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Neurobiological Mechanism of  
Acupuncture Analgesia in Chronic Somatic Pain

Wei Yang, Teng Chen, Wen-Wen Zhang, Jia-He Tian,  
Ya-Chen Yang, and Yan-Qing Wang

Abstract

Acupuncture reduces pain by activating spe-
cific areas called acupoints on the patient’s 
body. When these acupoints are fully acti-
vated, sensations of soreness, numbness, full-
ness, or heaviness called De qi or Te qi are felt 
by clinicians and patients. There are two kinds 

of acupuncture, manual acupuncture and elec-
troacupuncture (EA). Additionally, the “acu-
puncture +” strategy, such as a newly reported 
acupuncture method, acupoint catgut embed-
ding, can achieve better analgesic effects. 
Acupuncture alleviates pain mainly by modu-
lating local changes of acupoints and nerve 
conduction and regulating the levels of endog-
enous opioids, cannabinoid, and their recep-
tors, serotonin, and norepinephrine and by 
inhibiting somatic nociceptors, inflammatory 
cytokines, and CNS activation. The endoge-
nous nociceptive modulation system plays an 
important role in EA analgesia, including the 
descending inhibitory system and the descend-
ing facilitatory system. The inactivation of 
microglia and astrocytes mediates the imme-
diate and long-term analgesic effects of EA, 
respectively. A variety of pain-related sub-
stances released by glial cells such as the pro-
inflammatory cytokine tumor necrosis factor 
α, interleukin-1β, interleukin-6, and prosta-
glandins such as prostaglandins E2 can also be 
reduced. The autonomic nervous system 
(ANS), including sympathetic and parasym-
pathetic nervous systems, also plays an impor-
tant role in acupuncture anti-inflammatory 
effects.
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Abbreviations

5-HT	 5-hydroxy-tryptamine
ACC		 Anterior cingulate cortex
ACE		 Acupoint catgut embedding
ANS		 Autonomic nerves system
ATP 		 Adenosine triphosphate
CAM	� Complementary and alternative 

medicine
CAMP	 Compound muscle action potential
CB		  Cannabinoid
CCI		  Chronic constriction injury
CFA		 Complete Freund’s adjuvant
CNS		 Central nervous system
COX		 Cyclooxygenase
DML	 Distal motor latency
DOR 	 Delta opioid receptor
DPN		 Diabetic peripheral neuropathy
DSL		 Distal sensory latency
EA		  Electroacupuncture
EM		  Endomorphin
ENK		 Enkephalin
GFAP	 Glial fibrillary acidic protein
GPCRs	 G protein-coupled receptors
HPA		 Hypothalamic-pituitary-adrenal
IFN		  Interferon
IL		  Interleukins
JAK		  Janus kinase
KOR		 Kappa opioid receptor
LC		  Locus coeruleus
LPS		  Lipopolysaccharides
MA		  Manual acupuncture
mA		  Milliampere
MAPK	 Mitogen-activated protein kinase
MBP		 Myelin basic protein
MCP-1	 Macrophage chemoattractant protein-1
MMP	 Matrix metalloproteinase
MNS	 Median nerve stimulation
NA		  Noradrenaline
NCV		 Nerve conduction velocity
NOP		 Nociceptin
NPY		 Neuropeptide Y
NRM	 Nucleus raphes magnus
NS		  No significance
NSFC	 Natural science foundation of China
NT-3		 Neurotrophin-3
OFQ		 Orphanin FQ
ORL1	 Opioid receptor like-1
PAG		 Periaqueductal gray

PDN		 Painful diabetic neuropathy
PDYN	 Prodynorphin
PKA		 Protein kinase A
PNS		 Peripheral nervous system
POMC	 pro-opiomelanocortin
RCT		 Randomized controlled trial
RT-PCR	�Reverse transcription polymerase chain 

reaction
rVLM	 Rostral ventrolateral medulla
RVM	 Rostral ventromedial medulla
SDH		 Spinal dorsal horn
SEA		 Sham electroacupuncture
SNAP	 Sensory nerve action potential
SNL		 Spinal nerve ligation
STAT3	� Signal transducer and activator of 

transcription
TGF		 Tumor growth factor
TNF		 Tumor necrosis factor
VAS		 Visual analogue scale/score

1	� Introduction

Acupuncture has been used in China for thou-
sands of years to relieve many different types of 
pain based on traditional Chinese medicine theo-
ries. One of the basic premises of traditional 
Chinese medicine is that there are hundreds of 
acupoints distributed throughout the human body 
and can be activated by acupuncture needles to 
relieve pain. With the development of modern 
technology, we have a better understanding of the 
mechanisms behind these ancient Chinese treat-
ment methods.

Chronic pain, one of the most prevalent health 
problems, has a serious impact on our society and 
economy. It is defined as pain which persists at 
least 3 months (Mills et al. 2019). According to 
its etiologies, chronic pain can be generally clas-
sified into neuropathic pain, inflammatory pain, 
and dysfunctional pain (Burma et  al. 2017). 
Neuropathic pain is caused by nerve injury or 
disease. Inflammatory pain arises from persistent 
or unresolved inflammation. Dysfunctional pain, 
which have both neuropathic and inflammatory 
components, does not fall into either of the above 
two categories. Dysfunctional pain, such as 
cancer-related pain (pain caused by cancer), vis-
ceral pain (pain originated from visceral organ), 
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diabetes-related pain (pain caused by diabetes), 
chemotherapy-related pain (pain caused by che-
motherapy), and so on, usually has multiple eti-
ologies and differs in presentation of signs and 
symptoms.

