ẑ1, x̂1) − ε1, which contradicts the ε1-efficiency of (ẑ1, x̂1) in (MOP1).
We have an analogous argument for Case 2, f1(x0, x1) � f1(x̂0, x̂1) − ε1 and
f2(x0, x2) ≤ f2(x̂0, x̂2) − ε2, and for Case 3, f1(x0, x1) ≤ f1(x̂0, x̂1) − ε1 and
f2(x0, x2) ≤ f2(x̂0, x̂2)− ε2. Thus, we must have that (x̂0, x̂1, x̂2) ∈ E(X, f, ε).

 !
Corollary 16.1 Without loss of generality, let (ẑ1, x̂1) ∈ E(X1, f1) and (ẑ2, x̂2) ∈
E(X2, f2, ε2) for some ε2 ∈ R

p2

� such that ẑ1 = ẑ2 = x̂0. Then (x̂0, x̂1, x̂2) ∈
E(X, f, ε) with εT = [

0T εT
2

] ∈ R
p

�.

Proof Note that (ẑ1, x̂1) ∈ E(X1, f1) implies that (ẑ1, x̂1) is ε1 = 0-efficient. Thus,
with εT = [

0T εT
2

]
, apply Proposition 16.2.  !

It is important to note that Propositions 16.1 and 16.2 do not themselves
guarantee the possibility of the existence of efficient solutions to each subproblem
that have a global variable with a common value. In fact, it is not difficult to show
that there are problems of the form (QS) whose subproblems do not have efficient
solutions in which a global variable assumes the same value. Thus, an area for
further research is to propose a method recognizing this issue and possibly relaxing
this requirement.
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16.4.3 Efficient Solutions of AiO Down to Subproblems

Staying in the context of (QS), we address the relationship “down” between the
overall problem and the subproblems.

Proposition 16.3 If (x̂0, x̂1, x̂2) ∈ E(X, f )(Ew(X, f )), then (x̂0, x̂i) ∈
E(Xi, fi)(Ew(Xi, fi)) for at least one i = 1, 2, where for all (zi , xi) ∈ Xi ,
zi = x̂0, i = 1, 2.

Proof We prove the above for efficiency as the proof for weak efficiency proceeds
analogously. Let x̂ = (x̂0, x̂1, x̂2) ∈ E(X, f ). This means there is no x =
(x0, x1, x2) ∈ X such that

[
f1(x0, x1)

f2(x0, x2)

]

≤
[
f1(x̂0, x̂1)

f2(x̂0, x̂2)

]

. Ergo, there is no (x̂0, x1) ∈
X1, or there is no (x̂0, x2) ∈ X2 such that

⎧
⎨

⎩

f1(x̂0, x1) ≤ f1(x̂0, x̂1)

f2(x̂0, x2) � f2(x̂0, x̂2)
or

⎧
⎨

⎩

f1(x̂0, x1) � f1(x̂0, x̂1)

f2(x̂0, x2) ≤ f2(x̂0, x̂2)
or

⎧
⎨

⎩

f1(x̂0, x1) ≤ f1(x̂0, x̂1)

f2(x̂0, x2) ≤ f2(x̂0, x̂2).

Thus, we must have that (x̂0, x̂1) ∈ E(X1, f1) or (x̂0, x̂2) ∈ E(X2, f2).  !

16.4.4 Coordinating Subproblems

We extend the coordination designed for subsystems with only global variables
in [20] to the case of local and global variables as required by subproblems
(MOP1) and (MOP2) in (QS). We formulate coordination problems that allow the
subproblems to “communicate with each other” meaning that the performance of an
efficient solution to one subproblem can be checked in the other subproblems.

For i = 1, 2,, we choose a reference subproblem (MOPi ), a reference efficient
solution (x∗0 , x∗i ) based upon its preferred performance in the outcome space of
(MOPi ), and a relaxation parameter εi ∈ R

pi

� . Note that εi is chosen as a relaxation

in the outcome space and thus relaxes the performance of the reference Pareto
point. We then form the coordination problem by adding an additional constraint
to (MOPj ) for j �= i.

min fj (x0, xj )

s.t. fi(x0, xi) � fi(x
∗
0 , x∗i )+ εi

(x0, xi, xj ) ∈ X,

(COPj )

where the natural ordering is maintained in (x0, xi , xj ) based upon the values of i, j .
For ease of notation, we let X(εi) = {(x0, xi, xj ) ∈ X | fi(x0, xi) � fi(x

∗
0 , x∗i ) +

εi}, i.e., the feasible region for (COPj ).
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Proposition 16.4 Let x̂ = (x̂0, x̂1, x̂2) ∈ X(εi), for i = 1, 2, and let j �= i.

1. If x̂ ∈ Ew(X(εi), fj ), then x̂ ∈ Ew(X, f ).
2. If x̂ ∈ E(X(εi), fj ) and fj is injective, then x̂ ∈ E(X, f ).
3. If x̂ ∈ E(X, f ), then x̂ ∈ E(X(εi), fj ) with (x∗0 , x∗i ) = (x̂0, x̂i) and εi = 0 for

i = 1, 2 and j �= i.

Proof Without loss of generality, for parts 1. and 2., we let i = 1 and j = 2, that is,
we assume that (MOP1) is the reference problem with a preferred efficient solution
(x∗0 , x∗1 ) and relaxation parameter ε1 ∈ R

p1

� . Thus, we consider the coordination

problem (COP2):

1. Let x̂ ∈ Ew(X(ε1), f2). Toward a contradiction, suppose that x̂ /∈ Ew(X, f ).

Thus, there exists x ∈ X such that

[
f1(x0, x1)

f2(x0, x2)

]

<

[
f1(x̂0, x̂1)

f2(x̂0, x̂2)

]

. In particular, we

have that f1(x0, x1) < f1(x̂0, x̂1) � f1(x
∗
0 , x∗1 )+ε1. Therefore, as (x0, x1, x2) ∈

X and f1(x0, x1) < f1(x
∗
0 , x1∗) + ε1, then (x0, x1, x2) ∈ X(ε1). But we also

have that f2(x0, x2) < f2(x̂0, x̂2), which contradicts the weak efficiency of
(x̂0, x̂1, x̂2) in (COP2). Thus, we must have that x̂ ∈ Ew(X, f ).

2. Let x̂ ∈ E(X(ε1), f2) and f2 be injective. Note that for f2 to be injective, it
is sufficient for at least one function in f2 to be injective. Suppose that x̂ /∈
E(x, f ). Then, there exists x ∈ X such that

[
f1(x0, x1)

f2(x0, x2)

]

≤
[
f1(x̂0, x̂1)

f2(x̂0, x̂2)

]

. Note

that f1(x0, x1) ≤ f1(x̂0, x̂1) � f1(x
∗
0 , x∗1 ) + ε1, and thus (x0, x1, x2) ∈ X(ε1).

We have three cases:

a. f1(x0, x1) � f1(x̂0, x̂1) and f2(x0, x2) ≤ f2(x̂0, x̂2). This contradicts the
efficiency of x̂ in (COP2).

b. f1(x0, x1) ≤ f1(x̂0, x̂1) and f2(x0, x2) � f2(x̂0, x̂2). By assumption, f (x) ≤
f (x̂) and so x �= x̂. Since f2 is injective, there is at least one scalar-
valued function f2j in f2 that is injective. Thus, since x �= x̂, f2j (x0, x2) �=
f2j (x̂0, x̂2), and therefore f2(x0, x2) �= f2(x̂0, x̂2). Thus, the only way for
f2(x0, x2) � f2(x̂0, x̂2) is f2(x0, x2) ≤ f2(x̂0, x̂2), which again contradicts
the efficiency of x̂ in (COP2).

c. f1(x0, x1) ≤ f1(x̂0, x̂1) and f2(x0, x2) ≤ f2(x̂0, x̂2). Again, f2(x0, x2) ≤
f2(x̂0, x̂2) contradicts the efficiency of x̂ in (COP2).

Thus, we must have that x̂ ∈ E(X, f ).
3. Let x̂ = (x̂0, x̂1, x̂2) ∈ E(X, f ). Note that (x̂0, x̂1, x̂2) is feasible for (COP2)

with (x̂0, x̂1) = (x∗0 , x∗1 ) and ε1 = 0, that is, (x̂0, x̂1, x̂2) ∈ X(ε1 = 0)

and f1(x̂0, x̂1) = f1(x
∗
0 , x∗1 ). Toward a contradiction, suppose that x̂ is not

efficient for (COP2) with (x̂0, x̂1) = (x∗0 , x∗1 ) and ε1 = 0. Therefore, there
exists x = (x0, x1, x2) ∈ X(ε1) such that f2(x0, x2) ≤ f2(x̂0, x̂2). We thus

have

[
f1(x0, x1) � f1(x̂0, x̂1)

f2(x0, x2) ≤ f2(x̂0, x̂2)

]

, which contradicts that x̂ ∈ E(X, f ). Thus, x̂ is

efficient for (COP2).
 !
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Proposition 16.4 gives guidance about the type of coordination between (MOP1)
and (MOP2) so that AiO-efficient solutions of (QS) can be achieved. Based on part 3
of this proposition, for every AiO-efficient solution, one can construct coordination
subproblems (COP1) and (COP2) that, under certain conditions, produce that
AiO-efficient solution. In view of the classification proposed in Sect. 16.3.2, this
coordination is relaxed.

16.4.5 Computation of Efficient Solutions

A DC method must make use of multiobjective solvers that are needed to perform
computation of the efficient solutions of the subproblems or other auxiliary MOPs
such as the proposed coordination subproblems. The choice of solver depends
on several factors among which the first consideration is the availability of the
subproblems’ mathematical representation.

If the representation is available, then the computation depends on this represen-
tation’s structure and also on the computational goal. The structure pertains to the
type of the objective and constraint functions (convex and/or nonconvex) and the
variables (continuous/discrete/mixed). The computational goal may be to compute
an efficient solution, several efficient solutions, or an approximation of the Pareto
set of the subproblems. Since the literature on the available computational methods
is vast, we refer the reader to the reviews on exact methods and evolutionary
algorithms [16, 34, 52].

When the mathematical representation is not available or the functions are
expensive to compute, simulation- or approximation-based solvers are needed and
have recently been proposed [2, 10, 43, 50].

More information about a variety of solvers can also be found in the International
Society on MCDM website [35].

16.4.6 Interactive Process

If the goal of a DC method is to identify a preferred AiO-efficient solution, then this
process ought to be conducted in an interactive fashion to allow DM’s progressive
exploration of the AiO-Pareto set, while their preferences are being adjusted.

The exploration should be integrated with coordination as it is done in the
coordination problem (COPj ) in which the relaxation parameter controls the region
being searched. This region may be additionally sampled for specific solutions as it
is done, e.g., in the Light Beam Search [32, 36].
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The modeling of DM’s preferences ought to make use of the tradeoff information
directly resulting from coordination (cf. [20]), but it may also rely on other
approaches to preference modeling such as “if-then” decision rules [26] or many
others as reviewed in [4, 55].

16.5 Example

In this section, we apply the six steps of the DC method outlined in the previous
section to an example problem in engineering design. We consider the design
of a speed reducer that is formulated in [29] as an MOP that has been used by
EMO researchers to demonstrate applications of genetic algorithms in hierarchical
optimization [30, 31, 45]. In [24], this design problem illustrates the (QS) model.

There are seven design variables to consider: the width of the gear face, x01, the
size of the teeth module, x02, the number of pinion teeth, x03, the shaft 1 and shaft
2 length between bearings 1 and 2, x11 and x21, respectively, and the diameters of
shaft 1 and shaft 2, x12 and x22, respectively. There are three objective functions
to minimize including the sum of the volumes of the reducer parts, V1, . . . , V7, the
stress in shaft 1, S1, and the stress in shaft 2, S2. The model includes inequality
constraints, Gk � 0, k = 1, . . . , 11, on the dimensions, deflections and stresses, and
bounds on the design variables. For the complete mathematical formulation, refer to
[24, 29].

Decomposition This design problem may be decomposed with respect to the
following aspects:

1. Physical components: The reducer consists of two shafts that imply decom-
position into two subsystems. This physical structure is also reflected in the
mathematical model.

2. Mathematical model: There are local design variables related to each shaft
and bearing, and global design variables. Since the volume objective function
is additive, it can be split into two parts. Consequently, the model can be
decomposed into two subproblems.

3. Tradeoffs: There are two types of objectives: volume and stress. Analyzing the
performance of the designs in the objective space, the DM may want to trade
volume with volume, stress with stress, or volume with stress. Each of these
cases implies a different decomposition.
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Since the mathematical model is closely related to the physical structure of the
reducer, the decomposition naturally results from both these aspects. The original
model is decomposed into the following two subproblems:

min

[
f11 = V1 + V2 + V4 + V6

f12 = S1

]

(MOP1)

s.t.
[
G1,G2,G5,G6,G7

]
� 0

⎡

⎣
2.6
0.7
17

⎤

⎦ �

⎡

⎣
x01

x02

x03

⎤

⎦ �

⎡

⎣
3.6
0.8
28

⎤

⎦

[
G3,G8,G10

]
� 0

[
7.3
2.9

]

�
[
x11

x12

]

�
[

8.3
3.9

]

min

[
f21 = V3 + V5 + V7

f22 = S2

]

(MOP2)

s.t.
[
G1,G2,G5,G6,G7

]
� 0

⎡

⎣
2.6
0.7
17

⎤

⎦ �

⎡

⎣
x01

x02

x03

⎤

⎦ �

⎡

⎣
3.6
0.8
28

⎤

⎦

[
G4,G9,G11

]
� 0

[
7.3
5.0

]

�
[
x21

x22

]

�
[

8.3
5.5

]

.

Note that MOP1 and MOP2 imply the four-objective AiO-MOP with the objective
function f = (f11, f21, f12, f22) rather than the original triobjective MOP with the
objective function (f11+f21, f12, f22). Therefore in the subsequent discussion, the
four-objective problem is considered as the (QS) model.

Efficient Solutions of Subproblems up to AiO The theory presented in
Sect. 16.4.2 is immediately applicable to (QS). If there are efficient solutions
to (MOP1) and (MOP2) that have common global variables, then, based on
Proposition 16.1, they are also efficient solutions to (QS). Figure 16.1a and b
depict the Pareto sets for (MOP1) and (MOP2). Interestingly, these sets assume
the form of convex curves despite the nonlinearity of the objective and constraint
functions in the mathematical model. Also, all points depicted in Fig. 16.1a are
Pareto, which may not be immediately visible due to the scaling on the Volume 1
axis.

Efficient Solutions of AiO Down to Subproblems The theory presented in
Sect. 16.4.3 is not applicable to (QS). Based on Proposition 16.3, an efficient
solution to (QS) does not provide an efficient solution to at least one of the
subproblems. However, this issue is only of theoretical importance since (QS) will
not be directly solved for its efficient solutions.

Coordinating Subproblems Suppose the DM is able to assess the Pareto set of
(MOP1) rather than of (MOP2) and chooses a preferred Pareto outcome from the
former, which makes (MOP1) the reference subproblem. Furthermore, assume the
DM chooses the “knee” of that Pareto set as the region of preferred performance
with respect to the volume and stress and selects x∗ = (x∗01, x

∗
02, x

∗
03, x

∗
11, x

∗
12) =

(3.5, 0.7, 17, 7.3, 3.8977) as a preferred efficient solution to (MOP1). The resulting
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Pareto outcome (f11(x
∗) = 2031.1 cm3, f12(x

∗) = 698.5 kg/cm2) gives its
performance in (MOP1) and is plotted as a diamond in Fig. 16.2.

The goal now is to examine the performance of x∗ in (MOP2). If this performance
is satisfactory, an AiO-efficient solution should be constructed for (QS) and the
process would end. Otherwise, to achieve a better performance in (MOP2), either
the performance of x∗ should be relaxed in (MOP1) or another preferred efficient
point to (MOP1) is to be selected. To follow this strategy, the DM formulates the
coordination problem (COPj ) for j = 2. In (COP2), the parameters ε11 and ε12
model the relaxation of the volume and stress, respectively, that the DM could agree
on if necessary. However, to check the performance of x∗ in (MOP2), no relaxation
is needed and (COP2) is solved with ε = (0, 0).

min

[
f21 = V3 + V5 + V7

f22 = S2

]

(COP2)

s.t.

[
f11(x)

f12(x)

]

�
[
f11(x

∗) = 2031.1
f12(x

∗) = 698.5

]

+
[
ε11

ε12

]

[
G1,G2,G3,G4,G5,G6,G7,G8,G9,G10,G11

]
� 0

⎡

⎣
2.6
0.7
17

⎤

⎦ �

⎡

⎣
x01

x02

x03

⎤

⎦ �

⎡

⎣
3.6
0.8
28

⎤

⎦
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[
7.3
2.9

]

�
[
x11

x12

]

�
[

8.3
3.9

]

[
7.3
5.0

]

�
[
x21

x22

]

�
[

8.3
5.5

]

.

Because (COP2) is a biobjective optimization problem whose objective space is
that of (MOP2), its Pareto set is depicted together with the Pareto set of (MOP2)
in Fig. 16.3a and b. Each figure shows a different portion of the same Pareto sets.
The stars are the computed Pareto outcomes for (MOP2), while the triangles are the
computed (weak) Pareto outcomes for (COP2) with no relaxation. These triangles
indicate the performance of x∗ in (MOP2). Because the values of volume and stress
at the triangle points are located higher than those at the star points, the DM may
decide that the performance of x∗ in (MOP2) is rather poor and there is no balance
in how subproblems (MOP1) and (MOP2) behave.

Hoping to find better performing solutions for (MOP2), the DM decides to
sacrifice the performance (2031.1 cm3, 698.5 kg/cm2) of x∗ by relaxing the volume
by 300 cm3 and stress by 100 kg/cm2. In Fig. 16.2, the relaxation is marked with the
two arrows. (COP2) is solved with (ε11 = 300 cm3 and ε12 = 100 kg/cm2), and
the resulting Pareto points are plotted as squares in Fig. 16.3a and b. These square
points are located much closer to the Pareto set of (MOP2) indicating the relaxation
in (MOP1) improved the performance in (MOP2).

Note that (COP2) is solved for all local and global variables, (x01, x02, x03, x11,

x12, x21, x22), and therefore, its efficient points can be mapped into the objective
space of (MOP1). Applying this mapping, the unique outcome(2331.14 cm3,

798.514 kg/cm2) is obtained and plotted as a round dot in Fig. 16.2. This uniqueness,
as a special feature of the overall mathematical model, is beyond the scope of this
chapter.

At this stage of coordination, the DM may choose between (1) the
performance of (2031.1 cm3, 698.5 kg/cm2) for (MOP1) and a preferred Pareto
point selected from the triangle-dotted Pareto set, and (2) the performance of
(2331.14 cm3, 798.514 kg/cm2) and a preferred Pareto point selected from the
square-dotted Pareto set (see Fig. 16.3a and b). Alternatively, the DM may resolve
(COP2) for different relaxations or a different preferred efficient point for (MOP1).

Computation of Efficient Solutions In this chapter, the epsilon-constraint
method was used to compute the efficient solutions of three biobjective problems,
(MOP1), (MOP2), and (COP2) [7]. Interestingly, as can be seen in Fig. 16.3b,
this method found efficient and weakly efficient solutions to (COP2) for
ε = (300 cm3, 100 kg/cm2). By Proposition 16.4.1, all efficient and weakly efficient
solutions to (COP2) are weakly efficient for (QS). Therefore, all outcomes depicted
in Fig. 16.3a and b are weak Pareto for (QS), and their pre-images are weakly
efficient for (QS).

Interactive Process A complete interactive process would use the presented
coordination and additional preference information to help the DM choose a final
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AiO-efficient solution. Similar to [19, 20], the preference information may come
from the tradeoff values between volume and stress available at different Pareto
points within each subproblem and tradeoff values between the two subproblems.
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However, data-driven interactive multiobjective optimization, which emerges as a
new research direction in MCDM, gives a promise of providing even better decision-
making tools [1].

16.6 Conclusions

We summarized prior studies on DC approaches in many-objective optimization
and proposed a six-step strategy for designing a DC method that will effectively
simplify and support the decision-making. We presented this strategy in the context
of a quasi-separable MOP and applied to an engineering design example.

Further research can go in several directions. For the quasi-separable case, the
tradeoff information provided by the coordination problem shall be revealed, and an
interactive decision process making use of this information shall be developed. This
case can be extended to more than two subsystems. More generally, decomposition
of MOPs of different structures could be examined, and “limits of decomposability”
could be determined for MOPs that do not lend themselves to decomposition. Since
uncertainty often accompanies conflict, DC methods recognizing this important
aspect of real-life modeling are desirable. Based on the literature review and
our research experience, we believe that engineering design is an area that can
significantly benefit from DC methods. Therefore, developing and implementing
DC methods for specific engineering design applications will be the best way to
prove the value of DC-based MCDM.
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6. Branke J, Corrente S, Greco S, Słowiński R, Zielniewicz P (2016) Using Choquet integral
as preference model in interactive evolutionary multiobjective optimization. Eur J Oper Res
250(3):884–901

7. Chankong V, Haimes YY (1983) Multiobjective decision making: theory and methodology.
North-Holland, New York

8. Chen L, Liu H-L, Tan K-Ch, Cheung Y-M, Wang Y (2019) Evolutionary many-objective
optimization using decomposition-based dominance relationship. IEEE Trans Cybern
49(12):4129–4139

9. Chipperfield A, Fleming P (1996) Multiobjective gas turbine engine controller design using
genetic algorithms. IEEE Trans Ind Electron 43(5):583–587

10. Cooper K, Hunter SR (2017) PyMOSO: software for multiobjective simulation optimization
with R-PERLE and R-MinRLE. INFORMS J Comput 32(4):581–596

11. Cui Y, Geng Zh, Zhu Q, Han Y (2017) Review: multi-objective optimization methods and
application in energy saving. Energy 15:681–704

12. Dandurand B, Wiecek MM (2015) Distributed computation of Pareto sets. SIAM J Optim
25(2):1083–1109

13. Dandurand B, Guarneri P, Fadel GM, Wiecek MM (2014) Bilevel multiobjective packaging
optimization for automotive design. Struct Multidiscip Optim 50(4):663–682

14. Dietz T, Klamroth K, Kraus K, Ruzika S, Schäfer L, Schulze B, Stiglmayr M, Wiecek MM
(2020) Introducing multiobjective complex systems. Eur J Oper Res 280:581–596

15. Ehrgott M (2005), Multicriteria optimization, 2nd edn. Springer, Berlin
16. Eichfelder G (2019) Twenty years of continuous multiobjective optimization in the twenty-first

century. http://www.optimization-online.org/DB_FILE/2020/12/8161.pdf, 11 Jun 2021
17. Engau A (2007) Domination and decomposition in multiobjective programming. Clemson

University, Clemson, SC. Ph.D. Thesis
18. Engau A (2010), Interactive decomposition-coordination methods for complex decision

problems. In: Handbook of multicriteria analysis. Springer, Berlin, pp 329–365
19. Engau A, Wiecek MM (2007) 2D decision making for multi-criteria design optimization.

Struct Multidiscip Optim 34(4):301–315
20. Engau A, Wiecek MM (2008) Interactive coordination of objective decompositions in

multiobjective programming. Manag Sci 54(7):1350–1363
21. Farina M, Amato P (2004) A fuzzy definition of “optimality” for many-criteria optimization

problems. IEEE Trans Syst Man Cybern Part A Syst Humans 34(3):315–326
22. Flynn R, Sherman PD (1995). Multicriteria optimization of aircraft panels: determining viable

genetic algorithm configurations. Int J Intell Syst 10(11):987–999
23. Gal T, Leberling H (1977) Redundant objective functions in linear vector maximum problems

and their determination. Eur J Oper Res 1(3):176–184, 5
24. Gardenghi M, Wiecek MM (2012). Efficiency for multiobjective multidisciplinary optimiza-

tion problems with quasi-separable subsystems. Optim Eng 13(2):293–318
25. Gardenghi M, Miguel F, Gómez T, Wiecek MM (2011) Algebra of efficient sets for

multiobjective complex systems. J Optim Theory Appl 149:385–410
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32. Hapke M, Jaszkiewicz A, Słowiński R (1998) Interactive analysis of multiple-criteria project
scheduling problems. Eur J Oper Res 107(2):315–324

33. Henry SM, Waddell LA, DiNunzio MR (2016) The whole system trades analysis tool
for autonomous ground systems. In: 2016 NDIA ground vehicle systems engineering and
technology symposium, Novi, Michigan. SAND2016-6318C

34. Hua Y, Liu Q, Hao K, Jin Y (2021) A survey of evolutionary algorithms for multi-objective
optimization problems with irregular Pareto fronts. IEEE/CAA J Automatica Sinica 8(2):303–
318

35. International Society on MCDM (2021) Software related to MCDM. https://www.
mcdmsociety.org/content/software-related-mcdm-0, 11 Jun 2021
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Chapter 17
Fuzzy Linear Programming with General
Necessity Measures

Masahiro Inuiguchi

Abstract In this chapter, a robust treatment of possibilistic linear programming
problems with linear membership functions is studied. After necessity measures
and their representations and properties are reviewed, necessity fractile optimization
models are introduced as optimization models with robust constraints. Those
problems are reduced to a semi-infinite linear programming problem. Conditions
on functions associated with the necessity measures are investigated so that the
problems are reduced to simpler problems. It is revealed that the problem is reduced
simply to a linear programming problem or solved by a more efficient method when
functions associated with necessity measures are convex and concave. Applying the
results, we show that necessity fractile optimization problems with many famous
implication functions are reduced to linear programming problems or solved rather
easily by the proposed solution procedure.

17.1 Introduction

The parameters, coefficients and right-hand side values, of mathematical program-
ming problems are assumed to be specified as real numbers. In real-world problems,
we may face cases when those parameters cannot be specified as real numbers
because of environmental fluctuation and/or the lack of knowledge. Moreover, we
may have cases when we cannot describe our goals and constraints with exact
values.

Fuzzy and possibilistic programming approaches are proposed to mathematical
programming problems with ambiguity and vagueness [8, 21]. By those approaches,
we obtain reasonable solutions under conflicting soft constraints and goals, robust
solutions under hard and soft constraints, hopeful solutions of attaining high-level
goals, and so on. Fuzzy programming approaches were formulated by proposing
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treatments of inequality constraints whose coefficients and right-hand side values
are fuzzy numbers [23–25]. Tanaka and Asai [25] proposed the nonnegativity index
of a fuzzy number and applied it to the treatments of the inequality constraints of
fuzzy linear programming problems. As the nonnegativity index takes a positive
value when the center of the fuzzy number is positive, and the unity when the
lower bound of the support of the fuzzy number is non-negative, this treatment
can be considered a strongly robust one. Słowiński [23, 24] proposed two indices:
optimistic and pessimistic indices. The optimistic index shows to what extent the
constraint is potentially satisfied as it compares the upper bound of the level set
of a fuzzy number to be larger is not less than the lower bound of the level set of
the other fuzzy number. The pessimistic index is defined by the difference of the
upper bounds of the level sets of fuzzy numbers. To control the required levels of
constraint satisfaction, the minimally required differences are assumed to be given
as real numbers including negative values. Namely, this treatment can be seen as a
weakly robust one. Similar approaches were proposed in the literature [11, 20, 26].

After the possibility theory [4, 30], possibilistic programming approaches [3, 7,
12] were proposed. It has been shown that many fuzzy programming approaches can
be seen as variations of possibilistic programming approaches [7, 12]. In possibilis-
tic programming approaches, possibility and necessity measures are used to reduce
the problems to the conventional programming problems. Many results demonstrate
that possibilistic linear programming problems preserve the linearity in the reduced
problems when possibility and necessity measures are defined, respectively, by
minimum operation and Dienes implication function. However, cases with the other
conjunction and implication functions have not yet been considerably investigated,
while several alternative approaches [11, 21] have been proposed in the calculation
of linear functions with fuzzy coefficients. Inuiguchi [6] has shown that the necessity
fractile optimization models of possibilistic linear programming problems with soft
constraints can be reduced to semi-infinite linear programming problems even when
necessity measures are not defined by Dienes implication function. Tanaka and
Asai’s approach [25] for fuzzy programming problems is equivalent to a possibilistic
programming approach using the necessity measure defined by Dienes implication
function. Słowiński’s approach [23, 24] for fuzzy programming problems can have a
close relation to a possibilistic programming approach using the possibility measure
and the necessity measures defined by Gödel and reciprocal Gödel implication
functions.

