
The Enterprise Engineering Series

Enterprise
Architecture and
Cartography

Pedro Sousa
André Vasconcelos

From Practice to Theory;
From Representation to Design

The Enterprise Engineering Series
Founding Editor

Jan L. G. Dietz, Technical University of Delft, Delft, The Netherlands

José Tribolet, Instituto Superior Tecnico, Technical University of Lisbon, Lisboa,
Portugal

Editors-in-Chief

David Aveiro , Faculty of Exact Sciences and Engineering, University of
Madeira, Funchal, Portugal

Robert Pergl, Faculty of Information Technologies, Czech Technical University in
Prague, Praha 6, Czech Republic

Henderik A. Proper, IT for Innovative Services (ITIS), Luxembourg Institute of
Science and Technology (LIST), Esch-sur-Alzette, Luxembourg

Editorial Board Members

Joseph Barjis, Institute of Engineering and Management, San Francisco, USA

Giancarlo Guizzardi , Free University of Bozen-Bolzano, Bolzano, Italy

Jan A. P. Hoogervorst, Antwerp Management School, Antwerp, Belgium

Hans B. F. Mulder, University of Antwerp, Antwerpen, Belgium

Martin Op’t Land, Antwerp Management School, Antwerp, Belgium

Marné de Vries, Industrial and Systems Engineering, University of Pretoria,
Pretoria, South Africa

Robert Winter, Institute for Information Management, University of St. Gallen,
St. Gallen, Switzerland

https://orcid.org/0000-0001-6453-3648
https://orcid.org/0000-0002-3452-553X

Enterprise Engineering is an emerging discipline for coping with the challenges
(agility, adaptability, etc.) and the opportunities (new markets, new technologies,
etc.) faced by contemporary enterprises, including commercial, nonprofit and
governmental institutions. It is based on the paradigm that such enterprises are
purposefully designed systems, and thus they can be redesigned in a systematic and
controlled way. Such enterprise engineering projects typically involve architecture,
design, and implementation aspects.

The Enterprise Engineering series thus explores a design-oriented approach that
combines the information systems sciences and organization sciences into a new
field characterized by rigorous theories and effective practices. Books in this series
should critically engage the enterprise engineering paradigm, by providing sound
evidence that either underpins it or that challenges its current version. To this end,
two branches are distinguished: Foundations, containing theoretical elaborations
and their practical applications, and Explorations, covering various approaches and
experiences in the field of enterprise engineering. With this unique combination of
theory and practice, the books in this series are aimed at both academic students and
advanced professionals.

Pedro Sousa • André Vasconcelos

Enterprise Architecture
and Cartography
From Practice to Theory;
From Representation to Design

Pedro Sousa
Instituto Superior Técnico
University of Lisbon
Lisbon, Portugal

André Vasconcelos
Instituto Superior Técnico
University of Lisbon
Lisbon, Portugal

ISSN 1867-8920 ISSN 1867-8939 (electronic)
The Enterprise Engineering Series
ISBN 978-3-030-96263-0 ISBN 978-3-030-96264-7 (eBook)
https://doi.org/10.1007/978-3-030-96264-7

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland
AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-96264-7

To my friends José Tribolet, André Sampaio,
and Ricardo Leal, for all the inspiring
discussions about these themes.
To my wife Maria and my sons Miguel and
Marta.
Pedro Sousa

To my wife, Ana
my children, Leonor, Diana and Helena
and my parents, Fernanda and Fernando.
André Vasconcelos

Foreword

Warning

I bear a very special relationship with the authors of this book, so be aware of
the implicit bias this foreword inevitably possesses. The authors are Professors of
Information Systems at the Department of Computer Science and Engineering (DEI)
of IST, University of Lisbon, where I was Full Professor until my retirement 2 years
ago. With Pedro Sousa, I had the privilege to initiate the teaching of Information
Systems Architecture two decades ago, in the then novel specialized curriculum
of Information Systems of the Computer Science and Engineering Bachelor and
Master of Science Degrees. André Vasconcelos has done his Ph.D. thesis under my
supervision, and we all have been involved in the establishment and development of
Enterprise Engineering, since 2004 to the present day.

All of us have been very active also in research, supervising many M.Sc. and
Ph.D. students, while pursuing also professional activities as practicant engineers,
in private and public companies and in public administration institutes and depart-
ments.

About This Book

This book represents a major milestone in the maturation and the alignment of the
fundamental concepts that our Lisbon pole of Enterprise Engineering has focused
on after these two decades. The authors present in the book their specialized
views, which are naturally distinct from each other given their specific research
and professional focus, in an integrated and coherent way, a feat only possible by
their vast experience in jointly teaching M.Sc. and Ph.D. courses.

My recommendation to someone with potential interest in enterprise architecture
and trying to decide whether this book is worth paying attention to is to read first,
slowly and reflexively, Chap. 2—Founding Concepts. Understanding the deep rela-

vii

viii Foreword

tion between Systems and Architecture, as it concerns the human capability to deal
intelligently and purposefully with Enterprises, both individually as collectively, is
a solid and sound starting point to benefit in full from the pedagogical exposition of
the different subjects presented in the book.

The book addresses the two most relevant dimensions of Enterprise Architecture,
representation and design, detailing in the several chapters both theoretical and
practical aspects relevant for these purposes.

I choose to emphasize in this foreword the relevance of Enterprise Cartography,
as the means for humans to apprehend and comprehend the context, the facts, the
actions, the evidences, and the effects that occur with their enterprise context, with
a shared semantic and ontological context.

The availability of proper, truthful, real-time Enterprise Cartography, enabling
effective and efficient communication among all Enterprise collaborators, maxi-
mizes the effects of systemic, timely, and synchronized actions. Today, the advent
of 5G and the IoT provides affordable technological means to achieve real-time
systemic and global “As Is” representations of an Enterprise, as long as there
is sound and solid Enterprise Architecture tools and infrastructures in place,
dynamically and constantly updated to track the continuous changes that occur as
time goes by.

It is my deep belief that we will be seeing the emergence of the collective
awareness of the state and the dynamics associated with any enterprise, continuously
construed and reified from the data collected by the sensors and the human actors
as they act, enriching the information available to and surrounding each actor and
enabling him to make better decisions.

The impressive advances we are witnessing in AI and Deep Learning will further
potentiate the capabilities of each human and of the collective of humans that are at
any given moment an Enterprise, to act intelligently toward achieving their intended
purpose.

In Conclusion

I consider that the contexts of this book represent a major contribution toward the
Body of Knowledge of Enterprise Engineering, in the “latu sensu,” valuable to those
involved in teaching, research, and professional practice.

The existence of systemic and holistic perspectives of Enterprise Architecture,
founded on solid enterprise semantics and ontology basis, will constitute “Must
Have” requirements adopted by all Enterprise Architects and by all Enterprises.
Without it, I fear for the pernicious and uncontrolled usage and effects of AI and
ML in the future.

INESC José Tribolet
Lisboa, Portugal
January 2022

Contents

Part I Motivation: Why We Wrote This Book

1 Introduction . 3
1.1 Enterprise Architecture: Expectations and Disappointments. 3
1.2 Enterprise Design and Representation . 5
1.3 Enterprise Cartography . 9

1.3.1 Approaches to Enterprise Cartography . 12
1.4 Book Structure and Contributions .. 13

1.4.1 Book Contributions . 14
1.4.2 Book Structure . 14

1.5 Exercises . 15
References .. 15

Part II Theory: The Theories Behind

2 Founding Concepts . 19
2.1 Systems and Enterprises . 19

2.1.1 Systems . 19
2.1.2 Enterprises . 21

2.2 Architecture and Enterprise Architecture . 22
2.3 Design and Representation.. 24
2.4 Architecture Views and Viewpoints . 26
References .. 27

3 Enterprise Architecture . 29
3.1 Introduction .. 29
3.2 Enterprise Architecture Domains and Frameworks.. 29

3.2.1 The Zachman Framework . 30
3.2.2 The Open Group Architecture Framework 33
3.2.3 ArchiMate .. 33
3.2.4 Commonly used Architecture Layers . 36

3.3 The Architecture of the Enterprise . 36

ix

x Contents

3.3.1 Strategy Architecture Layer . 36
3.3.2 Business Architecture Layer . 48
3.3.3 Information Architecture Layer . 57
3.3.4 Information Systems Architecture Layer 60
3.3.5 Technology Architecture Layer . 63
3.3.6 Service Architecture Layer . 66

3.4 Exercises . 68
References .. 76

4 Enterprise Architecture Patterns and Principles . 79
4.1 Introduction .. 79

4.1.1 Principles Description . 79
4.1.2 Principles Summary . 80

4.2 Cross-Layer Principles . 80
4.2.1 Components Are Centralized . 80
4.2.2 Front-Office Processes Are Separated from

Back-Office Processes . 84
4.2.3 Channel-Specific Is Separated from

Channel-Independent .. 86
4.2.4 Data Is Provided by the Source . 87
4.2.5 Data Is Maintained in the Source Application 88
4.2.6 Data Is Captured Once . 89
4.2.7 Systems Communicate Through Services 90
4.2.8 Business and Information Architectures Are Aligned 90
4.2.9 Business and Application Architectures Are Aligned 92
4.2.10 Information and Application Architectures

Are Aligned .. 92
4.2.11 Required Application Services Are Available 94
4.2.12 Services Have Different Interfaces . 96
4.2.13 Applications Manage Information with the Same

Security Level. 97
4.2.14 Critical Process Are Executed in Specific Systems 98
4.2.15 Each Information Entity Is Managed by a Single

Application.. 99
4.2.16 Primitive and Derived Data Are Managed by

Different IT Components. 100
4.3 Business Layer Principles. 102

4.3.1 Business Units Are Autonomous . 102
4.3.2 Customers Have a Single Point of Contact 102
4.3.3 Management Layers Are Minimized . 102

4.4 Information Layer Principles . 104
4.4.1 Information Management Is Everybody’s Business 104
4.4.2 Common Vocabulary and Data Definitions. 104
4.4.3 Content and Presentation Are Separated 107

Contents xi

4.4.4 Data That Is Exchanged Adhere to a Canonical
Data Model. 107

4.4.5 The Number of Implementations of the Same
Information Entity Is Minimized . 110

4.5 Applications Layer Principles . 111
4.5.1 Common Use Applications . 111
4.5.2 Presentation Logic, Process Logic, and Business

Logic Are Separated . 112
4.5.3 Business Logic and Presentation Components

Do Not Keep the State . 113
4.5.4 Minimize the Number of Dependencies and

Applications per Service . 113
4.6 Infrastructure Layer Principles . 114

4.6.1 Technology Independence.. 114
4.6.2 Interoperability . 114
4.6.3 IT Systems Are Scalable . 115
4.6.4 IT Systems Adhere to Open Standards . 116
4.6.5 IT Systems Are Preferably Open Source 117
4.6.6 All Messages Are Exchanged Through the

Enterprise Service Bus . 117
4.6.7 Software Components Are Multi-platform 118

4.7 IT Architecture Patterns and Practices . 118
4.7.1 IT Architecture Layers Patterns . 118
4.7.2 Architectures for High Availability . 122

4.8 IT Integration Patterns . 124
4.8.1 Introduction . 124
4.8.2 File Transfer . 125
4.8.3 Screen Scraping. 126
4.8.4 Remote Procedure Call . 127
4.8.5 Message Queues . 128
4.8.6 Message-Oriented Middleware . 129
4.8.7 Data-Oriented Integration . 129
4.8.8 Application Interface-Oriented Integration 131
4.8.9 Transactions and Transaction Monitors 131
4.8.10 Business Process-Oriented Integration . 133

4.9 Exercises . 137
References .. 140

5 Enterprise Cartography . 141
5.1 Introduction .. 141
5.2 Definitions . 143

5.2.1 Enterprise Model . 143
5.2.2 Enterprise Meta-Model . 144
5.2.3 Architectural Sentence . 144
5.2.4 Productive Artefacts . 146

xii Contents

5.2.5 Transformation Initiative . 147
5.2.6 Enterprise States . 147
5.2.7 Enterprise Observation . 148
5.2.8 Enterprise System . 148
5.2.9 Enterprise Roles . 149
5.2.10 Enterprise System Representations . 149

5.3 Enterprise Cartography Principles . 152
5.3.1 Principle 1: Transformation Initiatives Are

Observable Artifacts of the Enterprise AS-IS 153
5.3.2 Principle 2: Changes in the Set of Productive

Artifacts Are Planned Ones . 154
5.3.3 Principle 3: All Enterprise Artifacts Have a

Five-State Life Cycle: Conceived, Gestating,
Alive, Retired, and Removed . 154

5.3.4 Principle 4: The Emerging AS-IS Can Be
Inferred by Observing the Enterprise AS-IS 156

References .. 156

Part III How We Do It: Supporting Methodologies and
Technologies

6 Enterprise Architecture Development Framework . 159
6.1 Introduction .. 159
6.2 TOGAF ADM .. 159

6.2.1 Preliminary Phase . 160
6.2.2 Phase A: Architecture Vision . 161
6.2.3 Phase B: Business Architecture . 162
6.2.4 Phase C: Information Systems Architecture. 162
6.2.5 Phase D: Technology Architecture . 164
6.2.6 Phase E: Opportunities and Solutions . 165
6.2.7 Phase F: Migration Planning . 165
6.2.8 Phase G: Implementation Governance.. 166
6.2.9 Phase H: Architecture Change Management 166
6.2.10 ADM Architecture Requirement Management.. 166
6.2.11 Implementing the ADM .. 166

References .. 168

7 Enterprise Strategy Design . 169
7.1 Introduction .. 169
7.2 Context Identification . 170

7.2.1 PESTEL .. 170
7.2.2 External Stakeholders and Drivers . 171

7.3 Desired Result Definition . 173
7.3.1 Balanced Scorecard.. 173
7.3.2 Vision and Goals. 174

Contents xiii

7.4 Courses of Action and Requirement Definition. 175
7.4.1 Business Model Canvas . 175
7.4.2 Mission, Strategies, Tactics, Business Policies,

Business Rules, Requirements, and Constraints 176
7.5 Assessment Definition . 178

7.5.1 SWOT . 178
7.5.2 Assessments and Outcomes . 178

7.6 Enterprise Strategy Design Overview . 180
7.7 Exercises . 181
References .. 183

8 Business Process Design. 185
8.1 Business Process Design Overview . 185

8.1.1 Process Identification .. 186
8.1.2 Activity Identification . 187
8.1.3 Activity Classification . 192

8.2 A Methodology for Business Process Design. 192
8.2.1 Foundations for Business Process Design

Methodology .. 192
8.2.2 Business Process Elicitation . 194
8.2.3 Business Process Discovery .. 196
8.2.4 Business Process Enrichment . 199
8.2.5 Extending to Business Process Prototyping 202

8.3 Exercises . 207
References .. 210

9 Information Architecture Design . 211
9.1 Approaches for Information Architecture Design 211
9.2 Design Primitives . 212

9.2.1 Top-Down Design Primitives. 212
9.2.2 Bottom-Up Design Primitives. 214

9.3 Design Approaches . 214
9.3.1 Top-Down Design Approach . 214
9.3.2 Bottom-Up Design Approach . 217
9.3.3 Discussion . 222

9.4 Exercises . 223
Reference .. 226

10 Information Systems Architecture Design . 227
10.1 Information Systems Architecture Planning . 227

10.1.1 Information Systems Architecture Alignment 229
10.1.2 Information Systems Architecture Design 236
10.1.3 Information Systems Architecture Project Approach 241

10.2 Application Portfolio Management. 248
10.2.1 APM Analysis . 248
10.2.2 APM Indicators . 251

xiv Contents

10.2.3 APM Actions . 255
10.2.4 APM Project Approach.. 256

10.3 Service Architecture Design . 257
10.4 Exercises . 258
References .. 263

11 A Method for Enterprise Cartography . 265
11.1 Phases of the EC Approach .. 266

11.1.1 Phase 1: Identify Key Questions . 267
11.1.2 Phase 2: Concept Clarification . 268
11.1.3 Phase 3: Identify the Best Sources of Information 269
11.1.4 Phase 4: Structure the Processes and Tools to

Capture Information . 271
11.1.5 Phase 5: Define and Configure the Architectural Views . . 272
11.1.6 Phase 6: Populate the KB with an Initial Baseline 273

11.2 A Method for Concept Clarification . 275
11.2.1 Identification of Relevant Properties. 275
11.2.2 Identification of Relevant Perspectives . 276
11.2.3 Concept Representation . 276
11.2.4 An Example: Clarifying the Application Concept 277

11.3 Exercises . 288
References .. 291

Part IV Practice: Sample Projects

12 Enterprise Architecture Case Projects . 295
12.1 Case 1: Lisbon Smart City Enterprise Architecture 295

12.1.1 Introduction . 295
12.1.2 Strategy . 296
12.1.3 Organization . 296
12.1.4 Business Processes . 297
12.1.5 Information . 298
12.1.6 Current Applications . 299
12.1.7 Current Infrastructure . 303
12.1.8 Project Goals . 304

12.2 Case 2: Instituto Superior Técnico Enterprise Architecture 306
12.2.1 Introduction . 307
12.2.2 Location .. 307
12.2.3 Organization . 307
12.2.4 Strategy . 309
12.2.5 Business Process and Information . 310
12.2.6 EA Guidelines . 311
12.2.7 Project Goals . 311

Contents xv

12.3 Case 3: Public Procurement Enterprise Architecture 313
12.3.1 Introduction . 313
12.3.2 Public Procurement Interoperability Initiative

(TO-BE) .. 317
12.3.3 The Project to Be Done. 318

References .. 319

Acronyms

ADM Architecture Development Method
APM Application Portfolio Management
BMM Business Motivation Model
BPMN Business Process Modeling Notation
CEO Chief Executive Office
CMDB Configuration Management Database
CRM Customer Relationship Management
CRUD Create, Read, Update, Delete
EA Enterprise Architecture
EC Enterprise Cartography
EDI Electronic Data Interchange
ERP Enterprise Resource Planning
ETL Extract, Transform, Load
IEEE Institute of Electrical and Electronics Engineers
ISA Information Systems Architecture
IT Information Technology
ITIL Information Technology Infrastructure Library
KB Knowledge Base
ODM Organizational Data Mining
OMG Object Management Group
PESTEL Political, Economic, Social, Technological, Environmental, and Legal
SWOT Strengths, Weaknesses, Opportunities, and Threats
TOGAF The Open Group Architecture Framework
UML Unified Modeling Language

xvii

Part I
Motivation: Why We Wrote This Book

Chapter 1
Introduction

Pedro Sousa

Abstract This chapter introduces the major motivations behind this book. Enter-
prise Architecture (EA) expected results and drivers are firstly introduced, along
with EA challenges. Then, a separation between enterprise representation and
enterprise design is presented, introducing Enterprise Cartography and AS-WAS,
AS-IS, and TO-BE models. The need for an Enterprise Cartography approach is
next presented. Finally the book contributions and structure are presented.

1.1 Enterprise Architecture: Expectations
and Disappointments

In its simplest form, the architecture of a system is merely a listing of its components
and how they interact. In a more complex form, it is a formal definition of the
structure and the properties of its components, their relationships and behavior,
as well as the principles necessary for its analysis, design, and evolution. In this
last definition, the architecture has both a descriptive and a prescriptive role—
descriptive since it describes the components and their relations and prescriptive
because it also restricts the degree of freedom of those designing and implementing
the system, by defining what can be freely modified and what remains unchanged.
The double role of enterprise architecture has been a point of convergence and
widespread agreement among many authors [1].

Enterprises that have succeeded to implement an enterprise architecture initiative
have delivered business value mostly in dealing with change. Since enterprises must
transform to respond to external pressures, the enterprise architecture provides a
clear view of the current and the desired future situation so that it is easier to
plan and analyze proper scenarios of enterprise’s changes. Enterprise Architecture
clarifies:

• How strategic requirements are related to future enterprise state, which shows
how the multiple futures enterprise views should look like in order to support the
business strategy.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_1

4 1 Introduction

• What transformation initiatives are required to reach that future state, making
explicit the requirements and principles that steer the implementation of trans-
formation initiatives.

• How information systems, information entities, infrastructure, and people are
articulated to support business processes and enterprise operations as a whole.
This provides the basis for many analyses and what-if scenarios regarding the
enterprise artifacts.

The need to maintain explicit knowledge of the architecture of enterprises is an
indisputable fact nowadays given their constant need to evolve. Since the Enterprise
Architecture provides such explicit knowledge, the expectations on Enterprise
Architecture are high. Either for enterprise governance, engineering, compliance,
or maintenance, architectural representations are an enterprise asset that must be
governed, as stated by many authors. For example, Enterprise Architecture is used
to support the implementation of a business strategy [2, 3], to support the governance
of the enterprise [1, 4], to support the management of IT, and, more recently, as an
instrument for the management and coordination of the digital transformation [5].

In [6], Stefan presents a list of 28 application scenarios of enterprise architecture
in enterprises and the corresponding literature sources, making clear the importance
of enterprise architecture for enterprise maintenance, planning, and evolution.
Opt´Land [7] presents a comprehensive list of the benefits of enterprise architecture
for enterprises that are able to implement EA initiatives.

Organizations such as IEEE [8] also present a long list of usages of architecture
descriptions for several stakeholders, being the first ones the basis for system
developing, for impact analysis, for the evaluation of alternatives, and so on. Finally,
the law in several countries also force enterprises to build and maintain their
enterprise architecture. Furthermore, several external factors have been imposing to
enterprises the need to have an enterprise architecture for specific domains, namely:

• In the USA, the Information Technology Management Reform stated, in the
Clingler-Cohen Act of 1996 [9], that all US government agencies must explain
how their strategic missions are sustained in their IT, implement capital control
processes, and sustain their IT investments on business transformation needs.
This was an important stimulus for the development of the discipline of enterprise
architecture.

• Also in the USA, the Sarbanes-Oxley Act of 2002 [10] states that manage-
ment staff is personally responsible for ensuring the effectiveness of financial
control mechanism of an organization. This forces companies to develop good
governance practices, which include the need to have an “accountability” of
each employee’s responsibilities and report processes and technologies. This
obligation is mandatory for all companies at the US stock exchange.

• In Europe, Basel II e III (2004 e 2010) [11] states that EU financial institutions
need to control credit and operational risk. This implies that companies maintain
an explicit knowledge of their architecture, leading to the discipline of enterprise
architecture.

1.2 Enterprise Design and Representation 5

• In Portugal, the Decree Law 107/2012 states that IT investments from central
Government bodies, which accounts over 600 institutions, need to submit an
update to the enterprise architecture along with their IT spending´s.

Given such wide range of benefits, one could expect that Enterprise Architecture
would be a reality in most enterprises. Furthermore, given the variability and quality
of existing enterprise architecture tools and their representation capabilities [12],
one could argue that enterprises could easily create and maintain an enterprise archi-
tecture repository where all models are kept updated so that core enterprise activities
could benefit from such information [6]. In addition to the variety of enterprise
architecture tools, one can also find multiple methods and frameworks [13–18] to
successfully implement enterprise architecture initiatives, both in white papers from
specialized consulting companies and in technical and management textbooks.

Despite such recipes for success, the challenges to achieve an enterprise architec-
ture are many and come from all directions: organizational, managerial, personal,
and communications, among many others. The result is that, in many enterprises,
Enterprise Architecture seems to be something intangible. This statement is sup-
ported not only from our professional experience in numerous enterprises but
also from multiple sectors and countries where we have noticed not merely the
absence of an enterprise architecture but also the abandonment of such initiatives
by the effort that document the organizational artifacts seems to imply. Many
unsuccessful cases reported [19–21] also highlight the challenges to achieve an
Enterprise Architecture.

One of the major difficulties pointed out in the industry in the adoption of an
Enterprise Architecture initiative is the effort it requires to keep representations
updated, in particular when enterprises change over time. Given the fact that the
rate of enterprises´ change seems to be increasing, maintaining the Enterprise
Architecture seems harder to achieve day by day. The effort required to keep
Enterprise Architecture models up-to-date becomes a critical one, since commercial
enterprises are unlikely to spend resources on more structural initiatives when they
lack of resources in more operational activities. We refer to commercial enterprises
since in specific industries, such as defense, where effort is not a critical aspect, these
enterprises go much further with their architecture frameworks such as Department
of Defense Architecture Framework (DODAF [22]), NATO Architecture Framework
(NAF [23]), British Ministry of Defence Architecture Framework (MODAF [24]),
Department of National Defence/Canadian Armed Forces Architecture Framework
(DNDAF [25]), or Atelier de Gestion de l’ArchiTEcture des systmes d’information
et de communication (AGATE [26]).

1.2 Enterprise Design and Representation

Despite the potential benefits from having an Enterprise Architecture repository
describing the enterprise’s models, enterprises are far from being able to create and
maintain an Enterprise Architecture repository updated, given the effort that such

6 1 Introduction

endeavor entails. This is a very common perception that enterprise leaders have
regarding Enterprise Architecture. There are multiple reasons for such a perception,
and we believe that a significant part of such extra effort results from the following
organizational aspects:

• The teams involved in the change of the enterprise use multiple “Enterprise
Architecture” tools, being office tools the most commonly used ones. Such tools
are rarely integrated and do not provide coherent information. For example, when
the board of directors of a company, acting as an architect designing the company,
decides to create a new department, the board will not use a traditional enterprise
architecture tool to express the new company design. The new department will
be most likely designed in a board meeting minutes using an office document. In
this example, the office document is the tool where the enterprise evolution was
designed. If the enterprise structure is modeled in some enterprise architecture
tool, effort is required to update it in conformity with this new design. The person
that performs such update in the enterprise architecture tool is not designing
but updating the model and its architectural representations according to the
information in the tool used for enterprise design (the office document with the
meeting minutes). The same occurs with many other design changes made by
several other people in the enterprises, each using different tools to register the
enterprise new design.

• Enterprise evolution is mostly a distributed and asynchronous process using ad
hoc information. Enterprise evolution is planned and designed by different units
in an asynchronous and distributed process, involving many actors and many
concerns without formal mechanisms of communication among the designers.
For example, when a director decides to make changes in his or her department,
he or she probably will conduct meetings with other departments to check for
possible dependencies and impacts. Directors of other departments can do the
same for their departments. Despite the number of face-to-face meetings, there
is no design process established so that the knowledge gathered in such meetings
is consolidated and shared across the enterprise, so that the design actually uses
coherent and updated information.

In such context, one can envisage the huge effort required to update the models in
the Enterprise Architecture tools used. The faster the enterprise changes, the more
effort is required to keep such models updated. When enterprises are already faced
with lack of resources for the day-to-day projects, they are not willing to allocate
effort to keep enterprise models updated.

Therefore, to abstract and represent enterprise reality, one also needs principles
and instruments to deal with the continuous and fast transformation of the enterprise.
Without them, enterprises will likely change faster than one can represent them, and
representations become obsolete long before they are completed. This is, in fact,
the application of the famous Nyquist’s sampling theorem 1 applied to Enterprises:

1 https://en.wikipedia.org/wiki/Nyquist_rate.

https://en.wikipedia.org/wiki/Nyquist_rate

1.2 Enterprise Design and Representation 7

the sampling rate of sensing events must be high enough to follow the underlying
dynamics of changes occurring in the underlying physical environment.

But the problem is actually more complex because enterprise models are also a
moving target. In fact enterprises need models that refer to different points in time,
namely:

• AS-WAS models. These models represent the enterprise’s past state, including
not only the past architecture but also the plans of transformation initiatives
that were considered in the past. These models are most useful for auditing and
accountability purposes since they can hold justifications for the decisions taken
in the past. For example, the decision taken in the past to acquire development
capacities in some technology could be sustained on the plans of a transformation
initiative to build new products using that technology, regardless the fact of that
planned transformation was actually put forward or dismissed.

• AS-IS models. These models represent the current enterprise. AS-IS models are
required for current operations and for reacting to events. AS-IS models include
the plans of today’s transformation initiates. For example, if the organization
intents to create a new department and has done several plans (models) related
to the operation of the new department, such as the business processes, the tools,
the required competences, and so on, such plans are part of the enterprise AS-IS.

• TO-BE models. These models represent the future architecture of the enterprise
and are necessary for planning and estimating the duration, costs, and risks of
the transformation initiatives before they start. For example, to plan a project
that will start in 6 months, one needs to know what will be the Enterprise
Architecture in 6 months from today. The current architecture has little use
since many changes may occur in the meantime. The need to relate project
management and Enterprise Architecture has been recognized both by Enterprise
Architecture [27–29] and project management [30, 31] communities.

Naturally, AS-WAS models are just the old AS-IS and do not pose a major
challenge. But AS-IS and TO-BE models are a real challenge, since they must take
into consideration the multiple ongoing transformation initiatives and are subject to
delays. Furthermore, models that start as a TO-BE model will eventually become
an AS-IS model, even after adjustments, and then become an AS-WAS model. So if
TO-BE and AS-IS models are kept apart and considered as different models, effort
must be made to later move TO-BE to become AS-IS models.

The need for updated representations of the enterprise (both AS-IS and TO-BE) is
essential to plan transformation initiatives and, consequently, has an impact on the
costs, the time, and the risks to achieve the expected outcomes [27, 31].

Consider the illustrative scenario presented in Fig. 1.1. At the very beginning of
the year, a given enterprise approves the three transformation initiatives T1 to T3 to
move the enterprise from the AS-IS situation, on the left-hand side, into the intended
TO-BE situation, on the right-hand side.

The enterprise has models of the current situation and also of the intended
situation. Furthermore, each transformation initiative has also its own AS-IS and

8 1 Introduction

Fig. 1.1 Planning transformation initiatives to move from current (AS-IS) situation to a future
(TO-BE) situation

TO-BE models, corresponding to plateaus P1 to P3. Each plateau embodies a series
of architectural views of the enterprise.

Transformation initiative T1 starts in January, and if everything goes as planned,
when it is completed, the enterprise should be according to plateau P1. However,
in practice, many factors not considered in the plans may introduce new changes to
the timings and to the actual plans of the transformation initiatives. If T1 changes its
outputs or timings, the enterprise must update the content of plateau P1 according
to the status of initiative T1, so that the enterprise could have updated views of the
current architecture. It looks simple with three projects. But in enterprises with over
a hundred projects changing the architecture annually, each changing its outputs and
timings, the effort to keep the Enterprise Architecture views updated is simply too
high. Without updated views, enterprises have no longer “current views,” because
all the models considered at the very beginning of the year are now obsolete. So the
transformation teams are working without accurate architectural views during the
whole year, from the very first day. Thus, the later in the year, the greater the error.

Keeping Enterprise Architecture views updated is a means to sustain explicit
knowledge about enterprise operation and construction. Accurate views of the
enterprise are a key asset not only to support day-by-day operations but also to
support the planning of transformation initiatives. We argue that keeping such
views continuously updated is easier when the roles of architectural design are kept

1.3 Enterprise Cartography 9

apart from the roles of architectural representation, thus enabling the separation of
concerns between architecture and cartography.

1.3 Enterprise Cartography

According to Merriam-Webster dictionary,2 Cartography is the science or art of
making maps. It is an old and established discipline of producing representations of
an object from its observation and measurement. Traditionally, these maps require
not only geographic or spatial referential but also scientific, technical, and even
aesthetic ones. Unlike traditional maps, enterprise representations do not have
necessarily a geographic or spatial referential. Nevertheless, since the definition
of Cartography matches our concept, we adopt the term Enterprise Cartography,
hereafter referred to as EC.

We define EC as the process of representing an enterprise observed directly from
reality. By reality one means the observed reality. Given that information systems
are part of the enterprise reality, gathering information from information sources,
such as information systems, is one common manner to observe the enterprise
reality.

EC differs from Enterprise Architecture because it focuses on producing rep-
resentations based on observations. To abstract and represent the enterprise, one
requires a full set of familiar concepts from the Enterprise Architecture discipline,
such as model, views, viewpoints, representation rules, etc. However, to abstract
and represent the enterprise reality, one also needs principles and instruments to
deal with the continuous and fast change going on in the enterprise. Without them,
enterprises will likely change faster than one can represent them, and representations
become obsolete long before they are completed.

Representation is a purely descriptive perspective, since it does not explicitly
incorporate the purposed design of the new enterprise artifacts, as one expects
in enterprise architecture. Such a difference is also evident in the definitions of
the architect and cartographer roles. According to the IEEE Standard Glossary
of Software Engineering Terminology [32], the term architect is defined as “The
person, team, or organization responsible for designing systems architecture”,
and in the Merriam-Webster dictionary,3 the term cartographer is defined as the
person who makes maps. So, an architect is essentially a person that designs and
shapes intended changes to the architecture of the present enterprise reality, while a
cartographer is essentially a person that aims at representing reality as it happens,
including the changes as they are occurring.

Mapping the changes as they are happening is the most challenging aspect in EC
since it implies doing representations of evolving objects. To address this problem,

2 https://www.merriam-webster.com.
3 https://www.merriam-webster.com.

https://www.merriam-webster.com
https://www.merriam-webster.com

10 1 Introduction

one must ensure that the practices of abstracting and representing the evolving
enterprise occur at a rhythm that is faster than the actual rhythm of enterprise
changes. We have been working on this issue over a decade and have come up with
a set principles and instruments to enable effective EC in continuously changing
enterprises.

Steering enterprises entails not only new processes and systems but also greater
integration with existing ones. More and more integrated processes and systems
result not only in an increase in enterprise complexity but also in a greater need
to know the enterprise current and emerging processes and systems. Unfortunately,
these two factors feed each other in a positive feedback loop: the more complex
the enterprise is, the more one needs to know, and the harder it gets to know
it. Such positive feedback significantly contributes to the increase in costs, risks,
and execution time for transformations initiatives, as well as the complexities of
systemic enterprise steering and governance.

The problem of keeping a set of accurate representations (i.e., models) of an
enterprise is not an easy one for large enterprises, which can have hundreds of
transformation initiatives, of different scopes and sizes, each year. The origin of
this difficulty is that the planning process originates in many of the enterprise’s
communities without a consistent, coherent, and complete systemic view of the
enterprise to support them, individually and as a whole.

Based on our observations, the design of the enterprise’s architecture is a
distributed process in most enterprises, performed by architects from different
domains (from business to technology), each planning, designing, and deciding
based on partial and often conflicting or even incompatible views of the enterprise.
This state of affairs is entirely different from the one it is observed in some
industries, in particular, those for which real-time systemic integrity is essential
to their survival, such as Defense, where all the efforts are made to ensure at all
times the enterprise transformations are steered by a centralized and fully controlled
design processes [22].

The list of reports on failed EA programs in enterprises is large [21]. Never-
theless, in spite of high levels of EA program failures, enterprise transformations
continue to lack purposeful designs, according to systemically coherent architec-
tures! In fact, most enterprises today are still the result of the “natural evolution”
that happened from their original birth configuration. Current transformations keep
being designed by enterprise architects according to partial needs and points of view,
regardless of the eventual existence of global Enterprise Architecture programs to
guarantee the global integrity of the TO-BE enterprise.

What Enterprise Architecture programs fail to produce is not the architecture of
an enterprise, but the establishment of the processes and tools to provide complete
and accurate information that sustain a good architecture design, where alignment
between the different elements was taken into consideration and resulted from a
conscious design. In other words, they cannot create a single, consolidated view
of the enterprise because this requires coordination between different areas, from
coherent and non-conflicting goals, rational and implementable use of resources,
cost sharing, work methods, languages, tools, etc. [21].

1.3 Enterprise Cartography 11

Such a consolidated model can be obtained and sustained by forcing all architects
to use and share the same modeling notation, the same level of detail, and probably
also the same modeling tool. However, this is very hard to achieve in real enterprises,
because enterprise architects are in fact a very heterogeneous group, in what
concerns their backgrounds, their knowledge, and needs. In practice, different
architects can use different notations, different levels of detail, or even different
tools, making harder to support a design process that enables consistent and coherent
views of the enterprise architecture.

With the introduction of the concept of Enterprise Cartography, we can decouple
the problem of design from the problem of building a consolidated set of representa-
tions of the enterprise. Different architects can use their preferred design approach,
leaving up to the cartographer the task of consolidating each partial architecture
into a single global set of maps representing the enterprise architecture of the AS-
IS as well as of the emerging AS-IS. In the course of this consolidation process,
many inconsistencies may arise. However, they should pass on to the Enterprise
Architects involved so that any inconsistencies and opposing points of the views can
be dealt with the adequate governance mechanisms, which form the essential core
of the entire organizational governance. As a matter of fact, enterprises do not have
explicit governance mechanisms aimed at maintaining global systemic integrity,
while subject to the multitude of changes that are in progress in a distributed fashion
throughout the enterprise. To realize such governance mechanisms, they need a
systemic, coherent, and complete view of the enterprise as provided by Enterprise
Cartography.

Another important aspect is that Enterprise Cartography is less intrusive than
Enterprise Architecture and, therefore, easier to implement in real enterprises,
considering that defining the shape of the enterprise is naturally perceived as a more
relevant role than representing it. Enterprise architects are naturally more willing to
cooperate with others when the ownership of the design remains theirs than with
other architects with whom they would have to negotiate and share the ownership
of the new designs.

Enterprise AS-IS and emerging AS-IS are used for different purposes. The first
is a key asset to operate the enterprise, for example, to analyze the impact of a
response to an event, whereas the second is a key asset for the planning of the
transformation initiatives. For example, consider that today’s date is January and
one wants to plan a transformation initiative that is expected to start in April and to
conclude in September. Assuming there are other ongoing transformation initiatives,
the enterprise might change from January to April, and therefore the AS-IS state in
January is not sufficient for the planning of the actions that will occur in April. In
fact, to do the job properly, one needs to keep estimating as best as possible the
enterprise future TO-BE states from April to September, based on the best available
AS-IS at any point in time during the transformation time frame.

Transformation initiatives create, remove, or change artifacts and their inter-
dependencies that might result in changes to the architecture, as stated in the
description of their outcomes. In IT, where transformations initiatives are typically
called projects, such descriptions are either stated in natural language or models

12 1 Introduction

such as BPMN [33], ArchiMate [34], and UML among others. The conciliation of
all these descriptions in an integrated and consolidated vision is a task that entails
a massive human effort and is therefore far beyond the reach of the vast majority
of enterprises. Thus, the key motivation for Enterprise Cartography is to provide
architectural maps of the enterprise current AS-IS and emerging AS-IS with the
necessary architectural information to those planning and executing the changes.
We claim that Enterprise Cartography allows us to provide a generic and systemic
approach, where only a minimum effort is necessary to create and maintain current
AS-IS and emerging AS-IS architectural maps.

1.3.1 Approaches to Enterprise Cartography

The idea of creating maps from observation of the enterprise reality is not new, in
particular if one considers data extracted from systems in an efficient manner to
observe the enterprise reality.

At the business and organizational layers, many cartography techniques have
been presented in the domain of Organization Design and Engineering [35–38] and
Organizational Data Miming (ODM) [36]

At the business process layer, cartography techniques are found within the
discipline of business process management, especially in process mining. These
techniques make use of event logs to discover process activities, control, and data
flows and also to assess the conformance of existing processes against constraints.
Mined processes correspond to the actual instances of processes, not to the designed
or modeled processes. Another example of Enterprise Cartography is the inference
of inter-organizational processes based on EDI event logs.

Business intelligence techniques that collect data from enterprise systems to
produce reports and dashboards may be considered yet as another example of
cartography, even though it is mostly concerned with the analytic aspects rather
than with architectural (relational) aspects of the enterprise. However, we can still
envisage many analytical views within an architecture, and therefore we may also
consider business intelligence techniques as another example of cartography and
the traditional ETL (Extract Transformation and Loading) process as a cartographic
one.

At the infrastructure level, Configuration Management Databases (CMDB) as
defined by ITIL [39] represent the configurations and relationships of the IT
infrastructure components. Such information can be used to produce architectural
maps of the enterprise infrastructure. For example, some solutions provide auto-
discovery techniques that detect nodes, virtual machines, and network devices to
create infrastructure architectural views. Auto-discovery is a cartographic process
and requires that the type of the concepts to be discovered be known in advance.
The resulting Configuration Management Database (CMDB) instance is a partial
model of the enterprise’s infrastructure. This model can be communicated through

1.4 Book Structure and Contributions 13

different visualization mechanisms, such as textual reports or graphical views that
require a symbolic notation and design rules.

As any other discovery process, infrastructure discovery requires that the type
of the concepts to be discovered be known in advance. So, one must ensure
the meta-model has the concepts one will find during discovery. For example,
discover processes cannot distinguish between system software from an application
component, because it only finds installed binaries. Furthermore, if an application
has a front-office server and a back-office server, it cannot identify those servers
belonging to the same application.

One may say that Enterprise Cartography has been a reality in many specific
domains, concerning specific variables and hard-coded with limited and predefined
meta-models and concepts. Most commonly, referred techniques aim at producing
current AS-IS views of the enterprise. Even though not so common, some also
address the emerging AS-IS views of the enterprise, especially the analytical
approaches.

We aim at a generic and systemic approach, where the effort to produce and
maintain such current AS-IS and emerging AS-IS enterprise architectural views is
kept to a minimum.

1.4 Book Structure and Contributions

This book aims at providing guidance to practitioners of Enterprise Architecture
both to develop and to maintain enterprise models. Rather than providing yet another
list of Enterprise Architecture notations and frameworks from A to Z, we focus on
methods to perform such task.

The problem of Enterprise Architecture maintenance is an important aspect
addressed in this book, because Enterprise Architecture is a never-ending initiative
within enterprises. One thing is one person develop some models of some artefacts
of the enterprise. A much harder achievement is for several persons to develop a set
of coherent models, and an even harder thing is to sustain that along the time, where
enterprise models must be maintained.

This entails dealing with issues such as lack of consensus among enterprise
staff, for example, about the structure of a business process or information systems.
We also address the difficulties that one has about things that are commonly
taken as granted and are much harder in real enterprises. For example, finding the
limits of an information system—where it starts and ends—may be hard to reach
consensus. This may explain why notable references, such as TOGAF [16] and
ArchiMate [40], do not consider the application concept but rather the application
component concept.

The long-time perspective also entails the evolution of architectural frameworks
and notations, something that does not occur when developing new models. So, we
present a catalogue of patterns, principles, and methods to develop and maintain
enterprises’s architectural models and views.

14 1 Introduction

1.4.1 Book Contributions

This book helps beginners and professionals to create and maintain enterprise
architectures in changing enterprises.

Briefly, we present the following contributions:

• The selection of a reduced set of concepts in each architectural layer, not only
because they are the most frequently used, but also because they are sufficient
for the application of the patterns, principles and methods to create and maintain
enterprise architectures.

• A compilation of a comprehensive set of principles and patterns expressed in
terms of the selected concepts. In this way, it not only guides those who are
learning the rules for using the selected concepts, but also helps professionals
about the rules applicable to each concept.

• The presentation of useful methods to guide the construction of models in
each architectural layer. Methods are fundamental for the construction and
maintenance of architectures. Regardless of the degree of individual creativity,
the design of an architecture implies the clarification of methods for teamwork,
since they simplify the transfer of work between people. Methods also simplify
the traceability between assumptions and the produced architectural artifacts,
thus reducing the effort to review the work done when any of the assumptions
change.

• Finally, we present a model and method for Enterprise Cartography, aiming
at simplifying and reducing the effort of maintaining enterprise architectures
in general and, in particular, in generating views of the emerging architecture
of the organization - something absolutely essential for the planning of new
development initiatives.

1.4.2 Book Structure

After presenting ground concepts in Chap. 2, we present in Chap. 3 the set
of Enterprise Architecture concepts one needs, and, in Chap. 4, the patterns
and principles. In Chap. 5, Enterprise Cartography concepts and principles are
described.

Afterward, in Part III of the book, we present the techniques and method-
ologies. Thus, in Chap. 6, we summarize TOGAF ADM for EA development.
In Chap. 7, an enterprise strategy design approach is proposed. In Chap. 8, a
business process design methodology is described. Information architecture design
approach is next presented. Information systems architecture design is described
in Chap. 10, including information systems architecture planning and application
portfolio management. Chapter 11 describes a method for EC design.

Finally, several case studies on EA and EC are proposed in the last chapter.

References 15

1.5 Exercises

Exercise 1.1

Look up for common arguments organizations use to justify the lack of enterprise
architecture initiatives.

Exercise 1.2

Identify situations where the architecture designer will not likely use an enterprise
architecture tool to design the organization.

Exercise 1.3

Identify in one organization you know situations where the architecture designer
will not likely use an enterprise architecture tool to design the organization.

Exercise 1.4

Describe one scenario where the enterprise architect that plays the role “designer”
is not the one responsible for maintaining the organization representations.

References

1. J. Hoogervorst, Enterprise Governance and Enterprise Engineering (Springer Nature,
Switzerland AG, 2012)

2. J. Ross, P. Weill, D. Robertson, Enterprise Architecture as Strategy. Creating a Foundation for
Business Execution (Harvard Business School Press, 2006)

3. F. Radeke, C. Legner, Strategic Enterprise Architecture Management: Challenges, Best
Practices, and Future Developments, chapter Embedding EAMS into Strategic Planning
(Springer, 2012)

4. G. Hobbs, F. Ahlemann, E. Stettiner, M. Messerschmidt, C. Legner, Strategic Enterprise
Architecture Management: Challenges, Best Practices, and Future Developments, chapter
EAM Governance and Organization. (Springer, 2012)

5. H. Proper, R. Winter, S. Aier, S. De Kinderen, Architectural Coordination of Enterprise
Transformation (2017)

6. S Bischoff, The Need for a Use Perspective on Architectural Coordination (Springer, 2017),
pp. 87–98

7. M. Op’t Land, E. Proper, M. Waage, J. Cloo, Enterprise Architecture Creating Value by
Informed Governance (Springer, Steghuis, C, 2009)

8. IEEE Computer Society, The IEEE standard 1471-2000 systems and software engineering -
architecture description (2000). Superseded by ISO/IEC/IEEE 42010:2011

9. US Government, Us 104th congress public law 104-106–feb. 10, 1996. U.S. Government
Printing Office (1996)

10. US Government, Us 107th congress public law 204. U.S. Government Printing Office (2002)
11. Basel Committee on Banking Supervision, Basel ii and basel iii (2002)

16 1 Introduction

12. S. Bibitemeavt Roth, M. Zec, F. Matthes, Enterprise architecture visualization tool survey 2014
technical report. Technical report, Technische Universit at Munchen., Sebis (2014)

13. J. Zachman, A framework for information systems architecture. IBM Syst. J. 26(3), G321–
5298 (1987)

14. United States Government Federal Enterprise Architecture Program Management Office, Fea
consolidated reference model document, version 2.3

15. P. Hagan, Eabok - guide to the (evolving) enterprise architecture body ofknowledge. McLean
Virginia: The Mitre Corporation (2004)

16. The Open Group, Togaf version 9.1 (2011)
17. Gartner, Gartner enterprise architecture framework (geaf) (2005)
18. Capgemeni, Integrated architecture framework (iaf) (1993)
19. Gartner, Gartner identifies ten enterprise architecture pitfalls (2009)
20. I. Kabai, 8 reasons enterprise architecture programs fail, in Information Week, number online,

8 (2018)
21. S. Roeleven, Why two thirds of enterprise architecture projects fail. An explanation for the

limited success of architecture projects (2010)
22. Deputy Chief Information Officer, The dodaf architecture frameworkversion 2.02. U.S.

Department of Defense, 8 (2010)
23. Noth Atlantic Treaty Organization, Nato architecture framework, version 4 (nafv4) (2018)
24. UK Ministry of Defence, Mod architecture framework v1.2 (2010)
25. Government of Canada, The dnd/cf architecture framework (can) (2007)
26. French government agency, Atelier de gestion de l´architecture, version 3 (2005)
27. K. Ugwu, Understanding the complementary relationship between enterprise architecture &

project management, in Architecture & Governance Magazine (online version, 5 (2017)
28. N. Labusch, Architectural Coordination of Enterprise Transformation, chapter Information

Requirements for Enterprise Transformation (Springer, 2017), pp. 111–117
29. J. Tribolet, P. Sousa, A. Caetano, The role of enterprise governance and cartography in

enterprise engineering. Enterprise modelling and information systems architectures (2014)
30. K. Schomburg, T. Barker, Integrating the it pmo with enterprise architecture for better govern-

ment, in Proceedings of PMI�Global Congress 2011-North America (Project Management
Institute, Dallas, TX, Newtown Square, PA, 2011)

31. M. Bernardo, P. Sousa, Portfolio management enabling a dynamic organization is representa-
tion, in 22nd International Congress on Project Management and Engineering, Madrid, Spain
(2018)

32. IEEE, Systems and Software Engineering – Vocabulary in ISO/IEC/IEEE 24765:2010(E),
pp. 1–418 12 (2010)

33. OMG, Business Process Modeling Notation (BPMN) Specification 2.0 (2010)
34. The Open Group, ArchiMate�2.1 Specification (Van Haren Publishing, Zaltbommel, 2015)
35. R. Winter, Organisational design and engineering: proposal of a conceptual framework and

comparison of business engineering with other approaches. Int. J. Organ. Des. Eng. 1(2), 126–
147 (2010)

36. H.R. Nemati, C.D. Barko, Organizational data mining: Leveraging enterprise data resources
for optimal performance (2004)

37. D. Olgun-Olgun, A. Pentland, Sensor-based organisational design and engineering. Int. J.
Organ. Des. Eng. 1(1/2), 1 (2010)

38. J. Tribolet, P. Sousa, R. Magalhaes, The role of business processes and enterprise architectures
in the development of organizational self-awareness. Polytech. Stud. Rev. VI(9) (2008)

39. K. Tambralli, Configuration management database (cmdb) (2021)
40. M. Lankhorst, Enterprise architecture at work: Modelling, communication and analysis (2009)

Part II
Theory: The Theories Behind

Chapter 2
Founding Concepts

Pedro Sousa and André Vasconcelos

Abstract The founding concepts that support this book are introduced in this
chapter. Firstly, the concepts of system and enterprise are presented, including
system composition, environment, structure, and production. Next the concepts of
architecture and enterprise are discussed. In Sect. 2.3, the purposes of representation
and design are introduced. Finally, the concepts of views, viewpoints, model,
stakeholder, and domain are presented.

2.1 Systems and Enterprises

2.1.1 Systems

The concept of a system is core for the topics addressed in this book since it is
present in Enterprises, Information Systems, and many other Enterprise artifacts.

The notion of a system simply as a set or interacting components such that system
components could be broken down into components that in turn be analyzed as an
independent entities comes from a long time. An essential step was proposed in
the General Systems Theory [1], where the interaction of systems components is
characterized by the interactions of its components and the nonlinearity of those
interactions, both between themselves and with the external environment. Maier
and Rechtin [2] add to the system definition that the functions performed by the
system cannot be performed by any of its individual components.

The notion of a System as a set of components that perform a set of functions
to the environment that no component can perform individually, by interacting
with themselves and the environment, is characterized in [3] by a Composition,
Structure, Environment, and Production. Considering the dark circles in Fig. 2.1 as
components of a given system S, one can define:

• System Composition: C = 8, 9, 10, 11. The list of the System Components.
• System Environment: E = 1, 3, 5, 12, 18. The list of the external Compo-

nents/systems that interact with the System Components.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_2

19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_2

20 2 Founding Concepts

Fig. 2.1 System, components, and environment

• System Structure: S = (8, 10); (8, 11); (10, 11); (9, 11). The System compo-
nents and their inter-dependencies

• System Structure: P . What the system delivers to the Environment. This is
not defined in the figure, but it could be any of the environment elements, for
example, the 1. In this case 1 does not belong to the environment set.

But one still lacks purpose for a system. As Hoogervorst [4] discusses, the
purpose is a fundamental notion in a system, because the components purpose can
only be understood regarding the purpose of the whole. If one does not consider the
purposefulness as a requirement, in practice, any set of components might become
a system, since there is always some kind of interaction among the components, for
example, the gravity for physical components.

The requirement that systems have a purpose has major implications, since
purposefulness is something that only designed systems have. Thus, only systems
created by living organisms are indeed systems. For example, a bird nest made of
small interleaved small branches and sticks is a system, which has the purpose of
hosting the specie reproduction. However, a bundle of interwoven branches resulting

2.1 Systems and Enterprises 21

from a strong wind is no longer considered a system, for the lack of purpose. This
also means that since the Solar System has no purpose, it is not a System at all.

In what concerns with enterprises they clearly are systems, as they are purpose-
fully designed as a set of interacting parts. Moreover, most, if not all, enterprise
components are also systems. In fact each component (also called enterprise artifact)
was purposefully designed to play a role in the enterprise, and each component
also includes a set of interacting components both between them and with other
components of the enterprise.

In general speaking, Enterprise Architecture presents the types of components
and the types of dependencies one should use to model the enterprise as a set of
systems, each with a Composition, an Environment, a Structure, and a Production,
as any system does.

To conclude this section on Systems, our proposal of Systems also exceeds the
one proposed by the ISO/IEC 15288:2008, as “concerns those systems that are man-
made and may be configured with one or more of the following: hardware, software,
data, humans, processes (e.g., processes for providing service to users), procedures
(e.g., operator instructions), facilities, materials and naturally occurring entities” [5],
since it include all kinds of designed enterprises.

2.1.2 Enterprises

So far we have been using the term enterprise as a buzz word to refer to institutions,
organizations, and any other kind of social purposeful designed forms of social
organization.

The usage of the term enterprise instead of organization or institution has always
been an issue in public entities, since the term enterprise is often understood
as much more close to a profit focused company than the terms organization or
institution, which are equally applied to public and private entities.

We refer to enterprises and not to organizations since the first term has a wider
scope according to the Open Group definition enterprise is any set of organizations
that have a common set of goals [6]. An example of an enterprise is the Portuguese
National Health System,1 that includes more than 100 health organizations. Both
the notions of enterprise architecture and enterprise cartography apply equally to
enterprises and organizations. However, since the concept of enterprise is broader
than organization or institution, we will use the first whose meaning includes the
others.

We also consider a distinction between enterprise transformation and enterprise
evolution, the difference being that the former is mostly related with top-level
restructure and the later is related with the optimization of current state of affairs [7].
Despite the differences, they both require Enterprise Architecture’s input data, and

1 Serviço Nacional de Saúde: https://www.sns.gov.pt.

https://www.sns.gov.pt

22 2 Founding Concepts

they both cause changes in the enterprise, thus likely inducing changes in the
Enterprise Architecture. Although the adoption of the term “change initiatives”
would be probably more consistent with the previous statements, in this book we
will use the term “transformation initiatives” in the broadest sense, also including
changes derived from the current state optimization. Since transformation initiatives
are temporary, unique, and a purposeful activity, they correspond to the concept of
projects as defined in the project community [8].

2.2 Architecture and Enterprise Architecture

According to the Merriam Webster dictionary,2 the meaning of the word architecture
is as quoted next in verbatim:

1. the art or science of building;
2. a formation or construction resulting from or as if from a conscious act;
3. a unifying or coherent form or structure;
4. architectural product or work;
5. a method or style of building;
6. the manner in which the components of a computer or computer system are

organized and integrated different program architectures;

While the first and fifth are related with ways of acting, the remaining ones are
related with the structure of the artifact. This duality has been debated by many
authors over the years [4, 9–11]. Maier and Rechtin [9] dedicate a full Annex to the
presentation of different meanings of the term Architecture proposed by multiple
authors. Among the different aspects, the prescriptive and descriptive role of the
architecture are highly relevant for this book.

In the descriptive perspective, an architecture expresses the models of a system,
which ultimately shows how the system is structure and organized into components
and their relations (the C, E, S, and P referred earlier). In the prescriptive
perspective, an architecture expresses the principles, guidelines, or rules that should
be used to design the systems, not the actual system’s organization and structure.