Using animal models, we can capture the 
human pain experience accurately by under-
standing how key genes, cells, and circuits medi-
ate the development of chronic pain. Generally, 
animal models of neuropathic pain are achieved 
by full or partial nerve injury via ligation, tran-
section, or compression of certain nerves which 
can be sciatic nerve, trigeminal nerve, and so on. 
The common model for inflammatory pain is 
achieved by injecting chemical irritant like the 
complete Freund’s adjuvant and formalin into the 
paw to cause local inflammatory responses. 
Model for cancer-related pain including bone 
cancer pain, in which injected certain cancer cells 
like Walker 256 mammary gland carcinoma cells 
are injected into the tibia cavity (Hu et al. 2019). 
Visceral pain model can be induced by injecting 
chemical irritants like acetic acid or mustard oil 
to produce colonic inflammation (Larauche et al. 
2012). Diabetes-related pain can be induced by 
injecting streptozotocin (Jolivalt et  al. 2016). 
Chemotherapy-related pain model is induced by 
injecting chemotherapy drug like cisplatin 
(Colvin 2019).

2	� Clinical Application 
of Acupuncture on Somatic 
Chronic Pain

Conventional medical treatments for pain relief 
are not always satisfactory with problematic 
side effects. Acupuncture, which has been used 
in China for thousands of years to relieve many 
different types of pain, represents a potentially 
valuable way for pain relief (Chen et al. 2020). 
Generally speaking, there are two kinds of acu-
puncture, the classical acupuncture (manual 
acupuncture) and the modern one (electroacu-
puncture). In manual acupuncture, clinicians 
insert the acupuncture needles through the skin 
at the acupoint and then move up and down 
with twirling in different directions to induce 

mechanical stimulation of the acupoint. 
Sensations of soreness, numbness, fullness, or 
heaviness called De qi or Te qi can be felt by 
clinicians and patients, and this phenomenon is 
considered the hallmark of activated acupoints 
(Chen et  al. 2020). In electroacupuncture, the 
acupuncture needles are electrified so that the 
acupoints are activated by both mechanical 
stimulation and electrical stimulation. Unlike 
manual acupuncture whose effect varies from 
clinicians and De qi is hard to quantify, elec-
troacupuncture can be set by different acupoints 
and a variety of parameters including wave 
form, electrical intensity, frequency, interval, 
and time. Recently, a novel way to stimulate 
acupoint, called acupoint catgut embedding 
(ACE), has been reported to achieve better acu-
puncture analgesia (Cui et  al. 2019; Du et  al. 
2017). Acupoint catgut embedding is a type of 
acupuncture that seeks to exert long-term effects 
by injecting sutures made of absorbable materi-
als at acupoints (Chen et al. 2020).

Other methods have also been used to stimu-
late acupoints like dry needling, warm acupunc-
ture, fire acupuncture, auricular acupuncture, eye 
acupuncture, and laser acupuncture. Dry nee-
dling uses a fine, solid filiform needle to cause 
intramuscular stimulation (Cagnie et  al. 2013). 
Warm acupuncture and fire acupuncture are 
methods which cause thermal stimulation at the 
acupoints. The temperature is moderate in warm 
acupuncture, while fire acupuncture is very hot. 
Ear acupuncture and eye acupuncture are meth-
ods which insert needles around the ears or the 
eyes. Laser acupuncture is a method which stim-
ulates the acupoints with low-intensity, nonther-
mal laser irradiation.

Based on the above animal models, the neuro-
biological mechanism of acupuncture analgesia 
was investigated. In total, acupuncture-induced 
analgesia is a comprehensive effect that starts 
with the activation of acupoints, which have 
special anatomic structures. The acupuncture-
induced signals are then transmitted to the spinal 
cord and relevant areas of the brain where they 
increase or decrease multiple neurotransmitters, 
modulators, and inflammatory factors in order to 
relieve pain (Chen et al. 2020).
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Fig. 1  The needle (a), 
catgut (b), and 
schematic (c) of 
acupoint catgut 
embedding. (Cui et al. 
2019)

ACE refers to injecting sutures made of 
absorbable materials at acupoints that are associ-
ated with different physiological processes or 
diseases. This treatment is a combination of 
ancient traditional acupuncture and modern tis-
sue therapy, and, as a variant of acupuncture, it 
has been practiced along with traditional acu-
puncture in China for nearly half a century. ACE 
stimulates the acupoint persistently for a week or 
longer, until the suture softens, liquifies, and 
absorbs. Therefore, ACE is more convenient than 
traditional acupuncture, which needs to be per-
formed daily or every other day. Moreover, ACE 
is easier to perform than traditional acupuncture 
and is, thus, widely used to treat various disor-
ders in China, such as obesity and allergic rhini-
tis. In particular, it has been widely used to 
manage clinical pain (Fig. 1).

3	� Potential Mechanisms 
of Acupuncture Analgesia 
on Chronic Somatic Pain

Acupuncture has been used to treat various pain 
disorders, including somatic pain, and has shown 
considerable effects on pain relief. Acupuncture 
alleviates pain mainly by modulating local 
changes of acupoints and nerve conduction and 
regulating the levels of endogenous opioids, sero-
tonin, and norepinephrine and by inhibiting 
somatic nociceptors, inflammatory cytokines, 
and CNS activation.