In recent years, the theoretical and methodological contributions in fuzzy
optimization have shifted mainly to nonlinear programming problems [2, 17, 18, 27]
and optimization over fuzzy relational constraints [15, 16, 19, 28, 29] as fuzzy
linear programming problems have been investigated deeply. However, approaches
developed in fuzzy linear programming problems are useful in other types of math-
ematical programming problems. Indeed, the fuzzy linear programming techniques
are applied to many real-world programming problems [1, 5, 22].
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In this chapter, we further study fuzzy and possibilistic linear programming prob-
lems as there still exist some open problems. Namely, the introduction of various
implication functions into fuzzy linear programming problems has not yet studied
considerably, while it increases the representability of decision-maker’s request on
the robustness of constraints and goals. Therefore, we study the possibilistic linear
programming approach using general necessity measures. We assume that all fuzzy
coefficients as well as fuzzy constraints have linear membership functions and
that necessity measures are defined by modifier functions based on the approach
proposed by Inuiguchi et al. [9, 13]. As the results are more or less complex due to
the treatment of general cases, we concentrate the necessity fractile model among
various models in possibilistic programming approaches [8]. This model treated in
this chapter can be seen as a robust optimization approach.

This chapter is organized as follows. In the next section, necessity measures are
reviewed. Some properties and representations of necessity measures are briefly
described. The possibilistic linear programming problem treated in this chapter
is explained in Sect. 17.3. The reduction to a semi-infinite linear programming
problem is shown. Moreover, the differences of inclusion relations equivalent to
necessity fractile constraints defined by famous implication functions are illustrated.
In Sect. 17.4, results in cases where functions associated with necessity measures are
convex and concave are shown. Similar results in cases where modifier functions
defining necessity measures are convex and concave are described in Sect. 17.5. In
Sect. 17.6, the results in Sects. 17.4 and 17.5 are applied to R-, reciprocal R-, and
S-implication functions as well as to famous implication functions. It is shown that
the possibilistic linear programming problems with necessity measures defined by
many famous implication functions are reduced to linear programming problems or
solved rather easily by the proposed solution procedure.

17.2 Necessity Measures

Necessity measure [9, 13] of fuzzy event B under fuzzy set A is defined by

NA(B) = inf
u∈U

I (μA(u), μB(u)), (17.1)

where μA and μB are the membership functions of A and B. I : [0, 1] × [0, 1] →
[0, 1] is an implication function satisfying the following properties:

(I0) I is upper semi-continuous.
(I1) I (0, 0) = I (0, 1) = I (1, 1) = 1 and I (1, 0) = 0.
(I2) I (a, b) ≤ I (c, d), for 0 ≤ c ≤ a ≤ 1 and 0 ≤ b ≤ d ≤ 1.
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The relation of the necessity measure to the inclusion relation can be found in
the following equivalence [6]:

NA(B) ≥ h ⇔ inf
u∈U

I (μA(u), μB(u)) ≥ h

⇔ (∀u ∈ U,∀k ∈ [0, 1]; μA(u) ≥ k ⇒ μB(u) ≥ θ(k, h))

⇔ ∀k ∈ [0, 1]; [A]k ⊆ [B]θi(k,h), (17.2)

where θ(k, h) = inf{s ∈ [0, 1] | I (k, s) ≥ h} and [A]k is a k-level set of a fuzzy set
A ⊆ U , i.e., [A]k = {u ∈ U | μA(u) ≥ k}. In what follows, we use a strong k-level
set (A)k of a fuzzy set A ⊆ U defined by (A)k = {u ∈ U | μA(u) > k}.

Although a necessity measure is defined by implication function I , it is not
an easy task to select suitable I depending on the situation. Then Inuiguchi and
Tanino [9] and Inuiguchi et al. [13] proposed a method for selecting a necessity
measure suitable for the decision-maker’s requirement. By this method, a necessity
measure is specified based on the decision-maker’s satisfaction degrees to several
inclusion relations between two fuzzy sets from weak to strong ones. The transition
of the inclusion relation from weak to strong can be expressed by two modifier-
generating functions gm, gM : [0, 1] × [0, 1] → [0, 1] satisfying:

(g1) gm(a, ·) and gM(a, ·) are lower and upper semi-continuous for all a ∈ [0, 1],
respectively.

(g2) gm(1, h) = gM(1, h) = 1 and gm(0, h) = gM(0, h) = 0 for all h > 0.
(g3) gm(a, 0) = 0 and gM(a, 0) = 1 for all a ∈ [0, 1].
(g4) h1 ≥ h2 implies gm(a, h1) ≥ gm(a, h2) and gM(a, h1) ≤ gM(a, h2) for all

a ∈ [0, 1].
(g5) a ≥ b implies gm(a, h) ≥ gm(b, h) and gM(a, h) ≥ gM(b, h) for all h ∈
[0, 1].

(g6) gm(a, 1) > 0 and gM(a, 1) < 1 for all a ∈ (0, 1).

gm is called an inner modifier-generating function, while gM is called an outer
modifier-generating function.

Then, a necessity measure is defined by

NA(B) ≥ h ⇔ mh(A) ⊆ Mh(B), (17.3)

where mh(A) and Mh(B) are defined by

μmh(A)(u) = gm(μA(u), h), μMh(B)(u) = gM(μB(u), h). (17.4)

To put it differently, a necessity measure is defined by

NA(B) = sup{h ∈ [0, 1] | mh(A) ⊆ Mh(B)}. (17.5)

Inuiguchi and Tanino [9] and Inuiguchi et al. [13] showed that the necessity
measures defined by modifier-generating functions can be defined by (17.1) with
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the following implication function:

I (a, b) = sup
h

{h ∈ [0, 1] | gm(a, h) ≤ gM(b, h)}. (17.6)

When we define gm(a, h) = a and gM(a, h) = a, ∀a ∈ [0, 1] for some
h ∈ (0, 1], NA(B) ≥ h is equivalent to the normal inclusion relation between
fuzzy sets A and B, i.e., A ⊆ B. Then the condition NA(B) ≥ h for general
modifier-generating functions can be seen as a generalization of the inclusion
relation between A and B, and NA(B) can be regarded as the degree of inclusion.

Using modifier-generating functions gm and gM , we define a necessity measure
NA(B) by giving the equivalent condition of NA(B) ≥ h (h ∈ (0, 1]) by an
inclusion relation between a modified fuzzy set A and a modified fuzzy set B,
i.e., mh(A) ⊆ Mh(B). Then, a necessity measure can be specified by giving
modifier-generating functions gm(·, h) and gM(·, h) that determine how A and B are
contracted/expanded and expanded/contracted according to degree h, respectively.
The specification of modifier-generating functions would be easier than that of
implication function directly.

17.3 Possibilistic Linear Programming

We consider the following possibilistic linear programming problem:

maximize cTx,

subject to aT
i x <∼ i bi, i = 1, 2, . . . ,m,

x ≥ 0,

(17.7)

where x = (x1, x2, . . . , xn)
T is a decision vector. bi , i = 1, 2, . . . ,m are constants.

Components cj of c and aij of ai are not known exactly, but the possible ranges of
those values are known as trapezoidal fuzzy numbers Cj and Aij , respectively. A
trapezoidal fuzzy number C is characterized by a quadruple (cL, cR, γ L, γ R), where
cL and cR are the lower and upper bounds of the most plausible interval for C, while
γ L and γ R are the left and right spreads so that cL−γ L and cR+γ R show the lower
and upper bounds of the least plausible interval. More concretely, the membership
function μC of C is defined by

μC(r) = max

(

0, min

(

1 − cL − r

γ L , 1 − r − cr

γ R , 1

))

. (17.8)

We assume Cj and Aij are trapezoidal fuzzy numbers characterized by
(cL

j , cR
j , γ L

j , γ R
j ) and (aL

ij , a
R
ij , α

L
ij , αR

ij ). The notation <∼ i is a fuzzified inequality

so that <∼ i bi corresponds to a fuzzy set Bi with verbal expression “a set of real
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numbers which are roughly smaller than bi .” We assume that the membership
function μBi of Bi is defined by

μBi (r) = max

(

0, min

(

1 − r − bi

βR
i

, 1

))

, (17.9)

where βR
i is a spread showing the tolerance.

The possibilistic linear programming problem (17.7) is a fuzzy linear program-
ming problem as the coefficients are specified by fuzzy numbers showing their
possible ranges. In the possibilistic linear programming problem, each coefficient
is considered as an uncertain variable taking a value in the given fuzzy number and
treated by the possibility theory [4, 30].

As in the literature [8, 21], because x ≥ 0, cTx and aT
i x are restricted by trape-

zoidal fuzzy numbers CTx and AT
i x characterized by (cLT

x, cRT
x, γ LT

x, γ RT
x)

and (aL
i

T
x, aR

i

T
x,αL

i

T
x, αR

i

T
x), respectively, where we define cL =

(cL
1 , cL

2 , . . . , cL
n)T, cR = (cR

1 , cR
2 , . . . , cR

n )T, γ L = (γ L
1 , γ L

2 , . . . , γ L
n )T, γ R =

(γ R
1 , γ R

2 , . . . , γ R
n )T, aL

i = (aL
i1, aL

i2, . . . , a
L
in)

T, aR
i = (aR

i1, a
R
i2, . . . , a

R
in)

T, αL
i =

(αL
i1, αL

i2, . . . , α
L
in)

T, and αR
i = (αR

i1, α
R
i2, . . . , α

R
in)T.

Using a necessity measure Ni defined by an implication function I i , in this
chapter, we formulate Problem (17.7) as a necessity fractile optimization model
(see Inuiguchi and Ramík [8]):

maximize q,

subject to N0
CTx

([q,+∞)) ≥ h0,

Ni

AT
i x

(Bi) ≥ hi, i = 1, 2, . . . ,m,

x ≥ 0,

(17.10)

where q is an auxiliary variable. h0 ∈ (0, 1] and hi ∈ (0, 1], i = 1, 2, . . . ,m are
certainty levels of goal achievement and constraint satisfactions specified by the
decision- maker. Constraints N0

CTx
([q,+∞)) ≥ h0 and Ni

AT
i x

(Bi) ≥ hi are called

necessity fractile constraints.
In Fig. 17.1, the difference between AT

i x ⊆ Bi and NAT
i x(Bi) ≥ hi is shown.

In the right figure, AT
i x ⊆ Bi is not satisfied, but Ii(μAT

i x(r), μBi (r)) ≥ 0.8 with
Ii(a, b) = 1− a + ab (Reichenbach implication function) is satisfied for all r ∈ R.
Namely, Ni

AT
i x

(Bi) ≥ 0.8 is satisfied.

Table 17.1 shows the relations between several implication functions and their
transitions of the inclusion relations required by constraint Ni

AT
i x

(Bi) ≥ hi as hi

increases. The definitions of implication functions shown in Table 17.1 are given
later in Table 17.3 of Sect. 17.6. From Table 17.1, we observe the difference of con-
straint Ni

AT
i x

(Bi) ≥ hi by the implication function defining the necessity measure.



17 Fuzzy Linear Programming with General Necessity Measures 337

Fig. 17.1 AT
i x ⊆ Bi and NAT

i xx(Bi) ≥ hi

Table 17.1 Implication functions and transitions of inequality relations expressed by
Ni

AT
i x

(Bi ) ≥ hi

Implication Ni

AT
i x

(Bi) > 0 Ni

AT
i x

(Bi) ≥ 0.5 Ni

AT
i x

(Bi) ≥ 1

Dienes [AT
i x]1 ⊆ (Bi)0 (AT

i x)0.5 ⊆ [Bi ]0.5 (AT
i x)0 ⊆ [Bi ]1

Gödel (AT
i x)0 ⊆ (Bi )0 [AT

i x]k ⊆ [Bi ]k , ∀k ∈ (0, 0.5) AT
i x ⊆ Bi

Reciprocal
Gödel

[AT
i x]1 ⊆ [Bi ]1 [AT

i x]k ⊆ [Bi ]k , ∀k ∈ (0.5, 1] AT
i x ⊆ Bi

Łukasiewicz [AT
i x]1 ⊆ (Bi)0 [AT

i x]0.5+k ⊆ [Bi ]k , ∀k ∈ (0, 0.5] AT
i x ⊆ Bi

Goguen (AT
i x)0 ⊆ (Bi )0 [AT

i x]2k ⊆ [Bi ]k , ∀k ∈ (0, 0.5] AT
i x ⊆ Bi

Reciprocal
Goguen

[AT
i x]1 ⊆ [Bi ]1 [AT

i x]k+0.5 ⊆ [Bi ]2k , ∀k ∈ (0, 0.5] AT
i x ⊆ Bi

Reichenbach [AT
i x]1 ⊆ (Bi)0 [AT

i x]0.51−k ⊆ [Bi ]1−0.5k , ∀k ∈ (0, 1] (AT
i x)0 ⊆ [Bi ]1

Fodor [AT
i x]1 ⊆ (Bi)0 (AT

i x)0.5 ⊆ [Bi ]0.5 AT
i x ⊆ Bi

Inuiguchi [10] [AT
i x]1 ⊆ (Bi)0 AT

i x ⊆ Bi (AT
i x)0 ⊆ [Bi ]1

This difference implies the significance of the selection of implication function I i

defining necessity measure Ni . A more detailed transition of the inclusion rela-
tions required by the necessity fractile constraint can be useful for selecting the
implication function defining the necessity measure. Modifier functions gm and gM

corresponding to necessity measure Ni are useful for seeing the transition of the
inclusion relations. The decision-maker can choose an implication function I i and
degree hi considering his requirement on the robustness of the constraint.

We first see that Problem (17.10) is reduced to a semi-infinite linear programming
problem. Let cL

j (h) = inf[Cj ]h, cR
j (h) = sup[Cj ]h, aL

ij (h) = inf[Aij ]h, aR
ij (h) =

sup[Aij ]h, and bR
i (h) = sup[Bi ]h. Then, from (17.2) and x ≥ 0, we obtain

N0
CTx

([q,+∞)) ≥ h0 ⇔
[
CTx

]

k
⊆ [[q,+∞)]θ0(k,h0)

⇔ inf
[
CTx

]

k
≥ q, ∀k ∈ [0, 1], θ0(k, h0) > 0,
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⇔
n∑

j=1

cL
j (k)xj ≥ q, ∀k ∈ [0, 1], θ0(k, h0) > 0, (17.11)

Ni

AT
i x

(Bi) ≥ hi ⇔
[
AT

i x
]

k
⊆ [Bi ]θi (k,hi)

⇔ sup
[
AT

i x
]

k
≤ sup [Bi]θi (k,hi) , ∀k ∈ [0, 1], θ i(k, hi) > 0,

⇔
n∑

j=1

aR
ij (k)xj ≤ bR

i (θ i(k, hi)), ∀k ∈ [0, 1], θ i(k, hi) > 0, (17.12)

where θ i(k, h) = inf{s ∈ [0, 1] | Ii(k, s) ≥ h}, i = 0, 1, . . . ,m. We note that the
constraints N0

CTx
([q,+∞)) ≥ h0 and N0

CTx
([q,+∞)) ≥ h0 are vanished when

θ0(k, h0) = 0 and θ i(k, hi) = 0, respectively.
From (17.11) and (17.12), Problem (17.10) is reduced to the following semi-

infinite linear programming problem:

maximize t,

subject to
n∑

j=1

cL
j (k)xj ≥ q, ∀k ∈ [0, 1], θ0(k, h0) > 0,

n∑

j=1

aR
ij (k)xj ≤ bR

i (θ i(k, hi)), ∀k ∈ [0, 1], θ i(k, hi) > 0,

i = 1, 2, . . . ,m,

x ≥ 0.

(17.13)

Then, selecting finitely many numbers of k ∈ [0, 1], Problem (17.10) is approxi-
mately reduced to a linear programming problem. We note that, as fuzzy numbers
are trapezoidal, we obtain

cL
j (k) =

{
cL
j − (1 − k)γ L

j , if k ∈ (0, 1],
−∞, if k = 0,

j = 1, 2, . . . , n, (17.14)

aR
ij (k)=

{
aR
ij + (1 − k)αR

ij , if k ∈ (0, 1],
+∞, if k = 0,

i=1, 2, . . . ,m, j=1, 2, . . . , n,

(17.15)

bR
j (k) =

{
bR
j + (1 − k)βR

j , if k ∈ (0, 1],
+∞, if k = 0,

j = 1, 2, . . . , n. (17.16)



17 Fuzzy Linear Programming with General Necessity Measures 339

17.4 Case Where θi(·, hi)’s Are Convex and Concave

As fuzzy parameters Cj , Aij , and Bi have linear membership functions, we obtain
simpler reduced problems when θ i(·, hi)’s are convex and concave.

Let us consider a case where θ i(·, hi) : [0, 1] → [0, 1], i = 1, 2, . . . ,m, are
convex in range (0, 1) (see Fig. 17.2). From (17.9), we obtain bR

i (θ i(k, hi)) = bi +
(1 − θ i(k, hi))βi , i = 1, 2, . . . ,m. Therefore, the convexity of θ i(·, hi) implies
the concavity of bR

i (θ i(·, hi)). Under the concavity of bR
i (θ i(·, hi)), the following

equivalence is valid:

Ni

AT
i x

(Bi) ≥ hi ⇔
n∑

j=1

aR
ij (k)xj ≤ bR

i (θ i(k, hi)), ∀k ∈ [0, 1], θ i(k, hi) > 0

⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j=1

āR
ij (k̄

i)xj ≤ b̄R
i (θ i(k̄i , hi)),

n∑

j=1

aR
ij (k̂

i)xj ≤ bR
i (θ i(k̂i , hi)),

(17.17)

where we define k̄i = inf{k ∈ [0, 1] | θ i(k, hi) > 0}, k̂i = inf{k ∈ [0, 1] |
θ i(k, hi) = θ i(1, h)}, āR

ij (k) = sup(Aij )k , and b̄R
i (k) = sup(Bi)k . As Aij and Bi

are linear membership functions, we obtain

āR
ij (k)=

{
aR
ij+(1− k)αR

ij , if k ∈ [0, 1),

−∞, if k=1,
i=1, 2, . . . ,m, j=1, 2, . . . , n,

(17.18)

b̄R
i (k) =

{
bR
i + (1 − k)βR

i , if k ∈ [0, 1),

−∞, if k = 1,
i = 1, 2, . . . ,m. (17.19)

Fig. 17.2 θi(·, hi) convex in
range (0, 1)
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From (17.17), Problem (17.13) can be reduced to the following linear program-
ming problem:

maximize
n∑

j=1

cL
j (k̄0)xj

subject to
n∑

j=1

āR
ij (k̄

i)xj ≤ b̄R
i (θ i(k̄i , hi)), i = 1, 2, . . . ,m,

n∑

j=1

aR
ij (k̂

i)xj ≤ bR
i (θ i(k̂i , hi)), i = 1, 2, . . . ,m,

x ≥ 0.

(17.20)

Now, let us consider a case where θ i(·, hi) : [0, 1] → [0, 1], i = 0, 1, 2, . . . ,m,
are concave in the range (0, 1). In this case, bR

i (θ i(·, hi)) becomes convex. Because
aR
ij (k) = aR

ij + (1 − k)αR
ij , i.e., linear with respect to k > 0, given x = (x1, x2, . . . ,

xn)
T ≥ 0, there exists k∗i such that

n∑

j=1

aR
ij (k)xj ≤ bR

i (θ i (k, hi)), ∀k ∈ [0, 1], θ i (k, hi) > 0

⇔
n∑

j=1

aR
ij (k

∗
i )xj ≤ bR

i (θ i(k∗i , hi)). (17.21)

Utilizing the convexity of bR
i (θ i(·, hi)), Problem (17.13) can be solved by the

following relaxation procedure [6] together with a bisection method, where k∗i is
approximately calculated for each candidate solution x∗:

S0. Specify ε by a sufficiently small positive number.
S1. Let zi = 0 and k

zi

i = 0.5k̄i + 0.5k̂i , i = 1, 2, . . . ,m.
S2. Solve the following linear programming problem:

maximize
n∑

j=1

cL
j (k̄0)xj ,

subject to
n∑

j=1

aR
ij (k

l
i )xj ≤ bR

i (θ i(kl
i , h

i)), l = 0, 1, . . . , zi , i = 1, 2, . . . ,m,

x ≥ 0.

(17.22)
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Let x∗ = (x∗1 , x∗2 , . . . , x∗n)T be the obtained optimal solution.
S3. For i = 1, 2, . . . ,m, check the existence of k∗i ∈ (0, 1] such that

∑n
j=1

aR
ij (k

∗
i )x∗j > bR

i (θ i(k∗i , hi)) by a bisection method and update zi = zi + 1 with

defining k
zi

i = k∗i if k∗i exists.
S4. If at least one zi is increased, return S2. Otherwise, x∗ is an optimal solution

to Problem (17.10).

The bisection method in S3 can be performed as follows (see Fig. 17.3):

B0. Let λi = −∑n
j=1 αR

ij x∗j , and let δ be a positive small number.

B1. Define k̃i = k
q
i with q = arg minl=0,1,...,zi

(
bR
i (θ i(kl

i , h
i))−∑n

j=1 aR
ij (k

l
i )x

∗
j

)
.

Set κi = min
(
{kl

i | kl
i > k

q
i , i = 0, 1, . . . , zi} ∪ {k̂i}

)
and

κi = max
({kl

i | kl
i < k

q
i , i = 0, 1, . . . , zi} ∪ {k̄i}).

B2. If bR
i (θ i(k̃i + δ, hi)) < bR

i (θ i (k̃i, h
i))+ λiδ, update κi = k̃i .

B3. If bR
i (θ i(k̃i − δ, hi)) < bR

i (θ i (k̃i, h
i))− λiδ, update κi = k̃i .

B4. If κi − κi > ε and min(κi − k̃i , k̃i − κi) = 0, update k̃i = 0.5κi + 0.5κi and
return B2.

B5. If
∑n

j=1 aR
ij (k

∗
i )x

∗
j > bR

i (θ i (k∗i , hi)), terminate the procedure with k∗i = k̃i .

Otherwise, there is no k∗i such that
∑n

j=1 aR
ij (k

∗
i )x∗j > bR

i (θ i (k∗i , hi)).

We note that Problem (17.10) can be solved by the relaxation procedure with
a bisection method described above when θ i(·, hi) associated with each constraint
Ni

AT
i x

(Bi) ≥ hi is convex of concave in the range (0, 1), although we considered

only the case when all θ i(·, hi) are concave.

Fig. 17.3 Figure for the
explanation of the bisection
procedure composed of B0 to
B5
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17.5 Similar Results for Necessity Measures Defined
by Modifier-Generating Functions

Now we describe the case when necessity measure Ni is defined by modifier-
generating functions gm

i and gM
i . In this case, constraints N0

CTx
([t,+∞)) ≥ h0

and Ni

AT
i x

(Bi) ≥ hi can be rewritten as

m0
h0(C

Tx) ⊆ [t,+∞), mi
hi (A

T
i x) ⊆ Mi

hi (Bi), (17.23)

where mi
hi and Mi

hi are defined by gm
i , gM

i , and hi .

Let q̄m
i = inf{gm

i (k, hi) | gm
i (k, hi) > 0, k ∈ [0, 1]} and q̂M

i = sup{gM
i (k, hi) |

gM
i (k, hi) < 1, k ∈ [0, 1]}. Then we have

N0
CTx

([t,+∞)) ≥ h0 ⇔ [m0
h0(C

Tx)]q̄m
0
⊆ [t,+∞). (17.24)

As in the analysis with θ i(·, hi)’s, the second inclusion relation of (17.23) is reduced
to semi-infinite linear inequalities. In what follows, we investigate cases where the
second inclusion relation of (17.23) is treated in some easier ways.

First, let us consider the case where gm
i (·, hi) is convex in range (0, 1) and

gM
i (·, hi) is concave in range (0, 1). Then, we have the following equivalence (see

Fig. 17.4a):

Ni

AT
i x

(Bi) ≥ hi ⇔

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
(mi

hi (A
T
i x))0 ⊆ (Mi

hi (Bi))0, if q̄m
i = 0,

[mi
hi (A

T
i x)]q̄m

i
⊆ (Mi

hi (Bi))q̄m
i
, if q̄m

i > 0,
{
[mi

hi (A
T
i x)]1 ⊆ [Mi

hi (Bi)]1, if q̂M
i = 1,

[mi
hi (A

T
i x)]q̂M

i
⊆ (Mi

hi (Bi))q̂M
i

, if q̂M
i < 1.

(17.25)

Fig. 17.4 Properties of gm
i and gM

i mi
hi (A

T
i x) and Mi

hi (Bi): (a) convex gm
i and concave gM

i and

(b) concave gm
i and convex gM

i
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Namely, as fuzzy sets Aij and Bi have linear membership functions, the convexity
of gm

i (·, hi) and the concavity of gM
i (·, hi) in the range (0, 1) make the member-

ship functions of mi
hi (A

T
i x) and Mi

hi (Bi) convex and concave in the range (0, 1),

respectively. From these properties of the membership functions of mi
hi (A

T
i x) and

Mi
hi (Bi), constraint Ni

AT
i x

(Bi) ≥ hi is equivalent to two inclusion constraints of

level sets of mi
hi (A

T
i x) and Mi

hi (Bi).

Let us define functions km
i : [0, 1] → [0, 1] and kM

i : [0, 1] → [0, 1] by

km
i (a) =

{
sup{k ∈ [0, 1] | gm

i (k, hi) ≤ a}, if a �= 1,

sup{k ∈ [0, 1] | gm
i (k, hi) < 1}, if a = 1,

(17.26)

kM
i (a) =

{
inf{k ∈ [0, 1] | gM

i (k, hi) ≥ a}, if a �= 0,

inf{k ∈ [0, 1] | gM
i (k, hi) > 0}, if a = 0.

(17.27)

Then, as fuzzy sets Aij and Bi have linear membership functions, we have

[m0
h0(C

Tx)]q̄0 ⊆ [t,+∞)] ⇔ [CTx]km
0 (q̄m

0 ) ⊆ [t,+∞)]
⇔ cL

j (km
0 (q̄m

0 )) ≥ t, (17.28)

(mi
hi (A

T
i x))0 ⊆ (Mi

hi (Bi))0 ⇔ (AT
i x)km

i (0) ⊆ (Bi)kM
i (0)

⇔
n∑

j=1

āR
ij (k

m
i (0))xj ≤ b̄R

i (kM
i (0)), (17.29)

[mi
hi (A

T
i x)]q̄m

i
⊆ cl(Mi

hi (Bi))q̄m
i
⇔ [AT

i x]km
i (q̄m

i ) ⊆ cl(Bi)kM
i (q̄m

i )

⇔
n∑

j=1

aR
ij (k

m
i (q̄m

i ))xj ≤ b̄R
i (kM

i (q̄m
i )), (17.30)

[mi
hi (A

T
i x)]1 ⊆ [Mi

hi (Bi)]1 ⇔ [AT
i x]km

i (1) ⊆ [Bi]kM
i (1)

⇔
n∑

j=1

aR
ij (k

m
i (1))xj ≤ bR

i (kM
i (1)), (17.31)

[mi
hi (A

T
i x)]q̂M

i
⊆ cl(Mi

hi (Bi))q̂M
i
⇔ [AT

i x]km
i (q̂M

i ) ⊆ cl(Bi)kM
i (q̂M

i )

⇔
n∑

j=1

aij (k
m
i (q̂M

i ))xj ≤ b̄R
i (kM

i (q̂M
i )), (17.32)

where clD is the closure of a set of D ⊆ R.
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As a result, applying the necessity fractile optimization model, Problem (17.7) is
reduced to the following linear programming problem:

maximize

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j=1

c̄L
j (km

0 (0))xj , if q̄m
0 = 0,

n∑

j=1

cL
j (km

0 (q̄m
0 ))xj , if q̄m

0 > 0,

subject to ⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j=1

āR
ij (k

m
i (0))xj ≤ b̄R

i (kM
i (0)), if q̄m

i = 0,

n∑

j=1

aR
ij (k

m
i (q̄m

i ))xj ≤ b̄R
i (kM

i (q̄m
i )), if q̄m

i > 0,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

i = 1, 2, . . . ,m,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

j=1

aR
ij (k

m
i (1))xj ≤ bR

i (kM
i (1)), if q̂M

i = 1,

n∑

j=1

aR
ij (k

m
i (q̂M

i ))xj ≤ b̄R
i (kM

i (q̂M
i )), if q̂M

i < 1,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

i = 1, 2, . . . ,m,

x ≥ 0.

