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Abstract

The Philips dual-layer detector approach for 
spectral imaging was introduced as early as 
2005  in a prototype installed in Hadassah 
University Medical Center, Israel. Since then 
both the detector design and the material 
decomposition and reconstruction techniques 
were further developed and improved to allow 
better SNR and CNR in spectral results. This 

single-source approach to spectral imaging 
has some clear advantages: energies acquisi-
tion is perfectly aligned by design; it does not 
require a special dual-energy acquisition mode 
thus making all scans spectral and enables 
projection-based material decomposition. It 
also allows for advanced clinical application, 
such as cardiac and perfusion, to utilize spec-
tral imaging. In addition, it allows to easily 
overcome limitations of the source-based 
techniques in the sense that it does not have 
dose penalties, field of view restriction, it does 
not require to slow rotation time, and it is not 
limited by patient habitus.
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In this chapter, we will discuss the dual- 
layer detector architecture, projection-based 
material decomposition and image reconstruc-
tion as well as the different spectral results and 
their clinical use.

1  Spectral Detection Through 
a Dual-Layer Detector

While material decomposition in energy- 
selective CT was proposed by Alvarez and 
Macovski in 1976, a dual-layer detector for a 
simultaneous acquisition of two energies in CT 
was first proposed by Brooks and Di Chiro in 
1978. A Philips Healthcare team proposed a dif-
ferent configuration and implementation of that 
idea (Carmi et al. 2005; Altman et al. 2006) and 
in October 2005 Philips has installed the world 
first clinical prototype utilizing a single-source 
spectral detection technique at the Hadassah 
Medical Center in Jerusalem, Israel. This imple-
mentation included two attached scintillator lay-
ers, optically separated, and read by a 
side-looking, edge-on, silicon photodiode, thin 

enough to maintain the same detector pitch and 
geometrical efficiency as a conventional CT 
detector (Figs. 1 and 2). The top scintillator lay-
er’s atomic number and thickness have been 
optimized to maximize energy separation at 120 
and 140  kVp, while maintaining high enough 
signal statistics for the low- energy raw data even 
for a large patient. A low Z (atomic number) 
Garnet scintillator material, with a high light-
output (~15%–20% better than GOS), has been 
developed to meet these requirements. This con-
tributes to a high SNR in the top (low-energy) 
layer detector, enabling it to function at a very 
low dose without causing artifacts, typical to 
electronic-noise dominant signals.

The mean energy separation of the dual-layer 
detector, at 120 kVp, with and without a 30-cm 
water absorber, is shown in Fig. 3. The decrease 
in energy separation with increasing patient size 
is compensated due to the complete consistency 
in sampling of the two energies.

The Philips approach to spectral imaging is 
unique in the sense that it is based on a single 
source and spectral detection. Compared to 
source-based dual-energy techniques, the 
detector- based technique has some clear advan-
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tages: energies acquisition is perfectly aligned by 
design as they are not only simultaneously mea-
sured, but also sampled exactly at the same angle 
at the same pixel, unlike the other methods of 
dual-energy CT; it does not require a special 
dual-energy acquisition mode thus making all 
scans spectral and enables projection-based 
material decomposition (see next section) which 
in turns allows better SNR and CNR in spectral 
results, like iodine quantification, effective 
atomic number image, electron densities, and vir-
tual MonoE images (Sellerer et  al. 2018; Ehn 
et al. 2018). It also allows for advanced clinical 
application, such as cardiac and perfusion, to uti-
lize spectral imaging. In addition, it allows to 
easily overcome limitations of the source-based 
techniques in the sense that it does not have dose 
penalties, field of view restriction, it does not 
require to slow rotation time and it is not limited 
by patient habitus.