3.1	� Peripheral Mechanisms

3.1.1	� Local Changes of Acupoints 
in Acupuncture Analgesia

Acupoint is a concept opposite from non-acupoint 
with anatomical structure and functional effect, 
which can modulate the physiology of the body 
after being stimulated by manual acupuncture 
and electroacupuncture (Li et  al. 2015). 
Anatomically, acupoint is consistent of mast 
cells, blood vessels, nervous system components, 
and musculoskeletal tissues (Kuo et al. 2004; Lee 
et al. 2008; Wu et al. 2015). Functionally, at local 
acupoint, acupuncture (both MA and EA) can 
activate those cells and nerve fiber terminals with 
pain relief by releasing some peptides, immune 
cytokines, adenosine triphosphate (ATP), and 
adenosine (Chen et al. 2017, 2018a, b, 2020; He 
et al. 2020; Li et al. 2019a, b; Wang et al. 2014). 
During the pain process, there are many inflam-
matory responses by triggering immune cells to 
release a series of inflammatory mediators. 
Similarly, electroacupuncture stimulation at the 
ST36 acupoint can also enhance the level of 
immune cytokines interferon-γ (IFN-γ), interleu-
kin (IL)-2, and IL-17 level in the serum (Chen 
et al. 2017). Peripheral nociceptive afferent fibers 
include Aδ- and C-fibers, and their peripheral 
axonal branches are at nociceptor terminals. The 
acupuncturemediated analgesia stimulates and 
modulates these peripheral afferent pathways, 
transmitters, and modulators (Zhang et al. 2014). 
The cutaneous/subcutaneous mast cells play a 
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vital role in anti-inflammatory responses, and due 
to their location, they are sensitive to mechanical 
stimulation from the external environment. Mast 
cells contain ATP which may be released as a 
result of acupuncture needling (He et al. 2020). 
Meanwhile, an interesting study reported that 
adenosine, a neuromodulator with antinocicep-
tive properties, was released during acupuncture 
and induced acupuncture analgesia through ade-
nosine A1 receptor (Goldman et al. 2010).

3.1.2	� Effect of Acupuncture on Nerve 
Conduction

Nerve conduction can be detected by the sensory 
nerve action potential (SNAP) and the compound 
muscle action potential (CMAP), which provide 
information on sensory axon in the skin and motor 
nerve fiber along the muscle, discerning the under-
lying nerve physiology and pathophysiology. 
Various parameters, such as amplitudes, latencies, 
and other measurements, of the SNAP and CMAP 
waveforms are used to determine the number of 
functioning nerve fibers and the speed of conduc-
tion (Tavee 2019). Since the branches and termi-
nals of nerve fibers are enriched in the acupoint, 
nerve conduction changes can also be modulating 
by acupuncture stimulation. In the clinical trials on 
diabetic peripheral neuropathy (DPN) and carpal 
tunnel syndrome, acupuncture produced signifi-
cant effects on median nerve CMAP amplitude, 
median nerve distal motor latency (DML), and 
motor nerve conduction velocity (NCV) of the 
median, ulnar, and peroneal nerves on motor nerve 
function, while sensory NCS showed an increase 
in SNAP amplitude in the median nerve, lowered 
median nerve distal sensory latency (DSL), and 
increased median and peroneal nerve NCV 
(Dimitrova et  al. 2017). An interesting study 
reported that acupuncture treatment of peripheral 
neuropathy (PN) results in a significant improve-
ment of nerve conduction studies of the sural nerve 
amplitudes, which was fully correlated with a sub-
jective improvement of symptoms (Schroder et al. 
2007). And also an unfinished clinical study aims 
to characterize the local, nerve-specific effects of 
acupuncture on the median and ulnar nerves in the 
forearm, using nerve conduction studies and quan-
titative sensory testing.

3.1.3	� Acupuncture Affects Dorsal 
Root Ganglion Function

The nociceptive system consists of neurons and 
their terminals activated by stimuli potentially 
threatening the integrity of our body. In the pain 
condition, structural dysfunction causes nociceptive 
pain by stimulating nerve fibers with nociceptors, 
such as some kinds of somatic pain. These actions 
are driven by the terminals and transported to dorsal 
root ganglia, promoting substance P synthesis and 
release. Many studies reported that dorsal root gan-
glia may be one of the targets of acupuncture anal-
gesia. At present, the relatively commonly used 
somatic pain animal models include the neuropathic 
pain model, such as the spinal nerve ligation (SNL) 
model (Wei et al. 2021), and the inflammatory pain 
model, such as the complete Freund’s adjuvant 
(CFA) model (Table 1).

3.1.4	� Acupuncture Affects 
Endogenous Opioids and Their 
Receptors

The endogenous opioid system consists of opioid 
peptides and their receptors (μ, mu (MOR); δ, 
delta (DOR); κ, kappa (KOR); nociceptin 
(NOP)). It is reported in the central and periph-
eral nervous systems (CNS and PNS) and has a 
central role in inducing potent and clinically 
measurable analgesia and other physiological 
functions and pharmacological responses, with 
unwanted and common side effects. Although 
only central opioid mechanisms were considered 
to modulate acupuncture analgesia in the begin-
ning, peripheral opioid mechanisms were investi-
gated in the acupuncture field and increasingly 
emphasized because of potential avoidance of 
central opioid side effects such as analgesic toler-
ance (Table 2).

3.2	� Central Mechanisms

3.2.1	� Endogenous Opioids, 
Cannabinoid, and Their 
Receptors

The endogenous opioid system consists of five 
opioid peptides, enkephalin, β-endorphin, dynor-
phin, endomorphin, and orphanin FQ and four 
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Table 1  Effect of acupuncture on different pain models in the dorsal root ganglion

Year Model Acupoints Conclusion
2021
(Wei 
et al. 
2021)

Neuropathic 
pain: SNL

“Huantiao” (GB-30)
“Yanglingquan” (GB-34)30¬†min daily 
from day 7 to day 10 after SNL

EA gradually attenuated SNL-induced 
mechanical allodynia, associated with 
suppressing the expression of 
phosphorylated AXL (p-AXL).
Combination of AXL inhibitor and EA 
might be a new strategy for clinic 
analgesia on neuropathic pain.

2021
(Shen 
et al. 
2021)

Inflammatory 
pain: CFA (ankle 
joint)

Zusanli
20-min acupuncture

ATP metabolism of peripheral sensory 
nerve system was simultaneously 
regulated during acupuncture analgesia.