In a pure descriptive perspective, the Architecture is knowledge about the system
construction. In other words, architecture is a model of the system. The concept of
a model is also subject to several discussions, but we adopt the notion of a model as
presented in [3] after [12] presented in verbatim and quoted below:

Any subject using a system A that is neither directly nor indirectly interaction with
system B, to obtain information about the system B, is using A as a model of B.

In a pure prescriptive perspective, the architecture is a set of Architecture
Principles [4], which reduce the degree of freedom in the design of the systems.

2 https://www.merriam-webster.com.

https://www.merriam-webster.com

2.2 Architecture and Enterprise Architecture 23

Hopefully, good Architectural Principles should reduce the freedom to produce
bad designs. However, in a pure prescriptive perspective, the architecture is not a
model of the system. One may argue against this last statement, given that knowing
the design and constructing principles and rules used to build a system is already
knowing something about the system. However, following such an argumentation,
then the architecture of all systems built under the same set of rules would have the
same architecture. So this knowledge is not about a particular system but a family
of systems. This can be true if one sees architecture as a high-level knowledge of
the systems, as stated in [4].

Upon these two perspectives of architecture, descriptive and prescriptive, one
may add functional or usage domain perspectives that provide additional classi-
fications. Greefhorst and Proper [11] consider three perspectives for architecture,
regulation-oriented, design-oriented, and knowledge-oriented, where the first cor-
responds to the prescriptive perspective, the third corresponds to the descriptive
perspective, and the second (the design-oriented) corresponds to the high-level
design decisions of the system.

Smolander [13] presents an empirical study that shows the four most common
meaning for architecture as follows:

• Architecture as blueprint: architecture is the structure of the system to be
implemented.

• Architecture as language: architecture is the language for achieving common
conception about the system.

• Architecture as literature: architecture resides at the documentation and reference
architectures for future readers.

• Architecture as decision: architecture is the decision and basis for decisions about
the system to be implemented.

The first three are clearly under a descriptive perspective of the architecture, and the
last one might be more close to the prescriptive perspective. Despite such (more)
practical notions of architecture might be more easy to work with, they are far more
difficult to define. So, in this book, we adopt the IEEE concept of Architecture. The
IEEE defines Architecture as [14]:

The fundamental concepts or properties of a system in its environment embodied
in its elements, relationships, and in the principles of its design and evolution.

Such definition is also in concordance of the TOGAF [6] concept of architecture,
which proposes two definitions: the IEEE definition presented above and a second
one described as “The structure of components, their inter-relationships, and the
principles and guidelines governing their design and evolution over time” [6].
Thus, both IEEE and TOGAF propose a mixed notion of Architecture, with both
a descriptive and prescriptive perspectives, but in a clear and explicit manner.

24 2 Founding Concepts

2.3 Design and Representation

The differentiation between Design and Representation has a structuring role in the
Enterprise Architecture approach.

Design can be both a noun and a verb. As a noun, according to the Merriam-
Webster dictionary 3, it means “a method worked out in advance for achieving some
objective” or “the way in which the elements of something (as a work of art) are
arranged.” As a verb, it means “the way something has been made: the way the parts
of something (such as a building, machine, book, etc.) are formed and arranged for
a particular use, effect, etc.”

According to these definitions, the design (verb) of a system is the action to
produce the design (noun) of a system. As a noun, design is similar to architecture,
even though such similarity is not revealed in Merriam-Webster thesaurus.

Architecture is the art and the science of building a system through the specifica-
tion and organization of its components. An architecture is a formal description of a
system that defines the structure and properties of its components, their relationships
and behavior of components, as well as the principles necessary for its analysis,
design, and evolution. Note that the definition of architecture includes the design
(blueprint) and principles. Architecture can also be defined as the art and the science
of designing complex structures. Architecture is a means of putting restrictions, that
is, to define what can be freely modify and what remains unchanged.

Notice that architecture is different from implementation. An implementation
is a practical solution that meets one or more functions. It is an application or
implementation of a plan, idea, model, design, standard, algorithm, or policy.
Architecture is also different from a framework. A framework defines how to
organize the structure, artifacts, and views of an architecture.

In engineering disciplines (e.g., civil, aviation, mechanical, naval, electronics,
chemistry, physics, etc.), the formal representation of concepts is essential. In
management disciplines, written representations are more rare, but there are also a
few, for example, organizational charts, value chain, Fishbone diagrams, Timelines,
ISO 9000 flow charts, or TQM Process Flows. Nevertheless, without representation:
(i) knowledge sharing is limited; (ii) it is not possible to define an architecture or to
engineer products; (iii) and it is very complex to align concepts.

The representation of the Architecture of a system is an exercise of instantiation
of concepts, in which each instance has the graphics of the corresponding concept,
and has a name that distinguishes it from the other instances. The meaning of the
element is in the graphic symbol and not in the words used in its name. Perhaps
the most common error of architectural representations is precisely in assuming that
words also define concepts (have meaning). For example, it is not by giving the
name “Flying Car” to an element whose symbol is a “Car” that one represents a
flying car.

A good example of a “bad” diagram is presented in Fig. 2.2 since all the meaning
relies solely on words.

3 https://www.merriam-webster.com.

https://www.merriam-webster.com

2.3 Design and Representation 25

F
ig

.2
.2

A
n

ex
am

pl
e

of
an

en
te

rp
ri

se
ar

ch
it

ec
tu

re
di

ag
ra

m
w

it
h

no
se

m
an

ti
cs

26 2 Founding Concepts

Therefore having a common modeling notation that supports the representation
of enterprise artifacts is central for understanding and managing the enterprise
assets.

2.4 Architecture Views and Viewpoints

EA comprise a diverse and large number of models and descriptions. EA is used to
describe the whole enterprise and usually have many architectural views that have
to be perceived by the stakeholders.

The way to deal with this complexity is to have a composition approach that
distinguishes between system components and relationship among the components.
For example, to describe how a car works, we first describe the parts of the car (e.g.,
wheels, engine, and brakes) and then the relationship among the parts. Similarly, the
enterprise information is seen as a set of systems and their relationships.

As presented before, architecture is the fundamental organization of the system
components, their relationships to each other and to the environment, and the
principles guiding its design and evolution. An architectural description is a
collection of products to document an architecture.

A stakeholder is an individual, a team, or an organization (or class) with interests
in, or concerns relative to, a system. An architecture is perceived by every party
(stakeholder), but its communication always involves a description. This description
is always associated with a concern, a viewpoint, a notation, and a model for a
domain.

A domain is a set of elements (concepts) that result from a given conception
(e.g., systematization) in a given universe.

A model is an abstraction (unambiguous) of the concepts in a domain.
The viewpoints describe the concepts, models, visualizations, and analysis

techniques that are used to construct views of a description of an architecture.
The viewpoints are a specification of the conventions to build and use the views.
Viewpoints are like a pattern or template from which individual views are developed
through the establishment of the purposes, audiences, and the techniques for views
creation and analysis.

Through the book, we present several viewpoints organized in:

• Strategy viewpoints.
• Business viewpoints.
• Information viewpoints.
• Information systems viewpoints.
• Technological viewpoints.

Views are (part of) a system from the perspective of a number of concerns
(derived from stakeholders). The same view can have multiple visualizations.

As presented in Fig. 2.3, the enterprise architect manages the whole EA model
and, according to the stakeholder profile and concerns (e.g., business analyst, CTO,

References 27

Fig. 2.3 Viewpoint, model, view, and visualization relations

CEO, developer), selects a viewpoint, producing a view that may have one or several
visualizations (e.g., present the business processes as a rectangle or as an arrow or
in a domain specific notation).

Notice that views imply symbols. However, symbols alone have no semantics!
The vast majority of graphical notations do not define the semantics of each symbol.
The vast majority of graphical notations leaves the semantics in the words (e.g.,
descriptions, tags, notes). A symbolic model expresses properties of architectures
of systems by means of symbols that refer to the reality. A semantic model is an
interpretation of a symbolic model, expressing the meaning of the symbols in that
model.

References

1. L. Von Bertalanffy, G. Braziller, General system theory. Foundations, development, applica-
tions (1968)

2. M. Maier, E. Rechtin, The Art of Systems Architecting (3rd edn.) (CRC Press, 2009)
3. J. Dietz, Enterprise Ontology - Theory and Methodology (1st edn.) (Springer, Berlin,

Heidelberg, 2006)
4. J. Hoogervorst, Enterprise governance and enterprise engineering (2012)
5. IEEE, IEEE 15288-2015 - ISO/IEC/IEEE International Standard - Systems and Software

Engineering – System Life Cycle Processes, p. E15288 (2015)
6. The Open Group, Togaf version 9.1 (2011)
7. H. Proper, R. Winter, S. Aier, S. De Kinderen, Architectural coordination of enterprise

transformation (2017)
8. Project Management Institute, A Guide to the Project Management Body of Knowledge (6th

edn.) (Newtown Square, Pa, 2017)
9. M. Maier, E. Rechtin, The Art of Systems Architecting (2nd edn.) (CRC Press, 2002)

10. M. Op’t Land, E. Proper, M. Waage, J. Cloo, Enterprise Architecture - Creating Value by
Informed Governance (Springer, Berlin, 2009)

28 2 Founding Concepts

11. D. Greefhorst, E. Proper, Architecture Principles. Theory and Practice (Springer, 2010)
12. L. Apostel, Towards the formal study of models in the non-formal sciences. Synthese 12(2-3),

125–161 (1960)
13. K. Smolander, Four metaphors of architecture in software organizations: Finding out the

meaning of architecture in practice, in Proceedings of the International Symposium on
Empirical Software Engineering (ISESE02) (2002)

14. IEEE Computer Society, The ieee standard 1471-2000 systems and software engineering -
architecture description (2000). Superseded by ISO/IEC/IEEE 42010:2011

Chapter 3
Enterprise Architecture

André Vasconcelos and Pedro Sousa

Abstract This chapter introduces Enterprise Architecture (EA) foundations. After
introducing the major motivations that drive the EA, the layers used to describe
the EA are presented. The remaining of the chapter is organized around each EA
layer, describing the business, information, application, technology, and service
architectures, including its concepts and dependencies. Finally, several exercises are
proposed.

3.1 Introduction

Enterprise Architecture may be driven by several motivations, including under-
standing and communication, development of systems, products and services
according to business goals, optimization of operations and organizational resources
(including people), and supporting the alignment among Enterprise Architecture
layers.

Each Enterprise Architecture layer has a different pace. Usually, the business
needs to adapt and change in short cycles, while strategy has longer cycles.
Applications and infrastructure also change at different paces. Therefore, the
Enterprise Architecture allows the specification of the different paces in order to
ensure that change is enabled in the enterprise (see Fig. 3.1).

Having a common set of concepts is central for understanding and managing the
enterprise assets that have different changing paces.

3.2 Enterprise Architecture Domains and Frameworks

The artefacts of the architecture of an enterprise may be organized in different
layers, which in turn are structured in Frameworks. We start by presenting Zachmam
Framework, a notable framework, and, the two currently most used from Open-
Group, TOGAF and ArchiMate.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_3

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_3

30 3 Enterprise Architecture

Fig. 3.1 Strategy, business, IS, and IT dynamics

3.2.1 The Zachman Framework

The Zachman Framework (www.zifa.com) was formally published in 1987; its
aim was described as an architecture that represents the information systems’
artifacts, providing a means of ensuring that standards for creating the information
environment exist and are appropriately integrated. It proposes a logical structure for
classifying and organizing the descriptive representations of an enterprise, in differ-
ent dimensions, and each dimension can be perceived in different perspectives. The
Zachman Framework was developed taking into consideration all the participants
involved in the planning, conception, building, using, and maintaining activities of
the Enterprise Information Systems [1].

The Zachman Framework helps govern the architectural process and manage
change. In this framework, the architecture is described across two independent
aspects: i) the rows represent the different perspectives which may be used to view
a business, a situation, an opportunity, or a system, and ii) the columns represent
the different dimensions which apply to each perspective of the business, situation,
opportunity, or system.

• Perspectives
Regarding the perspectives, they mimic the old Greek knowledge of the stages
required to transform some idea into something real: Identification, Definition,
Representation, Specification, Configuration, and Instantiation1

1 https://www.zachman.com.

www.zifa.com
https://www.zachman.com

3.2 Enterprise Architecture Domains and Frameworks 31

– Scope (Identification—planner’s perspective): the planner is concerned with
positioning the product in the context of its environment, including specifying
its scope.

– Enterprise Model (Definition—owner’s perspective): the owner is interested
in the business deliverable and how it will be used.

– System Model (Representation—designer’s perspective): the designer works
with the specifications for the product to ensure that it will, in fact, fulfill the
owner’s expectations.

– Technology Model (Specification—builder’s perspective): the builder man-
ages the process of assembling and fabricating the components in the produc-
tion of the product.

– Detailed Representations (Configuration—subcontractor’s perspective): the
subcontractor fabricates out-of-context components which meet the builder’s
specifications.

– The actual Enterprise (Instantiation—employee’s perspective). This is the
actual Enterprise.

• Dimensions
While the rows in the Zachman Framework describe the participant’s views,
the columns provide a description on each dimension and independently of the
other dimensions. To describe each perspective, Zachman proposes the use of the
primitive interrogatives of communication to fully describe a fact: the what, the
who, the when, the why, and the how.2

The information in each column is modeled as a thing relates to a thing meta-
model. At each dimension, the thing and the relates to are instantiated to different
concepts, as presented below.

– Data (What?)—Each of the rows in this column address the understanding of,
and dealing with, any enterprise’s data. The description of enterprise data can
be done using by the Entity (as a specialization of a thing) and the Relationship
(as a specialization of relates to).

– Function (How?)—The rows in the function column describe the process
of translating the mission of the enterprise into successively more detailed
definitions of its operations.

The function description of enterprise can be done using a sequence of
input-transform-input-transform-. . . , where input is a specialization of relates
to and transform is a specialization of a thing.

– Network (Where?)—This column is concerned with the spatial distribution of
the enterprise’s artefacts.

The organization networks can be described using sequences of
connection-node-connection-node-. . . , where connection is a specialization
of relates to and node a specialization of a thing.

2 Originated in Aristotle’s work on ethics (https://en.wikipedia.org/wiki/Five_Ws).

https://en.wikipedia.org/wiki/Five_Ws

32 3 Enterprise Architecture

– People (Who?)—The fourth column describes who is involved in the business
and in the introduction of new technology.

The Who should be described using pairs of Role-Work, where Role is a
specialization of relates to and Work is a specialization of a thing.

– Time (When?)—The fifth column describes what happens at each time on the
enterprise.

Time is modeled as a cycle and at a moment, where Cycle is a specialization
of thing and moment is a specialization of relates to.

– Motivation (Why?)—This domain is concerned with the translation of busi-
ness goals and strategies into specific ends and means.

Motivation is modeled as a ends and means, where ends is a specialization
of thing and means is a specialization of relates to.

Given its structure, the Zachman Framework can be applied to almost every
artefact per se, to products of enterprises, and to enterprises. As a matter of fact, the
framework was initially presented as an Architecture Framework for Information
Systems, then as a framework for Enterprise Architecture, and more recently as a
Classification Framework.

Using an airplane as an example, in the planner’s perspective, one must describe
the purpose using the six primitive interrogatives of communication: it is a bomber
that must fly at given altitude, for a given duration, carrying a given weight, by a
given crew, and to fulfill a set of goals. In the owner’s perspective, one must describe
how to operate the airplane, from flying to maintenance. Again this description
should be presented in the six primitive interrogatives of communication. In the
designer view, one describes each system of the airplane, for example, the engine
system, the breaking system, and the communication systems, among many others.
The next perspective, the builder’s view, is to describe the technology used to build
each system. Finally, the subcontractor view describes the parts each subcontractor
must provide so the builder can build the airplane.

The Zackman framework provides no architecture language nor explains how
the models at each column relates with the other columns. Zachman argues the
columns are all equally important, given no hints for the best way to establish the
relations between the columns. Establishing a relation between every possible pairs
of columns would be too redundant in many situations and would take too much
effort. The opposite approach, having a single column (named as anchor column) at
each layer that relates with all the other columns, is a very practical approach [2].

In our experience we found out that the fact is that the anchor column depends
on the enterprise business, as presented next.

• In process-based industry, as chemical, mining, manufacturing, or services
enterprises, the how column would likely be the anchor column because it
describes the key processes. The remaining columns are used to characterize each
process.

• In knowledge-based enterprises, as lawyers, universities, research, health, and
many others, the who column would likely be the anchor column. The persons
are the key asset.

3.2 Enterprise Architecture Domains and Frameworks 33

• The where column would likely be the anchor column in logistics industry.
• In event-based enterprises, as police, fireman, emergency, and so on, the when

column is most likely the anchor column since it establishes the key events, and
the remaining ones are used to characterize the response to that event.

• In finance and other data intensive industries, the what column would likely be
the anchor column, given they are information-based industries.

• The why-based enterprises are not so obvious, but religion’s enterprises are likely
to be among the ones to have the why as the anchor column.

3.2.2 The Open Group Architecture Framework

The Open Group Architecture Framework (TOGAF) describes the Enterprise
Architecture along four domains [3]:

• Business architecture
• Data architecture
• Application architecture
• Technology architecture

The business architecture addresses topics as the goals and drivers, organization
roles, actors, and functions, business processes, and events.

In the TOGAF meta-model (see Fig. 3.2), the data and the application architec-
tures are framed into the Information Systems Architecture. The data architecture
includes the data concepts (including at logical and physical level). The application
architecture, according to TOGAF meta-model, includes the information systems
(including the concept of application at logical and physical level).

Finally, according to the TOGAF meta-model, the technology architecture
identifies the platform services and the logical and physical components. TOGAF
has many other key elements, as the ADM presented in Sect. 6.2.

3.2.3 ArchiMate

ArchiMate, an open and independent EA standard, defines three core layers (see
Fig. 3.3) that are further expanded in the full framework (see Fig. 3.4).

Thus ArchiMate core layers are [4]:

• Business layer: It offers services (through products) to customers. The services
are realized by business processes that use the information entities of the
organization and are run by business actors.

• Application layer: It supports the business level with application services realized
in application components.

34 3 Enterprise Architecture

F
ig

.3
.2

T
O

G
A

F
m

et
a-

m
od

el
co

nc
ep

ts
(b

as
ed

on
[3

])

3.2 Enterprise Architecture Domains and Frameworks 35

Fig. 3.3 ArchiMate core layers (based on [4])

Fig. 3.4 ArchiMate full framework (based on [4])

• Technological layer: Provides infrastructure services (e.g., processing, storage,
and communication) to the application layer. The services are realized by
machines, computer devices, and software.

ArchiMate 3.0 adds two extra layers in the full framework [4]:

• Strategy layer, which identifies the capabilities and resources needed to achieve
the goals of the organization.

• Implementation and migration layer, which supports the description of the
initiatives that change the architecture.

36 3 Enterprise Architecture

3.2.4 Commonly used Architecture Layers

In this book we consider the layers most commonly used in the establishment of an
EA. Besides the layers proposed by ArchiMate, we also consider information and
service layers, both existing as subsets in other ArchiMate’s layers.

• The Information layer defines the major data subjects used by business.
• The Service layer identifies and characterizes the services supported by the

organization IT Application Architecture.

Thus, in this book, we use the following layers to structure and describe the EA
concepts:

• Strategy
• Business
• Information
• Information systems
• Technology
• Service

In Table 3.1, we map the architecture layers used in this book, with Zachman,
ArchiMate, and TOGAF domains.

3.3 The Architecture of the Enterprise

In order to manage the enterprise architecture and use the approaches and techniques
described in this book, it is important to have a common understanding of the EA
core concepts.

Thus, next, we use the strategy, business, information, information systems,
technology, and service layers to describe the EA concepts.

In this chapter, and throughout the book, we use ArchiMate, BPMN, and
UML notations to model the EA concepts, and, exceptionally, ad hoc diagrams to
introduce some concepts.

3.3.1 Strategy Architecture Layer

The word strategy comes from the Greek word “strategos,” which strictly means
“General in command of an army.” Therefore, the term strategy has mostly been
developed in a military context [5]. Sun Tzu, for example, refers to it as the basis of
military success: “All men can see the tactics whereby I conquer, but what none can
see is the strategy out of which victory is evolved” [6].

3.3 The Architecture of the Enterprise 37

Table 3.1 Architecture Layers adopted in this book and corresponding elements in other
frameworks

Layers considered in the book
Zachman
dimensions and
perspectives

Layer in ArchiMate TOGAF dimensions

Strategy layer Motivation (Why?)
dimension

Strategy Business
Architecture

Business layer Function (How?)
and People (Who?)
dimensions

Business Business
Architecture

Information layer Data (What?)
dimension

Described as
passive structure
elements at the
business,
application, and
technology layers

Data architecture
(part of the
Information Systems
Architecture)

Information
Systems layer

System model
(designers’
perspective)

Application Application
architecture (part of
the Information
Systems
Architecture)

Technology layer Technology model
(builder’s
perspective),
including Network
dimension (Where?)

Technology Technology
architecture

Service layer Does not exist
explicitly

The business
layer use services
provided by the
Application
Layer

The lower layers
provide services to
the upper layers

One of the famous examples of strategy in ancient times is the Trojan Hour;
according to the legend, in order to find a way to enter the gates of Troy, the Greek
soldiers planned a ploy that involved creating a giant wooden horse, hiding the
soldiers inside it, and offering the horse to the Trojans as a gift. The Trojans were
tricked and brought the horse inside the city; at night, the hidden Greek soldiers
opened the gates for their army leading to the Greek victory.

The previous example uses strategy as a plan, particularly it uses strategy as a
ploy, i.e., just a specific maneuver intended to outwit an opponent or competitor [7].

The first modern writers to relate the concept of strategy to business were von
Neumann and Morgenstern [8], in their book Theory of Games and Economic
Behavior. They define strategy as a plan which specifies what choices a player will
make in every possible situation, for every possible actual information which he
or she may possess at that moment in conformity with the pattern of information
which the rules of the game provide to him or her for that case. Thus, strategy is a
series of actions that are decided on according to the particular situation. Strategy
cannot be viewed as a simplistic, mechanistic process. According to Mintzberg and

38 3 Enterprise Architecture

Lampel [9], there are different views about the source of strategy; business strategy
is an enormous domain in which little consensus exists. Different views include that
strategy is about defining a set of goals and objectives and the steps to achieve them
and the way to measure them.

Bernard Boar in his book The Art of Strategic Planning for Information
Technology [10] states that strategy is one of the most abused words in the business
lexicon. He reinforces the importance of getting a clear strategy definition and
presents a definition that he is comfortable with: “The eternal struggle of business is
the struggle for advantage. The one with more advantage wins; the one with fewer
advantages loses. Strategy is the ceaseless pursuit of advantage.” This definition also
states that strategy needs to take in consideration the way of achieving the expected
results.

Michael Porter in his Harvard Business Review article [11] argues that “compet-
itive strategy is about being different.” He adds that ”it means deliberately choosing
a different set of activities to deliver a unique mix of value,” choosing to perform
different activities from the rivals or similar activities in different ways. In his earlier
book Competitive Strategy: Techniques for Analyzing Industries and Competitors
[12], he defines competitive strategy as “a combination of ends (goals) for which
the firm is striving and the means (policies) by which it is seeking out there.” It
is important to notice that he sees strategy as both a plan and a position. Henry
Mintzberg states that we need more than a single definition of strategy, because it
has been used implicitly in different ways even if it has conventionally been defined
formally in only one. People use the word strategy in several different ways, the
most common being the following [7]:

• Strategy is a plan, a guideline (or a set of guidelines) to deal with a situation.
According to this definition, strategies have two essential characteristics: they
are made in advance of the actions to which they apply, and they are developed
on purpose. It is relevant to notice that as a plan, strategy can be a ploy too. In the
example of the Trojan Horse given previously, the real strategy as a plan was to
open the troy gates for the Greek army, and the ploy was make the Trojans think
that the wooden horse was a gift;

• Strategy is a pattern, specifically a pattern in a stream of actions over time.
In other words, strategy is consistency in behavior, whether or not intended.
Mintzberg labels the first definition as intended strategy and the second one
as realized strategy. Deliberate strategies are those where intentions existed
previously, and emergent strategies are those where patterns were developed in
the absence of intentions;

• Strategy is a position, specifically where we locate an organization in an
environment, i.e., between the internal and external context. This definition can
be compatible with the previous ones, a position can be aspired through a plan
(or a ploy) and can be reached, perhaps found, through a pattern;

• Strategy is a perspective, if we look inside the organization, inside the heads of
the person responsible to develop a strategy, that person has a way of perceiving
the world. Some organizations favor marketing, others engineering, and others
operational efficiency, depending on the way organization perceives the world.

3.3 The Architecture of the Enterprise 39

3.3.1.1 Top Layers of the Enterprise Architecture

There are different approaches to address EA top layers. Nevertheless, it is
commonly recognized that the EA strategy is something that must be considered
since it drives and justifies most of the business architecture options.

For example, according to [13], strategy strongly influences the structure, the
human resources management, the reward system, and the business processes.

Robert Winter also considers in Institute for Information Management of the
University of St. Gallen (IWI-HSG) framework that strategy drives other EA
domains (including organization and application layers)—see Fig. 3.5.

At a pure management level, strategy is defined at a corporate and business level,
as a consequence of the vision, the mission, and the objectives. The strategy is then
used to define the tactics that will implement it [15].

In management disciplines, the corporate strategy is formulated by six major
blocks: (i) Mission, Objectives, and strategy; (ii) Products-Markets; (iii) Vertical
Integration; (iv) Organizational development; (v) Internationalization; and (vi)
Diversification—see Fig. 3.6.

Fig. 3.5 Strategy in the context of EA (based on [14])

40 3 Enterprise Architecture

Fig. 3.6 Management perspective on strategy and tactics

3.3.1.2 Business Motivation Concepts

Organizations do not act randomly. Activities performed within enterprises, either
as a business process or simply applying a business rule, should know:

• why the business wants to do something?
• what do you want to achieve?
• how do you plan to get there?
• how to measure the achievement?

If an enterprise establishes a certain approach to its work, it should be able to
explain “why, ” that is, the result(s) the approach aims to achieve, what motivates
the Business Plan, what are the elements of a business plan, and how does the
“motivation” and “actions” relate?

We will use OMG Business Motivation Model (BMM) [16] to frame the concepts
most commonly used when describing the motivation elements of the EA. The
Business Motivation Model provides a scheme for developing, communicating, and
managing business plans in an organized manner by:

• Identifying factors that motivate the establishing of the business plans.
• Identifying and defining the elements of the business plans.
• Indicating how all these factors and elements are interrelated.

3.3 The Architecture of the Enterprise 41

BMM does not address business processes, workflows, business vocabulary, etc.
The major goal is to develop a business model that supports the identification of the
principles, requirements, and constraints for the business and system design.

3.3.1.2.1 BMM Overview

The main areas of the BMM are the Ends, the Means, and the Influencers. BMM
established the dependencies among the concepts of these areas, including the
identification of the means to achieve the enterprise goals.

Each BMM element is presented in Fig. 3.7.

Ends define what the organization wants to be (not considering the “how”).
Means establish the “how” the organization plans to achieve its ends.
Directives establish the rules and policies for the use of the available means.
Influencers are the sources of change that can impact the organization, including
the application of means or the implementation of its ends.
Assessment represents the assessment that an Influencer (relevant to the enter-
prise) does on the enterprise ends and the means used.

Fig. 3.7 Business motivation model (based on [16])

42 3 Enterprise Architecture

3.3.1.2.2 Ends

Ends define the organization vision and goals. The ends are not concerned about how
the vision or the goals will be achieved. Ends are expected to focus on the position
and goals of the organization (including changing or maintaining its current market
position). Ends are specialized in Vision and Desired Results, and Desired Results
in Goals and Objectives.

3.3.1.2.2.1 Vision

A Vision represents the highest level of what the enterprise wants to be. It is the
“dream” it pursuits every day. A Vision describes the future state of the enterprise,
not considering how it will be achieved. In defining the Vision, a desired end state
is established. This final state may not be attainable. Typically, the vision is not
focused on a single aspect of the business, but on a composition. The vision is
categorized by:

• Being unambiguous.
• Being clear.
• Harmonizing organization’s culture and values.

Vision statements should be shorter so that they are easier to memorize.
Table 3.2 presents examples of vision statements. For example, Microsoft’s

vision is “to empower people through great software, any time, any place, or any
device.”

Table 3.2 Vision statements examples

Enterprise Vision

Eu-Rent Be the cart rental brand of choice for business users in the countries in
which we operate

Pizza Rapida Be the city’s favorite pizza place

Technical University Be the number 1 engineer school in the country

Retail Things Sell merchandise and services at everyday low prices

A Vision is supported or made operative by Missions. It is amplified by Goals.

3.3.1.2.2.2 Goal

A Goal establishes a future state of the enterprise (which must be achieved through
the application of the appropriate “means”). Thus, a goal is defined long term and
qualitatively (typically). Based on the goal, the objectives for the organization are
established.

3.3 The Architecture of the Enterprise 43

3.3.1.2.2.3 Objectives

A goal is divided into different objectives. Each objective must have an explicit
completion date and criteria. By consolidating the achievement of objectives, it is
possible to assess whether the goals are (or not) being achieved (Table 3.3).

Table 3.3 Objective statement examples

Enterprise Objective

Retail Things By the end of the current year, be rated in the top 3 retail companies
operating in the city

Pizza Rapida By January 1, 2023, 99% on-time pizza delivery

Technical University Be rated as the TOP research school in the country

3.3.1.2.3 Means

The means define what an enterprise has decided to do to become what it has decided
to be. Thus, a means is some “device, capacity, technique, instrument or method that
can be invoked, activated, or imposed to achieve Ends.” The means are specialized
in mission, courses of action, and directives.

3.3.1.2.3.1 Mission

The organization’s operational activity is explained through the mission. The
mission must be broad enough to include the various operational areas of the
organization. The mission describes the day to day of the organization, making the
mission a reality. Mission planning is done through strategies (Table 3.4).

Table 3.4 Mission statement examples

Enterprise Mission

Pizza Rapida Provide pizza to customers city-wide

Technical University Provide knowledge to people

Retail Things Provide merchandise to the retail market

A mission must be doable and achievable. Thus, it must be possible to achieve
the mission in the organization’s operation. Additionally, the mission must be
inspiring for the organization’s customers, managers, and employees. For example,
Microsoft’s mission is to “help people and businesses throughout the world to
realize their full potential.” Walmart’s mission is “to give ordinary folk the chance
to buy the same thing as rich people.”

44 3 Enterprise Architecture

3.3.1.2.3.2 Course of Action: Strategy

What the organization has decided to do is defined as Courses of Action. Perfor-
mance measures for courses of action are set out in Objectives. In turn, Courses of
Action are categorized as Strategies and Tactics—which represent courses of action
with less or more level of detail.

Strategies are typically defined long term and broad in scope. Thus, each
strategy is implemented through tactics (whose scope and execution time are more
focused). Each tactic can contribute to the implementation of more than one Strategy
(Table 3.5).

Table 3.5 Strategy statement examples

Enterprise Strategy

Retail Things Operate nationwide, focusing on major cities, competing with other
national retail companies

Pizza Rapida Deliver pizzas to the location of the customer’s choice

Technical
University

Hire the best teachers

It is common to make a correspondence between Course of Action and Desired
Results. Generally, the Strategies are defined considering the goals and the Tactics
considering the Objectives of the organization.

3.3.1.2.3.3 Course of Action: Tactic

Strategies are carried out by tactics, which tend to be shorter and narrower in scope.
A Tactic can contribute to the implementation of more than one Strategy (Table 3.6).

Table 3.6 Tactic statement examples

Enterprise Tactic

Pizza Rapida Hire drivers with their own vehicles to deliver pizzas

Technical University Increase teachers wages by 20%

Consulting Company Call first-time customers personally

Retail Things Ship products for free

3.3.1.2.3.4 Directives: Business Policies

Directives are specialized in business rules and business policies (Table 3.7).
Different levels of enforcement can be defined by organizations for each directive
(such as strictly enforced, deferred enforcement, override with explanation, and
guideline, among others).

3.3 The Architecture of the Enterprise 45

Table 3.7 Enforcement Levels of Directives examples

Enterprise Directive Enforcement Level

Technical
University

Students are always first Strictly enforced

Pizza Rapida A cooker who delivers pizzas more
than 30 min after costumer request
will be counseled to additional
training

Pre-authorized override

Retail Things An article rated negative by more
than ten other customers is never
more sell in the store

Override with explanation

Business policies are organization principles that are used for guiding courses of
action. Policies define what can be done and what must not be done and set limits
on how it should be done. A Business Rule tends do be less formal than a Business
Policy. Business rules are actionable directives (Table 3.8).

Table 3.8 Business Policy statement examples

Source Business Policy

Technical University Cheating is not allowed

Pizza Rapida Hot Pizzas ensure frequent customers

Retail Things The Store Director will contact each customer who makes a complaint

3.3.1.2.3.5 Directives: Business Rule

Business Rules are derived from Business Policies (Table 3.9).

Table 3.9 Business Rule statement examples

Source Business rule

Technical University If a student is caught cheating, that student will be suspended between 1
and 5 days

Pizza Rapida Pizzas must be delivered hot

Retail Things Credit sale is not allowed

3.3.1.2.4 Influencers

An Influencer is some actor that affects the way the organization uses its Means
in pursuing its Ends (Table 3.10). There are internal (from within the organization)

46 3 Enterprise Architecture

and external influencers (from outside the organization—as competitor, customer,
environment, partner, regulation, supplier, technology) (Table 3.11).

Table 3.10 External influencer examples

Enterprise External influencer Category

Technical
University

Two smaller competitors have
merged, and the joint university is
now bigger than the Technical
University

Competitor

Pizza Rapida Pizza Rapida’s primary target is Z
generation, but it recognizes the
need to appeal to the Y generation

Customer

Retail Things VAT increase next year is expected
to have a negative impact on sales

Regulation

Table 3.11 Internal influencer examples

Enterprise Internal Influencer Category

Technical
University

Research impact must increase each
year

Assumption

Technical
University

Junior researchers are generally
hired within Technical University
Master Students

Habit

Pizza Rapida Fast cooks may have longer work
breaks

Habit

Pizza Rapida Pizza Rapida is
environment-friendly. All products
used are environment-friendly and
100% biodegradable

Explicit Corporate Value

Retail Things Warehouses are clustered next to
major cities

Infrastructure

Retail Things Availability of market-leading
brand products and white label
products

Issue

3.3.1.2.5 Assessments

An Assessment judges the organization’s ability to use its Means to achieve its Ends.
This analysis can be performed using different techniques (but it is beyond the scope
of this book and of enterprise architecture)—see an assessment example in Fig. 3.8.

3.3 The Architecture of the Enterprise 47

Strength

Patents
Insurance having currently good market

Insurance companies are often slow to respond to
changing needs

Buying insurance policy is a cumbersome process
Products or service similar to competitors’

Weather cycles

New substitude product emerging
Increasing expenses and lower profit margins will hit

hard on the smaller agencies and insurance
companies
Goverment regulations on issues like health care

and terrorism can quickly change the direction of

insurance

Premium rates are increasing and so are
commissions

The variety of products is increasing
IT bringing new dimensions to insurance sector

Technology is improving paperless transactions are
available

Busy life, customers need flexible and customizable
policies
Like mobile banking mobile insurance could be a hit
New Innovations in technology – Measuring weather
variables

Opportunity Threat

Weakness

Fig. 3.8 SWOT analysis example

3.3.1.3 Motivation Modeling

In order to model what triggers the EA, we will adopt ArchiMate Motivation Aspect
Model Extension [4]. Motivational concepts are used to model the motivations or
reasons that underlie the development or modification of any enterprise architecture.
These motivations can influence, guide, and constrain the design (Fig. 3.9).

It is important to understand the factors, often referred to as drivers, which influ-
ence the motivational elements. They may be triggered from inside or outside the
enterprise. Internal drivers, also called concerns, are associated with stakeholders,
which can be any individual human being or a group of human beings, as a project
team, company, or society. Examples of such drivers are customer satisfaction,
accordance to the law, or profitability. It is common for companies to undertake
an assessment of drivers, for example, using a SWOT analysis. The real motivations
are represented by goals, principles, requirements, and restrictions.

Goals represent some desired outcome—or end—that stakeholders want to
achieve, such as “increase customer satisfaction by 10%.”

Requirements and Principles represent the desired properties of the solutions.
Principles are regulatory guidelines that guide the design of all possible solutions

in a given context. For example, the principle of “data should be stored only once”
is a means to achieve the goal of “data consistency” and applies to all possible
architectural projects of the organization.

Requirements represent formal statements of a need expressed by stakeholders
that must be met by the architecture or solutions. For further details on modeling
Enterprise motivation with ArchiMate, please see [17] and [4].

48 3 Enterprise Architecture

Fig. 3.9 ArchiMate motivation modeling—based on [17]

3.3.2 Business Architecture Layer

3.3.2.1 System Context

According to ISO/IEC/IEEE 42010:2011: “a system inhabits an environment. A
system’s environment can influence that system. The environment, or context, deter-
mines the setting of developmental, operational, political, and other circumstances
of the system. The environment can include other systems that interact with the
system of interest, either directly via interfaces or indirectly in other ways. The
environment determines the boundaries that define the scope of the system of
interest relative to other systems” [18].

Therefore, a system context model represents the direct environment of the
system and gives initial information about the communication flowing from and
to the system. The “system” is the object of concern, which is the enterprise
(or company, or business unit). The system context model represents the direct
environment of the system, comprising all its relevant stakeholders and their
respective concerns. Figure 3.10 presents the context of a university.

3.3 The Architecture of the Enterprise 49

F
ig

.3
.1

0
U

ni
ve

rs
it

y
co

nt
ex

te
xa

m
pl

e

50 3 Enterprise Architecture

Fig. 3.11 Context diagram (black-box)

In the previous diagram, all the flows toward the organization (University)
represent the concerns and interaction between the organization and the outside
world. Each interaction in the context diagram should be linked to a process. It
should not exist interactions not connected to any specific process.

Thus, we can summarize the context diagram as a functional vision (black box)
of the organization’s relations with its exterior. It represents all the relations (input
and output) between the organization and the elements interested in the organization
(stakeholders). It represents at least the relationship between the organization’s
customers (which are a specific class of stakeholders) and the products and services
of the organization.

The business context is usually done in two steps. First, there is a “black-box”
approach, where the organization is considered as a whole. The focus is only on
identifying (external) stakeholders and their concerns (Fig. 3.11).

In the second stage, it is important to relate each relationship between the
organization and a stakeholder to an input event and/or output. Each event should be
forwarded to a business process (or business service), which will have to be able to
interpret the received event. Responses to the event have to conform to the outputs of
the process. Another viewpoint that can be drawn from the context diagram are the
business units involved in supporting external stakeholders. Thus, each event should
be forwarded to a business unit, which is responsible for the event management.

3.3.2.2 Business Process

A business process is a sequence of interrelated activities that transforms inputs into
outputs and that has the goal of producing a service or product for a customer or a

3.3 The Architecture of the Enterprise 51

Fig. 3.12 Business process classic IPO paradigm (input “Process” output)

particular market. The inputs and outputs can be material goods or information (i.e.,
physical or logical elements)—Fig. 3.12.

Some business process definitions are just focused on transforming inputs into
outputs (mostly on the engineer/production side), while others are focused on
the process added value. For example, the ISO 9000 defines a process as “a set
of interrelated and cooperative activities that transform inputs into outputs,” not
considering the value creation of the business process. Hammer and Champy [19]
define a process as “a collection of activities that takes one or more kinds of input
and creates an output that is of value to the customer.” Johanson [20] considers a
process “as set of linked activities that take an input and transform it to create an
output. Ideally, the transformation that occurs in the process should add value to
the input and create an output that is more useful and effective to the recipient either
upstream or downstream.” Thus, the definitions from the engineering context tend to
focus on the processing procedure and the finished product, while the management
definitions tend to focus on the achieving of value.

A business process usually starts at the organizational boundaries and crosses
the all enterprise (Fig. 3.13). Business processes are “virtual,” that is, each one
sees “his/her business process” (see Sect. 8.1 for further information on identifying
the “right” business processes). Business processes usually model only activities
associated with people, stating what has to be done at the operational level. A
business process may or may not state: who, how, where, when, importance, or
the risks involved.

Therefore, a business process can be defined according to Fig. 3.14. A business
process should comply with a set of rules, including:

• Any process has at least one input.
• Any process has at least one exit point (i.e., a product or service business).
• The outputs of a process are different from the inputs.
• Any process must have at least one client (internal or external).

52 3 Enterprise Architecture

Fig. 3.13 Company business processes (Reprinted with permission from Linkconsulting)

Adds value

Has a goal

Event
Business Process

<<supply>> <<supply>>

<<process>>

<<goal>>

Output

GoalInformation Resource

Has specific inputs and outputs
Has a start and an end
Uses resources
Has a number of activities executed in a specific order
May be related to more than one organizational unit
Adds value for some “customer” (internal or external)

Fig. 3.14 Business process definition

3.3.2.2.1 Business Process Orientation

Nowadays, several enterprises still have a vertical orientation, having several levels
of business units, departments, divisions, teams, etc. organized around functions or
competencies (engineering, marketing, warehouse, finance, etc.)—Fig. 3.15.

Business workflows are horizontal, crossing different business units. Conse-
quently, the vertical management of organizations leads to gaps and overlaps
(because some tasks are “shared” among units, not being clear where the “respon-
sibility” lays). The “island” effect tends to reduce the process performance, since
there is an optimization of the functions (leading to a sub-optimization of the whole

3.3 The Architecture of the Enterprise 53

Fig. 3.15 Traditional view of enterprises

Fig. 3.16 Business process-oriented organization (Reprinted with permission from Link Consult-
ing, SA)

horizontal process). The management of cross-functional “blank” spaces is usually
unclear. The traditional view of organizations does not show how the value is added.
Functions become more important than customers, but responsibilities are lost at the
interfaces between functions. In business process-oriented organizations, there is a
horizontal management by processes crossing organizational functions and focusing
on customers (Fig. 3.16).

In a nutshell: a business process is a set of interrelated activities that transform
inputs into outputs and that create value for a customer. Business process is used as a
method to model value creation, regardless of the organizational structure, allowing
the explanation of operations, analyses, and optimizations.

Therefore, we may conclude that all the work performed in organizations is part
of a process. Consequently, all organization’s products and services are result of a
process. A process is the result of cooperative articulation of actors and resources.
A process approach is a structured way of managing workflows.

54 3 Enterprise Architecture

3.3.2.3 Business Layer Concepts

Most of the business concepts next presented are based in [4, 17, 21], including
TOGAF, and ArchiMate meta-model for describing the business layer.

3.3.2.3.1 Business Actor

A business actor is an active entity that performs behavior (i.e., the “subject”
of behavior). Examples of business actors are Person (e.g., employee, customer),
Department, or Business Unit [4]. The designations of business actors should be
nouns.

3.3.2.3.2 Business Role

A business role has the responsibility for performing specific behavior, to which an
actor can be assigned [4].

The same actor can play multiple roles, and the same role can be played by
multiple actors. Business roles are a more stable element than actors.

3.3.2.3.3 Business Interface

A business interface is a point of access where a business service is made available
to the environment. It exposes the functionality of a business service (provided by
an interface) or requires business services. It is used to set the “channel” in which a
service is provided (e.g., telephone, web, face to face) [4].

A business interface may be part of a business role through a composition
relationship, and a business interface may be used by a business role.

A business interface may be assigned to one or more business services, which
means that these services are exposed by the interface. The name of a business
interface should preferably be a noun.

3.3.2.3.4 Location

Location is a conceptual point or extent in space. It is used to distribute structural
element physical or conceptually. Location models the distribution of structural
elements such as business actors, application components, and devices. Indirectly, a
location can also be assigned to a behavior element, to indicate where the behavior
is performed [4].

The model in Fig. 3.17 shows the departments of a company distributed over
different locations. The Engineer and the Production departments are located in the
factory, and the finance and the human resource departments are in the regional
office.

3.3 The Architecture of the Enterprise 55

Fig. 3.17 Location example

Fig. 3.18 Value example

3.3.2.3.5 Business Object

Business Object is a passive element that has relevance from a business perspective
(handled by behavior). Business Objects represent “informational” or “conceptual”
business elements. Generally, a business object is used to model an object type (like
a UML class), of which several instances may exist within the organization. A wide
variety of types of business objects can be defined. Business objects are passive in
the sense that they do not trigger or perform processes [4].

3.3.2.3.6 Value

Value is the relative worth, utility, or importance of a business service or product.
Value is often expressed in money and may be associated with business services.

In the example of Fig. 3.18, the value “Be Insured” is the highest-level expression
of what the service “Provide Insurance” enables the client to do; three “sub-values”
are identified that are part of what “Be Insured” includes [4].

3.3.2.3.7 Product

A Product is a coherent collection of services, accompanied by a contract/set of
agreements, which is offered as a whole to (internal or external) customers. Products

56 3 Enterprise Architecture

can be based on services or information. A product consists of a set of services. The
product name is the name used to communicate with the outside (e.g., customers)
[4].

3.3.2.3.8 Contract

A Contract is a formal or informal specification of an agreement that specifies the
rights and obligations associated with a product. It can be used to model a formal
contract, as an informal agreement on a product. It may contain Service Level
Agreements (SLAs). It is a business object specialization [4].

3.3.2.3.9 Business Service

A business service is a coherent piece of functionality that offers added value to
the environment, independent of the way this functionality is realized internally. A
service may be internal or external, and it is associated with a value. A service is
realized through business behavior, including activities, processes, or functions [4].

3.3.2.3.10 Business Process

As presented before, business process stands for a behavior element that groups
behavior based on an ordering of activities. It is intended to produce a defined set
of products or business services. It describes the internal behavior performed by a
business role that is required to produce a set of products and services [4].

3.3.2.3.11 Business Function

The business function is a behavior element that groups behavior based on a
chosen set of criteria (usually required business resources and/or competences).
Business processes are generally defined based on products or services offered by
the organization, while the business functions are the basis for allocating resources
to support tasks. The name should be a verb in the gerund.

3.3.2.3.12 Business Event

A business event is something that happens and may influence behavior—business
processes, functions, or interactions. It is something instantaneous (no duration). It
can be generated externally (e.g., a client) or internally in the enterprise [4].

3.3 The Architecture of the Enterprise 57

Fig. 3.19 Information in the business context

3.3.3 Information Architecture Layer

The Information Architecture (IA) specifies the key concepts to understand and
operate the business (Fig. 3.19).

The IA specifies the life cycle associated with the entities (tangible and intan-
gible) of the enterprise. It makes communication easy among people who manage
the business and the technology. IA makes possible to manage information indepen-
dently of the business processes and the information systems.

The IA defines (i.e., restricts) what information exists and how it is related. The
IA provides assurance of consistency to the organization’s data. It ensures that the
data is properly named, defined, structured, and documented.

IA provides stability in the dynamic business environments. Business processes
often change. A stable resource, as information, ensures that data is available to
answer information needs. Therefore, IA sets the life cycle of information entities
independently of the business processes and IS.

3.3.3.1 Concepts

The IA (aka Data Architecture) defines the major types of data used by the business
processes of the enterprise; these data types are known as information entities.

An information entity represents any concept that has meaning for the operation
of the business and on which is relevant (and possible) to keep information; for
example, a person, a place, an idea, a thing or an event that is relevant to the
organization’s business processes and on which it is necessary to store information.

Data flows define how the main types of data are used by business processes.
Depending on the authors information entities come up with different names,

58 3 Enterprise Architecture

including (information) entity, business object, business information, and (business)
resource, among others.

An information entity is characterized by:

• a name (noun);
• a unique identifier, by which their occurrences (instances) are uniquely recog-

nized in the enterprise;
• its attributes;
• a description;
• its structural relationships with other entities (and the derived relations with

processes and applications).

Examples of information entities are Course, Classroom, Student, Customer,
Supplier, Train, etc.

Information entities instances must be clearly and unambiguously identified.
The unique identifier of the entity must be a function of its attributes! Therefore,
(numerical) identifiers not known in the business context (e.g., GUID) are usually
inadequate identifiers.

3.3.3.2 Information Classification

According to Inmon [22], data can be classified into three dimensions:

• Primitive vs. Derived
• Historical vs. Projected
• Public vs. Private

Each information attribute is classified in each of these three dimensions. The
dimensions determine the requirements to access the data that the information
systems manage.

3.3.3.2.1 Primitive vs. Derived

Primitive information specifies a single fact or occurrence. Examples of primitive
data are record of the date, value associated with an invoice, participants in a
transaction, and amount of material ordered.

Derived data is calculated data aggregated or summarized. It is based on one or
more primitive data or other derived data. Examples of derived data are average
hours worked per day or training cost in the first quarter.

3.3.3.2.2 Historical vs. Projected

Historical data records unambiguous and irrefutable facts. The values recorded are
accurate, and there is an agreement about the means to obtain or calculate them.

3.3 The Architecture of the Enterprise 59

On the other side, projected data are estimates, predictions, or inferences from
facts that might happen. The concept of “correction” does not apply to projections.
There may be a probabilistic degree of confidence about the projection. There may
not be unanimity about the means to obtain or calculate them.

The safety training that an employee had in October 12, 2021, is an example of
historical data. And the training needs in “Advanced Security” is a projected data
example.

3.3.3.2.3 Public vs. Private

Public data is data that have multiple stakeholders and may be visible outside the
enterprise. Its integrity is maintained by the enterprise.

Private data is owned by a single individual or group of individuals. It reflects
specific needs and may not be relevant or may not make sense out of a limited
context. Its integrity is managed locally.

Usually, public information belongs to the enterprise, while private information
belongs to the individual (e.g., password from a user).

3.3.3.2.4 Information Classification Impacts

For each information entity, its attributes may be classified in the previous three
dimensions (Fig. 3.20).

Usually, primitive data has different characteristics from derived data (Fig. 3.21).
The characteristics of the data have a strong relationship with the systems where

it can be found. Usually, operational systems deal with more primitive, historical,
public data. Operational data is detailed day by day, with high probability of access,
and application oriented.

Fig. 3.20 Wood information entity and its attribute classification

60 3 Enterprise Architecture

Fig. 3.21 Information entity
attribute classification

On the other hand, derived, projected data is mostly useful at strategic manage-
ment layers, using datamarts, while unit managers are more focused on data type
from the different vectors. Data warehouses put together derived and aggregated
data by subject and are used at unit management layers.

3.3.3.3 IA Modeling

IA modeling specifies the information entities and their relationships. It is suggested
using an object-oriented approach (similar to UML). It involves identifying:

• The key/identifier of each entity.
• The properties/attributes of each individual entity.
• The structural relationships between entities.
• Types of relationships (composition or aggregation and specialization).

Notice that since behavioral relationships change more often than information,
they are not represented in the IA.

3.3.4 Information Systems Architecture Layer

Information System is a system that manages business information and has as
inputs or outputs information used by business processes. An information systems

3.3 The Architecture of the Enterprise 61

Fig. 3.22 Information system elements

may be:

• an Excel spreadsheet with a list of customers of an organization;
• a machine that produces computer tomography images for analysis;
• an ERP that is being used to support business processes;
• a file of paper with the suppliers of an organization and its accounting informa-

tion.

An Application is defined as an information system that uses digital technology
to store and process information. In this definition, we exclude analogue systems.

An information system is described through (Fig. 3.22):

• the name (i.e., identification) of the system;
• The behavior of the application, where we can include the purpose (from a high-

level perspective) and the functions it performs (from a detailed perspective).
• The information that the application maintains and manages
• Dependencies with other systems, which can include services and interfaces, both

realized and consumed

Therefore, the Information System Architecture (ISA) is the identification of the
information systems of an organization and their inter-dependencies (Fig. 3.23).

The ISA provides an answer to the question: “What ISs an organization should
have?” It helps decide how to evolve the current infrastructure for the future, in
order to improve business support, and reduce costs associated with IT.

The ISA provides justification for a set of IS (and not other) based on the
business processes and the information managed. It provides traceability among
decisions taken in the design of the ISA, processes, and information. The ISA is
less dependent on subjective factors and therefore more deterministic than ad hoc
approaches regarding the analysis of IS.

62 3 Enterprise Architecture

Fig. 3.23 Information System Architecture example

3.3.4.1 Concepts

The main concepts defined at the application level are discussed below.

3.3.4.1.1 Application Component

An application component is a self-contained part of a system that encapsulates its
contents and exposes its functionality through a set of interfaces [4].

3.3.4.1.2 Application Interface

An application interface defines the set of operations and events that are provided
by the component or those that are required from the environment [4].

3.3.4.1.3 Data Object

A data object is a coherent, self-contained piece of information suitable for
automated processing.

3.3.4.1.4 Application Service

Application service is an externally visible unit of functionality, provided by one
or more components, exposed through well-defined interfaces, and meaningful to
the environment [4]. Application services may be further specialized. Please see
"Service Architecture" section for further details.

3.3 The Architecture of the Enterprise 63

3.3.4.1.5 Application Function

The internal behavior of a component needed to realize one or more application
services [4]

3.3.5 Technology Architecture Layer

The aim of the Technology Architecture is to define the types of technology that
will be used to support the Information Architecture, the Application Architecture,
and, hence, the business processes.

The main results expected from a technology architecture are the definition of (i)
the principles of the technology of the enterprise and (ii) the technology initiatives.

Therefore, the technology architecture defines the technologies that implement
applications (identified in the application architecture) and describes the techno-
logical environment available to these applications. This architecture identifies
technology concepts—such as networks, communication, distributed computing,
etc.

The technology architecture addresses a high variety of concepts due, on the
one hand, to the fast technological evolution and, on the other hand, to the need
for specialized views of the technological components—such as security, hard-
ware views, communication views, and development views, among others. Thus,
depending on the stakeholder concern, different concepts may be important to model
in the technological architecture, such as application, system, platform, software,
repository, middleware, application components, specific products, services, inter-
faces, devices, development/production environments, and software infrastructure
(DBMS, operating system, etc.).

3.3.5.1 Concepts

3.3.5.1.1 Node

A node is a computational resource upon which artifacts may be deployed for
execution. Nodes are active processing elements that execute and process artifacts.
Nodes are often a combination of hardware devices and system software. Nodes
can be interconnected by communication paths. Artifacts are deployed in nodes.
Nodes are active elements that perform processes and artifacts (such as software
components and data objects) used to model application servers and database servers
[4].

64 3 Enterprise Architecture

3.3.5.1.2 Device

Device is a hardware resource upon which artifacts may be stored or deployed for
execution. It is a specialization of a node that represents a physical resource with
processing capability. It models hardware systems such as mainframes, PCs, or
routers. A device may be part of a node (in conjunction with system software) and
may be constituted by wrapping other devices. Software artifacts can be deployed
on devices. The name should have the kind of hardware it refers to (e.g., MyHome
server, business mainframe, etc.) [4].

3.3.5.1.3 System Software

A system software is a software environment for specific types of components
and objects that are deployed on it in the form of artifacts. In ArchiMate, System
Software is a specialization of a node. It is used to model the software environment
in which artifacts run [4].

It stands for the software environment in which software artifacts are deployed.
A system software is a software defined and implemented by third parties and used
unchanged by the enterprise. Operating system, DBMS, and workflow systems are
examples of a system software [4].

A system software may contain other system software. The name should refer to
the execution environment (e.g., J2EE Server).