2  Spectral Material 
Decomposition 
and Reconstruction

Dual-energy spectral decomposition in the projec-
tion domain, using a two-base model, was first pro-
posed by Alvarez and Macovski (1976). In this 
approach, the two projections data sets of the low 
and high energies are transformed into a new pair 
of projections data sets, from which all the various 
spectral results can be derived. The resulting two 
spectral-projections data sets are independent of 
the incident spectrum, hence clear from beam hard-
ening effect, while even metal beam hardening and 
artifacts can be suppressed quite easily. This is a 
very important result of the projection-domain 
spectral decomposition, unlike image-domain 
spectral decomposition, where the resulting spec-
tral images (e.g., virtual monochromatic images) 
suffer from beam hardening effects, and require 
special beam hardening correction, which is, often, 
insufficient (see e.g., Carmi et al. 2005).

Fig. 2 A vertical implementation of a 16  ×  16 pixels 
dual-layer detector
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The Philips implementation of projection- 
domain spectral decomposition (Altman et al. 
2015) assumes an accurate forward model of the 
projection’s formation, as an input. This includes 
the precise source X-ray spectrum, the beam fil-
tration, its variations in the directions to all the 
detection pixels, and the resulting different spec-
trum incident on each detection pixel in air. This 
implementation is simpler than the empirical 
approach proposed in (Alvarez and Macovski 
1976), or the maximum-likelihood method pro-
posed by Alvarez (Alvarez et al. 2011).

The basic Philips approach to the transforma-
tion from the low and high energies projections 
data sets to the Photo-Electric and Compton- 
scattering projections data sets is described below 
in Fig. 4 and the following equations:
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where μ0 is an arbitrary quantity with a dimen-
sion of an attenuation coefficient, which the end 
results are divided by at the end of the process. 
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where M represents a material mix, optimized for 
energy-dependence “universality” (~71% soft 
tissue, ~28% bone, ~1% iodine), while assuming 
the following:

 1. Variable separation between the energy 
dependence and the Z dependence of the 
attenuation coefficient components (cross 
sections) is possible within the X-rays energy 
range used in CT.

 2. The energy dependence of Compton 
Scattering, and the Photo-Electric cross sec-
tions, can be considered to be the same for all 
patients and test phantoms, based on the 
above material mix (this excludes phantoms 
and objects with a very large content of heavy 
metals/elements).

 3. Coherent scattering can be either neglected or 
included in the photo-electric component 
(Energy dependence is ~1/E2).

Image
reconstruction

Image
reconstruction

Compton Scatt.
Sinogram

Weighted Multiplexing HighE & LowE

Spectral decomposition

Compton

X-Ray Energy
ACF (Anti Correlation Filter)

µ

HighE 
⊗

LowE

Low & High E
Sinograms

Photo-Electric Sinograms
Photo-electric image

SBI

Compton-Scatt image

Conventional image
Noise image

Image-Domain
Structure
Synchronization filter,
and frequency
dependent denoiser

Low-Dose-Noise and Noise-
induced-Bias correction

Fig. 4 A schematic description of the Philips spectral decomposition and image reconstruction

A. Altman et al.



33

Assuming the above, the line integrals can be 
expressed as:
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From which, the values of aM
scat and aM

phot , the 
spectral line integrals are derived.

Where,

 1. The functions fphot(E) and fscat(E) are derived 
from the E dependence of the chosen material 
mix M, calculated from NIST tables.

 2. Fl(E) and Fh(E) are the energy distributions of 
the X-ray beam in air, incident on the top 
layer pixels and the bottom layer pixels, 
respectively (after all filtration and without 
any scanned object/body). Note that both 
Fl(E) and Fh(E) are matrices of distribution 
functions that must be pre-calculated and 
require full input/knowledge of the filtration 
along the rays to each detector pixel.

 3. The material decomposition procedure 
described above has two important “side 
effects” that are addressed:

 (a) Anti-correlated Noise: The transforma-
tion, mentioned above, determines the 
specific portions of LowE signal and 
HighE signal, assigned to the Scatter and 
to the Photo projection signals, respec-
tively. As a result any portion of a radia-
tion signal that is assigned to the Scatter 
projection signal, while it should have 
been assigned to the Photo signal, would 
cause a correlated error in the correspond-

ing Photo-Electric signal, and vice versa. 
This would result in a correlated noise 
between the two, hence would need a spe-
cial consideration of how to reduce this 
noise through an Anti-Correlation Filter 
(ACF) in the projection domain.