2020
(Zhang 
et al. 
2020)

Inflammatory 
pain: CFA (paw)

Zusanli (ST36), Kunlun (BL60)
0.5–1.5 mA, initial strength of 0.5 mA, 
increased by 0.5 mA every 10 min, for 
30 min per session, one section per day

Regulation of adenosine-mediated 
substance P secretion. Substance 
P-mediated pathway may be involved in 
the analgesia process by 
electroacupuncture in rats.

2019
(Liang 
et al. 
2019)

SNL ST36 (Zusanli), BL60 (Kunlun) 7D-14 D; 
three consecutive square waves of 0.6 ms 
duration and amplitude of 0.5, 1.0, 1.5 mA 
for 10 min each (a total 30 min) were 
applied at 2 Hz frequency

EA stimulation alters P2X3R activity in 
DRG to produce analgesia under 
neuropathic pain condition
EA effectively reduces injury-induced 
chronic pain by selectively reducing the 
expression of P2X3Rs in nerve-uninjured 
L4 dorsal root ganglion neurons.

2018
(Zhou 
et al. 
2018)

PDN Zusanli (ST36)
Kunlun (BL60)
1 mA for 15 min followed by 2 mA for 
another 15 min

Analgesic effect of EA in PDN is 
mediated by suppressing PKC-dependent 
membrane P2X3 upregulation in 
DRG. EA at low frequency is a valuable 
approach for PDN control.

2017
(Yang 
et al. 
2017)

Inflammatory 
pain
CFA

Bilateral Zusanli (ST36)
100-𝜇s square pulses of 1 mA for 15 min 
at 2 Hz

EA significantly reduced chronic 
mechanical and thermal hyperalgesia, 
mechanism of TRPV1 in DRG.

opioid receptors, mu-, kappa-, delta-, and opioid 
receptor like-1 opioid receptors (MOR, KOR, 
DOR, and ORL1). Opioid receptors belong to the 
G protein-coupled receptors (GPCRs) and are 
mainly Gi/o-coupled (Prather et  al. 1995). All 
endogenous opioid peptides share the enkephalin 
sequence (Tyr1-Gly2-Gly3-Phe4) at the N termi-
nal. Opioid receptors transmit signals by G 
protein-dependent or G protein-independent 
pathways (Ferre et al. 2019).

Endogenous Opioids
Enkephalins are a family of pentapeptide derived 
from proenkephalin (PENK), which are divided 
into methionine-enkephalin (met-ENK) and 
leucine-enkephalin (leu-ENK) according to the 
difference of the last amino acid. Enkephalins are 
broadly distributed in the body, such as the dien-

cephalon (Sanchez et  al. 2016), the telencepha-
lon, the hypothalamus, and the spinal cord 
(Vijayalaxmi et al. 2020), and have high selectiv-
ity for DOR. They play a role in neurotransmis-
sion, pain modulation (Francois et  al. 2017), 
immunomodulation (Liu et al. 2020a, b), and so 
on.

β-Endorphin is produced mainly in the ante-
rior lobe of the pituitary gland (Andrew 1991) 
and the pro-opiomelanocortin (POMC) cells 
located in the arcuate hypothalamic nucleus 
(Veening et  al. 2012). β-Endorphin is a mu-
preferring ligand, though it can also band to 
delta-opioid receptors. β-Endorphin, exclusively 
β-endorphin1–31 but not shorter 
β-endorphin1–27, exerts strong analgesic effect. 
In general, β-endorphin produces an anti-
inflammatory effect by suppressing immune 
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responses, but in the brain, it seems to be related 
to the inflammation in the case of disease. 
β-Endorphin can also reduce stress-related activ-
ity, participate in the reward system, and be 
related to addictions (Pilozzi et al. 2020).

All dynorphin isoforms such as dynorphin A 
1–17, dynorphin A 1–8, dynorphin B 1–13, big 
dynorphin, and leumorphin are derived from the 
precursor named prodynorphin (PDYN). 
Dynorphins show strong affinity with delta-
opioid receptors. The primary stress neuropep-
tide corticotropin-releasing factor (CRF) causes 
dynorphin release in stressful situations, dynor-
phin thus involved in the stress-induced analgesia 
(Bruchas et  al. 2010). In discrete subregions of 
dynorphin-containing cells in the shell of nucleus 
accumbens aversive behaviors and place prefer-
ence can both be induced (Al-Hasani et al. 2015).

Endomorphin has two subtypes: Tyr-Pro-Trp-
Phe-NH2 (EM1) and Tyr-Pro-Phe-Phe-NH2 
(EM2). Endomorphin has strong affinity and 
selectivity for mu-opioid receptor. In addition, a 
study found that EM1/2 preferentially activated 
cAMP signaling which indicates biased opioid 
ligands can induce specific physiological 
responses and thus avoid some side effect 
(LaVigne et al. 2020).

OFQ is a heptadecapeptide derived from pre-
pronociceptin (PNOC) and has a high affinity for 
ORL1 receptor. OFQ is a highly basic peptide, 
and the number of Lys and Arg residues of OFQ 
is similar to dynorphin (Toll et al. 2016).

Acupuncture-Related Release 
of Endogenous Opioids
When EA is given (1–4 mA, 0.5 ms, 2 Hz) twice 
at P5–P6 acupoints bilaterally, both relative ratios 
of preproenkephalin mRNA levels and Met-
enkephalin levels were increased in the rostral 
ventrolateral medulla (rVLM) after 24 h (Li et al. 
2012). Another study used low-frequency EA 
(2–3  mA, 2  Hz), which stimulates Zusanli and 
Sanyinjiao for 20  min and observed the spinal 
microglial expression of β-endorphin increased 
successively in neuropathic rats (Ali et al. 2020).