(17.33)

Now let us consider the case where gm
i (·, hi) : [0, 1] → [0, 1] and gM

i (·, hi) :
[0, 1] → [0, 1] are concave and convex in range (0, 1). Because Aij and Bi have
linear membership functions, given x = (x1, x2, . . . , xn)

T ≥ 0, there exists q∗i such
that (see Fig. 17.4b)

mi
hi (A

T
i x) ⊆ Mi

hi (Bi) ⇔ [mi
hi (A

T
i x)]q∗i ⊆ cl(Mi

hi (Bi))q∗i

⇔
n∑

j=1

aR
ij (k

m
i (q∗i ))xj ≤ b̄R

i (kM
i (qi∗)). (17.34)

Problem (17.10) can be solved by a relaxation procedure together with a bisection
method. In this procedure, we explore an approximately optimal solution x by
the relaxation procedure with searching q∗i ’s corresponding to tentative solutions
generated in the procedure. Let q̄M

i = inf{gM
i (k, hi) | gM

i (k, hi) > 0, k ∈ [0, 1]}
and q̂m

i = sup{gm
i (k, hi) | gm

i (k, hi) < 1, k ∈ [0, 1]}. Then the procedure can be
written as follows:

T0. Let ε be a sufficiently small positive number. Let q̄i = max(q̄m
i , q̄M

i ) and
q̂i = min(q̂m

i , q̂M
i ).

T1. Let zi = 0 and q
zi

i = 0.5q̄ i + 0.5q̂ i , i = 0, 1, . . . ,m.
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T2. Solve the following linear programming problem:

maximize
n∑

j=1

cL
j (km

0 (q̄m
0 ))xj ,

subject to
n∑

j=1

aR
ij (k

m
i (ql

i ))xj ≤ b̄R
i (kM

i (ql
i )), l=0, 1, . . . , zi , i=1, 2, . . . ,m,

x ≥ 0.

(17.35)

Let x∗ = (x∗1 , x∗2 , . . . , x∗n)T be the obtained optimal solution.
T3. For i = 1, 2, . . . ,m, check the existence of q∗i ∈ (0, 1] such that

∑n
j=1 aR

ij (k
m
i (q∗i ))x∗j > b̄R

i (kM
i (q∗i ))+ ε by a bisection method and update zi =

zi + 1 with defining q
zi

i = q∗i if q∗i exists.
T4. If at least one zi is increased, then return S2. Otherwise, x∗ is an optimal

solution to Problem (17.10).

The bisection method in T3 can be performed as follows:

C0. Define ϕi(q) = b̄R
i (kM

i (q)) − ∑n
j=1 aR

ij (k
m
i (q))xj , and let q̂i =

arg minl=0,1,...,zi
ϕ(ql

i ). Let UB = min
({ql

i | ql
i > q̌i, l = 0, 1, . . . , zi} ∪ {q̂i}

)

and LB = max
({ql

i | ql
i < q̌i, l = 0, 1, . . . , zi} ∪ {q̄i}

)
.

C1. If q̂i = UB and ϕi(q̂i) < ϕi(q̂i − ε), then terminate this procedure. In this
case, if ϕi(1) < 0, then q∗i = 1; otherwise, q∗i does not exist.

C2. If q̄i = LB and ϕi(q̄i) < ϕi(q̄i + ε), then terminate this procedure. In this
case, if ϕi(q̄i) < 0, then q∗i = q̄i ; otherwise, q∗i does not exist.

C3. If UB − LB ≤ ε, then terminate this procedure. In this case, if ϕi(q̃i) < 0,
then q∗i = q̃i ; otherwise, q∗i does not exist.

C4. Let q̃i = 0.5q̌i + 0.5UB. If ϕ(q̃i) < ϕ(q̌i), then set LB = q̌i and q̌i = q̃i

and return to C3. Otherwise, set UB = q̃i .
C5. Let q̃i = 0.5q̌i + 0.5UB. If ϕ(q̃i) < ϕ(q̌i), then set UB = q̌i and q̌i = q̃i .

Otherwise, set LB = q̃i . Return to C3.

We note that Problem (17.10) can be solved by the relaxation procedure with
a bisection method described in the previous section and this section when each
constraint Ni

AT
i x

(Bi) ≥ hi is reduced to two linear inequalities (θ(·, hi) is convex

in the range (0, 1) or gm(·, hi) and gM(·, hi) are convex and concave in the range
(0, 1), respectively) or treated by the relaxation procedure with a bisection method
(θ(·, hi) is concave in the range (0, 1) or gm(·, hi) and gM(·, hi) are concave and
convex in the range (0, 1), respectively), although we considered cases only when
all I i have the same property in the previous section and this section.
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17.6 Results Applied to Various Implication Functions

17.6.1 R-, Reciprocal R-, and S-Implication Functions

In this section, we investigate Problem (17.10) with necessity measures defined by
R-, reciprocal R-, and S-implication functions. R-, reciprocal R-, and S-implication
functions are constructed from a t-norm t : [0, 1] × [0, 1] → [0, 1] satisfying: (t1)
t (a, 1) = a, ∀a ∈ [0, 1], (t2) t (a, b) = t (b, a), ∀a, b ∈ [0, 1], (t3) t (a, t (b, c)) =
t (t (a, b), c), ∀a, b, c ∈ [0, 1], and (t4) t (a, b) ≤ t (c, d), ∀a, b, c ∈ [0, 1]; a ≤
c, b ≤ d and a strong negation n : [0, 1] → [0, 1] satisfying (n1) n(0) = 1 and
(n2) n(n(a)) = a, ∀a ∈ [0, 1]. Namely, under given t-norm t and strong negation
n, R-implication function IR[t], reciprocal R-implication function I r−R[t, n], and
S-implication function IS[t, n] are defined by

IR[t](a, b) = sup{s ∈ [0, 1] | t (a, s) ≤ b}, (17.36)

I r−R[t, n](a, b) = sup{s ∈ [0, 1] | t (n(b), s) ≤ n(a)}, (17.37)

IS[t, n](a, b) = n(t (a, n(b))). (17.38)

A t-norm t is said to be Archimedian if it satisfies t (a, a) < a, ∀a ∈ (0, 1). It is
known that any continuous Archimedian t-norm t can be generated from a strictly
decreasing and continuous function f : [0, 1] → [0,+∞) ∪ {+∞} with f (1) = 0
as

t (a, b) = f ∗(f (a)+ f (b), (17.39)

where f ∗ : [0,+∞) ∪ {+∞} → [0, 1] is a pseudo-inverse of f defined by

f ∗(r) = sup{h ∈ [0, 1] | f (h) ≥ r} =
{

f−1(r), if r < f (0),

0, if r ≥ f (0).
(17.40)

Such a function f is called an additive generator of t-norm t .

17.6.2 Results in R-Implication Functions

When implication function I is an R-implication function IR[t], for any k, h ∈
[0, 1], we have

θ(k, h) = t (k, h). (17.41)

Therefore, if necessity measure Ni of Problem (17.10) is defined by an R-implication
function I i with t-norm t i , i.e., I i = IR[t i ] such that t i (·, hi) is convex in range
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(0, 1), the constraint Ni

AT
i x

(Bi) ≥ hi can be reduced to a system of two linear

inequalities shown in (17.17).
Moreover, if a necessity measure Ni is defined by an R-implication function

I i with t-norm ti such that ti(·, hi) is concave in range (0, 1), the relaxation pro-
cedure together with a bisection method described in Sect. 17.4 is applicable for
Ni

AT
i x

(Bi) ≥ hi .

For many famous t-norms such as minimum operation, arithmetic product,
bounded product, and so on, t (·, hi) becomes convex in range (0, 1). However, for
Schweizer–Sklar t-norms [14] tSS

η with parameter η > 1, Hamacher t-norms [14] tH
η

with parameter η < 1, and so on, t (·, hi) becomes concave in range (0, 1), where
tSS
η and tH

η are defined by

tSS
η (a, b) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

max(0, aη + bη − 1)
1
η , if η ∈ (−∞, 0),∪(0,+∞),

min(a, b), if η = −∞,

ab, if η = 0,
{

min(a, b), if max(a, b) = 1,

0, otherwise,
η = +∞,

(17.42)

tH
η (a, b) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
min(a, b), if max(a, b) = 1,

0, otherwise,
η = +∞,

0, if η = a = b = 0,
ab

η + (1− η)(a + b − ab)
, otherwise.

(17.43)

17.6.3 Results in Reciprocal R-Implication Functions

When implication function I is a reciprocal R-implication function I r−R[t, n], we
have θ(k, h) = inf{s ∈ [0, 1] | t (n(s), h) ≤ n(k)}. Then when a reciprocal R-
implication function I r−R[t, n] is defined by n(h) = 1 − h and t-norm t such that
t (·, hi) is convex in range (0, 1), we can prove that θ(·, hi) is convex in range (0, 1)

as follows: for any k1, k2 ∈ [0, 1], any λ ∈ [0, 1], we have

θ(λk1 + (1 − λ)k2, h
i)

= inf{s ∈ [0, 1] | t (1 − s, hi ) ≤ 1 − (λk1 + (1 − λ)k2)}
= inf{λs1 + (1 − λ)s2 ∈ [0, 1] | s1, s2 ∈ [0, 1]

t (λ(1 − s1)+ (1 − λ)(1 − s2), h
i) ≤ λ(1 − k1)+ (1 − λ)(1 − k2)}

≤ inf{λs1 + (1 − λ)s2 ∈ [0, 1] | s1, s2 ∈ [0, 1]
λt (1 − s1, h

i)+ (1 − λ)t (1 − s2, h
i) ≤ λ(1 − k1)+ (1 − λ)(1 − k2)}

≤ λθ(k1, h
i)+ (1 − λ)θ(k2, h).
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Therefore, if necessity measure Ni of Problem (17.10) is defined by reciprocal
R-implication function I i = I [t, n]with n(h) = 1−h and t-norm t such that t (·, hi)

is convex in range (0, 1), the constraint Ni

AT
i x

(Bi) ≥ hi can be reduced to a system

of two linear inequalities shown in (17.17).

17.6.4 Results in S-Implication Functions

When implication function I i is an S-implication IS[t, n], we have

θ(k, hi) = n
(

sup{s ∈ [0, 1] | t (k, s) ≤ n(hi)}
)

. (17.44)

Let us define a set BS(h) ⊆ [0, 1] × [0, 1] and a function ψBS(h) : [0, 1] → [0, 1]
by

BS(h) = {(k, s) ∈ [0, 1] × [0, 1] | t (k, s) ≤ h}, (17.45)

ψBS(h)(k) = sup{s ∈ [0, 1] | t (k, s)≤h}=sup{s | (k, s) ∈ BS(h)}. (17.46)

It is easily shown that ψBS(h) is concave if BS(h) is a convex set. Then we
obtain that if t-norm t is quasi-convex and n is convex, θ(·, hi) becomes convex.
Therefore, if necessity measure Ni of Problem (17.10) is defined by S-implication
I i = IS[t, n] with a convex strong negation n and a quasi-convex t-norm t , the
constraint Ni

AT
i x

(Bi) ≥ hi can be reduced to a system of two linear inequalities

shown in (17.17).
When t-norm t is an Archimedian t-norm having the additive generator f with

(17.39), S-implication IS[t, n] can be defined by (17.6) with the following modifier-
generating functions (see Inuiguchi and Tanino [9] and Inuiguchi et al. [13]):

gm(a, h) = max

(

0, 1 − f (a)

f (n(h))

)

,

gM(a, b) = min

(

1,
f (n(a))

f (n(h))

)

. (17.47)

If I i is S-implication function IS[t, n] with respect to a continuous Archimedian
t-norm t such that the additive generator f is concave and n is convex, from (17.47)
and strict decreasingness of f , gm(·, h) and gM(·, h) are convex and concave in the
range (0, 1). Then in this case, the constraint Ni

AT
i x

(Bi) ≥ hi can be reduced to a

system of two linear inequalities.
Moreover, if a necessity measure Ni is defined by an S-implication I i = IS[t, n]

with respect to a continuous Archimedian t-norm such that the additive generator
f is convex and n is concave, from (17.47) and strict decreasingness of f , gm(·, h)
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and gM(·, h) are concave and convex in the range (0, 1). Therefore, the relaxation
procedure with a bisection method described in the previous section is applicable
for the constraint Ni

AT
i x

(Bi) ≥ hi .

17.6.5 Obtained Results Applied to Famous Implication
Functions

The obtained results are arranged in Table 17.2. In Table 17.2, the convexity and
concavity of θ(·, hi), gm(·, hi), gM(·, hi), and t (·, hi) are restricted in the range
(0, 1). RPBM-applicable means that the relaxation procedure together with a bisec-
tion method is applicable. As shown in Table 17.2, some convexity and/or concavity
of some functions related to implication functions are required for solving Prob-
lem (17.10) in a simpler way. These conditions may be seen as being strong.

However, if we apply the obtained results to famous and useful implication func-
tions, we obtain Table 17.3. The implication functions can be found in [9, 10,
13]. In Table 17.3, column “reduc.” shows the reduced constraints. “Linear” stands
for linear inequalities, while “Relx.” stands for relaxation procedure with a bisec-
tion method. As shown in Table 17.3, constraint Ni

AT
i x

(Bi) ≥ hi with respect to

many of famous implication functions I i except Reichenbach implication func-
tion is reduced to two linear inequality conditions. When necessity measure Ni is
defined by Reichenbach implication function, if other necessity fractile constraints
are reduced to linear inequalities or treated by the relaxation procedure with a
bisection method, Problem (17.10) can be solved by the relaxation procedure with
a bisection method described in previous sections.

Therefore, for many famous implication functions, necessity measures can be
treated without great loss of linearity when fuzzy numbers Cj , Aij and fuzzy con-
straints Bi have linear membership functions.

Table 17.2 Implication functions and the conditions for reducing Ni

AT
i x

(Bi) ≥ hi

Implication function I i Linear inequalities RPBP-applicable

General I θ(·, hi) is convex. θ(·, hi) is concave.

By gm and gM gm(·, hi ) is convex and gm(·, hi ) is concave and

gM(·, hi ) is concave. gM(·, hi ) is convex.

R-implication IR[t] t (·, hi) is convex. t (·, hi) is concave.

Reciprocal R-implication t (·, hi) is convex —–

I r−R[t, n] and n(h) = 1 − h.

S-Implication IS[t, n] t is quasi-convex and n is convex. —–

S-Implication IS[t, n] with f is concave and n is convex. f is convex and n is concave.

t (a, b) = f ∗(f (a) + f (b))
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17.7 Concluding Remarks

We have investigated in the necessity fractile optimization models of possibilistic
linear programming problems with trapezoidal fuzzy numbers. We consider the
models with general necessity measures defined by various implication functions.
In general, the model is reduced to a semi-infinite linear programming problem
that can be solved approximately by a linear programming technique with selecting
many constraints from the semi-infinite constraints.

We showed that the model can be reduced to a usual linear programming prob-
lem or solved by a relaxation procedure with a bisection method when functions
related to the implication function have convexity and/or concavity. Utilizing the
obtained results, we demonstrated that the model can be reduced to a usual lin-
ear programming problem when many famous implication functions are used for
defining necessity measures. To see the significance of the selection of implication
function, differences of the equivalent conditions to the necessity fractile constraints
by the implication functions are observed.

The studies on necessity measure optimization models would be one of the future
topics derived from the results of this chapter. Moreover, the study on the specifica-
tion of necessity measures suitable for decision-maker’s requirements would be one
of the important topics.
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Chapter 18
Dominance-Based Rough Set Approach:
Basic Ideas and Main Trends

Jerzy Błaszczyński, Salvatore Greco, Benedetto Matarazzo,
and Marcin Szeląg

Abstract Dominance-based Rough Set Approach (DRSA) has been proposed as
a machine learning and knowledge discovery methodology to handle Multiple
Criteria Decision Aiding (MCDA). Due to its capacity of asking the decision maker
(DM) for simple preference information and supplying easily understandable and
explainable recommendations, DRSA gained much interest during the years and it
is now one of the most appreciated MCDA approaches. In fact, it has been applied
also beyond MCDA domain, as a general knowledge discovery and data mining
methodology for the analysis of monotonic (and also non-monotonic) data. In this
contribution, we recall the basic principles and the main concepts of DRSA, with a
general overview of its developments and software. We present also a historical
reconstruction of the genesis of this methodology, with a specific focus on the
contribution of Roman Słowiński.
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18.1 Introduction

Among the many merits of Roman Słowiński in his so long and so rich scientific
carrier, we have to consider his pioneering approach to the use of artificial
intelligence methodologies to decision support, and, in particular, to Multiple
Criteria Decision Aiding (MCDA) (for an updated state of the art, see [48]). In
this perspective, the proposal and the development of the Dominance-based Rough
Set Approach (DRSA) is a cornerstone in the domain. The DRSA basic idea of
a decision support procedure, based on a decision model expressed in natural
language and obtained from simple preference information in terms of exemplary
decisions, has attracted the interest of experts and it is now considered one of the
three main approaches to MCDA, together with the classical Multiple Attribute
Utility Theory (MAUT) [58] and the outranking approach [75]. In fact, DRSA
is not a mere application to MCDA of concepts and tools already proposed and
developed in the domain of artificial intelligence, knowledge discovery, data mining,
and machine learning. Indeed, consideration of preference orders typical for MCDA
problems required a reformulation of many important concepts and methodologies,
so that DRSA became a methodology viable and interesting per se also in these
domains. Consequently, after more or less 25 years from the proposal of DRSA,
we try to present a first assessment taking into consideration the basic ideas and the
main developments.

This paper is organized as follows. Next section presents some historical notes.
Section 18.3 recalls the basic concepts of DRSA, while sect. 18.4 describes the main
developments. Section 18.5 presents some available software. Section 18.6 collects
conclusions.

18.2 Some Historical Notes on the Dominance-Based Rough
Set Approach

In the beginning of the 1980s, Roman Słowiński entered in contact with two very
relevant figures of researchers in two quite different domains: Bernard Roy and
Zdzisław Pawlak. Bernard Roy, one of the pioneers of the Operation Research in
Europe, was the founder of the European School of MCDA. Zdzisław Pawlak,
one of the founders of the computer science and artificial intelligence, proposed
the Rough Set Theory as a mathematical tool for data analysis and knowledge
discovery. Roman Słowiński, who had already given fundamental contributions in
scheduling theory, was enthusiastically interested in both MCDA and rough set
theory as witnessed, among the others, by a translation in Polish [74] of the book
in which Bernard Roy systematically presented the basis of MCDA [73] and by
the organization of the first rough set international conference held in 1992 in
Poznań (the proceedings of the conference are collected in [80]). Since his first
contributions in the domain, Roman Słowiński was interested in the use of rough
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set theory for decision support. In particular, he proposed the first application in
real world problems related to application of rough set theory to medical diagnosis
[82] and edited the first handbook thought as a synthesis of experience with
rough sets [79]. Moreover, he realized that very interesting developments could
be obtained in rough set theory by applying concepts proposed in MCDA, as the
construction of similarity relations using indifference thresholds [78], inspired by
analogous concepts in outranking methods [77]. Pursuing this research line, very
soon Roman Słowiński matured the conviction that beyond the simple application
in rough set theory of some specific concepts originating in MCDA, there was
the space for a whole extension of rough set theory that could become a relevant
model for MCDA [71, 72]. In May 1994 Roman Słowiński went to Catania to give
some seminars on MCDA and rough set theory. On that occasion, discussing with
Benedetto Matarazzo and Salvatore Greco, a very interesting idea came out: what
could be obtained approximating sets of pairs of objects (binary relations) rather
than “standard” sets of single objects? The information to be processed with rough
set theory had to be the preference on single criteria and the overall preference, in
order to express the overall preference in terms of preferences on the single criteria.
This idea was called rough set analysis of a Pairwise Comparison Table (PCT).
In October of the same year Roman Słowiński, Salvatore Greco, and Benedetto
Matarazzo met again at the 40th meeting of the EURO working group on Multiple
Criteria Decision Aiding, held in Paris and Bordeaux. The program of the meeting
was split into two parts, with the morning of October 6 in Paris and the following
day in Bordeaux, with a transfer by train in the afternoon of October 6. The travel
between Paris and Bordeaux was a very good occasion for a long discussion on the
intuition that had come out in Catania. The three researchers remained in contact
continuing to work on PCT. On the first days of May 1995, Salvatore Greco stayed
one week in Poznań and during that week the first paper on PCT was completed
[29]. In the same year the new rough set model was presented at an international
conference, more precisely at the 12th International Conference on Multiple Criteria
Decision Making held on June 19–23 in Hagen [21]. This was the first presentation
of PCT at an MCDA conference. The year after, Roman Słowiński, Salvatore Greco,
and Benedetto Matarazzo participated in the Fourth International Workshop on
Rough Sets, Fuzzy Sets, and Machine Discovery, held during November 6–8, 1996,
in Tokyo. This was the first exposition of the PCT to a rough set conference. On that
occasion, Hirotaka Nakayama invited the three researchers to Kobe. Again during
the travels in train between Tokyo and Kobe and back, there were very rich and
constructive discussions about the new rough set model. Both researchers in MCDA
and in rough set theory were interested in the idea. However, very soon it appeared
clear that the PCT was not able to represent all the salient aspects of MCDA.
Indeed, classical rough set theory is based on indiscernibility relation, so what is
taken into account is only if the considered objects have the same description or
not. In MCDA, and, more in general, in decision support, there is something more
to be considered than the equal or different description. For example, in deciding
about cars, a maximum speed of 200 km/h is greater and consequently preferred
to a maximum speed of 180 km/h. However, under the lens of indiscernibility
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200 km/h is only different from 180 km/h. How to take into account that, beyond
the difference, there is the preference of 200 km/h over 180 km/h? For a certain
time, this was not clear and there was even a point in which Roman Słowiński,
Salvatore Greco, and Benedetto Matarazzo took into consideration to abandon the
research. In the same period, Constantin Zopounidis invited Roman Słowiński to
write a contribution for a book that he was editing [102]. Roman Słowiński proposed
Salvatore Greco and Benedetto Matarazzo to write this contribution by applying
their approach to rough set theory to bankruptcy evaluation, using the data that
had been analyzed with classical rough set theory in [17]. Working on these data,
the idea that would permit to extend the rough set theory to MCDA was finally
found. The key concept was the substitution of the indiscernibility relation used in
classical rough set theory with the dominance relation on which MCDA is rooted.
On the basis of this intuition, definitions and results of classical rough set theory
can be reformulated in the MCDA perspective. This idea quickly proved to be very
successful in improving the results obtained using classical rough set theory, and
the contribution in the book edited by Constantin Zopounidis [102] became the
first application of the new extension of rough set theory called Dominance-based
Rough Set Approach (DRSA). The new idea gave new impetus to the research,
so that a systematic analysis of the basic concepts of DRSA and of its extension
was pursued. At those times, Roman Słowiński received the invitation to write a
chapter on fuzzy sets applied to MCDA, for a book proposing a state of the art on
MCDA [25]. To write that contribution, in the spring 1998 Salvatore Greco stayed
two months in Poznań to cooperate with Roman Słowiński, remaining constantly
in contact with Benedetto Matarazzo. The final result was a contribution in the
book in which rough set theory applied to MCDA, rather than fuzzy set theory, was
presented [34]. The material in that chapter was continuously revised and improved
until it became the basic paper in which DRSA is presented [40]. This paper has
become one of the most read and cited of the European Journal of Operational
Research. The research on DRSA took several directions. Some years after, on
December 2006, Roman Słowiński together with Juergen Branke, Kaylamon Deb,
and Kaisa Miettinen organized a Dagstuhl seminar with the aim of opening a
discussion between researchers interested in interactive multiobjective optimization
and evolutionary multiobjective optimization (the presentations of that seminar are
collected in [11]). In that seminar, Roman Słowiński and Salvatore Greco presented
the result of a new research together with Benedetto Matarazzo. The idea was
the application of DRSA to guide the search of the most preferred solution in
an interactive multiobjective optimization problem [46]. Again, the proposal was
well accepted by the experts in multiobjective optimization, because through the
DRSA the preference information asked to the DM is very simple and intuitive (the
classification of some solutions as good or not) and the preference model supplied
by DRSA in terms of “if . . . , then . . . ” decision rules is very understandable for
the DM and easy to be managed in the optimization algorithm. Recently, Roman
Słowiński has come back to the multiobjective optimization through DRSA in a
new research conducted again with Salvatore Greco and Benedetto Matarazzo with
the addition of Salvatore Corrente. The new research [12] aims at using DRSA in an
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evolutionary multiobjective optimization algorithm. The use of DRSA is justified
taking into account also its good properties from the point of view of decision
psychology [65].

18.3 Basic Concepts of the Dominance-Based Rough Set
Approach

In this section, we want to present the basic ideas of DRSA [40] in comparison
with the original Indiscernibility-based Rough Set Approach (IRSA) proposed by
Zdzisław Pawlak [69, 70]. Both IRSA and DRSA consider a universe U being a
finite set of objects, a finite set of attributes Q = {q1, q2, . . . , qm}, each one of them
having a value set Vqi , i = 1, . . . ,m, and an information function f : U ×Q → V ,
with V =⋃

q∈Q Vq , such that f (x, q) ∈ Vq for each q ∈ Q.
Every set of attributes P ⊆ Q,P �= ∅, defines an indiscernibility relation on U ,

denoted by IP :

IP = {
(x, y) ∈ U × U : f (x, q) = f (y, q), for all q ∈ P

}
.

If (x, y) ∈ IP , denoted also xIP y, we say that the objects x and y are P -
indiscernible. The indiscernibility relation IP is an equivalence relation on U

assigning to each object x ∈ U its equivalence class

IP (x) = {y ∈ U : yIP x}.

The family of all the equivalence classes of relation IP is denoted by U/IP . The
equivalence classes of relation IP are called the P-elementary sets or granules of
knowledge encoded by P .

Using the indiscernibility relation IP , to any set X ⊆ U may be associated the
P-lower approximation

P (X) = {
x ∈ U : IP (x) ⊆ X

}

and the P-upper approximation

P (X) = {
x ∈ U : IP (x) ∩X �= ∅} .

Intuitively, an object x belongs to P (X) if it is certainly contained in X, in the
sense that all the objects that are indiscernible with it also belong to X. Instead, an
object x belongs to P (X) if it is possibly contained in X, in the sense that there is at
least one object indiscernible with x that belongs to X.

Often the set of attributes Q is divided into the set of condition attributes C �= ∅
and the set of decision attributes D �= ∅, such that C ∪ D = Q and C ∩ D = ∅.
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The indiscernibility relation IS with respect to a set of decision attributes S ⊆ D,
S �= ∅, induces a partition of U , so that the lower and the upper approximation
of each equivalence class IS(x), x ∈ U , with respect to P ⊆ C, P �= ∅, can be
computed, with the aim of discovering dependencies between condition attributes
from P and decision attributes from S. Indeed, if for x, z ∈ U , P ⊆ C and S ⊆ D,
x ∈ P (IS(z)), then IP (x) ⊆ IS(z), that is, for all y ∈ U , if f (y, q) = f (x, q) for
all q ∈ P , then f (y, q) = f (z, q) for all q ∈ S. This can be interpreted in the sense
that the objects from U suggest the following certain decision rule:

ρc = “if f (y, q) = f (x, q) for all q ∈ P, then f (y, q) = f (z, q)

for all q ∈ S”.

