
Chapter 4
Enterprise Architecture Patterns
and Principles

André Vasconcelos and Pedro Sousa

Abstract This chapter describes Enterprise Architecture solutions to common
problems. Principles are organized by architecture domain and quality attributes
addressed. Firstly, sixteen cross-domain principles are described; next, three busi-
ness layer principles are introduced, followed by five information principles, four
application principles, and seven technological principles. Section 4.8 describes
IT patterns, including multi-layer IT architectures and IT architectures for high
availability. Finally, IT integration patterns are discussed. At the end of the chapter,
exercises are proposed.

4.1 Introduction

According to TOGAF [1], principles are general rules and guidelines. In the
context of Enterprise Architecture, the definition of principles is expected to support
enterprises in fulfilling their mission.

More specifically, Enterprise Architecture principles support organizations in the
process of defining an enterprise architecture that fulfils organizational strategic
goals, from values through actions and results [2].

Each architectural principle may address one or several EA layers; for instance,
an EA principle may be focused on the business layer (e.g., regarding business
process or organizational aspects), or a principle might be relevant to different EA
layers. In a similar way, a principle may have a direct impact in an architectural
or system quality (security) or in several qualities (efficiency, maintainability, and
portability).

4.1.1 Principles Description

In order to describe the EA principles, we will address the following topics (based
on [1–4]):

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_4

80 4 Enterprise Architecture Patterns and Principles

• Name. The name of the principle is expected to be easy to remember and without
ambiguities. The name selected should make clear what the principle is.

• Architecture domains. The Enterprise architecture layers where the principle is
applicablemay include business, information, application, and technology layers.

• Quality attributes. The quality characteristics that the principles address (such
as security, performance, or usability) are also an important characteristic of the
principle. ISO 9126 [5] and [3] provide 32 quality attributes clustered into six
main characteristics—see Fig. 4.1.

• Explanation. For each principle, we provide a short justification on the reasons
that support it. The principle explanation ensures that the Enterprise Architect
applying it understands its rationale and the principle intentions in order to ensure
the principle accurate interpretation.

• Implications. The principle implications, including the derived requirements, are
also presented, including its business application or technological impacts.

• Example. For each principle, a brief example of its application, as well as an
example that does not comply with the principle, are presented in order to better
support its comprehension.

4.1.2 Principles Summary

Tables 4.1 and 4.2 summarize the principles next described, regarding the architec-
ture domains and the quality attributes impacted.

Regarding the architecture domains, most principles are applicable at multiple
layers. Maintainability and efficiency qualities are addressed in more than half of
the principles described, followed by portability and alignment qualities (addressed
in 20% of the principles).

4.2 Cross-Layer Principles

4.2.1 Components Are Centralized

Components are centralized principle is relevant for business, information, appli-
cation, and technology layers. It is concerned about efficiency and maintainability
qualities.

The rationale for the principle is supported in the fact that components in one
location are easier to manage (since all efforts are performed in one location).
Additionally, consolidation and standardization are easier in central components.
Finally, economies of scale are applicable to central components (that are tougher
in decentralized environments).

4.2 Cross-Layer Principles 81

F
ig

.4
.1

Q
ua
li
ty

at
tr
ib
ut
es

82 4 Enterprise Architecture Patterns and Principles

Table 4.1 Principles summary (part I)

Principle Architecture domain Quality attributes

Components are centralized Business, information,
application, technology

Efficiency, maintainability

Front-office processes are
separated from back-office
processes

Business, information,
application

Efficiency, maintainability

Channel-specific is separated
from channel-independent

Business, information,
application

Reliability, efficiency,
maintainability, portability

Data is provided by the source Information, application Reliability, efficiency

Data is maintained in the
source application

Information, application Reliability, efficiency,
maintainability

Data is captured once Information, application Usability, efficiency

IT systems communicate
through services

Information, application,
technology

Efficiency, maintainability,
and portability

Business and information
architectures are aligned

Business, information Efficiency, maintainability,
alignment

Business and application
architectures are aligned

Business, application Efficiency, maintainability,
alignment

Information and application
architectures are aligned

Information, application Efficiency, maintainability,
alignment

Required application services
are available

Business, application Functionality, suitability,
alignment

Services have different
interfaces

Business, application,
technology

Interoperability,
maintainability

Applications manage
information with the same
security level

Business, information, and
application

Security, reliability

Critical processes are
executed in specific systems

Business, application Security, alignment

Each information entity is
managed by a single
application

Information, application Alignment

Primitive and derived data are
managed by different IT
components

Information, technology Alignment

Business units are
autonomous

Business Maintainability, portability

Customers have a single point
of contact

Business Usability and efficiency

Management layers are
minimized

Business Reliability, usability,
efficiency, maintainability

4.2 Cross-Layer Principles 83

Table 4.2 Principles summary (part II)

Principle Architecture domain Quality attributes

Information management is
everybody’s business

Information Efficiency, maintainability

Common vocabulary and data
definitions

Information Efficiency, maintainability

Content and presentation are
separated

Information Usability, maintainability

Data that is exchanged adhere
to a canonical data model

Information Reliability, maintainability

The number of
implementations of the same
information entity is
minimized

Information Interoperability,
maintainability

Common use applications Application Efficiency, maintainability

Presentation logic, process
logic, and business logic are
separated

Application Maintainability

Business logic and
presentation components do
not keep the state

Application Efficiency

Minimize the number of
dependencies and
applications per service

Application Maintainability

Technology independence Technology Portability, maintainability

Interoperability Business, information, and
application

Portability, efficiency,
maintainability

IT systems are scalable Application, technology Efficiency

IT systems adhere to open
standards

Information, application,
technology

Maintainability, portability

IT systems are preferably
open source

Application, technology Efficiency, maintainability

All messages are exchanged
through the enterprise service
bus

Information, application, and
technology

Maintainability, portability

The major implication that this principle brings is that components should be
centralized, unless business, application, or technological requirements require a
decentralized approach [2].

Figure 4.2 presents an application architecture that supports the principle com-
ponents are centralized.

In this example, the company applications (email, finance, human resources, and
intranet) are centralized in the headquarters.

On the other hand, Fig. 4.3 presents another application architecture that has
several applications replicated through the company offices (e.g., email, finance,
human resource applications)—not supporting this principle.

84 4 Enterprise Architecture Patterns and Principles

Fig. 4.2 Example of architecture applying the principle components are centralized

Fig. 4.3 Example of architecture that does not apply the principle components are centralized

4.2.2 Front-Office Processes Are Separated from Back-Office
Processes

Front-office processes are separated from back-office processes principle is relevant
for business, information, and application layers. This principle addresses the
architecture maintainability.

This principle is supported in the fact that the focus of front-office and back-
office processes is different. Usually, front-office processes are focused on customer
intimacy and back-office processes on operational excellence.

Additionally, the knowledge and skills required for front-office processes (as
persuasive speaking skills, empathy, communication, and patience, among others)
are different skills and knowledge than back-office processes.

Finally, from an efficiency perspective, separating back-office processes from
front-office processes makes easier to reuse back-office processes.

The most significant implications of this principle are at the business architecture,
since it is recommended to have a disengagement between front-office and back-
office processes, having dedicated processes to the front office and back-office.

4.2 Cross-Layer Principles 85

C
u

st
o

m
er

F
ro

n
t

o
ff

ic
e

B
ac

k-
o

ff
ic

e

Sell
Product

 Produce
 Product

Request
Payment

Receive
Payment

Support
Customer

Repair
Product

Fig. 4.4 Example of architecture applying the principle front-office processes are separated from
back-office processes

C
u

st
o

m
er

C
o

m
p

an
y

Produce
Product

Receive
Payment

Repair
Product

Sell
Product

Fig. 4.5 Example of architecture that does not use the principle front-office processes are
separated from back-office processes

Consequently, in the application and information architecture, front-office appli-
cations shouldn’t contain back-office logic or data [2].

Figure 4.4 presents a BPMN diagram of the processes that support the selling,
producing, and supporting activities of a company. In this example, there is a full
separation of the front-office and the back-office processes.

On the other hand, in Fig. 4.5, back-office and front-office activities are in the
same business process (making it difficult to reuse back-office activities or ensuring
the right skills to deal with the costumer).

86 4 Enterprise Architecture Patterns and Principles

4.2.3 Channel-Specific Is Separated from
Channel-Independent

Channel-specific is separated from channel-independent principle is relevant for
business, information, and application layers. This principle addresses the reliability,
efficiency, maintainability, and portability qualities.