It is very interesting that EA promotes or 
inhibits dynorphin release under different condi-
tions. For example, EA (0.1–0.3 mA, 2/100 Hz, 

alternately) at Sanyinjiao (SP-6) for 20 min and 
repeated every 2  h could significantly reduce 
labor pain in rats, and the protein expression of 
KOR and PDYN and mRNA expression in the 
lumbar spinal cord was increased after EA treat-
ment (Jiang et  al. 2016), while another study 
found EA (2  mA, 0.4  ms, 10  Hz) at Huantiao 
(GB-30) for 30 min significantly attenuated bone 
cancer-induced hyperalgesia and inhibited spinal 
preprodynorphin expression in a rat model 
(Zhang et al. 2008).

In our studies of the effects of EA on neuro-
pathic pain, we found that EA at Huantiao (GB-
30) and Yanglingquan (GB-34) with dense-sparse 
frequencies (60 Hz for 1.05 s and 2 Hz for 2.85 s, 
alternately) could promote OFQ synthesis and 
OFQ peptide level in the nucleus raphes magnus 
(NRM) in the sciatic nerve chronic constriction 
injury (CCI) model (Ma et al. 2004).

Acupuncture and Opioid Receptors
Acupuncture is observed to alter the expression 
of opioid receptors and increase their density in 
the brain. A study provided the evidence of short- 
and long-term effects of acupuncture therapy on 
MOR binding potential in the thalamus, the cin-
gulate, the insula, the caudate, the putamen, and 
the temporal pole in chronic pain patients (Harris 
et  al. 2009). Besides, bilateral intra-habenula 
infusion of naltrexone could reduce the analgesic 
effect of EA, and as MOR gene is richly expressed 
in the habenula, it indirectly proved that EA 
could attenuate hyperalgesia via habenular 
MORs (Li et al. 2017).

Now we know that different physical states 
and acupuncture parameter all may affect acu-
puncture analgesia. There is evidence that intra-
cerebroventricular injection of MOR antagonist 
or antiserum against EM1 or EM2 antagonized 
the analgesia induced by EA of 2  Hz, but not 
100 Hz at Zusanli (ST-36), in an uninjured ani-
mal model (Huang et al. 2000). However, another 
team that uses complete Freund’s adjuvant 
(CFA)-induced inflammatory pain model found 
that both 10 Hz and 100 Hz EA at Huantiao (GB-
30) produced anti-hyperalgesia, which could be 
blocked by intra-RVM administration of MOR 
antagonists (Zhang et al. 2011).
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Endogenous Cannabinoid and Their 
Receptors
The endocannabinoid system (ECS) includes 
cannabinoid (CB) and its central cannabinoid 
receptors 1 (CB1 receptors) and peripheral can-
nabinoid receptor 2 (CB2 receptors). The ECS 
has increasingly been seen extensively involved 
in the regulation of various physiological and 
cognitive processes, such as female reproduc-
tive events, pain sensation, and mood. Notably, 
CB1 and CB2 receptors appear to contribute to 
the analgesic and anti-inflammatory effects of 
acupuncture, respectively (MacDonald and 
Chen 2020).

Antinociceptive effect of EA is related to the 
activation of the CB1 receptors and partly through 
the regulation of the spinal CB1-ERK1/2 signal-
ing pathway (Zheng et al. 2019). The CB1 recep-
tors in the ventrolateral area of the periaqueductal 
gray (vlPAG) and the striatum also proved to be 
vital for the EA antinociceptive effect (Shou et al. 
2013; Ho et  al. 2011). A study found that low-
frequency median nerve stimulation (MNS) 
through acupuncture needles at Neiguan (PC-6) 
(MNS-PC6), which is equivalent to EA, induced 
an antinociceptive effect in chronic constriction 
injury (CCI) mice model through orexin 1 recep-
tor (OX1R)-initiated cannabinoid 2-AG signaling 
in the vlPAG (Chen et al. 2018a, b). These find-
ings were also reinforced by another study which 
stressed MNS-PC6 treatment remained effective 
in morphine-tolerant CCI-mice via the above sig-
naling pathway (Lee et al. 2021).

3.2.2	� Endogenous Nociceptive 
Modulation System: 
Descending Inhibitory System

Chronic pain involves peripheral and central sen-
sitization. The imbalance between the descend-
ing facilitatory systems and the descending 
inhibitory systems could be taken as part of the 
explanation for central sensitization.

The descending inhibitory system mainly 
consists of the periaqueductal gray (PAG), ros-
tral ventromedial medulla (RVM), dorsolateral 
pontine reticular formation, and spinal dorsal 
horn (SDH). The PAG-RVM-SDH pathways 

project along the dorsolateral funiculi onto the 
SDH. RVM contains the nucleus raphes magnus 
(NRM) and its adjacent ventral reticular struc-
ture, and dorsolateral pontine reticular forma-
tion contains the locus coeruleus (LC), the 
subcoeruleus, and the Kolliker-Fuse nucleus 
(Willis and Westlund 1997). Actually, there are 
two major monosynaptic descending pathways, 
the descending serotonergic pathway and the 
noradrenergic pathway, respectively (Lv et  al. 
2019).