3.3.5.1.4 Infrastructure Interface

An Infrastructure Interface is a point of access where infrastructure services offered
by a node can be accessed by other nodes and application components. It specifies
how the infrastructure services of a node can be accessed by other nodes (provided
interface), or which functionality the node requires from its environment (required
interface). It exposes an infrastructure service to the environment. The same service
may be exposed through different interfaces. In a sense, an infrastructure interface
specifies a kind of contract that a component realizing this interface must fulfill. This
may include, for example, parameters, protocols used, pre- and post conditions, and
data formats [4].

3.3.5.1.5 Network

A network is a communication medium between two or more devices. It represents
the physical communication infrastructure. It may comprise one or more fixed or
wireless network links. It is the physical realization of a “communication path,” i.e.,
a means of physical communication between two or more devices. It can be wired or
wireless, satellite, etc., and it has to be a physical mechanism (e.g., air, laser, fiber,

3.3 The Architecture of the Enterprise 65

etc.) that connects the two devices. The “Network” performs the “communication
paths” [4].

3.3.5.1.6 Communication Path

A communication path is a link between two or more nodes, through which these
nodes can exchange data. It is a logical communication relation among nodes. It
is realized by one or more “networks” (that represents the physical communication
infrastructure) [4].

3.3.5.1.7 Artifact

Artifact is a physical piece of data that is used or produced in a software
development process, or by deployment and operation of a system. It represents
a tangible element in the physical world. It is used to model software products
such as source files, executables, scripts, database tables, messages, documents,
specifications, and model files. Two typical ways to use the artifact concept are
as an execution component and as a data file [4].

3.3.5.1.8 Infrastructure Function

Infrastructure function groups infrastructural behavior that can be performed by a
node. It may describe the internal behavior of a node. This function is invisible
for the user of a node that performs an infrastructure function. It may also realize
infrastructure services. If behavior is externally visible, it is through infrastructure
services. An infrastructure service may need to have access to artifacts to implement
its behavior (e.g., tables, database, code, etc.). The infrastructure function name
should be in the gerund form (“ing”) [4].

3.3.5.1.9 Infrastructure Service

Infrastructure service is an externally visible unit of functionality, provided by one
or more nodes, exposed through well-defined interfaces, and meaningful to the
environment [4].

It exposes the functionality of a node to its environment. The functionality is
accessed through one or more infra-structure interfaces (e.g., messaging, storage,
naming, and directory services) [4].

66 3 Enterprise Architecture

3.3.6 Service Architecture Layer

As mentioned in Sect. 3.3, the services layer contains the services performed by
applications. The architecture of application services is often known as Service
Oriented Architecture (SOA), and stands for the architectural principles for building
applications based on the composition of features of other applications. SOA
arises from the consolidation of areas, such as Application Integration, Workflow,
Interoperability between organizations, etc. SOA has the “Services” as a structuring
element. The most important outcome that SOA is expected to deliver is the defini-
tion of new services by the composition of other services (through orchestration or
choreography). As presented in Fig. 3.24, services are provided by one or several
applications (provider) and are composed and used in application processes of the
consumer applications.

The services must have a set of characteristics that can be used for the definition
of other services. The first architectural question that arises is how to define or

Fig. 3.24 SOA basis

3.3 The Architecture of the Enterprise 67

Fig. 3.25 Service-Oriented Architecture Layers (reprinted with permission from Link Consulting)

identify the most appropriate services—see Sect. 10.3 for further service design
methods.

3.3.6.1 Concepts

Application Services, introduced in the Information System Architecture, may be
further specialized.

Services are structured in layers according to their potential for reuse and
complexity (see Fig. 3.25).

At the solution layer, services implement processes with human interaction.
In the Core Business Services Layer, services implement automatic sequences of
activities with a high degree of reuse (e.g., service products). Utility services are
highly reusable services, but do not perform the core business activities.

3.3.6.1.1 Solution Layer

The services defined in the Solution Layer implement processes with human
interaction (UI). Each interface is seen with a specific service, which is called by
the execution engine (e.g., workflow). Their reuse is limited and is very dependent
on the reuse of the interfaces.

68 3 Enterprise Architecture

3.3.6.1.2 Core Business Services Layer

The services defined in the Core Business Services Layer implement automatic
sequences of activities with a high degree of reuse. These services may be focused
on processes or information management:

• Processes services are “processes fragments” formed by sequence of automated
operations.

• Information services are sequence of activities needed for information entities
management.

A Core Business Service is a sequence of interactions with information systems
that is repeated in various processes. It aims to factor activities, simplifying the
definition of business processes. The Information Services encompass the activities
necessary to ensure consistency of information. They have two fundamental objec-
tives:

• Ensure that such activities are actually carried out, ensuring the proper informa-
tion management.

• Remove this complexity of the remaining processes, simplifying its specification.

3.3.6.1.3 Utility Services

Utility services are highly reusable services. They may arise from business services
or information services decomposition.

3.4 Exercises

Exercise 3.1

Pizza Rapida, managing partners in order to increase customer satisfaction and
profitability, and after finding out that many of the pizzas were delivered to the
customer more than 1 hour after ordering and cold, having as a result customers’
complaints and loss of market share, defined as goals:

• Reduce Pizza delivery time
• Deliver the pizzas hot
• Reduce complaints by 50% until the end of the year

For this purpose, they decided that all deliveries must be made in less than 1 hour
and that the customer satisfaction level should be always recorded.

It was also decided to buy thermal containers to transport the pizzas and to hire
two more employees for the deliveries.

3.4 Exercises 69

1. Model the motivation elements in ArchiMate including the stakeholders, drivers,
assessments, goals, principles, and requirements.

Exercise 3.2

Consider the following description of the Lisbon Institute of Technology (LIT)
strategy.

LIT is a fresh private Portuguese University (created 5 years ago) that is
focused in providing Information Technology courses for speakers of the Portuguese
language. The Sales director (CSO) is defining LIT business strategy for the next 3
years which is driven by the internationalization of the business, student satisfaction,
and online courses.

LIT strategy must also consider the Financial Director (CFO) main driver,
“Operational Efficiency,” along with the Chief Research Officer (CRO) main driver
“Innovation.”

The following issues have been identified:

• Course Management functions are very centralized, and the different courses
don’t have any autonomy for specific adaptations

• Students’ complaints have been increasing in the last 3 years
• Broadband is available in all Portuguese-speaking countries
• Online courses have been doubling sales in the last 3 years
• Online courses have autonomous business processes (not sharing any activities

with traditional courses)
• Average course costs are 10% higher than competitors
• Researchers’ publications have a low impact rate

The following goals have been established:

• Empower course management functions
• Increase student satisfaction (including reducing in 10% of student complaints

each year)
• Reduce operational costs (including human resources costs)
• Reduce course costs to industry average
• Be the n.1 online University in Angola, Mozambique, Cabo Verde, and Brazil
• Increase average research impact rate by 25%, by 2030.

The following principles were established:

• Business units are autonomous
• Customers have a single point of contact
• Channel-specific components are separated from channel-independent compo-

nents
• Management layers are minimized
• Common components are centralized (as the HR management process, or the

course platforms)

70 3 Enterprise Architecture

• Messages with all internal and external systems are exchanged through LIT
Enterprise Service Bus (ESB)

It was also decided to:

• Reengineer the course management process
• Implement an ESB (which must be in open source technology)
• Hire local professors in each country where LIT is operating
• Increase online target advertising budget by 30%.
• Increase by 20% R&D yearly budget

1. Taking into consideration the statement above, model the LIT stakeholders,
drivers, assessments, goals, principles, requirements, and constraints.

2. Are there any motivation elements that are negatively influencing others? Model
these relationships in ArchiMate.

Exercise 3.3

Consider the following description of the SIMPLEX program. SIMPLEX is a
government program for legislative and administrative simplification and the mod-
ernization of the public services. SIMPLEX is managed by the Secretary of State
of Administrative Modernization (SSAM) who has defined as main drivers for the
program the citizen satisfaction and the economic growth. The Minister of Finance
sets the operational efficiency of the public administration as a driver of the program.
However, from the Prime Minister’s perspective, the main driver for SIMPLEX is
to implement a “paper free public administration.”

SSAM team, before proposing the SIMPLEX program, assessed the following
issues:

• The average time to create a business in Portugal is 5 weeks, which is 2.5 times
higher than EU average

• Citizen complaints have been increasing in the last 3 years
• Broadband is available to citizens in more than 95% of the country (which is

above EU average)
• There are no mechanisms available to the general population for electronic

authentication and signing of documents
• Most of the communications within the public administration are supported in

paper
• The administrative cost of the public administration increased by 23% in the last

decade.

The following goals have been established:

• Empower regional and local government functions
• Increase citizen satisfaction (including reducing in 10% the citizen complaints

each year and increasing average online citizen ratings to 95%)
• Reduce operational costs by 3% per year (including human resources costs and

external supplies costs)

3.4 Exercises 71

• Reduce paper usage by 40% in 2 years
• Reduce public administration costs by 3% per year

The following principles were established:

• Citizens have a single point of contact
• Channel-specific components are separated from channel-independent compo-

nents
• Management layers are minimized
• Common components are centralized (as the financial systems, or the email

service)

It was also decided to:

• Reengineer the change of address process
• Reengineer the business creation process
• Create a mobile authentication and signature app
• Define guidelines for interoperability among workflow systems within the public

administration
• Implement a centralize printing service in each public agency (in order to reduce

printing and printing costs)
• Implement a CRM (Citizen Relationship Management) system where all interac-

tions between citizens and the public administration must be recorded

1. Taking into consideration the statement above, model the SIMPLEX stakehold-
ers, drivers, assessments, goals, principles, requirements, and constraints (and the
relationships among them) in ArchiMate.

Exercise 3.4

Consider the following Expense Reimbursement Process.
After the Expense Report is received, a new expense account must be created, if

the employee does not have one. The report is then analyzed for automatic approval,
considering that:

• Values below 100 Euro are automatically approved
• Values greater than or equal to 100 Euro require the approval of the supervisor

In case of rejection, the employee must receive a rejection notice by email. The
refund is credited directly to the employee’s bank account. If no action happens in
7 days, then the employee should receive an email indicating that the analysis is in
progress. If the refund request is not completed within 30 days, then the process
is stopped, and the employee receives notice of cancellation by email and must re-
submit the expense report.

1. Using a BPMN Process diagram, model the Expense Reimbursement Process.

72 3 Enterprise Architecture

Exercise 3.5

Pizza Rapida is a pizzeria located in an area of high competition (especially with
McDonald’s and Pizza Hut, less than 500 meters away).

Pizza Rapida has a partnership with the local gas pump, offering discount to gas
pump customers.

The pizzas can be purchased online, by telephone, or in the store (face to face).
Ingredients suppliers of the pizza (flour, salt, fresh products, etc.) and comple-

mentary products (drinks, desserts, cakes, bread) deliver products daily.
Suppliers of water, electricity, phone/Internet, gas, and firewood ensure such

needs of Pizza Rapida.
Regulators (e.g., City Hall) and inspectors can change the law and/or audit Pizza

Rapida compliance.
The personnel, including the manager, cooker, cashiers, and office employees,

ensure the daily activities of the pizzeria.
A pizza delivery within 5 km is done by employees of Pizza Rapida, while

for distances over 5km, the delivery is subcontracted to LogiPro Company. Pizza
Rapida is part of the “FastFood Corp Group.”

1. Model the context of Pizza Rapida (black-box)

Exercise 3.6

Consider the process held between a client and “Pizza Rapida” restaurant:

• After feeling like eating pizza, the customer selects the pizza and proceeds with
the order.

• The bartender receives the client request and, if all ingredients exist, transmits it
to the chef.

• The chef after cooking the pizza places it at the disposal of “the delivery boy”
that delivers it to the customer.

• The customer pays the pizza (the payment is received by the “delivery boy”).
• The customer eats pizza and the hunger is satisfied.
• As any restaurant, there are general rules and a complain book.

1. Identify and model in ArchiMate Pizza Rapida products and services.
2. Using ArchiMate, structurally decompose the Request for pizza process into its

subprocesses.

Exercise 3.7

Consider the process held between a client and “Pizza Rapida” restaurant described
in exercise 3.6.

3.4 Exercises 73

1. Model the informational entities and their relationships in a class diagram
(UML). Indicate the relevant attributes for each information entity. Select the
identifier(s) for each information entity

Exercise 3.8

In the context of the Navy Information Architecture, provide three (or more) exam-
ples of possible Ship attributes, and classify them according to Inmon taxonomy
(Table 3.12).

Table 3.12 Ship attributes

Attribute name Primitive Derived Historical Projected Public Private Justification

Ship attribute
example

X X X Here goes the
explanation.
Example line,
ignore please

1. Each line must have 3 “X” (in Inmon classification columns). For the table, each
Inmon classification column (Primitive, Derived, Historical, Projected, Public,
Private) must have at least one “X.” Explain and justify your options.

2. Which set of attributes would you recommend to be used as identifier of the ship
information entity? Justify your answer.

Exercise 3.9

Considering the Pizza Ordering business process for Pizza Rapida (including
the activities of Request, Cook, Deliver, and Pay), the following were identified
application services:

• Search for Pizza (I, FC)
• Place the Order (I, FC)
• Schedule Pizza execution (FC)
• Update Pizza execution status (FC)
• Create invoice (FC)
• Create Customer (FC)
• Update Customer Data (FC)
• Get Customer Data (I, FC, WS)
• Update Order (FC)
• Receive payment (FC)

74 3 Enterprise Architecture

Between parentheses are indicated the interfaces in which services are available:
Internet (I), Fat Client (FC), Web service (WS). The following applications are used:

• Customer Management System
• Catalog and order Management system
• Financial system, with an accounting module and a treasury module

Present the Information System Architecture and the Business and System depen-
dencies for Pizza Rapida considering:

1. The processes and the application services
2. The application components in which the services are realized (identifying the

relevant services and interfaces)

Exercise 3.10

Consider the CRUD Matrix in Fig. 3.26. The rows of the matrix represent different
Processes, while the columns represent different Information entities. The rectangles
are the resulting information systems (for further information on this technique,
please see Sect. 7.3 of the book).

1. Model the structure of the applications and their relationships with the Informa-
tion entities using ArchiMate “Application Structure” viewpoint.

2. Model the relations among applications using ArchiMate “Application Coopera-
tion” viewpoint—not modeling, for now, the application services.

3. Detail the relationships among applications, identifying the application services
and interfaces provided and consumed among them, and redraw the “Application
Cooperation” view—including the services and interfaces among applications—
considering:

• Each application provides an application service (for integration with other
applications) for each information entity that it manages (E1 to E7).

Fig. 3.26 CRUD matrix

3.4 Exercises 75

• The application responsible for managing the entities E1, E2, and E3 provides
services to other applications using webservices.

• The remaining applications provide integration services with other applica-
tions by exchanging files (ftp).

4. Now detail the relationships between applications and business processes,
identifying the application services available to business (viewpoint “Application
Usage”) considering that:

• Each process (P1 to P10) uses an Application service (AS1 to AS10) which,
in turn, is held in the respective application (which supports the business
process identified in the CRUD Matrix) except for processes unsupported by
information systems.

Exercise 3.11

Model in ArchiMate a Oracle 11G database executed in a RHELsrv, a X86 based
server with 8 cores running the Red Hat Enterprise Linux 8 Operating System. Its
installation file is rdmms1. It provides database services for general applications,
implemented by Oracle DB 11G functionalities. It also uses Linux services that are
realized by Red Hat Enterprise Linux 8 functionalities.

Exercise 3.12

In order to expand business to other cities, Pizza Rapida is implementing a new
Customer Management System that is made of the following components: Process
Management, telephone, Face-to-face, and the Internet. The Process Management
Component is responsible for the provision of data and processes among the
remaining components (which consumes data through a Java interface).

The Customer Management System is supported by four databases: customer
data, guidelines for customer care, IVR configuration data, and content and
configuration portal data (all supported in an Oracle Database 12c). The DBMS
is implemented in two high availability servers (active-active) that share the same
Netapp storage through a SAN (Storage Area Network).

The Process management component is implemented on jBoss AS7 platform (in
Java).

Software components for automatic Voice Recognition (IVR) are integrated with
a legacy PBX Alcatel Omni Vista. IVR components are implemented in a Java
application running on the same JBoss application server.

The Internet services are implemented in LifeRay on another JBoss server
instance including the following components:

• Content Management Portal
• Online Users Management
• Forms Management
• Customer Management System

76 3 Enterprise Architecture

Consider that:

• The CRM System is integrated with the Financial System, using web services
provided by SAP.

• The Financial System is a SAP module (implemented in an SAP application
server and supported in a 5th database on the same Oracle DBMS).

Also consider that Platforms Jboss, Jboss/LifeRay, and SAP are implemented in
virtual servers (on a VMWare virtualization platform), supported on two physical
redundant servers. All servers are implemented on a Red Hat Linux 8.0 Operating
System (except the PBX, which is supported on a physical Windows 2016 Server
server) and connected to a firewall.

Model in ArchiMate:

1. The application structure viewpoint, indicating the components and the interfaces
among them.

2. The infrastructure viewpoint (including technology platforms, servers, and client
computers, among others).

3. The implementation and deployment viewpoint:

a. Relationship between the logical level and the implemented technological
artifacts.

b. Just the technological concepts.

References

1. J. Zachman, A framework for information systems architecture. IBM Syst. J. 26(3), G321–
5298 (1987)

2. P. Sousa, C. Pereira, Enterprise Architecture: Business and IT Alignment (Santa Fe, New
Mexico, USA, 2005)

3. The Open Group, The TOGAF Standard version 9.2 (Number 2)
4. The Open Group, Archimate 3.0.1 specification (2017)
5. R. Evered, So What Is Strategy? (vol. 16) (1983), pp. 57–72
6. S. Sun-Tzu, S.B. Griffith, The art of war (1964)
7. H. Mintzberg, Five Ps for Strategy, in The Strategy Process (Prentice-Hall International

Editions, Englewood Cliffs, NJ, 1992), pp. 12–19
8. H.W. Kuhn, J. Von Neumann, O. Morgenstern, A. Rubinstein, Theory of games and economic

behavior (60th anniversary commemorative edition) (1944)
9. H. Mintzberg, J. Lampel, Reflecting on the strategy process. Sloan Manag. Rev. 40 (1998)

10. B.H. Boar, The art of strategic planning for information technology: Crafting strategy for the
90s (1993)

11. M. Porter, What is strategy? Harv. Bus. Rev. 74(6), 61–78 (1996)
12. M. Porter, Competitive Strategy: Techniques for Analyzing Industries and Competitors (Free

Press, New York, 1980)
13. J. Galbraith, Designing organizations: An executive briefing on strategy, structure, and process

(1995)
14. R. Winter, R. Fischer, Essential Layers, Artifacts, and Dependencies of Enterprise Architec-

ture, Hong Kong (2006)
15. A. Freire, Strategic management course, handouts of the lisbon mba (2014)

References 77

16. Object Management Group, Business motivation model, version 1.3 (2015)
17. The Open Group, Archimate 2.1 specification (2013)
18. ISO/IEC/IEEE 42010 Systems and software engineering – Architecture description (2011)
19. M. Hammer, J. Champy, Reengineering the corporation: A manifesto for business revolution

(1993)
20. H.J. Johansson, P. McHugh, A. John Pendlebury, W.A. Wheeler, Business Process Reengineer-

ing: Breakpoint Strategies for Market Dominance (Wiley, 1994)
21. A. Vasconcelos, P. Sousa, J. Tribolet, Enterprise architecture analysis: An information system

evaluation approach. Int. J. Enterp. Modell. Inf. Syst. Archit. 3(2), 31–53 (2008)
22. W. Inmon, Data architecture: the information paradigm (1993)

Chapter 4
Enterprise Architecture Patterns
and Principles

André Vasconcelos and Pedro Sousa

Abstract This chapter describes Enterprise Architecture solutions to common
problems. Principles are organized by architecture domain and quality attributes
addressed. Firstly, sixteen cross-domain principles are described; next, three busi-
ness layer principles are introduced, followed by five information principles, four
application principles, and seven technological principles. Section 4.8 describes
IT patterns, including multi-layer IT architectures and IT architectures for high
availability. Finally, IT integration patterns are discussed. At the end of the chapter,
exercises are proposed.

4.1 Introduction

According to TOGAF [1], principles are general rules and guidelines. In the
context of Enterprise Architecture, the definition of principles is expected to support
enterprises in fulfilling their mission.

More specifically, Enterprise Architecture principles support organizations in the
process of defining an enterprise architecture that fulfils organizational strategic
goals, from values through actions and results [2].

Each architectural principle may address one or several EA layers; for instance,
an EA principle may be focused on the business layer (e.g., regarding business
process or organizational aspects), or a principle might be relevant to different EA
layers. In a similar way, a principle may have a direct impact in an architectural
or system quality (security) or in several qualities (efficiency, maintainability, and
portability).

4.1.1 Principles Description

In order to describe the EA principles, we will address the following topics (based
on [1–4]):

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_4

79

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_4

80 4 Enterprise Architecture Patterns and Principles

• Name. The name of the principle is expected to be easy to remember and without
ambiguities. The name selected should make clear what the principle is.

• Architecture domains. The Enterprise architecture layers where the principle is
applicable may include business, information, application, and technology layers.

• Quality attributes. The quality characteristics that the principles address (such
as security, performance, or usability) are also an important characteristic of the
principle. ISO 9126 [5] and [3] provide 32 quality attributes clustered into six
main characteristics—see Fig. 4.1.

• Explanation. For each principle, we provide a short justification on the reasons
that support it. The principle explanation ensures that the Enterprise Architect
applying it understands its rationale and the principle intentions in order to ensure
the principle accurate interpretation.

• Implications. The principle implications, including the derived requirements, are
also presented, including its business application or technological impacts.

• Example. For each principle, a brief example of its application, as well as an
example that does not comply with the principle, are presented in order to better
support its comprehension.

4.1.2 Principles Summary

Tables 4.1 and 4.2 summarize the principles next described, regarding the architec-
ture domains and the quality attributes impacted.

Regarding the architecture domains, most principles are applicable at multiple
layers. Maintainability and efficiency qualities are addressed in more than half of
the principles described, followed by portability and alignment qualities (addressed
in 20% of the principles).

4.2 Cross-Layer Principles

4.2.1 Components Are Centralized

Components are centralized principle is relevant for business, information, appli-
cation, and technology layers. It is concerned about efficiency and maintainability
qualities.

The rationale for the principle is supported in the fact that components in one
location are easier to manage (since all efforts are performed in one location).
Additionally, consolidation and standardization are easier in central components.
Finally, economies of scale are applicable to central components (that are tougher
in decentralized environments).

4.2 Cross-Layer Principles 81

F
ig

.4
.1

Q
ua

li
ty

at
tr

ib
ut

es

82 4 Enterprise Architecture Patterns and Principles

Table 4.1 Principles summary (part I)

Principle Architecture domain Quality attributes

Components are centralized Business, information,
application, technology

Efficiency, maintainability

Front-office processes are
separated from back-office
processes

Business, information,
application

Efficiency, maintainability

Channel-specific is separated
from channel-independent

Business, information,
application

Reliability, efficiency,
maintainability, portability

Data is provided by the source Information, application Reliability, efficiency

Data is maintained in the
source application

Information, application Reliability, efficiency,
maintainability

Data is captured once Information, application Usability, efficiency

IT systems communicate
through services

Information, application,
technology

Efficiency, maintainability,
and portability

Business and information
architectures are aligned

Business, information Efficiency, maintainability,
alignment

Business and application
architectures are aligned

Business, application Efficiency, maintainability,
alignment

Information and application
architectures are aligned

Information, application Efficiency, maintainability,
alignment

Required application services
are available

Business, application Functionality, suitability,
alignment

Services have different
interfaces

Business, application,
technology

Interoperability,
maintainability

Applications manage
information with the same
security level

Business, information, and
application

Security, reliability

Critical processes are
executed in specific systems

Business, application Security, alignment

Each information entity is
managed by a single
application

Information, application Alignment

Primitive and derived data are
managed by different IT
components

Information, technology Alignment

Business units are
autonomous

Business Maintainability, portability

Customers have a single point
of contact

Business Usability and efficiency

Management layers are
minimized

Business Reliability, usability,
efficiency, maintainability

4.2 Cross-Layer Principles 83

Table 4.2 Principles summary (part II)

Principle Architecture domain Quality attributes

Information management is
everybody’s business

Information Efficiency, maintainability

Common vocabulary and data
definitions

Information Efficiency, maintainability

Content and presentation are
separated

Information Usability, maintainability

Data that is exchanged adhere
to a canonical data model

Information Reliability, maintainability

The number of
implementations of the same
information entity is
minimized

Information Interoperability,
maintainability

Common use applications Application Efficiency, maintainability

Presentation logic, process
logic, and business logic are
separated

Application Maintainability

Business logic and
presentation components do
not keep the state

Application Efficiency

Minimize the number of
dependencies and
applications per service

Application Maintainability

Technology independence Technology Portability, maintainability

Interoperability Business, information, and
application

Portability, efficiency,
maintainability

IT systems are scalable Application, technology Efficiency

IT systems adhere to open
standards

Information, application,
technology

Maintainability, portability

IT systems are preferably
open source

Application, technology Efficiency, maintainability

All messages are exchanged
through the enterprise service
bus

Information, application, and
technology

Maintainability, portability

The major implication that this principle brings is that components should be
centralized, unless business, application, or technological requirements require a
decentralized approach [2].

Figure 4.2 presents an application architecture that supports the principle com-
ponents are centralized.

In this example, the company applications (email, finance, human resources, and
intranet) are centralized in the headquarters.

On the other hand, Fig. 4.3 presents another application architecture that has
several applications replicated through the company offices (e.g., email, finance,
human resource applications)—not supporting this principle.

84 4 Enterprise Architecture Patterns and Principles

Fig. 4.2 Example of architecture applying the principle components are centralized

Fig. 4.3 Example of architecture that does not apply the principle components are centralized

4.2.2 Front-Office Processes Are Separated from Back-Office
Processes

Front-office processes are separated from back-office processes principle is relevant
for business, information, and application layers. This principle addresses the
architecture maintainability.

This principle is supported in the fact that the focus of front-office and back-
office processes is different. Usually, front-office processes are focused on customer
intimacy and back-office processes on operational excellence.

Additionally, the knowledge and skills required for front-office processes (as
persuasive speaking skills, empathy, communication, and patience, among others)
are different skills and knowledge than back-office processes.

Finally, from an efficiency perspective, separating back-office processes from
front-office processes makes easier to reuse back-office processes.

The most significant implications of this principle are at the business architecture,
since it is recommended to have a disengagement between front-office and back-
office processes, having dedicated processes to the front office and back-office.

4.2 Cross-Layer Principles 85

C
u

st
o

m
er

F
ro

n
t

o
ff

ic
e

B
ac

k-
o

ff
ic

e

Sell
Product

 Produce
 Product

Request
Payment

Receive
Payment

Support
Customer

Repair
Product

Fig. 4.4 Example of architecture applying the principle front-office processes are separated from
back-office processes

C
u

st
o

m
er

C
o

m
p

an
y

Produce
Product

Receive
Payment

Repair
Product

Sell
Product

Fig. 4.5 Example of architecture that does not use the principle front-office processes are
separated from back-office processes

Consequently, in the application and information architecture, front-office appli-
cations shouldn’t contain back-office logic or data [2].

Figure 4.4 presents a BPMN diagram of the processes that support the selling,
producing, and supporting activities of a company. In this example, there is a full
separation of the front-office and the back-office processes.

On the other hand, in Fig. 4.5, back-office and front-office activities are in the
same business process (making it difficult to reuse back-office activities or ensuring
the right skills to deal with the costumer).

86 4 Enterprise Architecture Patterns and Principles

4.2.3 Channel-Specific Is Separated from
Channel-Independent

Channel-specific is separated from channel-independent principle is relevant for
business, information, and application layers. This principle addresses the reliability,
efficiency, maintainability, and portability qualities.

This principle is built on top of the assumption that an important part of the
business tasks do not depend on the channel used to interact with the customer
(telephone, mail, Internet, office). Thus, in order to allow the business to be
developed through multiple channels, the data must be managed in channel-
independent processes.

According to [2], the implementation of this principle may be achieved by
implementing channel-specific activities at the borders of an end-to-end business
process and communicating with the other activities in a channel-independent
format.

At the application architecture, it is recommended to have dedicated components
for channel-specific processing and others that are channel-independent, where the
business logic and the data are managed. An interface among channel-specific and
channel-independent components must be implemented.

Figure 4.6 presents a view of an online and a face to face selling processes, where
the activities that are specific of the channel (Internet or face to face) communicate
with channel-independent activities (issue invoice and produce product).

Fig. 4.6 Example of architecture applying the principle channel-specific is separated from
channel-independent

4.2 Cross-Layer Principles 87

Fig. 4.7 Example of architecture that does not use the principle channel-specific is separated from
channel-independent

Figure 4.7 presents an architecture where the channel independent activities and
applications are replicated in both channels.

4.2.4 Data Is Provided by the Source

The principle data is provided by the source has impact in the information
and application architectures, addressing reliability, performance, and efficiency
qualities.

This principle increases efficiency and reliability by removing unnecessary
intermediate redirection components, ensuring that the application responsible for
managing the data is the one that will also provide it.

Additionally, since the data is provided directly by the source application,
without having overhead processing costs or other errors (from other components),
the performance and reliability are also expected to increase.

In order to implement this principle, organizations should request customers
to insert the data in online forms (avoiding potential intermediary errors), and
applications should get the data from the source application [2].

88 4 Enterprise Architecture Patterns and Principles

Fig. 4.8 Example of architecture applying the principle data is provided by the source

Fig. 4.9 Example of architecture that does not use the principle data is provided by the source

Figure 4.8 presents an application architecture where the customer data is
obtained (by the website) directly from the source application (the CRM applica-
tion).

On the other hand, Fig. 4.9 presents a similar architecture where the data is
obtained in an intermediary application (a store front application) that keeps a
replica of the customer data.

4.2.5 Data Is Maintained in the Source Application

The data is maintained in the source application principle has several similarities
to the data is provided by the source principle. It has impact in the information
and application architectures, addressing reliability, efficiency, and maintainability
qualities.

Since managing (creating, updating, or deleting) similar data in multiple places
introduces inconsistencies and is inefficient, in order to comply with this principle,
organizations are expected to [2]:

• Have a clear identification of the source application responsible for managing
(create, update, and delete) each data type.

• The data is always obtained from the source application (not from replicas).

4.2 Cross-Layer Principles 89

• Replicas of data shouldn’t be updated (unless synchronization mechanisms are
available).

• The data shouldn’t be copied before it is finalized.

Figures 4.8 and 4.9 present two application architectures where this principle is
followed and not followed, respectively.

4.2.6 Data Is Captured Once

The principle data is captured once has impact in the information and application
architectures, addressing usability and efficiency qualities.

This principle is supported by the fact that requesting similar data more than once
is inefficient.

In order to comply with this principle, applications should first verify if the data
is already available (through services exposed to access it). When the data is already
available, it should be used in pre-filling forms [2].

Figure 4.10 presents an application architecture where the CRM application
exposes services to access customer data. These services are used by the webPortal
and the store front applications (not requesting the user to enter information already
available).

On the contrary, Fig. 4.11 presents an application architecture that does request
similar data, from the user, depending on the system used.

Fig. 4.10 Example of architecture applying the principle data is captured once

Fig. 4.11 Example of architecture that does not use the principle data is captured once

90 4 Enterprise Architecture Patterns and Principles

4.2.7 Systems Communicate Through Services

This principle is expected to have an impact in the information, application, and
technology layers. Ensuring that systems communicate through services addresses
efficiency, maintainability, and portability qualities.

By reusing services, less (new) services are needed, improving efficiency and
maintainability. Additionally, reusing services contributes to faster implementation
of new applications (that may reuse existing functionalities), reducing new applica-
tions implementation effort and duration [2].

In order to implement this principle, organizations must have extra caution in the
service definition, in order to ensure services are reusable, hiding implementation
details and adopting open standards in its interfaces. It is also recommended to
publish services in a service directory [2].

Figure 4.12 presents a CRM application that provides a service that is reusable
by three other applications.

In Fig. 4.13, a similar CRM application is integrated with three similar applica-
tions, but the services are specific (not reusable).

4.2.8 Business and Information Architectures Are Aligned

The business and information architectures are aligned principle, as expected,
addresses the business and the application architectures. This principle is concerned
about efficiency, maintainability, and alignment.

The focus is on structuring the information necessary to conduct business,
both in operations and in management of information. If information and business

Fig. 4.12 Example of architecture applying the principle systems communicate through services

4.2 Cross-Layer Principles 91

Fig. 4.13 Example of architecture that does not use the principle systems communicate through
services

Fig. 4.14 Example of architecture applying the principle business and information architectures
are aligned

architectures are aligned, business will have the expected information when needed
without wasting unnecessary resources.

In order to implement this principle, organizations should ensure that in its
enterprise architecture [4]:

• Information entities contain all information necessary for the activities of
processes (automatic or manual).

• All processes that share information entities agree with the concepts behind it.
• The processes that create information entities manage the entire life cycle of

those entities.
• All processes create or update at least one information entity.
• Each information entity is read by at least one process.

In Fig. 4.14, each process is responsible for managing (create, update, and delete)
its information entity (customer and product). Notice that the sell products process
only reads customer information entity (but the create, update, and delete actions
are only performed by the manage customer relationship process).

92 4 Enterprise Architecture Patterns and Principles

Issue
Invoice

Read
Customer Product Employee

Manage
Customer

Sell
Products

Create, Update, DeleteCreate, Update, Delete, ReadCreate, Update, Delete, Read

Fig. 4.15 Example of architecture that does not use the principle business and information
architectures are aligned

On the other hand, in Fig. 4.15, the customer information entity is managed
by two business processes (sell products and manage customer relationship);
additionally, the issue invoice process does not create or update any information
entity, and the employee information entity is not read by any process.

4.2.9 Business and Application Architectures Are Aligned

This principle addresses the business and application architectures, contributing for
efficiency, maintainability, and alignment qualities.

In the alignment between business and applications, the focus is on the automa-
tion of the activities of business processes. The larger the alignment, the lower
the effort in mechanized operations. It aims to optimize the ratio (operating
costs)/(investment) for a given level of service [4].

In order to ensure business and application architectures are aligned [4]:

• All atomic activities of a process are supported by a single system or application.
• The functionalities of the systems are not redundant: support exclusively some

activity.
• The characteristics of the activities are in accordance with the features of the

systems that support them (e.g., scalability, availability).

In Fig. 4.16, the sell product process is supported by a single application.
In Fig. 4.17, the sell product process is supported by three applications. Assuming

that the sell product process is atomic or is performed by the same person, this view
presents a misalignment between the business and application architectures.

4.2.10 Information and Application Architectures Are Aligned

This principle is focused on the information and application architectures, address-
ing efficiency, maintainability, and alignment qualities.

The alignment between information and applications is based on the effective-
ness of information systems in business information management. The existence of

4.2 Cross-Layer Principles 93

Fig. 4.16 Example of
architecture applying the
principle business and
application architectures are
aligned

Fig. 4.17 Example of architecture that does not use the principle business and application
architectures are aligned

multiple replicas of the same information in different systems is a problem because
each replica has structure, syntax, and semantics usually different in different
systems, making it difficult to integrate [4].

The following are implications of this principle:

• Each information entity is managed by a single system. Managing means creating
and identifying.

• Each attribute of an entity should not be updated by more than one system
(different attributes of the same entity may be updated by different systems).

• A system must access information from the system that manages that informa-
tion, in order to preserve its computational independence.

• Systems must be computationally independent.
• The information characteristics must comply with the characteristics of the

system that manages it.
• Distributed transactions should be avoided, and a transaction must involve only

one system.

94 4 Enterprise Architecture Patterns and Principles

Fig. 4.18 Example of architecture applying the principle information and application architectures
are aligned

Figure 4.18 presents three information entities. Each information is managed by
one system—product is managed by the Sales application, Invoice is also managed
by the Sales application, and Customer is managed by the CRM application.

In Fig. 4.19, the Customer information entity is managed by both applications
(Sales and CRM), and the Product information entity is not managed by any
application.

4.2.11 Required Application Services Are Available

The required application services are available principle addresses the business and
application architectures and the functionality, namely, suitability, and alignment
qualities.

In order to ensure that systems functionality is aligned with the business layer,
the services required by processes must be supported by application services.

Thus, there should not exist application services required by businesses that are
not available in the application architecture [3, 6].

Figure 4.20 presents an online sell process that is supported in two application
services (browse products and payment services).

In Fig. 4.21, one application service is missing (Payment service).

4.2 Cross-Layer Principles 95

Fig. 4.19 Example of architecture that does not use the principle information and application
architectures are aligned

Fig. 4.20 Example of
architecture applying the
principle required application
services are available

96 4 Enterprise Architecture Patterns and Principles

Fig. 4.21 Example of
architecture that does not use
the principle required
application services are
available

4.2.12 Services Have Different Interfaces

The services have different interfaces principle should be applied at the business,
application, and technology layers of the enterprise architecture. It is concerned
about interoperability and maintainability qualities.

According to [7] and [3], the technical interoperability of an architecture
increases by providing the same services at different interfaces, including different
technologies, and business channels.

In order to support this principle, organizations, whenever possible, should
provide services using different interfaces, and no new services should be created
because of the need of providing the same service through a new channel or
technology [3, 7].

Figure 4.22 presents an invoice application service that is made available in three
different interfaces (FTP, webservice, and online form).

In Fig. 4.23, the same service is replicated into three different ones, considering
the interface required. This approach increases maintenance and implementation
costs and reduces the major benefits of implementing a service-oriented architec-
ture.

4.2 Cross-Layer Principles 97

Fig. 4.22 Example of architecture applying the principle services have different interfaces

Fig. 4.23 Example of architecture that does not use the principle services have different interfaces

4.2.13 Applications Manage Information with the Same
Security Level

The applications manage information with the same security level principle has
impact in the information and application architectures. This principle is concerned
about security and reliability.

Applications should manage information entities of the same security level, in
order not to over- or under-spend resources [3, 4].

In order to implement this principle, information entities with different security
requirements should be managed by different systems [3, 4].

In Fig. 4.24, two information entities with different security requirements (cus-
tomer payment information and a company online catalogue of products) are
managed by two different applications (that should be implemented considering the
different security requirements of the data managed).

On the other hand, in Fig. 4.25, only one application is managing the two data
entities (that have different security requirements)—leading to a mismatch between
the application and the information architectures.

98 4 Enterprise Architecture Patterns and Principles

Fig. 4.24 Example of architecture applying the principle applications manage information with
the same security level

Fig. 4.25 Example of architecture that does not use the principle applications manage information
with the same security level

4.2.14 Critical Process Are Executed in Specific Systems

This principle is relevant for the application and business architectures. It is
concerned about security and alignment qualities.

As described in [4], the critical business processes should be supported by
different applications than non-critical business processes.

Thus, the same application should not manage critical and non-critical business
processes [3, 4].

Figure 4.26 presents two business processes. The sales process is considered
critical for the company, while the partner management is not (according to the
organization business context). Thus, the application architecture has two different
applications supporting each process.

In Fig. 4.27, only one application is serving both critical and non-critical business
processes.

4.2 Cross-Layer Principles 99

Fig. 4.26 Example of architecture applying the principle critical process are executed in specific
systems

Fig. 4.27 Example of architecture that does not use the principle critical process are executed in
specific systems

4.2.15 Each Information Entity Is Managed by a Single
Application

This principle has implications for the information and the application architectures
and is concerned about alignment quality.

According to [4], each information entity should be managed by a single
application. Therefore, the main implications of this principle are [3, 4]:

• Each information entity is created, updated, or deleted by one system.

100 4 Enterprise Architecture Patterns and Principles

Fig. 4.28 Example of architecture applying the principle each information entity is managed by a
single application

Fig. 4.29 Example of
architecture that does not use
the principle each information
entity is managed by a single
application

• The application that manages the information entity must provide services on the
information entity to other applications.

In Fig. 4.28, the customer information entity is fully managed (created, updated,
and deleted) by the CRM application that provides application services to other
applications (as the Finance application).

In Fig. 4.29, the Customer information entity is updated by two applications
(CRM and finance applications).

4.2.16 Primitive and Derived Data Are Managed by Different
IT Components

The primitive and derived data are managed by different IT components is an
information-technology principle. This principle is concerned about alignment.

According to Inmon, the primitive and derived data present important differences
on performance, accessing patterns, and availability, among other issues [8]. Thus, it
is considered a “good architectural practice” to use different technology components
to support primitive and derived data.

In order to comply with this principle, organizations should ensure that [3, 4]:

• Derived data is not managed in operational IT components.

4.2 Cross-Layer Principles 101

Fig. 4.30 Example of
architecture applying the
principle primitive and
derived data are managed by
different IT components

Fig. 4.31 Example of
architecture that does not use
the principle primitive and
derived data are managed by
different IT components

• There are separated hardware and software components to manage primitive and
derived data.

In Fig. 4.30, the invoice (primitive and operational data) and the sales forecast
(derived data) data are managed by different technological components.

In Fig. 4.31, the same system software is used to realize derived and primitive
data.

102 4 Enterprise Architecture Patterns and Principles

4.3 Business Layer Principles

4.3.1 Business Units Are Autonomous

This principle is concerned about maintainability and portability qualities.
Having autonomous business units ensures a fast adaptation to change, since

there are no dependencies to other business units. Additionally, autonomous busi-
ness units can be easily separated (supporting organizational restructuring) [2].

In order to implement this principle, organizations should ensure that each
business unit has a profit and loss center that is used for its evaluation. Additionally,
each business unit is responsible for its investments and decisions [2].

4.3.2 Customers Have a Single Point of Contact

Customers have a single point of contact principle addresses usability and efficiency
qualities.

According to this principle, it is better for customers to have a single point of con-
tact, instead of contacting several company employees. It is expected that a single
point of contact ensures consistence of the information provided. Additionally, from
an operational point of view, having dedicated employees to manage customers is
expected to increase efficiency and reduce operational activity interruptions [2].

In order to implement this principle, organizations should provide a single
access point to customers (e.g., a contact-center, dedicated person, etc.) that
detaches the customer from the internal organization. This access point must have
enough information to handle customer requests. Only in exceptional situations, the
customer interacts directly with the internal organization [2].

In Fig. 4.32, all the interaction between the customer and the company is
managed by the Customer Relationship Department.

On the other hand, in Fig. 4.33, the customer interacts directly with three different
organization departments.

4.3.3 Management Layers Are Minimized

The management layers are minimized principle is expected to improve business
reliability, usability, efficiency, and maintainability qualities.

This principle is supported in the fact that the nonproductive costs are reduced
by minimizing management layers. Another important side effect of minimizing
management layers is that operational employees tend to take more responsibility
for their work [2].

4.3 Business Layer Principles 103

Fig. 4.32 Example of architecture applying the principle customers have a single point of contact

Fig. 4.33 Example of architecture that does not use the principle customers have a single point of
contact

From an organizational point of view, this principle imposes a reduction to
the minimum of the management layers. In an ideal world, according to this
principle, people responsible to perform the actual work would be self-managed
in a management layer free organization [2].

Figure 4.34 presents an organization where the management layers are mini-
mized. The production and sales employees are empowered and report directly to
the Director.

Figure 4.35 presents an organization with several management layers, where the
lower layers report to one or more managers, who report to one or more management
layers.

104 4 Enterprise Architecture Patterns and Principles

Sales Director

Management
Board

Production
Director

Sales Person1 Sales Person2 Sales Person n Painter Mechanic Electrician

Fig. 4.34 Example of architecture applying the principle management layers are minimized

4.4 Information Layer Principles

4.4.1 Information Management Is Everybody’s Business

This principle addresses efficiency and maintainability qualities.
According to the information management is everybody’s business principle,

information management decision-making is well defined and supports business
goals. All organization business units must be involved in information management,
working as a team [1].

In order to implement this principle, the internal and external stakeholders of
the organization must accept the responsibility of managing the information. The
organization must ensure the proper resources to information management [1].

4.4.2 Common Vocabulary and Data Definitions

The common vocabulary and data definitions principle addresses efficiency and
maintainability qualities. According to this principle, the enterprise data must be
defined and available to everybody in the organization. This data architecture must
be used when developing applications [1]. Applications should provide services
to exchange data, according to the enterprise common data definitions. From an
organizational point of view, data administration responsibilities must be assigned
[1].

Figure 4.36 presents an enterprise data architecture, where the data is commonly
defined, data management responsibilities are well defined, and applications provide
services to access data.

On the other hand, Fig. 4.37 presents an information architecture with data enti-
ties dependent on the applications, leading to replicated data and data management
conflicts among applications.

4.4 Information Layer Principles 105

F
ig

.4
.3

5
C

on
ti

nu
ed

106 4 Enterprise Architecture Patterns and Principles

F
ig

.4
.3

5
E

xa
m

pl
e

of
ar

ch
it

ec
tu

re
th

at
do

es
no

tu
se

th
e

pr
in

ci
pl

e
m

an
ag

em
en

tl
ay

er
s

ar
e

m
in

im
iz

ed

4.4 Information Layer Principles 107

Enterprise Data

Customer

CRM

Customer data Invoice data Product data

FI application sales Application

Invoice

Product

Data
Administration

Fig. 4.36 Example of architecture applying the principle common vocabulary and data definitions

4.4.3 Content and Presentation Are Separated

The content and presentation are separated principle main impacts are at the infor-
mation architecture, ensuring that the content may be reused in multiple channels.
By separating content and presentation, each can be managed independently [2].

In order to comply with this principle, organizations should translate data
acquired to a format that is independent of the presentation channel. Addition-
ally, there should be specific software components that add to the content the
presentation-specific data [2].

Figure 4.38 presents an architecture, where the data of the product information
entity is separated between data independent and dependent of the channel (online
and physical).

In Fig. 4.39, there is a replication of the product data that is dependent of the
channel and the content that is not dependent of the channel.

4.4.4 Data That Is Exchanged Adhere to a Canonical Data
Model

According to [2], the adoption of a common definition to the data minimizes the
need for translations when applications exchange data, increasing the reliability and
the maintainability qualities.

108 4 Enterprise Architecture Patterns and Principles

F
ig

.4
.3

7
E

xa
m

pl
e

of
ar

ch
it

ec
tu

re
th

at
do

es
no

tu
se

th
e

pr
in

ci
pl

e
co

m
m

on
vo

ca
bu

la
ry

an
d

da
ta

de
fin

it
io

ns

4.4 Information Layer Principles 109

Fig. 4.38 Example of architecture applying the principle content and presentation are separated

Fig. 4.39 Example of architecture that does not use the principle content and presentation are
separated

In order to implement this principle, organizations should manage centrally the
canonical data model. The canonical data model shall be used when applications
exchange information (either directly by the applications involved in the data
exchange or by using a integration software for performing the translation from
the application-specific data model to the canonical data model) [2].

In Fig. 4.40, the exchange of the customer data among the three applications is
supported in a common definition of the customer data.

In Fig. 4.41, there are different definitions of the customer data (in the sales and
in the finance applications).

110 4 Enterprise Architecture Patterns and Principles

Fig. 4.40 Example of architecture applying the principle data that is exchanged adhere to a
canonical data model

Fig. 4.41 Example of architecture that does not use the principle data that is exchanged adhere to
a canonical data model

4.4.5 The Number of Implementations of the Same
Information Entity Is Minimized

In order to increase interoperability and maintainability qualities, the number of
implementations of the same information entity shall be minimized.

The existence of different implementations of an information entity points to
semantic problems for that information entity (e.g., by using different formats or
attributes in the implementation of an information entity). Therefore, the realizations
of the same information entity in the technology architecture are minimized [3].

Figure 4.42 presents the implementation of the customer and the product
information entities in the technology layer. Each data object is realized in a single
artifact.

In Fig. 4.43, there are several implementations of each data object—the customer
has two different implementations and the product three.

4.5 Applications Layer Principles 111

Fig. 4.42 Example of architecture applying the principle data that is exchanged adhere to a
canonical data model

Fig. 4.43 Example of architecture that does not use the principle data that is exchanged adhere to
a canonical data model

4.5 Applications Layer Principles

4.5.1 Common Use Applications

The common use of applications principle is concerned about efficiency and
maintainability qualities. This principle argues that organizations should avoid the
development of multiple similar applications that address a common need. The
development of duplicate applications is expensive to implement and maintain and
leads to data replication [1].

Thus, business units shall use applications that support the entire enterprise not
developing applications for their own needs (for similar enterprise-wide applica-
tions) [1].

This principle is a specialization of the components are centralized principle (see
Sect. 4.2.1), applied at the application architecture. Figure 4.2 presents an applica-
tion architecture where the Intranet, email, HR, and Financial applications are used
across the organization. In Fig. 4.3, the email, HR, and Financial applications are
replicated.

112 4 Enterprise Architecture Patterns and Principles

4.5.2 Presentation Logic, Process Logic, and Business Logic
Are Separated

This principle is concerned about maintainability quality. According to [2], since
the presentation, process, and business logic functionalities are different if they
are implemented in different software components, it is expected that its reuse will
increase.

In order to comply with this principle, application components must have a
layered approach separating presentation logic, process logic, and business logic.
Additionally, the access to data is only implemented in business logic components
[2].

Figure 4.44 presents the implementation of the online store and the face-to-
face sales applications using a layered approach (where the process logic and the
business logic are shared among the applications).

On the other hand, in Fig. 4.45, a monolithic approach is selected, where each
application is implemented in a single software component (replicating common
process and business logic functionalities).

Fig. 4.44 Example of architecture applying the principle presentation logic, process logic, and
business logic are separated

Fig. 4.45 Example of architecture that does not use the principle presentation logic, process logic,
and business logic are separated

4.5 Applications Layer Principles 113

4.5.3 Business Logic and Presentation Components Do Not
Keep the State

This principle is concerned about efficiency quality.
The scalability of an application is increased if business and presentation

components do not keep the state (since it will be easier for implementing new
parallel instances of these components) [9].

The scalability of an application tends to grow if the presentation and the logic
application components do not preserve the application state (stateless). The state
of the application should be managed by specific data components.

In order to implement this principle, the application architecture should ensure
that [3]:

• Data is not recorded at the business or presentation levels.
• The state of the application in record by data components (e.g., Database

Management Systems).

4.5.4 Minimize the Number of Dependencies and Applications
per Service

This principle is concerned about maintainability quality.
According to [10], in the software engineering area, the higher the number

of paths in a program, the higher its control flow complexity probably will be.
The same occurs in the implementation of application services; they tend to be
more complex if they depend on more applications [3]. Thus, in order to reduce
complexity, each application service should be realized by the least number of
applications [3].

In Fig. 4.46, the update customer address is realized by a single application (CRM
Application).

On the other hand, in Fig. 4.47, the same application service is realized in four
different applications, increasing its implementation and maintenance complexity.

Fig. 4.46 Example of
architecture applying the
principle minimize the
number of dependencies and
applications per service

114 4 Enterprise Architecture Patterns and Principles

Fig. 4.47 Example of architecture that does not use the principle minimize the number of
dependencies and applications per service

4.6 Infrastructure Layer Principles

4.6.1 Technology Independence

This principle argues that applications should not depend on the specific technolo-
gies or platforms, following common standards contributing for portability and
maintainability qualities.

According to [1], applications that are not technology independent tend not to be
developed and operated in a cost-effective way. Thus, the application software used
or developed should not be dependent on specific hardware, operating systems, or
systems software.

In order to comply with this principle, applications should select standards
that support portability, and legacy applications must have Application Program
Interfaces (APIs) that enable them to interoperate with the remaining applications.
If needed, integration software (middleware, enterprise service bus) may be used to
reduce the dependencies on specific technologies [1].

In Fig. 4.48, the SAP application provides a web service interface (independent
of the technology).

On the other hand, in Fig. 4.49, the same SAP application only provides SAP
Remote Functional Call interface (that is not independent of the SAP technology).

4.6.2 Interoperability

The interoperability principle addresses portability, efficiency, and maintainability
qualities.

TOGAF interoperability principle states that software and hardware should
conform to defined standards that promote interoperability for data, applications,
and technology, in order to maximize return on investment and reduce costs [1].
Thus, it is recommended to comply to standards and to establish internal processes

4.6 Infrastructure Layer Principles 115

Fig. 4.48 Example of
architecture applying the
principle technology
independence

Fig. 4.49 Example of
architecture that does not use
the principle technology
independence

for the definition and revision of the standards accepted in enterprise applications.
Technology interoperability is expected to reduce vendor lock-in and increase
competition among application vendors.

In order to implement this principle, organizations should use interoperability
standards when available [1].

4.6.3 IT Systems Are Scalable

It is important to ensure that IT systems are scalable, since new market opportunities
must be supported, even if not anticipated. Since acquiring systems with all the
maximum future needs is expensive, considering that the cost of technology tends
to be lower over time, it is important to ensure that the technology components are
scalable [2].

In order to ensure that IT systems are scalable, IT components must scale
horizontally (by adding further nodes performing the same tasks) or vertically (by
increasing resources available of existing nodes). Additionally, IT systems should
be sized at the current volumes and must be monitored periodically [2].

116 4 Enterprise Architecture Patterns and Principles

4.6.4 IT Systems Adhere to Open Standards

IT systems adhere to open standards principle argues that the usage of open
standards prevents vendor lock-in and eases the integration of IT systems, increasing
maintainability and portability qualities [2].

When selecting standards to adopt, organizations should consider the standard
maturity and relevance. Whenever possible, open standards should be selected, and
existing proprietary interfaces must be wrapped into open standard interfaces [2].

In Fig. 4.50, the Finance and the HR application follow oAuth open standard to
authenticate among both applications.

On the other hand, in Fig. 4.51, the applications use proprietary Interfaces.

Fig. 4.50 Example of
architecture applying the
principle IT systems adhere
to open standards

Fig. 4.51 Example of
architecture that does not use
the principle IT systems
adhere to open standards

4.6 Infrastructure Layer Principles 117

4.6.5 IT Systems Are Preferably Open Source

According to [2], open-source software prevents vendor lock-in and has lower
acquisition costs than commercial software. This principle is expected to have a
positive impact in efficiency and maintainability.

To implement this principle, when a functionally equivalent open-source soft-
ware is available, the open source should be selected rather than the commercial
version [2].

4.6.6 All Messages Are Exchanged Through the Enterprise
Service Bus

In order to increase maintainability and portability, this principles states that and
enterprise service bus (ESB) should be used to exchange messages among systems
[2].

Having an ESB ensures that changes in a system won’t have impact in other
systems, since the ESB hides semantic (e.g., data model) or technology changes
(e.g., integration or communication protocols used). Additionally, an ESB may
increase the quality of the message exchange since the ESB provides specific tools
for its persistence and management. Finally, having an ESB contributes for reuse of
services among applications [2].

In order to implement this principle, instead of applications which exchange
messages directly to other applications, all messages go through the ESB [2].

In Fig. 4.52, there is an ESB that handles the specificity of the integration with
four different applications.

Fig. 4.52 Example of
architecture applying the
principle all messages are
exchanged through the
enterprise service bus

118 4 Enterprise Architecture Patterns and Principles

Fig. 4.53 Example of
architecture that does not use
the principle all messages are
exchanged through the
enterprise service bus

In Fig. 4.53, the integration is done directly point-to-point among applications,
imposing that each application is able to deal with the integration technology and
the data model of two or three other applications.

4.6.7 Software Components Are Multi-platform

This principle is concerned about the portability quality. The portability and
technical interoperability increase with the number of possible platforms where
components are able to operate. In order to implement this principle [3]:

• Components should run in multiple operating systems.
• Components that can run on various software and hardware platforms are

preferred.

4.7 IT Architecture Patterns and Practices

4.7.1 IT Architecture Layers Patterns

Almost all applications have three structural components: presentation, logic, and
data. The differences begin with the introduction of network sections between the
components (see Figs. 4.54 and 4.55).