 (b) Noise Induced Bias: It occurs in many 
cases, since the original radiation inten-
sity per detection pixel is divided between 
two separate projection signals (Scatter 
and Photo projections sets in Philips 
approach). In this case, taking the loga-
rithm of the raw signal, the statistical 
uncertainty of which is at the tail of the 
Poisson distribution, is causing a DC 
bias. This bias is corrected by a special 
filter at the input to the material decom-
position process.

 4. Following the reconstruction of the Photo- 
Electric and the Scatter images, special filters/
algorithms are used, in the image domain, to 
conserve image structures, edges, and fea-
tures, adapted from the conventional image, 
while reducing the image noise in a frequency- 
dependent form.

It is important to emphasize that projection- 
domain spectral decomposition can be used only 
if the signals from the two X-ray energies are 

Dual-Energy: The Philips Approach
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sampled both simultaneously (“Equi-time”) and 
at the same angle (“Equi-angle”). Only the 
spectral- detector and the fast-kVp-switching 
methods meet this condition.

3  Spectral Results

The Philips spectral CT system can provide a 
variety of spectral image types, on top of the con-
ventional images, which are reconstructed 
through advanced spectral algorithms. Those 
spectral results can be generated either prospec-
tively, on the scanner and sent to PACS, or retro-
spectively, directly on PACS utilizing Spectral 
Based Images known as SBI (as described above) 
and have the potential for additional clinical 
information to conventional CT imaging. Each 
spectral result is designed for a different clinical 
usage as will be explained in this chapter.

As described above, data from the low and 
high energy layers of the spectral detector 
undergo spectral decomposition in the projection 
space to generate optimal photo-electric absorp-
tion and Compton scattering images that are used 
as a two-base model. These optimal photo-elec-
tric absorption and Compton scattering images 
do not represent the pure Compton and photo-
electric effects. They are slightly modified ver-
sion of them. This is because different materials 
have slightly different energy dependencies, 
mainly at low energies, from the expected theo-
retical models of the two basic physical interac-
tions. Moreover, coherent scattering which is the 
third component that contributes to the total 
attenuation of X-ray in matter need to be included, 
despite its relatively small contribution.

The optimal Photo and Scatter sets of images 
are stored together with the derived noise-images 
set in a special SBI (Spectral Based Images) for-
mat. All the relevant spectral results and images 
can be derived from the SBI series, using various 
algorithms. Hence, the spectral results can be 
created on demand and reviewed as needed on 
PACS and are not required to be sent to PACS 
prospectively.

The conventional images are analogous to the 
images obtained from a single-energy scanner 

and are utilized for routine diagnostic purposes. 
For every scan, the pre reconstructed sum of the 
signals from the simultaneous acquisition of the 
high- and the low-energy data is combined to 
obtain the total amount of absorbed energy. 
Filtered back projection or iterative reconstruc-
tion algorithms are then used to reconstruct the 
combined raw data and create true conventional 
images. It has been shown that image quality of 
these conventional images from the Philips spec-
tral CT system are comparable to images obtained 
from a single-energy scanner (Hojjati et al. 2017; 
Van Ommen et al. 2018).

Spectral results can have units of attenuation 
(HU) and other voxel values that represents phys-
ical quantities, for example, density in mg/ml. 
The clinical use of the different spectral results 
generated from the spectral-detector DECT have 
been demonstrated in several papers for several 
clinical applications in body, cardiac and neuro 
imaging (Brun Andersen et al. 2020; Fulton et al. 
2017; Rajiah et al. 2017a; Neuhaus et al. 2017a) 
as well as for emergency imaging (Demirler 
Simsir et al. 2020). The high quantitative accu-
racy of the various spectral results was recently 
demonstrated in several studies (Ehn et al. 2017; 
Hua et al. 2018).

In the following, the algorithm and the poten-
tial clinical usage of the different spectral results 
will be discussed.