Descending Serotonergic Pain Inhibitory 
Pathways
The descending serotonergic pathways originate 
from the NRM, as it is rich in serotonergic neu-
rons. Serotonergic receptor has multiple sub-
types, which contribute different effects to the 
acupuncture analgesia. Exogenously intracere-
broventricular administration of serotonin 
(5-hydroxy-tryptamine, 5-HT) exhibited an 
EA-like analgesic effect. Furthermore, the 
5-HT1A and 5-HT3 receptor antagonists blocked 
2, 10, and 100 Hz EA-induced analgesic effects, 
but the 5-HT2 receptor antagonist enhanced the 
antinociceptive effect of 100 Hz EA (Chang et al. 
2004). In a neuropathic pain rat model, 5-HT1A 
and 5-HT3 antagonist, but not 5-HT2A antago-
nist, blocked the analgesic effects of 2 Hz EA on 
cold allodynia (Kim et  al. 2005). However, 
another study shows that in pain induced by for-
malin, intrathecal (i.t.) 5-HT7 receptor agonist 
induced antinociceptor effect, which could be 
reversed by i.t. 5-HT3 receptor antagonist (Yang 
et al. 2014). As opposite results have been found 
in different studies, the role of 5-HT receptors in 
pain modulation in normal or neuropathic states 
still remains controversial.

Descending Noradrenergic Pain Inhibitory 
Pathways
LC releases noradrenaline (NA) into the SDH 
and serves as the source of the descending norad-
renergic pathways. In a study, EA (60 Hz, 3.2 V) 
at set of Baihui-Santai acupoints or Housanli 
acupoints of goats for 30 min induced analgesic 
effect and increased c-Fos expression in the LC 

Neurobiological Mechanism of Acupuncture Analgesia in Chronic Somatic Pain



482

Fig. 2  Putative mechanisms underlying acupuncture-
induced analgesia. Acupuncture-induced analgesia is a 
comprehensive effect that starts by activation of acu-
points, which have special anatomic structures, and the 
acupuncture-induced signals are transmitted to the spinal 

cord and to the relevant areas of the brain. The descending 
pain modulation system, including the anterior cingulated 
cortex (ACC), the periaqueductal gray (PAG), and the ros-
tral ventromedial medulla (RVM), are ultimately activated 
to relieve pain. (Chen et al. 2020)

(Hu et  al. 2016), which indicate that LC is an 
important part in the descending noradrenergic 
pathways involved in EA analgesia (Fig. 2).

3.2.3	� Endogenous Nociceptive 
Modulation System: 
Descending Facilitatory System

The descending facilitatory system, which mainly 
contains the anterior cingulate cortex (ACC), the 
NRM, the nucleus reticularis gigantocellularis, 
and the SDH, is a top-down pain modulation 
pathway independent of the descending inhibi-
tory system, which shares several nuclei. The 
descending facilitatory pathways project along 
the ventrolateral funiculi onto the SDH. Chronic 
pain is mostly sustained by facilitatory influences 
(Frank et al. 2002). While 5-HT is an important 
neurotransmitter in the descending inhibitory 
system, it plays a key role in the descending facil-
itatory system as well.

A study reveals that the 5-HT3 receptor antag-
onist applied to the spinal cord induced tonic 
facilitation of noxious punctate mechanical stim-
ulation in sham rats, while it inhibited neuronal 

responses to lower intensity punctate mechanical 
stimuli and noxious heat-evoked responses in 
SNL rats (Patel and Dickerson 2018), which indi-
cate that 5-HT3 receptor contributes facilitation 
effect in neuropathic state.

3.2.4	� Role of Spinal Glial Cells 
and Cytokines in Acupuncture 
Analgesia

Glial cells, including microglia, astrocytes, and 
oligodendrocytes, surround neurons and contrib-
ute to pain hypersensitivity when activated in 
pathological states, and acupuncture has been 
widely reported to play an analgesic role by regu-
lating the function of spinal cord glial cells (Ji 
et al. 2016). Electroacupuncture (EA) is widely 
believed to inhibit the activation of astrocytes and 
microglia induced by nerve injury significantly 
(Wang et al. 2018; Liang et al. 2016). The most 
immediate evidence is the expression of spinal 
microglial marker OX-42, and astrocytic marker 
glial fibrillary acidic protein (GFAP) was reduced 
by EA. In addition, the levels of matrix metallo-
proteinase-2 (MMP-2), MMP-9, tumor necrosis 
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factor α (TNF-α), and interleukin-1β (IL-1β) 
were decreased after EA (Gim et  al. 2011). 
Besides, the inhibitory effect of acupuncture on 
microglia activation including the reduction of 
microglia oxygen free radicals and P38 mitogen-
activated protein kinase (p38 MAPK) and phos-
phorylation of extracellular signal-regulated 
kinase (ERK) was also observed in a spared nerve 
injury in a rat model, and the TNF-α, IL-1β, 
cyclocxygenase-2 (COX-2), interleukin-6 (IL-6), 
and prostaglandin 2 (PGE2) in the spinal cord 
were also decreased after EA (Cha et al. 2012; Ji 
et  al. 2017). As p38 MAPK is a key signaling 
molecules in microglial activation, a newly 
reported study shows that the inactivation of the 
p38 MAPK pathway by EA might be related to 
chemokine CX3CL1, which plays an important 
role in neuroinflammation. It has been found that 
EA can downregulate the expression of 
CX3CL1  in neurons (Li et  al. 2019a, b). In a 

mouse model of post-incision pain, pretreatment 
of EA effectively prevented pain, and IL-10  in 
spinal astrocytes was critical for the analgesia of 
EA and central sensitization (Dai et  al. 2019). 
Acupuncture has also been reported to inhibit the 
activation of spinal astrocytes and the upregula-
tion of TNF-α through adenosine A1 receptors 
(Zhang et al. 2018). Acupuncture can also inhibit 
the activation of C-Jun N-terminal kinase (JNK) 
and mediate analgesia (Lee et al. 2013) (Fig. 3).