Regarding distributed presentation, “X Window System,” dummy 3270 termi-
nals, and pure HTML web pages (no JavaScript) are examples where calculations
for the presentation are mostly done on the server side.

4.7 IT Architecture Patterns and Practices 119

Fig. 4.54 Architectures with one network section’s component distribution

Fig. 4.55 Architectures with two network sections’ component distribution

Regarding remote presentation, a web browser with JavaScript is a good
example. For distributed logic, a browser running Java applets is an example of
this architecture. In remote data architecture, the client makes calls directly to
the database. The SQL flows through the network, as well as the answers. In a
distributed database environment, part of the data is kept on the client side which is
regularly synchronized with the server.

4.7.1.1 Two-Layer Versus Three-Layer Architectures

Three-layer (3L) architectures have, in general, the advantages over two-layer (2L)
architectures presented in Table 4.3.

120 4 Enterprise Architecture Patterns and Principles

Table 4.3 Two-layer versus
three-layer architectures
summary

Quality 2 layer 3 layer

Security – +
Data encapsulation – +
Performance – +
Availability – +
Reuse – +
Ease to develop + –

Integration with legacy – +
Scalability and flexibility – +

Regarding security, three-layer architectures have the advantage since:

• 2L—security is done only in terms of data access.
• 3L—security is at methods access level.

Data encapsulation is better in three-layer architectures considering that:

• 2L— tables are traveling on the network (at least the structure of the data in SQL
commands).

• 3L—only the methods and the results circulate on the network.

Although one more layer exists in three-layer architectures, performance is better
since:

• 2L—much unnecessary network traffic is generated.
• 3L—there is no waste of network data; only the methods and results circulate on

the network.

Availability is usually high in three-layer architectures since:

• 2L—SQL requests are made directly to a database server (it might reach a
maximum number of “open connections”).

• 3L—orders are directed to any application server.

Reuse is low in two-layer architectures since:

• 2L—client software must directly deal with the tables (in the DBMS).
• 3L—client software interacts with application servers methods (that hide the

DBMS).

Development is easier and faster in 2L, since:

• 2L— low expertise is required.
• 3L—the separation of logic interface and application objects may be difficult in

some cases.

Integration with legacy systems is very hard in two-layer architectures since:

• 2L—client software calls tables directly.

4.7 IT Architecture Patterns and Practices 121

Fig. 4.56 Three-layer architecture

• 3L—Integration with legacy systems can be done by changing the application
server.

Two-layer architectures have low scalability and flexibility in hardware consider-
ing that:

• 2L—Communication problems are raised (e.g., maximum DB connections
reached).

• 3L—Scalability and flexibility are higher since clients call a service, not a
process. The processes are launched on machines that may easily balance load.
The logic is in the components that can be run on any server. There are
components that ensure access to the database (ensuring the data integrity) (see
Fig. 4.56).

Regarding security, the IT Architecture usually has three distinct security
zones—Fig. 4.57.

Firewalls can limit accesses (who and what) between the parts of the network.
In addition to security, firewalls are also important to reduce traffic on the network.

122 4 Enterprise Architecture Patterns and Principles

Fig. 4.57 Different security zones

Also notice that the same physical firewall can execute the role of two. For example,
in a typical IT architecture for the Web, the same firewall can isolate different
network segments—see the example in Fig. 4.58

4.7.2 Architectures for High Availability

Several patterns are available for increasing availability.
A possible approach to increase availability is accomplished using backup

servers (see Fig. 4.59). This is the cheapest solution, but it has some problems,
including:

1. Recovery is complex and slow.
2. A fault detection mechanism must be available: heartbeat which asks if the server

is alive.

4.7 IT Architecture Patterns and Practices 123

Client

PC Client Mobile Client

Internet

Firewall #0

Web Servers
Web Servers Web Servers

LAN

Firewall #1

Firewall #2

Firewall #0

Internet

Web Server

Application Server

Database Servers

Database Server Database Server
DBMS DBMSLAN

BackendAS

Application Servers
Application Server Application Server

ASAS LAN

Fig. 4.58 A firewall with different roles

3. Re-processing of messages lost: there are no guarantees, since failure may have
been on the message “sent,” on the server, or on the server response or the
processing of the response by the customer.

Passive Duplication is another approach for high availability (see Fig. 4.59) with
the following characteristics:

1. It implies a standby server.
2. It is “transparent” to the user
3. Re-processing of lost messages—Reduces the Log and can reduce the time to

replace the Network so that customers do not perceive. It is not used much.

Active-Active duplication is another approach where a “backup server” is used,
but operating (see Fig. 4.60). It is “transparent” to the user and the best approach for
stateless servers. It might have some loss in performance due to data update. It may
be applied to a Database Cluster: both systems write to all disks. Problems might
arise with Logs and Locks.

124 4 Enterprise Architecture Patterns and Principles

Fig. 4.59 Increasing
availability by using backup
servers (in the top) and
passive duplication (in the
bottom)

No architecture solves all problems, including those related to the connection to
the outside. It’s a business decision how to react when problems are detected.

4.8 IT Integration Patterns

4.8.1 Introduction

Integration was born as a technological possibility to connect multiple machines
across networks but has become a way of overcoming the problems posed by
the continuous development of business requirements. The scope moved from
integration of technologies, for application integration and, more recently, for
business integration.

Enterprise Architecture aims to solve similar problems, as Business processes,
or significant parts of these processes, are not adequately supported by information
systems; inconsistencies, incoherence, and replication exist in operational informa-
tion; difficulties in the IS response to new business needs; and difficulties in the
adoption of new technologies.

4.8 IT Integration Patterns 125

Fig. 4.60 Active-active duplication

We present next the major integration techniques from an architectural point of
view.

4.8.2 File Transfer

One of the oldest integration technique is the file transfer. Its main goal is to
exchange information between two systems using coding and decoding objects and
a file. File Transfer Protocol (FTP) is a two-step technique:

• Encoding: Objects to file;
• Decoding: File to objects.

The main advantage of FTP is that it is a universal approach, since all operating
systems and programming languages support the notion of file. However, it has
several disadvantages, including:

• The complexity of encoding and decoding increases exponentially with the
objects to be transferred.

126 4 Enterprise Architecture Patterns and Principles

• It can only be used to exchange objects whose type is relatively simple.
• The performance is limited.
• It implies the duplication of data.

This technique is still widely used despite its drawbacks (e.g., in some legacy
financial transactions).

4.8.3 Screen Scraping

Screen scraping, screen harvesting, or form scraping has the main goal of extracting
information directly from the user interface to a system in order to be used in another
system (Fig. 4.61).

The main advantages of this integration technique are:

• Appropriate to integrate legacy applications where the code cannot be accessed
or changed (e.g., COBOL applications on mainframes).

• There is no direct access to the data.
• It is not necessary to change the source application/system.
• Specialized applications exist for this purpose.

The disadvantages of screen scraping are:

• The user interface is not intended to integration.
• The user interface usually does not reflect the data type.
• It is not simple to simulate a (human) user using an application.
• The quality and performance of this approach are generally low, and the

complexity is high.

Therefore, screen scraping is only used as a “last resource” technique for
encapsulating (closed) legacy systems.

4.8.3.1 Web Scraping or Web Harvesting

Web scraping or web harvesting applies a similar approach of screen scraping
to extract information from web pages. It is mostly used by web crawlers. Web
pages are built with textual markup languages (HTML, XHTML), usually designed
for human consumption. Its design often mixes content with presentation. Due to

Fig. 4.61 Screen scraping

4.8 IT Integration Patterns 127

the widespread use of web scraping techniques, currently several “anti-scraping”
techniques also exist.

4.8.4 Remote Procedure Call

Remote Procedure Call (RPC) protocol was created to support distributed pro-
gramming based on the procedures called by clients that run remotely on the
server. It is the simplest way of middleware. It provides the basic infrastructure to
transform “procedure calls” into “Remote Procedure Calls” (RPC) in a transparent
and uniform way (Fig. 4.62).

Currently, RPC is the “foundation” of almost all other forms of Middleware.
“StoreProcedures” is a type of RPC to interact with Databases. Remote Method
Invocation (RMI) is identical to RPC but applies to methods of objects (instead of
procedures).

The synchronous architectures, as RPC, introduce high cohesion (tight coupling)
between the caller and the called. The services and directory names try to minimize
this effect, but do not eliminate it completely. This type of architecture presents
specific problems in various areas:

• The management level of interaction between client and server is difficult (e.g.,
fault tolerance, availability, load balancing).

• The level of communication properties and services is hard to ensure (e.g.,
transactional behavior, compensation, exception handling).

Client

r = serverFunc (p1,p2)
r _ type serverFunc (p_type
p1,p_type p2)
{
....
}

Server

sd RPC

Fig. 4.62 RPC example

128 4 Enterprise Architecture Patterns and Principles

Fig. 4.63 Message queues

4.8.5 Message Queues

Message queues arise considering that the interaction does not always need to be
synchronous. It provides access to transactional queues, persistent queues, and a set
of primitives for reading and writing to local and remote queues.

Message queues provide a common ground for interoperability based on mes-
sages. In this paradigm, clients and servers interact using messages. A message is a
set of structured data, characterized by a type, and parameters (set of pairs “name,
value”).

The interaction model is a publish/subscribe. Considering the possibility of
defining routing logic for messages at the broker, there are several possibilities for
message-based interactions. The publish/subscribe interaction is the most known
and used one. In this pattern, the sender of the message does not send the message to
any recipient—it just puts it in the queue. The recipients (interested) are responsible
for subscribing a message type. The “queue” then ensures sending a copy of the
message to all the subscribers (Fig. 4.63).

In model-driven messaging, client messages are placed in a queue, and when the
recipient is ready to process, it invokes a function. Several benefits arise from queue
model, including:

• Control when processing messages.
• Increased robustness to failures.
• Better distribution of applications across multiple hardware (for higher perfor-

mance and availability).
• Message priorities setting.
• Interaction with the message queue system.

The main problems with message queues are:

• Asynchronous communication involves a programming model less intuitive than
the RPC (programming events).

4.8 IT Integration Patterns 129

• The message queues servers are one more investment, management, and support
costs.

• The message queue server is one more component of the architecture of the
middleware that needs to be integrated with others.

4.8.6 Message-Oriented Middleware

In message-oriented middleware, the integration is performed using the routing
information (messages) among systems. Applications receive and send messages
to a message broker.

The messages, once received by the server, can be reformatted, combined, or
modified in order to be understood by the target system. It is usually not necessary
to modify the systems involved. The message brokers provide adapters for the most
common applications.

The main goals of a Message-Oriented Middleware (MOM) integration are:

• Store and forward: message is persisted (saved) and delivered to the recipient
(even in case of recipient application failure).

• Broker: all systems interact with a single point.
• Publish and subscribe model: there is a message subscribe queue.
• Assurance that the messages are delivered to the recipient, including two-phase

commit protocols.
• Sorting capability.
• Ability to dynamically select the recipient based on the message content.
• Simulating synchronous operation: request/response.
• Confidential support through encryption.
• Sending events (e.g., unavailability of recipient).
• Ability to transform and filter messages as they move between the servers.

4.8.7 Data-Oriented Integration

One of the basic mechanisms for integration is data-oriented integration which
includes:

1. Extracting the information from the source repository.
2. Processing or transforming information.
3. Updating the destination repository with the processed data.

The main advantages of data-oriented integration are:

• Simple mechanism to implement.
• There are access mechanisms independent of the technology.
• It does not require rework or application modifications.

130 4 Enterprise Architecture Patterns and Principles

The disadvantages of data-oriented integration are:

• It requires technical knowledge about the management systems databases
because the operation of access and update may impact the consistency of
the information.

• It may require to have knowledge about the inner workings of applications to
ensure consistency of information.

• It may involve transformations between data types (possibly incompatible).
• The transformed data is not validated by the application that uses it.
• There is no guarantee of consistency between the replicated information (from

repositories).

4.8.7.1 Integration via DBMS

The integration using database management systems (DBMS) defines an API for
applications to access information. It converts the API commands in a language the
database understands (e.g., SQL). The client sends the command to the DBMS. The
DBMS processes the command and sends the result to the client. The client converts
the response into a format understandable by the target application.

This interaction model can be seen as a dedicated RPC that interacts with a
DBMS. Open Database Connectivity (ODBC) allows access to data in a DBMS,
independently of the DBMS technology, the programming languages, and the
operating system. It is a standard proposed by Microsoft in 1992. The API
is independent of the DBMS. The same API is supported by multiple drivers
seamlessly. The ODBC drivers depend on the specific database engines. There
are multiple compatible implementations (directly or through bridges), such as
Microsoft ODBC, JDBC, iODBC, and IBM i5/OS.

There are also interfaces based on the SQL standard defined in the Java platform
to access relational databases. Java Database Connectivity (JDBC) is an API that
defines a set of Java classes that allow an application to connect to a database.

ODBC is a mechanism mainly to access (remotely) to a Relational Database.
It has been evolving to integrate various types of repositories in a transparent
manner:

• relational databases
• non-relational databases
• text files (flat files)
• spreadsheets,
• email

It allows the creation of “Virtual Database,” independent of the shapes of the
sources of information.

4.8 IT Integration Patterns 131

4.8.8 Application Interface-Oriented Integration

The most commonly used packaged applications usually expose interfaces to access
and process information. The trend is that the functionality of these applications is
exposed through services rather than proprietary APIs.

Some (few) packages have well-documented interfaces allowing access to
information and high-level processes. The main drawback of API integration is
that each application defines a different interface. The interfaces are complex (and
sometimes poorly documented). Additionally, version evolutions tend not to ensure
backward compatibility. As an example, SAP Business Objects (BO) are objects
that encapsulate data and processes associated with a business object (e.g., Material,
Purchase Order, and Customer). External access to these data and processes is done
through specific methods of these objects called Business Application Program
Interfaces (BAPI). The BAPI in SAP Web Application Server are implemented as
function modules that support the protocol RFC (Remote Function Call) and are
described as methods of a SAP BO.

4.8.9 Transactions and Transaction Monitors

Atomicity, consistency, isolation, and durability (ACID) are the four primary
attributes ensured by any transaction:

• Atomicity: Either all the tasks in a transaction occur or none of them occurs. The
transaction must be completed, or else it must be undone (rolled back).

• Consistency: Every transaction must preserve the integrity constraints. It cannot
leave the data in a contradictory state.

• Isolation: Two simultaneous transactions cannot interfere with one another.
Intermediate results within a transaction must remain invisible to other trans-
actions.

• Durability: Completed transactions cannot be aborted later or their results
discarded. They must persist through (for instance) restarts of the DBMS or after
crashes.

The properties of a DBMS apply only to transactions within its domain. In principle,
the properties are no longer valid when an operation crosses more than one DBMS
or when operations access data outside the control of the DBMS (e.g., on the server
itself or in other layers of the architecture, including middleware). Therefore, the
general rule is that whenever the data is distributed, the properties guaranteed by a
DBMS do not apply.

To overcome the problem of the distribution of transactions, The Open Group
defined the Distributed Transaction Processing Model (DTPM). This model aims
to ensure that a distributed operation (i.e., that crosses multiple DBMS) meets
the ACID properties. The model DTPM defines the XA interface. The XA needs

132 4 Enterprise Architecture Patterns and Principles

Fig. 4.64 Transactional RPC

to be supported by all nodes participating in a distributed transaction. The XA
implementations ensure the atomicity of a distributed transaction supported in a
2 Phase Commit (2PC) transactional protocol.

The limitations of RPC can be resolved by making RPC calls transactional.
In practice, this means that they are controlled by a 2PC protocol. As before,
an intermediate entity is needed to run 2PC (the client and server could do this
themselves, but it is neither practical nor generic enough). This intermediate entity
is usually called a Transaction Manager (TM) and acts as an intermediary in all
interactions between clients, servers, and resource managers. When all the services
needed to support RPC, transactional RPC, and additional features are added to the
intermediate layer, the result is a TP-Monitor (Fig. 4.64).

A TP-Monitor allows building a common interface to several applications
while maintaining or adding transactional properties. A TP-Monitor extends the
transactional capabilities of a database beyond the database domain. It provides
the mechanisms and tools necessary to build applications in which transactional
guarantees are provided. TP-Monitors are, perhaps, the best, oldest, and most
complex example of middleware. Some even try to act as distributed operating sys-
tems providing file systems, communications, security controls, etc. TP-Monitors
have traditionally been associated with the mainframe world. Their functionality,
however, has migrated to other environments and has been incorporated into most
middleware tools.

4.8 IT Integration Patterns 133

Fig. 4.65 TP-Monitor components

The typical features of a TP Monitor are:

• Features to support RPC (e.g., IDL, nameservers/directory, security, compilers
Stubs, etc.).

• Transaction manager with features like logging, recovery, and locking.
• “System monitor”—responsible for the scheduling of threads, prioritization, load

balancing, and replication.
• Execution environment for all the applications that use the TP Monitor.
• Specialized components for certain systems or scenarios (e.g., protocols for

interaction with mainframes, queues).
• Variety of tools for installation, management, and monitoring of all components.

The main components of a TP Monitor are (Fig. 4.65).:

• Interface—API for programmatic interaction with client applications.
• Program flow—guards and executes programmatic flows possibly written in the

proprietary language of the TP Monitor.
• Router—contains the mappings between the physical and logical resources.
• Communications manager—messaging system with delivery guarantees (and

rollback) for communication with resources (e.g., databases).
• Wrappers—hides the heterogeneity of different resources.
• Transaction manager—supports the execution of distributed transactions (making

use of 2PC protocol).
• Services—offers a comprehensive range of services to ensure high availability,

performance, and replication, among others.

4.8.10 Business Process-Oriented Integration

4.8.10.1 Workflow-Oriented Integration

The term “workflow” is often used to designate a formal description of an executable
business process. A workflow management system (WfMS) is a software platform

134 4 Enterprise Architecture Patterns and Principles

that supports the design, development, implementation, and analysis of workflows.
Workflows enable the automation of business processes across the organization. The
features and basic functions of a WfMS are:

• Formalization authorization and approval of circuits.
• Digitization of business processes.
• Resource management of the organization.
• Obtaining the operational indicators and KPI.
• Security implementation and management of access control over the processes.
• Support automatic, semi-automatic, and manual activities.

The expected benefits of WfMS are:

• Cleared and structured processes.
• Easy explanation of problems or errors.
• Support for auditing and monitoring process.
• Transparent processes and perception of the path taken.
• Decentralization of work processes.
• Shared vision of the process flows.
• Support the collective work of the organization.
• Distribution of tasks according to the ability of the participants.

The integration using WfMS can be accomplished through two different architec-
tures:

1. The workflow runs “on top” of the existing systems. The workflow provides a
common interface, and operations may affect multiple systems. The workflow
system keeps and manages the execution context of the process. Workflow sys-
tems should also allow to interconnect distributed processes in the organization
(Fig. 4.66).

Business Application Workflow

Business Actor

Operation Support
Application

FrontOffice

Integration

Date Manag

Fig. 4.66 Integration using a “WfMS on the top”

4.8 IT Integration Patterns 135

Fig. 4.67 Integration using “WfMS” as a Service Bus

2. When we face a scenario in which the integration of business processes is
made only with participants who are systems/applications, the basic concepts
of workflow are somewhat compromised. In this scenario (Fig. 4.67), the user
interacts directly through existing application, and the WfMS is used to integrate
applications (not to interact directly with the end user).

4.8.10.2 Business Process Execution Language

Business Process Execution Language (BPEL) aims to describe the interaction
between business partners through sequences of synchronous and asynchronous
messaging. It assumes that the interactions are long duration (long running) and
have state. BPEL is based on the web services standards stack. It is supported by
industry players such as IBM, Microsoft, SAP, and Oracle.

BPEL specifies the XML schema that contains the definitions of the flow
of a business process. BPEL aims to generate executable code of the business
process. It is an orchestration language (not choreography). Processes arise as
service compositions. It defines processes that interact with the entities through web
services (using WSDL to describe their contracts).

Business applications place requirements for integration and inter-operation. The
current response to these challenges is based on SOA paradigm. Many enterprise
applications expose their functionality through Web Services. But developing Web

136 4 Enterprise Architecture Patterns and Principles

Web service 1

Web service 2

Web service 3

Web service 4

Orchestration
service

Web service 5

Web service 6

Fig. 4.68 BPEL orchestration

Services and exposing their functionality is not enough. A mechanism is needed to
compose and orchestrate these functionalities (Fig. 4.68).

Within the organization, BPEL is used for setting standards for application
integration, and for the specification of processes orchestration. Therefore, BPEL
is used for the definition of the integration processes between systems that were
isolated before. Outside of the organization (i.e., between organizations), BPEL is
used for setting standards for inter-organizational communication (e.g., to support
B2B), for simplifying integration with business partners, allowing explicit interorga-
nizational processes that were previously implicit. BPEL orchestrates existing web
services into a new (higher level) web service.

4.8.10.3 Orchestration vs Choreography

Orchestration is the specification of a flow from the perspective of a single entry
point (single endpoint). As presented before, BPEL deals with Orchestration.

Choreography is defined as the exchange of messages, rules, and interactions
between two or more entry points (endpoints) of business processes.

In Orchestration, only the central coordinator knows the process and the purpose
of the process. A central process (which can also be a web service) takes control
of the participants and coordinates the implementation of the different methods
(web services) involved in the process. The orchestration is centralized through
explicit definitions of operations and ordered calls to the web services involved. Web
services involved do not “know” (and do not need to know) that they are involved in
the composition of a process and that they are part of a business process at an upper
level (Fig. 4.69).

4.9 Exercises 137

Orchestration
(coordinator)

Web service 2

Web service 4

Web service 3

Web service 1

5: reply

1: receive

2: invoke 4: invoke

3: invoke

Fig. 4.69 Orchestration integration pattern

Fig. 4.70 Choreography integration pattern

In Choreography, there is no central coordinator. Choreography is a collaborative
effort based on the exchange of messages in a process (usually public). All
participants of the choreography have to worry about the process, the operations to
be performed, the messages to be exchanged, and in which order messages should be
exchanged. Each web service involved in the process knows when to run and meet
other web services participants. At a minimum, each service knows the services
with which it interacts directly—Fig. 4.70.

4.9 Exercises

Exercise 4.1

As presented in exercise 3.2, Lisbon Institute of Technology (LIT) established the
following principles:

• Business units are autonomous.
• Customers have a single point of contact.

138 4 Enterprise Architecture Patterns and Principles

• Channel-specific components are separated from channel-independent compo-
nents.

• Management layers are minimized.
• Common components are centralized (as the HR management process, or the

course platforms).
• Messages with all the internal and the external systems are exchanged through

LIT Enterprise Service Bus (ESB).

LIT CIO is considering different scenarios for supporting LIT Enterprise strategy
and architecture. In one of the scenarios, the architecture described by Fig. 4.71 for
supporting the course business process is being analyzed.

1. What architectural principles (described in LIT Strategy) are being violated in
the architectural scenario described in Fig. 4.71? Justify your answer.

2. Review the architecture sketch of Fig. 4.71, and present a new one (in ArchiMate)
that does not violate LIT architectural principles. Justify your answer.

3. LIT CIO is considering Orchestration and Choreography architectural scenarios.
Considering the strategy described, which one would you recommend? Why?

Exercise 4.2

Several organizations in the public administration provide services to citizens that
imply the use of the citizen‘s address.

Consider that N organizations intended to provide to citizens a single web
interface (in the Internet) for the citizen to use whenever he or she wants to change
his or her address; the goal is that the citizen can do “only once” the service and
that change of address is propagated to the different organizations. However, each
organization has its own systems (System S1,. . . , SN) that use different information
technologies and different data models (Entity E1, . . . , EN), and it is not feasible to
change the data models of existing information systems.

Therefore, it was decided that each organization will build its own information
service (IS1,. . . ,IS10) to update the organization‘s data model and made it accessi-
ble to any other public entity, with specific data model for the address.

1. The architectural scenario of implementing a new Global Propagation System
(GPS) to propagate an address to a list of information services (ISn) is being
discussed. An architectural decision is whether if the GPS service will be
implemented using an Orchestration or a Choreography approach. Assume that
in any scenario, each organization Information System will only be integrated
with a maximum of two other systems. Model in ArchiMate the two different
scenarios.

2. What would be your recommendation for each of the architectural decision
addressed in the previous questions (Orchestration vs. Choreography approach)?
Justify your answer.

4.9 Exercises 139

F
ig

.4
.7

1
L

IT
ar

ch
it

ec
tu

re
sc

en
ar

io

140 4 Enterprise Architecture Patterns and Principles

References

1. The Open Group, TOGAF Version 9.1,, vol. 1 (Van Haren Publishing, 2011)
2. E. Proper, D. Greefhorst, Architecture principles—the cornerstones of enterprise architecture.

The Enterprise Engineering Series (2011)
3. A. Vasconcelos, P. Sousa, J. Tribolet, Enterprise architecture analysis: an information system

evaluation approach. Int. J. Enterp. Model. Inform. Syst. Archit. 3(2), 31–53 (2008)
4. P. Sousa, Enterprise architecture alignment heuristics. Microsoft Enterp. Archit. J. 4 (2004)
5. ISO, ISO/IEC, ISO 9126—Software Engineering—Product Quality (2001)
6. R. Maes, D. Rijsenbrij, O. Truijens, H. Goedvolk, Redefining business—IT alignment through

a unified framework, white paper, 2000
7. J. Sarkis, R. Sundarraj, Evaluating componentized enterprise information technologies: a

multiattribute modeling approach. Inform. Syst. Front. (2003)
8. W. Inmon, Data architecture: the information paradigm (1993)
9. BEA, Scaling EJB applications, 2006

10. T. Mccabe, A complexity measure. IEEE Trans. Softw. Eng. 4(2), 308–320 (1976)

Chapter 5
Enterprise Cartography

Pedro Sousa

Abstract This chapter describes Enterprise Cartography (EC) primitives. Thus,
after an introduction to EC concepts, EC definitions are proposed (including
enterprise model, enterprise meta-model, architectural sentence, alive artifact,
transformation initiative, architectural maps, enterprise observation, knowledge
base, as-was state, as-is state, to-be state, enterprise architect, and enterprise
cartographer). Next, five EC primitives are described. The system representation
and the EC formalization are presented next.

5.1 Introduction

Simply put, EC is the process of abstracting, collecting, structuring, and rep-
resenting architectural artifacts and their relations from the observation of the
enterprise reality. The expression “enterprise reality” refers to the present state of
the enterprise. Traditionally, the observation of this reality is a subjective perception
of an observer, and consequently, it is probable that there are different actors that
perceive different realities of the same enterprise. So, the perception of the present
state of the enterprise (the reality) must be sustained on relevant facts captured in
logs and models and represented through artifacts based on previously defined and
agreed upon models.

We refer to “architectural artifacts” as the enterprise’s observable elements
whose inter-dependencies and intra-dependencies express the architecture of the
enterprise. Naturally, different institutions may consider various sets of artifacts
as part of their architecture. To abstract, structure, and represent the architecture-
related artifacts, one needs the whole set of knowledge and concepts implied in
architecture visualization and representation. For example, the concepts of semiotic
triangle [1, 2], the model of the architecture description presented in ISO IEEE 1471
[3], and a symbolic notation, such as the one used in ArchiMate [4], are concepts
necessary to the production of EA views.

Ongoing transformation initiatives and their plans are an essential part of
enterprise reality because they define the near future TO-BE of the enterprise if no
further decisions are taken that might have an impact on them. This is a fundamental

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_5

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_5

142 5 Enterprise Cartography

concept that we call emerging AS-IS, which we define as the state of the enterprise
after successful completion of ongoing transformation initiatives. This corresponds
to the inertia of a body; if no contrary action is taken, inertia determines the body
future position and speed. Similarly, if no opposite actions are taken, ongoing
initiatives determine the TO-BE models of the Enterprise.

Given that in today’s enterprises transformation initiatives are omnipresent, the
concept of Emerging AS-IS is not only an essential capacity for the planning of the
new transformation initiatives but also for monitoring ongoing ones. When driving
a car, the faster the car is moving, the further ahead one should focus the eyes to
match the longer time and distance one needs to steer it. Likewise, when steering an
enterprise, the faster the enterprise is changing, the more important is to know the
emerging AS-IS, as time flows.

Continuing with the car metaphor, if one knows the car situational reality
(position, speed, and direction), then the car future’s position, speed, and direction
can be estimated unless some unforeseen action (e.g., break or turn) is taken.
Much like the car’s speed and direction, ongoing transformation initiatives are,
in fact, the core elements of enterprise inertia, since they determine the future of
the enterprise (the TO-BE). Since plans of ongoing transformation initiatives are
observable artifacts, by observing the enterprise reality, one can predict the expected
future enterprise state.

Enterprise cartography is a purely descriptive perspective, since it does not
explicitly incorporate the purposeful design of the new enterprise artifacts, as one
expects in EA. Such a difference is also evident in the definitions of the architect
and cartographer roles. According to the IEEE Standard Glossary of Software
Engineering Terminology [5], the term architect is defined as “The person, team, or
organization responsible for designing systems architecture”, and in the Merriam-
Webster dictionary,1 the term cartographer is defined as the person who makes
maps. So, an architect is essentially a person that designs and shapes intended
changes to the architecture of the present enterprise reality, while a cartographer
is essentially a person that aims at representing the reality as it happens, including
such changes as they are occurring.

Capturing and representing organization changes as it happens is probably the
most challenging aspect in EC since it implies doing representations of evolving
artifacts. The real challenge comes when the practices of abstracting and represent-
ing the evolving enterprise occur at a rhythm that is slower than the actual rhythm
of enterprise changes.

Furthermore, as presented in Sect. 1.3, a fundamental motivation for EC is to
produce representations of the organization‘s TO-BE, given they are absolutely
necessary to plan (today) the next transformation initiatives.

In the next section, we will present the key definitions and concepts that sustain
EC.

1 Merriam-Webster.

5.2 Definitions 143

5.2 Definitions

In the context of EC, we consider the following definitions.

5.2.1 Enterprise Model

The Enterprise Model is a model of the enterprise based on a graph holding the
enterprise artifacts as Nodes and their relationships as Arcs. Nodes and Arcs can
hold additional information both the organization artefacts they represent. In formal
terms, let an Enterprise E be modeled as a direct graph G = (A,R) defined over the
set of artifacts A and the set of their relationships R, where A represents the vertices
and R the directed edges. Since A and R change over time, so does the graph G. Let
Gt(At , Rt) represent the value the of G at time t .

For simplicity, we assume that t is a discrete variable and that for each At , there
is a valid Rt and vice versa. If we consider t to represent days, then this means that
each day one has a new graph Gt(At , Rt) as a model of the enterprise.

Enterprise Model : Gt(At , Rt) (5.1)

The notion of an organization as a graph is just yet another very common way
to represent an enterprise. Any model in TOGAF or ArchiMate can be easily
represented as a graph, as long as we consider that nodes and arcs of the graph
have types. Adding the types to nodes and arcs is what makes a meta-model, as
presented next.

However, the notion of model evolution is not so common. Later, we also add a
life cycle to nodes and arcs of the graph. The life cycle is about artefacts evolution,
as in nature, from conception to gestation, from gestation to birth, from birth to
dead. So, a node in the graph may represent some artefact of the organization that
is not yet alive. For example, an application that is being developed is modeled as a
node in state “under construction.”

In this scenario, one needs to filter out the model of the organization as it is up
and running. So, let us review Eq. 5.1 to consider only the productive nodes and
relations and ignore the ones not yet productive or no longer productive, as in:

Productive Enterprise Model : PGt (PAt , PRt) (5.2)

where PAt represents the set of productive artefacts at time t and PRt represents
the set of productive relations at time t .

In EA parlance, one does not use the terms nodes and arcs, but instead objects
and relations or artefacts and references. So, we will use these terms later instead.

Both artefact types and artefacts life cycle will be detailed next.

144 5 Enterprise Cartography

5.2.2 Enterprise Meta-Model

Enterprise meta-model refers to the set of concepts one can use to build enterprise
models. This means the set of types of artefacts used in the model and their possible
relation types. Both artefacts and their relationship have a life cycle, whose states
must also be defined in the meta-model.

The Enterprise Model establishes the subjects (artifacts, or nodes of the graph),
the verbs (relations, or arcs of the graph), and their life cycle that can be used to
express the architecture of the enterprise.

Examples of artifact types are department, information system, service, and
process. Examples of relations are realizes, uses, etc. Examples of life cycle states
are productive or decommissioned.

In formal terms, this means that both artifacts and relations have a type. Let
each artifact a ∈ A have a type τ ∈ Γt , where Γt is the set of all types at time t .
To find out the type of a given artifact or relation, one uses the function type =
TypeOf (instance) that states the type of a given instance, either an artifact or a
relation.

Enterprise meta-model refers to the set

Artif act T ypes : Γt : ∀ a ∈ At ∃ τ ∈ Γt : τ = TypeOf (a) (5.3)

Relation Types : Ωt : ∀ r ∈ Rt ∃ ω ∈ Ωt : ω = TypeOf (r) (5.4)

Naturally, the set of types Γt and Ωt may also change in time. For example, the
evolution of ArchiMate, from version 1 to version 3, has introduced a significant
number of new types and also changes the relations. The problem of meta-model
evolution is a further discussed in [6–8]. In this book, for simplicity, we consider
that the set of types Γ and Ω is constant over time.

5.2.3 Architectural Sentence

An architectural sentence is a well-formed proposition regarding the enterprise
architecture. It must necessarily be expressed using the types, both artifact and
relations types, as well as states both artifact and relations states, defined in the
meta-model.

In our model, one considers two types of Architectural Sentences, one regarding
relations and another regarding states, and both are necessary to define an Enterprise
Architecture:

• Relational Sentence : RS(t, a1, a2, r) that means that at time t the artifact a1
refers artifact a2 through relation r .

RS(t, a1, a2, r) : a1 ∈ At ∧ a2 ∈ At ∧ r ∈ Rt) (5.5)

5.2 Definitions 145

• References can be unassigned using RS(t, a1, a2, r, f alse) that means that at
time t the artifact a1 no longer refers to artifact a2 through relation r .

• State Sentence : SS(t, a1, s) that means that at time t the artifact a1 is in life
cycle state s.

SS(t, a1, s) : a1 ∈ At ∧ s ∈ Φ (5.6)

Using the examples given in the item Enterprise Meta-Model, the following are
examples of architectural sentences:

• Sales department uses CRM information system at tn
• Sales department no longer uses CRM information system at tm
• CRM information system is decommissioned at tp

In the above examples, the words in italic are elements of the Enterprise Meta-
Model, and the non-italic words (Sales, CRM) are instances (subjects or artefacts)
of the model.

Notice that in the examples given, an artefact has a name and a type. So, in the
first example above, the Sales department and CRM information system match a1
and a2 of the Relational Sentence, and uses states the relation between them.

The sentences proposed above are enough to define a model of the enterprise as
well as any changes of that model. A few remarks are appropriate to notice:

• A reference to a subject at a given time means the subject exists at that time in
some state. There is no need for previous subject creation or elimination, since
the subject creation is done implicitly in sentences and subject elimination is not
required.

For example, if the statement “Lisbon is the capital of Portugal on
01/01/2022” is pronounced on a date before 01/01/2022 and at that time
Lisbon is not recorded in the model, then Lisbon is recorded in the model
as being productive in 01/01/2022. If the statement is made in the distant future
where Lisbon is not recorded, then Lisbon is recorded in the model as being
decommissioned on 01/01/2022, with no productive date.

• All objects have at least one relation. In practice, one always declare objects
related to some other object. Even so, if one really wants to have an object with
no relation with other object, one can use a sentence that relates one object with
itself.

• Any model Gt(At , Rt) can be defined with a set of relational sentences RS and
a set of state sentences SS. This means that:

Gtn(Atn, Rtn) = RS(tm, ai, aj , rk)

∪ SS(tm, al, sm)

∀ai, aj , rk, al, sm

∀tm ≤ tn

(5.7)

146 5 Enterprise Cartography

The term ∀ai, aj , rk, al, sm means for any artefact and relation, and the term
∀tm ≤ tn means for any time before tn.

• Every change that occurs in the enterprise can be model by adding new
Architectural Sentences to the previous model. There is no need for updates,
or deletes. Any change can be modeled by adding new statement (facts) to the
model.

Consider that Gtn(Atn, Rtn) is a model of an organization at time tn. Any
change the organization has undergone between any two moments tn and tn+1
can be modeled by adding new Architectural Sentences to the model. One does
not need to delete, remove, or update on any statement that was used to build up
the model at tn. Evolution is modeled just by adding new statements.

This means that:

Gtn+1(Atn+1, Rtn+1) = Gtn(Atn, Rtn)

∪ RS(tn+1, ai , aj , rk)

∪ SS(tn+1, al, sm)

∀ai, aj , rk, al, sm

(5.8)

Given Eqs. 5.7 and 5.8, it also true that:

Gtn+1(Atn+1, Rtn+1) = RS(tm, ai, aj , rk)

∪ SS(tm, al, sm)

∀ai, aj , rk, al, sm

∀tm ≤ tn+1

(5.9)

5.2.4 Productive Artefacts

A productive artifact is an artefact that contributes to the products and services
that an organization realizes. This is different from the artefacts that contribute
to the enterprise value, since in the former case we only consider artefacts that
are operating and have a role in the current enterprise processes and services that
creates value. In the second case, we must also consider the artefacts that are still
under conception or under development but already have an impact on the enterprise
value.

This means the artifact is reachable via the operational dependency graph of
enterprise productive products and services. So, as a general rule, the productive
state of an artifact is defined from a graph traversal and is not an intrinsic property of
the artifact. The roots of this graph are usually the enterprise products and services
that are active at a given moment in time. However, one cannot provide a strong

5.2 Definitions 147

rule for the definition of such roots or even the reachable criteria to define aliveness,
since the relations are defined by the modeler, and its semantics is not known.

Consider the case where organization O has a product P that is realized by
artefact A. If the modeler chooses to have a relation realizes between P and A, then
one may infer that A is productive.

However, the modeler might chose to have instead a relation with the opposite
meaning, for example, the relation does not realize. In this case, neither the existence
of a relation between P and A does not mean that A is productive nor its nonexistence
proves that A is productive. Therefore, one cannot use references to establish the
artifact productiveness, without knowing its semantics.

5.2.5 Transformation Initiative

A transformation initiative is a set of planned and purposeful activities to change
the enterprise artifacts as intended. A transformation initiative holds a set of
architectural statements that change artefacts states after its successful completion.
A common name for transformation initiatives is project. But many other initiatives
normally outside the scope of projects, such as hiring staff, training staff, the
creation of a new department, merges, and acquisitions, among others, are also
transformation initiatives. Any change that has a purpose is a result of a transfor-
mation initiative. If it has a purpose, it must have a plan, which is nothing more than
a set of architectural statements.

According to the previous definition of Productive Artefacts, ongoing transfor-
mation initiatives cannot always be considered to be productive artifacts of the
enterprise, because they normally aim at transforming the organization and not
to produce products or services directly. Nevertheless, for the purpose of being
observable, it makes no difference whereas it is considered or not productive
artefacts.

5.2.6 Enterprise States

One has defined the enterprise architecture at time t to be a graph as defined in
Eq. 5.1.

However, quite often, one use the terms AS-WAS, AS-IS, and TO-BE to refer to
past, current, and future states of the productive enterprise. So the actual meaning
of each of this terms depends on the current date. So for a given current date tc, one
defines:

• The AS-WAS(t) is the set of all productive artifacts, their relations, and states as
observed at a particular point in time in the past t at time t (older than tc).

This means that AS-WAS at time t in the past corresponds to GPt (APt , RPt).

148 5 Enterprise Cartography

• AS-IS state of the enterprise is the current set of all productive artifacts and their
relations at time tc. The AS-IS corresponds to GPtc(APtc , RPtc).

• TO-BE(t) state is the set of productive artifacts and their relations at some point
in time in the future.

This means that TO-BE at some time t in the future corresponds to
GPt (APt , RPt).

• Emerging AS-IS(tc, t) state of the enterprise is the set of all productive artifacts,
their relations, and states observed in the enterprise after the execution of ongoing
and planned transformation initiatives as planned, from time tc up to time t .

So if a transformation initiative has in its plans to make an artefact productive
at time t1 (tc ≤ t1 ≤ t), this artefact will be part of the emerging AS-IS. Likewise,
if some transformation initiative plans to make an artefact decommissioned at
time t2 (tc ≤ t2 ≤ t), this artefact will not be part of the emerging AS-IS.

5.2.7 Enterprise Observation

This concept relates to the ability to formulate architectural statements from the
observation of the enterprise reality, including both productive and non productive
artifacts.

The organization observable state at time t is Gt(At , Rt).

5.2.8 Enterprise System

In Sect. 2.1.1, we present the basic notion of a system as being a set of components
with a structure (the way components are connected), an environment (the list
of external components or systems that interact with the system), and the system
production (the artefacts delivered to the environment). We also add purposefulness
as a condition so that a set or parts become a system.

Such as notion of a system can be formalized as follows[2]:

• Let σ ∈ S be a System and St be the set of all systems at time t .
• Let a Pt (σ) be the set of all artifacts a that Is Part Of system σ at time t . To find

out which artefacts are part of the system, we consider that the components are
Is_Part_Of of system. Such a relation stands for the Aggregation Abstraction [9].

• The Composition C of a system σ at time t is defined as:

Ct (σ) = { x : x ∈ St (σ) } (5.10)

5.2 Definitions 149

• The Environment E of the system σ at time t is defined as:

Et(σ) = { x : x /∈ Ct(σ) ∧ ∃ y : y ∈ Ct (σ) ∧ (x → y) ∨ (y → x)} (5.11)

• The Structure of system (σ) at time t is defined as:

St (σ) = { < x, y > ∈ Ct (σ) ∧ ((x → y) ∨ (y → x))} (5.12)

• The Integration of system (σ) at time t is defined as:

It (σ) = { x, y : x ∈ Ct(σ) ∧ y ∈ Et(σ) ∧ ((x → y) ∨ (y → x))} (5.13)

5.2.9 Enterprise Roles

We define two enterprise roles with responsibility in the EA management:

• Enterprise Architect.
A person that makes architectural statements regarding some point in time in the
future (TO-BE).

• Enterprise Cartographer.
A person that collects architectural statements from observations of the enterprise
reality and produces architectural representations of the enterprise.

5.2.10 Enterprise System Representations

The representation of enterprise systems can be easily structured under the analysis
of a system components graph and its environment.

A key aspect concerns with time. Since systems changes over time, so thus
these representations. Thus, we consider that any representation always includes
the visualization of all states between any two moments.

To exemplify the system representation corresponding to Eqs. 5.10 to 5.13, we
use the organization “Global System” and its subsystems SA and SB as depicted in
Fig. 5.1. SA is further decomposed in S01, S02 and S03, and SB in S04 and S05. In
Fig. 5.2, we present the components of S01 and their relations with the components
of other subsystems.

150 5 Enterprise Cartography

Fig. 5.1 Subsystems of enterprise “Global System”

Fig. 5.2 System S01 internal
and external dependencies

5.2 Definitions 151

We consider the following representation patterns to describe an enterprise
system:

• Organic. This represents how the system is placed along with other systems,
normally in a hierarchical view whose root is the whole enterprise as single
system and the leaves are the individual systems. This view often matches
systems landscape views.

Figure 5.3 presents an example of an organic view.
• Context. The context view of a system presents the external elements that relate

directly with the system internal elements or with the system itself. External
elements are often grouped by type, as presented in Fig. 5.4 for the case of system
S01 context view.

• Structure. The Structure view of a system presents the internal elements and how
they are related with each other. Internal elements are often grouped by type, as
presented in Fig. 5.5 for the case of system S01 structure view.

Fig. 5.3 Organic view of system S01 in the whole system

Fig. 5.4 System S01 context view

152 5 Enterprise Cartography

Fig. 5.5 System S01 structure view

• Integration. The integration view aims at presenting how the system elements
are integrated with the external elements. In Fig. 5.6, we present the integration
view for system S01, where relations between the internal elements are also
displayed.

Notice that even with the relations between internal elements presented, this
view does not replace the structural view, because the internal elements displayed
in the integration view are only those with relation to the external elements,
whereas in the structural view, one displays all the internal elements.

The above views can be used to compose other views. For example, the well-
known layered view is a composition of context views of different systems.

5.3 Enterprise Cartography Principles

We now present a set of principles that can be formulated based on one assumption:

An Enterprise is a System

If Enterprises are systems, and we are assuming the notion of a system in which
a system must have a purpose as presented in Sect. 2.1.1, then we may formulate the
following principles.

5.3 Enterprise Cartography Principles 153

Fig. 5.6 System S01
integration view

5.3.1 Principle 1: Transformation Initiatives Are Observable
Artifacts of the Enterprise AS-IS

A transformation initiative is itself an enterprise artifact. This statement is in line
with most architecture guidelines such as the Work Package concept in both TOGAF
[10] and ArchiMate [4].

However, we go further and also state that the plans of transformation initiatives
are also part of the observable enterprise. In practice, this means that the intention to
build something is an observable artefact of the enterprise. How can such intentions
be an observable artefact?

Since transformation initiatives must be purposeful ones, otherwise the resulting
enterprise (i.e., system) would not have a purpose, they must have a purpose or a
goal. The formulation of this purpose or goal is a definition of a desired or intended
TO-BE state of the enterprise.

So, one can assume that transformation initiatives always have a plan or a road
map to achieve it, no matter how simple, realistic, or achievable it is. If nothing else,

154 5 Enterprise Cartography

then the definition of the desired TO-BE state of the enterprise is the plan. From
Eq. 5.9, such formulation corresponds to a set of architectural statements.

In other words, a transformation initiative corresponds to two lists of artefacts—
the list of artefacts to become productive and the list of artefacts to be decommi-
sioned [11].

Of course, a transformation initiative can actually make unplanned changes and
achieve undesired results.

5.3.2 Principle 2: Changes in the Set of Productive Artifacts
Are Planned Ones

This principle states that artifacts do not become productive or non-productive
randomly, but only as a result of transformation initiatives.

Since transformation initiatives are also observable enterprise artifacts (principle
1), an artifact becomes productive or non-productive as a result of observable
statements in the plans of transformation initiatives.

5.3.3 Principle 3: All Enterprise Artifacts Have a Five-State
Life Cycle: Conceived, Gestating, Alive, Retired, and
Removed

Despite the fact that common EA notations (e.g., [4]) do not formalize artifacts
states, it is convenient to have models that mix existing and not existing artifacts, to
express model changes.

In this principle, we say that existing artifacts do not “fall from the sky,” but go
through an evolution process instead.

Let us first consider as productive the artifacts as the ones that are somehow
involved in the enterprise business processes that produce value. In Fig. 5.7, we
present the five states, their fundamental transitions, and their classification regard-
ing productiveness: Non-productive Yet, Productive, and No Longer Productive
states.

• Conceived state, as the first state of existence. It corresponds to a state where the
artifact is planned but its materialization into a productive artifact did not start
yet. A conceived artifact is an idea that exists TO-BE models (or plans) of some
change initiative, even if itself is still in the conceived state.

• Gestating is the state when an artifact is being constructed or acquired to become
productive. As conceived artifacts, gestating ones do not play a role in the
enterprise transactions and processes. This state only differentiates from the
conceived state by the fact that the change initiative that aims at putting the
artifact into production has already started. An ongoing change initiative can be

5.3 Enterprise Cartography Principles 155

Fig. 5.7 Existence artifact life cycle

a productive artifact, since it can have an impact on other productive artifacts and
is expected to produce value after its completion.

• Alive or Productive.2 A Productive artifact plays purposeful roles in the enterprise
to create value. Conceived and Gestation artifacts might have a relationship on
productive objects, namely, in the ones that are conceiving or creating them. But
their relation is a passive one, not a purposeful role as alive objects must have
to create value. From Principle 2, it is clear that an artifact cannot be brought
into existence as a productive; it always exists first as conceived before being
productive.

• Retired,3 is when an alive artifact no longer plays a role in the enterprise
transactions and processes to create value. As in the conceived and gestation
states, a Retired artifact may still have an impact on alive artifacts. In fact, even
if it does not create behavior or value to the enterprise, it may be the target of
several housekeeping activities that are necessary after being dead.

The Retired state can be achieved directly after gestating state, without
becoming productive. An artifact planned to become productive by a given
transformation initiative might never be productive either because the initiative
was canceled or because it simply changed plans and decided to no longer put
that artifact into production.

• Removed. Represents the post-Retired state where the artifact has no impact in the
remaining artifacts. A removed artifact is unable to interact with alive enterprise
artifacts. An artifact can move from conception directly to removal when it never
materialized in a gestation, meaning that it never went beyond an idea.

2 In previous publications, the Productive stated was named as Alive.
3 In previous publications, the Retired state was named as Dead.

156 5 Enterprise Cartography

5.3.4 Principle 4: The Emerging AS-IS Can Be Inferred by
Observing the Enterprise AS-IS

The emerging AS-IS state differs from the AS-IS state by the artifacts planned to
be brought into production/retirement by ongoing transformation initiatives. Since
ongoing initiatives are enterprise artifacts, their plans (TO-BE models) are in the
scope of the cartographer observations of the enterprise reality (principle 1).

Therefore, one can foresee the set of productive artifacts at some point in time
in the future by consolidating the AS-IS with the TO-BE models of the ongoing
transformations initiative whose completion date precedes the desired moment in
time [11].

In other words, using Eq. 5.8, if Gttoday (Attoday , Rttoday) is the enterprise AS-
IS at time ttoday and architectural statements RS and SS are the plans of the
transformation initiatives ongoing (productive) between today and time tm, then Gtm

will be our best guess of the enterprise AS-IS at time tm.
Given that both RS and SS are part of the observable AS-IS of the enterprise, the

principle is clear.

References

1. C.W. Morris, Foundation of the Theory of Signs—International Encyclopedia of Unified
Science, vol. 1 (University of Chicago Press, Chicago, 1938)

2. J. Dietz, Enterprise Ontology—Theory and Methodology, 1st edn. (Springer, Berlin, 2006)
3. IEEE Computer Society, The IEEE standard 1471-2000 systems and software engineering—

architecture description, 2000. superseded by ISO/IEC/IEEE 42010:2011
4. The Open Group, ArchiMate® 2.1 Specification (Van Haren Publishing, Zaltbommel, 2015)
5. IEEE, Systems and software engineering—Vocabulary in ISO/IEC/IEEE 24765:2010(E)

(2010), pp. 1–418
6. N. Silva, M. Mira Da Silva, P. Sousa, An enterprise architecture model co-evolution operations

catalog, in Twenty-fourth Americas Conference on Information Systems (AMCIS 2018) (New
Orleans, 2018)

7. N. Silva, P. Sousa, M. Mira Da Silva, N. Silva, M. Mira Da Silva, P. Sousa. Lm2f: a life-cycle
model maintenance framework for coevolving enterprise architecture meta-models and models,
in 27th European Conference on Information Systems, Stockholm and Upsala (Sweden, 2018)

8. N. Silva, P. Sousa, M. Mira Da Silva, Maintenance of enterprise architecture models, in
Business & Information Systems Engineering (2020), pp. 1–24

9. C. Batini, S. Ceri, S. Navathe, Conceptual database design: an entity relationship approach
(1992)

10. The Open Group, TOGAF version 9.1 (2011)
11. P. Sousa, J. Lima, A. Sampaio, C. Pereira, An Approach for Creating and Managing Enterprise

Blueprints: A Case for IT Blueprints, vol. 34 of Lecture Notes in Business Information
Processing (Springer-Verlag, The Netherlands, 2009), pp. 70–84

Part III
How We Do It: Supporting Methodologies

and Technologies

Chapter 6
Enterprise Architecture Development
Framework

André Vasconcelos and Pedro Sousa

Abstract This chapter presents TOGAF Architecture Development Method that
supports organizations in defining, developing, and managing the enterprise archi-
tecture.

6.1 Introduction

Nowadays companies face important challenges in surrounding mutable environ-
ments. With relentless competition in almost all sectors, substitute products are
available for customers.

The Open Group Architecture Framework, best known as TOGAF, is an enter-
prise architecture methodology and framework. TOGAF proposes a descriptive
model to support the development of enterprise architectures called the Architecture
Development Method (ADM) [1].

The ADM supports organizations in defining, developing, and managing their
enterprise architecture.

6.2 TOGAF ADM

TOGAF is a framework for enterprise architecture. It provides an approach for
designing, planning, implementing, and governing an enterprise architecture.
TOGAF ADM describes a method for developing and managing the lifecycle
of an enterprise architecture and forms the core of TOGAF. It integrates elements
of TOGAF to meet the business and IT needs of an organization [1].

TOGAF Architecture Development Method (ADM) is an iterative method,
considering the breadth of coverage of the enterprise, the level of detail, the extent of
the time period (including the number and extent of any intermediate time periods),
and the architectural assets to be leveraged.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_6

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_6

160 6 Enterprise Architecture Development Framework

Fig. 6.1 TOGAF ADM phases (based on [1])

The ADM is a generic method since it is expected to be used by enterprises in
a wide variety of different geographies and applied in different vertical sectors and
industry types. TOGAF ADM phases are presented in Fig. 6.1.

6.2.1 Preliminary Phase

The first phase of the ADM has the main goal to determine the architecture capa-
bility desired in the organization, including the organizational context (including
the organizations and business units involved), and the methods and frameworks
relevant for the initiative.

In this phase, the architect is expected to establish the process and the tools to
perform the EA project [1].

TOGAF recommends that the following steps are [1] followed:

1. Scope the organizations.
2. Confirm the governance and the support frameworks.
3. Define and establish the enterprise architecture team and organization.
4. Identify and establish the architecture principles.
5. Tailor TOGAF and, if any, other selected architecture framework(s).
6. Implement the architecture tools.

TOGAF ADM has to co-exist with other management frameworks that are
present within organizations.

6.2 TOGAF ADM 161

Fig. 6.2 Architecture vision example

6.2.2 Phase A: Architecture Vision

ADM phase A aims to develop a high-level vision of the capabilities and business
value to be delivered, and to obtain approval to develop and deploy the architecture
outlined in the architecture vision.

TOGAF [1] recommends to start by establishing the EA project roadmap, and
identifying key stakeholders, concerns and requirements. Next the business goals
and drivers should be modeled. The business capabilities are next described and the
EA principles established.

In this phase the architecture vision is developed - see the example in Fig. 6.2.
Finally the target architecture with the KPIs and business risks are defined [1].

162 6 Enterprise Architecture Development Framework

6.2.3 Phase B: Business Architecture

The main goal of phase B is to develop the target business architecture. The business
architecture main focus is on the enterprise operation in order to contribute to the
goals and drivers.

Thus, during this phase it is recommended [1] to develop a baseline description
of the architecture, after the selection of reference models and viewpoints (Fig. 6.3).

TOFAF [1] recommends that a gap analysis is developed (between the baseline
and the target architecture) addressing the impact in the architecture landscape.

After the stakeholders review an architecture definition document is created.
This phase is expected to produce several outputs, including different business

catalogs, namely:

1. Organization/actor catalog
2. Driver/goal/objective catalog
3. Role catalog
4. Business service/function catalog
5. Location catalog
6. Process/event/control/product catalog
7. Contract/measure catalog

It is also recommended to produce matrices that relate business concepts,
including:

1. Business interaction matrix
2. Actor/role matrix

Several business viewpoints (diagrams) are also expected to be delivered at this
stage, including:

1. Business footprint diagram
2. Business service/information diagram
3. Functional decomposition diagram
4. Product lifecycle diagram
5. Goal/objective/service diagram
6. Use-case diagram (see Fig. 6.4)
7. Organization decomposition diagram
8. Process flow diagram
9. Event diagram

6.2.4 Phase C: Information Systems Architecture

The main goal of phase C is to develop the target information systems architecture.
The Information Systems Architecture is expected to support the business architec-

6.2 TOGAF ADM 163

F
ig

.6
.3

R
ef

er
en

ce
bu

si
ne

ss
m

od
el

ex
am

pl
e

(r
ep

ri
nt

ed
w

it
h

pe
rm

is
si

on
fr

om
[2

])

164 6 Enterprise Architecture Development Framework

Restaurant (simplified)

Eat Food

Pay for Food

Drink Wine
Food Critic

Cook Food

Chef

Fig. 6.4 Use-case diagram example

ture and vision. TOGAF considers together the data and the application architecture
in this phase.