3.1  MonoE: Monoenergetic 
Images [HU]

MonoE images are virtual mono-energy images 
which simulate images as if they are obtained 
using a pure monochromatic X-ray beam at a 
specific keV value. Virtual monochromatic 
images are generated between 40  keV and 
200 keV, in increment of 1 keV, and the voxels in 
these images represent Hounsfield values (HU). 
This is illustrated in Fig. 5. The MonoE images 
are created by a linear combination of the two- 
base model, namely the photo-electric effect (PE) 
and Compton scattering (Sc) components, where 
a different weight is used for each KeV.  In the 
low energy range the proportion of the photo-

A. Altman et al.
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electric effect is high and the Compton scattering 
is low, whereas in the high energy range it is 
opposite. In the 70 keV the proportions of these 
two components are very similar.

It should be noted that it is possible to gener-
ate monoE results also for keV values higher than 
the used kVp value since the behavior of the uni-
versal energy dependent basis is known also for 
high energies. Also, in order to stay above the 
K-edge of Iodine (33.2 keV), the lowest monoE 
was selected to be 40 keV.

In the Philips spectral CT system, the noise in 
the spectral results is typically lower than in the 

corresponding conventional images due to spe-
cial noise reduction techniques that are used in 
the spectral reconstruction process to minimize 
the noise and to optimize the signal to noise ratio 
(Kaltsz et  al. 2017). See also Spectral Material 
Decomposition and Reconstruction section 
above.

A specific result named mono E-equivalent to 
conventional CT can be generated as well. This 
result has almost the same HU value as a conven-
tional image generated from 120  kVp voltage 
(regardless of the actual tube voltage used during 
the scan) but with lower artifacts and noise.

Fig. 5 Virtual mono-energetic images from 40 to 200 keV displaying tissue attenuation properties similar to those 
resulting from imaging with a mono-energetic beam at a single keV level (Fulton et al. 2017)

Dual-Energy: The Philips Approach
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The equivalent monochromatic images are 
70 keV, 66 keV, and 64 keV for body, head, and 
extremities, respectively.

Monochromatic images may overcome some 
of the limitations of a polychromatic X-ray beam. 
A conventional CT image is created from a poly- 
energetic X-ray tube with a certain voltage (e.g., 
120  kVp, 140  kVp) and therefore it is recon-
structed from multiple energies. Since the mono- 
energetic series (MonoE) represents a single 
energy, it minimizes some of the known limita-
tions of a polychromatic X-ray beam. For exam-
ple, beam-hardening, metallic, and calcium 
blooming artifacts.

The potential benefits of the high virtual 
mono-energetic images derived from dual-layer 
CT scans for reduction of artifacts caused by 
orthopedic metal implants, were demonstrated 
both in a phantom study (Wellenberg et al. 2017) 
and clinical studies for implants in the spine, pel-
vis, and extremities (Neuhaus et al. 2017b; Große 
Hokamp et al. 2017a) as well as dental implants 
(Große Hokamp et al. 2018).

Low-energy mono-energetic images are influ-
enced by photo-electric data, resulted in increas-
ing attenuation and signal to noise ratio (SNR) 
and are therefore useful for all vascular imaging. 
The increased attenuation at low keVs can be 
used for contrast reduction, which is especially 
important in patients with renal insufficiency 
(Oda et  al. 2018; Tsang et  al. 2017; Nagayama 
et  al. 2017; Hickethier et  al. 2020) and for 
improvement in image quality when the contrast 
enhancement is suboptimal, salvaging angio-
graphic studies and reducing the need for addi-
tional contrast or radiation dose. Also, low 
MonoE reconstructions allow the user to create 
angiography studies from a routine contrast- 
enhanced exam, adding additional diagnostic 
information to the exam. In addition, low MonoE 
images are used for better lesion conspicuity (Liu 
et  al. 2019; Yoon et  al. 2020; Große Hokamp 
et al. 2017b).