This principle is built on top of the assumption that an important part of the
business tasks do not depend on the channel used to interact with the customer
(telephone, mail, Internet, office). Thus, in order to allow the business to be
developed through multiple channels, the data must be managed in channel-
independent processes.

According to [2], the implementation of this principle may be achieved by
implementing channel-specific activities at the borders of an end-to-end business
process and communicating with the other activities in a channel-independent
format.

At the application architecture, it is recommended to have dedicated components
for channel-specific processing and others that are channel-independent, where the
business logic and the data are managed. An interface among channel-specific and
channel-independent components must be implemented.

Figure 4.6 presents a view of an online and a face to face selling processes, where
the activities that are specific of the channel (Internet or face to face) communicate
with channel-independent activities (issue invoice and produce product).

Fig. 4.6 Example of architecture applying the principle channel-specific is separated from
channel-independent

4.2 Cross-Layer Principles 87

Fig. 4.7 Example of architecture that does not use the principle channel-specific is separated from
channel-independent

Figure 4.7 presents an architecture where the channel independent activities and
applications are replicated in both channels.

4.2.4 Data Is Provided by the Source

The principle data is provided by the source has impact in the information
and application architectures, addressing reliability, performance, and efficiency
qualities.

This principle increases efficiency and reliability by removing unnecessary
intermediate redirection components, ensuring that the application responsible for
managing the data is the one that will also provide it.

Additionally, since the data is provided directly by the source application,
without having overhead processing costs or other errors (from other components),
the performance and reliability are also expected to increase.

In order to implement this principle, organizations should request customers
to insert the data in online forms (avoiding potential intermediary errors), and
applications should get the data from the source application [2].

88 4 Enterprise Architecture Patterns and Principles

Fig. 4.8 Example of architecture applying the principle data is provided by the source

Fig. 4.9 Example of architecture that does not use the principle data is provided by the source

Figure 4.8 presents an application architecture where the customer data is
obtained (by the website) directly from the source application (the CRM applica-
tion).

On the other hand, Fig. 4.9 presents a similar architecture where the data is
obtained in an intermediary application (a store front application) that keeps a
replica of the customer data.

4.2.5 Data Is Maintained in the Source Application

The data is maintained in the source application principle has several similarities
to the data is provided by the source principle. It has impact in the information
and application architectures, addressing reliability, efficiency, and maintainability
qualities.

Since managing (creating, updating, or deleting) similar data in multiple places
introduces inconsistencies and is inefficient, in order to comply with this principle,
organizations are expected to [2]:

• Have a clear identification of the source application responsible for managing
(create, update, and delete) each data type.

• The data is always obtained from the source application (not from replicas).

4.2 Cross-Layer Principles 89

• Replicas of data shouldn’t be updated (unless synchronization mechanisms are
available).

• The data shouldn’t be copied before it is finalized.

Figures 4.8 and 4.9 present two application architectures where this principle is
followed and not followed, respectively.

4.2.6 Data Is Captured Once

The principle data is captured once has impact in the information and application
architectures, addressing usability and efficiency qualities.

This principle is supported by the fact that requesting similar data more than once
is inefficient.

In order to comply with this principle, applications should first verify if the data
is already available (through services exposed to access it). When the data is already
available, it should be used in pre-filling forms [2].

Figure 4.10 presents an application architecture where the CRM application
exposes services to access customer data. These services are used by the webPortal
and the store front applications (not requesting the user to enter information already
available).

On the contrary, Fig. 4.11 presents an application architecture that does request
similar data, from the user, depending on the system used.

Fig. 4.10 Example of architecture applying the principle data is captured once

Fig. 4.11 Example of architecture that does not use the principle data is captured once

90 4 Enterprise Architecture Patterns and Principles

4.2.7 Systems Communicate Through Services

This principle is expected to have an impact in the information, application, and
technology layers. Ensuring that systems communicate through services addresses
efficiency, maintainability, and portability qualities.

By reusing services, less (new) services are needed, improving efficiency and
maintainability. Additionally, reusing services contributes to faster implementation
of new applications (that may reuse existing functionalities), reducing new applica-
tions implementation effort and duration [2].

In order to implement this principle, organizationsmust have extra caution in the
service definition, in order to ensure services are reusable, hiding implementation
details and adopting open standards in its interfaces. It is also recommended to
publish services in a service directory [2].

Figure 4.12 presents a CRM application that provides a service that is reusable
by three other applications.

In Fig. 4.13, a similar CRM application is integrated with three similar applica-
tions, but the services are specific (not reusable).

4.2.8 Business and Information Architectures Are Aligned

The business and information architectures are aligned principle, as expected,
addresses the business and the application architectures. This principle is concerned
about efficiency, maintainability, and alignment.

The focus is on structuring the information necessary to conduct business,
both in operations and in management of information. If information and business

Fig. 4.12 Example of architecture applying the principle systems communicate through services

4.2 Cross-Layer Principles 91

Fig. 4.13 Example of architecture that does not use the principle systems communicate through
services

Fig. 4.14 Example of architecture applying the principle business and information architectures
are aligned

architectures are aligned, business will have the expected information when needed
without wasting unnecessary resources.

In order to implement this principle, organizations should ensure that in its
enterprise architecture [4]:

• Information entities contain all information necessary for the activities of
processes (automatic or manual).

• All processes that share information entities agree with the concepts behind it.
• The processes that create information entities manage the entire life cycle of

those entities.
• All processes create or update at least one information entity.
• Each information entity is read by at least one process.

In Fig. 4.14, each process is responsible for managing (create, update, and delete)
its information entity (customer and product). Notice that the sell products process
only reads customer information entity (but the create, update, and delete actions
are only performed by the manage customer relationship process).

92 4 Enterprise Architecture Patterns and Principles

Issue
Invoice

Read
Customer Product Employee

Manage
Customer

Sell
Products

Create, Update, DeleteCreate, Update, Delete, ReadCreate, Update, Delete, Read

Fig. 4.15 Example of architecture that does not use the principle business and information
architectures are aligned

On the other hand, in Fig. 4.15, the customer information entity is managed
by two business processes (sell products and manage customer relationship);
additionally, the issue invoice process does not create or update any information
entity, and the employee information entity is not read by any process.

4.2.9 Business and Application Architectures Are Aligned

This principle addresses the business and application architectures, contributing for
efficiency, maintainability, and alignment qualities.

In the alignment between business and applications, the focus is on the automa-
tion of the activities of business processes. The larger the alignment, the lower
the effort in mechanized operations. It aims to optimize the ratio (operating
costs)/(investment) for a given level of service [4].

In order to ensure business and application architectures are aligned [4]:

• All atomic activities of a process are supported by a single system or application.
• The functionalities of the systems are not redundant: support exclusively some

activity.
• The characteristics of the activities are in accordance with the features of the

systems that support them (e.g., scalability, availability).

In Fig. 4.16, the sell product process is supported by a single application.
In Fig. 4.17, the sell product process is supported by three applications. Assuming

that the sell product process is atomic or is performed by the same person, this view
presents a misalignment between the business and application architectures.

4.2.10 Information and Application Architectures Are Aligned

This principle is focused on the information and application architectures, address-
ing efficiency, maintainability, and alignment qualities.

The alignment between information and applications is based on the effective-
ness of information systems in business information management. The existence of

4.2 Cross-Layer Principles 93

Fig. 4.16 Example of
architecture applying the
principle business and
application architectures are
aligned

Fig. 4.17 Example of architecture that does not use the principle business and application
architectures are aligned

multiple replicas of the same information in different systems is a problem because
each replica has structure, syntax, and semantics usually different in different
systems, making it difficult to integrate [4].

The following are implications of this principle:

• Each information entity is managed by a single system.Managingmeans creating
and identifying.

• Each attribute of an entity should not be updated by more than one system
(different attributes of the same entity may be updated by different systems).

• A system must access information from the system that manages that informa-
tion, in order to preserve its computational independence.

• Systems must be computationally independent.
• The information characteristics must comply with the characteristics of the

system that manages it.
• Distributed transactions should be avoided, and a transaction must involve only

one system.

94 4 Enterprise Architecture Patterns and Principles

Fig. 4.18 Example of architecture applying the principle information and application architectures
are aligned

Figure 4.18 presents three information entities. Each information is managed by
one system—product is managed by the Sales application, Invoice is also managed
by the Sales application, and Customer is managed by the CRM application.