Regarding the data architecture a baseline data architecture is developed (after
selecting the reference models, viewpoints and tools). Afterwards a target data
architecture is also proposed and a gap analysis is performed leading to an
architecture definition document (after stakeholders approval).

Several outputs may be produced in this step, including conceptual data dia-
grams, logical data diagrams, data dissemination diagrams, data security diagrams,
data migration diagrams, and data lifecycle diagram.

Regarding the application architecture a similar approach is proposed [1] by
developing a baseline application architecture (after selecting the reference models,
viewpoints and tools). Afterwards a target application architecture is also proposed
and a gap analysis is performed leading to an application architecture definition
document (after stakeholders approval).

6.2.5 Phase D: Technology Architecture

Phase D develops the target technology architecture that enables the logical and
physical application and data components. The steps within this phase start by the
development of a baseline IT architecture (after selecting the reference models,
viewpoints and tools). Afterwards a target IT architecture is also proposed and a
gap analysis is performed leading to an IT architecture definition document (after
stakeholders approval).

Examples of outputs from this phase are environment and location diagrams,
platform decomposition diagrams, processing diagrams, networked comput-
ing/hardware diagrams, and communications engineering diagrams (Fig. 6.5).

6.2 TOGAF ADM 165

Fig. 6.5 Technology diagram example

6.2.6 Phase E: Opportunities and Solutions

The main goal of phase E is to generate the initial version of the architecture
roadmap, considering the outputs from phases B, C, and D.

The recommended steps for Opportunities and Solutions phase [1] are the
consolidation of the gap analysis, requirements and interoperability from previous
phases. Afterwards the implementation strategy should be proposed (after a risk for
business transformation assessment). An architecture roadmap, implementation and
migration plan are expected to be delivered

6.2.7 Phase F: Migration Planning

In this phase the main goals are to (1) finalize the architecture roadmap and the
supporting implementation and migration plan, (2) ensure that the implementation
and migration plan is coordinated and (3) ensure that the transformation initiative
and its benefits are understood by the key stakeholders.

TOGAF ADM[1] suggests that a business value is assigned to each work
package. Then an estimation of the timings and resources should be developed,
along with the prioritization of the initiatives, through a cost/benefit assessment.
After these steps the architecture roadmap and implementation and migration plan
are proposed.

166 6 Enterprise Architecture Development Framework

6.2.8 Phase G: Implementation Governance

This phase ensures the conformance with the target architecture through the
implementation of projects. Thus, in this phase, TOGAF [1] recommends to start
by confirming the scope and priorities for deployment and the resources needed.

Afterwards a guide to the development of the solutions and compliance reviews
should be developed, supporting the implementation of business and IT operations.

6.2.9 Phase H: Architecture Change Management

The last ADM phase ensures that the architecture lifecycle is maintained, that the
architecture governance framework is executed, and that the enterprise architecture
capability meets the requirements. Phase H should perform risk management
activities, deploy monitoring tools and provide architecture change management
analysis.

The requirement change along with governance and change processes are
important activities of this final phase.

6.2.10 ADM Architecture Requirement Management

The ADM architecture requirement management ensures that exists and is per-
formed through ADM phases and steps (when needed).

The major outputs of these activities are requirement impact assessment and
architecture requirement specification.

6.2.11 Implementing the ADM

The ADM does not need to be implemented completely and sequentially from A
to H phase. Figure 6.6 presents different iteration cycles that may be applied to the
ADM.

Additionally, depending on the goal of the EA, ADM may be implemented at
different depth and breadth of the enterprise (Fig. 6.7). For example, ADM may
be used for supporting the implementation of a specific software system or for the
development of the whole enterprise.

6.2 TOGAF ADM 167

Fig. 6.6 Applying iteration to the ADM

Fig. 6.7 Architecture stakeholders according to scope and depth

168 6 Enterprise Architecture Development Framework

References

1. The Open Group, The TOGAF Standard version 9.2. https://pubs.opengroup.org/architecture/
togaf9-doc/arch/chap02.html

2. D. Bedwell, C. Cox, H. Bryant, D. Ireland, CSU Process Model (Charles Sturt University, 2020).
https://cdn.csu.edu.au/_data/assets/pdf_file/0003/51924/process-model-wpp.pdf

https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap02.html
https://pubs.opengroup.org/architecture/togaf9-doc/arch/chap02.html
https://cdn.csu.edu.au/_data/assets/pdf_file/0003/51924/process-model-wpp.pdf

Chapter 7
Enterprise Strategy Design

André Vasconcelos

Abstract This chapter presents an enterprise strategy design approach supported
in several techniques. Thus, the context of the strategy (and of the enterprise) is
characterized considering the political, economic, social, technological, environ-
mental, and legal factors. Then, the balanced scorecard is used to detail the vision
into financial, customer, internal, and learning and growth objectives. The Business
Model Canvas is next used for modeling the mission, strategies, tactics, business
policies, business rules, requirements, and constraints of the EA. Finally, the EA is
assessed through strength, weakness, opportunity, and threat analyses.

7.1 Introduction

The definition of the strategic elements that drive an organization is a management
field of study and research. However, the strategy is not just central to the
organization, but is also a key ingredient for justifying the key decisions when
modeling the enterprise architecture. It is in this layer that the organization’s
vision and goals are defined, along with its mission, strategies, tactics, policies,
requirements, and assessments. Therefore, the first step, when designing a new EA,
should be the strategy design.

Thus, in order to design the organization strategy, we suggest that the process
described in Fig. 7.1 is followed.

The enterprise strategy design process starts by looking “outside” of the enter-
prise, identifying external stakeholders (as customers, suppliers, competitors, regu-
lators, etc.) and drivers (as economic changes).

Considering the enterprise context, the vision and the goals are established.
Afterward the enterprise should define its mission and set the strategies and

tactics that are expected to achieve the goals previously defined. Finally, the
enterprise directives and requirements are defined (that will be implemented in the
EA).

Assessments should be defined in order to measure and control the outcomes
achieved.

Next, we suggest the use of several methods to support the design of these steps.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_7

169

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_7

170 7 Enterprise Strategy Design

Fig. 7.1 Enterprise strategy design process

7.2 Context Identification

7.2.1 PESTEL

PESTEL analysis is used to assess the external environment of a business [1]. The
external factors that may influence the enterprise are characterized into political,
economic, social, technological, environmental, and legal (PESTEL) factors—see
Fig. 7.2.

Political factors include the government policies that may influence business,
including changes in tax policy, tariffs, and business licensing.

Economic factors consider how the economic outlook may influence business,
including growth, interest rates, and inflation, among others.

Social factors include the cultural and demographic trends, including population
growth rate and cultural factors, among others.

Technological factors assess the innovation, namely, R&D and technological
innovation, among others.

7.2 Context Identification 171

Fig. 7.2 PESTEL analysis

Environmental factors include the ecological impacts on business like weather
conditions, climate change, and pollution, among others.

Finally, legal factors include the regulation and labor laws, among others.

7.2.2 External Stakeholders and Drivers

PESTEL analysis supports the identification of the external stakeholders’ concerns
(drivers).

Consider the example of a new pizzeria, Pizza Rapida, for the identification of
the drivers and the stakeholders (Fig. 7.3).

Figure 7.4 presents the external drivers that may influence Pizza Rapida strategy
definition, using the PESTEL analysis.

In addition to the PESTEL factors it is also important to identify the external
stakeholders of the company. Figure 7.4 identifies four stakeholders (customer,
pizza competitor, ingredient supplier, and transportation supplier) and their main
concerns.

Finally, the internal stakeholders and their drivers should also be considered—see
Fig. 7.5.

172 7 Enterprise Strategy Design

Fig. 7.3 PESTEL analysis of Pizza Rapida

Fig. 7.4 Pizza Rapida context

7.3 Desired Result Definition 173

Fig. 7.5 Pizza Rapida internal drivers and stakeholders

7.3 Desired Result Definition

7.3.1 Balanced Scorecard

The balanced scorecard (BSC) was created in the 1990s by Robert Kaplan and David
Norton [2] and is a strategic management method. The BSC adds to the traditional
financial perspective three more perspectives.

The financial perspective identifies the short-, medium-, and long-term finance
drivers and goals. This perspective addresses questions as the definition of accept-
able results to the shareholders. Financial objectives support the other three
perspectives of the BSC. Every measure selected must have a cause-and-effect
relationship that culminates in improving the financial performance.

The customer perspective identifies the customer relationship and the market.
This perspective translates the company’s vision into specific goals for each market
segment. Companies identify the customers and the market segments they have
chosen to compete with. These segments are the sources of income of the company’s
financial goals.

The internal process perspective identifies the resources and capabilities
needed to raise the internal level of quality. In this perspective the focus is on
the quality of the internal processes, which are key to achieve excellence. The
BSC’s internal process perspectives should focus on the processes that will have
the greatest impact on customer satisfaction and also on meeting the company’s
financial objectives. Managers must be able to identify which processes and compe-
tencies are expected to provide competitive advantages (e.g., differentiate itself from
competition). These competitive advantages are delivered by the processes that the
company performs, including planning, marketing, production, delivery, and after-
sales processes.

The learning and growth perspective is the fourth BSC perspective. It is
focused on the intangible goals of the organization, including the human capital
(including skills and knowledge), information capital (including information sys-
tems and IT), and organizational capital (including culture and leadership, among
others).

174 7 Enterprise Strategy Design

Notice that the BSC perspectives are interdependent. Therefore, to achieve the
financial goals, you have to fully meet the needs of the clients (as well as the other
perspectives).

7.3.2 Vision and Goals

After defining the organization’s vision, the BSC method should be used to identify
the goals, using the BSC four perspectives. In Fig. 7.6 the Pizza Rapida case study
is presented.

Fig. 7.6 Pizza Rapida vision and goals

7.4 Courses of Action and Requirement Definition 175

Fig. 7.7 Pizza Rapida increased customer rating goal detailed into objectives

After identifying the (high-level) goals using BSC, each goal should be detailed
in objectives that must have an explicit completion date and criteria for achievement
(Fig. 7.7).

7.4 Courses of Action and Requirement Definition

7.4.1 Business Model Canvas

Business Model Canvas (BMC) is a technique to support enterprises describing their
business models [3]. BMC help enterprises in structuring the market, by identifying
the customer segments and the core value proposed to each segment, along with the
expected revenues—see Fig. 7.8.

In order to use the BMC technique a team of 3–5 people, focused in the business,
starts listing the top customer segments (considering the most profitable segments).

The value proposition is the second cell of the BMC to be addressed. In this step,
the enterprise products and services are described, along with the needs addressed
to customers. Products and service bundling should also be described.

The revenues streams are next described, including the value currently paid and
the value customers may be willing to pay as well.

The channels used to promote, sell, deliver, and support the products and the
services bought by each customer segment are also described in the BMC.

Customer relationship is another key item of the BMC, including the type of
relationship for each customer segment and for each product and service (including
self-service, dedicated personal assistance, co-creation).

The key activities that deliver the organization products and services (value
proposition) should also be described.

The key resources (including people, knowledge, means, and financial
resources) and key partners (central for the business) are also described.

Finally, the cost structure identifies the top costs to ensure the activities and the
resources needed for business.

176 7 Enterprise Strategy Design

Fig. 7.8 Business Model Canvas

The BMC supports the elicitation of the strategies and tactics for each component
of the business, presented in Fig. 7.8 as course of action. The business policies
and rules (directives) and requirements are also identified using the BMC. Thus,
using the BMC the mission, strategies, tactics, business policies, business rules,
requirements, and constraints are identified.

7.4.2 Mission, Strategies, Tactics, Business Policies, Business
Rules, Requirements, and Constraints

We present next the usage of the BMC technique to the Pizza Rapida case study (see
Fig. 7.9).

7.4 Courses of Action and Requirement Definition 177

Fig. 7.9 Pizza Rapida Business Model Canvas

Pizza Rapida has three major customer segments: families with children, employ-
ees of nearby companies, and groups of friends.

As presented before, Pizza Rapida’s mission is to deliver pizza to customers
city-wide. Thus, as presented in the “value proposition” cell, the strategy is to
deliver pizzas to the customer’s choice of location, which is supported in the tactics
“Hire drivers with their own vehicles to deliver pizzas.” Pizza Rapida’s three major
products are the pizza slice, the complete pizza, and the full meal (including drinks,
dessert, aperitifs, etc.).

The payment of the products is done in cash or other payment methods and using
vouchers. The same payment methods are available in all channels.

The products are available using the Internet, phone, and face-to-face channels,
and the prices are equal regardless of the channel. Promotion is strongly performed
in the face-to-face and in the remote channels.

178 7 Enterprise Strategy Design

Customer relationship is developed through a loyalty program and discounts to
groups and full meals. Regular rating is also requested to customers, in order to
improve customer experience.

Cooking and delivering pizzas are Pizza Rapida’s key activities that ensure hot
pizza delivery. The key resources that support the BMC are a wood oven (used to
cook the pizzas) and the loyalty application with over 20,000 downloads. The ability
to make Neapolitan pizzas is also a key resource that is supported on a recipe only
known to a reduced number of chefs. Pizza Rapida is looking to expand its stores
in three new cities next year and has planned a major update in the production and
delivery software.

Pizza Rapida minimizes fixed costs, and HR, contact center, and store rental are
the major costs. Fresh ingredients are always bought from local suppliers and are
also a relevant cost.

Notice that the BMC supports the identification of the mission, strategies and
high-level tactic, business policies, business rules, and requirements. However,
these elements (tactics, business rules, requirements, constraints) should be further
characterized (in autonomous views/diagrams).

7.5 Assessment Definition

7.5.1 SWOT

The SWOT analysis supports the organization in assessing its (internal) strengths
and weaknesses and (external) opportunities and threats in the market and in
competitors.

This technique is based in a matrix with four cells (Fig. 7.10).
The strengths assess the unique resource and skills of the enterprise. On the other

side, the weaknesses assess what could be improved in the enterprise (as human
resources, business processes, information systems).

Opportunities assess outside trends that the enterprise may take advantage of,
considering its strengths. Threats are the external factors that may have a negative
impact on business.

7.5.2 Assessments and Outcomes

Figure 7.11 presents Pizza Rapida SWOT analysis.
In the top row the strengths (as the strong loyalty program, the revenue

increase, and the unique ability to make Neapolitan pizzas) and weaknesses (as the
profitability reduction and the high turnover rate) are described.

7.5 Assessment Definition 179

Fig. 7.10 SWOT template using ArchiMate

Fig. 7.11 Pizza Rapida SWOT analysis

180 7 Enterprise Strategy Design

The bottom row describes the opportunities (as the Internet market, the trans-
portation offering, and the opportunity of partnership with the gas pump station)
and the threats (as the increase in cost of fresh ingredients, the increase of fast food
competition, and the possible additional taxes on unhealthy food).

7.6 Enterprise Strategy Design Overview

Figure 7.12 presents the overview of the strategy design process considering the
four methods previously described.

Thus, the approach proposed to design the enterprise strategy starts by identi-
fying the stakeholders and their drivers and concerns using the PESTEL analysis.
Then, using the BSC, the vision and the goals are defined. The BMC is used for
establishing the courses of actions (including the mission, strategies, and tactics)

Fig. 7.12 Overview of approaches used in the enterprise strategy design process

7.7 Exercises 181

and the EA principles and requirements. Finally, the SWOT analysis is used for
assessing the strategy and its outcomes.

Notice, however, that in some EA projects, the organization strategy is already
defined, or different tools are used for its definition. In that case the strategy elements
(as mission, strategies, tactics, policies, requirements, and assessments) should be
gathered from existing documentation.

7.7 Exercises

Exercise 7.1

South Hospital is a reference hospital in Europe.
The average age of the European population has been increasing. Population

aging continues to be one of the most worrying factors in the old continent, leading
to an increase in neurodegenerative diseases.

The Hospital has agreements with the main insurance companies. However, there
has been a consolidation of health insurance market, with a concentration in two
insurers that retain more than 80% of the market. Since the general population has
health insurance, that has encouraged the screening and prevention of diseases.

However, poor eating habits have led to an increase in the percentage of obese
population, with a higher frequency of heart attacks, diabetes, and other diseases.

The Hospital activity is supervised by the Health Regulatory Agency (HRA) that
is imposing gender quotas on managerial positions.

Nowadays, technology has allowed the provision of health services through
digital channels, from scheduling appointments to the remote execution of health-
care services. Legislation such as the GDPR1 has raised new challenges for South
Hospital in accessing and sharing patient data, in the provision of integrated
healthcare.

South Hospital is under high pressure to increase the profit margin from
shareholders, considering the emergence of two new hospitals less than 50 km away
and the reduction in the amounts paid by insurance companies for healthcare. One
of the main concerns of the Human Resources Director is the hiring of doctors and
nurses, as there is a shortage of these professionals.

1. Model South Hospital context.
2. Model in ArchiMate a PESTEL analysis of South Hospital.
3. Model South Hospital internal drivers and stakeholders.

1 For further information on the EU General Data Protection Regulation (GDPR) please see https://
eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32016R0679&from=EN

182 7 Enterprise Strategy Design

Exercise 7.2

South Hospital seeks to be the hospital of choice for patients through healthcare
excellence. Therefore, the Board of Directors approved the following goals:

1. By the end of next year, have a 10% market share increase.
2. Reduce operational costs by externalizing noncore activities (as cleaning) and by

increasing efficiency (e.g., more efficient and environmentally friendly lighting).
3. Increase patient recommendation ratings by 15% each year.
4. Reduce 25% patient complaints each year.
5. Reduce average waiting times for medical appointments to less than 2 weeks.
6. Hire and retain at least two of the Top 10 medical doctors in each specialty in the

country of operation.
7. Reduce nurses’ turnover rate, 20% this year, 10% next year, and 5% in 2 years.
8. Have ISO 9001 certification.
9. In order to promote innovation, establish a long-term partnership with EU TOP

3 medical research centers, and execute 10% more clinical trials.

1. Model South Hospital vision and goals using a balanced score card approach.
2. Detail one of the goals into objectives.

Exercise 7.3

South Hospital provides specialized healthcare to people. In order to provide the best
specialized healthcare, it hires top medical doctors in each specialty in the country.
South Hospital provides exams, medical consultations, surgeries, and outpatient
care and provides healthcare packs, which include two or more different healthcare
services pre-paid, with a 25% discount.

Patients are segmented into private patients, patients with health insurance, and
employees of companies with specific agreements.

South Hospital has a loyalty program, providing regular patients with various
benefits (including free parking and discounted diagnostic consultations).

The opinion of patients is recorded on each healthcare and is an important factor
in the computation of the employees’ financial incentives.

The Hospital provides multiple channels (besides face-to-face) for the provision
of its services, including a web portal, a mobile application, and a telephone not
only for scheduling healthcare but also for the provision of some healthcare in
an omni-channel approach (such as medical appointments and nursing follow-up,
among others).

Complementary diagnostic exams, as well as outpatient medical activities, are the
most important and profitable activities. The Hospital is governed by strict directives
to always provide excellent healthcare, never reducing the quality of the services
provided.

Insurers and general practitioners (who refer patients to the hospital) are central
to the flow of patients. Besides having top medical doctors, South Hospital has a

References 183

state-of-the-art facilities and equipment, which are key resources of the hospital.
These resources ensure a unique ability to do medical diagnostics and treatments.

The major costs of the hospital are the specialized human resources and the
capital costs (bank loans). The CFO has been following a path of reducing bank
debt, retaining 50% of profits for this purpose.

Thus, payments are made by the insurance companies, up to 90 days after the
healthcare, and immediately by the patient. The price of healthcare has a 20%
discount on digital channels.

1. Model South Hospital Business Model Canvas

Exercise 7.4

South Hospital has top medical doctors in each specialty, being recognized as the
leading hospital in making diagnostics.

It also provides healthcare services through multiple channels, having a strong
presence in the digital channel, which opens the opportunity to provide medical
services to patients in any place in the world.

The revenues and the profitability have been increasing in the last 2 years.
Although revenue increase per year is about 25%, the profit increase is only 3%.

There is a shortage of health professionals in the market, namely, doctors and
nurses, that is expected to be aggravated by the opening of two new hospitals nearby.

South Hospital has a high cost regarding HR and a high debt.
The consolidation of health insurance market (with a concentration in two

insurers that retain more than 80% of the market) is a strong threat to the hospital.
The increase in neurodegenerative diseases and the aging of the population open

the opportunity for continued health services for the elderly.
The increase in obese population is also expected to enlarge the healthcare

services related to heart attacks and diabetes.

1. Model South Hospital SWOT.

References

1. A. Gillespie, PESTEL Analysis of the Macro-Environment. Foundations of Economics (Oxford
University Press, USA, 2007)

2. R. Kaplan, D. Norton, The balanced scorecard—measures that drive performance. Harv. Bus.
Rev. 71–79 (1992)

3. A. Osterwalder, Y. Pigneur, Business Model Generation: A Handbook for Visionaries, Game
Changers, and Challengers (Wiley & Sons, Hoboken, 2010)

Chapter 8
Business Process Design

Sérgio Guerreiro, André Vasconcelos, and Pedro Sousa

Abstract This chapter introduces business process design approaches. After the
introduction, process identification challenges are presented, along with activ-
ity identification, considering different concerns. Then, we present a method to
design business processes. We explain how the core elements of a business
process are elicited using a facilitator tool to be used by the business process
stakeholders. From the elicited core elements two sequential stages are then
triggered: (i) the business process discovery (in Sect. 8.2.3) using the Semanti-
fyingBPMN framework and (ii) the business process enrichment (in Sect. 8.2.4).
The SemantifyingBPMN framework is publicly available at https://github.com/
SemantifyingBPMN/SemantifyingBPMN. Finally, Sect. 8.2.5 shows how a discov-
ered (and enriched) business process could be experimented by stakeholders to
enable better feedback and therefore minimize misunderstandings.

8.1 Business Process Design Overview

The same business process may be organized and composed in many different
forms. Process identification and process discovery are well-known topics in
business process management discipline [1]. The first attempts to identify the
processes that should be considered in the organization and the second to find out
the detailed model of the business process.

From a management perspective, process identification is based on a set of
heuristics and methods. Thus, process identification may be performed by splitting
different activities or having different nested processes, or having move business
events that trigger other business processes. But, which one is the “right” business
process design? In order to identify the “right” activities of a business process,
we first need to set a common ground for process specification, classification, and
analysis.

INESC-ID, Lisbon, Portugal

Instituto Superior Técnico, University of Lisbon, Lisboa, Portugal

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_8

185

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_8&domain=pdf
https://github.com/SemantifyingBPMN/SemantifyingBPMN
https://github.com/SemantifyingBPMN/SemantifyingBPMN
https://doi.org/10.1007/978-3-030-96264-7_8

186 8 Business Process Design

8.1.1 Process Identification

A common issue that arises when modeling business processes is to know the
difference between process, subprocess, activity, task, or operation. Firstly, it is
important to notice that the number of levels (for hierarchical decomposition) is
arbitrary. The basic concept of process is always the same: input—process—output.
Depending on the modeling language the names for the business processes may be
different (e.g., BPMN has activities, subprocess, task. . .).

A business process may be hierarchically decomposed, as the example in
Fig. 8.1, or segmented through a common event, as presented in Fig. 8.2. Therefore,
each process can be decomposed (hierarchically/vertically) in one or more addi-
tional “processes,” and each process can be segmented (horizontally) in additional
segments. Most authors use the term “process” as something that is made of
a set of activities, and an activity as a “subprocess” (a process resulting from
decomposition).

Process specification is an important tool for business process analysis, measure-
ment, and automation. Several names are associated to hierarchical specification:
processes, subprocesses, activities, tasks, and operation. It all refers to actions
(verbs) that transform inputs into outputs. Thus, process specification is about
identifying the processes that can be functionally detailed.

Fig. 8.1 Hierarchical decomposition of maintaining temperature “process”

8.1 Business Process Design Overview 187

Fig. 8.2 Business process segmentation

8.1.2 Activity Identification

As in identifying business processes, we will see architectural issues related to the
identification of the activities of a process. Consider the two scenarios presented in
Fig. 8.3 as models of the same reality. What criteria should we use to decide between
scenarios 1 and 2? How does such criteria relates with:

• the atomicity of activities.
• the artifacts being produced by activities.
• monitoring the process productivity.
• the systems supporting the activities.

So the problem to solve is to identify the criteria to be used when modeling the
activities one observes in enterprises. The goal is to ensure consistency between

188 8 Business Process Design

Fig. 8.3 Two modeling scenarios of the same reality

Fig. 8.4 High-level car painting process

models, making decomposing criteria independent of the models and matching
models to the concerns of the stakeholders.

Let us consider the following example:
“At ABC Organization, the painting of a car is made by a painter and a mechanic.

In the factory, the mechanic is responsible for straightening the metal before
painting. Then the car is spackled by the painter and painted in a specializing
painting greenhouse.”

We could model the process as a single high-level process (Fig. 8.4).
If we look at the “where” concern we could split the process into two subpro-

cesses, considering where the action occurs (see Fig. 8.5).
On the other hand, if the concern is on the actors involved, the split of task would

be different (see Fig. 8.6).

8.1 Business Process Design Overview 189

Fig. 8.5 Car painting subprocesses according to the “where” concern

Fig. 8.6 Car painting subprocesses according to the “who” concern

Fig. 8.7 Car painting subprocesses according to the “where” and the “who” concerns

Finally, if we combine both concerns the process would be split into three
subprocesses (see Fig. 8.7).

Thus, the decomposition of the business process into activities changes with the
concerns addressed. For managing spaces scenario 1 would be the right one, while
to manage people, scenario 2 is the best one.

The idea that a process model is specific to a purpose is worrisome, given the
effort that is usually involved in process modeling. Trying to detail activities as
much as possible, as in scenario 3, is tempting, but often leads to processes that are
too complex to be understood and lose their usefulness. This problem is solved by
having a visualization tool that is able to produce the views of scenarios 1 and 2
based on a model of scenario 3 [2, 3].

A common concern is to monitor and control process productivity, by measuring
the artifacts produced by each activity. We call control points to the exact
places where measurements are performed within the process. Naturally, to ensure
atomicity of activities, control points should not be placed inside an activity but
rather between activities. In scenario 1 you can monitor the productivity of each site
and in scenario 2 the productivity of each actor. In scenario 3, we can choose what
we want to monitor.

Quite often, the handover of work between activities performed by actors
belonging to different chains of command leads to lower productivity. We call
breakpoints to these points. As a default practice, one can consider that there is a
breakpoint whenever there is a handover of work between different actors. Naturally
one should consider placing a control point in every breakpoint to monitor the points
where lower productivity is likely to occur.

190 8 Business Process Design

Fig. 8.8 Control viewpoint (why)

For example, in scenario 3, one can consider a breakpoint between “straighten-
ing” and “spackling”, but not between the “spackling” and the “painting” once the
actor remains the same.

An approach to identifying activities that allows a trade off between the
complexity of the process model with the capability to monitor breakpoints is simply
to assume that all activities between breakpoints can be modeled as one activity. In
other words, you only change activities when the performing actors change the chain
of command and control. But this approach is equivalent to scenario 2.

Finally, we define Critical points as points where the result of a process is
perceived directly outside the enterprise. Any failure in these points is critical
because it is potentially visible from the outside (i.e., it impacts the customer) which
is not the case in an internal activity that the organization may try to mitigate the
problem without involving the customer.

A similar approach can be used when the process model is focused on business
strategy alignment, where the “why” (purpose) concern becomes dominant. Any
sequence of activities contributing to the same purpose should be modeled as a
single activity. In this way, each activity in the model addresses some concern
managed by the enterprise (Fig. 8.8).

For the “what” concern, the main focus is on information. Therefore, the process
is decomposed in order to ensure that there is a differentiation of the activities by the
information they process. A sequence of activities that process the same information
can be modeled as a single activity. Similarly, an activity that processes different
information should ideally be decomposed into more specific activities such that
each processes only one information (Fig. 8.9).

This also means that any behavior associated with an activity that processes some
information must depend on that information. Consider the Activity “AB” presented
in Fig. 8.10, which produces the “I” information, and then performs some tasks that
are independent of both the “I” information and the “C” activity. In this case, the
“AB” activity should be decomposed as represented at the bottom of Fig. 8.10.

The independence between activities B and C is an important fact, because in the
first case (activity AB) it is stated that behavior B occurs before C, whereas in the
second case, it can happen before, simultaneously or after behavior C.

8.1 Business Process Design Overview 191

Fig. 8.9 Process decomposition according to the “what” concern

Fig. 8.10 AB activity decomposed into A and B according to the “what” concern

Several other identification criteria exist, according to the modeling purpose,
including:

• Management, through control points
• Audit, namely, audit points
• Optimization, through identification and work-sharing between processes
• Automation, through manual vs. automatic activities
• Competence/skills
• And many others, such as quality, criticality, cost, safety, etc.

192 8 Business Process Design

8.1.3 Activity Classification

Activities (or processes) can be classified into three categories according to their
support in the information technology:

• Manual, when executed by one or more persons (human actors), for example,
students doing an exam, people playing football, and people having lunch.

• Automatic, when they are performed by machines, applications, and autonomous
IT (technological actors), for example, painting a car in “car production manu-
factory.”

• Semi-automatic, as their implementation requires an interaction or collaboration
between people and machines. At IT level this interaction is usually done by a
GUI (graphical user interface).

The classification of activities in the categories above allows a more comprehen-
sive process model, something that would otherwise not be possible. In fact, manual
activities cannot be automated as such, and therefore are not included in the process
models seen by IT. Automatic activities do not involve human resources and are
therefore naturally excluded in human resources-centric business process models.
In some notations, such as BPMN, automatic activities can still be further classified
as services, decision tables and scripts.

8.2 A Methodology for Business Process Design

8.2.1 Foundations for Business Process Design Methodology

A holistic approach to deliver an automated governance is grounded in the well-
known business process lifecycle consisting of discovering, designing, executing,
monitoring, and optimizing. The execution phase could be supported in any
available business process engine existing in your organization, knowing that the
pre- and post-phases are guaranteed by this methodological explanation. Governed
automation extends the ability of organizations to be aware about operational con-
dition while also allowing you to reshape business processes whenever necessary.

The phases of discovering and designing are the capabilities of business pro-
cesses elicitation, discovery, and enrichment.

The first capability aims at offering organizational awareness for business
processes that are operating in place, and the second one is to be able to govern
them, i.e., informing the organization stakeholders about current business processes
and future predicted, operational conditions, in order to take informed actions to
align with organizational goals whenever needed.

Moreover, the result of business process governance can be fed back to busi-
ness processes elicitation, discovery, and enrichment to provide the capability of
alignment between operation and architecture of your organization. Whenever an

8.2 A Methodology for Business Process Design 193

enhancement opportunity is identified at operation time, it could be incorporated
back in your architectural design, closing the cycle enabling continuous improve-
ment and optimization. The awareness for change is triggered by the monitoring
and subsequent capability of intelligent simulation that predicts the future behavior
of business processes. A manager is therefore able to take an informed decision
about an improvement or a correction in the organization business processes.

The key benefit for decoupling these two capabilities is to be able to discuss, con-
struct, and evolve the business process models independently from the operational
data that is extracted from the software systems. In short, semantic understanding
of business processes levers a fine-grained governance. Each capability is described
in detail in the following.

A business process is a collection of events, activities, and decisions that brings
value to the customers of an organization [1]. To achieve value a business process
should deliver a new service or product that will be evaluated positively by all
stakeholders. Therefore, a business process should account for the conversational
and production aspects that occur within the execution course of a business process
initiated by a customer. This concept of understanding the execution context of a
business process is an uptake that will be used in the following descriptions.

The first step of the methodology starts by providing a facilitated way of eliciting
the core elements of a business process, namely, the involved actors, the required
activities, the business rules, the business objects involved, and the dependencies
between activities. Decision points can also be included to specify how to proceed
when some criteria need to be assessed.

The result of business process elicitation is a visual representation expressed in
the business language domain, the language that is understood by the stakeholders
of an organization, agnostic to any kind of technical language. No specialized
knowledge, e.g., BPMN [4], BPEL, DMN, ArchiMate, or other specification
language, should be required to understand the achieved representations of the
elicitation step.

After that, the previous elicited elements are used to discover the details of the
business process following the approach in [5]. The result is now a specialized
representation using the BPMN notation. The automatically produced BPMN
models entail all the knowledge captured before, and when multiple solutions
are available, the user is asked about which model best fits the organization’s
purposes. The produced BPMN models are a representation of the happy flow of the
business processes, including the expected behavior if all the business logic operates
successfully without exceptions.

Finally, the previous BPMN models could be augmented, by user configuration,
with exception handling capabilities. The advantages for enriching a BPMN model
with exception handling capabilities are manifold. It allows an impact analysis
of enclosing non-happy-flow situations in the business process, e.g., measuring
the effort, and complexity, of dealing with such situations. Most time exception
situations are handled manually, which entails an overhead to the organization.
Moreover, enrichment also allows the identification of new and not previously dis-
covered situations that might contain friction points requiring immediate attention.

194 8 Business Process Design

Fig. 8.11 Summary of the business processes’ elicitation, discovery, and enrichment cycle

Figure 8.11 summarizes the business processes’ elicitation, discovery, and
enrichment cycle.

8.2.1.1 The SemantifyingBPMN Tool

The SemantifyingBPMN tool [5] articulates the BPMN concepts using a social
interaction pattern inherited by DEMO theory [6], so that models can be discovered
and enhanced with few extra complexities managed.

For a single business transaction of producing a product, at least two business
actors need to be considered: the transaction initiator (TI) and the transaction
executor (TE). As both actors are located in two different organizations, two BPMN
pools are considered.

Figure 8.12 expands the business transaction steps included in a DEMO Ψ -theory
basic transaction pattern, clarifying how the sequence of states originates a new
P-fact in the world. Whenever an actor role is expecting a C-act from the other,
a BPMN intermediate catching and an intermediate throwing message events are
used. All the business transactions respect this pattern, even when some acts or facts
are not observable. In that situation, the acts or facts are considered implicit in the
execution of business transaction. This pattern allows a stable design for creating a
network of business transactions considering a controlled increase in the complexity
of the business process model.

8.2.2 Business Process Elicitation

Business process elicitation simplifies the business process modeling transforming
it into a collaborative task. It works asynchronously, and remotely, to avoid long

8.2 A Methodology for Business Process Design 195

F
ig

.8
.1

2
T

he
“h

ap
py

flo
w

”
of

th
e

ba
si

c
D

E
M

O
tr

an
sa

ct
io

n
pa

tt
er

n
be

tw
ee

n
tw

o
ac

to
rs

w
it

h
se

pa
ra

ti
on

be
tw

ee
n

co
m

m
un

ic
at

io
n

an
d

pr
od

uc
ti

on
ac

ts
re

pr
es

en
te

d
in

B
PM

N

196 8 Business Process Design

Fig. 8.13 Adding a new activity to the canvas. Activity “Check Stock Availability” is already
created in elements

working hours spent in meetings. Each stakeholder adds information accordingly
with their business knowledge, interests, and understanding of requirement changes.

On one hand, business process requirement changes are continuously imposed,
and fast adaptations are expected to maintain their value. On the other hand, to
be compliant with those evolving requirements, a huge number of possible design
combinations for complete business processes are possible. The explosion of the
number of those possible combinations hinders its development, management, and
deployment (Figs. 8.13, 8.14, 8.15, and 8.16).

In detail, our business process elicitation encompasses the following five stages
that can be executed without any prior order, presented in Table 8.1.

The following Fig. 8.17 depicts a collaborative canvas showing the result of the
elicited business process.

8.2.3 Business Process Discovery

Business process discovery automatically generates business process model using
the BPMN specification language. Business process discovery is grounded on the
elicited elements designed by the previous business process elicitation phase: the
involved actors, the activities and events that each actor is responsible for, and
dependencies between activities.

To obtain such result, business process discovery starts by extracting the semantic
that is available in the elicited elements and orchestrates them using a pattern-
based approach that is able to offer a semantic definition for the business processes.
The semantified patterns are pre-provisioned and account for all the conversational
and production aspects of a single business process. Furthermore, business process
discovery also identifies the network of business processes. This effect occurs
whenever the execution of a business transaction depends on another one. A network

8.2 A Methodology for Business Process Design 197

Fig. 8.14 Example of using the collaborative chat system for activity consolidation

is considered for instance a payment business transaction that succeeds a production
business transaction.

Therefore, the goal of business process discovery is to facilitate the classical
BPMN business process creation that requires BPMN specialized analysts to
consume much effort in the design phase. In a classical and manual approach,
whenever business changes anything inside a business process, then more design
effort is needed. With this methodological approach, there is no need to include
specialized analysts that understand BPMN. On the contrary, this approach offers
a solution to involve the stakeholders that understand business language in a
continuous collaborative cycle of elicitation and discovery.

Therefore, the collaborative business process elicitation is the knowledge source
for the created BPMN business process that is produced on the fly. This solution
promotes the trial-and-error approach until consensus is reached between business
stakeholders. Figure 8.18 exemplifies an automatically discovered BPMN model
which is produced from the elicited business process elements in the collaborative
canvas. Any change in an element can be reflected in the BPMN model on the fly
without requiring any BPMN modeling knowledge.

198 8 Business Process Design

Fig. 8.15 Example of two stakeholders created with activities assigned

Fig. 8.16 Defining a handover dependency between activities

Figure 8.19 shows the ability of the solution to deal with BPMN gateways.
Business processes are not only sequential flows of activities but can also contain
decision points.

8.2 A Methodology for Business Process Design 199

Table 8.1 Business process elicitation stages

Identify the activities and
events

Each stakeholder can create any activity and event to articulate
what they are doing even if they do not have full knowledge
about the overall business process. This information is domain
specific; therefore, different granularities can be found (usually
in too complex processes). This issue will be consolidated in the
next stage. More activities can be added as more detail is
expected to a given model. This stage offers an agile and remote
environment for any stakeholder to view, create, or update
activities and events

Consolidate activities to
check redundancies

Whenever activities and/or events are duplicated or with
different granularity, consolidation is required. This step
facilitates the presentation of the elicited activities and allows
discussion between stakeholders using a collaborative chat
system. Consolidation stage can be done iteratively until
stakeholder consensus is reached

Distribute the activities by
stakeholder

When some, or all, of the activities are identified, this step
allows the assignment of each one to a specific stakeholder,
using a simple drag and drop of elements in the collaborative
canvas. The goal is to establish who (inside the organization) is
responsible for each activity. The order of activities is not
relevant at this stage. The activities could be distributed in an
iterative manner in accordance with the elicitation phase

Order the activities by
stakeholder

Within each stakeholder, their activities could be ordered
accordingly with the business logic. The dependencies between
activities are automatically established accordingly with the
order. If needed, an activity can be dragged from one
stakeholder to another

Define the dependencies
between stakeholders

Handover represents a situation where a stakeholder depends on
the other to finish his/her order of activities

8.2.4 Business Process Enrichment

Business process enrichment allows an agile addition of exception handling situa-
tions in the previously discovered BPMN business processes.

The usual solution encompasses a sequential, and manual, process of elicitation
and design of the most relevant business processes using a business-dependent
language. A high-level design is produced containing a partial view (also named
as the happy flow) of the enterprise operation. Then, business processes are
implemented in a software platform using a technology-dependent language. At
this stage, revocations, declinations, rejections, and other non-happy-flow patterns
are ad hoc included with a huge increase in complexity and unmanageability.
Moreover, whenever a change in the implementation is needed, it becomes too
difficult to trace it back to the initial business definition. Concomitantly, a change
in business does not trace back to the implementation; a re-elicitation, redesign,
and re-implementation are required. The effort consumed with these non-integrated
solutions is high and not controlled in terms of costs.

200 8 Business Process Design

Fig. 8.17 Collaborative canvas with the business elements elicited

In practice, these exception situations are pre-provisioned and can be used
by configuration in a BPMN model previously created by the business process
discovery. As shown in Fig. 8.20, all the business process elements can be extended
with exception handling situation and a new, and more complete, BPMN is
generated.

Some examples of exception handling situations are exemplified in the following.
For exemplification purposes, consider a business process where an actor role
initiator requests the production of a new product or service to another actor role
that is the executor.

Firstly, a decline of a request corresponds to an impossibility of promising the
production of a new product, by an executor, e.g., due to lack of raw material
stock. In these situations, it is a decision in the scope of the initiator actor to finish
the business process by discontinuing the communication with or insisting on the
new, or the same, request. This conversation could end up in a deadlock situation.
The deadlock is avoided with common sense between the actors. This situation
could consume huge organization efforts—a customer insisting on the request of
a product that will not have the stock replenished. This extreme example shows
well the impact of identifying, by configuration, a set of catalog exceptions, instead
of arriving to that knowledge by process mining many months later.

8.2 A Methodology for Business Process Design 201

Fig. 8.18 Automatic business process discovered from the elements of Fig. 8.17

Fig. 8.19 Automatic business process discovered including gateways

Symmetrically, a rejection could be issued by an initiator after the new product
had been delivered to him/her, for instance, if the delivered product is defective. In
that situation, the executor decides if the rejection is acceptable, and if so, a stop
and refund is emitted. Otherwise, a delivery is re-emitted to the initiator actor. Its
difference to the previous declination situation is that, now, the new product already
has been produced, and its production involved costs. Therefore, the cost must be

202 8 Business Process Design

Fig. 8.20 Business process enrichment, selecting the desired extensions to generate a new
enriched model

assigned to one of the two actors involved. Usually, if the cost is incurred by the
executor actor, then a stop is issued and the business transaction execution ends.

Furthermore, any actor, either initiator or executor, could revoke any previous
activity. For instance, a request could be revoked, e.g., when the customer does
not want the previous order product anymore. In this situation, it is on the role of
the executor to decide if it is acceptable to revoke and then roll back all the previous
executed activities, or if the revocation request is unacceptable and the actor initiator
needs to keep its order. Other revocation examples are when the organization no
longer has stock to produce the order, although a production has been promised; the
organization asks to return the delivered product, because it is badly produced; and
the actor initiator rejects the previously accepted product due to malfunctioning.

The impact of rolling back the activities of a business transaction is most of the
times delayed in the software implementation stage due to the complexity associated
to its enforcement in a BPMN model. Revocations are pre-provisioned, allowing
them to be added by configurations to any BPMN model previously created by the
business process discovery.

In short, this methodology offers business process models automatic completion,
in a systematic manner, so that models can describe far more situations with few
extra complexities managed. Those exemplified exception handling situations can
be added to the model by request and on the fly increasing the awareness for the
organization business processes.

8.2.5 Extending to Business Process Prototyping

Allowing stakeholders to experiment a new system at early stages of its development
enables better communication and therefore minimizes misunderstandings in the
development team that are usually very costly to correct at the end of a project.
When a nondesirable behavior is identified in the last mile of the project, it could
drive to project failure and stakeholders’ dissatisfaction. The reasons for failure are

8.2 A Methodology for Business Process Design 203

Fig. 8.21 Collaborative canvas

manifold; some examples are misunderstanding about the desired system behavior,
bad communication or documentation, failure in the requirement elicitation, and
regulatory changes during project development, among others.

Combining our collaborative business processes discovery and enrichment solu-
tion with the ability of producing on-the-fly prototyped business processes that are
executable and could be really experimented by stakeholders leverages a whole
new way of achieving a common understanding among all the project participants.
Furthermore, it allows the dynamic adjustment of business process design, for
instance, adding a rejection situation, and then an immediate prototype update is
delivered and ready to be experimented again.

Let us have a look at a step-by-step example.

1. Design the business elements in a collaborative canvas.
Discover the business process capturing the specific details from the business
perspective using a simplified business language composed only of the involved
actors, the activities each actor is responsible for, and the events triggering
the collaboration between actors. A collaborative canvas facilitates the drag
and drop of elements directly to any actor (see Fig. 8.21) without the need
to learn a new specification language. Moreover, you can specify the business
objects that are already identified as being of core importance for your business.
Misalignments and misunderstandings are easier to identify and solve due to the
simple representation used. Discovery also enables the communication between
business analysts working remotely, avoiding the exchange of multiple business
process models, but providing a single point of trust.

2. Generate the happy-flow business process model in BPMN.
The provided detail in this collaborative canvas is used to discover the existing
business transactions between actors on the fly automatically (see Fig. 8.22)
using the language most widely used by industry—the BPMN specification lan-

204 8 Business Process Design

Fig. 8.22 Viewing the generated happy flow in BPMN

Fig. 8.23 Loading the BPMN model and deploying in an execution engine

guage. Therefore, discovery facilitates creating a shared semantic understanding
between the different business analysts of an organization. A change in business
is only a matter of changing the canvas and re-generating the BPMN model.

3. Export the BPMN model and deploy it in Camunda engine.
Next, load the BPMN model (see Fig. 8.23) in Camunda modeler (provided by
the Camunda Platform Community Edition) and then deploy it. The deployed
model can be consulted in the Camunda cockpit (see Fig. 8.24). Integrations of
Atlas with other platforms are foreseen.

8.2 A Methodology for Business Process Design 205

Fig. 8.24 Listing all the deployed BPMN models

Fig. 8.25 Viewing the execution state of each business process instance

4. Instantiate the deployed BPMN model and try it. This is the step where you
are able to experiment directly your generated business processes without any
interference. To that end, instantiate the BPMN model (see Fig. 8.25) and use
Camunda task list and Camunda cockpit to follow its execution (see Fig. 8.26).

5. Enrich the happy-flow business process model. After that, the business process
enrichment generates a business process model enriched with an inherited
business process pattern. In step 2, the model discovered is only based on the
elements previously captured in Atlas collaborative canvas, but it could now be
extended by the choice of the business analyst (see in Fig. 8.27). Enrichment
leverages a controlled and known management effort to increase the complexity

206 8 Business Process Design

Fig. 8.26 Consulting the user-assigned task list

Fig. 8.27 Business process enrichment, selecting the desired extensions to generate a new
enriched model

of the designed business processes. With enrichment the exception situations can
be added to the model by request and on the fly. It is also recognized that BPMN
defines clearly how to articulate its concepts but usually involves the investment
of learning a new language that entails extra costs. With this approach learning
BPMN is needless.

6. Repeat steps 2–5 as you need, with this on-the-fly prototyping creation solution.

8.3 Exercises 207

8.3 Exercises

Exercise 8.1

Consider the following process, held between a client and “Pizza Rápida” restaurant.
After feeling like eating a pizza the customer selects the pizza and proceeds with

the order. The bartender receives the client request transmitting it to the chef.
The chef after cooking the pizza places it at the disposal of “the delivery boy”

that delivers it to the customer. The customer pays the pizza (the payment is received
by the “delivery boy”).

The customer eats the pizza and hunger is satisfied.

1. Draw an ArchiMate or BPMN collaboration diagram for the process above.
2. Identify the control points, the break points, and the critical points in the model.

Exercise 8.2

Consider the following process (modeled in ArchiMate) of the Navy—see Fig. 8.28.

1. Identify the control points, the break points, and the critical points in the model.
2. Describe two distinct criteria for identifying activities, which may be applicable

to “P4” business process (including the objectives of the criterion, the results of
its application, the preconditions to be checked, and its method of application).

Exercise 8.3

Consider the following processes P3 and P8 (modeled in ArchiMate)—see Fig. 8.29

1. Identify the control points, the break points, and the critical points in the model.

Exercise 8.4

Consider the process shown in Fig. 8.30, which represents the client sending a
complaint letter. Assume that the communication between task 1 and task 2 is made
by telephone. Also assume that the communication between task 3 and task 4 is
performed using the system S3.

1. Identify in the diagram with a “C” critical points of this process. Justify your
answer.

2. Identify the break points of this process in the diagram with a “B.” Justify your
answer.

3. Assume that there was a problem in the organization’s performance when
providing support to the customer complaints in a timely manner. Explain what
you would do to realize the source of this problem.

208 8 Business Process Design

F
ig

.8
.2

8
N

av
y

bu
si

ne
ss

pr
oc

es
s

8.3 Exercises 209

Fig. 8.29 P3 and P8 business processes

Fig. 8.30 Complaint business process

210 8 Business Process Design

References

1. M. Dumas, M. La Rosa, J. Mendling, H.A Reijers, Fundamentals of Business Process
Management, vol. 1 (Springer, Berlin, 2017)

2. C. Pereira, A. Caetano, P. Sousa, Ontology-Driven Business Process Design, I International
Federation for Information Processing T. Skersys et al. (Eds.): I3E 2011, IFIP AICT 353, pp.
153–162 (2011)

3. D. Cardoso, P. Sousa, Generation of stakeholder-specific BPMN models, 9th Enterprise
Engineering Working Conference (EEWC 2019), May 21, 2019 – Lisboa, Portugal

4. OMG, Business Process Modeling Notation (BPMN) Specification 2.0 (2010)
5. S. Guerreiro, P. Sousa, A framework to semantify BPMN models using DEMO business

transaction pattern (2020). arXiv preprint arXiv:2012.09557
6. J.L.G. Dietz, H. Mulder, Enterprise ontology: A Human-Centric Approach to Understanding the

Essence of Organisation (Springer Nature Switzerland AG, 2020)

Chapter 9
Information Architecture Design

Pedro Sousa and André Vasconcelos

Abstract This chapter presents two approaches for designing the information
architecture. Thus, after introducing the topic and its similarities and differences,
the top-down and the bottom-up information architecture design primitives are
described. In the following section, using the design primitives, the top-down and
the bottom-up approaches are presented, along with an example. Afterward, we
discuss the benefits and challenges of each approach and suggest how to mix them.
Finally, some information architecture design exercises are proposed.

9.1 Approaches for Information Architecture Design

The definition of an organization’s information architecture is a complex task that
normally one cannot do in one step. It takes many interactions and involves many
different persons. Quite often it is done in small steps, each step being related
to different projects or transformation initiatives. Being an ongoing process, it
is critical to have a design method so that one can continue the process where
the previous ones have achieved. Over the years, an organization’s information
architecture is constantly evolving with contributions by different individuals,
and the existence of a method simplifies both the construction process and the
maintenance and evolution of the information architecture.

The design of the information architecture is similar to the conceptual design
of an information repository. By conceptual design, we refer to models that are
independent of any technology used in the management of information repository,
whether object-oriented, relational, or non-relational. The similarity lies in the fact
that in its essence, the information architecture of an enterprise is a conceptual
model. As we have seen in Sect. 3.3.3, information architecture is defined around
the concept of informational entity, which is no more than a state associated with
an identifier. The identifier is necessarily defined by business information. For
example, stating that Maria is customer number 33 contributes nothing to the
identification of the customer if code 33 is not known in the business context; on the
contrary attributes such as the name, citizen number, and fiscal number are usually
known in the business context, and if they are unique to each customer, they could

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_9

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_9

212 9 Information Architecture Design

be identifiers of the information entity. Besides this “detail,” there are no major
differences from defining the key attributes of an entity in entity-relationship model.

In essence we have two generic approaches to the design of information
architectures. The top-down and the bottom-up. Both are precise and rigorous
approaches, but also flexible because they can be applied to a variety of situations.
Additionally, their co-existence in the design of a model is also possible.

As presented by Batine, Ceri, and Navathe in [1], both approaches define a set of
primitive functions sharing the following properties:

• Each function transforms a given architecture model (the input model)—and
information from the enterprise and its environment—and produces another
architecture model (the output model).

So designing an information architecture is a sequence of transformations
each applied to the resulting model of the previous transformation.

• Each transformation maps business concepts of the input model to business
concepts of the output model.

During designing, one is either detailing or abstracting concepts, but the
resulting concepts (either more detailed or more abstracted) also exist as business
concepts. So, in both cases, each step establishes the relationship between
business concepts at different levels of detail or abstraction. For example, in
detailing the concept of an employee, one transforms employee into employee
and employee contact data,employee bank data, employee career data, and so
on. On the reverse direction, one may abstract employee contact data,employee
bank data, and employee career data into the concept of employee.

• Concepts in the output model comply with all constraints of the concepts in the
input model.

This means that all relations or dependencies applied to the concepts
abstracted or detailed persist in the resulting concepts.

Next we describe the primitive functions to be used in top-down, bottom-up, or
even mixed approaches to design information architectures.

9.2 Design Primitives

9.2.1 Top-Down Design Primitives

Top-down design primitives take an artifact as an argument and decompose it
into a set of artifacts of the same nature. So one has the following key top-down
primitives Fig. 9.1:

• Entity generation primitive. This primitive takes no argument and produces an
information entity.

9.2 Design Primitives 213

F
ig

.9
.1

To
p-

do
w

n
pr

im
it

iv
es

fo
r

in
fo

rm
at

io
n

ar
ch

it
ec

tu
re

m
od

el
in

g

214 9 Information Architecture Design

• Entity refine primitive. This primitive takes an information entity as an argument
and produces two related information entities, which may or may not include the
original entity.

• Entity structure primitive. This primitive receives an information entity and adds
a property that holds data associated to the information entity. At this point
we are not considering composite properties, as they can be achieved with
nested information entities. Notice that properties are not entities since they lack
identification and therefore cannot be part of a relationship.

• Relationship refine primitive. This primitive receives a relationship between two
entities and produces a series of relationships among the same entities.

9.2.2 Bottom-Up Design Primitives

Bottom-up design primitives take a set of information entities as an argument and
compose it into an entity (see Fig. 9.2):

• Entity generation primitive. This primitive receives one or more properties and
produces an information entity as a holder of such properties. Notice the creation
of an entity implies the definition of its identifying properties. Therefore, to create
an entity one must use as argument the set of properties that make up the entity
identification.

• Entity enrichment primitive. This primitive receives one property and one
information entity and produces the entity with one more property.

• Relationship generation. This primitive receives two information entities and
produces the same entities related by a new relationship.

• Relationship abstraction. This primitive receives a set of relationships between
two entities and produces the same entities related with a new relationship.

9.3 Design Approaches

9.3.1 Top-Down Design Approach

Top-down design starts from the high-level entity, where one can then apply the
entity generation or entity structure primitives to refine the initial entity.

Given that top-down primitives do not produce unrelated entities or relationships,
all concepts in the final information architecture must be reached by the refinement
of the initial information entity.

9.3 Design Approaches 215

F
ig

.9
.2

B
ot

to
m

-u
p

pr
im

it
iv

es
fo

r
in

fo
rm

at
io

n
ar

ch
it

ec
tu

re
m

od
el

in
g

216 9 Information Architecture Design

Fig. 9.3 An example of applying a top-down design approach, adapted from [1]

In the top-down approach, one does the refinement step by step and one concept
at a time, ignoring the remaining concepts at that step. This simplifies the process
because it reduces the scope of each step.

However, the top-down approach requires to start with a highly broad and generic
entity, and continue to refine it with the right level of genericity concepts, which is
truly difficult to those not fully familiar with the scope of the information being
architected.

Thus, if one does not fully understand the context being modeled, the first steps
of the top-down approach would lead to models that will not address the necessary
concepts, because some of the concepts may not have been included in the initial
steps.