The advantage of the monochromatic images 
was also demonstrated in neuroimaging by reduc-
ing beam hardening artifacts for optimized gray- 
white matter contrast (Neuhaus et al. 2017c) and 
for visualization improvement of intracranial 

hemorrhage and brain lesions (Lennartz et  al. 
2018). In addition, it was demonstrated that 
improved gray-white matter differentiation in 
cranial CT by using virtual mono-energetic 
images enables a radiation dose reduction com-
pared to conventional images (Reimer et  al. 
2019). The reduction of blooming artifacts for 
coronary stent assessment and calcium blooming 
reduction in cardiac imaging was recently dem-
onstrated as well (Hickethier et  al. 2017; Van 
Hedent et al. 2018).

The next spectral results that are described are 
the virtual non-contrast (VNC), iodine no water, 
and calcium suppressed. These three spectral 
types belong to the same category of two- material 
decomposition. A two-material decomposition 
algorithm assumes that each voxel consists of 
two types of materials only. In order to achieve 
this, a simple linear basis transformation from the 
basis of the photo-electric effect and Compton 
scattering components into a new basis represen-
tation of two selected materials is performed. By 
selecting the two materials to be iodine and water, 
it is possible to generate the virtual non-contrast 
(VNC) and the iodine no water results. By select-
ing the materials to be a calcium-based material 
and water, a calcium suppressed image can be 
created.

3.2  VNC: Virtual Non-Contrast

This is a spectral result that mimics the attenua-
tions values of a non-contrast CT scan from a 
data that is acquired with a contrast injection. It 
thus has the potential of replacing a true non- 
contrast series. By applying the two-martials 
decomposition to a NIST-based iodine and water 
basis, the iodine attenuation contribution of each 
voxel is removed and only the water attenuation 
contribution of each voxel in HU is displayed 
according to the mono 70 keV image. Due to the 
nature of this algorithm, the HU of the bony 
structures and calcium pixels are decreased by 
about 50% of their value in the 70 keV image.

A recent study compared the VNC images 
derived from the dual-layer spectral detector to a 
true non-contrast (TNC), found a good agree-
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ment of the attenuation measurements between 
the two images in most abdominal tissues with an 
overestimation in fatty tissues (Jamali et  al. 
2019). This is in agreement with prior studies 
(Ananthakrishnan et al. 2017; Sauter et al. 2018) 
where the quality of iodine removal in VNC 
images was not influenced by the original con-
trast enhancement and thus has a potential advan-
tage in reducing the radiation dose delivered to 
the patient in biphasic and triphasic 
examinations.

It was also shown that with an appropriately 
chosen proportionality factor as a correction 
coefficient, spectral CT VNC can reliably esti-
mate the calcium score from a contrast-enhanced 
coronary CTA and shows good agreement with 
the conventional technique (Nadjiri et al. 2018).

3.3  Iodine No Water [mg/ml]

This is a spectral result type in which the voxel 
values represent the iodine concentration of the 
displayed tissue in mg/ml as calculated from the 
iodine-water two-material decomposition algo-
rithm. The quantification of the iodine density is 
calculated by scaling the iodine projection on the 
water basis. Non-enhanced soft tissues are set to 
approximately 0 mg/ml of iodine.

Iodine no water [mg/ml] images have the 
potential to allow for improved visualization of 
iodine-enhanced tissues. This result can also be 
used for iodine quantification, but only in areas 
where iodine is present.

The accuracy of the iodine concentrations was 
tested in a phantom study for a range of concen-
trations between 2 and 20 mg/ml and found to be 
within a 0.3 mg/ml accuracy (Hua et al. 2018).

In Fig. 6, we show an example where a con-
ventional, VNC, and iodine no water images are 
compared for a renal lesion.