Analogously, if for x, z ∈ U , P ⊆ C and S ⊆ D, x ∈ P (IS(z)), then IP (x) ∩
IS(z) �= ∅, that is, there is at least one y ∈ U , such that f (y, q) = f (x, q) for all
q ∈ P and f (y, q) = f (z, q) for all q ∈ S. This can be interpreted in the sense that
the objects from U suggest the following possible decision rule:

ρp = “if f (y, q) = f (x, q) for all q ∈ P , then it is possible that f (y, q) = f (z, q)

for all q ∈ S”.

The certain and possible decision rules induced from universe U can also be applied
to classify objects not belonging to the universe U , with an easily understandable
explanation expressed in natural language. In fact, in the presence of a certain
decision rule ρc (a possible decision rule ρp), if there is an object w /∈ U such
that f (w, q) = f (x, q) for all q ∈ P , the objects from U suggest that one has to
(could) expect f (w, q) = f (z, q) for all q ∈ S, with the certain decision rule ρc

(the possible decision rule ρp) that can be seen as an explanation.
Very often there is a single decision attribute d , that is, D = {d}. In this case,

the equivalence classes Id(x), x ∈ U , can be identified with a set of decision classes
Cl = {Cl1, . . . , Cln}. In this context, the lower and the upper approximation P (Clt )

and P (Clt ) of each decision class Clt ∈ Cl with respect to a set of condition
attributes P ⊆ C,P �= ∅, can be obtained.

The classical IRSA has been recognized as a mathematical theory useful in tasks
considered in knowledge discovery and data mining. It has been widely investigated
from the theoretical perspective. It has also been applied in the analysis of many
real world problems. However, as explained in the historical notes of the previous
section, it cannot deal with preferences and, more in general, with data exhibiting
monotonic relationships. In order to handle this problem, Roman Słowiński with
Salvatore Greco and Benedetto Matarazzo proposed to substitute the indiscernibility
relation with a dominance relation. Suppose that to each attribute q ∈ Q there is
associated a preference relation �q , such that, without loss of generality, for all
x, y ∈ U , x is at least as good as y with respect to attribute q , denoted by x �q y,
if f (x, q) ≥ f (y, q). Given x, y ∈ U and P ⊆ Q, x dominates y with respect to
P , denoted by xDP y, if f (x, q) ≥ f (y, q) for all q ∈ P . The P -dominance DP is
a reflexive and transitive binary relation, i.e., it is a preorder.
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Given a set of criteria P ⊆ Q,P �= ∅, and x ∈ U , the granules of knowledge
used for approximation in DRSA are the P -dominating set D+

P (x) (also called
positive dominance cone) and the P -dominated set D−

P (x) (also called negative
dominance cone) defined as follows:

D+
P (x) = {y ∈ U : yDP x}, D−

P (x) = {y ∈ U : xDP y}.

Given P ⊆ Q,P �= ∅, and X ⊆ U , the P -upward-lower and the P -upward-
upper approximation of X are defined as follows:

P+(X) = {
x ∈ U : D+

P (x) ⊆ X
}
,

P
+
(X) = {

x ∈ U : D−
P (x) ∩X �= ∅} .

Analogously, the P -downward-lower and the P -downward-upper approximation of
X are defined as follows:

P−(X) = {
x ∈ U : D−

P (x) ⊆ X
}
,

P
−
(X) = {

x ∈ U : D+
P (x) ∩X �= ∅} .

Also within DRSA one can consider a division of the set of attributes Q into
the set of condition attributes C �= ∅ and the set of decision attributes D �= ∅, so
that, taken P ⊆ C and S ⊆ D,P �= ∅ and S �= ∅, and x ∈ U , the P -lower and
the P -upper approximation of the S-dominating set D+

S (x) and the S-dominated
set D−

S (x) can be computed, with the aim of discovering dependencies between
condition attributes from P and decision attributes from S. Indeed, for example, if
for x, z ∈ U , P ⊆ C and S ⊆ D, x ∈ P+(D+

S (z)), then D+
P (x) ⊆ D+

S (z), that
is, for all y ∈ U , if f (y, q) ≥ f (x, q) for all q ∈ P , then f (y, q) ≥ f (z, q) for
all q ∈ S. This can be interpreted in the sense that the objects from U suggest the
following certain decision rule:

ρ+c = “if f (y, q) ≥ f (x, q) for all q ∈ P, then f (y, q) ≥ f (z, q) for all q ∈ S”.

Analogously, if for x, z ∈ U , P ⊆ C and S ⊆ D, P �= ∅ and S �= ∅, y ∈
P
+
(D+

S (z)), then D−
P (y) ∩ D+

S (z) �= ∅, that is, there is at least one x ∈ U , such
that f (x, q) ≤ f (y, q) for all q ∈ P and f (x, q) ≥ f (z, q) for all q ∈ S. This can
be interpreted in the sense that the objects from U suggest the following possible
decision rule:

ρ+p = “if f (y, q) ≥ f (x, q) for all q ∈ P , then it is possible that f (y, q) ≥ f (z, q)

for all q ∈ S”.
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In this context, one has to consider a semantic correlation [41] between condition
and decision attributes for which an improvement on a condition attribute should
not worsen a decision attribute, if the values of the other condition attributes remain
unchanged. For example, semantic correlation implies that if the evaluation of a
student on a given subject, let us say history, improves, the overall evaluation should
not decrease if for all other subjects the evaluations remain the same. Here, history
is a condition attribute and the overall evaluation is a decision attribute. Considering
semantic correlation, taken S ⊆ D,S �= ∅, dominating sets D+

S (x) admit upward
approximations and dominated sets D−

S (x) admit downward approximations, and,
consequently, the following rough approximations can be considered:

P+(D+
S (x)) = {

y ∈ U : D+
P (y) ⊆ D+

S (x)
}
,

P
+
(D+

S (x)) = {
y ∈ U : D−

P (y) ∩D+
S (x) �= ∅} ,

P−(D−
S (x)) = {

y ∈ U : D−
P (y) ⊆ D−

S (x)
}
,

P
−
(D−

S (x)) = {
y ∈ U : D+

P (y) ∩D−
S (x) �= ∅} .

As was the case for IRSA, also for DRSA, usually, D = {d}, so that a single
decision attribute d is considered. In this case, the decision classes {Cl1, . . . , Cln}
can be preferentially ordered so that for all x, y ∈ U , with x ∈ Clt1 and y ∈ Clt2 ,
if t1 ≥ t2, then x �d y and, equivalently, f (x, d) ≥ f (y, d). Consequently, the
dominating and the dominated sets of the decision attribute d , D+

d (x) and D−
d (x),

x ∈ U , can be formulated in terms of upward and downward unions of decision
classes Cl

≥
t and Cl

≤
t , t = 1, . . . , n, defined as

Cl
≥
t =

⋃

s≥t

Cls , Cl
≤
t =

⋃

s≤t

Cls .

In fact, for all x ∈ U , if x ∈ Clt , then

D+
d (x) = {y ∈ U : f (y, d) ≥ f (x, d)} = Cl

≥
t ,

D−
d (x) = {y ∈ U : f (y, d) ≤ f (x, d)} = Cl

≤
t .

In this context, taking into consideration semantic correlation, the upward
lower and upper approximation P+(Cl

≥
t ) and P

+
(Cl

≥
t ) of each upward union of

decision classes Cl
≥
t with respect to condition attributes P ⊆ C,P �= ∅, can be

obtained. Analogously, the downward lower and upper approximation P−(Cl
≤
t ) and

P
−
(Cl

≤
t ) of each downward union of decision classes Cl

≤
t with respect to condition

attributes P ⊆ C,P �= ∅, can be computed.
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18.4 Developments of DRSA

In this section we discuss some of the many developments and extensions of DRSA,
related both to application of DRSA to other types of problems than just ordinal
classification, considered in the basic version of DRSA presented in the previous
section, and to adaptation of DRSA to different characteristics of analyzed data.

18.4.1 DRSA to Multicriteria Choice and Ranking

Choice and ranking problems are one of the main problems considered in MCDA
[73]. To address them using rough sets, Greco, Matarazzo and Słowiński proposed
the concept of a pairwise comparison table (PCT) [26, 29] in which binary relations,
that is sets of pairs of objects, are approximated, rather than sets of single objects
as in the basic IRSA and DRSA. Although this way it became possible to take into
account the preferences over particular criteria and the overall preference between
two objects, still PCT was analyzed using IRSA, which could not take into account
all types of inconsistency observed in pairwise comparisons. This deficiency was
overcome when Greco, Matarazzo, and Słowiński proposed to employ dominance
relation while processing PCT [27, 28].

Over the years, different ways of application of DRSA to multicriteria choice and
ranking have been proposed in the literature. In the following, we discuss five such
approaches in the order of their appearance, denoting them by Greek letters α − ε.
All these approaches involve five key steps:

(s1) Elicitation of preference information in terms of pairwise comparisons of some
reference objects

(s2) Rough approximation of comprehensive relations implied by the pairwise
comparisons, using the DRSA or a Variable Consistency DRSA (VC-DRSA;
see Sect. 18.4.7), to handle possible inconsistencies observed in the PCT

(s3) Induction of decision rules from rough approximations of considered compre-
hensive relations

(s4) Application of induced decision rules on set M ⊆ U of objects to be ranked
(s5) Exploitation of the resulting preference structure on M to get a final ranking of

objects (total preorder)

This final ranking is the recommendation presented to the DM when dealing with
multicriteria ranking problem. In case of multicriteria choice, the recommendation
is the object or the set of objects ranked as the best.

A common assumption of approaches α − δ is that, for each cardinal criterion
qi ∈ C (i.e., criterion with a cardinal scale, for which it is meaningful to consider
intensity of preference), there is given a set of graded preference relations Ti =
{Ph

i , h ∈ Hi}, where Hi is a finite set of integer numbers (“grades of intensity of
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preference”) (see, e.g., [40]). Relations Ph
i are binary relations over U , such that for

a, b ∈ U :

• If aPh
i b and h > 0, then object a is preferred to object b by degree h w.r.t.

criterion qi .
• If aPh

i b and h < 0, then object a is not preferred to object b by degree h w.r.t.
criterion qi .

• If aPh
i b and h = 0, then object a is similar (asymmetrically indifferent) to object

b w.r.t. criterion qi .

In approach ε, however, it is argued that the above modeling of binary relations
Ph

i , involving determination of several thresholds for each cardinal criterion, may
be considered impractical. In fact, it relates to discretization of the scale on which
the strength of preference is expressed. Therefore, in approach ε, instead of grades
of preference intensity, one puts in a PCT for each cardinal criterion qi ∈ C just
differences of evaluations f (a, qi)− f (b, qi).

The first application of DRSA to multicriteria choice and ranking, denoted by α,
was proposed in [27, 28, 30, 31, 33] and reminded in [34, 85]. It is characterized by
the following steps:

(sα
1 ) The pairwise comparisons of reference objects are expressed in terms of

outranking and non-outranking relations; given a pair of objects (a, b) ∈
U × U , a DM may: (i) state that object a is comprehensively at least as good
as object b (or, in other words, a outranks b), denoted by aSb, (ii) state that
object a is comprehensively not at least as good as object b (or, in other words,
a does not outrank b), denoted by aScb, or (iii) abstain from any judgment.

(sα
2 ) Relations S and Sc are approximated using graded dominance relations

(called in the following single-graded dominance relations) w.r.t. the set of
criteria C.

(sα
3 ) The approximations of S and Sc are used to generate four types of single-

graded decision rules (i.e., concerning the same grade of preference w.r.t. each
criterion present in the rule condition part), denoted by D++, D−+, D+−,
D−−; if a pair (a, b) ∈ U × U is covered by at least one rule of the first two
types, it is concluded that aSb, while if it is covered by at least one rule of the
last two types, the conclusion is aScb.

(sα
4 ) The application of induced rules on set M ⊆ U yields four outranking

relations called true outranking relation, false outranking relation, contra-
dictory outranking relation, and unknown outranking relation, which together
constitute the so-called four-valued outranking [95, 96].

(sα
5 ) The final ranking of objects from set M ⊆ U is obtained using their so-called

net flow scores; the net flow score of an object a ∈ M , denoted by SNF (a), is
calculated as the sum of:

(i) The number of objects b ∈ M such that the induced rules suggest aSb

(ii) The number of objects b ∈ M such that the induced rules suggest bSca
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diminished by the sum of:

(iii) The number of objects b ∈ M such that the induced rules suggest bSa

(iv) The number of objects b ∈ M such that the induced rules suggest aScb

It is worth noting that the first approach presented in [27, 28, 30, 31, 33]
does not account for ordinal criteria (i.e., criteria with ordinal scale, for which
consideration of intensity of preference is not meaningful). Moreover, the single-
graded dominance relation is lacking in precision [34] as it assumes a common
grade of intensity of preference for all considered (cardinal) criteria.

The second application of DRSA to multicriteria choice and ranking, denoted
by β, was presented in [34, 36, 40, 83–87]. It comprises the following steps:

(sβ

1 ) ≡ (sα
1 ).

(sβ
2 ) Relations S and Sc are approximated using the dominance relation that

accounts for both cardinal and ordinal criteria; w.r.t. cardinal criteria, the
multigraded dominance relation is considered.

(sβ
3 ) The approximations of S and Sc are used to generate three types of decision

rules (that can use different grades of preference w.r.t. each cardinal criterion
present in the rule condition part), denoted by D≥, D≤, and D≥≤; if a pair of
objects (a, b) ∈ U × U is covered by at least one rule of the first type, it is
concluded that aSb, while if it is covered by at least one rule of the second
type, the conclusion is aScb.

(sβ
4 ) ≡ (sα

4 ).

(sβ

5 ) ≡ (sα
5 ).

It is worth noting that definitions of lower approximations applied in approaches
α and β appear to be too restrictive in practical applications. In consequence, lower
approximations of S and Sc are often small or even empty, preventing a good
generalization of pairwise comparisons in terms of decision rules.

The third application of DRSA to multicriteria choice and ranking presented in
[42, 83], denoted by γ , is characterized by the following steps:

(sγ

1 ) ≡ (sβ
1 ).

(sγ

2 ) Relations S and Sc are approximated using the dominance relation that
accounts for both cardinal and ordinal criteria; w.r.t. cardinal criteria, the
multigraded dominance relation is considered; contrary to step (sβ

2 ), the
approximations of S and Sc are calculated using a PCT-oriented adaptation of
the VC-DRSA proposed originally in [38] w.r.t. the multicriteria classification
problems; as this VC-DRSA measures consistency of decision examples using
rough membership measure μ, it will be denoted by μ-VC-DRSA.

(sγ

3 ) The lower approximations of S and Sc are used to generate two types of
probabilistic decision rules (that can use different grades of preference w.r.t.
each cardinal criterion present in the rule condition part), denoted by D≥ and
D≤; if a pair of objects (a, b) ∈ U × U is covered by at least one rule of the
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first type, it is concluded that aSb, while if it is covered by at least one rule of
the second type, the conclusion is aScb.

(sγ

4 ) ≡ (sβ
4 ).

(sγ

5 ) ≡ (sβ

5 ).

The fourth application of DRSA to multicriteria choice and ranking, denoted
by δ, was introduced in [22]. It is characterized by the following steps:

(sδ
1) The pairwise comparisons of reference objects are expressed in terms of

comprehensive graded preference relations �h, h ∈ [−1, 1]; given a pair of
objects (a, b) ∈ U × U , a DM may: (i) state that object a is comprehensively
preferred to object b in grade h, i.e., a �h b with h > 0, (ii) state that object
a is comprehensively not preferred to object b in grade h, i.e., a �h b with
h < 0, (iii) state that object a is comprehensively indifferent to object b, i.e.,
a �0 b, or (iv) abstain from any judgment.

(sδ
2) Upward cumulated preference relations (upward unions of comprehensive

graded preference relations) �≥h and downward cumulated preference rela-
tions (downward unions of comprehensive graded preference relations) �≤h

are approximated using the dominance relation that accounts for both cardinal
and ordinal criteria; w.r.t. cardinal criteria, the multigraded dominance relation
is considered; analogously to step (sγ

2 ), the approximations of �≥h and �≤h

are calculated using a PCT-oriented adaptation of μ-VC-DRSA proposed in
[38].

(sδ
3) The lower approximations of �≥h and �≤h are used to generate two types of

probabilistic decision rules (that can use different grades of preference w.r.t.
each cardinal criterion present in the rule condition part), denoted by D≥ and
D≤; each induced rule is additionally characterized by the attained confidence
level; if a pair of objects (a, b) ∈ U × U is covered by at least one rule of the
first type, it is concluded that a �≥h b, while if it is covered by at least one
rule of the second type, the conclusion is a �≤h b.

(sδ
4) The application of induced rules on set M ⊆ U yields a graded fuzzy

preference relation (of level 2) over M; this relation is graded because
of different grades of preference, but it is also fuzzy because of different
confidence levels of rules matching pairs of objects from M ×M .

(sδ
5) The final ranking of objects from set M ⊆ U is obtained by exploitation of

the preference structure on M using either the Weighted Fuzzy Net Flow Score
(WFNFS) procedure or a Lexicographic-fuzzy Net Flow Score procedure.

It is worth noting that elicitation of preferences in terms of comprehensive
graded preference relations �h requires, in general, a greater cognitive effort of
a DM. Moreover, it makes exploitation of the preference structure resulting from
application of induced decision rules more complex.

It is also important to note that the application of variable consistency model of
DRSA considered in approaches γ and δ, relying on rough membership consistency
measure μ, leads to the situation when calculated lower approximations of consid-
ered comprehensive relations lack several desirable monotonicity properties [4].
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The fifth application of DRSA to multicriteria choice and ranking, denoted
by ε, was introduced in [91, 92] and extended in [89]. In this approach, one takes
into account the nature of the set of criteria C and acts accordingly, both during
composition of a PCT and when constructing the preference structure resulting
from application of decision rules. In [91], a typical MCDA assumption is adopted
that set C is a consistent family of criteria [76], i.e., it satisfies the properties
of completeness (all relevant criteria are considered), monotonicity (the better the
evaluation of an object on considered criteria, the more it is preferable to another
object), and non-redundancy (there is no criterion that could be removed without
violating one of the previous two properties). Let us call this variant by εc. In [92],
the above assumption is dropped, which is typical for Preference Learning [24]
methods. Let us call this variant by εnc (for not necessarily consistent set of criteria).

Approach ε consists of the following steps:

(sε
1) The preference information is elicited as in step (sγ

1 ); moreover, relation S

is enriched with some additional pairs of objects—pairs (x, y) such that x

dominates y in variant εc, and pairs (x, x) in variant εnc.
(sε

2) One proceeds as in step (sγ

2 ), but a PCT-oriented adaptation of the VC-DRSA
proposed in [3, 4] is used instead, employing consistency measure ε (denoted
by ε-VC-DRSA).

(sε
3) One proceeds as in step (sγ

3 ), but inducing probabilistic decision rules using
VC-DomLEM minimal cover algorithm [5], employing rule consistency mea-
sure ε̂T , where T ∈ {S, Sc} [89].

(sε
4) Application of induced rules, both suggesting assignment to relation S and Sc,

on set M ⊆ U ; this way one gets a preference structure on M , composed
of relations S and S

c over M; both relations can be either crisp (when it is
only checked if there exists at least one rule suggesting assignment of pair
(a, b) ∈ M × M to relation S/Sc) or valued (when it is checked what is the
strength of the strongest rule suggesting assignment of (a, b) to S/Sc), and they
are enriched with additional pairs of objects depending on the variant εc or εnc

[89]; moreover, when constructing valued relations, rule strength can depend
on rule’s consistency only [89] or also on rule’s coverage factor [89, 92].

(sε
5) Crisp/valued preference structure composed of crisp/valued relations S and S

c

over M ⊆ U is exploited by transforming it to valued relation R defined as:

R(a, b) = S(a, b)+ (1 − S
c(a, b))

2
, (18.1)

and by applying the well-known Net Flow Rule (NFR) [9, 10] ranking method,
possessing desirable properties [89], to produce the final ranking of objects
from set M (a weak order).

The efficiency of approach ε was proved experimentally in [89]. Moreover, it is
implemented in two computer programs: ruleRank and RUDE (see Sect. 18.5.5).
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18.4.2 Case-Based Reasoning Using Dominance-Based
Decision Rules

Around the year 2005, Greco, Matarazzo, and Słowiński noticed potential applica-
tion of DRSA to case-based reasoning (CBR) (see, e.g., [59]). In CBR, also called
similarity-based reasoning, the more similar are the causes, the more similar one
expects the effects. This monotonic relationship can be employed by DRSA, when
applied to similarity-based classification defined as follows. There are given a finite
set of objects U (called universe of discourse, or case base) and a finite family of
pre-defined decision classes Cl. An object y ∈ U (a “case”) is described in terms
of features f1, . . . , fm ∈ F . For each feature fi ∈ F , there is given a marginal
similarity function σfi : U×U → [0, 1], such that the value σfi (y, x) expresses the
similarity of object y ∈ U to object x ∈ U w.r.t. feature fi ; the minimal requirement
that function σfi must satisfy is the following: for all x, y ∈ U , σfi (y, x) = 1 if and
only if y and x have the same value of feature fi . Moreover, for each object y ∈ U ,
there is given an information concerning (normalized) credibility of its membership
to each of the considered classes. To admit a graded credibility, each decision class
Clt ∈ Cl, t ∈ {1, . . . , n}, is modeled as a fuzzy set in U [101], characterized by
membership function μClt : U → [0, 1]. Thus, each object y ∈ U can belong to
different decision classes with different degrees of membership. The aim of decision
aiding is to present to a DM a recommendation concerning a new object z, in terms
of a degree of membership of this object to particular classes.

In similarity-based classification, the key issue is the aggregation of marginal
similarities of objects into their comprehensive similarity. Typically, this aggrega-
tion is performed using some real-valued aggregation function (involving operators,
like weighted Lp norm, min, etc.) (see, e.g., [19]), which is always arbitrary to some
extent. This motivated Greco, Matarazzo, and Słowiński to propose an approach
that measures comprehensive similarity in a (more) meaningful way, avoiding the
use of an aggregation function. An approach of this type, employing an adaptation
of DRSA, was proposed for the first time in [43], and improved in [45, 47]. In
the proposed approach, comprehensive similarity is represented by decision rules
concisely characterizing classification examples. These rules are based on the
general monotonic relationship (mr1): “the more similar is object y to object x

w.r.t. the considered features, the greater the membership of y to a given decision
class Clt ,” where Clt ∈ Cl. This enabled to obtain a meaningful similarity measure,
which is, moreover, resistant to irrelevant (or noisy) features because each decision
rule, being a partial dominance cone in a similarity space, may involve conditions
concerning only a subset of features. As the induced rules employ only ordinal
properties of marginal similarity functions, the considered approach is also invariant
to ordinally equivalent marginal similarity functions.

Few years later, a new monotonic relationship (mr2) was formulated in [90]:
“the more similar is object y to object x with respect to the considered features,
the closer is y to x in terms of the membership to a given decision class Clt ,”
where Clt ∈ Cl. As observed in that paper, it is reasonable to consider (mr1)



18 DRSA: Basic Ideas and Main Trends 367

only if the membership of reference object x to considered class Clt ∈ Cl takes
a maximum value. On the other hand, (mr2) does not require any assumption about
the membership value of reference objects and can be considered as more general.
Additionally, the authors of [90] extended the previous approach also by proposing
the way of induction of decision rules using VC-DomLEM algorithm [5], and by
indicating a suitable way of application of these rules according to [2]. Induced
rules underline general monotonic relationship between comprehensive closeness
of objects and their marginal similarities. An example of obtained decision rule is
the following: “if similarity of flower y to flower x w.r.t. petal length is at least 0.7,
and similarity of flower y to flower x with respect to sepal width is at least 0.8, then
the membership of y to class setosa is between 0.7 and 0.9.”

The approach started in 2011 was further extended in [89], by further formalizing
the adaptation of DRSA, and by revising the rule classification scheme described in
[2]. Finally, the complete approach was presented at a rough set conference in [93],
where the description of revised rule classification scheme was much simplified.

18.4.3 Adaptations of DRSA to Handle Missing Attribute
Values

Shortly after the introduction of DRSA, Greco, Matarazzo, and Słowiński con-
sidered two extensions of DRSA that enabled analysis of classification data with
missing attribute values [32, 35]. Also other authors considered this problem
[7, 15, 16, 18, 55, 64, 94, 97]. This research, apart from [18], is well summarized in
[94], where all the approaches are given an id, and their properties are thoroughly
examined with respect to a list of 11 desirable properties.

An adaptation of DRSA to handle missing attribute values involves an adjusted
definition of dominance relation that accounts for missing values. In some
approaches, it also involves the change of the definition of rough approximation,
to take into account the lack of some classical properties of redefined dominance
relation (e.g., lack of transitivity). In [94], the authors denoted each adaptation
identified in the literature by DRSA-mvj , and respective adjusted dominance
relation by Dj , where j stands for the version id. In the following, we will use
j in the superscript, to allow a subset of attributes P ⊆ C in the subscript. The
authors of [94] pointed out, after [81, 97], that the following generalized definitions
of P -lower and P -upper approximations of unions of decision classes Cl

≥
t , Cl

≤
t ,

t = 1, . . . n, should be employed:

P(Cl
≥
t ) = {x ∈ U : dj+

P (x) ⊆ Cl
≥
t } P (Cl

≤
t ) = {x ∈ U : Dj−

P (x) ⊆ Cl
≤
t }

P(Cl
≥
t ) = ⋃

x∈Cl
≥
t

D
j+
P (x) P (Cl

≤
t ) = ⋃

x∈Cl
≤
t

d
j−
P (x),

(18.2)
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where

d
j+
P (x) = {y ∈ U : x d

j

P y} d
j−
P (x) = {z ∈ U : z d

j

P x}. (18.3)

In the above definitions, D
j
P denotes adapted P -dominance relation (xD

j
P y means

x P -dominates y), while d
j
P denotes adapted P -inverse-dominance relation (xd

j
P y

means x is P -dominated by y). These dominance relations are defined as:

yD
j
P x ⇔ y �j

q x for each q ∈ P (18.4)

z d
j
P x ⇔ z *j

q x for each q ∈ P, (18.5)

where x, y, z ∈ U and versions of DRSA-mvj differ by definitions of relations �j
q

and *j
q . Remark that definition (18.2) can be applied even when relations D

j

P and

d
j

P are only assumed to be reflexive. In particular, it fits the case when yD
j

P x is not

equivalent to xd
j
P y.

In [94], the analysis of properties of different adaptations of DRSA was pre-
sented. It involves the following adaptations: [32, 35]—introduce DRSA-mv1 and
DRSA-mv2, [55]—presents DRSA-mv2.5, [97]—proposes DRSA-mv1.5, [15, 16]—
introduce the concept of a lower-end dominance relation used in DRSA-mv4, and
the concept of an upper-end dominance relation resulting in DRSA-mv5, [64]—
presents DRSA-mv6, and [7]—defines DRSA-mv3. The analysis resulted in a
conclusion that the only non-dominated approaches are DRSA-mv1.5, DRSA-mv2,
DRSA-mv4, and DRSA-mv5.

It is important to note that taking into account the semantics of missing values
considered, e.g., in [52, 53] (and in [88]), it can be said that DRSA-mv1.5 treats
missing values as “lost” (“absent”) values, while DRSA-mv2 treats missing values
as “do not care” values. These approaches are defined as:

y �1.5
q x ⇔ y �q x, or f (y, q) =? z *1.5

q x ⇔ x �q z, or f (z, q) =?