In Fig. 4.19, the Customer information entity is managed by both applications
(Sales and CRM), and the Product information entity is not managed by any
application.

4.2.11 Required Application Services Are Available

The required application services are available principle addresses the business and
application architectures and the functionality, namely, suitability, and alignment
qualities.

In order to ensure that systems functionality is aligned with the business layer,
the services required by processes must be supported by application services.

Thus, there should not exist application services required by businesses that are
not available in the application architecture [3, 6].

Figure 4.20 presents an online sell process that is supported in two application
services (browse products and payment services).

In Fig. 4.21, one application service is missing (Payment service).

4.2 Cross-Layer Principles 95

Fig. 4.19 Example of architecture that does not use the principle information and application
architectures are aligned

Fig. 4.20 Example of
architecture applying the
principle required application
services are available

96 4 Enterprise Architecture Patterns and Principles

Fig. 4.21 Example of
architecture that does not use
the principle required
application services are
available

4.2.12 Services Have Different Interfaces

The services have different interfaces principle should be applied at the business,
application, and technology layers of the enterprise architecture. It is concerned
about interoperability and maintainability qualities.

According to [7] and [3], the technical interoperability of an architecture
increases by providing the same services at different interfaces, including different
technologies, and business channels.

In order to support this principle, organizations, whenever possible, should
provide services using different interfaces, and no new services should be created
because of the need of providing the same service through a new channel or
technology [3, 7].

Figure 4.22 presents an invoice application service that is made available in three
different interfaces (FTP, webservice, and online form).

In Fig. 4.23, the same service is replicated into three different ones, considering
the interface required. This approach increases maintenance and implementation
costs and reduces the major benefits of implementing a service-oriented architec-
ture.

4.2 Cross-Layer Principles 97

Fig. 4.22 Example of architecture applying the principle services have different interfaces

Fig. 4.23 Example of architecture that does not use the principle services have different interfaces

4.2.13 Applications Manage Information with the Same
Security Level

The applications manage information with the same security level principle has
impact in the information and application architectures. This principle is concerned
about security and reliability.

Applications should manage information entities of the same security level, in
order not to over- or under-spend resources [3, 4].

In order to implement this principle, information entities with different security
requirements should be managed by different systems [3, 4].

In Fig. 4.24, two information entities with different security requirements (cus-
tomer payment information and a company online catalogue of products) are
managed by two different applications (that should be implemented considering the
different security requirements of the data managed).

On the other hand, in Fig. 4.25, only one application is managing the two data
entities (that have different security requirements)—leading to a mismatch between
the application and the information architectures.

98 4 Enterprise Architecture Patterns and Principles

Fig. 4.24 Example of architecture applying the principle applications manage information with
the same security level

Fig. 4.25 Example of architecture that does not use the principle applications manage information
with the same security level

4.2.14 Critical Process Are Executed in Specific Systems

This principle is relevant for the application and business architectures. It is
concerned about security and alignment qualities.

As described in [4], the critical business processes should be supported by
different applications than non-critical business processes.

Thus, the same application should not manage critical and non-critical business
processes [3, 4].

Figure 4.26 presents two business processes. The sales process is considered
critical for the company, while the partner management is not (according to the
organization business context). Thus, the application architecture has two different
applications supporting each process.

In Fig. 4.27, only one application is serving both critical and non-critical business
processes.

4.2 Cross-Layer Principles 99

Fig. 4.26 Example of architecture applying the principle critical process are executed in specific
systems

Fig. 4.27 Example of architecture that does not use the principle critical process are executed in
specific systems

4.2.15 Each Information Entity Is Managed by a Single
Application

This principle has implications for the information and the application architectures
and is concerned about alignment quality.

According to [4], each information entity should be managed by a single
application. Therefore, the main implications of this principle are [3, 4]:

• Each information entity is created, updated, or deleted by one system.

100 4 Enterprise Architecture Patterns and Principles

Fig. 4.28 Example of architecture applying the principle each information entity is managed by a
single application

Fig. 4.29 Example of
architecture that does not use
the principle each information
entity is managed by a single
application

• The application that manages the information entity must provide services on the
information entity to other applications.

In Fig. 4.28, the customer information entity is fully managed (created, updated,
and deleted) by the CRM application that provides application services to other
applications (as the Finance application).

In Fig. 4.29, the Customer information entity is updated by two applications
(CRM and finance applications).

4.2.16 Primitive and Derived Data Are Managed by Different
IT Components

The primitive and derived data are managed by different IT components is an
information-technology principle. This principle is concerned about alignment.

According to Inmon, the primitive and derived data present important differences
on performance, accessing patterns, and availability, among other issues [8]. Thus, it
is considered a “good architectural practice” to use different technology components
to support primitive and derived data.

In order to comply with this principle, organizations should ensure that [3, 4]:

• Derived data is not managed in operational IT components.

4.2 Cross-Layer Principles 101

Fig. 4.30 Example of
architecture applying the
principle primitive and
derived data are managed by
different IT components

Fig. 4.31 Example of
architecture that does not use
the principle primitive and
derived data are managed by
different IT components

• There are separated hardware and software components to manage primitive and
derived data.

In Fig. 4.30, the invoice (primitive and operational data) and the sales forecast
(derived data) data are managed by different technological components.

In Fig. 4.31, the same system software is used to realize derived and primitive
data.

102 4 Enterprise Architecture Patterns and Principles

4.3 Business Layer Principles

4.3.1 Business Units Are Autonomous

This principle is concerned about maintainability and portability qualities.
Having autonomous business units ensures a fast adaptation to change, since

there are no dependencies to other business units. Additionally, autonomous busi-
ness units can be easily separated (supporting organizational restructuring) [2].

In order to implement this principle, organizations should ensure that each
business unit has a profit and loss center that is used for its evaluation. Additionally,
each business unit is responsible for its investments and decisions [2].

4.3.2 Customers Have a Single Point of Contact

Customers have a single point of contact principle addresses usability and efficiency
qualities.

According to this principle, it is better for customers to have a single point of con-
tact, instead of contacting several company employees. It is expected that a single
point of contact ensures consistence of the information provided. Additionally, from
an operational point of view, having dedicated employees to manage customers is
expected to increase efficiency and reduce operational activity interruptions [2].

In order to implement this principle, organizations should provide a single
access point to customers (e.g., a contact-center, dedicated person, etc.) that
detaches the customer from the internal organization. This access point must have
enough information to handle customer requests. Only in exceptional situations, the
customer interacts directly with the internal organization [2].

In Fig. 4.32, all the interaction between the customer and the company is
managed by the Customer Relationship Department.

On the other hand, in Fig. 4.33, the customer interacts directly with three different
organization departments.

4.3.3 Management Layers Are Minimized

The management layers are minimized principle is expected to improve business
reliability, usability, efficiency, and maintainability qualities.

This principle is supported in the fact that the nonproductive costs are reduced
by minimizing management layers. Another important side effect of minimizing
management layers is that operational employees tend to take more responsibility
for their work [2].

4.3 Business Layer Principles 103

Fig. 4.32 Example of architecture applying the principle customers have a single point of contact

Fig. 4.33 Example of architecture that does not use the principle customers have a single point of
contact

From an organizational point of view, this principle imposes a reduction to
the minimum of the management layers. In an ideal world, according to this
principle, people responsible to perform the actual work would be self-managed
in a management layer free organization [2].

Figure 4.34 presents an organization where the management layers are mini-
mized. The production and sales employees are empowered and report directly to
the Director.

Figure 4.35 presents an organization with several management layers, where the
lower layers report to one or moremanagers, who report to one or moremanagement
layers.

104 4 Enterprise Architecture Patterns and Principles

Sales Director

Management
Board

Production
Director

Sales Person1 Sales Person2 Sales Person n Painter Mechanic Electrician

Fig. 4.34 Example of architecture applying the principle management layers are minimized

4.4 Information Layer Principles

4.4.1 Information Management Is Everybody’s Business

This principle addresses efficiency and maintainability qualities.
According to the information management is everybody’s business principle,

information management decision-making is well defined and supports business
goals. All organization business units must be involved in information management,
working as a team [1].

In order to implement this principle, the internal and external stakeholders of
the organization must accept the responsibility of managing the information. The
organization must ensure the proper resources to information management [1].