3.4  Calcium Suppression [HU]

In this image type, voxels containing calcium are 
suppressed and replaced by virtual HU values as 
similar as possible to the expected HU without 
calcium contribution to the attenuation. In a simi-
lar way to the VNC algorithm, the contribution of 
the calcium-based material attenuation of each 
voxel is removed and only the water attenuation 
contribution of each voxel is displayed in HU 
according to the mono 70  keV.  In contrast to 
VNC algorithm, where the iodine material is rep-
resented by a specific slope, the bony structures 
cannot be represented by one slope but of a range 
of calcium-based materials slopes. According to 

a b c

Fig. 6 (a) Axial CT scan at the level of left kidney shows 
a cystic lesion, which has attenuation higher than a simple 
cyst (arrow); (b) virtual non-contrast CT at the same level 
shows that there is higher attenuation in the VNC image 
indicating that this is a hemorrhage; and (c) iodine-only 

image at the same level shows absence of significant 
iodine in the lesion thus confirming that there was no con-
trast uptake in the lesion, but the high attenuation is con-
sistent with hemorrhage, thus a complicated cyst (Fulton 
et al. 2017)

Dual-Energy: The Philips Approach
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the calcium composition weight in each bony 
structure, an appropriate index value can be 
selected. A low index value selection targets tis-
sues with a low calcium composition weight; a 
high index value selection targets tissues with a 
high calcium composition weight.

In a recent study, the calcium suppressed 
images from dual-layer CT have been used to 
visualize the bone marrow edema in traumatic 
vertebral compression fractures (Neuhaus et  al. 
2018). In a different study (Abdullayev et  al. 
2019), it was found that calcium suppressed 
images are capable of improving differentiation 
between a metastatic and a normal bone. Also, it 
was demonstrated that calcium suppressed 
images could clearly present the temporoman-
dibular joint displacement. This suggested that 
calcium suppressed images could be used to 
diagnose the displacement of the temporoman-
dibular joint disc (Zhang et al. 2020).

In the above described spectral types, where 
the two-material decomposition is applied, the 
algorithm didn’t attempt to separate between two 
selected materials. In the spectral results that are 
explained below, a classification method between 
two materials is performed. The spectral results 
that are included in this category are the iodine 
density, contrast-enhanced structures, iodine 
removed, and the pair uric acid and non-uric acid 
removed.

3.5  Iodine Density [mg/ml]

This is an image type in which, similarly to the 
iodine no water result, the voxels values repre-
sent the iodine concentration of the displayed tis-
sue in mg/ml. In this image, the non-negative 
iodine quantification for all voxels which are 
classified as including Iodine is calculated by 
scaling the iodine projection on the water basis as 
explained for the iodine no water result. Voxels 
which are classified as not included iodine are set 
to 0 mg/ml and are visualized as black pixels.

Similar to the iodine no water result, iodine 
density images enable the identification of 

iodine-containing structures as well as direct 
quantification of iodine.

The accuracy of the iodine concentrations for 
iodine density was tested in a phantom study for 
a range of concentrations between 2 and 20 mg/
ml and found to be within a 0.3 mg/ml accuracy 
(Hua et al. 2018).

It was shown that iodine density allows one 
to detect occult bone lesions that cannot be 
detected with conventional CT due to the high 
contrast of the bone and the lack of bone destruc-
tions. Iodine density yields high sensitivity and 
adequate specificity for the differentiation of 
vertebral trabecular metastases and healthy tra-
becular bone (Borggrefe et al. 2019). In another 
study (Kikano et  al. 2020), it was shown that 
iodine density images can help elucidate and 
differentiate between various cardiothoracic 
pulmonary perfusion anomalies and may 
enhance a radiologist’s diagnostic confidence. 
Also, Lennartz et al. showed that iodine overlay 
images obtained with spectral-detector CT 
improve visual and quantitative diagnostic accu-
racy in assessing skeletal muscle metastases 
compared to conventional images (Lennartz 
et  al. 2019). In a study case, iodine density 
images allowed for differentiation of benign and 
malignant pulmonary nodules (Große Hokamp 
et al. 2019).

In Fig.  7, we show hypodense lesion in the 
head of the pancreas using conventional CT, 
mono-energetic 40  KeV, iodine density, and Z 
effective. The Z effective result will be discussed 
shortly.