3.3	� Sympathetic 
and Parasympathetic Nervous 
System in Acupuncture 
Anti-inflammatory Effects

Inflammation is a defensive response of the 
body to stimulation, and its basic pathological 
changes mainly include local tissue metamorphism, 

Fig. 3  Role of spinal glial cells in acupuncture-induced 
analgesia. Role of spinal glial cells in acupuncture-
induced analgesia. EA has analgesic effects by interrupt-
ing spinal glial cell activation. Painful states like nerve 
injury or inflammation induce nociceptors to secrete glial 
modulators, and this results in the activation of microglia 
and astrocytes in the spinal dorsal horn. Microglia and 
astrocytes then secrete neuromodulators like IL-1β, IL-6, 
TNF α, and prostaglandin E2 (PGE2) to maintain chronic 

pain. Acupuncture can inhibit glial cell activation by 
downregulating chemokine CX3CL1 and increasing anti-
inflammatory cytokine IL-10. Acupuncture analgesia has 
two phases, the immediate phase and the long-term phase. 
In the immediate phase, acupuncture mainly inhibits 
microglial activation by suppressing the p38MAPK and 
ERK pathways. In the long-term phase, acupuncture 
mainly inhibits astrocyte activation by blocking the C-Jun 
N-terminal kinase signaling pathway. (Chen et al. 2020)
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exudation, and proliferation. In general, inflam-
mation is beneficial and is an automatic defense 
response of the human body, but sometimes 
insufficient inflammatory response can easily 
cause infection, while excessive or long-lasting 
inflammatory reaction can easily lead to and/or 
enhance chronic pain in some diseases including 
rheumatoid arthritis and osteoarthritis.

In the past, it was generally believed that the 
anti-inflammatory response in the body was 
mainly realized by cellular immunity and 
humoral immunity, which lasted for a long time 
and acted slowly, until Borovikova et al. put for-
ward the concept of vagus nerve-mediated cho-
linergic anti-inflammatory pathway for the first 
time, which provided a new train of thought and 
theoretical basis for the study of the mechanism 
of nervous system regulation on inflammation 
(Borovikova et  al. 2000). Recent advances in 
neuroimmunology have suggested that the auto-
nomic nerve system (ANS) is one of the key 
pathways in neuroimmunoregulatory networks, 
and it has a definite inhibitory or exciting effect 
on multiple systems of the human body. The bal-
ance between the two branches of ANS (sympa-
thetic and parasympathetic) plays an important 
role in directing the inflammatory response 
toward proinflammatory or anti-inflammatory 
outcomes (Song et al. 2012).

As an important part of Chinese traditional 
medicine, acupuncture can regulate the visceral 
function by stimulating the local acupoints. This 
theory of meridian-viscera correlation is the ear-
liest somatic visceral-related theory in the world 
(Ma 2020). In this regulation process, a large 
number of clinical and animal experiments have 
shown that acupuncture stimulation can effec-
tively regulate systemic inflammation and is 
closely related to the function of ANS. The spe-
cific effect will be affected by acupuncture points, 
acupuncture intensity, disease status, and so on.

3.3.1	� Acupuncture Anti-
inflammation 
and Parasympathetic Nervous 
System

As we all know, the vagus nerve accounts for 
70% of the parasympathetic regulation of inter-

nal organs, so it is the bridge between brain and 
visceral function (Park and Namgung 2018). At 
the beginning of the twenty-first century, 
Borovikova and others pioneered the concept of 
vagus nerve activity regulating inflammatory 
response (Borovikova et  al. 2000), and they 
found that direct electrical stimulation of the cer-
vical vagus nerve inhibited the synthesis of TNF 
in the liver and decreased the peak value of serum 
TNF, while acetylcholine significantly inhibited 
the release of cytokines (IL-1β, IL-6, and IL-18) 
released by macrophages stimulated by lipopoly-
saccharides (LPS) but did not inhibit the release 
of anti-inflammatory cytokine IL-10. Subsequent 
studies have shown that inflammatory cytokines 
produced by peripheral organs can activate the 
afferent part of the vagus nerve and send synaptic 
connections through the nucleus of the solitary 
tract (NTS) to the dorsal nucleus of the vagus 
nerve (DMN) in the brainstem (Tracey 2002). 
Stimulation of the efferent nerve of the vagus 
nerve can activate splenic sympathetic neurons in 
the celiac ganglion to release norepinephrine and 
activate acetylcholine release (Ulloa et al. 2017), 
and it binds to α7-nicotinic acetylcholine recep-
tors on macrophages, lymphocytes, and other 
nonneuronal cells, which inhibited the release of 
inflammatory cytokines through NF-κB activa-
tion while stimulating the STAT3 pathway, thus 
achieving the purpose of anti-inflammation (de 
Jonge et al. 2005).

The 361 acupoints in humans are basically 
located near the neuronal networks (Vida et  al. 
2011). When acupuncture induces mechanical 
stimulation at the neuromuscular junction and 
causes the local release of neuroregulators, it can 
simulate vagus nerve stimulation to a certain 
extent. Taking the Zusanli acupoint (ST36) stim-
ulation as an example, ST36 mechanically stimu-
lates connective tissue to activate the sciatic 
nerve, which in turn activates the NTS through 
the paraventricular trigeminal nucleus region of 
the medulla oblongata, then activating the effer-
ent pathways of the parasympathetic nervous sys-
tem from the NTS to DMN (Pavlov et al. 2003). 
C-Fos immunohistochemical staining (Fang et al. 
2017) proves that ST26 stimulation plays an 
important role in the activation of the NTS neurons 
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and the input of afferent vagus nerve. In addition, 
in the animal sepsis model with a lethal dose of 
LPS, electroacupuncture preconditioning had a 
significant survival-promoting effect on lethal 
LPS rats, while vagotomy abolished the anti-
inflammatory and animal survival effects of EA, 
indicating that EA activated the vagus nerve 
efferent circuit (Fang et  al. 2017). 
Electroacupuncture at ST36 has also been found 
to prevent inflammation and lung tissue injury in 
severely burned rats by stimulating the vagus 
nerve (Song et al. 2015). Definitely, cholinergic 
anti-inflammatory mechanism can also be 
induced by other acupoints. Electroacupuncture 
at the Baihui acupoint (GV20) and the Dazhui 
acupoint (GV14) can activate the dorsal motor 
nucleus of the vagus nerve by c-Fos immunohis-
tochemistry, which can reduce brain injury, apop-
tosis, and inflammation (Chi et al. 2018). It can 
be seen that vagus nerve activity is a main regu-
lating factor of EA regulating inflammation.