4.4.2 Common Vocabulary and Data Definitions

The common vocabulary and data definitions principle addresses efficiency and
maintainability qualities. According to this principle, the enterprise data must be
defined and available to everybody in the organization. This data architecture must
be used when developing applications [1]. Applications should provide services
to exchange data, according to the enterprise common data definitions. From an
organizational point of view, data administration responsibilities must be assigned
[1].

Figure 4.36 presents an enterprise data architecture, where the data is commonly
defined, data management responsibilities are well defined, and applications provide
services to access data.

On the other hand, Fig. 4.37 presents an information architecture with data enti-
ties dependent on the applications, leading to replicated data and data management
conflicts among applications.

4.4 Information Layer Principles 105

F
ig

.4
.3

5
C
on
ti
nu
ed

106 4 Enterprise Architecture Patterns and Principles

F
ig

.4
.3

5
E
xa
m
pl
e
of

ar
ch
it
ec
tu
re

th
at
do
es

no
tu

se
th
e
pr
in
ci
pl
e
m
an
ag
em

en
tl
ay
er
s
ar
e
m
in
im

iz
ed

4.4 Information Layer Principles 107

Enterprise Data

Customer

CRM

Customer data Invoice data Product data

FI application sales Application

Invoice

Product

Data
Administration

Fig. 4.36 Example of architecture applying the principle common vocabulary and data definitions

4.4.3 Content and Presentation Are Separated

The content and presentation are separated principle main impacts are at the infor-
mation architecture, ensuring that the content may be reused in multiple channels.
By separating content and presentation, each can be managed independently [2].

In order to comply with this principle, organizations should translate data
acquired to a format that is independent of the presentation channel. Addition-
ally, there should be specific software components that add to the content the
presentation-specific data [2].

Figure 4.38 presents an architecture, where the data of the product information
entity is separated between data independent and dependent of the channel (online
and physical).

In Fig. 4.39, there is a replication of the product data that is dependent of the
channel and the content that is not dependent of the channel.

4.4.4 Data That Is Exchanged Adhere to a Canonical Data
Model

According to [2], the adoption of a common definition to the data minimizes the
need for translations when applications exchange data, increasing the reliability and
the maintainability qualities.

108 4 Enterprise Architecture Patterns and Principles

F
ig

.4
.3

7
E
xa
m
pl
e
of

ar
ch
it
ec
tu
re

th
at
do
es

no
tu

se
th
e
pr
in
ci
pl
e
co
m
m
on

vo
ca
bu
la
ry

an
d
da
ta
de
fin

it
io
ns

4.4 Information Layer Principles 109

Fig. 4.38 Example of architecture applying the principle content and presentation are separated

Fig. 4.39 Example of architecture that does not use the principle content and presentation are
separated

In order to implement this principle, organizations should manage centrally the
canonical data model. The canonical data model shall be used when applications
exchange information (either directly by the applications involved in the data
exchange or by using a integration software for performing the translation from
the application-specific data model to the canonical data model) [2].

In Fig. 4.40, the exchange of the customer data among the three applications is
supported in a common definition of the customer data.

In Fig. 4.41, there are different definitions of the customer data (in the sales and
in the finance applications).

110 4 Enterprise Architecture Patterns and Principles

Fig. 4.40 Example of architecture applying the principle data that is exchanged adhere to a
canonical data model

Fig. 4.41 Example of architecture that does not use the principle data that is exchanged adhere to
a canonical data model

4.4.5 The Number of Implementations of the Same
Information Entity Is Minimized

In order to increase interoperability and maintainability qualities, the number of
implementations of the same information entity shall be minimized.

The existence of different implementations of an information entity points to
semantic problems for that information entity (e.g., by using different formats or
attributes in the implementation of an information entity). Therefore, the realizations
of the same information entity in the technology architecture are minimized [3].

Figure 4.42 presents the implementation of the customer and the product
information entities in the technology layer. Each data object is realized in a single
artifact.

In Fig. 4.43, there are several implementations of each data object—the customer
has two different implementations and the product three.

4.5 Applications Layer Principles 111

Fig. 4.42 Example of architecture applying the principle data that is exchanged adhere to a
canonical data model

Fig. 4.43 Example of architecture that does not use the principle data that is exchanged adhere to
a canonical data model

4.5 Applications Layer Principles

4.5.1 Common Use Applications

The common use of applications principle is concerned about efficiency and
maintainability qualities. This principle argues that organizations should avoid the
development of multiple similar applications that address a common need. The
development of duplicate applications is expensive to implement and maintain and
leads to data replication [1].

Thus, business units shall use applications that support the entire enterprise not
developing applications for their own needs (for similar enterprise-wide applica-
tions) [1].

This principle is a specialization of the components are centralized principle (see
Sect. 4.2.1), applied at the application architecture. Figure 4.2 presents an applica-
tion architecture where the Intranet, email, HR, and Financial applications are used
across the organization. In Fig. 4.3, the email, HR, and Financial applications are
replicated.

112 4 Enterprise Architecture Patterns and Principles

4.5.2 Presentation Logic, Process Logic, and Business Logic
Are Separated

This principle is concerned about maintainability quality. According to [2], since
the presentation, process, and business logic functionalities are different if they
are implemented in different software components, it is expected that its reuse will
increase.

In order to comply with this principle, application components must have a
layered approach separating presentation logic, process logic, and business logic.
Additionally, the access to data is only implemented in business logic components
[2].

Figure 4.44 presents the implementation of the online store and the face-to-
face sales applications using a layered approach (where the process logic and the
business logic are shared among the applications).

On the other hand, in Fig. 4.45, a monolithic approach is selected, where each
application is implemented in a single software component (replicating common
process and business logic functionalities).

Fig. 4.44 Example of architecture applying the principle presentation logic, process logic, and
business logic are separated

Fig. 4.45 Example of architecture that does not use the principle presentation logic, process logic,
and business logic are separated

4.5 Applications Layer Principles 113

4.5.3 Business Logic and Presentation Components Do Not
Keep the State

This principle is concerned about efficiency quality.
The scalability of an application is increased if business and presentation

components do not keep the state (since it will be easier for implementing new
parallel instances of these components) [9].

The scalability of an application tends to grow if the presentation and the logic
application components do not preserve the application state (stateless). The state
of the application should be managed by specific data components.

In order to implement this principle, the application architecture should ensure
that [3]:

• Data is not recorded at the business or presentation levels.
• The state of the application in record by data components (e.g., Database

Management Systems).

4.5.4 Minimize the Number of Dependencies and Applications
per Service

This principle is concerned about maintainability quality.
According to [10], in the software engineering area, the higher the number

of paths in a program, the higher its control flow complexity probably will be.
The same occurs in the implementation of application services; they tend to be
more complex if they depend on more applications [3]. Thus, in order to reduce
complexity, each application service should be realized by the least number of
applications [3].

In Fig. 4.46, the update customer address is realized by a single application (CRM
Application).

On the other hand, in Fig. 4.47, the same application service is realized in four
different applications, increasing its implementation and maintenance complexity.

Fig. 4.46 Example of
architecture applying the
principle minimize the
number of dependencies and
applications per service

114 4 Enterprise Architecture Patterns and Principles

Fig. 4.47 Example of architecture that does not use the principle minimize the number of
dependencies and applications per service

4.6 Infrastructure Layer Principles

4.6.1 Technology Independence

This principle argues that applications should not depend on the specific technolo-
gies or platforms, following common standards contributing for portability and
maintainability qualities.

According to [1], applications that are not technology independent tend not to be
developed and operated in a cost-effective way. Thus, the application software used
or developed should not be dependent on specific hardware, operating systems, or
systems software.

In order to comply with this principle, applications should select standards
that support portability, and legacy applications must have Application Program
Interfaces (APIs) that enable them to interoperate with the remaining applications.
If needed, integration software (middleware, enterprise service bus) may be used to
reduce the dependencies on specific technologies [1].

In Fig. 4.48, the SAP application provides a web service interface (independent
of the technology).

On the other hand, in Fig. 4.49, the same SAP application only provides SAP
Remote Functional Call interface (that is not independent of the SAP technology).

4.6.2 Interoperability

The interoperability principle addresses portability, efficiency, and maintainability
qualities.