3.6  Contrast-Enhanced 
Structures [HU]

In this result all the voxels, which are classified 
as including iodine, remain identical to MonoE 
70 keV. All bone classified voxels are displayed 
as black voxels. Contrast-enhanced structures 
images have the potential of providing bone-free 
images which can help in visualizing vascular 
structures without bone or calcifications.
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3.7  Iodine Removed [HU]

An image type in which all the voxels which are 
classified as not including iodine above a certain 
threshold are displayed as black voxels. All other 
voxels remain identical to MonoE 70 keV.

3.8  Uric Acid and Uric Acid 
Removed Pair [HU]

In these two spectral results, the classification is 
done between uric acid and calcium voxels and the 
two results are complementary with each other.

3.8.1  Uric Acid [HU]
In the uric acid result, all the voxels which are clas-
sified as including uric acid remain identical to 
MonoE 70 keV. All other voxels classified as not 
including uric acid are displayed as black voxels.

3.8.2  Uric Acid Removed [HU]
In the uric acid removed result, all the voxels 
which are classified as not including uric acid 
remain identical to MonoE 70 keV. All other vox-
els classified as including uric acid are displayed 
as black voxels.

The uric acid and uric acid removed image pair 
are intended for uric acid and calcium classifica-

Fig. 7 Patient with a slight increase in volume in the head 
of the pancreas and stranding in the peripancreatic fat. In 
the pancreatic head, a slight hypodense lesion (arrow-
heads outline the lesion) is visible on the conventional 
image; however, it is easily missed. On iodine density as 

well as mono 40 keV and Zeff images, the lesion stands 
out against the normal pancreatic parenchyma and the 
lesion was correctly diagnosed as a pancreatic adenocarci-
noma (Brun Andersen et al. 2020)
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tion and therefore have a potential use in gout dis-
ease diagnosis and stone characterization.

In gout disease, the attenuation of low-atomic- 
weight monosodium urate (MSU) crystals differs 
from that of high-atomic-weight calcium such as 
calcium pyrophosphate dihydrate (CPPD) crys-
tals, that exist in pseudogout and can have a clini-
cal presentation like that of gout.

Uric acid-calcium pairs are also useful in 
characterizing urinary calculus composition as 
demonstrated by Rajiah et al. (2017b).

The last two spectral results that are described 
below, Z effective and electron density can be 
used for material characterization.

3.9  Z Effective

This is an image in which the voxel values repre-
sent the effective atomic number of the displayed 
tissue. While the atomic number is characteristic 
of an element, the effective atomic number is 
characteristic of materials consisting of more 
than one element such as water, soft tissue, and 
bone.

A Z effective calculation is based on the ratio 
of attenuations at two different energies and is 
therefore independent of the material density. 
The expected Zeff values for known different tis-
sues from the literature were calculated and a 
conversion curve between the monoEs ratio and 
the calculated Z effective was created.

The Z effective images can be displayed in 
color or gray scales. The dynamic range is set to 
be between 5 and 30, where water is 7.4 and air is 
set to be zero. Non-enhanced soft tissues have Z 
effective value of approximately seven. Fatty tis-
sues have lower Z effective than water, while 
bone and contrast-enhanced tissues have higher 
values compared with water Z effective. Metal 
implants have a high Z effective possibly higher 
than 30.

In a phantom study (Hua et al. 2018), different 
tissues with different Z effective values from 
approximately 6 (adipose tissue) to about 13 
(cortical bone) were scanned in different configu-

rations. It was found that the accuracy of the Z 
effective is on the order of +/− 2% for both soft 
tissue and bone-equivalent materials, with some-
what larger percentage deviations for lung- 
mimicking materials. The accuracies were found 
to be similar in different scans and reconstruction 
parameters.

Z Effective images have the potential to dif-
ferentiate tissues based on their atomic number 
values, for example, in stone characterization 
(Fulton et al. 2017). This is shown in Fig. 8 in a 
different study. In addition, it was shown that the 
use of contrast-enhanced spectral CT including Z 
effective images increases the confidence of the 
radiologists in correctly characterizing various 
lesions and minimizes the need for supplemen-
tary examinations (Brun Andersen et  al. 2020). 
See Fig. 8.