We present an example in Fig. 9.3, where the entity generation primitive uses the
generic concept “Demographic Data” in the model in the first step. In the second
step one uses the entity refine primitive to refine the concepts underneath the initial
one, namely, Data on Persons and Data on Places, using the relates to relationship.

In the third step one refines the relates to relation into born in and lives in, using
the relationship refine primitive. In step 4 one uses the entity refine primitive to

9.3 Design Approaches 217

refine the Data on Persons entity into Data on Persons aggregates Data on Man.
The same applies for steps 5, 6, and 7.

9.3.2 Bottom-Up Design Approach

In the bottom-up approach, one starts from elementary and simple concepts
grouping them into more complex concepts that in turn can be grouped into even
more complex concepts. At each step, one is creating new concepts, not refining
existing ones as in the top-down approach.

Thus, in the bottom-up design approach, one starts by collecting properties and
then identifies properties with high inter-dependency, meaning those that belong
to the same concept (or information entity in this case). To group properties into
entities one uses primitive entity generation and entity enrichment primitives. Using
the bottom-up approach one can propose to add a concept as long as one has some
properties to match an identifier for such new concepts.

In Fig. 9.4 we present a similar example to the one used for the top-down design
approach, but now using the bottom-up design approach. One first identifies the
simplest concepts, and properties, and aggregates them into groups with a strong
affinity. Despite this gathering of information requires business knowledge, since
bottom-up starts with simplest concepts, they are normally easy enough to start
with. In this case one must relate the properties to Man, Woman, Country, and City
into entities Data on Man, Data on Woman, Country, and City.

Step 5 of our bottom-up example is illustrated in Fig. 9.5. It looks into Data on
Man and Data on Woman and recognizes that a more complex concept (Data on
Persons) could be used to abstract the previous ones in a single one. Steps 5 to
7 are used to build such abstraction. First, one must find some form of common
identification between man and woman. Considering the ID person property, using
the entity enrichment primitive, the Data on Person entity is created.

Next, in step 6, one states that Data on Persons aggregates Data on Man. Finally,
in step 7, one does the same operation with Data on Woman, as illustrated in Fig. 9.6.
Notice that the previous relations of the entity Data on Persons are not lost during
the use of relationship generation primitive in step 7, and so after step 7, Data on
Persons aggregates both Data on Man and Data on Woman.

Finally, in Fig. 9.7 we present the remaining steps. Steps 8 and 9 follow the same
logic as steps 6 and 7, but now regarding the abstraction of concepts Country and
City into a more complex one Place.

In step 10 one recognizes the existence of the born in relation between concepts
Data on Person and Data on Places and uses the relationship generation primitive
to establish it. The same happens in step 11 with the relation lives in.

218 9 Information Architecture Design

F
ig

.9
.4

A
n

ex
am

pl
e

of
ap

pl
yi

ng
a

bo
tt

om
-u

p
de

si
gn

ap
pr

oa
ch

,s
te

ps
1

to
4,

ad
ap

te
d

fr
om

[1
]

9.3 Design Approaches 219

F
ig

.9
.5

A
n

ex
am

pl
e

of
ap

pl
yi

ng
a

bo
tt

om
-u

p
de

si
gn

ap
pr

oa
ch

,s
te

ps
5

an
d

6,
ad

ap
te

d
fr

om
[1

]

220 9 Information Architecture Design

F
ig

.9
.6

A
n

ex
am

pl
e

of
ap

pl
yi

ng
a

bo
tt

om
-u

p
de

si
gn

ap
pr

oa
ch

,s
te

p
7,

ad
ap

te
d

fr
om

[1
]

9.3 Design Approaches 221

F
ig

.9
.7

A
n

ex
am

pl
e

of
ap

pl
yi

ng
a

bo
tt

om
-u

p
de

si
gn

ap
pr

oa
ch

,s
te

ps
8

to
11

,a
da

pt
ed

fr
om

[1
]

222 9 Information Architecture Design

9.3.3 Discussion

Quite often, the decision between bottom-up or top-down approaches depends on
many factors that must be taken into consideration. Consider the case where the
information architecture is being designed starting from a business process model,
for example, in BPMN. In this case, one would start by detailing the information
required by each activity of each business process. Such information should be
modeled as data objects associated to each task in the BPMN diagram of each
process.

The level of detail of such information determines the approach one should adopt.
If data objects hold a description of the data required for each activity at the level
of the properties (lists of), then one should use the bottom-up approach to gather
such lists of properties into more abstract concepts. Otherwise, if the level of detail
of the existing data objects contains generic, high-level concepts, then one needs to
use the top-down approach to refine such concepts into simpler and more property-
based entities.

If the design of the information architecture starts with both low- and high-level
concepts, then we must use both approaches. Fortunately, the basic bottom-up and
top-down approaches can be combined in many forms to overcome each weakness
and exploit their strengths.

The strength of the top-down approach is to allow parallel and independent
refinement of information entities into more detailed and rich ones. The biggest
weakness of the top-down approach is that the quality of the final design depends
on the quality of the initial concepts. If one starts with an incomplete or bad initial
set of entities, one cannot recover from such handicap. For example, if someone has
airplanes and boats as initial concepts, and has forgotten the concepts of “common
parts” between them, then common elements such as light lamps and electrical
appliances cannot be derived during the top-down design process. Instead, one
gets airplane light lamps, boat light lamps, airplane electrical appliances and boat
electrical appliances. The impossibility to recover from the lack of key concepts at
the very beginning of the design process is the major limitation of the top-down
approach.

Notice that proposing a common light lamp from observation of boat light lamps
and airplane light lamps is a bottom-up primitive.

On the other hand, bottom-up approaches have a very easy and simple start,
because they start with simpler concepts that one needs to use to derive more
complex concepts. This is fairly easy if one knows the business and knows what
concepts are relevant for the business.

9.4 Exercises 223

In practice one uses both bottom-up and top-down approaches. Two scenarios
are common:

• One starts from the most relevant concepts and expands from those concepts
using both top-down and bottom-up primitives.

• One starts with a top-down approach to refine the most relevant concepts and
then use the bottom-up approach to integrate resulting schema into a single one.

In both cases one could overcome the limitation of both bottom-up and top-down
approaches. Nevertheless, at all times, one knows if we are refining or abstracting
concepts.

9.4 Exercises

Exercise 9.1

Sell.Everything is a startup company that sells products to customers, just using a
mobile app, supported in artificial intelligence and machine learning to better target
products to customer. Products are directly shipped by Sell.Everything suppliers to
customers.

1. Just considering the information above, which design approach would you
recommend for designing the information architecture?

2. Just considering the information above, present the high-level information
entities for Sell.Everything.

3. Using the approach that you recommended, present a possible information
architecture that could be derived from the high-level information entities.
Present your assumptions and the design primitives used.

Exercise 9.2

The “neighborhood store” is a retail chain present in neighborhoods with high pur-
chasing power. According to the neighborhood store IT department, the following
information is needed to manage the business:

224 9 Information Architecture Design

• Customer unique id
• Customer name
• Customer tax number
• City of the customer
• Street of the customer
• Zip code of the customer
• Customer mobile
• Customer email
• Store type
• City of the store
• Street of the store
• Zip code of the store
• Store unique id
• Stock item
• Stock description
• Stock category
• Stock item quantity
• Bill number
• Bill type
• Bill description

1. Just considering the information above, which design approach would you
recommend for designing the information architecture?

2. Just considering the information above, present the information entities for the
neighborhood store.

3. Using the approach that you recommended, abstract the entities into two to five
information entities (present your assumptions).

Exercise 9.3

Consider the following business process diagram that describes the loan application,
for businesses, at bank Onolut (Fig. 9.8).

The loan application at the Onolut bank takes into account the bank records of the
company, as well as the records of its administrators. Additionally, the company’s
business plan is carefully analyzed. In addition to the supporting documentation
required by the banking regulator for granting loans to companies, Onolut bank
requires an independent assessment of the business plan by external experts, for
loans above 100,000 euros.

1. Just considering the business process diagram of Fig. 9.8, model the current
information architecture.

2. Just considering the text description above (without considering the process
diagram), model the current information architecture.

3. Considering the partial information architectures, present a consolidated model
of the current Onolut information architecture.

9.4 Exercises 225

F
ig

.9
.8

L
oa

n
ap

pl
ic

at
io

n,
fo

r
bu

si
ne

ss
es

,a
tb

an
k

O
no

lu
t

226 9 Information Architecture Design

Reference

1. S. Batini, C. Ceri, S. Navathe, Conceptual Database Design, An Entity-Relationship Approach
(Addison-Wesley, Boston, 1991)

Chapter 10
Information Systems Architecture Design

André Vasconcelos and Pedro Sousa

Abstract This chapter presents information systems architecture (ISA) design
techniques. Thus, information planning techniques are described including informa-
tion systems architecture (ISA) analysis, ISA design, and ISA project development
approaches. In Sect. 10.2 information systems portfolio management is discussed.
Section 10.3 introduces service design techniques. At the end of the chapter are
proposed several exercises using some of the techniques introduced through the
chapter.

10.1 Information Systems Architecture Planning

The process of defining the information systems architecture (ISA) aims at deliver-
ing a “good” architecture of the information systems (IS). So, one should first clarify
the characteristics of a good ISA and how they depend on the ISA design practices.

One characteristic of a good ISA is that the information systems should be
as much independent of the organizational structure as possible. This means that
management should be able to change the organizational structure of an enterprise
without requiring changes in the information systems. In the early days of IT, due
to a common “bad practice” to design and tailor IS to each organizational unit, the
resulting ISA had a strong dependence (cohesion) with the organizational structure.
This was minimized with the increase of the IT function in organizations and the
need to have an integrated view of the organization’s information.

Another characteristic of a good ISA is the absence of multiple replicas of the
same information that can be updated individually but it requires extra effort or
developments to keep the replicas consistent whenever one of the replicas changes.

Information redundancy has been a very common situation and is indeed
responsible for a significant portion of the total developments and manpower that
are required to keep the business running. It results from considering IS primarily
as a means of “processing,” supporting the activities of the business processes, but
discarding the requirements for proper information management. As a result, data
becomes private to organization’s information systems; poor management of data

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_10

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_10

228 10 Information Systems Architecture Design

Fig. 10.1 Plan and execute application lifecycle

leads to redundancy, inconsistency, and complex integration between information
systems.

Both situations could be easily avoided if one had a view of the information
architecture before designing the ISA. Quite often organizations follow a three-
phase adoption of information systems. In phase one, they start by implementing
information systems, and then, in phase two, they integrate the information systems.
A third phase occurs when organizations build data-centered systems as data
warehouses and data management systems as a way to provide global and consistent
view of data across several systems. This sequence is presented in red arrow in
Fig. 10.1.

The effort and complexity of the second and third phases would have been greatly
reduced, if not eliminated at all, if the information systems had been designed based
on a view of the information architecture. In turn, to design a proper information
architecture, one needs to have a view of the process architecture. Thus, to properly
plan the IS landscape, one needs to follow the green arrow in Fig. 10.1.

A very common error many enterprises have made has been starting the
implementation of applications to support the business needs without planning
ahead the information and the business processes, in order to define the right
applications, i.e., the right ISA.

Therefore, the ISA (plan) should be derived from the business process and from
the global information needs, in order to ensure stability and full support to business
needs. On the other side of the equation, the implementation of applications (after
the ISA is planned) should be developed considering business needs (among other
factors). Information cannot be managed and understood in the context of a single
process or a single system! One can only align IT with business if the information
is considered a first class citizen, side by side with business processes and systems.
Information architecture is key to define the ISA, since processes have higher rates
of change than information.

Change is constant in organizations, in technology, in business process, and in
organic structures. However, the information required for business is independent
and more stable than the business processes, the technology, and the organic

10.1 Information Systems Architecture Planning 229

Fig. 10.2 Alignments in information systems architecture planning. Adapted from [1, 2]

structures! This means that the information systems architectures that were designed
based on information architecture are (potentially) more stable.

10.1.1 Information Systems Architecture Alignment

An aligned architecture aims at reducing the costs of its overall implementation,
operation, and maintenance. Architectural heuristics and principles serve as a guide
for assessing the state of alignment between architectures. However, they are not
mandatory rules and there are indeed many situations where one should not follow
them because of very specific and contextual reasons. But even in these cases,
architectural heuristics and principles are very useful because they force designers
to explain and evaluate the decisions with greater detail when they take decisions
that go against the heuristics and simplify the explanation of the decisions when
they are aligned with the heuristics (Fig.10.2).

A heuristic is defined as a technique based on experience or observation that
aims to assist the resolution or the discovery of defects. In what concerns ISA
design, heuristics can be grouped into three major groups, as presented in light
gray bidirectional arrows in Fig. 10.1. We present next three categories of alignment
heuristics between:

• Business and information architectures
• Business and application architectures
• Information and application architectures

As we will show, these alignments are orthogonal, meaning that they are
independent of each other. Each can be fully achieved or not at all achieved,
regardless of the others.

230 10 Information Systems Architecture Design

10.1.1.1 Alignment Between Business and Applications

The alignment between business and applications aims at reducing the resources
organizations require to allocate to perform the activities of the business processes,
including the resources associated with the applications supporting those activities.

The higher the alignment, the lower the effort actors have to spend in mechanized
or repetitive operations, and also the lower the resources needed to maintain the
applications supporting the business.

Automation is often seen as higher alignment, since it reduces the effort humans
have to perform the business process’s activities. However, automation is not always
recommended in the perspective of cost/benefit, since its cost may not compensate
for the effort it reduces to humans.

But the effort required to perform the activities of a business process is not
restricted to the actual execution of each activity. The handover of activities between
the different actors participating in a given business process is a huge source of
wasted time and related inefficiencies.

Workflow systems are examples of systems which essentially promote this type
of alignment. These systems can be standalone applications or integrated into a suite
(e.g., ERP, CRM).

Thus, besides the automation they may bring to actual activities, business process
automation by workflow engines completely automates handover activities. They
also enable the management of the actual process and the actor becomes fully
observable and traceable and therefore easily optimized.

However, business and application alignment is not synonymous to extensive
and mandatory business process automation. One should always consider the
costs/benefits of such automation.

Even with no automation, in a fully aligned business architecture and application
architecture, information is inserted only once, thus reducing effort and also
preventing errors.

The following alignment heuristics between business and application architec-
tures should be considered [1]:

• Each activity of a business process should be supported by a single application.
The rationale for this heuristic is that it reduces the context switch between

applications with different interfaces and probably the need to insert information
already inserted in other application.

The other aspect of this heuristic is that no activity should be left unsupported
by a given application. Even for activities that are mostly non-automated, like a
brainstorm meeting to reach a consensus decision, it is useful for management
purposes to record when they started, when they were completed, and what
the result was, and thus, they could benefit from being supported by some
application, namely, workflow systems.

One could extend further this heuristic and state that all activities of a business
process should be supported by a single application. However, such a heuristic
would hardly be followed because there are many processes that cross many

10.1 Information Systems Architecture Planning 231

areas within the organization and thus a business process will likely be supported
by different applications. For example, an order to pay process will likely cross
product catalog and financial applications.

Finally, there is another advantage this heuristic enables. Most activities
include several steps or procedures to be made. If they require any transaction
properties, either all or none of the steps are done, then these transaction proper-
ties are harder to achieve if that activity is supported by multiple applications than
if it is supported by a single application. This results from the fact that, in the first
case, one requires a distributed transaction mechanism, while, in the second case,
one needs a single-node transaction mechanism (which is significantly simpler).

• Each functionality provided by a given application should be used by at least one
activity.

This heuristic states that all application functions are purposeful and are used
in some activity.

Having application functionalities that are not used means that some code
was specified, coded, tested, maintained, and hosted in some node with no actual
benefit for the organization. Unused code makes applications more complex
and difficult to maintain, test, and evolve. Thus, unused functionalities have no
benefits to organizations.

• Different applications should not provide the same functionality.
This heuristic avoids functional redundancy among applications. Having to

implement the same functionality in different applications is clearly a waste of
organizational resources.

However, the more one follows the first heuristic, the more likely one will
comply with this heuristic. In fact, if two activities supported by two applications
need to use the same functionality, it is either duplicated in each application, or
it exists only in one activity and both activities must use the same application for
that particular functionality.

• The characteristics of the activities are in accordance with the features of the
systems that support them (e.g., scalability, availability).

This heuristic is implied in both previous heuristics. On one hand, it states that
the functionality should be available whenever needed. This includes fulfilling
the performance required by the business.

On the other hand, it states that application functionalities should not be
available when they are not needed. For example, if some application function
is only required once a year, for example, at Christmas time, then one should not
have it available during the all year because it represents a waste of resources.
This is easier to achieve in recent technologies as Kubernetes1 that supports on-
demand deployment of applications, thus saving resources when they are not
needed.

1 https://kubernetes.io/.

https://kubernetes.io/

232 10 Information Systems Architecture Design

In a fully aligned business and application scenario, the time and effort busi-
nesspeople spend to run the business should mostly be spent in reasoning and
decision-making functions. On the contrary, misalignments force businesspeople
to perform extra and mechanic work such as:

• Inserting the same data multiple times in different applications.
This misaligned is often mitigated by the use of a specific application

to do repeated insertions of the same information whenever required. These
applications are often called “robotic process automation” engines.

• Authenticating multiple times, one for each application users need to access.
This misalignment is often mitigated by the use of a specific application that
automatically authenticates the user in multiple applications. These applications
are often called “single sign on.”

• Recovering from a failed operation across multiple systems, requiring careful
human analyses to roll back to a coherent state.

As far as we know, there are no applications in the market to mitigate this
misalignment.

• Overcoming inappropriate or the absence of application functionality, for exam-
ple, printing hundreds of invoices one by one because applications do not have
an interface for multiple printing in one click.

Notice that the alignment between business and applications in the above
context does not imply a flexible and agile application architecture. A measure
of a flexible and agile application architecture must assess the resources and time
that organizations must spend to keep the business and applications aligned when
business changes.

This means that we can have a perfectly aligned business and application
architectures at a given point in time, but when the business changes, the time or
the resources needed to re-adapt the applications to maintain the perfect business
and application architecture alignment are so high that the organization simply
can no longer maintain such alignment, leading to a scenario that more resources
are needed considering the maintenance efforts of the applications supporting the
business.

10.1.1.2 Alignment Between Business and Information

The alignment between business and information aims at ensuring that business has
the information it needs to operate. Therefore, the information entities defined in the
information architecture should be aligned with the business processes inputs and
outputs.

The focus is on structuring the information necessary to conduct business, both
in operations and in management information. One example is the decision of
approving an order placed in a procurement process. What is the information that
the decision maker will use to approve or reject the purchase order?

10.1 Information Systems Architecture Planning 233

The alignment between the business and the information does not imply that
there must be some system that provides the necessary information, but instead that
the required information is mapped in the information architecture.

Next, we present a few examples:

• A first example is the concept of “customer” in a company. This word (”cus-
tomer”) may exist in the description of different activities with different mean-
ings. If the management decided to give a 10% discount in future sales for
customers that have bought over some amount, they do not necessarily mean
to give such discount on customers that have not paid any of their products, or
that are in legal dispute with the company, or even that have returned and asked
for immediate refund of all products they have bought in credit.

• Another example is the concept of “product” in a company. For the sales
department, a product is something they can sell. When they cannot sell, it is
no longer a product. However, for the legal department, a product is something
the company is selling or has sold in the past. In fact, a product that is no longer
sold by a company, and thus is out of any store or site, may still be a full product
for the after-sales department or to the legal department.

• Yet another example is the word “locomotive” in a train company. For the mar-
keting department, the locomotive standing in front of the company headquarters
counts as a locomotive that they must paint and maintain with the company
image, but it does not count as one locomotive for the operations department
since it is not used to pull any wagons.

We will see in the next sections that having a clear understanding of the
information entities, both in terms of its identification and its properties, is very
relevant to plan information systems and thus to decide which information systems
better fit into a given organization.

The following alignment heuristics between business and information architec-
tures should be considered:

• Information entities must contain all the information necessary for the activities
of the processes, regardless of them being manual or automatic activities. This
heuristic states that all information must be mapped in the architecture, to make
sure it complies with organizational rules and management procedures, such as
the ones implied by the heuristics presented next.

• All processes refer to information entities as they are presented in the information
architecture; thus, synonyms and antonyms are not allowed when referring to
information entities.

This heuristic states that when different business areas use a given term to
refer to information, they all agree in what it stands for.

• All processes read, create, or update at least one information entity.
Since processes input and output information, it is mapped into information

entities. This heuristic states that a process must have input information and must
produce some output data. In fact a process without input date is either a clock,
a random number generator, or something similar. Likewise, a process with no

234 10 Information Systems Architecture Design

output has no purpose, since one could not even distinguish between the case
where it has been executed from the case where it was not executed at all.

• Each information entity is created, read/updated, and deleted by at least one
process.

This heuristic states that every information entity must have some purpose for
the business, both as input and as output.

Generally, all information entities are created, updated, and then read by at
least one process different from the one that created/updated them. An entity that
is not read means that there is no purpose of it being written. In fact, there is no
point in writing something that will never be read.

Likewise, an entity that is not created is something that never changes and
one can ignore the processes that have created them because such processes will
be executed once; for example, the information entity holding the plan and seat
number in a cinema theater. Such information entity is defined during the theater
planning and construction and only changes after reconstruction. Thus, it remains
immutable during the cinema’s day-to-day operations. In this case, most likely
one will not find any process created or updated in the organization’s process
landscape.

Nevertheless, even in the above case, the COVID crises showed that such
entities do need to be updated in day-to-day operations, limiting the seats that
could be sold to ensure the social distance determined by the law on a weekly or
monthly basis.

Information and business architectures are aligned when businesspeople have the
information they need to run the business. This means it is accurate, with the right
level of detail and on-time information. Unlike the previous misalignment, here the
impact is neither time nor effort, but the impossibility of getting the adequate piece
of information relevant for the business.

10.1.1.3 Alignment Between Information and Applications

The alignment between information and applications aims at the effectiveness of
information management by the information systems. The overall outcome is the
reduction of resources organizations must spend in managing, maintaining, and
operating information systems.

A first concern of this alignment relates with completeness, making sure that
all information handled by applications is mapped in the information architecture
and vice versa. A second concern is about redundancy. The existence of multiple
replicas of the same information in different systems is a common problem because
each replica has structure, syntax, and semantics usually different in different
systems, making it difficult to integrate and to keep consistency whenever one
replica changes.

An ERP (enterprise resource planning) system is a good example of an aligned
application and information architectures. By having a single database, ERPs do

10.1 Information Systems Architecture Planning 235

achieve a highly aligned application and information architecture, because there are
no information replicas within the ERP to keep it coherent and updated. However,
this does not mean that ERP workflows are aligned with the business processes, or
stated differently, this does not mean a high business and application alignment.

The following alignment heuristics between information architecture and appli-
cation architectures should be considered[1]:

• Each information entity is managed by a single system. By management we
mean firstly managing the entity identifiers, both assigned identifiers, as well
as managing the set of attributes that are immutable and ultimately identify the
information entity. For example, when a client is created in the CRM (customer
relationship management) system, the CRM must assure:

– That no other client has the same set of identifying attributes, including when
considering the clients already deleted

– That any assigned identifiers differ from all identifiers ever assigned, including
those assigned to deleted clients

– That the set of identifying attributes remain unchanged throughout the entity
lifestyle

This actually might not be so simple for some entities because some
attributes that one consider as unchangeable might be changed in some
broader context. A person may change sex and name during his or her life,
the parents may also change sex and name, and even countries may change
name, split apart, or merge.

• Each attribute of an entity should not be updated by more than one system.
However, different attributes of the same entity may be updated by different
systems.

Consider again the client in the CRM system. Despite the fact that client
identification must be performed by the CRM, client properties as financial status
could be updated or even deleted by the billing system, as long as it stays
associated to the client identification.

Such updates could be done autonomously by the billing system indepen-
dently of the CRM system. However, in what concerns validation, it might imply
interactions between the CRM and the billing system. The heuristic also states
that the same data, financial status in the previous example, should not be updated
in any other systems.

• Entities must be changed in a transaction, meaning they all change or none
changes, should be managed by a single system.

This heuristic simply states that whenever possible one should favor local
transactions rather than distributed ones. However, quite often this heuristic
cannot be fulfilled because it would lead to a single system doing everything.

An ERP is an example of a complex system holding a wide range of
organization information entities that are managed by a single system, assuring
the fulfillment of this heuristic.

236 10 Information Systems Architecture Design

In fully aligned information and application architectures, IT staff only spent
effort and time coding business functions and logic. On the contrary, any misalign-
ment between information and application might require IT staff to do extra coding
for:

• Keeping multiple replicas of the same data coherent, because they are updated
by multiple applications

• Assuring coherency from multiple transactions, because a single business process
crosses multiple applications

• Gathering information from multiple systems and coding rules to produce a
coherent view of the organization’s business information

• Transforming data structures when data migrates between applications

Besides the extra work from the IT staff, misalignment might also lead to extra
work to business staff, for example:

• Inserting the same information multiple times in different systems
• Recovering from failing transactions across different systems, requiring detailed

human analysis to roll back to a coherent state in each system

10.1.2 Information Systems Architecture Design

In this section we present a method to design information systems architectures
based on the heuristics presented in the previous sections, thus having the desired
characteristics.

The CRUD matrix is a very common way to represent in a matrix the relationship
and dependencies between behavior and state. For the purpose of designing infor-
mation systems architectures, the behavior represents business processes, the state
represents information entities, and the cells represent the dependencies between
business process and information entities. These relationships may be “create,”
“read,” “update,” or “delete” (CRUD) relations.

There is no granularity defined for business processes or information entities.
So, behavior could represent macro processes, processes, or activities and the
information may be “macro” entities, entities, or attributes. Each cell specifies the
action access (CRUD) to the information—“create”, “read”, “update,” or “delete”
(CRUD) action, as presented in Fig. 10.3.

The “create” of an information entity implies at least the creation of the
entity identifier, or identifying attributes. The remaining attributes can be updated
afterwards. On the other hand, the “delete” of an information entity implies at least
the invalidation of the identifier of the entity. After a “delete” the entity can no
longer be used. An “update” of an information entity means to change the state of
an attribute of that information entity (Fig. 10.4).

10.1 Information Systems Architecture Planning 237

Fig. 10.3 An example of the CRUD matrix

Fig. 10.4 Representation of a solution in the CRUD matrix

It is important to notice that the “delete” of all the information of an entity is an
“update,” not a “delete.” What is at stake with the create/delete of an information
entity is its existence and not the value of its attributes or properties.

All entities are created (C), read (R), and deleted (R). The vast majority are
also updated (U). On the other hand, all processes read (R) and usually update
(C/U) information entities. There may be “special” processes that deal with private
information (not relevant company-wide) that may not create or update information
entities.

10.1.2.1 Rules for Designing the ISA

In order to define systems that are enduring and resistant to business changes, a set
of basic rules must be followed:

• Rule 1

– Processes that create or delete (C/D) the same information entities should be
supported by the same systems.

– Therefore, one should aggregate the processes according to the entities created
by them.

238 10 Information Systems Architecture Design

Fig. 10.5 The initial CRUD matrix example

• Rule 2

– The processes that update (U) the same information entities should be
supported by the same systems.

– Therefore, one should aggregate the processes that update information entities
with those that create them.

• Rule 3

– Systems should be as simple as possible (minimization of each area).
– Afterward, at the technological level, we can choose to implement several

system clusters in a single information system. Thus, we expect to find the
maximum number of information systems that could exist for the enterprise
processes and information entities.

Therefore, the business system planning (BSP) method defines the following
major steps for creating the system/application clusters:

• STEP 1: Delete irrelevant (similar) columns or rows.
• STEP 2: Next put together processes that create the same entities.
• STEP 3: Next put together processes that update (U) entities with the processes

that create the entities (C).
• STEP 4: Identify the “application clusters” considering that the applications

(systems) should be as simple as possible.

Let’s apply these steps to the matrix in Fig. 10.5.
The initial matrix is built considering each business process and the information

entities it creates (C), reads (R), updates (U), or deletes (D). A possible business
process view of P1 and P2, for the matrix in Fig. 10.5, is presented in Fig. 10.6.

• STEP 1: First, we should delete irrelevant columns or rows. Equal rows and
columns should be joined together (P9 and P10), as presented in Fig. 10.7.

10.1 Information Systems Architecture Planning 239

Fig. 10.6 Possible business process view of P1 and P2 relationships with information entities E1,
E2, and E3

Fig. 10.7 CRUD matrix without irrelevant rows and columns

• STEP 2: Next we should put processes together (by moving lines) considering
the entities created by them (P1 and P3 moved), as presented in Fig. 10.8.

• STEP 3: Then we should move to adjacent rows processes that update (U)
entities with the processes that create them (Fig. 10.9).

• STEP 4: Finally, we should be able to identify the application clusters in the
matrix. For that purpose we need to know if the processes are atomic (or
transactional) or end-to-end.

In atomic processes all the steps (behavior) of the process must be performed
in the same system (since it is hard and expensive to ensure atomicity properties if
the process is performed in different systems). On the other hand, in end-to-end
business processes, different organization stakeholders (usually from different
departments) are involved, and atomicity is usually not required. Thus, end-to-
end processes are not required to have a single system supporting all the steps
(behavior) of the process.

240 10 Information Systems Architecture Design

Fig. 10.8 CRUD matrix with process P3 moved up

Fig. 10.9 CRUD matrix with updates close to creates

Thus:

– Assuming the processes are atomic, we want that each activity is supported
by just one system (see Fig. 10.9). In this case, we identify three applications.
The first one supports processes P1, P3, and P2 and manages entities E1, E2,
and E3. The second system supports P5, P6, and P7 processes and entities E4
and E5. And the last system supports P9+P10 and manages entity 6.

– On a different scenario, if processes P1 to P10 are end-to-end processes (non-
transactional), we could have different systems supporting each process (see
Fig. 10.10).

In Fig. 10.11 we present the integration flow among systems, considering the
end-to-end scenario.

The integration flows are identified considering the “R” (reads) outside the
system clusters. The system that supports the process (P1 . . . P10) must integrate
with the system that manages the information entity (E1 . . . E6). For instance, the

10.1 Information Systems Architecture Planning 241

Fig. 10.10 Application clusters for atomic activities (P1 to P10)

Fig. 10.11 Application clusters for end-to-end processes (P1 to P10) with integration

green system that manages process P3 must be integrated with the light blue system
(that manages E2) to read (R) E2 (needed in process P3).

Each cluster of cells in the matrix can represent a domain, solution, application,
or application component—depending on the granularity of the “ingredients”
(columns and lines). If the matrix is made of macro processes and macro entities, the
solution will be a domain application architecture. If it uses entities and processes,
the cluster represents a solution architecture; if the CRUD matrix is made of
activities and information entities (or attributes), the results are application clusters,
as presented in Fig. 10.12

10.1.3 Information Systems Architecture Project Approach

The main goal of information systems planning is defining the desired future for
the organization’s information systems. It explains how IS should be supported by
IT. The main result of information systems planning is the information systems

242 10 Information Systems Architecture Design

Fig. 10.12 Processes and systems in the CRUD matrix

architecture. There are several methods and approaches for planning the information
systems.

Spewak’s [3] approach to enterprise architecture planning (EAP) has a strong
relationship with the Zachman framework. It has been adopted and adapted by
various institutions according to their needs. The EAP, according to Spewak,
defines the upper levels of the Zachman framework [4], and the data columns,
functions and location (network). Spewak’s approach delivers three architectures
(data, applications, and technology), using the business model as a starting point for
the enterprise architecture specification. Thus, the approach aims to define the ISA
and a plan to implement it.

Spewak proposes a four-layer approach for EAP. The first layer is focused on the
planning and the second layer on the “AS-IS” (at an IT and business level). The third
layer settles the “TO-BE” architecture. The fourth layer defines the implementation
plan (Fig. 10.13).

The activities described next can be done in a high-level manner or in a more
detailed manner. This is particularly relevant in the discovery of the models of level
2, where we are today. If too abstract, one may overlook many important aspects
that later can have huge impacts on time and effort. If too detailed, one may spend
a lot of time in the gathering of information necessary to produce them, when the
models produced will be already obsolete.

One cannot ignore the fact that organizations do not stop evolving while phases
2 and 3 are being developed. Therefore, the longer they take, the higher the changes
will occur, and the more obsolete the resulting models will be.

So, the whole EAP should be realized in a few months (e.g., 2 to 4), depending
on how fast the organization is changing. That was already a problem 30 years ago,
when organizations changed at relatively slow paces. Today it is indeed a major
issue, since organizations change at a much higher pace. This risk is the fact that
when one concludes the EAP project, its initial models of the organization AS-IS
are already obsolete, leading to the invalidation of the whole project.

This is where enterprise cartography comes in, by providing the organization
with models of the AS-IS updated on a weekly or monthly basis. Such a capacity
not only reduces the effort and time required to get the AS-IS models, but also

10.1 Information Systems Architecture Planning 243

Fig. 10.13 Spewak’s approach to enterprise architecture planning

allows the assessment of the changes that have occurred when proposing a plan to
achieve the organization desired TO-BE states.

10.1.3.1 Level 1: Getting Started

There are two major goals at this stage. The first is the work plan that specifies
the steps needed in order to achieve the objectives of the EAP, including the
development of the architectures and the implementation plan. The second goal
is to ensure the support and the cooperation of executives and managers in the
organization, including through the allocation of resources in order to achieve a
successful EAP.

There are seven steps in this phase:

1. Determine the scope and objectives of the EAP. At this stage the scope and
objectives of the project are officially defined for the project team and for the
management. Issues like the scope of the project (e.g., all company versus a
business unit or subsidiary) must be defined during this step.

2. Create a vision. After defining the scope of the project (including the meaning
of the word “organization”) and after identifying the business areas that will be
included, this step serves to conduct a study on the background of the enterprise,
systems, and opportunities. This information is used to create a vision for the
future of the business information systems. Understanding the business and the
enterprise is very important to get a good support to define architectures that
enable the implementation of the vision.

244 10 Information Systems Architecture Design

3. Adopt a methodology. The result of this step is a methodology adapted to the
business needs. The methodology provides the general ideas for the project work
plan and the training sessions for the team. Every step of every phase must be
specified including source documents, guidelines, roles, responsibilities, and the
estimated effort.

4. Get the resources. The purpose of this step is to ensure the IT infrastructure
(including computers and software) supports the EAP. This step involves pro-
ducing reports and any programs that are necessary to prepare the product to be
used. There is no single product that is perfect for the EAP. A range of products
will be used as a tool to support the methodology of the EAP. The objective is to
have an integrated set of tools that enable the EAP data exchange.

5. Join a planning team. It’s probably the most important step of this phase. There
are four principles that should be followed when choosing a team: (i) A good and
effective leadership helps overcome many problems. (ii) Team members must be
credible. (iii) They must be committed to the success of the project. (iv) They
must be willing to cooperate and collaborate with each other.

6. Prepare the work plan. The work plan is the timetable and plan for all the
activities of the team. It is critical for the EAP to be completed on time.

7. Obtain the agreement, the commitment, and the funds. Calculate the total EAP
project cost. Include the estimated times of each team member, consultants’ fees,
the cost of computation, and the cost of materials and tools.

10.1.3.2 Level 2: Where We Are Today

Layer 2 of the EAP approach has two main phases: (i) business modeling and (ii) a
survey of the current technologies and systems.

The first phase of the “AS-IS” architecture is business modeling. It is the process
of defining the business. The aim is to provide a broad base of knowledge about the
business models. Business modeling is divided into two parts: a first, preliminary,
followed by a complete model. The preliminary model identifies the business
processes and the business units involved in these processes.

Three steps are required for modeling the business:

1. Document the organizational structure. The purpose of this step is to document
the structure of the organization and identify who and where they carry out the
“business function.” This information is important in two ways for the EAP: (i) it
identifies people to be interviewed and (ii) it determines the extent to which data
and application systems are shared.

2. Identify business processes. This step defines the structure of the business model.
It is one of the most important steps in the EAP, because defining the business is
essential for defining further architectures.

3. Document the model and distribute it to the parties involved in the business in
order to get feedback. The models are distributed to check whether the definitions
and relationships are accurate, so that the next phase runs smoothly.

10.1 Information Systems Architecture Planning 245

In this phase the organization is necessary in order to complete the business
model including:

• What information is used to perform each business process (function)?
• When are the business processes (functions) executed?
• Where are the business processes (functions) executed?
• How often are the business processes (functions) performed?
• How may the execution of the business processes (function) be improved?

There are five steps to perform the study of an organization:

1. Schedule interviews. At this stage all the necessary interviews are scheduled and
time recorded in accordance with the work plan.

2. Prepare the interviews. To prepare for the interviews, “forms and templates” are
created that serve as guides during the interview process.

3. Conduct the interviews. It is important to conduct the interviews at the time
planned to maintain a good image and reputation of the team. It is also important
to fill the forms during interviews, so at the end, the interviewer can check the
data with the respondent. Errors at this stage could jeopardize the credibility of
the business model.

4. Enter the information in the toolset. All the information acquired in the course
of the interviews is introduced into the toolset and verified. Although this step
sounds simple, it is not. The reason is that many of the products used as toolset
do not have the capacity to handle large amounts of data. This situation is usually
referred to as “data entry bottleneck.”

5. Distribute the business model. At this stage the business model is completely
distributed to the organization’s managers.

The second phase of the “AS-IS” architecture is the current systems and
technology, also called information and resource catalog (IRC). The IRC does not
go into exhaustive detail for all systems. The steps to build the IRC are:

1. Determine the scope, objectives, and work plan.
2. Prepare for data collection. At this stage you must determine the type of data that

will be compiled and develop forms to assist in data collection.
3. Execute the data collection. At this stage the developed forms will be distributed.

The applications will be linked to the business processes supported, as defined
in the business model. Applications will also be related to technology platforms
defined in the previous step.

4. Enter the data. The purpose of this step is to enter the information into the forms.
5. Validate and review the IRC (sketch). The integrity of the information on the

current applications, as well as on the technology platforms, should be checked
before being distributed.

6. Draw the diagrams (views), including the application level diagrams that graphi-
cally show the flow of input and output for each system. They provide an insight
into the IRC showing how applications are interlinked.

246 10 Information Systems Architecture Design

7. Distribute the IRC. After the data have been verified in the IRC and schemes
designed and revised, they must be distributed and made available to the
organization.

8. Administer and maintain the IRC. In order to be used as reference information,
the IRC must be kept updated.

10.1.3.3 Level 3: The Vision of Where We Want to Be

This stage presents the vision of three architectures: (i) information architecture, (ii)
application architecture, and (iii) technology architecture.

The information (or data) architecture (IA) identifies and defines the main types
of data that support the business processes defined in the business model. The steps
that should be performed to develop the IA are:

1. List the candidate entities. The purpose of this phase is to identify power data
entities required to support the business (things, concepts, places, people, or
events).

2. Define the entities, attributes, and relationships. The purpose of this step is to
create a standard definition and a description for each information entity in the
architecture of data and provide a graphic illustration of their interrelations.

3. Link the entities with the business processes. The purpose of this step is to
determine which entities are created, deleted, updated, or read by business
processes.

4. Distribute the data architecture.

The application architecture is not a system design, but a definition of what
the application will do to manage data and provide information to people running
the business processes of the company. The recommended steps to develop this
architecture are:

1. List candidate applications. Identify all possible applications, necessary for data
management as well as to support the business. Use the business system planning
(“CRUD matrix” method—see Sect. 10.1.2) to identify possible applications.

2. Define applications. The purpose of this step is to provide a standard definition
for each application in the application architecture. In this step each application
definition is based solely on the business model and the architecture of data and is
independent of who uses the application, how the application works, and where
it is located or operated.

3. Relate the applications with the business processes.
4. Analyze the impact on existing applications. The purpose of this step is to

determine the impact of applying existing applications defined in IRC. This step
is sometimes performed as part of the implementation phase/migration because
it compares existing applications with future applications.

5. Distribute the application architecture. In this step the organization is informed
about the applications that have been set up and asks opinions or suggestions.
This step is sometimes combined with the technology architecture.

10.1 Information Systems Architecture Planning 247

The technology architecture defines the types of technology, i.e., platforms, that
will support the business. The technology architecture according to Spewak [3]
should not be a requirement analysis or a detailed network or software design.
It must first define the types of technology, i.e., platforms that will support the
business. According to Spewak, the technology architecture is a conceptual model
that defines platforms, not draws the software. Spewak suggests that at this stage
(technology) specialists are integrated in the EA project team.

The steps suggested to develop the technology architecture are:

1. Identify the principles and the technology platforms. The purpose of this step is to
identify the principles underlying the architecture and the technology platforms
required to support an environment of shared data. The principles will determine
the types of platforms and set the direction for the acquisition of technology.

2. Set platforms and distribute them. After the principles for the technology
architecture are defined, the aim of the second step is to determine the strategy to
distribute applications and data, and define the technological platform that will
be the setting for the applications and data that support the business.

3. Relate platforms with applications and business processes. This step provides a
“justification” for the technology platform linking it to the business processes
that will directly benefit from it.

4. Distribute the technological architecture. At this stage we intend to confirm
the technology architecture is reasonable and acceptable. The application archi-
tecture can be distributed along with the technology architecture on a single
document.

10.1.3.4 Level 4: How We Plan to Get There

The final stage is the definition of the implementation plan. The goal is to formulate
and prepare an implementation plan for the architectures. The steps for this stage
are:

1. Sequence the applications. The purpose of this step is to establish priorities
and to reach a result that defines the order in which the applications should
be implemented. There is a fundamental principle to follow: “Applications that
create data must be implemented prior to applications that use the data.”

2. Estimate the effort, and produce a calendar. The aim now is to estimate the
amount of effort required to implement and the resources needed and produce
a project plan to implement the architectures.

3. Estimate the costs and plan the benefits. The economic benefits, profit, or return
rates are factors that lead organizations to make the decision on accepting the
plan. Some organizations based their decision on monetary factors.

4. Determine success factors and make recommendations. Implement a data sharing
environment with quality, where people have access to data requests involving
changes. In order to make changes, decisions have to be made. This step will
determine the success factors needed to implement the architectures and plans,
and provide indicators to support management decision.

248 10 Information Systems Architecture Design

10.2 Application Portfolio Management

In the previous section we have seen the alignment criteria of an ISA and an
approach to plan and develop such architecture.

However, many organizations fail to proceed with such an approach, because they
are unable to build and maintain the required process and information architectures.

So, they rather adopt a more incremental approach to decide the TO-BE of
their information systems. Application portfolio management, or simply APM, is
an incremental method to evolve the portfolio of applications, based on business,
technical and financial aspects.

So, whereas ISA is an engineering approach to design an architecture, APM is a
management approach to identify the applications with highest negative impact, as
perceived by its stakeholders.

However, the APM approach has some advantages.

• It may include a broader range of factors than the ISA, such as cost or technology.
• It is easier to apply incrementally and periodically than the ISA. This is

an important aspect because, due to the constant evolution of organizations,
architectures designed by an ISA approach tend to get out of alignment with
time, thus requiring a periodic redesign of the application architecture.

We first present the analysis usually performed in an APM initiative, then we
present the corresponding decisions and finally a method for an APM project
approach.

10.2.1 APM Analysis

Quite frequently, existing applications violate the most basic rules of information
systems architecture planning. Therefore, some of the analyses aim at checking
the existence of symptoms of misalignment caused by bad design decisions [5–8],
including:

• Redundancy Analysis. In this analysis one looks for signs of duplication, or
multi-existence of the same artifact. Such a duplication can be observed at the
following levels (see Table 10.1):

– Functional Redundancy. Existence of alternative ways of doing the same
functions

– Technological Redundancy. Multiplicity of equivalent technologies
– Informational Redundancy. Existence of multiple of alternative sources to

obtain the same information

10.2 Application Portfolio Management 249

Table 10.1 Redundancy (duplication, waste) analysis

Analysis type Symptoms Analyze
Supports recom-
mendations of

With potential impact
on

Functional
redundancy

Existence of
alternative ways
of doing the
same functions

Groups of
applications
with
equivalent
functionality

Discontinuation
of applications
and/or features

– Maintenance cost
reduction

– Greater resource
management
capacity, by reducing
the learning curve

Technological
redundancy

Multiplicity of
equivalent
technologies

Potentially
redundant
technology
groups

Reduction in the
number of
equivalent
technologies

– Greater negotiation
skills with suppliers

– Greater resource
management
capacity, by reducing
the necessary skills

Informational
redundancy

Existence of
multiple
alternative
sources to
obtain the same
information

Groups of
applications
with redundant
information

Reduction in the
number of
information
sources

– Reduction of
maintenance and
operating costs
implied by
maintaining
information

– Coherence across
different sources

• Obsolescence Analysis. Here, one looks for aged, non-supported, or no longer
efficient artifacts (see Table 10.2):

– Functional Obsolescence. Existence of application features that are no longer
used, because the business no longer requires them.

– Application’s Obsolescence. Applications that have decreasing usage or even
have no usage at all.

– Technological Obsolescence. Technologies that are rarely used or are in the
process of not being usable. Another aspect of technology obsolescence is the
lack of support from vendors.

– Informational Obsolescence. Existence of applications with information not
usable either because it is no longer required or because it is no longer kept
up to date.

• Capacity. In this quality the applications are assessed considering (see
Table 10.3):

– Application Capacity. Absence of evidence of lack of licensing

250 10 Information Systems Architecture Design

Table 10.2 Obsolescence (age, inoperability)

Analysis type Symptoms Analyze
Supports recom-
mendations of

With potential impact
on

Application
obsolescence

Rarely used or
unusable
applications

Degree of use
of each
application

Discontinuation,
replacement, or
improvement of
applications

– Reduced
maintenance costs

– Reduced
infrastructure costs

Technological
obsolescence

Technologies
rarely used or
about to be
unusable

Technology
quality of each
application

Discontinuation,
replacement, or
technological
migration

– Reduction of
maintenance costs,
by reducing the
necessary skills

– Reduced
infrastructure costs

– Risk reduction
skills

Informational
obsolescence

Existence of
applications
with obsolete
information

Obsolete
information
applications

Discontinuation,
replacement, or
improvement of
applications

– Reduced
maintenance costs

– Reduction of
operating costs, by
reducing the
necessary
infrastructure

– Risk reduction

– Support Capacity. Absence of delays in supplier response
– Computation Capacity. Absence of evidence of lack of performance

• Alignment. The alignment of an application may be assessed considering:

– Automation. Reduced application support to the business areas
– Usability. High learning curve and delay in the execution of operations
– Information Alignment. Difficulty in obtaining the necessary information
– Technological Alignment. Misalignment with possible enterprise technology

guidelines

• Cost. The cost of an application is usually assessed considering:

– Maintenance. The cost to maintain and support the application
– License. The cost of license and the licensing model (when applicable)
– Acquisition. The cost to implement, customize, and install the application,

considering the enterprise requirements

10.2 Application Portfolio Management 251

Table 10.3 Capacity (volumetry)

Analysis type Symptoms Analyze
Supports recom-
mendations of

With potential impact
on

Application
capacity

Absence of
evidence of lack
of licensing

Applications
with
potentially
excessive
licensing

Reducing the
volume of
licensing

– Maintenance cost
reduction

Support
capacity

Absence of
delays in
supplier
response

Applications
with
inadequate
support from
supplier

Defining and
monitoring
adequate SLA
with suppliers

– Support cost
reduction

Computation
capacity

Absence of
evidence of poor
performance

Applications
with
potentially
excessive
computational
resources

Education of
computational
capacity made
available to
applications

– Reduction of
operating costs

10.2.2 APM Indicators

The indicators that are typically used to assess the suitability of an application are
cost, business relevance, and technical quality. The cost is based on the acquisition,
license, and maintenance as previously presented. With regard to business relevance
and technical quality, they are calculated on the basis of other indicators (see
Fig. 10.14), which should be weighted according to their availability, quality and
specificities of the enterprise.

10.2.2.1 Business Relevance

Business relevance defines how important an application is for the enterprise, and is
computed based on the weighted average of several indicators, as for example:

• Functional Coverage

– User Satisfaction. Degree of satisfaction of application’s users.
– Business Satisfaction. Value for the business, perceived by management.
– Internationally. Ability to support multiple instances, languages, currencies,

etc.
– Functional Redundancy. Degree of Functional and Informational redundancy

with other applications.

• Usability

– Ergonomics. Ergonomics of interfaces and concepts perceived by the User

252 10 Information Systems Architecture Design

Fig. 10.14 Example of an application score card with a set of APM indicators

– Performance. The degree of impact that performance has in business outcome
or production. The key issue is assess how much more productive the users
would be with the increase of application’s performance.

• Usage

– Number of Users. Number of effective users that use the application to do
their tasks.

– Criticality. Criticality perceived by the management of organic units. The key
issue is how much additional effort would be required to keep the business
running if this application ceases to perform.

10.2.2.2 Technical Quality

This indicator expresses the technical quality of an application. As with business
relevance, technical quality is computed based on the weighted average of several
other indicators, both absolute (intrinsic to the application), as well as relative to the
enterprise needs. For example, if in average, an application is not available one hour
per week, their availability should be better rated in the case it is only used once a
week, and with no hard timing requirements, than in the case it is used on a 24*7
paradigm.

• General

– Availability. The degree of impact that application unavailability has in
business outcome and production. Similarly to performance, the key issue is

10.2 Application Portfolio Management 253

to assess how much more productive the users would be with the increase of
application’s availability.

– Maintainability. Average resolution time for corrective and evolutionary
maintenance requests. It assesses the capacity to evolve the application, either
with internal or external expertise.

– Age. Number of years since the application is in production.

• Adaptability

– Configuration. Degree of configuration the application has received since the
it is in production.

– Customization. Degree of customization performed since the it is in produc-
tion, weighted by the customization approach (low code, script, programming
language, etc)

• Technology

– Development Technology. The technology required for the application devel-
opment and execution.

– Integration Technology. The technology available for integration with other
applications, such as REST Services, SOAP, file transfer, file sharing, etc.

Additionally, enterprise-specific indicators may be added, as for example the quality
and coverage of the documentation.

The indicators presented above are standardized into a five-level qualitative
category as: very low, low, normal, high, and very high or similar.

These indicators are aggregated into three top indicators, as indicated in
Fig. 10.14:

• Business Relevance. Resumes how relevant or important the application is for
the organization

• Technical Quality. Resumes the technical quality of the application
• Cost. Resumes the cost elements of the application

The weight of each indicator may change from organization to organization and
should be carefully adjusted so that the aggregated indicators are meaningful.

Once computed, the top indicators are plotted in the business/technical/cost
charts as presented in Fig. 10.14. Traditionally, the technical quality and business
relevance are plotted as X,Y coordinates and the cost is translated into a circle
diameter. The color is left for some categorization, as functional domain.

In this chart, applications are divided into four major quadrants, and the goal of
the proposed actions is to move applications to the right-top quadrant and reduce
costs as much as possible (see the example in Fig. 10.15).

• Lower-Left Quadrant. Applications in this quadrant have low business rele-
vance and bad technical quality. They should not consume significant organiza-
tional resources, neither financial nor human resources.

• Lower-Right Quadrant. Applications in this quadrant have good technical
but low business relevance. So, it might be a good investment to increase

254 10 Information Systems Architecture Design

8.5

7.5

6.5

5.5

4.5

3.5

2.5

1.5

0.5

B
us

in
es

s
R

el
ev

an
ce

Technical Quality
0.5 1.5 2.5 3.5 4.5 5.5 6.5

Fig. 10.15 Example of an APM analysis chart

their business relevance, by incorporating more functionalities required by the
business. Otherwise, given their low business relevance, one should not spend
resources on them, unless they can support additional functionalities required by
the business, thus increasing their business relevance.

• Higher-Left Quadrant. Applications in this quadrant have high business rel-
evance, but a low technical quality. One should either improve their technical
quality or simply replace them by a better quality one.

• Higher-Right Quadrant. Applications in this quadrant have high business
relevance and a high technical quality. So, keep them as they are.

Regardless of the previous analysis, cost is always a factor to take into consider-
ation. Traditionally, given the list of decisions from a business relevance/technical
quality perspective, one starts to consider those dealing with applications with
higher costs, and simply leave the actions on low-cost applications for later.

Apart from any transformation initiative to improve the business rele-
vance/technical quality chart, one can always optimize the costs spent on the
applications by improving the application’s sourcing. Application sourcing includes
the cost of maintenance, licensing, and hosting. To optimize sourcing one needs to
ensure that we are not acquiring more capacity than is needed, including:

• Maintenance Capacity. The costs on maintenance, either corrective, evolution-
ary regardless of whether it is done by the organizational resources, or outsourced
to external resources, depend on several factors that might be reduced without
affecting the business. For example, the readiness of the maintenance team is
observed when the requested changes are performed.

A conservative approach is to consider that if the internal users do not
complain about the maintenance readiness, then it is a sign that it may be higher
than needed and one might consider to reduce it. For example, one may attempt
to do a small reduction and after 1 year assess if there were any complaints or
reported business impacts.

10.2 Application Portfolio Management 255

• Licensing Capacity. When software license is involved one must confirm that all
licenses are actually needed, or if installed capacity may be reduced. An analysis
of application logs for login operations may reveal the actual license usage.

• Hosting Capacity. This is mostly about the cost of infrastructure used to run the
application. CPU and communications are among the higher costs.

Very much like the maintenance capacity, if there are no complaints that
the application is slow, then it probably can run a little slower, thus saving
hosting costs. However, this might be a dangerous assumption for heavily used
applications, because a bit slower may imply a lower productivity of hundreds of
users, yielding much higher costs on personal than the actual savings in hosting.

10.2.3 APM Actions

After calculating the indicators presented in the previous section and selecting the
applications to be transformed, it is necessary to make a concrete proposal for the
changes to be made to each selected application. A characterization of the most
common changes is presented next.

• Retire. The application should be discarded.
• Replace. The application should be discarded and its functionality should be

supported by another application or applications. The replaced application(s)
might be new or existing ones whose functionality would be increased with the
functionality of the replaced application.

• Re-platform. The technology of the application should be upgraded or
improved, but the application remains unchanged. Typical scenarios include
upgrading operating systems, databases, and application servers and libraries.
One may even consider that the change of application language is a re-platform
action, for example, from COBOL to Java, since it can be mostly automated and
therefore is a technological transformation. Another common re-platform action
is the adaptation or migration to the cloud infrastructure.

• Restructure. Restructure means changing the application structure or architec-
ture. Restructure includes changing from a two-layer to a three-layer paradigm,
or also to the cloud. Quite often restructure comes along with re-platform, but
they can be seen as distinct actions.

• Optimize Sourcing. This action aims at adjusting the readiness and quality of
the teams maintaining the applications to the proper level. It can be the reduction
or the increase, depending on business needs and observed impact of the current
level of sourcing.

• Optimize Capacity. As with sourcing optimization, capacity optimization aims
at better adjusting the computing infrastructure (CPU, memory, disk communi-
cations) to the actual application needs. It can be increased or decreased.

256 10 Information Systems Architecture Design

Fig. 10.16 APM project key steps

10.2.4 APM Project Approach

An APM project typically has the following steps (Fig. 10.16):

• Set Application Portfolio Baseline. In this step, the list of applications is
prepared with the appropriate level of detail, and the existing information
associated with each application is compiled in order to minimize the information
to be collected through the stakeholders.

• Business, Technical & Cost Assessment. In this step, one prepares the questions
to be answered by each application’s stakeholders, providing the information
necessary to calculate the intended indicators. One also needs to identify the
stakeholders to be questioned regarding each application. Questions should be
mostly indirect and focused on the impact. For example, one does not ask the
person responsible for an application if it is critical, but what would have to be
done if the application stopped working. Similarly, one does not ask users if an
application is slow, but rather how much more productive they would be if the
application were faster.