TOGAF interoperability principle states that software and hardware should
conform to defined standards that promote interoperability for data, applications,
and technology, in order to maximize return on investment and reduce costs [1].
Thus, it is recommended to comply to standards and to establish internal processes

4.6 Infrastructure Layer Principles 115

Fig. 4.48 Example of
architecture applying the
principle technology
independence

Fig. 4.49 Example of
architecture that does not use
the principle technology
independence

for the definition and revision of the standards accepted in enterprise applications.
Technology interoperability is expected to reduce vendor lock-in and increase
competition among application vendors.

In order to implement this principle, organizations should use interoperability
standards when available [1].

4.6.3 IT Systems Are Scalable

It is important to ensure that IT systems are scalable, since new market opportunities
must be supported, even if not anticipated. Since acquiring systems with all the
maximum future needs is expensive, considering that the cost of technology tends
to be lower over time, it is important to ensure that the technology components are
scalable [2].

In order to ensure that IT systems are scalable, IT components must scale
horizontally (by adding further nodes performing the same tasks) or vertically (by
increasing resources available of existing nodes). Additionally, IT systems should
be sized at the current volumes and must be monitored periodically [2].

116 4 Enterprise Architecture Patterns and Principles

4.6.4 IT Systems Adhere to Open Standards

IT systems adhere to open standards principle argues that the usage of open
standards prevents vendor lock-in and eases the integration of IT systems, increasing
maintainability and portability qualities [2].

When selecting standards to adopt, organizations should consider the standard
maturity and relevance. Whenever possible, open standards should be selected, and
existing proprietary interfaces must be wrapped into open standard interfaces [2].

In Fig. 4.50, the Finance and the HR application follow oAuth open standard to
authenticate among both applications.

On the other hand, in Fig. 4.51, the applications use proprietary Interfaces.

Fig. 4.50 Example of
architecture applying the
principle IT systems adhere
to open standards

Fig. 4.51 Example of
architecture that does not use
the principle IT systems
adhere to open standards

4.6 Infrastructure Layer Principles 117

4.6.5 IT Systems Are Preferably Open Source

According to [2], open-source software prevents vendor lock-in and has lower
acquisition costs than commercial software. This principle is expected to have a
positive impact in efficiency and maintainability.

To implement this principle, when a functionally equivalent open-source soft-
ware is available, the open source should be selected rather than the commercial
version [2].

4.6.6 All Messages Are Exchanged Through the Enterprise
Service Bus

In order to increase maintainability and portability, this principles states that and
enterprise service bus (ESB) should be used to exchange messages among systems
[2].

Having an ESB ensures that changes in a system won’t have impact in other
systems, since the ESB hides semantic (e.g., data model) or technology changes
(e.g., integration or communication protocols used). Additionally, an ESB may
increase the quality of the message exchange since the ESB provides specific tools
for its persistence and management. Finally, having an ESB contributes for reuse of
services among applications [2].

In order to implement this principle, instead of applications which exchange
messages directly to other applications, all messages go through the ESB [2].

In Fig. 4.52, there is an ESB that handles the specificity of the integration with
four different applications.

Fig. 4.52 Example of
architecture applying the
principle all messages are
exchanged through the
enterprise service bus

118 4 Enterprise Architecture Patterns and Principles

Fig. 4.53 Example of
architecture that does not use
the principle all messages are
exchanged through the
enterprise service bus

In Fig. 4.53, the integration is done directly point-to-point among applications,
imposing that each application is able to deal with the integration technology and
the data model of two or three other applications.

4.6.7 Software Components Are Multi-platform

This principle is concerned about the portability quality. The portability and
technical interoperability increase with the number of possible platforms where
components are able to operate. In order to implement this principle [3]:

• Components should run in multiple operating systems.
• Components that can run on various software and hardware platforms are

preferred.

4.7 IT Architecture Patterns and Practices

4.7.1 IT Architecture Layers Patterns

Almost all applications have three structural components: presentation, logic, and
data. The differences begin with the introduction of network sections between the
components (see Figs. 4.54 and 4.55).

Regarding distributed presentation, “X Window System,” dummy 3270 termi-
nals, and pure HTML web pages (no JavaScript) are examples where calculations
for the presentation are mostly done on the server side.

4.7 IT Architecture Patterns and Practices 119

Fig. 4.54 Architectures with one network section’s component distribution

Fig. 4.55 Architectures with two network sections’ component distribution

Regarding remote presentation, a web browser with JavaScript is a good
example. For distributed logic, a browser running Java applets is an example of
this architecture. In remote data architecture, the client makes calls directly to
the database. The SQL flows through the network, as well as the answers. In a
distributed database environment, part of the data is kept on the client side which is
regularly synchronized with the server.

4.7.1.1 Two-Layer Versus Three-Layer Architectures

Three-layer (3L) architectures have, in general, the advantages over two-layer (2L)
architectures presented in Table 4.3.

120 4 Enterprise Architecture Patterns and Principles

Table 4.3 Two-layer versus
three-layer architectures
summary

Quality 2 layer 3 layer

Security – +
Data encapsulation – +
Performance – +
Availability – +
Reuse – +
Ease to develop + –

Integration with legacy – +
Scalability and flexibility – +

Regarding security, three-layer architectures have the advantage since:

• 2L—security is done only in terms of data access.
• 3L—security is at methods access level.

Data encapsulation is better in three-layer architectures considering that:

• 2L— tables are traveling on the network (at least the structure of the data in SQL
commands).

• 3L—only the methods and the results circulate on the network.

Although one more layer exists in three-layer architectures, performance is better
since:

• 2L—much unnecessary network traffic is generated.
• 3L—there is no waste of network data; only the methods and results circulate on

the network.

Availability is usually high in three-layer architectures since:

• 2L—SQL requests are made directly to a database server (it might reach a
maximum number of “open connections”).

• 3L—orders are directed to any application server.

Reuse is low in two-layer architectures since:

• 2L—client software must directly deal with the tables (in the DBMS).
• 3L—client software interacts with application servers methods (that hide the

DBMS).

Development is easier and faster in 2L, since:

• 2L— low expertise is required.
• 3L—the separation of logic interface and application objects may be difficult in

some cases.

Integration with legacy systems is very hard in two-layer architectures since:

• 2L—client software calls tables directly.

4.7 IT Architecture Patterns and Practices 121

Fig. 4.56 Three-layer architecture

• 3L—Integration with legacy systems can be done by changing the application
server.

Two-layer architectures have low scalability and flexibility in hardware consider-
ing that:

• 2L—Communication problems are raised (e.g., maximum DB connections
reached).

• 3L—Scalability and flexibility are higher since clients call a service, not a
process. The processes are launched on machines that may easily balance load.
The logic is in the components that can be run on any server. There are
components that ensure access to the database (ensuring the data integrity) (see
Fig. 4.56).

Regarding security, the IT Architecture usually has three distinct security
zones—Fig. 4.57.

Firewalls can limit accesses (who and what) between the parts of the network.
In addition to security, firewalls are also important to reduce traffic on the network.

122 4 Enterprise Architecture Patterns and Principles

Fig. 4.57 Different security zones

Also notice that the same physical firewall can execute the role of two. For example,
in a typical IT architecture for the Web, the same firewall can isolate different
network segments—see the example in Fig. 4.58

4.7.2 Architectures for High Availability

Several patterns are available for increasing availability.
A possible approach to increase availability is accomplished using backup

servers (see Fig. 4.59). This is the cheapest solution, but it has some problems,
including:

1. Recovery is complex and slow.
2. A fault detection mechanismmust be available: heartbeat which asks if the server

is alive.

4.7 IT Architecture Patterns and Practices 123

Client

PC Client Mobile Client

Internet

Firewall #0

Web Servers
Web Servers Web Servers

LAN

Firewall #1

Firewall #2

Firewall #0

Internet

Web Server

Application Server

Database Servers

Database Server Database Server
DBMS DBMSLAN

BackendAS

Application Servers
Application Server Application Server

ASAS LAN

Fig. 4.58 A firewall with different roles

3. Re-processing of messages lost: there are no guarantees, since failure may have
been on the message “sent,” on the server, or on the server response or the
processing of the response by the customer.

Passive Duplication is another approach for high availability (see Fig. 4.59) with
the following characteristics:

1. It implies a standby server.
2. It is “transparent” to the user
3. Re-processing of lost messages—Reduces the Log and can reduce the time to

replace the Network so that customers do not perceive. It is not used much.