(18.6)

y �2
q x ⇔ y �q x, or f (y, q) = ∗, or f (x, q) = ∗ z *2

q x ⇔ x �q z, or f (z, q) = ∗,
or f (x, q) = ∗,

(18.7)

where x, y, z ∈ U , q ∈ C, ? denotes a “lost” missing value, and ∗ denotes a “do not
care” missing value.

In [18], Du and Hu proposed the so-called characteristic-based dominance
relation with “do not care” values and “lost” values coexisting. It relates to the
characteristic relation considered in IRSA [50, 51]. Let us denote this approach by
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DRSA-mv1.5&2. Then

y �1.5&2
q x ⇔ f (y, q) =?, or y �q x, or f (y, q) = ∗, or f (x, q) = ∗.

(18.8)

Although the idea of considering “do not care” values and “lost” values simulta-
neously is worth considering, the surprising part of [18] is that the authors do not
employ P -inverse-dominance relation d1.5&2

P , P ⊆ C, determined as in (18.5) with
relation *1.5&2

q defined as:

z *1.5&2
q x ⇔ f (z, q) =?, or x �q z, or f (z, q) = ∗, or f (x, q) = ∗,

(18.9)

where x, y, z ∈ U , q ∈ P . Instead, Du and Hu consider that xd1.5&2
P y ⇔ yD1.5&2

P x.
In our opinion, this is not a proper realization of the idea outlined by Słowiński and
Vanderpooten [81] (even reminded in [18]) who claimed that for set X ⊆ U and
reflexive binary relation R over U , the lower approximation of set X with respect to
R should be calculated as:

R(X) = {x ∈ U : R−1(x) ⊆ U}, (18.10)

where R−1(x) = {y ∈ U : xRy}.

18.4.4 Extensions of DRSA for Interval Evaluations on
Criteria

One of the ways of handling imprecision in object’s evaluation is to use interval
evaluations. Interval evaluations may also occur when replacing missing values
with a range of possible evaluations. Yet another scenario concerns the case of
hierarchical set of attributes, when a range of decisions obtained at some lower
level of attribute hierarchy is translated to an interval of evaluations for an upper
level criterion [13]. Motivated by these observations, Dembczyński, Greco, and
Słowiński proposed some extensions of the classical DRSA that permit to analyze
data with interval evaluations on criteria [13–16], and also with interval assignments
to decision classes [14–16]. All these extensions involved the so-called P-possible
dominance relation DP . Assuming, without loss of generality, that each criterion is
of gain type, P -possible dominance relation is defined as:

xDP y ⇔ u(x, q) ≥ l(y, q) for all q ∈ P, (18.11)

where P ⊆ C, and u(x, q), l(y, q) denote, respectively, upper limit of the interval
for object x on attribute q and lower limit of the interval for object y on attribute q .
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In [15, 16], the authors additionally considered two other P -dominance relations,
P ⊆ C. Assuming, without loss of generality, that each criterion is of gain type, they
are defined as follows:

• P-lower-end dominance relation Dl
P :

xDl
P y ⇔ l(x, q) ≥ l(y, q) for all q ∈ P, (18.12)

• P-upper-end dominance relation Du
P :

xDu
P y ⇔ u(x, q) ≥ u(y, q) for all q ∈ P. (18.13)

The above papers also took into account interval assignments to decision classes.
Suppose d ∈ Q is a decision criterion. Then, the following rough approximations
of upward and downward unions of decision classes are considered:

Cl
≥
t = {y ∈ U : l(y, d) ≥ t}. (18.14)

Cl
≤
t = {y ∈ U : u(y, d) ≤ t}. (18.15)

Cl
≥
t = {y ∈ U : u(y, d) ≥ t}. (18.16)

Cl
≤
t = {y ∈ U : l(y, d) ≤ t}. (18.17)

Finally, the above rough approximations are the basis for second-order dominance-
based rough approximations [15, 16]:

P(Cl
≥
t ) = {x ∈ U : D+

P (x) ⊆ Cl
≥
t }. (18.18)

P(Cl
≤
t ) = {x ∈ U : D−

P (x) ⊆ Cl
≤
t }. (18.19)

P (Cl
≥
t ) = {x ∈ U : D−

P (x) ∩ Cl
≥
t �= ∅}. (18.20)

P (Cl
≤
t ) = {x ∈ U : D+

P (x) ∩ Cl
≤
t �= ∅}. (18.21)

DRSA with interval evaluations has also been considered in [98], where P -
possible dominance relation has been used for condition criteria. In that paper, the
authors also consider intervals with one or two missing limits. Assuming that each
q ∈ C is of gain type, a missing lower limit is then replaced with the minimal value
in the value set of the respective criterion, while missing upper limit is replaced with
the maximal value in the value set of the respective criterion.
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18.4.5 Extending DRSA to Address Hierarchical Structure
of Attributes

In hierarchical classification/sorting problems, where the set of attributes has a
hierarchical structure, the main difficulty is the propagation of inconsistencies
along the tree structure, i.e., taking into consideration at each node of the tree
the inconsistent information from lower level nodes. In [13], the inconsistencies
are propagated bottom-up, in the form of subsets of possible attribute values (for
hierarchical regular attributes), and in the form of intervals of possible values (for
hierarchical criteria). Decision rules are induced at each node of the tree. The
classification/sorting of new objects is also done from the bottom to the top of the
hierarchy, to make the final decision in the root node of the tree.

The extension of DRSA proposed in [13] assumes that object y P -dominates
object x, P ⊆ C, if:

• For each regular attribute q ∈ P , the subset of attribute values for object y has a
non-empty intersection with the subset of attribute values for object x.

• For each criterion q ∈ P , u(x, q) ≥ l(y, q), where u(x, q), l(y, q) denote,
respectively, upper limit of the interval for object x on attribute q and lower limit
of the interval for object y on attribute q .

18.4.6 Extensions of DRSA for Non-ordinal Data

Błaszczyński, Greco, and Słowiński proposed an approach to induction of laws from
data, which makes use of the concept of monotonic relationships between values
of condition and decision attributes, without assuming its direction a priori and
allowing local monotonicity relationships in subregions of the evaluation space [6].
This approach is able to discover local and global monotonicity relationships
existing in data. The relationships are represented by monotonic decision rules.
To enable the discovery of monotonic rules, a non-invasive transformation of the
input data was proposed. The proposed transformation should be applied to all non-
ordinal attributes. Moreover, after transformation of input data, DRSA is applied to
structure data into consistent and inconsistent parts.

For the purpose of the illustration, we may assume, without loss of generality,
that the value sets of both decision attribute (class labels) and condition attributes
are number-coded. As in non-ordinal classification problems, the natural complete
ordering of classes Cl1, Cl2, . . ., Cln induced by number-coded class labels is not
entering, in general, into some monotonic relationships with value sets of condition
attributes, we have to consider n binary ordinal classification problems with two
sets of objects: class Clt and its complement ¬Clt , t = 1, . . ., n, which are
number-coded by 1 and 0, respectively. This means that in the t-th ordinal binary
classification problem, set Clt is interpreted by DRSA as union Cl

≥
1 and set ¬Clt as
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union Cl
≤
0 , t = 1, . . ., n. Ordinal classification problems can be handled by DRSA

without altering the original number codes of the class labels.
The transformation of each non-ordinal condition attribute from C is made

individually, depending on its type: numerical (number-coded) or nominal. Each
numerical (number-coded) attribute qi is represented, in the transformed form, as
a pair of ordinal attributes q ′i , and q ′′i . In other words, evaluation of each object
x ∈ U by numerical attribute qi is repeated twice, and the first evaluation f (x, qi)

is renamed to f (x, q ′i ), while the second evaluation f (x, qi) is renamed to f (x, q ′′i ).
Then, the first attribute q ′i is set to have positive monotonic relationship with
(possibly transformed) decision attribute, while the second attribute q ′′i is set to have
negative monotonic relationship with the decision attribute.

Each nominal attribute qj with value set composed of k distinct values is
binarized, such that the presence or absence of the l-th value of this attribute is
coded by a new ordinal attribute qjl taking value 1 or 0, respectively, l = 1, 2,
. . ., k. Then the binary attribute qjl is represented, in the transformed form, by a
pair of ordinal attributes q ′j l , and q ′′j l . Again, the first ordinal attribute in that pair
has positive monotonic relationship with (possibly transformed) decision attribute,
while the second attribute in that pair has negative monotonic relationship.

The proposed approach provides framework for analysis of heterogeneous
classification data. It has been shown experimentally in [6] that the monotonic rules
induced from transformed data, together with a specific classification scheme, have
at least as good predictive ability as other well-known predictors.

18.4.7 Parametric, Decision Theoretic, and Stochastic DRSA

Greco, Matarazzo, Słowiński, and Stefanowski identified the need to relax the
definition of the lower approximation of union of classes and, in consequence, to
admit to the lower approximation some inconsistent objects (i.e., objects which
would not be admitted to lower approximations in the classical DRSA) for which
there is enough evidence for their membership to the union of classes [38]. In
this way, lower approximations are defined assuming an acceptable value of a
measure expressing evidence of membership to the set. Following this idea, the
evidence for this membership may be estimated by different types of consistency or
precision measures, and lower approximations of unions of decision classes may be
defined in different ways resulting in different approaches to this kind of relaxation,
called generally parametric DRSA, including: Variable Consistency DRSA (VC-
DRSA) [1, 3, 4, 38, 39, 42], and Variable Precision DRSA (VP-DRSA) [47, 56].
For example, in case of VC-DRSA, lower approximation is defined as a subset
of the approximated set. In consequence, given an upward (downward) union of
classes, objects that do not belong to this union are never included in its lower
approximation, even if they dominate (are dominated by) an object from the
considered union. On the other hand, in case of VP-DRSA, a lower approximation
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is not a subset of the approximated set. All objects belonging to dominance cones
of objects from a lower approximation of a union of classes are also included in the
lower approximation of the union.

The fact that precision measure can be interpreted as a conditional probability
stimulated development of the decision-theoretic rough set model (DTRSM) [99,
100]. DTRSM for DRSA has also been studied in [44, 66]. DTRSM connects
definition of approximations with conditional risk minimization in Bayesian deci-
sion theory. In that situation, the states correspond to the decision classes, and
assignment of an object to positive, negative, and boundary regions is decided
on the basis of its condition attribute values. Assuming an acceptable loss of the
classification accuracy and estimating conditional probability of the considered
decision classes, an optimal Bayes decision rule is obtained. In this way, calculation
of approximations can be seen as a classification problem.

Another type of approach to treatment of inconsistent objects within DRSA
has also been considered in [60, 61]. This approach originates from statistical
learning and statistical decision theory and, in contrast to the previously mentioned
approaches, involves relabeling of objects (i.e., change of class to which object
belongs to the more probable one). It uses the notion of stochastic dominance
and maximum likelihood estimators of probability of object belonging to union
of classes. Stochastic lower approximations of unions of classes are composed of
objects for which values of estimators are higher than a given threshold.

It is worth mentioning that statistical interpretations of VC-DRSA and VP-DRSA
were proposed in [62], by connecting lower approximations with minimizers of
empirical risk functions. In result, it has been demonstrated that families of mono-
tonic classifiers and the hinge loss function serve as a foundation for characterization
of the parametric DRSA with consistency measures having desirable monotonicity
properties.

18.4.8 Decision Rules Induction

In DRSA, induction of decision rules is subsequent to computation of rough
approximations. In this context, computation of approximations can be viewed as
a kind of preprocessing of data. Objects identified as sufficiently consistent are a
good basis for induction of decision rules. The purpose of induction of decision
rules is to discover strong relationships between description of these objects and
their membership to a union of classes. If the rules are intended to be used in
classification, then the goal of the induction procedure is to find a preferably small
set of rules with high predictive accuracy. Decision rules should be short and
accurate. Shorter decision rules are easier to understand. Shorter rules also allow
to avoid overfitting the training data. Overfitting occurs when the learned model fits
training data perfectly but is not performing well on new data.
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In DRSA, for a given class Clt , t ∈ {1, . . . , n}, we consider decision rules of the
type:

if f (y, qi1 ) � ri1 ∧ . . . ∧ f (y, qip ) � rip ∧ f (y, qip+1 ) = rip+1 ∧ . . . ∧ f (y, qiz ) = riz

then y ∈ Cl
≥
t , (18.22)

if f (y, qi1 ) * ri1 ∧ . . . ∧ f (y, qip ) * rip ∧ f (y, qip+1 ) = rip+1 ∧ . . . ∧ f (y, qiz ) = riz

then y ∈ Cl
≤
t , (18.23)

where qj , j ∈ {i1, i2, . . . , ip} denotes a criterion and qk, k ∈ {ip+1, ip+2, . . . , iz}
denotes a regular attribute. Moreover, rj ∈ Vj , j = {i1, i2, . . . , ip, ip+1, ip+2, . . . , iz},
denotes a value from the domain of criterion / regular attribute qj . We use symbols
� and * to indicate weak preference w.r.t. single criterion and inverse weak
preference, respectively. If qj ∈ C is a gain (cost) criterion, then elementary
condition f (y, qj ) � rj means that the value of covered object y on criterion qj is
not smaller (not greater) than value rj . Elementary conditions for regular attributes
are of type f (y, qj ) = rj .

The most important decision rule induction algorithms in DRSA are inspired
by LEM2 algorithm [49], proposed by Grzymała-Busse. The applied heuristic
strategy of rule induction in these algorithms is called sequential covering [54]
or separate and conquer [23, 67, 68]. It constructs a rule that covers a subset of
training objects, removes the covered objects from the training set, and iteratively
learns another rule that covers some of the remaining objects, until no uncovered
objects remain. The first of such algorithms was proposed by Greco, Matarazzo,
Słowiński, and Stefanowski and is called DomLEM [37]. VC-DomLEM, proposed
by Błaszczyński, Szeląg, and Słowiński [5], is an adaptation of the same concept
for parametric DRSA. This algorithm heuristically searches for rules that satisfy
constraint with respect to chosen rule consistency measure.

18.5 Available Software

In this section, we describe some computational libraries and applications that
implement DRSA and its extensions for rough set analysis of ordinal data.
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18.5.1 ruleLearn

ruleLearn1 is an open-source computation library written in Java and hosted on
GitHub (project started in Dec 2017). Currently it implements DRSA and VC-
DRSA (see Sect. 18.4.7) and allows to handle missing attribute values according
to DRSA-mv1.5 and DRSA-mv2 (see Sect. 18.4.3). It also offers access to the VC-
DomLEM rule induction algorithm (see Sect. 18.4.8) and different classification
strategies. ruleLearn is utilized by other programs described in this section:
RuLeStudio and RuleVisualization.

18.5.2 RuLeStudio

RuLeStudio2 is an open-source client–server web application supporting data
analysis using DRSA and VC-DRSA. It requires Java 8+ to run and employs
ruleLearn API. This application was finished in 2020 [20]. It supports application
of (VC-)DRSA to analysis of ordinal data, possibly containing missing values
(handled according to DRSA-mv1.5 or DRSA-mv2). The application permits to
consider a certain number of features such as data editor, presentation of dom-
inance cones (both with respect to dominance and inverse-dominance relation),
certain/possible rule generation according to VC-DomLEM algorithm, analysis of
different characteristics of induced rules, application of rules on test objects using
several classification strategies, cross-validation, and presentation of misclassifica-
tion matrix.

18.5.3 RuleVisualization

RuleVisualization3 is an open-source client–server web application for visualization
and exploration of decision rules. It requires Java 8+ to run and employs ruleLearn
API. This application was finished in 2019 [63]. This program can read rules typical
for DRSA, induced, e.g., by RuLeStudio, and offers different visualizations of these
rules (including the attributes used by rules), their filtering, sorting, matching to
some test objects, and presentation of graphs showing co-occurrence of attributes
and semantic/coverage similarity among rules.

1 https://github.com/ruleLearn/rulelearn.
2 https://github.com/dominieq/rule-studio.
3 http://www.cs.put.poznan.pl/mszelag/Software/RuleVisualization/RuleVisualization.html.

https://github.com/ruleLearn/rulelearn
https://github.com/dominieq/rule-studio
http://www.cs.put.poznan.pl/mszelag/Software/RuleVisualization/RuleVisualization.html
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18.5.4 jMAF

jMAF4 is a rough set data analysis software written in Java. It makes use of java
Rough Set (jRS) library. jMAF and jRS library implement methods of data analysis
provided by the DRSA and VC-DRSA, allowing to calculate lower approximations,
induce decision rules, and apply the rules to classify objects. More details with
regard to the analysis that this software package enables can be found in [8].

18.5.5 RuleRank Ultimate Desktop Edition

RuleRank Ultimate Desktop Edition (RUDE)5 is a decision support tool for
application of DRSA to multicriteria choice and ranking. It requires Java 10+ and
JavaFX to run. This application was finished in 2018 [57]. RUDE employs approach
denoted in Sect. 18.4.1 by ε, allowing setting different parameters characteristic
for that approach and visualization of: PCT, decision rules induced from that PCT,
preference graph resulting from application of these rules on a set of objects to be
ranked, and final ranking.

18.6 Conclusions

We presented the main ideas and developments of the Dominance-based Rough
Set Approach (DRSA), recalling the basic principles with a general overview of
its developments and software. At the end of this survey, we have to conclude
that DRSA continues to be appealing for experts in Multiple Criteria Decision
Aiding (MCDA) on one hand, and artificial intelligence and machine learning
on the other hand, for its most salient characteristic consisting in its capacity
of asking the decision maker for simple preference information and supplying
easily understandable and explainable recommendations. It is not difficult to see
that the DRSA properties of being simple and easily understandable have to be
acknowledged to the contribution of Roman Słowiński following the lines traced by
Bernard Roy with respect to MCDA and Zdzisław Pawlak with respect to rough set
theory.
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22. Fortemps P, Greco S, Słowiński R (2008) Multicriteria decision support using rules that

represent rough-graded preference relations. Eur J Oper Res 188(1):206–223
23. Fürnkranz J (1999) Separate-and-conquer rule learning. Artif Intell Rev 13:3–54
24. Fürnkranz J, Hüllermeier E (eds) (2010) Preference learning. Springer, Berlin
25. Gal T, Stewart T, Hanne T (eds) (2013) Multicriteria decision making: advances in MCDM

models, algorithms, theory, and applications, vol 21. Springer Science & Business Media,
Berlin
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35. Greco S, Matarazzo B, Słowiński R (2000) Dealing with missing data in rough set analysis of
multi-attribute and multi-criteria decision problems. In: Zanakis S, Doukidis G, Zopounidis C
(eds) Decision making: recent developments and worldwide applications. Kluwer, Dordrecht,
pp 295–316
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79. Słowiński R (ed) (1992) Intelligent decision support: handbook of applications and advances
of the rough sets theory, vol 11. Springer, New York
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92. Szeląg M, Greco S, Słowiński R (2014) Variable consistency dominance-based rough set
approach to preference learning in multicriteria ranking. Inf Sci 277:525–552
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Chapter 19
Rule Set Complexity for Mining
Incomplete Data Using Probabilistic
Approximations Based on Generalized
Maximal Consistent Blocks

Patrick G. Clark, Jerzy W. Grzymala-Busse, Zdzislaw S. Hippe,
and Teresa Mroczek

Abstract In this chapter, missing attribute values in incomplete data sets have two
possible interpretations: lost values and “do not care” conditions. Lost values are
currently unavailable, e.g., they were erased, while “do not care” conditions are
replaceable by any specified attribute value. For data mining, we use two kinds of
probabilistic approximations, global and saturated. Both probabilistic approxima-
tions are constructed from maximal consistent blocks. Thus, since we use two kinds
of missing attribute values and two kinds of probabilistic approximations, we use
four different data mining methods. We have shown, in our previous study, that
pairwise differences in an error rate, calculated by ten-fold cross validation between
those four methods, are statistically insignificant (5% level of significance). Hence,
we explore another problem: when the rule set complexity is the smallest. We show
that the difference between using both kinds of probabilistic approximations is, in
general, insignificant. However, we should explore both interpretations of missing
attribute values, “do not care” conditions and lost values, since there are significant
differences.
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19.1 Introduction

Incomplete data sets are affected by missing attribute values. In this chapter, we
consider two possible interpretations of missing attribute values: lost values and “do
not care” conditions. Lost values are currently unavailable, e.g., they were erased,
while “do not care” conditions are replaceable by any specified attribute value. A
lost value is denoted by “?,” and a “do not care” condition is denoted by “*.”

For rule induction, we use probabilistic approximations, a generalization of the
idea of lower and upper approximations known in rough set theory. A probabilistic
approximation of the concept X is associated with a probability α; if α = 1,
the probabilistic approximation becomes the lower approximation of X; if α is a
small positive number, e.g., 0.001, the probabilistic approximation is reduced to
the upper approximation of X. Usually, probabilistic approximations are applied to
completely specified data sets [19, 22–29], and such approximations are generalized
to incomplete data sets, using characteristic sets, in [15, 16].

Additionally, we may use another parameter, denoted by β, for rule induction.
In our previous study [9], where α was constant and β varied, it was shown
that pairwise differences in an error rate, evaluated by ten-fold cross validation
between these four methods of data mining, are statistically insignificant (5% level
of significance). Hence, we explore another setup: α varies and β is constant.

Recently, two new types of approximations were introduced, global probabilistic
approximations in [5] and saturated probabilistic approximations in [7]. Results
of experiments on an error rate, evaluated by ten-fold cross validation, using
characteristic sets were presented in [7, 10, 11] and using maximal consistent blocks
in [3, 4]. In these experiments, global and saturated probabilistic approximations
were explored using data sets with lost values and “do not care” conditions. Results
show that among these four methods there is no universally best method. If so, the
next problem is when the rule sets are the simplest.

Thus, the main objective of this chapter is a comparison of the four methods of
data mining from the rule complexity viewpoint, taking into account the number of
rules and the total number of conditions in rule sets. Some experiments exploring
complexity of rule sets were presented in [6, 8]. In these papers, we kept α = 0.5
and β varied between 0.001 and 1. In this chapter, we decided to use a new setup: α

varies between 0.001 and 1, while β = 0.5.
Rule induction was conducted using a new version of the Modified Learning

from Examples Module, version 2 (MLEM2) [2, 14]. The MLEM2 algorithm is a
component of the Learning from Examples using Rough Sets (LERS) data mining
system [1, 13, 14].

Our main result is that, in general, the total number of rules is the smallest
when missing attribute values are interpreted as “do not care” conditions. A choice
between global and saturated probabilistic approximations is not relevant to rule set
complexity.
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19.2 Incomplete Data

We assume that the input data sets are presented in the form of a decision table. An
example of the decision table is shown in Table 19.1. Rows of the decision table
represent cases, while columns are labeled by variables. The set of all cases will
be denoted by U . In Table 19.1, U = {1, 2, 3, 4, 5, 6, 7, 8}. Independent variables
are called attributes, and a dependent variable is called a decision and is denoted by
d . The set of all attributes will be denoted by A. In Table 19.1, A = {Temperature,
Headache, Cough} and d is Flu. The value for a case x and an attribute a will be
denoted by a(x). For example, Temperature(1) = high.

The set X of all cases defined by the same value of the decision d is called a
concept. For example, a concept associated with the value yes of the decision Flu is
the set {1, 2, 3, 4}.

A block of the attribute–value pair (a, v), denoted by [(a, v)], is the set {x ∈
U | a(x) = v} [12]. For incomplete decision tables, the definition of a block of an
attribute–value pair is modified in the following way:

• If for an attribute a and a case x we have a(x) = ?, the case x should not be
included in any blocks [(a, v)] for all values v of attribute a.

• If for an attribute a and a case x we have a(x) = ∗, the case x should be included
in blocks [(a, v)] for all specified values v of attribute a.

For the data set from Table 19.1, the blocks of attribute–value pairs are

[(Temperature, normal)] = {5, 6, 8}, [(Headache, yes)] = {2, 4, 8},
[(Temperature, high)] = {1, 5}, [(Cough, no)] = {1, 3, 5, 7, 8},
[(Temperature, very-high)] = {2, 4, 5}, [(Cough, yes)] = {1, 3, 6, 7},
[(Headache, no)] = {2, 3, 5, 7, 8}.

For a case x ∈ U and B ⊆ A, the characteristic set KB(x) is defined as the
intersection of the sets K(x, a), for all a ∈ B, where the set K(x, a) is defined in
the following way:

Table 19.1 A decision table Attributes Decision

Case Temperature Headache Cough Flu

1 high ? * yes

2 very-high * ? yes

3 ? no * yes

4 very-high yes ? yes

5 * no no no

6 normal ? yes no

7 ? no * no

8 normal * no no
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• If a(x) is specified, then K(x, a) is the block [(a, a(x))] of attribute a and its
value a(x).

• If a(x) = ? or a(x) = ∗, then K(x, a) = U .

For Table 19.1 and B = A,

KA(1) = {1, 5}, KA(5) = {3, 5, 7, 8},
KA(2) = {2, 4, 5}, KA(6) = {6},
KA(3) = {2, 3, 5, 7, 8}, KA(7) = {2, 3, 5, 7, 8}, and
KA(4) = {2, 4}, KA(8) = {5, 8}.

A binary relation R(B) on U , defined for x, y ∈ U in the following way:

(x, y) ∈ R(B) if and only if y ∈ KB(x),

will be called the characteristic relation. In our example, R(A) = {(1, 1), (1, 5), (2,
2), (2, 4), (2, 5), (3, 2), (3, 3), (3, 5), (3, 7), (3, 8), (4, 2), (4, 4), (5, 3), (5, 5), (5, 7),
(5, 8), (6, 6), (7, 2), (7, 3), (7, 5), (7, 7), (7, 8), (8, 5), (8, 8)}.

We quote some definitions from [3]. Let X be a subset of U . The set X is B-
consistent if (x, y) ∈ R(B) for any x, y ∈ X. If there does not exist a B-consistent
subset Y of U such that X is a proper subset of Y , the set X is called a generalized
maximal B-consistent block. The set of all generalized maximal B-consistent blocks
will be denoted by C (B). In our example, C (A) = {{1}, {2, 4}, {3, 5, 7}, {5, 8},
{6}}.

Let B ⊆ A and Y ∈ C (B). The set of all generalized maximal B-consistent
blocks that include an element x of the set U , i.e., the set

{Y |Y ∈ C (B), x ∈ Y, }

will be denoted by CB(x).
For data sets in which all missing attribute values are “do not care” conditions,

an idea of a maximal consistent block of B was defined in [21]. Note that in our
definition, the generalized maximal consistent blocks of B are defined for arbitrary
interpretations of missing attribute values. For Table 19.1, the generalized maximal
A-consistent blocks CA(x) are

CA(1) = {{1}}, CA(5) = {{5, 8}, {3, 5, 7}},
CA(2) = {{2, 4}}, CA(6) = {{6}},
CA(3) = {{3, 5, 7}}, CA(7) = {{3, 5, 7}},
CA(4) = {{2, 4}}, CA(8) = {{5, 8}}.
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19.3 Probabilistic Approximations

In this section, we will discuss two types of probabilistic approximations: global
and saturated.

19.3.1 Global Probabilistic Approximations

A special case of the global probabilistic approximation, limited only to lower
and upper approximations and to characteristic sets, was introduced in [17, 18]. A
general definition of the global probabilistic approximation was introduced in [8].

A B-global probabilistic approximation of the concept X, with the parameter α

and denoted by appr
global
α,B (X), is defined as follows:

∪{Y | Y ∈ Cx(B), x ∈ X, Pr(X|Y ) ≥ α}.

Obviously, for given sets B and X and the parameter α, there exist many B-
global probabilistic approximations of X. Additionally, an algorithm for computing
B-global probabilistic approximations is of exponential computational complexity.
So, we decided to use a heuristic version of the definition of B-global probabilistic
approximation, called the MLEM2 B-global probabilistic approximation of the
concept X, associated with a parameter α and denoted by apprmlem2

α,B (X) [5]. This
definition is based on the rule induction algorithm MLEM2. The approximation
apprmlem2

α,B (X) is a union of the generalized maximal consistent blocks Y ∈ C (B),
the most relevant to the concept X, i.e., with |X ∩ Y | as large as possible and
with Pr(X|Y ) ≥ α. If more than one generalized maximal consistent block Y

satisfies both conditions, the generalized maximal consistent block Y with the
largest Pr(X|Y ) ≥ α is selected. If this criterion ends up with a tie, a generalized
maximal consistent block Y is picked up heuristically, as the first on the list [5].