The benefit of the dual-layer spectral CT was 
recently demonstrated in the emergency depart-
ment (Demirler Simsir et al. 2020). It was shown 
that by using iodine density and Zeff maps, the 
detection of subtle filling defects and demonstra-
tion of the presence or lack of lung perfusion 
deficits in pulmonary embolism is better. This is 
shown in Fig. 9.

3.10  Electron Density [%EDW]

This is a spectral result that displays the electron 
density of each voxel relative to the electron den-
sity of water (3.34 × 10^29 electrons × m-3) in 
units of percent where the expected value for 
water in these units is 100 [%EDW].

The electron density (ED) estimation is based 
on a linear combination of the photo-electric 
effect and Compton scattering where the 
Compton scattering component dominates. The 
two parameters of the linear combination coeffi-
cients were determined by finding the best fit to 
the expected electron densities of known litera-
ture tissues. The normalization was chosen so 
that the relative ED of water is 100.

For several decades, in order to calculate the 
radiation dose distribution, HU were converted to 
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a b

Fig. 8 Urinary calculus composition. (a) Coronal 120- 
kVp routine diagnostic image in a patient with acute 
abdominal pain shows a 7-mm calculus in the inferior 
pole of the right kidney (arrow). (b) Effective atomic 

number-based reconstruction at the same level shows that 
the calculus has high atomic number (arrow) consistent 
with a calcium calculus (Rassouli et al. 2017)

a b c

d e f

Fig. 9 A 36-year-old woman presented with right-sided 
acute chest pain (upper row). (a) On conventional CT, a 
small filling defect was present in right lower lobe sub- 
segmental pulmonary artery (arrow). (b) Iodine density 
and (c) Zeff maps showed no perfusion deficit distal to the 
filling defect (arrows). A 90-year-old woman presented 
with dyspnea, right-sided chest pain (lower row), (d) 
Conventional CT, small filling defect was present in right 
lower lobe sub-segmental pulmonary artery (arrow). (e) 

Iodine density map demonstrated a wedge-shaped area of 
decreased perfusion (iodine density; 0.08  mg/ml; blue 
arrow) compared to the adjacent lung parenchyma (iodine 
density; 1.27  mg/ml; white arrow) indicating a sub- 
segmental pulmonary embolism with perfusion deficit. (f) 
The Zeff map demonstrated the wedge-shaped area with 
decreased perfusion color-coded in light blue, yellow, and 
red (arrow) (Demirler Simsir et al. 2020)
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the electron or physical density via a calibration 
curve, in the case of photon therapy or to the pro-
ton stopping power, in the case of proton therapy.

Dual-layer CT allows a direct calculation of 
the electron density on a pixel-by-pixel basis. 
This approach can potentially enhance the work-
flow of radiation therapy planning by eliminating 
the need for a calibration curve mapping for pho-
ton therapy and improve the range accuracy for 
proton therapy.

The accuracy of the electron density was 
assessed recently in phantoms studies (Hua et al. 
2018; Rassouli et al. 2017). Hua et al. concluded 
that the electron density accuracy is of the order 
of ±1% for both soft tissue and bone-equivalent 
materials and did not appear to be sensitive to dif-
ferent scans and reconstruction parameters. Ohira 
et  al. (2019) found that percentage error of the 
electron density for each reference material var-
ied from −2.0% to 1.2% and therefore the use of 
dual-layer spectral CT can enhance radiotherapy 
treatment planning. In another study, it was dem-
onstrated that in homogeneous and heteroge-
neous phantoms, the use of electron density and 
Z effective can improve the accuracy of the stop-
ping power ratio (SPR) predictions for particle 
therapy resulting in remaining discrepancies in 
the order of 1%. This can minimize the beam 
range uncertainty and allow for reduced safety 
margins in the patient (Faller et al. 2020).

Recently, it was demonstrated on few case 
reports that ED imaging improves GGO visual-
ization compared with conventional CT.  It was 
suggested that ED imaging may improve the 
detection of early-stage COVID-19, a stage for 
which conventional CT has shown limited sensi-
tivity for detection (Daoud et al. 2020).
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