Active-Active duplication is another approach where a “backup server” is used,
but operating (see Fig. 4.60). It is “transparent” to the user and the best approach for
stateless servers. It might have some loss in performance due to data update. It may
be applied to a Database Cluster: both systems write to all disks. Problems might
arise with Logs and Locks.

124 4 Enterprise Architecture Patterns and Principles

Fig. 4.59 Increasing
availability by using backup
servers (in the top) and
passive duplication (in the
bottom)

No architecture solves all problems, including those related to the connection to
the outside. It’s a business decision how to react when problems are detected.

4.8 IT Integration Patterns

4.8.1 Introduction

Integration was born as a technological possibility to connect multiple machines
across networks but has become a way of overcoming the problems posed by
the continuous development of business requirements. The scope moved from
integration of technologies, for application integration and, more recently, for
business integration.

Enterprise Architecture aims to solve similar problems, as Business processes,
or significant parts of these processes, are not adequately supported by information
systems; inconsistencies, incoherence, and replication exist in operational informa-
tion; difficulties in the IS response to new business needs; and difficulties in the
adoption of new technologies.

4.8 IT Integration Patterns 125

Fig. 4.60 Active-active duplication

We present next the major integration techniques from an architectural point of
view.

4.8.2 File Transfer

One of the oldest integration technique is the file transfer. Its main goal is to
exchange information between two systems using coding and decoding objects and
a file. File Transfer Protocol (FTP) is a two-step technique:

• Encoding: Objects to file;
• Decoding: File to objects.

The main advantage of FTP is that it is a universal approach, since all operating
systems and programming languages support the notion of file. However, it has
several disadvantages, including:

• The complexity of encoding and decoding increases exponentially with the
objects to be transferred.

126 4 Enterprise Architecture Patterns and Principles

• It can only be used to exchange objects whose type is relatively simple.
• The performance is limited.
• It implies the duplication of data.

This technique is still widely used despite its drawbacks (e.g., in some legacy
financial transactions).

4.8.3 Screen Scraping

Screen scraping, screen harvesting, or form scraping has the main goal of extracting
information directly from the user interface to a system in order to be used in another
system (Fig. 4.61).

The main advantages of this integration technique are:

• Appropriate to integrate legacy applications where the code cannot be accessed
or changed (e.g., COBOL applications on mainframes).

• There is no direct access to the data.
• It is not necessary to change the source application/system.
• Specialized applications exist for this purpose.

The disadvantages of screen scraping are:

• The user interface is not intended to integration.
• The user interface usually does not reflect the data type.
• It is not simple to simulate a (human) user using an application.
• The quality and performance of this approach are generally low, and the

complexity is high.

Therefore, screen scraping is only used as a “last resource” technique for
encapsulating (closed) legacy systems.

4.8.3.1 Web Scraping or Web Harvesting

Web scraping or web harvesting applies a similar approach of screen scraping
to extract information from web pages. It is mostly used by web crawlers. Web
pages are built with textual markup languages (HTML, XHTML), usually designed
for human consumption. Its design often mixes content with presentation. Due to

Fig. 4.61 Screen scraping

4.8 IT Integration Patterns 127

the widespread use of web scraping techniques, currently several “anti-scraping”
techniques also exist.

4.8.4 Remote Procedure Call

Remote Procedure Call (RPC) protocol was created to support distributed pro-
gramming based on the procedures called by clients that run remotely on the
server. It is the simplest way of middleware. It provides the basic infrastructure to
transform “procedure calls” into “Remote Procedure Calls” (RPC) in a transparent
and uniform way (Fig. 4.62).

Currently, RPC is the “foundation” of almost all other forms of Middleware.
“StoreProcedures” is a type of RPC to interact with Databases. Remote Method
Invocation (RMI) is identical to RPC but applies to methods of objects (instead of
procedures).

The synchronous architectures, as RPC, introduce high cohesion (tight coupling)
between the caller and the called. The services and directory names try to minimize
this effect, but do not eliminate it completely. This type of architecture presents
specific problems in various areas:

• The management level of interaction between client and server is difficult (e.g.,
fault tolerance, availability, load balancing).

• The level of communication properties and services is hard to ensure (e.g.,
transactional behavior, compensation, exception handling).

Client

r = serverFunc (p1,p2)
r _ type serverFunc (p_type
p1,p_type p2)
{
....
}

Server

sd RPC

Fig. 4.62 RPC example

128 4 Enterprise Architecture Patterns and Principles

Fig. 4.63 Message queues

4.8.5 Message Queues

Message queues arise considering that the interaction does not always need to be
synchronous. It provides access to transactional queues, persistent queues, and a set
of primitives for reading and writing to local and remote queues.

Message queues provide a common ground for interoperability based on mes-
sages. In this paradigm, clients and servers interact using messages. A message is a
set of structured data, characterized by a type, and parameters (set of pairs “name,
value”).

The interaction model is a publish/subscribe. Considering the possibility of
defining routing logic for messages at the broker, there are several possibilities for
message-based interactions. The publish/subscribe interaction is the most known
and used one. In this pattern, the sender of the message does not send the message to
any recipient—it just puts it in the queue. The recipients (interested) are responsible
for subscribing a message type. The “queue” then ensures sending a copy of the
message to all the subscribers (Fig. 4.63).

In model-driven messaging, client messages are placed in a queue, and when the
recipient is ready to process, it invokes a function. Several benefits arise from queue
model, including:

• Control when processing messages.
• Increased robustness to failures.
• Better distribution of applications across multiple hardware (for higher perfor-

mance and availability).
• Message priorities setting.
• Interaction with the message queue system.

The main problems with message queues are:

• Asynchronous communication involves a programming model less intuitive than
the RPC (programming events).

4.8 IT Integration Patterns 129

• The message queues servers are one more investment, management, and support
costs.

• The message queue server is one more component of the architecture of the
middleware that needs to be integrated with others.

4.8.6 Message-Oriented Middleware

In message-oriented middleware, the integration is performed using the routing
information (messages) among systems. Applications receive and send messages
to a message broker.

The messages, once received by the server, can be reformatted, combined, or
modified in order to be understood by the target system. It is usually not necessary
to modify the systems involved. The message brokers provide adapters for the most
common applications.

The main goals of a Message-Oriented Middleware (MOM) integration are:

• Store and forward: message is persisted (saved) and delivered to the recipient
(even in case of recipient application failure).

• Broker: all systems interact with a single point.
• Publish and subscribe model: there is a message subscribe queue.
• Assurance that the messages are delivered to the recipient, including two-phase

commit protocols.
• Sorting capability.
• Ability to dynamically select the recipient based on the message content.
• Simulating synchronous operation: request/response.
• Confidential support through encryption.
• Sending events (e.g., unavailability of recipient).
• Ability to transform and filter messages as they move between the servers.

4.8.7 Data-Oriented Integration

One of the basic mechanisms for integration is data-oriented integration which
includes:

1. Extracting the information from the source repository.
2. Processing or transforming information.
3. Updating the destination repository with the processed data.

The main advantages of data-oriented integration are:

• Simple mechanism to implement.
• There are access mechanisms independent of the technology.
• It does not require rework or application modifications.

130 4 Enterprise Architecture Patterns and Principles

The disadvantages of data-oriented integration are:

• It requires technical knowledge about the management systems databases
because the operation of access and update may impact the consistency of
the information.

• It may require to have knowledge about the inner workings of applications to
ensure consistency of information.

• It may involve transformations between data types (possibly incompatible).
• The transformed data is not validated by the application that uses it.
• There is no guarantee of consistency between the replicated information (from

repositories).

4.8.7.1 Integration via DBMS

The integration using database management systems (DBMS) defines an API for
applications to access information. It converts the API commands in a language the
database understands (e.g., SQL). The client sends the command to the DBMS. The
DBMS processes the command and sends the result to the client. The client converts
the response into a format understandable by the target application.

This interaction model can be seen as a dedicated RPC that interacts with a
DBMS. Open Database Connectivity (ODBC) allows access to data in a DBMS,
independently of the DBMS technology, the programming languages, and the
operating system. It is a standard proposed by Microsoft in 1992. The API
is independent of the DBMS. The same API is supported by multiple drivers
seamlessly. The ODBC drivers depend on the specific database engines. There
are multiple compatible implementations (directly or through bridges), such as
Microsoft ODBC, JDBC, iODBC, and IBM i5/OS.