Special MLEM2 B-global probabilistic approximations, with B = A, are called
global probabilistic approximations associated with the parameter α and are
denoted by apprmlem2

α (X).
Let Eα(X) be the set of all eligible generalized maximal consistent blocks

defined as follows:

{Y |Y ⊆ C (A), P r(X|Y ) ≥ α}.

A heuristic version of the MLEM2 global probabilistic approximation is pre-
sented below.

MLEM2 global probabilistic approximation algorithm
input: a set X (a concept), a set Eα(X),
output: a set T ( a global probabilistic approximation apprmlem2

α (X)) of X
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begin
G := X;
T := ∅;
Y := Eα(X);
while G �= ∅ and Y �= ∅

begin
select a generalized maximal consistent block Y ∈ Y
such that |X ∩ Y | is maximum;
if a tie occurs, select Y ∈ Y
with the smallest cardinality;
if another tie occurs, select the first Y ∈ Y ;
T := T ∪ Y ;
G := G− T ;
Y := Y − Y

end
end

For Table 19.1, all distinct global probabilistic approximations are
apprmlem2

1 ({1, 2, 3, 4}) = {1, 2, 4},

apprmlem2
0.333 ({1, 2, 3, 4}) = {1, 2, 3, 4, 5, 7},

apprmlem2
1 ({5, 6, 7, 8}) = {5, 6, 8}, and

apprmlem2
0.667 ({5, 6, 7, 8}) = {3, 5, 6, 7, 8}.

19.3.2 Saturated Probabilistic Approximations

Saturated probabilistic approximations are unions of generalized maximal consis-
tent blocks while giving higher priority to generalized maximal consistent blocks
with larger conditional probability Pr(X|Y ). Additionally, if the approximation
covers all cases from the concept X, we stop adding generalized maximal consistent
blocks.

Let X be a concept and let x ∈ U . Let us compute all conditional probabilities
Pr(X|Z), where Z ∈ {Y |Y ⊆ C (A), P r(X|Y ) ≥ α}. Then we sort the set

{Pr(X|Y ) | Y ⊆ C (A)}

in descending order. Let us denote the sorted list of such conditional probabilities
by α1, α2,. . . , αn. For any i = 1, 2,. . . , n, the set Ei(X) is defined as follows:

{Y | Y ⊆ C (A), P r(X|Y ) = αi}.
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If we want to compute a saturated probabilistic approximation, denoted by
apprsaturated

α (X), for some α, 0 < α ≤ 1, we need to identify the index m such that

αm ≥ α > αm+1,

where m ∈ {1, 2, . . . , n} and αn+1 = 0. The saturated probabilistic approximation
apprsaturated

αm
(X) is computed using the following algorithm:

Saturated probabilistic approximation algorithm
input: a set X (a concept), a set Ei(X) for i = 1, 2,. . . , n, index m

output: a set T (a saturated probabilistic approximation apprsaturated
αm

(X))

of X

begin
T := ∅;
Yi (X) := Ei(X) for all i = 1, 2,. . . , m;
for j = 1, 2,. . . , m do

while Yj (X) �= ∅
begin

select a generalized maximal consistent
block Y ∈ Yj (X)

such that |X ∩ Y | is maximum;
if a tie occurs, select the first Y ;
Yj (X) := Yj (X)− Y ;
if (Y − T ) ∩X �= ∅

then T := T ∪ Y ;
if X ⊆ T then exit

end
end

For Table 19.1, all distinct saturated probabilistic approximations are the same
as global probabilistic approximations.

19.3.3 Rule Induction

For given global and saturated probabilistic approximations associated with a
parameter α, rule sets are induced using the rule induction algorithm based on
another parameter, also interpreted as a probability, and denoted by β. This
algorithm also uses MLEM2 principles [20].

MLEM2 rule induction algorithm
input: a set Y (an approximation of X) and a parameter β,
output: a set T (a rule set),
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begin
G := Y ; D := Y ; T := ∅; J := ∅;
while G �= ∅ begin

T := ∅; Ts := ∅; Tn := ∅;
T (G) := {t | [t] ∩G �= ∅};
while (T = ∅ or [T ] �⊆ D) and T (G) �= ∅ begin

select a pair t = (at , vt ) ∈ T (G) with
maximum of |[t] ∩G|; if a tie occurs,
select a pair t ∈ T (G) with the smallest
cardinality of [t]; if another tie occurs,
select the first pair;
T := T ∪ {t};
G := [t] ∩G;
T (G) := {t | [t] ∩G �= ∅};
if at is symbolic {let Vat be the domain of at }

then Ts := Ts ∪ {(at , v)|v ∈ Vat }
else {at is numerical, let t = (at , u..v)}
and Tn := Tn ∪ {(at , x..y) | disjoint x..y

and u..v} ∪ {(at , x..y | x..y ⊇ u..v};
T (G) := T (G)− (Ts ∪ Tn);

end {while};
if Pr(X | [T ]) ≥ β then

begin
D := D ∪ [T ];
T := T ∪ {T };

end {then}
else J := J ∪ {T };
G := D − ∪S∈T ∪J [S];

end {while};
for each T ∈ T do

for each numerical attribute at with (at , u..v) ∈ T do
while (T contains at least two different
pairs (at , u..v) and (at , x..y) with
the same numerical attribute at )

replace these two pairs with a new pair
(at , common part of (u..v) and (x..y));

for each t ∈ T do
if [T − {t}] ⊆ D then T := T − {t};

for each T ∈ T do
if ∪S∈(T −{T })[S] = ∪S∈T [S] then T := T − {T };

end {procedure}.

For example, for Table 19.1 and α = β = 0.5, using the global probabilistic
approximations, the MLEM2 rule induction algorithm induces the following rules:
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(Temperature, very-high) & (Headache, yes) → (Flu, yes)
(Temperature, high) & (Cough, yes) → (Flu, yes)
(Headache, no) & (Cough, no) → (Flu, no)
and
(Temperature, normal) → (Flu, no)

19.4 Experiments

In our experiments, we used eight data sets taken from Machine Learning Reposi-
tory at the University of California at Irvine. For every data set, a new record was
created by randomly replacing 35% of the existing specified attribute values by lost
values. Data sets with “do not care” conditions were created by replacing “?”s with
“∗”s.

In our experiments, the parameter α varied between 0.001 and 1, while the
parameter β was equal to 0.5. For a data set, the rule set was induced, and the
number of rules as well as the total number of conditions was recorded. Results of
our experiments are presented in Figs. 19.1, 19.2, 19.3, 19.4, 19.5, 19.6, 19.7, 19.8,
19.9, 19.10, 19.11, 19.12, 19.13, 19.14, 19.15, and 19.16, where “Global” denotes
a MLEM2 global probabilistic approximation, “Saturated” denotes a saturated
probabilistic approximation, “?” denotes lost values, and “∗” denotes “do not care”
conditions. In our experiments, four methods for mining incomplete data sets were
used, since we combined two interpretations of missing attribute values: lost and
“do not care” conditions with two versions of probabilistic approximations: global
and saturated.

Fig. 19.1 The number of
rules for the bankruptcy data
set
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Fig. 19.2 The number of
rules for the breast cancer
data set

Fig. 19.3 Th number of rules
for the echocardiogram data
set

These four methods were compared by applying the distribution-free Friedman
rank sum test and then by the post hoc test (distribution-free multiple comparisons
based on the Friedman rank sums), with a 5% level of significance.

For all data sets, except for the iris data set with lost values, there is no significant
difference between rule sets induced using global and saturated probabilistic
approximations. For the iris data set with lost values, the size of rule sets induced
using global probabilistic approximations is smaller than the size of rule sets
induced from probabilistic approximations.
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Fig. 19.4 The number of
rules for the hepatitis data set

Fig. 19.5 The number of
rules for the image
segmentation data set

For two data sets, bankruptcy and iris, there is no significant difference for the
size of rule sets induced from data sets with lost values and “do not care” conditions,
but there are significant differences when it comes to the total number of conditions:
for the bankruptcy data set with “do not care” conditions, the total number of
cases is significantly smaller than that for lost values, while for the iris data set,
for the total number of conditions, it is the other way around. For four data sets,
breast cancer, hepatitis, image segmentation, and wine recognition, the size of the
induced rule sets and the total number of conditions are smaller for data sets with
“do not care” conditions than that for data sets with lost values. For two data sets,
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Fig. 19.6 The number of
rules for the iris data set

Fig. 19.7 The number of
rules for the lymphography
data set

echocardiogram and lymphography, the size of induced rule sets is smaller for lost
values. It is obvious that such rule sets have a small number of rules, but rules are
more complicated, with the large total number of conditions.

We may conclude that, in general, the difference between using both kinds of
probabilistic approximations, global and saturated, is insignificant. On the other
hand, for reducing the number of rules or the total number of conditions induced
from data sets with “do not care” conditions and lost values, we should try both
possibilities.
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Fig. 19.8 The number of
rules for the wine recognition
data set

Fig. 19.9 The total number
of conditions for the
bankruptcy data set

Fig. 19.10 The total number
of conditions for the breast
cancer data set
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Fig. 19.11 The total number
of conditions for the
echocardiogram data set

Fig. 19.12 The total number
of conditions for the hepatitis
data set

Fig. 19.13 The total number
of conditions for the image
segmentation data set
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Fig. 19.14 The total number
of conditions for the iris data
set

Fig. 19.15 The total number
of conditions for the
lymphography data set

Fig. 19.16 The total number
of conditions for the wine
recognition data set



398 P. G. Clark et al.

19.5 Conclusions

We compared four methods for mining incomplete data sets, combining two
interpretations of missing attribute values with two types of probabilistic approx-
imations. Our criterion of quality was complexity of induced rule sets. As follows
from our experiments, there were significant differences between the four methods.
However, in general, the difference between used probabilistic approximations is
not significant. The only significant difference is between the two interpretations of
missing attribute values. The main conclusion is that both interpretations should be
tested.
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Chapter 20
Rule Confirmation Measures: Properties,
Visual Analysis and Applications

Izabela Szczech, Robert Susmaga, Dariusz Brzezinski, and Jerzy Stefanowski

Abstract According to Bayesian confirmation theory, for a E → H rule, evidence
E confirms hypothesis H when E and H are positively probabilistically correlated.
Surprisingly, this leads to a plethora of non-equivalent quantitative measures that
attempt to measure the degree in which E confirms H . This observation has
triggered research on the differentiating characteristics of confirmation measures—
their analytical properties, tools for visual inspection of those properties, and
the applications of confirmation measures in rule-based systems. This chapter
constitutes an extensive overview that covers the analysis and development of rule
confirmation measures and their properties. It moves from research on desirable
properties of confirmation measures, through visualization methods that support this
process, to current applications of rule confirmation measures and lines of future
research in the field.

20.1 Introduction

Rules are one of the oldest and intensively investigated knowledge representations
in artificial intelligence, intelligent data analysis, and logic-based methodology
of science and linguistics. They are typically represented as if <premise> then
<conclusion> statements [52], but their form and ways of creating them depend on
the research context and applications. Here, we will mainly refer to rules used in
artificial intelligence, machine learning, and data mining. In artificial intelligence,
rule-based systems were studied since the 1960s [8], in particular as production rules
for expert systems, but also in other logic-based approaches, multi-agent systems,
fuzzy set-based systems, or natural language processing. These rules have richer
syntax than those considered in machine learning; in particular, rule consequences
may lead to some actions on data [34]. Moreover, they are usually acquired through
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interviews with domain experts and are exploited in complex systems with the use
of inference engines, which leads to a chain of reasoning with many rules.

On the other hand, in machine learning or data mining rules are considered in
either the descriptive perspective, which aims at discovery of hidden patterns in data,
or in the predictive perspective [18, 51]. In the latter case, one automatically learns
a set of rules from the training data, where rules sufficiently cover the set of labelled
examples and they are used to make a prediction for possible instances. Predictive
rule learning leads mainly to classification rules with either single class labels or
more complex targets, such as multiple labels, structured output, ordered classes,
or continuous target variables [17]. Descriptive rule learning, on the other hand,
includes unsupervised approaches, such as association rules or contrast patterns, and
supervised approaches such as subgroup discovery; see their presentation in [17].
Furthermore, the most popular propositional (attribute-value representation) rule
learning has also been extended to relational learning [32].

This rich research area resulted in a great number of algorithms and many appli-
cations in various domains; for a comprehensive survey, see [17]. Although machine
learning is currently dominated by deep neural networks, statistical approaches,
and classifier ensembles, rules are still appreciated because of the compactness of
the representation of the discovered knowledge, their interpretability, usefulness to
explain the decisions of the systems, insight into its internal operations, and possible
using in other systems. Many researchers, even ones known for developing other
paradigms, e.g., Ross Quinlan, claim that the naturalness of rules’ symbolic form
corresponds to a high level of comprehensibility of humans. Moreover, recently
rules are receiving renewed interest due to their interpretability [33], which plays
an important factor in explainable AI and the newly proposed regulatory right to
explanation [47].

Recall that Roman Slowinski has actively carried out research on various types
of rules and their usage in many fields. Since the 1980s he has been studying
rules in rough set theory, mainly in the descriptive perspective, where rules are
used to simplify and generalize large and redundant data tables with inconsistent
descriptions, see, e.g., his pioneering works in their application to medical diagno-
sis, pharmacy of drugs, technical diagnostics, or financial analysis ([49] includes
many chapters on these topics). Then in the 1990s, he proposed many important
generalizations of rough sets, e.g., to deal with incomplete or imprecise data.
Nevertheless, the most important and influential contribution of Roman Slowinski,
along with Salvatore Greco and Benedetto Matarazzo, to Multicriteria Decision
Aiding is the methodology of decision rule preference modeling [25, 26]. In this
methodology, the decision-maker expresses preferential information in terms of
examples of decisions and looks for simple rules justifying these decisions, which
is a different paradigm than utility functions or outranking relations [26]. An
important aspect of this approach is the possibility of handling inconsistencies
in the preferential information resulting from hesitations of the decision-maker.
It is mathematically based on the newly introduced dominance-based rough set
approach. The decision rules constituting the preference model are induced from
this preferential information by using rule induction algorithms adapted to handle
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the dominance principle and ordered properties of criteria and decision classes [27].
Roman Slowinski in his research has also paid attention to the usefulness of various
measures evaluating rough set decision rules [21].

It is important to note that the usefulness of induced rules for their interpretation
or usage to support explanations of the intelligent systems is associated with such
characteristics as their compactness. The number of rules, non-redundancy, and
quality should be acceptable for humans in order to be interpreted by them. In the
case of classification rules, it is strongly related to pruning rules and guiding the
search for good quality candidates for rules. However, it is even more visible in the
descriptive perspective. In particular association rules become hard to interpret and
difficult to extract if the rule mining process is not guided by the interestingness
of the extracted associations. Thus, there is a need to evaluate the usefulness of
rules to allow users to focus only on the most relevant patterns found in the data.
Such evaluation is typically carried out using attractiveness measures (also called
interestingness measures) [36].

The above-mentioned need for rule evaluation in different domains has resulted
in a plethora of attractiveness measures, each with its own set of characteristics.
The plurality of these measures makes the choice of the measure for the task at
hand hard and nontrivial. In this context, the analysis of properties of attractiveness
measures is a valid and important research topic [21, 56]. Using measures satisfying
desirable properties helps discovering useful rules since the measures reflect rational
expectations towards their behavior. Among various properties, an important role is
played by the property of Bayesian confirmation [21, 35, 46]. Measures character-
ized by this property quantify the degree to which the evidence in the rule’s premise
provides support for or against the hypothesized piece of evidence in the rule’s
conclusion [15]. Therefore, by definition confirmation measures make it possible to
distinguish meaningful rules for which the premise confirms the conclusion.

The formal analysis of confirmation measures with respect to their properties is a
challenging and laborious task that often requires advanced mathematical methods.
That is why several visualization methods [10, 53, 54] have been developed to help
understand the characteristic properties of various confirmation measures. Such
knowledge can be applied in practice while selecting measures to guide rule list
pruning or improve rule interpretability.

In this chapter, we provide an overview of research concerning rule confirmation
measures and their properties. After providing the definition of Bayesian confirma-
tion, other confirmation perspectives and rule confirmation measures in Sect. 20.2,
works on valuable groups of properties of confirmation measures (monotonicity,
symmetry, properties inspired by extreme values of confirmation) are discussed
in Sect. 20.3. Section 20.4 presents visualization methods proposed to inspect
confirmation measures. In Sect. 20.5 we discuss how confirmation measures and
visualization tools have been applied in different fields. Finally, in Sect. 20.5.5 we
discuss lines of future research on confirmations measures.
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20.2 Bayesian Confirmation and Rule Confirmation
Measures

Rules are usually induced from a dataset being a set of objects, learning examples,
characterized by a set of attributes. Rules are consequence relations between a
condition E and a conclusion H , typically denoted as E → H (“if E then H ”). The
condition formula E (premise, evidence) is a conjunction of elementary conditions
created on the basis of values of the attributes describing the examples, and
the conclusion formula H (decision, hypothesis) indicates the target class of the
example satisfying the condition part.

Recall that rule induction can be considered in two contexts: predictive and
descriptive [18, 51]. The common problem of both of them, however, is that the
number of generated rules can often be overwhelmingly high. This can hinder
the expert from analyzing or deploying the rules. Thus, there arises the need to
evaluate the relevance and usefulness of the induced rules, which is commonly
done using quantitative measures, known as attractiveness (or interestingness)
measures [19, 36].

Generally, attractiveness measures can be divided into subjective and objective
ones [52]. The subjective measures incorporate domain knowledge and the beliefs
of an expert, whereas the objective ones are independent of the application domain
and the user and are calculated on the basis of the dataset being analyzed.

20.2.1 Bayesian Confirmation

Within objective attractiveness measures, a particular group called (Bayesian) con-
firmation measures can be distinguished. Their common feature is that they satisfy
the property of Bayesian confirmation [15, 21, 35, 46] (or simply: confirmation),
which can be regarded as an expectation that a measure obtains positive values
when the rule’s premise increases the knowledge about the conclusion, zero when
the premise does not influence the conclusion at all, and finally, negative values
when the premise has a negative impact on the conclusion.

Formally, for a given rule E → H , an attractiveness measure c(H,E) satisfies
the property of Bayesian confirmation, when:

• c(H,E) > 0 if and only if P(H |E) > P(H)

• c(H,E) = 0 if and only if P(H |E) = P(H)

• c(H,E) < 0 if and only if P(H |E) < P(H)

where P(H |E) is the conditional probability of the conclusion given the premise,
and P(H) is the probability of the conclusion.

Interestingly, there are also other, alternative formulations of the property of
confirmation [15, 35]. In fact, one can define the property of confirmation in
four different ways (referred to as perspectives) [22, 24], each based on different
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probabilities. Apart from the Bayesian confirmation perspective using P(H |E) and
P(H), there are: strong Bayesian (P(H |E), P(H |¬E)), likelihoodist (P(E|H),
P(E)), and strong likelihoodist (P(E|H), P(E|¬H)) perspectives. Because of the
different probabilities used, each of the perspectives naturally emphasizes different
aspects of the concept of confirmation and also obtains undefined values in different
situations (e.g., when P(E) = 0, then P(H |E) becomes undefined in the Bayesian
and strong Bayesian perspectives). However, despite those differences, all four
perspectives are logically equivalent, which means that they “switch” between
positive values, zero, and negative values in the same situations, provided these are
not undefined [20, 22]. It can also be proved that the conditions forming each of the
four perspectives can boil down to one formulation called the general definition of
confirmation [24].

20.2.2 Rule Confirmation Measures

Thorough discussion about introducing confirmation measures as a tool valuable for
assessing the quality of rules induced from data within the rough set approach and,
more generally, within data mining, machine learning, and knowledge discovery
was presented in [21]. Greco, Pawlak, and Slowinski pointed out there that using the
confirmation property and quantitative confirmation theory for data analysis allows
to benefit from the results of such prominent researchers as Carnap [9], Hempel [29],
and Popper [46].

The usefulness of confirmation measures in general and their supremacy in terms
of interpretability over measures not satisfying the property of confirmation can be
illustrated with an example proposed by Popper [21, 46] of rolling a dice, where the
possible results are in the set {1, 2, 3, 4, 5, 6}. For an exemplary premise E =“the
result is divisible by 2”, consider two alternative conclusions: H1 =“the result is
six” and H2 =“the result is not six”. Let us first evaluate the rules E → H1 and
E → H2 with confidence, which is a very popular attractiveness measure that does
not possess the property of confirmation. Confidence is defined as the ratio of the
number of objects satisfying the rule’s premise and conclusion to the number of
objects satisfying the premise: conf idence(E → H) = P(E ∧ H)/P(E) =
P(H |E). For the first rule conf idence(E → H1) = 1/3, and for the second
rule conf idence(E → H2) = 2/3. The second rule is thus unambiguously and
highly preferred over the first one, provided only the confidence measure is used.
Furthermore, the high value of confidence for E → H2 would most likely encourage
the user to take actions described by the rule.

The evaluation of the two rules with any confirmation measure leads, however,
to completely different results. In particular, rule E → H1 is characterized by a
positive value of confirmation measures because P(H1|E) = 1/3 > P(H1) =
1/6. On the other hand, rule E → H2 is characterized by a negative value
of confirmation measures as P(H2|E) = 2/3 < P(H2) = 5/6. As a result,
rule E → H2 is in fact misleading since its premise decreases the probability
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of obtaining the conclusion. Thus, following the high value of confidence of the
second rule would not be beneficial for the user. This illustrates the applicability of
confirmation measures, which owing to their scales, clearly indicate the misleading
(disconfirming, c(H,E) < 0) rules, as well as the limitations of the popular
confidence, quite commonly used in various applications as the default measure.

The list of confirmation measures proposed in the literature is long [15, 35] as
the conditions in the property of confirmation itself define only when the measure
should obtain positive values, zero, or negative values, giving a wide space for
expressing alternative measures of confirmation, differing however with respect to
various other properties.

Originally, the definitions of confirmation measures were often expressed using
probabilities, see, e.g., measure: D(H,E) = P(H |E) − P(H) [13]. However, in
the context of a particular dataset, specific information on whether a given piece
of evidence E or hypothesis H holds or not is often estimated with four discrete,
non-negative values:

• a: the number of objects in the dataset for which both E and H hold
• b: the number of objects in the dataset for which the premise E does not hold and

the conclusion H holds
• c: the number of objects in the dataset for which the premise E holds, but the

conclusion H does not
• d: the number of objects in the dataset for which neither E nor H holds

These values may collectively be stored in a 2 × 2 table, referred to as the
contingency table (Table 20.1).

The list of exemplary confirmation measures expressed also using such a fre-
quentionistic approach is presented in Table 20.2. Measures c1(H,E) and c2(H,E)

are defined using parameters α and β, where α+ β = 1 and α > 0, β > 0. Observe
that parameters α and β can be used to closen the new measure to Z(H,E) or
A(H,E), i.e., to Bayesian or likelihoodist inspirations.

The choice of an attractiveness measure for the task at hand, though limited
by the desirable property of confirmation itself, requires non-trivial and careful
consideration of many alternative measures since the property of confirmation is
not the only factor that guarantees the right choice. Different confirmation measures
were defined to reflect different characteristic behavior of the measures, formalized
as measure properties (surveyed in [9, 14, 19, 21, 56]). Identification of measure
properties makes it possible to group measures according to their similar behavior,
providing much-needed insight into the process of measure selection.

Table 20.1 An exemplary
contingency table of the
rule’s premise and conclusion

H ¬H Σ

E a c a + c

¬E b d b + d

Σ a + b c + d n



20 Rule Confirmation Measures: Properties, Visual Analysis and Applications 407

Table 20.2 Popular confirmation measures

D(H,E) = P (H |E)− P (H) = a

a + c
− a + b

n
= ad − bc

n(a + c)
[13]

M(H,E) = P (E|H)− P (E) = a

a + b
− a + c

n
= ad − bc

n(a + b)
[37]

S(H,E) = P (H |E)− P (H |¬E) = a

a + c
− b

b + d
= ad − bc

(a + c)(b + d)
[11]

N(H,E) = P (E|H)− P (E|¬H) = a

a + b
− c

c + d
= ad − bc

(a + b)(c + d)
[43]

C(H,E) = P (E ∧H)− P (E)P (H) = a

n
− (a + c)(a + b)

n2
= ad − bc

n2
[9]

F(H,E) = P (E|H)− P (E|¬H)

P (E|H)+ P (E|¬H)
=

a

a + b
− c

c + d
a

a + b
+ c

c + d

= ad − bc

ad + bc + 2ac
[31]

Z(H,E) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − P (¬H |E)

P (¬H)
= ad − bc

(a + c)(c + d)
in case of confirmation

P (H |E)

P (H)
− 1 = ad − bc

(a + c)(a + b)
in case of disconfirmation

[12]

A(H,E) =

⎧
⎪⎪⎨

⎪⎪⎩

P (E|H)− P (E)

1 − P (E)
= ad − bc

(a + b)(b + d)
in case of confirmation

P (H)− P (H |¬E)

1 − P (H)
= ad − bc

(b + d)(c + d)
in case of disconfirmation

[22]

c1(H,E) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α + βA(H,E) in case of confirmation when c = 0

αZ(H,E) in case of confirmation when c > 0

αZ(H,E) in case of disconfirmation when a > 0

−α + βA(H,E) in case of disconfirmation when a = 0

[22]

c2(H,E) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

α + βZ(H,E) in case of confirmation when b = 0

αA(H,E) in case of confirmation when b > 0

αA(H,E) in case of disconfirmation when d > 0

−α + βZ(H,E) in case of disconfirmation when d = 0

[22]

c3(H,E) =
{

A(H,E)Z(H,E) in case of confirmation

−A(H,E)Z(H,E) in case of disconfirmation
[22]

c4(H,E) =
{

min(A(H,E),Z(H,E)) in case of confirmation

max(A(H,E),Z(H,E)) in case of disconfirmation
[22]

20.3 Properties of Confirmation Measures

20.3.1 Property of Monotonicity M

Among properties regarded as desirable within confirmation measures, an important
place is given to the property of monotonicity M [21], ensuring monotonic
dependency of the measure on the number of objects satisfying (supporting) or not
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the premise and/or the conclusion of the rule. The property M emerges from the
argument that for a decision rule E → H , an attractiveness measure should give
the credibility of the proposition: H is satisfied more frequently when E is satisfied
rather than when E is not satisfied. As proved by Greco, Pawlak, and Slowinski
in [21], this requirement is satisfied, when the confirmation measure c(H,E) is a
function:

• non-decreasing with respect to a and d

• non-increasing with respect to b and c

Confirmation measures satisfying these monotonic requirements with respect to a,
b, c, and d are referred to as measures possessing the property M .

The property M with respect to a means that any evidence in which the premise
and the conclusion hold together increases (or at least does not decrease) the
confirmation of the rule E → H . Analogous interpretation holds for d . On the
other hand, the property M with respect to b means that any evidence in which E

does not hold and H holds decreases (or at least does not increase) the confirmation
of the rule E → H . Analogously with respect to c. Property of monotonicity M can
be, thus, interpreted as a formal indication of conditions permitting passing from
a situation of non-confirmation (or disconfirmation) to a situation of confirmation
(i.e., when H is satisfied more frequently when E is satisfied rather than when E is
not satisfied). Such passage is permitted by an increase of a or d , or by a decrease
of b or c.

Among measures satisfying the property M , one can find, e.g., confirmation
measures S(H,E), N(H,E), F(H,E), Z(H,E) [21, 22]. However, there are also
confirmation measures that do not possess property M (e.g., measure D(H,E)),
which only indicates that the quest for a valuable measure for a task at hand usually
cannot be successfully completed with a single property.