• Analysis & Findings. Here, the aforementioned analyzes are carried out and the
candidate applications to be the target of a transformation project are identified.

• Recommendations. Each identified application will be analyzed and the pos-
sibility of its transformation is evaluated. Often, recommendations are related
to a group of applications, particularly when it comes to consolidating several
applications into one.

• Business Cases & Project Proposals. Finally, each recommendation is evalu-
ated in detail and if it is consistent, a transformation project is defined, which
will add to the company’s portfolio of projects.

10.3 Service Architecture Design 257

10.3 Service Architecture Design

We discuss next how services that fulfill the goals of a service-oriented architecture
(SOA) are identified, namely:

1. A service encapsulates a reusable business function.
2. Services have explicitly defined interfaces (contracts) independent of the imple-

mentation.
3. Services are loosely coupled and communicate with each other (choreography,

orchestration) through protocols independent of the location and of the technol-
ogy.

4. After a business function has been defined as a service, each service is instanti-
ated in one place and invoked (remotely) in this site by all the applications that
use it (thus there are no replicas with potential independent evolutions).

As presented in Sect. 3.3.6, services in the service layer can be structured
according to their potential for reuse, as:

• Solution layer services
• Core business layer services
• Utility layer services

As one could expect, service architecture design can follow different approaches.
In the bottom-up approach, one starts by creating elementary services around
existing applications. In the second stage, these services are aggregated into more
complex services. However, this practice leads to the proliferation of services, since
it ignores the dependency between applications that support each service. No rules
or guidelines for the implementation of new applications are defined in this approach
and it ignores the alignment between business information and applications. The
bottom-up approach only allows the definition of a set of services that make sense
to the set of existing applications in the organization.

In a “top-down” approach to service identification, one starts by the application
processes existing in each application and then proposes the Core Business Services
(see Fig. 10.17) that better matches application processes needs and that allows an
higher potential for reuse.

Finally, the core business services are decomposed in utility services (increasing
the reuse).

The top-down approach ensures a high reuse of services for enterprise architec-
tures done from scratch. However, if existing services are available, the middle-out
approach is recommended because it considers existing services (see Fig. 10.18).

In the middle-out approach the services realized by core applications are
identified first (usually by the IT department). Afterwards, a top-down approach is
followed, identifying the business processes and the supporting applications. Next,
the core business services are defined by identifying the sequences of automatic
activities and the sequences of activities that are common to more than one business
process. Finally, the results from the first step (existing IT services) and from the

258 10 Information Systems Architecture Design

Fig. 10.17 Top-down approach to service identification (Reprinted with permission from Link
Consulting, SA)

Fig. 10.18 Middle-out approach to service identification

last top-down step are merged into utility services. In this final step the existing IT
services and the “required” services (that result from the breakdown of core business
services) are compared, and, when possible, the current IT services are reused and
aggregated, and only when not available or possible, new services are implemented.

10.4 Exercises

Exercise 10.1

Consider the following example of the relations between information entities and
business processes—see Fig. 10.19.

Perform the following steps to identify the “application clusters”:

1. Delete irrelevant columns or rows.

10.4 Exercises 259

Fig. 10.19 CRUD relations between information entities (E1 . . . E7) and business processes (P1
. . . P10)

Fig. 10.20 Information entities, business processes, and current application clusters for the Navy

2. Next, put together processes that create the same entities.
3. Next, put together processes that update (U) entities with the processes that create

the entities (C).
4. Identify the “application clusters” considering that the applications (systems)

should be as simple as possible, considering three different scenarios:

a. P1 to P10 are “end-to-end” processes.
b. P1 to P10 are atomic activities.
c. P1 to P10 are “end-to-end” processes, but P1 to P3 are processes with high

affinity (developed by the same teams).

Exercise 10.2

The Portuguese Navy Enterprise Architecture is summarized in the CRUD matrix
in Fig. 10.20.

260 10 Information Systems Architecture Design

The information architecture is described by the information entities E1 to E9;
and the business process architecture is described by business processes P1 to
P10. The CRUD matrix in Fig. 10.20 represents the dependencies (create, read,
update, delete) among business processes and information entities. Assume that
processes P1–P10 are transactional activities, except for P4 and P7 that are end-
to-end business processes. The existing systems of the Navy are identified in the
matrix as S1 to S7.

1. Based on the contents of the CRUD matrix, give a concrete example of a
misalignment for each alignment dimension between architectures, namely,
“processes and information architectures,” “information and application archi-
tectures,” and “process and application architectures.”

2. Redesign the CRUD matrix above and identify the maximum number of
information systems by applying the alignment heuristics among the pro-
cesses, information entities, and information systems (business system planning
method).

3. List all the integration relationships between each of the systems identified.

Exercise 10.3

Considering the CRUD matrix of Tota Tola company, including the current systems
(S1–S5), processes (P1–P10), and information entities (E1–E10). All processes
(P1–P10) are atomic—see Fig. 10.21.

1. Consider the alignment dimensions among the architectures presented in
Fig. 10.22.

Which architecture dimensions are misaligned, considering the CRUD
matrix? Justify your answer by providing specific examples from the CRUD
matrix and the information provided.

2. Propose a new CRUD matrix for the future architecture of Tota Tola, identifying
the information system clusters, using the BSP method. Remember that you

Fig. 10.21 CRUD relations between information entities, business processes, and systems (S1
. . . S5)

10.4 Exercises 261

Fig. 10.22 Architecture alignment dimensions

Fig. 10.23 CRUD matrix

should propose systems as small as possible (which means the maximum number
of information systems). Also identify the integration among the system clusters.

3. Considering only the information above, in which order would you propose the
systems to be implemented? Justify your answer.

Exercise 10.4

Consider the following CRUD matrix with atomic activities P1 to P12 and informa-
tion entities E1 to E12—see Fig. 10.23.

Consider also the four applications identified in the matrix and the respective
integrations.

1. Based on the contents of the CRUD matrix, give a concrete example of a
misalignment for each alignment dimension between “processes and information
architectures,” “information and application architectures,” and “process and
application architectures.” Justify your answer.

2. Identify which of the following architectural implications are a consequence of
the principle “Data are maintained in the source application.”

262 10 Information Systems Architecture Design

a. The source application for all types of data is known.
b. Applications acquire data from the source application.
c. Replication of data is accepted when properly motivated.
d. Replicas are never updated, unless a controlled synchronization mechanism is

in place.
e. Data are not copied before it is finalized (completed).

Justify your answer.
3. Identify in the CRUD matrix above where the principle stated in the preceding

paragraph is not fulfilled. Justify your answer.
4. Now identify the correct systems by redesigning the original matrix to ensure the

architectural principle above and the alignment heuristics (when possible). Use
the BSP (business system planning) method and identify the integration between
the systems, as well.

Exercise 10.5

Consider the following CRUD matrix. All processes are atomic, except P4 and P10
(that are end-to-end)—see Fig. 10.24.

1. Propose a new CRUD matrix, identifying the information system clusters.
Remember that you should propose systems as small as possible (which means
the maximum number of information systems).

2. Considering only the information above, in which order would you propose the
systems to be implemented? Justify your answer.

Exercise 10.6

Consider the following CRUD matrix—see Fig. 10.25:

1. Faced with misalignments in the CRUD presented, propose a new set of systems
that ensures a complete alignment between architectures. Identify the maximum
number of possible information systems. Also identify the proposed integration.

Fig. 10.24 CRUD matrix

References 263

Fig. 10.25 CRUD matrix

References

1. P. Sousa, Enterprise architecture alignment heuristics. Microsoft Enterp. Architecture J. 4 (2004)
2. P. Sousa, C. Pereira, Enterprise Architecture: Business and IT Alignment (Santa Fe, New

Mexico, 2005)
3. S. Spewak, H. Steven, Enterprise architecture planning: developing a blueprint for data,

applications and technology, Wiley-QED, 2nd edition, September 1, 1993, ISBN-13: 978-
0471599852

4. J. Zachman, A framework for information systems architecture. IBM Syst. J. 26(3), G321–5298
(1987)

5. G. Carvalho, P. Sousa, Business and information system misalignment: diagnosis, therapy and
prophylaxis techniques based on syndromes. Int. J. Comput. Sci. Inf. Syst. 4(2), 140–157 (2009)

6. G. Carvalho, P. Sousa, Using a medical sciences perspective to harness business and information
system misalignment, in 16th European Conference on Information Systems (ECIS) (2008)

7. G. Carvalho, P. Sousa, Business and information systems misalignment model (bismam): an
holistic model leveraged on misalignment and medical sciences approaches, in RD International
Workshop on Business/IT Alignment and Interoperability (BISTAL’08), France (2008)

8. G Carvalho, P Sousa, Business and information system misalignment: diagnosis, therapy and
prophylaxis techniques based on syndromes. Int. J. Comput. Sci. Inf. Syst. 4(2), 16 (2008)

Chapter 11
A Method for Enterprise Cartography

Pedro Sousa and André Vasconcelos

Abstract This chapter describes a methodology for developing enterprise cartog-
raphy in enterprises. The purpose is to support enterprises when producing AS-IS
and TO-BE architectural views with minimal human effort.

As seen in Sect.1.3.1, enterprise cartography has been a reality in various domains,
but often with a very limited scope and a predefined set of concepts, focusing mostly
on past views of the enterprises.

We aim to implement a mechanism as automatic as possible to produce architec-
tural views of current (AS-IS) and future (TO-BE) enterprise states, according to the
progress of ongoing and planned transformation initiatives, as depicted in Fig. 11.1.

The upper part of Fig. 11.1 illustrates a scheduling of projects (or transformation
initiatives), where one can see that project X execution is scheduled to begin and end
at Tm and Tn, respectively, and project Y is expected to end between those dates.
In the lower part of the figure, on the left, different types of information sources
are presented. Their differences will be discussed in Sect. 11.1.3. At the bottom of
the Fig. 11.1, on the right, one shows examples of architectural views generated on-
the-fly based on the information collected and existing in the knowledge base (KB),
which holds the information collected from the different information sources. Each
architectural view has a time slider that changes the contents of the view according
to the selected point in time. For example, if one moves the time slider to Tn, the
generated view will show the expected outcome of project X, as well as the expected
outcome of any other project that is planned to end between the current date and Tn.
Likewise, whenever a project changes it’s conclusion date, the generated views will
change accordinging.

In terms of the model described in Chap. 5, both projects and information sources
are generators of architectural sentences (Eqs. 5.5 and 5.6) that are loaded into the
KB holding the enterprise’s architectural model (Eq. 5.9). The architectural views
correspond to combinations of the base views (see Sect. 5.2.10) and the time slider
allows the generation of views at selected moments in time.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_11

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_11

266 11 A Method for Enterprise Cartography

Fig. 11.1 An overview of the intended EC project

To assemble the mechanism depicted in Fig. 11.1, we need a tool1 that is capable
of generating architectural views relative to a given point in time. But this is
not enough. Such a tool needs to be fed with a continuous flow of information
(architectural sentences) that is coherent with the set of concepts and states defined
in the meta-model.

In the following sections we present a method to feed the KB with the necessary
information and produce corresponding architectural views. Similar to many other
methods of extract, process and load, typically known as ETL processes, this process
addresses specific issues due to the fact that the end result must be an enterprise
architecture.

11.1 Phases of the EC Approach

In Fig. 11.2 we present an approach for developing enterprise cartography in an
enterprise. It follows quite a straightforward sequence of stages, in a circular
manner, so that at each iteration one may increase the scope of the previous
iteration. The idea is that in each iteration one deals with a set of concerns, from
the requirements to results and then iterate again to address new concerns.

1 Such as Atlas from www.linkconsulting.com.

www.linkconsulting.com

11.1 Phases of the EC Approach 267

Fig. 11.2 The approach for enterprise cartography

11.1.1 Phase 1: Identify Key Questions

In this phase one tries to establish the list of artifact types (concepts in meta-model)
one needs to track down in this iteration. The more the artifact types, the more
complex and slower and the more effort required in the iteration. Each artifact type
must be fully clarified as well as the multiple manifestations it can exist in the
organization.

To identify artifact types, we do a list of questions to be answered at each
interaction. Using questions to determine the meta-model helps focus and simplify
the explanation of the value to enterprise stakeholders.

For example, let us assume the following list of questions:

• What business processes support each organization capability?
• What applications support each business process?
• What technologies support each application?
• What applications process people’s private data?

This list of questions leads to the clarification of the following concepts: business
processes, capability, application, technology, and people’s private data. Concept
clarification is a complex and effort-consuming task, in particular because one must
address the multiple ways that instances of each concept can be observed in the
organization.

The selection of questions of each interaction is also a matter that requires some
attention. Starting the project with a list of questions as the one presented above
might be appropriated if the project is motivated by the administration, thus making
sure all communities are involved in the project and at the end of the first interaction
one could provide a layered vision of the organization, from strategy to technology.

However, if the project is motivated by a given community, then the questions
should involve mostly the concepts of that community. The other communities
would be waiting for the results and to be convinced before engaging in the project.

268 11 A Method for Enterprise Cartography

For example, if the project is motivated within the IT community, one could focus
on the application and consider the following list of key questions:

• What applications support each business process?
• What technologies support each application?
• What services are provided and requested by each application?
• What applications are being supported (infrastructured, support, licensed) and

not used?
• What applications are becoming obsolescent the next years due to unsupported

or obsolete technology?
• What applications are structurally dependent of each other?

These questions seem trivial, but the reality is that they might undertake some
organization changes before the organization is able to provide an answer in a
systematic matter. Quite often it is not clear who, in a company, decides on the
existence of a new application in the enterprise or how the application’s onboarding
process is defined. An even more frequent situation is the lack of consensus on
fundamental concepts, such as the concept of application. This is all normal if
you consider that the concept of application is not clear at all, not even among IT
engineers.

11.1.2 Phase 2: Concept Clarification

After having identified the concepts one needs to clarify the meaning of each
concept. In Sect. 11.2 we propose a systematic method for concept clarification. The
purpose is to reach a consensus between the different stakeholders with minimum
effort.

Clarification often reveals new concepts to add to the meta-model. This can be
an entirely straightforward exercise in which one starts with a standard meta-model
(e.g., the TOGAF content model or the ArchiMate list of concepts, among others)
and extends it as required. A simple situation is when on each interaction one adds
more concepts to the previous iteration. Thus, the meta-model must be structured
in such a way that it can easily be extended by areas, as the TOGAF content model
allows it, foreseeing enrichment in different areas [1].

However, in some cases, one may have to deal with the actual change/evolution
of concepts between interactions. The problem arises when there is already infor-
mation collected in previous interactions, as well as with the information collection
procedures already in place. In this respect, it is important that the KB allows a
class definition to change without the need to change manually its existing instances
(objects) in the KB.

For example, assume one has changed a class property protocol from a simple
value into a reference, pointing to instances of class protocol. This change must be
supported without the need to invalidate neither the artifacts already kept persistent
in the KB nor the work done in the previous interaction.

11.1 Phases of the EC Approach 269

To allow the evolution in the meta-model in a KB holding information (models),
one should define a meta-model evolution primitive catalog, with primitives such
as Flatten Hierarchy, Merge Class, Split Class, Property to Class, and Class to
Property, among others[2, 3]. Using such a catalog along with the top-down and
bottom-up design primitives presented in Chap. 9, one can automate the propagation
of meta-model changes to the existing information in the KB [4–6].

A final remark on the topic of concept clarification: in most cases, information
concepts are defined for general facts, where people tend to reach a consensus very
easily. A simple and trivial definition is usually a good starting point to identify
something, but one never knows if it is enough to handle the different manifestations
of that concept in the enterprise. In our experience a concept is only defined when
one also considers the beginning and end of its life cycle. Even if a concept is
well defined in some standard in terms of “being”, it is also necessary to define
the “becomes” and the “cease to be”.

For example, for us humans, the concept of a person should be among the
simplest ones to agree upon, and we do not need to discuss and write down what a
person is. However, if you are in a room full of people with one corpse on the floor
and a pregnant woman in the audience, and ask to the audience how many people
there are in the room, you will get different answers regarding the corpse and the
person yet to be born.

An even simpler and more common example occurs between different stake-
holders in a company. Consider the simple question to different stakeholders in
a railway company: how many locomotives does the company have? As is, this
question will also lead to different answers from different parties. For the corporate
image department, the locomotive that is in the company main hall entrance counts
as a locomotive because it must be painted according to the company image, but
it does not count as a locomotive for the operational and financial departments.
Likewise for the financial department, the locomotives that are being paid but did not
arrive yet are likely to count as locomotives, whereas for the operational and image
department, such locomotives are not counted as such. Finally, for the operational
department only the locomotives that are available to pull train carriages count as
such. A dictionary definition of a locomotive is not enough to present proper models
for these different stakeholders.

So we need some indicator to tell us whether the definition we have is good
enough or needs to be more detailed. We propose the adoption of a simple rule of
thumb.

The level of consensus of a given concept is easily established by asking the stakeholders
to enumerate the number of instances of the concept in question. If different stakeholders
count different number of instances, then the concept is not clearly defined.

11.1.3 Phase 3: Identify the Best Sources of Information

Once the artifact types and their inter-dependencies are established, one needs to
identify the sources of information about the artifacts as effortless as possible. For
each artifact type, we identify the best information sources to capture state changes

270 11 A Method for Enterprise Cartography

in the artifact’s lifecycle: from the moment it is conceived up to the moment it is
discarded. Depending on the artifacts, one might consider a broad set of information
sources.

In Fig. 11.1, on the left side, one classified the information sources being
in different categories according to the time frame of the information they can
provide.

• Project management tools provide information about the progress of projects
and their milestones. They provide information about the beginning and end
of projects, and therefore they can be used to pinpoint in time the models and
artifacts associated with such projects or milestones.

• Modeling tools provide models of artifacts about the company’s past or future,
depending on the projects these models/artifacts are associated with. The models
and artifacts associated with a given project will have their life cycle according
to project’s start and end dates.

Despite the relevance that models associated with transformation initiatives
have for viewing enterprise future states, they are just promises and cannot be
taken for granted. Nevertheless, if no other information is available, these models
are the best available forecast about enterprise future states.

• DevOps tools are sources of information about what is being built and tested, and
therefore are also sources of information about the emerging AS-IS. If an artifact
is being tested and is associated with a given project, it is likely that it will exist
in the enterprise when that project ends.

Much like the models and artifacts associated with transformation initiatives,
artifacts being developed or tested in DevOps tools are just promessis. However,
since they refer to a much shorter time frame they are much more likely to
become a reality than the artifacts in the previous item.

Thus, while the plans of the projects give an idea of what the organization will
be in the more distant future, the DevOps tools and environments give an idea of
the future closer, and probably with greater assertiveness.

• Production Environments, the infrastructure where productive artifacts run,
provide information about the current state of the IT infrastructure. They usually
say nothing about the organization’s past or future states.

• Registration systems and operational catalogs usually provide information about
the current artifacts of the enterprise, from organizational units, actors, products,
services, contracts, processes, applications, among many others. The future state
of these artifacts are likely to exist in models associated with projects that are
planned or ongoing.

In all the above cases, the information referred to may also be in simple spreadsheets
or office files, rather than in tools or information systems.

In the above sources of information there will most likely be contradictory and
omitted information. The general rule is that the closer in time the information refers
to the more probability it will have to be true. Thus, whenever an artifact that is
planned to be delivered by some project is not seen in systems representing the AS-
IS after the project completion, one must inquire the responsible of the project about
these artifacts.

11.1 Phases of the EC Approach 271

Another issue one has to consider when processing information from different
sources is the possible fact that information coming from different sources might
have a different meta-model.

Thus, it is necessary to define the mapping rules to use during importation and
exportation. As an example consider the case where the KB has the platform and
system software artifact types. However, if the models were produced in ArchiMate,
artifacts of both platform and system software types are likely modeled as instances
of system software, being distinguished by the fact that platform artifacts always
aggregate more than one system software artifact, and the latter does not aggregate
other system software. Thus, one can load them as platforms or as system software
depending on the defined rule outcome.

In general, one must conciliate models that were:

• Written in different notations, with different underlying meta-models.
• Described in different levels of detail.
• Written in different tools. This yields the problem of artifact naming and

identification, as presented in the next Sect. 11.1.6.2.

Of course, one cannot build an enterprise architecture without a common set
of concepts and ways to visualize them. Thus, one needs an approach to capture
information from multiple sources and consolidate it into a single knowledge base,
minimizing the changes imposed to each TO-BE model produced, as described in
the next sections.

The notebooks of the architects involved in a transformation initiative are also
sources of information about the future of the enterprise. However, such information
is most likely unstructured and difficult to access and process, and so we do not
consider them in the context of this book.

11.1.4 Phase 4: Structure the Processes and Tools to Capture
Information

EC projects are usually conducted by the enterprise architecture team with the
participation of other units or roles, such as project managers, technical leaders,
project architects, or solution architects, acting both as a consumer (stakeholders)
and a producer of information. In fact, they will likely need information existing in
some architectural views and produce information to construct other architectural
views.

The participating teams expect the architectural information that exists in the
systems they use is captured by the EC processes and be used to generate
architectural views. Any information that has to be inserted manually will likely
be a project point of failure because it means an additional effort has to be made to
keep the generated views up to date.

272 11 A Method for Enterprise Cartography

Our approach is, firstly, to look at the tools the teams use to produce and register
architecture relevant information and propose the necessary changes so that it can be
automatically loaded into the KB. This approach allows the loading of information
and the production of maps for the teams to use with a minimum negative impact
on them. For example, in an enterprise that uses MS Office documents for internal
project presentation and description, we can include the tables in those documents
to be automatically loaded with the information (the architectural statements) about
such project.

Later, after the remaining teams are using the maps generated with the infor-
mation collected, we can propose more structured ways of obtaining the required
information, through either the models or direct introduction in the KB.

11.1.5 Phase 5: Define and Configure the Architectural Views

Defining and configuring architectural views to the needs of different stakeholders is
a key aspect of EC’s success. Stakeholders often prefer views that are combinations
of views presented in Sect. 5.2.10, but each with a different level of detail [7].

A very important aspect is that the meta model is too complex for some
stakeholders, and so the views they require must be generated under a simpler meta-
model, defined per profile. This is very much like the view definition in relational
databases, where one can define a query based table that is generated on-the-fly over
on the actual tables.

A typical situation is to reduce the number of entities one needs to cross to
find the dependency between two concepts, showing only the derived relations
instead of the existing ones in the meta-model. For example, on a KB with the
ArchiMate meta-model, a given user profile might want to explore and navigate
the architecture through views where business processes are directly related to
applications components without going through application services and application
functions in between, whereas other stakeholders demand the full detail.

Because the content presented in architectural views is relative to a moment in
time, their generation must take into account the lifecycle of the artifacts and their
references. In the previous example, if the services between the business process
and the application component are at different stages of their life cycle, what is the
criterion for presenting a dependency between the process and the application: when
all services are productive or will it be enough one service to be productive for the
direct relationship between the business process and the application component to
be presented in the simplified architectural view?

In this case it seems easy to agree that one productive service is enough for the
relationship between the process and the application to be presented. However, when
the relationship is “realization” or “cooperation”, one needs to carefully decide the
rule to follow so that the stakeholder who asked for a simple architectural view does
not have to go into detail to understand it.

11.1 Phases of the EC Approach 273

11.1.6 Phase 6: Populate the KB with an Initial Baseline

The initial loading of the KB is usually done by importing from other systems or
from existing spreadsheets with relevant information. This load phase is often run
in parallel with phase 5, but always after phase 4 where meta-model-related issues
are addressed.

We highlight two aspects worth noting:

• The full vs. incremental loading of the KB
• The artifact naming policy

11.1.6.1 Incremental Loading of the KB

Initial KB loading is an issue that always gives rise to different opinions. The
question is not so much whether the loading of the sources of information is
automated or not, but more whether it is complete and correct or not. The will of
the architecture team to present a mostly complete and correct architecture before
disclosing the views to all the stakeholders of the company is always a point of
discussion in EC projects.

On the one hand, if the views disclosed are very incomplete and with wrong
facts, then the other stakeholders will simply ignore and discredit the whole project.
On the other hand, if one expects to have complete and correct information to then
disseminate the architectural views, then one never discloses any view ever.

Our proposal is to load the KB and disclose the architectural views project by
project. The higher the pace of transformation, the more projects exist and the faster
the KB becomes populated.

Another aspect is whether you start loading the AS-IS or the TO-BE as well. The
project by project loading allows the loading of both the AS-IS that is necessary to
know for the realization of the project, as well as the TO-BE that is intended to
reach with the project. Since both views are useful for project execution, they will
naturally be viewed and validated by the project team, which is a guarantee of its
completeness and correctness.

11.1.6.2 Naming Enterprise Artifacts

The problem of naming in enterprise architecture has not been an issue, due to the
narrow context where observation is performed.

It is commonly expected artifacts to be registered in the KB with a name and an
identifier. The name is in human readable form and the ID assures the uniqueness
of that artifact [8], in case different artifacts have the same name.

The use of 128-bit object identifiers (OIDs, also known as UUIDs) ensures
uniqueness for most practical purposes even when generated by different and
independent tools.

274 11 A Method for Enterprise Cartography

However, in the scenario where one gathers information from different sources
of information, the same artifact may exist in different tools, each with its own
generated OID. So, when consolidating models from multiple modeling tools,
one needs to know and manage the correspondence of artifact OIDs between the
different systems or tools.

Change is also a factor against the use of OIDs. Consider that a process modeling
tool holds a model of the sales process in which the CRM application is used to
inquire the status of client payments. Later, the process changes, and instead of
using the CRM application, it now uses the ERP application for the same purpose.
This change can be done simply by changing the application name, from CRM
to ERP. However, in this case, the name has changed but the OID in the process
modeling tool is the same, although the enterprise artifact has changed. This leads
to a situation where the same object now refers to a different enterprise artifact,
breaking the existing binding between OIDs and enterprise artifacts even in the
context of a single tool.

User-defined object names can make the task of matching objects between
sources easy, if object names correspond to the names of the artifacts in the
enterprise. However, in most cases, object names used are not unique, since
uniqueness has been assured by OIDs.

We propose a different approach where identification and denotation are estab-
lished by user-defined object names, and OIDs are left for specific purposes such as
audit traces. This approach implies that, from the user perspective, artifacts (objects)
of the same type (class) cannot have the same name.

In practice this can be a strong restriction in large enterprises where one could
expect to have multiple teams generating names for their artifacts.

This issue was resolved decades ago in the relational model, where identity is
ensured by concatenation of properties with meaningful user defined names. From
an EC perspective, the most common solution is to concatenate the structural object
chain transparently to the user. For example, a component X of application Y of a Z-
company might have the name Z/Y/X. This name will have to be managed whenever
any of its components (X, Y, or Z) change its name. This implies that users can edit
objects’ names, regardless of the fact they are also unique names. For example, in
the case of a National Health System, one could expect to have actors with the same
name in different hospitals.

We recommend artifacts to be names in a hierarchical name space, as URLs in
the web:

OrganizationName/ClassName/ArtifactNameField_N. .. .ArtifactNameField_0.
The concatenation of the fields ArtifactNameField_N to ArtifactNameField_0

must be unique within the objects of the same ClassName. All fields are optional
(i.e., can be null), except the last one (ArtifactNameField_0) that cannot be null.

The presentation of names should be adjusted automatically to the context in
which objects appear. Following the previous example, the presentation of the
Z/Y/X component, in the structure view of the Y application, you can omit the
name hierarchy (Z/Y/), presenting the component only with the name X.

11.2 A Method for Concept Clarification 275

11.2 A Method for Concept Clarification

One could argue that it is enough to choose a modeling notation or enterprise
architecture framework to have a complete set of concepts, each clearly explained
and clarified. In fact, ArchiMate 3 defines 58 concepts (not counting relation types)
and TOGAF content model presents 35 concepts (also not counting relationship
types).

However, the definitions in these frameworks are often not detailed to represent
the multiple manifestations of a particular concept that can be observed in the actual
organization, as we saw in Sect. 11.1.2.

Thus, it is appropriate to have a systematic way of clarifying the concepts of the
meta-model. The method we present below is based on the following analyses:

• Identification of relevant properties. In this first stage one identifies the properties
that should be addressed in the definition of the concept, including identification
and lifecycle.

• Identification of relevant perspectives. In this second stage one identifies the
different stakeholders and their perspectives that need to be considered to capture
the multiple manifestations of the concept that can be observed in the enterprise.

• Concept representation. Finally, in this third stage one defines the fundamental
views to apply for the representation and communication of instances of that
concept.

We now detail each step of the approach in the following sections.

11.2.1 Identification of Relevant Properties

The following properties and the following aspects are relevant in the definition of
a concept:

• Life cycle. The life cycle of the artifact, from the moment it is conceived until it
is discontinued, as well as the identification of intermediate states.

• Related Concepts. The clarification of concepts that are directly related to the
concept being discussed is essential to clarify the concept itself, because it avoids
possible overlaps between concepts and clarifies the function and the context of
its existence.

• The Structure. The clarification of the elements that compose the concept is also
an important issue in the definition of the concept and in the systematization of
its representation.

• The Integration. The possible integration between the concept’s instances is the
last considered aspect.

276 11 A Method for Enterprise Cartography

These are the aspects one considers relevant in order to clearly define a concept.
Again, each of these aspects should be addressed up to the point where it becomes
evident that different people can count the same number of concept instances.

11.2.2 Identification of Relevant Perspectives

The perspectives to consider are those of the different stakeholders who somehow
interact with the concept. A simple way to identify the different perspectives is to
consider the architectural layers in which your stakeholders are included. Thus, for
the artifacts of the application layer, we consider three perspectives:

• Business. The business perspective is the perspective of the end users, the ones
that use IT to execute the inherent functions of their activities in the context of
processes and the tasks defined in the organization.

This perspective pursues functional logic, and is independent of how IT is
implemented and operationalized.

• Information Systems. This perspective is focused on the problems of construction
and maintenance of information systems, being independent of the infrastructure.
Consequently, this perspective pursues a constructional logic and should address
the engineering aspects related with the construction and maintenance of infor-
mation systems.

• Technology. This perspective captures the issues related to the execution and
operation of the information systems. This perspective pursues an operational
logic, enhancing the necessary operational aspects for the execution of informa-
tion systems. Issues such as capacity (cpu, ram, disk, communications) business
continuity and operating costs are just examples of the concerns addressed in this
perspective.

11.2.3 Concept Representation

After discussing the relevant properties and perspectives of stakeholders, we
recommend discussing the appropriate architectural views to represent the concepts.
This step is a validation of the above because, to adjust the views of each interested
party, one must use the results of previous discussions.

The choice of views to use in the visualization of concepts should start with
the fundamental architectural views (Organic, Context, Structure, and Integration)
seen in Sect. 5.2.10. These can be combined into more complex views, such as the
layer view. In this view, the layers above the concept under analysis indicate what
it supports and the layers below the concept under analysis indicate what it requires
to operate.

11.2 A Method for Concept Clarification 277

The approach described in this section may also be applied to enrich the meta-
model with additional concepts.

We present in Sect. 11.2.4 its application to enrich the application concept in the
EA meta-model.

11.2.4 An Example: Clarifying the Application Concept

Many organizations lack a clear definition of applications and different actors count
different number of applications. A simple mapping of all the information systems
in an application catalog is a challenge.

In many medium-sized companies, the application catalog can include many
disparate entries, ranging from small software programs to large banking solutions.
However, without considering the effort of an adequate clarification and definition
of the notion of application, the catalog is far from having the expected benefits,
driven by the lack of consensual interpretation of what is an “application” inside the
enterprise.

It is a well-known fact that concept clarification is a complex endeavor. Clarifi-
cation may encompass both a functional and a constructional description, and in
most situations both descriptions are needed. However, the clarification of such
key concepts in the IT domain rarely occurs in a systematic manner, simply
because professionals of the IT community assume the concept is clear enough.
This assumption is further reinforced by the fact that many modeling languages
define very precise symbols and rules to represent and relate ill-defined concepts, as
happens in some of the most prominent frameworks and modeling languages.

The TOGAF Technical Reference Model [1] considers two types of applications:
infrastructure and business applications. However, this is a very simple classification
schema that does not address fundamental issues in IT management. From an IT
and business alignment point of view, a spreadsheet holding data and business rules
is a business application, as SAP ERP or any other software package. But from a
management and day-to-day IT operations, they have little in common.

ArchiMate [9] refers to the concept of application component as a self-contained
part of a system that encapsulates its contents and exposes its functionality through
a set of interfaces. This is true within a large range of scenarios; however, it does
not help to establish a good enough application concept in order to simplify the
communication and the actual work within the IT communities.

We start by stating that the concept of application exists and is relevant between
the business units. In fact, business communities use the names of applications in
many contexts (e.g., procedure manuals, risk management, and so on). However,
quite often, they are not referring to any specific software components, but only to
their perception of them. Moreover, from the point of view of EC, if one observes the
phrase “to register a new employee, go to application X and choose menu Y. . . ”, in
a “Human Resource” procedure manual can we assume that there is an application,
even if with a name other than X? This is a problem because it hard-wires a given

278 11 A Method for Enterprise Cartography

software element to a set of functionalities and interfaces, removing a degree of
freedom from IT to choose the best implementation solutions.

For example, consider the case where the IT decides to provide access to
applications via an intranet portal, that just forwards the requests to the proper
application, forcing the business to revise documents and procedures. This kind of
decisions should not be made more difficult by naming conventions. The situation is
even worse if the application is named after the platform or software package used
to develop the application.

Furthermore, we cannot expect the business to stop referring to applications and
refer only to services and interfaces, as the most purists of Archimate advocate.
In fact, we claim that being able to represent an “Application Component” at the
business level without this representation bringing the inconveniences that we saw
earlier is fundamental for the independence between IT and the Business.

There are many more examples where it is fundamental to decouple decisions at
the functional level, from the decisions at the IT system level and also from the IT
operation level. The decoupling of such decisions starts with a taxonomy of concepts
that must be wide enough to classify a Microsoft Excel program and the Microsoft
Excel data file the users create and use, but also the large software packages and
software developed in-house.

The proposal for the clarification of the application concept is founded on the
different needs of the business, information system, and infrastructure perspectives.
The concept is desegregated into different ones, each addressing specific logic and
purposes:

• The business solution concept, in the business perspective
• The solution, application, component, and release concepts, in the information

system perspective
• The application release and system software concepts, in the infrastructure

perspective

In Fig. 11.3 we represent the concepts we considered fundamental for the
clarification and understanding of an information system, commonly modeled as
“application component” in ArchiMate.

In the business layer, the information system concept is represented by a single
concept, the business solution, which provides functions to the end users, the
participants of the business processes. The business solutions are also associated
with business actors and information entities.

As stated before, in ArchiMate there is no representation of software at the
business layer. While this might make perfect sense in engineering terms (of how it
works), we claim that having such a proxy for software at the business layer is a very
practical solution to concrete problems that actual organization has as discussed in
Sect. 11.2.4.1. The corresponding concepts in ArchiMate to the business solution
would be the application services and the application interfaces that are visible and
accessible to the business.

11.2 A Method for Concept Clarification 279

Fig. 11.3 The concept of “Application” that resulted from the proposed method for the clarifica-
tion of concepts

As presented in Fig. 11.3, we consider four concepts to cover the architectural
issues that information system engineers must deal in the construction of IT that
realizes the business solutions:

• Solution, which represents an aggregation of deployable elements of the solution
being constructed. It is the highest abstraction software artifact that implements
and provides the application functions available to the business.

• Application, which represents a single deployable element. A “program” would
be the most appropriate word, since it matches with the notion of a minimal unit
of deployment, execution and failure. However it would be hardly accepted in
most enterprises. An application can have a release that in turn can be deployed
and executed in some environment.

• Application Component, which represents the constructive elements of an appli-
cation. Application components cannot be deployed standalone. They are linked
together to form an application. So, an application is composed of application
components.

• Application release, which represents the executable manifestation of the appli-
cation.

In ArchiMate, an application release should be more properly modeled as an
artifact rather than as an application component. However, this option would lead
to the use of the artifact concept where people expect to see an application. The
reason is the fact that one can only observe running or deployed applications in
the organization and only a deployable application realizes services. In fact an
application component is hardly an observable element within an enterprise.

In Fig. 11.4 we present an example of the previous concepts. At the top, there
are three business solutions, the first two realized by a single solution and the third
one realized by both a solution and an application. HR and Security are classified

280 11 A Method for Enterprise Cartography

F
ig

.1
1.

4
A

n
in

st
an

ti
at

io
n

of
th

e
co

nc
ep

ts
pr

es
en

te
d

in
Fi

g.
11

.3

11.2 A Method for Concept Clarification 281

as a solution because they aggregate elements realized by releases. One expects this
classification to be done automatically (on-the-fly) by the tool when generating the
architectural views, since this scenario may evolve with time.

The application control access is part of two solutions, the security and the HR,
and has two application components, Module A and Module B. This means that
neither Module A or B are deployable and able to be executed on their own. They
are used to build an executable image of control access application. If one fails
the other also fails because they are executed as one. Finally, one can see three
application releases, the executable image of applications.

Next, we present the step by step execution of the method presented in Sect. 11.2.

11.2.4.1 Concepts at Business Layer

A business solution is a logical aggregation of functions provided by the IT. A
business solution has a business actor that governs and decides how the functions
will evolve, and thus decides the overall lifecycle from a business perspective. A
business solution also manages business information that we refer to as information
entities. The business solution concept does not express any constraint regarding
the IS perspective (construction) or infrastructure (operation), the reason being the
fact that there is an N to N mapping between business solutions and solutions. For
example, one may decide to discontinue a business solution but the IT may decide to
keep the solution up and running because it also supports other business solutions.

• Business Solution Lifecycle and Enumeration.
The proposed lifecycle for a business solution has four major stages: concep-

tion, development, production, and decommissioned.
The production stage can assume any sub-stage (investment, maintenance,

and deprecated) in any order. The investment expresses a phase when the
organization is investing in the business solution. The maintenance dictates
that the organization is maintaining the functional and operational level of
the business solution. The decommissioning expresses that the organization
is reducing the effort associated with the business solution and consequently
reducing the level of operation. As said before, the lifecycle of a business solution
does not determine the lifecycle of the underlying solution.

The lifecycle stages were considered as the basis for the establishment of the
enumeration of the concept, allowing the following different counts:

– Number of business solutions in conception
– Number of business solutions in development
– Number of business solutions in production

282 11 A Method for Enterprise Cartography

• Business Solution Related Concepts.
As implied in the model presented in Fig. 11.3, there are a few premises

inherent to the solution concept:

– A business solution has at least one association with a business process.
– A business solution provides at least a business function.
– A business solution has at least one association with an information entity.
– A business solution has someone that is responsible for its functionality.

• Business Solution Structure. A business solution is composed of sub-solutions.
The decomposition criterion is majorly influenced by functional complexity, even
though it may be reasonable to account for other influences such as security,
where one would group the business function by access level. A business solution
hierarchy is an instrument of structuring the business functions and of the way
the IT provides services to the business. We also identify the following premises
surrounding the business sub-solution notion:

– A business sub-solution is not subject to solution enumerations.
– A business sub-solution has the same lifecycle as the solution; however, it may

be in a different phase.
– A business sub-solution belongs to one and only one business solution.

A business sub-solution can be mapped to business processes, even though it
is counted individually when inquiring about the amount of solutions. From an
organic point of view, the solutions should be placed in a functional hierarchy.

• Business Solution Integration. From a business perspective we can consider the
possibility that two business solutions trade information between themselves and
are, by consequence, integrated. However, the integration of business solutions
did not come about as a useful constructor and was deemed irrelevant.

The advantages of considering the representation of software in the business layer
as a business solution concept are many, including:

• Business people can name an information system independently of how it is
named by the IT community. This seems an irrelevant argument, but it is in fact
a very relevant one, since it is a name that appears in many business documents
and activity description.

This means that when one finds a sentence as “... to register a new employee
one must open the menu X on application Y ...” the term “application Y” refers
to a business solution and not to a solution or application.

When the IT decides to rebuild the solutions and applications that support the
business solution designated as “application Y” by the business, one does not
need to update the many business documents where the term “application Y”
appears.

• Business people are able to manage solutions independently of how they are
supported by the underlying applications. For example, if different subsets of
functionalities of a given solution need to be managed differently, by different

11.2 A Method for Concept Clarification 283

persons, then the solution can be split into two solutions, each with its own
budget and responsible person. This decision is independent of how both subsets
of functionalities are supported at the information system level, whether under
the same application or if in different ones.

11.2.4.2 Concepts at Information System Layer

An application is an artifact in the information system perspective which imple-
ments and/or provides the business functions.

However, as presented in Fig. 11.3, the above concept needs to be further detailed
because it is too generic to match the complexity of the observed reality.

All business functions provided to the end user by business solutions are
provided by applications. For each business solution there is at least one solution
or application that provides the respective business functions. The functions can
be implemented by the application or solution itself, or by another application
with which the application is integrated with. Applications may be integrated with
other applications and with repositories through the application’s components. The
components are referenced in the structure view.

• Application Lifecycle and Enumeration. The application lifecycle is equal to the
business solution lifecycle. However, coherence rules between the stages and
phases of the concept’s lifecycles should be considered. Regarding enumeration,
the ways identified to count the applications are equal to the ones of the business
solution enumeration.

• Application-Related Concepts. We identified the following premises that are
inherent to the application concept (also applies to the solution concept):

– An application is executed on at least one platform.
– An application should have at least one associated solution. The association

can be direct or indirect through another application that provides business
functions implemented by the former. If the solution has sub-solutions, the
association is established by the sub-solutions.

– An application implements at least one business function.
– An application supports information persistence, either directly through an

internal repository or via integration with an external repository.
– Applications trade information between themselves and between external

repositories and thus are integrated with other application and repositories.
Each integration is a relationship between integrated entities and matches an
instance of the integration concept.

• Application Structure.
An application is composed of four types of components:

– Presentation components, which provide the business functions to the human
users. The detail of these components is typically determined by technology
issues. Consider, for example, an application that provides an interface view

284 11 A Method for Enterprise Cartography

through SMS and another via web. In this scenario one should consider two
presentation components.

– Core components implement the business functions. Thus, different com-
ponents are mostly justified by functional aspects, although technological
considerations may arise, for example, when components require different
execution environments.

– Connectors that are required to establish the integrations. These connectors
are represented whenever a specific parameterization is required for the
integration.

The integration concept expresses a dependency between two entities
and it is materialized in the information flows that those entities exchange.
Therefore, the integration does not just cover the active elements that establish
the communication but the flows through these elements. Various information
flows can be assigned to a single integration. Integration implies that a pair of
connectors exists. If there are different ways of communication between two
applications that require various pairs, for example, an information transfer
via web services and another via file transfer, then there are two integrations
between the entities. The sole existence of connectors between applications
does not imply the existence of integration because such would suggest
that there was information transfer between them. Take, for example, three
applications A, B and C, which have connectors to a certain communication
platform, but A only exchanges information with B, and B only has trades with
C. In this case there is no integration between applications A and C, because
there are no flows between them.

– Repositories are components that ensure the persistence of the information
managed by the application; they can relate to databases, system folders,
or any other way of persistence. An application can also access information
maintained in external repositories through the connectors.

From the standpoint of its structure a repository may be as complex
as an application, taking all kinds of components that an application may
have: presentation components, core components, connectors, and internal
repositories. A repository with a back office that allows visual access to
the database tables has a presentation component. Besides the business
information, a repository can also store information of database accesses,
logs, for example. Finally, the integration components allow integration of
various applications with different technologies and protocols. Therefore,
what characterizes a repository is not only its structure but the fact that its
main function is to store information.

Notice that a component hardly has only one of the previous four functions.
In fact most components have two or more of the functions. But this is not a
structure-based classification but rather a functional one. For example, a message
middleware component can have a database to store and replay message flows.
This does not make a message middleware a database. However, if for any reason,
one uses a message middleware fundamentally as a way to store and retrieve

11.2 A Method for Concept Clarification 285

data, much as in a database, then the message middleware component should be
classified as a persistent component, regardless of whether it was designed and
marketed as a communication component.

A final comment between the fundamental difference between a communica-
tion and a persistent components: in a persistent component one expects to be
able to select the order of retrieval of the information regardless of the order of
arrival to the database. One can write A and then B, and later read B and then A.
In a communication system the reading order is not independent of the writing
order.

• Application Integration. Application integration expresses how the application
components are integrated with the remaining applications and repositories.

A connector can support more than one integration, if its configuration is
common to those integrations. Nevertheless, a connector is associated with an
endpoint and therefore two connectors exist for each integration, one for each
integrated entity.

The advantages of this proposal of application concept are:

• IT staff can manage applications mostly driven by a constructive rationale,
since constructive elements are kept hidden from business areas and from the
functional aspects that drive them. For example, changing the applications or
platforms that support a given solution does not require changes in the way
business refers to it.

• IT staff knows that applications, integrations, and repositories have organization-
specific knowledge (code and data) that must be protected and maintained.
On the contrary, system software is off-the-shelf software. We claim that
acquired technology should always be modeled as system software, and not as
applications, regardless of the functions and services provided. The advantages
are many:

(i) The applications are unique entities (a singleton), as they instantiate the
company’s requirements, while the system software is always an acquired
replica.

(ii) Companies have to manage the knowledge of the construction and behavior
of the applications, because no one else can do it for them, whereas the
knowledge management of the system software is done by the manufacturer.

(iii) When companies need experts in some system software, they go to the
market, but when they need experts in their applications, they must do the
training themselves.

(iv) Companies have to make backups and protect their applications, but not the
system software.

(v) Normally the cost structure of the applications is associated with the effort
(of construction), whereas in system software it is associated with its use
and operation.

286 11 A Method for Enterprise Cartography

(vi) Regardless the existing dependencies, companies decide the life-cycle and
evolution of their applications, whereas they have no saying regarding the
life-cycle of system software.

For example, one employee spends hours developing formulas and feeding
data into an MS-Excel spreadsheet, the MS-Excel spreadsheet (.xls file) should
be modeled as an application (not as data), whereas the MS-Excel.exe should be
modeled as system software. Likewise, when effort is spent developing ABAP
scripts and configuration tables into the SAP business solution, the ABAP and the
configured tables should be modeled as an application whereas the SAP business
solution should be modeled as a system software.

11.2.4.2.1 Determining the Composition of an Application

As we have already mentioned, there are situations where it is not obvious to identify
the structural elements of an application. It should be noted that by elements of
an application we are not just talking about instances of the concept “application
components”. In fact, even in ArchiMate, interfaces are also structural elements of
an application. By structural elements of an application we understand all the parts
that make the whole of the application.

When we have to decide whether or not a certain artifact is part of an application,
many of us are often influenced both by the technology it uses to interact with the
remaining artifacts of the application as well as by the different execution contexts
of each artifact.

Consider the example of an ABAP script that executes in SAP (running on
Windows Server) and returns some data to a CRM application (or solution when
considering the concepts of Fig. 11.3) that runs in linux in a remote node. The CRM
application calls ABAP script via some REST services API. In this case, the ABAP
script has a specific execution environment and is structurally decoupled from the
CRM application.

In this scenario, most architects would consider the ABAP script as an element
of the SAP application that serves the CRM application. However, this may not be
the best decision.

In what conditions can the ABAP script be considered an element of the CRM
application, rather than an element of the SAP application? Consider the scenario
where ABAP script and REST service:

• were developed and are maintained by the same project/team that has developed
and maintains the CRM application.

• behave as defined by the manager responsible for the CRM application
• serve no other purpose than serving the CRM application.

In this case, it is clear that the purpose and sole benefits of the ABAP script is to
enable the execution of the CRM application. If the SAP is discarded, a replacement

11.2 A Method for Concept Clarification 287

of the SCRIPT must be provided. Should the CRM application be discarded, the
SCRIPT should also be discarded.

Rather than claiming that in the above scenario the ABAP SCRIPT and the
REST service must be considered as structural elements of the CRM solution, we
claim that companies must establish the criteria that allows one to decide when
collaborating elements are parts of the same application or not, being just an
integration between distinctive applications. A simple rule of thumb is:

A is an element of B if its sole purpose is to serve B, and therefore it can be
discarded whenever B is discarded.

We claim the benefits of such a criteria overcomes its drawbacks, since structure
is aligned with purposefulness. The drawback is that architectural structure must be
computed and is no longer static.2

11.2.4.3 Concepts at the Infrastructure Layer

With regard to the concept of application as perceived by the infrastructure, we
consider it to be data and code that execute in one or a set of system software, which
we call platform.

A platform is an execution environment of applications and that may include
different forms of technologies. One can consider various types of platforms; such
classification is influenced by the type/function of applications that are executed
on each platform. For example, integration platforms support the execution of
connectors by which applications and repositories support their integrations.

Quite often, it corresponds to technology or a system software in ArchiMate
parlance. Thus, we use the following platform concepts:

• Platform lifecycle and enumeration. The platform lifecycle is equal to the
solution and application lifecycles. However, coherence rules between the
stages and phases of the concept’s lifecycles should be considered. Regarding
enumeration, the ways identified to count the platforms are equal to the ones of
the applications.

• Platform-Related Concepts. In terms of relationships with other identified con-
cepts, a platform has the following premises:

– The execution of a platform may be supported by another platform.
– A platform supports the execution of at least one application, whether it

belongs to an application or a repository. Such support can be direct or
indirect. The latter implies that the platform supports the execution of another
platform that supports the execution of one or more applications.

– A platform aggregates at least one technology.

2 In the Atlas tool by www.linkconsulting.com this computation is performed on-the-fly not only
when an architectural view is displayed, but also when the time bar moves back and forward in
time.

www.linkconsulting.com

288 11 A Method for Enterprise Cartography

• Platform Structure. As stated before, from the standpoint of its structure, a
platform may be as complex as an application, taking all kinds of components
that an application may have: presentation components, core components, con-
nectors, and internal repositories. Therefore, it is possible to consider that the
structure view of the platform structure is identical to the application structure.
However, that approach was not perceived to be the most useful to IT from
the infrastructure perspective. A preferable way to express the structure of a
platform is in terms of the technologies and modules it encompasses. The notion
of technologies included in a platform concerned with the ability to support
the operation of such technology, for example, operating systems, programing
languages, communication protocols, etc. The notion of a module of a platform
is more of a functional and licensing-related concept than a technological one.

• Platform Integration. As in the solution concept, the notion of platform integra-
tion was not considered useful at this level, and therefore no view is defined.

11.3 Exercises

This section presents enterprise cartography exercises.

Exercise 11.1

A credit bureau company (hereafter designated by SeaExp) provides digital services
for their customers, with several information about companies, people, and general
financial information. Acting as a general business information provider, they are
mostly dependent on how they can gather and process information from their
partners to process and correlate. With a strong transformation strategic plan,
SeaExp needed tools to monitor the progress of its strategic roadmap.

SeaExp had a strategic plan for the entire IT that is embodied in roadmaps for the
key business and technologic units of the company. These roadmaps set the targets
to achieve for each area over the next 5 years. These targets are defined regarding
their maturity level measured on a five-level scale. At the end of each year, each area
submits a plan with the initiatives proposed for the coming year. If approved, these
initiatives become real projects. Then, 1 year after, each area evaluates the progress
achieved and updates the roadmap accordingly.

Roadmaps were manually maintained in many Microsoft Excel sheets, requiring
a significant effort to update the roadmaps according to the results of the projects.

Your task is to design, plan, and implement an instrument that enables the
integrated management of architectural views, project results, and the roadmap
progress. More specifically, this tool should allow SeaExp to:

• Have an integrated and up-to-date view of the AS-IS of business and IT
architecture, by consolidation of information from different sources

• Have a view of the emerging AS-IS state of the business and IT architecture based
on the foreseen results of ongoing and planned projects

11.3 Exercises 289

• Have the ability to identify the progress of each roadmap updated according to
the projects’ progression

The immediate result of the project should be to provide to the various areas
of IT consolidated and updated views of the architecture of SeaExp: consolidated,
because it results from the information provided from different areas, and updated,
because it results from information sources maintained by the various areas with
transparent processes in an automated manner.

Since each group shared its information with other areas, the project entails
a substantial transformation in the enterprise, as it homogenized languages and
tools. In this regard, the KB meta-model is a valuable asset because it identifies
the concepts familiar to the various areas.

Following the project approach presented in this chapter, the different areas had
identified 82 relevant questions, leading to a meta-model with 32 concepts. Each
of the areas provided the information to be loaded in the knowledge base (KB),
both regarding the roadmaps and the reality of the enterprise at different levels:
processes, skills, application, and technologies. The architectural maps were defined
in sessions with each of the areas.

Among the 82 relevant questions, we state a few:

• What are the current technological platforms and how will they evolve over time?
• What are the applications affected by each technological platform?
• What are the IT technological drivers?
• What technologies affect the SeaExp operations in the next years?
• What is the role of each department in the development of IT?

Given the above context, answer the following questions:

1. Considering the relevant questions stated above, what are the key concepts that
need to be clarified?

2. How are they related with ArchiMate 3.0 concepts?
3. Could you suggest possible sources of information for each concept, both for

AS-IS and TO-BE?

Exercise 11.2

The IT department of an organization (here in referred as GlobalIT) provides IT
services and support to several national defense organizations. GlobalIT adopted
ITIL [10] processes to improve the quality of its support services. Although the
processes were defined, there was still much to improve in the description of
information and concepts among the different teams involved in the execution of
these operations.

Each technical area managed information relating to their respective functions
and technical competencies. This information was not integrated or even shared,
as each technical area had its own database with related information. One example
was the lack of a coherent service catalog, since each technical service area had

290 11 A Method for Enterprise Cartography

identified their services at different levels of granularity and fails to integrate them
into a single one.

The purpose of the project is to provide the GlobalIT with a KB that is common
to the various technical teams, homogenizing terms and concepts and ensuring the
coherence of information used in the execution of ITIL processes. To structure the
information sources, GlobalIT had to clarify the semantics of each concept and their
relationships. They identified the information sources from each technical area in the
meta-model. From the identified information, GlobalIT developed the architectural
layers: infrastructure architecture involving the servers and networking views, data
architecture with databases and instances, and application architecture.

Given the above context, answer the following questions:

1. What are the key concepts that should be in the GlobalIT meta-model?
2. How are these concepts related with ArchiMate 3.0 concepts?

Exercise 11.3

The client referred in this case study is a retail bank that operates in the Iberian
Peninsula and serves almost two million customers (individuals, companies, and
institutions) through its multi-channel distribution network comprising around 650
retail branches.

The bank already had an EA portal on their intranet to support the registration of
information regarding application and technology architectures. The intranet portal
included a large number of features such as a wiki, with a considerable amount of
articles that described the processes and system architecture and which established
an entry point for all documentation deemed more technical.

With this project, the bank was addressing several challenges. The first one was
to develop the bank’s EA practice, by improving the EA intranet portal to support
the communication and awareness of the architecture between all stakeholders, from
infrastructure teams to business areas.

The second challenge was the need to effortlessly maintain architectural repre-
sentations. The bank had an experience in EA, since it went through the process of
using a modeling tool to produce representations and models of its IT architecture.
The approach followed was based on a central repository holding all models, each
designed manually with an EA tool. This approach required a substantial effort to
keep them up to date, in particular if one considers the consolidation of the models
produced in different projects into a single and enterprise-wide view of the IT
landscape. So, the maintenance effort to keep the EA representations was a key
concern of this project. and the bank stated that “if an architectural view cannot be
generated automatically with up-to-date information, then it cannot be presented in
the EA portal.” The third challenge was the need to keep audience’s learning curve
regarding the usage of the architecture intranet portal as lean as possible. The fourth
challenge was the integration of the SOA initiative in the enterprise architecture
initiative.