There are also interfaces based on the SQL standard defined in the Java platform
to access relational databases. Java Database Connectivity (JDBC) is an API that
defines a set of Java classes that allow an application to connect to a database.

ODBC is a mechanism mainly to access (remotely) to a Relational Database.
It has been evolving to integrate various types of repositories in a transparent
manner:

• relational databases
• non-relational databases
• text files (flat files)
• spreadsheets,
• email

It allows the creation of “Virtual Database,” independent of the shapes of the
sources of information.

4.8 IT Integration Patterns 131

4.8.8 Application Interface-Oriented Integration

The most commonly used packaged applications usually expose interfaces to access
and process information. The trend is that the functionality of these applications is
exposed through services rather than proprietary APIs.

Some (few) packages have well-documented interfaces allowing access to
information and high-level processes. The main drawback of API integration is
that each application defines a different interface. The interfaces are complex (and
sometimes poorly documented). Additionally, version evolutions tend not to ensure
backward compatibility. As an example, SAP Business Objects (BO) are objects
that encapsulate data and processes associated with a business object (e.g., Material,
Purchase Order, and Customer). External access to these data and processes is done
through specific methods of these objects called Business Application Program
Interfaces (BAPI). The BAPI in SAP Web Application Server are implemented as
function modules that support the protocol RFC (Remote Function Call) and are
described as methods of a SAP BO.

4.8.9 Transactions and Transaction Monitors

Atomicity, consistency, isolation, and durability (ACID) are the four primary
attributes ensured by any transaction:

• Atomicity: Either all the tasks in a transaction occur or none of them occurs. The
transaction must be completed, or else it must be undone (rolled back).

• Consistency: Every transaction must preserve the integrity constraints. It cannot
leave the data in a contradictory state.

• Isolation: Two simultaneous transactions cannot interfere with one another.
Intermediate results within a transaction must remain invisible to other trans-
actions.

• Durability: Completed transactions cannot be aborted later or their results
discarded. They must persist through (for instance) restarts of the DBMS or after
crashes.

The properties of a DBMS apply only to transactions within its domain. In principle,
the properties are no longer valid when an operation crosses more than one DBMS
or when operations access data outside the control of the DBMS (e.g., on the server
itself or in other layers of the architecture, including middleware). Therefore, the
general rule is that whenever the data is distributed, the properties guaranteed by a
DBMS do not apply.

To overcome the problem of the distribution of transactions, The Open Group
defined the Distributed Transaction Processing Model (DTPM). This model aims
to ensure that a distributed operation (i.e., that crosses multiple DBMS) meets
the ACID properties. The model DTPM defines the XA interface. The XA needs

132 4 Enterprise Architecture Patterns and Principles

Fig. 4.64 Transactional RPC

to be supported by all nodes participating in a distributed transaction. The XA
implementations ensure the atomicity of a distributed transaction supported in a
2 Phase Commit (2PC) transactional protocol.

The limitations of RPC can be resolved by making RPC calls transactional.
In practice, this means that they are controlled by a 2PC protocol. As before,
an intermediate entity is needed to run 2PC (the client and server could do this
themselves, but it is neither practical nor generic enough). This intermediate entity
is usually called a Transaction Manager (TM) and acts as an intermediary in all
interactions between clients, servers, and resource managers. When all the services
needed to support RPC, transactional RPC, and additional features are added to the
intermediate layer, the result is a TP-Monitor (Fig. 4.64).

A TP-Monitor allows building a common interface to several applications
while maintaining or adding transactional properties. A TP-Monitor extends the
transactional capabilities of a database beyond the database domain. It provides
the mechanisms and tools necessary to build applications in which transactional
guarantees are provided. TP-Monitors are, perhaps, the best, oldest, and most
complex example of middleware. Some even try to act as distributed operating sys-
tems providing file systems, communications, security controls, etc. TP-Monitors
have traditionally been associated with the mainframe world. Their functionality,
however, has migrated to other environments and has been incorporated into most
middleware tools.

4.8 IT Integration Patterns 133

Fig. 4.65 TP-Monitor components

The typical features of a TP Monitor are:

• Features to support RPC (e.g., IDL, nameservers/directory, security, compilers
Stubs, etc.).

• Transaction manager with features like logging, recovery, and locking.
• “System monitor”—responsible for the scheduling of threads, prioritization, load

balancing, and replication.
• Execution environment for all the applications that use the TP Monitor.
• Specialized components for certain systems or scenarios (e.g., protocols for

interaction with mainframes, queues).
• Variety of tools for installation, management, and monitoring of all components.

The main components of a TP Monitor are (Fig. 4.65).:

• Interface—API for programmatic interaction with client applications.
• Program flow—guards and executes programmatic flows possibly written in the

proprietary language of the TP Monitor.
• Router—contains the mappings between the physical and logical resources.
• Communications manager—messaging system with delivery guarantees (and

rollback) for communication with resources (e.g., databases).
• Wrappers—hides the heterogeneity of different resources.
• Transactionmanager—supports the execution of distributed transactions (making

use of 2PC protocol).
• Services—offers a comprehensive range of services to ensure high availability,

performance, and replication, among others.

4.8.10 Business Process-Oriented Integration

4.8.10.1 Workflow-Oriented Integration

The term “workflow” is often used to designate a formal description of an executable
business process. A workflow management system (WfMS) is a software platform

134 4 Enterprise Architecture Patterns and Principles

that supports the design, development, implementation, and analysis of workflows.
Workflows enable the automation of business processes across the organization. The
features and basic functions of a WfMS are:

• Formalization authorization and approval of circuits.
• Digitization of business processes.
• Resource management of the organization.
• Obtaining the operational indicators and KPI.
• Security implementation and management of access control over the processes.
• Support automatic, semi-automatic, and manual activities.

The expected benefits of WfMS are:

• Cleared and structured processes.
• Easy explanation of problems or errors.
• Support for auditing and monitoring process.
• Transparent processes and perception of the path taken.
• Decentralization of work processes.
• Shared vision of the process flows.
• Support the collective work of the organization.
• Distribution of tasks according to the ability of the participants.

The integration using WfMS can be accomplished through two different architec-
tures:

1. The workflow runs “on top” of the existing systems. The workflow provides a
common interface, and operations may affect multiple systems. The workflow
system keeps and manages the execution context of the process. Workflow sys-
tems should also allow to interconnect distributed processes in the organization
(Fig. 4.66).

Business Application Workflow

Business Actor

Operation Support
Application

FrontOffice

Integration

Date Manag

Fig. 4.66 Integration using a “WfMS on the top”

4.8 IT Integration Patterns 135

Fig. 4.67 Integration using “WfMS” as a Service Bus

2. When we face a scenario in which the integration of business processes is
made only with participants who are systems/applications, the basic concepts
of workflow are somewhat compromised. In this scenario (Fig. 4.67), the user
interacts directly through existing application, and the WfMS is used to integrate
applications (not to interact directly with the end user).

4.8.10.2 Business Process Execution Language

Business Process Execution Language (BPEL) aims to describe the interaction
between business partners through sequences of synchronous and asynchronous
messaging. It assumes that the interactions are long duration (long running) and
have state. BPEL is based on the web services standards stack. It is supported by
industry players such as IBM, Microsoft, SAP, and Oracle.

BPEL specifies the XML schema that contains the definitions of the flow
of a business process. BPEL aims to generate executable code of the business
process. It is an orchestration language (not choreography). Processes arise as
service compositions. It defines processes that interact with the entities through web
services (using WSDL to describe their contracts).

Business applications place requirements for integration and inter-operation. The
current response to these challenges is based on SOA paradigm. Many enterprise
applications expose their functionality through Web Services. But developing Web

136 4 Enterprise Architecture Patterns and Principles

Web service 1

Web service 2

Web service 3

Web service 4

Orchestration
service

Web service 5

Web service 6

Fig. 4.68 BPEL orchestration

Services and exposing their functionality is not enough. A mechanism is needed to
compose and orchestrate these functionalities (Fig. 4.68).

Within the organization, BPEL is used for setting standards for application
integration, and for the specification of processes orchestration. Therefore, BPEL
is used for the definition of the integration processes between systems that were
isolated before. Outside of the organization (i.e., between organizations), BPEL is
used for setting standards for inter-organizational communication (e.g., to support
B2B), for simplifying integrationwith business partners, allowing explicit interorga-
nizational processes that were previously implicit. BPEL orchestrates existing web
services into a new (higher level) web service.