3.3.2	� Acupuncture Anti-
inflammatory Effects 
and Sympathetic Nervous 
System

While the vagus nerve has been a primary target 
mediating neuroimmune reaction in many stud-
ies, a potential role of sympathetic nerve activity 
has also been proposed (Park and Namgung 
2018). Studies have shown that bilateral section 
of the splanchnic sympathetic nerves before LPS 
treatment resulted in a fivefold increase in the 
plasma TNF-α response, but bilateral vagotomy 
had no effect. This suggests that celiac ganglion 
neurons innervated by visceral sympathetic 
nerves may be responsible for anti-inflammation 
(Martelli et  al. 2014). Sympathetic-mediated 
anti-inflammatory immune response is partly 
achieved by acting on different immune cells. For 
instance, the extraintestinal sympathetic nerve is 
activated in distal bacterial infection and releases 
norepinephrine, which integrates with β2 adren-
ergic receptor macrophages in the muscular layer 
of gastric mucosa. β2 adrenergic receptor signal-
ing mediates macrophage polarization upon bac-
terial infection activating protective phenotype of 
the gastrointestinal tract (Gabanyi et  al. 2016). 

Besides, sympathetic splenic nerves can control 
inflammation in experimental sepsis by activat-
ing T lymphocytes to inhibit the production of 
spleen TNF-α but not by interacting directly with 
macrophages (Vida et al. 2011). Study has shown 
that EA could decrease splenic lymphocytes 
apoptosis via inhibiting Fas protein expression, 
consequently preventing deleterious immunolog-
ical changes in the postoperative state (Wang 
et al. 2005).

Another point of view shows that the effect of 
the SNS is bimodal, enhancing or depressing lev-
els of proinflammatory and anti-inflammatory 
cytokines depending on the time point of immune 
system activation. In antigen-dependent arthritis 
(CIA) models, the sympathetic nerve stimulation 
(SNS) supports inflammation during the asymp-
tomatic phase of CIA, whereas it inhibits inflam-
mation during the chronic symptomatic phase 
(Härle et  al. 2005). This phenomenon may be 
explained that during inflammation, the decrease 
of local nerve fiber density may lead to the 
decrease of local neurotransmitters and the 
expression of adrenergic receptor subtypes in 
immune cells is transferred to α-adrenergic recep-
tor. Norepinephrine activates α-adrenoceptor at 
low concentration and plays a corresponding pro-
inflammatory effect (Nance and Sanders 2007). 
The effects of norepinephrine at high concen-
trations are mediated by the classical 
β2-adrenoceptor-cAMP-protein kinase A (PKA) 
pathway, thus inhibiting the release of proinflam-
matory factors (LaJevic et al. 2011). This may be 
due to the differences in the number of target 
cells, the state of activation, and the expression of 
adrenoceptor subtypes and intracellular signaling 
pathways (Pongratz and Straub 2013).

The anti-inflammatory effects of acupuncture 
on the activation of sympathetic nervous system, 
including systemic or local catecholamine 
release, are closely related to the activation site 
and electroacupuncture frequency. Studies have 
shown that in the model of peripheral inflamma-
tion, low-frequency (1 Hz) EA of ST36 can lead 
to local release of catecholamines from sympa-
thetic postganglionic nerve endings, thus acting 
on β-adrenergic receptors on immune cells to 
inhibit inflammation (Kim et  al. 2007). On the 
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contrary, high-frequency (120  Hz) EA of ST36 
can induce the release of systemic norepineph-
rine through the preganglionic nerve of the adre-
nal medulla for anti-inflammation (Kim et  al. 
2008, 2015). In addition, not only the frequency 
of EA but also the intensity of EA has heteroge-
neity in the drive of sympathetic reflex. Recent 
studies of endotoxin systemic inflammation have 
shown that low-intensity ES (0.5  mA) at the 
ST36 acupoint of the hind limb drives the vagus 
nerve-adrenal axis, producing anti-inflammatory 
effects that depend on neuropeptide Y (NPY+) 
adrenal chromaffin cells. However, higher stimu-
lation intensity (1–3 mA) is needed to drive spi-
nal cord sympathetic reflex, whether at ST36 or 
abdominal ST25, activating NPY+ spleen norepi-
nephrine neurons. The final outcome of proin-
flammatory or anti-inflammatory is determined 
by the state of the disease (Liu et al. 2020a, b). To 
sum up, it is not difficult to see that acupuncture 
has complex and multidimensional effects on 
neuroimmune regulation.

4	� Conclusion

Great progress has been achieved in recent years in 
explaining the basic mechanisms of acupuncture; 
however, the complexity of acupuncture is far 
from being fully understood. For example, when 
talking about EA, the commonly used frequencies 
are 2 Hz, 15 Hz, 2/15 Hz, and 100 Hz. The release 
of some transmitters such as endogenous opioid 
has been shown to be frequency dependent, but the 
mechanisms behind this remain to be elucidated. 
On the other hand, the mechanism underlying the 
cumulative effect of EA on chronic pain still 
remains unclear. Furthermore, with the fast devel-
opment of neuroscience especially the optogenetic 
technique to manipulate neural activity, concrete 
neural-circuit mechanism can be demonstrated in 
the near future.
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