20.3.2 Symmetry Properties

Quite a lot of attention has been given in the literature to a large set of properties,
commonly referred to as symmetry properties, characterizing how the value of a
confirmation measure relates to its value obtained after the rule’s premise and
conclusion are interchanged and/or negated [12, 14, 15, 22]. The studies considering
symmetry properties differ in the set of considered symmetries and in the way the
symmetries are assessed as either desirable or undesirable.

Eells et al. [14] have analyzed a set of popular confirmation measures from the
viewpoint of four properties of symmetry, earlier also discussed by Carnap [9]:

• evidence symmetry (ES): c(H,E) = −c(H,¬E)

• inversion (or commutativity) symmetry (IS): c(H,E) = c(E,H)

• hypothesis symmetry (HS): c(H,E) = −(¬H,E)

• evidence-hypothesis (or total) symmetry (EHS): c(H,E) = c(¬H,¬E)
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The evidence symmetry, for example, considers how the value of a confirmation
measure c(H,E) relates to its value obtained for the situation when the rule’s
premise is negated, whereas the inversion symmetry considers switching positions
of the rule’s premise and conclusion. Eells et al. [14] used a series of examples of
drawing cards from a deck to assess the symmetries as desirable or not. They argued
that only hypothesis symmetry (HS) is a desirable property, leaving ES, IS, and
EHS as properties that should not be satisfied by valuable measures.

More recently, Crupi et al. [12] have argued for an extended and systematic
treatment of the issue of symmetry properties. They propose to analyze a confir-
mation measure c(H,E) with respect to all combinations obtained by applying the
negation operator to the premise, hypothesis, or both, and/or by inverting E and H .
Additionally, they advocate that such a set of seven symmetries should be analyzed
separately for the case of confirmation (i.e., when P(H |E) > P(H)) and for the
case of disconfirmation (i.e., when P(H |E) < P(H)), forming the final set of
14 analyzed symmetries. Crupi et al. [12] followed the steps of Eells et al. for the
preferential assessment of symmetries. Their results concur with respect to ES, IS,
HS, and EHS, however only in the case of confirmation.

Later, the symmetry properties have been revised by Greco, Slowinski, and
Szczech [23] in the light of the statement that a confirmation measure should give
an account of the credibility that H is satisfied more frequently when E is satisfied
rather than when E is not satisfied. The analysis conducted in [23] revealed that
it is enough to consider the symmetry properties only in case of confirmation,
which further implied that the set of desirable properties contains ES, HS, and
their composition, i.e., EHS.

The above-shown differences in conclusions stemming from the works published
by different authors on symmetry properties inspired Susmaga et al. [55] to look at
symmetry properties and their preferential assessment from the viewpoint of group
theory [30]. Their considerations revealed a kind of incompleteness in the previous
works, understood as a situation in which a composition of two symmetries from
the proposed set results in a symmetry that does not belong to that set. The desirable
completeness, however, is guaranteed if the symmetries and their compositions form
an algebraic group (symmetries as the elements of the group and the symmetry
composition as the operation in the group). In that context, the necessary extensions
of the sets of symmetries discussed in the literature can be easily made, forming
groups and consequently eliminating the incompleteness phenomenon [55].

Interestingly, group-theoretic aspects can also be further applied to the discussion
about assessing the symmetries as desirable and undesirable. Their application can
actually be regarded as a way to make the preferential assessments of symmetries
objective, i.e., independent of the argumentation proposed earlier by different
authors. Using group-theoretic aspects for such assessment, naturally, raises a
need for necessary assumptions that provide preferential assessments about the
compositions of symmetries, starting with the assumption expressing whether the
group’s neutral element is to be considered as desirable or undesirable. In [55]
it has been argued that the neutral element should be considered as desirable.
Following that, other assumptions about the assessments of symmetry compositions
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have been made. The analysis of the acknowledged preferential assessments of
symmetries has shown, however, that the assumptions are violated by some authors,
causing inconsistencies in their proposed approaches. In fact, as argued in [55], there
exists only one consistent division of the set of symmetries into the desirable and
undesirable ones that has also proper interpretations in the context of rule evaluation.
That division places in the set of desirable properties only: ES, HS, and EHS,
which makes it concordant with the preferential assessment proposed by Greco,
Slowinski, and Szczech [23].

Analysis of selected confirmation measures with respect to the desirable symme-
try properties revealed that measures S(H,E), N(H,E), c3(H,E), and c4(H,E)

are particularly valuable [24].

20.3.3 Properties Inspired by Extreme Values of Confirmation

To handle the plurality of alternative confirmation measures, some authors [12, 20,
22] have reached to considering inductive logic as an extrapolation from classical
deductive logic, giving rise to new properties:

• Logicality L, and its generalization called weak L, indicating the conditions
under which the confirmation measures should obtain their maximal or minimal
values [12, 15, 22]

• Ex1, and its generalization called weak Ex1, assuring that any conclusively con-
firmatory rule is assigned a higher value of interestingness measure than any rule
that is not conclusively confirmatory, and any conclusively disconfirmatory rule
is assigned a lower value than any rule that is not conclusively disconfirmatory
[12, 22]

• Maximality/minimality assuring that measures obtain maximal values if and
only if b = c = 0, and minimal values if and only if a = d = 0 [20]

A summary analyzing which confirmation measures possess which of the above
properties can be found in [24]. As its result, measures S(H,E), N(H,E),
c3(H,E), and c4(H,E) were recommended for finding meaningful rules.

It is worth noting that the list of measure properties proposed in the literature is
quite long, and the final choice of properties should always be made with respect
to the task at hand. It is reasonable, though, that such choice should precede
the choice of the measure for rule evaluation. Formal analysis of measures with
respect to their properties is undoubtedly a challenging and laborious task that often
requires potentially advanced mathematical methods. Interestingly though, it can be
effectively supported by visualizing the measure.
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20.4 Visual Analysis of Measure Properties

The process of analyzing the properties of confirmation measures can be aided
by visualization methods. The improvement of that process is profitable not only
in the context of time but also in that it supports methods of new measure
development (both automatic and semi-automatic methods). Tackling the above
problems, [53, 54] introduced and applied a barycentric visualization method for
confirmation measures, which allows fast and easy analysis of measures in their
entire domains. Such a comprehensive insight into all values that the analyzed
measure can possibly obtain allows to infer about the measure’s behavior in any
situation (represented by particular domain values) and has thus the advantage over
visualizations in partial contexts based on particular datasets and rule sets.

The barycentric visualization of confirmation measures displays the measures
as colored tetrahedra. The method is based on the fact that confirmation measures
share a four-dimensional domain, represented in the form of a 2 × 2 non-negative
matrix with a positive sum, the values of which fully determine E and H (see
Table 20.1), so they may represent numerically the evidence and the hypothesis
(the formal parameters of any confirmation measure). This matrix simultaneously
represents an element of a 3D simplex, which can be depicted as a 3D tetrahedron
in a 4D barycentric coordinate system.

More precisely, given a constant n > 0 and a ≥ 0, b ≥ 0, c ≥ 0, d ≥ 0, with
a + b + c + d = n, matrix

[
a c
b d

]
represents a point of the tetrahedron. Position of

this point is fully determined by values of a, b, c, and d in a manner characteristic
to barycentric coordinate systems. Consider all possible values of a. When a = 1
(the first extreme), the point is situated in vertex A of the tetrahedron, so its position
is fully determined. When a = 0 (the second extreme), the point is situated in face
BCD of the tetrahedron, with its actual position within this face being determined
by the values of b, c, and d (which then satisfy b + c + d = 1 − a = 1 − 0 = 1).
In intermediate stages, i.e., for a ∈ (0, 1), the point is situated in a triangular cross-
section that is parallel to face BCD and cuts the BCD–A height of the tetrahedron
at fraction a from BCD. Again, the actual position of the point within this cross-
section is determined by the values of b, c, and d (which then satisfy b + c + d =
1 − a < 1). Similar for the remaining variables.

Interestingly, as soon as a face or an above-mentioned cross-section emerges,
it constitutes a 2D equilateral triangle (and thus a 2D simplex), to be naturally
interpreted in a 3D barycentric coordinate system. With a constant (as above),
which reduces the number of considered dimensions by one, positions of points
in this system are fully determined by values of b, c, and d . When, e.g., b = 1 (the
first extreme), then, similarly, the point is situated in vertex B of the triangle. When
b = 0 (the second extreme), the point is situated in edge CD of the triangle, with
its actual position being determined by the values of c and d (which then satisfy
c + d = 1 − a − b = 1 − 0 − 0 = 1), and so on. Notice that this dimensionality
reduction principle gives the barycentric visualization a characteristic recursive
flavor.
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After having constructed the tetrahedron, coloring each of its points according to
a given color map makes it possible to visualize various functions f (a, b, c, d) ≡
f (
[

a c
b d

]
), including the confirmation measures. An exemplary color map is shown

in Fig. 20.1. Interestingly, if the visualized function f (a, b, c, d) admits non-
numeric values (+∞, NaN and −∞), they may also be visualized, however, with
a color map that is disjoint with the previous one. In the visualizations presented
below only NaN values occur and (if present) are rendered in magenta.

An exemplary 2-view (two sides of the tetrahedron) visualization of function
f (a, b, c, d) = c3(H,E) is shown in Fig. 20.2. An exemplary parallelogram (the
net of the tetrahedron) visualization of function f (a, b, c, d) = D(H,E) is shown
in Fig. 20.3. Notice that the visualizations of the functions in Figs 20.2 and 20.3,
although probably most comprehensible, are in a way incomplete, as they show
only the exterior of the shape, which correspond to extreme values of the functions:
face BCD to a = 0 (b + c + d = 1), edge CD to a = b = 0 (c + d = 1),
vertex D to a = b = c = 0 (d = 1), and so on. These views must thus
be sometimes used together with views showing the interior of the shape (i.e.,
for a, b, c, d ∈ (0, 1)). In many cases, however, especially when the visualized
functions are continuous and monotonic, views of the exterior of the tetrahedron are
sufficient to fully conceptualize these functions.

Fig. 20.1 The color maps for the values of the visualized function

Fig. 20.2 Tetrahedron visualization of f (a, b, c, d) = c3(H,E)
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Fig. 20.3 A 2D “parallelogram” visualization of D(H,E)

20.4.1 Characteristic Regions of Confirmation Measures

The barycentric visualization can be used to support basic analyses of confirmation
measures, e.g., for fast detection of the location of the measure’s extremes or
zero values (in the measure’s domain, i.e., in particular points of the tetrahedron),
or for detection of areas in which the measure’s values increase/decrease. Such
analyses can facilitate, e.g., checking if two measures are oridinally equivalent,
which is an important aspect not only of measures already acknowledged in the
literature but also of new propositions. Notice how visualizations instantly reveal
basic characteristics of the visualized functions, e.g., c3(H,E) (see Fig. 20.2):

• is fully defined (no undefined values in its domain)
• attains its maximum in the whole of edge AD

• attains its minimum in the whole of edge BC

while D(H,E) (see Fig. 20.3):

• has undefined values in the whole edge BD

• attains its maximum at face ABD towards vertex D

• attains its minimum at face BCD towards vertex B

An important characteristic region common for all confirmation measures is their
neutrality zone (the region characterized by zero values). Figure 20.4 depicts this
region (rendered using a gray-scale color map). The saddle-like shape of this region
divides the tetrahedron into two subregions of positive, i.e., confirmatory values
(around edge AD), and negative, i.e., disconfirmatory values (around edge BC).
Notice that as opposed to the zero region, the location of extreme and non-numeric
regions is not common to all confirmation measures.

Moreover, the barycentric visualization method can also be applied to analyses
of groups of measures, by visualizing the differences between measures or variances
for groups of measures. This, in turn, swiftly identifies the regions of the tetrahedron
where the measures of the group vary the least or the most. The practitioners
could then decide on using only one representative of a low-variant group (as such



414 I. Szczech et al.

Fig. 20.4 A 2-view 3D visualization of the neutral region (common for all confirmation measures)

measures tend to produce fairly consistent evaluations), and thus avoid potential
redundancy and its undesirable impact on the efficiency of the rule evaluation
process.

Interestingly, visualization of confirmation measures can also support the anal-
yses of confirmation measures with respect to their properties. Visual measure
analysis regarding such properties as monotonicity M , symmetry properties, log-
icality L, Ex1, or maximality/minimality is discussed in detail in the following
sections.

20.4.2 Monotonicity-Related Properties: M

In terms of a, b, c, and d property M requires that the confirmation measure is a
function f (

[
a c
b d

]
) that is non-decreasing with respect to a and d , and non-increasing

with respect to b and c. To confirm M , the four types of triangular cross-sections
that are parallel to the four faces of the tetrahedron must be examined. The colors
of appropriate points of cross-sections corresponding to increasing values of a and
d must reveal non-decreasing values of the measure, while colors of appropriate
points of cross-sections corresponding to increasing values of b and c must reveal
non-increasing values of the measure. Clearly, the interior views of the tetrahedron
are required to fully verify this property. However, by the presented dimensionality
reduction principle of the barycentric visualization, monotonicity M may also be
observed in all considered cross-sections, including the faces, of the tetrahedron. For
brevity, only the faces, which do not require any interior views, will be discussed
here. Consider face BCD, which implies a = 0. The colors of appropriate points
of BCD corresponding to increasing values of d must reveal non-decreasing values
of the measure, while the colors of appropriate points of BCD corresponding to
increasing values of both b and c must reveal non-increasing values of the measure.
Similarly for other faces.
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Clearly, measure D(H,E) in Fig. 20.3 violates those expectations by revealing
the increasing values of the measure when c increases, allowing to draw conclusions
that D(H,E) does not possess property M .

20.4.3 Symmetry-Related Properties: ES, HS, and EHS

In terms of a, b, c, and d property of evidence symmetry, ES, requires that the
confirmation measure is a function that satisfies f (

[
a c
b d

]
) = −f (

[
b d
a c

]
). To confirm

ES, the parallelogram rotated by 180◦ about its middle (this leads to the exchange
of rhombi ABDC and CDBA, with their orientation changed to upside-down) and
rendered with reversed color map must be verified to be the same.

In terms of a, b, c, and d property of hypothesis symmetry, HS, requires that
the confirmation measure is a function that satisfies f (

[
a c
b d

]
) = −f (

[
c a
d b

]
). To

confirm HS, the parallelogram transformed by shifting the left-hand side rhombus
to the right and the right-hand side rhombus to the left (this leads to the exchange of
rhombi ABDC and CDBA, with their orientation unchanged) and rendered with
reversed color map must be verified to be the same.

In terms of a, b, c, and d property of evidence-hypothesis symmetry, EHS,
requires that the confirmation measure is a function that satisfies f (

[
a c
b d

]
) =

f (
[

d b
c a

]
). To confirm EHS, in the parallelogram: rhombus ABDC rotated by 180 ◦

must be verified to be the same, and rhombus CDBA rotated by 180◦ must be
verified to be the same.

Notice that also the interior views of the tetrahedron are required to fully verify
any of these three properties. However, often enough, the analysis of only the
external views of a tetrahedron can showcase counterexamples, as is for measure
D(H,E) in Fig. 20.3 in case of ES and EHS.

20.4.4 Extrema-Related Properties: L, Ex1, and
Maximality/Minimality

In terms of a, b, c, and d property L requires that if c = 0 (a = 0) then the
confirmation measure f (

[
a c
b d

]
) obtains its maximal (minimal) value. To confirm L,

the corresponding faces of the tetrahedron (ABD for c = 0 and BCD for a = 0)
must be verified to have the right color (“maximal” and “minimal,” respectively).
Notice that only exterior view of the tetrahedron is required to fully verify this
property.

Property Ex1 reverses the implications of L and in terms of a, b, c, and d it
requires that if the confirmation measure f (

[
a c
b d

]
) obtains its maximal (minimal)

value, then c = 0 (a = 0). To confirm Ex1, the regions of the right color (“maximal”
and “minimal,” respectively) must be verified to be located in the corresponding
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faces of the tetrahedron (ABD for c = 0 and BCD for a = 0, respectively).
Notice that also the interior views of the tetrahedron are required to fully verify
this property.

In terms of a, b, c, and d property maximality/minimality requires that the
confirmation measure f (

[
a c
b d

]
) obtains its maximal (minimal) value if and only if

b = c = 0 (a = d = 0). To confirm maximality/minimality, the corresponding
edges of the tetrahedron (AD for b = c = 0 and BC for a = d = 0) must be
verified to be the only regions of the tetrahedron of the right color (“maximal” and
“minimal,” respectively). Notice that also the interior views of the tetrahedron are
required to fully verify this property.

The analysis of the external views of measure D(H,E) in Fig. 20.3 can showcase
counterexamples to property L, Ex1 as well as maximality/minimality.

20.5 Current and Future Applications to Data Mining
and Machine Learning

20.5.1 Multi-Criteria Selection of Non-dominated Rules

Evaluation of rules can be performed with respect to more than one attractiveness
measure in order to provide a multi-context description of the quality of the rule,
when a single measure is an insufficient indicator. In case of such a multi-criteria
rule evaluation, the best rules are the non-dominated ones, i.e., those for which there
does not exist any other rule that is better on at least one evaluation criterion and
not worst on any other. The set of all non-dominated rules, with respect to particular
attractiveness measures, is referred to as the Pareto-optimal set or the Pareto-optimal
border. Confirmation measures have been a component of various multi-criteria
evaluation spaces and proved to be a useful tool in data mining and machine learning
applications.

In [1] Bayardo and Agrawal introduced a support1-confidence evaluation space
in order to limit the set of association rules. In such space, for a set of rules with
fixed conclusion, the Pareto-optimal border includes optimal rules according to
several different interestingness measures, such as, e.g., gain, Laplace, lift [1]. This
practically useful result has been revised by Brzezinska, Greco, and Slowinski [2]
by substituting confidence with a confirmation measure F(H,E) [31]. Interestingly,
all the profits of using support-confidence evaluation space are preserved in the
new space due to a particular monotone link between confidence and F(H,E).
As a result, working in a support-F(H,E) evaluation space allows to identify the
most interesting rules according to various attractiveness measures. Additionally, as
presented in Fig. 20.5, the semantics of the scale of confirmation measures allows

1 support (H,E) = a, i.e., it is the number of examples in the dataset satisfying both the rule’s
premise and conclusion.
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Fig. 20.5 Support-F(H,E)

evaluation space with
Pareto-optimal border and
area of rules with negative
confirmation indicated

to immediately discard all meaningless (i.e., characterized by F(H,E) < 0) rules,
which is not so straightforward if confidence is used [2]. Particularly in association
rule mining, elimination of disconfirmatory rules can significantly limit the set of
induced rules, allowing to focus on the practically useful ones [50, 56].

Selection of non-dominated rules has also been studied with respect to support
and anti-support2 measures [2]. Though these two measures are just basic frequen-
cies, and neither of them is a confirmation measure, putting them together allows
to mine all rules maximizing any measure enjoying the property of monotonicity
M (including confirmation measures). The support–anti-support Pareto-optimal set
includes all the rules from the support-F(H,E) Pareto-optimal border. Its practical
usefulness could be further increased by limiting the set only to rules with positive
confirmation [2].

20.5.2 Post-processing of Rules Induced from Imbalanced
Data

Classification of imbalanced data is yet another task that illustrates the usage of
confirmation measures for pruning rules. In imbalanced data one class (further
called the minority class) is underrepresented compared to the majority class, which
constitutes difficulties for learning classifiers.

Rule classifiers are quite sensitive to class imbalanced data and fail to accurately
recognize instances from the minority class. The BRACID rule induction algorithm
is one of the most recent proposals to address this problem in a comprehensive
manner [39]. One of the key characteristics of BRACID is its use of so called types
of difficulty of learning examples, estimated by the analysis of the neighborhood of

2 anti-support (H,E) = c, i.e., it is the number of counterexamples to the rule in the dataset.
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these examples [41]. The assignment of difficulty type to each example influences
the rule generalization, as for the unsafe minority example it is possible to generate
additional rules covering it. As a result, the number of minority class rules, as well
as their support, is increased and they are more likely to win with the stronger
majority rules while classifying new instances. The experimental evaluation of the
classification performance of BRACID over 22 popular imbalanced datasets showed
that it significantly outperformed many standard rule classifiers as well as other rule
approaches specialized for class imbalance [39].

Although BRACID proved to be an accurate classifier for binary imbalanced
tasks, its potentially high number of rules may restrict some applications and may
lower the possibility of analyzing the rules by humans. Therefore the authors of
BRACID proposed a special post-pruning strategy [40]. This strategy was extended
to use two confirmation measures S(H,E) and N(H,E) in a weighted rule covering
algorithm [42], where each rule is evaluated with a product of a rule support and
S(H,E) or N(H,E) confirmation measure. The usefulness of this approach was
experimentally studied over a dozen of benchmark imbalanced datasets [42]. The
general observations from these experiments showed that each variant of pruning
improved the considered attractiveness measures. Besides increasing average values
of S(H,E) and N(H,E) measures, the average rule supports for both minority and
majority classes were higher. For instance, for cmc data the average rule supports
increased from 6.59 to 18.57 examples in the minority class, and from 7.3 to 21.0
examples in the majority class. Classification performance of such pruned rules did
not decrease much compared to the non-pruned BRACID rules.

20.5.3 Classification by Association and Biomedical Data

The potential of applying confirmation measures in rule classification was imple-
mented in the CM-CAR algorithm [3]. CM-CAR starts from mining frequent item
sets, which are then used to form classification rules. Next, it uses two user-defined
lists of attractiveness measures to sort and filter the rules, making it possible to
divide the responsibility for the predictive and descriptive aspects of its classification
model. Computational experiments conducted on 20 datasets from the UCI repos-
itory compared 12 confirmation measures. The use of each confirmation measure
was evaluated using several classifier performance measures, which indicated that
measures c1(H,E), F(H,E), and Z(H,E) are really good for general-purpose
rule pruning and sorting, while in the context of balanced/imbalanced problems
also measures N(H,E), S(H,E), and c3(H,E) stand out. The results of the
experiments in [3] demonstrated that confirmation measures can be successfully
applied to evaluate rules induced from data of various characteristics, when looking
for a reduced set of rules with good descriptive characteristics while maintaining
satisfactory predictive performance. A more recent approach incorporating selected
confirmation measures in classification is GuideR [48], a user-guided rule induction



20 Rule Confirmation Measures: Properties, Visual Analysis and Applications 419

algorithm, which has the possibility to introduce user preferences or domain
knowledge to the rule learning process.

Confirmation measures in predictive systems were practically applied to biomed-
ical data. Pieszko et al. have analyzed hematological inflammation markers in the
prediction of short-term acute coronary syndrome outcomes through a dominance-
based rough set classifier [45]. The proposed approach identified diabetes, systolic
and diastolic blood pressure, and prothrombin time as having the highest value
of confirmation measure S(H,E) in the detection of in-hospital mortality. A
similar approach was used to analyze the antimicrobial activity of bis-quaternary
imidazolium chlorides, chemical compounds with good anti-electrostatic properties
used in cosmetic, textile, and pharmaceutical industries [44]. Confirmation measures
were also part of the medical data analyses by Nahar et al., who used Tertius [16] to
detect factors that contribute to heart disease in males and females [38].

20.5.4 Tetrahedron Visualizations for Classifier Evaluation
Measures

The idea of using the barycentric coordinate system to visualize measures was
recently adapted to classifier evaluation measures [6]. For a binary classification
problem, the entries TP, TN, FN, FP from a confusion matrix follow a constrained
sum rule n = TP+FP+FN+TN, which is similar to that observed in confirmation
measures. By adapting the tetrahedron visualization technique, the paper puts
forward ten properties, which should be taken into account when examining
classification performance measures, particularly in the context of imbalanced
data. The proposed properties included the analysis of measure minima, maxima,
monotonicity, symmetry, and undefined values. Importantly, all properties were
designed to be verifiable by means of visual inspection. The efficiency of the
proposed visual analysis technique was demonstrated by comparing 22 popular
measures (e.g., accuracy, balanced accuracy, F1-score, G-mean, precision, recall,
specificity) using the discussed set of properties. An interactive web application
allowing users to perform such analyses has been made publicly available.3 The
application aids the analysis of complete ranges of performance measures based
on any 2 × 2 contingency matrix. The tool operates in a barycentric coordinate
system using a 3D tetrahedron, which can be rotated, zoomed, cut, parameterized,
and animated. The application is capable of visualizing 86 predefined measures, as
well as helping prototype new measures by visualizing user-defined formulas [5].

This concept of analyzing classifier evaluation measures was further extended
in [7], where measure gradients were studied. Since every possible confusion matrix
and its corresponding measure value can be visualized as a point in the barycentric
space, one can also calculate the gradient of the analyzed measure and depict it

3 https://dabrze.shinyapps.io/Tetrahedron/.

https://dabrze.shinyapps.io/Tetrahedron/
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as an arrow. The gradient shows the direction of the greatest rate of increase of
the measure’s value and its magnitude is the rate itself. In the case of evaluation
measures, this can be translated to the direction of changes in the confusion matrix
that causes the greatest increase in the measure’s value. Using this visualization
technique, one can observe the extent to which it is possible to obtain a higher
measure value simply by changing class proportions in the dataset. This can be used
to show which measures, and to what amount, are susceptible to such changes [7].

20.5.5 Future Directions

Previous studies on the use of confirmation measures focused primarily on the
selection or filtering of the set of already generated rules. An independent interesting
problem is to investigate the usefulness of these measures in the rule induction
process itself. Perhaps confirmation measures could be beneficial in controlling the
search of possible candidates for conditions within a rule and emerge as an extension
to the currently used heuristics [17]. It would also be worth examining whether
some of the considered confirmation measures could contribute to constructing
compact sets of rules having both good interpretative properties and leading to a
high prediction on new instances. Initial, however limited, attempts were started in
[57], but this topic requires further and more extensive research.

Yet another direction concerns extending interpretation of discovered rules by
establishing the most important elementary conditions in rules. Slowinski and his
co-authors initiated a similar approach in [28], which was based on using conjoint
measures, but it did not use confirmation measures so far.

It would also be interesting to further investigate the notion of Pareto-optimal
borders in spaces constructed using confirmation measures (e.g., support-F(H,E)).
Up till now, only the very Pareto-optimal sets were considered, whereas it would
be captivating to include also subsequent Pareto-borders, i.e., Pareto-sets emerging
after hiding the previous non-dominated set. Adding these deeper borders could be
a way of increasing the number of covered instances while keeping the benefits of
discovering objectively best (non-dominated) rules.

Finally, the visualization approach initially proposed for confirmation measures
and later extended to classifier evaluation measures could also further inspire and
aid the analysis of other measures, in particular ensemble diversity measures. Since
most diversity measures are based on proportions of correct/incorrect answers of
two component classifiers [4], they use a 2 × 2 non-negative matrix similar to
those used to construct confirmation and binary classification measures. Such visual
analyses of diversity measures could help explain the way diversity affects the
performance of classifier ensembles.
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Chapter 21
An Approach to Combining
Adherence-to-Therapy and Patient
Preference Models for Evaluation of
Therapies in Patient-Centered Care

Dympna O’Sullivan, Szymon Wilk, Martin Michalowski, Hugh O’Sullivan,
Marc Carrier, and Wojtek Michalowski

Abstract Adherence to therapy is one of the major determinants of therapy
success, while non-adherence leads to worsening of patient condition and increased
healthcare costs. The aim of our work is to evaluate therapies recommended by
a clinical practice guideline in order to select a therapy that is most suited for
a patient’s adherence profile and accounts for patient’s preferences. We define
three broad categories of adherence—good, moderate, and poor. Each category
is associated with a single adherence profile that defines patient characteristics
and thus describes a typical patient population for that category. Moreover, each
category is also associated with an adherence model that defines therapeutic
characteristics linked to adherence (e.g., complexity of therapy). We assume that
each patient has a preference model that defines preferences for specific therapies
(e.g., an attitude toward invasiveness of therapy). Adherence and patient preference
models are constructed from preferential information elicited using multiple-criteria
decision analysis methods, and they are represented as value functions. Once a
patient has been associated with an adherence profile, both models are used to

D. O’Sullivan
School of Computer Science, Technological University Dublin, Dublin, Ireland

S. Wilk (�)
Institute of Computing Science, Poznan University of Technology, Poznan, Poland
e-mail: szymon.wilk@cs.put.poznan.pl

M. Michalowski
Nursing Informatics, University of Minnesota, Minneapolis, MN, USA

H. O’Sullivan
Adelaide and Meath Hospital, Dublin, Ireland

M. Carrier
The Ottawa Hospital, Ottawa, ON, Canada

W. Michalowski
Telfer School of Management, University of Ottawa, Ottawa, ON, Canada

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
S. Greco et al. (eds.), Intelligent Decision Support Systems, Multiple Criteria
Decision Making, https://doi.org/10.1007/978-3-030-96318-7_21

425

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96318-7_21&domain=pdf
mailto:szymon.wilk@cs.put.poznan.pl
https://doi.org/10.1007/978-3-030-96318-7_21


426 D. O’Sullivan et al.

evaluate therapies generated from a guideline. We present an illustrative clinical
scenario describing a patient with atrial fibrillation to demonstrate our proposed
approach.