4.8.10.3 Orchestration vs Choreography

Orchestration is the specification of a flow from the perspective of a single entry
point (single endpoint). As presented before, BPEL deals with Orchestration.

Choreography is defined as the exchange of messages, rules, and interactions
between two or more entry points (endpoints) of business processes.

In Orchestration, only the central coordinator knows the process and the purpose
of the process. A central process (which can also be a web service) takes control
of the participants and coordinates the implementation of the different methods
(web services) involved in the process. The orchestration is centralized through
explicit definitions of operations and ordered calls to the web services involved.Web
services involved do not “know” (and do not need to know) that they are involved in
the composition of a process and that they are part of a business process at an upper
level (Fig. 4.69).

4.9 Exercises 137

Orchestration
(coordinator)

Web service 2

Web service 4

Web service 3

Web service 1

5: reply

1: receive

2: invoke 4: invoke

3: invoke

Fig. 4.69 Orchestration integration pattern

Fig. 4.70 Choreography integration pattern

In Choreography, there is no central coordinator. Choreography is a collaborative
effort based on the exchange of messages in a process (usually public). All
participants of the choreography have to worry about the process, the operations to
be performed, the messages to be exchanged, and in which order messages should be
exchanged. Each web service involved in the process knows when to run and meet
other web services participants. At a minimum, each service knows the services
with which it interacts directly—Fig. 4.70.

4.9 Exercises

Exercise 4.1

As presented in exercise 3.2, Lisbon Institute of Technology (LIT) established the
following principles:

• Business units are autonomous.
• Customers have a single point of contact.

138 4 Enterprise Architecture Patterns and Principles

• Channel-specific components are separated from channel-independent compo-
nents.

• Management layers are minimized.
• Common components are centralized (as the HR management process, or the

course platforms).
• Messages with all the internal and the external systems are exchanged through

LIT Enterprise Service Bus (ESB).

LIT CIO is considering different scenarios for supporting LIT Enterprise strategy
and architecture. In one of the scenarios, the architecture described by Fig. 4.71 for
supporting the course business process is being analyzed.

1. What architectural principles (described in LIT Strategy) are being violated in
the architectural scenario described in Fig. 4.71? Justify your answer.

2. Review the architecture sketch of Fig. 4.71, and present a new one (in ArchiMate)
that does not violate LIT architectural principles. Justify your answer.

3. LIT CIO is considering Orchestration and Choreography architectural scenarios.
Considering the strategy described, which one would you recommend? Why?

Exercise 4.2

Several organizations in the public administration provide services to citizens that
imply the use of the citizen‘s address.

Consider that N organizations intended to provide to citizens a single web
interface (in the Internet) for the citizen to use whenever he or she wants to change
his or her address; the goal is that the citizen can do “only once” the service and
that change of address is propagated to the different organizations. However, each
organization has its own systems (System S1,. . . , SN) that use different information
technologies and different data models (Entity E1, . . . , EN), and it is not feasible to
change the data models of existing information systems.

Therefore, it was decided that each organization will build its own information
service (IS1,. . . ,IS10) to update the organization‘s data model and made it accessi-
ble to any other public entity, with specific data model for the address.

1. The architectural scenario of implementing a new Global Propagation System
(GPS) to propagate an address to a list of information services (ISn) is being
discussed. An architectural decision is whether if the GPS service will be
implemented using an Orchestration or a Choreography approach. Assume that
in any scenario, each organization Information System will only be integrated
with a maximum of two other systems. Model in ArchiMate the two different
scenarios.

2. What would be your recommendation for each of the architectural decision
addressed in the previous questions (Orchestration vs. Choreography approach)?
Justify your answer.

4.9 Exercises 139

F
ig

.4
.7

1
L
IT

ar
ch
it
ec
tu
re

sc
en
ar
io

140 4 Enterprise Architecture Patterns and Principles

References

1. The Open Group, TOGAF Version 9.1,, vol. 1 (Van Haren Publishing, 2011)
2. E. Proper, D. Greefhorst, Architecture principles—the cornerstones of enterprise architecture.

The Enterprise Engineering Series (2011)
3. A. Vasconcelos, P. Sousa, J. Tribolet, Enterprise architecture analysis: an information system

evaluation approach. Int. J. Enterp. Model. Inform. Syst. Archit. 3(2), 31–53 (2008)
4. P. Sousa, Enterprise architecture alignment heuristics. Microsoft Enterp. Archit. J. 4 (2004)
5. ISO, ISO/IEC, ISO 9126—Software Engineering—Product Quality (2001)
6. R. Maes, D. Rijsenbrij, O. Truijens, H. Goedvolk, Redefining business—IT alignment through

a unified framework, white paper, 2000
7. J. Sarkis, R. Sundarraj, Evaluating componentized enterprise information technologies: a

multiattribute modeling approach. Inform. Syst. Front. (2003)
8. W. Inmon, Data architecture: the information paradigm (1993)
9. BEA, Scaling EJB applications, 2006
10. T. Mccabe, A complexity measure. IEEE Trans. Softw. Eng. 4(2), 308–320 (1976)

	4 Enterprise Architecture Patterns and Principles
	4.1 Introduction
	4.1.1 Principles Description
	4.1.2 Principles Summary

	4.2 Cross-Layer Principles
	4.2.1 Components Are Centralized
	4.2.2 Front-Office Processes Are Separated from Back-Office Processes
	4.2.3 Channel-Specific Is Separated from Channel-Independent
	4.2.4 Data Is Provided by the Source
	4.2.5 Data Is Maintained in the Source Application
	4.2.6 Data Is Captured Once
	4.2.7 Systems Communicate Through Services
	4.2.8 Business and Information Architectures Are Aligned
	4.2.9 Business and Application Architectures Are Aligned
	4.2.10 Information and Application Architectures Are Aligned
	4.2.11 Required Application Services Are Available
	4.2.12 Services Have Different Interfaces
	4.2.13 Applications Manage Information with the Same Security Level
	4.2.14 Critical Process Are Executed in Specific Systems
	4.2.15 Each Information Entity Is Managed by a Single Application
	4.2.16 Primitive and Derived Data Are Managed by Different IT Components

	4.3 Business Layer Principles
	4.3.1 Business Units Are Autonomous
	4.3.2 Customers Have a Single Point of Contact
	4.3.3 Management Layers Are Minimized

	4.4 Information Layer Principles
	4.4.1 Information Management Is Everybody's Business
	4.4.2 Common Vocabulary and Data Definitions
	4.4.3 Content and Presentation Are Separated
	4.4.4 Data That Is Exchanged Adhere to a Canonical Data Model
	4.4.5 The Number of Implementations of the Same Information Entity Is Minimized

	4.5 Applications Layer Principles
	4.5.1 Common Use Applications
	4.5.2 Presentation Logic, Process Logic, and Business Logic Are Separated
	4.5.3 Business Logic and Presentation Components Do Not Keep the State
	4.5.4 Minimize the Number of Dependencies and Applications per Service

	4.6 Infrastructure Layer Principles
	4.6.1 Technology Independence
	4.6.2 Interoperability
	4.6.3 IT Systems Are Scalable
	4.6.4 IT Systems Adhere to Open Standards
	4.6.5 IT Systems Are Preferably Open Source
	4.6.6 All Messages Are Exchanged Through the Enterprise Service Bus
	4.6.7 Software Components Are Multi-platform

	4.7 IT Architecture Patterns and Practices
	4.7.1 IT Architecture Layers Patterns
	4.7.1.1 Two-Layer Versus Three-Layer Architectures

	4.7.2 Architectures for High Availability

	4.8 IT Integration Patterns
	4.8.1 Introduction
	4.8.2 File Transfer
	4.8.3 Screen Scraping
	4.8.3.1 Web Scraping or Web Harvesting

	4.8.4 Remote Procedure Call
	4.8.5 Message Queues
	4.8.6 Message-Oriented Middleware
	4.8.7 Data-Oriented Integration
	4.8.7.1 Integration via DBMS

	4.8.8 Application Interface-Oriented Integration
	4.8.9 Transactions and Transaction Monitors
	4.8.10 Business Process-Oriented Integration
	4.8.10.1 Workflow-Oriented Integration
	4.8.10.2 Business Process Execution Language
	4.8.10.3 Orchestration vs Choreography

	4.9 Exercises
	References