References 291

The project aimed at the implementation and deployment of an EA solution
fully integrated into the existing intranet, so that all back-office housekeeping
activities could be done in a seamless manner on the bank’s intranet. The bank
also wanted to address other architectures in domains they considered relevant,
even though they did not have much information to start with, namely, business,
information, user experience, and normative architectures. Both information and
business architectures were domains that the bank planned to address in this project,
starting with the definition in the meta-model, where the level of detail needed and
how the relations with the remaining architectures are established became clear.

The user experience architecture concerns with the definition of patterns to
allow the same concept (client, address, account, and so on) to appear to the user
with the same paradigms, regardless of the interface and application where such
experience occurs. Finally, the normative architecture structures all information
regarding architectural principles, rules, best practices, and technical articles among
other information. Articles represent a real knowledge base, and a wiki platform
allows live interaction with end users.

The architecture views were generated on the fly and embedded in a seamless
manner with the bank’s intranet portal. Architectural views are the entry point
to access any IT documentation, and knowledge kept in wikis. The information
necessary to generate the architectural maps had to be harvested from various
sources, such as Microsoft SharePoint3 and Oracle Enterprise Repository,4 among
others.

This approach enables not only the role of the architecture views in understanding
the complexities of the business and the IT underneath, but also a better and more
efficient collaboration between the different stakeholders. This is expected to have
a positive feedback on the use of the EA Internet portal as a cooperation and
communication platform and in people communication and collaboration.

Given the above context, answer the following questions:

1. Explain your approach to ensure reduced maintenance effort to keep the EA
representations up to date.

2. How do you propose to ensure that the EC repository supports architectures in
domains that the bank does not have yet much information? How do you propose
to define the concepts of meta-model for these unknown domains?

References

1. The Open Group, Togaf version 9.1 (2011)
2. G. Wachsmuth, Metamodel adaptation and model co-adaptation, in The European Conference

on Object-Oriented Programming, vol. 4609 (ECOOP, 2007), pp. 600–624

3 https://www.microsoft.com/pt-pt/microsoft-365/sharepoint/.
4 https://www.oracle.com/middleware/technologies/enterprise-repository.html.

https://www.microsoft.com/pt-pt/microsoft-365/sharepoint/
https://www.oracle.com/middleware/technologies/enterprise-repository.html

292 11 A Method for Enterprise Cartography

3. A. Cicchetti, D. Di Ruscio, R. Eramo, A. Pierantonio, Automating co-evolution in model-
driven engineering, in Proceedings of the 12th IEEE International Enterprise Distributed
Object Computing Conference (IEEE Computer Society, Washington, 2008), pp. 222–231

4. N. Silva, F. Ferreira, P. Sousa, M. Mira Da Silva, Automating the migration of enterprise
architecture models. Int. J. Inf. Syst. Model. Design (IJISMD), 7(2), 72–90 (2016). https://
doi.org/10.4018/IJISMD.2016040104

5. N. Silva, M. Mira Da Silva, P. Sousa, A tool for supporting the co-evolution of enterprise
architecture meta-models and models, in 27th International Conference on Information
Systems Development, Lund (2018)

6. N. Silva, P. Sousa, M. Mira Da Silva, Co-evoc: an enterprise architecture model co-evolution
operations catalog, in 24th Americas Conference on Information Systems, New Orleans (2018)

7. The Open Group, ArchiMate® 2.1 Specification (Van Haren Publishing, Zaltbommel, 2015)
8. P. Sousa, A. Rito, J. Alves Marques, Object identifiers and identity: a naming issue, in IEEE

Proceedings of the 4th International Workshop on Object Orientation in Operating Systems,
Lund (1995)

9. The Open Group, Archimate 3.0.1 specification 2017 (2017)
10. K. Tambralli, Configuration management database (CMDB) (2021)

https://doi.org/10.4018/IJISMD.2016040104
https://doi.org/10.4018/IJISMD.2016040104

Part IV
Practice: Sample Projects

Chapter 12
Enterprise Architecture Case Projects

André Vasconcelos and Pedro Sousa

Abstract This chapter presents three case studies where enterprise architecture
(EA) approaches and design principles are applied. The case studies described are
based on real-world projects and challenges. However, some data and information
may have been changed for academic, scientific, or confidentiality reasons. For
each case study the current business, information, application, and technology
architectures are described; afterward several challenges are raised. The goal is to
apply the EA and EC techniques introduced in the previous chapters to support the
discussion and the decision making regarding the challenges presented. The first
case study refers to the EA of the Urban Hygiene Unit of the Lisbon City Hall. The
second case study addresses Técnico Lisboa faculty EA. Finally, the third EA case
study deals with the public procurement process.

12.1 Case 1: Lisbon Smart City Enterprise Architecture1

The Municipal Unit of Urban Hygiene of Lisbon hired you to propose an enterprise
architecture to transform Lisbon into a smart city. You will start by characterizing
the current (AS-IS) enterprise architecture (EA) in order to set a common ground
for defining the future path (TO-BE).

12.1.1 Introduction

The Municipal Unit of Urban Hygiene (Direção Municipal de Higiene Urbana,
in Portuguese, DMHU) of the Lisbon City Council (CM-Lisboa) identified in its
operation a set of opportunities that justify the definition of a strategic information
systems plan, which should identify the current situation (scenario AS-IS) and

1 Developed with the contribution of Professor Alberto Silva, Professor Joao Matos, and Lisbon
City Hall (DMHU).

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
P. Sousa, A. Vasconcelos, Enterprise Architecture and Cartography,
The Enterprise Engineering Series, https://doi.org/10.1007/978-3-030-96264-7_12

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-96264-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-96264-7_12

296 12 Enterprise Architecture Case Projects

also propose improvements to be implemented in the medium term (TO-BE). The
limitations provide an opportunity to review the entire circuit management system,
as well as to point out measures at the level of the deposition systems, removal
fleet, human resources, and management tools, namely, procedures, databases, and
IT support infrastructures.

DMHU has a strong relationship with the areas of Human Resources and
Finance of the City Council regarding HR (including the recruitment of prospective
employees) and financial processes. The contractors and service suppliers and
the Parish Councils assist DMHU in the pursuit of its mission, namely, when
reporting events and requesting information from the Municipality. Reporting to
the regulatory authority is also supported, and cooperation with external entities is
developed.

12.1.2 Strategy

The strategy for the Urban Hygiene Unit is part of the Lisbon City Council strategy
defined in [1].

The goals and results of DMHU in 2015 are described in the document [2].

12.1.3 Organization

DMHU is divided into two departments supported by seven structures. The Depart-
ment of Urban Hygiene is, in turn, realized by four support centers and one division.
The Repair and Maintenance Department consists of two divisions and a shared
structure (Fig. 12.1).

The services provided by DMHU to the outside are structured around six
topics:

• Urban hygiene
• Urban cleaning
• Urban hygiene projects
• Transport
• Environmental awareness
• Management of garages and repair shop

Please see document [3] for further details.

12.1 Case 1: Lisbon Smart City Enterprise Architecture 297

Fig. 12.1 DMHU structure

12.1.4 Business Processes

DMHU’s core business is accomplished by five top business processes. Processes
with external impact to the Municipality are Waste Collection Management and
Relationship Management with the Citizen. HR Management and Warehouse
Management are processes internal to DMHU. Fleet Management is another process
with interaction with stakeholders external to DMHU (other municipal organic
units).

The Waste Management process is structured into four subprocesses: i) planning
and management of circuits, ii) management of deposition equipment and container
sites, iii) execution of circuit collection, and iv) data registration and conference.

HR Management is developed through six level 1 processes. i) The Registration
Management process ensures the creation and management of data of DMHU
employees. ii) The HR incident management process includes the absences, atten-
dance, overtime, and consequent payments to employees. iii) The Uniform Manage-
ment, and Safety and Hygiene at Work process ensures uniform management and
safety. iv) The Training Management ensures the definition of training programs
and its management. v) The Vacation Management computes the vacations of

298 12 Enterprise Architecture Case Projects

each employee and updates the vacation information. Finally, vi) the performance
management ensures the assessment of the employees’ performance.

The Citizen Relationship Management process consists of three subprocesses.
The process of interaction with Occurrence, Order, and Intervention Management
(GOPI) ensures the creation of occurrences and requests for intervention at DMHU,
as well as the passing of information between the GOPI and the application “Na
Minha Rua Lx” (“In my street Lisbon”). The level 1 process that ensures the
assessment of the citizen’s requests includes the analysis of the request, requests for
pests and pigeons, deposition equipment, events, requests for collection, inspection,
complaints and suggestions, other types of requests, and also the management,
parametrization, and monitoring.

12.1.5 Information

DMHU defines circuits for collecting garbage in Selective Collection Points (PRS).
On the other hand, there are work orders, which address assistance requests (which
add one or more occurrences of citizens), assigned to employees and inquiry sheets
that list equipment (such as machines and vehicles). DMHU employees may also
make requests to the warehouse for additional stocks (movable inventory assets).

Occurrences (complaints or suggestions) may have an associated response (and
service response, internal to the DMHU), and are created by the citizens. Work
orders, which may be the result of requests for assistance, have associated occur-
rences. Work orders aggregate operations (internal or external) and are assigned to
employees.

Regarding Human Resources, the DMHU employee information is composed of
his or her attendance information, accidents at work, overtime, incidents, medical
aptitude record, and performance evaluation. The employee also attends training
actions (integrated into the training course that forms the training plan). Uniforms
are also given to the workers (including personal protective equipment). The circuits
and work orders are assigned to employees.

Selective Collection Point (SCP, or PRS, in Portuguese) is also an impor-
tant information, specialized in eight types (selective door-to-door, non-selective
door-to-door, container fixing support, underground compactors, surface ecopoint,
underground ecoisland, surface ecopoint, and door-to door SCP entity). It has a
container location and deposition equipment. The circuits add several Selective
Collection Points, freights, support areas, and unloading locations.

Regarding uniform management, the uniforms are given to employees, along
with personal protective equipment. The equipment (which is subject to peri-
odic inspection) can also be machines and vehicles (from which movements are
recorded). Machines and vehicles can be assigned to garages. The machines are
further classified into small and large machines (such as compactor and auto-
compactor). On the other hand, the warehouse holds stocks (which are movable
goods and inventory), which employees can request.

12.1 Case 1: Lisbon Smart City Enterprise Architecture 299

12.1.6 Current Applications

DMHU has used numerous computer applications over the years. Several of these
applications have been developed and maintained internally by its support services
(referred to as Internal Applications), while others are provided and maintained by
third parties or by the central IT Department of the Lisbon City Council.

The main applications that support the DMHU processes are next described.

12.1.6.1 Relationship Management with the Citizen

The following applications are used to support and manage the relationship between
the Lisbon City Council and the outside:

• Na Minha Rua Lx (Application_Web, CML-DSI Development). The events
portal of the Lisbon City Council (CM-Lisboa), available at https://naminharualx.
cm-lisboa.pt/, where a citizen reports problems in public spaces about municipal
equipment and urban hygiene that require the intervention of CM-Lisboa or the
Parish Councils

• LxRequests (Application_Desktop, Internal Development). Control of requests,
complaints, compliments, and requests for information; complaint management
in complaint book; interconnection with LU in handling containers by request;
interconnection with urban cleaning application (LU) in handling PRS; manage-
ment of joint surveys; timing and management of specific collections (monsters,
greens, debris, and paper); management to support events; management of
participation for administrative offenses; record of pest and pigeon control
activity

12.1.6.2 Human Resource Management

Support applications for internal HR management at DMHU:

• RH2011 (Human Resources at DMHU) (Application_Desktop, Internal Devel-
opment). It allows the administrative management of Human Resources with the
following functions: employee registration, automation of the creation of evalu-
ation files, postings of daily occurrences (vacations, absences, leave, and work),
vacation management; provision of overtime work, elaboration of payment maps,
training management, uniform management and EPIS, and social balance.

• RelgioPonto (Application_Desktop, Actuasys Development). Attendance control
based on time clock system.

• SST (Workplace Safety System) (Application_Desktop, Internal Development).
It includes the entire area of preventive medicine (occupational medicine con-
sultations and issuance of aptitude sheets), professional diseases, accidents,
treatments, costs, appointments, calls, etc. Notice that the Medicine at Work

https://naminharualx.cm-lisboa.pt/
https://naminharualx.cm-lisboa.pt/

300 12 Enterprise Architecture Case Projects

component will be assumed by a new application that is in the acquisition
phase; the Workplace Accident Management Component is being migrated to
an application developed on Oracle.

12.1.6.3 Urban Cleaning Management

The applications that support the circuit management and urban cleaning manage-
ment are:

• LU (Urban Clean) (Application_Desktop, Internal Development). Allows Urban
Collection Management with the following functions: (i) management of tasks
and circuits, (ii) collection point management (PRS), (iii) management of request
locations and bag addresses, (iv) producer management, (v) management of
container handling, (vi) management of bag delivery, (vii) management of the
placement and maintenance of paper bins, (viii) parameterization of vehicles
assigned to DHU, (ix) management of mechanical equipment, (x) management
of the scales, and (xi) management of freight, weights, transported waste, etc.

The LU application provides a set of interfaces (using views from the AMOS
database), which allow it to be used by third-party applications (maintained by
the CM-Lisbon IT), namely, through the Open Data platform of Lisbon. These
interfaces provide the following information: collective collection points, com-
munity composters, domestic composters, paper receiving centers, ecoislands,
underground ecoislands, ecopoints, collection of used food oils, billions, WEEE
collection, container fixing support, and glass recycling container.

• Scale (Scale in Operations Management) (Application_Desktop, Internal Devel-
opment). Application responsible for managing the Service Scales. Its main
functionalities are related to the planning of circuits and the allocation of
human resources to these circuits. The assignment of employees to their tasks
is automatic as long as they are assigned to a circuit and the employee presence
is recorded in the biometric system. Subsequently, HTML files are generated that
are projected on the televisions of the Operation Center (COR).

• LU_SIG (LU GIS Toolbar) (Application_Desktop, Internal Development). Plu-
gin developed for ArcGIS originally by ESRI, which allows the management of
circuits under maps in ArcGIS and interacts directly with circuit management
(LU). It was migrated internally from VBA to VB.NET to work on ArcGIS 10.

• Bee2Waste (Dynamic Circuits) (Application_Web, Compta Development). This
application is used to plan, optimize, execute, and monitor the usage, mainte-
nance, and other activities of the assets. This application is used to plan dynamic
circuits based on the equipment’s level of filling.

• Pigeons (Pigeon Management) (Application_Mobile, Internal Development). It
allows to register and manage the habits and catches of pigeons.

• Paper Bins (Paper Bins Management) (Application_Mobile, Internal Develop-
ment). It allows the registration in the field of the movements and maintenance
of the paper bins.

12.1 Case 1: Lisbon Smart City Enterprise Architecture 301

12.1.6.4 Fleet Management

Applications that support fleet and vehicle management:

• GIF (Integrated Fleet Management) (Application_Desktop, Quidgest Develop-
ment). GIF is an asset management application, assets being understood as
everything that needs to be managed within an organization including fixed
assets, movable assets, vehicles, etc., which is particularly relevant, in this case,
for the management of municipal vehicles. This application is used to plan,
optimize, execute, and monitor the use, maintenance, and other activities of the
managed assets, covering the date of their acquisition, operation, maintenance,
and disposal, that is, the entire lifecycle of the asset. It involves the components
of asset management (mobile and real estate), fleet management, maintenance
management, claims management, and stock and supply management. GIF
provides an interface (GIF database link) that allows to consult about vehicle
availability, vehicle data that are in the workshop, data related to work orders,
and vehicle registration data.

• Municipal Fleet (Application_Desktop, Internal Development). It allows to
consult requests made in GIF in a more intelligible and aggregated way.

• Cartrack (Cartrack—GPS System) (Application_Web, Cartrack Development).
Vehicle geolocation system. Cartrack provides the Cartrack API interface.

12.1.6.5 Equipment, Uniforms, and Consumables Management

The applications that support equipment management, uniforms, and consumables
are:

• Stocks (Stock Management) (Application_Desktop, Internal Development).
Management of material requisitions and uniforms. It only contemplates the
mechanism for issuing requisitions and delivery notes in order to highlight
equipment deliveries. Contrary to what its name suggests, it does not perform
stock management. It also allows to control the duration periods of the different
uniforms as the forecast of future consumption.

• SAP_SRM (SAP Supplier Relationship Management) (Application_Web, SAP
Development). Management of consumable orders to CML Central Warehouse.

12.1.6.6 Other Applications

Other applications that support the actions carried out by the DMHU are:

• Projects (Management of Awareness Actions) (Application_Desktop, Internal
Development). Registration of awareness-raising activity, namely, in terms of
recording interactions with partners and in accounting for the public present in
the actions.

302 12 Enterprise Architecture Case Projects

• ProcIndemin (Administrative Processes, Management of Insurance Processes)
(Application_Desktop, Internal Development). Monitoring of administrative pro-
ceedings (i.e., requests for compensation), namely, in terms of controlling legal
deadlines.

• POIs (Points of Interest Management) (Application_Desktop, Internal Develop-
ment). It allows the creation and characterization of places of interest. It has been
used intermittently to register places of interest to keep them under surveillance.
It allows assigning coordinates and other characteristics to points; in addition to
having a structured register, it allows to create configurable maps.

• GML (External Inspection) (Application_Desktop, Internal Development). It
allows the registration of joint inspection actions with the Municipal Police (PM),
Hospital Waste, and Photographic Archive of the Inspection Action.

• Vehicle (Vehicle Park Management) (Application_Desktop, Internal Develop-
ment). Management of the CML car park: When vehicles are collected by the
Municipal Police (PM), they are parked in facilities located in Vale do Forno.
Through this application, DMHU can track the movements that the vehicle
makes in the park and record information relevant to the process of destroying or
returning the vehicle.

• SF-PM (PM Inspection Services) (Application_Mobile, Internal Development).
Update information on previously loaded requests; collect evidence for transgres-
sion; register joint inspection activity with the PM; register inspection actions by
hospital producers.

• TNC (Treatment of Non-Conformities (Quality)) (Application_Desktop,
Internal Development). Treatment of non-conformities within the scope of
the quality management process supporting the monitoring of the result of
audits.

• GESCOR (Correspondence Management) (Application_Web, GFI Develop-
ment). It allows the registration of incoming files, enabling the tracking of
processes within the organization. It also allows the production of documents
that support the processes.

• SAPFINANCAS (SAP-Finanças) (Application_Desktop, SAP Development).
Financial Management Program used by CML.

• GIC (Integrated Management of Offenses) (Application_Web, SYSNO-
VARE Development). Application of integrated management of offense
processes.

Other applications (developed internally at DMHU) used by other entities:

• GestPet (Animal Management) (Application_Desktop, Internal Development).
Management of the Lisbon house of animals (entrances and exits of animals).
Note: It is exclusively used by the Green Spaces Management Business Unit.

12.1 Case 1: Lisbon Smart City Enterprise Architecture 303

12.1.6.7 Transverse Support Applications

Support applications that are of transversal internal use:

• GestSis (Application Management and DMHU Systems) (Application_Desktop,
Internal Development). The DMHU’s application and system management sys-
tem, including the management of apps, users, and access.

• MeiosRec (Means and Resources Management) (Application_Desktop, Inter-
nal Development). Management of entities, employees, and contacts (internal
and external). A collaborator can only exist in a system associated with an
entity.

• Documents (Application_Desktop, Internal Development). Document
management—production and monitoring of document circuit at the
DMHU.

• CCustos (Cost Center) (Application_Desktop, Internal Development). It allows
the management of cost centers.

• SendMessages (Sending messages via Email and SMS) (Application_Server,
Internal Development). Application components that support the remaining
internal applications for sending email messages (SendMail interface) and SMS
(smsdb interface).

12.1.7 Current Infrastructure

12.1.7.1 Technological Infrastructure

The technological infrastructure that supports the applications is made of a set of
physical machines (hardware), virtual machines, and other servers (e.g., operating
systems, database servers). In general, internal applications, as mentioned above,
are desktop applications installed in desktop machines or laptops with Windows
operating system. There are also some mobile applications installed in smartphones
with Android operating system. The machines/servers are maintained by the central
information system department (DSI) of the Lisbon City Council (CM-Lisbon).

12.1.7.2 Support Artifacts

The internal applications consist of (i) desktop applications for Windows, developed
on the Microsoft Windows Forms environment and (ii) mobile applications for
Android developed on these technologies, and with common access to the AMOS
database. In addition, the following frameworks and software libraries are used in
the development of desktop applications:

304 12 Enterprise Architecture Case Projects

• Framework internal to DMHU (DHURS—Framework.dll, internal). Application
library with most of the objects used in the construction of applications; this
library simplifies the maintenance of objects used across applications.

• Microsoft App Interop (ADODB.dll, Interop.ADODB.dll, Interop.ADOX.dll;
Microsoft). Framework that supports data transfer between applications.

• MapWindows GIS OpenSource (AxInterop.MapWinGIS.dll, Interop.MapWin
GIS.dll; https://www.mapwindow.org/). Framework for viewing georeferenced
data.

• Microsoft Office Interop (Interop.Excel.dll, Interop.Word.dll, Interop.Office.dll,
Interop. Microsoft.Office.Core.dll, Microsoft.Vbe.Interop.dll, Office.dll;
Microsoft). Framework that supports the management, reading, and writing
of office files.

• Oracle Instant Client (stdole.dll, oci.dll, ocijdbc11.dll, ociw32.dll, Ora-
cle.DataAccess.dll, oran-nzsbb11.dll, oraocci11.dll, oraociei11.dll, orasql11.dll,
ojdbc5.jar, ojdbc6.jar; Oracle). Framework installed on desktop clients to access
Oracle databases.

• iTextSharp (itextsharp.dll; Opensource https://github.com/itext/itextsharp).
Opensource library for interacting with PDF files.

• NetSpell—spell checker for .NET (NetSpell.SpellChecker.dll; Opensource www.
codeproject.com). Library with spell checker.

12.1.8 Project Goals

DMHU Director has just hired your enterprise architecture services. He requested
that you recommend him the enterprise architecture that DMHU should implement
in the next 5 years; in order to do that, you need answers to the following questions:

1. Context

a. What is the context of DMHU? Who are DMHU stakeholders and what
concerns do they have?

b. Which business units are involved in managing the flows between DMHU
and its context?

2. Products and Services

a. Which products and services are provided by DMHU? To which stakehold-
ers?

3. Big Picture

a. What is DMHU’s big picture?

4. Strategy (Means and Ends)

a. What are the drivers, goals, principles, and requirements for DMHU?

https://www.mapwindow.org/
https://github.com/itext/itextsharp
www.codeproject.com
www.codeproject.com

12.1 Case 1: Lisbon Smart City Enterprise Architecture 305

b. Are there any goals, principles, or requirements that are contradictory among
themselves?

c. Are there any goals, principles, or requirements that are misaligned or not
considered in the remaining enterprise architecture?

d. What are the gaps among the DMHU drivers and goals of 2015 activity plan
and the results achieved?

5. Organization Structure

a. What is the organization structure (and roles) of DMHU?

6. Business Process

a. What are the core DMHU processes (Levels 0, 1, 2)?

i. Inputs/outputs: Information entities
ii. Roles/actors

iii. For the Waste Collection Management process (AS-IS), it is requested
that you describe and characterize using ArchiMate (present your
assumptions for describing this process), including:

A. The flow
B. The inputs and outputs
C. The critical points
D. The break points

7. Information Entities

a. What information entities support the business processes?

i. Major attributes
ii. (Business) Identifier

iii. Inmon classification for the attributes

b. What are the structural relations among the information entities?
c. In which business processes are the information entities created, updated,

read, or deleted?

8. Application Architecture

a. AS-IS

i. What are the current applications that support DMHU processes?
ii. What processes and information does each application support?

iii. What approach do you recommend to classify each application as keep,
discontinue, and don’t know? Explain in detail your approach.

b. TO-BE

i. Ideally, what applications should be available at DMHU considering
its business processes and information management (just considering
the AS-IS business processes and information)? Or stated differently,

306 12 Enterprise Architecture Case Projects

if DMHU had no applications whatsoever, what applications would you
recommend to support the current business and information?

ii. Considering the ideal application landscape computed above, review your
answer to 8.a.iii, and propose a roadmap for each application. Typical
roadmap guidelines are maintain, discard, replace, consolidate (with
another), improve functionalities, or upgrade technology.

iii. Do you recommend the usage of any application patterns?
iv. What application architecture do you recommend? Model the proposed

application architecture, including the application functions and services
provided or consumed by the business and by other applications.

v. Besides the application structure, present the application usage, the
application cooperation, and the application behavior viewpoints.

9. IT Architecture

a. What are the different technological options for implementing the applica-
tions?

b. Do you recommend any existing software package? Which are available?
How do you compare them?

c. Do you recommend a custom development for all the applications? Or an
off-the-shelf software package? Explain your analysis.

d. What is the processing infrastructure that you recommend? What about
storage? And communication?

e. What is your recommendation for the IT architecture?
f. What are the dependencies between the IT infrastructure and the applica-

tions? Where does each application will run?
g. How did you implement each guideline or pattern in the EA of DMHU? Do

you recommend considering some other guidelines?

10. Roadmap

a. What project roadmap do you recommend? Which solutions/applications
should be implemented first? Where would you start?

b. Considering existing applications (AS-IS), propose a global roadmap for the
change.

The report should answer the questions above using views in ArchiMate, BPMN,
UML, matrix, graphs, and supporting text. This will involve choosing the most
appropriate viewpoint to support your answers.

12.2 Case 2: Instituto Superior Técnico Enterprise
Architecture

You have been hired to propose a new enterprise architecture for Instituto Superior
Técnico (IST) faculty.

12.2 Case 2: Instituto Superior Técnico Enterprise Architecture 307

12.2.1 Introduction

Instituto Superior Técnico aims to contribute to the development of the society,
promoting and sharing excellence in higher education in the fields of architecture,
engineering, and science and technology. Técnico offers bachelor, master, and PhD
programs and lifelong training and develops research, development, and innovation
(RD&I) activities, which are essential to provide an education based on the top
international standards—see Fig. 12.2.

Técnico is part of Lisbon University, the largest and the most competitive
university in Portugal, and is recognized as a prestigious school at national
and international level, namely, in the fields of engineering and science and
technology. It comprises Portugalś most prestigious laboratories and RD&I cen-
ters.

Técnico offers a wide variety of courses to study, both at the undergraduate
and graduate levels, and it is actively involved in several international mobility
programs. IST has significantly contributed to creating cutting-edge science and
technology, which is the main goal of the school.

12.2.2 Location

Técnico operation is located in three campuses: Alameda, Taguspark, and Tec-
nológico e Nuclear—see Fig. 12.3.

12.2.3 Organization

Técnico is managed through:2

• School bodies
• Other bodies
• Academic units
• Cross-cutting platforms
• Research units of IST
• IST associated research units
• Specialized units
• Administrative and technical support services

2 Técnico organization is described here: https://tecnico.ulisboa.pt/en/about-tecnico/institutional/
organisation/.

https://tecnico.ulisboa.pt/en/about-tecnico/institutional/organisation/
https://tecnico.ulisboa.pt/en/about-tecnico/institutional/organisation/

308 12 Enterprise Architecture Case Projects

F
ig

.1
2.

2
Té

cn
ic

o
fa

ct
s

an
d

fig
ur

es
(s

ou
rc

e:
ht

tp
s:

//
te

cn
ic

o.
ul

is
bo

a.
pt

/)

https://tecnico.ulisboa.pt/

12.2 Case 2: Instituto Superior Técnico Enterprise Architecture 309

Fig. 12.3 Técnico campuses (source: https://tecnico.ulisboa.pt/)

12.2.4 Strategy

The strategic plan of IST3 is materialized in a series of initiatives at the management
and the operational levels, which have been grouped together into 11 focus areas;
see Fig. 12.4.

The focus areas of the EA cover the three components of the core missions of IST
(higher education, research, development & innovation and technology transfer) but
also include the support and the cross-cutting areas. The three cross-cutting focus
areas are shared by all the core activities of IST, closely associated with the needs
of a global organization (internationalization and communication) and the need to
consider a new aspect of the school organization, its multipolar operation across
three distinct campuses. The core activities of IST depend mainly on its Human

3 In terms of strategy, Técnico strategy is described here: https://tecnico.ulisboa.pt/files/2015/07/
plano-estrategico-2015.pdf.

https://tecnico.ulisboa.pt/
https://tecnico.ulisboa.pt/files/2015/07/plano-estrategico-2015.pdf
https://tecnico.ulisboa.pt/files/2015/07/plano-estrategico-2015.pdf

310 12 Enterprise Architecture Case Projects

Fig. 12.4 Técnico strategic focus areas (source: https://tecnico.ulisboa.pt/files/2015/07/plano-
estrategico-2015.pdf)

Resources, which themselves depend on the support of a number of different areas
whose development is addressed in this plan: infrastructure, processes and quality,
and information technology. Finally, all the development strategy rests on adequate
and flexible funding resources, which have to be further developed in order to make
IST as independent as possible from the fluctuations that are inherent to public
funding. Please also consider Técnico activity plan described in https://aepq.tecnico.
ulisboa.pt/files/sites/22/plano-de-atividades-ist-2017.pdf and the results achieved
described in https://aepq.tecnico.ulisboa.pt/files/sites/22/ra-ist-2017_vfinal.pdf.

12.2.5 Business Process and Information

For the purpose of this case study, assume that Técnico business processes are
described by the Charles Sturt University (CSU) models.4 For further detail on
the process architecture, please consider that Técnico follows the APQC Process
Classification Framework for Education.5

Regardless of the above models, assume that Técnico information architecture is
based on the following concepts:

4 http://www.csu.edu.au/__data/assets/pdf_file/0003/51924/process-model-wpp.pdf.
5 https://www.apqc.org/knowledge-base/documents/apqc-process-classification-framework-pcf-
education-excel-version-721.

https://tecnico.ulisboa.pt/files/2015/07/plano-estrategico-2015.pdf
https://tecnico.ulisboa.pt/files/2015/07/plano-estrategico-2015.pdf
https://aepq.tecnico.ulisboa.pt/files/sites/22/plano-de-atividades-ist-2017.pdf
https://aepq.tecnico.ulisboa.pt/files/sites/22/plano-de-atividades-ist-2017.pdf
https://aepq.tecnico.ulisboa.pt/files/sites/22/ra-ist-2017_vfinal.pdf
http://www.csu.edu.au/__data/assets/pdf_file/0003/51924/process-model-wpp.pdf
https://www.apqc.org/knowledge-base/documents/apqc-process-classification-framework-pcf-education-excel-version-721
https://www.apqc.org/knowledge-base/documents/apqc-process-classification-framework-pcf-education-excel-version-721

12.2 Case 2: Instituto Superior Técnico Enterprise Architecture 311

• Students, teachers, nonteaching staff, Erasmus students, enrollment, enrollment
fees, diplomas

• Departments, BA, MA, PhD, curriculum programs, courses, classes, schedules
• Academic exams, course exams
• Accounting, property, wages, real contracts, service contracts, shopping
• Campus, buildings, rooms, equipment, laboratories
• Control point, training, vacations, career and faults of staff and teachers
• Research projects, research institutes, non-faculty researchers, scientific publica-

tions
• Library, books, book loans, canteen
• Travel, sabbatical
• Faculty reviews, disciplines reviews, and staff reviews

In addition to these entities, you should also consider those that are implicit (as
required) to implement the adopted models of CSU.

12.2.6 EA Guidelines

Consider that Técnico has defined the following principles and guidelines:

• Components are centralized.
• Front-office processes are separated from back-office processes.
• Data is provided by the source.
• Data is captured once.
• IT systems communicate through services.
• Business units are autonomous.
• Management layers are minimized.
• IT systems adhere to open standards.
• IT systems are preferably open source.
• All messages are exchanged through the enterprise service bus.
• Software components are multi-platform.

12.2.7 Project Goals

Técnico’s President has just hired your enterprise architecture services. He requested
that you recommend him the enterprise architecture that Técnico should implement
in the next 5 years’ in order to do that, you need answers to the following questions:

1. Context

a. What is the context of Técnico? Who are Técnico stakeholders and what
concerns do they have?

312 12 Enterprise Architecture Case Projects

b. Which business units are involved in managing the flows between Técnico
and its context?

2. Products and Services

a. Which products and services are provided by Técnico? To which stakehold-
ers?

3. Big Picture

a. What is Técnico’s big picture?

4. Strategy (Means and Ends)

a. What are the drivers, goals, principles, and requirements for Técnico?
b. Are there any goals, principles, or requirements that are contradictory among

themselves?
c. Are there any goals, principles, or requirements that are misaligned or not

considered in the remaining enterprise architecture?
d. What are the gaps among the Técnico drivers and goals of 2017 activity plan

and the results achieved?

5. Business Process
What are the core Técnico processes?

a. Inputs/outputs: Information entities
b. Roles/actors

6. Organization Structure

a. What is the organization structure (and roles) of Técnico?

7. Information Entities

a. What information entities support the business processes?

i. Major attributes
ii. (Business) Identifier

iii. Inmon classification for the attributes

b. What are the structural relations among the information entities?
c. In which business processes are the information entities created, updated,

read, or deleted?

8. Application Architecture.
You are requested to propose the application architecture to Técnico,

including:

a. What applications should be available at Técnico considering its business
processes and information management?

b. Do you recommend the usage of any application patterns?

12.3 Case 3: Public Procurement Enterprise Architecture 313

c. What application architecture do you recommend? Model the proposed
application architecture, including the application functions and services
provided or consumed by the business and by other applications.

d. Besides the application structure, please also present the application usage,
the application cooperation, and the application behavior viewpoints.

9. IT Architecture

a. What are the different technological options for implementing the applica-
tions?

b. Do you recommend any existing software package? Which are available?
How do you compare them?

c. Do you recommend a custom development for all the applications? Or an
off-the-shelf software package? Explain your analysis.

d. What is the processing infrastructure that you recommend? What about
storage? And communications?

e. What is your recommendation for the IT architecture?
f. What are the dependencies between the IT infrastructure and the applica-

tions? Where does each application will run?
g. How did you implement each guideline or pattern in the EA of Técnico? Do

you recommend considering some other guidelines?

10. Roadmap

a. What project roadmap do you recommend? Which solutions/applications
should be implemented first? Where would you start?

The report should answer the questions above using views in ArchiMate, BPMN,
UML, matrix, graphs, and supporting text. This will involve choosing the most
appropriate viewpoint to support your answers.

12.3 Case 3: Public Procurement Enterprise Architecture

12.3.1 Introduction

Procurement is a central process for any public or private organization. Procurement
for government (or public administration) organizations has very well-defined rules
and processes which must be applicable, when a public agency buys goods or
services such as cars, builds a bridge or a road, buys consulting services, and
acquires hardware or software or any product or service that is provided by the
market. Government procurement processes look for robustness and transparency
while permitting innovative solutions that reflect the scale, scope, and risk of the
desired outcome. In the beginning of this millennium, Portugal was a pioneer
country moving to an electronic procurement process within public administration.
This case study is focused on modeling the current (AS-IS) Portuguese Public

314 12 Enterprise Architecture Case Projects

Fig. 12.5 Public Procurement in Portugal overview

Procurement Enterprise Architecture and assessing the impact of different scenarios
for evolution.

12.3.1.1 AS-IS

At a high level the Public Procurement in Portugal is described according to
Fig. 12.5.

12.3.1.2 Motivation

The major motivations for public procurement are:

1. Value for money
2. Encouraging competition
3. Efficient, effective, and ethical procurement
4. Accountability and transparency in procurement
5. Reducing the risk

12.3.1.3 Business Components

For the purpose of this case study, consider that the business processes that support
procurement are described in [4].

12.3 Case 3: Public Procurement Enterprise Architecture 315

Some of the stakeholders involved in the Portuguese Public Procurement process
are:

1. IMPIC—http://www.impic.pt/
2. eSPap—https://www.espap.gov.pt/
3. AMA—https://www.ama.gov.pt/web/english
4. GNS—https://www.gns.gov.pt/
5. Tribunal de Contas—https://www.tcontas.pt/
6. INCM—https://www.incm.pt/
7. Public platforms (see updated list at http://www.base.gov.pt/Base/pt/Plataformas

Eletronicas/EntidadesCertificadas)
8. European Commission
9. Public administration agencies and departments (buyers)

10. Suppliers

The role of each organization within the public procurement process is described,
for example, at Law 96/2015, Art. 34 (see https://www.anacom.pt/render.jsp?
contentId=1379112.)

12.3.1.4 Information Architecture

Some of the information assets used in the procurement process are:

1. Tender
2. Organization
3. Identifier
4. Address
5. Contact point
6. Item
7. Classification
8. Unit
9. Document

10. Lot
11. Bid
12. Parameter
13. Lot value
14. Award
15. Question
16. Complaint
17. Contract
18. Period
19. Date
20. Value
21. Revision
22. Cancellation
23. Feature

http://www.impic.pt/
https://www.espap.gov.pt/
https://www.ama.gov.pt/web/english
https://www.gns.gov.pt/
https://www.tcontas.pt/
https://www.incm.pt/
http://www.base.gov.pt/Base/pt/PlataformasEletronicas/EntidadesCertificadas
https://www.anacom.pt/render.jsp?contentId=1379112
https://www.anacom.pt/render.jsp?contentId=1379112

316 12 Enterprise Architecture Case Projects

Notice that you may identify other information entities and attributes.6

12.3.1.5 Information System Components

Currently public procurement process is supported (from the perspective of any
Portuguese public agency) in three major system components:

1. All the financial aspects of the acquisition process are supported by GERFIP, a
SAP Finance Module implementation for the Portuguese public administration
(see https://www.espap.pt/spfin/Paginas/spfin.aspx).

The following SAP modules are implemented in GERFIP:

a. AA: Asset accounting
b. MM: Material management expenditure process
c. SD: Sales and distribution sales process
d. FI-TR: Treasury solutions and POCP accounting
e. CO: Analytics accounting
f. EAPS: Budget accounting

GERFIP is provided to public organizations in a software-as-a-service
approach by another public agency: eSPap.

2. The approach to the market, and the evaluation, submissions, and tender con-
clusion and contract signature processes are supported by public procurement
platforms.

3. All the remaining activities within the procurement process are done without
a support of a specific system, including the planning of the procurement,
the procurement scope, the determination of the procurement method, and the
preparation of the market approach. Most organizations support these activities
using email systems and paper-based workflows.

12.3.1.6 Technological Components

From a technological perspective assume the following:

1. GERFIP is a central system shared by all public agencies supported in the
following technological platforms:

a. Presentation layer. The presentation layer is provided through Java Server
Pages (JSP) and Business Server Pages (BSP).

b. Business layer. The business layer consists of a J2EE 5 run-time environment
that processes the requests passed from the Internet Communication Manager

6 Please see open procurement project for further details: http://api-docs.openprocurement.org/en/
latest/standard/index.html.

https://www.espap.pt/spfin/Paginas/spfin.aspx
http://api-docs.openprocurement.org/en/latest/standard/index.html
http://api-docs.openprocurement.org/en/latest/standard/index.html

12.3 Case 3: Public Procurement Enterprise Architecture 317

(ICM) and dynamically generates the responses. The business logic is written
in Java (J2EE).

c. Integration layer. The local integration engine is an integral part of SAP
Web AS and allows instant connection to SAP. The local integration engine
provides messaging services that exchange messages between the components
that are connected in SAP.

d. Connectivity layer. The Internet Communication Manager (ICM) dispatches
user interface requests to the presentation layer and provides a single frame-
work for connectivity using various communication protocols (e.g., HTTP,
HTTPS, SMTP, SOAP, CGI).

e. Persistence layer. The persistence layer is supported in an Oracle 11g Enter-
prise Edition implemented on a Linux Red Hat Enterprise operating system in
a cluster with four physical servers.

f. The connectivity, integration, business, and presentation layers are imple-
mented in virtual machines (two VMs for each layer) that are supported in
a six-blade server and a shared EMC storage (also used for the persistence
layer).

2. From an infrastructure point of view, assume that the public procurement
platform is supported on a Microsoft Windows server 2012 infrastructure with:

a. Database: Microsoft SQL Server 2012.
b. Active directory.
c. Microsoft SharePoint 2013 that supports the business logic.
d. IIS web server.
e. Search and document indexing is done through Microsoft FAST engine.
f. All components are redundant and there are three different security network

zones for the database, web, and business logic.
g. All servers are virtual and are supported on a farm of four physical servers

and an HP storage.

3. The email server used by most public agencies is a Microsoft Exchange 2019,
and the client uses laptops with Windows, Outlook 2019, and Firefox browsers.

12.3.2 Public Procurement Interoperability Initiative (TO-BE)

In order to move the Portuguese Public Procurement to the “next level,” an
interoperability initiative is being implemented (see Portuguese law 96/2015).
Currently, each buyer has access to a single public procurement platform, and
only the suppliers enrolled in that specific platform are able to receive information
or present proposals. Therefore, suppliers are required to be enrolled in several
(or even all) procurement platforms (e.g., acinGov, anoGov, comprasPT, gatewit,
saphetyGov, and vortalGov) to be able to present proposals to different public
agencies. The major goal of the public procurement interoperability initiative is to

318 12 Enterprise Architecture Case Projects

allow each supplier (and buyer) to use a single platform and be able to interact with
buyers enrolled in other platforms. The business services that platforms are expected
to provide among each other are:

1. Pronounce in preliminary hearing
2. Access to procedures and published requests for proposals
3. Complaints and disputes
4. Participation in electronic auction
5. Award decision
6. Messaging
7. Qualification document delivery
8. Submission of proposals
9. Complaints on the draft contract

10. Requests for clarification and lists of errors and omissions
11. View posts and warnings created by contracting authorities

Besides these services that each platform must provide, the IMPIC and other
public procurement governance entities request to have monitor and control func-
tionalities on all acquisition procedures (gathering information from procurement
platforms). Additionally AMA provides an integration platform (iAP; see http://
www.iap.gov.pt/) that is being considered (among other options) to be part of the
solution architecture. The Portuguese Government needs your help in selecting the
right approach and solution architecture to support public procurement according
to law 96/2015, in order to achieve interoperability among public procurement
platforms, including an orchestration versus a coordination approach.

12.3.3 The Project to Be Done

Your mission is to propose a plan for the government to achieve the goals of
their interoperability initiative for public procurement and to dematerialize and
optimize the public procurement process. Your deliverables will be used to guide the
interoperability initiative architecture decisions and as a reference architecture for
public procurement within the public administration. Namely, your team is expected
to contribute for:

1. Modeling of the AS-IS enterprise architecture from a business and system
perspective

2. Identification of misalignments at the AS-IS, among IT, information systems,
business processes, and strategy

3. Designing and modeling the TO-BE enterprise architecture considering the
interoperability initiative and the support of procurement activities within a
public agency, including the impacts in the strategy, business process, infor-
mation, information systems, applications, and technology (analyzing different
information system scenarios and proposing one)

http://www.iap.gov.pt/
http://www.iap.gov.pt/

References 319

4. Proposing an implementation plan that ensures the elimination of the AS-IS gaps
and supports the interoperability initiative implementation

References

1. C.M. de Lisboa, Grandes opções do plano para a cidade de Lisboa (2018). Available online at
https://www.am-lisboa.pt/documentos/1545323718T4cDF1de1Ud05OZ5.pdf

2. C.M. de Lisboa, Direção municipal de higiene urbana – relatório de atividades 2015 (in
Portuguese) (2016). Available at https://sites.google.com/view/eacbook/

3. C.M. de Lisboa, Estrutura organizacional da direção municipal de higiene urbana- reorganização
dos serviços e novo organograma (in Portuguese) (2019). Available at https://sites.google.com/
view/eacbook/

4. Austrian Government, Procurement Process Considerations (2016)

https://www.am-lisboa.pt/documentos/1545323718T4cDF1de1Ud05OZ5.pdf
https://sites.google.com/view/eacbook/
https://sites.google.com/view/eacbook/
https://sites.google.com/view/eacbook/

	Foreword
	Warning
	About This Book
	In Conclusion

	Contents
	Acronyms
	Part I Motivation: Why We Wrote This Book
	1 Introduction
	1.1 Enterprise Architecture: Expectations and Disappointments
	1.2 Enterprise Design and Representation
	1.3 Enterprise Cartography
	1.3.1 Approaches to Enterprise Cartography

	1.4 Book Structure and Contributions
	1.4.1 Book Contributions
	1.4.2 Book Structure

	1.5 Exercises
	References

	Part II Theory: The Theories Behind
	2 Founding Concepts
	2.1 Systems and Enterprises
	2.1.1 Systems
	2.1.2 Enterprises

	2.2 Architecture and Enterprise Architecture
	2.3 Design and Representation
	2.4 Architecture Views and Viewpoints
	References

	3 Enterprise Architecture
	3.1 Introduction
	3.2 Enterprise Architecture Domains and Frameworks
	3.2.1 The Zachman Framework
	3.2.2 The Open Group Architecture Framework
	3.2.3 ArchiMate
	3.2.4 Commonly used Architecture Layers

	3.3 The Architecture of the Enterprise
	3.3.1 Strategy Architecture Layer
	3.3.1.1 Top Layers of the Enterprise Architecture
	3.3.1.2 Business Motivation Concepts
	3.3.1.3 Motivation Modeling

	3.3.2 Business Architecture Layer
	3.3.2.1 System Context
	3.3.2.2 Business Process
	3.3.2.3 Business Layer Concepts

	3.3.3 Information Architecture Layer
	3.3.3.1 Concepts
	3.3.3.2 Information Classification
	3.3.3.3 IA Modeling

	3.3.4 Information Systems Architecture Layer
	3.3.4.1 Concepts

	3.3.5 Technology Architecture Layer
	3.3.5.1 Concepts

	3.3.6 Service Architecture Layer
	3.3.6.1 Concepts

	3.4 Exercises
	References

	4 Enterprise Architecture Patterns and Principles
	4.1 Introduction
	4.1.1 Principles Description
	4.1.2 Principles Summary

	4.2 Cross-Layer Principles
	4.2.1 Components Are Centralized
	4.2.2 Front-Office Processes Are Separated from Back-Office Processes
	4.2.3 Channel-Specific Is Separated from Channel-Independent
	4.2.4 Data Is Provided by the Source
	4.2.5 Data Is Maintained in the Source Application
	4.2.6 Data Is Captured Once
	4.2.7 Systems Communicate Through Services
	4.2.8 Business and Information Architectures Are Aligned
	4.2.9 Business and Application Architectures Are Aligned
	4.2.10 Information and Application Architectures Are Aligned
	4.2.11 Required Application Services Are Available
	4.2.12 Services Have Different Interfaces
	4.2.13 Applications Manage Information with the Same Security Level
	4.2.14 Critical Process Are Executed in Specific Systems
	4.2.15 Each Information Entity Is Managed by a Single Application
	4.2.16 Primitive and Derived Data Are Managed by Different IT Components

	4.3 Business Layer Principles
	4.3.1 Business Units Are Autonomous
	4.3.2 Customers Have a Single Point of Contact
	4.3.3 Management Layers Are Minimized

	4.4 Information Layer Principles
	4.4.1 Information Management Is Everybody's Business
	4.4.2 Common Vocabulary and Data Definitions
	4.4.3 Content and Presentation Are Separated
	4.4.4 Data That Is Exchanged Adhere to a Canonical Data Model
	4.4.5 The Number of Implementations of the Same Information Entity Is Minimized

	4.5 Applications Layer Principles
	4.5.1 Common Use Applications
	4.5.2 Presentation Logic, Process Logic, and Business Logic Are Separated
	4.5.3 Business Logic and Presentation Components Do Not Keep the State
	4.5.4 Minimize the Number of Dependencies and Applications per Service

	4.6 Infrastructure Layer Principles
	4.6.1 Technology Independence
	4.6.2 Interoperability
	4.6.3 IT Systems Are Scalable
	4.6.4 IT Systems Adhere to Open Standards
	4.6.5 IT Systems Are Preferably Open Source
	4.6.6 All Messages Are Exchanged Through the Enterprise Service Bus
	4.6.7 Software Components Are Multi-platform

	4.7 IT Architecture Patterns and Practices
	4.7.1 IT Architecture Layers Patterns
	4.7.1.1 Two-Layer Versus Three-Layer Architectures

	4.7.2 Architectures for High Availability

	4.8 IT Integration Patterns
	4.8.1 Introduction
	4.8.2 File Transfer
	4.8.3 Screen Scraping
	4.8.3.1 Web Scraping or Web Harvesting

	4.8.4 Remote Procedure Call
	4.8.5 Message Queues
	4.8.6 Message-Oriented Middleware
	4.8.7 Data-Oriented Integration
	4.8.7.1 Integration via DBMS

	4.8.8 Application Interface-Oriented Integration
	4.8.9 Transactions and Transaction Monitors
	4.8.10 Business Process-Oriented Integration
	4.8.10.1 Workflow-Oriented Integration
	4.8.10.2 Business Process Execution Language
	4.8.10.3 Orchestration vs Choreography

	4.9 Exercises
	References

	5 Enterprise Cartography
	5.1 Introduction
	5.2 Definitions
	5.2.1 Enterprise Model
	5.2.2 Enterprise Meta-Model
	5.2.3 Architectural Sentence
	5.2.4 Productive Artefacts
	5.2.5 Transformation Initiative
	5.2.6 Enterprise States
	5.2.7 Enterprise Observation
	5.2.8 Enterprise System
	5.2.9 Enterprise Roles
	5.2.10 Enterprise System Representations

	5.3 Enterprise Cartography Principles
	5.3.1 Principle 1: Transformation Initiatives Are Observable Artifacts of the Enterprise AS-IS
	5.3.2 Principle 2: Changes in the Set of Productive Artifacts Are Planned Ones
	5.3.3 Principle 3: All Enterprise Artifacts Have a Five-State Life Cycle: Conceived, Gestating, Alive, Retired, and Removed
	5.3.4 Principle 4: The Emerging AS-IS Can Be Inferred by Observing the Enterprise AS-IS

	References

	Part III How We Do It: Supporting Methodologies and Technologies
	6 Enterprise Architecture Development Framework
	6.1 Introduction
	6.2 TOGAF ADM
	6.2.1 Preliminary Phase
	6.2.2 Phase A: Architecture Vision
	6.2.3 Phase B: Business Architecture
	6.2.4 Phase C: Information Systems Architecture
	6.2.5 Phase D: Technology Architecture
	6.2.6 Phase E: Opportunities and Solutions
	6.2.7 Phase F: Migration Planning
	6.2.8 Phase G: Implementation Governance
	6.2.9 Phase H: Architecture Change Management
	6.2.10 ADM Architecture Requirement Management
	6.2.11 Implementing the ADM

	References

	7 Enterprise Strategy Design
	7.1 Introduction
	7.2 Context Identification
	7.2.1 PESTEL
	7.2.2 External Stakeholders and Drivers

	7.3 Desired Result Definition
	7.3.1 Balanced Scorecard
	7.3.2 Vision and Goals

	7.4 Courses of Action and Requirement Definition
	7.4.1 Business Model Canvas
	7.4.2 Mission, Strategies, Tactics, Business Policies, Business Rules, Requirements, and Constraints

	7.5 Assessment Definition
	7.5.1 SWOT
	7.5.2 Assessments and Outcomes

	7.6 Enterprise Strategy Design Overview
	7.7 Exercises
	References

	8 Business Process Design
	8.1 Business Process Design Overview
	8.1.1 Process Identification
	8.1.2 Activity Identification
	8.1.3 Activity Classification

	8.2 A Methodology for Business Process Design
	8.2.1 Foundations for Business Process Design Methodology
	8.2.1.1 The SemantifyingBPMN Tool

	8.2.2 Business Process Elicitation
	8.2.3 Business Process Discovery
	8.2.4 Business Process Enrichment
	8.2.5 Extending to Business Process Prototyping

	8.3 Exercises
	References

	9 Information Architecture Design
	9.1 Approaches for Information Architecture Design
	9.2 Design Primitives
	9.2.1 Top-Down Design Primitives
	9.2.2 Bottom-Up Design Primitives

	9.3 Design Approaches
	9.3.1 Top-Down Design Approach
	9.3.2 Bottom-Up Design Approach
	9.3.3 Discussion

	9.4 Exercises
	Reference

	10 Information Systems Architecture Design
	10.1 Information Systems Architecture Planning
	10.1.1 Information Systems Architecture Alignment
	10.1.1.1 Alignment Between Business and Applications
	10.1.1.2 Alignment Between Business and Information
	10.1.1.3 Alignment Between Information and Applications

	10.1.2 Information Systems Architecture Design
	10.1.2.1 Rules for Designing the ISA

	10.1.3 Information Systems Architecture Project Approach
	10.1.3.1 Level 1: Getting Started
	10.1.3.2 Level 2: Where We Are Today
	10.1.3.3 Level 3: The Vision of Where We Want to Be
	10.1.3.4 Level 4: How We Plan to Get There

	10.2 Application Portfolio Management
	10.2.1 APM Analysis
	10.2.2 APM Indicators
	10.2.2.1 Business Relevance
	10.2.2.2 Technical Quality

	10.2.3 APM Actions
	10.2.4 APM Project Approach

	10.3 Service Architecture Design
	10.4 Exercises
	References

	11 A Method for Enterprise Cartography
	11.1 Phases of the EC Approach
	11.1.1 Phase 1: Identify Key Questions
	11.1.2 Phase 2: Concept Clarification
	11.1.3 Phase 3: Identify the Best Sources of Information
	11.1.4 Phase 4: Structure the Processes and Tools to Capture Information
	11.1.5 Phase 5: Define and Configure the Architectural Views
	11.1.6 Phase 6: Populate the KB with an Initial Baseline
	11.1.6.1 Incremental Loading of the KB
	11.1.6.2 Naming Enterprise Artifacts

	11.2 A Method for Concept Clarification
	11.2.1 Identification of Relevant Properties
	11.2.2 Identification of Relevant Perspectives
	11.2.3 Concept Representation
	11.2.4 An Example: Clarifying the Application Concept
	11.2.4.1 Concepts at Business Layer
	11.2.4.2 Concepts at Information System Layer
	11.2.4.3 Concepts at the Infrastructure Layer

	11.3 Exercises
	References

	Part IV Practice: Sample Projects
	12 Enterprise Architecture Case Projects
	12.1 Case 1: Lisbon Smart City Enterprise Architecture
	12.1.1 Introduction
	12.1.2 Strategy
	12.1.3 Organization
	12.1.4 Business Processes
	12.1.5 Information
	12.1.6 Current Applications
	12.1.6.1 Relationship Management with the Citizen
	12.1.6.2 Human Resource Management
	12.1.6.3 Urban Cleaning Management
	12.1.6.4 Fleet Management
	12.1.6.5 Equipment, Uniforms, and Consumables Management
	12.1.6.6 Other Applications
	12.1.6.7 Transverse Support Applications

	12.1.7 Current Infrastructure
	12.1.7.1 Technological Infrastructure
	12.1.7.2 Support Artifacts

	12.1.8 Project Goals

	12.2 Case 2: Instituto Superior Técnico Enterprise Architecture
	12.2.1 Introduction
	12.2.2 Location
	12.2.3 Organization
	12.2.4 Strategy
	12.2.5 Business Process and Information
	12.2.6 EA Guidelines
	12.2.7 Project Goals

	12.3 Case 3: Public Procurement Enterprise Architecture
	12.3.1 Introduction
	12.3.1.1 AS-IS
	12.3.1.2 Motivation
	12.3.1.3 Business Components
	12.3.1.4 Information Architecture
	12.3.1.5 Information System Components
	12.3.1.6 Technological Components

	12.3.2 Public Procurement Interoperability Initiative (TO-BE)
	12.3.3 The Project to Be Done

	References