21.1 Introduction

One of the most significant barriers to effective medical therapies is patients’ non-
adherence, understood as a failure to follow advice and recommendations from
their health care provider. A Cochrane review by Haynes et al. [1] concluded that
interventions for improving therapy adherence may have a far greater impact on
clinical outcomes than therapy advancements. The consequences of non-adherence
include worsening health condition and increased prevalence of comorbid diseases
that further increases health care utilization and costs [2]. In 2014, the Institute for
Healthcare Informatics estimated that between 100 and 300 billion of avoidable
health care costs have been attributed to patients’ non-adherence in the USA
annually, representing 3–10% of the total US health care expenditures [3]. In
England, between one-third and a half of all medications prescribed for long-
term conditions are not taken as recommended with an estimated cost of £300
million annually to the National Health Service [4, 5]. According to the World
Health Organization, in developed countries, adherence to long-term therapies in
the general population is around 50% and is even lower in developing countries [6].

The last number of years has seen a rise in the advocacy for patient-centered care
that supports the active involvement of patients in decision-making about preferred
therapy. The Institute of Medicine defines patient-centered care as:

Providing care that is respectful of and responsive to individual patient preferences, needs,
and values, and ensuring that patient values guide all clinical decisions [7].

According to the same report [7], patient-centered care can also influence the
effectiveness of therapy. The studies have shown that patients whose therapy is
deemed patient-centered are more likely to adhere to therapy recommendations [1].

This chapter operationalizes patient-centered care and builds on our earlier work
in modeling therapy generation from clinical practice guidelines (CPG) [8]. Here
we describe how we created adherence profiles by identifying high-level adherence-
related criteria characterizing patients (e.g., cognitive function). Adherence profile
is associated with a specific adherence category—good,moderate, or poor, and each
category is associated with an adherence model. All adherence models use the same
set of therapy-related criteria (e.g., complexity of therapy); however, the values of
the criteria are evaluated differently for each adherence model (e.g., low complexity
of a therapy may be evaluated as more important for a poor adherence model than
for a good adherence one). Each adherence model is subsequently combined with a
patient preference model that uses patient-specific preferential criteria for a therapy,
such as the cost or the perceived trade-off between the risks of potential adverse
events and the overall benefits of a therapy.
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In order to develop each model, multiple-criteria decision-making analysis is
used to elicit preferential information. Preferences regarding therapies are elicited
from clinicians who assess examples of alternative therapies defined in terms
of the therapy-related criteria. Patient preferences are elicited from patients who
assess alternative therapies defined in terms of patient-related criteria. Specifically,
patients are presented with a number of possible therapies (a subset of all applicable
therapies) which they assess according to their preferences. Laboratory of Intelligent
Decision Support Systems at the Institute of Computing Science, Poznan University
of Technology led by Professor Roman Slowinski is a world-renowned research
center working on novel methods of elicitation and processing of preferential
information. Under Professor Slowinski’s leadership, this group has developed
the GRIP (Generalized Regression with Intensities of Preference) method [9] that
accepts preferential information in the form of pairwise comparisons of reference
alternatives.

We used this method for processing of clinicians’ and patients’ preferential
information. Specifically, GRIP computes scoring functions that are converted into
scores that are combined to evaluate proposed therapies generated from a CPG.
If there is a list of alternative and clinically equivalent therapies, the combined
adherence to therapy and patient preference scoring functions are used to rank
these therapies according to a patient’s adherence category and their preferential
information for a therapy. Scores or ranked lists can then be used during a patient–
physician encounter when deciding on the most appropriate therapy for the patient.
We demonstrate an application of our approach using a case study for non-valvular
atrial fibrillation (AF). The contribution of our approach is to building adherence
models that capture patient characteristics associated with engagement with therapy
in general. These models are then combined with patient preference models for an
evaluation of therapies from a CPG in a holistic and patient-centered manner.

21.2 Background

A large body of literature has investigated the causes of therapy non-adherence
and categorized non-adherence factors as patient-, disease-, therapy-, health care
system-, and socio-economic-related [10–18]. In this chapter, we focus only on
patient- and therapy-related factors. A systematic review [11] identified patient-
related factors as demographics, smoking or alcohol intake, cognitive function,
and history of adherence and therapy-related factors as route of administration,
complexity, duration, medication side effects, and the degree of behavioral change
required.

In the UK, the National Institute of Clinical Excellence’s (NICE) guideline on
involving patients in decisions about therapy [19] recommends a patient-centered
approach that encourages informed adherence as part of a frank and open discussion
between a patient and a clinician. The guideline recognizes that non-adherence
may be the norm (or is at least very common) and encourages patients to discuss
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non-adherence and any doubts or concerns they have about therapy. A systematic
review of interventions to improve adherence to self-administered medications
for chronic diseases in the USA examined the effectiveness of interventions
such as case management, decision aids, face-to-face education with pharmacists,
educational and behavioral support via telephone, mail and/or video, access to
medical records, reminders, risk communications, and shared decision-making
[14]. The review concluded that from a patient’s perspective, case management
and patient education with behavioral support improved medication adherence for
more than one condition. Other reviews have shown the positive impact of case
management and shared decision-making on adherence [20, 21]. In particular,
research has shown that patient-centered interactions such as patient involvement
in care and the individualization of patient care promote adherence and lead to
improved health outcomes [21]. Researchers have also investigated randomized
controlled experimental designs in which some participants are randomly allocated
to treatments (a “randomization arm”) and others receive their preferred treatment
(“a preference arm”), and they demonstrated that allowing patients to choose their
treatments improves treatment adherence [22].

In line with recommendations such as that issued by NICE [19] and the findings
of research that advocate a patient-centered approach to improve adherence, the
aim of our work is to combine non-adherence factors and patient’s preferences
for specific therapies in order to support patients and physicians in choosing a
therapy that a patient prefers and therefore is more likely to adhere to. Much of the
literature on therapy adherence is focused on examining the effectiveness of various
interventions including technologies such as automated reminders [23]. Others have
modeled adherence using simulations of patient cohorts, for example using Markov
models to evaluate potential clinical and economic implications of non-adherence
[24]. However, few have focused on adherence in a broader context and on using
patient characteristics to build models for adherence that reflect how patients engage
with therapy and incorporating these into computer-based tools as we propose here.

A large body of work exists on modeling patient preferences by eliciting
preferences from patients, often in the form of utilities, and then either using these
preferences as a basis for discussion with physicians about possible therapy options
or employing preference information as parameters in automated decision-making
aids. For example, multi-criteria analysis tools including the analytic hierarchy
process (AHP), discrete choice, or conjoint analysis have been widely used to
compare sets of alternatives to derive patient preferences for therapies. Dolan et
al. [25] conducted an AHP analysis of the choice among five screening regimens
for colon cancer using patient preference data including sensitivity of the screening
regime, possible side effects, estimated costs, and convenience of the procedure. Van
Til et al. [26] investigated the effect of a priori information on preferences (described
with eight decision criteria) for stroke treatment in a discrete choice experiment.
Rosenfeld et al. [27] conducted a study of patient preferences for HIV treatment
utilizing a forced-choice paired-comparison method of all possible pairs of eight
different treatment options for the disease. Preferences were analyzed using binary
multidimensional scaling to determine the utility of paired-comparison models. Our
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proposal overlaps with the research described in [25–27], as we also elicit patient
preferences to represent them formally for use in computer-based decision aids.
However, we combine preferences with adherence-to-therapy-related criteria to gain
a complete evaluation of possible therapies.

Other methods of incorporating patient preferences include using formal tools
such as Markov decision analysis and decision tree models to simulate possible
progression of disease and using the results of such simulations to help patients
make decisions about therapy. Thomson et al. [28] used Markov decision analysis
to model decision-making about warfarin treatment in patients with AF. The model
was run for combinations of age, sex, blood pressure, and risk factors and assessed
results in terms of quality-adjusted life years and costs. Thomson et al. [29] also
created a decision tree model that incorporates the Framingham risk score to assess
a patient’s risk of coronary artery disease, together with a detailed assessment of
the patient’s current lifestyle and their willingness to change behavior. The model
assesses individual’s preferences for different treatment outcomes, before providing
patients with guidance on what might be the best treatment option for them. The
MobiGuide system [30] uses a hybrid decision tree and Markov model to elicit
patients’ preferences related to the progression of disease together with prevention
and management of the risk of thromboembolism in AF as part of shared patient–
physician decision support system.

Incorporating patient preferences into therapy selection has been shown to have
a positive impact on adherence, thus supporting the benefit of patient participation
in the therapy development process. Bhosle et al. [31] showed a positive correla-
tion with patient preferences, therapy satisfaction, and adherence to medications
compared with other therapies in a longitudinal cohort study of psoriasis patients.
Wilder et al. [32] compared patients with medications prescribed according to their
preferences and patients with medications prescribed solely according to the CPGs
and observed a 10% increase in adherence to medications among patients who
were prescribed medications that they preferred. Chrystyn et al. [33] demonstrated
the impact of patients’ preferences for inhalers measured in terms of durability,
ergonomics, and ease of use on therapy compliance and health status in chronic
obstructive pulmonary disease. A study assessing several patient-centered prefer-
ences for HIV HAART therapy found adherence was best among those patients
with high levels of behavioral intention [34].

Given the demonstrated links between patient preferences and improved adher-
ence to therapy, we propose to model and combine factors associated with adherence
to therapy and patient preferences. This allows for the patient-centered evaluation
of therapies taking into account patient preferences and their adherence profile. The
proposed approach supports patients and physicians in choosing a therapy that is
best suited to their specific needs. In the next section, we give an overview of AF
including a description of few possible therapies. In Sect. 21.4, we outline adherence
profiles and present how they are linked with adherence and patient preference
models. We also discuss our approach for combining them for evaluating therapies
generated from a CPG. We conclude the paper with a discussion and plans for future
work.
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21.3 Atrial Fibrillation

AF is one of the most prevalent types of cardiac arrhythmias and accounts for
about 30% of hospitalizations for arrhythmias. There are different types of AF and
different therapy options that impact how AF is managed. In this chapter, we focus
on pharmacological therapies of non-valvular AF to prevent stroke. These therapies
are relatively complex, and a number of new ones have recently been approved for
the condition.

An important aspect in AF management for stroke prevention is using oral
anticoagulant medications (OACs). Common OACs include vitamin K antagonists
(VKAs) such as warfarin, but they are associated with a number of problems,
including drug–drug and drug–food interactions, a narrow therapeutic window,
and the need for routine coagulation control to test how long it takes for blood
to clot (the test is called the International Normalized Ratio or INR). As such
VKA therapy is often poorly adhered to, and only half of the patients maintain
INR at the target range [35]. New direct oral anticoagulant medications (DOACs)
offer faster, more predictable, and sustainable anticoagulation with a fixed-dosage
administration characterized by fewer interactions and no need for laboratory INR
level control.

In clinical trials, DOACs were found to be at least as effective as VKAs
in stroke prevention and associated with lower bleeding and risk of death from
cardiovascular causes [36]. However, DOAC-based therapy comes with challenges
that include a lack of antidote for bleeding, shorter half-lives that require more
diligence on the part of the patient to ensure the drug is taken strictly according
to the dosing schedule, increased cost of medication, and limited opportunities
to enforce monitoring the level of anticoagulation [37]. In addition, the choice of
DOAC is influenced by individual patient characteristics, including risk of stroke,
risk of bleeding, and comorbidity (e.g., renal dysfunction) [38].

21.4 Materials and Methods

Figure 21.1 outlines our proposed approach. Currently, we assume there are 3 pos-
sible adherence categories—poor, moderate, or good (this may change in the future
as discussed in the last section). Each category is associated with an adherence
profile representing a typical patient population for that category, and each profile
is in turn linked to an adherence model. Adherence profile is characterized with
profile-related criteria, while adherence model is characterized with therapy-related
criteria. The process of evaluating therapies starts with a new patient matched with
an adherence profile (1) for the identification of the most likely adherence category.
This allows a patient to be assigned to the adherence model linked with their profile
(2). The patient has a unique preference model characterized with patient-related
criteria defining their therapy preferences. Both models (adherence and patient
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Fig. 21.1 High-level view of our proposed approach

preference) are used to evaluate therapies from a CPG (3) in order to rank them
(4). These steps are described in a greater detail in the next subsections.

21.4.1 Adherence Profile—Identifying Criteria

The adherence profile is composed of patient characteristics and as such is used
to assign a patient to one of the three adherence categories. We use the systematic
review by Jin et al. [11] as a basis for defining patient criteria having the greatest
effects on adherence. We recognize that there are other criteria associated with
adherence, for example, subjective aspects such as patient’s beliefs and attitude
toward therapy and similarly some demographic criteria such as gender, ethnicity,
and educational level. However, as noted by Jin et al. [11], the effects of many of
these criteria are inter-related, and their impact on adherence is not well understood.

Therefore, the criteria we chose to use in developing adherence profile are as
follows:

• Age: A majority of the studies reviewed by Jin et al. [11] showed that age was
associated with adherence and the effect of age could be divided into 3 major
groups: the elderly group (over 55 years old), the middle-age group (40–55
years old), and the young group (under 40 years old). In general, elderly patients
without cognitive impairments and other physical difficulties are relatively more
compliant. Middle-aged and young patients are likely to have other priorities
(e.g., work commitments meaning they are unable to follow therapy or spend a
long time waiting for clinic appointments) in their daily life impacting adherence.
Low adherence also occurs in adolescents often marked by rebellious behavior
or desire to live a normal life and children who may need help from their parents
or guardians to implement therapies.

• Cognitive function: Impaired cognitive function and forgetfulness are widely
reported factors that cause non-adherence with therapy.
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• History of adherence: Patients with a prior history of good adherence are likely
to adhere to new therapies.

• Tobacco smoking or alcohol intake: Several studies found that patients who
smoked or drank alcohol were more likely to be non-adherent.

21.4.2 Adherence Profile—Selecting an Adherence Category

Table 21.1 shows criteria and values for each adherence profile and how they are
used to delineate adherence categories.

Characterizing patients using the same set of criteria (age, cognitive function,
history of adherence, and tobacco smoking or alcohol intake) allows to match a new
patient against the three adherence profiles in order to select an adherence category
for the patient. Specifically, we use the Euclidean distance to find the closest profile
for a given patient and assign the patient to the adherence category indicated by the
profile.

Suppose the following hypothetical patient:

Jack Burns is a 71 years old retiree diagnosed with non-valvular AF. He is an erratic
visitor to the clinic, often failing to show up to his appointments. He is a diagnosed
type 2 diabetic, being treated with metformin and sitagliptin to control blood sugar levels,
but his glycated hemoglobin (Hb1AC) level is critically high (9.2%). When questioned
regarding his medication, he is vague in his answers regarding when and how often he
takes them. During his visits, his wife has expressed concern regarding his memory. Recent
Mini–Mental State Examination scores for Jack were at 17 indicating moderate cognitive
impairment. He freely admits to spending most of his time in the pub with friends.

Based on the collected data, the distance between Mr. Burns’ profile and each
adherence profile is computed as shown in Table 21.2. Since the poor adherence
profile is closest to the patient description, Mr. Burns is assigned to the poor
adherence category.

Table 21.1 Adherence profiles and corresponding categories

Profile-related criteria Values

Age >55 40–55 <40

Cognitive function Normal Mildly impaired Moderate–severe impaired

History of compliance Good None or moderate Poor

Tobacco or alcohol intake None Moderate Heavy

Adherence category Good Moderate Poor

Table 21.2 Matching Mr. Burns against adherence profiles

Good Moderate Poor

Distance 3.00 2.23 1.73
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21.4.3 Adherence Model—Identifying Criteria

Each adherence category is linked with an adherence model. These models define
therapeutic criteria with the greatest effects on adherence as identified in the
systematic review by Jin et al. [11]. Criteria we use are as follows (in brackets,
we give their shorter names used in subsequent text and tables):

• Route of administration (administration): Medications with a convenient way of
administration (e.g., oral medication) are likely to make patients adhere. Like-
wise, difficulty in administration (e.g., injections or multi-route administrations)
contributes to non-adherence.

• Therapy complexity (complexity): The rate of adherence decreases as the number
of daily doses of medications and their timing in relation to other medications or
meals varies.

• Therapy side effects (side effects): Side or adverse effects threaten a patient’s
adherence.

• Degree of behavioral change required (behavioral change): Larger degrees of
required behavioral change associated with following a therapy are linked with
poor adherence.

21.4.4 Adherence Model—Capturing Preferential Information
Regarding Therapies

An adherence model allows identifying therapies that should be preferred or are
easier to accept for patients in a given adherence category. For example, assuming
that the complexity of a therapy can be defined by the dosing schedule; a therapy
that involves taking one dosage of medication per day has a low complexity and is
preferred for a patient with poor adherence in order to encourage them to adhere,
while a therapy that involves multiple doses has higher complexity and may be
more appropriate for a patient with moderate or good adherence. Therefore, each
adherence model uses the same set of criteria; however, marginal scores associated
with specific values of these criteria are different for each category.

Adherence models are created from information elicited from physicians using
the GRIP method [39]. Physicians are first asked to compare alternative therapies for
each of the adherence category, and then GRIP constructs an additive value function
that combines marginal value functions for each criterion—route of administration,
therapy complexity, therapy side effects, and the degree of behavioral change. For
example, Table 21.3 shows the adherence model for a poor adherence category. It
includes four marginal value functions (for each of the considered therapy-related
criteria) each represented as a set of marginal scores for all possible criterion values.
Higher marginal scores indicate values that are preferred.
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Table 21.3 Adherence model for a poor adherence category (score indicates a marginal score for
a given value)

Administration Complexity Side effects Behavioral change

Value Score Value Score Value Score Value Score

Convenient 0.22 Low 0.26 Low 0.26 Low 0.26

Somewhat inconvenient 0.10 Medium 0.13 Medium 0.10 Medium 0.06

Inconvenient 0.00 High 0.00 High 0.00 High 0.00

21.4.5 Patient Preference Models

Patients may have specific preferences for therapies that, for example, are charac-
terized with such criteria as risk of an adverse event or the cost. In the same manner
that physicians compared alternative therapies in terms of therapy-related criteria
(see previous subsection), patients compare alternative therapies in terms of patient-
related criteria. These pairwise comparisons are then used by GRIP to construct
value functions constituting patients’ preference models.

Consider again the hypothetical patient Jack Burns who according to his
adherence profile has been assigned to a poor adherence category. He is now asked
to provide preferences for therapies so his preference model can be constructed.
Specifically, in this scenario we use two criteria as an example, and Mr. Burns
is asked to compare alternative therapies in terms of the availability of a reversal
agent in the event of a bleed (potential adverse event) and the cost of therapy. It is
important to note that patient preferences and criteria can be disease-specific and
different sets can be used for different diseases (e.g., patient preferences related
to hypertension therapies might be different than those related to AF therapies).
Value functions reflecting the preferences for Mr. Burns are elicited and shown in
Table 21.4. Mr. Burns prefers therapies where a reversal agent is available, since he
is very concerned about the potential non-mitigated risk of bleeding, and he is not
concerned with the cost of therapy as all medications are available to him via the
UK National Health Service.

Table 21.4 Patient
preferences for a therapy
(score indicates a marginal
score for a given value)

Reversal agent Cost

Value Score Value Score

Available 1.00 Inexpensive 0.00

None 0.00 Expensive 0.00
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21.5 Calculations

Each therapy recommended by a CPG is characterized with values of criteria
considered by the adherence and patient preference models. This representation
allows evaluating each therapy according to the adherence and patient preferences.
We apply both models to each therapy and obtain two scores for each—one relating
to adherence and the other relating to patient preferences.

Returning to our AF example, Table 21.5 shows descriptive characteristics of
possible therapies from the AF guideline [40] that include VKA and three different
DOACS—dabigatran (DAB), rivaroxaban (RIV), and apixaban (APIX). Table 21.6

Table 21.5 Descriptive characteristics of AF therapies in terms of therapy- and patient-related
criteria

VKA DAB RIV APIX

Therapy-related criteria

Administration Pill injection Pill Pill Pill

Complexity Once daily INR
monitoring 1–2
times per week

Twice daily no
INR monitoring

Once daily no
INR monitoring

Twice daily no
INR monitoring

Side effects A wide range of
medication
interaction, food
and drink
interactions,
bleed-
ing/bruising
(more)

Bleeding/bruising
(less), nausea,
vomiting,
dyspepsia (more)

Bleeding/bruising
(less), nausea,
vomiting,
dyspepsia (less)

Bleeding/bruising
(less), nausea,
vomiting,
dyspepsia (less)

Behavioral
change

High Low Low Low

Patient-related criteria

Reversal agent Available Available None None

Cost £10–50
(excluding
monitoring
costs)

£600 £600 £640

Table 21.6 AF therapies characterized with regard to criteria and values used in the adherence
and patient preference models

VKA DAB RIV APIX

Administration Convenient Convenient Convenient Convenient

Complexity High Medium Low Medium

Side effects Medium Low Low Low

Behavioral change High Low Low Low

Reversal agent Available Available None None

Cost Inexpensive Expensive Expensive Expensive
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Table 21.7 Applying adherence and patient preference models to evaluate AF therapies

VKA DAB RIV APIX

Administration 0.22 0.22 0.22 0.22

Complexity 0.00 0.13 0.26 0.13

Side effects 0.10 0.26 0.26 0.26

Behavioral change 0.00 0.26 0.26 0.26

Score for therapy-related criteria 0.32 0.87 1.00 0.87

Reversal agent 1.00 1.00 0.00 0.00

Cost 0.00 0.00 0.00 0.00

Score for patient-related criteria 1.00 1.00 0.00 0.00

The numbers in bold indicate the largest (best) scores

shows these therapies characterized with criteria and values used in the adherence
and patient preference models.

The adherence and patient preference models can now be applied to evaluate
therapies from the AF CPG as shown in Table 21.7. As a result of applying the
adherence model for Mr. Burns, rivaroxaban (RIV) is the preferred therapy as
indicated by the score for therapy-related criteria. Applying the patient preference
model results in the highest score (score for patient-related criteria) for VKA or
DAB, reflecting the patient’s preference for the availability of a reversal agent. The
scores as they are shown in Table 21.7 can be used during a conversation between
the patient and the physician in deciding on the most appropriate therapy.

Alternatively, the final scores may be combined and used to rank the therapies.
Given the two partially ordered sets of scores, a lexicographical ordering may be
applied to combine the scores into one set. For example, such an ordering may
first consider scores for therapy-related criteria from Table 21.7 to create an initial
ranking:

1. RIV
2. DAB, APIX
3. VKA

Next, the patient criteria scores from Table 21.7 are considered. As there is a tie
between the therapy-related scores for DAB and APIX, the patient criteria score is
used to resolve it. As DAB was preferred to APIX by the patient, it becomes the
second ranked therapy followed by APIX and VKA resulting in a final ordering of:

1. RIV
2. DAB
3. APIX
4. VKA

We note that the presentation of preferences as have shown in the example in
Table 21.7 is in itself a multi-criteria decision problem as it outlines a scenario where
the best option needs to be selected given that there are two different points of view.
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We present a conservative approach with lexicographical ordering where expert
knowledge (captured by adherence models constructed with the help of clinical
experts) has precedence over patient preferences; however, more sophisticated
approaches could be considered. For example, the scores could be combined using
weights dependent on the adherence profile (such weights would become part
of the profiles). In such an approach, the preference of patients assigned to the
good adherence category would have a stronger impact on therapy selection than
preferences of patients assigned to moderate or poor adherence categories.

21.6 Results and Discussion

We have presented an approach to support therapy adherence by modeling patient
and therapy-related factors that impact adherence and combined these with patient
preferences for therapy evaluation, ranking, and selection.

Previous work in the field on modeling patient preferences has focused on
finding the best methods for preference elicitation and combination [25–27] with
a particular focus on determining which methods are most amenable to patients.
Research on therapy adherence typically takes a general view, for example, focusing
on cost and effectiveness of non-adherence using simulated patient cohorts [24], or
a very specific view on the effectiveness of interventions (e.g., reminders such as
text messages or manual follow-up [23]). The approach proposed in this chapter
bridges these gaps by formalizing models for adherence and patient preferences
using the GRIP method and combining them to evaluate therapies in a holistic
manner. Instead of taking a general or specific view, we create a formal model
for adherence that considers patient characteristics that are strongly associated with
adherence (or non-adherence). With regard to patient preferences, our preference
model can be customized for a given disease. This allows for a flexible approach
that confronts the impact of poor adherence, while at the same time allowing for a
patient-centered view of care that involves patients and their preferences in medical
decision-making.

21.7 Conclusions

A substantial number of patients struggle to adhere to therapy, and the consequences
of poor adherence on health and subsequently a health care system are a topical
issue. Furthermore, there is a need for the incorporation of patient-centered methods
into medical decision-making, in particular consideration of patient preferences for
therapy. We presented an approach for eliciting preferences regarding therapies
by asking clinicians to assess examples of alternative therapies, while patient
preferences are elicited from patients who assess alternative therapies defined in
terms of patient-related criteria. Both sets of preferences are processed using the
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GRIP method that computes scoring functions that are converted into scores that are
combined to evaluate and rank therapies from a CPG. These scores or ranked lists
of therapies can be used as part of a patient–physician conversation when deciding
on the most appropriate therapy for a patient. We demonstrated our approach using
an illustrative case study for non-valvular AF.

We intend to extend our approach in a number of ways. We plan to use
data mining techniques (e.g., clustering) on patient data to define finer-grained
adherence categories beyond the 3 groups (poor, moderate, and good). This will
allow associating several adherence profiles with a single adherence category.
Furthermore, when associating a patient with an adherence category, the approach
should support contextualized profile-related criteria. For example, some diseases
affect mostly elderly, or some patients may not have been on any medication
and thus have no prior history of adherence. This will require using an advanced
multiple-criteria decision-making analysis method such as ELECTRE TRI-nC [41],
which can assess multiple profiles within a single adherence category. We intend
to use large patient cohorts from online sources to gather representative data (e.g.,
from patient support groups such as StopAFib.org). Such data, in addition to clinical
characteristics, includes information that cannot be found in medical records. For
example, it includes detailed information on preferences as well information about
past adherence that can be used for validating the performance of our models. We
also intend to elicit preferences from patients for therapy-related criteria defined
by our adherence model to supplement those already supplied by physicians. Such
preferences will be modeled in the same manner as physician preferences for
therapies and used as an additional piece of information when evaluating therapies
from a CPG. Finally, we intend to investigate more advanced schemes for combining
scores provided by the models and for rank ordering therapies. We also plan
to incorporate adherence and patient preference models into our existing CPG
mitigation framework to improve the framework’s ability to personalize suggested
therapies for multi-morbid patients [8].
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